

Parallel Processing
The Cm* Experience

mamaama

Parallel Processing
The Cm* Experience

Edward F. Gehringer
North Carolina State University

Daniel P. Siewiorek
Carnegie-Mellon University

Zary Segall
Carnegie-Mellon University

Digital Press

Copyright © 1987 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of the publisher.

Printed in the United States of America.

9876543'21

Order number EY-6706E-DP

This book was formatted by its authors using the Scribe Document Production System
(Unilogic Ltd.). The electronic files have been converted to type by ElF Typographic
Laboratories, Pittsburgh. The illustrations were prepared under the authors' direction with
the DP program on a PERO system. Editorial Inc., Rockport, Massachusetts, handled
design and production.

PDP-11, LSI-11, and the Digital logo are trademarks of Digital Equipment Corporation.
PERO is a trademark of PERO Systems, Inc.

Library of Congress Cataloging-in-Publication Data

Gehringer, Edward F. (Edward Francis)
Parallel processing.

Bibliography: p.
1. Parallel processing (Electronic computers)

2. Cm* (Computer system) I. Siewiorek, Daniel P.
II. Segall, Zary. III. TItle.
OA76.5.G365 1987 004'.35 86-29119
ISBN 0-932376-91-6

To the em* Family,

and our newest members,

Gail and Nathaniel.

Contents

Foreword by Gordon Bell xi

1. Why Multiprocessors? 1

I. The em* Hardware

1 .1. 'Nhat Is a Multiprocessor? 2
1.2. Why Experimental Multiprocessors? 4
1.3. Stages in the Life of a Multiprocessor Laboratory 5
1.4. Plan of the Book 7

2. The Cm* Hardware Architecture 11
2.1. Evolution of the Cm* Design 12
2.2. A Hierarchical Multiprocessor: The Structure of Cm* 14
2.3. Communication with Cm* 24
2.4. Summary 27

3. Measurements on the Cm* Hardware 29
3.1. Hardware Throughput Studies on Cm* 29
3.2. Reliability Studies on Cm* 38
3.3. Summary 45

II. Operating Systems

4. Operating-Systems Overview 51
4.1. Basic Goals 51
4.2. Addressing 56
4.3. Summary 61

5. MEDUSA 63
5.1. Facilities Provided by the Kernel 64
5.2. Messages 69
5.3. Utilities 71
5.4. Exceptions 80
5.5. Coscheduling 84
5.6. Summary 85

6. STAROS 87
6.1. Facilities Provided by the Nucleus 88
6.2. Messages 94

vii

viii Contents

6.3. Modules and Functions 96
6.4. Exceptions 100
6.5. Scheduling 100
6.6. Garbage Collection 102
6.7. Performance Aspects of Garbage Collection in STAROS 106
6.8. Summary 110

7. Operating-System Performance 113
7.1. Microcode Measurement Techniques 114
7.2. Performance of Similar Microcoded Operations 116
7.3. Performance of Dissimilar Microcoded Operations 119
7.4. Message-System Performance 126
7.5. Summary 142

III. Programming Environments

IV. Experiments

8. Languages for Multiprocessing 147
8.1. TASK and MEDLINK 148
8.2. AMPL 166
8.3. Summary 178

9. Other Software Environments 181
9.1. NEST 181
9.2. The AMPL Run-Time System 183
9.3. ECHOES 201
9.4. Summary 205

10. Integrated Instrumentation Environment 207
10.1. Functionality of the liE 207
10.2. Design of the liE 209
10.3. The Instrumented Stimulus: Representation and Specification 210
10.4. Relational Monitor 214
10.5. Stimulus Controller 216
10.6. The Resident Monitor 218
10.7. Schema Management 219
10.8. Summary 222

11. Performance of Parallel Algorithms 225
11.1. Speedup 225
11.2. Greater Than Linear Speedup? 227

Contents

11.3. Factors That Limit Speedup 231
11.4. Parallel Algorithm Taxonomy 250
11.5. Case Studies of Influences on Performance 259
11.6. Summary 270

12. Experiments in Multiprocessor Architecture 273
12.1. Measurement of Time 273
12.2. Voting 288
12.3. Interconnection Strategies 299
12.4. Summary 314

Appendix A. Experiments Performed on Cm* 317
A.1. Unicluster Partial Differential Equation Solver 317
A.2. Unicluster Quicksort 321
A.3. Integer Programming 324
A.4. The Speech-Recognition System Harpy 327
A.5. Harpy on a Simulated Computer Network 330
A.6. Fast Fourier Transform Experiments Using Algol 68 332
A.7. Multicluster Partial Differential Equation Solver 334
A.8. Multicluster Quicksort 341
A.9. Railway-Network Simulation 342
A.10. Power-Systems Simulation 348
A.11. A New Implementation of Power-Systems Simulation 350
A.12. AMPL Partial Differential Equation Solver 353
A.13. Matrix Multiplication in AMPL 358
A.14. Simulation of Molecular Motion 361
A.15. Comparative Implementations of Ada Rendezvous 367
A.16. Transaction-Processing System 372
A.17. Parallel Garbage Collector 374
A.18. Traveling-Salesman Problem 376
A.19. Design-Rule Checking on MEDUSA 382
A.20. Design-Rule Checking on STAROS 384
A.21. Parallel Production Systems: OPS3 388

Appendix B. Coscheduling Performance 395
B.1. Three Algorithms for Coscheduling 396
B.2. Analysis of the Algorithms by Simulation 400
B.3. Efficiency of Allocation and Scheduling 408
B.4. Summary 409

Appendix C. Performance of Parallel Algorithms 411
C.1. A Simple Analytical Model 411
C.2. The Refined Analytical Model 415
C.3. The Effect of Architectural Changes 420

ix

x Contents

C.4. Speedup 422
C.5. Calibrating the Model with Experimental Data 424
C.6. Summary 428

Appendix D. Smap: The Simple Microcode 429

Bibliography 431
Index 441

Foreword

This book is more than just a report of an interesting system. It includes the rationale
for and description of a large multiprocessor utilizing two operating system ap­
proaches, a comparison of the two operating systems' intercommunication methods,
and methodology and measurement techniques. The book also deals with under­
standing and predicting speedups for parallelism, comparing these experimentally on
30 different problems, and positing a general approach for parallel decomposition.

The Cm* architecture was described in the fall of 1973. It was designed to explore
how microcomputers could be combined to form large digital systems. As the sixteen­
processor multiprocessor C.mmp became operational at Carnegie-Mellon University
in the early 1970s and Digital Equipment Corporation introduced the LSI-11 (January
1975), the project became focused on building a modularly expandable multiproces­
sor for parallel processing research. The architecture was specified by March 1975,
and the design was completed by the fall of 1975. A single-cluster system was op­
erational by July 1976. A ten-processor, three-cluster system and operating system
were demonstrated in June 1978. All fifty processors in five clusters were operational
by September 1979. The machine was used experimentally for applications until Jan­
uary 1986.

The project output took many forms:

Twenty-seven papers were critically reviewed.
Twenty-four Ph.D. dissertations and fourteen master's theses (five of whose au­

thors completed Ph.D. degrees on other topics) were finished.
Eight faculty (three disciplines outside computing), ten research faculty, and ten

staff members participated over the years.
Cm* influenced at least four subsequent commercial or research multiprocessors.
At least four of the Cm* alumni went on to design and produce major innovative

and useful computer systems (not assemblages of mundane boards with mi­
croprocessors that characterize too much of today's information processing in­
dustry). I don't think these people would have built exciting systems without the
Cm* experience.

Dan Siewiorek estimates that more than 100 man-years went into the project, costing
around $5 million (or about $500,000 per year), including the $500,000 from Digital
Equipment Corporation for the LSI-11 s and another $500,000 for special hardware.
A 1985 report estimated that the federal government spent $100 million during the
previous year on experimental computer research; thus we should be seeing twenty
books like this per year. (Large companies spend an equal amount on open systems
research.) Since I know of only a few works of this high a quality over the past decade,
I think the book is required study for the computer and computing research commu­

nities.
The Cm* programming environment was a critical part of getting the work done. In

xi

xii Foreword

general, multiprogramming use probably is required to involve enough computer
users in applications search. What were the weaknesses of this experiment? Since
most applications that occur within the engineering and scientific domains require
floating-point arithmetic, an experimental machine must be able to deliver a substan­
tial amount of floating-point computer power to aUract real users. Since the floating­
pOint times for the LSI-11 were about 100 microseconds, even fifty computers would
not be especially useful in obtaining real results. Experiments had to be run with either
integers or "simulated" fast floating-point times to understand the speedup on what
a "real" machine would deliver. Thus, while the slow floating-point times made the
machine less useful and attractive to a large user base, it did not detract from the
experiments because the researchers were dedicated to exploring parallelism. A ma­
chine with faster floating-point operation, however, would have attracted more users.

The book should be useful for people who are trying to use multicomputers (such
as hypercube, grid, and tree-connected computers, along with workstation and PC
clusters) for production or for research on parallelism because Cm* emulates these
structures. I believe that none of the message-passing multicomputers can achieve
the speedups experienced on Cm* unless a new methodology is found, simply be­
cause the message-passing mechanisms used for data access and program syn­
chronization are relatively slow. Similarly, unless these machines (like Cm*) have the
proper arithmetic and memory capability, they will be only scale models, lacking real
utility and user pull. Therefore, if multicomputers are to do useful parallel processing
(as opposed to attracting money for research on parallelism), only very coarse grain
parallelism problems are candidates for use. These problems include design-rule
checking, monte carlo simulation, and ray tracing (Apollo made a movie, A Long
Ray's Journey Into Ught, using 200 workstations to generate the images). They can
all be partitioned into N independent cases and run with a single program and com­
mon data on all the computers, where the results are combined at the end of the
calculation when all cases have been finished. An idle collection of high-performance
workstations is an ideal structure to use for coarse grain parallelism. Even though
Cm* was built as a "scale model" computer, the results indicate that shared-memory
multiprocessors (with at least ten processors) will work efficiently for problems of
medium-grain parallelism (such as linear algebra, finite-element analysis, and simu­
lation), provided the programming tools and environment are good.

The reader should understand my biases and involvement: The original work on
computer modules came out of my research at Carnegie-Mellon University prior to
1972; I helped on the Cm* architecture, critiqued the design, and generally have
encouraged the direction the work has taken (including this book). Furthermore, I
have been involved in building at least ten multiprocessors over the past two decades
and believe that "production" parallelism can be achieved within the decade using
multiprocessors. I also believe computers for parallelism are nearly as important as
the development of the computer (circa 1950). A complete change in theory, algo­
rithms, programming languages and environments, problem decomposition, and user
training is likely to be needed to achieve "production" parallelism. Now is the time to
start working on parallelism by understanding and building on the solid results of Cm*.

Gordon Bell 16 September 1986

Acknowledgments

This research was supported by the Defense Advanced Research Projects Agency
under order no. 3597, monitored by the Air Force Avionics Laboratory under Contracts
F33615-78-C-1551, F33615-81-K-1539, and F33615-84-K-1520; by the National Sci­
ence Foundation under grants SP!-7821198, MCS-81-20270, MCS-81-03044, MCS-
79-20698, and DCI-86-02143; by the Ballistic Missile Defense Technological Center
under contracts DASG-60-80-C-0057, DASG60-81-0077, and DASG60-86-C-0015;
by NASA Langley Research Center under contract number NAG-1-190; by RCA un­
der contract 904822-0005-21; by Office of Naval Research contract number N00014-
85-K-0008; and by the Digital Equipment Corporation. Ivor Durham received support
from an IBM fellowship, Roger Dannenberg and Steven Vegdahl were supported by
the John and Fannie Hertz Foundation, and John Ousterhout and Richard Snodgrass
held National Science Foundation fellowships.

The Carnegie-Mellon University Design Research Center and the Electric Power
Research Institute provided support for some of the experiments carried out on Cm*.

xiii

Parallel Processing
The Cm* Experience

1. Why Multiprocessors?

In the past two decades, advances in integrated-circuit (Ie) technology have brought
about an exponential increase in logic functions per unit cost. The power of the
largest computers of the mid-sixties can today be packed onto a single silicon chip
called a microprocessor. On the horizon, fundamental physical limits (such as the
speed of light and atomic dimensions) loom as barriers that circuit designers will
reach by the year 2000, capping the performance attainable by a uniprocessor. Yet
the demand for computational cycles continues to grow unabated as large scientific
problems and commercial services push back the frontiers of computer applications.
The synergy of high-performance microprocessors, the approaching limit on
uniprocessor performance, and the growing demand for computation has stimulated
research into computer organizations utilizing a large number of processors to
achieve either higher absolute performance or high performance at a lower cost than
was previously possible.

There are many reasons for choosing multiprocessor structures. A partial list
might include [Siewiorek et al. 82]:

Peak computing power. The entire system can be devoted to a single problem.
A multiprocessor system can solve problems with higher or more frequent in­
terprocessor communication than a network because the interprocessor­
communication bandwidth is higher.

Performance / cost. Advanced technology has produced low-cost processors
whose instruction / second / dollar ratio is 10 to 100 times better than that of
large, high-speed processors. Even though these low-cost processors have
minimal functionality (e.g., simple instruction set, limited data types), there are
special applications for which they are adequate.

Availability and graceful degradation. Multiprocessor systems can be designed
with no central, critical component. Thus failures can be configured out of a
system for only an incremental loss in computing power. Multiprocessors are
more cost-effective than uniprocessors with respect to the relative cost of
redundancy. A uniprocessor system requires redundant hardware for failure
detection, diagnosis, and recovery. A multiprocessor need only have hard­
ware for failure detection, relying on the unaffected processors to perform the
diagnosis and recovery in software.

Modular growth. Systems can be designed to allow processors, memories, and
input/output subsystems to be added incrementally. Thus multiprocessors can
be tailored to individual applications or grow incrementally to meet demand.

Functional specialization. Functionally specialized processors can be added to
improve performance for particular applications.

If parallel processing is so attractive, we may then ask why it is still considered an
"exotic" means of computation. The answer to this question is complex but depends

2 1. Why Multiprocessors?

basically on how well we know how to apply parallel processing to practical
problems. The computing profession must learn how to develop parallel algorithms,
how to program a parallel machine, how to decompose a problem systematically into
parallel parts, how to determine the optimal size of these parts, and how to specify
the right architecture and operating system to support a given grain of parallelism.

The complex space of parallel processing poses a set of heavy scientific chal­
lenges. One of the main challenges is performance-realizing concrete benefits out
of the potential performance of a parallel processor. Although the machine boasts a
certain amount of raw processing power (measured in MIPS or MFLOPS,* for
example), the application running on the machine may be able to extract only a part
of it. A number of factors may contribute to suboptimal performance: the algorithm
and its implementation, predictable hardware operating-system overhead, and the
added complexity of parallel programming. Given the multiple facets of this problem,
the need for an experimental parallel machine becomes obvious.

This book describes the scientific insights gained in building, programming, and
evaluating the Cm*, an experimental 50-processor multiprocessor system. Con­
ceived in the early 1970s at the beginning of the microprocessor revolution, Cm* be­
came operational in 1977. It was one of the first large-scale general-purpose
multiple-instruction / multiple-data (MIMD) processors. Two complete operating sys­
tems-STAROS and MEDUSA-were developed along with a host of applications.

This book reports on a decade of experience representing more than 100 man­
years of effort in the newly emerging area of parallel processing. It constitutes a
concise description of perhaps the most comprehensive parallel- proceSSing re­
search devoted to a single architecture. Rather than emphasize the particular
hardware / software structure of the machine, we have chosen to concentrate on the
wealth of issues explored via Cm* experiments. These issues range from program­
ming parallel applications, to investigating interactions between the operating system
and architecture, to developing an automated experimentation environment that
facilitates the construction of prototype applications.

One can easily argue that most of tOOay's large parallel processors serve
primarily as research vehicles for the study of parallel proceSSing. Cm* is un­
doubtedly the most mature parallel system in terms of experimental results and cur­
rently is the best equipped for performing experiments. We hope that this book will
make a significant contribution to the understanding of parallel processing and will
inspire both designers of new parallel systems and students of parallel processing.

1.1. What Is a Multiprocessor?

It is suitable at this point to place Cm* in the space of parallel computer architec­
tures. To do so, we will briefly explore, without claims to completeness, several
dimensions related to the classification of distributed systems. Six main classes of
parallel processors can be identified as follows:

* Millions of Instructions per Second; Millions of Floating Point Operations per Second.

1 . Why Multiprocessors? 3

Simple uniprocessor computer: Single-instruction, single-data. The processor
interprets a single instruction stream to operate on data stored in a single
memory. Some parallelism can be achieved through the use of a fetch /
decode / execute pipeline.

Pipelined multiple-execution-unit uniprocessor for scalar and vector processing:
Single- and multiple-statement execution architectures. The processor inter­
prets a single machine instruction to operate, in parallel, on multiple data (e.g.,
severai numbers or a vector) stored in a singie memory. in addition, severai
instructions from the stream also may execute at one time.

Lockstep processor: One instruction-execution unit, many processing-element /
data-memory pairs. A single machine instruction controls the simultaneous
execution in a large number (greater than 100) of processing elements on a
lockstep basis. Each processing element has an associated data memory.
For this reason, the organization is often called a single-instruction / multiple­
data (SIMO) architecture. Intercommunication is via fixed paths among the
processing elements.

Multiprocessor: Many instruction-execution units operating on many data
memories. Each simple uniprocessor accesses programs and data stored in
shared memory. Cm* is an example of a multiprocessor.

Multicomputer: Many instruction-execution units, each with a dedicated data
memory. Each primitive element is a computer (processor-memory pair).
Communication among computers is either via fixed paths or via some
message-switching mechanism.

Dataflow architecture: Many instruction-execution units, which are activated
upon receipt of data. The order of execution depends on when data is
received by the execution units, not on the order in which instructions appear
in the source program.

A pipelined uniprocessor can overlap processing of several instructions, attaining
a degree of parallelism of from two to four. The multiple-execution-unit uniprocessor
increases parallelism to the order of four to ten by simultaneously operating on
several instructions from the instruction stream with its different execution units. The
lockstep processor uses a simple instruction decoder to process many data items in
parallel. Typically, the processing elements are 1 bit wide and together can operate
on bits across 100 or more words at the same time.

Multiprocessors consist of many autonomous processors that address the same
primary memory. In contrast, multicomputers are made up of autonomous com­
puters communicating by means of messages through static or dynamic com­
munication links. Since a multiprocessor can emulate a multicomputer with a mes­
sage system implemented in shared memory, the multiprocessor is a more general
structure for a distributed computer research laboratory. In particular, the Cm* ar­
chitecture provides for a continuum of memory sharing between processors ranging
from no shared memory (multicomputer) to fully shared memory (multiprocessor).

Another way to define the place of multiprocessor systems in the world of dis­
tributed computers is to consider the synchronization granularity [Mohan et al. 85],

4 1 . Why Multiprocessors?

or frequency of synchronization between tasks in a distributed system. Table 1-1
shows, for a variety of synchronization granularities, the best-suited distributed com­
puter organization. Multiprocessor systems such as Cm* are most suitable for a
medium grain of synchronization.

Multiprocessors and networks employ a variety of interconnection structures to
couple processors with memory units. Among these are full interconnections, shared
buses, multiple shared buses, crossbar switches, and multistage networks. See
[Siegel 85] for a complete discussion of this topic. The fully connected network

couples each processor with each memory through a dedicated link. A shared bus is
a single communication path to which both processors and memory are connected.
Bus arbitration may either be done in a central arbiter or be distributed among the
units.

A multiple shared bus is a set of shared buses connected by gateways or
switches. The switches may be organized in many ways. The best-known topologies
are hierarchical switches and crossbar switches. With a hierarchical switch, a group
of functional units is clustered around a single shared bus, and the clusters are inter­
connected with another shared bus. By repeating the process, a hierarchically or­
ganized multiple-shared-bus network is obtained. If crossbar switches are used in­
stead, they are arranged into a regular pattern. Each processor and each memory
unit is connected to a dedicated shared bus. Switches are then used to connect the
processor buses and memory buses into the form of a crossbar. Multistage intercon­
nection networks usually require a logarithmic number of levels of switches to con­
nect the processor units with the memory units, while the number of switches in a
crossbar is proportional to the product of the number of processors and the number
of memory units. Cm* uses a hierarchically organized multiple shared bus.

1.2. Why Experimental Multiprocessors?

At the foundation of the Cm* project stands a set of basic scientific questions. In our
case, the questions are related to the nature of parallel computation and its applica­
tion to real problems. The Cm* multiprocessor was perceived as being the catalyst
for bringing together a set of researchers to focus attention on these questions.
Hence the Cm* project not only consists of hardware and software but includes the
combined effort of these researchers to gain new insights into parallel processing.

Cm*'s hardware and software, as a complex computing system, is structured in
terms of layers of abstraction. To run effectively, a parallel application needs both an
efficient implementation of each level of abstraction and a well-designed methodol­
ogy for mapping the application to the machine. Several levels of abstraction are
shown in Table 1-2. Each level adds new facilities that hide its implementation
details from the view of higher levels. The designer is faced with two questions: (a)
how to choose between different approaches to the implementation of each layer,
and (b) how to map a parallel application into the various layers, since special
hardware or additional microcode may be the most effective way of improving
performance.

Table 1-1

Table 1-2

1 . Why Multiprocessors?

Synchronization Granularity and Distributed Computer Structures

Grain
size

Fine
Medium
Coarse
Laige

Synchronization
interval
(instructions)

1
10-100

100-10,000
10,000-10 million

Distributed Communication
computer overhead
structure (instructions)

Vector / array processor 1
Multiprocessor 1-10
Mu!ticomputer inn_in nnn

IVV IV,VVV

Network i 0,000-1 0 miiiion

Levels of Abstraction in Multiprocessor Systems

Level Sublevel

Parallel program Application software

Executive software

Multiprocessor Configuration

Instruction set

Hardware Logic

Typical components

Processes, tasks, shared data
structures

Message system, task scheduler,
memory allocator

Processor, memory interconnection
network

Memory state, processor state,
effective address calculation,
instruction execution

Gates, flip-flops, registers, sequential
machines

5

To explore such a large space properly, both theoretical and experimental
research is critical. This need led to construction of the experimental research
vehicle Cm*, with its modular and expandable architecture and a reconfigurable
interconnection network.

Operating systems are a major thrust of Cm* research. Two conceptually different
operating systems have been implemented and evaluated. Large parts of the
operating-system kernels have been vertically migrated into firmware. One can
solidly argue that a research laboratory is as good as the quality of its support
environment. For its day, Cm* has had one of the most sophisticated and complete
instrumentation systems, greatly facilitating complex experiment design, implemen­
tation, and measurement.

1.3. Stages in the Life of a Multiprocessor Laboratory

Cm* research has progressed through three stages, reflecting the evolution of
hardware, operating systems, and the experiment support environment. Each stage
has been associated with a particular experimental methodology and a specific set

6 1. Why Multiprocessors?

of experiments. We believe that these stages are not particular to Cm* but that they
track the evolution of a typical multiprocessing laboratory.

STAGE 1-STANDALONE. The system is completed through the instruction-set level
of abstraction; that is, the instruction set has been defined, and the hardware has
been built. There is virtually no software to support user applications. The only
software utility is a loader, which allows programs compiled on another machine to
be loaded into the experimental machine. Experiments are limited to simple, regular,
compute-bound algorithms. Only a limited number of parameters may be varied, and
only by editing the source code of the benchmark. The programmer must be a
hardware expert because there is little software to provide a higher-level virtual
machine. The program is tied closely to the hardware: The user must specify where
code is to be placed, define the memory map, and write code to initialize memory,
create processes, manage resources, and collect data.

For Cm*, the experiments in stage 1 included the following:

Hardware saturation. Programs consisted of a few instruction loops with varying'
placement of code and data. The capacity of various hardware resources was
determined, along with the impact of contention for those resources.

Speed variations due to changes in algorithms or data. Experiments sought the
impact of synchronization of access to data and of variation due to the amount
of data and its placement.

Hardware diagnostics. Diagnostic programs were run for long periods of time.
Errors were tabulated, and patterns of errors were studied.

STAGE 2-oPERATING SYSTEM. An operating system is available so that the user
can take advantage of its abstractions. The system provides basic functions such as
resource management and scheduling. The experimenter calls operating-system
primitives in his code and thus needs substantial operating-system expertise. Also
characteristic of this phase is the discrete incremental nature of the experimentation
process. Experiments tend to be specific rather than comprehensive, owing to the
difficulty of making and correlating observations from multiple runs.

In stage 2, the experiments ware very regular, with limited variation of
parameters; organized in terms of a "master" process that controlled a collection of
"slave" processes, which performed the actual computation; heavy users of system
calls (since many operating-system facilities were not gracefully integrated into lan­
guage compilers and utilities).

Typical experiments included the following:

Measurements of the cost of various operating-system functions. Features were
tested on a one-by-one basis. Examples include primitives for memory man­
agement, interprocess communication, synchronization, scheduling, and ex­
ception handling.

Measurements of different implementations of a parallel algorithm. The impact
of using various strategies in parallel program organization, data structures,
and resource allocation was studied.

1. Why Multiprocessors? 7

STAGE 3-INTEGRATED INSTRUMENTATION ENVIRONMENT. At this staqe. hardware

and software facilities have been provided for generating experiments, dynamically
observing hardware and software activities, and analyzing results. With this en­
hanced support, the user can experiment at the application level of abstraction with
the capability of varying many parameters. A major characteristic of this stage is the
grouping of facilities for experiment generation, monitoring, data collection, and
analysis under a single user interface. A richer collection of measurement tools
makes it possible to observe the behavior of ihe operating system and support
software with acceptable effort. The programmer may thus be a relative novice to
the experimental system.

Stage-3 experiments had the following characteristics: They measured the
dynamic behavior of the operating system and applications; measurements were
continuous, and programs could be monitored on-line and sometimes in real time;
different virtual machines could be studied, as could different logical interconnection
structures.

1.4. Plan of the Book

Typical experiments at this stage included the following:

Interaction between algorithm and architecture. An application was run on dif­
ferent operating systems or different simulated architectures.

DeSigning application-oriented architectures. Based on the results of compara­
tive algorithm / architecture experiments, a virtual machine could be tuned for
the application. This virtual machine could be used to provide guidelines for
designing an application-oriented architecture.

This book has been divided into four parts, reflecting the different levels of the Cm*
hardware, firmware, and software. We have provided extensive cross-references
between sections so that the reader can begin with the division that interests him or
her most, consulting other chapters for background information where necessary.
Here is a brief synopsis of each part.

The Cm* hardware is described in Part I. Chapter 2 recounts the developments
that led to Cm* and describes its major components and communication links. Chap­
ter 3 concentrates on the performance and reliability of the hardware.

The Cm* operating systems are the subject of Part II. Chapter 4 discusses the in­
fluence of the architecture on building operating systems and explains where the two
operating systems for Cm* resemble each other and where they differ. MEDUSA, the
operating system that most closely reflects the Cm* hardware, is described in Chap­
ter 5. The following chapter focuses on STAROS, the operating system that en­
deavors to provide more general support for multiprocessing. Chapter 7 reports on
measurements that compare the performance of various components of the two sys­
tems.

Part III contains a discussion of the various programming environments imple­
mented on top of the two operating systems. These can be classified into languages,
run-time support, and experimentation environments. Parallel languages are the
topic of Chapter 8. It describes three languages with very different implications for

8 1. Why Multiprocessors?

parallel-program development. Chapter 9 details three run-time environments that
were designed to support languages and experimentation. Early experience
revealed the need for a comprehensive way of generating and cataloging experi­
ments, and hence an integrated instrumentation environment was developed. It is
described in Chapter 10.

The experiments themselves are the focus of Part IV. These can be loosely
divided into two categories: experiments with parallel algorithms and experiments
with parallel architectures. The former are rtescribed in Chapter 11, which distills
general lessons in parallel algorithm performance from the Cm* experience. Several
experiments used Cm* to emulate a large class of multiprocessor structures. Their
conclusions are presented in Chapter 12. An interesting adjunct to Part IV is Appen­
dix A, which describes all the parallel algorithms implemented on Cm*.

As one of the first multiprocessors to support extensive research, Cm* has
yielded results that will influence future developments in parallel processing in many
ways. This book affords an opportunity to obtain a broad overview of a multiproces­
sor laboratory or to delve deeply into some of its aspects.

I. The Cm* Hardware

2. The em* Hardware Architecture

Historically, Cm* had its beginning in the register-transfer module (RTM) project
[Bell et al. 72]. RTMs are a module set for the systematic construction of digital sys­

tems at the register-transfer level. The successor to the RTM project; and immediate
fOieDeai of Cm*, was the computer module (eM) project [8eii et ai. 72, Fuiier et ai.
73], which also had the systematic construction of digital systems as its major objec­
tive.

The prime assumption of the CM project was that a simple computer, a
processor-memory pair, is an appropriate module for building large digital systems.
A computer is any general-purpose device that, within performance constraints, can
perform any well-defined digital function. A computer also is well suited for interfac­
ing devices such as sensors, actuators, storage media, and communication
devices. Modular structures have several advantages, including reduced cost
through faster system design, faster production, reduced inventories, and simplified
maintenance.

A second basic assumption of the CM project was that communication between
modules should be at the level of a single memory reference. Both lower and higher
levels of communication were rejected. An example of a level of communication
more fundamental than memory references would be a network of control lines
that could be set and sensed by individual processors. Synchronization might be
achieved by use of a central clock and data paths via communication registers. This
very low level intermodule communication was rejected because it would too tightly
constrain the use of the system. The need to synchronize modules to a centralized
clock would limit the physical size of the structure and severely impair the ability to
build fault-tolerant systems.

Alternatively I an example of a higher level of communication would be message
passing between computers. This suggests a computer network. Even with very high
bandwidth interconnections, the grain size of effective cooperation between com­
puters is limited by the overhead of message preparation, reception, and activation
of the deSignated recipient process. This makes it inefficient to run parallel al­
gorithms such as global search or Ada rendezvous (see Section A.15), which require
frequent references to non local memory.

Contemporary with the RTM and CM projects was the multiprocessor system
C.mmp [Wulf 72]. C.mmp sought large amounts of computing power at a lower cost
through the use of minicomputers. Experience with the development and operation
of C.mmp and Hydra [Wulf et aI. 74], the C.mmp operating system, influenced both
the architecture and the initial operating system of Cm*.

11

12 I. The Cm* Hardware

2.1. Evolution of the em· Design

The structure of Cm* has developed over a number of years into the "canonical"
structure of Figure 2-1. This is a structure with a low concurrency switch (the net­
work of buses) giving access to shared memory. The structure is built from
processor-memory pairs called computer modules or em'S.l The memory local to a
processor is also the shared memory in the system. Inherent in this structure is the
assumption of program locality. The efficient use of the system depends on ensur­
ing that most of the code and data referenced by a processor will be held local to
that processor. Early CM* measurements with various benchmark applications in­
dicate that local-memory hit ratios of 0.8 to 0.9 (Le., a fraction of total memory
references directed to local rather than remote shared memory) were readily ach­
ieved (Sections A.1 through A.3).

A series of design studies was undertaken to explore this design space. Figures
2-1 to 2-3 depict the PMS (processor-memory-switch) structures studied, while
Table 2-1 lists the estimated cost and complexity of each design [Fuller et al. 75].
Table 2-1 was created during a preliminary design exercise, so the numbers are only
approximate figures.

Initially, one self-contained module was envisioned that consisted of a processor,
memory, and an intelligent interface (Figure 2-1). The result was termed a computer
module (Cm). The address-mapping controller (Kmap, marked "K" in the figures)
performed all the functions necessary for generating external memory requests and
responding to external requests for its local memory. So that the capacity for inter­
processor communication would not be limited by any single communication path,
each Kmap connects to two inter-Cm buses. Memory could be shared even though
there was no direct visible connection between the requesting processors and re­
quested memory. For example, consider a request by P1 to M4 in Figure 2-1.
Kmap1 would route the request to Kmap2, which in tum would route it to Kmap4.
From Table 2-1 we see that the design was extremely costly, while a
simulation / benchmark study [Levy 74] indicated that the bus structure was under­
utilized. Subsequently, as simple a design as possible was tried to minimize the
complexity. Figure 2-2 depicts the simple interface (S.minimal, marked "5" in the
figure) design. The minimal interface provides parallel word transfer between the two
buses. Some modules were connected by physical links that permitted direct com­
munication. Modules without direct physical links could still communicate via inter­
mediate modules, provided that the delays for the intermediate passing of requests
were acceptable. Table 2-1 indicates that the projected performance was low and
that for fully interconnected structures, the cost was comparable to the Kmap-per­
Cm scheme (Figure 2-1).

Further investigation led to the conclusion that very little performance loss
resulted from centralizing the address-mapping and multiple-bus connection func­
tions of individual modules in a Kmap that is shared by a number of computer

1 After the PMS notation of Bell and Newell [Bell and Newell 71].

Figure 2-1

Table 2-1

2. The Cm* Hardware Architecture

The Canonical Structure of Cm*

r - - ->- - - - - - - - ->- - - - - - .,
\!I

_1- -- - Inter em Bus

A t=:t : K - ~ : 1 1 2 1

~ ®l-EJ P2 M2 :

~fr
~~

Comparison of Three Alternative Cm* Implementations

Design Chips/Port

Kmap/Cm 380
(Fig. 2-1)

Simple links 25
(Fig. 2-2)

Kmap/ 125 (Slocal)
cluster 650 (central-
(Fig. 2-3) ized Kmap)

External
connections
perCm

25 to 75

24 to 240

26
(26 to 78
per Kmap)

Performance
degradation
factor for
a non local
memory read
operation
with one level
of mapping

1.5

8

1.8

Representative
fully connected system

Total
chips

13

10 Cm's 100 Cm's (10 Cm's)

10 Kmaps 100 Kmaps 3,800

180 links 19,800 4,500
links

10 Siocals 100 Siocals 1,900
1 Kmap 10 Kmaps

14

Figure 2·2

I. The Cm* Hardware

Simple Interface between Cm and Bus

modules (Figure 2-3). The cost savings are quite dramatic. Table 2-1 shows a
savings of a factor of two in chip count for comparable structures. Actually, the cost
savings are even better than indicated by Table 2-1 because the final shared Kmap
design incorporated many features not accounted for in the chip counts for the other
designs (for example, 20K bytes of bipolar RAM for microcode and data storage).
The programmable high-performance Kmap is shared by several Cm's connected to
an inter-Cm bus via simple interfaces (Slocals). The basic function of the Siocal is to
provide a buffer between the processor and the inter-Cm bus and to provide suf­
ficient control functions to generate or respond to external memory requests.

The major conclusion of this study is that the architectural design of Cm· was
driven by the goal of balancing an expandable canonical parallel architecture with
the price / performance characteristics of available components, such as LSI-11 pro­
cessors. The clustering approach-sharing buses and Kmaps between a number of
Cm's-is mainly due to the price/performance/functionality trade-off. This process
is inherent not only in the design of Cm· but in any parallel-processor design.

2.2. A Hierarchical Multiprocessor: The Structure of em*

This section provides a brief overview of the final structure and components of the
Cm· hardware. More detailed descriptions may be found in a number of earlier
publications. The original description of the design and implementations of Cm· ap­
pears in two papers presented at the 1977 National Computer Conference [Fuller et

Figure 2-3

2. The Cm* Hardware Architecture 15

Sharing a Kmap among Computer Modules

al. 78, Swan et aI. 77]; the design and switching structure of Cm* and a detailed ac­
count of one particular addressing structure are described by Swan [Swan 78].

Cm* consists of 50 Cm's, connected together by a hierarchical, distributed switch­
ing structure as depicted in Figure 2-4. The lowest level of the switching hierarchy
consists of Siocals, local switches that connect individual Cm's to the rest of the
structure. Cm's are grouped together into clusters that are presided over by high­
speed microprogrammable communication controllers called Kmaps. A Kmap
provides the mechanism for Cm's in its cluster to communicate with each other and
cooperates with other Kmaps to service requests from its Cm's to access Cm's in
non local clusters. Since Kmaps are microprogrammable, it is usual to implement key
operating-system functions in the microcode of these processors, in addition to the
normal function of address mapping.

All communication mediated by the Kmaps is implemented via packet switching
rather than circuit switching, to avoid deadlock over dedicated switching paths.
Packet-switched communication also allows the processing of requests by the
Kmaps to be overlapped, since switching paths are no longer allocated for the
duration of a request. This leads to considerably better utilization of the switching
structure. The interconnection structure of Cm* at the level of clusters is essentially
arbitrary. The Kmap of each cluster has two bidirectional ports, each of which may
be connected to a separate intercluster bus to implement a variety of intercon­
nection schemes. In the usual hardware configuration, all five Kmaps are connected
to both intercluster buses, as shown in Figure 2-4.

16 I. The Cm* Hardware

Figure 2-4 The Structure of Cm*

= Inlerclusler bus

- Map bus = POP·11 bus

~ oALinks

.... SLUtoH06t

2.2.1. em's and Sioeals

Each em is a processor-memory-switch combination, consisting of a standard off­
the-shelf Digital LSI-11 processor, 64 or 128K bytes of memory, one or more I/O
devices, and a custom-designed Siocal that connects the processor-memory com­
bination to the rest of the system (Figure 2-5). When the processor of a em initiates
a memory reference, the Siocal of that em is responsible for determining whether
the reference is to be directed to local memory or out to the Kmap for further map­
ping. As shown in Figure 2-6, the Siocal uses the 4 high-order bits of the processor's
address, along with the current address space, to access a mapping table that deter­
mines whether the reference is to proceed locally or not. (A more complete discus­
sion of how address translation is performed by the em" operating systems may be
found in Section 4.2.) References that map to local memory proceed with no loss of
performance; references that map to another em in the same cluster as the
referencing em are slower by a factor of three; and references that map to a em in
another cluster are slowed again by a factor of three. These figures are the best pos­
sible ratios that can be achieved on em" and therefore correspond to constraints

Figure 2-5

Figure 2-6

2. The Cm* Hardware Architecture

Details of a Computer Module

Map Bus

Address Mapping in the Siocal

processor

Siocal
registers

5

non· local

.I-,J------! local

processor·
generated
address offset 12

17

6
18 LSI·11 bus address

18 I. The em· Hardware

imposed by the hardware itself rather than to any microcode implementation quirks.
All I/O devices in Cm* are connected to the various LSI-11 buses. Since there is no
interprocessor communication mechanism other than the standard one for memory
references, interrupts generated by an I /0 device must be fielded by the processor
to which the device is directly attached.

2.2.2. Kmaps: Transaction Control/ers

Standing as the switching center within a cluster of computer modules, and as a
node on a network of clusters, the Kmap is the primary source of synchronization
and of communication in Cm*. A fast (157-ns. cycle), horizontally microprogrammed
(SO-bit wide) microprocessor, the Kmap provides the basic address mapping, com­
munication, and synchronization functions in the system. The Kmap itself consists of
three tightly coupled processors (Figure 2-7). The bus controller, or Kbus, acts as
the arbitrator for the bus, that connects Cm's in the local cluster to their Kmap; the
Unc manages communication to and from the Kmap to other Kmaps; and the map­
ping processor, or Pmap, responds to requests from the Kbus and Linc, and per­
forms most of the actual computation for a request for service. The Pmap also
directs the Kbus and Linc to perform any needed operations on behalf of the request
being processed.

The Kmap is envisioned as a transaction controller, sending to and receiving from
computer modules and other Kmaps message packets that contain requests and
replies, following a protocol designed by the microprogrammer. Because one of the
common transactions the Kmap is expected to handle is the mapping of a memory
access issued by the processor of one computer module to a location in the memory
of another computer module-a transaction that must be performed very rapidly and
with little delay if any reasonable system performance is to be obtained-the Kmap
contains some special hardware features designed to assist it in contrOlling many
transactions at a high rate of speed.

The Kmap hardware supports eight separate Pmap processes, known as con­
texts, each with its own set of general-purpose registers and its own microsubroutine
stack. Typically, each context is in charge of one transaction. When one context
needs to wait for a message packet to return with the reply to some lower-level re­
quest, it has the Pmap switch to another context so that work on another transaction
can proceed concurrently.

The Kmap also contains 5,120 words of random-access memory, called the data
RAM, which the Pmap can read and write at the expense of a few microinstructions.
Because the data RAM is shared by all contexts, it typically holds information that is
of interest to more than one transaction, such as cached pieces of address trans­
lation tables and mechanisms for synchronizing the use of other resources among
different contexts.

Taken individually, each Kmap appears to the Pmap microprogram mer as a
nonpreemptive, hardware-scheduled multiprogramming system (since contexts are
never interrupted, but are suspended only when the microprogrammer directs).
Taken collectively, the network of all Kmaps presents the microprogrammer with a
distributed system based on message-packet intercommunication.

2. The Cm* Hardware Architecture 19

2.2.3. The Interface between Kmap and Computer Module

Figure 2-7

The Pmap communicates with the computer modules in its cluster via the map bus,
a packet-switched bus controlled by the Kbus. The Kbus fields requests and replies
from computer modules, coordinates the transfer of data across the map bus be­
tween computer modules or between a computer module and a Pmap context, and
keeps track of which Pmap contexts are free to service new requests. Two queues,
the Kbus out queue and the Pmap run queue, provide the interface between the
Kbus and tne Pmap. Refer to Figure 2-7 .

A request by a computer module to the Kmap is said to invoke some Kmap
operation. The most basic Kmap operation, and certainly one that is expected to be
invoked frequently, is the mapping of the nonlocal access to a location in the physi­
cal memory of some computer module in the cluster. Figure 2-8 traces such an
intracluster memory reference, step by step. Except where noted, the description
also applies to other Kmap operations. Because it is so common, a mapped non local
memory access usually is just called a mapped reference. The intracluster access
shown in Figure 2-8 is one example. Each memory access issued by the processor
of a computer module passes through its Siocal, which either routes the access
directly to local memory or sends it out to the Kmap. A memory access handled by
the Kmap also can be mapped back to the local memory of the issuing processor,
but a direct local access is about three times faster.

Whenever the processor of a computer module issues a non local memory access
(1), a service request is signaled to the Kbus. The Kbus allocates a Pmap context,
reads the virtual address for the memory access via the map bus (2), and activates

The Components of the Kmap

Intercluster bus 1

Intercluster bus 0 II

Service Queue

r~~in~~£
~----:..- Run Queue

Map bus ~
Kbus Out Queue Pmap

+-{[E

20

Figure 2-8

I. The em* Hardware

The Steps in an Intracluster Memory Access

~
W ~,

<D processor initiates non-local memory access

® Kbus reads virtual address from master em

® context activation waits in run queue

@) Pmap microsubroutine performs address translation

® request for memory cycle waits in out queue

® Kbus sends physical address to destination em

(J) destination em steals memory cycle from its processor

® Kbus gates return result back to master em

® processor continues

~------------~6~------------_

Kbus
Map bus

(or reactivates) the new context by placing an entry in the Pmap run queue. This
entry contains the number of the Pmap context to be activated, along with a small
amount of other data, such as the virtual address of the processor's non local
memory access or the result data from a Pmap-initiated memory access. The com­
puter module that invokes a Pmap context to process its memory access is called
the master computer module, or master em.

A newly activated context does not automatically gain control of the Pmap,
however, but instead must wait on the run queue (3) until the Pmap selects it for ex­
ecution. There are no microinterrupts; the Pmap runs a context until that context ex­
plicitly relinquishes it. When this happens, a new context is loaded from the run
queue. This event is called a context swap, and a context that invokes a context
swap is said to swap out.

A Pmap context can initiate a physical memory access in any of the computer
modules in its cluster. This memory access can be either a read access, in which
case the result is the data read, or a write access, in which case the Pmap also sup­
plies the data to be written and the result serves merely as an acknowledgment. The
Pmap context considers the virtual address, the master em number, the contents of
an address-translation table, and any other desired source of information, and it
determines the destination computer module and the physical address within that
module to which the memory access is directed (4).

The Pmap then invokes a Kbus operation by loading a request into the Kbus out
queue. About two dozen different operations are provided, most of which are varia-

2. The Cm* Hardware Architecture 21

tions of the Pmap-initiated memory access. After loading a request in the out queue,
the Pmap context typically swaps out to let work on some other transaction proceed
concurrently with the operation requested of the Kbus. The request waits until the
Kbus becomes available (5). At that time, the Kbus carries the memory-access re­
quest, via the map bus, to the indicated computer module, called the destination
computer module, or destination em (6).

The Kbus has priority for accesses to memory of the destination em, so the refer­
ence.is made via cycle stealing if necessary (7), When the result of the operation be­
comes available, the Kbus reactivates the requesting Pmap context. This sequence
of requesting a Kbus operation, swapping out to run other contexts, and waiting for
eventual reactivation is an extremely common occurrence in Pmap microcode. The
Pmap context completes processing the service request and signals a return
request to the Kbus, which gates the result back to the master em (8) in a return
message. Finally, the master Cm resumes processing (9).

To obtain better performance from a nonlocal memory reference, the Pmap
microcode can actually use a special case of the Pmap-initiated memory access
-one in which any data to be written is supplied by the master em instead of the
Pmap context and, provided that no error is indicated, the acknowledgment from the
destination Cm is routed directly back to the master em, without ever reactivating
the Pmap context. If an error occurs, the automatic bypass is forgotten and the result
data goes back to the Pmap context, under the expectation that maybe the context
could do something intelligent about the problem. In the expected case in which no
error occurs, however, a nonlocal, intracluster memory access requires only one
Pmap context activation and three map bus cycles. From the time a processor
issues a non local memory access until it receives the result data, a total delay of
about seven microseconds elapses.

The remote memory access is the simplest and most common Kmap operation
but by no means the only one. For more complicated operations, the Pmap
microprogrammer generally appropriates some subset of the computer module
processor's virtual address space, designating specific addresses the processor can
use to invoke other, less-ordinary Kmap operations. Details of the scheme used by
the STAR OS and MEDUSA operating systems are provided at the end of Section 4.2.
These special Kmap operations are invoked in exactly the same manner as I/O
operations are invoked on a computer that, like the PDP-11, has memory-mapped
device control registers.

Because each cluster has only one Kmap, the Kmap is the logical processor to
perform operations that must be interlocked. If, however, the operation involves a
context swap (for example, any operation that performs a Pmap-initiated memory
access), some mechanism must be used inside the Kmap to prevent other contexts
of the same Kmap from violating the interlock. One technique is to implement an in­
ternal semaphore in the data RAM.

Other operations that the Kmap might provide are low-level operating-system
primitives. In particular, operations that cross domain boundaries, such as a
message-transfer operation, and operations that involve much memory traffic, such
as a block-transfer operation, are well suited for implementation in the Kmap. The
primary objective in microcoding these operations is speed.

22 I. The Cm* Hardware

2.2.4. The Interface between Kmap and Kmap

Kmaps communicate with each other via an intercluster bus, a packet-switched bus
that is jointly controlled by the Linc processors in each of the directly connected
Kmaps. The Linc maintains queues of incoming and outgoing messages, interacts
with the Kbus to activate and reactivate Pmap contexts, and provides the local
storage for Pmap contexts to construct and inspect intercluster messages. Each Linc
is interfaced to two independent intercluster buses, as shown in Figure 2-7.

An intercluster message contains up to eight 16-bit words of data, of which all
words except the first are totally uninterpreted by the Linc. Each intercluster mes­
sage is sent from an immediate source Kmap to an immediate destination Kmap.
The number of the destination Kmap appears in a fixed place in the message so that
the Linc can determine which messages are sent to its cluster. Intercluster mes­
sages are of two types: forward messages, which invoke a new context at the des­
tination Kmap, and return messages, which return to a waiting context at the
originating Kmap. A return message contains the context number of the to-be­
reactivated Pmap context in a fixed place where the Linc can find it in order to inform
the Kbus. These intercluster messages are designed to be used as a mechanism for
implementing remote procedure calls between Kmaps.

When a Pmap context desires to invoke some operation in another Kmap, it
prepares a forward intercluster message, instructs the Linc to transmit it on a
specified intercluster bus, and then swaps out. The forward message must include
the source Kmap number and the originating Pmap context number so that the
remote Kmap will be able to send back a return message. There are standard con­
ventions for this information.

When the Linc receives a forward message, it has the Kbus activate a new Pmap
context to examine the message and respond to the request. Presumably, the mes­
sage contains some operation code that the Pmap context can identify and act upon.
After performing the operation, the context prepares a return intercluster message,
instructs the Linc to transmit it on a specified intercluster bus, informs the Kbus that
the context is now free, and swaps out.

When the Linc receives a return message, it finds the context number indicated in
the message and instructs the Kbus to reactivate that context. The context then ex­
amines the return message, extracts the result of its requested operation, and con­
tinues on with whatever processing it had been doing.

A Simple Multicluster Kmap Operation. From a logical pOint of view, there is not
much difference between the invocation of a Kmap operation by a microsubroutine
call from within the Kmap, the invocation of a Kmap operation by a nonlocal memory
access from a computer module in its cluster, and the invocation of a Kmap opera­
tion by a forward message from another Kmap. Practical considerations abound, but
all three are really just different methods of invoking some logical operation. It is of­
ten quite convenient for a Kmap, while in the middle of performing one operation, to
be allowed to invoke a suboperation that is carried out on a different Kmap. For ex­
ample, the only physical memory that a Kmap can directly access is the memory that

Figure 2-9

2. The Cm* Hardware Architecture

The Steps in a Cross-Cluster Memory Access

Intercluster bus

mas~~ogg~Text CD master Kmap receives request from master Cm

® master Kmap prepares intercluster message

sla~Joccoa~rext ® message travels to slave Kmap

@) slave Kmap decodes request

® request for memory cycle sent to destination Cm

® return resu It sent back to slave Kmap

® slave Kmap prepares return intercluster message

slaJJ~~ntext ® message returns to master Kmap

® master Kmap receives return message

mast!~~ontext @) result sent to master em

23

resides in its own cluster; to effect an access on memory in some other cluster, the
Kmap must send an intercluster message to that cluster's Kmap, asking it to perform
the access and to send back the result. The simplest example of such a multicluster
Kmap operation is the mapping of a non local memory access to a location in the
physical memory of another cluster (Figure 2-9).

A computer module initiates a non local memory access, which activates a context
in its cluster's Kmap. This first-activated context is called the master context; the
Kmap is called the master Kmap. The master context performs the address trans­
lation, discovers that some other Kmap will have to perform the access, sends a for­
ward message to that Kmap, and swaps out to await a reply.

When the message arrives at the slave Kmap, its Linc signals the Kbus to ac­
tivate a new context. This context, called the slave context, decodes the request,
performs the memory access inside its cluster, and sends the result in a return mes­
sage back to the master Kmap. The return message identifies the waiting master
context, which is reactivated to transfer the result back to the master Cm. As far as
the master Cm can tell, the only difference between a non local memory access that
is mapped to a computer module in another cluster and a non local memory access
that is mapped to a computer module in the same cluster is the extra time required
for the out-of-cluster operation.

Forwarding Intercluster Messages. In a configuration of the Cm* system, it is quite

24

Figure 2-10

I. The em* Hardware

Forwarding a Message across Intercluster Buses

Intercluster bus II
------;CDI----)

,--'-~--..

3

~~~i:!r CD intercluster message arrives 

® context determines next Kmap on route 

cg~xt ® message forwarded on other bus 

® 
intermediate ~=::::::I 
Kmap 

Intercluster bus 

possible that two particular Kmaps have no intercluster bus in common and thus 
cannot send messages directly to one another. Each Kmap connects directly to two 
intercluster buses, however, and as long as some path through a series of inter­
mediate Kmaps can be found, the two Kmaps in question can still communicate, 
providing each of the intermediate Kmaps cooperate by forwarding the message 
closer to its ultimate destination, as illustrated in Figure 2-10. 

This example differs significantly from the previous example in the way it uses 
Pmap contexts. In the previous example, contexts are allocated in a nested fashion. 
The allocation of the master context lasts throughout the entire operation; for a 
period of time within that allocation, a slave context also is irvoked. The potential 
series of contexts that are allocated at intermediate Kmaps to forward an intercluster 
message do not wait for a reply but instead accomplish their entire task by passing a 
message on to another Kmap. 

2.3. Communication with Cm* 

When software was first being developed on Cm*, there arose a need to let the 
software developer allocate certain resources (such as clusters and debugging 
tools) to himself and to protect his resources from being disturbed by other users. 
The em* Host system is a serial-line-oriented resource-management facility. It was 
initially implemented on a PDP-11 /10 with 28K words of memory. 

Several communication lines connect the Host to components of em* and, 
through the Front End, to terminals and to the other Carnegie-Mellon University 
Computer Science Department computers (Figure 2-11). There are serial-line 
connections from the em* Host to 10 individual em's. These connections permit 
programs or data to be loaded directly from the Host to these Cm's, 2 of which are in 
each of the 5 clusters. Because the other 40 Cm's lack serial-line connections, they 



Figure 2-11 

2. The Cm* Hardware Architecture 

Lines Connected to the Cm* Host 

Host serial lines 

- - - - - 9,600 baud POP·10 lines 
16 bit parallel lines 

25 

must be loaded from other Cm's via a Kmap or from peripheral devices to which they 
are attached. The Front End lines have two purposes. First, they allow the user to 
communicate with other computers from Cm*, as many programs on Cm* interact 
with ptograms on other machines. The Front End lines also permit the user to 
monitor debugging information on both machines simultaneously from one terminal 
using the banner facility explained below. 

In addition to its 50 Cm's, Cm* has 3 LSI-11 's known as hooks processors, which 
are used for debugging the Kmaps. These processors control the "hooks," which is 
a collective term for a set of hardware that has been designed into each Kmap to 
permit complete external control and diagnosis. The hooks consist of several control 
registers and other hardware within the Kmap, an LSI-11 interface to make the 
hardware accessible from an LSI-11, and a bidirectional hooks bus used to transmit 
information between the control hardware and the LSI-11 bus interface. The hooks 
appear to an LSI-11 as a group of 8 words in its physical address space. By reading 
and writing these words, the hooks processor has almost total control over the inter­
nals of the Kmap. It may load microcode; start, stop, and single-cycle the 
Pmap / Linc and Kbus clocks; read out most and write some of the internal registers 
of the Pmap; disable certain error checks within the Pmap; and initialize the Kmap. 



26 I. The Cm* Hardware 

The diagnostic processor (DP) (not shown in Figure 2-11) has been added to the 
Cm* system to collect hardware reliability and availability information. It hosts a 
program called the Auto-Diagnostic Master, which runs diagnostics on those Cm's 
that are otherwise idle. The DP is an LSI-11 with 28K words of memory. It has two 
serial-line connections to the Cm* host. One connection provides a user interface 
through which one can request status reports about particular Cm's, particular 
clusters, or the entire Cm* processor. The second serial-line interface is used by the 
Auto-Diagnostic program as a command interface to the Host. The program logs in 
over the second line, directs the Host to run diagnostics for it, and on operator re­
quest, transfers the statistics file to a PDP-10. 

The command structure of the Host resembles that of the PDP-10, which is 
familiar to most Cm* users. The Host performs several of the functions of a primitive 
operating system. 

Security. The Host protects Cm* from unauthorized use by providing an account 
system. To use any Cm* resource, one must log in to the system by typing in 
a valid user number and password. 

Protection. A resource on Cm* must be assigned to a user before it may be 
used. Once it is assigned, no other user may access the resource until it is 
deassigned. The resources of Cm* are thus partitioned among users. Devel­
opment work on several projects, even several different operating systems, 
may be carried out simultaneously using disjoint sets of resources (different 
clusters, for example). Meanwhile, each user is protected from having his 
working environment accidentally disturbed by another user. 

Resource control. The Host has commands for controlling a variety of assigned 
resources. Among these are commands that load programs from tape or from 
the PDP-10; commands that start, halt, or single-step a processor; commands 
that guard against buffer overflow; and commands that communicate with a 
resource via a direct terminal link. 

Communication. The Host allows the user to monitor output from all assigned 
resources simultaneously by requesting that messages sent to him by each 
resource be printed at the terminal. As an option, a banner-that is, an ab­
breviation of the name of the resource-may be printed in front of each mes­
sage to indicate where the terminal output came from. Such a feature helps 
the user to monitor the interaction of resources for debugging purposes. A 
user also may send a message to any serial line from the Cm * Host. This op­
tion enables the user to communicate simultaneously with several of his or her 
processes or with other users. This feature is used by the Cm* Auto­
Diagnostic system to notify the" diagnostic processor of errors detected on 
other resources. 

The facilities provided by the original Cm* Host were limited by a lack of memory 
and the obsolescent PDP-11 /10 processor. Matt Reilly [Reilly 83] designed a new 
Host to run on a VAX 11 1780. It incorporated an improved flow-control strategy to 
prevent runaway processes from swamping the Host with data and was better able 



2.4. Summary 

2. The Cm* Hardware Architecture 27 

to interact with other programs, such as those written to monitor experiments. It 
provided a capability for the on-line logging of experimental results, freeing ex­
perimenters from the need to write or adapt such code especially for each experi­
ment. The new Host had no Cm*-specific knowledge "wired in," so it could be con­
figured to serve as a testbed for any mUltiprocessor. The new Host was never imple­
mented, however. 

Because the system software developed for Cm* is written, compiled, and stored 
on a iemote machine, object code frequentiy must be transferred to Cm*. To 
facilitate high-speed transfers, a DA Unk was developed to provide a 10-megabaud 
parallel DMA link between Cm* and a DEC-10. Between an unloaded LSI-11 and an 
unloaded DEC KL-10, these links can transfer more than 600,000 words per second. 
A file-transfer system residing on the DEC-10 provides reliable file transfers. The 
file-transfer system is composed of two parts. The first is a set of low-level reliable 
transfer routines. These routines are designed to provide error-free transmission of 
data packets between Cm* and the DEC-10. The higher-level file-transfer routines 
interface the reliable packet-transfer software to the DEC-10 file system. The file­
transfer routines also can multiplex data from several files, allowing a single physical 
link to become a multiuser system. 

The reliable transfer routines transfer all data across the DA Link in packet for­
mat. The file-transfer system employs a packet quota mechanism to prevent the 
receiving site from overflowing its buffer. Acknowledge packets carry both packet­
acknowledgment and packet-quota information. File-transfer routines perform the 
functions of opening and closing files, reading and writing data to and from files, and 
moving file pointers. To provide a multiuser environment for the DA Link, the file­
transfer system implements virtual channels, bidirectional communication paths over 
which control data and information may pass. The file-transfer system allocates a 
buffer for each virtual channel and provides buffer-destination information for the 
data. A file is associated with each virtual channel, and all data placed in the virtual 
channel's buffer is transferred to this file. 

The initial proposal for the Cm* architecture was a mesh-organized interconnection 
of computer modules. Although its structure could be considered "crystalline," it al­
lowed for memory to be shared by different processors with the help of communica­
tion and address-mapping controllers. The original proposal was revised according 
to cost and performance constraints to derive the final Cm* architecture. 

The final Cm* architecture consists of 50 Cm's, connected togather by a dis­
tributed switching structure. The lowest level of the switching hierarchy consists of 
810cals, local switches that connect individual Cm's to the rest of the structure. Cm's 
are grouped together into clusters that are presided over by high-speed micro­
programmable communication controllers called Kmaps. A Kmap provides the 
means for Cm's in its cluster to communicate with each other and cooperates with 
other Kmaps to service requests for memory references to other clusters. In addition 
to address mapping, key operating-system functions generally are implemented in 
microcode. 



28 I. The Cm* Hardware 

All communication that involves Kmaps is implemented via packet switching 
rather than circuit switching to avoid deadlock over dedicated switching paths. 
Packet-switched communication also allows the processing of requests by the 
Kmaps to be overlapped, since switching paths need not be allocated for the dura­
tion of a request; this results in improved utilization of the switching structure. The in­
terconnection structure between em* clusters is essentially arbitrary. The Kmap in 
each cluster has two bidirectional ports, each of which may be connected to a 
separate intercluster bus to achieve a variety of interconnection schemes. In the im­
plemented configuration, all five Kmaps are connected to two intercluster buses. 

Cm* is not a standalone computer system. An additional computer, the Host, is 
used to load and communicate with Cm*. Communication lines connect the em* 
Host and individual em's with parts of the Carnegie-Mellon University (eMU) Com­
puter Science Department computer facilities. A set of special communication lines 
for loading and debugging connect directly to Kmaps through a number of proces­
sors known as hooks. Finally, a diagnostic processor was added to Cm* to collect 
hardware availability and reliability information. This whole complex comprises the 
hardware support for the em* research laboratory. The next chapter describes 
hardware measurements undertaken with the support of this laboratory. 

Acknowledgments. The introduction to Chapter 2 was adapted from Section 2.3 of [Swan 
78]. Section 2.1 was taken from Section 3 of the Cm* paper in the 1975-76 Computer Science 
Research Review [Swan et a/. 76]. The introduction to Section 2.2 and Section 2.2.1 was writ­
ten by Pradeep Sindhu for [Jones and Gehringer 80]. Section 2.2 was adapted from material 
written by Thomas Rodeheffer for [Jones and Gehringer 80]. Section 2.3 was adapted from 
material originally written by Gregg Lebovitz for [Jones and Gehringer 80]. 



3. Measurements on the Cm* Hardware 

One of the first activities undertaken on a new architecture is to explore the limits of 
hardware performance. These limits represent the maximum potential of the 
hardware structure. More complex virtual machines achieved through adding layers 
of microcode and software reduce the effort required by users at the expense of 
reduced performance. 

We use the term performance in its broadest sense and include not only opera­
tions per unit time but also errors per unit time (Le., reliability). Section 3.1 describes 
experiments that measured maximum potential throughput, while Section 3.2 
presents reliability data. 

3.1. Hardware Throughput Studies on em* 

A number of benchmarks were hand-coded by Levy Raskin to execute directly on 
the em* hardware, with only simple Kmap microcode providing shared memory 
access. These benchmarks included asynchronous iterative methods for the solution 
of partial differential equations (PDEs), quicksort, and set-partitioning integer 
programming. (See Sections A.1, A.2, and A.3 for more details of these 
applications. ) 

Measurements were made using both specially designed hardware and standard 
measuring equipment. Each map bus was attached to a map bus monitor, which 
observes communication on a bus between em's and their Kmap. These monitors 
serve as multiprocessor front panels and are capable of producing trigger signals on 
selected map bus events. Specially designed logic allows particular addresses or 
data values passing to and from a given computer module to be displayed selec­
tively and counted. For example, the references to a particular memory page could 
be counted to determine the reference rate. A standard logic analyzer and counter 
were connected to the Kmap microinstruction address lines and were used to 
monitor the Kmap micro-operations and determine what fraction of Kmap time was 
spent in different operations. 

3. 1. 1. Execution Speed of Computer Modules 

It is usually assumed that all em's execute at the same speed. To test this assump­
tion, Kong [Kong et al. 83] set up an experiment to measure the execution speed of 
the computer modules in em*. This experiment involves timing the execution of a 
piece of code stored in the local memory of each em. Once the program execution 
begins, the Kmaps are not involved. Figure 3-1 shows that all of the 34 computer 
modules tested had execution speeds within 4.6 percent of each other. No attempt 
was made in subsequent experiments to factor out variations in processor speed. 
Hence these variations became a part of the experimental error. 

29 



30 

Figure 3-1 

Table 3-1 

I. The Cm* Hardware 

Histogram of Execution Time of Benchmark on 34 Cm's 

.V) 20 
E 
u .... 
o 
~ 
Q.) 

~ 15 
::3 

:c:: 

10 

5 

Mean: 15.019 sec. 
Std. deviation: 147.3 n 

o~--~--~--~~--~--~--~ 
14.4 14.6 14.8 15.0 15.2 15.4 15.6 

Time (sec.) 

Single-Processor Performance on Three Different Applications 

Average 
Time between number 

Reference memory of memory 
rate references references 

Application (K words/sec.) (fiS.) per instruction 

POE 270 3.7 1.45 
Quicksort 300 3.33 3.75 
Integer 285 3.51 1.75 

programming 

Million 
instructions 
per second 

(MIPS) 

0.186 
0.171 
0.163 

3.1.2. Single-Processor Performance 

The three applications (POE, quicksort, and integer programming) were executed on 
a single computer module to determine the maximum potential execution rate of the 
LSI-11 processor. These rates, summarized in Table 3-1, represent the maximum 
obtainable with no degradation due to the interconnection structure. 

3.1.3. Throughput of Mapped Memory References and the Effect of Contention 

Three different microcode systems were written for Cm*: Smap (Appendix 0), 
MEDUSA (Section 5.1), and STAROS (Section 6.1). The performance of mapped 
memory references was measured on each system when it was completely idle 
except for the operations under test. The three microcode systems are not function­
ally identical. Smap was written to provide a simple, logically uniform addressing 



Table 3-2 

3. Measurements on the em* Hardware 

Nonlocal Reference Times 

Microcode 

Smap 
MEDUSA 

STAROS 

Intracluster 
reference 
time (f.Ls.) 

8.3 
8.3 
8.6 

Intercluster 
reference 
time (f.Ls.) 

26.2 
30.8 
35.3 

31 

environment along with a few synchronization primitives that could be used in writing 
parallel programs. Both the MEDUSA and STAROS microcodes were written to sup­
port particular operating systems. Consequently, they provide much more powerful 
and convenient environments than Smap.l 

Because of the distributed nature of the Cm* hardware, mapped references en­
tirely within a cluster are necessarily faster than mapped references involving 
another cluster. Table 3-2 shows the elapsed time from the moment a processor in­
itiates a mapped read reference to the moment it receives the result and is able to 
continue. The times can be compared to those for unmapped references, which can 
be made at a rate of one every 2 to 2112 j.LS., depending on the type of physical 
memory. 

For intracluster references, all three systems add an offset to the base address of 
a segment to compute a physical address and then perform a Kbus operation to 
make the memory reference. MEDUSA and STAROS also perform bounds, type, and 
rights checking to make sure that the reference will not violate protection constraints. 
Both MEDUSA and STAROS cache addressing information in the Kmap's data RAM. 
The extra time for a STAROS reference is because it takes two more Kmap 
microcycles to do the cache lookup. 

The cache structures of MEDUSA and STAROS reflect different trade-offs between 
the speed of memory references and the cost of purging a descriptor from the 
cache. In MEDUSA'S cache structure, if a window points to a deSCriptor, then the 
descriptor is guaranteed to be valid (see Section 5.1.2). Thus a mapped reference 
need not check whether the deSCriptor pointed to is the correct one. In STAROS, 
however, a window may point to an incorrect descriptor, so each reference must 
verify the validity of the descriptor. This check accounts for the extra microcycles in a 
STAROS mapped reference. MEDUSA avoids the extra cycles by linking together all 
windows that point to a descriptor so that the windows can be invalidated when the 
descriptor is purged from the cache. This guarantees that a window is either null or 
points to the correct descriptor. STAROS does not require such links because a 
deSCriptor can be purged without changing the pointers in the windows that refer 
to it. 

Figure 3-2 shows the throughput when all computer modules are making 

lThe STAROS microcode for intercluster references was optimized more carefully than MEDUSA'S; see the 
"implementation issues" at the beginning of Chapter 7. 



32 

Figure 3-2 

I. The Cm* Hardware 

Intracluster Throughput with Siocal Contention 

100 
o Smap 
o Echoes algorithm 
<> StarOS 
ll. Medusa 

79~--~----~----~----~--~~--~----~----~----~--~ o 2 3 4 5 6 7 8 9 10 
Number of processors 

references to the same memory location.2 As the number of modules making 
references increases, the Siocal and memory become bottlenecks. For all 
microcodes, the throughput increases out to about two or three Cm's and then levels 
off. The maximum throughput supported by Smap (210K references / second) is 
essentially determined by the hardware because little time is spent on Kmap 
microcode. The simple algorithm that Smap uses to resolve contention at the des­
tination Cm could, however, cause references to be starved. The maximum through­
puts of MEDUSA (189K refs./sec.) and STAROS (187K refs./sec.) are lower than 
Smap's, but there is no possibility of starvation because requests are served in a 
manner that ensures no request will wait forever. 

Figure 3-3 depicts the throughput of intracluster memory references on the three 
systems when each computer module is referencing a different Cm's memory. Each 
data point was measured with n Cm's in a ring configuration; that is, Cm i directed all 
its memory references to the memory of Cm (i + 1) mod n. Since there is no 
contention for the target Cm, the contention-resolution algorithm makes no dif­
ference, and the three systems perform almost identically. Figure 3-3 indicates that 
the Kmap saturates when six or seven Cm's are mapping all their memory 
references. 

In the case of intercluster references, MEDUSA and STAROS have to do a little 

2 The curve labeled "ECHOES algorithm" refers to the ECl-lo~!': operating-system experiment, described in 
Section 9.3. 



Figure 3-3 

3. Measurements on the Cm* Hardware 

Intracluster Throughput without Siocal Contention 

501 

c Smap 
<> StarOS 
A Medusa 

33 

79~----------------------------------------~--------~ 1 2 3 4 5 6 7 8 9 10 11 
Number of Drocessors 

more work than Smap at the destination cluster. Smap sends a physical address to 
the destination Kmap, which then makes the reference; both MEDUSA and STAROS 
send descriptor names instead. MEDUSA then searches the cache at the destination 
Kmap to learn the physical address of the location to be referenced. STAROS sends 
the destination Kmap extra bits in its Linc message that constitute a guess of where 
the descriptor is in the cache. Though not guaranteed to be accurate, the guess 
speeds up repetitive references as long as the desired descriptor is still present in 
the cache. If MEDUSA used this descriptor-guess strategy, its intercluster reference 
time could also be improved. 

Figure 3-4 shows the throughput of intercluster references when all references 
are made to the same destination cluster but distributed within the cluster so that no 
em saturates. The destination Pmap, therefore, becomes the bottleneck. At satura­
tion, Smap delivers about 21 OK refs. I sec., and STAROS about 145K refs. I sec. 



34 

Figure 3-4 

I. The Cm* Hardware 

Intercluster References-Saturation of Destination Cluster 

_251 
U 
CI,) 
II) 

" ~2oo 
CJ 
c:: 
CI,) ... 
CI,) 

Qj 158 ... 
~ 
'S 126 Q, 
.c:: 
0) 
::l 
0 
... 100 
~ 

79 

63 

50 

40 

32 

25 
0 2 4 6 8 

c Smap 
¢StarOS 
6 Medusa 

10 12 14 16 18 20 
Number of processors 

Figure 3-5 plots the throughput of intercluster memory references when the 
source cluster is the bottleneck----each em in the source cluster makes references to 
a different em in some other cluster. The maximum throughput for Smap is ap­
proximately 250K refs. / sec., for MEDUSA about 170K refs. / sec., and for STAROS 
about 150K refs. / sec. Smap performs substantially better in the presence of conten­
tion, but the algorithm it uses may cause starvation. The decrease in throughput 
between seven and eight em's for MEDUSA, and a much smaller decrease between 
eight and nine em's for Smap, are due to their scheme for avoiding deadlocks over 
contexts. MEDUSA'S scheme is more costly, but it guarantees freedom from star­
vation as well.3 There is no corresponding decrease for the STAROS microcode 
because it does not address the problem of deadlock over contexts. 

3 This expense could be reduced significantly if the implementation were optimized for simple operations, 
such as memory references. 



Figure 3-5 

3. Measurements on the Cm* Hardware 

Intercluster References-Saturation of Source Cluster 

_251 
c.i 
Q) 
(I) 

"-
~200 
(J 
t: 
Q) ... 
.; 158L 
IU - --... 
~ 
"5 126 Q. 
.::: 
0) 
~ 
0 
"'100 
~ 

79 

63 

50 

40 

32 

25 
0 2 4 

c Smap 
<> StarOS 
I!. Medusa 

6 8 10 12 
Number of processors 

35 

We have been discussing the performance of mapped memory references under 
various loads. Many of the curves, especially in Figure 3-2, exhibit characteristically 
different shapes, which can be understood by studying their contention-resolution 
algorithms. 

When several Cm's repeatedly reference the memory of another Cm in the 
cluster, contention occurs at the destination Siocai. The algorithm used to resolve 
this contention is implemented by Kmap microcode. The curve labeled Smap in 
Figure 3-2 shows the performance of the relatively simple but starvation-prone al­
gorithm used by Smap. In this algorithm, whenever a context servicing a request 
encounters a busy Siocal, the Pmap waits for 20 microcycles and then lets the 
context retry the reference. The wait is intended to increase the chances of the 
reference in progress completing before the retry is done. There is a trade-off in this 
scheme between the length of time the Pmap is allowed to idle· and the probability 



36 I. The Cm* Hardware 

that a request may have to retry many times before succeeding. Increasing the wait 
time lowers the probability of starvation but wastes Pmap cycles, thereby slowing 
down requests for other operations that could proceed in parallel. 

In the algorithm used by STAROS, a bit vector of length 16 is used to record 
contexts that are waiting for the Siocal. The vector is divided into 2 bytes: one 
records which of the eight contexts have been waiting a "short time" for service; the 
other records which have been waiting a "long time." If a context is not waiting for 
service, both of its bits are zero; otherwise, either its "short" bit or its "long" bit (but 
not both) are one. When a context attempts a reference, it sets its "short" bit. When 
the Siocal becomes free, in round-robin fashion the Kmap first scans the "long" byte. 
The first time a one bit is encountered, its context is serviced. If no one bits are 
encountered in the "long" byte, the contents of the "short" byte are copied to the 
"long" byte, and the "short" byte is zeroed. 

This algorithm is a good approximation to FIFO (the Kmap hardware does not 
permit a perfectly FIFO algorithm to be implemented). The scheme uses between 20 
and 24 Pmap cycles per completed memory reference and is the least expensive of 
the three starvation-free algorithms. An interesting aspect of the implementation is 
that the number of Pmap cycles per completed reference actually decreases as the 
number of contexts increases (since a shorter average search is necessary to locate 
a one bit). This decrease is easily noticeable as a gradual increase in throughput as 
the number of em's is increased. 

The algorithm used by MEDUSA involves placing waiting contexts in a nearly FIFO 
queue (see Section 5.1.2). The cost of insertion and deletion is independent of 
queue length. This scheme uses between 27 and 31 Pmap cycles per completed 
memory reference and is therefore slightly slower than the bit-vector implementation 
of STAROS under heavy contention. 

The last algorithm characterized is the one used by the ECHOES microcode. It 
also uses a nearly FIFO queue to record contexts waiting for a busy Siocal. 
However, since the implementation was coded in MUMBLE, and since no special 
effort was made to optimize it, the throughput is not as high as it is for the other 
systems-between 46 and 52 cycles are expended per completed reference. 

3. 1.4. Effect of Memory Locality on Throughput 

A typical program is composed of four entities: code, stack, private variables, and 
global (Le., shared) variables. Throughput is a function of the relative location (local 
or remote) of these four entities. The sensitivity to performance can be measured by 
comparing the effects of local and mapped references to each entity. Six different 
memory reference patterns were measured for the three experiments (see the first 
three se<:tions of Appendix A for more details): 

All local. All memory references are directed from the processor to its local 
memory. 

Only global variables mapped. Only the memory references that are shared 
between the cooperating processes are remote and require mapping by the 
Kmap. 



Table 3·3 

3. Measurements on the Cm* Hardware 

Uniprocessor Execution Time as a Percentage of Local Execution 
Time for Different Nonlocal Program Entities 

POE 
(method 4, 

Application asynchronous) Quicksort 

All local 100 100 
Only globals mapped 104.5 122 
Only private vars. 107 111 

mapped 
Only stack mapped 118.5 119 
Only code mapped 231 229 
All mapped 261.5 274 

37 

Integer 
programming 

100 
102 
108 

140 
223 
270 

Only private variables mapped. Only the memory references to the variable that 
are private to a process (those that are not shared between processes) are 
remote and require mapping by the Kmap. 

Only stack mapped. Only the memory references to the processor's stack area 
are remote and require mapping by the Kmap. 

Only code mapped. Only the memory references to the application code are 
remote and require mapping by the Kmap. 

All mapped. All the memory references are to non local memory and require 
mapping by the Kmap. 

Table 3-3 summarizes the extra execution time required as a function of different 
memory-reference patterns. The following conclusions can be drawn: 

• When all references are mapped, execution takes 2.6 to 2.7 times longer. 
• When code is mapped, the execution takes 2.2 to 2.3 times longer. Hence it 

is very important for code to be local, even at the expense of multiple copies. 
• When the stack is mapped, execution takes 1.2 to 1.4 times longer. The 

quicksort is worse because it consists of a large number of small routines that 
require frequent stack access to perform the call / return sequences. 

• When private data is mapped, the execution time is 1.1 times longer. 
• When global data is mapped, the ratio is 1.02 when global accesses are 

infrequent to 1.22 when global accesses are relatively frequent. These figures 
are encouraging because they imply that large shared data structures may be 
located anywhere in the system without significant performance degradation. 

These results underline the importance of localizing code, stack, and private 
variables in the Cm's local memory. The hit ratio (the fraction of all memory 
references directed to local memory) when only global variables are mapped is on 
the order of 97.5 percent for the POE, 90.5 percent for quicksort, and 99 percent for 
integer programming. Global data can be placed anywhere in a cluster without 
severe performance degradation. 



38 I. The Cm* Hardware 

3.1.5. Hardware Utilization and Growth Potential 

The Smap microcode executes a two-microinstruction loop (called the idle loop) 
whenever there is no useful work for it to do. The time in the idle loop shows the 
utilization of the Kmap. The Siocal busy loop is seven microinstructions long and is 
used to show the amount of contention for Siocals and memories. This loop is 
executed when the Kmap tries to access a memory but must wait because the 
Siocal is busy executing a previous reference. A successful reference to an Siocal 
takes four microinstructions. 

For the quicksort (described in Section A.2), employing 8 Cm's with all code local, 
the Pmap was idle 78.5 percent of the time, waiting on the Siocal 11 percent of the 
time, and performing mapping references only 10.5 percent of the time. For the POE 
(see Section A.1), using 8 Cm's with all code local leaves the Pmap idle more than 
96 percent of the time. 

Figure 3-2 indicates 3 to 4 Cm's simultaneously making all references to the 
same Cm before local memory I Siocal saturation was reached, while Figure 3-3 
depicts Kmap saturation at 6 to 7 Cm's. As several applications described earlier 
indicate, hit ratios of 90 percent are commonly achieved simply by making code, 
stack, and private variables local. Thus the current Cm* hardware could support 
from 30 to 70 processors per cluster before saturation. Conversely, assuming 14 
Cm's per cluster, the Cm* hardware could support Cm's that gave two to five times 

. the performance of the LSI-11 . 
Figures 3-4 and 3-5 demonstrate intercluster saturation at about 8 Cm's. Again 

assuming a 90 percent hit ratio and assuming that mapped references are evenly 
distributed throughout the system and their frequency does not increase as the 
number of clusters rises,4 the Cm* hardware can support an arbitrarily large number 
of clusters with up to 40 Cm's per cluster. 

In summary, no single component is a performance bottleneck in the Cm* sys­
tem. Furthermore, expansion by a factor of two to five in number of Cm's per cluster 
or performance of individual Cm's is well within the capability of the Siocall Kmap 
implementation. 

3.2. Reliability Studies on em* 

The 50-module Cm* system provides a unique opportunity for gathering data about 
computer failures, both hard (permanent) and transient. Cm* hard-failure data was 
used in a reliability comparison between industrially produced components and 
CMU-built one-of-a-kind components. It was found that CMU-built components, 
which did not use burned-in parts, generally had a higher failure rate. It was also 
shown that, as expected, the distribution of hard failures follows the exponential 
distribution. Cm* transient error data was also analyzed for the distribution of inter-

4 If there are m clusters with n processors per cluster, intercluster traffic becomes m - 1 outbound from this 
m 

cluster and m - 1 inbound from other clusters for a total of approximately O.2n. If saturation occurs at eight 
m 

simultaneous references, it will occur when O.2n = 8, or when n=40. 



3.2. 1. Hard Failures 

Table 3-4 

3. Measurements on the Cm* Hardware 39 

arrival times. It was found that the distribution follows a decreasing failure-rate 
Weibull function. This is at variance with the standard assumption that transient 
errors exhibit an exponential distribution with a constant failure rate. 

Hard failures, or permanent faults, are continuous and stable, reflecting an irrever­
sible physical change in the hardware, Cm* hard-failure data, collected from the 
engineering iog book, was used to caiibrate existing reliability models. The mean 
time to failure (MTTF) was calculated assuming failures were independent. The 
MTTF was obtained by dividing the total time by the total failures. To combine data 
for all the Cm's, a concept called module time was introduced. If there are several 
modules running during a period of time, then the module time is the sum of the time 
that each module was up. Module time is divided by the total number of recorded 
failures for the entire multimodule Cm*. This yields the MTTF for a single "typical" 
module. Because of the small number of failures per computer module, it is a more 
realistic reliability measure than the MTTF for any particular module. Table 3-4 
presents this module-time data and the MTTF, measured in module hours, for Cm*. 

The "complexity in chips" mentioned in the table is a measure of the actual 
number of chips used in each component. In the case of the LSI-11, the actual 
number of chip sockets used is 76; of these, 72 contain digital integrated circuits. 
Since unused functions on the chips add up to the equivalent of 4 unused chips, the 
number of chips used is recorded as 68. 

An ANOVA (analysis of variance) on the error-log data shows that uncertainties 
associated with module commissioning dates i.e., initial power-up and integration 

Cm* Hard-Failure Data from February 1977 to May 1978 

Complexity # of Total time Total MTTF 
Component (chips) modules (mod. hrs.) failures (mod. hrs.) 

Kbus 3 138 36,696 8 4,587 
Pmap 3 106 37,416 12 3,118 
Control store 6 116 68,328 4 17,082 
Data RAM 3 142 37,082 2 18,540 
Linc 3 116 22,608 0 

DEC LSI-11 14 68 163,200 10 16,320 
Siocal 10 126 120,720 5 24,144 
4K memory 56 21 260,568 5 52,003 
16K memory 104 10 122,280 5 24,456 
SLU 28 17 223,248 5 44,650 
Power board 6 16 195,456 3 65,152 
Refresh 14 16 162,912 0 



40 

3.2.2. Transient Errors 

I. The em* Hardware 

into the system) were insignificant. The failure distribution was shown to follow the 
exponential distribution-Le., a constant failure-rate Poisson process used in the 
Military Standard Handbook (MIL 217B) reliability model [Siewiorek et a/. 78b]. 

MIL 217B assumes that the failure of electronic components is a Poisson process 
and the failure distribution follows the exponential distribution, which is characterized 
by a constant failure rate over time. The failure rate for a single IC chip can be 
predicted using the following MIL 217B model parameters: a learning factor based 
on the maturity of the production process, a quality factor based on the procedure for 
incoming screening of components, the ambient operating temperature, a factor 
based on the benignity of the operating environment (considering factors such as 
humidity and vibrations), and two complexity factors based on the number of random 
logic gates and the number of memory bits in the component. 

Cm* Chip-failure data and vendor data were used to calibrate the MIL 217B model 
and were then compared with its predictions.' The model turned out to be too 
pessimistic by a factor of 16 to 64, compared to the Cm* data. That is, it predicted 
16 to 64 times as many failures as actually occurred. One can speculate that MaS 
technology might not yet have matured by 1972, when the data was gathered for the 
creation of the 217B model. Since Cm* uses mostly 1976-77 components, there 
are many MIL 217B parameters that can be altered to take into account the maturity 
of the production process. Cm* data was compared with the predictions generated 
by various parameter changes in the model. As a result of these comparisons, a 
modified MIL 217B model was proposed: The complexity factor for MaS chips was 
derated by a factor of 16 (Le., 16K memory chips were treated as 1 K memory chips, 
etc.). Based on this modified MIL 2178 model, a PMS-Ievel reliability model for Cm* 
was also presented [Siewiorek et a/. 78b). 

Transient errors are manifestations of faults due to temporary environmental con­
ditions. Very little is known about transient failures. Data collected on Cm* and other 
CMU computers has contributed to the understanding of this phenomenon. On Cm*, 
transient-error data was collected by an Auto-Diagnostic program [Scelza 79]. The 
Auto-Diagnostic continuously exercised the em* system by running diagnostic 
programs on all otherwise idle computer modules. Whenever an error was detected 
by the diagnostic program, the information was printed on the console terminal. 
Looking through the console log, one could determine occurrences of transient er­
rors. A more detailed analysis of em* error data was presented by Tsao [Tsao 78]. It 
was found that the interarrival times of transient errors follows a decreasing failure­
rate Weibull distribution. This is at variance with the standard assumption of a con­
stant failure rate (Poisson process, exponential distribution) used in reliability model­
ing. The Weibull distribution observed on em* was also observed on several 
PDP-10 systems [McConnel et a/. 79a). A summary of these findings is presented in 
Section 3.2.3. 

A set of four diagnostics are run continuously on the em's. These tests exercise 
(1) the memory, (2) the instruction set, (3) the traps and interrupts, and (4) the Siocal 



Table 3-5 

3. Measurements on the Cm* Hardware 41 

Cm* Transient-Error Events Sorted by Mode and by Test Type 

Type of test 

Error modes Memory Instruction Interrupt Siocal Total 

Burst only 8 6 16 31 
Simultaneous only 6 0 20 27 
Burst and simu!taneous 3 n ~n • A 

V IV 1"1-

together 
Isolated 7 6 0 18 31 
Total 24 14 1 64 103 

and a small part of the Kmap. The memory test is divided into 13 subtests, which 
include a gallop test, marching ones and zeros, and shifting ones. It takes ap­
proximately 13 minutes to complete one pass through 56K bytes of dynamic MOS 
RAM. The instruction-set test and the interrupt-and-trap test are designed to test the 
functioning of the LSI-11 processor. These are short tests, so many passes are done 
before moving to the next diagnostic. The Siocal diagnostic performs a number of 
functions. First, it tests the registers and data path of the Siocai. Second, it exercises 
a part of the Kmap. Finally, it runs a few tests on portions of memory. 

Previously reported data [Siewiorek et al. 78a] indicated that several computer 
modules sometimes reported detecting errors almost simultaneously. Three basic 
patterns of occurrence were noticed in transient errors: multiple errors occurring 
together in the same Cm (burst), simultaneous errors reported by different Cm's 
(simultaneous), and isolated errors (isolated). It also was observed that a single 
transient-error event sometimes would be manifested as both the burst type and the. 
simultaneous type. Table 3-5 groups the recorded errors for the period between 
September 1977 and August 1978 into these four classes. 

Observations indicate that the most common cause of burst errors is the destruc­
tion of the diagnostic program. A garbled diagnostic program can cause either 
spurious halts or a burst of reported errors, since successive restarts of the diag­
nostic program will be unsuccessful and will result in consecutively reported errors. It 
also is possible that such burst errors arose when faulty transmission of code 
caused a bad copy of the diagnostic program to be loaded. But this is not likely 
because all such transfers are checksummed. Once a checksum error is detected, a 
reload is started. Bursts also may be caused by transient errors of a duration that is 
longer than the time resolution of the diagnostic, but the majority of observed burst 
errors did not fit this hypothesis. 

The simultaneous reporting of errors in several Cm's is the most interesting 
observation. It is conjectured that a systemwide transient failure causes this type of 
error. Two possible sources were proposed: a Kmap error during Siocal testing or 
common DC power-supply glitches. It is known that turning power on and off in one 
Cm causes errors in other modules. These simultaneous errors could be user-



42 

Figure 3-6 

I. The Cm* Hardware 

Distribution of Cm* Transient Errors, September 1977 to August 1978 

Q) 0.036 
~ 
~ 
~ 
.~ 0.032 
Q) 
Q 

~ 

~ 0.028" 
III ;, 

..Q 

e a.. 
0.024 :' 

0.020 

0.016 

0.012 

0.00 

0.004 

o 200 300 400 500 
Interarrival Time (Nrs) 

induced events of this type that were not properly recorded in the system log. If 
these simultaneous errors were truly transient, one-fourth (27 events) of all transient 
events affected more than one Cm. 

3.2.3. Analysis of Transient-Error Interarrival Time 

Transient-error data was processed and analyzed for the underlying statistical 
properties, with the aid of the SEADS transient-error statistical analysis program 
[McConnel et al. 79b]. Figure 3-6 shows the adjusted histogram of the interarrival 

for Cm* transient errors. The histogram of the distribution is overlaid with the max-



Figure 3-7 

3. Measurements on the Cm" Hardware 43 

Weibull Plot of Cm" Transient Errors, September 1977 to August 1978 

+ 

-2 -1 o 2 5 6 7 
Ln of Data (Hrs.) 

-1 

-2 

-4 
+ 

-5 

-6 

imum likelihood estimator (MLE) Weibull probability density function. Figure 3-7 
shows the interarrival data for em" plotted on Weibull probability paper. The straight 
line drawn on the plot is a least-squared-error (LSE) linear fit to the data. Note that 
most of the visual deviation is due to relatively few points at the lower end. This 
deviation is due primarily to the transformation induced by the Weibull probability 
paper, which is not very accurate for low-end data points. The near collinearity of the 
data points, tracking the LSE line, shows that the sample follows a Weibull distribu­
tion. 



44 

Table 3-6 

Table 3-7 

I. The Cm* Hardware 

Statistics for Transient Errors 

TOPS-C PDP-10 PDP-10 
reload reload parity Cm* C.vmp1 

Time (hours) 2,646 8,576 8,596 4,222 4,921 
Errors 195 636 74 103 50 
Interarrivals 196 640 78 104 51 
J..L(wall-clock time) 13.5 13.4 110.2 40.6 96.5 (328) 
(J' 16.5 24.6 244.9 59.8 167.8 (471) 

ex (Linear) 0.864 0.684 0.500 0.834 0.711 
ex I (MLE) 0.826 0.639 0.481 0.779 0.654 
~ (Linear) 0.0843 0.109 0.0206 0.0294 0.0146 
~' (MLE) 0.0826 0.106 0.0203 0.0288 

1 The pessimistic value discussed in [Siewiorek et al. 78b) is used throughout for C.vmp because there were 
too few interarrivals in the optimistic value (shown in parentheses for the mean and standard deviation) to be 
statistically significant. 

90 Percent Confidence Intervals for Weibull Alpha and Lambda 

PDP-10 parity 

[0.566,0.0307] 
[0.412,0.0134] 

Cm* 

[0.893,0.0359] 
[0.693,0.0231 ] 

C.vmp 

[0.806,0.0214] 
[0.558,0.0099] 

Table 3-6 lists some general statistics about the interarrival times for the five sets 
of data: TOPS-C system reloads on the CMU Computation Center DEC 2060 (under 
the TOPS20 operating system), PDP-10 system reloads on the Computer Science 
Department DEC Kl-10 (under the TOPS10 operating system), PDP-10 memory­
parity error interrupts on the Kl-10, Cm* transient errors, and C.vmp5 system 
crashes [McConnel et al. 79b]. In all cases, the mean is less than the standard 
deviation, indicating a decreasing failure rate (0: < 1). The Weibull shape parameter 
is 0:, and A is the Weibull scale parameter. 

For the last three sets of data, the 90 percent confidence intervals for 0: and A 
also were generated. These values are listed in Table 3-7. Note that the range of 
values for 0: does not include 1.0, as it would have to if the data did follow the 
exponential distribution. 

5 C.vmp is a triplicated NMOS LSI-11 microprocessor with majority voting at the bus level [Siewiorek et a/. 
78b]. 



3. Measurements on the Cm* Hardware 45 

Confidence-interval tests on the MLE Weibull parameters and the chi-square 
goodness-of-fit test confirmed the hypothesis that the data follows a decreasing 
failure-rate Weibull distribution. This is significant because past publications on the 
problem of transient errors have always assumed the exponential distribution for 
ease of computation. No other data has been published to support that assumption. 
This observation of a decreasing failure-rate Weibull distribution means that the 
problem of modeling transient errors must be reconsidered. 

3.2.4. Transient-Error Data for February and March 1980 

3.3. Summary 

Table 3-8 

During February 1980, the Auto-Diagnostic reported a total of 45 errors that were 
actual detected diagnostic faults found by individual test programs on the Cm's. It is 
evident from the console log that cluster 3, Cm 14 had a hard failure, as 21 errors 
were reported. Errors reported simultaneously are assumed to be due to the same 
transient fault, so only one transient error is counted. During this month, there were 
4 simultaneous error events that caused the reporting of 5 redundant errors. After 
discounting these nontransient diagnostic errors, there were 19 transient-error 
events in February 1980. 

Tables 3-8 and 3-9 present the mean time between error (MTBE) for each cluster 
and the detected errors (sorted by tests). A new test, the parity test, is used on the 
50-module Cm*. This test diagnoses the parity generating and checking portion of 
each Cm. It is evident that the parity test is a very sensitive diagnostic test for 
transient errors because many more parity errors were reported by this test than by 
the Siocal test, which, in the past, used to report the largest single group of errors. 
The newly discovered sensitivity of the parity test is also reflected in the low MTBE, 
compared with an MTBE of 218 module-hours as reported in [Tsao 78]. 

Once a large parallel processor has been built, several scientific questions arise. 
Hardware-performance evaluation is critical in validating the design decisions and 

Cm* Transient Errors, February 1980 

Cluster 2 3 4 5 Total 

Module hours 408 312 481 309 212 1,722 
Errors per test 

Parity 1 3 7 2 3 16 
Siocal 0 0 0 2 0 2 
Instruction 1 0 0 0 0 1 

Total errors 2 3 7 4" 3 ~ 
MTBE 204 104 69 77 71 91 

(module hours) 



46 

Table 3-9 

I. The Cm* Hardware 

Cm* Transient Errors, March 1980 

Cluster 2 3 4 5 Total 

Module hours 241 212 326 385 365 1,529 
Errors per test 

Parity 1 2 3 1 3 10 
Siocal 0 1 0 0 0 1 
Instruction ---2 1 0 ---2 -...Q 1 

Total errors 1 4 3 1 3 12 
MTBE 241 53 109 385 126 127 

(module hours) 

calibrating the hardware to provide a basis for software-performance experiments. 
An orthogonal dimension is the evaluation of the availability and reliability of the 
parallel processor. 

These issues have been studied by a set of experiments on em*. Measurements 
of the speed of individual em's showed a variation of ±4.6 percent. As no attempt 
has been made to compensate for this variation, it is part of the experimental error 
in all the other results. The mapped memory-reference and contention experiment 
reveals a trade-off between functionality and performance. For example, Smap 
provides higher throughput than MEDUSA or STAROS but fails to prevent starvation. 
Three workloads-POE, quicksort, and integer programming-were studied to 
determine memory reference rates, interreference times, and instruction throughputs 
both for a single em and for multiple em's. The same workloads were used to study 
how throughput was affected by the placement of the code and data. The results 
emphasize the importance of localizing code, stack, and private variables in the 
memory of the executing em. Global data can, however, be economically located 
anywhere in the system, since only 2 to 22 percent of the memory references were 
directed to global memory. 

The hardware-utilization experiments stressed the limits of the hardware in an at­
tempt to determine where further expansion of em* might become unprofitable. The 
results indicate that no single component was a performance bottleneck and that the 
interconnection network and switching structure could support an expansion of two 
to five times in the number of em's per cluster or a similar improvement in individual 
em performance. 

Hardware-reliability studies were undertaken to gather data on transient and 
permanent faults. During an entire year, records were kept of the occurrence of four 
classes of errors: burst, burst and simultaneous, simultaneous, and isolated. The 
data shows that one out of every four recorded errors was manifested in more than 
one em. Also, transient errors proved to be twenty times more frequent than 
permanent errors. The analysis of transient-error data Showed that the occurrence 
of transients closely matched a decreasing failure-rate Weibull probability distribu-



3. Measurements on the Cm* Hardware 47 

tion. In fact, the reliability figures for Cm* were comparable to those of commercial 
computing systems within the CMU Computer Science Department. 

Acknowleclg·ment. Section 3.2 was adapted from the original by Michael Tsao for [Jones 
and Gehringer 80]. 





II. Operating Systems 





4.1. Basic Goals 

4.1.1. Task Forces 

4. Operating-Systems Overview 

STAROS and MEDUSA are the two operating systems that have been written for Cm*. 
Because they were constructed to run on the same architecture, they exhibit a good 
deal of similarity in structure. Nonetheless, delving beneath the surface reveals that 
the goals and philosophies of the t'NO systems are quite different: STAROS strives to 
provide the services of a general-purpose operating system, while MEDUSA aims to 
maximize performance instead of flexibility. This chapter presents a top-down view 
of the two systems, concentrating on the similarities. The next two chapters give 
bottom-up system descriptions, showing how the differing goals have affected their 
structures. 

While MEDUSA and STAROS both aim to make the full facilities of a multiprocessor 
available to users, they are structured in such a way that their internal complexity is 
minimized. Both are composed of a number of relatively small component parts 
communicating through rather small interfaces. This kind of modularity makes the 
structure of the system easier to comprehend and facilitates changing or extending 
the functionality of its components. 

An operating system is said to be robust if errors in one process or processor do 
not jeopardize the correct operation of others. Both operating systems count 
robustness among their main goals. They should be able to continue running even 
when some of their resources are temporarily unavailable and should be able to 
reconfigure themselves dynamically in response to an increase or decrease in 
workload. The distributed nature of the hardware aids in minimizing the number of 
singularities-single resources without which the system cannot run. 

A task force is a way of abstracting a unit of work. It is a collection of relatively small 
processes that cooperate to achieve some goal. For example, the task force that 
performs an application such as matrix multiplication might be made up of: 

• Several identical processes that produce equal portions of the result matrix. 

• One master process that is responsible for parceling out the work and starting 
the other processes. 

• Another process to read commands input by the user and report progress and 
results to the terminal (see Figure 4-1). 

More detail on the structure of task forces for specific applications can be found in 

Section 11.4. 

51 



52 

Figure 4-1 

4.1.2. Messages 

II. Operating Systems 

A Simple Task Force for Matrix Multiplication 

It is important to note that the processes that make up a task force are quite 
small. In a serial program written for a uniprocessor, functions such as output or 
terminal communication are performed by procedures, not separate processes. On a 
multiprocessor, both the nature of parallel programs and the availability of proces­
sors suggest that dedicated processes be provided for these functions. Accordingly, 
both MEDUSA and STAROS endeavor to make the management of processes cheap 
so that efficiency considerations do not discourage users from decomposing al­
gorithms into small processes. Both systems, however, expect process creation and 
deletion to be less frequent than process-management operations, such as schedul­
ing, interrupting, or communicating with a process. Thus optimization efforts have 
focused on the latter functions. A common paradigm is for a single process to act as 
a server, handling requests from several other processes for a particular set of 
operating-system services. 

The task-force concept is basic to both systems, which are themselves structured 
in terms of task forces. Most of the functions provided by MEDUSA are provided by 
utilities, which are task forces. MEDUSA'S definition of a task force is specific: It 
consists of all processes that routinely share memory at run time (see Section 5.1.1). 
The STAROS notion of a task force is a bit more general, permitting any group of 
cooperating processes, even the entire operating system, to be considered as a 
single task force. 

Both operating systems are message based. Communication between task forces is 
almost exclusively in terms of messages. The component processes of a single task 



4. Operating-Systems Overview 53 

force, too, often communicate via messages rather than shared memory. Both sys­
tems have invested considerable care in making message operations efficient so 
that messages can be used with the same freedom with which procedure calls are 
used in a traditional operating system. 

MEDUSA conveys messages by copying data (by value), whereas STAROS mes­
sages are conveyed mainly by passing pOinters (by reference) [Sindhu and Singh 
83]. Nevertheless, the MEDUSA and STAROS message systems have many aspects 
in common. Messages are sent from one process to another via a receptacie known 
in MEDUSA as a pipe and in STAR OS as a mailbox. Each receptacle provides its own 
buffer to hold messages; thus congestion in one receptacle does not prevent other 
receptacles from accepting messages. 

Mailboxes and pipes perform a buffering function similar to that of an I /0 subsys­
tem. An I/O subsystem permits a process to exchange information with some exter­
nal medium, such as a terminal or a disk. Since disks and processors do not, in 
general, access data at exactly the same speed, data is buffered in some area of 
memory between the time it is produced and the time it is consumed. A message 
system allows a process to exchange information with other processes. Consider a 
producer process sending data to a consumer process in the form of a message. If 
the producer delivers data faster than the receiver can consume it, the data is 
buffered in the pipe or mailbox. 

A Receive operation causes data to be copied out of the mailbox and into some 
program data structure. The Receive specifies where the data is to be placed. If 
the receiver has already performed a Receive and is waiting for the message to 
arrive, the message need not be buffered in the mailbox. Instead, the message 
system can copy it directly to the destination specified by the receiver. The mes­
sage is copied only once. Otherwise, the message would have to be copied twice, 
once when put into the buffer and once when taken out. Both MEDUSA and STAROS 
perform this optimization. 

When a suitably authorized process performs a Send to a mailbox or a pipe, the 
message is buffered, unless the receptacle is full. In this case, the result returned to 
the sending process informs it of this fact. In MEDUSA, in case of a full pipe, if the 
Send is an Unconditional Send, the sending process is suspended, until space 
becomes available, at which time the Send is completed. A STAROS Send behaves 
like a MEDUSA Conditional Send: if the buffer is full, the sending process is merely 
informed and allowed to continue. 

Similarly, an authorized process may perform a Receive from a mailbox or a 
pipe. A message is retrieved from the receptacle unless the receptacle is empty. In 
this case, the result returned to the receiving process informs it of the empty status. 
In case of an empty receptacle, the receiving process (in either operating system) 
can choose to be suspended until a message becomes available, at which time the 
Receive is completed. A process also has the option of performing other work in the 
interim, relying on the event system to notify it when a message becomes available. 

For efficiency's sake, all message operations in MEDUSA and nearly all in STAROS 
are performed by Kmap microcode. Message operations are summarized in Table 

4-1. 



54 

Table 4-1 

II. Operating Systems 

Message Operations and Their Parameters 

Send 

Mailbox or pipe 
Message to be sent 
Concurrency 

Receive 

Mailbox or pipe 
Destination for message 
Concurrency 

"Concurrency" indicates whether the process wants to be notified or awakened later if the 
operation cannot be performed due to the mailbox's being full or empty. "Destination for 
message" refers to the location where the message is placed when it is received from the 
mailbox or pipe. Note that these specifications are idealized; the implementations in both 
operating systems differ in detail from this model. 

Closely associated with the message system is the event system, which informs 
a waiting process that a message has arrived. If a process is suspended, 1 the 
process once again becomes eligible for execution. A process may also wait on an 
entire set of events (this is called a Multi-Event Wait in MEDUSA). It will be 
awakened as soon as anyone of the events occurs. Section 5.3.3 provides an 
example of how Multi-Event Waits are used. Both event systems are flexible 
enough to associate events with other phenomena besides the arrival of messages, 
although in STAROS no such events have been defined. MEDUSA associates events 
with semaphores, files, and task forces, as well as with pipes. 

In a uniprocessor system, procedure calls are performed synchronously. The 
calling procedure does not continue execution until the called procedure returns. The 
caller is effectively suspended while the called procedure executes. In a mUl­
tiprocessor, by contrast, it is possible for the caller and callee to execute simul­
taneously on different processors. Conceptually, the caller sends a message to the 
callee, which mayor may not be executing on a different processor. The message 
contains the arguments of the procedure call. When the called procedure finishes, it 
sends a message back to the caller. If a result is to be returned, it is included in the 
message. As with all message operations, the caller may choose to continue execu­
tion while waiting for the calling procedure to reply. 

Since message operations are more expensive than ordinary procedure calls, 
both operating systems implement many procedure calls in the traditional way, using 
ordinary LSI-11 instructions. Asynchronous procedure calls are used where the 
benefits of concurrency outweigh the expense of message operations, or where the 
caller and the callee must be protected from each other. All requests for operating­
system services fall in the latter category. A typical case is a request to allocate 
more memory. The memory manager must update sensitive data structures that 
user programs must not be allowed to modify. Executing the memory manager in a 
separate process guarantees that its data can be protected from user programs that 
invoke it. 

1 A STAROS process may choose not to suspend execution while waiting for a message but rather to perform 
other work in the meantime. 



4. Operating-Systems Overview 55 

The two operating systems differ slightly in how they grant requests for system 
services. In MEDUSA, these requests are serviced by preexisting processes in special 
task forces called utilities. A utility call by a MEDUSA user process is treated dif­
ferently from other calls performed by message passing in that it automatically 
suspends the caller. This prevents a runaway user process from flooding the system 
with service requests. It also means that utility calls are treated the same way as the 
microcoded kernel operations, which are also requests for system services that 
require the invoker to wait. In STAROS, by contrast, a ieqUest fOi a system service 
may cause creation of a new process. A STAROS process is allowed to continue 
execution while its request is being serviced. 

4. 1.3. Policy versus Mechanism 

4. 1.4. Objects 

MEDUSA "and STAROS share the philosophy that the policies adopted by an operating 
system should be separate from the mechanisms that carry out those pOlicies [Levin 
et al. 75]. Mechanisms can be built effiCiently at low levels of the operating system 
without needlessly constraining the pOlicies pursued by the rest of the system. For 
example, consider process scheduling. An efficient mechanism for interrupting one 
process and resuming another is a basic requirement of multiprocessing. The deci­
sion of which process to resume next depends on policy trade-offs between conflict­
ing scheduling goals, which may change in importance as the nature of the workload 
changes or experience with the multiprocessor system increases. 

Both operating systems have placed code for process switching, or multiplexing, 
in an operating-system kernel,2 which is replicated in each em. The kernel provides 
mechanisms for suspending a process, either at the end of a time slice or in 
response to some external event, and resuming the next process, where the "next" 
process is determined by the policy-level scheduler. 

A higher-level program, called the scheduler in STAROS, decides the priority of a 
process and places it on a queue with processes of the same priority for later 
selection by the multiplexer. In MEDUSA, the Task Force Manager makes these 
policy decisions, striving to allow all the processes of a task force to execute concur­
rently. This is called coscheduling and will be explained in more detail in Section 
5.5. The scheduler (and the Task Force Manager) need not be part of the kernel, 
and they need not be replicated on each processor. Multiple schedulers, may be 
active simultaneously, however, with responsibility for scheduling different sets of 
processes. 

In both operating systems, memory references are directed to objects. Some objects 
function much like the segments or pages found in conventional virtual-memory 

2 "Kernel" is the MEDUSA term; STAROS uses "nucleus." 



56 

4.2. Addressing 

II. Operating Systems 

systems. In STAROS, these objects are called basic objects; in MEDUSA, they are 
called page objects. Memory words within these objects may be read and written 
using ordinary LSI-11 instructions. Other objects, such as mailboxes and pipes, are 
treated differently. Ordinary read and write references may not be directed to them; 
only special operations such as Send and Receive may access their memory. 

Memory is allocated only when objects are created. The software that performs 
this function is known as the Memory Manager in MEDUSA and the Object Manager 
in STAROS. Both programs allocate objects of various types: for example, page, 
pipe, and semaphore objects in MEDUSA and baSiC, mailbox, and process objects in 
STAROS (these object types will be described in later chapters). They both return a 
protected pointer for the object that has been allocated. This protected pointer is 
called a descriptor in MEDUSA and a capability in STAROS. The memory can hence­
forth be accessed only by using the protected pointer or a copy of it. MEDUSA uses a 
reference-count scheme to free memory: the memory belonging to an object is deal­
located when the last descriptor for it is deleted. STAROS frees storage by garbage 
collection. 

Most objects can be manipulated by only a small number of operations. For 
example, MEDUSA pipes implement the particular abstraction of a bounded buffer of 
messages. The two operations, Send and Receive, that can be performed on 
MEDUSA pipes enforce a FIFO queueing discipline. If the memory associated with 
pipes could be read or written arbitrarily, correct message queueing could not be 
ensured. An errant or malicious program could overwrite data before it was delivered 
to the recipient, or even overwrite control information, which might disable the pipe 
altogether. Some mechanism is necessary to allow the Send and Receive opera­
tions to read and write the memory belonging to a pipe but prevent other software 
from doing so. An object that is protected in this way is known as an abstract­
type. 

Amplification is the means by which abstract objects are protected. Each abstract 
type has a particular set of procedures that perform operations on objects of the 
type. The procedures are components of the abstract type's type manager. In 
MEDUSA, a task force serves as a type manager. In STAROS, a type manager is 
made up of one or more modules. (More detail will be provided in Section 6.1.3.) 

Processes that use an abstract object hold a capability (or a descriptor) for the 
object. The capability is not powerful enough by itself to allow the object to be read 
and written by ordinary processor instructions. The capability can, however, be 
passed to the type manager, which has the ability to amplify the capability (make it 
more powerful), thereby gaining the right to read and write the memory associated 
with the object. The concept of amplification is common to STAROS and MEDUSA, but 
the details differ considerably and will be discussed in Chapters 5 and 6. 

Descriptor-based MEDUSA and capability-based STAROS are each built on top of the 
same Cm* hardware. Although presenting very different-looking address spaces to 



4. Operating-Systems Overview 57 

the user, the two operating systems build on a common set of addressing structures 
provided by Cm*. Cm*, in turn, provides mechanisms to extend the address space 
of the LSI-11 'so 

Ordinary address relocation is performed by the Siocal attached to each Cm. 
Each Siocal contains a set of 32 mapping registers, known as Siocal registers. As 
mentioned above, both operating systems have a kernel, or nucleus, process as­
signed to each Cm. Sixteen of the registers are assigned to the kernel process and 
16 to the current nonkernel, or "user/' process. 

The most significant 4 bits of the processor-generated address select the register 
used to translate a particular memory reference. Collectively, the kernel and user 
Siocal registers are referred to as kernel and user space, respectively. A processor 
may switch between kernel and user space by simply toggling the space bit in its 
extended processor status word (part of the processor state). This facility allows the 
kernel to respond swiftly to interrupts. 

An Siocal register is loaded by a Load Window instruction, which is performed by 
Kmap microcode. This instruction causes one of 15 windows3-Kmap registers­
to be loaded with a particular descriptor (MEDUSA) or capability (STAROS). On the 
first local reference to the object named by the descriptor or capability, its address is 
propagated back to the register set of the Siocal from which the request came. As 
shown in Figure 4-2, the address of an object is contained within a MEDUSA descrip­
tor; a STAR OS capability instead points to a descriptor, which contains the object's 

address. 
The 4K bytes of memory addressable through an individual window is known as a 

page. An object that is (actually, whose descriptor or capability is) loaded into a 
window may be up to 4K bytes long. If a memory reference accesses a 4K-byte 
object that begins on a page boundary in local memory, it may be relocated by the 
Siocal; otherwise it must be passed to the Kmap. (If the object is exactly 4K bytes 
long, then any possible 12-bit displacement falls within the object bounds, so bounds 
checking by the Kmap is not required (see Figure 2-6, reproduced here as Figure 
4-3). The Kmap must, however, perform bounds checking on a reference to an 
object shorter than 4K bytes, even if it resides in local memory. A reference that is 
translated by the Kmap is known as a mapped reference. 

To decide which memory references should be mapped, the Siocal mediates 
every memory reference generated by the processor in its Cm and concatenates the 
window number to the space bit from the extended processor status word. The 
resulting 5-bit quantity is used to index into the 32 Siocal registers. Each Siocal 
register is 8 bits long. The first bit is known as the map bit. It determines whether 
references to the corresponding window in kernel or user space are to be mapped. 

When a Load Window instruction is performed, the map bit is turned on so that 
the first reference to each object will be mapped-that is, directed to the Kmap. On 
the first reference to an object, the Kmap decides whether references to the object 

3 The windows correspond to the first 15 of the 16 Siocal registers; the 16th is used for communication with 
the operating system, as described later. 



58 

Figure 4-2 

II. Operating Systems 

MEDUSA and STAROS Addressing 

':~: Object address descriptor 

M-::#D~),====::r-~tl ~ 

Medusa addressing: conceptual. . J 

processor- system 
generated descriptor 
address name descriptor 

~ooow# ~----~C:~~~r-----~~~~~:r------lMr 
offset 

Medusa addressing: as implemented. 
Since a process usually has more descriptors than ~ooows, 
windows specify system descriptor names, which may 
reference any of a process's descriptors . 

~= 

Object 

Object address capability descriptor 

M=D~)'~)' ~rl 1 
StarOS addressing. . J 

can be reloeated directly by the Sioeal, and if so, it turns off the map bit. 
If the reference need not be mapped, the Siocal concatenates the low 6 bits of 

the Sioeal register with the 12-bit offset, forming an 18-bit LSI-11 address, which is 
used to access local memory. If the reference needs to be mapped, the 5-bit (space 
bit, window number) pair is passed to the Kmap, which will use its own internal data 
structures to find the object. (In this case, the low 6 bits of the Siocal register are 
unused.) 

The remaining bit (between the map bit and the 6-bit page number) in each 
Sioeal register is the read-only bit. If it is set, write references to the corresponding 

object in memory are disallowed. The read-only bit is used to authorize references 
relocated by the Siocal; if references are made through a Kmap, the Kmap performs 

this checking.4 



Figure 4-3 

4. Operating-Systems Overview 59 

Address Mapping in the Siocal 

Map Bus 

processor 
# 4 

Slocal 
registers 

II 
5/ .1.1 ) 

non· local 

XPSW local 

processor- 6 
generated 
address offset 12 

18 LSI-11 bus address 

A memory reference that must be mapped is sent to the Kmap, where it is 
translated by using the Kmap window register determined by the concatenation of 
its (the reference's) Cm number, space bit, and window number. The window 
register contains the name of the referenced object (in STAROS, it actually contains a 
capability for the object). The object name is used to find the descriptor for the 
object. 

The Kmap maintains a cache of recently used descriptors. The cache is 
analogous to the associative memory used by other virtual-memory systems for 
page and segment tables. The entire process of translating a non local reference is 
very similar in both operating systems and is summarized in Figure 4-4. 

As explained above, ordinary read and write references may be made through 
windows 0-..14. References to page 15 are always passed to the Kmap (because the 
map bit in Siocal register 15 is always on). When the Kmap notices that the 
reference is to page 15, instead of performing a memory reference, it invokes one of 
the microcoded Kmap procedures. 

Conventionally, only write references to page 15 are used to invoke the 
microcode. The first 4 bits of a page 15 address are always 1; the Kmap treats the 
next 12 (MEDUSA) or 8 (STAROS) bits as an operation code to select a particular 
Kmap procedure. The data that the processor has attempted to write to the page 15 
location is treated as a parameter. If more than 16 bits of parameters are required 

4 In the case of an intercluster reference, in MeDUSA the checking is done by the Kmap in the cluster that 
contains the object; in STAROS, the checking is done by the Kmap in which the capability for the object is 
cached. (Caching is described later in this section.) 



60 

Figure 4-4 

II. Operating Systems 

MEDUSA and STAROS Addressing 

Intercluster Bus 

window 
registers 

Local references 

descriptor cache €y 
€>~;:::=====:::}_4~+ 

12 offset into object 

Map Bus 

intercluster msg. 

22 

1 ( 

L 1. Siocal passes an 18-bit address to local memory across the LSI-11 bus. 

Intracluster references 
M1. Siocal asserts a 21-bit address on the map bus. This address consists of the following: 

-1 space bit 
_ 4 bits identifying the source em 
- 4 bits of window number 
- 12 bits of offset within object 

M2. Upon receipt by the Kmap, the address is divided into a 9-bit window specifier and a 12-bit 
offset. 

M3. The window register gives an object name, which is looked up in the descriptor cache. 
M4. If the object is in this cluster, the 22-bit base address (4 bits of em number, 18 bits of bus 

address) is added to the offset within object. (If the object is in another cluster, proceed to 
step X4.) 

MS. The 22-bit address is passed over the map bus. The leading four bits determine the 
destination em. 

M6. The destination Siocal passes the 18-bit bus address to the target memory. 

Intercluster references 
X3. The window register gives an object name, which is looked up in the descriptor cache. 
X4. If the object is in another cluster, the base address is added to the offset. 
XS. The resulting address is packaged in an intercluster message and sent to a remote Kmap. 



4.3. Summary 

4. Operating-Systems Overview 61 

for an instruction, or if the instruction returns result values, the data is treated instead 
as the address of a parameter block, containing a vector of parameters. 

Two operating systems, STAROS and MEDUSA, have been designed, implemented, 
and evaluated on Cm*. Both of them are classic examples of multiprocessor operat­
ing systems and have influenced the evolution of operating systems in many ways. 
They were among the first operating systems to provide a small kernel or nucleus 
supporting policy / mechanism separation, message-based communication, shared 
memory, object orientation, task forces, and special features to enhance robustness. 

The Cm* hardware structure presented both a challenge and an opportunity for 
the operating-system designers. The small address space of the LSI-11 is probably 
the single most important architectural limitation. Both operating systems attack this 
problem through object orientation. The programmable address mappers (Slocal and 
Kmap) provided an opportunity for supporting this object model at the firmware level. 
Furthermore, because the Kmap is a much faster processor than the LSI-11, most 
speed-critical operations are implemented in Kmap microcode. Consequently, the 
Cm* operating systems are not easily portable to multiprocessors of a different 
structure. 

MEDUSA goes farther than STAROS in reflecting the structure of the Cm* hardware 
and thereby obtains definite performance advantages. It has some of the aspects of 
a shared-memory multiprocessor operating system, although because messages 
are passed by value, it can also-be viewed as providing a tightly coupled local area 
network. STAROS is more general and flexible, abstracting the Cm* architecture to a 
symmetrical global shared-memory model. This approach has the advantage of 
presenting the user with a conceptually Simple yet flexible model of computation. 
The major differences between MEDUSA and STAROS are due to their different views 
of the architecture. Both systems were, however, developed and evaluated in the 
same place and in approximately the same time frame. The technical interaction 
between the two design groups provided superb cross-fertilization and synergism. 
The next two chapters will present the main concepts of MEDUSA and STAROS and 
contrast their differences. 





5. MEDUSA 

Of the two Cm* operating systems, StarOS has endeavored to build a general­
purpose environment for parallel programs with widely diverse characteristics; 
Medusa has not attempted to shield the user from the nature of the underlying 
hardware. For the reader who is already acquainted with the structure of em*, 
MEDUSA is a good place to begin the study of em"" software. 

MEDUSA is composed of two major levels; the kernel and the utilities. User 
programs running on top of MEDUSA can be considered as a third level. The kernel 
is responsible for handling device interrupts and providing low-level scheduling 
mechanisms (Section 4.1.3). It chains together device commands to improve 
throughput for high ·speed devices. It converts device interrupts into messages that 
are sent to the appropriate utility. It provides the mechanism for process switching 
but does not decide which process should run next. The Task Force Manager, a 
utility, makes this decision. 

A separate copy of the kernel resides on each Cm. The kernel on a particular 
processor consists of approximately 1 K byte of code plus about 500 bytes for each 
type of peripheral attached to the processor. In addition, the kernel includes about 
4K eighty-bit words of Kmap microcode shared by all the processors. 

Processes in MEDUSA are known as activities. The kernel can multiplex up to 16 
activities per processor. A utility known as the Task Force Manager decides which 
process is to execute next; the kernel simply carries out its decisions. The kernel 
issues commands to peripheral devices and responds to the interrupts they 
generate. The kernel converts these interrupts into messages that are sent to the 
appropriate utility. 

MEDUSA utilities provide services such as scheduling, memory management, and 
a file system. Utilities are structured as task forces, whose various processes are 
capable of servicing requests from different processes simultaneously. Utilities are 
endowed with special privileges that differentiate them from ordinary user task 
forces. They can call certain internal utility procedures that user processes cannot 
call, and they can read and write memory that user programs cannot-for example, 
descriptor lists (Section 5.1) and file control blocks (Section 5.3). 

User programs are structured as task forces whose processes may execute in 
parallel; a serial user program is simply a degenerate case. The processes of a task 
force may communicate among themselves via shared memory, as well as by mes­
sages. A task force, however, communicates with the outside world only via the 
message system. 

Sections 5.1 and 5.2 focus on the MEDUSA kernel. Section 5.1 explains how 
memory is organized and protection enforced by the kernel. It stresses features that 
have been built into the kernel to enhance reliability. Section 5.2 discusses one of 
the more important parts of the kernel, the message system that is responsible for 
interprocess communication. Sections 5.3 and 5.4 concentrate on the utilities. Sec-

63 



64 II. Operating Systems 

tion 5.3 lists the utilities and their functions and explains how utilities are called. It 
also emphasizes how the utilities have been designed to provide service in a reliable 
manner. Section 5.4 describes how errors, especially errors in utilities, are detected 
and handled. Finally, Section 5.5 explores special scheduling constraints that arise 
in a multiprocessor system and how MEDUSA deals with them. 

5.1. Facilities Provided by the Kernel 

All the memory allocated to a task force is reachable via descriptors held by the task 
force. As mentioned in Section 4.1.4, memory is divided into objects. Only one kind 
of object, a page object, is readable and writable by activities of a user task force 
using ordinary LSI-11 instructions. Other kinds of objects may be referenced only 
through operations that make use of the Kmap. References to a 4,096-byte page in 
local memory may be relocated by the Siocal without passing through a Kmap. 

A second class of objects, including pipes and semaphores, are operated on only 
by Kmap microcode. Pipes are used to buffer messages. Activities may access 
pipes only by invoking the microcoded Send and Receive operations. MEDUSA pipes 
are similar to Unix pipes, with the main difference being that each MEDUSA message 
contains a byte count; a Receive is guaranteed to obtain the same amount of data 
that was transmitted by the sender. Pipes may be used for synchronization, as well 
as for information transfer. Semaphores are designed to be a faster means than 
pipes for synchronization among the processes of a single task force. Operations on 
semaphores are also implemented in Kmap microcode. 

The last class of objects are those that are managed by utilities. Among these 
objects are file control blocks, which are manipulated by the software of the File 
System utility, and descriptor lists, to which the Memory Manager utility has 
read I write access. An activity that desires to copy a descriptor, for example, must 
do so by send ing a request to the Memory Manager. The Memory Manager then 
executes a software routine that reads the descriptor from one slot in a descriptor list 
and writes it to another. If the activity were allowed to read and write into descriptor 
lists via ordinary processor instructions, it could easily g~in access to any portion of 
memory by simply manufacturing a descriptor for it. Requiring the intervention of the 
Memory Manager takes longer, but this is of little concern because copying a 
descriptor is an infrequent operation. 

The objects belonging to a task force are not restricted to being located in the 
same Cm, or even in the same cluster. 1 Distribution of objects facilitates communica­
tion among activities that reside in different clusters, since they may access the 
same objects (although it increases the complexity of synchronizing accesses to an 
object). For efficiency reasons, objects containing executable code must always be 
located in the same Cm that executes the code, since a processor executing remote 
code could run at no more than one-third speed. 

1 By contrast, a STAROS object always resides in the same cluster as its descriptor. Capabilities for STAROS 
objects may, however, be freely distributed throughout Cm"; see Section 6.1.2. 



5.1. 1. Descriptor Usts 

Figure 5-1 

5. MEDUSA 65 

A user task force possesses two kinds of descriptor lists-private and shared. Each 
process has its own private descriptor list, or POL (Figure 5-1), whose descriptors 
cannot be used by any other process. The shared descriptor list, or SOL, is acces­
sible to all processes in a task force. Hence, an object is either private to a particular 
activity or shared among all activities in a task force. The capability addressing of 
STAROS allows more flexibility in sharing but at the cost of an extra level of address­
ing indirection (see Section 6.1.2). 

A descriptor list is made up of a number of descriptor slots. All operations on 
descriptors must name a slot within a descriptor list, so an activity cannot create an 
arbitrary bit pattern and have it treated as a descriptor. Each nonempty descriptor 
slot holds a descriptor, which contains a physical object address and length 
speCification. Consequently, MEDUSA does not need a central table to hold infor­
mation on all the objects in the system. This is advantageous from the standpoint of 
robustness, since failure of a portion of memory cannot wipe out all the object­
mapping information in the system. 

Each MEDUSA object contains a backpointer to each of its descriptors. Without the 
existence of backpointers, it would be impossible to move an object, since the phys-

The Address Structure of a MEDUSA Task Force 

Shared 
Descriptor 
List (SOL) 

Private 
Descriptor 
List (POL) 

address environment of activity A 1 other activities in the task force 



66 II. Operating Systems 

ical address in each descriptor must be updated. A central object table would serve 
the same purpose but the backpointer scheme enhances robustness because if a 
descriptor is damaged, it can be reconstructed from information in the backpointer. 
The order of fields in a backpointer is different from the order in a descriptor, so the 
same error in both will produce a detectable difference. Lost descriptor lists may be 
rebuilt from a scan of objects, and lost backpointers may be recovered from a 
traversal of descriptor lists. Such a search would be prohibitively expensive if applied 
to all on-line storage but is quite feasible if limited to primary memory. 

5.1.2. Microcode Reliability 

Many MEDUSA microcode operations, including those that perform intercluster ad­
dressing, use more than one Kmap context (see Section 2.2.2). This raises several 
issues commonly encountered in distributed systems, including coherence of 
descriptors cached in Kmaps and starvation and deadlock over Kmap contexts. 
These problems are addressed by the MEDUSA microcode in a unified way. 

Cache Coherence and Synchronization of Descriptor Access. At any given time, 
several activities may simultaneously need to read a descriptor to access the object 
to which it points. For example, several activities may attempt to read a page object 
whose descriptor is in the SOL. Some of these activities may be in different clusters, 
so to provide efficient addressing, copies of the descriptor will be cached in different 
Kmaps (Section 4.2). Simultaneously, other activities may need to update the 
descriptor for the same object if, for example, the object is moved. The problem is to 
make sure that no activity uses an outdated descriptor to access the object. 

The MEDUSA solution guarantees that at least one cached descriptor is always 
current; the current descriptor is cached in the Kmap in the cluster where the object 
is located. Other cached descriptors simply contain pointers to the cluster where the 
object is "thought" to be. They are treated as "hints," which may be invalid at any 
time. If a cache fault is encountered on following such a hint (indicating that the 
object is no longer in that cluster), the descriptor is read from memory, and the hint 
is corrected. 

There are several reasons that a descriptor may have to be read from memory 
(for instance, when an invalid hint has been followed or when the descriptor has 
previously been purged from a full cache). Regardless, the request travels first to the 
Kmap in the cluster in which the descriptor is located and then to the Kmap in the 
cluster where the object is located. The cached copy (if any) in the object's cluster is 
overwritten. When a descriptor must be written, the request follows the same route, 
first updating the copy in the descriptor list, then the copy in the object Kmap's 
cache. Thus all accesses to a descriptor occur in the same order--clescriptor Kmap 
first, then the object Kmap. Inter-Kmap service requests are guaranteed to arrive in 
the order in which they were issued; hence it is not possible for two requests to 
interact in such a way that an outdated descriptor copy remains cached in the object 
Kmap. 



5. MEDUSA 67 

In some ways, this scheme provides a more general addressing structure than 
the corresponding STAROS mechanisms. Not only can MEDUSA objects be moved 
(something that was never implemented in STAROS), but an object may be located in 
a different cluster from the descriptor list that contains its descriptor. 

Deadlock Prevention through Resource Ordering. There are several known 
techniques for preventing deadlock in concurrent systems. Each of them works by 
denying one of the conditions necessary for deadlock. The MEDUSA microcode 
empioys the notion of resource ordering, which uses a static ordering of all the 
resources used by the microcode. A microcode operation acquires resources in 
order: lower-numbered resources are acquired first and higher-numbered resources 
later. If, at some point, an operation finds that it needs a resource whose number is 
lower than that of a resource it holds, it must release the higher-numbered resources 
and try again to acquire the resources in the proper order. This strategy prevents 
deadlock by denying the circular-wait condition; it makes it impossible, for example, 
to have operation A waiting for resources held by operation B at the same time that 
B is waiting for resources held by operation C, which in turn is waiting for resources 
held by A. 

As an example of how the microcode uses ordering to avoid deadlock, consider 
the allocation of Kmap contexts to a microcode operation such as intercluster 
memory references. Each reference requires two Pmap contexts-a master context 
in the Kmap from which the reference emanates and a slave context at the Kmap in 
whose cluster the object is located. Suppose that in each of two previously quiescent 
clusters, eight Cm's simultaneously make intercluster references to the other cluster. 
All eight contexts in each Kmap are allocated as masters, leaving no contexts 
available to service the intercluster requests as slaves. Deadlock! 

MEDUSA statically divides Pmap contexts into master and slave groups. At the 
outset, an operation has no idea whether it will require one context or two, so it is 
randomly allocated a context from one of the two groups. If it acquires a slave 
context and later discovers that it needs another context, it is required to release the 
(higher-numbered) slave context and request a master context first, then a slave 
context later. Since all contexts follow this discipline, and since slave contexts are 
prohibited from attempting to acquire other contexts, deadlock over contexts is im­
possible. 

Preventing Starvation. In most systems, starvation is a performance problem, 
preventing a process from being served in a reasonable amount of time. In Cm* it is 
a reliability problem as well because a Kmap context has no way of. identifying the 
sender of a return message. It cannot recognize and discard messages from 
"orphan contexts" in other Kmaps-slave contexts that have been timed out under 
the assumption they have failed. If the master context has been freed and reallo­
cated in the meantime, the return message could be misinterpreted as a return from 
another valid context, causing an error in the new master context [Sindhu 84]. 
Starvation must be prevented so that contexts are timed out only when they have, in 

fact, failed. 



68 

5.1.3. Amplification 

II. Operating Systems 

Medusa avoids starvation by never busy-waiting. Instead, activities and contexts 
wait explicitly and are serviced by disciplines that are known to be "fair." Where 
possible, this is done by ensuring that the service discipline is first-come first-served 
(FCFS). Utilities use the Kmap-provided synchronization operations (Indivisible 
Increment and Indivisible Decrement) to manipulate FCFS queues. Kmap opera­
tions do not require any explicit synchronization because the Pmap runs a context 
until that context voluntarily relinquishes it (Section 2.2.3); there are no microin­
terrupts. 

It is not always convenient to implement FCFS service where efficiency is the 
utmost concern. This is the case in the most heavily used Kmap operations, non local 
references. MEDUSA optimizes for the most common case, that of no contention for 
the target em. In this case, no other memory-reference request is waiting for a 
particular Siocal, either when a reference to that Siocal begins or when it finishes so 
queue-manipulation microinstructions can simply be skipped. The Kbus maintains 2 
bits of state information for each Siocal: busy, which is true if the target Siocal is in 
use, and hold, which is true if another memory reference is waiting for the Siocal to 
become free. When service of a request begins, the queue is not manipulated if 
busy is false, and when the Siocal is released, it is bypassed when hold is false. 2 

Although this does not help in the case of severe contention, it reduces the amount 
of queue manipulation considerably. STAROS uses a more sophisticated algorithm 
(Section 3.1.3), which performs somewhat better under heavy contention. 

Objects that are managed by a utility must be read / write protected from user ac­
tivities but readable and writable by the utility in charge. For example, the File 
System must be able to update the pointers in a file control block whenever data is 
read or written. This raises two questions: How does the user activity pass the 
descriptor for the object to the utility? How does the utility use this descriptor to gain 
read/write access to the object? Unfortunately, an activity cannot simply pass a 
descriptor to a utility through the pipe it uses to invoke the utility (see Section 4.1.2). 
A message is simply a byte stream; the utility would have no way of guaranteeing 
that the user activity had not just forged the descriptor. Through its invocation pipe 
(to be described in Section 5.3.1), however, the utility can obtain the system name of 
the POL of the invoker. The utility presents this name to the Kmap and requests that 
the POL be mapped onto its external descriptor list, or XOL. The XOL is not a 
separate utility list but an alias that a utility can use to reference the descriptors in 
the invoker's POL. The Kmap verifies that the requester is a utility, which it can do by 

2 This discipline is not completely FCFS because the hold bit is not set until the Kbus actually attempts a 
memory reference to a busy Sloca!. Assume that one memory-reference request has encountered a busy 
Sloca!. It is then placed in the Kbus's run queue. Now imagine that a second memory-reference request 
comes along before the Kbus attempts the first memory reference. If the Siocal has been freed in the 
meantime, the second memory reference will not find the Siocal busy and will be performed immediately, 
before the first memory-reference request. In practice. this anomaly occurs rarely and has not been 
observed to cause starvation. 



5.2. Messages 

5. MEDUSA 69 

interrogating a special bit in the requester's extended processor status word, and 
then establishes the new XOL. 

Objects named by descriptors in the POL of the invoker are now directly acces­
sible. If the desired object resides instead in the SOL, then the utility must consult 
the activity control block (ACB) to discover the system name for the SOL. The utility 
reads the descriptor for the ACB from the POL of the invoker, fetches the system 
name of the SOL, and presents it to the Kmap as before. 

Now that the utility possesses a descriptor for the desired object, it must gain 
access to the object's memory. Since the object is not of type page, its memory is 
not ordinarily readable or writable. A utility, however, is able to invoke another Kmap 
operation to amplify its rights to the object. This gives it read / write access. 

This simple mechanism greatly enhances reliability within the system because it 
permits access to utility-managed objects to be controlled on a "need-to-know" 
basis. User activities need not be given read / write access, which they could use to 
destroy the consistency of the objects. A utility need not be given permanent access 
to all the objects it is responsible for managing; this limits the damage that an errant 
utility can do. 

MEDUSA is not the first operating system to provide protection for object types 
supported by the system. HYDRA [Wulf et al. 81] and CAP [Wilkes and Needham 
79] are earlier examples. STAROS is structured in terms of modules (see Section 
6.3) that are also capable of amplifying capabilities to gain access to the internal 
memory of objects. More recently, the Intel 432 [Organick 83] has provided a very 
flexible system of intermodule protection with two kinds of amplification. MEDUSA'S 
utilities, however, playa more trusted role than modules in these other systems. A 
utility is given temporary access to a large part of the address space of the process 
that invoked it; it is assumed that it will not use this privilege to damage its caller. In 
addition, MEDUSA'S scheme is less general: User task forces cannot protect objects 
that they implement from outside modification in the same way that utilities can. 

The advantage of MEDUSA'S approach is that the kernel has to provide less 
support for protection. This is reflected in the size of the kernel: MEDUSA'S is only 
about 1 K byte of LSI-11 object code plus about 4,000 eighty-bit words of microcode, 
compared with nearly 12K bytes plus 2,200 words of microcode for the STAROS 
nucleus and about 260K bytes for the HYDRA kernel, which provides much more 
flexible protection than either MEDUSA or STAROS. 

Messages are a fundamental component of the MEDUSA operating system. They 
constitute the primary means of interprocess communication as well as the only 
method of requesting system services. It is important for message communication to 
be fast; otherwise the "system overhead" would be unacceptably high. 

Messages are conveyed via pipes (see Section 5.1). There are two notable 
differences between MEDUSA pipes and Unix pipes, both of which have been made 
to improve reliability. First, it is important for the receiver to be able to determine the 
length of each message it receives. A mistake about the length of one message 



70 II. Oparating Systems 

could easily cause subsequent messages to be misinterpreted. Consequently, 
MEDUSA'S message-system microcode associates a byte count with each message. 
Each Receive is guaranteed to retrieve exactly the same amount of information that 
was sent, making it impossible for a malicious or errant sender to sabotage the 
receiver. Second, the microcode also places an indication of the sender's identity in 
each message. This enables an activity that is awaiting a message from another 
activity (such as a return from a utility invocation; see Section 5.3.1) to determine 
without a doubt when the desired message has arrived. 

Allowing messages to contain descriptors as well as uninterpreted byte streams 
could enhance reliability still further. It would, for example, remove the need to make 
return pipes globally accessible. The need to make messages fast, however, effec­
tively forces them into the microcode, where the need to handle descriptors would 
impose additional complexity. It is more convenient to implement descriptor opera­
tions in the software of the Memory Manager utility, where it is easier to provide a 
high level of functionality. 

The Send and Receive operations are fully symmetric: A Send may be per­
formed unless the target pipe is full; a Receive can be performed unless the pipe is 
empty. An activity can choose between two forms of Send and Receive. If it 
chooses a conditional operation, the activity is notified whether the operation can be 
performed. If it chooses an unconditional operation, it is suspended until the activity 
can be completed and is then reawakened. This differs from the STAROS message 
system, in which a receiver performing a registered (unconditional) Receive can 
choose either to suspend or to continue execution and be notified of the operation's 
completion by the setting of an event variable. Alternatively, STAROS provides no 
unconditional Send operation. 

The designers of MEDUSA expected waiting to be a common occurrence, and they 
optimized for it in several ways. Unconditional Sends and Receives eliminate the 
need for busy-waiting, and Multi-Event Waits remove the need for polling. Both 
these operations help to conserve processor resources. Unnecessary copying of 
messages is also avoided. As detailed in Section 4.1.2, if a message is sent when its 
receiver is waiting, the message is copied directly into the address space of the 
receiver, bypassing the pipe altogether. 

Another serious manifestation of overhead in message communication is its ten­
dency to induce spurious process switches (or "context swaps"). Suppose that one 
activity is periodically sending messages to another. Unless the receiver consumes 
the messages exactly as fast as the sender produces them, the faster of the two will 
have to wait for the slower on each iteration. The faster activity will be dislodged 
from its processor, and another activity will take its place. Then when the message 
arrives, the waiting activity will regain its processor. The two context swaps can 
easily add an order of magnitude to the time required for message communication; 
the time needed to set up and transfer the message is insignificant by comparison. 
This phenomenon effectively prevents fine-grain interaction between the two 
processes. 

To circumvent this problem, MEDUSA uses a simple heuristic. When an activity 
performs an unconditional message operation, it is allowed to specify a small pause 



5.3. Utilities 

5. MEDUSA 71 

time. During this time, the processor assigned to the activity executes an idle loop in 
kernel space, with the waiting activity's process state still assigned to the processor. 
If a message arrives during this time period, the waiting activity can be resumed 
immediately; if not, it is suspended as explained above. The faster process is, in 
effect, slowed down to match the speed of the slower. 

Statistics on the distribution of pause times are gathered almost automatically by 
the MEDUSA kernel. Each activity control block contains a set of counters that form a 
histogram of pause times. When the kernel enters its idle loop during a pause, it 
initializes a counter to the pause time and then repeatedly decrements it. If the 
activity becomes runnable before the count reaches zero, the kernel saves this 
counter, and, at the beginning of the next pause time, increments the appropriate 
counter in the histogram. 

The pause-time histogram can be used to help in load balancing, particularly by 
utilities [Ousterhout 80]. If most of the pause times are near, or equal to, zero, there 
is almost always work for the utility to perform, so it may well be overloaded and 
probably should create a new activity to help it. A preponderance of large pause 
times, however, indicates either that (a) the activity is underloaded and should 
consider allocating its work to other activities and deleting itself or that (b) messages 
are buffered in invocation pipes, but the activity is not currently waiting on those 
pipes. (When no more activation records remain for a pipe, the activity ceases to 
wait on that pipe, so requests placed in the pipe will remain there until coroutines are 
able to service them.) This is due to a dearth of activation records, so the proper 
response is to create more activation records. 

The Send and Receive operations in MEDUSA are overloaded: They apply to 
several object types besides pipes. The implementation of overloading is closely 
related to the concept of an event. For a pipe, an event is the presence of a 
message in its buffer. An object that has an associated event is called eventable. A 
Receive operation tests for or awaits the occurrence of an event. For a semaphore, 
an event is a positive value; thus a Receive on a semaphore has the same seman­
tics as a P operation, and a Send implements a V. Not all eventable objects are 
implemented in microcode. For example, for a file control block, an event is the 
presence of data in its buffer. 

Utilities are the method MEDUSA uses to deliver operating-system services. Each 
utility is structured as a task force and exports a particular abstraction to the rest of 
the system. There are five utilities, providing the services of memory allocation, file 
and device 110, task-force management, exception handling, and debugging. 

The functions of the Memory Manager include allocating and deallocating 
primary memory, maintaining descriptor lists, and implementing operations on page, 
pipe, and semaphore objects. When an activity needs to create a new object, it 
requests the Memory Manager to allocate memory for it. If the object is a page, 
pipe, or semaphore, the Memory Manager initializes its memory; otherwise in-



72 II. Operating Systems 

itialization is the responsibility of the invoking activity. Working in conjunction with 
the Kmap microcode, the Memory Manager maintains descriptor lists by creating 
new descriptor lists; creating, copying, and deleting descriptors; and maintaining a 
count of the outstanding descriptors for each object. When all the descriptors for an 
object have been deleted, the Memory Manager returns the object's storage to the 
free list. 

The File System provides functionality similar to the. Unix file system but ex­
tended in several ways. The directory structure is hierarchical, but it allows several 
"current directories" instead of the one permitted by Unix. While Unix allows a 
maximum of 16 files open simultaneously, MEDUSA lets any descriptor slot in an 
activity's descriptor list hold a file descriptor so that the number of open files is 
limited only by the length of the descriptor lists. Files on disk contain redundant 
information to facilitate recovery from crashes. The strategy is similar to that of the 
ALTO file system [Lampson and Sproull 79]. Files are stored in blocks of fixed length. 
Into each block is written a label containing the name of the file to which the block 
belongs, the number of the block within the file, and pointers to predecessor and 
successor blocks. When directory information has been corrupted, it can be restored 
from the labels, and vice versa.\ 

Among the Task Force Manager's duties are the creation, scheduling, and dele­
tion of task forces. Any existing task force may request creation of a new one by 
passing the name of a task-force description file to the Task Force Manager, sup­
plying either descriptors or ordinary data as parameters for the new force. As the 
owner of the new task force, the old task force obtains a descriptor for the new task 
force, allowing it to start, halt, restart, and single-cycle the task force, as well as to 
delete activities selectively. In fact, a complete debugger has been written whose 
only special privilege is ownership of the task forces that it debugs. The Task Force 
Manager also is responsible for coscheduling a task force's activities, as Section 
5.5 will describe. 

Whenever an exceptional condition is detected, either by the hardware, the 
microcode, or the utilities, the Exception Manager springs into action, deciding 
which entity is to be notified of the exception and then delivering a report to the 
proper authority. The other function of the Exception Manager is to attempt to 
recover from the exception. It contains hardware-level handlers for all exceptions 
and software handlers for certain utility exceptions that might cause deadlock if 
implemented elsewhere. Centralizing exception management in a single place 
serves to encapsulate code that might otherwise be hard to test exhaustively and 
hence would be error prone. It also lets user programs invoke the same powerful 
reporting and recovery facilities employed by the utilities. 

The MACE utility provides MEDUSA with debugging and measurement capability. It 
consists of a single activity and runs on a dedicated Cm, where all its resources are 
allocated. It possesses utility privileges, as described below, and communicates via 
the standard MEDUSA message system. Because it is essentially independent of the 
functioning of other activities, it is not compromised by errors in them, nor does it 
unduly perturb their performance. 



5.3.1. Utility Calls 

5. MEDUSA 73 

In general, utilities communicate with the outside world by means of messages. A 
utility is invoked by a Send to one of its invocation pipes. As a side effect of that 
Send, the invoking activity is suspended, to be reactivated when the utility returns. 
The invocation message contains arguments for the utility and an indication of a 
return pipe through which the utility may pass back results. This return pipe is the 
counterpart of a return address in an ordinary procedure call. Thus a utility call is 
effectively a call by value-result. 

Descriptors for invocation pipes for all utilities are publicly available in a utility 
descriptor list, or UDL, located in the memory of each em. The mapping of UDL 
slots to utilities is the same on all processors. A UDL is analogous to the trap vector 
in a traditional operating system. . 

This method of providing access to utilities enhances· fault-tolerance because 
damage to a UDL affects only the ability of on~ processor to communicate with the 
operating system. In addition, the UDLs of different processors may direct requests 
for the same function to different activities of a utility task force. This makes it easy 
to distribute the utilities physically. It also means that when a utility activity gets too 
busy, the system can respond by replacing the UDL entry for its invocation pipes by 
those of a less heavily loaded sibling. The utility may even spawn a new activity and 
distribute descriptors for its invocation pipes to several UDLs. 

Since messages consist of uninterpreted byte streams, it is not possible for the 
invoker of a utility to pass a descriptor for the return pipe in its invocation message. 
When one utility invokes another, it passes a transaction identifier instead. The 
transaction identifier tells which slot in the UDL contains a descriptor for the return 
pipe. Utilities are trusted not to misuse the return pipes, but return pipe indices are 
encoded in such a way that an errant utility is unlikely to generate a legal one by 
accident. 

As an additional check, the invoked utility passes the transaction identifier back to 
the utility that called it, so that the first utility can verify the authenticity of the return 
message. The transaction identifier also distinguishes between return messages if 
the calling utility has more than one utility call outstanding simultaneously. 

If the invoker is a user activity, the return pipe must be specified in a more secure 
fashion. The user process must not be permitted to "lie" about its identity in order to 
cause the return message to be directed to someone else. To forestall this, the 
message-system microcode makes the identity of the sender available to the 
receiver by providing the system name of its PDL. The invocation message thus 
contains the index of the return pipe in the invoker's PDL or SDL (since the SDL is 
accessible from the PDL via the activity control block). 

As mentioned in Section 4.1.2, a user activity invoking a utility is required to wait 
until the utility call returns before continuing execution. The same restriction does not 
apply, however, to utility calls invoked by other utilities. While it is prudent to limit the 
rate at which user activities can generate utility calls, it is not wise to limit the rate at 
which utilities can service these calls. Hence utilities are allowed to use a special 
microcode operation to perform a utility call that does not block the invoker. 



74 II. Operating Systems 

5.3.2. Deadlock Avoidance 

Figure 5-2 

Although it might not be apparent at first glance, the activities of a utility cannot be 
allowed to handle service requests at random, or deadlock might result. Consider 
this example from Ousterhout [Ousterhout 80]. An activity requests the File System 
to open a file. Then the following series of events occurs (Figure 5-2): 

• The File System receives the request and attempts to open the file. It must al­
locate a new file control block (FCB). 

• The File System requests the Memory Manager to reserve memory for the 
FCB. No free block of memory is large enough, however, so some object 
must be swapped out. 

• The Memory Manager requests the File System to swap an object out to 
secondary storage. 

Assuming there is only one File System activity, deadlock has now occurred. The 
File System is waiting for the Memory Manager to deliver memory, and the Memory 
Manager is waiting for the File System to swap an object out. Even with more than 
one File System activity, an unhappy timing of service requests can still produce 
deadlock. Some strategy is needed to avoid this prospect. 

The crux of the problem is that there is a circularity in the dependencies between 
modules. As in this example, a circularity of dependencies Can occur even if invoca­
tions are hierarchical (Le., if each invocation is directed to a routine at a lower level 
of the system [Habermann et a/ 76].) 

To avoid deadlock, MEDUSA introduces the concept of service classes. A service 
class is defined as the set of functions provided by a particular utility at a single invo-

A Hierarchical Sequence of Calls that Can Produce Deadlock 

Module 

Memory Manager 
utility 

File System 
utility 



Figure 5-3 

5. MEDUSA 75 

cation level. For example, the File System's Open File and Close File operations 
fall into one service class, I / a functions make up a second class, and memory 
allocation and deallocation functions make up a third. Each service class is statically 
allocated a separate set of resources, including memory, which is sufficient to allow 
it to carry out its functions. 

Activities are another resource that must be distributed among the service 
classes. If all the activities of a utility attempted to service requests from the same 
class, none would be left to handle any iower-ievei requests for the utiiity that might 
ensue. One solution would be to allocate separate activities of the utility to each ser­
vice class, but in MEDUSA, this would not be an efficient use of resources, since 
some service classes are invoked very infrequently. 

Instead, MEDUSA uses a strategy reminiscent of Kmap contexts (Section 2.2.2): 
Different service classes are served by different coroutines of the same activity. 
Each coroutine is statically allocated its own stack. A utility has one invocation pipe 
for each service class (Figure 5-3). The coroutines are statically associa,ted with 
different invocation pipes so that a heavy demand for one service class does not 
impede the utility from handling requests for other service classes. 

When a message arrives from an invocation pipe, one of that pipe's coroutines is 
allocated to service the request. Upon completion of the service, the coroutine is 
returned to the free pool to await another request. In addition to avoiding deadlock, 
the coroutine scheme also has the effect of increasing the throughput of the utilities, 
since an activity which is waiting for service from another activity can execute 
another coroutine in the interim. 

The coroutine structure of utilities imposes little additional complexity. In par­
ticular, synchronization constraints are almost unaffected because utilities already 

The Coroutine Structure of a MEDUSA Activity 

Coroutine 
for pipe 1 

Coroutines 
for pipe 2 ,. 

Coroutine 
for pipe 3 

-

'-_./ '-- '-_'/ 

! 
Invocation pipe 

for service class 1 v ! 
Invocation pipe 

for service class 3 

Invocation pipe 
for service class 2 

••• 

Coroutine 
for pipe n 

-

, -

! 
Invocation pipe 

for service class n 



76 II. Operating Systems 

contain potentially concurrent activities. The only real limitation is that no coroutine 
may be allowed to busy-wait on a lock, since that would deny other coroutines of the 
same activity the opportunity to release it. 

5.3.3. Multiplexing Utilities 

When a utility finishes processing a service request, it executes a Multi-Event Wait 
(see Section 4.1.2) on all its invocation pipes and its return pipe. If no message is 
present in any pipe, the utility remains suspended until one arrives. If the message 
arrives through an invocation pipe, a coroutine is allocated to service the message, 
and execution begins at the coroutine's start address. If the message arrives via the 
return pipe, the transaction identifier in the return message is verified, and execution 
of the coroutine resumes at the point where it was suspended. 

In effect, the transaction identifier takes the place of a capability in authenticating 
the return message. Conversely, in STAROS, when a module is invoked, a capability 
for a return mailbox is passed as a parameter. In contrast to MEDUSA, where return 
pipes are globally available to all utilities, the STAROS module has no foreknowledge 
of the return mailbox. Its possession of a capability for themailbox.however.is 
prima facie evidence of its authority to return to the return mailbox's owner. 

5.3.4. Robustness Considerations 

The functionality that we have described thus far is included in the standard version 
of MEDUSA the version used in the experiments reported later in this book. There is 
another, experimental version of MEDUSA whose utilities have been enhanced to 
provide still greater ability to tolerate and recover from errors [Sindhu 84]. In this 
version, all utilities contain at least two activities, which are constrained to execute in 
separate clusters. As in the standard system, each activity is capable of providing all 
the services furnished by the utility. 

This organization provides a good deal of redundancy. There are at least two 
copies of all code and nonvolatile data and at least two activities that can provide 
any given functionality. Because the activities are identical, it is easy for one activity 
to use its copies to rescue the other activity from errors in its code or data. 

Despite the high degree of replication, the shared objects in the utility's SDL still 
constitute a singularity, or single point of failure. MEDUSA copes with this problem by 
duplicating critical objects and caching noncritical objects or distributing them around 
the system (Figure 5-4) so that a single failure affects only a small part. 

The critical objects are those items needed by the utility to function; counted 
among them are the SDL itself, the description of the task-force state in the 
task-force control block (TFCB), and a few pages containing data needed to restart 
failed utility operations. Two copies of these objects are maintained in different 
clusters to protect them from faults that are confined to a single cluster. The extra 
copy of an object is known as a co-object. There are two varieties of co-object 
(Figure 5-5): 



Figure 5-4 

Figure 5-5 

5. MEDUSA 

The Structure of a Utility T~sk Force 

ACB ACB 

Code Code 

Stack Stack 

3IllD 3IllD" 3IllD 
Invocation pipes Invocation pipes Invocation pipes 

Co-Objects-the Mechanism for Object Replication 

Co-SOL Co-objects 

Descriptors for 
Band C have 

shadow bit set 

" " ...:: " SOL" " Objects 

t---____ L---"oI A 

(Standby) 

(Shadow) 

(Shadow) 

77 



78 

Figure 5-6 

II. Operating Systems 

• shadows, which are always identical to the other object because all writes are 
directed to both an object and its shadow . 

• standby objects, which are copies made from the object at some earlier point 
in time. 

Descriptors for co-objects are kept in a special descriptor list called the co-SDL. 
Each such descriptor contains a bit specifying whether the co-object is a shadow or 
a standby and may be toggled from one to the other by the activities of the task 

force. 
Writes to co-objects are implemented in Kmap microcode. When a Kmap en­

counters a non local write reference, it checks the cached copy of the descriptor to 
see whether the shadow bit is set (Figure 5-6). If the shadow bit is set, the object is 
being shadowed. If the write to the primary object succeeds, the corresponding word 
of the shadow is also written. The shadow is located through its descriptor in the 
co-SOL; the offset is the same as the offset of the descriptor for the primary object in 
the SOL. Descriptors for co-objects can be cached just like descriptors for primary 
objects-the first reference causes the descriptor to be fetched from main memory; 
subsequent references can proceed apace. 

Measurements performed by Sindhu indicate that the cost of shadowing is quite 
acceptable (Table 5-1). A replicated write usually takes 42.7 J.LS., which is five times 
as"long as an ordinary write (Table 3-2). In three utilities, however, the fraction of 
memory references that were writes to shared objects was never greater than 0.53 
(Table 5-2), so the overhead is only about 2 percent. 

It is straightforward to recover from an error using a shadow. When an error is 
detected in an object, the error handler for that object type reads the other copy of 
the errant word or words from the shadow and writes them into the corresponding 
locations in the primary object. 

Section 5.3.2 discussed the problem of deadlock in normal utility calls. Recovery 
from exceptions raises still other possibilities for deadlock, if the recovery 
procedures use parts of the system that have been damaged. Sindhu [Sindhu 
84] has identified three such cases: 

The Implementation of Shadows 

SOL Co-SDL 
Primary Shadow 
object co·object 

Offsetk 
I 

D 
Offset k 

I 

I I 

'¥ 'V 



Table 5-1 

Table 5-2 

5. MEDUSA 

The Cost of Replicated Writes 

Configuration 

Primary in cluster but non local 
Shadow in cluster but non local 

Primary in Clustei but non local 
Shadow in non local cluster 

Reference time (J.Ls.) 

Primary Shadow 
part part 

12.1 13.9 

;2. ; 30.6 

Frequency of Reads and Writes (in Percentages) to Different Classes of Objects 

Local data 
Code (stack) Shared data 

Reads & Reads & Reads & 
Utility Writes writes Writes writes Writes writes 

Memory Mgr. 0.0 65.4 13.0 28.4 0.33 0.85 
Task Force Mgr. 0.0 71.5 10.7 24.3 0.03 0.08 
File System 0.0 63.9 11.6 27.4 0.53 2.90 

* Exception Mgr. 

79 . 

Total 

26.0 

42.7 

Fraction 
of memo 

shared 
between 

0.20 
0.15 
0.27 
0.13 

* Measurements for the Exception Manager and MACE have been excluded because they do not operate in 
the normal case and thus have little effect on performance. Values for shared data include only references 
to utility-owned objects, not to objects passed as parameters. 

• Corruption of a shared object may disable all the activities of a utility. If the 
utility is invoked during error recovery, deadlock occurs. 

• If a private, unshared object is corrupted, deadlock can result if the activity 
whose memory was damaged is invoked during the course of recovery. 

• At any time, several activities that have made calls to a utility may be blocked, 
waiting for the utility to return. These activities may have objects locked. If 
recovery requires use of these objects, deadlock occurs. 

The first case is handled using shadows or standby objects, depending on· 
whether a slightly out-of-date version of the damaged object will suffice for recovery 
purposes. Using standby objects costs less but cannot always allow successful 
recovery. In either case, the Exception Manager copies the descriptor for the co­
object into the SPL so that the (presumably) undamaged copy of the object is w~ed 
during recovery. 

Another approach is needed in the case of a damaged private object, as privqte 
objects are not replicated. The activities of all utilities are divided into two or more 
groups, with each group including at least one activity from each utility. (Recall that 
every utility activity is capable of providing all the services of the utility.) As shown in 



80 

Figure 5-7 

5.4. Exceptions 

II. Operating Systems 

The Cross-Utility Communication Structure 

Utility 

Utility 

Utility 

Utility 

Figure 5-7, calls to util.ities other than the Exception Manager are generally directed 
within the group (e.g'~, Memory Manager activity 1 calls Task Force Manager ac­
tivity 1). A call to the Exception Manager is always directed to the next higher group 
(or to group 1, if it emanates from the highest-numbered group). Consequently, a 
sequence of utility calls beginning at the Exception Manager will steer clear of the 
damaged activity. 

Neither of the strategies just described will take care of a situation where 
recovery must use an object that is undamaged but is locked by an activity that 
remains blocked while recovery is in progress. In this case, one solution is to prohibit 
additional utility calls for the duration of recovery and then to abort and restart all 
calls affected by the error. MEDUSA uses a heuristic approach: It simply waits a while 
to give calls that are not affected by the error a chance to complete. This is called 
the closed-system recovery prelude and is invoked whenever recovery requires the 
use of other utilities. It allows most blocked calls to finish, provided that they are 
blocked for reasons unrelated to the damage. Any calls that remain blocked are then 
aborted. This means that an unusually long but undamaged call is occasionally 
aborted, but this is a small price to pay because the call can be retried anyway. 
Once active computations have been flushed, calls during recovery can acquire 
locks without risking deadlock. 

An exception is an unusual occurrence during program execution that mayor may 
not be an error. (A more formal treatment may be found in [Levin 77].) The detection 
of an exception raises two questions: Who should be told about it, and what should 
be done about it? The first question leads to a consideration of exception reporting, 
the second, to a discussion of exception handling. Three issues are raised: the 
detection, reporting, and handling of exceptions. Each will be examined in turn. 



5.4. 1. Detection 

5.4.2. Reporting 

5. MEDUSA 81 

Both the microcode and software of MEDUSA have well-developed strategies for 
detecting exceptions. Approximately one-tenth ot the microinstructions are devoted 
to consistency checks. Common portions of exception-handling code have been 
structured as in-line procedures to limit the amount of microcode that needs to be 
tested. 

A microcode exception may be detected by either a master or a slave context. If it 
is detected by a slave, and the slave is unable to handle it, it releases its resources 
and reports back to its master, which in turn reports the error to the invoking activity. 
If an exceptional condition occurs that cannot be handled by a master, the master 
aborts any slave acting on its behalf and reports the error to the invoker. The master 
thus serves as a clearinghouse for reporting exceptions to the invoker. Many excep­
tions detected by microcode-in addition to those detected by software-are 
handled in software because the limited memory of the control store is best devoted 
to operations that will be invoked frequently. 

The utilities also contain several mechanisms for error detection. Transaction 
identifiers (Section 5.3) are a case in point, as are the block labels used by the File 
System. Whenever a disk block is read in, the label is checked against the expected 
value, as determined by the directory structure. Finally, backpointers (Section 5.1.1) 
are checked against descriptors whenever the Memory Manager accesses its al­
location tables. 

Consider what happens when the hardware detects a parity error in a memory page. 
Obviously, the activity that was executing should be notified. But it is also prudent to 
notify other activities that hold descriptors for the failing page so that they may 
defend themselves, perhaps by attempting to load a new copy before continuing 
execution. MEDUSA uses the terms internal report to refer to the notification of the 
activity (known as the victim) whose explicit action uncovered the exception and 
external report for the notification of other affected activities. An internal report is 
always made; an external report is made only if the error affected a shared abstrac­
tion. Internal reports may be made either in-line or out-of-line, as detailed below. 
External reports also can be divided into two categories-buddy reports and parent 
reports-on the basis of where they are directed. 

Internal Reports. If an internal report is made in-line, no special action is taken. 
Information about the exception is written into the victim's ACB, but the victim's 
execution state is not affected, so the victim may continue execution as though the 
exception had not occurred. Consequently, it is the activity's responsibility to check 
(in-line) for an occurrence of the exception. In-line handlers are employed primarily 
by the Exception Manager itself, which cannot be allowed to generate exceptions 
that it must report itself. 

Out-ot-line reports are designed to implement the exception-handling constructs 



82 II. Operating Systems 

provided by most modern high-level languages. The activity provides the address of 
the exception handler to the Exception Manager in advance. When an exception is 
detected, the Exception Manager simulates an interrupt and causes the activity to 
continue execution at the handler's start address. 

External Reports. As noted above, an internal report is made for every exception. 
Sometimes it is possible for the victim to recover from an exception by itself, but at 
other times, the assistance of another activity is needed. In this case, an external 
report is the vehicle for notifying the other activity, which may be either a buddy or a 
parent, as explained below. To deliver an external report, it is not sufficient simply to 
interrupt the other activity; information about the exception also must be conveyed. 
Besides, another report might arrive while the first one is being handled; generating 
another "interrupt" would impose a last-come first-served discipline, whereas FCFS 
service would be fairer and immune to starvation. 

MEDUSA'S approach is to queue up external reports in flagboxes. Each activity 
has a flagbox; each external report in a flagbox is called a flag. When the Exception 
Manager delivers a flag, it interrupts the flagbox's owner, which then runs its flagbox 
interrupt handler, performing whatever recovery action is appropriate. If the handler 
is already running when the report arrives, the report is merely placed in the flagbox 
without interrupting the activity. If the flag box is nonempty when the handler finishes, 
the activity is reinterrupted. 

Flagboxes are used to report two kinds of exceptions, known as object 
excepti~ns and buddy exceptions. An object exception notifies an activity of an 
error in a shared object. A buddy exception is used to make a buddy report, which 
requests that an exception be handled by another activity in the same task force as 
the victim. This activity is called a buddy. 

An activity may designate a buddy to handle specific exceptions for it. The buddy 
must be reasonably independent of the victim so that it is unlikely to encounter the 
same exception. The buddy must also be sufficiently knowledgeable about the victim 
to take intelligent action on its behalf. For example, the corruption of one of an 
activity's code pages is an exception from which it might be difficult for an activity to 
recover, since its recovery code could be affected. Another identical activity, 
however, would have no difficulty copying one of its code pages into the address 
space of the victim. To do this, it must have access to the victim's POL. When a 
buddy handler is invoked, the microcode gives it access to the POL of the victim; this 
descriptor list is known to the buddy as the buddy descriptor list, or BOL (Figure 
5-8). After handling the exception, the buddy invokes the Exception Manager, which 
continues the victim and invalidates the BOL. 

The last kind of external report is known as a parent report. When a task force 
does not provide a handler for a particular exception, an event describing the excep­
tion is entered in the activity's task-force control block. It becomes the responsibility 
of some activity with a descriptor for the TFCB (called the parent) to handle the 
exception. Because the parent activity usually lacks detailed knowledge of the 
functioning of its children, it may be limited to generic actions, such as aborting a 
child or restarting it. The extensive privileges available via the TFCB descriptor, 
however, permit parent reporting to be exploited profitably by a debugger. 



Figure 5-8 

5.4.3. Handling 

5. MEDUSA 83 

The Buddy Mechanism for Reporting and Handling Exceptions 

MEDUSA differentiates between coarse- and fine-grain exception handling. A fine­
grain exception handler provides recovery from a small set of closely related errors. 
A coarse-grain exception handler is invoked when a fine-grain handler fails or when 
none exists for a particular exception. A particular coroutine, activity, or microcode 
subsystem may have several fine-grain handlers, but it has only a single coarse­
grain handler. The coarse-grain handler may have to "unwind" and retry a much 
larger amount of computation than a successful fine-grain handler. To simplify the 
coding of coarse-grain handlers, a closed-system recovery prelude is performed 
whenever one is invoked. 

For example, the utility activity coarse-grain handler [Sindhu 84] is located in the 
exception manager. It uses the redundant information in the victim's buddy to restore 
the state of the computation. It assumes that any part of the victim might be 
damaged and therefore checks all its memory. Its execution is divided into four 
stages: 

Phase I: Structure. Checks whether the victim contains the same number and 
type of objects as its buddy and whether those objects are structurally consis­
tent. If there are discrepancies, it performs repairs. 

Phase II: Private information. Compares the victim's private objects with the 
buddy's to make sure the information is intact. Corrects any errors. 

Phase III: Shared information. Compares the shared objects with their co-objects 
and corrects any differences. 

Phase IV: Execution state. Restarts the victim by resetting its execution state to 
a default initial value. 

If any of these steps fails, the buddy aborts the victim and clones itself to create a 
new utility activity. 

Since recovery often requires partially completed operations to be abandoned 



84 

5.5. Coscheduling 

II. Operating Systems 

and restarted, a key question is how computation can be undone. One method is to 
include code in each activity that "backs up" its state at convenient intervals. This 
approach is quite complicated in the case of utilities because a utility may execute 
concurrently with other utilities that it has called (see the last paragraph of Section 
5.3.1). A better approach is to provide a centralized facility for undoing the effect of 
writes and completed cross-utility calls. Such a system has been designed (but not 
implemented) for MEDUSA.3 It divides utility operations into execute and commit 
phases and has much in common with the two-phase commit protocols used in 
distributed databases. The performance degradation imposed on utility calls by this 
protocol was estimated by Sindhu [Sindhu 84] as 20 to 28 percent, depending on 
whether the invocation made any cross-utility calls. 

MEDUSA'S efforts at optimizing message operations have been aimed at making it 
possible for activities to interact with each other rapidly. Yet the best the message 
system can do is to ensure that an activity is not thrown off a processor prematurely. 
Another mechanism is needed to make sure that the activity has been scheduled on 
a processor in the first place. This is not a problem if processors outnumber activities 
in the system, but if there are not enough processors to schedule every runnable 
activity, the scheduler must pick and choose judiciously so that processes that are 
likely to interact can do so with a minimum of delay. 

Consider, for example, a task force that solves partial differential equations by 
dividing up the grid among several activities (see Section A.1). Suppose that 
synchronization is required on every iteration. If even one of these activities is 
descheduled while the rest are scheduled, all the other activities will have to wait for 
it. This slows down the task force tremendously and may even cause the other 
activities to lose their processors. 

We can define the activity working set analogously to a working set of 
pages-as the minimum number of activities that must be coscheduled (scheduled 
simultaneously) on processors for the task force to make acceptable progress. In 
this example, all the activities that participate in solving the equation are members of 
the activity working set. The master process (see Figure 4-1), and any processes 
that communicate with terminals or other peripherals, probably are not members. 
Similarly, activity thrashing occurs when the scheduling of processes whose ser­
vices are required induces the descheduling of other processes whose services will 
soon be needed. 

Since the task force is the basic group of cooperating processes, we made it the 
unit of coscheduling. Consequently, when a task force is coscheduled, all its ac­
tivities must be assigned to processors. There is less flexibility in processor assign­
ment than in page assignment, however, because each process must be scheduled 
on the Cm where its code resides, while a page may be placed in any page frame. 
Thus working-set results cannot automatically be translated to statements about 

3 It is too involved to be described here; the details may be found in [Sindhu 84]. 



5.6. Summary 

5. MEDUSA 85 

coscheduling. Investigation of new algorithms is necessary. Ousterhout [Ousterhout 
80, Ousterhout 82] studied three such algorithms by simulation. 

An ideal coscheduling algorithm would not require processors to fritter away time 
on activities of task forces not currently coscheduled. In other words, the ideal 
algorithm would always be able to run coscheduled activities on each processor that 
had runnable (non blocked activities). The ideal would be achievable in a system 
with, say, 50 processors where each task force consisted of 25 activities. Unfor­
tunately, the ideal is not attainable in a piactical system, where task iorces consist of 
differing numbers of activities. The most effective of the three coscheduling al­
gorithms, the undivided algorithm, usually managed to keep 60 to 70 percent of its 
processors busy running coscheduled activities, even under conditions of high sys­
tem load. It is adversely affected, however, by increasing system load and increas­
ing task-force size, relative to the number of processors. Performance is less sen­
sitive to the frequency with which processes are blocked, but the best results still are 
obtained when most processes are runnable. A complete description of the al­
gorithms and results is presented in Appendix B. 

In its structure, the MEDUSA operating system reflects the distributed architecture of 
em*. MEDUSA consists of two major components: the kernel, which includes both 
Kmap microcode and lSI-11 software, and the utilities, which have special privileges 
and deliver specific operating-system services. The kernel is responsible for interrupt 
handling, managing and amplifying descriptors, and interprocess synchronization 
and communication. The kernel addresses several issues encountered in object­
oriented parallel operating systems, such as sharing and protection of objects, 
coherence of shared descriptor caches, and starvation and deadlock over shared 
resources (e.g., Kmap contexts). 

The five MEDUSA utilities are each structured as a task force: 

1. The functions of the Memory Manager include allocating and deallocating 
primary memory, maintaining descriptor lists, and manipulating page, pipe, 
and semaphore objects with the aid of the Kmap microcode. 

2. The File System is functionally similar to the Unix file system with somewhat 
extended capabilities. 

3. Among the Task Force Manager functions are creation, scheduling, and dele­
tion of task forces. 

4. Whenever an exceptional condition arises at any level of hardware, firmware 
or utility, the Exception Manager is invoked to decide where and when to 
report the abnormal condition. The other function of the Exception Manager is 
to attempt recovery from the exception. 

5. The MACE debugging and measuring utility consists of a single activity running 

on a dedicated em. 

Aside from performance and correctness concerns, an operating system for a 



86 II. Operating Systems 

parallel processor also should address the issue of robustness. An experimental 
version of MEDUSA attempted to determine the weak points in the reliability of the 
operating system and to modify the system to increase robustness. Many such 
modifications were implemented, and their cost was estimated. All utilities are repli­
cated, and co-objects are maintained to provide extra copies of critical code and 
data. There are two types of co-objects-shadows and standby objects. The 
shadow is a "hot" copy of the object, continuously updated; the standby is a copy of 
the object made at some earlier time. The overhead for shadowing has been 
measured at no more than 2 percent. 

The robustness of MEDUSA is enhanced by another type of redundancy known as 
a buddy activity. When a "victim" activity encounters an exception, its structurally 
identical buddy is capable of handling the exception. After an exception has been 
detected and isolated, a recovery process should take place. Write operations may 
have to be undone to bring the system to a consistent state. The experimental 
design divided utility operations into execute and commit phases and provided a 
centralized facility for undoing the effect of writes. The predicted performance 
degradation was between 20 and 29 percent. 

From the perspective of five years of experience with MEDUSA, the following 
observations can be made: 

• MEDUSA was the more popular of the two operating systems with novice users 
because fewer concepts had to be learned than in the case of STAROS. 

• The division of a distributed system into a small kernel and utilities was a 
pioneering effort in the development of parallel operating systems and local 
area networks. 

• Other features, such as object orientation and robustness techniques, even if 
not yet incorporated into other systems, have a great potential for the future 
development of operating systems. 

The next chapter will present the STAROS operating system and show how it 
exploits the Cm* hardware in a different manner than MEDUSA. 



6. STAROS 

A familiarity with the MEDUSA operating system and its relation to Cm* is a good 
foundation for discussing STAROS, since it presents abstractions that are a level 
above those found in MEDUSA. To give the reader a good feel for the similarities and 
differences between the two systems, our description of STAROS wi!! close!y paralle! 
the discussion of MEDUSA in Chapter 5, although the emphasis will vary slightly, 
reflecting the most interesting and highly developed aspects of the design. 

The STAROS operating system is composed of two levels-the Nucleus and 
user-level software, which consists entirely of STAROS modules. These modules 
provide many operating-system services that, in MEDUSA, are provided by utilities. It 
is a testimony to the flexibility of protection in STAROS that most of the operating 
system requires no greater privileges than user software. 

The Nucleus is composed of the Kmap microcode, together with some additional 
software. like the MEDUSA kernel, a separate copy of the software Nucleus resides 
on each Cm. The whole Nucleus amounts to fewer than 12K bytes. It fits in three 
4K-byte pages, one of which is used only for I/O. The microcode comprises 2,200 
eighty-bit instructions. Nucleus functions have been implemented in microcode if 
they inherently involve multiple Cm's or if they need to be especially fast. Mapped 
memory references and capability operations are examples. Functions that have 
neither of these characteristics are performed by Nucleus software. 

A STAROS module is a static entity from which dynamic processes may be 
created, or instantiated. Like an Ada package, the module exports a certain number 
of functions to the outside world; each time a function is invoked, it is executed by 
one of the processes instantiated by the module. STAROS modules usually com­
municate via messages, but the generality of capability addressing enables memory 
to be shared among any number of processes, whether they belong to the same 
module or not. 

The first two sections of this chapter focus on the STAROS Nucleus. Section 6.1 
describes objects, repositories for all information in the system, and the capabilities 
that are used to reference them. Section 6.2 relates the philosophy and mechanics 
of the STAROS message system. Sections 6.3 and 6.4 concentrate on STAROS 
modules. Section 6.3 introduces modules and the functions they provide. It explains 
when processes are created at a function call. Section 6.4 introduces the STAROS 
facilities for error detection. Section 6.5 describes scheduling in STAROS, which 
follows the principle of policy / mechanism separation. In STAROS, storage is 
reclaimed by garbage collection; Sections 6.6 and 6.7 explore how this is ac­
complished and how much it costs. 

87 



88 II. Operating Systems 

6.1. Facilities Provided by the Nucleus 

6.1.1. Objects 

The STAROS Nucleus is implemented partially in Kmap microcode and partially in 
LSI-11 software. Two classes of functions have been placed in the Kmap microcode: 

Functions that the architecture forces to be there. References by the LSI-11 s to 
non local memory and other aspects of interprocessor communication must 
necessarily be performed by the Kmaps because the only data paths between 
LSI-11s go through one or more Kmaps. 

Functions that must be performed efficiently. Capability operations and the 
operations on certain object types, such as stacks and deques, fall into this 
class. Implementing a function in microcode often will speed it up by a factor 
of 10 to 20, though precise comparisons are difficult to make because of the 
dissimilarity of the instruction sets of the LSI-11 and the Kmap. 

Two other classes of functions have been placed in the Nucleus software, which 
is replicated in each Cm: 

Functions that involve management of the processor resource. Trap and inter­
rupt handling must be performed by software because the Kmap cannot ac­
cess all of the processor state necessary to perform these functions. For the 
same reason, any operation that requires stopping one process and starting 
another requires activity by the Nucleus software. 

Functions that operate on the executing process. Process operations such as 
Block and Terminate change the state of the executing process. The result 
of these functions may determine whether the process should continue to run. 
These functions can be performed expeditiously by the Nucleus process as­
signed to the same processor. 

Our examination of the Nucleus begins with the microcoded portion, which is 
largely concerned with providing the abstractions required by the object model. 

Objects are the basic building blocks of STAROS. Each set of information in 
memory-whether it is a code segment, an array, a mailbox, a list of capabilities, or 
something else-is contained within some object. Each object has a speCific set of 
functions that can be applied to it, and every action performed by STAROS is the 
application of some function to an object. 

For example, the action of reading and writing words in an ordinary data array 
consists of applying the Read and Write instructions to a basic object that contains 
the array. Sending a message to a process is accomplished by applying the Send 
instruction to some mailbox. A process is temporarily stopped from executing when it 
performs a Block instruction on its process object. 

In STAROS, the only way to refer to an object is by using a capability. Certain 



Figure 6-1 

6. STAROS 89 

STAROS functions take as an argument a capability for the object; others require 
both a capability and an offset into the object. For example, sending a message 
takes a capability for the mailbox but does not require an offset into the mailbox. 
Reading or writing a word of a basic object demands a (capability, offset) pair. An 
ordinary 16-bit address generated by an LSI-11 implicitly references a capability by 
naming a window number (see Section 4.2). Further, each capability contains an 
object name. In fact, for many purposes, we think of the capability as being the 
"hi"",..+ ... "' ..... "" VLlJv,"" I IQIII'V. 

A STAROS object occupies a contiguous block of memory. The size of an object is 
fixed at its creation; objects can neither grow nor shrink. Figure 6-1 depicts an ob­
ject. Notice that it consists of a data portion followed in memory by a capability 
portion, which is sometimes called a C-list or a capability list. Either of these portions 
may be nUll, but not both. The data portion is treated as a vector of bytes. The first 4 
bits of a processor-generated address name a window, and the remaining 12 bits 
specify the offset into the data portion. 

The capability portion is treated as a vector of two-word capability slots. A 
capability is selected by its slot number; the first slot in a capability portion is slot O. 
All references to capabilities are performed entirely by microcoded STAROS instruc­
tions. Ordinary LSI-11 instructions are prevented from reading or writing the 
capability portion in the following way. The descriptor (Section 4.2) for an object 
contains: the base address of the object, the length of the data portion of the object, 
and the number of capabilities in its capability portion. The Kmap relocates each 
mapped data reference relative to the base address and compares its offset to the 
length of the data portion. References with offsets greater than the size of the data 
portion are disallowed. Unmapped references need not be performed by the Kmap; 
with only a 12-bit offset, it is impossible to address past the end of the data portion. 
As a result, data references are never able to manipulate capabilities; thus 
capabilities are protected from being overwritten by software. 

STAROS objects come in both representation and abstract varieties. The instruc­
tions that apply to representation objects are provided by the STAROS Nucleus. The 
most frequent ones, such as reading or copying capabilities and almost all message 
instructions, are implemented in microcode. Some of the more complicated instruc-

The Structure of an Object 

data 
words 

~~~::~ 1-------4 1 
Data Portion

capability
slots

Capability
Portion

90 II. Operating Systems

tions, such as blocking or preempting a process, are performed by Nucleus
software. Abstract objects, on the other hand, are implemented by (user-level)
STAROS modules.

STAROS defines 12 representation object types. Among these are basic objects,
deque objects, data and capability mailboxes, module objects, process objects, and
directories. The data portion of basic objects behaves just like an ordinary segment
in a virtual-memory system, which means that bytes and words can be read and
written in the ordinary way by machine instructions, provided that the segment
bounds are not violated. Similarly, a capability Copy or Transfer directed to the C­
list of a basic object simply copies or moves a capability between the designated
slots.

A basic object also can be used for synchronizing multiple processes through the
Indivisible Increment and Indivisible Decrement instructions. These instructions
prevent a second process from accessing a particular word within the data part
between the time the first process reads it and writes its new value. 1 If a Decrement
is attempted on a word whose value is already 0, the word will not be decremented.
Decrement returns the old value of the word to its caller, which may then decide
whether to block.

A basic object can have up to 4K bytes (2K words) in its data portion and 256
slots in its capability portion. It is most efficient to access a basic object with a
4K-byte data part because the Siocal performs address relocation without involving
the Kmap (see Section 4.2). This makes it possible for a memory reference to be
completed in about 3 fJ.s., rather than the 8.6 fJ.s. that would be needed if the Kmap
intervened.

Among their many uses, basic objects serve as code segments, data segments,
and carriers. They are also used to hold the process stack for an active process.

Like basic objects, deque objects have an uninterpreted capability portion. Unlike
basic objects, read and write references to their data portion are interpreted as
deque instructions-pushes and pops from both the front and the rear of the deque.
A deque instruction pushes or pops a one-word item. These instructions automati­
cally update the front and rear pointers, which are stored in the data portion of the
deque. The capability portion has no special semantics and may be used exactly like
the capability portion of a basic Object. Timings of operations on deques and other
representation object types are presented in Section 7.3.

Mailbox objects possess numerous similarities to deques in structure and
semantics. Two of the major differences are that mailboxes implement a queue of
messages-only operations that correspond to Push Front and Pop Rear on a
deque are defined for mailboxes-and that special handling is performed when a
process attempts to remove a message from an empty mailbox.

A STAROS mailbox buffers capabilities or one-word data messages, depending
on whether it is a data mailbox or a capability mailbox. Instead of sending a mul­
tiword message, as in MEDUSA, a process typically creates a basic object in which it
then stores the message and buffers in the mailbox a capability for the message.

1 Actually, the implementation is to lock the descriptor for the object, which prevents any other process from
accessing the object in the interim.

6. STAROS 91

When a mailbox is empty and receivers are queued waiting for messages, the
mailbox is said to be in registration mode. A capability for the process object of each
waiting receiver is queued in the capability portion of the mailbox, and an integer
called a portal number (which indicates where in the process's address space the
message is to be delivered) is recorded in the data portion of the mailbox.

In structure, a module object is much like a basic object - exactly the same
instructions are defined on it. Many of its data words and capability slots are,
however, reserved for particular uses, such as information on how to create
processes to run functions of the module and pointers to the process objects of
processes that have already been instantiated from the module. It also may contain
capabilities for data structures that are shared among all processes executing func­
tions of the module.

A process object is the root of the object graph of a STAROS process. This
means that any object that is accessible to the process can be reached by beginning
at the process object and following some chain of capabilities.

A capability itself does not directly point to the object it names. Instead, it indirects
(points indirectly) through a descriptor, which contains the physical address of the
object. This makes it easy to move an object without the need for the backpointers
used in MEDUSA. Descriptors reside in directories, which are a representation object
type. There is one directory in each cluster. Since an object's name includes its
cluster number, it is not possible to move objects between clusters in STAROS
(although this can be done in MEDUSA).

6.1.2. Capabilities: Structure and Uses

Figure 6-2

Capabilities in STAROS are 32 bits long-two 16-bit words, known respectively as
the rights word and the data word (see Figure 6-2). The rights word contains a 3-bit
capability type field and up to 13 bits that can be used to specify what rights the
holder of the capability has to manipulate the capability and the object it names. The
data word usually contains the object name.

The rights in a capability are represented by a bit vector. If a particular bit is on, it
means that the corresponding right is present; if it is off, the corresponding right is
absent. For example, there are nine rights associated with a capability for a basic
object:

The Structure of a Capability

Rights Word Data Word

Gapa. Rights
Object Name (in rep. & abstract capas.)

Token Value (in token capas.)
Type (bit vector)

Data (in data capas.)

92 II. Operating Systems

Destroy is required to destroy the object.
Copy is needed to make a copy of the capability.
Restrict is required to remove rights from the capability.
Read and Write grant the power to read and write the data portion of the object.
C-list Read and C-/ist Write apply to the capability portion of the object.
C-list Restrict is needed to remove rights from the capabilities in the capability

portion of the basic object.
Modify, in addition to the rights that authorize the specific operation, is required

by any operation that modifies the representation of the object in any way.

Each time an operation authorized by a particular right is invoked on an object, the
Kmap checks to make sure that the capability for that object contains that right;
otherwise the operation is aborted.

The 3-bit type field determines the type of the capability. We will consider four
types. Representation capabilities are used to access representation-type objects. If
the proper rights are present in a representation capability, a process with the
capability can access or change the state (Le., the contents) of the named object. An
abstract capability names an object that has been assigned an abstract type. An
abstract capability authorizes no access to the state of the object but may be used
as a parameter to a function of the type manager for the abstract type.

Two types of capabilities do not name unique objects. A data capability is an ex­
pedient that avoids the need to create one-word objects. Its data word contains an
arbitrary 16-bit value instead of an object name. If a process desires to share a sma"
amount of data----one word or less-with another process, instead of placing the
data in a one-word object, it can request creation of a data capability to encapsulate
the data. A token capability, also known simply as a token, is a special kind of
capability whose purpose is to identify its holder as possessing some special type of
authority.

One important use of token capabilities is as type tokens, which play an important
role in amplification, as described in the next section. There are also other cases in
which a process must identify itself in order to carry out a privileged operation. For
example, the Garbage Col/ector must be able to read the capability portion of a" ob­
jects so that it can determine which objects are garbage. For this purpose, it has the
garbage-col/ector token, which it presents to the Kmap in lieu of a capability for
each object whose capability portion it wishes to read. The Kmap itself has a copy of
this token, which it compares with the token presented by the Garbage Col/ector. If
the tokens match, the Kmap allows the Garbage Col/ector to read capability lists.
Since no other process has a copy of the garbage-collector token, no other process
can subvert protection by masquerading as the Garbage Col/ector.

Similarly, each time the Object Manager creates a new object, it must be able to
manufacture a capability for that object. This means that it must be able to specify
the bit representation of the first capability for the new object. The Object Manager
possesses the create token, which it presents to the Kmap for authorization to in­
voke the function that fabricates a new capability from any specified bit string.

Table 6-1

6.1.3. Amplification

6. STAROS 93

Creating and Using an Abstract Object

To create an abstract type:

• Type manager creates type token.

To create an abstract object:

• Type manager creates representation object
• Type manager deamplifies capability.
• Type manager passes capability back to the client process.

To manipulate an abstract object:

• Client process passes capability for object to type manager.
• Type manager amplifies capability.
• Type manager operates on object.
• Type manager deamplifies capability and passes it back to client process.

Abstract-type objects are managed-that is, created, operated on, and perhaps
eventually destroyed-by a type manager (Table 6-1). Type manager is the collec­
tive name for the set of procedures that perform functions on an abstract object.
These functions usually will comprise one STAROS module, but they also may be
distributed among several different modules. Processes performing these functions
are identified as belonging to the type manager by the fact that they possess a copy
of the type token for the particular type. One of the type-manager modules must in­
voke a Create Capability instruction to create the type token before any abstract
objects of that type can be created.

After the type token has been created, it can be copied just like any other
capability. If other modules are to be part of the type manager, they will be given
copies of the type token. Otherwise, the type manager guards its type token
jealously, since it does not want to let untrustworthy processes scribble on objects of
its new abstract type.

Creating an abstract object consists of creating a representation object and then
making it abstract. The representation object is created by the type manager itself,
upon the request of some other process, called the client. An object is made
abstract by requesting the Kmap to write the abstract-type field in the descriptor,
passing both the type token and a capability for the object that is to be made
abstract.

Once an object has been made abstract, an abstract capability can be passed
back to the client process. The type manager already possesses a representation

94

6.2. Messages

II. Operating Systems

capability for the object. It uses the Deamplify instruction to make this capability
abstract (which consists merely of changing the value in the type field of the
capability from "representation" to "abstract"). Then it returns the abstract capability
to the client process.

The client process is now unable to perform any representation operations on its
new abstract object. All the microcode functions that perform these instructions
(reading values from basic objects, sending messages to mailboxes, and so forth)
work only when they are passed a representation capability. The only thing that the
client process may do with the abstract capability is pass it to the type manager as
an argument to one of the type manager's functions. Moreover, the mere possession
of an abstract capability does not confer the right to invoke all the type manager's
functions. The rights field in an abstract capability includes rights that confer the
ability to perform each function. A function may be invoked only if the capability
contains the proper rights.

When the client process desires something else to be done to its abstract object,
it passes a capability for it to the type manager. The type manager first converts it to
a representation capability using the Amplify instruction. Since amplification re­
quires a type token as one of its arguments, only the type manager is able to
Amplify the capability. Amplification returns a fully privileged capability for the
representation object-a capability that allows any instruction that is defined on the
representation object to be performed.2 The type manager may now perform its
function on the abstract object, using functions on its representation.

STAROS messages provide a powerful interprocess communication mechanism.
One process may have access to an effectively unlimited number of mailboxes;
multiple senders and receivers may simultaneously have access to each mailbox.
Using a capability message, one process can send arbitrary amounts of information,
as well as an arbitrarily structured graph of objects. A received capability is sufficient
to allow the receiver the ability to access any object within an arbitrary graph struc­
ture of objects.

In Section 6.1.1, it was noted that there were two different types of mailboxes,
data and capability mailboxes. The same applies to messages. Data mailboxes can
hold (or "buffer") only data messages; capability mailboxes can hold only capability
messages.

6.2. 1. Send and Receive

There are two different message instructions: Send a message to a mailbox, and
Receive a message from a mailbox. There are two different varieties of Receive:
Conditional Receive and Registered Receive. If there is a message in the mailbox

2 This is in contrast to HYDRA [Wulf et al. 81J. in which amplification uses an amplification temo/ate. which
only turns on certain rights in the representation object.

6. STAROS 95

when either kind of Receive is performed, then that message is received (into a
portal, as described in the next section). The two instructions differ when there is no
message to be received. In that case, Conditional Receive merely returns with a
code indicating that no message was received, but Registered Receive also causes
the receiver to be "registered" in the mailbox.

When a process that wants to perform a Receive is registered, a capability for its
process object is placed in the capability portion of the mailbox. Registered receivers
are, in fact, queued in the mailbox, so that, if more than one process has attempted
to do a Regisiered Receive, the first process will receive the first message that
arrives, the next process will receive the next message, and so forth. When all the
registered receivers have received messages and have been dequeued, the mailbox
returns to buffering mode. Future messages may arrive before any process has tried
to receive them. They will be buffered in- the mailbox and wait there for the first
receiver.

Now the semantics of Send should be obvious:

• If there are no registered receivers waiting in the mailbox, the Send function
will buffer the message in the mailbox .

• If registered receivers do exist, the oldest registered receiver is dequeued
from the mailbox, and the message is delivered directly to that process without
being buffered in the mailbox. This is called Portal Delivery .

The Send instruction fails if the mailbox is full of messages. (In STAROS, unlike
MEDusA-see Section S.2-the sender cannot be suspended, awaiting room to
leave the message.) The Registered Receive instruction also can fail if there is no
space left in the mailbox to register another receiver. Thus there are three possible
outcomes to a Registered Receive instruction: message received, receiver regis­
tered, or mailbox full of registrants. The result returned by Registered Receive
indicates which has occurred.

When a message is received, it comes out of the mailbox and has to go some­
where. Its destination is determined by a portal, which is an ordered set consisting of
these three items: a mailbox, an event (optional), and a location in the address
space of the receiving process, called the porta/location.

In STAROS (unlike MEDUSA), a process is never blocked automatically. If it has
performed a Registered Receive and no message is buffered, it may decide
whether or not to block until the message arrives. If it decides to block, it blocks on
the event associated with the portal. Then, when a message arrives, the event is
set, causing the process to be awakened. Alternatively, if the process has decided
not to block, it will test the event from time to time to find out whether the message
has arrived. The argument to block is in fact a bit vector, which allows more than
one event to be specified (in MEDUSA, this is accomplished by Multi-Event Wait, a
special operation). This means that a process can be simultaneously blocked on the
events associated with more than one mailbox. In this way, it can wait for the first
message to arrive in any of a set of mailboxes.

96

Figure 6-3

6.2.2. Portal Delivery

II. Operating Systems

Portal Delivery of a Message to a Registered Receiver

Address space of registered receiver

The portal is used whenever a message is actually received, either by a
Receive -registered or conditional-when there are messages buffered in the mail­
box, or by dequeueing a registered receiver when a message arrives at a mailbox
that is in registration mode. The message is taken out of the mailbox and copied into
the location named by the portal.

Although the message is always placed in the portal location, regardless of when
it is received, STAROS implements the delivery in two different ways: If a message is
already buffered when a Receive is performed, it is transferred to the portal location.
If the message arrives at a mailbox that contains registered receivers, it is trans­
ferred to the portal location by the Nucleus Portal Delivery instruction. In addition to
the delivery of the message to the portal location, Portal Delivery also sets the
event associated with the portal, if any, so that the newly unregistered process may
discover that it has been unregistered.

To illustrate Portal Delivery, consider a process that has associated a portal
location p with an event e. It then performs a Registered Receive on an empty
mailbox m. Figure 6-3 depicts what happens when, eventually, a message is sent to
m. It will not be buffered in the mailbox but will be delivered directly into p, and e will
be set. The process mayor may not have blocked waiting for the message. If it did,
it may now resume processing.

6.3. Modules and Functions

All user programs in STAROS are made up of modules. Each module exports one or
more functions, which ideally are closely related. Each process is created to perform
a specific function; it executes the code for that function. In summary, functions are
components of modules, and processes are the instantiation of functions.

A programmer creates logically separate sets of programs. Logical separation
means that one set of programs depends only on the specifications-the externally
known behavior-of each other set and not on its implementation. In STAROS, each
such set of programs is called a module. The partitioning of programs into modules
creates a set of boundaries. Programs in one module that want to make use of

Figure 6-4

6. STAROS

A Process Set

Module
Object

o
~ {(I Data

portion

capability {
portion

Process Set

Lock

State

Process B Total # of processes

Process Count[O] I
Process Count[1]

Process A
~---,

~ §J
Process Count[n]

Current Process

Process List[O] f------'

Process List[1] rh
-= ProcessC

Process List[n] ~
~

-=

97

programs in another module must do so by means of the Invoke instruction, al­
though programs within the same module can call each other by any means, includ­
ing simple routine calls.

The organization of a module is defined by a particular kind of basic object called
the module object. A STAROS module may define one or more abstract types; its
functions are the set of operations defined on the type. The initialization function of
the module, for example, might create a new abstract type by creating a new type
token and storing it in the module object for later use (e.g., for making a newly
created object abstract and for amplification of a capability passed as an argument
to a function of the module).

Several processes may be created to perform one of the functions defined in the
module object. One common example is having several processes perform the
same algorithm on different parts of a large array. To keep track of these processes,
STAROS uses a process set. A process set is a basic object containing pointers to
lists of processes, one list per function defined by the module. As shown in Figure
6-4, the capability portion contains a pointer to each process list. The current
process capability is used to identify the process being inserted or removed from the
set in order to provide enough state to complete an interrupted operation.

In the data portion of the process set, a lock is provided to ensure atomic
manipulation of the process lists. The state field records the internal state of the
process set to enable the completion of an interrupted operation. The remainder of
the data portion is devoted to counts of processes that are performing each in­
dividual function, as well as to a sum of the individual counts.

98 II. Operating Systems

6.3.1. Function Invocation

A STAROS function is performed when it is invoked by some process. A function is
named by specifying both a capability for the module that contains it and the number
of the function within the module. Both these arguments are placed inside a small
basic object called a carrier. This carrier is called the invocation carrier and is the
sole argument of a Nucleus Invoke instruction.

In STAROS, some function invocations cause creation of a new process, and
some do not. When a function of a module is invoked, STAROS must determine
whether a new process must be created and to which mailbox the carrier should be
sent. If the process already exists, the Nucleus sends the carrier to a mailbox called
the "invocation mailbox." Otherwise, the Nucleus first invokes the Process Creator
to create a process to perform the desired function.

The client of a module (the process that performs Invoke) never needs to be
concerned with the details of when, where, and how invocation is accom­
plished-the carrier will be sent to some mailbox, and some process will service the
request. The details are reserved to the implementor of the module. When the
request has been serviced, the results, if any, are stored back in the carrier. The
carrier is then returned to its return mailbox. (A capability for the return mailbox is
stored in a special slot in the carrier.) Although the mechanism of function invocation
may seem complex, it does allow the implementor to preserve a particular abstrac­
tion for clients while experimenting with a wide variety of implementations.

Absent Functions. A function is either present or absent, as determined by the
value of its present / absent process field in the module object. Of the two types of
functions, the rules for invoking an absent function are the more straightforward. A
new process will always be created. The new process is linked to the module's
process set in the chain corresponding to the alias function number (see Section
6.3). When a process is created, a private mailbox is also created. It is to this
mailbox that the Nucleus sends the carrier that served as a parameter to the Invoke
instruction.

Present Functions. For many functions, it is undesirable to create a new process
upon each invocation (for example, because of the overhead of process creation).
These functions are defined as present functions. For each present function of a
module, an invocation mailbox is created when the module itself is created.
Capabilities for these mailboxes are placed in the module object. Functions are
allowed to share an invocation mailbox. When a present function is invoked, the
carrier is sent to the function's invocation mailbox. To determine whether a process
must be created, the module object is consulted. If the present / absent process field
for this function is nonzero, no new process will be created. Otherwise, a new
process is created, the present / absent process field is incremented, and the
process is linked to the module's process set.

6. STAROS 99

6.3.2. An Example: The Object Manager

6.3.3. Task Forces

Table 6-2

The Object Manager is the STAROS module whose duty is to allocate and deal­
locate memory for an object, create a descriptor for it, and create the first capability
for the object. It is invoked asynchronously using the Invoke operation of the
Nucleus. The invoking process may choose to proceed while it is waiting for the ob­
ject to be allocated, though in practice, it almost always blocks. Object management
is a cluster-local activity in that an Object Manager accepts requests only for ob­
jects in its own cluster. When an object in a remote cluster is requested, the local
Object Manager forwards the request to the Object Manager in that cluster.

The Object Manager includes other functions for memory management. All the
functions that it provides are listed in Table 6-2 (with their corresponding function
numbers).

STAROS task forces were designed to achieve three benefits: a low cost! perfor­
mance ratio, enhanced reliability, and adaptability to hardware changes. All three of
these goals can be met jf task forces are made up of a iarge number of smali
processes. The first two goals can be served by taking advantage of the available
parallelism. Improved performance results when the work is decomposed into a
large number of independently executable pieces. Reliability is also increased be­
cause a large task force can usually be structured so that no process is indis­
pensable. Thus a single failure cannot prevent the task force from successfully
finishing its work. The third goal of hardware adaptability can be realized if the task
force can grow (or shrink) with the addition (or removal) of processor and memory
resources. This is particularly easy to accomplish when the task force is composed,
in part, of duplicated processes or data.

Recall that a MEDUSA task force is composed of those activities that share a
single SOL. Capability-based STAROS allows memory to be shared in arbitrary ways;
it is not possible to characterize a task force based on the way memory is shared.
The STAROS concept of a task force is less precise than MEDUSA'S, since it does not

Functions of the Object Manager

o Deallocate Object. Deallocate objects in garbage-collector deque (see Section 6.6).

Exclude Memory. Remove a Cm's memory from the system. (Memory Manager)

2 Include Memory. Include a Cm's memory into the system (for example, at system ini­
tialization time or after a malfunctioning Cm has been fixed).

3 Allocate Object. Allocate an object.

4 Object Status. Give the type, location, and size of an object. Requires a capability for
the object.

100

6.4. Exceptions

6.5. Scheduling

II. Operating Systems

correspond to a specific run-time structure. Rather, it depends more on the
observer's viewpoint. A task force consists of those processes that are viewed as.
closely interacting. A task force may be viewed as comprising a number of related
modules, and according to this definition, STAROS itself qualifies as a task force.

STAROS'S exception-handling mechanisms are not as fully developed as MEDUSA'S,
but there are a few interesting similarities. For example, exceptions are handled by
the same process that encountered them, whenever possible. If it is not possible,
another process can be invoked to take over; this is called bailing out the process.
At creation time, a process is endowed with a default bailout function, although an
alternative bailout function can be specified if desired.

More specifically, STAROS exceptions are divided into two classes, serious
exceptions and nonserious exceptions. Serious exceptions include errors such as
out-of-bounds addressing, attempts to execute illegal instructions, and system or
hardware errors. These exceptions set a serious flag, which can be cleared by
software.

An exception handler is a routine within the same STAROS module that has
encountered the exception. Ordinarily, a handler clears the serious flag to inform
STAROS that it is capable of handling an exception. If another serious exception
occurs before the serious flag is cleared, however, the process is bailed out instead.
Unlike exception handling, bailout is performed by invoking another STAROS
process. When the microcoded Bail Out instruction is executed, the process is
stopped and the Nucleus invokes the failing process's bailout function. Like any
other STAROS function invocation, this involves sending a message to a process
executing a particular function (the bailout function) of a particular module (the
bailout module). A capability for the bailout module and the number of the bailout
function are both obtained from known locations in the process object of the failing
process. The invocation message is sent using the lifeboat carrier, a special carrier
created in advance for just this purpose.

In principle, the bailout function could repair the state of the failing process and
return control to it. In practice, recovery code like this is not as well developed as in
MEDUSA. The bailout function usually provides only detailed debugging information to
the user.

As mentioned in Section 4.1.3, the responsibility for scheduling in STAROS is divided
along policy / mechanism lines: Schedulers make the high-level policy decisions of
where processes should execute and for how long, while multiplexers implement
these decisions by selecting the next process to execute and interrupting it when its
time has expired. The schedulers decide which processes to send to the various
multiplexers. The choice of scheduling policy is up to the user, who may want to

6. STAROS 101

experiment to fine-tune his or her task force. Each Nucleus process includes a
multiplexer that implements scheduling decisions for its own processor.

One of the main functions of the multiplexer is to select the next process to ex­
ecute on a particular processor and to cause that process to begin execution. It
provides a mechanism to support policies dictated by schedulers, which are imple­
mented as user processes. The multiplexer searches a priority-ordered set of run
queues. It selects the process that has been in the first nonempty queue for the
longest time. Multiple processors can share run queues. The multiplexer allows a
round-robin (RR), FCFS, or coarse-grain priority (for example, foreground / back­
ground) discipline to be implemented with little scheduler intervention.

The multiplexer provides four functions:

Selecting the next process to run on its processor. This function is performed
when the multiplexer first starts up after bootstrapping and also after each
other operation performed by the multiplexer. It searches the active run queues
(see Section 6.5) in priority order and selects the first runnable process it
encounters.

Interrupting a process whose time slice has expired.
Reevaluating a process's runnability when it terminates or is blocked.
Preempting a process.

The basic data structure used by the multiplexer is an ordered set of run queues,
which are simply mailboxes that contain capabilities for process objects. Collectively,
these run queues are known as the search list because they are searched each time
the multiplexer needs to start up a process. They are numbered in priority order, with
run queue 0 having the highest priority and run queue n having the lowest priority
(assuming there are n + 1 run queues). The priority of a STAROS process is simply
the number of the run queue to which it is assigned. A particular run queue may be
private to a particular Cm, or it may be shared by several Cm's. A process is marked
for multiplexer service simply by sending it to a run queue. This is typically done by
the scheduler or the Process. Creator module.

The multiplexer relies on the schedulers to place processes on run queues ap­
propriately. A scheduler can alter the search list dynamically and can interrogate the
multiplexer status to observe multiplexer operation.

A STAROS scheduler may be a user process, implementing any of a variety of
scheduling policies (e.g., priority, proximity, preemption, load sharing, and group
scheduling). Each function of a module may specify several scheduling parameters
to be used for its processes. For example, it may request that a function execute on
a particular Cm or in a particular cluster. If processes within a task force communi­
cate via shared memory, it may be advantageous to locate them on the same Cm.
Even if they communicate solely via messages, it may be advantageous to locate
them within the same cluster. A function also may request that its processes run on
a Cm with a particular set of attributes, such as a large amount of memory or an

attached disk.

102 II. Operating Systems

6.6. Garbage Collection

Garbage collection in STAROS is a twofold problem: Garbage collection must run in
parallel with other processing in the system, and it must be capable of being par­
titioned by cluster. In the past few years, several designs for correct and efficient
parallel garbage-collection algorithms have appeared, notably that of Kung and
Song [Kung and Song 77a], upon which the STAROS Garbage Collector is based.
The algorithms described below are similar to those of Kung and Song, though
rephrased in Cm* and STAROS terminology. As in much garbage-collection litera­
ture, the non-garbage-collection activity in the system is referred to by the generic
term list processing. List processors and garbage collectors may execute concur­
rently.

Creation of an object in STAROS requires the allocation of an object name, a
descriptor where information about the physical representation of the object is
stored, and a block of primary memory to contain the physical representation of the
object. When an object is deallocated, its name, descriptor, and memory are made
available for other objects. Each of these resources is finite, and the system must
make provision for its reuse.

The object graph formed by objects and capabilities is a directed graph. An object
can be accessed only if there is a path of capabilities to it, beginning with some
process object. The collection of all processes forms a set of roots, a set of objects
from which there is a path to any object that can be accessed. There may be, and
indeed are, other sets of roots.

Since capabilities may be created and destroyed, it is possible that inaccessible
objects may exist. Such objects are called garbage, and the purpose of garbage
collection is to discover such objects. When a garbage object is discovered, it may
then be destroyed to make the resources used by the object available for new
objects.

The basic algorithm for identifying garbage is simple. It uses the concept of the
c%r of an object, a quantity stored in the color field of the descriptor for that object.
The garbage-collector token confers the authority to write the color field.

Some comments about the algorithm in Figure 6-5 are in order. First, the name of
a STAROS object enables the descriptor, and hence the physical representation of
the object, to be found so that the object may be searched for capabilities. Second,
the algorithm is recursive. When an object is marked black, the object is searched;
this may result in another object being marked black, which will result in further
search. Finally, the algorithm assumes the STAROS world is static: No new
capabilities or objects are created during the period when objects are marked.

The assumption that no capabilities are created during the execution of the
garbage-collection algorithm would be a serious constraint on the STAROS system. It
would effectively require that all processing stop for the duration of the garbage
collection. This would be unfortunate for a multiprocessor system whose principal
virtue is the ability to execute several independent activities concurrently. Con­
sequently, the garbage-collection algorithm has been modified to allow other system
activity, including the creation of capabilities, to execute concurrently,

Figure 6-5

6. STAROS

Basic Algorithm for Garbage Collection

mark each object white;
for each object in a set of roots do mark-black;

procedure mark-black = {
mark the object black;
for each capability in the object do

if the object named by the capability is white
then maik-black;

All objects which remain white are garbage objects.

103

Furthermore, the physical structure of Cm* suggests that the system be par­
titioned by clusters. To the extent possible, the activity within a cluster is indepen­
dent of the activity in other clusters. Performance and reliability considerations sug­
gest that the task of garbage collection be partitioned on a cluster-by-cluster basis.
Thus it is presumed that each cluster contains a Garbage Col/ector. The Kmap
within each cluster serves the role of a list processor, creating and storing the
capabilities into other objects.

In order for the Garbage Col/ectors in each cluster to operate independently, the
following rule will be observed: If a capability for an object in one cluster is ever
stored in another cluster, then that object will not be subject to garbage col/ection.
This rule partitions objects that are not shared between clusters, and therefore may
be independently collected and destroyed, from those objects that are shared, and
therefore may not be destroyed without the cooperation of other clusters.

When an object is first created, the first capability for the object is created by the
Object Manager in the same cluster as the object.3 Consequently, no object created
in one cluster can be accessed by a process within a second cluster without a
capability in the first cluster being copied or transferred from the first cluster. Be­
cause the Kmap microcode in the first cluster must participate in each such action,
the microcode implements the rule as follows: Each time a copy is made of a
capability in this cluster, for an object in this cluster, by a process in another
cluster, mark that object red. Marking an object red takes 20.1 ~s.

One other activity is required of the Kmap to allow concurrent processing with
garbage collection. If the Garbage Col/ector is marking the objects as described
above, then each time a new capability is created for an object that has not been
marked black by the Garbage Col/ector, the Garbage Col/ector must be notified.
Since the Kmap is a participant in the creation of all capabilities, the Kmap will
perform the operations indicated in Figure 6-6.

The deque is shared by the Kmap microcode, which writes it, and the Garbage

3 This capability may immediately be transferred to another cluster if the request for creation of the object
came from a process in another cluster. •

104

Figure 6-6

II. Operating Systems

Notifying the Garbage Collector of Capability Creation

whenever a capability for an object in this cluster is created in this cluster
then notify the Garbage Collector by

placing the name of the object in a shared deque.

Collector, which reads it. It is known as the garbage-collector deque. Deques con­
tain only data, not capabilities, so the garbage-collector deque contains 16-bit object
names, not capabilities. Writing an object name to the deque takes an extra 35.7 j-Ls.
beyond the time normally needed to write a capability. Because the creation of ob­
jects happens concurrently with garbage collection, each new object is marked
yel/ow to avoid confusing the Garbage Collector.

6.6.1. The Trashman Cometh

In STAROS, within a single cluster, the nucleus module object together with all red
objects constitute a set of roots.4 Object colors are defined as follows:

White
Yellow
Red

Black

No path to the object has been found.
Each newly created object is initially assigned the color yel/ow.
It may be possible to reference the object from another cluster. An ob­
ject can be red in addition to whatever other color the object may be.
For instance, an object might be both red and black.
A path to the object has been found.

There are two phases to garbage collection: marking and col/ection. The mark­
ing phase, presented in Figure 6-7, identifies garbage objects, and the collection
phase deallocates them. At the conclusion of the marking algorithm, all white objects
are garbage. The collection phase then proceeds as indicated in Figure 6-8.

6.6.2. The Red Menace

So far, there has been no provision for an object marked red ever to cease being
red. Consequently, after a period of operation, the system will become littered with
garbage red objects. To remedy this Situation, the Garbage Collectors of each
cluster will make a cooperative effort to find such garbage objects. Because this
activity need not be frequent, it is acceptable to require that all of the Garbage
Collectors execute the algorithm in Figure 6-9 concurrently. Note that since all red
objects are initially marked white, at the conclusion of this marking algorithm, only
objects in one cluster that are accessible from another cluster are red.

4 The process set of the Nucleus module object contains capabilities for all Nucleus processes, which in turn
have capabilities for all the run queues and the user processes assigned to processors. Red objects are
included in the set because other clusters may have access to them.

Figure 6·7

Figure 6·8

Figure 6·9

6. STAROS

Marking Phase of Garbage Collection

mark each object which is not red to be white.
mark the Nucleus module object black

and push its name onto the rear of the garbage-collector deque;
mark each red object black / red

and push its name onto the rear of the garbage-collector deque;

whil~ tha daqua is not empty do
pop a name j from the deque;
for each capability inj do

if the object named by the capability
is in this cluster and not black then

mark the object black;
push its name onto the de-que;

Col/ection Phase of Garbage Col/ection

Push the names of all white objects onto the garbage-col/ector deque
and Invoke the Deallocate Object function of the Object Manager

with the garbage-collector deque as parameter.

Algorithm for Red Garbage Col/ection

mark each object white.
mark each Nucleus module object black and push its name onto the deque.

until all Garbage Collectors are finished do
while the deque is not empty do

pop name of objectj from the deque;
for each object k named by a capability in the object j do

if the object named k is in another cluster then
send k to the other cluster;

else if the object k is not black then
mark the object named k black;
push k onto the deque;

for all capabilities received from other clusters do
if the named object is neither black nor red then

push the object's name onto the deque;
mark the object red.

105

106 II. Operating Systems

6.7. Performance Aspects of Garbage Collection in STAROS

In Section 6.6, the STAROS Garbage Col/ector was described as a program that
runs in parallel with other processes in the system and is capable of collecting
garbage in a single cluster or simultaneously throughout the entire system. These
two aspects of the Garbage Col/ector raise two performance-related questions:
when should garbage collection be initiated to take best advantage of idle resources
in the system? When should a local, as opposed to a cooperative systemwide,
garbage collection be initiated? Chansler [Chansler 82] has studied both these
issues in some detail.

6.7. 1. When to Col/ect Garbage

Ordinary nonconcurrent garbage collectors must decide when memory has become
sufficiently fragmented to justify a garbage collection. The STAROS Garbage
Col/ector must face this issue, too, but it also must factor into its decision the
demand for several other resources. Among the decisions it must make are these:
Should objects that could be local to a process be "mis-placed" in a remote Cm to
postpone garbage collection? Should idle processors be used to initiate a garbage
collection even before the need for garbage collection becomes apparent?

Should Objects Be Mis-placed? When memory is in short supply, the Object
Manager will be unable to create objects in some Cm's. Although each request for a
new object specifies a desired Cm, the system is free to satisfy the request by
creating an object in any Cm because the addressing mechanism is independent of
object placement. Sometimes it takes longer to access an object placed in another
Cm. If such a performance penalty ensues, the object is said to be mis-placed. An
object is mis-placed if one of the following is the case: It is a 4K-byte basic object
anywhere else but in its preferred computer module in its preferred cluster (the
Siocal can translate addresses only for 4K-byte basic objects in its local Cm); it is
any other sort of object outside its preferred cluster (intercluster references are
required to access it).

The performance penalty in these cases is at least a factor of 3 and may be as
high as 15 in the case of a STAROS 4K-byte basic object in another cluster (see
Table 3-2). Chansler developed a simple model that predicted that with a perfor­
mance penalty of 3, mis-placing objects would rarely save as much garbage­
collector execution time as it would cost. For example, if the system were able to
double the time between garbage collections by mis-placing half of all objects, the
time lost due to extra remote references would be at least 12 times as great as the
savings in garbage-collection time. The model assumes that all objects are
referenced equally often.

As severe as the model makes the costs of mis-placement appear, it probably
underestimates them. Tables 6-3 and 6-4 present some statistics on the use of
memory by two STAROS task forces-a 5-cluster configuration of the STAROS
operating system itself and a 31-slave instantiation of the PDE task force. Notice that

Table 6-3

6. STAROS 107

Objects-STAROS Initialized for Five Clusters

No. 0/0 Mean Mean Total 0/0 % red
Type N1 %N2 red3 red4 bytes5 capas6 space? space8 space9

Basic object 395 32 74 6 175 14 91,498 6 1
Nucleus process 40 3 0 0 126 94 20,090 1 0
User process 41 3 13 126 75 17,406 1 0
Device object 83 7 i 0 75 0 6,240 0 0
Shadow object 4 0 0 0 3,142 0 12,568 1 0
Capa mailbox 215 17 2 0 17 22 23,042 1 0
Directory 12 1 0 0 2,603 13 31,872 2 0
Deque object 71 6 9 1 526 0 37,336 2 1
Stack object 40 3 0 0 136 0 5,440 0 0
4K basic object 341 27 68 5 4,096 0 1,396,736 85 17

Totals:
Number of objects
Size of data parts
Size of capa parts
Space

Means:

1242
1,572,772 bytes

17,364 slots
1,642,228 bytes

20.0% red
16.2% red
19.9% red

1,266 bytes in data part 14 slots in capa part

1 Number of objects of this type.
2Fraction (%) of the total number of objects that are of this type.

3Number of objects of this type that are red.
4Fraction (%) of the total number of objects that are both of this type and red.
5Mean size of the data portion of this type of object (bytes).

6Mean size of the capability portion of this type of object (capability slots).
?Total space occupied by objects of this type.

8Fraction of total space occupied by objects of this type.

9Fraction of total space occupied by red objects of this type.

1 ,322 bytes total space

about one-quarter of all objects are 4K-byte basic objects; these are the largest
objects in the system and the most likely to require mis-placement. Suppose that a
em has run out of memory, so it is necessary to place objects elsewhere. The
system can, on average, place only 3 or 4 objects elsewhere before it becomes
necessary to mis-place a 4K-byte basic object. Unfortunately, almost all 4K-byte
basic objects contain the code or the stack for some process. All 341 in Table 6-3
and 70 of 80 in Table 6-4 did. These objects are referenced more often than other
objects (see Table 3-3, for example). Thus the objects most heavily referenced are
those most likely to be mis-placed.

Should Idle Processors Be Used to Collect Garbage? Although it usually is not a
good idea to have resources standing idle while there is work to do, sometimes a
"greedy" allocation strategy fails to produce long-term benefits. For example, the
STAROS Garbage Col/ector must meet a real-time constraint: It must examine
capabilities at least as fast as other processes produce them. It may be difficult for it
to do so if it runs without local code or without a local process stack. Duplicating just

108

Table 6·4

II. Operating Systems

* Objects-PDE Task Force, 31 Solvers

Type

Basic Object
User Process
Capa Mailbox
4K Basic Object

Totals:
Number of objects
Size of data parts
Size of capa parts
Space

Means:

N

98
33
66
80

1 ,236 bytes in data part

* See notes for Table RC32.

No. %
%N red red

35 34 12
12 28 10
24 0 0
29 12 4

277
342,412 bytes

7,597 slots
372,800 bytes

Mean Mean

bytes capas

96 38
126 88
17 15

4,096 0

16.6% red
70.1% red
21.0% red

27 slots in capa part

Total % % red
space space space

24,346 7 4
15,774 4 4
5,000 1 0

327,680 88 13

1 ,346 bytes total space

the code and process stack in the local memory of each Cm would consume about 5
percent of Cm*'s total memory. When initiated, the Garbage Col/ector could deter­
mine the location of the rest of the objects it needed (the garbage-collector deque,
for example) and make them addressable.

Another concern is whether a cooperative, systemwide garbage collection is
required. If so, it cannot be initiated until a processor is available in each cluster. If a
systemwide garbage collection is not required, however, and an idle Cm contains
the Garbage Col/ector code and has room for its stack, then there is no advantage
to postponing garbage collection.

6.7.2. When to Col/ect Red Garbage

Recall from Section 6.6.2 that an object to which a capability in a remote cluster
points is marked red and is ineligible for removal by a local (clusterwide) garbage
collection. Eventually, the Garbage Col/ectors of each cluster will run simul­
taneously and perform a garbage collection of the entire main memory, removing
red-and-white as well as white objects. To determine when red garbage collection is
appropriate, we must be able to estimate the likelihood that an object is red. Refer
once again to the measurements in Tables 6-3 and 6-4. They indicate that, for both
task forces, about 20 percent of allocated memory is occupied by red objects.

Chansler [Chansler 82] analyzed the efficacy of red garbage collection as follows:
Let

M be the size of a cluster's memory
0: be the fraction of allocated memory that is not garbage
p be the fraction of garbage that is red

Table 6-5

6. STAROS 109

-y be the fraction of memory that is garbage

Kc be some constant that depends on the cluster and represents the speed of the
processors and the rate at which capabilities are created within the cluster

Then Tc' the cost of a clusterwide garbage collection, is

(Garbage collection examines all accessible objects plus all the red garbage.) The
benefit of a clusterwide collection, the amount of memory recovered, is proportional
to M-y(1 - pl. Let Cc be the ratio of the time required for a systemwide collection to
the time for a clusterwide collection. The benefit of a systemwide collection will be
M-y because all garbage is removed. For a single cluster, a systemwide collection
will be advantageous whenever the ratio of benefits to costs is larger for a system­
wide collection than for a clusterwide collection; i.e., when

M-y
>

M-y (1 - p)

Cc Tc Tc

or

Cc < 1-p

If p= 0.2 (that is, if 20 percent of garbage, like 20 percent of allocated memory, is
red), a cluster will find a systemwide collection attractive only if Cc < 1.25.

Table 6-5 compares the cost of clusterwide and systemwide garbage collections
at one "snapshot" of a 4-cluster STAROS system. The last column gives the value of
Cc' Systemwide collection would be favored only by cluster 5, while clusterwide col­
lections would be favored by the other clusters.

Cooperative versus local Garbage Collection

Cluster (Cm's) Objects Cooperative * local * Ratio (C/l)

1 (10) 251 2,058 862 2.39
2 (7) 2,13 2,093 690 3.04
3 (5) 201 2,096 626 3.35
5 (9) 434 2,044 1,861 1.10
Total (31) 1,099 8,291 4,093 2.03

* Units approximately 2 ms. (Time is for the search phase for the process in the indicated cluster.)

110 II. Operating Systems

6.7.3. Measurements of a Typical Garbage Collection

6.8. Summary

Excluding the cost of inspecting the invocation carrier (see Section 6.3.1) and the
time to send a return message, the Garbage Collector typically spends more than
90 percent of its time examining the object graph. The remainder of its time is spent
in two iterations through the directory objects-the first to color all descriptors white
and the second to compile the list of garbage objects after the object graph has been
traversed. Note that deallocation of garbage objects is performed by the Object
Manager, not the Garbage Collector. Synchronization with other Garbage Collector
processes also consumes some time.

Each directory may contain up to 256 object descriptors, except for the root
directory, which contains, at most, a descriptor for itself and 31 other directories that
are allocated only as needed. Thus the number of directories searched is propor­
tional to the number of object names in use, since names of deallocated objects are
reused in preference to allocating a new directory. A typical invocation of the
Garbage Col/ector on a single-cluster STAROS configuration yielded these values:
929 capabilities discovered in objects, 440 objects, 6,834 capabilities found in ob­
jects or created during the garbage collection, and 6,091 capability slots within
objects. In this example, approximately 33 percent of the Garbage Col/ector's
memory references are due to capabilities created while garbage collection was in
progress. This underlines the importance of having the Garbage Col/ector execute
local code so that it is not overwhelmed by the rate of capability creation.

Finally, the Garbage Col/ector consumes a moderate amount of memory. The
shared part of the Garbage Col/ector, the Garbage Col/ector module, consists of 11
objects, including 3 that contain code. These objects occupy 13,416 bytes of
memory. For each cluster in the system, an additional 4 objects (4,052 bytes) are
needed. Each Garbage Col/ector process requires 7 objects (8,866 bytes), including
a copy of one code page. By contrast, the smallest STAROS task force includes 3
objects and takes up 4,258 bytes. The smallest STAROS process has 5 objects (674
bytes) without copies of code pages. Further measurements of the Garbage
Col/ector's performance may be found in Section A.17.

Our presentation of the STAROS operating system has paralleled the MEDUSA dis­
cussion to highlight the two systems' similarities in concept and structure. Oc­
casionally, the symmetry is masked by the use of different terms for similar notions
("process" vs. "activity" and "nucleus" vs. "kernel," for example). This is partially
due to the close communication between the two groups, which permitted fine dif­
ferences in function to be identified and discussed.

STAROS is an object-oriented multiprocessor operating system using capability
addressing to implement a shared global address space. Like MEDUSA, it has two
parts: the Nucleus, which is resident in each Cm and Kmap; and STAROS modules,
which can be replicated but need not be present in all processors. The STAROS
Nucleus microcode consists of functions that the Cm* architecture forces to be

6. STAROS 111

there, such as address mapping and interprocessor communication, and functions
with critical performance requirements, such as capability addressing and operations
on representation objects. The Nucleus software resident in each Cm performs
functions involving the management of processes and local hardware resources. A
STAROS module is an entity containing all necessary information for a process to be
instantiated. STAROS modules are structurally indistinguishable from user modules;
they require no special privileges.

STAROS objects are composed of a capability list and a data portion. The
capabiiity iist hoids capabilities, while all other data resides in the data portion. A
capability contains a pointer to an object and several bits that grant "rights" -the
permission to perform specific operations on the object to which the capability
points. Object types can be divided into representation and abstract types. Opera­
tions on representation objects are implemented in the nucleus.

There are 12 representation object types, including basic, deque, mailbox,
module, and process objects. Abstract objects are implemented by a type manager,
which is the collective name for the set of procedures that perform functions on the
abstract object. An abstract object is first created as a representation object and
then made abstract using the mechanism of deamplification. Later, before an
abstract object can be manipulated, a capability for it must first be amplified.

All STAROS programs are composed of modules. Each module exports a set of
functions. A process is created to perform a specific function of a specific module. A
function in one module that wishes to call a function in another module does so by
using the STAROS Invoke instruction.

Interprocess communication can be performed by means of messages. Mes­
sages in STAROS are usually sent by reference, rather than by value as in MEDUSA.
Using a capability message, one process can send arbitrary amounts of information
as well as an arbitrarily structured graph of objects.

Process scheduling in STAROS exhibits policy I mechanism separation. The
mechanism is provided by the multiplexer, the part of the Nucleus responsible for
selecting the next process to execute on a single Cm. The scheduler makes global
decisions relating to scheduling policy.

Garbage collection in STAROS uses parallelism in two ways: It runs in parallel
with other processes in the system, and the Garbage Collector is itself a parallel
program. Garbage objects are objects for which no capability exists. To identify
garbage, capabilities are followed to traverse the object graph. Inaccessible objects
are then deleted. To prevent objects created during garbage collection from being
erroneously identified as inaccessible, the Kmap microcode writes a special value
into the "color" field of the descriptor for such objects.

The performance of the STAROS Garbage Collector has been studied in detail.
Among the questions studied were these: When should a garbage collection be
initiated, depending on the system load, and when should a one-cluster garbage
collection be used instead of a global (intercluster) collection? Garbage collection
has been stressed in our discussion of STAROS because it was an important
research question. While STAROS concentrated much attention on memory manage­
ment, it paid relatively less attention to robustness, which figured prominently among
MEDUSA'S goals. Hence robustness was described in greater detail in Chapter 5.

112 II. Operating Systems

Chapters 5 and 6 have presented MEDUSA and STAROS, noting their similarities
and reflecting their different emphases. Chapter 7 compares the functionality and
performance of their symmetric features.

Acknowledgment. Section 6.6 was adapted from a chapter of the internal STAROS Design
Manual [CMU 79] written by Robert J. Chansler, Jr.

7. Operating-System Performance

In the six years since both Cm* operating systems became operational, they have
been measured in several ways. They have been compared with the "bare-bones"
Smap microcode (Appendix D) and against each other. Various unique features of
both systems have also been evaluated. This chapter concentrates on two specific
aspects of operating-system performance: performance of firmware operations in the
Smap, MEDUSA, and STAROS microcodes; performance of message operations
(interprocess communication) in MEDUSA and STAROS. Our consideration of these
aspects will focus on comparisons between software and firmware systems that
have been implemented on Cm*. While such measurements are useful in elucidating
performance issues, some care is needed in extrapolating from them to predict the
performance of an application running on top of either system.

Smap, MEDUSA, and STAROS, in that order, provide increasing functional power in
the addressing and protection that they provide to the software developer. For the
most part, the cost of comparable functions increases in the same order. An Smap
operation is generally cheaper than a comparable MEDUSA operation, which in turn is
generally cheaper than a comparable STAROS operation. The cost difference in the
execution of one invocation of an operation may be minute, or it may be orders of
magnitude. Some of this cost difference derives from disparities in the service that
the systems deliver. Another part of it is due to implementation issues.

An operating-system designer chooses what he or she believes to be suitable
functional power, delivered at an acceptable cost. The desired result is a net savings
in eventual, overall system usage. The three microcodes reflect different design
decisions, even different attitudes about software development. For example, we
have seen that Smap delivers better performance as measured in mapped
references per second (see Section 3.1.3). Smap addressing is inadequate,
however, for incorporation into an operating system because it allows any executing
program to change addressabiJity to gain write access to any word in all of Cm*.
Both MEDUSA and STAROS provide additional protection, and they pay for it in time
and space.

The design of an operating system reflects a number of trade-offs between func­
tional power and cost. Although the operations of one system are faster, that does
not mean that programs written using that system will run faster. Functionality not
provided in the system may have to be implemented by the user. Indeed, it may
have to be reimplemented by each user. In the case of Cm* systems, functionality
not implemented in microcode may have to be implemented in the much slower
medium of software.

To compare empirically two philosophies in operating-system design, one must
compare two disparate implementations. The thoughtfulness of an implementation
strategy, or the effort expended in optimization, can affect performance measure­
ments in ways that distract from an evaluation of the philosophies. To appreCiate the

113

114 II. Operating Systems

measurements that are presented in this chapter, something must be said about the
degree to which the different systems have been tuned. Smap was written several
years ago and has not been optimized since it was first written. Because the first
implementation was coded fairly carefully and the system is reasonably simple,
however, one cannot expect large improvements by making refinements.

Measurements of MEDUSA were based on the first version of its microcode. Ex­
ecution efficiency was a primary goal, but critical functions have not been sub­
sequently optimized. The initial version of the STAR OS microcode, however,
sacrificed execution efficiency to make it easier to write and maintain. Optimizations
for speed were made in several microcode routines, and measurements in this
chapter reflect some of these optimizations.

Almost all of the MEDUSA message system is microcoded, whereas approximately
a third to a half of STAROS'S message system is in software. This induces some
rather glaring performance discrepancies, which could be largely mitigated by incor­
porating the remaining portions of the STAROS message system into microcode.

7.1. Microcode Measurement Techniques

Before proceeding to a presentation of the measurements themselves, some
remarks about the experimental methodology are in order. To evaluate the perfor­
mance of the microcodes, we have utilized two techniques, each with its own
strengths and weaknesses.

The first technique for firmware (microcode) evaluation is real-time measurement,
which is done by repeatedly running a program that performs a given microcode
operation, usually several million times. The second is tracing through microcode,
counting microcycles and references from the Kmap to the memory of the LSI-11 s.
The time required for a single microcode operation can be calculated by both
methods.

There are two main advantages of real-time measurement. First, it accounts for
queueing delays. Many interesting operations in both operating systems are fairly
complex, requiring several passes through various queues in the hardware and
firmware of the Kmap. Tracing fails to account for any queueing delays within the
hardware, so trace measurements are only a lower bound. Second, real-time
measurement can show the effects of contention. Because tracing cannot model
hardware delays, it cannot show how the system slows down as the load on it
becomes greater. It is useful to find out, for example, whether a particular operation
performs acceptably when all the Cm's are making references to the same block of
data. Only real-time measurement can provide the answer.

Tracing has different advantages. A real-time measurement yields only one
number: the average elapsed time for the operation to be performed. A trace shows
how much each microcode subroutine contributed to the total time, and thus in­
dicates where optimization may be fruitful. It also is easier to perform a large
number of traces than a large number of real-time measurements. A separate
program must be written or modified to make each real-time measurement, whereas

7. Operating-System Performance 115

it is very simple to perform additional traces with a tracing program. Moreover, most
microcode operations modify the state of the Kmap or its data RAM in some way so
that consecutive operations in a real-time experiment may follow different paths
through the microcode or even produce errors.

HOW REAL-TIME MEASUREMENTS ARE PERFORMED. A program that invokes the
same Kmap operation repeatedly is run on one or more em's. It is loaded, and then
controlled; using the NEST environment, which is described more fully in Section 9.1.
This smaii executive aiiows the user to specify the number of iterations of the
operation, to inquire about the progress of the experiment, and to compute the time
consumed by an individual operation from data it displays after all the processors
have finished.

HOW TRACING IS PERFORMED. Programs to perform tracing were written by Ed
Gehringer in the fall of 1979. The first program, called CYCLES, performs traces of
individual microsubroutines; the second then uses these traces to calculate how long
a Kmap operation takes by summing the time to perform a microsubroutine and all
the subroutines it causes to be called.

The first program reads in a microcode source file and builds a flow graph. Next it
asks the user to select from a menu of microsubroutines to trace. It adds up the
microcycles and memory references (to the memory of the Cm's) that would be
performed when the selected microsubroutine was executed. At each branch point, it
asks the user which branch to take.

It is often useful to perform several traces of the same routine to account for
different values of parameters or different global conditions. For example, the routine
that performs mapped memory references will follow different traces depending on
whether the memory word is local to the cluster or in a remote cluster. The user is
thus allowed to name the traces in order to distinguish them. Each time a
microroutine calls another microroutine, the user is prompted for the name of the
trace of the called routine.

VALIDATION OF TRACE DATA. Three factors contribute to the time consumed by a
Kmap operation: Kmap microcycles, memory references from the Kmap to memory
of one of the Cm's, and waiting time due to contention for resources. As noted
above, tracing cannot measure contention, but it can give a load-independent lower
bound on the time needed to perform an operation. In any event, we expect Kmap
and memory contention to be of minor importance for most programs.

To determine how long a Kmap operation takes in the absence of contention, we
must know the time consumed by a microcycle and a memory reference. A
microcycle takes a constant 157 ns., as it depends on the quartz clock within the
Pmap. The trace data tells us how many microcycles and memory references are
encountered in a particular Kmap operation; if we know how long the Kmap opera­
tion takes, we can thereby compute how long a memory reference takes. One
calculates how long a Kmap operation takes in the absence of contention by per­
forming a real-time measurement with only one Cm in the cluster running, as there is
then nothing to compete with that Cm for the Kmap or for memory.

116 II. Operating Systems

From our initial real-time experiments, we concluded that a memory reference
from a Kmap to a em took 4.3 JJ.s. We then were able to use this value to predict
how long other real-time experiments should take to run, based on the trace data.
Five dissimilar Kmap operations were tested in this fashion. In all cases, the elapsed
time was within 2.1 percent of that predicted, based on our value for a memory
reference. These experiments allow us to list values for other Kmap operations
without carrying out real-time measurements of those operations (many of them are
not amenable to such measurement because they modify the state of the Kmap or
data RAM). Microcode-measurement results helped the operating system projects
choose which operations to optimize.

7.2. Performance of Similar Microcoded Operations

The previous chapter presented a comparison of mapped memory-reference perfor­
mance in three of the microcode systems that were written for Cm*: Smap, MEDUSA,
and STAROS. We are now ready to focus on some other equivalent, or at least
similar, operations from each of the three systems. The selected operations are the
ones that are executed relatively frequently by the operating system and user
programs, and therefore the ones that will have the greatest impact on overall
performance. This section considers the time costs of two such operations, then
concludes with a survey of the space costs of various functions in the STAROS and
MEDUSA microcodes.

The first operation, change addressability, allows a process to change a portion
of its address space to make a new object accessible. How frequently this operation
is executed in practice depends strongly on the application program, so its effect on
overall performance is hard to estimate without additional data. It is, however, of
concern, since the address space of an LSI-11 is only 16 bits. A typical synchroniza­
tion operation was chosen for measurement because synchronization costs are
important, especially for processes that share read I write data.

Most of the performance measurements in this section were obtained by real-time
measurement. Those that were obtained by tracing are explicitly marked as coming
from the CYCLES program. As noted above, measurements made by the two tech­
niques are in close agreement with each other. Although the figures for operations
measured on the hardware were computed by averaging over a large number of
repetitions, strictly speaking, they have not been statistically validated because all
the repetitions used the same hardware components. Variations between the
speeds of interchangeable components could cause the figures to vary up to 5 to 10
percent for some of the operations (see Section 3.1.1, for example). For more
complex operations that use a greater variety of components, variations in the in­
dividual components may average out, leading to a smaller variance than for Simpler
operations.

7. Operating-System Performance 117

7.2.1. Change Addressability

The change-addressability, or Load Window, operation redefines the binding be­
tween a window and the physical memory to which the window refers. Smap's
version of the operation is the simplest and the fastest. It associates an arbitrary
physical address with a specified window by loading the window register in the
Kmap. In order to complete change of addressability, however, the LSI-11 must
execute one more instruction to load the Siocal register corresponding to the window
(STAROS and MEDUSA do this load automatically as part of the Load Window
operation). To make the operations in the three systems more comparable, the 33
Il-s. quoted in the list below for Smap include the time to execute this extra instruc­
tion. The times for Load Window are as follows:

Smap
MEDUSA

STAROS

33 f..Ls.
69 f..Ls.

109 f..Ls. (traced using CYCLES)

The costs listed above for both STAROS and MEDUSA are incurred on two
separate occasions. The first portion of the cost is incurred when the operation is
invoked by the LSI-11. At this time the name of the new object is bound to the
window by loading the Kmap's window register and writing the name out to the
process state kept in main memory. The second portion of the cost is incurred when
the first memory reference is made through the window just loaded, in part due to
the need to write the Siocal register. The extra time required by STAROS over
MEDUSA is partly because of the three-level address structure of STAROS-two extra
references to translate the C-list index into a capability-and partly because the
entities that are read or written to memory during the operation are larger for
STAROS than for MEDUSA. STAROS uses two-word capabilities, while MEDUSA uses
one-word descriptor indexes.

7.2.2. Synchronization Operations

All three microcode systems provide indivisible operations that allow parallel
programs to synchronize their operations on shared read / write data. The represen­
tative operation, Indivisible Increment, has virtually the same semantics in all three
systems. The operation costs are for the case in which the target of the increment is
in the same cluster as the invoker of the operation. As is the case for the other
operations in this chapter, any address information needed to perform the operation
is assumed to be present in the Kmap's cache. The times for Indivisible Increment
are as follows:

Smap (immediate address parameter)
MEDUSA (immediate address parameter)
MEDUSA (virtual address parameter)
STAROS (virtual address parameter)

25 f..Ls.
33 f..Ls.
47 f..Ls.
95 f..Ls. (traced using CYCLES)

118

7.2.3. Space Costs

Table 7-1

II. Operating Systems

Smap's Indivisible Increment is faster than that of MEDUSA or STAROS because
Smap makes no main-memory references to fetch the parameter for the operation;
the parameter is a 16-bit immediate address that is passed up to the Kmap when the
operation is invoked. MEDUSA has two forms of the operation; one uses an im­
mediate address and the other a virtual address. The 14-J.Ls. difference is due to the
two additional main-memory references and associated microcode that reads the
larger virtual address parameter. STAROS does not have an immediate address
version, so its operation also pays for the memory references to read the parameter.
STAROS'S operation takes 48 J.Ls. longer than MEDUSA'S for two reasons. First,
STAROS has a three-level address structure. Two additional references must be
made during each operation to read the capability. Second, STAROS uses more
high-level microcode procedures during the operation than MEDUSA. In particular, the
parameter-block binding to the window is recomputed for every word that is read.
STAROS permits a parameter block to be spread across two windows; MEDUSA does
not.

Tables 7-1 and 7-2 show the number of microinstructions used by MEDUSA and
STAROS for performing various operations. It is difficult to compare these numbers
because the two microcodes vary in target architecture and structure and because
different methods were used in classifying the instructions. For example, indivisible
operations are included in STAROS'S miscellaneous user-level operations, while
intercluster communication is not distinguished in the MEDUSA classification scheme
but is spread over the various parts of the system.

It can be seen from the two tables that the MEDUSA microcode occupies more
space than STAROS. One reason for this is that trade-offs in MEDUSA generally were
made in favor of speed at the expense of microcode space. The second reason is
that the MEDUSA microcode also has implemented more. functionality in the following
ways:

The Sizes of Various Portions of the MEDUSA Microcode

Function

Messages and events
Common routines
Robustness
Addressing structure
Block transfers
Interrupt handling
Activity multiplexing
Indivisible operations

Total

Number of
microinstructions

901
750
670
610
367
285
157
105

3,845

Table 7-2

7. Operating-System Performance

The Sizes of Various Portions of the STAROS Microcode

Function

Addressing structure
Capability manipulation
Cached-descriptor maintenance, searching
Deque / stack references. pointer manipulation
Address mapping
User-level capability operations
Cached-window maintenance

Message operations
Low-level operations and initialization
Miscellaneous user-level operations
Intercluster communication
Garbage-collection support

Total

Number of
microinstructions

194
153
153
126
118
113

857

326
317
310
241

71

2,122

Its message operations are more complex (see Section 7.4).

119

It performs memory reference retries on hardware errors, such as parity errors.
It has a more sophisticated exception-reporting mechanism.
MEDUSA implements a Block Transfer mechanism (Section 7.3.1), whereas

STAROS does not.
The MEDUSA microcode provides substantially more support for activity multiplex­

ing than the STAROS microcode.

The STAROS approach was based on the belief that a simpler, more modular
system could be implemented first; additional speed improvement and functionality
could be added once the system was being used and bottlenecks were identified. In
that case, STAROS microcode could be extended for application experiments or
performance monitoring. This would be more difficult in MEDUSA because it has used
nearly all the control store.

7.3. Performance of Dissimilar Microcoded Operations

MEDUSA and STAROS each implement many operations that have no direct counter­
part in the other system. In some cases, this is because of differences in their
addressing structures (STAROS'S capability operations, MEDUSA'S Establish XDL); in
other cases, it is because MEDUSA has incorporated more functionality into its
microcode (Block Transfer, for example). This section presents the performance of
such operations, along with others that, although they exist on both systems, have
been measured on only one system.

120 II. Operating Systems

7.3.1. MEDUSA Operations

Table 7-3

Block Transfer. A Block Transfer is a microcoded operation that transfers a num­
ber of words between the local memory of two em's. For large blocks of data, it is
much more efficient than moving the words via nonlocal memory references, since a
Kmap operation does not have to be reinvoked for each word transferred. Only
MEDUSA incorporated Block Transfer; a STAR OS block transfer was designed but
never implemented.

Table 7-3 gives performance statistics for MEDUSA'S Block Transfer mechanism.
Measurements are given in microseconds and as a multiple of the cost of a typical
LSI-11 Load instruction (7.4 ~s.) executed without any mapped references. All
values were obtained using real-time measurement. Block Transfer is quite in­
efficient for transferring small amounts of data, since the overhead of setting up the
Block Transfer dominates the execution time. For transferring more than 15 words,
however, Block Transfer is faster than performing nonlocal memory references.
The asymptotic value of the transfer time for large blocks, 1 0.3 ~s. per word, com­
pares favorably with the hardware-limited maximum bandwidth of 5 ~s. per word.

Privileged Operations. There are several microcoded operations that may be ex­
ecuted only by MEDUSA utilities. Real-time measurements for three of these are
given in Table 7-4. Establish XDL is used by a utility to map its external descriptor
list (XOL) onto the POL or SOL of another activity. It needs to do so in preparation
for amplifying its rights to an object in one of these lists (see Section 5.1.3).
Reawaken Sleeping Activity is used to reactivate a blocked activity that has just
become runnable. Write Descriptor writes a descriptor indivisibly. It is a compli­
cated operation because it must synchronize with other Write Descriptors, Read
Descriptors, and Kmap contexts that may be using physical addresses derived from
the target descriptor (see Section 5.1.2).

Timing of MEDUSA Block Transfer

Number LSI-11 instr. fJ.s. per
of words equivalents fJ.s. word

1 34 251 251.0
10 46 342 34.2
20 61 449 22.5

40 87 647 16.2
60 114 845 14.8
80 145 1,075 13.5

100 172 1,273 12.7
200 310 2,295 11.5

2,000 2,801 20,728 10.3

Table 7-4

7. Operating-System Performance

Timing of Some Privileged MEDUSA Operations

Operation

Establish XDL
Reawaken Sleeping Activity
Write Descriptor

LSI-11 instr.
equivalents

3
14
82

/..Ls.

23
106
610

121

Measurements of Operations Under Load. Let us now focus attention on how the
time required for certain operations is affected by the system load. The three opera­
tions that we consider-Read Word, Indivisible Increment, and Conditional
Receive-are not unique to MEDUSA, but their STAROS counterparts have not been
measured under load. Read Word reads a word from a specified object without the
need to make it addressable first via a Load Window. Indivisible Increment
(Section 7.2.2) reads a word and increments it without allowing any other activity to
access it in the meantime. Conditional Receive is the nonblocking message opera­
tion introduced in Section 5.2; further measurements of it will be presented later.

The elapsed time needed to perform each of these operations was measured as
the number of processors performing them was increased. The activities were con­
figured to generate maximum contention in each case. For Read Word, all proces­
sors referenced the same memory location; for Indivisible Increment, the same
location was incremented by all the processors; and for Conditional Receive, all
processors sent messages to the same pipe. Each activity was executed on a
separate processor. Figure 7-1 shows that all three curves have similar shapes,
despite the large disparities in execution time. The time needed to perform an
operation remains nearly constant until the effects of contention begin to be felt, then
increases linearly in the number of activities. Because these operations are fairly
representative of the microcode operations as a whole, other operations are likely to
show similar performance.

7.3.2. STAROS Operations

Operations on Some Representation Types. Several of STAROS'S representation
object types were described in Section 6.1.1. Among these were deques and
directories. A stack is a special type of deque whose Push and Pop operations are
always done from the front. Table 7-5 gives sample timings for these types. All
timings were derived by tracing, are for in-cluster references, and assume no Kmap
or memory contention in the destination em. Timings for mailbox operations will be

presented in Section 7.4.

Capability Instructions. Capability instructions are implemented in STAROS
microcode primarily to protect capabilities from unauthorized manipulation by

122

Figure 7·1

Table 7·5

II. Operating Systems

Performance of Three MEDUSA Operations Under Load

...... 800
iii

--=­
.§7oo
iii
~6oo g.
~5oo
Q)

E
'.::400

~
co
~3oo
::.
<t

200

100

o

o Conditional receives
~ Indivisible increments
o Simple reads

2 4 6 8 10 12

Timing of Operations on STAROS Representation Objects

Object type / LSI-11 instr.
operation equivalents

Stack
Push 4
Pop 5

Deque
Push onto front 6
Push onto rear 6
Pop from front 5
Pop from rear 5

Directory
Read 2
Write 3

14

IJS·

32.6
39.8

46.4
47.1
39.3
40.1

15.5
22.1

16 18 20 22
Number of processors

refs. to local
memory of em's

4
5

6
6
5
5

2
3

software (Section 6.1). A microcoded implementation also serves to give them con­
siderable speed, helping to make the object-oriented STAROS design more competi­
tive with less structured memory organizations. It is instructive to consider the
functionality as well as the performance of these instructions.

Table 7-6

7. Operating-System Performance 123

Create Capability (Representation type) May be invoked only by the Object
Manager. Manufactures a capability for a newly created object of
a representation type.

Create Capability (Data type) May be invoked by any user to create a data
capability.

Restrict Capability "Turns off" an arbitrary set of the 13 permission bits in the rights
word, diminishing the power of the capability. This operation also
may be used to delete a capability by turning off all 3 bits in its
type field.

Amplify capability Converts an abstract capability into a representation capability.
Requires a type token for the type of the abstract object. The
most time-consuming part of this operation is comparing the type
token with the object type, which is stored in the object's descrip­
tor but is not cached.

Deamplify Capability This is the inverse of Amplify. It replaces a representation
capability with an abstract capability. A type token is required to
prevent functions other than the type manager from creating
abstract capabilities of a particular type.

Copy Capability Copies a capability from one place in the address space to
another.

Transfer capability This is a special form of Copy Capability that places a new copy
of a capability somewhere in the address space, then deletes the
old one.

Read capability Copies information from a capability into the data portion of some
object so that a process may "read the bits" to determine, for
example, the type of a capability or the rights associated with it.
This does not subvert protection because there is still no way for
any process to store an arbitrary bit pattern into a capability.
Read capability also furnishes information such as the size of the
object, which it gleans from the descriptor. (Often part of the
descriptor is cached in the Kmap's data RAM, as described in
Section 4.2. If not, it must be fetched from main memory.)

Table 7-6 presents timings for the capability instructions. All timings were derived
by tracing.

Timing of STAROS Capability Instructions

LSI-11 instr. # refs. to !ocal
Operation equivalents J..Ls. memory of Cm's

Amplify Capability 18 133.4 13

Copy capability 13 99.2 10

Create Capability
Representation 16 120.9 12

Data 12 86.2 9
Deamplify Capability 18 133.4 13

Read Capability 11 78.1 8
If descriptor is not in cache 16 120.9 12

Restrict Capability 9 67.2 7

Transfer capability 18 130.7 13

124 II. Operating Systems

We see that any capability operation or change of addressability can be per­
formed in 23 average LSI-11 instructions or less. It should be noted that this
mechanism provides both an expanded address space and support for program
modularization at a relatively low cost. Note that unmapped references have no
overhead and that the second and subsequent mapped references require no in­
direction through a capability. For example, the distributed partial differential equa­
tions, or POE, application (see Section 11.5.3) incurs no performance penalty for
having the benefit of capability addressing in lieu of the more restricted two-level
descriptor-based addressing offered by Smap and MEDUSA.

The cost of object addressing is likely to be significant only for processes whose
working set exceeds the capacity of the window registers, resulting in frequent
invocations of Load Window. Such processes would expect to incur substantial
overhead from any mechanism that attempts to relieve the constraints of the
LSI-11 's small address space.

It is worthwhile to scrutinize an individual operation to assess how resources are
expended in performing the operation-in particular, to account for the seemingly
large number of references to the memory of Cm's during the operations listed in
Table 7-6. First, observe that execution time for a STAROS microroutine is divided
approximately equally between Pmap microcycles and memory references.

Consider the Amplify Capability operation, which performs 13 memory
references. It takes two parameters: a capability index that tells which capability to
amplify and a pointer to a type token that matches the type of the object named by
the capability. These two parameters are contained in a parameter block (Section
4.2). The first memory reference by Amplify Capability reads the processor data,
the address of the parameter block (memory reference 1). Then the capability index
(2) is read from the parameter block. Using this index, the capability itself (3, 4) is
read. A special value called a plug is written into the capability's type field (5) to flag
.the fact that this capability is in the process of being modified so that no other Kmap
operation attempts to modify it in the meantime.

The abstract type (6) of the object named by the capability is read from the
descriptor for the object because abstract-type names are not kept in the cache. The
second parameter (7) names a type token, which is then read (8, 9). The amplified
capability (10, 11) is written back, overwriting the plug that says the capability is
being operated on. Then a zero is written into the first word of the parameter block
as an indication that the operation has been successfully completed (12), and the
Cm is awakened (13).

Most other capability instructions follow a similar sequence of actions, though
they are somewhat cheaper because there is no need to read a token and-if the
capability is not to be rewritten or deleted-to write a plug. Since the microcode
performs some of the functions of a conventional executive or supervisory program,
it is not surprising that a microcode function has corresponding entry and exit over­
heads to read parameters and write a result code. This overhead is typically four or
five mapped memory references (about 35 to 45 f.Ls. or 5 to 6 locally executed
LSI-11 Load instruction equivalents). The corresponding overhead for a function
implemented by the Nucleus process is about 750 f.Ls., or approximately 100 instruc­
tions.

7. Operating-System Performance 125

7.3.3. Interpreting the Results

The comparisons presented so far in this chapter are a good starting pOint for
predicting the performance of an application on one of the Cm* microcode systems.
Nevertheless, they do not tell the whole story because they fail to account for
several factors. First, some costs of invoking an operation are not reflected in the
performance figures of this section. An example is the cost of setting up a parameter
block to perform the operation. Because the LSI-11 is considerably slower than the
Kmap, setting up the parameter biock can sometimes be as expensive as the opera­
tion itself, especially if the Kmap operation is a short one. A discussion of the
parameter-block costs in STAROS and a comparison to an operation cost was
presented in the previous section.

Another consideration in extrapolating from measurements to overall system per­
formance is that most of them have been made under no load. The exception is
mapped memory references, which have been measured under both the artificial
loads (Section 3.1.3) and the applications discussed in Section 3.1.4. Some
measurements of additional operations under loaded conditions are discussed in
Section 7.3.1.

Finally, MEDUSA and STAROS have some fundamental differences. To cite one
example, names in MEDUSA are always interpreted relative to an activity. In contrast,
a STAROS capability is a global name. One implication is that in MEDUSA com­
munication is virtually always "by value," whereas in STAROS communication can be

. either "by value" or "by reference." It is difficult to evaluate such differences be­
tween MEDUSA and STAROS. For example, differences in functionality will cause
users to design and program their applications differently in the two systems. Be­
cause Cm* is a multiprocessor, the task decomposition itself may be influenced. In
addition, the user will adapt his implementation to improve performance in the con­
text of the operating system being used, so the implementation of an application on
the two systems may look quite different. Certainly it is possible to observe two
functionally equivalent task forces on the two systems and decide which one finishes
faster. It is more difficult to compare the robustness of the systems and the effort
expended in implementing them.

One of the lessons learned from implementing a number of different microcode
systems is that careful attention must be paid to low-level microcode design to
ensure that the system will perform adequately under loaded conditions. Otherwise,
the system may become deadlocked over shared resources, or requests may be
starved if they are not served in a fair manner. The algorithms and system structures
used to avoid these problems sometimes may extract a heavy penalty if they are not
designed with efficiency in mind, and the overall performance of the system may
suffer drastically as a result. An example of this phenomenon has been described in
Section 3.1 .3.

Another observation is that Simple operations such as memory references can be
performed efficiently. Intelligent use of caching and of special-case microcode to
handle memory references seem to make the cost of such references fairly indepen­
dent of the complexity of the address structure. It is important to note, however, that
a complex address structure does exact a price for the more complicated operations

126 II. Operating Systems

because it is not feasible to write special-case microcode for all such operations.
The writing of special-case microcode to improve performance is an example of a

space / time-complexity trade-off that was encountered frequently in the writing of all
three systems. If a particular operation is to be optimized for speed, then it often
helps to write microcode that is specially adapted to the needs of that operation.
Special-case microcode not only takes up more space, however, but it makes the
code less structured and therefore harder to modify and debug or to adapt for the
purposes of experimentation.

7.4. Message-System Performance

Next we focus our attention on the message-communication operations of MEDUSA
and STAROS. Smap does not implement messages. Both operating systems rely on
message . communication where more conventional operating systems use
procedure activation. Messages are used for general-purpose communication and
synchronization of processes. In addition, both operating systems are structured so
that asynchronously executing "servers" provide a substantial portion of the system
functions. A request to such a server is in the form of a message that conveys the
requisite parameters. Likewise, any reply is transmitted as a message. Not only do
both operating systems offer a message-communication facility to user programs,
they also make extensive use of it internally. Performance of the message facility is
therefore crucial to the efficient operation of both systems.

7.4. 1. Functional Comparison

Message communication is the least similar of the facilities provided by the
microcodes of MEDUSA and STAROS. The two differ both in function and in im­
plementation. The message mechanisms have been described in earlier chapters,
but it will be helpful to review them.

Similarities. Both systems support buffering of the messages that are transmitted
between processes. Both provide two kinds of operations: conditional and uncon­
ditional. Conditional operations run to completion regardless of the state of the
mailbox or pipe that is the target for the operation. For example, when a process
performs a Conditional Receive, a message is returned from the mailbox if the
mailbox is nonempty, and a status indicating an empty mailbox is returned if the
mailbox is empty. In either case, the process continues processing after performing
the operation. The semantics of unconditional operations are rather different in the
two systems and will be discussed below.

Differences. The two message systems differ both in semantics and in implemen­
tation. It is important to keep this in mind because some large performance dif­
ferences are simply an artifact of whether particular operations are microcoded and
have little to do with underlying design decisions. Another difference concerns an

7. Operating-System Performance 127

"optional extra" of the MEDUSA message system-a feature that could be added to
the STAROS message system without changing its basic design .

• Semantic differences:

Value versus reference semantics. In MEDUSA, messages are always transmitted
by value; that is, data is physically moved from the address space of the
sender to the address space of the receiver. No provision is made for using a
message to pass a capabiiity or descriptor that wouid aiiow the receiver to
access memory belonging to the sender. Through its data mailboxes,
STAROS also allows message transmission by value. Because only one 16-bit
word at a time can be sent in this way, however, it would be impossibly
inefficient to use data messages to convey large amounts of information.
Consequently, large amounts of data are passed by sending a reference (a
capability) that allows the receiver to access a portion of the sender's memory.
Hence the MEDUSA message system is value based, while STAROS'S is
primarily reference based.

Message size. This distinction is closely related to the value versus message
based dichotomy. STAROS transmits either a one-word data message or a
single capability, which is the name of an arbitrary object. MEDUSA transmits
variable-sized data messages ranging from 0 to 4,000 bytes by copying the
message. Since mailboxes and pipes have fixed sizes, the size of messages
affects how many of them can be buffered simultaneously. The buffering
capacity of a STAROS mailbox ranges from 1 to 2,044 data messages or 1 to
252 capabilities. The buffering capacity of MEDUSA pipes is a function of
message size; it ranges from 1,000 messages for zero-byte messages to a
single message if the message is larger than 2,000 bytes.

Automatic versus voluntary blocking. The difference between the unconditional
operations provided by the two systems is that when an operation cannot be
performed immediately, the invoker of the operation is blocked automatically in
MEDUSA; in STAROS, blocking is a separate operation that is invoked explicitly
by a process.

Symmetry. The semantics of the Send and Receive operations in MEDUSA are
symmetric. For example, the effect of doing an Unconditional Receive on an
empty pipe is the same as the effect of doing an Unconditional Send on a full
pipe-the invoker is blocked. In STAROS, Send and Receive are not sym­
metric because the Unconditional Receive does not have a counterpart. If a
Send is done to a full mailbox, the invoker is informed that the operation
cannot complete immediately.

Overlapped delivery. Because a STAROS process may have several unsatisfied
unconditional requests to receive a message outstanding, delivery of several
messages may be overlapped. In MEDUSA, messages arrive in the receiver's
address space sequentially and while the activity is actively performing the
Receive operation, or they are suspended awaiting the time when the
Receive in progress can complete.

128 II. Operating Systems

• Implementation differences:

Message delivery. The delivery of a message to an activity that has performed
an Unconditional Receive on an empty pipe is handled entirely within Kmap
microcode in MEDUSA. The corresponding delivery of a message to a process
that has done a Registered Receive in STAROS (called Portal Delivery) is
implemented in operating-system software.

Blocking. STAROS blocking is performed by Nucleus software; MEDUSA blocking
is integrated into the microcode for message operations.

Block transfer. All data transfers performed during the message operations of
MEDUSA are handled by the microcoded Block Transfer mechanism. Block
transfers are not used in the STAR OS message mechanism, since blocks of
data may be transferred, in effect, by passing a capability .

• "Optional extra" :

Pause time. In MEDUSA, when an activity is blocked as a result of a message
operation, the activity does not relinquish its processor immediately. Instead,
it retains its processor for a period called the pause time (see Section 5.2),
which can be specified by the activity. If the activity becomes runnable during
the pause time, it is able to resume processing immediately without incurring
the context-swap time of the LSI-11. In principle, pause time could be added
to the Unconditional Receive of STAROS by adding a pause-time parameter
to the invocation. If set to zero, this parameter would yield the current seman­
tics of Unconditional Receive.

Methods of Comparison. The performance of message systems can be compared
in at least two ways. One way is to measure performance by the time it takes to
perform individual operations such as Send and Receive. Such a characterization
provides an incomplete picture because nontrivial uses of a message mechanism
require additional operations, such as setting up the message at the sender's end
and reading the message at the receiver's end. In some cases, explicit synchroniza­
tion is necessary beyond that provided by the message system. Message com­
munication is fundamentally an interaction between two or more parties, so the
performance measures should reflect the process-to-process interaction time.

This is not to say that raw measurements of individual operations are without
value. Measurements of interactive communication are based on a particular se­
quence of operations performed by the sender and receiver, and while many
processes may use this sequence, other processes may use a completely different
paradigm. In this case, raw measurements may be a more useful estimation tool
than process-to-process interaction times. We will consider message-system perfor­
mance from both standpoints.

7. Operating-System Performance 129

7.4.2. Performance of Message Operations

One major factor influencing message-operation timings is whether the message is
buffered in the mailbox or pipe. Recall from Section 4.1.2 that if a Send is performed
when a receiver is waiting for the message, the message need not be placed
("buffered") in the mailbox or pipe but can be copied directly to the address space of
the receiver. First, consider the case in which no receiver is waiting, so buffering
must occur.

When Buffering Occurs. This section discusses performance of the message
operations in a situation where the operation can be completed by merely manipulat­
ing the mailbox or pipe (Le., the invoker need not wait for some action by another
process or activity). The operations chosen for measurement are Conditional Send
and Conditional Receive.

Timing measurements were taken of a single process or activity that first per­
formed a Conditional Send of a message to an empty pipe or mailbox. As a result,
the message is buffered. The process or activity then performs a Conditional
Receive from the same pipe or mailbox. The Conditional Receive removes the
message from the mailbox or pipe, leaving it empty, and returns the message to the
invoker. Thus the message is copied twice. The STAROS operation was measured
using both a capability message and a data message. The MEDUSA message con­
sisted of a single data word.

Measurements were made using two different distributions of the various entities
involved in the operations: in the local cluster case, the sender, the message, and
the mailbox are all kept in the same cluster; in the nonlocal cluster case, the sender
and message are in one cluster, and the mailbox is in a different cluster. The tables
below show the times for Conditional Send and Conditional Receive computed
from the total send-plus-receive time obtained by measurement. The cost of the
send-and-receive sequence was assumed to be distributed between the
Conditional Send and Conditional Receive in the same ratio as the costs of these
operations that were computed from CYCLES traces.

Cost for Conditional Send:

MEDUSA

STAROS (data)
STAROS (capability)

Cost for Conditional Receive:

MEDUSA

STAROS (data)
STAROS (capability)

Local
cluster

336 f.,Ls.
110 f.,Ls.
151 f.,Ls.

Local
cluster
341 f.,Ls.
118 f.,Ls.
180 f.,Ls.

Nonlocal
cluster
339 f.,Ls.
146 f.,Ls.
196 f.,Ls.

Nonlocal
cluster
342 f.,Ls.
156 f.,Ls.
225 f.,Ls.

130 II. Operating Systems

The time to perform the operation in MEDUSA is roughly three times slower for the
local cluster case and about two times slower for the nonlocal cluster case. There
are three reasons for this difference in performance. First, the Block Transfer
mechanism adds considerable overhead to the cost of moving small messages.
Second, a deadlock-and-starvation algorithm is executed to ensure that the three
contexts allocated during each operation are acquired in a safe fashion. Finally,
some cost is incurred because code to handle waiting is executed, even though it is
not necessary in this particular case.

When the Buffer Is Bypassed. This section presents message-system perfor­
mance measurements for the case when one process (activity) has to wait for
another process to act. In particular, consider a two-process message interaction
that involves sending a message from one process to another process that is waiting
after having done an Unconditional Receive on an empty mailbox or pipe.

Assume that the mailbox or pipe is empty when a receiver unconditionally re­
quests a message. The message is a single data word. For STAROS the times are
constant. Both MEDUSA operation times are a function of the size of the message.
The duration of the Unconditional Receive also depends on how much of the
pause time elapses before the message arrives. Duration of Send and Receive
operations in the waiting case are as follows:

MEDUSA Send
MEDUSA Receive
STAROS Send
STAROS Receive

490 f,Ls. (estimated)
250 f,Ls. + elapsed pause time (estimated)

2,000 f,Ls. (estimated)
166 f,Ls. (traced using CYCLES)

The STAROS Send time is dominated by the cost of software implementation of
message delivery. It should be noted that during a MEDUSA message operation, both
the sender's and receiver's processors enter a pause state during which they may
process interrupts. The sender's processor is in the pause state during the Block
Transfer; the receiver's processor is in the pause state for the duration of the pause
interval.

7.4.3. Process-to-Process Interaction Times

One aspect of the semantic differences between the STAROS and MEDUSA message
systems is the comparative performance of value-based and reference-based mes­
sage communication. As a first attempt, let us include the time it takes to transfer
the message plus the time that the receiver must spend to access the words trans­
ported. Thus STAROS measurements include the time used to make the words
addressable via the capability used in the transfer.

If we confine our attention to messages that are in the form of blocks of data, we
can analyze the trade-off between passing pointers (pass-by-reference) and copying
data (pass-by-value). Because non local accesses are significantly costlier than local
accesses, it is not obvious at what point it becomes cheaper to move the data itself
instead of accessing it non locally.

7. Operating-System Performance 131

Processing Efficiency. Two parameters determine which mechanism is more ef­
ficient. The more important of the two is the number of times each data item is
referenced by the receiver. We will call this parameter frequency of use and ex­
amine three regions: sparse use, where only a small fraction of the words trans­
ported are actually referenced; moderate use, where each word is referenced ex­
actly once; and heavy use, where each word is used several times by the receiver.
The second parameter is the number of words that need to be transported. We
consider two cases: the time needed to comm!..!nicate one word and the time to
communicate 2,048 words.

SPARSE USE. Assume that only a very small fraction of the words transported are
ever referenced. This would be the case, for example, if the data transferred was
sorted and the receiver was doing a binary search to locate a particular value. The
times for 1 word and for 2,048 words are given below. There is no break-even pOint
because the reference mechanism is always better.

MEDUSA
STAROS

1 word
484 J.Ls.
228 J.Ls.

2,048 words
21,000 J.Ls.

440 J.Ls.

MODERATE USE. Let us assume that each word transported is referenced exactly
once. Under this usage pattern, the factor that determines which scheme is better is
the cost of the non local access. For the local cluster case, it is always better to pass
a pointer, although the cost difference is small. In the nonlocal cluster case, the
choice is influenced by whether the message is buffered in the MEDUSA pipe or not.
If data is not buffered, it is better to move the data, as long as more than 8 words are
being transported. If data is buffered, then it is better to move the data only if it is
longer than 1 ,345 words.

One frequent use of messages is to communicate the parameters for a function
invocation. Such messages are expected to be of modest size and to receive
moderate use. It is cheaper to send such a message by reference, except when the
message is buffered and transported to a remote cluster.

MEDUSA (no buffering)
MEDUSA (buffering)
STAROS (local cluster)
STAROS (nonlocal cluster)

1 word
484 J.Ls.
677 J.Ls.
228 J.LS.
320 J.Ls.

2,048 words
27,000 J.Ls.
48,000 J.Ls.
21,000 J.Ls.
73,000 J.Ls.

HEAVY USE. Assume that each word transported is referenced many times, so it
always pays to move the words. The table below lists the costs incurred by the two
systems. For STAROS, we assume that the Block Transfer is coded in software,
using the most efficient implementation permitted by the LSI-11 processor. The
break-even points for the intracluster and intercluster cases are 28 words and 5
words, respectively. That is, if more than 28 words must be transferred intracluster
or more than 5 words intercluster, then it is cheaper to move them in MEDUSA than in
STAROS.

132 II. Operating Systems

MEDUSA

ST AROS (local cluster)
STAROS (nonlocal cluster)

1 word
484 1-Ls.
2281-Ls.
320 I-Ls.

2,048 words
27,000 I-Ls.
45,000 I-Ls.
90,000 I-Ls.

Pure Message Commun.ication. Shared memory and message passing are the
two means of interprocess communication. Processes communicate via one means
or the other, or via a combination of both. Let us define pure message
communication as communication in which interactions between sender and
receiver are guaranteed to occur only via messages. There is no instant in which
both sender and receiver have simultaneous access to any variable, and hence
there is no need for locks, critical sections, or other synchronization mechanisms to
coordinate access to shared variables.

Message passing by value implements these semantics more naturally than mes­
sage passing by reference. In a value-based mechanism, data is copied physically
from sender to receiver. There is no time at which both processes can access the
data. In a reference-based mechanism, however, what is communicated is a pointer
that can be dereferenced to access the data. Since both sender and receiver can
dereference the pointer, the absence of any restrictions on its use can make a
reference mechanism degenerate into communication using shared memory. The
receiver may inadvertently write into a message being prepared by the sender, and
the sender may inadvertently write into a message being used by the receiver. There
is no guarantee that interactions between sender and receiver are restricted to occur
at specific instants.

To determine what restrictions must be placed on a reference-based mechanism
so it satisfies the above guarantee, it is instructive to look at a value-based
mechanism. Such a mechanism provides the above guarantee, although the exact
conditions it satisfies are more restrictive than is really necessary. In a value-based
mechanism, once a process sends data in a message, it has no way of ever modify­
ing or accessing that data-the receiver has exclusive access to the data for an
arbitrarily long time after receiving it. Similarly, before a process has received the
data in a message, it has no way of ever modifying or accessing the contents of that
message-the sender has exclusive access to the data for an arbitrarily long time
before sending the data. The above conditions guarantee exclusive access to the
data for both the sender and the receiver for a semi-infinite time interval (Figure
7-2a). It is easy to see, however, that the sender needs exclusive access to the data
only while it is preparing the data, and the receiver needs exclusive access only
while it is using the data (Figure 7-2b). Thus we have the following conditions that a
value-based mechanism satisfies trivially and a reference-based mechanism must
be made to satisfy before it can provide pure message communication:

C1: After a process sends a message m, there is no way for the process to
modify the data communicated by m, until the receiver is done using the
data.

C2: Before a p;ocess receives a message m, there is no way for the process to

Figure 7-2

7. Operating-System Performance

Conditions for Pure Message Communication

(a) Value semantics

(b) Value and reference semantics

modify or access the data communicated by m once the sender has decided
to prepare the message m.

133

This is not to say that pure message communication is the only useful inter­
process-communication mechanism. Sometimes shared memory is the most ef­
ficient or most straightforward means of programming an algorithm. Consider the
binary search that we presented as an example of sparse use. Certainly the
reference-based mechanism is more efficient and for many parallel search al­
gorithms, the fastest implementation may be to pass each process reference to the
portion of the database it is to search.

Another case in point is the way scheduling is performed in STAROS (Section
6.5). Capabilities for process objects are mailed between the Process Creator, run
queues, and schedulers as the system load changes dynamically. It would make
little sense conceptually-let alone from the standpoint of efficiency-to copy (pass
by value) a major portion of the process state each time a process was rescheduled.
Pure message communication is important, but the efficacy of a message system
does not stand or fall on how effiCiently it provides pure communication.

New Measures: Latency and Throughput. In the above, our first attempt at
measuring process-to-process interaction time included the time it takes to transport
the message and the time for the receiver to read the message. For a more
complete measure, we should include the time for the sender to produce the data for
the message and, if pure message communication is desired, the synchronization

134 II. Operating Systems

operations necessary to preclude simultaneous access to the data by the sender
and receiver. Only if these factors are included can measurements of message
communication adequately reflect its interactive nature.

As an example of where speed of interaction is important, consider the use of a
message mechanism to request the servicing of some time-critical function. What is
important in this case is for the message mechanism to deliver the message rapidly
from the requester to the server. The time it takes to do the Send and the time
needed to do the Receive are of little importance. When response is important, the
time to perform the Receive operation is completely irrelevant because the receiver
presumably has already done the Receive and is waiting to service the message as
soon as it arrives. The time to do the Send, as viewed by the sending process, often
is completely unrelated to the end-to-end transmission delay. This is the case, for
example, in a message mechanism that buffers the message locally and allows the
sender to proceed immediately after the message has been accepted. If the mes­
sage goes through several intermediate buffering steps before arriving at the
receiver, the end-to-end latency will be much larger than the time it takes to send the
message. In addition, the cost of the Send alone does not include the time for a
context swap that may be needed to get the receiver to start execution, although this
time must be included in the measurement of end-to-end delay.

Latency L and throughput T can capture the performance of an interaction be­
tween sender and receiver. Latency and throughput have been used frequently to
represent the performance of computer systems and computer communication net­
works [Kleinrock 75], and it has been suggested [Stone 75] that these are fun­
damental measures of performance evaluation. Latency represents the time it takes
to deliver a minimal amount of information from one process to another. Throughput
measures the speed, in bits per second, with which a large amount of data can be
delivered from one process to another.

Latency can be used to predict the performance of programs in which control
must be transferred frequently from one process to another. Examples of such
programs are those that are set up using the requester-server paradigm, processes
that handle I /0 in a conventional computer system, and processes that handle
time-critical functions in a real-time system. Latency is also a critical component in
the time to execute a remote procedure call in a network environment [Nelson 81].

By contrast, programs that require transferring large amounts of data between
processes tend to stress the data-communication component of a message
mechanism, and the performance of such programs can be predicted using the
throughput measure. The principal examples of this type of usage are programs for
transferring files. Not all uses of a message mechanism fall into one or the other of
the above categories, however, since applications such as real-time processing of
speech stress both the control-transfer and the data-communication dimensions.

In order for the measures of Land T to measure their interactions, they must be
measured from the pOint of view of a user of the message mechanism. The ex­
perimental setup for measuring Land T consists of two user processes, a sender
and a receiver, in different em's, communicating with each other via messages. For
both setups, communication is constrained so that it satisfies the conditions for pure

Figure 7-3

Figure 7-4

7. Operating-System Performance 135

message communication. The code at the sender for sending a single message
looks something like Figure 7-3. At the other end, the receiver performs the set of
operations in Figure 7-4 to receive a single message.

Note that both the sender and ,the receiver perform a number of operations in
addition to the ones that send or receive messages. For the sender, the extra
operations involve writing b bits into the message, where b is the size of the mes­
sage, and setting up the parameters for the Send operation. For the receiver, extra
operations involve setting up the parameters for the Receive and reading b oits from
the message just received. For the purposes of this evaluation, assume that the
message is read exactly once, as it was in the "moderate use" case at the beginning
of this section.

The AwaitSignal step in the code for the Sender process indicates that, in the
case of reference-based pure message communication, the sender must await
notification that the receiver is finished using the object that holds the previous
message before it begins to write a new message. AwaitSignal and GiveSignal can
be implemented most efficiently as a return message sent from the Receiver
process to the sender. An alternative implementation would be to use a new object
to hold each message. While in principle this allows greater concurrency by permit­
ting the sender to start writing a new message before the receiver is finished reading
the previous one, the costs of dynamic memory allocation in STAROS, as in most
systems, outweigh the savings.

Note that for reliable value-based message communication, a return is also
desirable as an acknowledgment that the sender's message was received. The

Code for Sending a Single Message

process Sender =
begin

AwaitSignal; { in pass-by-reference version only }
WriteMessage(Size Of Message);
SetUpSendParameters ;
Send(SendParameters);

end

Code for Receiving a Single Message

process Receiver =
begin

end

SetUpReceiveParameters;
Receive(ReceiveParameters) ;
ReadMessage;
GiveSignal; { in pass-by-reference version only }

136

Figure 7-5

II. Operating Systems

value-based measurements below do not include the cost of a return message,
although there is reason to believe that the cost would be less than in the case of
reference-based communication, since the receiver can send the acknowledgment
immediately after receipt of the message, allowing transport of the acknowledgment
to overlap its reading of the message.

L Measures. A latency (L) measure for a message mechanism is defined to be the
elapsed time from the moment a Sender process decides to send a message to the
time that the receiver of the message can meaningfully act on it. Such a measure is
useful in characterizing the performance of a message mechanism in cases where
response is important or where processes interact relatively frequently using short
messages. Since we expect the majority of the uses of a message mechanism to be
of this type, we will consider the L measure to be the more important of the two
measures, although both the Land T measures are required to present a complete
picture of performance.

For an L measure to be well defined, it is necessary to specify that the receiver is
waiting for the message. (If the receiver is not waiting, the latency depends on what
the receiver is doing when the message arrives, and therefore it does not have a
well-defined value.) This constraint on the definition of latency is also reasonable
when we consider that in applications where low latency is important, a receiv.c::­
(server) typically will be programmed so that it is faster than the sender (requester).
In such cases, a message arriving at the receiver will find the receiver waiting.

In the above intuitive definition of latency, there are two significant instants: one
along the sender's time axis when it decides to send the message, and the other
along the receiver's time axis when it can first meaningfully act on the message.
Figure 7-5 illustrates the range of possibilities for each of these two instants. The
horizontal direction in the figure represents the separation between the sender and

Latency of Message Communication

Sender's time axis Receiver's time axis

Sender writes first word ------------ t
_writoS '''' won! I

'-tt

1
Lt Message

1_ ~,~,!, ~,_,~ ~ - -
trf

Receiver reads last word - .- - - - - - - - - - -

7. Operating-System Performance 137

receiver, and the vertical direction represents time. On the sender's time axis, tst is
the time when the sender first writes into the message to be sent, and t sl is the time
when the sender last writes into the message. The time when the sender decides to
send the message may lie anywhere in between tst and ts" On the receiver's time
axis, trf and t" are the times when the receiver first reads the message after receiv­
ing it and last reads the message, respectively. The time when"the receiver can first
meaningfully act on the message may lie anywhere between trf and t".

!f 'wAle fix the time at which the receiver can first meaningfully act on the message
to be trf, we can define two latency measures, Lit and L", which correspond to the
extremes for the definition of when the sender decides to send the message. The
last-touch to first-touch latency (Lit) measures the time from the moment that the
sender last touches the message to the moment when the receiver first touches the
message. It is the latency of the message mechanism in isolation, since it does not
include work that must be done to set up the message. This measure is useful in
situations where the data to be communicated is known beforehand and therefore
the setup cost does not need to be included in the measurement of latency. The
first-touch to first-touch latency (Lff) is useful in situations where the data to be
transferred is not known in advance, and therefore the process must do all the work
to set up the message after deciding to send the message. Consequently, the setup
time becomes critical to achieve low latency.

t:xperimental determination of Lit and Lff can be somewhat difficult because it
involves measuring a relatively short time interval whose starting point occurs on the
sender's time axis and whose end point occurs on the receiver's time axis. This
measurement is further complicated by the fact that when the sender's message
arrives, the receiver must be waiting for the message. One way to make the
measurement is to program both the sender and the receiver in a loop so that the
sender's loop takes significantly longer than the receiver's loop. This ensures that
the receiver will be waiting when the message arrives. Two hardware monitors are
needed to make the actual measurement. One detects the event on the sender's
time axis and the other on the receiver'S time axis. The latency can then be deter­
mined by displaying the signals from the two monitors on a display device such as
an oscilloscope or logic analyzer.

T Measures. A throughput (T) measure for a message mechanism is the average
rate at which the mechanism can communicate a large amount of data from one
process to another. There are at least three different ways to define the amount of
data communicated, and consequently three different definitions of throughput.

The first defines the amount of data communicated to be the number of bits
physically transported by the message mechanism. The argument here is that it is
inappropriate to credit the message mechanism with either more or less data than it
actually transports. For a value-based mechanism, this would be the number of bits
of data that are actually communicated; for a reference-based mechanism, it would
be the number of bits used to encode a reference to the data to be communicated.
The problem with this definition is that it is at too low a level. The definition of how
much data is communicated depends on the semantics of the message mechanism,
so we reject this definition as being inappropriate.

138 II. Operating Systems

The second definition is based on the intent of the sending process. Here the
amount of data communicated is defined to be the number of bits the sender actually
writes into the message. This definition is insensitive to whether the data is com­
municated by value or by reference because it depends only on how much data the
sender intends to communicate rather than on how this data is communicated. While
this definition is independent of semantics, it fails to capture the receiver's participa­
tion in the communication.

The third definition looks at the communication from the receiver's viewpoint.
Here the amount of data communicated is defined to be the number of bits, u, of
data that the receiver actually reads from the message. If the receiver does not
touch the messages at all (u=O) , the throughput is zero. This definition is also
independent of message semantics, but it fails to capture the sender's participation
in the communication. In the remainder of this section, we will refer to the second
and third definitions as the sender's viewpoint and the receiver's viewpoint, respec­
tively, of the data to be communicated.

Since both viewpoints are equally valid, we define two measures of throughput:
Ts' which is determined according to the sender's viewpoint, and T" which is deter­
mined according to the receiver's viewpoint. Which one of the above measures is
actually chosen to represent the throughput of a message mechanism is not critical
because in most applications where throughput is important, the receiver typically is
programmed to read all the data in each message. In this case, the receiver's
viewpoint coincides with the sender's viewpoint, and Ts and T, are identical. Further­
more, Ts and T, are formally related by the equation

T =T J!., , s b

where b is the number of bits written into each message by the sender and u is the
number of bits read from each message by the receiver, so that one measure is
sufficient to compute the other.

The two throughput measures can be determined experimentally by programming
the sender to deliver a large (potentially unbounded) number of messages to the
receiver and then measuring the time it takes to send all the messages.

Latency and Throughput Measurements. The STAROS and MEDUSA message
systems were measured under zero-load conditions; that is, the only user processes
on the system at the time of measurement were the Sender and Receiver
processes. Thus the measurements represent the best performance that user
programs will see under actual operating conditions where there may be other
programs contending for resources. All these measurements were taken on versions
of MEDUSA and STAROS that were current on December 30, 1981.

Recall that latency is well defined only if the receiver is waiting. In general, there
are two ways in which a receiver can wait: It may be blocked, in which case it is not
doing any active work while waiting, or it may be busy-waiting by executing
Conditional Receive operations. The blocked method of waiting usually is preferred

Figure 7-6

7. Operating-System Performance

Latency of Blocking Operations

12

10

8

6

4

2

o 100

-- StarOS, Lff
_.... StarOS, Lit
.....•. Medusa, Lff
. .• Medusa, Lit

200 300

139

400 500 600 700
Message size b (bits)

because it does not consume resources needlessly waiting for a message to arrive.
For many message mechanisms, however, busy-waiting achieves a lower latency
than blocking because it avoids the overhead of process switching. Since the mes­
sage mechanisms of MEDUSA and STAROS provide both unconditional and con­
ditional message operations, we present latency measurements for both forms of
waiting.

Figure 7-6 shows the curves for Lff and Lff for MEDUSA and STAROS in the case
where the receiver is blocked waiting for the message to arrive. The latency for each
mechanism at a message size of zero indicates how fast the mechanism can com­
municate a signal from one process to another. The zero-size values of Lff and Lff for
MEDUSA are 440 IJS. and 500 ,...s., respectively; for STAROS both are around 19,000
,...s. There are two reasons for this large discrepancy. First is the fact that MEDUSA'S
process blocking and reactivation is performed in microcode; STAROS'S is done in
software. The second reason is STAROS'S voluntary blocking, in which blocking and
reactivation have been decoupled from the message mechanism, making it a little
more difficult to optimize latency as MEDUSA has done. The variation of Lit and Lff
with message size is as expected for both systems. Since MEDUSA'S message is
value-based, both Lff and Lff increase with message size (although Lff increases
more slowly because it does not include setting up the message at the sender). Lff is
constant for STAROS, and Lff increases slowly. All the increases are very close to
linear.

Figure 7-7 shows the latency curves for the two systems when busy-waiting is

140

Figure 7-7

II. Operating Systems

Latency of Nonblocking Operations

3

2

o

•...... Medusa, Lff
-- StarOs, Lff
_. _. - Medusa, LIt
- ... - StarOS, LIt

100 200

- .. ---

-----.--. _ _ _ _ _ ... _ ... -
300 400 500 600 700

Message size b (bits)

used. Here, the STAROS results are much better than in the blocking case. The
zero-message-size laten~ies for MEDUSA are LIf=730 J.1s. and Lff =760 J.1s.; for
STAROS they are LIf=860 J.1s. and Lff =910 J.1s. The trends with increasing size are
identical to those for the blocking case. In this case, however, there is a crossover
point between MEDUSA and STAROS for both types of latency. The value-based
mechanism of MEDUSA is faster than the reference-based mechanism of STAROS for
sizes below the crossover and slower for sizes above the crossover. For Lit the
crossover occurs at around 30 bits (two words) and for Lff at around 100 bits (six
words). The variance 1 on all of the latency measurements for the busy-waiting case
was much larger than that for the blocking case. This is not very surprising, since the
latency obtained in anyone measurement depends on the time at which the
Conditional Receive is executed relative to the corresponding Send.

We have identified two measures of throughput, Ts and T,. Because the two
measures are related, we will use only one of the measures, Ts' for comparison. Just
as for latency, we will present the measurements of throughput for both the blocking
and non blocking operations.

The first set of measurements (Figure 7-8) are for the case where the receiver

1 The values plotted for each of the curves are averages over ten sample points for each message size
measured. The variance for each point on the MEDUSA curves is around 50ILS. and for each point on the
STAROS curves around 2501Ls.

7. Operating-System Performance 141

reads all the data communicated by the sender. For both systems, throughput in­
creases rapidly for small message sizes and quickly reaches a saturation value. The
performance of blocking and nonblocking cases for MEDUSA is virtually identical for
all message sizes, and has a saturation value of around 320K bits / second. For
STAROS, non blocking operations are uniformly better than blocking operations by a
small amount, but both are slower than either case for MEDUSA by a factor of around
five for small messages and a factor of around two for large messages. The satura­
tion value for the nonb!ocking case in STAROS is 190K bits! second and for the
biocking case is ; SOK bits / second. The difference relates largely to the fact that
message communication in MEDUSA is value-based and in STAROS is reference­
based. STAROS must pay a price for the extra synchronization to guarantee the
conditions for pure message communication. 2 It also must pay for making non local
accesses to the message from either the sender or the receiver.3 The graph shows
that in the case where the receiver references all the data communicated by a
sender, a value-based mechanism has a significantly higher throughput than a
reference-based mechanism.

The second set of measurements (Figure 7-9) are for the case where the receiver
reads only a fraction (10 percent) of the data communicated by the sender. The
curves for MEDUSA show the same general trend as before except that the through­
put is a little higher and the non blocking operations are uniformly faster than the
blocking ones. For the STAROS curves there is a crossover between the blocking
and nonblocking versions at a message size of around 2K bits. The blocking opera­
tions are faster for larger sizes and slower for smaller sizes. All the curves reach
their saturation values at a message size of 12K bits, although this fact is not
apparent from the shape of the STAROS curves. The major difference between this
graph and the one for 100 percent usage is that the reference-based mechanism of
STAROS performs much better, despite its extra synchronization operations to
guarantee pure message communication. This is to be expected because the
receiver touches only a fraction of the message and consequently does not pay very
much for making expensive non local references. STAROS'S mechanism is slower
than MEDUSA'S, except for blocking operations with messages greater than around

6K bits.
It is interesting to observe that the general shape of all the throughput curves can

be described by an equation of the form

where b is the message size and k1 and k2 are constants. Since throughput is

2 As noted above, however, adding an acknowledgment protocol to a value-based message mechanism
would offset some of this penalty.

3 This assumes that the sender and receiver are located in different Cm's. This will often, but not always, be
the case, since a STAROS function frequently invokes another function that runs on the same Cm as the
invoker. In such a case, STAROS does not have to pay the overhead of non local accesses.

142

Figure 7-8

7.5. Summary

II. Operating Systems

Throughput with 100% Data Usage

..... 400
U
CD
II)

~350

:a
~300 ...
~250
.c:
C)
::J
E200

~
150

o 2 3 4

-- Medusa, blocking
-. -- - Medusa, non blocking
-. - - - StarOS, nonblocking
- ... - . . StarOS, blocking

5 6 7 8 9 10 11 12
Message size b (K bits)

defined as the ratio of the total number of bits communicated divided by the total
time, the denominator of the above equation is proportional to the total time for
communication. The physical interpretation of the above equation is quite straightfor­
ward: The total time to communicate b bits consists of a constant part and a part that
increases linearly with b. The constant part (k1) represents whatever overhead is
present in the form of startup cost of the communication mechanism, and the linear
part (k~) represents the incremental cost per bit for communicating the data.

We have presented measurements of the two operating-systems implemented on
Cm*, STAROS and MEDUSA. The systems are compared with the Smap microcode
and against each other. Two specific aspects of their performance have been
evaluated: the microcoded kernel and nucleus operations, and the message system.
The disparities in functionality and the different implementation strategies are out­
lined, emphasizing the points where the comparison between the two operating
systems is relevant.

One can view the Kmap and its microcode as a special-purpose operating-system
processor. As such, the research questions are related to which operating-system
functions can profitably be placed in the Kmap and the different ways that each
function might be microcoded. The microcode has been measured using two tech­
niques: tracing and end-to-end real-time measurements. The measurements for the
three microcodes encompass common operations such as those concerned with
addressability and synchronization, as well as MEDUSA'S Block Transfer and

Figure 7-9

7. Operating-System Performance

Throughput with Low (10%) Data Usage

-..400
<.i
Q)
II)

~350

:t5
~300
I-

~250L

~~::. .• ~ .. ~.~.::.::..:....-.-.-.

..r::
Ol
::l
0200

~
150

o

l ._/: . / .
/

i
I

2 3 4 5 6

143

-- Medusa, blocking
- - - -- Medusa, non blocking
- - - - - StarOS, nonblocking
. - - - - - - StarOS, blocking

7 8 9 10 11 12
Message size b (K bits)

privileged operations and STAROS'S capability instructions and operations on
representation types. The metrics that have been used include time, space, number
of equivalent LSI-11 instructions, and references to the memory of a em.

The second aspect evaluated is the message-system performance. Both STAROS
and MEDUSA rely on messages for requesting operating-system services as well as
interprocess synchronization and communication in general. Not only do STAROS
and MEDUSA offer a message-communication facility to user programs, they also
make intensive use of it internally. Performance of the message facility is therefore
essential to the efficient operation of both systems. The message systems are
compared along two dimensions: functionality and performance. Along the functional
dimension, similarities (message buffering, conditional and unconditional operations)
and differences (value versus reference, message size, automatic versus voluntary
blocking) are outlined. Along the performance dimension, two types of evaluations
are provided. First, the performance of individual operations are studied. Second,
the speed of process-to-process interactions through the message system is com­
pared.

The comparison between the message mechanisms of MEDUSA and STAROS has
centered on two differences: value semantics versus reference semantics, and in­
tegration or segregation of process control from the primitives for message com­
munication. The overall results show that as far as latency is concerned, there is a
large potential gain from integrating process blocking and unblocking with the primi­
tives for message communication. Most of the improvements come from special
optimizations that are possible as a result of this integration. One way in which the
value versus reference difference manifested itself is that the latency of a reference-

144 II. Operating Systems

based mechanism is constant, whereas the latency for a value-based mechanism
increases with message size. Thus if the zero-message-size latency for a reference­
based mechanism is comparable to that for a value-based mechanism, a reference­
based mechanism is faster for sending large messages.

In the throughput comparisons, the value versus reference difference was much
more important than the integration of process control. In the measurement of
throughput, a reference-based mechanism suffers because of two assumptions that
frequently, but not always, hold: first, that additional synchronization is needed to
make a reference-based system obey the rules for pure message communication,
and second, that the communicating processes will be located on different Cm's,
requiring either the sender or the receiver to make non local references to the mes­
sage. Under these assumptions, a reference-based mechanism is slower than a
value-based mechanism except when the receiver uses only a small fraction of the
data communicated by the sender.

The comparisons presented in this chapter provide a basis for predicting and
evaluating the performance of an application on Cm* using one of the operating
systems. Before we do so, we will first explore the programming environments and
the experimentation methodology available in the Cm* research laboratory.

Acknowledgments. The material in Section 7.2 to "Pure Message Communication" was
adapted from the 1980 Cm* Technical Report [Jones and Gehringer 80]. It was written by
Pradeep Sindhu, Steve Vegdahl, and Anita Jones. Section 7.3 was adapted from measure­
ments reported in the 1980 Cm* Technical Report [Jones and Gehringer 80]. The measure­
ments were performed by Pradeep Sindhu, Ed Gehringer, and Steve Vegdahl. Section 7.4.3
was adapted from [Sindhu and Singh 83].

III. Programming Environments

8. Languages for Multiprocessing

When writing software for a uniprocessor, the programmer strives for an algorithm
that is efficient in both space and time. Beyond that, he or she has little reason to be
concerned about resource allocation. Among other services, the compiler automati­
cally allocates variables to registers, The programmer does not need to be aware of
how this is done, although some languages do permit the programmer to aid the
compiler by supplying hints about which variables must be accessed rapidly
(declaring certain variables as "register," for example). The choice of where to place
particular program elements in virtual memory is completely irrelevant, since all
virtual addresses can be accessed in the same amount of time. The operating
system takes care of the mapping between virtual memory and physical memory.
Experience has shown that, in general, automatic mapping is much more efficient
than manual overlaying. Some operating systems do allow controlled prepaging,
since when program behavior is well understood, performance may improve when
some swap-in operations are initiated in advance.

In multiprocessing, the situation is far less settled, both because we have less
experience and because new issues are raised. MEDUSA and STAROS are both
object oriented in the sense that all information is contained within objects. This is
especially useful for multiprocessing because it facilitates dividing the address space
of a process into portions that are private to it, portions that are shared with other
processes, and portions that should be replicated in other processes of the task
force. Eventually it may be possible for a compiler to decide which information falls
into each class, based on the characteristics of the multiprocessor and how the
information is used in the program. Ideally, the programmer should be allowed to
override any of the compiler's decisions that seem wrong. For the present, with little
experience to go on, both MEDUSA and STAROS give the programmer the full respon­
sibility of partitioning the address space into objects. The facilities for doing so have
not been incorporated into existing languages but rather are expressed in a new
language that specifies how processes in existing languages communicate with
each other.

In hierarchical multiprocessors, resource-allocation decisions are more compli­
cated because access time to memory and peripherals depends on the location of
the process doing the access. Clearly, processes should be located close to the
memory they will access most frequently, and device managers should be placed
near the devices they manage. In addition, if too many processes are assigned to
the same processor, performance will suffer. It is not easy for software to balance
these conflicting objectives intelligently, especially since the access frequency of a
process to a particular data item cannot be known until after the process is run. At
present, it is best to let the programmer specify constraints on placement to improve
resource usage. In the long run, the programmer can be allowed to tune the
automatic placement software for better performance.

147

148 III. Programming Environments

Interprocess communication and resource usage, then, are the focus of the lan­
guages that have been developed specifically for Cm*. There are three such lan­
guages: MEDLINK [Scelza et al. 81] and TASK [Jones and Schwans 79, Schwans 82],
which are used to synthesize task forces in MEDUSA and STAROS, respectively, and
AMPL [Dannenberg 81], an experimental language oriented toward the dynamic crea­
tion and control of processes. The facilities provided by MEDLINK are generally a
subset of those provided by TASK; MEDLINK is best described as a linker enhanced
for multiprocessing. AMPL runs on top of MEDUSA but is a complete language; entire
sets of communicating processes can be coded in it. The first section of this chapter
focuses on TASK and MEDLlNK, while the second section presents the AMPL lan­
guage. The implementation and evaluation of AMPL are described in Chapter 9,
which describes additional software environments built on Cm*.

8.1. TASK and MEDLINK

Programs for Cm* are usually written in BLIss [Bliss], which is a systems­
programming language developed several years ago without any special features for
parallel programming. TASK and MEDLINK describe the interactions between modules
programmed in BLIss. In general, a BLIss program codes the algorithm, while TASK
or MEDLINK code describes how that algorithm is mapped onto Cm*.

Our description of TASK will refer to a sample program, shown in Figure 8-1, that
illustrates most of the features of the language. This program describes a single
STAROS task force (Section 6.3.3) that is made up of two modules. The task force
solves a system of partial differential equations (PDEs), and is similar to those used
for performance studies in Chapters 3, 7, and 11. We will peruse the program in
top-down fashion, pausing occasionally to explain how an equivalent MEDLINK
program would differ.

Ignoring, for the moment, the mailbox declaration in line 1, the TASK program
appears to be divided into three distinct parts. The first, comprising lines 3 to 10, is
called a task-force template and relates information about the task force as a whole.
The remaining two parts are module templates and describe the two modules that
make up the task force. Each STAROS module exports one or more functions.
These functions are described by function templates which are nested inside the
module templates. The keyword function signals the beginning of a function
template. The first module defines two functions and therefore contains two function
templates. The second module template (module IOMod) defines only one function.

In TASK, each module or function template is divided into two sections, which
correspond to the two issues mentioned above: partitioning the address space into
objects and allocating resources to task forces. The first section is known as the
construction description. It declares the elements that belong to the module, func­
tion, or task force being defined. The second consists of resource-usage directives,
which describe how objects are to be placed relative to components of the Cm*
hardware and to each other. For example, in the IOMod module template. the
construction description tells us that an IOProcess is to be created. It will need to

Figure 8-1

8. Languages for Multiprocessing

A Program in the TASK Language

Mailbox CommBox (MsgType = II Capability II , Size = 25);

TaskForce PDEForce is
Construct (

5 MastrlO: New CommBox;
PDEM: New PDEMod(MIOMbox = MastrlO, SIOMbox = SlavIO);
10M: New IOMod(MIOMbox = MastrlO, SIOMbox = SlavID);
)

10 Directives 0

Module PDEMod (MIOBox: CommBox, (i=1 .. 15) SIOMbox[i]: CommBox) is
Construct (

ModCode1: New Basic (Source = ("PDE.obj"));
15 ModCode2: New Basic (Source = ("UsrUb.obj"));

20

25

30

35

(i=O . . 9) Grid[i]: New Basic (Size = 41<);

MasterProcess: Process PDEMod.Master 0; ! The master process
(j=1. 15) SlaveProcess: Process PDEMod.Slave

Function Master is
Construct (

(MyCommBox = SIOMboxfJl);

MProcessStack: New Basic (Stack);
MCode1: Ref ModCode1 (InitialCode ["MasterEntry"]);
MCode2: Ref ModCode2 (Window);

)
DirectivesO

Function Slave (MyCommBox: CommBox) is
Construct (

SProcessStack: New Basic (Stack);
SCode1: Use ModCode1 (InitialCode ["SlaveEntry"]);
SCode2: Use ModCode2 (Window);

)
40 Directives 0

Directives (
NotDiskCm: CmStar[O] where HasDisk = false;
Same ((i=1 .. 7) SlaveProcess[i], NotDiskCm);
NearCm ((i=1 . . 7) SlaveProcess[i]);

45 NearCm ((i=8 . . 15) SlaveProcess[i], MasterProcess);
)

Module IOMod (MIOBox: CommBox, SIOMbox: CommBox) is
Construct (

IOCode: New Basic (Source = ("PDEIO.obj"));
50 IOProcess: Process IOMod.IO 0; ! The I/O process

! And now, an invocation mailbox for a present process:
InvokeMB: New Mailbox (MsgType = "Capability");
)

149

150

Figure 8-1

III. Programming Environments

(continued)

55

60

65

Function 10 (Present [InvokeMBj) is
Construct (

IProcessStack: New Basic (Stack);
ICode: Ref lOCode(lnltialCode ["ServiceLoop"]);

TerminallnBuffer: Name; ! Used to receive data from the terminal.

TerminalOutBuffer: Name; ! Used to send data to terminal.
)

Directives (

Directives 0

DiskCm: AnyOf CmStar[O] where HasDisk = true;
Same (DiskCm, lOProcess);
)

transfer large amounts of information to and from a disk, so it should run on a em
that is directly attached to a disk. The resource-usage directive at line 66 indicates
this. In general, resource-usage directives are used to specify that task-force ele­
ments that communicate frequently should be placed close to one another and that
elements that might interfere with each other should be placed far apart. Future
language compilers might be able to make automatic placement decisions, but TASK
saddles the programmer with much of the responsibility for efficient allocation.

Templates that are divided into construction and resource-usage sections are
called complex templates. Table 8-1 gives the BNF syntax for templates, while
Table 8-2 defines the syntax for some other basic elements of the language. These
tables and those that follow omit certain less important constructs of TASK that are
not used in the example program.l Nonterminals are denoted by an arbitrary number
of characters enclosed in angle brackets-e.g., <x>. The metalanguage constructs
used are:

{ <x> I <Y . I

{ <x> :i
{ <x> }+
{ <x> }*
{ <X> };+
{ <x> };*
{ <x> },+
{ <x> },*

either <x> or <y>
an optional <x>
one or more occurrences of <x>
zero or more occurrences of <x>
one or more occurrences of <x>, separated by semicolons
zero or more occurrences of <x>, separated by semicolons
one or more occurrences of <x>, separated by commas
zero or more occurrences of <x>, separated by commas

A MEDLINK description of the POE task force would look much like the TASK
description. There are only two major differences. First, a MEDUSA task force is made
up of activities, not of modules that contain functions from which processes may be

1 For a complete list see [Schwans 82] or [Gehnnger and Chansler 82].

Table 8-1

8. Languages for Multiprocessing 151

Syntax for TASK Templates

<Templates> ::= < Template>* EOF

<Template> ::= {<Simple Template> I <Complex Template>}

<Simple Template> ::=

<Simple Object Type> <Simple Template Name> «Actual Attributes»#
Some actual attributes may occur only within functions or modules. Hence
there are semantic restrictions concerning which attributes may appear in
simple templates that are not bound to a particular complex template.

< Simple Object Type> ::= Basic I Stack I Mailbox I Deque I Device

<Complex Template> ::= <Task-Force Description>

I < Module Description>

<Module Description> ::= Module <Complex Template Name>

« Formal Parameters>)# is
< Construction Description>

< Function Description> +

< Resource-Usage Directives>
All module attributes must be specified at declaration time. Modules can
only be components of task-force templates. Only one instance of a
module can be constructed from a particular template.

< Function Description>: :=Function < Complex Template Name>

« Formal Parameters>)# is
< Construction Description>
< Resource-Usage Directives>

A < Function Description> can only be a component of a <Module
Description> .

<Task-Force Description> ::= TaskForce <Complex Template Name> is

< Construction Description>
< Resource-Usage Directives>

A task force template can have no parameters. A <Task-Force
Description> cannot be a component of another template. No more than
one task force template may appear in one TASK program.
Components may have any type except those specifically excluded above.

instantiated. Hence the task force is composed of three kinds of activities: master,
slave, and 1/0. MEDLINK permits replication factors to accompany activity descrip­
tions. In the POE example, the slave activity would be replicated 15 times. Normally,
objects in the SOL (Section 5.1.1) of the task force are defined before any activity.
Objects within the POL of an activity are defined within the activity definition, yielding
this hierarchy:

152

Table 8-2

III. Programming Environments

Expressions, Names, and Types in TASK

< Simple Name> < Unquoted String>

<Simple Template Name>, <Complex Template Name> ::= <Simple Name>
Template names must be unique in their first five characters.

< Formal Parameter Name> , <Actual Parameter Name> , < Identifier>
.. - < Simple Name>

<CompName> < Simple Name>

<Function Name> ::= <Complex Template Name> . <Complex Template Name>
<Entry-Point Name> ::= <Unquoted String>

< Object Name> <Simple Name> I <Access Expr>

<Var Type>

< Expr>

.. - String I Integer I Boolean

<Arith Expr> I < Quoted String> I true I false

Task-force description
Shared-object definitions
First activity description

Private-object definitions for first activity
Second activity description

Last activity description
Private-object definitions for last activity

It is also possible for objects to be defined "out of order" to allow two descriptors for
the same object to reside in different descriptor lists.

Another minor difference between MEDLINK and TASK is the ability to define con­
stants. This feature is absent in TASK, which means that the constant 15 must be
repeated several times (or passed as a parameter to each module). Of course, this
feature could easily be added to the language.

The second major difference between the two languages is that MEDLINK
specifies the location of an object at the time it is defined rather than grouping
location information for all a template's objects together at the end of the template.
MEDLINK places a location specifier in the object definition to state where the object
is to be placed. Location specifiers have much the same flavor as resource-usage
directives in TASK. Both will be considered later.

8.1. 1. Objects and Their Attributes

Objects such as basic objects, deques, and mailboxes are described using TASK
simple templates. A simple template itself is analogous to a type definition in other
programming languages. In the example program,

Table 8-3

8. Languages for Multiprocessing 153

Mailbox CommBox (MsgType = "Capability", Size = 25);

is an example of a simple template. It declares a CommBox "type," a capability
mailbox with space for up to 25 messages, from which instances of objects are later
created in

MastrlO: New CommBox;
(i=1 .. 15) S/av/O[i]: New CommBox;

later. If we had intended to define capability mailboxes of different sizes, we could
have left the size unspecified until the actual instantiation directive:

Mailbox CommBox (MsgType = "Capability");

New CommBox (Size = 25);

New CommBox (Size = 10);

It also is possible to define instances of objects by listing their attributes (Table 8-3)
explicitly rather than by referencing a template:

ModCode1: New Basic (Source = ("PDE.obj"));

Syntax for TASK Parameters and Attributes

<Formal Parameters> ::= <Formal Parameter> * I <Actual Attribute>*
< Formal Parameter> ::= {<Formal Parameter Name> , + I < Iteration>} :

<Simple Template>,
I <Identifier>,+: <Var Type>,

<Actual Attributes> ::= <Actual Attribute> I <Actual Attribute>, <Actual Attributes>
<Actual Attribute> ::= Source = ({ < Filename> }, +)

I Size = < Integer>
I < Special Attr>

<Actual Parameters> ::= {<Actual Parameter> I <Actual Attribute>}*
<Actual Parameter> ::= <Key Expr> = <Actual Expr>,

<Actual Expr> ::= < Object Name> I <Iteration> I < Expr >
I <Var Expr> I <Access Expr> I <Index>

<Key Expr> ::= < Formal Parameter Name> I <Access Expr> I < Iteration>

<Keyword Name> ::= <Obj Att> I <Hard Att>

<ObjAtt> ::= Source I MsgType

154 III. Programming Environments

This line instantiates a basic object that is to be initialized from the file PDE.obj.
The word New indicates that an object is to be created anew. Another way to name
an object is to reference an existing object, as in line 28:

MCode2: Ref ModCode2 (Window);

This causes a capability for (Le., a reference to) the object to be placed in a
capability list of a task force, module, or process. (The Window attribute will be
explained later.) A third option is to copy an existing object; the Use construct does
this, as in line 37:

SCode2: Use ModCode2 (Window);

This places a separate copy of the code in ModCode2 in the address space of each
process that is instantiated from the Slave function template.

All three of these alternatives cause a capability slot in a module object or
process object to be filled with a capability for the object that is created or
referenced. The fourth and final possibility is that the TASK program needs only to
reserve a capability slot into which a capability for an object can be stored at some
later time. The Name construct is used for this purpose. TerminallnBuffer a~d
TerminalOutBuffer in the sample program are declared as Names because no ob­
jects fill their slots when the task force is loaded. Rather, when the IOProcess begins
to run, it will look up the terminal input and output buffers in a standard library and
copy capabilities for them into the slots that have been reserved. The Name con­
struct is needed only when two or more separately compiled BLISS modules need to
reference the same capability slot. Otherwise, the names TerminallnBuffer and
TerminalOutBuffer can be defined in the BLISS program that uses them; they do not
have to appear in the TASK program at all.

When a complex template is instantiated, its component objects are also instan­
tiated, either by manufacturing new objects or by acquiring the appropriate cap­
abilities. For example, when a new Master function template is created in our
example, new MProcessStack and MCode objects are created, too. Just as the
New construct indicates that an object is to be fabricated, the Process construct
indicates that a new process is to be created to execute a specific function of a

specific module. (The process does not begin execution until it is scheduled,
however.) The notation PDEMod.Master, for example, names the Master function
of the PDEMod module. The syntax for construction descriptions can be found in
Table 8-4.

Like simple templates, complex templates may also be parameterized. Both
module templates in our example are parameterized. The parameters are mail­
boxes used for intermodule communication. The parameterization allows the
modules to share information via the mailboxes. In TASK, the scope of object names
encompasses only the template in which they are defined, so if the modules had not
been parameterized, the MasterlO and SlavlO mailboxes declared in the task-force
template could not be referenced from outside it.

Table 8-4

8.1.2. Iteration

8. Languages for Multiprocessing 155

Syntax for Construction Descriptions

<Construction Description> ::= Construct «Component> ;*)

< Component>.. < Comp Name> : < Operation>
I <Iteration> : <Operation>

<Operation> ::= New { {<Object Type> { «Actual Parameters» }#}

I <Template Name> { «Actual Parameters» }#)}

i Rei < Object Name> { ({ < Spec/ai Attributes> }) } #
I Use <Object Name> { «Actual Attributes» }#

I Process <Function Name> «Actual Parameters»
Note: returns a mailbox. Semantics: Processes may be created
only within the body of the module defining their function
I Name { «Special Attributes» }#
Only the Window attribute should appear here.

In a TASK program, all template names are global and must be unique in their first
five characters. Function names are nested, as in Algol or Pascal. If a particular
name occurs twice, an instance of the name refers to the one in the smallest
enclosing complex template: complex-basic, module, or task-force description. As
noted above, object names are known only within the complex template in which
they are defined.

In the complex templates of the previous section, each component is explicitly
named, but it is often useful for the number of components to vary with the size of
some data structure or the number of processors used. TASK'S iteration construct is
used to specify multiple components that differ only in minor ways (Table 8-5).
Iteration can be used to express the partitioning of data objects into multiple objects
and to specify parameterized replication of objects.

Our example program uses replication to create a separate mailbox for the I /0
process to communicate with each of the slaves (line 6), to create ten basic objects
to hold the grid of coefficients for the POE (line 17), and to tell how many slaves are
to be created (line 20). In many cases, it is helpful to parameterize a module
definition in order to vary the number of server processes:

Module PDEMod(... NumSlaves: integer) is
Construct (

(j=1 .. NumSlaves Max 12) SlaveProcess: Process PDEMod.Slave
(MyCommBox = SIOMboxU]);

The iterative syntax above will cause the creation of NumSlaves processes, each
executing the Slave function. NumSlaves potentially varies each time the task force
is instantiated but may not exceed the value 12.

156

Table 8-5

III. Programming Environments

Syntax for Iterations

<Iteration> ::= «lterName> = <Low Umit> .. <High Umit» <Access Expr>

<Access Expr> ::= <Iterated Name> [<Index>]

<Index>
<Low Umit> ::=

<High Umit> ::=

<lterName> {Mod <Var Expr>}#
<Integer>
<Integer>
I * Max < Integer>
I < Integer> Max < Integer>
I < Variable>

<lterName> ::= <Simple Name>
<Iterated Name> ::= < Comp Name>

I < Formal Parameter Name>
I <Actual Parameter Name>

In the example program, the grid was partitioned into ten objects to circumvent
the maximum basic-object size of 4,096 bytes (Section 4.2). In this case, we knew
how large the grid was before running the program. This may not always be true,
especially when a program takes a data structure as input or in the case of object
code, where it is difficult to predict how large the compiled code will be. If the
task-force author does not know how many objects will result from partitioning a
source file, an asterisk (*) is used to indicate "as many as necessary to exhaust the
file." Here is an example:

(i=O . . * Max 5) MyCode[i]: New Basic (Size = Source = ("Codfil.obj"));

The first 4K bytes of the file will be placed in MyCode [0], the next 4K bytes in
MyCode[1], and so forth until the input is exhausted. The maximum range of the
iteration index must be known at compile time. Thus no more than six MyCode
objects will be created, regardless of the size of the file Codfil.obj. Furthermore, the
last MyCode object will be 4K bytes in length, regardless of whether it is completely
filled.

8.1.3. Special Attributes

Several times during any TASK program it is necessary to refer to specific charac­
teristics of the STAROS system. These characteristics are known in TASK as special
attributes (Table 8-6). InitialCode (lines 27, 36, and 58 in the example program)
refers to an object and means that execution of a STAROS process begins in the
object at the named entry point (e.g., MasterEntry). The Stack attribute, which also
occurs in the example program, identifies an object as containing the process stack
of a process. TASK attempts to place InitialCode and Stack objects in the same em
as the process that uses them. If multiple processes are created from the same

Table 8-6

8. Languages for Multiprocessing

The Syntax of Special Attributes

<Special Attr> ::= Window [<Integer>]#
I PrivateMailbox
I InitialCode [" < Entry-Point Name> "]#
I Stack
I StackOwns [< Object Name>]

I Present [<Object Name>]
I A!ias ['f <Function !'Jame> II]

157

function, it is mandatory to create separate Stack objects (note the New construct in
the object definition) and usually best to create separate code objects for each (via
the Use construct), although two processes may profitably share a code object
(through the Ref construct) if they execute on the same em.

As noted in Section 6.3.1, a STAROS function may either be present, meaning
that at least one process permanently exists to carry out the function, or be absent,
indicating that a new process is created each time the function is invoked and
terminates after servicing the invocation. If a function is present, all requests for
invoking it are sent to its invocation mailbox. In the example program, the I/O
function is present (since it would be wasteful to create a new process each time
input or output must be performed). The construct Present InvokeMB in its defini­
tion states that InvokeMB is its invocation mailbox.

Unlike invocation mailboxes, which are shared by multiple processes executing
the same function, each process that executes an absent function is invoked via its
own private mailbox. TASK allows a mailbox to be declared "private," as in

MyOwnMailbox: New Mailbox (MsgType = "Capability", PrivateMailbox)

which says that the private mailbox of a process created from the function that is
currently being defined is to be called MyOwnMai/box. Since each new process
receives a unique private mailbox, however, and since the Process construct
returns whatever object is the private mailbox of the process, the PrivateMailbox
attribute rarely needs to be used.

Since objects may be addressed only through 15 windows, a maximum of 15
objects may be addressable when a process begins execution. Among them must
be the InitialCode and ProcessStack objects (or else the process cannot success­
fully execute its first instruction); TASK takes care of placing these in windows
automatically. In principle, the allocation of other windows is analogous to the alloca­
tion of registers and could be handled automatically by a language compiler. In
practice, the BLISS compiler was not modified to do this, so STAROS (and MEDUSA)
programs must explicitly load (a capability for) an object into a window before
referencing it.

A BLISS program can cause a window to be loaded by executing a Load Window
instruction, but certain objects, such as additional code objects or mailboxes used
for interprocess communication, are likely to be used soon after a program begins

158 III. Programming Environments

execution. From the standpoint of readability, it is convenient to declare their need to
be in windows in the same place that the objects themselves are instantiated. TASK
provides the Window attribute for this purpose. In the example program, the
MCode2 (line 28) and SCode2 (line 37) objects were marked as Window. Had they
lacked this attribute, the MasterEntry or SlaveEntry routines would have had to load
those objects into windows before any code from them was executed.

8. 1.4. Resource-Usage Directives

As noted at the beginning of this chapter, resource allocation for parallel programs is
still an open research question. The ideal would be to assign processes and data to
processors automatically, or at least semiautomatically, allowing for tuning by the
programmer. For the moment, TASK and MEDLINK give the programmer tools for
making a rather complete specification of how resources should be allocated. In a
task force such as the POE, several resource-usage constraints come to mind. All
processes should execute local code and use a local process stack (for justification,
see Section 3.1.4)-this is one decision that TASK makes automatically. Processes
that are ready to execute simultaneously should be assigned to separate proces­
sors. Page objects in MEDUSA and 4K-byte basic objects in STAROS that are used by
only one process should be local to that process; other private objects should be in
the same cluster. Processes that must use a certain peripheral should run on the
processor that is attached to that peripheral. In the POE task force, for example, the
I/O process needed to execute on a processor that contained a disk. The TASK
statements

DiskCm: AnyOf CmStar[O] where HasDisk = true;
Same (DiskCm, lOProcess);

at lines 65 and 66 in the POE example arranged this by declaring DiskCm to be a
processor that has a disk attached. In the next line, the IOProcess was constrained
to run on this processor. The resource-usage section at lines 42 through 45 causes
slave processes 1 to 7 to execute in one cluster on Cm's that do not have a disk
attached (ensuring that the IOProcess has a em all to itself) and constrains the rest
of the slaves to execute in the same cluster as the master. This must be a second
cluster, since one cluster can contain a maximum of 14 em's.

In TASK, the resource-usage section of a complex template (Table 8-7) consists of
selections and directives. Selections define terms that are used in the directives by
associating a set of hardware resources with an identifier. Examples are the defini­
tions of DiskCm and NotDiskCm in the sample program. Directives come in two
types. The first type, called proximity relations, specifies constraints on the relative
location of two or more software components. The second type is used to constrain
the placement of software objects to hardware resources with specific attributes.
Since most directives use relative rather than absolute locations, the TASK compiler
can consider various mappings of software to hardware, in an attempt to achieve
more optimal resource utilization by minimizing total communication across buses.

Table 8-7

8. Languages for Multiprocessing

Syntax for Resource-Usage Directives

< Resource-Usage Directives> ::= Directives « Selection> ;*< Directive> ;*)

< Selection> ::= {< Hardware Set Name> I < Identifier>} : < Selection Expr>
< Directive> ::= < Iteration> # < Proximity Degree>

({ < Iteration ># < Object Name» }, +)

I <Iteration># Same «Hardware Set Name> [<Index>]#,
{<iteration># <Object Name> i <identifier> },+)

<Proximity Degree> ::= <Integer> I SameCm I SameCluster I NearCm
I DifferentCm I DifferentCluster I NoCare

<Selection Expr> ::= <Set Expr> {where <Attr Expr>}#
I AnyOf < Set Expr>
I NumberOf < Set Expr>

<Set Expr> ::= <Set Name> I «Set Name> <Opr> <Set Name»
< Set Name> ::= < Predefined Set Name> I < Hardware Set Name>
<Attr Expr> ::= <Hard Att> <ReIOpr>

159

I «Hard Att> < RelOpr> < Hard Att Value><Opr><Hard Att>
< RelOpr> < Hard Att Value»#

<Opr> and I or

< RelOpr> < I > I = I <= I >=

<Hard Att Value> ::= <Integer> I true I false
<Hard Att> ::= MaxMPSize I ActualMPSize

I NumEther I NumLines I NumDisks
I MaxSize I ActualSize
I Has Disk I HasLine I HasEther
I NumCms I NumClusters

< Predefined Set Name> ::= Cm I CmStar
I ClusterO I Cluster1
I Cm[O,O] I Cm[O,1] I
I Cm[1,O] I Cm[1,1] I
I Cm[2,O] I Cm[2,1] I
I Cm[3,O] I Cm[3,1] I
I Cm[4,O] I Cm[4,1] I

<Hardware Set Name> ::= <Simple Name>

I ... I Cluster4
I Cm[O,14]
I Cm[1,14]
I Cm[2,14]
I Cm[3,14]
I Cm[4,14]

Proximity Relations. Because Cm* has a three-level hierarchical structure, there
are three meaningful degrees of proximity between objects: They may be within the
same Cm, in different Cm's but within the same cluster, or in different clusters.
Degrees of proximity such as these can appear in resource-usage directives. If TASK
were designed with a different target architecture in mind, say Cube-Connected
Cycles [Preparata and Vuillemin 81] or Alpha structure [Bhuyan and Agrawal 84],
different measures of proximity would be used. For these architectures, a suitable
measure would be the number of nodes that a message traverses on its way to the
destination. For a set of processors communicating over an Ethernet, there are only

160 III. Programming Environments

two degrees of proximity-local and non local-as the transmission time over the
network is independent of the relative location of the nodes.

Taking into account the three levels of hierarchy, and the need to keep different
objects together or apart, six different proximity constraints are possible:

SameCm-Should be in the same computer module.
SameCluster-Should be in the same cluster and can be in the same computer

module.
NearCm-Should be in different computer modules and should be in the same

cluster.
DifferentCm-Should be in different computer modules and can be in different

clusters.
DifferentCluster-Should be in different clusters.
NoCare-Can be anywhere.

Except for objects with the InitialCode or Stack attributes, the NoCare proximity
degree is given to all software components that are not related by explicit directives.

Proximity relations are specified by naming the relation and listing the objects to
which it applies. For example, we could have explicitly given the default directive for
the location of the master process's stack:

SameCm (MasterProcess, MProcessStack);

Iteration can be used, as it was in the NearCm directives that constrained sets of
slave processes to the same cluster.

The SameCm proximity relation implies a new "same-processor" relation that is
transitive.2 For example:

SameCm (MyStack, Scratch);
SameCm (Scratch, MyCode);

requires that MyStack and Scratch, Scratch and MyCode, and consequently
MyStack and MyCode are placed in the same computer module's memory. Such
implied relations can induce conflicts among proximity relations. A conflict occurs, for
instance, if we add the directive

NearCm (MyStack, MyCode);

to the directives in the example above. The conflict is resolved by giving same
preference over different. In the example, MyStack and MyCode would remain
SameCm, and in the same processor. To avoid conflicts of the form

2 The next several examples have been taken directly from the STAROS Manual [Gehringer and Chansler
82], this part of which was based on an earlier technical report by Jones and Schwans [Jones and Schwans
80]. They also appeared in [Schwans 82].

8. Languages for Multiprocessing

SameCm (Code, Cm1);
SameCm (Code, Cm2);

161

each component of a template (e.g., Code) can be named in exactly one SameCm
or SameCluster directive.

The NearCm directive implies a "same cluster" relation that is also transitive. For
instance, the two directives

NearCm ((i=1 .. 9) ServeiPM[i1);
NearCm (Scratch, ServerPM[1]);

require that each server process must be NearCm to all other server processes and
also that the object called Scratch be NearCm to the first server process. All
servers and the object Scratch will be placed in the same cluster.

As noted above, the TASK compiler attempts to resolve conflicts in resource­
usage directives by giving Same preference over Near. TASK also has a facility for
giving the programmer a finer grain of control over placement decisions by using
integer-valued proximity degrees. The proximity degrees run from 1 to 100, with
higher values expressing a greater need for components to be near one another. All
six proximity constraints are assigned values within this range:

SameCm corresponds to 90.
SameCluster corresponds to the range 31-89.
NearCm corresponds to 30.
DifferentCm corresponds to the range 11-29.
DifferentCluster corresponds to 10.
NoCare corresponds to the range 1-.9.

Values above 90 express a stronger need to locate objects together than even the
SameCm directive implies. Values within a range are used for resolving conflicts. A
value of 88 would be given preference over a value of, say, 31 when two directives
conflicP For a final measure of control, a compile-time switch allows the program­
mer to specify whether the resource-usage directives are to be interpreted as
preferences or constraints. If they are preferences, the compiler resolves conflicts
to the best of its ability according to the priority rules just described. If they are
constraints, then conflicting directives such as the NearCm(MyStack, MyCode)
directive given above are flagged as illegal.

Naming Specific Hardware Resources. em's and clusters are not all created
equal. Some em's have 64K of memory; others have 128K. Some have Ethernet
boards, while others are attached to disks. Several processors have serial-line units

3 For the purpose of resolving conflicts, the SameCluster and DifferentCm proximities are mapped to some
integer value within their range. This valUe is empirically determined based on performance studies and is
subject to change.

162 III. Programming Environments

for connection to terminals or multiplexers. Clusters contain different numbers of
these resources, even when all processors and devices are up simultaneously. One
should be able to load task forces regardless of the availability of specific resource
units, as long as sufficient resources are available.

The 110 process in our example program must run on a Cm attached to a disk.
The programmer should not have to name a specific Cm because that demands
knowledge of the Cm* configuration (which can change) and requires recompilation
in the event that either the em or the disk fails. TASK allows virtual hardware
resources to be named for those occasions when no other method is sufficiently
expressive for the programmer's wishes. It also provides two other ways to select
resources: selection from a resource set and selection by hardware attributes. We
will consider all three methods of resource selection.

SELECTION BY (VIRTUAL) HARDWARE COMPONENT NAME. TASK uses Cm*'s con­
figuration table, which can be updated before each run, to determine what hardware
resources are available. It calls the first cluster it encounters ClusterO, and the first
em within this cluster Cm[0,1]. (Alternate ways of referring to these resources are
CmStar[O] and ClusterO[1].) It thus defines virtual cluster 0, which mayor may not
be physical cluster 1 of Cm*. Subsequent em's and clusters are numbered sequen­
tially, as shown in Table 8-7, up to a maximum of Cluster4 and Cm[4,14]. A
programmer who wants to place, say, the MasterProcess on Cm[1 ,2] codes

Same (MasterProcess, Cm[1,2])

SELECTION FROM A RESOURCE SET. Usually it is not necessary for a program to
name a particular hardware resource, such as a em, because any element of a set
of similar resources will do. The example program, for instance, must have
processes placed in particular clusters but not on specific em's within those clusters.
The AnyOf construct can be used in a selection expression to choose an arbitrary
element of a set. If we had been interested only in placing the MasterProcess on
any em within Cluster1, we could have written

MyCm: AnyOf (Cluster1);
Same (MasterProcess, MyCm);

by first defining the term MyCm and then using it to specify the placement of
MasterProcess.

The predefined names CmStar and Cm can also be used as resource sets.
AnyOf CmStar names one arbitrary cluster in the system, while AnyOf Cm names
an arbitrary em somewhere in the system. The NumberOf construct returns the
cardinality of a resource set (e.g., "NumberOf Cm[1]" returns the number of
functioning em's in Cluster1). This value may be useful as an upper bound for an
iteration.

SELECTION BY HARDWARE ATIRIBUTE. The characteristics of em's and clusters

8. Languages for Multiprocessing 163

mentioned at the beginning of this section-amount of memory, peripherals, and so
forth-are called hardware attributes by TASK. Some attributes of individual em's
are

MaxMpSize, the amount of memory in a em.

ActualMpSize, the amount of memory available to user programs (excluding that
occupied by the operating system).

HasDisk, HasLine, and HasEther, which tell whether the em is connected to a
disk, a seriai-iine unit, or an Ethernet board, respectively.

The corresponding attributes of a cluster are MaxSize, ActualSize, NumDisks,
NumLines, and NumEther, obtained by summing the values of the respective at­
tribute in each em.

The where construct expresses selection by attribute. For example,

AnyOf CmStar[1] where (ActualMpSize > 48K and Has Ether = true)

selects an arbitrary em in virtual cluster 1 that has an Ethernet board and more than
48K of memory available for user programs.

Observe how selection by attribute is used in the example program. At line 66,
DiskCm is defined to be a particular Cm with a disk attached. The next line con­
strains IOProcess to execute on it. The definition of NotDiskCm at line 42 is a bit
more interesting. NotDiskCm is a set of resources consisting of all the Cm's in
ClusterO that do not have disks. Slave processes 1 through 7 are constrained to
execute on members of this set. Line 44 further refines the requirements to mandate
that the processes execute on different members of this set.

The fact that the example program must use the virtual hardware component
CmStar[O] in lines 42 and 66 points out a limitation of TASK. It would have been
more elegant to define

PDECIuster1 : AnyOf CmStar where (NumDisks > 0 and NumCms > 7);
PDECluster2 : AnyOf CmStar where NumCms >= 7;
DiskCm: AnyOf PDECIuster1 where Has Disk = true;
NotDiskCm : PDECIuster1 where HasDisk = false;

thus freeing the IOProcess from the need to run in ClusterO (and allowing the task
force to be loaded even if there is no disk on ClusterO). Unfortunately, TASK'S scope
rules defeat us; there is no way to give two module templates access to this defini­
tion. The provision of globally defined names would resolve the problem, although it
is fraught with dangers of its own. MEDLINK provides global names and also allows
names defined in one activity (analogous to a template) to be selectively exported to
other activities. Its group command is used to assign an activity to a named activity
group; all activities in the group share a common name space.

MEDLlNK'S Location Specifiers. As we have seen, TASK templates come in two

164 III. Programming Environments

sections: After the construction description instantiates a set of objects, the
resource-usage section specifies their placement relative to each other and relative
to hardware components. MEDLINK associates a location specifier with an object
-potentially with each object, although Don't Care is the default if no location
specifier appears.

A MEDLINK location specifier is made up of two parts, a reference part and a
relative-location part. The reference part serves as a reference point for the relative­
location part, which is similar to a TASK proximity constraint. The reference part can
name a specific (physical, not virtual) em, an activity, or a task force. A MEDLINK
location specifier might read

Cm1-5, Prefer Same Cm

Except for Don't Care, relative-location names are three-word phrases. The second
word always is "same," while the first may be "require" or "prefer," and the third is
"cluster" or "Cm." Relative-location names may be concatenated where meaningful,
providing for six different relative-location parts:

Don't Care
Require Same Cm
Require Same Cluster

Prefer Same Cm
Prefer Same Cluster
Prefer Same Cm Require Same Cluster

Contrasted with TASK, which treats directives as preferences or constraints on an
all-or-nothing basis, MEDLINK provides more flexible control (although it is not clear
how often the programmer might wish to mix preferences and requirements in the
same program). However, MEDLINK lacks the Different proximity constraints avail­
able in TASK. The programmer must name physical Cm's in order to keep task-force
components apart, greatly limiting the amount of optimization that MEDLINK can
perform. By contrast, we have seen that TASK obliges a programmer to name virtual
hardware resources to control the relative placement of components of different
modules.

B.1.5. Running a TASK Program

When a task force is instantiated using the PDEForce template, a STAROS task­
force object is created. All its components, including the two module objects, are
created and initialized. Instantiation of the module templates results in the creation of
all objects specified in the modules' construction descriptions, thereby creating all 17
processes. This "chain-reaction" instantiation of objects simplifies the construction of
a task force for the programmer by taking away the need to code the sequence of
individual actions involved in building the task force.

It is the STAROS Loader that creates the task-force object. In this object, the
Loader places a capability for each object instantiated within the task-force
template. After the Loader finishes creating the task-force object, and anything else
that it causes via the chain reaction, it gives the module capabilities in the task-force

8.1.6. Retrospectives

8. Languages for Multiprocessing 165

object to the user interface. This enables the user to invoke functions of these
modules from command level.

TASK and MEDLINK represent the first attempts at a linguistic approach to the
problems of resource allocation in a running multiprocessor system. TASK was more
ambitious than ~ ... ~EDL!f'.JK, but neither \A/aS considered easy to use. As noted aailiei,
both had a tendency to force the user to name particular Cm's in resource-usage
directives. Both required the user to be familiar with the address-mapping
mechanism and the organization of object-code files, as well as the processor inter­
connection structure.

It is not difficult to propose solutions to these problems. A judicious selection of
scope rules, coupled with a generalization of the Near and Different proximity
constraints of TASK, should go a long way toward overcoming the need to name
physical hardware components. Perhaps some form of nested module structure can
aid this effort. Beyond that, the Cm* project suffered from its attempt to make do with
minimal modifications to existing compilers, as TASK and BLIss programmers con­
stantly were confronted with the need to make objects addressable. In the future,
larger address spaces will make allocation of "window registers" a matter of
diminishing concern. The problem will not disappear entirely, however, because
short-address operand formats will still be needed. For some systems, an associa­
tive cache may take over the work of mapping short addresses to full virtual ad­
dresses, but for other systems, software will still playa role. Window registers, like
general registers, can best be managed by the compiler, however, perhaps aided by
some programmer-supplied hints. At any rate, the programmer should not be
bothered with routine decisions about allocating addressing registers.

Another job that neither TASK nor MEDLINK handled automatically was the assign­
ment of object code to objects. Given the fact that objects could hold no more than
4K bytes of data, and that only 15 of them could be simultaneously addressable, it
was frequently necessary to make careful choices about which object code was to
be placed in which objects. TASK and MEDLINK provided ways of controlling the
placement of individual CSECTs, and a bin-packing program was written to assist
the programmer, but the program was not integrated into either TASK or MEDLINK. As
a result, the programmer had to use the output of the bin-packing program as a
guide in writing low-level directives to TASK and MEDLINK-in effect, performing
manual overlaying. This is another problem that will decline in importance as ad­
dress spaces grow larger. To the extent it remains, it can be combated by integrating

bin-packing algorithms into the compiler.
Finally, there is the question of whether separate languages such as TASK should

exist at all. Any programming language can include facilities for process and object
creation (AMPL, for example, allows dynamic process creation) and could be ex­
tended to encompass resource-allocation decisions, too. This would free the
programmer from the need to know two languages just to write a simple program,
but it also would force every language to incorporate these facilities, thus increasing

166

8.2. AMPL

III. Programming Environments

the complexity of languages and compilers. From the standpoint of compiling, at
least, improved technology should help cope with the complexity. To avoid com­
plicating the source code, perhaps resource-allocation directives can be separated
from the body of the code in much the same way that module specifications are
segregated in languages such as Ada.

AMPL (A MultiProcessing Language) is an experimental high-level language de­
signed by Roger Dannenberg for expressing parallel algorithms that involve many
interdependent and cooperating tasks. AMPL is a strongly typed language in which
all interprocess communication takes place via message passing. Like TASK and
MEDLlNK, AMPL is implemented on em*. Unlike TASK and MEDLlNK, complete
programs can be written in AMPL; in fact, a number of programs have been written to
perform numeric and symbolic computation. The AMPL implementation includes its
own run-time system, which runs on top of MEDUSA and provides interesting con­
trasts to STAROS'S garbage collection and MEDUSA and STAROS'S message sys­
tems. This section concentrates on the language itself; Section 9.2 explores the
design and performance of the language and its run-time system.

Motivation for the design of AMPL originated in the consideration of dataflow
languages and experience with hardware design. Since the inception of digital
electronics, hardware designers have devised interpreters, real-time control sys­
tems, and data-processing systems that utilize thousands of computing elements, all
operating in parallel.

Dataflow computers are an approach to achieving this level of parallelism in a
programmable machine. Dataflow programs are normally restricted in that only
functional or "stateless" programs are allowed. The value of a "variable" cannot be
changed because values are used to synchronize computation. In AMPL, networks
of computing elements can be interconnected to perform computation like the nodes
of dataflow machines, but like hardware elements, nodes can have state. Not only
does this allow operations with side effects, but storage can be distributed and
maintained at the site of computation rather than in a "structure processor"
[Ackerman 78] or other special storage unit, as required by a dataflow machine.

AMPL is not designed for the implementation of systems that must survive
hardware and software errors to provide reliable service over extended periods of
time. As in early algorithmic languages for uniprocessors, little attention is paid to
issues of exception handling and error recovery. AMPL is machine independent and
could be implemented on a variety of multiprocessor and computer network struc­
tures. Because AMPL is an experimental language, it has intentionally been kept
simple and small. A richer syntax and additional features would be expected of a
production language.

8. Languages for Multiprocessing 167

8.2.1. AMPL Programs and Modules

AMPL is based on the use of message passing for both communication and
synchronization. Shared memory is not available. The language provides for the
dynamic creation of processes, the ability to pass references to processes through
messages, and garbage collection of processes. AMPL is a strongly typed language,
and borrows heavily from Modula and Pascal, using a similar syntax and also
restricting the use of dynamic structures to simplify storage allocation [Wirth 77]. Its
paiallel piOcessing faciiities are descendants of CSP [Hoare 78], although substan­
tial changes have been made, for example, to allow dynamic process creation.

A short example of an AMPL program is given in Figure 8-2. The program adds
ten pairs of numbers and prints the results. Two processes are used in addition to an
output process predefined by the language. One process generates numbers to be
added and formats the output. The other process actually performs the additions,
returning results to the formatting process. Figure 8-3 illustrates the run-time struc­
ture and communication paths of this program.

As can be seen from Table 8-8, an AMPL program is made up of a series of
module definitions, potentially preceded by global constant and type definitions. The
adder program consists of two module definitions, one global type, RefPortlnteger
(its mnemonic significance will be explained later), and no global constants. If we
wished, however, we could easily use a global constant to control how many num­
bers are added by inserting the declaration

const NumAddends = 10;

and changing the 10 in line 12 to NumAddends.
A module header includes the module name, which has global scope, and a

parameter list. The module name is passed as an argument to the create function,
and causes a new process to be instantiated to execute the module's code. The
variables in the parameter list are initialized to the values supplied in the create
function call, as described below. All processes must be explicitly created in this way
at run time with two exceptions: (1) system-defined modules for I/O are created
automatically, and (2) an instance of the program-defined module main is created
automatically.

8.2.2. Basic Program Elements

Within a module definition, one can define constants, types, variables, and ports
(analogous to pipes in MEDUSA or mailboxes in STAROS) associated with the
module. Constants and types declared within a module are local to that module; if
declared outside, they have global scope. No variables can be declared outside
modules because AMPL does not allow shared memory. Special rules apply to port
declarations, as will be explained in Section 8.2.3. Table 8-9 gives syntax for these
and other basic program elements. Note the strong resemblance to the correspond­
ing elements of Pascal. The similarity carries over to comments, which may be
bracketed by { and} or (* and *).

168

Figure 8-2

III. Programming Environments

A Simple AMPL Program to Add Ten Pairs of Numbers

type RefPortlnteger = refport integer;

module main;
port

5 Sum Port : integer;
var

sum, i: integer;
adder: refmod AdderMod;

{this process created automatically}

begin {add some numbers using an instance of AdderMod}
10 adder := create (AdderMod, self.SumPort); {parameter tells ... }

i := 1 ; { ... where to send results}
whilei< 10 do

send ito adder.APort;
send 100 to adder.BPort;

15 send i to Wrlnt; { print i }
send ' + 100 = ' to WrStr; { print a string}
accept SumPort(sum); {get sum of i+100}
send sum to Wrlnt; {print sum}
send 1 to WrLn; {print 1 newline}

20 i:= i + 1
end;

end;

25 { the following module adds two integers and sends the sum to result: }

30

module AdderMod (result: RefPortlnteger);
port

var

APort: integer (1);
BPort: integer (1);

a, b: integer;
begin

while true do
35 accept APort (a);

accept BPort(b);
send a + b to result;
end

end

{ operands arrive one at a time}
{ so buffer size is set to 1 }

{ get operands . . . }

{ ... return result}

AMPL uses a standard expression syntax (Table 8-10). The operators, listed in
order of decreasing precedence (with operators of equal precedence on the same
line) are as follows:

- (unary minus)
* / div mod

+-
< <= >= = > <>

not
and
or

Figure 8-3

Table 8-8

8. Languages for Multiprocessing

Run-time Structure of the Program Presented in Figure 8-2

Main

Write

WrStr

Wrlnt

WrLn

AdderMod

Syntax for AMPL Programs and Modules

<program> ::= {<constant declarations> }#

{ < type declarations> } #
<module declarations>

<module declarations> ::= {<module definition> };+

<module definition> ::= module <identifier>
{ <parameter list> }#;

<block>

<block> .. - {<constant declarations> }#

{ < type declarations> } #
{ <port declarations> }#

{ < variable declarations> } #
begin { { <statement> }# };* end

169

The if statement is reminiscent of its counterpart in PLI I. The expression must be of
type Boolean. Notice that the statement is terminated by the symbol end. Statement
lists may follow the symbols then and else. Either or both statement lists may be
empty. The entire else clause is optional. AMPL'S only iterative construct is a stan­
dard while statement.

170

Table 8-9

III. Programming Environments

AMPL Basic Program Elements

<letter>

<digit>

<stringchar>

<identifier> .. -

<integer> .. -

<string> .. -

<constant declarations> .. -

<constant definition> .. -

<constant> .. -

< variable declarations> .. -

< variable definition>

AIBICI .,. Illalblcl .. · Iz

01112131 .. ·19

""I!I"""I#I$I%I&I (I) 1*1
+ I , I - I . I / I : I ; I "<" I ">" I ? I
@ I [I \ I] I t I - I . I U{" I "I" I U}" I
- I < digit> I <letter>

<letter> {<letter> I <digit> }*

{<digit> }+

, { <stringchar> I " }* ,

const { < constant definition> } +

<identifier> = <constant> ;

{ { + I - }# {<identifier> I <integer> } I <string>

var { < variable definition> } +

< identifier list> : <type> ;

<variable> ::= {<identifier> I < variable> [<expression>]
I < variable> . <identifier> }

8.2.3. Ports and Messages

AMPL processes communicate via ports. One process sends a message to a port,
from which it may later be accepted by a receiving process. Several examples of
send and accept statements appear in the adder program. A port belongs to the
receiving process. Only one process can receive messages from a given port, and
that right cannot be transferred. This decision simplifies the implementation because
it eliminates a level of indirection (mapping from ports to receivers).

Three ports are defined in the adder program, two for the AdderMod to accept
the two addends and one in the main module where the result is to be returned. All
three ports are of type integer, because both addends and the sum are integers. The
addend ports have a buffer size of one (in parentheses); they can buffer only one
message at a time. Thus only one set of inputs can be waiting for service simul­
taneously; processes that attempt to send to a full buffer will be suspended, just as
in MEDUSA. No buffer size is specified in the SumPort declaration, so the default
buffer size is used. The syntax for port declarations, along with send and accept
statements, is given in Table 8-11.

All three ports in the adder program are defined using the first form of a <port
definition> . The second form is a list of port specifications in parentheses.

Table 8-10

Table 8-11

8. Languages for Multiprocessing 171

Syntax for AMPL Expressions, Iterations, and Conditionals

<expression> .. -

< conjunction> .. -

<negation> .. -

< comparison> ..

<compare op> ..

<sum> .. -

<addop> ..

<product> ..

<multop> ..

<factor> ..

<term> .. -

<if statement> .. -

< while statement> ..

{ <conjunction> I <expression> or <conjunction> }

{<negation> I <conjunction> and <negation> }

{ <comparison> I not <comparison> }

{ <sum> I <sum> <compare op> <sum> }

"<" I "<=" I ">=" I = I ">" I "<>"

{ <product> I <sum> <add op> <product> }

{ + I - }

{ <factor> I <product> <mult op> <factor> }

{ * I div I mod }

{ <term> I - <term> }

{ <integer> I <string> I <identifier> <actual list> }
I « expression>) I < variable> }

if <expression> then { { <statement> }# };+

{ else { { <statement> }#};+ }# end

while < expression>
do { { <statement> }# };+ end

Syntax for AMPL Ports and Send and Accept Statements

<port declarations> .. port { <port definition> } +

<port definition> .. { <port specification> ;
I ({ <port specification> };+) ; }

<port specification> .. - <identifier> : <type> { «constant>) }#

<send statement> .. send <expression> to <expression>

< accept statement> .. - accept <accept list>

<accept list> .. { < accept item> }, + ..

<accept item> .. - <identifier> «variable>)

172 III. Programming Environments

Messages sent to any of the listed ports will always be received in the order of their
arrival times. All messages in the list logically share a single queue. (The software
writer is free to use separate queues and time stamps, for example.) The size of the
queue is the maximum of any constants given in the port specifications. If no
constants are specified, a reasonable default value is computed. The use of this
second form of specification is explained below.

All identifiers in port specifications are known globally so that given a reference to
a module, all ports of that module can also be referenced. The main module is able
to send to APort and BPort without having the port names explicitly declared as
parameters. By contrast, all other identifiers declared inside a module are local to
that module.

Declaration of a port within a module indicates that the port is to be instantiated
whenever the module itself is instantiated. Therefore, if the module is instantiated
twice, then separate ports are created for each process. Processes can accept
messages only from their own ports. Any process with a reference to a port can
send messages to it.

Send Statements. The syntax for the send statement includes two expressions.
The first expression is evaluated to yield a value that becomes the content of the
message. The second expression is evaluated to yield a port reference. A port
reference is a variable of a reference type. Its format is M.p, where M is a module
that has a port p. If the first expression is of type T, then the second expression
must be of type refport T. For example, the send statement at line 13,

send i to adder. APort;

sends the integer i to adder. A Port, which is of type refport integer, since Aport is
defined as an integer port. It is an error to send to a null port descriptor or to a
process that has halted. In the event that the destination port buffer is full, the
sender remains suspended until the message can be delivered.

When an AMPL process performs a send, it is suspended until the message
arrives at the port (not until the receiver accepts it from the port, unless the port is
full). This guarantees that messages arrive at a port in the same order in which they
were sent. More precisely, the following property is obtained: If a send to a port
completes before another begins, the first message sent will be the first one
received. In the case where the sends are from the same process, more efficient
protocols can maintain a chronological ordering, but consider the case illustrated in
Figure 8-4. Suppose process A wants to deliver a message to port P, after which
process B will deliver a message, and these messages must arrive in order. Also
suppose that send statements do not wait for delivery. After process A sends to
port P (message 1 in the figure), A instructs process B to send a message by
sending message 2. B responds by sending message 3. But wait! Message 1 may
not have arrived at port P because process A never waited for its delivery. In AMPL,
Process A cannot proceed until message 1 is delivered, so no race condition can
arise. This sort of synchronization is used only occasionally in AMPL programs, but
failure to wait for delivery could result in unreliable and very mysterious program
behavior.

Figure 8-4

8. Languages for Multiprocessing 173

Two Processes Sending Ordered Messages to a Single Port

Waiting for delivery also facilitates flow control. If the buffer at the receiver is full,
the message can be discarded because the sender is suspended with a copy of the
message. A complete description of the message-passing implementation is given in
Section 9.2.1. A process can have only one undelivered message outstanding, so
this decision potentially reduces parallelism by blocking processes unnecessarily.

Sending Messages of More Than One Type. AMPL is a strongly typed language.
The AMPL restriction that a port can receive messages of only one data type is
essential to its strong typing. Safe garbage collection in AMPL is made possible by
strong typing. It is sometimes necessary, however, to send more than one type of a
message to a port.

To illustrate the problem, refer to Figure 8-4 and suppose that message 3, sent
by process B, has a different type from that of message 1 but that process C, the
receiver, must receive both messages in order. For example, message 1 may be the
last data message of a stream, and message 2 may be an end-of-stream message.
Because the messages have different types, two ports must be used, say P1 and P2
(see Figure 8-5). With the mechanisms presented so far, there is no way to
guarantee that messages are received in order, unless extra synchronization mes­
sages are sent. The problem is that messages are, in effect, sorted first by ports and
then by arrival time. We want to receive messages from P1 and P2 sorted first by
arrival time and then by ports. This can be accomplished by using the second form
of port declaration given in Table 8-11. Messages are accepted in the order in which
they were sent, regardless of what port in the list they were sent to. An alternative
solution is to provide union types so that the data message (message 1) and end-of­
stream message (message 2) can be sent to the same port. In a larger language,
this probably would be the best choice because union types have other uses and are
therefore more general.

Accept and Select Statements. Two AMPL statements can be used to receive

174

Figure 8·5

III. Programming Environments

Synchronization of Messages Arriving at Two Ports

messages. The simpler of the two is the accept statement. The messages sent to a
port can be received only by the process in which the port is declared. If only one
<accept item> is named in an accept statement, a message is removed from the
indicated port's message queue and is assigned to the indicated variable. If the
queue is empty, the process suspends until a message arrives.

If more than one accept item is present in the accept list, each port identifier must
be distinct. The process suspends until a message is present at each port's mes­
sage queue. Then one message is removed from each queue and assigned to each
variable in the order accept items are listed. An accept statement with a list of
accept items is identical to a sequence of accept statements with one accept item
each, except that with a sequence of accept statements, some messages may be
accepted before all messages are present.

AMPL'S accept statements are fine for receiving messages from a single port or
from all ports in a set, but they are not useful when a process wants to receive a
message from any of a set of ports or when a list of ports is declared to allow
messages of different types to be queued in a first-come first-served fashion. In
these cases, a select statement must be used.

The select statement is a generalized nondeterministic form of the accept state­
ment. It allows a process to act on any of several message arrivals and to place
constraints on which message is accepted next. One and only one of the select
alternatives is executed. An alternative is said to be enabled when its conditional
expression is true and a message is waiting in the queue for each port specified in
that alternative's accept list. Again, ports in the accept list must be distinct.

If no alternatives are enabled, the process suspends until an alternative is en­
abled. If one alternative is enabled, messages are accepted as in the simple accept
statement, and the corresponding list of statements is then executed. If more than
one alternative is enabled, the one least recently executed is selected. This provides
a fair choice in the sense that if a given clause in a given alternative is enabled
repeatedly when the select is executed, then the alternative eventually will be

Figure 8-6

Figure 8-7

8.2.4. Types

8. Languages for Multiprocessing 175

chosen. If no enabled alternative is the ieast recentiy executed (Le., none has been
executed at all), then the choice is made arbitrarily.

Figures 8-6 and 8-7 are two examples of select statements. The first statement
(Figure 8-6), when executed inside a loop, will implement mutual exclusion on a
shared piece of data. The second example (Figure 8-7) uses the built-in function
ready. The ready function takes a port identifier (not a port reference) as its ar­
gument and returns true if the port has a nonempty message queue. The ready
function is useful for indicating priority in select statements and for avoiding suspen­
sion when a message queue is empty. The code in Figure 8-7 grants requests to
read or write to shared data. Writers have priority, and multiple readers are allowed.

select

select

accept read(reader) then
send data to reader end;

accept write(data) then end
end

when ReadCount = 0 accept WriteRequest(writer) then
send OK to writer;
accept WriteDone(writer)
end;

when not ready(WriteRequest) accept ReadRequest(reader) then
send OK to reader;
ReadCount := ReadCount + 1
end;

accept ReadDone(reader) then
ReadCount := ReadCount - 1
end

end

Except for the addition of reference types, AMPL types are similar to Pascal or
Modula types. As in Modula, there are no types that must be dynamically allocated
within module instances. Unlike Modula and Pascal, types need not be declared in
any particular order. Forward references and recursive types are handled properly.
Types are equivalent if they are structurally the same. For arrays, the number of
components must be identical, and the component types must be equivalent. For
records, the types of corresponding fields must be equivalent, and the number of
fields must match. All subrange types are equivalent to type Integer, but the

176

Table 8-12

III. Programming Environments

Syntax for AMPL Types

<type declarations> ::= type { <type definition> } +

<type definition> ::= <identifier> = <type> ;

<type> ::= {<simple type> I <array type> I <record type> I <ref type> }

<simple type> .. - {<constant> .. <constant> I <identifier> }

<array type> .. - array [<simple type>] of <type>

<record type> ::= record <field list> end

<field list> ::= {<field> };+

<field> ::= <identifier list> : <type>

<identifier list> ::= {<identifier> } ,+

<ref type> .. - {refport I refmod } < type>

software writer may assume that the value of a variable of a subrange type is
bounded by the constants specified in the type declaration. Reference types are
equivalent if the referenced types are equivalent. No two modules are considered
equivalent; this is the only case where structural equivalence is not applied. The
syntax of AMPL types is given in Table 8-12.

Since floating-point numbers are not permitted, integer and Boolean are the only
predefined types. Arrays are one dimensional, but multidimensional arrays can be
simulated easily using arrays of arrays. The syntax for referencing a structure is like
that of Pascal (see Table 8-9). The field selection (dot) notation also references a
port within a module as explained in Section 8.2.3.

Section 8.2.3 introduced the refport data type. Variables of type refmod are also
permitted. The create function returns refmod values; only in this way may refmod
values be created. A refmod value is essentially a pointer to a process. In the adder
program, the adder variable is of type refmod AdderMod. If another process were
created to execute the adder module, another variable of type refmod AdderMod
would be needed to store the reference to the process. That is, the code

var adder, adder2: refmod AdderMod;

adder := create (AdderMod, self.SumPort);
adder2 := create (AdderMod, self.SumPort);

instantiates two AdderMod processes, which are capable of performing two ad-

8.2.5. Functions

8. Languages for Multiprocessing 177

ditions in parallel. Notice the use of self.SumPort as a parameter of the create
function. Every process has an implicitly declared variable called self, which is
initialized with a reference to the process itself. In a process that is an instantiation of
module M, the type of self is refmod M. If module M declares a port p, then self.p
refers to the name of port p in that process. Consequently, the main process passes
both AdderMod processes a reference to its Sum Port. Both the adder processes
return values to the same port, and these values may arrive out of order. Nonethe­
less, the parallelism is useful if the adder processes are slow and a long sum is
being computed. The order in which the numbers are added does not matter, as
addition is associative and commutative.

Functions cannot be defined by the AMPL programmer, but there are two system­
defined functions, create (Section 8.2.1) and ready (Section 8.2.3). An alternative
syntax for process creation, which is more consistent with AMPL'S message-passing
facilities, would be to use a language-defined port called create. Messages would be
sent to the create port to specify the process to be created, the parameters for the
process, and a reply port to which a reference to the created process would be sent.
This alternative approach would allow the creator to continue executing in parallel
with the creation of the new process, but the overall time to create a process would
be slightly longer.

8.2.6. Language-Design Issues

Dannenberg [Dannenberg 81] studied several programming-language issues in the
design of AMPL. Many of them are too specific to delve into here, but a couple are of
particular interest because they represent different design philosophies from other
programming systems developed on Cm*.

Storage Allocation. Several aspects of typing in the AMPL design simplify the
storage-allocation problem. The typing system is restricted so that the compiler
knows the size of all objects. AMPL does not provide procedures (although
procedures may be simulated with other mechanisms). The storage-allocation
strategies, in turn, affect the design of garbage collection.

The absence of procedures allows the compiler to determine the maximum stack
size of a process. The maximum size for a given process is bounded and depends
only on static properties of the code. Heap storage is required only for processes,
since variables cannot be allocated dynamically and there are no "pointer"
types in AMPL.

A more elaborate and flexible set of types, as illustrated by modern programming
languages (e.g., Ada), is desirable for many applications. The typing system of AMPL
was chosen primarily to keep the implementation simple; it provides enough power
to allow interesting parallel programs to be written without overly complicating the
implementation.

178

B.2.7. Retrospectives

8.3. Summary

III. Programming Environments

Processor Allocation. AMPL has no facility for specifying physical process loca­
tions. Processor allocation is performed by the run-time system. Because processes
do not share memory and interact via messages, it is particularly easy to move
processes from one processor to another. Thus allocation can be varied dynami­
cally. Where there are large numbers of processors, it is difficult to know how and
where to locate processes, especially in programs that create processes dynami­
cally. The philosophy behind the design of AMPL is that programs should specify a
high degree of parallelism, with far more processes than processors. This helps
ensure that the available parallelism will be utilized even though the allocation of
processors is less than optimal. The absence of shared memory means that the set
of variables used by a process is always known, so it is easy to arrange to keep
variables physically near the processor that accesses them. Very little research has
been done relating to processor allocation in this sort of system. The AMPL im­
plementation has hooks to allow process migration, but none has been performed.

AMPL demonstrates how message passing can be used to express interprocess
synchronization and communication in a high-level language. The expressive power
of the primitives in AMPL allowed the development of programs with more complex
control structures than previous Cm* application programs. While many synchroniza­
tion errors were found in the run-time system as it was tested, the synchronization in
all the AMPL programs was correct from the start (which is not to say there were no
other bugs). The high level of correctness can be attributed to several factors. First,
the absence of shared memory forces the programmer to consider synchronization
whenever processes interact. Second, type checking helps ensure that data is inter­
preted correctly and that interfaces between processes are correctly implemented.
Finally, because AMPL has built-in mechanisms for process creation and message
passing, the programmer can avoid the implementation of tedious operating-system
interfaces and concentrate on the problem at hand. In addition, the compiler can
apply some checking to these operations.

A pattern or style of programming was observed in the test programs. Nearly all
modules in existing AMPL programs can be viewed as implementations of abstract
types whose operations are invoked by sending a message to a port. If we were to
design another language for parallel processing, we would attempt to use this as a
basis for the language rather than message passing. The invocation of an abstract
operation normally would be implemented by sending a message, but the actual
construction of the message and its receipt would be hidden from the programmer.
The compiler might then be able to detect special cases where simple mechanisms
could be substituted for the full-blown message-passing scheme of AMPL.

This chapter has presented two dissimilar approaches· to programming environ-

8. Languages for Multiprocessing 179

ments. The first approach, represented by TASK and MEDLlNK, provides a set of
primitives external to a sequential programming language language to support
operations specific to parallel programming. These include resource allocation, crea­
tion of independent processes, interprocess coordination and communication, object
management, and scheduling.

Both MEDUSA and STAROS embody the notion of a task force. TASK and MEDLINK
allow task forces to be synthesized by means of programming templates
-"b!ueprints" for a paralle! computation" These templates represent the macro­
static paraliei program structure in terms of moduies, their communication patterns,
and resource-allocation directives. The templates are separate from the sequential
code that makes up the modules, which usually are written in BLIss. Although this
approach generally is useful for any multiprocessor, TASK and MEDLINK solve
resource-allocation problems specific to Cm*. Both tend to require the user to be
familiar with the Cm* architecture and object organization. Also, both require the
user to know two languages (BLIss and TASK or MEDLlNK). Aside from these draw­
backs, TASK and MEDLINK have proven extremely useful in contrasting and under­
standing the logical-to-physical resource-mapping problem.

The second approach is to design a new langl.li.ge and compiler to support
programming for a multiprocessor. AMPL is an attempt to do just that. It emphasizes
a model of computation where sequential modules cooperate through messages.
AMPL con.wucts describe three types of basic elements: modules, ports, and mes­
sag~ .. -:: ~nnin a module definition, one can define constants, types, variables, and
ports. AMPL is a strongly typed language. Except for the addition of reference types,
AMPL types are similar to Pascal or Modula types.

The discussion of AMPL continues in Chapter 9, which contrasts its software
environment with another very different programming environment on Cm*.

Acknowledgment. The material on AMPL in this chapter has been adapted from [Dannenberg 81].

9.1. NEST

9. Other Software Environments

Almost all the processes that run on an ordinary computer system are run with the
support of an operating system, which provides utilities such as I/O routines to
simplify the task of the programmer. Indeed, most of the experiments performed on
Cm* have utilized one of its two operating systems. But Cm* is no ordinar'1 computer
system, both because of its experimental nature and because of the extraordinary
freedom to change its virtual machine, even down to its addressing structure, by
modifying Kmap microcode. Throughout the history of Cm*, three software environ­
ments other than operating systems have been used to run processes. One of these
was developed to run large benchmarks before the operating systems were fully
available. The other two were motivated by a desire to make the construction of
large task forces cheap by simplifying the creation and management of processes.

This chapter begins with a brief description of NEST, which was brought up
quickly to run experiments and compare different Cm* microcode systems before the
software portions of STAROS and MEDUSA were completed. It progresses to a
description and evaluation of the AMPL run-time system, which provides many
operating-system-like facilities in an effort to circumvent some of the overhead of
MEDUSA process creation and message passing. The chapter concludes byexplor­
ing the ECHOES experiment, whose goal was also inexpensive process creation but
which went about it by a diametrically opposite approach: maximizing, rather than
minimizing, the sharing of information. It is a testimony to the flexibility of the Kmaps
and the Cm* architecture that both AMPL and ECHOES were able to achieve their
goals.

Specifically excluded from this chapter are other systems and tools that more
properly fall in the realm of firmware than software. Among these are Smap (the
simple microcode), which is described in Appendix D, and several microcode­
development tools. Among the latter are the microassembler CMIC, the register­
allocation program PMIC, James Gosling's MUMBLE (Most Unlikely Microassem­
BLEr), and John Ousterhout's KDP (Kmap Debugging Package). All these were
described in [Jones and Gehringer 80].

NEST is the work of Jarek Deminet who was the first to run extensive multicluster
benchmarks on Cm*. Previous benchmarks had been run on a ten-processor system
with serial lines attached to all Cm's so that all software could be loaded directly
through the Cm* Host. The 50-processor system still had only 10 serial lines, so a
more sophisticated environment had to be developed. The operating systems also
provide such facilities, but they were not yet operational.

The first approach was to identify a particular Cm as the master and load all code
into memory through its serial line. The master then transferred parts of the code to

181

182 III. Programming Environments

other slave Cm's and initialized the global data, which resided in its memory. Note
the similarity between this organization and the sample task force presented in
Section 4.1 .1 . After starting the slaves, the master joined them in running the parallel
algorithm. Simultaneously, however, it had to handle clock interrupts and monitor the
other processors to report final results. This version of a benchmark was called the
standalone experiment.

Standalone experiments had several shortcomings, which provided the impetus
for a more sophisticated environment. First, the user could not keep track of the
progress of the experiment because the master and the slaves were busy running
the benchmark and could not communicate with a terminal without perturbing the
measurements. This was a serious inconvenience for longer experiments, which
often lasted several hours. Even without performing terminal 1/0, the master was
slowed down by its other duties, such as fielding clock interrupts and implementing
the counter used to time the experiment. Furthermore, the master needed to contain
the master and slave code and the 110 packages, which seriously constrained the
amount of address space left over for global data and thus limited the size of the
experiments that could be run.

The NEST (Nuclear Environment for Software Tests) environment was developed
in response to these problems. It dedicated a single Cm, known as the interface
module, to communicating with the terminal and monitoring the other Cm's. Essen­
tially this meant divorcing the responsibility for communication from the processors
running the experiment (Figure 9-1). It permitted the user to interrogate the task­
force status at any time with minimal perturbation of the results. Each of the other
Cm's, called remote Cm's, contained a small supervisor to handle interrupts, com­
municate with the interface module, and multiplex the processes that were running
the experiment. In many cases, however, only one process was allocated per
processor, rendering multiplexing unnecessary.

In addition to the supervisor, each Cm also contained a set of background
routines, which provided medium-level memory-management operations. Different
versions of these routines were created to serve as interfaces to all three
microcodes-Smap, MEDUSA, and STAROS. Since NEST ran without the operating
systems themselves, descriptor lists and other data structures that were needed by
the microcodes were created by NEST itself. Not all the microcode operations could
be used by programs running under NEST; because the microcodes were dissimilar
in design, some of the functions of one would have been difficult or impossible to
simulate in others. Only the address-space, synchronizing, and initializing operations
were used.

In its time, NEST greatly facilitated running experiments and comparing the perfor­
mance of the microcodes. It was used by Deminet in all his experiments (Sections
A.7, A.8, and A.9) and by Carey's power-systems simulation. It demonstrated that
simple software support was adequate for running rather large benchmarks. Its
interface facilities were later used as the basis for the MEDUSA user interface.

Figure 9-1

9. Other Software Environments

The NEST Structure

I :nn,
lUR J l UD'"J!
I I

Background
routinGs

~--.------~
Interface

Cm

r--------::l r--------:-l

[Process): : [Process)

I I

I

(1 I ('I

l Process ~ I Process I l'--_______)

Supervisor Supervisor

l ~"-----) L '-----.....)
I I

RemoteCm's

UDIR .. User·defined Initializing Routines
NUR··Nest Utility Routines
- User·defined objects
- Nest·defined objects

183

9.2. The AMPL Run-Time System

Chapter 8 contained a description of the AMPL language. The implementation also
raises a number of interesting issues because it encountered many of the same
problems as other Cm* systems but chose to solve some of them in different ways.
This section surveys several aspects of the AMPL implementation and reports perfor­
mance measurements on it.

9.2.1. Implementing AMPL on Cm* / MEDUSA

While the Cm* hardware is almost ideal for AMPL, the process and message-passing
abstractions provided by MEDUSA are poorly matched to its requirements. As a
consequence, the AMPL run-time system implements its own processes, ports,
scheduling, and storage allocation. MEDUSA activities exist in separate address
spaces, and the smallest grain of protection provided by hardware is a 4,096-byte
page. The smallest activity in MEDUSA is at least this large. At most 16 processes
can be created in any computer module. The designers of MEDUSA intended that
activities be rather static entities. It was decided to use Buss-11 coroutines to
implement AMPL processes. This allows processes to share an address space and
allows the run-time system to choose a process representation that is optimized for
AMPL processes. Because several AMPL processes can share a single address
space, there is no lower bound on process size due to hardware restrictions. Note
the similarity of this solution to the strategy adopted for MEDUSA utilities (Section

184 "I. Programming Environments

5.3), where coroutines were used to avoid the overhead of dedicated activities to
infrequently invoked utility service classes.

Ports. MEDUSA has a fairly elaborate message-passing system. At first sight,
MEDUSA seems like an ideal base for AMPL because it emphasizes the use of
message-based communication over shared memory. Upon closer inspection,
however, it is found that MEDUSA pipes are only remotely similar to AMPL ports. First,
pipe creation is a time-consuming operation due to protection, addressing, and
memory-management problems handled by the operating system. One way to cir­
cumvent this problem is to preallocate a large number of pipes in a commonly
accessible place (MEDUSA'S shared descriptor list) and assign pipes to processes
dynamically. Pipes would be reused rather than destroyed. The SOL allows a max­
imum of only 512 pipes, which would be too few for many programs. Another
problem with pipes is that if a pipe is full when a message is sent, the sender is
blocked. Assuming that AMPL processes are implemented as coroutines, what we
desire is the suspension of one coroutine, not the suspension of the MEDUSA

process that is responsible for executing many coroutines (AMPL processes). For
these reasons, MEDUSA messages cannot be used directly as AMPL messages.
MEDUSA pipes are used, however, in the implementation of AMPL ports, in the man­
ner described below.

Process Pairs. An ideal implementation of AMPL would use at least two types of
processors. One would be optimized to perform message-passing and resource­
allocation functions, and the other would be designed to execute AMPL programs
efficiently. Earlier it was mentioned that the Kmaps could perform the communication
functions. In our implementation, computer modules are used in pairs. One proces­
sor in each pair is called the communication processor, or CP, which creates
processes, delivers messages, and performs garbage collection. The other proces­
sor is called the application processor, or AP, and it actually executes AMPL
programs.

The CP and AP interact closely and share the memory used for AMPL processes.
The run-time system is composed of many logically identical CP / AP pairs (see
Figure 9-2). These pairs could be physically implemented on one computer module,
but there are at least three reasons for not doing so. First, it is desirable to service
incoming messages promptly to avoid letting a pipe become full. A full pipe might
block some other process and perhaps lead to deadlock. One solution is to use
interrupts to notify the receiver immediately, but MEDUSA does not provide a means
of interrupting a process when a message arrives. Second, while the total memory
of Cm* is large, individual computer modules have a limited amount of memory;
typically about 40K bytes are available for programs and data. Separating the CP
and AP allows the code for each to reside on separate machines. Third, using two
physical processors can provide a large degree of additional parallelism, since
message-passing operations overlap other computations. The decision to use
processors in pairs (rather than, say, one communication processor for every two
application processors) was somewhat arbitrary. It turned out that some programs

Figure 9-2

9. Other Software Environments

Basic Structure of the AMPL Run-Time System

Memory
shared

by
CPand AP

Memory
shared

by
CPand AP

Memory
shared

by
CPand AP

185

saturate the CP and others saturate the AP, so the right mixture is defined to a large
extent by the nature of the AMPL program. Dynamic optimization of processor as­
signment would greatly complicate the implementation.

While there is very close interaction and a high degree of communication within a
CP / AP pair, the interaction of one pair with another is much more limited. Com­
munication between pairs is almost entirely conducted via messages. While not
always the most efficient organization, this approach has the advantage of reducing
complexity to a manageable level. Message passing introduces some overhead.
More data is moved and copied to pack, send, receive, and unpack messages.
Messages also take substantial amounts of Kmap processing time. A shared­
memory approach would require additional code for synchronization. The possibility
for errors is large, and the errors would not necessarily be reproducible because of
timing considerations. Moreover, a fair number of the memory references would be
intercluster. By not splitting CP / AP pairs across clusters, we can avoid intercluster
references with the message-passing approach. Because there are so many oppos­
ing factors, it is unclear how a shared-memory approach would compare to the
present implementation, but it would certainly be less understandable.

All processes on a given CP / AP pair share a single address space. Subscripts
must be checked to prevent inadvertent memory accesses, which might corrupt

186 III. Programming Environments

run-time system structures or other processes. The shared address space makes
context switching more efficient and, as noted above, allows processes to be smaller
than a single page object (4K bytes).

Send Statements. A number of steps are performed to implement send statements.
Execution begins when an AP reaches code for a send in a process. Execution of
the send involves the use of several MEDUSA messages and several processors. At
the completion of the send, the AMPL message must reside in the message queue of
the destination port, and the AP resumes execution of the next AMPL statement.

The AP that initiates the send constructs a MEDUSA message in a send buffer
allocated by the compiler. All MEDUSA messages sent by the AMPL run-time system
have, as the first word, a function code that identifies the type of the message.
(These function codes will be written in SMALL CAPITALS in the text.) A MEDUSA
message with a function code such as SEND will also be referred to as a SEND
message or simply as a SEND. The MEDUSA message contains the following:

1. A function code (SEND).
2. The destination port name.
3. The name of the sender.
4. The actual AMPL message.

The AP directly sends this message to the CP indicated by the destination port
name. At this point, the AP suspends the current process. The next process on the
ready-to-run queue is executed while the message is delivered. The time to perform
this context switch is much less than the time required to deliver the message.

When the CP receives a message, it first reads the function code and then calls a
handler to perform the requested function. Figure 9-3 outlines the structure of the CP
program. In this case, a receive handler is called. The receive handler reads the
process index from the destination port name and locates the process frame in the
process descriptor table that resides in each CP I AP pair. Each process frame
contains storage for message queues. The frame also contains the address of a
module template, which is a storage map used to locate message queues and
variables in the process frame. Once the CP finds its way to the appropriate queue,
three cases arise:

The queue is empty. The message is copied into the queue. If the receiving
process is suspended, it is moved to the ready-to-run queue because the
process may be waiting for the message.

The queue is neither empty nor full. The message is copied into the queue, and
no rescheduling is attempted.

The queue is full. The name of the sender is placed on a special waiting list
associated with the buffer, and the message is discarded.

In the first two cases, the message is delivered, so the sender must be re­
scheduled. The receive handler sends a MEDUSA message with the function code

Figure 9-3

9. Other Software Environments

The Structure of the CP Program

initialize data structures
loop

if message in high-priority pipe then
receive message
case message function code of

SEND: call receive handler
REPLY:

CREATE:

end case

cal! reply handler
call create handier

elsif message in low-priority pipe then
receive message
case message function code of

end if
end loop

GCMARK: call gcmark handler
GCSCAN: call gcscan handler

end case

187

--~---------------

REPLY to the CP associated with the sender (see Figure 9-4). This completes the
processing at the receiver's end. When the sender's CP receives the REPLY mes­
sage, a reply handler is called. This routine simply reschedules the sending process
by placing it on the AP's ready-to-run queue. Finally, the AP removes the process
from the queue and resumes execution.

In the third case (a full message queue), no REPLY message is returned, and the
sending process remains suspended (see Figure 9-5). The name of the suspended
process is saved on a waiting list. Whenever an AMPL message is removed from a
queue, the waiting list is checked to see whether any senders are suspended be­
cause of a previous attempt to send an AMPL message. If the waiting list is not
empty, a REQUEST message is sent to the CP associated with the name at the head
of the waiting list. When the CP receives the REQUEST, it finds the suspended
process and locates its send buffer, which still contains a copy of the original SEND
message. The function code is changed to REQUEST-REPLY, and the (MEDUSA) mes­
sage is again sent to the destination CPo This time, it is known that there is room in
the destination port, so the suspended process is rescheduled without waiting for a
reply. When the destination CP receives the REQUEST-REPLY message, the correct
message queue is again located, and the message is placed in the queue. As
before, if the queue changes from empty to nonempty and the process is
suspended, it is rescheduled.

Messages are delivered in order, even when senders are blocked waiting for a
queue to become nonfull. The actual procedure used by the receive handler is a
little more complicated than described. The waiting list is a FIFO queue of process

188

Figure 9-4

III. Programming Environments

Sending a Message to a Nonfull Port

1.SEND

o
[Rece'1

1. AP # 1 sends message to CP # 2.
2. AP # 1 suspends sender.
3. CP # 2 copies message into receiver's message queue.
4. CP # 2 sends reply to CP # 1.
5. CP # 1 reschedules sender.
6. AP # 1 resumes execution of sender.

names. A message can be placed directly into the message queue only if the waiting
list is empty. Otherwise, even if space is available for the message, the sender's
name is added to the waiting list and the message is discarded. This prevents a
message from being placed ahead of one sent previously and preserves space for
messages that have been requested. A name is removed from the waiting list only
after the REQUEST-REPLY arrives to fill the reserved slot in the queue.

Garbage Collection. This section describes the parallel garbage collector used in
the AMPL run-time system. Like the STAROS Garbage Col/ector (Section 6.6), it
consists of cooperating run-time processes. This contrasts with most parallel gar­
bage collectors [Dijkstra 78, Kung and Song 77], which employ only a single
garbage-collection process. The AMPL garbage collector was operational before the
STAROS Garbage Col/ector, and, to our knowledge, it was the first working garbage
collector with multiple tasks creating garbage and multiple tasks collecting garbage.
We will consider AMPL garbage collection in detail and note the similarities and
differences between the AMPL and STAROS garbage collectors.

All garbage collectors are based on the following simple "mark-scan" algorithm.'

Figure 9-5

9. Other Software Environments 189

Sending a Message to a Port that is Initially Full

\

~E~U~E~STL-________ ~ ________ __

6. REQUEST·REPL Y

1. AP # 1 sends message to CP # 2.

2. AP # 1 suspends sender.

3. CP # 2 puts sender's name in receiving port's waiting list.

4. Receiver accepts a message, making room for a new one.
5. AP # 2 sends request to CP # 1.

6. CP # 1 resends sender's original message.
7. CP # 1 reschedules sender.

8. CP # 2 delivers message.

9. AP # 1 resumes execution of sender.

1 . Mark the set of objects known not to be garbage (called the root objects).
2. Mark all objects that can be reached by following pointers from the marked

objects. Repeat this step until no more unmarked objects can be found.
3. Reclaim the storage used by any object not marked; these objects are gar­

bage because there is no way to reach them by following pointers from the set
of root objects. The remaining nongarbage items will be referred to below as
reachable objects.

The AMPL garbage collector consists of four phases, two of which run in parallel, as
illustrated by Figure 9-6. The algorithm still corresponds to the classic mark-scan
algorithm, and the extra phases are for synchronization only.

Garbage collection is performed by the communication processors. Recall the
structure of the CP (Figure 9-3). Each CP has two MEDUSA pipes; one is for high-

1 Even the semispace copying algorithm [Baker 7S] fits this description. Rather than setting a "mark bit,"
objects are marked by moving them to another block of memory. Thus an address bit is used as the mark bit
[Hibbard SO]. Compare this with the STAROS algOrithm in Figure 6-5.

190

Figure 9-6

III. Programming Environments

Garbage collection phases

Interlock

Completed

priority messages such as SEND messages, and the other is for low-priority garbage­
collection messages. The CP continually polls its two pipes for messages. The
low-priority pipe is examined only if the high-priority pipe is empty. Every message
received has a function code, which is used to specify a handler for that message.
Each handler performs a small task, sometimes sending new messages. Garbage
collection runs as a background task because garbage-collection messages are sent
to the low-priority pipe. This organization effectively multiplexes the CP to perform
many tasks while using only one process. Since CPs interact almost exclusively
through messages, a large amount of overhead for synchronization within each
message handler is avoided. For globally synchronizing garbage-collection phases,
global counters and MEDUSA-provided atomic increment and decrement operations
also are used. These operations are much faster than MEDUSA messages, but their
use is purely an optimization of a message-based implementation.

WHAT TO COLLECT. The only dynamically allocated objects in AMPL are processes
and messages. Messages take up storage only until they are delivered, so garbage
collection is concerned only with reclaiming process names (descriptor-table entries)
and process frames. The initial (root) set of processes known not to be garbage is
composed of the following:

1. The processes being executed by APs.
2. Processes in the ready-to-run queues.
3. Processes whose names are on the create waiting queue of some CPo

(These processes are blocked waiting to create a process.)
4. Process names in messages waiting to be delivered.

9. Other Software Environments 191

Any process reachable from this set is marked; the rest are garbage. If a name is
identified as garbage, and the name refers to a process frame, then the process
frame is not only suspended, but it can never be rescheduled (no other process can
send it a message). Therefore, the frame is returned to the free storage pool.

PHASE 1. Any CP can start garbage collection. To do so, a memory location global to
all CPs is locked with a MEDUSA "test and set" operation to prevent two CPs from
starting garbage collection simultaneously. Then, GCSTART messages are sent to
each CPo The CP that starts garbage collection is caiied the garbage-coiiection
master.

When a CP receives a GCSTART message, it finds all the root processes and
sends GCMARK messages to the CP associated with each name. (Actually, an op­
timization could eliminate the need to send messages from a CP back to itself; for
details, see [Dannenberg 81].) The purpose of GCMARK messages is explained
below. The CP then sets a local state variable to GCstarted and returns a
GCSTARTREPL y message to the garbage-collection master, which is identified by a
field in the GCSTART message.

Some root names cannot be accessed by any CP when garbage collection is
started. These are names that are in MEDUSA pipes. Consider a process suspended
waiting for a REPLY message. The reply could have the only reference to this
process, so if garbage collection completed before this message arrived, the
suspended process would be erroneously collected. To prevent this, the garbage­
collection master sends an INTERLOCK message to each high-priority port after a
GCSTARTREPLY message is received from each CPo Receipt of the INTERLOCK mes­
sage is described below.

PHASE 2. The second phase is concerned mainly with receiving and handling
GCMARK messages. Each GCMARK message contains one process name. The hand­
Ier for these messages starts by setting the mark bit for that name in the process
descriptor table. If the name was previously unmarked, and there is a process frame
for the name (the process has not terminated), then the frame is scanned using the
module descriptor to locate all process and port names. For each nonnull name
found, a GCMARK message containing the name is sent to the CP indicated in the
name. (Just as a STAROS object name contains the number of the cluster where it is
located, an AMPL process name contains the number of the CP / AP pair on which it
runs.)

While a frame is being scanned, a lock is set on the frame to prevent the AP from
copying any process or port names. Otherwise, the garbage collector might miss a
reference as it is being moved, or it might read a name in a corrupt state (i.e., the
first word of one name and the second word of another). In STAROS, objects are not
locked as they are scanned. Instead, the microcoded Copy Capability instruction
must be used to copy a name, and the microcode notifies the garbage collector (by
placing its name in the garbage-collector deque; see Section 6.6). The correspond­
ing action in AMPL would be either to require the CP to copy references or to have
the AP inform the CP whenever a name is copied. In the latter case, locks would still

192 III. Programming Environments

be needed to prevent the CP from reading names in a corrupt state. The CP would
release the lock after reading each name. The trade-ofts are summarized below. For
the method implemented,

• The CP performs only one lock operation per process scanned.
• The AP may be blocked for the time it takes to scan the frame for names.

For the alternate scheme,

• The CP performs one lock operation for each name scanned.
• The AP is at most blocked only for the time it takes to read one name.
• The AP must make a test, and possibly send a message, to the CP whenever

a name is moved.

While marking is taking place, processes can be sending messages and creating
new processes. The following invariant is maintained: If a process is marked by
the garbage collector, then a GCMARK message has been sent for each name
contained in that process frame. To guarantee this property, special precautions
must be taken when sending messages and creating processes. Every SEND,
REQUEST-REPLY, CREATE, and CREATE-REPLY message has a tag that is used to mark
the message if the sender is marked. If a message is marked, then it is known that
a GCMARK message has been sent for each name in the message because the
names in the message are copied from variables in a marked process frame.

When an AMPL message is delivered to a port, the tag is checked. If it is marked,
then no action is taken. If the message is unmarked, and the receiving process is
marked, then a GCMARK message is sent for every name in the message before the
message is placed in the receiver's message queue. This must be done to maintain
the invariant without unmarking process frames.

In the case of create messages, the created process is marked to prevent its
garbage collection. If the create message tag is unmarked, then a GCMARK message
is sent for each name supplied in the actual parameter list.

Phase 2 completes when there are no more GCMARK messages and all reachable
processes have been marked. Determining when this condition is reached is not
simple because messages are sent and received asynchronously by all CPs. Even if
all pipes are empty, there could be a message in transit. Completion is detected by
maintaining a global counter (initially zero), which is incremented before each
GCMARK message is sent. After a GCMARK message is received and the process
frame is scanned, the global counter is decremented. The counter returns to zero
when all GCMARK messages have been processed.

In STAROS, Garbage Col/ectors rely on real-time constraints to determine when
the mark phase is complete. When it appears that marking is done, the Garbage
Col/ectors wait for a predetermined time to make sure no new names are dis­
covered. Since marking is assisted by Kmaps, processing is fast, and the time delay
is short. A third method could be based on sending replies to each GCMARK mes­
sage.

9. Other Software Environments 193

The mark phase is guaranteed to terminate in the following sense. Assume that
unlimited memory and name space are available, so processing is never held up
because space is unavailable. Garbage-collection messages are handled at a finite
rate in each CP, but the high-priority messages-that is, non-garbage-collection
messages that may contain names-<:an be handled at an arbitrarily fast but finite
rate. The mark phase will terminate in a finite time. The proof is based on the
invariant stated above, the fact that created processes are marked, and the fact that
processes are never unmarked during the mark phase. The mark phase begins with
a finite and nonnegative number of processes. it remains to show that the number of
unmarked processes is decreasing.

Consider the set of reachable unmarked processes. There must be at least one
reference from a marked process to one of these unmarked processes. By the
invariant, a GCMARK message has been sent with that reference. The queues of
GCMARK messages can get arbitrarily large, depending on the relative amount of
processing time devoted to garbage collection, but the queues are always finite.
Because garbage collection messages are handled at a finite rate, this message will
eventually be received, the process will be marked, and the number of unmarked
processes will decrease. Thus we see that the number of unmarked but reachable
processes must go to zero. Eventually, all reachable process frames become
marked, and no more GCMARK messages are sent, so the queues become empty. At
this pOint the mark phase terminates.

In STAROS, the garbage-collector deque is used to prevent the Garbage
Col/ector from missing a reference to a reachable object. If assignment of references
occurs arbitrarily more frequently than garbage-collection operations, then the mark­
ing phase will not terminate. (This can occur even when the total number of names
and objects is constant.) This property is not a problem in practice for STAROS.

PHASE 3. Recall that in phase 1, an INTERLOCK message was sent to the high-priority
pipe of each CP. Phase 3 is the period between the end of phase 1 and the time all
the interlock messages are received. Phase 3 overlaps phase 2, as indicated in
Figure 9-6.

Some rather intricate synchronization involving another global counter is used to
detect when both phases 2 and 3 have completed in all CPs. The STAROS analogue
of phase 3 is the time delay used to check that all marking is complete. In STAROS,
the time during which a name can be hidden (in Kmap registers) is bounded by a
short interval, so waiting is preferable to the use of interlock messages.

PHASE 4. The CP detecting the end of phases 2 and 3 in all CPs sends a GCSCAN
message to each CPo When this message is received, the process descriptor table
is scanned by each CP, and unmarked processes are collected. As each CP com­
pletes its scan, it increments yet another global counter. When this counter reaches
the number of CPs, the "garbage collection in progress" lock is reset to allow
another garbage collection to be started. The period between garbage collections is
referred to as phase O.

194 III. Programming Environments

9.2.2. Performance Measurements

A number of small programs have been coded in AMPL and executed on Cm*, with
the goal of learning how the language influences algorithm design and affects perfor­
mance. The measurements reveal run-time characteristics of parallel algorithms and
the AMPL implementation. Those experiments that disclose more about the run-time
system are reported in this chapter; those that relate more closely to parallel­
algorithm performance are reported in Appendix A.

Some of the AMPL programs to be described exhibit a negligible communication
cost, and the total execution time is d~termined almost entirely by the AP processing
time. Other programs are dominated by the communication cost, and APs are idle
much of the time. Changing the relative execution speeds of the AP and CP by
optimizing the run-time system or increasing the quality of the code generator could
radically change some of the results. For this reason, measures of program perfor­
mance that are independent of relative execution speed are sought. One such
measure is the ratio of information passed in messages to the information stored in
or fetched from local variables. A low ratio indicates that most of the execution time
is spent accessing local memory and performing local computation. A high ratio
indicates that most of the execution time is spent communicating with other
processes, and little local computation is performed.

Obtaining the measurements was greatly simplified by the fact that the AMPL
compiler generates Buss code rather than assembly code. Complex actions, such
as AMPL sends, are generated as Buss macros. These macros can easily be
modified to collect a wide variety of performance data, such as counts of different
message sources and destinations. It is also easy to eliminate instrumentation over­
head when necessary simply by redefining all instrumentation macros to the null
string.

A dedicated processor is used to gather this data at run time, so as to cause
minimal interference to the run-time system. One advantage of this approach is that
values such as the number of bytes sent in messages can be accumulated using
single-precision arithmetic without danger of overflow. The instrumentation process
periodically clears these accumulators and transfers their contents to a central,
extended-precision accumulator. Figure 9-7 illustrates the instrumentation organiza­
tion. Another use of the instrumentation process is to take samples of the state of
the run-time system. AP and CP utilization are computed by sampling flags that tell
when the AP and CP are idle. USing a separate process to collect data also allows
each AP and CP to avoid time-consuming intercluster memory updates and reduces
the code required for the AP and CP processors.

A few general comments must be made about the measurements. First, execu­
tion times of AMPL programs vary slightly from one run to the next. The execution
speeds of the computer modules on Cm* vary (see Section 3.1.1). Many objects,
including MEDUSA pipes and some memory pages, are dynamically allocated. The
choice of object locations can also affect timings. Special efforts have been made to
specify locations where placement is critical, but all measurements given in the
following sections should be considered accurate only to within 5 percent. Con*

Figure 9-7

9. Other Software Environments

Instrumentation of the AMPL Run-Time System

Local instrumentation
data for pair # 2

195

data for pair # 1

sequently, most of the measurements have been rounded to two decimal places.
Unless otherwise indicated, measurements are made with all bounds-checking and
debugging facilities enabled. The debugging facilities slow the run-time system by
approximately 10 percent.

Static Measurements. The run-time system has a total of 3,424 lines of code, of
which 28 percent are comments. This does not include any of the MEDUSA operating
system, nor does it incrude the rather large file that contains macros and definitions
used to interface Buss-11 programs to MEDUSA. The compiler has 3,364 lines of
code. Of this, 3,058 lines are in the code generator (15 percent are comments), and
306 lines define the syntax for the parser generator.

The code sizes for the run-time system are listed in Table 9-1. Typically, 16K
bytes are allocated by each AP for the process-frame heap. About 15K bytes are
available for compiled AMPL programs, limiting program size to about 350 lines of
code. Since little attention was paid to conserving memory, there is considerable
room for improvement in this area.

Send Operations. A program was written to measure the time it takes to send and
accept a minimum-length AMPL message. The program was run on a Single CP / AP
pair. (The same code is executed regardless of the destination of a message.) The
program is written so that all sends are to an empty port and all accepts are from a
full port, so this represents the fastest time to deliver a message. It takes 96
seconds to send 10,000 messages; each message takes 9.6 ms., or about 1,370
equivalent LSI-11 instruction times.

196

Table 9-1

III. Programming Environments

AMPL Run-Time System Code Size

Description of code

Memory manager
Garbage collector
Debugging and display routines
Input / output routines
Buss-11 run-time routines
Other AP routines and initialization
Other CP routines and initialization
AMPL input / output modules

Total

Size
(bytes)

792
2,646
2,638
1,408

240
2,830
5,336
4,334

20,224

Some simple analysis was performed to see where the time is spent. Table 9-2
provides a breakdown of the total time in terms of instruction counts. Instruction
counts are used rather than instruction times to simplify the analysis. An average
instruction time of 7 J.Ls. is assumed. Actual instruction times are a function of the
type of instruction, the source addressing mode, the destination addressing mode,
and the location of all memory references (local, intracluster, or intercluster). Where
MEDUSA operations are invoked, the equivalent number of LSI-11 instructions is
taken from Chapter 5 or Chapter 7. The instruction counts indicate that the computa­
tion time is spread fairly uniformly among the logical subtasks required to send a
message. There is little overlap between the CP and AP in this program. The
measured time is therefore somewhat misleading because if two processes each
sent a message, the CP and AP execution would overlap. Although the time to
deliver a message would increase, the measured throughput would be significantly
greater. Furthermore, if multiple CP I AP pairs were used, even more parallelism
could be obtained.

The total estimated execution time is shorter than the measured time. Several
factors have not been included in the estimate. First, non local memory references
have not been considered. The AMPL process frame is local to the AP. All references
from the CP to the process frame take about 8.3 J.Ls., so each reference costs
approximately one extra instruction time. Second, our estimate of 7 J.Ls. per instruc­
tion may be incorrect, particularly since our implementation uses a large amount of
indirect addressing to locate variables and port structures in the process frame.
Third, estimates are based on inspection of the code, not on instruction traces. In
particular, it is assumed that when a message arrives at the CP, the CP is at a
random point in its cycle of pOlling the high- and low-priority pipes. A complete cycle
(two conditional receives) takes just over 1 ms.

Table 9-3 contains an alternate breakdown of the total execution time. As in­
dicated, a significant fraction of the total execution time is consumed by microcoded
Kmap operations, including MEDUSA message operations as well as Block Move

Table 9-2

Table 9-3

9. Other Software Environments

Time to Send and Accept an AMPL Message

Percent
Instructions of total

AP instructions for send statement:
Evaluate arguments and call send routine 9 1%
Build SEND message 123 11
Send MEDUSA message 71 6
Context swap 78 7

Subtotal 281 25

CP instructions to handle SEND message:
Poll pipes for SEND message 136 12
SEND handler 205 18
send REPLY message 96 9
reschedule receiver 46 4

Subtotal 483 43

AP instructions for accept statement: Subtotal 141 12

CP instructions to handle REPLY message:
Poll pipes for REPLY message 136 12
REPLY handler 41 4
Reschedule sending process 46 4

Subtotal 223 20

Total 1,128 100%

Total estimated time 7.9ms.

Alternate Analysis of the Cost of an AMPL Send Statement

Save registers and coroutine call
Debugging
Kmap operations
Other

Total

Total estimated time

Instructions

96
103
418
511

1,128

7.9ms.

Percent
of total

9%
9

37
45

100%

197

198

9.2.3. Conclusions

III. Programming Environments

operations to build the SEND message, to copy the AMPL message value into the
destination message queue, and to copy from the queue into the variable specified
by the accept statement.

Create Operations. Another experiment was run to create an arbitrary number of
"empty" processes, which contain no parameters, variables, ports, or statements.
This program was run on a single CP I AP pair; it creates and destroys 400
processes in 8 seconds, or 1 process in about 20 ms. The process descriptor table
is large enough that no garbage collection is invoked during these CREATE opera­
tions. During this time, the AP is idle 87 percent of the time; the CP is never idle.

Tables 9-4 and 9-5 provide cost analyses similar to those given for send state­
ments. Most of the time (58 percent) is taken by the CP to allocate, initialize, and
schedule the new process frame. The CP executes an estimated 480 instructions, or
18 percent of the total, to fill the frame's stack area with zeros. This initialization is
performed only to facilitate debugging and could be eliminated. A significant amount
of time (24 percent) is spent allocating and deallocating process frames. This is an
estimate based on the assumption that a memory block is split in two once during
each allocation (the "buddy system" is used) and that two blocks are reunited once
per deallocation. More efficient code probably could cut the memory-manager ex­
ecution time in half.

Obtaining further improvements in the run-time system would be more difficult.
The measured time for creation and termination of a process (20 ms.) is somewhat
longer than the estimated time (18 ms.). The preceding section on send operations
offers possible reasons. The process creation and termination time compares
favorably with the message send and accept time. Note that these measurements
include time to terminate a process and to reclaim the process frame. An estimated
14 ms. would be needed just to create a process.

Garbage Collection. A benchmark program was written to create an arbitrary num­
ber of processes. This program is identical to the process-creation benchmark ex­
cept that the created processes each declare a port and a variable and attempt to
execute an accept statement. No message is ever sent to the created processes, so
all of them remain suspended. The process frames fill the available memory, caus­
ing the garbage collector to be invoked. On a single CP I AP pair, the execution time
for 2,000 create operations is 53 seconds, or about 27 ms. per create. This includes
time for garbage collection, which is in progress 61 percent of the time. A total of
1138 GCMARK messages are sent to accomplish 95 garbage-collection cycles. The
AP is idle 84 percent of the time, and the CP is idle 8 percent of the time.

Building AMPL on an existing operating system provided some insight into what
features an operating system should possess to support similar languages. Two
approaches can be taken. In one approach, the operating system provides a basic
set of abstractions without hiding the underlying physical machine from the user. An

Table 9-4

9. Other Software Environments 199

Cost of Process Creation and Termination

Percent
Instructions of total

AP instructions for create:
Evaluate arguments and call create routine 9 0.3%
Build CREATE message 76 2.9
Send MEDUSA message 71 2.7
Context swap 78 2.9

Subtotal 234 8.9

CP instructions to handle CREATE message:
Poll pipes for CREATE message 136 5.2
Allocate process frame and table entry 362 13.7
Initialize process frame 917 34.7
Schedule new process 46 1.7
Send CREATE-REPLY message 71 2.7

Subtotal 1,532 58.0

CP instructions to handle CREATE-REPLY message:
Poll pipes for CREA TE-REPL Y message 136 5.2
CREATE-REPLY handler 35 1.3
Reschedule creating process 46 1.7

Subtotal 217 8.2

AP instructions to run created process:
Build UNCREATE message and context swap 134 5.1
Send UNCREATE message 71 2.7

Subtotal 205 7.7

CP instructions to handle UNCREATE message:
Poll pipes for UNCREATE message 136 5.2
UNCREATE handler 25 1.0
Deallocate process frame 291 11.0

Subtotal 452 17.1

Total 2,640 100%

Total estimated time 18 ms.

example of such an abstraction is a process. The power of the physical processor
should not be restricted by the process abstraction [Parnas 72]. If the user decides
to implement his own abstractions, he will have the power and efficiency of the
physical machine at his disposal. The lack of interrupts in MEDUSA is an example of a
violation of this principle. If interrupts were available, the CP and AP could have
been implemented together on a single processor. Without interrupts, polling is
necessary to detect when work is available for the CP. Whenever the low-level
machine is ~idden, there is a danger of providing the "wrong" abstraction.

A second approach is to provide everything the user might need. In the case of

200

Table 9·5

III. Programming Environments

Alternate Analysis of the Cost of AMPL Process Creation and Termination

Save registers and coroutine calls
Debugging
Kmap operations
Other

Total

Total estimated time

Instructions

211
119
583

1,727

2,640

18 ms.

Percent
of total

8%
5

22
65

100%

AMPL, this would require a number of abstractions not commonly found in operating
systems. First, we would want to manipulate protected address spaces and pro­
cesses separately to avoid the expense of allocating and deallocating a protected
address space when processes are created and destroyed. (This problem was
tackled by ECHOES, as reported below.) The process descriptors should be acces­
sible to the user so that a garbage collector can be implemented. Alternatively, the
system could provide its own garbage collection. Small, dynamically created
processes are necessary for an efficient AMPL implementation. There must be a
flexible message-passing system with an arbitrary number of ports per process and
the ability to wait selectively on sets of ports. Finally, this all must be as efficient as
can be achieved by writing customized run-time routines, or the language implemen­
tor probably will reimplement the necessary facilities to achieve better performance.

The problems of storage allocation have been avoided to a large extent in the
design of AMPL. An efficient implementation of a production language would require
further investigation of the storage allocation problem. In particular, there may be
special cases where modules can be represented with little memory overhead. In
AMPL, message queues are allocated statically within process frames. Dynamic al­
location might conserve memory and allow the accept statement to be implemented
by changing pointers rather than by copying the message. Storage allocation is
another area where a reduced overhead may allow finer-grain processes and a
higher degree of parallelism. Methods for efficiently allocating process frames are
described in [Lampson 80]. Using microcode support, process and procedure frames
can be allocated from a heap with a very small overhead.

As one of the first working implementations of a parallel language on a mUl­
tiprocessor, AMPL was one of the first to face the problems of debugging in a parallel
environment. Dannenberg offers these insights:

Although we had no problems in constructing programs with correct synchronization, none
of our larger test programs were free of errors. Debugging a parallel AMPL program is
considerably more difficult than debugging a sequential one. Since no memory is shared, it
is difficult for anyone process to determine much about the global state of the program. For
example, when debugging the PDE program, we wanted to print snapshots of the grid to

9.3. ECHOES

9. Other Software Environments 201

help locate a bug. Unfortunately, the grid is spread across several slaves, so the coopera­
tion of several processes would be required to access it. New ports would have to be added
to each slave to request access to the grid. Another problem is caused by the parallelism.
For example, it is sometimes helpful to trace program execution by printing values of
variables at run time. Because of parallelism in AMPL, if several processes begin printing at
the same time, output become hopelessly mixed up. Ordinarily, a collection of related
debugging information must be packaged into a single me~sage and sent to a printer
process which formats and prints the data in a readable fashion. Obviously, more debug­
ging aids are necessary. A symbolic debugger which could access all processes and
monitor all messages would be a great help. There is also a need for methodologies which
enable programmers to transform sequential programs into parallel ones. Most of the test
programs we wrote are essentially sequential programs with a few simple modifications to
subdivide and distribute the program. It would be nice to debug the sequential parts of the
programs on sequential machines and to be able to take existing sequential algorithms and
transform them to parallel programs.2

ECHOES [Jones and Gehringer 80] was an experiment by Mike Kazar in designing
operating-system primitives for executing procedure calls and forks rapidly. Although
somewhat earlier (1979) than AMPL, it was motivated by the observation, underlined
in the AMPL measurements reported above, that efficient multiprocessing requires
fast process creation. Its approach was to write microcode to perform protected
procedure calls quickly and then to provide a Fork operation (for process creation)
as an extension to the Call mechanism. In effect, it provided the addressing struc­
ture for a procedure-oriented operating system, whereas the AMPL run-time system
is completely process oriented (as user-defined procedures do not even exist).

ECHOES is not a complete operating system; it contains little code for resource
management and almost no utilities. Rather, it is a set of microcoded Kmap opera­
tions that can be invoked from Buss-11 programs. A Buss program executes as it
would on a normal LSI-11 until it needs to call a new module, create a new process,
or gain addressability for some additional data, at which time it invokes the ECHOES
microcode, which was written in MUMBLE.

It has been observed [Lauer and Needham 78, Keedy 79] that procedure-oriented
and process-oriented operating systems are at opposite poles of the operating­
system design spectrum. Procedure-oriented systems tend to use procedure calls to
communicate with the operating system and other modules, and thus they require
well-developed within-process protection mechanisms. Process-oriented systems
tend to use message passing to communicate with the operating system and
processes instantiated from other modules; simple interprocess protection suffices,
but a well-developed message system is a necessity. Among the Cm* software
environments, AMPL is totally process oriented; STAROS and MEDUSA are largely
process oriented, STAROS a bit more so than MEDUSA; and ECHOES is largely
procedure oriented.

In another respect, AMPL and ECHOES exhibit nearly antithetical approaches to the

2 [Dannenberg 81]. pp. 68-i)9.

202 III. Programming Environments

issue of shared memory. AMPL processes share no memory at all, except possibly
their object code. ECHOES is designed to encourage the use of shared memory. The
ECHOES run-time environment consists of a set of reusable address spaces. These
address spaces are large enough (228 bytes) to accommodate programs of substan­
tial size. They are addressed through 256-item descriptor segments, where all but
10 descriptors are shared by multiple processes. The philosophy behind this ap­
proach is that the cost of creating an address space is high and should be paid only
once per module. Except for the objects pointed to by those descriptors, the ad­
dress space is sharable by multiple processes. It survives the process or processes
that execute in it, and after reinitialization of those 10 descriptors, it is available to
other processes that execute code from the same module.

To see the importance of shared address spaces in fast process creation, con­
sider the AMPL data from Table 9-4. Allocating a process frame consumes 13.7
percent of the time it takes to create and then destroy a process, and initializing the
process frame takes 34.7 percent of the time. Creating an address space, then,
takes up roughly half the time for a process creation and termination. Counting the
11 percent of the time devoted to deallocating a process frame, address-space
manipulations account for about 60 percent of process creation and termination.
These numbers take on added impact when it is noted that five-sixths of the remain­
ing time (34 percent overall) is devoted to message operations, which could be
optimized in a custom implementation. Clearly, sharing address spaces offers great
potential for improving the performance of process creation.

9.3.1. Addressing Structure

Table 9-6

An ECHOES process can address 256 segments (Table 9-6) at anyone time. The
descriptors for these 256 segments reside in segment 7, which is called the
descriptor segment. The majority of these segments, numbered 16 through 255,
depend only on the address space in which the process is executing. There is only
one address space per module; all functions of that module-regardless of which
process invoked them--execute within that address space and can access seg­
ments 16 through 255.

The Segments in an ECHOES Address Space

Segment
number

0-3
4
5
6
7
8-15

16-255

Type

(unused)
Gate segment
Protected call stack
Process stack
Descriptor segment
Argument segments
Code and data

How
shared

Per address space
Per process
Per process
Per address space
Per call
Per address space

9. Other Software Environments 203

Processes executing the same code must not be able to access each other's
process stacks, so processes executing within the same address space must not
share stack segments. In fact, an ECHOES process has two stack segments. There is
a different copy of both these segments for each process executing within an ad­
dress space. Segment 6 is an ordinary process stack and is used in the same
fashion as any other PDP-11 stack. Segment 5 is a protected call stack, which is
accessible only to the ECHOES microcode. The microcode uses it to maintain return
addresses for intermodule calls. A new frame is pushed on this stack each time an
ECHOES Caii operation occurs.

Of the remaining segments, numbers 8 through 15 are argument segments.
After a procedure call has taken place, segment 8 + i contains a descriptor for the ith
argument of the call. (The limitation of eight arguments per call has not proven to be
a problem.) These slots can be occupied by "refined" descriptors, whose base and
length fields grant access to only a portion of the segment being passed. Subseg­
ments as small as one word in length can be passed in this fashion. Argument
descriptors also may have fewer rights than the caller possesses; for example, a
procedure with read / write access to a particular segment might pass it as a read­
only argument. Each time a different call takes place, these segments can, in
principle, be different. That is, if the same process makes two calls to a procedure
of the same module, the arguments may be different each time.

Segment 4 is known as the gate segment, used to mediate protected calls, and is
analogous to gate segments in Multics [Organick 72]. Segments 0 through 3 are
unused and generate faults if indirected through. This helps catch uninitialized­
pointer errors.

When a procedure call occurs, a check is made to see whether an address space
already exists for the module that is the target of the call. If not, an address space
must be created, requiring building the descriptor list, allocating memory for each
segment, and initializing the segments as required. When the address space exists,
the following actions are performed:

• A new frame is placed on the protected call stack.
• Arguments are transmitted, possibly with refinements.
• A protected call takes place, which usually 3 causes the process to begin

executing in a new address space. Thus, it gains access to a whole new set
of segments (segments 16 through 255 of the called module) and loses ac­
cess to another set of segments (number 16 through 255 of the calling
module).

A Fork (process-creation) operation is not very different from a procedure call. If
there is a free processor available, a new process will be created to execute code
from the destination module. Otherwise, the forking process will be suspended while
the forked process executes. Creating a new process is quite simple. The new

3 Protected calls to the current module are also permitted. In this case, the address space of the called
module is the same as the address space of the caller.

204

9.3.2. Measurements

III. Programming Environments

process inherits an address space from the called module. At system initialization
time, ECHOES preallocates a number of segments that can be used for process
stacks and protected call stacks. 4 These segments are placed on a free list. The
system merely gives two segments from this list to each new process that is created.

If enough processes are created, of course, it is possible to run out of preal­
located stack segments. It would be easy to remedy this problem without slowing
down process creation appreciably. When the system noticed that the supply of
preallocated segments was running low, it could assign an unused processor to
create more. This processor would run slowly, since it would need to make many
mapped references, and would add to memory contention, thus slowing the other
processors somewhat; but these effects would be minor compared to waiting for
segments to be allocated at process-creation time.

The Call, Return, and Fork operations were measured in real time. It was im­
mediately noticed that the timings were unexpectedly large. This problem was due to
'Scheduler overhead; the simple scheduler was interrupting processes 60 times per
second, and the resulting context swaps caused the processor to be effectively
slowed down to 60 percent of its nominal speed. This was compensated for by
multiplying all measurements by 0.6. The numbers presented below have the
scheduler overhead factored out in this way.

Another factor that decreased the observed execution speed was the inability of
the Kmap to set the program counter (PC) on an LSI-11. This is a general charac­
teristic of Cm*; the Kmap cannot directly access any LSI-11 processor registers. Yet
the Kmap must be able to set the PC during the execution of a protected procedure
call. ECHOES arranged this in the following way: The Kmap forces the LSI-11 to take
a nonexistent memory reference fault-called an NXM-which the Kmap can do by
writing a special Siocal register. The LSI-11 then checks the reason for the interrupt
and finds that it was to reset the PC. The NXM handler then returns to the proper
place. This method of resetting the PC takes about 193 J-Ls.

The time to perform a call and a Return (with a null procedure body) is 846 J-Ls.,
of which 386 J-Ls. can be written off to the overhead of setting the PC. This leaves
460 J-Ls., the equivalent of about 66 average LSI-11 instructions, or twenty-three
16-bit ECHOES mapped memory references.5 In fact, a call requires the following
mapped references:

4 This identical mechanism was later used on the Intel 432 [Organick 83] to save time in protected procedure
calls.

5 Note that ECHOES mapped references (20 IlS.) are more expensive than intracluster references in STAROS
or MEDUSA. This is because they must handle 2Q·bit offsets rather than the 16-bit offsets for which the Kmap
was designed.

9.4. Summary

9. Other Software Environments 205

• The Call instruction takes three memory references to fetch and another two
to locate the branch address .

• Six 16-bit memory references push data onto the ECHOES protective call stack:
a 32-bit return address, a 16-bit "domain field," the number of arguments (in a
16-bit field), and the stack limit (a 32-bit quantity).

The total memory-reference time is thus about 220 IJ.s. The Return operation
....... "' •• I,.j + ... 1., h.,,, i 'Lhi+ "'r"\r"\""~ "" " ... , .. ""f"" .. "",.,.",,,,,,,,, I"" +h +h"" """,II ",i ... ,..."" i~ "
;:)IIVUIU LeU'\y LYYV I V-"'IL IIIQjJjJ"'U "."'" ""., • v,'''' ",,,,,,,,,,;;0 '",,;;0,;;0 LIIQII Lllv ,",UII, "1I1"'y n jJVjJ"

the same information back off the stack and restores the processor state from it but
does not fetch a branch address (which it gets instead from the call stack). Thus the
amount of memory-reference time for a Return is about 180 IJ.s., and the total for
Call plus Return amounts to 400 IJ.s. In addition, the Kmap microcode to perform a
Call and Return uses 382 microcycles, which at 157 ns. per microcycle comes to
59.97 IJ.s., yielding a total that is very close to the observed 460 IJ.s.

These times are for a procedure call with no arguments. Each argument takes
somewhat more than three memory-reference times, or 60 IJ.s. extra, to pass. The
argument segment registers (segments 8 through 15) are cached in the Kmap. To
pass an argument, the descriptor for the argument segment is copied to the Kmap
(requiring three mapped reads and a comparatively insignificant amount of Kmap
microcycles), and refined if necessary. It remains cached in the Kmap unless the
Kmap's cache overflows, in which case it is written to memory. Note that cache
overflow occurs only in the case of deeply nested calls with many arguments. The
Kmap cache, used in this fashion, speeds up procedure calls in the same way as the
multiple register sets of the RiSe I [Patterson and Sequin 81], except that the
ECHOES cache holds only addressing information, not data.

A Fork that fails to create a new process (because no processor is free) takes
172 IJ.s. more than a Call. Although it makes six fewer memory references, these
savings are more than offset by more complex microcode plus the cost of a system­
supplied synchronization operation to test for completion of the forked process. If the
Fork does create a new process, it takes 6 IJ.s. less than an unsuccessful Fork, the
difference apparently being due to overlapped execution of the two processes. As
shown in Table 9-7, adding further processors increases the execution time, un­
doubtedly because of the extra contention.

AMPL and ECHOES reflect two different philosophies and a number of trade-offs. AMPL
is process based, while ECHOES is procedure based. ECHOES endeavors to provide
fast procedure calls, but AMPL disallows procedures. AMPL prohibits shared memory;
ECHOES emphasizes it. AMPL runs on top of an operating system, while ECHOES does
not even provide all of an operating system's functionality. AMPL has concentrated
on issues of language design (it provides a high-level facility for interprocess
communication) whereas ECHOES makes do with primitive Fork and Join opera­
tions. ECHOES, much more than AMPL, has concentrated on optimizing its run-time
system.

206

Table 9-7

III. Programming Environments

Timings of ECHOES Call, Fork, and Return

Operation Microseconds

Standard procedure Call and Return 846

Failing Fork (no free processor),
Return, and re-Synchronize 1,018

Successful Fork, Return, and
re-Synchronize (2-Cm system) 1,012

Successful Fork, Return, and re-Synchronize
(3-Cm system) 1,278

Successful Fork, Return, and re-Synchronize
(4-Cm system) 1,573

The performance of the two systems can be compared in one important way: the
speed with which processes can be created and deleted. ECHOES, which has been
optimized for this purpose, seems to be nearly 18 times as fast as AMPL. In practical
terms, the difference would not be quite this great. AMPL can distribute processes
widely throughout Cm* with little or no performance penalty. ECHOES processes
would suffer severe degradation if they ran remote from major portions of their
address space. For performance reasons, address spaces might have to be partially
or wholly duplicated in several Cm's, obviating some of the advantage of sharing.
Furthermore, if a process began executing (due to a protected call) in an address
space on a remote Cm, its stack would have to be moved to that Cm to obtain good
performance. This would impose an additional overhead for which the measure­
ments do not account. These problems are not insoluble, but much research would
be needed to determine effective strategies for dealing with them.

These experiments demonstrate the flexibility of the Cm* architecture, especially
of its programmable distributed switch. It has been shown that even with limited
effort, it is possible to gain an order of magnitude improvement in the performance of
a critical function (here, process creation). The efforts of other researchers have
proven that other functions (message communication, for example) can be similarly
speeded up. The fact that Cm* has been effectively exploited in such different ways
confirms its utility as a flexible testbed. A testbed, however, is only as good as the
quality of the experimentation support. The next chapter describes the prototype
experimentation environment of Cm*.

Acknowledgment. The description of the AMPl run-time system has been adapted from
[Dannenberg 81].

10. Integrated Instrumentation Environment

Commercial operating systems are designed for the graceful support of applications
software. In an experimental operating system, the applications consist largely of the
experiments that are run. It is not the results produced by the applications that are of
primary interest, but rather the performance of the computer system while producing
them.

Traditional operating systems provide little help to the researcher attempting to
develop experiments or classify and interpret their results. Consequently, it is up to
the researcher to write benchmarks that differ only in detail, to run them, and to
develop a uniform scheme for keeping track of the results. Data analYSis programs
are usually written later to translate the data into a readable form. The work involved
is considerable, and much of it is clerical in nature, only tangentially related to
scientific inquiry. The Cm* project thus developed an instrumentation environment
that runs on top of both operating systems to provide assistance in performing these
chores.

10.1. Functionality of the liE

An Integrated Instrumentation Environment (liE) consists of a set of tools that
cooperate closely with each other and present the user with a single uniform inter­
face to assist and partially automate the process of experimentation. The general
objective of an experiment is to inquire about performance, reliability, or any of a
number of interesting properties of a computation. In the context of a computer
system, an experiment is the execution of an instrumented program in a controlled
environment that allows measurement, collection, and analysis. An experiment may
involve multiple executions of the instrumented program with different input
parameters or within different environments.

The liE supports the notion of an experiment schema as the high-level unit of
experimentation management. Each schema specifies a related collection of
runs-that is, executions of an instrumented program. Intuitively, a schema can be
seen as a parameterized experiment script that describes the experimentation
process. A schema specifies the instrumented program, the monitoring directives,
the specifications of the run-time environment, and the input parameters for each
run.

The result of executing a schema is captured in a schema instance, containing
measurements, values of schema parameters, and environmental information. This
is a data structure representing the unit of management for the experiment results.
Schema instances are archived in a database for later analysis.

By using the generic notions of schema and schema instance, the experimen­
tation process can be expressed as in Figure 10-1.

Each phase of the experimentation process will be discussed in detail in the
following sections.

207

208

Figure 10-1

III. Programming Environments

Experimentation Process in the liE

Schema = design(experiment)
while (not end-of-experiment) do

begin
execute(Schema)
create(Schema Instances)

end
analyze(Schema Instances)

An liE requires software to support the several phases of experimentation, in­
cluding:

• Translation of collections of user-defined modules and predefined synthetic
actions into instrumented parallel programs.

• Creation of the schema by merging the instrumented parallel stimulus, the
monitoring directives, and the environment information.

• Schema interpretation and run-time control.
• Creation of schema instances.
• Analysis of schema instances.

To illustrate further the experimentation process described above, we will follow
an example through in some detail. This example shows how the liE, at each stage,
interacts with the user, performs the required actions, and generates its outputs. The
example stimulus, simply called a multiprocessor experiment, or MPX, involves a
single initiator and multiple servers communicating through a shared buffer or mail­
box. The initiator repeatedly sends requests through the buffer to one or more
servers, which operate on those requests concurrently. When the buffer is empty,
the servers wait for further requests; when the buffer is full, the initiator waits for a
request to be removed by a server. The servers perform identical functions, so a
request can be satisfied by any server. Additionally, the servers communicate with
each other via shared memory.

The goals of the proposed experiment are to investigate the interaction between
the request rate (expressed as the average number of requests per unit time) and
the number of servers, and to investigate the effect of the request rate and the
number of servers on the average buffer queue length and the average waiting time
in the buffer.

Two interesting steady-state behaviors have different average queue lengths and
service rates. In the first case, the request rate exceeds the aggregate processing
rate of the servers, so the buffer will always be full. In the other case, the buffer will
never contain more than one request. The aggregate service rate will be ap­
proximately constant, yet radically different, in both cases. This analysis assumes a
constant individual service rate by independent servers. In Cm*, however, accessing
shared data perturbs the performance of both the servers and the buffer
insert / remove operations in subtle ways, greatly complicating analytical modeling of

10. Integrated Instrumentation Environment 209

the queue length and waiting time. As was shown above, the boundary between the
two cases is quite distinct if contention is ignored. The experiment will investigate the
boundary in the presence of contention.

To summarize the approach, experiments are described as schemata, and the
result of executing a schema is a schema instance. The primary functions of the liE
are the creation of schemata, schema management execution, and control of
schemata, along with the creation, management, and analysis of schema instances.
The next section presents the design of an liE supporting these functions"

10.2. Design of the liE

Figure 10-2

The liE contains several components: a schema manager, a run-time environment,
an instrumented stimulus and operating system, a database, and a monitor (see
Figure 10-2). The monitor consists of a resident monitor, which gathers the data
from the system under test, and a relational monitor, which aggregates and corre­
lates the data into a high-level form. The user interacts directly with the schema
manager, which communicates with the run-time environment and the monitor,
which in turn interacts with the instrumented program (the stimulus) and the
database. The liE interacts with the programming environment (PE) through the
database.

The schema manager is responsible for supporting the schema and schema­
instance abstractions. The monitor initializes the schema instance with information

liE Components

PE Database

The arcs indicate transfer of data or control.

User

Instrumented
operating

system

Run·time system

210 III. Programming Environments

specifying this environment (including details of the hardware configuration,
sion of the operating system, support software, and stimulus) and the valw
parameters that will remain constant for this execution of the schema. The
manager then cycles through the runs as indicated in the schema, ir
parameters that vary on a per-run basis, starting the stimulus, and collel
monitoring data. Finally, data concerning the runs as a whole is collected
puted and is stored in the schema instance for later study. Note that not a
components should necessarily reside and execute in the same machine. In
Cm* liE implementation spans several computer systems. The run-time sy~
the stimulus are resident in Cm*, whereas the schema manager, the datab
the relational monitor are remotely located in a VAX 11 /780. The two (
systems are connected by an Ethernet link.

One motivation for partitioning the components of the liE into a run-time
ment and a remote environment is that only the run-time environment is COl
to any particular hardware or software configuration. Care has been taken
the remote components as system independent as possible.

Two preliminary implementations were built for the run-time environmer
different operating systems, while only one implementation of the rem
ponents is necessary.

The stimulus-controller component provides a well-defined interface to tl
mented stimulus. The functions it supports include modifying parameters \
stimulus, both before and during the run, generating initial control evenl
stimulus, r~porting errors back to the schema manager, and controlling t
Similarly, the resident monitor provides a uniform interface for the relationa
The resident monitor is responsible for enabling and disabling sensors and
ing the information back to the relational monitor in a format convenient f,
processing. The sensors are embedded in the stimulus, in the stimulus cor
the operating system, and in the resident monitor itself. The relational mOl
trois the resident monitor and computes derived information, which is then
a schema instance in the database.

The database serves an important role in the liE because the informc
tained in the database is the end result of the entire experimentation
Additionally, the interaction between the liE and the PE occurs via the dal
having one environment create objects in the database for the other envir(
use. For instance, schemata are initially created in the PE, to be interpret
schema manager. Schema instances, created by the liE, are managed
version-control facilities of the PE. By using a common database, it is p(
use the functionality provided by the PE. This approach allows the desigr
liE to concentrate on those operations unique to experiment management.

10.3. The Instrumented Stimulus: Representation and Specification

The stimulus is an arbitrary set of processes executing in parallel. The stim
may incorporate sensors; in addition, sensors reside in the operating systl
the resident monitor. Tools were developed to aid in the rapid develop,

Figure 10-3

10. Integrated Instrumentation Environment 211

stimulus. One of them is a workload generator. A user specifies the behavior of his
or her parallel program in a special high-level behavior-description language, the
8-language. This behavior is specified as a directed dataflow graph, similar to a
complex bigraph [Cert 72, Gostelow 71]. This graph is known as a task graph. Its
nodes represent subtasks, or processes, that execute in parallel with other subtasks.
Each subtask is composed of actions (parameterized program fragments that may
be predefined or user defined) that are repeated at certain rates. Associated with
each arc of the graph is a buffer that may hold data variables or control tokens
fiowing from one subtask to another. Each subtask has an associated controi tupie
(i, 0), where i corresponds to the in-firing rule for the subtask and 0 corresponds to
the out-firing rule. This set of firing rules characterizes the precedence relationship
between the subtasks of the graph. A B-Ianguage program is compiled into an
executable version as illustrated in Figure 10-3. This section gives a brief overview
of the B-Ianguage; a more detailed discussion can be found in [Singh 81].

The B-Ianguage thus represents the interaction of parallel processes via the
graph model of computation. A typical example is shown in Figure 10-4. Subtask A 1
is fired by the arrival of a token in buffer B1, which corresponds to the entry arc of
the graph. Upon completion, subtask A 1 fires either subtask A2 or A3 by placing
control tokens in buffer B2 or B3, respectively. There is a certain probability as­
sociated with the OR-output logic of subtask A1 (designated by the +). Finally,
subtask A4 fires if it receives a token from either A2 or A3. Upon completion, it
places a token in buffer B6, which corresponds to the exit arc of the graph and
represents the end of a single execution of the parallel synthetic program. The
B-Ianguage subtask declarations for this example are as follows:

subtask A1 {inlogic: 81 ; outlogic: %40 (82) or %60 (83)}

subtask A2 {inlogic: 82; outlogic: 84 }

subtask A3 {inlo~ic: 83; outlogic: 85 }

subtask A4 {inlogic: 84 or 85; outlogic: 86 }

Steps in Stimulus Generation

B·
,-------... language ,-----......

Representation

(data flow· like graph)

Graph Specification of
instrumented

workload
(B· language)

program

Translation

'---,.;----' Stimulus

System
data·
base

instrumented

212

Figure 10-4

III. Programming Environments

A Parallel Synthetic Program-Graph Representation

81

Notice that buffers 81 to 86 correspond to the arcs of the parallel synthetic program.
The delimiter % is used to specify the branching probabilities for the arcs of an
OR-output.

The specification of parallel synthetic programs in the B-Ianguage is based on the
object model supported by both operating systems on em*. The objects represented
directly in the B-Ianguage include the following:

The task-force object. The task force abstraction, a collection of processes that
cooperate to achieve a single logical task, is represented by a set of subtasks.

The sub task object. This is the sequential computation unit that cooperates with
similar user-defined objects to compute the overall stipulated multiprocess
task.

The buffer object. The buffer object is a conventional queue of messages and is
used by the subtasks to communicate with each other.

The semaphore object. Semaphores synchronize requests for shared resources.
The file object. Files represent a sequence of bytes.
The shared data object. Variables specified in the shared data object are

globally shared by all the subtasks of the task force. This allows communica­
tion of data and control through shared memory.

The table object. Tables implement functions varying with time.

Within a subtask, the basic building block is an action. To capture the cyclic
nature of synthetic workloads, an action aj itself is described by an action-repetition
tuple (specified as <aj' rj». This tuple specifies that the action aj is repeated
sequentially rj times, constituting action aj" An action may be arbitrariiy complex and
may be further composed of action-repetition tuples. Also, both the a and the r can
be parameterized. Other control constructs within a subtask include composition
and conditional and probabilistic branching.

10. Integrated Instrumentation Environment 213

The library of actions consists of a collection of predefined and user-defined
program fragments programmed in the systems programming language and stored
as part of the system database. Examples of predefined actions include sending or
receiving messages via a buffer, inputting or outputting to a file, referencing local
memory, blocking on a semaphore, and accessing a shared resource. The user
gains flexibility by being able to include his own special program fragment among
the actions in the library. An example of a user-programmed action is the code for a

the library of actions is specific for a particular multiprocessor system. The B­
language should be viewed as a portable framework into which system-specific
actions are inserted from a library of actions.

Special control constructs are included in the B-Ianguage so that the schema
manager may control the user's workload at run time as specified in the schema.
The control commands initiated by the schema manager are executed by the
stimulus controller component of the run-time system. The vary construct in the
language permits the stimulus controller to vary parameters on a per-run basis. The
language also allows one to specify that the parameters are to vary in real time. This
is accomplished by binding a real-time function to a run-time variable on a per-run
basis. The real-time function is defined by a table object and an associated interval
of time. The stimulus controller forces the run-time variable to take on successive
values from the table during successive time intervals.

Using the MsgEvent construct, the language permits the stimulus controller to
initiate variable time-driven events in the stimulus on a per-run basis. This construct
requests the stimulus controller to deliver messages to a buffer with intermessage
time periods, as specified by successive entries of a table. The stimulus controller
can associate a different table object, or a constant time period, with the MsgEvent
variable on a per-run basis.

To allow measurement of the generated workload, a special sensor construct
permits a user to embed sensors into his program. Sensors allow specified infor­
mation as well as a time stamp to be sent to the monitor as event records. In
addition to user-defined sensors, the B-Ianguage program has some built-in sensors.
For example, the start time and end time for each execution of a subtask are
automatically recorded in the event record. Furthermore, instrumentation available in
the operating system and the liE run-time system allows the schema manager to
access information not explicitly specified in the B-Ianguage program. An example is
information regarding the interaction of the stimulus and the operating system.

The 8-language translator constructs special data structures, allowing the
stimulus controller to exercise external control over the experiment as specified in
the B-Ianguage program. The translator also generates sensor descriptions (see
Section 10.6) for all programmed and predefined sensors in the B-Ianguage
program. These descriptions are used by the relational monitor to sort out event
records flowing from the resident monitor.

As an example, consider the 8-language program (Figure 10-5) for the single­
requester, mUltiple-server experiment discussed in Section 10.2. The task force
consists of an array of five identical server subtasks that wait on the RequestBuffer

214

Figure 10-5

III. Programming Environments

8-Language Program for the MPX

TaskForce MPXperiment;
buffer

RequestBuffer { size: 512 } ;
semaphore

GDSemaphore {initial: 1 } ;
shared

G/obaIData[512] ;
vary

RequestPeriod;
MsgEvent

RequestService = RequestBuffer @ RequestPeriod;
sensor

StartG/obalPhase;

subtask Servers[1 .. 5]

vary

begin

end

{inlogic: RequestBuffer}

SharedDataAccess;

< $DoLocaIWork: 10>,
StartG/obalPhase,

<$AccessSharedData (GDSemaphore, G/obaIData): SharedDataAccess>

for queued service requests. The RequestBuffer is associated with the message­
event generator via the MsgEvent construct. This allows an experimenter to vary
the request rate by changing the time (RequestPeriod) between successive firing of
servers on a per-run basis. The begin and end constructs mark the service loop of
each subtask that is executed each time its in-firing rule is satisfied. In this example,
each server does ten units' worth of work local to its processor and then does some
variable number of accesses to global data, which is arbitrated by a semaphore. A
sensor, StartG/oba/Phase, is embedded in each subtask and sends an event record
to demarcate the transition from local work to global work. Built-in sensors record the
beginning and ending of each subtask and the firing of request tokens by the
message-event generator. The variable parameters of the experiment are the num­
ber of active servets, the request rate, and the amount of global work done by each
server. This program will be specified in the schema as the stimulus for the MPX.

10.4. Relational Monitor

In the liE, each time the experiment schema is interpreted and the stimulus ex­
ecuted one or more times, various monitoring information is collected and stored in
the database in a schema instance.

The model of the monitoring data adopted in the liE is a variant of the relational
model used in conventional relational databases [Ullman 80]. Information is

10. Integrated Instrumentation Environment 215

recorded as a collection of two-dimensional tables, called relations. Each row, called
a tuple, records a particular relationship between entities named in the columns,
called domains, of the tuple. For example, the relation Running (Process,
Processor), with two domains, may contain the tuple (MyProcess, ProcessorA) in­
dicating that the process called MyProcess is running on the processor called
ProcessorA. Relations used in monitoring are temporal in that each tuple records
relationships that are true at an instance of time or over some interval of time. A
relation involving instances of time is called an event relation; each tuple records the
occurrence of a particular event. A period reiation records a relationship that exists
for an interval of time. Periods are delimited by events; each tuple (period) in the
Running relation is associated with two other event tuples, one in the Start relation
and one in the Stop relation. Time is included in an implicit domain manipulated by
the monitor.

The Running relation is an example of a primitive relation because the infor­
mation it contains is a direct translation of a set of recorded events. Primitive rela­
tions may be divided into three categories: operating system, stimulus control, and
user defined. The first category is concerned with information involving the opera­
tions and data structures supported by the operating system. The Running relation is
in this category. The second category involves the actions performed by the run-time
portion of the liE. Examples of event relations from the MPX include:

RequestService(Token/D). The sending of a MsgEvent token to the
RequestBuffer; the Token/D identifies the token.

ServersStart(lndex, Token/D). The in-firing of a sensor's subtask; the Index
identifies the server; the Token/D identifies the token causing the firing.

ServersEnd(/ndex, Token/D). The out-firing of a sensor's subtask.

The one user-defined primitive relation specified in the MPX, StartGloba/Phase, is
also an event relation and contains only the implicit time domain. This relation was
declared as a sensor in the B-Ianguage program for the MPX (see Figure 10-5) and
records the time at which the server subtask finished its local work and started the
shared data access.

Given a collection of primitive relations, new relations can be defined as a result
of operations performed on existing relations. These derived relations are specified
using a relational query language. The query language used in the liE is a version of
Quel [Stonebraker 76] augmented with additional temporal constructs; it is discussed
elsewhere [Snodgrass 82]. Figure 10-6 illustrates the definition of the derived rela­
tions AverageQLength and Service Rate used in the MPX. The former relation has
one domain, AvQL, with the tuples specifying this value for the various time inter­
vals. Similarly, the ServiceRate relation will have one domain, SRate, containing
values varying over time. These queries will be referred to by the schema for the
MPX and will specify both the primitive relations to be monitored and the calculations

to be performed on the data in the event records.

216

Figure 10-6

III. Programming Environments

Queries for the MPX

range of R is RequestService

range of S is StartServers
range of Sp is Stop Servers

; references to R will indicate the
; RequestService reiation

define WaitinglnQueue (R. TokenlD) ; one domain, the request's TokenlD
where R. TokenlD = S. TokenlD ; request is being serviced by a server

start R ; the waiting begins when the request
stop S ; is made, and ends when the server starts

range of W is Waiting/nQueue

define QLength(L = Count(W»)

range of Q Is QLength

; count the number of outstanding
; requests in the buffer

define AverageQLength(AvQL = Average(Q)) ; instantaneous average

define· Tota/Waiting(W. Token/D)
where Sp. Token/D = W. Token/D
start W ; total waiting time begins when the request
stop SP ; was made, and ends when the server stops

range of TW Is Tota/Waiting

define ServiceRate(SRate = 1 / Average(Duration(TW»))

1 0.5. Stimulus Controller

The stimulus controller component of the run-time system is a set of utilities that
permit control of the stimulus as specified in the schema. While the schema
manager provides experiment management through the management of the schema
abstraction, the stimulus controller provides low-level experiment control through the
management of a single run. The motivation was to separate the low-level control
functions from the experiment-management functions so that different management
strategies could be carried out using common control primitives. The functions ex­
ported by the stimulus controller are therefore geared toward the initialization and
execution of a single run.

One responsibility of the stimulus controller is to ensure the repeatable behavior
of a run by eliminating side effects from one run that might perturb the next run. An
example of a side effect is the presence of tokens left over in the edges (buffers) as
a result of the previous run. The stimulus controller ensures that all data structures
are in a well-defined state at the beginning of a run. For example, buffers are
emptied and all semaphores are initialized as specified in the B-Ianguage program.

The stimulus controller is also responsible for the variation of parameters both on
a per-run basis and in real time during a run. The variation of parameters on a
per-run basis involves the vary parameters of the 8-language program (see Section
10.3) and the variation of the graph-structure representation of the program. A

10. Integrated Instrumentation Environment 217

typical modification of the graph structure involves changing the number of active
subtasks for a specific run. This is particularly useful in real-time experimentation,
where one wants to determine the number of subtasks necessary to meet real-time
constraints. The variation of parameters in real time during a run involves the varia­
tion of the run-time variables of the B-Ianguage program, according to some function
of time expressed as a table object and an associated interval of time.

The stimulus controller must provide a well-defined mechanism to start the run. In
the graphic representation of the program, this corresponds to firing the entry
node-that is, piacing a token on the entry arc of the graph. To start a run, the
stimulus controller delivers a specified number of control tokens into a system­
defined buffer, called the Ignition Buffer, which corresponds to the entry arc of the
dataflow graph. The user may use this source of tokens to start any desired subtask
by specifying the Ignition Buffer appropriately in the in-firing rule of that subtask.
Similarly, to detect the end of a run the stimulus controller watches a system-defined
TerminationBuffer for a specified number of tokens.

The stimulus controller has four major subcomponents. The first subcomponent
executes basic control functions, including initialize, to initialize the instrumented
program before each run; fire, to fire a specified number of tokens into the
Ignition Buffer; vary, to permit the variation of vary parameters on a per-run basis;
display, to display the value of a vary parameter; enable I disable, to enable or
disable subtasks on a per-run basis; and status, to return the status of the program.
Observe that functions such as display and status are interactive in nature and can
be used during the interactive creation of a schema (see Section 10.7).

The second subcomponent is a message-event generator, which delivers token
messages to prespecified buffers according to pre-specified functions of time. Con­
trol functions performed by this subcomponent include start generator, to start the
message-event generator for a particular run; stop generator; and set message
event, to allow the association of either a table object or a constant with a buffer.

The third subcomponent is a run-time variable driver, which ensures that all
run-time variables vary in real time, as specified by their associated table objects
and time intervals. The main control function of this module is to allow the associa­
tion of different table objects and time intervals with a run-time variable on a per-run
basis.

The fourth subcomponent is a clock module, which permits access to a set of
clocks distributed over the system. This module is used by the message-event
generator, the sensors, and the run-time variable driver.

Additional functionality in the instrumented program may be added by augment­
ing the stimulus controller. For example, a set of components used for experimen­
tation related to reliability has been designed and partially implemented. This in­
cludes software-implemented voters and accelerated fault-insertion and config­
uration-control modules.

218 III. Programming Environments

10.6. The Resident Monitor

The monitoring information is collected as event records, which are generated by
sensors in the instrumented stimulus, the run-time system, the operating system, or
the hardware. Each event record contains an indication of the operation being
monitored, the name of the component performing the operation, and the name of
the object on which the operation is being performed. The event record may option­
ally contain a time stamp and other information germane to the event. For instance,
a sensor located in a file-system process might generate event records for file reads.
In this case, the event record would include the name of this process, the name of
the file being read, an indication that this is a file-read event, the time stamp, and
perhaps the block number being read.

Highly selective filtering of the event records is necessary to constrain their flow
into the monitor. Enabling and filtering directives are encapsulated in data struct~res
called receptacles, which are associated with either active components, such as a
file-system process, or passive objects, such as a file. Each receptacle contains
event-enable switches and a buffer for temporarily storing event records. The resi­
dent monitor (and thus, indirectly, the relational monitor) has the ability to enable
switches in each receptacle. The flexibility in associating receptacles with either
processes or objects provides a mechanism for filtering the event records. For
example, if the receptacle was associated with the file, and the file-read event was
enabled, event records for all file reads performed on the file would be written into
the receptacle. Alternatively, if the receptacle was associated with a file-system
process, event records for all file reads performed by the process on any file would
be written into the receptacle.

A task force is instrumented by specifying the sensors, events, and object types
in a file called a sensor description. The operating system and stimulus controller,
being task forces themselves, also are associated with sensor descriptions. A sen­
sor description is generated automatically when a B-Ianguage program is processed.
Users can also write their own sensor descriptions. Figure 10-7 illustrates the sensor
description generated from the B-Ianguage program for the MPX given in Figure
10-5. This description includes a sensor-process definition for each subtask and for
the stimulus controller. It also includes events for the start and end of each subtask's
execution and the start of each run. Another program takes the sensor description
and produces optimized code for each software-implemented sensor, based on the
specifications in the sensor description. Sensor descriptions thus allow users to
specify their own sensors, which will utilize the same mechanisms for event record
and generation as the sensors embedded in the run-time and operating systems.

It is important to note that the user never needs to be concerned about recep­
tacles or event records. Instead, the liE (through the monitor component) presents
the view of a database composed of temporal relations. New relations can be
derived using the query language (identified in Section 10.4). As a result of execut­
ing a query, the appropriate operations (locating and enabling receptacles, process­
ing event records, and generating the schema instances) are performed automati­
cally-

Figure 10-7

10. Integrated Instrumentation Environment

Sensor Description for the MPX

(TaskForce (name MPExperiment) ; Standard prelude
...)

(SensorProcess (name StimulusContro/)
...)

(Event (name PerRun)
(Domains (Domain (name RunNumber)

(type Integer))
(Domain (name RequestPeriod)

(type integer))
(Domain (name ServerCount)

(type Integer)))
(TimeStamp yes)

. ..)
(Event (name RequestService)

(Location StimulusContro/)
(Domains (Domain (name TokenlD)

(Type Integer)))
(TimeStamp yes)

...)
(SensorProcess (name Servers)

...)
(Event (name ServersStart)

(Location Servers)
(Domains (Domain (name Index)

(type Integer))
(Domain (name TokenlD)

(type Integer)))
(TimeStamp yes)

. ..)
(Event (name ServersEnd)

...)
(Event (name StartG/oba/Phase)

...)

; MsgEvents

; SubTasks

; User-defined sensors

219

The use of receptacles and sensors may extend from sensors implemented in
hardware to sensors embedded in the operating system to sensors placed in the
user's program. It is the resident monitor's responsibility to extract the event records
from the receptacle and send them to the relational monitor. By the time the rela­
tional monitor receives the event records, they are in an identical format, regardless
of how they were generated.

10.7. Schema Management

The central management and control of the schema and the schema instances is
performed by the schema manager. Functions of the schema manager fall into two
broad categories: the creation, manipulation, and execution of the schema, and the
creation, archiving, and cross-analysis of schema instances. The schema manager
is organized into three main functional parts:

220

Figure 10-8

III. Programming Environments

1. A user interface provides a uniform view of the various components of the liE.
Schemata can be created using conventional text editors or incrementally by
directing the liE to perform a series of runs. In the latter case, the correspond­
ing schema and schema instance are automatically generated and archived.
This incremental mode is particularly helpful in the tuning of experiments. ihe
user interface also directly supports monitoring queries and database 4uertes,
thereby allowing a user to manipulate and analyze schema instances.

2. A schema interpreter scans the schema and sends control directives to the
run-time system, including global initialization commands for the entire experi­
ment, along with commands to set up, start, and terminate each run.

3. A schema-instance generator interacts with the relational monitor to ensure
that an instance is created and placed in the database. 80th predefined and
user-defined relations are created and stored in the schema instance as a
result of interpreting the schema.

The schema contains all the information necessary to perform a complete experi­
ment. It consists of five major components: the system configuration, the stimulus,
monitoring directives, initial experiment conditions, and experiment directives (see
Figure 10-8). The system configuration completely defines the environment in which
the experiment is to be performed. The stimulus is in the form of a translated
8-language program, containing controlling parameters and data-collection sensors
as described in Section 10.3. The monitoring directives are in the form of a collection
of queries as described in Section 10.4. The initial experiment conditions consist of a
set of invocation parameters and the required resources (Le., hardware and
operating-system configuration and instrumentation, stimulus version, etc.). Invoca­
tion parameters can be used to initialize parameter values for experiments and
typically are specified at schema-interpretation time. The experiment directives are
interpreted by the schema manager and specify how the stimulus should be ex­
ecuted. Specifications are provided for the iteration of the stimulus over the experi­
ment runs and for the variation of parameters for each run.

During schema execution, the relational monitor creates a schema instance to
hold the results of the experiment. The monitor collects all the resulting event
records together with the schema identification and environment information and
creates an object to be managed by the programming environment. 8y using stan­
dard relational database queries, the user can then perform analyses across

High-Level Organization of a Schema

schema «invocation parameters»
<system configuration>
<stimulus>
<monitoring directives>
<initial conditions>
<experiment directives>

end schema

Figure 10-9

10. Integrated Instrumentation Environment 221

schema instances. The data in the instance, which is collected automatically,
provides the user with enough information to replicate any particular execution of the
schema to verify the results.

To illustrate the use of schema and schema instance, consider the schema
describing the MPX, shown in Figure 10-9. The schema has two invocation
parameters, RequestPeriod and SDA. The configuration data specifies the
resources requested by this experiment, including the versions of the operating
system and liE components, the hardware components, data files to be read by the
stimulus, and initial tests to be used latei to caHbiate the results. The experiment
directives are in the form of a loop that generates the execution of five runs. Each
run will have its own value for the NoOfServers parameter. The execution of this
schema will terminate when 30 seconds have passed for each run. During execu­
tion, the sensors implanted in the B-Ianguage program will generate data that is
collected according to the monitor queries.

Each time this schema is interpreted, a schema instance will be created automati­
cally in the database by the liE. Each instance will have the following components:

• The date, time, and user identification.
• The values of the invocation parameters.
• Exact version numbers of all software used in the experiment.
• A detailed description of the hardware configuration.
• Results of the initial tests as specified in the system configuration.
• The system- and user-defined relations (in this case, the PerRun,

AverageQLength, and ServiceRate relations).

The Schema for the MPX

Schema mpx (RequestPeriod, SDA)

SystemConfiguration < configuration data> ;

Taskr-orce < a-language program> ;

MonitorQueries <relational queries>;

ResultRelations AverageQLength, ServiceRate;

vary SharedDataAccess[i] = SDA where i from 1 to 5;

vary NoOfServers from 1 to 5
do

BeginExperiment
enable Server[i] where i from 1 to NoOfServers;
terminate after 30 seconds
EndExperirnent

od
EndSchema

222

Figure 10-10

10.8. Summary

III. Programming Environments

Service Rate VS. Time for a Variable Number of Servers

1J 2.0r
<L:
.~ 1.B ...
~ 1.6
U
~ 1.4

" II)

~ 1.2 Q)
::;,
i

'
.0

..!:
~O.B

~
Q)0.6
CJ
.~

~0.4

0.2

• • • • • ••

....--... 5 servers
~ 4 servers
~ 3servers
G----E) 2 servers
13----£1 1 server

o.o~------~------~------~------~~------~------~
o 5 10 15 20 25 30

Time (sec.)

Once the instances have been created, additional analysis can be performed on
the instances individually or as a group. Figure 10-10 shows the relationship be­
tween average service rate and time for a RequestPeriod of 200 ms. and a value of
SharedDataAccess of 400 accesses per request. Initially, the service rate is high
because the buffer is empty. For five servers, the buffer never contains many
requests, so the average service rate remains high. For fewer than three servers,
however, the buffer fills up quickly, causing the average service rate to plummet.
The behavior with three or four servers is more involved, and further analysis is
necessary using different values for the request period and the SDA.

The liE constitutes a systematic approach to experimentation on multiprocessors.
This approach emphasizes the integration of experimentation tools and the develop­
ment of techniques for experiment management. The tools integrated in the liE deal
primarily with performance measurements on the components of a multiprocessor
application. The emphasis of the liE on performance-evaluation tools is important
because the efficient implementation of parallel applications is one of the main
research issues in parallel processing.

As the liE constitutes the infrastructure for experimentation, it is appropriate at
this point to discuss the experiments performed on Cm*. Part IV will emphasize
performance aspects of parallel algorithms as reflected in the experiments per­
formed on Cm*.

Acknowledgment. This chapter has been adapted from [Segall 83].

IV. Experiments

11.1. Speedup

11. Performance of Parallel Algorithms

The execution of parallel algorithms is the raison d'etre of multiprocessors. Such
computations are characterized by substantial interdependence of their compo­
nents-relatively frequent communication among simultaneous processes, either by
shared memory or explicit message passing. Given the ease of linking independent
processors together in a network, only the need for a high communication bandwidth
can justify the elaborate interconnection structures that characterize more closely
coupled parallel processors.

How should we measure the performance of a parallel algorithm on a mul­
tiprocessor? The traditional measures for uniprocessor algorithms are elapsed time
(sometimes called completion time) and execution time.' Both measures depend to
some extent on the system load at the time of the measurement-elapsed time
because it is affected by contention for shared resources such as peripherals or
locks on data, and execution time because its value usually includes part of the
overhead of processing asynchronous interrupts generated by other processes and
context swaps due to time slicing by the scheduler. For this reason, the measure­
ments are usually made under some standard condition, such as an otherwise idle
system.

Multiprocessor algorithms, too, usually are measured on an otherwise idle sys­
tem. Elapsed time is defined as the completion time for the entire algorithm-that is,
the instant when the last processor finishes. Execution time usually has been seen
as a less important measure because if the system is otherwise idle, the goal is to
finish the computation fastest, not to use the least processing power. As mUl­
tiprocessors move out of the experimental phase and into service, it will be increas­
ingly important to execute multiple task forces Simultaneously (see Section 5.5), and
thus execution time per processor will become more important. This measure has
not, however, been stressed in these experiments. Instead, we have concentrated
on speedup, which measures how well an algorithm benefits from additional proces­
sors.

At first glance, it might seem that most problems could be solved faster on a mul­
tiprocessor. Few algorithms, after all, are strictly sequential by nature. But offset
against the potential parallelism is the overhead of creating, synchronizing, and
communicating with additional processes. These are pitfalls on which many al­
gorithms falter.

Sometimes these considerations are serious enough to warrant major changes in

, These measures should be contrasted with raw instruction-execution speed, throughput, and response
time, which endeavor to measure the performance of a computer over an entire workload rather than a
particular algorithm.

225

226 IV. Experiments

an algorithm when it is decomposed for a multiprocessor. It may be worthwhile to
redo a small set of calculations in each parallel process rather than pay a penalty to
access a single copy of the results. Occasionally, benefits can be realized by com­
pletely changing the algorithm. For example, randomized algorithms become attrac­
tive for some problems as the degree of parallelism increases (Mehrotra and Geh­
ringer 85]. Even though some processors may redo the work of others (by following
the same path in a global search, for example), the decrease in communication
costs may more than offset the redundant effort.

Consequently, a multiprocessor algorithm may do more total work than its
uniprocessor counterpart. If run on one or two processors, it might actually run
longer than the serial algorithm, but as the number of processors is increased, the
parallelism begins to payoff, and the algorithm begins to show "speedup."

Speedup is a measure of whether an algorithm succeeds in harnessing the
potential parallelism of a multiprocessor like Cm*. Intuitively, it is a measure of how
much faster a computation finishes on a multiprocessor than on a uniprocessor. An
algorithm that finishes twice as fast shows a speedup of two-but a speedup rela­
tive to what? Should the execution time of the multiprocessor algorithm on N proces­
sors be compared to its execution time on one processor or to the execution time of
the best known uniprocessor algorithm-which may be a totally different algorithm?

The first definition is more easily applied, because it frees us from the need to
determine the "best known" uniprocessor algorithm. Fortunately, it also works well in
practice because we rarely want to compare the performance of two different al­
gorithms. Hence we define speedup as Eul EN' the ratio of the elapsed time required
by a one-processor version of an algorithm to the elapsed time taken by its
N-processor counterpart, assuming that all processors are equally powerful.
Speedup is almost always between 1 and N. Occasionally, one encounters a
speedup of more than N. This topic is considered in Section 11.2. Often the speedup
curve is convex in the number of processors; speedup rises as processors are
added, up to a certain pOint, known as the critical point. Then the speedup begins to
fall, meaning that adding more processors actually slows down the computation.
Thus another interesting question is "What is the optimal number of processors for
executing the algorithm?" Figure 11-1 illustrates how speedup may behave as
processors are added.

It is important not to confuse speedup with execution speed. An inefficient
uniprocessor algorithm may have very high speedup despite its long execution time.
Synchronization and communication impose a rather small overhead. As processors
are added, the execution time decreases almost proportionately. Now consider a
more efficient algorithm requiring less computation time but the same synchroniza­
tion and communication overhead. If enough processors are used, execution time
decreases to the extent that the overhead begins to dominate the computation.
Speedup is lower, but this algorithm finishes more quickly than the first. In this
chapter, we will encounter several such algorithms.

During the past few years, the speedup of several algorithms has been measured
on Cm* under widely varying conditions. Early experiments were performed with
only a ten-processor Cm* system, precluding realistic multicluster investigation. In

Figure 11-1

11. Performance of Parallel Algorithms

Several Shapes of Speedup Curves

Greater than linear

/
/

/

/
/

speedup / ",-

/

/

/
/

/

/
/

/.' ",""---
/ ,,' """"

/ "'""",,,,'"

/,,"/'"

, " Linear speedup

__ Convex-diminishing returns -
/,," '" -----------f'>"'-"~ Convex-critical pOint

Number of processors

227

later experiments, the number of Cm's per cluster has changed from time to time.
Some experiments have enjoyed the full support of an operating system; others
have been built "from scratch," using only rudimentary Kmap microcode. The details
of these experiments can be found in Appendix A. We will refer to them to illustrate
our points.

11.2. Greater Than Linear Speedup?

An algorithm is said to exhibit linear speedup if the time taken by an N-processor
version is one-Nth the time used by the single-processor version-in other words, if
its speedup is N. Is it ever possible for a multiprocessor algorithm to exhibit
superlinear (greater than linear) speedup? Suppose such an algorithm does exist.
Then for some value of N, the N-processor implementation must do less total work
than its uniprocessor cousin. But suppose we simulate the multiprocessor solution
by time slicing a Single processor among the N processes (which, in effect, become
coroutines). A faster uniprocessor implementation results. Its run time is not more
than N times that of the original N-processor solution; compared to it, the mul­
tiprocessor solution has not been "sped up" by more than N. Does this mean that
superlinear speedup is impossible?

Given our definition of speedup, the answer is no for the following reasons:

228 IV. Experiments

The new uniprocessor solution has a different control structure from the original
one. Thus it cannot properly be called the same algorithm, and it is incorrect
to measure speedup of the multiprocessor implementation with respect to it.

Depending on the architecture and operating system, it may be time-consuming
to switch between cOiOutines, especially because it may have to be done
arbitrarily often to simulate parallelism effectively. This cost may offset the
advantage of restructuring the algorithm.

There are some real-time algorithms whose total work increases as their execu­
tion time grows longer. If a consumer falls behind a producer, for example, it
may have to do extra bookkeeping to keep its agenda straight.

Let us now survey a few cases of superlinear speedup.

11.2.1. Search Problems

Search algorithms may occasionally obtain superlinear speedup. The simplest case
is where the input data just happens to be configured in a way that favors a par­
ticular processor when the data is parceled out. The data is really more responsible
for this than the algorithm; for other sets of input data, speedup might be less than
linear.

This phenomenon was observed with Raskin's integer-programming algorithm,
described in Section A.3. This is a search algorithm. Its initialization phase puts a
large number of possible solutions in a global stack, from whfch aU the processors
choose their work. As the search proceeds, a global variable holds the cost of the
best solution found so far by any processor. All processors compare their current
cost value to it and begin to backtrack in the search when the global cost is lower.

It is possible for the multiprocessor version to be "lucky." If one of its processors
encounters a near-optimal solution at the outset, none of the processors will have
very much work to do. The uniprocessor version, which does not encounter the
near-optimal solution until later, has the disadvantage of having done a more com­
plete search over the earlier possible solutions. But the opposite a~so can happen.
Suppose the near-optimal solution turned up, say, first of all. The uniprocessor and
multiprocessor versions would then encounter it at the same time. But before its
cost could be determined, the other processors in the multiprocessor version would
have wasted processing time on their initial solutions.

Hence the multiprocessor version cannot be lucky all the time. A search program
can occasionally exhibit superlinear speedup, but it cannot a/ways show greater
than linear speedup over all possible sets of input data. The results shown in Figure
11-2 illustrate this. Only one of the five integer-programming runs managed to sur­
pass linear speedup.

Next we might ask whether it is possible for a search algorithm to have super­
linear speedup on average-that is, whether the expected execution time of an
N-processor hnplementation can be less than 1/Nth the expected execution time of
the uniprocessor version. Again, the answer is yes, but only if the execution time of
the algorithm obeys a certain kind of probability distribution.

Figure 11·2

11. Performance of Parallel Algorithms 229

Speedup of Integer-Programming Computation

Q.10
::l
"tl

o Linear speedup

/
Q)
Q) o Case 1
~ 9 • Case2

A Case3
x Case4

$I .- ,-.. ___ r:' -, V vCl~\J /

7

6

5

4

3

2

1
1 2 3 4 5 6 7 8

Number of processors

Weide [Weide 78] origina.lly analyzed the characteristics of algorithms with super­
linear speedup. Such an algorithm usually has a rather short execution time, but it
executes for a long time often enough to raise its mean execution time well above
the median. Given a random input, the uniprocessor version of this algorithm has an
expected execution time equal to the mean of the execution-time probability distribu­
tion function. The expected run time of the N-processor version is the expected
minimum of N draws from this distribution. If small values are sufficiently tikely, the
expected run time with N processors will be less than 1fMh of the mean.

A specific example is an algorithm whose run-time probability distribution function
is F(x) = X 8, O.:s x.:s 1, & > o. Weide showed that, if X is a random variable having the
distribution F, and X1:k is the smallest of k such random variables, then

& E(x) = -
1+&

k

E(kX1:k) = (k· k!)/II(j+1 f&)
j=1

230

Figure 11-3

IV. Experiments

Hypothetical Superlinear Speedup

Q. 10r
-6 / ;.
CD 9 CD

~
8

7

6

5

4

o 8 = 0.75
3 • 8 = 0.7

o 8 = 0.5
<> 8 = 0.25

1
1 2 3 4 5 6 7 8 9 10

Number of processors

When 8<1/2, then E(kX1:k)<E(X) for all k>2. Also, if 8<1 then E(kX1:k) <E(X)
for sufficiently large k.

Figure 11-3 shows the speedup of such an algorithm for various values of 8. Note
that these algorithms could be used to derive better single-processor algorithms via
the coroutine method mentioned above. Thus algorithms that show better than linear
speedup are not optimal, except perhaps when the overhead of coroutine-switching
is taken into account. One can conjecture about the characteristics of other search
algorithms whose speedup also would be greater than linear. Wilkes [Wilkes
77] cites two hypothetical examples. Mehrotra and Gehringer (Mehrotra and Geh­
ringer 85] have shown an algorithm for finding a leaf node of a search tree that does
in fact achieve superlinear speedup.

11.2.2. Consumer Algorithms

Consider a consumer algorithm that runs in real time and whose chore is to process
input generated by a producer that is running simultaneously. The consumer is
activated periodically and runs until it "catches up" with the producer. The faster the
consumer is, the less work it has to do. As extra processors are assigned, they split
a smaller workload, raising the possibility of more than linear speedup. The STAROS
Garbage Col/ector is such an algorithm. While the rest of the processors are busy
copying and deleting object references (capabilities), the Garbage Col/ector is look­
ing for unreachable objects.

Let r be the ratio of the rate at which capabilities are created to the rate at which

11. Performance of Parallel Algorithms 231

the garbage collector can process capabilities. (If r is greater than one, garbage
collection will be unsuccessful because capabilities will be created faster than the
Garbage Col/ector can process them.) During a time period t, then, tr units of
additional work accumulate for the Garbage Col/ector. While the Garbage Col/ector
is performing this additional work, a further tr2 units of work arrive, and so forth.
Hence the time T to perform a garbage collection is given [Chansler 82] by

T = t + tr + tr 2 + tr 3 + . . . ,

or

If N parallel processes are used to collect garbage, then r is reduced by a factor of
N, so the total time needed to collect garbage becomes

T - t
N - (1 - rlN)

If r is between 0 and 1, then T > TN' So if the work is divided evenly among N
processes, the per-process execution time is T NI N, which is less than TIN. The
speedup is superlinear. Suppose, for example, that r= 113. Then T2 = O.ST, yielding
a theoretical speedup of 2.5 with two processors. Figure 11-4 shows that super­
linear speedup has been noted in practice. Section A.17 treats these observations
in more detail.

There is a sense in which this speedup, too, is illusory. If we assume that the
Garbage Col/ector is activated at constant intervals (for example, each hour on the
hour), high speedup manifests itself in a shorter run time and in correspondingly
longer idle periods. More work accumulates between activations. If the rate of
capability creation and garbage-collection time per capability are constant, the extra
work offsets the extra speedup.2 Ignoring startup transients, over an activation inter­
val (e.g., one hour), the N-processor garbage collector is active no less than 1/Nth

as long as the single-processor version.

11.3. Factors That Limit Speedup

Most parallel algorithms partition a fixed workload among a number of processors,
each of which iterate through their entire partition. The algorithm terminates when all
processors have finished. Linear speedup is the maximum obtainable by these

2 That is, ignoring the possibility that the garbage collector requires enough processors to prevent other
runnable processes from executing, in which case it affects the rate at which capabilities are created.

232

Figure 11-4

IV. Experiments

Speedup of the STAROS Garbage Collector

§- 7r
1 I • No cache, 303 objects Linear

~6 o Shared cache, 292 objects
A Local cache, 486 objects

speedup

o Local cache, 304 objects
5 [] Local cache, 260 objects

..................

...........¢

4 .. './/

.. /'
",

3 " ...-:
/.' ...:: /:.'

/:,'

2
.:.'

/:
/,', '

1
1 2 3 4 5 6 7

Number of processors

algorithms. It is achieved only if the workload is partitioned evenly among the
processors, and no processor ever needs to wait for another-either to synchronize,
access global data, or receive a message. Although linear speedup is sometimes
approached, it is rarely attained, since some algorithms apportion data unequally,
and almost all manifest some sort of interaction among processors. This degradation
is known as the decomposition penalty.

The extent of the decomposition penalty depends on the nature of the algorithm,
the computer on which it runs, and the interaction between the two. 3 These factors
are summarized in Table 11-1 and described below.

11.3.1. Algorithm Penalty

The algorithm penalty arises from the nature of the algorithm itself. An algorithm
suffers when it is unable to keep all its processors busy all the time.

Separation Overhead. Some algorithms lend themselves to static partitioning of
data. For example, in a matrix multiplication, each processor can be assigned a
portion of the matrices. The assignments can all be made at once, before any of the
processors have begun their work. By contrast, some divide-and-conquer algorithms
require dynamic partitioning. The first processor divides the data into two or more
parts, passing each along to another processor, which in turn divides its portion. This
process continues until the data can be divided no further or until it reaches a

a A similar, though less detailed, discussion can be found in [Talukdar 79].

Table 11-1

11. Performance of Parallel Algorithms

Factors Preventing Linear Speedup

Algorithm penalty

Separation overhead

Reconstitution overhead

Implementation penalty

Access overhead

Contention overhead

Cost of parceling work out to processors.

Cost of gathering up results.

Cost of remote accesses to shared memory.

Degradation of remote-access time due to contention.

Algorithm / implementation interaction

233

Synchronization overhead Cost of having some processors idle waiting for others to deliver
results. Usually results from variations in processor speeds.

Parallelization overhead Calculations redone in each process to diminish implementation
penalty.

"manageable" size. Since some processors are necessarily idle at the outset,
speedup is less than linear. We refer to this as the separation overhead.

Reconstitution Overhead. An analogous situation can occur at the end of the
computation, if it is necessary to combine the results. As an example, a parallel
insertion sort could statically partition its data among the processors, but a merge
phase would be necessary to gather the results from the different partitions. This too
could be performed in parallel, with a decreasing number of processors merging
ever-larger subarrays, until only a single processor was active at the end. The idle
processors induce a reconstitution overhead.

Also common are multi phase algorithms, in which parallel phases alternate with
serial (single-processor) phases. Usually, the serial phase performs separation or
reconstitution; its length limits the overall speedup of the algorithm.

A simple model serves to demonstrate how sensitive speedup is to the length of
the serial phase. Assume that a unit of work is composed of a parallel (P) and a
serial (reconstitution) (R) phase:

P+R=1

Furthermore, assume that each parallel process experiences an overhead of H units
due to other aspects of the decomposition penalty. The amount of work done by all
processors in an N-processor multiprocessor configuration is

P+HN+R

Assume that P and H are subject to a linear speedup, yielding a total speedup of

234

Figure 11-5

IV. Experiments

Parallelization and Serial Phase Overhead vs. Speedup

~ 20r

~ I
"tI
Cb
Cb

~ 15

10

5

.~ R=O,H-O

/
/

/

/

/
/

/

./
",'

",'

, .. ~."""--"=-.

,/' ,----_.
/R = 0.1, ,_----

. ./ H=V"
• / .-!','

:' /' /,,17'"

",;/;,,17"'R = 0, H : ~ _________ _

''''iiiii;ii!~:.·,-::=:'::~::'=::'=::'= ::.=::.= ::.:

D_nu_nc:
n - ",,'-' -- v.v

R = O,H = 0.2
R = 0.2, H = 0.05
R = 0.2, H = 0.1
R = 0.2, H = 0.2

10 100 1000 10000
Number of processors (N)

1
S=-----

(PIN)+H+R

Figure 11-5 plots the speedup S as a function of N for various values of Hand R.
The curve marked R = 0, H = 0 represents linear speedup. Note that an overhead
factor of H asymptotically limits speedup to 11 H. likewise, the serial component of
an algorithm limits speedup to 11R. For example, an algorithm that spends one-fifth
of its time in reconstitution calculations cannot achieve a speedup of greater than 5.

11.3.2. Implementation Penalty

The implementation penalty is an artifact of the multiprocessor on which an al­
gorithm is run. It measures the degradation due to interprocessor communication,
via either shared memory or messages. like the algorithm penalty, it has two com­
ponents.

Access Overhead. The first component is the access overhead. It reflects the cost
of fetching code or data from a remote part of the multiprocessor. Its magnitude
depends on the placement of processes and data, which affects the frequency of
remote references on a multiprocessor like em*. It also includes the cost of input
and output. These are relatively slow operations; traditional 110 structures cannot
feed a large multiprocessor fast enough to avoid processor idle time. 110 for applica-

11. Performance of Parallei Algorithms 235

tions measured on Illiac IV, for example, has consumed up to 60 percent of execu­
tion time [Haynes et al. 82].

Clearly, access overhead increases execution time, but unless significant
memory contention results, it has little effect on speedup. We will consider its effects
after we have examined the impact of contention.

Contention Overhead Contention overhead is the penalty imposed by competition
among processors for access to global data. It occurs when processors request
data more quickly than memory is able to deliver it. For the sake of this discussion,
we will assume that requests are serviced in FIFO fashion.

To model the contention overhead, imagine that we have an iterative algorithm.
Each iteration is made up of a certain amount of computation, requiring tp time units,
and a certain amount of access to global data (or I 10, etc.), taking ta time units. Let
us further assume that there is only one period of global access and one period of
computation per iteration; that is, assume that all the global access in an iteration
occurs before any of the computation, or vice versa. (Not all parallel algorithms
meet this condition, but it represents the best case; algorithms that satisfy it perform
no worse than those that do not. A proof, along with a complete description of the
model, is found in [Vrsalovic et al. 84a]. Appendix C summarizes salient aspects of
the model.)

If the algorithm is asynchronous-that is, if there exist no global synchronization
points that all processors must reach before any can continue-then speedup
depends only on whether all other N - 1 processors can complete their global ac­
cesses during the time that a particular processor is computing (see Figure 11-6); in
other words, speedup depends on whether (N - 1)ta .s tp' If so, then after transient
startup effects, no processor will ever be delayed by another's global accesses, and
linear speedup will be achieved. If not (assuming FIFO queueing for global data),
speedup will be limited to 1 + tp Ita' In other words, speedup equals min[N,1 + x],
where x = tp Ita' Vrsalovic ran a synthetic task force with these characteristics on
Cm*. The experimental results correlate fairly well with those predicted by the ex­
perimental model, as shown in Figure 11-7.

One hidden assumption in this model is that the ratio x of processing time to
access time remains constant as N increases. This is true for algorithms such as
matrix multiplication and Fourier transform, where essentially all the data is global to
the entire computation; it is not true for all parallel algorithms. Partial differential
equations (PDEs) are a case in point. The PDE algorithm that runs on Cm* (see
Section 11.5.3) processes a large grid. The grid is divided into N rectangles, one for
each processor. Only the elements at the boundaries of these rectangles are global
data; the rest are local to the processes that operate on them.

As the number of processes increases, the rectangles shrink. The amount of
global data per rectangle diminishes only as fast as the perimeters of the
rectangle-a rate proportional to the square root of N. Because the amount of
processing is proportional to N, the processing-to-access ratio x declines as N
increases. It is not a matter of dividing a fixed amount of global data among a larger
number of processors; rather, the amount of global data actually increases with N.

236

Figure 11-6

Figure 11-7

IV. Experiments

Overlapped Processing and Access Time

Access time Processing time

;I' t ;I' t
Processor 1 j j
Processor 2 JS::::S::s::::s::::l __ .::::s:::s::::s::::l::::S:::S::l:::I:s::::s::::l;:::S:::S::l:::I:==::::S:::S::S::::S::::s::::s::::l;:::S:::S::l:::I:==::::s::I

Processor 3 C::::::S:::l:::I:===-_II:I::5::::S:::S::l:::I:=;:::S:::S:===::::S:::S::l:::I:=;:::S:::S:==C

One iteration

Speedup of an Asynchronous AlgOrithm with an (N; N) Decomposition

Q. 26
::l
"2 24
Q)

~22

20

18

16

14

12

10

8

6

4

2

o

o X = 35
[J X = 10

Dotted lines-predicted
Solid lines-measured

5 10

,0

.'

15 20 25
Number of processors

The overall rate of references to global data increases, and the access paths even­
tually saturate, limiting the speedup.

To accommodate a changing x in the model, let us define Tp and Ta as the
processing and access times in the uniprocessor implementation of the algorithm.

Let

11. Performance of Parallel Algorithms 237

We must also specify how tp and ta change with respect to N. Let us define the
decomposition functions as

Expressed in these terms, our "hidden assumption" was that fp = fa = N. This is
called an (N;N) decomposition. The POE algorithm has (approximately) an (N;VN)

decomposition. The model [Vrsalovic et al. 84] predicts speedup for an algorithm
with an (fp; fa) decomposition as

S = . [f f ~ f 1 +X] min a p , a
fp + Xfa N

For the particular case of an (N; VN) decomposition,

. [(1 + X)N 1 + X]
S = min VN + X' vN

Vrsalovic measured the behavior of an algorithm with this decomposition on
Cm*; Figure 11-8 compares predicted and observed speedups. Other common
decomposition groups are (N; 1) and (log N; log N). For an (N; 1) decomposition, the
predicted speedup is

. [N(1 + X) 1 + X]
S= min --

N+X' N

Figure 11-9 shows the results. For a (log N; log N) decomposition, speedup is
predicted as

The results are given in Figure 11-10.
What conditions must be satisfied to achieve superlinear speedup? Assuming

that f = N - that is, that as the number of processors increases, a constant amount
of tot~1 computation is simply divided among the processors-then it is easy to show
that fa must be O(N 2)-that is, at least as large as a constant times N2. In other

238

Figure 11-8

Figure 11-9

IV, Experiments

Speedup of an Asynchronous Algorithm with an (N; vN) Decomposition

Q.11
-6
: 10

~ 9

8

7

6

5

4

3

2

,.G,

·iJ ••

ox = 35
[] X = 10

Dotted lines-predicted
Solid lines-measured

1~----~----~----~----~~--~
o 5 10 15 20 25

Number of processors

Speedup of an Asynchronous Algorithm with an (N; 1) Decomposition

0. 6
-6
Q)
Q)

~5

4

3

2

o 5

,0,

10

o X = 35
[] X = 10

Dotted lines-predicted
Solid lines-measured

15 20 25
Number of processors

Figure 11-10

11. Performance of Parallel Algorithms

Speedup of an Asynchronous Algorithm with an (log N;log N) Decomposition

Q.5.0
.g
~ 4.5

~
4.0

3.0

2.5

2.0

1.5

1.0

o X = 35

[J X = 10 .-0

Dotted lines-predicted
Solid lines-measured

......... ~
~-

.5~----~--~~----~----~--~
o 5 10 15 20 25

Number of processors

239

words, the amount of global access by each processor has to fall with the square of
the number of processors. This means the total amount of global access by all
processors must be inversely proportional to the number of processors. It is a most
extraordinary algorithm that satisfies this constraint!

Access Overhead Revisited. The cost of accessing global memory depends on
two characteristics: the speed at which data is delivered and the bandwidth, which
we shall define as the number of requests that can be serviced at once. It is
straightforward to extend our model to take these factors into account (see Section
C.2.1). If q represents the global-memory speed relative to a reference speed of 1,
and r represents the bandwidth, then

[
1+qX 1+ q X] S = min f f , r fa --

aPt +qXf N p a
(1)

Let us investigate the magnitude of the access overhead by hypothesizing that
we could speed up global references by a factor of three. (In Cm* terms, this would
be like changing all intracluster references to local references.) The model predicts a
behavior like that shown in Figure 11-11. The figure also shows the model's predic­
tions for an r of 3-that is, for a memory that can service three requests in parallel. 4

4 In Cm*, if intracluster references are directed to different Cm's, r is nearly 2, due to the Kmap's ability to
maintain more than one context. Section 3.1.3 reports some measurements.

240

Figure 11·11

IV. Experiments

Effect of Increasing Global-Memory Speed

..... 20r

~~~I 
II) 
Q. 

CI) 16 

14 

12 

10 

8 

I1q=1,r=3 
oq=3,r=1 
Oq=1,r=1 

Dotted lines-fa = N 

Solid lines-fa = Viii 
In all cases, X = 5 

11' 

,fl' 

,4' 

,fl' 
0' 

0' 

,8 

,Ii' 

./>. tz-6 

.'s.' 
Ii· 0 ·e· 0-0 

0' 

o 2 4 6 8 10 12 14 16 18 20 

Number of processors 

Notice that it matters little whether q or r is improved, although raising q is slightly 
more advantageous when the number of processors is small and slightly less advan­
tageous as the number of processors increases. 

When is speedup most sensitive to the global-access speed q? Clearly, it is most 
sensitive when an algorithm is global-reference intensive (i.e., when X is low). Figure 
11-12 plots global-memory speed against speedup. Notice that the curves consist of 
two regions. Speedup first increases sharply and then levels off, or nearly so. In the 
first region, contention is present. Here, 

rf 1 +qX < f f 1 +qX 
a N aPf +qXf P a 

(2) 

(Le., the second term in equation 1 is the minimum). As q increases, contention 
disappears, and equation 2 no longer holds. In the special case that f P = fa = N, 
speedup in the second region is constant at N. If, however, the total demand on 
global memory increases with N, memory speed still slightly influences speedup, 
which asymptotically approaches N. For example, an LSI-11 processor has no 
floating-point hardware; hence floating-point algorithms for Cm* have a high tp and 
thus a high X. Similarly, r has less effect on execution time as X increases (Figure 
11-13). When 

X > [.!i -1] !!:. 
- r qfa 

contention disappears, and r has no effect at all. 



Figure 11-12 

Figure 11-13 

11 . Performance of Parallel Algorithms 

Insensitivity of Speedup to Global-Memory Speed in the Absence of Contention 

A X = 10 
o X = 2 

Dotted lines-fa = N 
Solid lines-fa = v'N 

In all cases, 
N = 10and r = 1 

o 2 4 6 8 10 12 14 16 18 20 
Speed of common memory, q 

Insensitivity of Speedup to Global-Memory Bandwidth in the Absence of Contention 

Q. 10 
~ 4-~~~~~--~--~~~~~~--~ 

III 
III 

~ 

¢ q = 10 
Aq=5 
oq=2 
[] q = 1 

For all curves, fa = \.IJi 
N = 10, and 
X=5 

1L-~--~--~--~--~~--~--~~ 

1 2 3 4 5 6 7 8 9 10 
Bandwidth of common memory, r 

241 



242 IV. Experiments 

11.3.3. Algorithm / Implementation Interaction 

It is now time to focus on performance factors that are influenced heavily both by the 
nature of a paralle! algorithm and by the multiprocessor on '#hich it runs. 
Synchronization is one such factor; it is a characteristic of particular algorithms, but 
its impact depends greatly on the ,architecture that executes it. For some algorithms 
-synchronous or not-it may be fruitful to do redundant calculations in each 
process to diminish the need for global-memory access or synchronization. 

Synchronization Overhead. The presence of global synchronization points ob­
viously limits the performar'lce of a parallel algorithm. This is true for two reasons. 
First, algorithms tend to spawn parallel processes that are identical except for the 
data on which they operate. Running in lockstep, the processes tend to reference 
global data at almost exactly the same time, effecting maximal contention. Second, 
even without contention, processor speeds vary. Synchronization means that all 
processors are limited to the speed of the slowest. 

The worst case, in terms of synchronization's impact on performance, occurs 
when there is only one global-access period per iteration. Then, there is one 
processor that cannot overlap its processing period (of tp time units) with any global 
accesses at all. A single iteration takes tp + Nta time units. The theoretical 
speedup of the algorithm is given by [Vrsalovic et al. 84a]: 

s = r fa fp(1 + q X) 

Nfp + qrXfa 

Regardless of the amount of synchronization, then, the performance of the algorithm 
is bounded above by the best-case asynchronous algorithm (page 235) and below 
by the worst-case synchronous algorithm. Vrsalovic measured the performance of 
the worst-case synchronous algorithm for the same decomposition groups intro­
duced in the graphs of Section 11.3.2. For the (N; N) decomposition group (Figure 
11-14), the synchronous speedup is given by 

s= (1 +X)N 
N+X 

For the (N;VN) decomposition group (Figure 11-15), the synchronous speedup is 
given by 

Even if there were no global access at all, the presence of synchronization points 
would slow down a computation because of variations in processor speed. In a 
synchronous algorithm, define an algorithm iteration as the time it takes the entire 
task force to complete an iteration and a process iteration as the time it takes a 



Figure 11·14 

Figure 11·15 

11. Performance of Parallel Algorithms 

Speedup of Synchronous and Asynchronous (N; N) Algorithms 

Q, 25 

-6 
CD 
CD 
Q. 

(IJ 20 

15 

10 

5 

o 

oX = 35 
OX = 10 
Dotted lines-predicted 
Solid lines-measured 

Black symbols-synchronous 
VVhite symbols-asynchronous 

5 10 15 

..•••.• 0 

....... / 
/ 

20 25 
Number of processors 

Speedup of Synchronous and Asynchronous (N; v'N) Algorithm 

Q. 12 Dotted lines--predicted -6 oX = 35 
Solid lines-measured ID oX = 10 ,0. ID Black symbols-synchronous 

~ 10 ' .• ~ite symbols-asynchronous 

8 

6 

4 

2 

0 5 10 15 20 25 
Number of processors 

243 



244 IV. Experiments 

single process to finish an iteration. Note that an algorithm iteration is not complete 
until all the process iterations are complete. Processor speeds vary. For example, 
the fastest Cm* processor is 4.6 percent faster than the slowest one (see Section 
;j.l.l). in addition to processor-speed variations, different processes may take 
different branches within an iteration. Finally, the overhead imposed by background 
tasks may differ from processor to processor; clocks must be updated, and account­
ing information must be collected, for example. These three factors introduce ran­
domness into the execution time for a process iteration. The time taken for an 
algorithm iteration is the maximum of N draws from the process iteration-time dis­
tribution. To the extent that this value is greater than the mean, it represents 
synchronization overhead. 

Taking into account these factors, the synchronization penalty itself becomes 
probabilistic and hence more difficult to model analytically. Mohan [Mohan 
84] created a hybrid simulation model to predict the performance of parallel al­
gorithms; synchronization was one of the major factors he investigated. The model is 
called the Performance Estimation Program, or PEP. It is a hybrid because: 

• It uses analytic means (the machine-repair model) to account for contention 
for shared memory . 

• It simulates the behavior of individual processes on the process-iteration level. 
That is, for each iteration of each process, a time is drawn randomly from 
some probability distribution. The time between two synchronization pOints is 
merely the maximum of these times. 

PEP is a general model, capable of adaptation for a wide class of multiprocessor 
structures. To validate the model and make specific performance predictions, 
though, Mohan tailored it to represent the structure of Cm* / STAROS. 

There are some important differences between Mohan's model of parallel com­
putation and that of Vrsalovic et al. Vrsalovic considers a parallel algorithm as being 
divided into processes, which, at equilibrium, are repeatedly iterating over the same 
portion of code. Mohan considers the processes as being divided into tasks, with 
each task consisting of one process iteration. The tasks are independent, except for 
the precedence constraints among them. (This definition of "task" comes from the 
scheduling literature.) 

Thus Mohan and Vrsalovic define a totally synchronous system in the same way: 
a set of processes that perform a single iteration between two global synchronization 
points. To specify an asynchronous system, Mohan defines physical parallelism, N, 
as the number of available processors, and logical parallelism, L, as the number of 
tasks that can execute simultaneously without violating any precedence constraints. 
In a tota!ly asynchronous system, the logical parallelism is equal to the total number 
of tasks, T. In a totally synchronous system, it is equal to the number of processors, 
N; precedence constraints require all the tasks in the ith iteration to finish before any 
task in the (i + 1) st iteration is started; thus when one processor finishes its task, it 
cannot start any other task without violating a precedence constraint until all the 
tasks in the ith iteration are done. 



11. Performance of Parallel Algorithms 245 

Given these definitions, the degree of synchronism can vary along a continuum. 
For example, suppose that N = 25 and T = 1,000. Then L can vary between 25 
(totally synchronous) and 1,000 (totally asynchronous). Mohan studied the effect of 
synchronization on execution time by using PEP to simulate a parallel computation 
and varying the number of synchronization points. 

PEP is a straightforward stochastic simulation program. At the beginning, one 
task is assigned to each (simulated) processor (unless the precedence constraints 
prevent this). Each time a task finishes, another task is selected to run on each idle 
processor, if such tasks can be seiected without vioiating the precedence con­
straints. The execution time of a task is lengthened, or "degraded," by a factor 
representing the overhead imposed by memory contention from all the active 
processes. This overhead is determined by the analytic model. 

Task times were determined by one of two methods: 

Deterministically. Each iteration of each parallel process took exactly the same 
amount of time. 

Random sampling from a beta distribution. A beta distribution is conventionally 
used for task times and for the duration of activities in PERT modeling. The 
beta distribution can take on many different shapes depending on its two 
shape parameters: <x, the square of the standardized measure of skewness of 
a set of observations; and ~, the standardized measure of their peakedness or 
kurtosis.s The uniform, triangular, and exponential distributions are special 
cases of the beta distribution. 

PEP was used to simulate the performance of a computation conSisting of 1 ,000 
tasks on 25 processors. The task times had a beta distribution with shape 
parameters (3, 3) distributed over a range of 200 to 2,000. The total computation 
time was about 1.1 million units, or about 44,000 units per processor. In other words, 
if linear speedup were achieved, the execution time would be 44,000. The upper 
curve in Figure 11-16 shows how the number of synchronization pOints influenced 
the speedup. Runs were made with 1, 10, 20, and 40 synchronization points. These 
numbers were chosen so that logical parallelism was alwC3.ys an integral multiple of 
25, allowing the tasks to be evenly divided among the 25 processors. 

With one synchronization point (at the end of the computation), execution time 
was 44,681 units-sublinear only because of the probabilistic task execution times. 
With 40 synchronization points, execution time rises to 69,018, yielding a speedup of 
about 16. Since the data pOints have been obtained by simulation, the results are 
only probabilistic. The vertical lines in the figure indicate the extent of the 95 percent 
confidence interval. 

The degradation in speedup in this experiment is caused solely by the variation in 
iteration times. The next step [Mohan 84] is to add contention for a common 
resource (such as global memory) and measure its effect on speedup. Let the com-

5 The beta distribution is defined by the density function f(xl = ex a-1 (1 - xl [3-1 for 0 < x < 1; otherwise 
f(x)=O. 



246 

Figure 11-16 

IV. Experiments 

How Synchronization and Contention Affect Speedup 

Q. 25rl 
~ , 
Q; 

~ 
20 

15 

10 

Without common· resource access 
With common· resource access 

Number of processors N = 25 
Total execution time approx. 1,100,000 units 
Task times: beta distribution, 

shape parameters (3, 3), range 200 - 2000 

5~----~------~------~----~ 
o 10 20 30 40 

Synchronization points 

mon resource have a service time of 25 units, and let it be accessed once by each 
task, at some random instant within the first 100 units of execution. Otherwise, the 
simulated system is the same as in the previous experiment. The lower curve in 
Figure 11-16 plots the speedup and the confidence intervals with common access. It 
shows that speedup with contention varies from 23.78 with only 1 synchronization 
point (the asynchronous case) to 12.21 with 40 synchronization points (the com­
pletely synchronous case). 

It is interesting to compare these results derived from simulation with those 
predicted by the analytic model of Vrsalovic et aI. For the completely asynchronous 
case, it predicts a speedup of 25 [for the (N; N) decomposition that arises from 
parceling out an equal number of identical tasks to each processor]. This is a higher 
speedup than that predicted by Mohan, owing partly to the nondeterministic task 
times in the simulation and partly to the fact that Vrsalovic assumes a fixed interval 
between resource requests by each process. As long as the global memory can 
service requests as fast as they are made (N:s 1 + X), requests will never interfere 
with each other. In the Simulation, requests are made at random times, so inter­
ference may occur, even when utilization is light. 

For the "worst case" of a synchronous algorithm, Vrsalovic's model gives a 
speedup of 16.3, whereas 12.21 is the result from simulation. The nondeterministic 
task times undoubtedly have much to do with this discrepancy-note from Figure 
11-16 that nondeterministic task times and no contention yield a speedup of about 
16, not 25 as would be obtained with deterministic task times and no contention. 
The ratio of 12.21 116.3 is higher than 16/25, because the randomness in access 



Figure 11-17 

11. Performance of Parallel Algorithms 247 

requests benefits the simulated system, when compared to Vrsalovic's model of 
synchronism, which posits that all processors make access requests simultaneously, 
a pessimal assumption. 

Matching Parallelism and Task-Time Distribution. Most parallel algorithms divide 
a workload among N processors "as evenly as possible." If the workload cannot be 
divided exactly equally (that is, if its granularity is too high), linear speedup cannot 
be achieved. An equal division of the workload is called matching parallelism 
[Mohan 84]. Computations that are highly synchronous rarely approach matching 
parallelism because the logical parallelism (units of work between synchronization 
points) is on the same order as the physical parallelism (number of processors). In 
most asynchronous computations, the logical parallelism is large with respect to the 
physical parallelism, so the tasks can be distributed quite evenly among the proces­
sors. Nonetheless, matching parallelism and linear speedup can be achieved only 
when the number of processors evenly divides the number of tasks. 

This is shown by Figure 11-17, which illustrates results for a computation of 1,000 
tasks whose execution time is 1 ,000 units each. The synchronous computation has 
25 synchronization points, for a logical parallelism of 40. The plot of speedup versus 
number of processors shows that the graph for a synchronous computation is a step 
function. The execution time of the computation is determined by the processor that 
has the most tasks to perform. For example, the last three steps, at speedups of 14, 
20, and 40 U40/31, r40/21, and r401 11 respectively), are generated when the busiest 
processor has, respectively, three, two, and one task to perform. The asynchronous 
computation always has nearly linear speedup, but deviations from linear become 

Speedup with Deterministic Task Times 

Q. 50 
:J 

"t) 
Q) 
Q) 
Q. 

CI) 40 

30 

20 

10 

o 

x Asynchronous structure 
.x 

.xx 
+ Synchronous structure 

10 20 30 40 50 
Physical parallelism, N 



248 IV. Experiments 

larger as physical parallelism increases relative to the logical parallelism of 1,000. 
Once again, it is easy to compare these results with Vrsalovic's model. The 

model assumes that a parallel computation is always evenly decomposable among 
tV piOcessors; thus no deviation from iinear speedup is encountered in the 
asynchiOnous case. For the synchronous case, the modei predicts a near-linear 
speedup for very large values of X (when the processing time is very large compared 
to the global reference time). Since this system performs no global resource ac­
cesses, speedup in the synchronous case should be linear if there is matching 
parallelism. It is. 

Next, Mohan used a task execution time uniformly distributed between ° and 
2,000. Inequality of execution times on the different processors prevents linear 
speedup from being achieved, even in the asynchronous case and more notably in 
the synchronous case (Figure 11-18). The speedup of the synchronous computation 
rises smoothly to about 20, which is achieved at N = 36, and levels off thereafter. In 
fact, it can be shown [Mohan 84] that with uniformly distributed task times, the 
speedup is bounded by the logical parallelism (40) times the mean task execution 
time (1,000) divided by the maximum execution time (2,000). 

The third experiment used a beta distribution for task times, with shape 
parameters (3, 3) ranging over an interval from ° to 2,000. Figure 11-19 shows that 
the asynchronous computation attains nearly linear speedup, while that of the 
synchronous computation levels out at 22.5, higher than with the uniform distribution 
because samples from this beta distribution tend to cluster more around the mean. 

Parallelization Overhead. When the access penalty is serious enough, the perfor­
mance of a parallel computation sometimes can be improved by changing the im­
plementation to reduce the number of global accesses. A common example is the 
creation of local copies of frequently referenced global data. 

Consider a program that multiplies two M-by-M matrices, solving the matrix 
equation 

c = A x B. 

A straightforward parallel implementation partitions the result matrix into a set of 
square submatrices, each of dimension M I VN by MIVN (assume that N is a per­

fect square, and that MIVN is an integer). We can view the submatrices themselves 

as being arranged in VN rows and VN columns, and let cRS be the Sth submatrix in 
the Rth row. Notice that the process that computes cRS accesses only the Rth row of 

A and the 8th column of B (Figure 11-20), but it makes MIVN global accesses to 
each element within the Rth row and the Sth column. If the submatrices are large, it 
is clearly better to copy them into local memory at the outset; then each element 
from the global matrix is accessed only once. This is an example of how an im­
plementation can be recast to improve performance. The extra work of copying, 
however, prevents the new version from attaining linear speedup with respect to the 
noncopying "basis" version. This extra work represents parallelization overhead. 

The noncopying version of the algorithm has an (N; N) decomposition. Assuming 



Figure 11-18 

Figure 11-19 

11. Performance of Parallel Algorithms 

Speedup with Uniformly Distributed Task Times 

Q. 50 
:::s 
"0 
Q) 
Q) 

Q. 
CI) 40 

30 

20 

10 

o 

x Asynchronous structure 
+ Synchronous structure 

10 20 30 

•• ' x xX 

.. ' xxx x 
.··xxx 

40 50 
Physical parallelism 

Speedup with Beta-Distributed Task Times 

Q. 50 
.g 
Q) 
Q) 
Q. 

CI) 40 

30 

20 

10 

o 

x Asynchronous structure 
+ Synchronous structure 

10 20 

'x XX 

.' X X 
• X X 

.·xxx 
•• ' xx 

.·xxx 
• 'xx 

.·x 
• ?ex 

30 40 50 
Physical parallelism 

249 



250 

Figure 11-20 

IV. Experiments 

Submatrices Accessed During the Computation of a Submatrix Product 

L:J 
A B c 

that the time to iterate through a row of the matrix is much greater than the time 

needed to copy a single matrix element from global memory, the copying version 

has essentially an (N; VN) decomposition. (The calculations are worked out in full 
detail in [Vrsalovic et al. 84b].) It can be shown that the speedup of an algorithm with 

an (N; N) decomposition is strictly increasing, while an algorithm with an (N; VN) 
decomposition has a maximum (the graphs in Figures 11-2 to 11-7 [pages 229-236] 
illustrate this, and it is shown more formally in Appendix C). Assuming further that 
the processor time required to make a local copy of an element is much less than 
the time to access a global element, it becomes profitable to make local copies, as 
long as the number of matrix elements is at least somewhat larger than the number 
of processors. 

11.4. Parallel Algorithm Taxonomy 

A typical parallel computation is structured as multiple processes, which are poten­
tially executable in parallel. These processes generally synchronize the execution of 
various parts of their own computation with subcomputations of other processes. A 
task is the execution of a process between two consecutive synchronization points.6 

In other words, the subcomputations of a process that are executed independently of 
other processes are the tasks executed by that process. We can make the following 
observations about processes executing tasks: A process, whenever it is active, is 
executing one and only one task; a process, during its lifetime, typically executes a 
series of tasks; it does not execute any task when it is blocked or idle. Tasks, by 
contrast, synchronize with other tasks only at their end pOints; that is, any time 
ordering of tasks is done only at the start and completion of a task. Therefore, a task 
runs to completion without regard to the state of other tasks. 

A parallel computation is a collection of computational fragments or tasks, pos­
sibly with some constraints on when a task can be executed relative to others. The 
tasks and their temporal interrelationships can be expressed as a task graph (see 
Section 10.3), where the nodes represent the tasks and the arcs represent the 
precedence constraints between them. Precedence constraints arise from data 

6 As "task" was defined on page 244, there could be more than one task between two consecutive 
synchronization points. In this section, we "lump together" all the tasks between two synchronization points 
and consider them to make up a single task. 



Figure 11-21 

11. Performance of Parailel Algorithms 251 

An Example of a Task Graph 

dependencies, control dependencies, and operator precedences inherent in com­
putations [Lee 80]. Figure 11-21 portrays an example of a task graph, consisting of 
tasks (labeled 1 through 7) and precedence constraints (labeled a through I). 
Precedence constraint a specifies that task 2 can start executing only after task 1 is 
completed; precedence constraints g, h, and i specify that task 7 can be executed 
only after the completion of tasks 4, 5, and 6. 

11.4.1. Six Algorithm Structures 

The most visible characteristic of a parallel computation is its structure-the way its 
components relate to each together. The term "parallel structure" refers to the 
logical dependencies of the tasks within a computation. For example, an unlimited 
number of tasks can logically execute in parallel, although in any real system, the 
physical parallelism is limited to the number of processors. If a parallel computation 
is viewed as a collection of tasks, its parallel structure can be represented directly as 
a task graph. A large number of parallel computations fall into a surprisingly small 
number of prototypical structures. These include asynchronous computations, mul­
tiphase computations, and transaction-processing computations. Each of these 
structures has its particular characteristics and its own representative task graph. 

Asynchronous Structure. In an asynchronous structure, the processes work 
independently. Cooperation among the processes is usually achieved by com­
munication via shared data or message passing. It is assumed that such com­
munication does not give rise to any explicit dependencies between tasks (no 
process, for example, blocks waiting for a message or for a lock to be released) but 
may only induce overheads and resource contention. The tasks executed by the 



252 

Figure 11-22 

IV. Experiments 

Task Graph for an Asynchronous Structure 

8··· 8 

processes can be considered to be an independent collection, with no precedence 
constraints between them. Figure 11-22 shows the task graph for an asynchronous 
structure. Each task of type "Work" executes independently of the others. A pure 
asynchronous structure as shown here is an idealized one; it can approximate a 
computation with a large logical parallelism compared with the number of processors 
or a computation where a task rarely waits for the completion of others. Because of 
the lack of precedence constraints, this structure generally achieves better perfor­
mance than other structures if other attributes, such as computational work and 
resource use, remain the same. 

An example of an asynchronous structure is the matrix multiplication described in 
the previous section. While contention for global memory can have a serious impact 
on this algorithm's performance, the several processes create their result sub­
matrices independently. If the calculation of each element of the result matrix is 
considered to be a task, then the tasks can be performed in any order, as there is no 
restriction on the order in which the elements are calculated. Other examples include 
the three asynchronous methods described in Section 11.5.3 for solving partial 
differential equations. 

Synchronous ~ructure. In a computation with a synchronous structure, the pro­
cesses execute their tasks in a lockstep fashion, using an explicit synchronization 
mechanism for the purpose. The task graph for a synchronous structure with a 
logical parallelism of four is shown in Figure 11-23. Each set of four tasks of type 
"Work" can execute in parallel. They are synchronized by the node labeled "Sync," 
which represents the action of a synchronization mechanism and can be treated as 
a null task with a compute time of zero. 

A synchronous structure underlies other kinds of parallel structures. It is a special 
case of the multiphase structure we will encounter later, when the serial phase has 
zero compute time. Another special case of a synchronous structure is a linear 
synchronous pipeline, wher~ data progresses from one process to another in lock­
step under a global clock. Synchronous execution causes processor idle periods and 
longer execution times, unless the task execution times are nearly equal. As 
described on page 242, it can also lead to greater contention for resources, since 
synchronous tasks tend to use the same resources at roughly the same time. 

Many parallel algorithms have a synchronous structure. An example is the 
synchronous Jacobi algorithm for solving partial differential equations, which will be 



Figure 11-23 

11. Performance of Parallel Algorithms 

Task Graph for a Synchronous Structure 

• 
• 
• 

253 

discussed in detail in Section 11.5.3. Two methods for simulating molecular motion, 
known as the MetropOlis and molecular-dynamics methods (Section A.14), also have 
a synchronous structure. Section 11 .5.2 compares these two methods. 

Multiphase Structure. An algorithm with a multiphase structure is composed of a 
serial phase and a parallel phase, which alternate during the computation. During 
the serial phase, a single process is active, while the parallel phase is composed of 
a number of processes that execute simultaneously. Often the serial phase in some 
way controls the actions of processes in the parallel phase-for example, by parcel­
ing out work to them according to some criteria. In this case, the serial phase is 
called a master process, while the processes of the parallel phase are called slaves. 

Figure 11-24 shows the task graph for a multiphase structure with a logical 
parallelism of four. Each iteration of the computation is composed of a serial phase 
and a parallel phase consisting of four tasks. The graph is identical to the earlier 
graph of a synchronous structure, except for the labeling of the nodes. Functionally, 
there is a significant difference because the tasks labeled "Master" have nonzero 
compute times and perform real work, in addition to serving as synchronization 
pOints. 

Multiphase structures suffer from the same performance handicaps as synchro­
nous structures. In addition, because only one processor is active when the master 
process is executing, processor utilization is lower. Lower utilization is directly 
reflected in longer execution time, and thus lower speedup, as detailed in Section 
11.3.1. It is sometimes possible, however, to design a multiphase computation to 
avoid contention altogether, if the serial phase can copy all the global data it will 
need into the local memory of each parallel process. 



254 

Figure 11-24 

IV. Experiments 

Task Graph for a Multiphase Structure 

Examples of multiphase structure include the power-systems simulations of 
Dugan (Section A.10) and Carey (Section A.11). Parallel-phase processes select 
work from a global queue. When all the processors have finished this work, the 
serial-phase process solves a system of linear equations that the parallel phase has 
created. Mohan's traveling-salesman problem [Mohan 82, Mohan 83] also exhibits a 
multiphase structure. It uses a cost matrix. The algorithm produces successive 
refinements of this matrix until a least-cost solution is found. It is helpful to think of 
the algorithm as producing a tree of cost matrices, with each step producing two or 
more child nodes. Mohan studied two parallel implementations of this algorithm, the 
first of which exhibits a multi phase structure. The serial phase decides which child 
nodes are to be created, and the processes of the parallel phase create the nodes 
and calculate the cost of the resulting tours. This algorithm is described in more 
detail in Section A.18. 

Partitioning Structure. In a partitioning structure, processes divide the work among 
themselves during a divide (separation) phase, do active computing on their partition 
during a work phase, and put their results together to reach a final solution during a 
merge (reconstitution) phase. Hallmarks of this structure are its diamond-shaped 
task graph and distinct multiple phases, all of which perform significant computation. 
Figure 11-25 shows the task graph for a partitioning structure with a logical paral­
lelism of four. It has a degree of division of two; that is, each "Divide" task spawns 



Figure 11-25 

11. Periormance of Parallel Algorithms 255 

Task Graph for a Partitioning Structure 

two other tasks during the divide phase. Usually the degree of merging (the number 
of tasks that must complete before the next "Merge" task can execute) is the same 
as the degree of division. Some algorithms, however, do not require a merge phase. 

A partitioning structure may be used to implement divide-and-conquer algorithms, 
where the total computation needed to solve the problem can change with the 
degree and height of division. The computation done within the separation and 
reconstitution phases must be small relative to that done during the work phase, 
since the logical parallelism in the program develops incrementally. This structure 
also may be used to decompose a computation for parallel execution, even when 
the algorithm is not of the divide-and-conquer variety. Here, the increased speedup 
within the work phase that results from harnessing the power of more processors 
must be traded off against the extra cost of dividing and merging. Synchronization is 
inevitable during the merge phase and this can also be detrimental to speedup. 

A partitioning structure tends to be characteristic of sorting and searching al­
gorithms. The qUicksort, implemented on Cm* by Raskin [Raskin 78] and Deminet 
[Deminet 82], is an example. The processors share a stack, which initially contains 

only one entry, a descriptor for the entire array to be sorted. Each processor at­
tempts to pop a descriptor from the stack, and if successful, the processor partitions 
the task into two subsets, containing, respectively, all elements greater than or less 
than an estimated median value. In its simplest form, the algorithm terminates when 
there are no subsets of more than one element. Further details will be provided in 
Section 11 .5.1 . 



256 IV. Experiments 

The design-rule checker implemented by Lane [Lane 84] has a structure very 
similar to Mohan's traveling-salesman program. In the design stage, an integrated­
circuit design is usually represented by a set of rectangles in a plane, with sides 
parallel to the coordinate axes. If two rectangles do not overlap, they must be 
separated by a certain distance, usually expressed in microns. Reporting violations 
of this rule is one purpose of a design-rule checker. To impose order on a design 
that consists of thousands of rectangles, the design is represented as a hierarchical 
collection of symbols, each of which contains other symbols. The leaf nodes of this 
hierarchy are rectangles. A processor selects a symbol from a global queue and 
parcels out to other tasks the work of analyzing its subsymbols. Thus the algorithm 
has the structure of a top-down tree search. 

Pipeline Structure. A pipeline structure is so named because its processes are 
ordered and data moves from one process to the next, as though through a pipeline. 
Work proceeds in steps as on an assembly line; at the start of each step, each 
process (except perhaps one of them) takes its input from other processes, com­
putes a result based on the input, and passes the result on to neighboring processes 
at the end of the step. A pipeline structure is possible only if the computation is 
composed of a sequence of operations that are applied in nearly identical fashion to 
successive collections of data. Even though one can envisage complex pipeline 
structures, the ones found in real computations are usually the simple linear variety, 
where processes are totally ordered and information is processed and passed from 
one end to the other in steps. 

A pipeline structure can be synchronous or asynchronous [Chen 75]. A synchro­
nous pipeline computation is organized around a global synchronizing mechanism, 
such as a clock. When the clock pulses, each process in the computation begins its 
next task. The synchronous task structure shown in Figure 11-23 also represents 
the task structure for a synchronous linear pipeline computation with four stages. 
The "Sync" node represents the global synchronization mechanism used at the end 
of each step. In an asynchronous pipeline computation, processes do not have a 
global clock to synchronize them; they synchronize only with their immediate neigh­
bors using some local mechanism, such as message passing. 

Figure 11-26 shows the task graph for an asynchronous linear pipeline computa­
tion with four stages, one stage represented by a vertical group of tasks. Each 
horizontal group of four "Work" tasks in the figure constitutes a step of the computa­
tion. The processes of a computation with this structure will be interconnected in a 
simple linear sequence, with communication links between neighbors; the tasks, 
however, have more complex interrelationships because a process must finish its 
current task and receive data from its neighbor(s) before commencing execution of 
the next task. 

From a performance point of view, even an asynchronous pipeline structure is 
susceptible to synchronization overhead, albeit to a lesser extent. All pipeline com­
putations pay a cost of reduced logical parallelism, both during the beginning of a 
computation when a pipe gradually fills (the fill-in phase) and toward the end when it 
empties (the flush-out phase). In addition, a pipeline computation usually involves 



Figure 11-26 

11. Performance of Parallel Algorithms 257 

Task Graph for a Pipeline Structure 

considerable communication of data between processes at each step, which can 
exact a high cost on architectures with a high interprocess communication cost. 

The systolic molecular Metropolis algorithm, implemented by Whiteside 
[Whiteside et al. 82, Whiteside et al. 83], is an example of an asynchronous pipeline 
algorithm. It calculates the static and dynamic properties of a collection of molecules, 
given the microscopic interactions between them. Information on each particle 
pulses from one processor to another in the course of calculating the binding energy. 
More complete details can be found in Section A.14. 

Transaction-Processing Algorithms. Most parallel programs that do not fall into 
one of the above categories can be loosely classified as transaction processors; 
requests arrive at the task force from an external source and are fielded by one of 
the parallel processes. It usually is important to maintain the consistency of global 
data, and frequently a major issue is how synchronization of access can be ac­
complished efficiently. Because of the wide variety of structures that fall into this 
category, it is not possible to draw a paradigmatic diagram. 

Deminet's railway-network simulation [Jones and Gehringer 80, Deminet 82] is a 
parallel program in which each process represents a railroad station. Simulated 
trains pass from one station to another; stations service trains in the (simulated) 
order in which they arrive. The simulation is driven by a random-number generator, 
which determines the arrival times for the trains. Consequently, it is possible to 
consider the random-number generator as an external input to the simulation, with 
the simulation processing the transactions it generates. As explained in Section A.9, 
there are many synchronization pOints in the simulation, although there are no 
global synchronization pOints. The simulation does not have a pipeline structure 
because data moves between processes in a random, rather than a predetermined, 
pattern. Thus the simulation is not an instance of any of the structures described 
above. 

Robinson [Robinson 82] implemented a transaction-processing system for a 
database on Cm*. The system consisted of as many as 11 processes: 



258 IV. Experiments 

• A master, which supplied the transaction processors with work. 
• Up to 8 transaction processors, which performed the queries delivered to them 

by the master. 
• A concurrency-control process, responsible for synchronizing read and write 

accesses to the database. 
• A global memory manager, which maintained a mapping from each object 

name to the most recent version of the object. 

While this structure includes both a master process and slave processes, it does not 
have a multi phase structure because the master and the slaves can be simul­
taneously active. As implemented, the transaction-processing system models a real­
world system in which requests arrive from outside users; for the purposes of the 
experiment, however, transactions are created by a random-number generator. 

11.4.2. Algorithm Structure and Overhead 

Table 11-2 

Having completed our survey of the structure of parallel algorithms, it is instructive to 
consider which structures are susceptible to each kind of overhead identified in 
Section 11.3. This discussion is summarized in Table 11-2. From the preceding 
discussion, it is possible to draw tentative conclusions about structure / overhead 
relationships, although in view of the fact that only a few dozen algorithms have 
been studied, the conclusions may be somewhat anecdotal. 

Decomposition and reconstitution overhead are associated mainly with partition­
ing algorithms, which have significant divide-and-merge phases. In a multi phase 
algorithm, the serial phase often performs part of the work of decomposition, thus 

Susceptibility of Various Algorithm Structures to Different Types of Overhead 

Algorithm 
structure 

Synchronous 
Asynchronous 
Multiphase 
Partitioning 
Pipeline 
Transaction 

Algorithm 
penalty 

Implementation 
penalty 

Alg./lmpl. 
interaction 

Decomp. Reconst. Access Content. Synch. Parallel. 
overhead overhead overhead overhead overhead overhead 

x + + 
x x 
x x x 

x x x x x 
x x x 
x x x 

Legend: 
(space) 
x 

+ 

Algorithms of the given structure do not suffer from this type of overhead. 
Algorithms of the given structure are susceptible to this type of overhead. 
Algorithms are susceptible to this type of overhead but to a lesser extent. 
Algorithms are susceptible to this type of overhead to a greater extent. 



11. Performance of Parallel Algorithms 259 

multiphase algorithms also may manifest decomposition overhead. These two forms 
of overhead are less characteristic of multiphase algorithms than partitioning al­
gorithms; hence a "-" has been placed in the table. 

Shared memory is characteristic of multiprocessors (as opposed to computer 
networks). All parallel algorithms use it-even message passing requires mailboxes 
or ports that are accessible to both sender and receiver. Thus whenever shared 
memory is slower than local memory, all multiprocessor algorithms experience ac-
cess overhead. For the same reason, aU paralle! algorithms encounter memory' 
contention. It is most serious (a "+" in the table) in the case of synchronous al­
gorithms, where all processors are likely to access common memory at about the 
same time. Asynchronous algorithms confront less contention, since contention 
delays some processors more than others during the first iteration and they tend to 
make global accesses at different times during each iteration thereafter. Most other 
algorithm structures can take measures to avoid contention overhead. For example, 
the serial phase of a multi phase algorithm can distribute some data to the parallel 
processes in advance, thus reducing contention. The decomposition phase of a 
partitioning algorithm accomplishes the same purpose, while the reconstitution 
phase tends to reduce contention in gathering results. In pipeline algorithms, each 
portion of data tends to be accessed by one processor at a time, although it is 
accessed by all processors at some time during the computation. Transaction al­
gorithms are less capable of taking countermeasures because their sequence of 
input requests, and hence their memory-reference patterns, are unpredictable. 

Synchronization overhead is most serious in synchronous algorithms, which have 
a synchronization pOint at the end of each iteration. Asynchronous algorithms have 
no internal synchronization points and consequently experience no synchronization 
overhead. The other four algorithm types may have some synchronization pOints, 
but in general these are less frequent than in a synchronous algorithm. (A 
synchronous pipeline is an exception.) Algorithms of any type can be reimplemented 
to take better advantage of a particular multiprocessor architecture and thus can 
experience parallelization overhead. Ideally, of course, the parallelization penalty 
should be more than offset by reduced overhead of other types. A transaction-based 
algorithm is perhaps the most difficult to restructure, owing to the unpredictability of 
its reference patterns. 

11.5. Case Studies of Influences on Performance 

Section 11.3 considered factors that influence performance, without reference to 
specific parallel algorithms. Indeed, the experimental results reported there were 
gathered by simulation of parallel algorithms with certain characteristics rather than 
by running actual algorithms. Cm*'s experimental annals contain examples of each 
type of overhead. Let us now consider some specific cases. 



260 IV. Experiments 

11.5.1. Algorithm Penalty 

Figure 11-27 

Separation Overhead. Quicksort is an algorithm that exhibits significant separation 
overhead. it works by partitioning a set of numbers into two subsets, according to 
whether each eiement is iarger or smailer than some "median" vaiue. Two proces­
sors can then work in parallel on partitioning the two resulting subsets, and so forth. 
The partitioning of a single set must, however, be performed by a single processor. 
Hence the time it takes to sort the set is dominated by the time to partition the 
largest subsets, and this time grows linearly with the size of the data. The separa­
tion overhead limits the speedup to the value given by this equation: 

log2N 2 
2-----

1 
N N 

1 (3) 
-+ 

S N log2M 

where S is the speedup, N is the number of processes, and M is the number of 
elements sorted. In fact, as shown in Figure 11-27, memory contention and other 
artifacts of the em* implementation of this algorithm prevent it from attaining even 
this speedup, especially when the number of processors exceeds eight. The curve 
marked "actual" is from a set of experimental measurements of the algorithm made 
by Deminet on a 10,OOO-element array. Other measurements of the same algorithm 

are described in Section A.S. 

Theoretical Speedup of Quicksort for Different Array Sizes 

6 

5 .-
4 .. -
3 

2 

-

100,000 elements, theoretical 

10,000 elements, theoretical --_ .... -
~ ... ----- .. --- .. --

-----_ .. 

1 ,000 elements, theoretical 
---------------- .. .---- ------

100 elements, theoretical ----------------------------------
10,000 elements, actual 

1~E-------~----------~----------~--------~~--------~ o 5 10 15 20 25 
Number of processors 



Figure 11-28 

11. Performance of Parallel Algorithms 261 

Reconstitution Overhead. The quicksort is a partitioning algorithm, an example of 
the structure that is most susceptible to separation and reconstitution overhead. 
Multiphase algorithms also can encounter these overheads, however, as happened 
in the power-systems simulation algorithm run on Cm* by Dugan [Dugan et al. 
79, Durham et al. 79]. The simulation employed the network model to represent the 
electrical network hierarchically. The network is composed of a set of devices, each 
of which may be made up of more primitive devices. A non primitive device is called 
a macrodevice. Any primitive device or macrodsvice may be chaiacteilzed by the 
behavior of voitage and current values at its terminals. The mathematical model for a 
device is called its macromodel. 

The algorithm performs two steps iteratively. Phase I, the parallel phase, solves 
the macromodels. Each processor repeatedly extracts an unprocessed device from 
the pool of unprocessed devices. The new voltage and current values for the 
device's output terminals are computed from the corresponding values for its input 
terminals, according to the macromodel. The resulting voltages and currents form 
part of a single linear system. When all the devices have been processed, Phase" 
utilizes a single processor to solve the linear system. The Phase I / Phase " cycle 
computes the results for a single time step. Then the cycle is performed again for 
the next time step and continues until the simulation is finished. 

Phase" can be termed the "reconstitution phase." Because it is serial, the 
speedup of the entire algorithm is less than linear. Figure 11-28 plots a linear 
speedup, the "theoretical" speedup obtained by taking into account only the 
reconstitution penalty and the v~Jerved speedup on Cm*, which also exhibits 
degradation due to contention. The algorithm and results are described in greater 
detail in Section A.1 O. 

Speedup of Power-Systems Simulation 

4 

3 

2 

• Linear speedup 
A "Theoretical" speedup 
o Observed speedup 

...... ./. 

.. <./' 
.... :'/ .. 

.;::;/ 
:--~. 

./ 

•• . ' 
.' 

.' 

1~----~----~----~----~----~ 
1 234 5 6 

Number of processors in Phase I 



262 IV. Experiments 

11.5.2. Implementation Penalty 

Figure 11-29 

Access Overhead. Access overhead is directly related to the speed of global 
memory. More precisely, it depends on the speed of global memory relative to 
processor speed. Given the structure of Cm*, non local (intracluster) references take 
at least three times as long as local references. It is not possible to speed them up, 
but the same effect can be obtained by slowing down the processors-for example, 
by inserting no-ops into the code. 

One of the first experiments performed on Cm* was the measurement of Fast 
Fourier Transforms [Fuller et al. 77]. The same algorithm was run several times, 
each time with a different number of processors or a different effective processor 
speed. As processor speed fell, access overhead effectively decreased, resulting in 
a rise in speedup (Figure 11-29). More detail is provided in Section A.6. 

The same phenomenon is illustrated by two algorithms for simulation of molecular 
motion [Ostlund et al. 82a, Ostlund et al. 82b]. These algorithms, simulate the be­
havior of a system of particles (50, in this case) by computing the binding energy for 
each particle. One of these algorithms, the molecular-dynamics algorithm, shows 
nearly'linear speedup in the case of matching parallelism, despite the fact that 
synchronization points were quite frequent. The other algorithm, the Metropolis 
algorithm, experiences more synchronization overhead and achieves somewhat 
poorer speedup. Both algorithms, however, make heavy use of floating-point opera­
tions, which an LSI-11 performs in software. For such algorithms, tp tends to be very 
large, resulting in a fairly large x and thus low access overhead. 

While tp cannot be diminished except by changing the architecture, it is possible 
to simulate a lower tp by replacing the floating-point calculations with delay loops. Of 

Speedup of Fast Fourier Transform, Varying Effective Processor Speed 

5 

4 

3 

2 

t:. Slowed down by factor of 10 
• Slowed down by factor of 4 
o Slowed down by factor of 2 
o Std. floating'point operation cost 

Linear speedup, ' . 

1~--~----~--~----~--~~--~ 
1 2 3 4 5 6 7 

Number of processors 



Figure 11-30 

11. Performance of Parallel Algorithms 

Effect of Processor Speed on Speedup of Metropolis Algorithm 

0.. 25 
::J 
"0 
Q) 
Q) 

0.. 
C/) 20 

10 

5 

o 

• LSI-11 processors 
o "Fast" processors 
o "Very fast" processors 

Linear 
speedup 

, 
/ 

5 10 15 20 25 
Number of processors 

263 

course, this renders the code useless for predicting molecular motion, but we are 
interested in the performance of the algorithm, not in its results. By varying the 
length of these delay loops, it is possible to simulate the effects of different proces­
sor speeds. (More detail can be found in Section A.14.) Figure 11-30 illustrates that 
speedup is inversely correlated with processor speed, due to the direct correlation 
between processor speed and access overhead. It also shows how increasing ac­
cess overhead obscures the effect of matching parallelism, as synchronization over­
head loses its leading role in determining execution time. 

Contention Overhead. Access overhead and contention overhead go hand in hand. 
Algorithms that manifest one tend to manifest both. One sure indication of contention 
is declining speedup as the number of processors is increased. This phenomenon is 
especially obvious in the quicksort algorithm (Figure 11-31). Although separation 
overhead makes the theoretical speedup sublinear for all N, another factor clearly 
dominates as N increases past eight or nine. Here, adding more processors actually 
caused a decrease in speedup. Contention for shared memory is the culprit, as 
discussed at greater length in Section A.S. 

One striking indication of the effect of contention is found in Deminet's distributed­
data experiment with the partial differential equation solver PDE (Section A. 7). 
Figure 11-32 graphs speedup for two different configurations of global data. In one, 
called the centralized data experiment, the global data in a 1S0-by-1S0 grid is stored 
in a single cluster. In the other, called distributed data, the grid is distributed among 
all the clusters whose pro.cessors are in use. As the number of processors increases 
past some threshold, speedup of the centralized version falls. This is due to conten­
tion, not only for memory but also for Kmap contexts, resulting from the large 



264 

Figure 11-31 

IV. Experiments 

Declining Speedup from Quicksort Algorithm 

o.6.0i 
-6- I 
If. I 
a; I 
,9; ~ oL 
VI "". I 

! 
I 

4.0r 

I 
i 

3.0r 

2.0 

1.0:· 
I 

.. :8":::' 
.::.~.:., 

<> .... ~ 

.0 .. ::l5" ::::g:::!: ::~::::" .... o 

S····.[J·· 
g'::: .. ' 

<> 20480 elements 
o 10000 elements 

Dotted lines-theoretical speedup 
Solid lines-observed speedup 

o.ol~ ----~~----~----~----~~----~----~----~----~ a 2 4 6 8 10 12 14 16 
Number of processors 

number of processors that are attempting to access the same destination Kmap 
simultaneously. Speedup continues to rise with the number of processors in the 
distributed-data version, despite the fact that the number of non local references 
(both intracluster and intercluster) is approximately the same as in the centralized­
data experiment. More details, including an explanation of the dip in the distributed­
data curve, can be found in Section A.7. 

Experiments with Lane's design-rule checker (Section A.20) also illustrate the 
effect of contention. All processors share a single queue of work to be performed, 
not unlike the shared stack of the quicksort. Global data is replicated in each cluster. 
By comparing the average number of busy processors with the speedup, it is pos­
sible to estimate the overhead due to contention and manipulation of the common 
queue (Section A.20 explains how this is done). Most of the overhead turns out to be 
due to contention for the global data. Figure 11-33 shows that the overhead rises 
sharply until a cluster boundary is crossed and the data is replicated. The slight 
increase with larger numbers of processors is evidently due to intercluster queue 
manipulation; although this effect is less significant, it is still noticeable. 

11.5.3. Algorithm I Implementation Interaction 

Synchronization Overhead. How much does synchronization cost? As a case in 
point, consider the algOrithms for solving partial differential equations. (A more 
detailed description is given in Section A.1.) The objective is to solve Laplace's 
partial differential equation (POE) with given boundary conditions (Dirichlet's 



Figure 11-32 

Figure 11-33 

11. Performance of Parallel Algorithms 

Effects of Distributed Data, Using Smap Microcode 

Q.30 
-5 
CI) 
CI) 

c%25 

20 

o 

~ Distributed data 
Cl Centralized data 

5 10 15 

Linear 
speedup 

20 

265 

25 30 35 40 
Number of processors 

Overhead of Contention and Communication in Lane's Design-Rule Checker 

5 10 15 20 

o FIFO queue design 
Cl RAM design 

25 30 35 
Number of processors 



266 

Table 11-3 

IV. Experiments 

problem) by the method of finite differences. A large matrix, or grid, is solved by 
several processes, each iterating on fixed, disjoint, equal-sized partitions of the grid 
until convergence is obtained. Each process runs on its own dedicated processor; 
the work that it performs will be called a task. Thus the processes are distin­
guishable. 

Four different variations [8audet 78] of this algorithm have been implemented on 
em*: 

1. Jacobi Method. At the beginning of each iteration, a processor retrieves its 
partition from a global array. New values are computed for each element of 
the partition, then-within a critical section-stored back into the global array. 
The processor then checks to see whether its iteration has converged. If so, it 
reports that it has finished; otherwise it blocks until the other processors have 
completed the current iteration. Iterations are performed until all processors 
have finished. 

2. Asynchronous Jacobi Method. This method is the same as method 1 except 
that a processor does not wait for the other processors to finish before starting 
on the next iteration. 

3. Asynchronous Gauss-Seidel Method. This method is similar to method 2, 
except that the processor uses newly computed values as soon as they are 
available instead of the values known at the beginning of the iteration. 

4. Purely Asynchronous Method. To compute new array values, this method 
uses the most recent values of all components by reading them directly from 
the global array and writing the updated values back to the global array 
(without any critical sections or synchronization). 

Table 11-3 summarizes the differences between the methods. 
Raskin [Raskin 78] compared these algorithms using a 21-by-24 array (504 

Comparison of Multiprocessor Methods for Solving POE 

All processors Computes only Copies data 
synchronize at with data known from global array 
beginning of at beginning to local array 
each iteration of iteration and back again 

Jacobi 
(Method 1) Yes Yes Yes 

Asynchronous Jacobi 
(Method 2) No Yes Yes 

Asynch. Gauss-Seidel 
(Method 3) No No Yes 

Purely Asynchronous 
(Method 4) No No No 



Figure 11-34 

11. Performance of Parallel Algorithms 

Comparison of Speedup for Different Methods of PDE 

6 

I 
5 

4 

3 

A Purely asynchronous (method 4) • 

• Asynch. Gauss-Seidel (method 3) .••.• % ..... / ...... . o Asynch. Jacobi (method 2) 
o Jacobi (method 1) 

Linear speedup ••• • ./ ./ 

1~--~--~--~----~--~--~--~ 
1 2 3 45678 

Number of processors 

267 

elements) on a one-cluster Cm* system with a maximum of eight processors. The 
results are shown in Figure 11-34. With eight processors, method 1 yields a speed­
up of just over 5.0, method 3 gives a speedup of better than 5.3, method 2 yields 
6.4, and method 4 yields almost 7.3. 

A broader perspective on the impact of synchronization can be gleaned from 
examining the number of iterations taken by each method. This data is taken from a 
C.mmp [Baudet 78] experiment similar to those on Cm*. No similar measurements 
have been made on Cm*. With method 1, the number of iterations is constant and 
lower than with method 2. In one sense, this method requires less computation. If 
all the processors took exactly the same time for each iteration and the time to copy 
data from and to the global array could be neglected, it would be faster. In this 
algorithm, as in several others, the beneficial effect of synchronization is its tendency 
to decrease the amount of computation; its detrimental effect is that it requires some 
processors to be idle some of the time. For most algorithms studied on Cm*, the 
costs of synchronization exceed the benefits. 

All the asynchronous POE methods require more iterations as the number of 
processes increases. The uniprocessor method 3 is almost twice as fast as the 
uniprocessor method 2. But as processors are added, method 3's iterations increase 
faster, and it shows less speedup. If the trend continued, for some number of 
processors, method 2 would be faster. But that point was not reached in this experi­
ment. By contrast, method 4 takes fewer iterations than methods 2 and 3. As 
processors are added, it widens its lead in execution time. 

Disregarding the effects of iterations on execution time, let us consider the effect 



268 

Figure 11-35 

IV. Experiments 

Number of Iterations Required to Solve the POE 

::! 350r 

~ I 
~30r~~--B---~~---B~--------~----&---~ 

:~ .... 
o 
.. 250 
Q) 

.tl e 
~ 200 

100 

50 

o Jacobi (method 1) 
o Asynchronous Jacobi (method 2) 
• Asynchronous Gauss-Seidel (method 3) 
A Purely asynchronous (method 4) 

o~--~----~----~----~--~----~----~ 
1 2 3 4 5 6 7 8 

Number of processors 

of synchronization on speedup. The asynchronous Jacobi and Gauss-Seidel 
methods are the only two that demand precisely the same amount of synchroniza­
tion (critical sections at the beginning and end of an iteration, no waiting for other 
processors). Each time the synchronization requirements are decreased-from 
method 1 to methods 2 and 3, and then again to method 4-speedup improves. The 
degree of synchronization seems to be the dominating factor affecting speedup of 
the POE. 

The impact of synchronization is also illustrated by a comparison of the two 
molecular-motion simulations first mentioned in Section 11.5.2. The MetropoliS 
method employs a method known as ensemble averaging. It consists of several 
passes, during each of which the location of each particle in the simulated structure 
may be perturbed. To determine whether a particle moves or not, its binding energy 
must be calculated. This is an O(N) calculation, where N is the number of particles 
in the system. When K processors are used, the complexity of this step is reduced 
to O(N / K). After this step, the contributions calculated by this step must be added 
before the next move can take place. This is a global synchronization point. 

The molecular-dynamics algorithm uses time averaging. An initial set of 
velocities for the particles is calculated. These velocities can be used to predict the 
locations of the particles at a later time. The computation of the binding energy in 
the system has complexity O(N2), but since the particles move simultaneously, this 
serial computation may be converted to a K-processor parallel computation of 
O(N2/ K) without any internal synchronization points. Both these algorithms are 
described in more detail in Section A.14. 

Because it requires synchronization only every N2/ K steps, the molecular-



Figure 11-36 

11. Performance of Parallel Algorithms 

Speedup of Metropolis vs. Molecular Dynamics Algorithm 

Q.25 

-5 
CI> 
CI> 
Q. 

C/) 20 

o 

<> Molecular-dynamics method 
o Metropolis method 

5 10 15 20 25 
Number of processors 

269 

dynamics algorithm should outperform the Metropolis algorithm, whose synchroniza­
tion points occur after every N / K steps. Figure 11-36 shows that this does happen. 
Where matching parallelism is achieved, the molecular-dynamics algorithm exhibits 
nearly linear speedup. The zigzag shape of the curves in this graph corresponds 
closely to the idealized step function of Figure 11-17. This zigzag shape is charac­
teristic of pure synchronization overhead and disappears when access overhead 
begins to playa more important role (see page 263). 

Parallelization Overhead. Mohan's traveling-salesman problem is an example of an 
algorithm that uses heuristics to speed up a search. One implementation of the 
algorithm, called TSP1 (Section A.18), selects a set of edges to search in its serial 
phase (page 253), and parcels out the resulting work to individual processors. As 
more processors cooperate to solve the problem, a larger set of edges must be 
selected at one time, and more work must be performed by the system between 
applications of heuristics. This causes the heuristics to become less effective, so 
more total work is done by the system. The extra work is a good example of 
parallelization overhead. Using up to four processors, the extra work is more than 
offset by the increased parallelism (Figure 11-37), but with more than four proces­
sors, parallelization overhead begins to dominate, and speedup declines. 

The dashed curve in Figure 11-37 represents the speedup the program exhibits 
in generating nodes on which the processors can work. As can be seen, the 
program generates nodes more quickly as the number of processors increases. In 
essence, this would be the speedup of the system if there were no parallelization 



270 

Figure 11-37 

11.6. Summary 

IV. Experiments 

Speedup of TSP1 

Q. 16r 

-6 I 
(l) 

o Speedup (actual) 
~ Speedup adjusted for nodes generated 

CD 14 
~ Best solution times among all placements 

12 

.' 
10 

8 --~ --6 
/ 

6"'--

// .... 
4 . '" 

? s 
-El 

2 

o 2 4 6 8 10 12 14 16 

Number of processors 

overhead. Thus the distance between the solid and dashed curves represents paral­
lelization overhead. The distance between the dashed line and linear speedup is due 
largely to synchronization overhead. 

Another example of parallelization overhead is the extra work involved in copying 
matrices before multiplying them in an effort to avoid contention. One experiment 
performed by Vrsalovic (Section C.5) shows that the model has accurately predicted 
this overhead. The ratios between access time and processing time were measured, 
along with the extra processing time required to make local copies of the M-by-M 
global matrices. The model was explicitly extended to account for loop initialization 
times. The extended model predicted execution times that were everywhere within 5 
percent of the obseryed times (Figure 11-38). 

This chapter focuses on the theoretical and practical lessons in parallel algorithm 
performance gleaned from experimentation on Cm*. Most of the performance 
studies use speedup as the metric to compare implementations of different al­
gorithms. Speedup, which is the ratio between the elapsed time required by the 
one-processor version of a parallel algorithm to the elapsed time for its N-processor 
counterpart, ordinarily has a value between 1 and N. For some algorithms, speedup 
may attain a value greater than N, but it is more common for speedup to be substan­
tially lower than N. Two issues are of interest: first, which factors are responsible for 
this behavior, and second, what number of processors will maximize the speedup of 



Figure 11-38 

11. Performance of Parallel Algorithms 

Speedup of Local Copies Version of Matrix Multiplication 

Q.18 

-6 
CD 
CD 
Q. 

fI) 15 

I 
12 

9 

6 

~ M = 48 
o M = 36 
o M = 24 

Dotted lines-predicted 
Solid lines-measured 

3------~------~------------~ o 4 8 12 16 
Number of processors 

271 

a given algorithm. The first question can be answered by dividing the factors into 
three categories, namely algorithm penalty, implementation penalty, and the inter­
action between the two. 

The algorithm penalty is composed of the separation overhead (cost of process 
decomposition and data partitioning) and the reconstitution overhead (cost of the 
interchange and reporting of intermediate and final results). On the implementation 
side, the access overhead (cost of accessing shared resources) and the contention 
thereby induced are the main factors influencing the speedup. The interaction be­
tween the algorithm and implementation leads to two other types of overhead: the 
overhead of synchronization and the cost of adapting a parallel algorithm to a 
specific architectural implementation. This chapter has presented a detailed 
analysis of these factors, based on em* experiments and theoretical models derived 
or calibrated from the experimental data. 

The second question, concerning the maximum number of useful processors for 
executing a parallel algorithm, also draws its answers from theoretical models 
derived from the experimental data. Such models come in two "flavors." First, at the 
macro level we have divided parallel algorithms into six classes: asynchronous, 
synchronous, multiphase structure, partitioning structure, pipeline, and transaction 
processing. These classes of parallel algorithm structures represent distinct cross­
sections of the algorithm-overhead and implementation-overhead profiles. Hence 
once a parallel algorithm has been classified into one of the six categories, one 
could predict how it will perform. Further, we have parameterized the characteristics 
of a parallel architecture to predict the performance of a parallel implementation. 



272 IV. Experiments 

Finally, we have shown how this taxonomy and modeling is reflected in a number 
of case-study experiments on Cm*. This section contains a comprehensive set of 
conclusions derived from the Cm* experiments and attempts to generalize their 
results. In Chapter 12, we shift our concentration from the aigorithm to the architec­
ture and explore severai experiments where em'" has been used to provide insights 
into the performance of parallel algorithms on different types of multiprocessor ar­
chitectures. 

Acknowledgment. The descriptions of task graphs and algorithm structures in Section 11.4 
have been taken from Chapter 2 of [Mohan 84]. 



12. Experiments in Multiprocessor 
Architecture 

As indicated in Chapter 1, a major challenge facing mUltiprocessor-system designers 
is to demonstrate that a broad class of applications can profitably exploit the para!­
lelism of a multiprocessor. Chapter 11 has provided a taxonomy of parallel applica­
tions and identified a set of factors that limit the parallelism that can be realized. 
Further details and examples are included in Appendix A. In addition, Appendix C 
has developed an analytical model to predict the impact of these limiting factors. Of 
equal importance is the characterization of the limits of the system architecture. 
Hardware-imposed limits were discussed in Chapter 3. This chapter explores limits 
imposed by the Cm* virtual machine. 

To quantify performance accurately in a multiprocessor, it is necessary to read a 
system clock with a high degree of precision. Section 12.1 develops a methodology 
for determining clock accuracy and compensating for delays due to system load and 
contention for shared resources. The clock-reading software is utilized by sub­
sequent experiments to ensure accurate measurements. Section 12.2 explores 
virtual-machine extensions for improving reliability. Software voting can harness the 
inherent redundancy of a multiprocessor so that component failures can be 
tolerated, provided that the overhead of voting is not too great. 

Finally, extensions to the liE (Chapter 10) can help simulate a variety of mul­
tiprocessor interconnection structures and measure the performance of an applica­
tion running on each structure. Section 12.3 explores the consequences of varying 
hardware interconnection structures while holding the virtual-machine interface 
constant. 

12.1. Measurement of Time 

Software methods that rely only on a high-resolution clock are more commonly used 
to measure the performance of computer systems than are methods involving the 
use of special-purpose hardware monitors. Software methods are not only cheaper 
but also more flexible: They simplify the automation of performance evaluation, from 
data collection to data reduction, and they permit performance analysis to be done 
remotely, without probing the internals of the machine. The disadvantage of software 
methods is that they may be inaccurate because of interactions between the 
measuring and measured software. 

Clock readings may be inaccurate when the system clock is used as a time 
source because the system load may affect how long it takes to read the clock; this 
leads to readings that are neither accurate nor reproducible. The problem is most 
serious in a distributed system where many processors can attempt to read the clock 
simultaneously and where message traffic influences communication delays. In Cm*, 
for example, a preliminary study showed that the result of a clock read can be in 

273 



274 IV. Experiments 

error (Le., outdated) by as much as 2 milliseconds. Thus it is desirable to develop 
methods for measuring time more accurately. 

12.1.1. Clocks in a Multiprocessor 

One technique for providing access to a global time source is to have a globally 
readable clock with a communication delay that is small (compared to the clock 
resolution) and fixed, regardless of system load. Such a clock requires a special bus 
allowing multiple simultaneous read accesses. An example of such a bus structure is 
the interprocessor bus of C.mmp [Wulf et al. 81]. C.mmp has a 56-bit global clock 
with a 4-J.Ls. resolution. The value of this clock is continually broadcast on the 
interprocessor bus. 

In a more loosely coupled system, however, it is not feasible to devote a special­
purpose bus to the global clock because of the amount of cabling involved and 
because of the problems associated with bus arbitration over long lengths of wire. 
Also, broadcasting the clock value on the general-purpose bus uses a large portion 
of the cycles available on the bus. For these two reasons, the clock value is 
generally not broadcast in large distributed systems. 

In Cm·, when a subsystem needs to know the system time, it establishes a 
connection with the clock and reads its value. This way, communication occurs only 
when necessary. However, because the time required to establish a connection 
depends on bus activity and the transmission delay depends on the physical location 
of the processor, the total delay is unpredictable. When multiple requests for the 
system time arrive simultaneously, bus contention results, and a queue is formed. 
The wait time in this queue adds further uncertainty to the total communication 
delay. This section examines the problems in reading a central clock, studies their 
effect on the performance of the Cm· clock,' and then proposes schemes to obtain 
more accurate clock readings. 

Cm· Clocks. Cm· provides three 32-bit real-time clocks for time measurements, one 
of which is used to provide the system time. These clocks have a quartz-crystal time 
base with an adjustable resolution. The maximum resolution is 0.5 J.Ls. The clocks 
can be zeroed under program control for interval measurements. All the clocks are 
hardwired to give a resolution of 2 J.Ls. This yields a maximum range of 232 x 2 J.Ls., 
or 2.386 hours. The clocks are connected as peripherals to em 3 on cluster 1, Cm 4 
on cluster 2, and Cm 14 on cluster 5. 

Because the LSI-11 uses memory-mapped 1/0, the clock is read by an ordinary 
read to a specific location in the I I 0 page (page 15) of the LSI-11 address space. 

Clock-Reading Routines and Their Performance. In both STAROS and MEDUSA, 
the system clock is read via remote memory references. The clock value consists of 
32 bits; the data bus is only 16 bits wide, so it takes at least two memory references 
to read the full clock. Because the two 16-bit words cannot be read simultaneously, 
there is the danger that the second (or least-significant) word of the clock may "wrap 
around" in the meantime, causing an erroneous reading. 



Figure 12-1 

12. Experiments in Multiprocessor Architecture 275 

At the outset of this project, both STAR OS and MEDUSA provided a standard 
routine for reading the clock. Let us call this algorithm the varying-read algorithm 
because it makes either three or four memory references to the clock register, 
depending on the value of the clock. Figure 12-1 shows the pseudocode for this 
routine. When SecondHi is greater than FirstHi, the low-order word must have 
wrapped around between the two reads of the high-order word. Because it is not 
known whether the reading of FirstLow occurred before or after the wraparound, a 
second reading of the low-order word must be taken. 

A preliminary experiment was performed to evaiuate the performance of the 
MEDUSA varying-read clock routine in order to determine the average execution time 
of varying-read and to see how the system load affected accuracy. The experiment 
measured the elapsed time between two successive clock-read procedure calls. On 
average, the elapsed time is identical to the execution time of the routine, including 
its remote memory references. 

The experiment was performed with 8 Cm's in clusters 2 through 5 reading the 
clock in cluster 1. The experiment was then repeated with 30 Cm's, also distributed 
between clusters 2 through 5. The results for all processors are summarized in 
Figure 12-2, which plots the elapsed time between two clock reads against the time 
elapsed since the beginning of the experiment. The intercluster memory reference 
rate is approximately 90,000 references per second in the case of 30 Cm's and is 
approximately 53,000 references per second in the case of 8 Cm's. 

Figure 12-2 reveals periodic peaks and troughs in the 30-Cm curve. The peaks 
occurred when the low-order word of the clock wrapped around during the second 
invocation of varying-read, causing that invocation to read the low-order word a 
second time. The troughs occurred when the low-order word wrapped around during 
the first invocation of the varying-read routine so that the first invocation had to read 
the low-order word again. Kong's report [Kong 82] explains the peaks and troughs in 
greater detail. Note that in the 8-Cm case, there was less contention for the clock, so 

Varying-Read Algorithm 

Varying-Read: 

FirstHi <E read high-order word of clock; 
FirstLow""- read low-order word of clock; 
SecondHi <Eo read high-order word of clock; 

if SecondHi > FirstHi then begin, 
SecondLow <E- read low-order word of clock; 
return SecondHi and SecondLow as the clock result; 

end 
else begin 

return FirstHi and FirstLow as the clock result; 
end; 



276 

Figure 12-2 

IV. Experiments 

Performance of MEDUSA Varying-Read Clock Routine 

-:? 1600r 

~ I 
~ 1400 
II) 

lJ 
~ 1200 .. 
.:c 
o 
~ 1000 I i 800 I' 
~ 600 
t 
..Q 
Q) 

E 
j:: 

200 

3OCm's 

O~-----~-----~~-----~-----~----------~-----~-----~-------~-----~-----~ 
.0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 

Time (sec.) 

the low-order word was much less likely to wrap around during a reading; hence the 
peaks and troughs did not appear regularly. 

Figure 12-2 also shows that in the 3O-Cm case, the elapsed time rose at the 
beginning of the experiment from approximately 300 J.I.S. to more than 800 J.I.S. and 
then fell from 800 J.I.S. to approximately 300 J.I.S. at the end of the experiment. This 
was because not all the Cm's started and finished simultaneously. Consequently, 
there was less system load and contention at both the beginning and the end of the 
experiment, resulting in lower elapsed times. In the 8-Cm case of Figure 12-2, no 
rise or fall was observed, indicating that 8 Cm's did not create sufficient traffic to 
slow the clock-read routines perceptibly. 

Because of the varying-read routine's erratic behavior when the low-order word 
of the clock flips, two new clock-reading routines were written. The first, known as 
the four-read clock routine, was a modification of the original varying-read routine. It 
reads both the high-order and the low-order word twice and always returns the first 
low-order word read as the low-order word of the clock. Its execution time is 
essentially independent of the value of the clock readings, as shown in Figure 12-3. 
Here, the rate of remote memory references was 96,000 per second with 30 Cm's, 
while with 8 Cm's it was 64,000 per second. 1 Figure 12-4 shows the pseudocode for 
the routine that is referred to as the four-read clock routine. 

The second routine reads only the low-order word of the clock and computes the 
value of the high-order word. It uses two static variables, $OldLow and $Hi. During a 

1 These numbers are higher than for the previous clock-read routines because four remote memory 
references are needed for each clock read. 



Figure 12-3 

Figure 12-4 

12. Experiments in Multiprocessor Architecture 

Performance of MEDUSA Four-Read Clock Routine 

_1600 
~ 

...:-
~ 1400 

1::'~ ~~~~~~~~~~ 3OCm's 

o 'vvv~ 

~ 
c:: 800 
CD 
CD 
3t 
Q; 600 
.Q 

CD 
E 
i:: BCm's 

200 

0 
0.0 0.5 1.0 1.5 

Four-Read Algorithm 

Four-Read: 

FirstHi <E-read high-order word of clock; 
FirstLow <E-read low-order word of clock; 
SecondHi <E-read high-order word of clock; 
SecondLow ~read low-order word of clock; 

2.0 

if SecondHi > FirstHi then I * clock flipped * I 

I 

2.5 3.0 
Time (sec.) 

if SecondLow > FirstLow then I * flip was before FirstLow * I 
return FirstLow and SecondHi as result 

277 

else I * flip was after FirstLow read * / 
return FirstLow and FirstHi as result 

else I * no flip occurred between FirstHi and SecondHi * I 
return FirstLow and FirstHi as result; 

clock reset, these variables are zeroed. Every time the routine is called, the low­
order word of the clock is read and is compared with the value of $OldLow. If the 
value of $OldLow is higher than the current value of the low word, a flip must have 
occurred, so the value of $Hi is incremented. Assuming that the time between two 
consecutive low-order word flips exceeds the interval between any two consecutive 
calls of this routine, then if the value of $OldLow is lower than that of the low word of 
the clock, no flip has occurred, and the value of $Hi remains unchanged. This 
routine is called the one-read clock routine because it reads the clock register only 
once. Figure 12-5 shows the pseudocode for this routine. 



278 

Figure 12-5 

Figure 12-6 

IV. Experiments 

This routine has a constant execution time. Its performance is illustrated by 
Figure 12-6. Here the remote memory-reference rate was 76,000 per second for the 
28-Cm case and 23,000 per second for the 8-em case. This lower rate of remote 
memory reference makes the routine execution time quite insensitive to the increas­
ing number of em's reading the clock. Therefore, the differences between the two 
curves are much smaller than in the previous figures. 

For this routine to work, each em must have its own local copy of $Hi and 
$OldLow, and each em must read the clock at least once in every T, seconds, 
where T, is the time between two low-word flips and is equal to 216 X R, where R is 
the number of seconds between two clock ticks. With the present R of 2 J.Ls., T, 
equals 0.131 seconds. 

A new set of experiments investigated the performance of both the one-read and 

One-Read Algorithm 

One-Read: 

static $OldLow; 
static $Hi; 

Low ~ read low-order word of clock; 
if $OldLow .2: Low then $Hi ~ $Hi + 1; 
$OldLow ~ Low; 
return Low and $Hi as the result; 

Performance of MEDUSA One-Read Clock Routine 

o~----~----~----~----~----~----~~----~--~ 
.0 .1 .2 .3 .4 .5 .6 .7 .8 

Time (sec.) 



Figure 12-7 

12. Experiments in Multiprocessor Architecture 

Execution-Time Histograms for STAROS Four-Read Clock Routine 

~0.30 
'iii 
c: 
-8 c: 0.25 
.2 
~ 
.Q :s 0.20 
~ I 
Q 

0.15 

0.10 

0.05 

~ -- 1Cm 
/I - - - BCm's 

. - - - - - - 20 Cm's 

....... # ...... 

" 
o.oo~~--~-~~-~---·-·----------~~~~~---w 

200 400 600 800 1000 1200, 1400 
Time between two clock reads (ILs,) 

279 

four-read routines under STAROS and MEDUSA. The experiments measured elapsed 
time between two clock reads as a function of the number of Cm's reading the clock. 

STAROS RESULTS. As increasing numbers of Cm's read the clock using the four-read 
routine, both the average execution time and its standard deviation increase. Figure 
12-7 summarizes several histograms, which are normalized to give the same area 
under the curve. All distributions appear to be Rayleigh with a lower bound of 310 
J.Ls., which is the minimum time required to execute the four-read clock routine. 
Although it cannot be discerned in the figure, a careful study of the data shows that 
besides the main peak, there is a small peak between 630 J.LS. to 760 J.Ls. that is due 
to 60 Hz line-frequency clock interrupts occurring between two clock reads. 

The average execution time of the one-read routine is quite insensitive to the 
number of Cm's reading the clock because the low remote-reference rate of this 
clock routine does not saturate the Kmap. Figure 12-8 summarizes the histograms, 
normalized to give the same area under the curve. Because the average execution 
time varies only slightly and the standard deviation of the results remains almost 
constant, all the curves are similar and overlapping. Due to the line-frequency clock 
interrupts, there also is a small secondary peak between 470 J.Ls. and 550 J.LS. 

MeDUSA RESULTS. The minimum time required to execute the four-read MEDUSA clock 
routine is approximately 320 J.LS. The average time increases as more Cm's read the 
clock. Figure 12-9 is the normalized plot of the histograms. Figure 12-10 sum­
marizes the results of the MEDUSA one-read clock routine in normalized fashion. The 
standard deviation of the result is extremely small, and the mean does not change 
significantly as increasing numbers of Cm's read the clock. This is because the load 



280 

Figure 12-8 

Figure 12-9 

IV. Experiments 

Execution-Time Histograms for STAROS One-Read Clock Routine 

.~0.45r 
C/) 

~0.40 
"0 
c:: 
.eO.35 
"5 
..Q 
';:0.30 
.E 
°0.25 

0.20 

0.15 

0.10 

0.05 

0.00 
100 

I. 

: 
,: 
: 
: 
: 
: 

: 

: 

: 

200 

1 Cm 
8Cm's 
16Cm's 

300 400 500 600 
Time between two clock reads (ILs.) 

Execution-Time Histograms for MEDUSA Four-Read Clock Routine 

~0.7 
'ii; 
c:: 
~0.6 
c:: .e 
~0.5 
.;: 

iii 
00.4 

0.3 

0.2 

0.1 

,\ , 
\ 

I ' , \ 
I \ 

1Cm 
8Cm's 
2OCm's 

O.O~~--~--------~----~----~----~----~----~ 
300 400 500 600 700 800 900 1000 

Time between two clock reads (ILs.) 



Figure 12-10 

12. Experiments in Multiprocessor Architecture 

Execution-Time Histograms for MEDUSA One-Read Clock Routine 

~ 1.0 
'('; 
~0.9 
"0 

.§0.8 
:; 
;90.7 

~O.61 
0.5 

0.4 

0.3 

0.2 

0.1 

~' 
I ~ 

?:\' 
,I: 

II! \l 
\ 

I\. 
~'" 

-- 1Cm 
- -. BCm's 
-"'. 16Cm's 

"' '\. ... 
o.o~----~-~--~~~~~~~~·~··--~----~----~ 

180 200 220 240 260 280 300 
Time between two clock reads (p.s.) 

281 

imposed by this routine is small enough for all clock-read requests to be processed 
immediately by the Kmap without waiting in the Kmap queue. 

Discussion. Comparing Figure 12-7 with Figure 12-9, one sees that the average 
execution times are roughly the same at light load, but execution time increases 
faster as a function of increasing load under STAROS than under MEDUSA. The 
difference in the shape of the curves in Figure 12-7 and Figure 12-9 indicates that 
the two operating systems have very different strategies for handling memory con­
tention (see Section 3.1.3). Even when the effects of interrupts are ignored, the 
STAROS results show a larger standard deviation. 

The 0.5 J.Ls. resolution of the global Cm* clock does not help to measure short 
time because intercluster references are subject to uncertain delays in the presence 
of load. The results of these experiments show that short time intervals (500 J.Ls. or 
less) cannot be accurately measured using any of the clock-reading routines 
described so far. 

Another alternative is to read only the low-order word of the clock. Then the clock 
can be read with a single LSI-11 instruction, and the resolution should be greatly 
improved. The cost imposed by this strategy is a loss of clock range. With the clock 
tick set at 2 J.Ls., the low-order word provides only a 0.131-second range. 

Clearly, a larger range can be obtained by increasing the clock-tick interval. If the 
usable resolution is limited by the uncertainty in communication delay, the tick inter­
val can be increased without sacrificing resolution. For example, under very light 
system load, a MEDUSA clock word is read with a standard deviation of 2.3 J.Ls., and a 
STAR OS clock word is read with a standard deviation of 7.13 J.LS. (assuming no 



282 IV. Experiments 

processor interrupts). Therefore, the 2-j.Ls. resolution of the present clock is useful, 
and increasing the tick interval would sacrifice resolution. Under heavy loads, 
however, the standard deviation of reading a clock word can be very high, so the tick 
intervai can be iengthened to increase range without iosing accuracy. Alternatively, if 
accuracy is more important than range, the methods described in the next section 
can be used to improve it when the load is high. 

12.1.2. Methodologies for Measuring Time 

Is it possible to obtain more accurate time measurements by compensating for 
Kmap load and clock contention? This section attempts to develop methods based 
on synthetic workloads (see Section 10.3). 

The synthetic workload used in these experiments can be described as follOWS. 
Assume that the execution time of a software routine R is to be measured under 
different system loads. Several processes, each on its own Cm, execute R simul­
taneously. If this experiment is repeated as the number of processes N is varied, the 
the execution time of R can be studied as a function of N. 

An efficient way to measure performance is to deSignate only one process per 
cluster to read the clock. This lowers system load by reducing the number of clock 
reads, improving performance of both the clock-reading software and the measured 
processes. The measurements will be valid if all Cm's execute the measured 
process at the same speed. 

Clock Compensation. Let us consider two ways of compensating for the in­
accuracies in clock readings. The interval between two consecutive clock reads (a 
clock-read pair) is a random variable with a mean and variance that are both func­
tions of the system load. The net elapsed time for any experiment can be computed 
by subtracting the average value of this interval from the measured result. Using 
this method, the expected value of the computed result E (Tc) equals the true 
elapsed time T H' while the variance of the computed result is identical to the 
variance of the measured result. Let us call this method the long-term averaging 
technique. 

There are several ways to select the clock-read pairs that are used to adjust the 
measurement. These methods can be evaluated by using the concept of an im­
provement factor k. In any experiment that measures some time interval, let V (To) 
be the variance of the corrected result and let (12 be the variance of the uncorrected 
result. Then k is defined such that 

The larger the value of k, the better the improvement. The range of k is between 0.5 
and infinity [Kong 82]. When k is unity, the variance of the corrected result is un­
changed. Note that the long-term averaging technique always yields a k of unity. 

One method (called Method I) is illustrated in Figure 12-11. If the processor that 



Figure 12-11 

Figure 12-12 

12. Experiments in Multiprocessor Architecture 283 

Short-Term Method I 

"OC~OO[ ____ e_xpe---:-:~_e_nt ___ CI_OC'_k_re_ad_)~ 
~ I u ~~ ________________ ~.I u I ~ 

Tm 

Time 

Short-Term Method II 

~
T [f1=3 ~ experiment +-= 

clock read.. I ..... ______ ....:.tn=--____ ---+.~ +-clock,""" em x _ y 

Tm 
t2 t3 

CmX-Z 

Time 

starts the measurement reads the clock twice at the beginning of the experiment and 
the processor that termir.ates the measurement reads the clock twice after the 
experiment, then T1 should correlate highly with T2, while T3 should correlate highly 
with T4 because these clock reads occur at almost the same time. This method has 
the advantage that no clock read occurs during the experiment, so the performance 
of the experiment under measurement is not affected. If an interrupt occurs in the 
middle of a clock-read pair, however, the interval between the two reads will be too 
long, perturbing the measurements. 

Another strategy, Method II (Figure 12-12), minimizes this danger. If a clock 
compensating process runs concurrently with the experiment and periodically 
samples the load by reading the clock twice in succession, the elapsed time be­
tween the two reads can be used for compensation. One approach is to obtain T1 
from the clock process's clock-read pair that is closest in time to the clock read that 
starts the measurement and to obtain T4 from the clock-read pair nearest the clock 
read that stops the measurement. If a systemwide interrupt (such as an interrupt 
from the line-frequency clock) occurs, it affects both the measured process and the 
compensating process so the time to handle an interrupt during a clock read is 
compensated for. Method II does, however, induce contention for the clock, which 



284 

Figure 12-13 

IV. Experiments 

Measuring Zero Elapsed Time Using Method I with STAROS Four-Read Routine 

.~ . 15r 
'" c:: 
~ 
c:: 
.~ 
"5 
~ .10 

~ 
Q 

-400 -200 o 

.' ;: 
: ''', 

" 

Compensated result 
Uncorrected result 

.... --. :'\", ....... . 
200 400 600 800 1000 1200 

Elapsed time (J.L sec.) 

can itself be a 'source of perturbation. Subsequent sections will show that it none­
theless yields quite accurate results. 

Evaluation of Method I. The experiment to validate2 Method I consists of a process 
reading the clock four times in succession. The first two clock reads are used to 
compute T1; the second and third clock reads measure a null experiment (which 
must have zero execution time); and the third and fourth clock reads are used to 
compute T4. The synthetic workload is generated by distributing among the clusters 
a large number of processes that read the system clock. 

Figure 12-13 shows the results of the experiment using the STAROS four-read 
clock routine to measure time. The solid curve is the distribution density of the com­
pensated result, while the dashed curve is the distribution density of the result be­
fore correction is applied. The ideal result is an impulse of unit magnitude at 0 ,""s. 
The mean compensated result was -1.90 '""s., and the improvement factor, k, was 
0.8. Recall that for k < 1, the correction increases the variance of the result. The 
same experiment using the one-read clock routine gave an improvement factor of 
0.81. 

Figure 12-14 illustrates the result under MEDUSA using the four-read clock routine 
to measure time. The mean compensated result was 6.69 '""s., and the improvement 
factor was 3.57. This represents a great improvement in the variance of the results. 
The one-read clock routine gave an improvement factor of 0.68. 

2 The methods for adjusting the clock readings employ only heuristic approaches, so they cannot be proved 
to produce correct results. To validate these methods. an attempt is made to show only that they produce 
accurate results for measuring some fixed interval under some reasonable system load, 



Figure 12-14 

12. Experiments in Multiprocessor Architecture 

Measuring Zero Elapsed Time Using Method I with MEDUSA Four-Read Routine 

~.30 
"iii 
c: 
CD 
Q 
c: 
~ 

~.25 

:! 
Q 

.20 

.15 

.1 

- Compensated result 
- - - - Uncorrected result 

" 
" 
" , , , , , , , , , , , , 
, , , , 

1000 1200 1400 1600 1800 2000 

Elapsed time (p.S.) 

285 

Evaluation of Method II. The experiment that validates Method II consists of the 
following: 

• One process, called the compensating process, reading the clock in the same 
cluster as the process to be measured (in em X-Z in Figure 12-12). 

• A process that does two clock reads to measure the elapsed time (in em X-Y 
in Figure 12-12). 

• A number of pairs of communicating processes that exchange messages. 

Each pair of these communicating processes is independent of the other processes 
in the system, and their sole purpose is to generate a synthetic load on the Kmaps 
through which clock-read requests are routed. The experiment process (in em X-Y) 
is synchronized with the compensating process. It Signals the compensating process 
(in em X-Z) to start reading the clock, reads the clock twice successively (thus 
measuring a null experiment), and then sends the results of the two clock reads to 
the compensating process, which computes the net elapsed time according to 
Method II. 

Figure 12-15 shows the distribution density of the results of the STAROS experi­
ment. The dashed curve is the result of the measured reading (Tm in Figure 12-12). 
The solid curve is the result (Te) after Method II has been applied. The results were 



286 

Figure 12-15 

Figure 12-16 

IV. Experiments 

Measuring Zero Elapsed Time Using Method" with STAROS Four-Read Routine 

.~0.30r 
11;1 

I:: 

~ 
1:: 0 .25 

.S2 
~ 
.Q 
';:0.20 
~ 
Q 

0.15 
I 
I 
I 

~ 
" ~, . ~ :. 
: ~ 
: ~ . . . 
! \ 

Compensated result 
Uncorrected result 

-400 -200 0 200 400 600 800 1000 
Elapsed time (ps.) 

Measuring Zero Elapsed Time Using Method" with MEDUSA Four-Read Routine 

~0.30 
'Uj 
I:: 

~ 
1:: 0 .25 

.S2 
~ 
.Q 
.;: 0.20 
.~ 
o 

Compensated result 
Uncorrected result 

-200 -100 0 100 200 300 400 500 600 
Elapsed time (ps.) 

derived from 1,000 repetitions of the experiment. The mean value was -5.24 J.l.s., 
while the improvement factor was 1 .14. The improvement factor for the one-read 
clock routine was 1.98. 



12. Experiments in Multiprocessor Architecture 287 

When executing under MEDUSA, the experiment yielded different results (Figure 
12-16). The mean value of the compensated result was 6.69 J.Ls., and the improve­
ment factor was 1.11. The improvement factor was 0.81 for the one-read clock 
routine. 

Discussion of Results. These experiments all produce a mean corrected measure­
ment whose magnitude is less than 6.7 J.Ls. Measurements with greater accuracy 
than this value cannot be reliably obtained using either measurement method. One 
may conclude that these methods are not suitable for measuring elapsed times that 
are less than, say, SO microseconds because the relative error for small interval 
measurements is high. 

In four of the eight experiments, the correction improved the variance of the 
result, with the improvement factor ranging from 1.11 to 3.S7. The other four cases 
showed a k less than 1 but greater than 0.67. Recall that the worst-case k would be 
O.S. If the clock reads used for compensation were totally uncorrelated to the clock 
reads that they were supposed to compensate, the value of k would be 0.67 [Kong 
82]. In the MEDUSA experiment using Method I with the one-read clock routine, the 
value of k was 0.68. This shows that during that experiment, the system load was 
changing so rapidly that the execution time of any clock read was essentially un­
correlated to the execution time of any previous or subsequent clock reads. 

It is interesting to note that three out of the four experiments using Method II 
resulted in improved variance, compared with only one out of the four experiments 
using Method I. This phenomenon is largely due to the difference in the type of 
system load. In all the Method II experiments, the system workload was created by a 
large number of processes sending and receiving messages. Because message 
operations take a long time (on the order of a millisecond), the load of the system is 
trackable by the clock reads. ,Conversely, when the granularity of the system load 
has a duration comparable to or shorter than the time required to execute a clock 
read, the tracking of the system load using clock reads fails. This was the case for 
the Method I experiments. The synthetic workload consisted of a large number of 
processes reading the clock. Because the load on the system had the same duration 
as the clock reads used to sample the load, the tracking of the system load failed. 

In other words, Method I is theoretically superior because it does not affect the 
experiment under measurement. Thus it was given the difficult task of executing 
under a system load of very small granularity. Results showed that Method I was 
unable to perform properly in small granular system loads. Method II was tested with 
a more reasonable load and was found to perform quite well. The short-term averag­
ing technique using Method II performed better than the long-term technique would 
have performed in three of the four experiments. 

As noted above, Method I does not track system load correctly in the presence of 
interrupts. This explains why Method I did not work very well under STAROS, since 
the STAROS processes were interrupted 60 times per second. Method II tracks well 
even with interrupts. Because Method I does not perturb the experiment, it should 
perform at least as well as Method II under a reasonable system load, provided that 
there are no interrupts. When there are interrupts, Method II is the preferred method. 



288 

12.2. Voting 

IV. Experiments 

Future computer systems will be used in environments that require increased 
reliability due to the nature of the tasks being performed. For example, avionics 
computers will replace the mechanical control of present aircraft. These computers 
will make thousands of decisions per second concerning the stability of the aircraft. 
The system must be designed so that the computer will never fail in flight, since the 
stability decisions cannot be made by the pilot. In many cases, the required reliability 
can be obtained by replicating hardware components and comparing the outputs of 
the components to determine the correct result. The replication allows the system to 
tolerate failures in components without loss of reliability. 

One technique for enhancing reliability is to replicate components an odd number 
of times and then compare their outputs. If a majority of modules agree, then their 
output is deemed to be correct. The comparison process is called voting, and the 
system that compares the outputs is called a voter. If the hardware is replicated N 
times, and the N outputs are voted to discover the majority, then the system is said 
to have N-modular redundancy (NMR). For example, if the hardware is replicated 
three times, then the system has triple-modular redundancy (TMR). 

In NMR, the redundant modules are often processor-memory pairs. The com­
puters communicate information to be voted on either by hardware voters [Siewiorek 
et al. 78a], or by software voters running on some of the processors [Goldberg 81, 
Michalopoulos 82]. Software voting has a number of distinct advantages over 
hardware voting, one of which is the flexibility of the voter. For example, the 
Software Implemented Fault Tolerant computer (SIFT) [Goldberg 80] has a voter 
that can handle a three-way vote or a five-way vote. The system can determine 
which voter to use depending on the number of processors available. To improve 
system reliability, the software voter routine can be modified as the system changes. 

Most of the research on NMR has assumed that the modules are synchronized 
[Davies 78]. Because it is very difficult to enforce tight processor synchronization, 
this assumption is not valid for a large class of systems. Some researchers are 
beginning to realize that asynchronous systems offer distinct advantages in reliability 
[Michalopoulos 82] and simplicity, but the problem of how to make an asynchronous 
system meet the reliability objectives still remains. 

A TMR experiment was performed on Cm* using a system consisting of six 
processes running on six separate processors. Three of the processes (called 
subtask processes, or simply subtasks) execute identical copies of the same itera­
tive synthetic workload. Together, these processes are said to execute a single 
task.3 The outputs of all three subtasks were simultaneously fed, one word at a time, 
to each of three voter processes, as shown in Figure 12-17. 

More specifically, the triplicated subtasks each calculate the ith data value, send 
a copy of the data to each voter, and receive the voted value of the data from their 
associated voter. The new data value is then used in calculating the (i + 1) st data 

3 Do not confuse this notion of "task" with the different concept of execution time between synchronization 
points, as used in Chapter 10 and Chapter 11. 



Figure 12-17 

12. Experiments in Multiprocessor Architecture 289 

TMR Experimental Structure 

value. 4 The time each subtask takes to calculate the ith data value is a random 
variable. This time is a function of the granularity of the subtask. The granularity is 
defined as the number of operations (each of which consists of four LSI-11 
instructions) executed between votes, not counting the overhead due to voting. The 
granularity of the subtasks is set before each experiment. 

The subtasks send each voter two data words per vote. The first word is a 
sequence number associating an iteration number with the data. The second word is 
the data to be voted. When a voter has received data from a majority of the subtasks 
(two), it checks to see whether the data values agree. If so, a consensus has been 
reached, and the value is sent to the subtask associated with the voter. Otherwise, 
the voter waits for the data value from the third subtask to decide on the correct 
value. Since each process runs on a separate processor, voting may proceed in 
parallel with subtask execution. 

Three types of voters are used in the experiments. The first voter, called the 
simple voter, is a synchronizing voter. It has no internal storage of data from one 
iteration to the next. It requires the subtasks to reach a full point of synchronization 
after each iteration. The second voter, called the internal-queue voter, has an inter­
nal queue that allows it to handle data from different iterations. The subtasks are not 
required to synchronize fully after each iteration. This voter has been optimized for 
high execution speed in the average case, and thus it has the shortest execution 

4 One can imagine wanting to pass more than one data value from one subtask to the next. This can be 
done with a more complicated voter. The entire state of a processor (or selected parts) could be passed as 
data, allowing a faulty processor to recover from a transient by accepting the voted state as its new state. 
Adding this capability to the experiments would complicate them, without yielding additional information 
about the voting. 



290 IV. Experiments 

time. The third voter, called the sequence-number voter, uses the sequence num­
bers that are sent by the subtasks to order data by subtask iteration. This voter has 
the longest execution time. 

As iong as ine subtasks have simiiar execution speeds, the voter should receive 
the ith iteration from each subtask at approximately the same time. The sequence 
number voter and the internal queue voter do not require full synchronization, so if 
one subtask is faster than the others, the voter may receive the (i + 1) st data value 
from the fast subtask before the others send the ith data value. Since the voter now 
has data from more than one iteration, a queue is used to associate data values with 
subtasks and iterations. Each entry in the queue contains an iteration number, a 
boolean array telling which subtasks have delivered data for the iteration, and the 
data values that have arrived. The sequence-number voter adds an entry to the 
queue when the first data value for a particular iteration arrives. When all the data 
values for the iteration have been received, the voter reports an error if necessary 
and then removes the entry from the queue. 

The voter queue has a finite maximum length. If one subtask has not sent any 
data to the voter in the same period in which the other two subtasks have sent many 
data messages, the queue could conceivably become full. The voter handles a full 
queue by removing the oldest entry (associated with the earliest iteration for which 
some data is still missing), reporting an error, and adding an entry for the new 
iteration number. In all experiments described here, enough storage was allocated to 
the queue to prevent it from overflowing. 

12.2.1. Voter-Overhead Experiments 

In any NMR system, less useful work will be done than in the corresponding non­
replicated system because the overhead of voting reduces system throughput. 
Among other factors, the overhead includes interprocessor communication and the 
time it takes to perform comparisons. 

York [York et al. 83] developed an expression for throughput (work performed per 
unit time) in terms of voting overhead. If 

• tave is the average instruction execution time, 
• G is the granularity of a subtask, 
• a is the number of instructions executed by a subtask when G is 1 . and 
• k is the total overhead per iteration, including voting, 

then the throughput T is given by 

T=----- (1 ) 
tave • (a + k/G) 

The throughput is inversely proportional to the average instruction execution time, 
the number of instructions per subtask iteration, and the number of overhead instruc­
tions per unit granularity (k/G). The values of k, tave' and a are experimental con-



Figure 12-18 

12. Experiments in Multiprocessor Architecture 291 

Predicted Voting Overhead 

10 

5 

• Predicted throughput, k = 333 
o Predicted throughput, k = 500 
o Predicted throughput, k = 804 .. •••• • • 
A Actual throughput, internal queue .' •••••••• : ............ :: ..•.• 

(optimized) voter .... 

4 

.. /::/:;.. .... 
,; .. ' .: 

:' :' .8 
,:' .0' .:' .. ' :: .:' 

,.' ,0 :' 

••.••••.. :J3 .. : 

•... :.J!/ .... 

16 64 256 1024 4096 16384 
Granularity (operations between votes) 

stants, SO we can plot the throughput versus the granularity. For typical values of k, 
tave' and a (k=800, tave =6.5J1S, a=4), the curve is shown in Figure 12-18. 

In the experiments on Cm*, the number of iterations / and the granularity G were 
varied during the experiments. The execution time tr was recorded for each set of 
values of / and G. The total work done W was kept constant by choosing a value of / 
and using it to calculate the value of G according to the formula W=/· G. The value 
of W was always 16,384 operations. All three types of voters described previously 
were used in this experiment. From the overhead model it can be seen that chang­
ing the type of voter should affect only the value of k in equation 1. Throughput 
versus granularity is plotted for various voter configurations in Figure 12-19. Even 
significant changes in voting methods seem to have little effect on throughput. 

The model is extremely accurate in predicting the overhead in a system. One 
problem with the model is the difficulty in finding values for the constant k. The value 
cannot be determined simply by adding instruction times from the subtask and voter 
because some of the Kmap-implemented instructions have times that depend on 
system load. In addition, sometimes the voter and the subtask are executing in 
parallel, so instruction counts would give an upper bound on k but not an accurate 
value. The amount of parallelism is difficult to quantify without seriously perturbing 
the experiment. Therefore, the value of k used in Figure 12-18 was estimated using 
experimental results. The comparison of the predicted and actual curves, however, 
loses some credibility when the values of k for the predicted curves must be ex­
perimentally determined. 

The value of k can be given an upper bound in the nonerror case. The upper 
bound will change as the voter changes, but it can be determined for any given 



292 

Figure 12-19 

IV. Experiments 

Actual Voting Overhead for Various Voters 

5 

o Actual throughput, internal-queue voter 
/;. Actual throughput, simpie voter 
o Actual throughput, sequence-number voter 

4 16 64 256 1024 4096 16384 
Granularity (operations between votes) 

experiment. For the optimized voter and subtask experiment, this upper bound has 
been found by adding the instruction execution times for the subtask overhead to the 
voter time. The actual value of k will be less than this time because the voter will be 
executing simultaneously with the subtask. An upper bound on k is approximated by 

where ksmax is the maximum subtask contribution to k and kvmax is the maximum 
voter contribution to k. By analyzing the programs written for the experiments, it is 
found that 

ksmax = 68 instructions + 3 Sends + 1 Receive 

and 

kvmax = 237 instructions + 3 Conditional Receives + 1 Send 

The execution times for Sends and Receives on Cm* I MEDUSA are given in Section 
7.4. The average execution time for LSI-11 instructions in the voter and the subtask 
was determined to be 6.5 J,Ls. Using this information, kmax is determined as follows: 



Figure 12-20 

12. Experiments in Multiprocessor Architecture 

ksmax = 333 LSI-11 instructions 

kvmax = 471 LSI-11 instructions 

k S 333 + 471 = 804 LSI-11 instructions 

Similarly, the lower bound can be approximated by the following: 

ksmin = 68 iiiStiUctioiiS + 3 Sends + 1 Receive 

k vmin = 127 instructions + 2 Conditional Receives + 1 Send 

kmin = max (kvmin' ksmin) 

k 2: 333 LSI-11 instructions 

293 

(2) 

(3) 

Equation 3 assumes maximum simultaneous execution of the subtask and the voter. 
The experiments with the optimized voter yielded values of k between 350 and 712. 
These experimental results fall between the minimum and maximum theoretical 
values calculated above. The bounds should be recalculated if the voter or subtask 
is changed. Figure 12-20 compares the minimum and maximum predicted curves 
and an experimental curve (for the optimized voter). One result that the model does 
not take into account is that the value of k changes as the granularity changes; it 
assumes that the value of k is a constant. During the optimized voter experiment, the 
value of k varied by more than 350 instructions. This is due to the change in load on 
the Kmap processors as the granularity changes. In spite of these deficiencies, the 
overhead model does give accurate predictions of expected voting overhead. 

Comparison of Actual and Predicted Voting Overhead 

10 

5 

• Predicted throughput, k = 333 
[] Predicted throughput, k = 804 
<> Actual throughput, internal·queue voter 

, . . ' 

.-.' 

4 16 64 

.. ' 
,; 

256 1024 4096 16384 
Granularity (operations between votes) 



294 IV. Experiments 

12.2.2. Voter Queue-Length Experiments 

In an asynchronous NMR computer system, the processors have their own clocks 
and make little or no effort to synchronize the clocks with each ether. The random 
variation in clock speed, and the difference in process execution patterns, wi!! cause 
data to reach the voter at different times. The voters should be able to vote on data 
as soon as they have received it from a majority of processors. As noted above, a 
queue must be maintained for data that is received asynchronously. As long as no 
data dependencies exist, one processor should not be forced to wait for another to 
finish a calculation. 

Even when data dependencies do exist, when a majority of the processors agree 
on the value of a step, there is no reason to wait for the rest of the processors to 
finish before continuing with the next step. In fact, waiting can reduce reliability if a 
processor is faulty because it may never respond to the voter. There should, 
however, be a limit to the amount a processor should be allowed to fall behind 
before it is considered faulty. Experiments have been performed to discover the 
nature of how variations in process execution speed affect the amount a process 
falls behind the others. These experiments have examined the effects of varying 
both process execution speed and the number of instructions between votes. 

Experiments have been performed to explore two different aspects of the 
synchronization problem. Experiment 1 has a single process execute more instruc­
tions for every step in the experiment. This process is continuously slower, and as it 
falls behind, voter overhead is observed to increase. Experiment 2 has one process 
slower for a period, followed by a period of normal speed. This experiment is realistic 
because in many systems, process,es are likely to fall behind due to random or 
load-induced speed variations. 

Experiment 1. The first experiment was designed to measure the ability of the voter 
to synchronize the subtasks when one subtask is continuously slower than the 
others. The slower subtask performed 10 to 50 percent more operations in calculat­
ing a value. It represents a process that requires more execution time due, for 
example, to retrying instructions or handling interrupts. The frequency of voting (or 
granularity of the subtasks) was varied, as was the execution speed of the slower 
subtask. The queue lengths of the voters were recorded as a measure of how far the 
slow subtask fell behind the two faster subtasks. 

Each voter recorded its queue length each time it added an entry. The queue­
length information was sent as a message to a process that stored the data in a file. 
Although the queue-length recording added some overhead to the voter, each voter 
paid the same cost. 

The queue length was plotted against the iteration number for two different 
granularities and various subtask degradations, as shown in Figures 12-21 and 
12-22. For granularity equal to 1,024 operations, the queue length stays at one if 
one subtask is up to 10 percent slower. This implies that the voter overhead is great 
enough to mask the differences in speed. For larger differences in speed, the queue 
length grows to some value and then levels off. The queue length is bounded due to 



Figure 12-21 

Figure 12-22 

12. Experiments in Multiprocessor Architecture 

Granularity Equal to 1,024, One Subtask Always Slower 

15 

10 

5 

o 

• Granularity = 1 K + 50% slower 
¢ Granularity = 1 K + 40% slower 
b. Granularity = 1 K + 30% slower 
o Granularity = 1 K + 20% slower 
D Granularity = 1K + 10%slower 

20 40 60 80 100 120 

Granularity Equal to 16,384, One Subtask Always Slower 

..c: 50 
0, 
c:: 
~ 
Q) 

~ 40 
:::J o 

30 

20 

10 

o 

• Granularity = 16K + 5O%slower 
¢ Granularity = 16K + 4O%slower 

b. Granularity = 16K + 3O%slower 
o Granularity = 16K + 2O%slower 

D Granularity = 16K + 10%slower 

20 40 60 80 100 120 

140 160 180 200 
Time (number of votes) 

140 160 180 

295 

200 
Time (number of votes) 



296 IV. Experiments 

an increase in voter execution time as the queue length increases. The voter uses a 
linear search to find the iteration number in the queue. The slower subtask will not 
pay this overhead cost because it has n-1 messages waiting for processing, where 
n is the queue length. 

As the granularity increases, the queue length grows more rapidly. With 
granularity equal to 1,024 (Figure 12-21), the 10 percent to 40 percent additional­
operations curves appear to be bounded, but the 50 percent additional-operations 
curve is not bounded. All curves for granularity of 16,384 (Figure 12-22) appear to 
have an unbounded queue length. This is due to the fact that the voter overhead 
takes a smaller percentage of the total execution time when granularity is larger. The 
slower subtask is incapable of "catching up" while the voter executes. 

Experiment 2. A subtask that is performing a calculation may experience a tem­
porary slowdown, followed by a period of normal behavior-for example, a subtask 
that must perform a recovery routine because of a bus error or must perform a 
one-time operating-system task. Is the processor running the subtask doomed to 
stay behind, or will it eventually catch up, even though it takes just as long to 
calculate new data values as the others? As soon as a subtask falls behind, it no 
longer pays the voter overhead cost because it has messages queued up waiting for 
processing. This fact would suggest that a subtask can catch up, and the rate at 
which it catches up is the incremental voter overhead cost per iteration. 

The experiment can be described as follows: one subtask performs 10 to 50 
percent more operations for 20 iterations, followed by a period of normal behavior 
(performing as many operations as other subtasks). The results of the experiment 
are shown in Figures 12-23 and 12-24. It can be seen that during the periods of 
normal operation, the queue length declines; given a long enough period of normal 
behavior, it would reach 1. 

Experimental Conclusions. These experiments give a clear picture of a synchro­
nization model for the equal-subtasks paradigm. The model appears to illustrate two 
phenomena. First, there is a minimum voter overhead that is due to the time 
required by the voter to receive a message, handle the data, and vote on the data. 
The subtasks that have a queue length of 1 must pay this overhead cost every 
iteration of the experiment. Second, the overhead cost increases as the voter queue 
length increases due to an increase in the data-handling cost. This factor would 
indicate that for a long enough queue, the voter could mask any difference in 
process speed. For practical queue lengths, though, the increase in voter overhead 
masks only some of the subtask speed variation. 

The synchronization experiments can give some design principles for TMR 
asynchronous voting systems. These principles can be applied to optimize the voter 
queue length, to choose a subtask granularity, and to determine the permissible 
variation in process speeds. Proper application of the principles will yield a design 
that has a bounded queue length for all possible variations in process execution 
rates. The principles can be summarized as follows: 



Figure 12-23 

Figure 12-24 

12. Experiments in Multiprocessor Architecture 

Granularity Equal to 1,024, One Subtask Slower Half the Time 

15 

o 

• Granularity = 1 K + 50%, 0 every 20 votes 
o Granularity = 1 K + 40%,0 every 20 votes 
II Granularity = 1 K + 30%,0 every 20 votes 
o Granularity = 1 K + 20%,0 every 20 votes 
o Granularity = 1K + 10%, 0 every 20 votes 

20 40 60 80 100 120 140 160 180 200 
Time (number of votes) 

297 

Granularity Equal to 16,384, One Subtask Slower Half the Time 

.::: 50 
0, 
~ 45 
(l) 

~ 40 
::J 
C 35 

30 

25 

20 

15 

10 

o 

• Granularity = 16K + 50%, 0 every 20 votes 

<> Granularity = 16K + 40%, 0 every 20 votes 

A Granularity = 16K +30%, o every 20 votes 

o Granularity = 16K + 20%, 0 every 20 votes 
o Granularity = 16K + 10%, 0 every 20 votes 

20 40 60 80 100 120 140 160 180 200 
Time (number of votes) 



298 

Figure 12-25 

IV. Experiments 

• Smaller granularity subtasks have a higher probability of having a bounded 
queue length. 

• As subtask granularity increases, the random variations in process speed 
have an increasingly important effect on queue length. 

• Greater voter overhead allows a greater variation in process execution rate. 
This implies a trade-off, as a faster voter process increases system throughput 
but decreases the amount of variation permitted in process execution rates. 

These results can be generalized to synchronous voting as well as asynchronous 
voting. If the maximum voter length is fixed at 1, then the system is synchronous like 
SIFT [Forman 79, Goldberg 80, Goldberg 81] and C.vmp [McConnel 81, Siewiorek 
et a/. 78a]. C.vmp has a hardware voter with a built-in wait feature. The delay through 
the voting hardware corresponds to the voter overhead in these experiments. The 
voter overhead corresponds to the design margin in the fixed schedule (the time 
between the end of the process execution and the end of the time slot). 

Experiment 1, in which one subtask was continually slower, will be used in 
developing the model of queue behavior. Each experimental curve in the previous 
section begins to peak as time proceeds. The rate of increase slows with time. It 
appears to approach some bound that is dependent on the granularity and the 
difference in execution speed. Some curves have observable bounds. The infor­
mation from all the Experiment 1 curves could be summarized if this bound infor­
mation could be collected. If a curve shows a maximum queue length greater than 
the storage allocated to the queue, then the queue will overflow during the experi­
ment. This is represented by the region labeled "unbounded" in Figure 12-25. 
Otherwise, the queue falls in the "bounded" region of the figure. 

Summary of Experiment 1 Data 

~ 16384 
.;:: 

'" ""5 
~ 8192 

CJ 

4096 

Bounded 

2048 

1024 CJ Bounded for queue length = 1 
o Bounded for queue length = 5 
t:. Bounded for queue length = 10 

512 

Unbounded 

256~""'--""''''''~''''''''''--''''''''''~'''''~''''''''''--"",,,,,,~~~~~~ 
0.3 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 

Percent difference in speed 



12. Experiments in Multiprocessor Architecture 299 

The system designer can select a maximum queue length, which then determines 
the granularities and subtask execution-speed differences that will prevent overflow. 
The curves that determine the regions appear to be linear on the log-versus-Iog 
scale. This implies that 

log2Granularity + log2PercentDifference = constant 

Granularity x PercentDifference = constant = voterOverhead 

This result indicates that for a given queue length, the granularity of the subtasks is 
inversely proportional to the percentage difference in processor speed. The constant 
is a number of operations that is dependent on the voter overhead. A first ap­
proximation would equate this number of operations to the voter overhead for one 
iteration. The voter overhead is constant along a boundary separating the bounded 
and unbounded regions. A subtask can be constantly slower by a number of opera­
tions (the voter overhead) and still fall only some constant number of iterations 
behind the other subtasks. 

12.3. Interconnection Strategies 

All multiprocessors require an interconnection structure that physically implements 
the shared address space. One obvious structure is a fully connected 
multiprocessor, in which each processor can directly communicate with any other 
processor without the mediation of a third processor. Numerous other proposals for 
interconnection structures appear in the literature, covering a wide range of perfor­
mance, cost, and reliability [Anderson and Jensen 75, Feng 81, Haynes et a/. 
82, Thurber 74]. Unfortunately, comparatively few interconnection structures have 
been implemented in existing multiprocessors, so the principal sources of compara­
tive information come from modeling, simulations, and educated guesses. 

The design and evaluation of interconnection structures is a major area of 
research in multiprocessor architecture. A few of the possibilities are point-to-point 
networks such as CUbe-Connected Cycles [Preparata and Vuillemin 81]; nearest­
neighbor meshes; shared-bus networks, such as the mesh scheme originally 
proposed for Cm* [Swan 78]; and multistage networks, such as the Augmented Data 
Manipulator [Adams and Siegel 82] and Omega [Lawrie 75], where data may 
traverse a path through several switching elements. Interprocessor communication 
may be through direct memory references or through explicit messages. The mUl­
tistage networks tend to favor direct memory references or short messages, while 
the more sparsely connected point-to-point networks favor long messages with 
store-and-forward operations at the nodes. Some examples of the multiprocessor 
interconnection networks suitable for experimentation on Cm* are shown in Figure 
12-26. 

Cm* can be configured to compare alternative interconnection strategies. With 



300 

Figure 12-26 

IV. Experiments 

Typical Interconnection Networks Suitable for em* Testbed Emulation 

x p-q 
r) () V 6060 

Tree Ring 

m a 
Near·neighbor mesh Hypercube 

the standard Kmap microcode for either STAROS or MEDUSA, Cm* is a fully intercon­
nected multiprocessor. By modifying the microcode, however, certain communica­
tion paths can be removed, with the result that sometimes it is necessary for infor­
mation traveling from one processor to another to pass through a third processor 
along the way. The interconnection network has, in effect, been modified. Even 
without modifying the microcode, the same experiments can be performed by 
modifying the benchmark programs to ignore some of the paths. In this case, when 
information is to be transferred between processors, software routing tables are 
consulted to see which Cm's are in the path. 

In the emulations, accesses to the code and data in local memory proceed 
directly without reference to the routing tables. Communication with remote modules 
is done via messages. The MEDUSA message system (see Section 5.2) is well suited 
to emulation of alternate architectures through software routing. The time cost of the 
routing software generally is less than the time it takes to send the message, as 
would be the case in a real system. Intercluster messages take approximately the 
same time as intracluster messages, provided that pipes are properly located, as 
described below. Consequently, the impact of Cm*'s hierarchical structure on the 
experimental results is minimal. Four different multiprocessor configurations ,were 
emulated: 

1. The basic experiment used full interconnection directly implemented with 
MEDUSA communication primitives. 

2. The fully connected configuration used emulated direct connections; software 
routing tables routed messages for any processor directly to that processor. 

3. Another configuration used emulated nearest-neighbor communication. 
4. The last configuration was an emulated ring. 

In the initial set of experiments, both the Sender and Receiver processes were 



Figure 12-27 

12. Experiments in Multiprocessor Architecture 

Effect of Placing Pipe in Same Cluster as Sender and Receiver 

3 

2 

o 20 

-- Sender and receiver on cluster 1 
- - - Sender and receiver on cluster 2 . /" 

",.,_3 / 

40 60 80 

/ 

100 120 140 160 
Message length (words) 

301 

located in the same cluster (although on different processors). Sometimes the pipe 
was in that cluster; sometimes it was not. The greatest message throughput was 
obtained when the pipe was on a different cluster from the Sender and Receiver 
processes. This surprising observation appears to be due to Kmap contention 
caused by the heavy use of the communication mechanism. Placing the pipe on a 
different cluster distributes this load over several Kmaps, resulting in greater 
throughput, even when several messages are being transmitted simultaneously. No 
significant penalty is paid for intercluster transmission, since MEDUSA message 
operations take essentially the same amount of time regardless of where the pipe is 
located (see Section 7.4.2). 

Figure 12-27 shows the effect of placing the pipe on the same cluster. For all 
three curves in the figure, the pipe was on cluster 1. The sender and receiver were 
on the same cluster, either cluster 1,2, or 3. The cluster 1 to cluster 1 transfers were 
considerably slower than those on clusters 2 and 3.5 If the cluster 1 transfer 
measurements are redone with the pipe on another cluster, the transfer rate is 
identical to those of the other two clusters. There is a small decrease in transfer 
rates when the Sender and Receiver processes are both on the same cluster, as 
shown in Figure 12-28. The decrease is quite minor, however. Thus if pipes are 
properly placed, a nearly flat communication structure resuHs, providing a base for 
accurate emulation. 

5 The data in this plot indicates somewhat higher message throughput than the Sindhu-Singh measurements 
reported in Section 7.4.3. The results are consistent because the measurements presented here do not 
include the time for the sender to write the data. 



302 

Figure 12-28 

IV. Experiments 

Effect of Placing Sender and Receiver in Different Clusters 

-- Cluster 1 -) cluster 1 
- - - Cluster 1 -) cluster 2 

2.0 

1.5 

1.0 

0.5~--~--~----~--~----~--~--~~~ 
o 20 40 60 80 100 120 140 160 

Message length (words) 

12.3.1. Methods Used to Emulate Multiprocessor Architectures 

The emulation package was implemented by adding table-lookup code to each 
process to perform message routing and delivery. Each process can communicate 
only with logically adjacent processes as determined by routing tables. Messages 
destined for nonadjacent processes must be forwarded by intermediate processes. 
Along the way, they are buffered in pipes known as virtual buffers. (In this experi­
ment, "buffer" is simply a synonym for "pipe.") Routing information is contained in 
the first word of the message. It consists of source, destination, and virtual-buffer 
indices. Routing tables computed partly at compile time and partly during initializa­
tion determine the exact path taken by each message. At fixed intervals, each 
process checks whether any messages have arrived and delivers or forwards them 
as appropriate. 

12.3.2. Description of Modeled System 

All the experiments model the behavior of the same software on different emulated 
interconnection structures. The software is a system written for a three-cluster mini­
computer, with four processors in each cluster. Shared memory is used for com­
munication within a single cluster. Messages are used to move data between 
clusters. Thus the software in this experiment makes no intercluster memory 
references. 

The software system is driven by inputs from external sensors. Its outputs consist 
of status displays and actuators. The three clusters perform distinct functions in the 



Table 12-1 

12. Experiments in Multiprocessor Architecture 303 

Communication Rates in Simulated Computer System 

Bits Words Messages Data bits 
Dataflow in a in a per transferred 
direction word message second per second 

C&D-SPU 
C&D ~ SPU 32 256 2 
C&D ~ SPU 32 256 14 

i3iK 

ACS-SPU 
ACS ~ SPU 32 138 49 
ACS ~ SPU 32 132 49 

423K 

C&D-ACS 
C&D ~ ACS 32 256 16 
C&D ~ ACS 32 256 16 

262K 

overall system. The Actuator Control System (ACS) has primary control over the 
mechanical devices used in this system. A second cluster, termed the SPU, controls 
a Signal-Processing Unit. The final cluster handles overall control and information 
display, earning it the title of Control and Display (C&O). 

This is a real-time system that must respond immediately to any significant event. 
There are minimum throughput requirements, as well as constraints on the max­
imum latency of certain operations. Performance is measured by determining the 
maximum sustainable communications rate for different combinations of synthetic 
workload (which simulates the system behavior) and message length. 

To function effectively with limited buffer space, the emulated architecture must 
have the capacity to handle the message traffic, which consists of communication 
between processes in different clusters and between processes and external 
devices. These communication rates are given in Table 12-1. From these rates, one 
can estimate real-time response requirements. These limits proved to be difficult to 
measure with the present level of Cm* instrumentation. The message-event 
generator (see Section 10.3) does, however, facilitate the generation, at fixed time 
intervals, of messages that can be used to stress the communications system. This 
generator is used to simulate the inputs arriving at each cluster from outside the 
system; the external I/O determines the intercluster communication rates. Failure to 
meet real-time requirements was indicated by message-buffer overflow somewhere 
in the system. 

12.3.3. Description of Experimental Methodology 

The task force for this experiment consists of one or more processes in each of the 
three clusters, plus several support activities. The experiment utilizes resources from 
the synthetic workload generator system (Section 10.3) and can be described in the 



304 IV. Experiments 

8-language. The support processes consist of the Pegasus user interface, the 
message-event generator, and a monitoring routine. The user interface provides 
communication with the user's terminal, controls operation of the message-event 
generator, and allows control of user-specified variables in the user's processes. 
The message-event generator monitors a real-time clock and sends short (one­
word) messages to specific processes at specified intervals. The monitor process 
maintains an error vector where other processes may record the occurrence of 
malfunctions. It repeatedly scans this vector for evidence of changes and reports 
them to the user. In this experiment, the vector records instances of message-buffer 
overflow, as detected during attempted message Sends. The use of shared memory 
is a much less expensive way of communicating error information than sending short 
error messages. 

Figure 12-29 shows the modeled system. The simulated workload is driven by the 
message-event generator, which periodically sends event tokens to the SPU to 
initiate a unit of system activity by an SPU-to-C&D message. This message in turn 
generates other messages in such a manner that the average communication rate 
on the data paths in the simulated system is similar to that experienced by the real 
system. This is done by generating new messages to send to other nodes under the 
control of a random-number generator. As shown in the diagram, the C&D process, 
for example, will generate two new messages for each message received from SPU, 
with 7 percent going back to SPU, 57 percent going to ACS, and 36 percent going 
nowhere (simulating messages to e"xternal devices). In accordance with the syn­
thetic workload generator methodology, the destination for each message is 
selected probabilistically, based on these probabilities. The SPU messages generate 
messages back to ACS, where they are terminated. 

When a process receives a message, it performs some simulated work. The work 
simply consists of executing a null loop as many times as the user has requested 
through the Pegasus user interface. Each process executes the same average 
amount of work; that is, the more messages it receives on average, the fewer loop 
iterations it executes per message. For example, the SPU process receives an 
average of 50 messages a second and executes 256 iterations per message. The 
ACS process receives 64 messages per second and executes 200 iterations per 
message. Thus both processes execute 12,800 loop iterations per second. 

An important performance measure for an interconnection structure is its max­
imum sustainable message rate-that is, the number of messages that can be 
transported per unit time without causing buffer overflow. This rate was determined 
for various combinations of interconnection structure and synthetic workload by 
repeated runs, increasing the intervals between message events until a sustained 
period of operation was observed during which notbuffer overflowed. (Since each 
processor did the same amount of work, overflow was symptomatic of message­
system saturation.) 

The maximum sustainable message rate was measured for several combinations 
of parameters. Processing power was varied by changing the number of processes 
per cluster. Workload per message and message length were also varied as an aid 
in characterizing the performance of each interconnection structure. The com-



Figure 12-29 

12.3.4. Results 

12. Experiments in Multiprocessor Architecture 305 

A Graphical Representation of Data Flow in the Simulated System 

f"'\ [Y u = Subtask OK Message event 
generator 

~ = Message firing ]]) probability = Message buffers 

= Number (n) of messages fired for messages received 

munication abilities of the fully connected, nearest-neighbor, and ring networks were 
then compared. 

The fully connected multiprocessor, with one process per cluster, was the first con­
figuration to be tested. Three different message lengths were used: one-half, one­
fourth, and one-eighth of those specified in Table 12-1. (Unfortunately, the full mes­
sage length proved to be too much for Cm* I MEDUSA to handle and was deleted from 
the experiments.) The system was deemed to have saturated when any message 
buffer overflowed.6 Message-system saturation periods were found for each mes­
sage length, as the amount of work per message was varied from zero to five units 
(of 900 iterations each). The results, averaged over three successive runs, are 
shown in Figure 12-30. 

Note that the three curves are essentially linear. When there are few synthetic 
work units per message, however, the message system itself contributes more to the 

6 Usually the SPU-to-ACS buffer overflows first, probably because it is the busiest buffer and the ACS 
process receives the most total messages. 



306 

Figure 12-30 

IV. Experiments 

Saturation Curves for the Fully Connected Architecture, Basic Experiment 

:? 100r 

.§ I 
iii 
III 

80 '" e 
~ 
q; 
.Q 

60 ii 
~ ... 
Q) 

.S 
c:: 40 
~ --

o 

....... 

1 12-!ength messages 
1 /4-length messages 
1I8·length messages 

/ 
e' ",.", .... ,/ 

..... A" 
,/ 

/ 
~. 

.•.. ,/ 

......• " 
,/ 

.. 
.. _. 

1 234 5 
Synthetic work units (900 iterations/message) 

system load, and thus the period between messages is disproportionately longer. 
As message length diminishes (i.e., the scale factor decreases) the curves become 
linear even at low synthetic workload, again indicating the reduced effect of mes­
sages. Even when the synthetic workload is zero units, message traffic is limited 
both by the need for the processes to perform housekeeping tasks and by the 
processor time expended for the message operations themselves; thus the satura­
tion period does not fall to zero. 

For the same reason, the small-workload saturation period increases dispropor­
tionately as message length increases. When a process sends or receives a mes­
sage, it is suspended until the message operation completes. Since MEDUSA mes­
sages take about 20 microseconds per word to transport, transport time becomes 
Significant at longer message lengths. 

The basic experiment performed MEDUSA Sends and Receive s directly, without 
using the software routing tables and periodic polling that were used by the other 
experiments. To measure the overhead of these factors, the fully connected struc­
ture was emulated again, this time with the routing tables and polling. The logical 
interconnection structure is shown in Figure 12-31. The circles labeled 50 to 55 
represent the message-switching procedures that route and forward messages. The 
other circles represent the activities of the simulated task force. Each switching node 
resides on the same Cm as its adjacent activity. The solid arcs represent connec­
tions that are present in the experiments that use one process per processor. The 
experiments that use two processes each to perform the ACS, SPU, and C&D tasks 
include the dotted arcs as well. 

The results were compared with those from the basic experiment. The curves 



Figure 12-31 

Figure 12-32 

12. Experiments in Multiprocessor Architecture 

Fully Connected Emulation Experiment 

~ 0------------- S1 8 
\. SD L:-. ---'~~:,- --- --- -/; --j:iij' 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

Saturation Curves for the Fully Connected Network Emulation 

_100 
iii 
.s 
iii 
0) 

80 I/) 

E 
s; 
~ 
.Q 

60 i; 
~ 
"-
CD :s 
c: 40 
:e 

o 

1/2·length messages 
1/4·length messages 
1 IS· length messages 

.~ 

/, ... ~~ .. e 
J?)' •• ' 

/' /' 
Circles-with routing tables and pOlling /, •• , ~. .0 
Bullets-basic experiment ... /, •• , .•.•• :. ~ 

... K... . ...... ;.:"'e 
/ .#' .e' .';' '" 

... /.o;~~·/'·:.~···:~.··~"i·:·: '" '" 
.. ,/ . ______ e ...... .... y '" '" 

,..e ______ .. ....y '" 

.: .• :::::: •. A" ..•. : .•• >:!":.:.: / .. 
.,.() .,,' '" 

........... ----......... '" 
.",.'" "' ..... 

12345 
Synthetic work units (900 iterations/message) 

307 

exhibit a small offset from the basic experiment, which is due to the extra overhead 
of the Send and Receive procedures and the periodic polling for incoming mes­
sages. As can be seen from the curves presented in Figure 12-32, this overhead is a 



308 

Figure 12-33 

IV. Experiments 

Nearest-Neighbor Interconnection Scheme 

, , , , , 

1fY 1 B 1ft' 
~-------~-------~ 

constant 4 to 6 ms. over a wide range of workload and message length. Therefore, 
its effect can easily be factored out. 

These experiments were repeated for the nearest-neighbor interconnection 
structure. Since there were only three processes used in the initial trials, the inter­
connection graph actually looks more like a line than a mesh. Figure 12-33 shows 
the interconnection structure; as above, dashed arcs indicate paths present only in 
the six-processor version. The processes were arranged in the optimal order, as 
determined by their communication behavior. A comparison was made with a dif­
ferent arrangement to see how much difference it would make. As shown by Figure 
12-34, the time between messages increased dramatically because the system was 
able to handle fewer messages per unit time. 

The curves for the nearest-neighbor network, seen in Figure 12-35, again show a 
decrease in linearity with increasing message length. The anomalous behavior of the 
long-message-Iength curve at low workloads (i.e., the surprisingly low saturation 
period) appears to be an isolated, though repeatable, case. Even with optimal con­
figurations, the saturation points occur at a significantly lower message rate (i.e., 
larger intermessage period) than in the basic experiment. Some of this is due to the 
increased overhead of the message-routing subroutines, as evidenced in the fully 
connected emulation results, and some is due to the additional burdens of message 
forwarding, resulting from the poorer connectivity. 

After results were obtained for the three-processor system, the experiments were 
redone with six processors. In addition, a ring network was tested. Since the three­
processor ring configuration is identical to the three-processor fully connected net­
work, there was no need to collect separate data. A fully connected network of six 
processors was included to provide a baseline for the other architectures and to 
determine the amount of overhead to subtract from the six-processor configurations. 

Figure 12-36 presents both the three- and six-processor fully connected curves. 
At large workloads, the throughput of the six-processor configurations were ap­
proximately double those of the three-processor configurations, as would be ex­
pected from the dominance of processing over message passing at large workloads. 



Figure 12·34 

Figure 12·35 

12. Experiments in Multiprocessor Architecture 

Comparison of Different Process Placement 

...... 175 
c,; 
.s 
c,; 150 
C) 
(I) 

E 
~ 125 
q; I 
.Q 

~ 100 ... 
Q) 

.~ 
r::: 75 

~ 

25 

o 

o C&D-SPU-ACS 
o C&D-ACS-SPU 

1 234 5 
Synthetic work units (900 iterations/message) 

Saturation Curves for the Nearest-Neighbor Network 

...... 120 
c,; 
.s 
~100 
(I) 

E 
~ 
Q; 80 
.Q 

~ ... 
Q) 

.s 
r::: 
~ 

60 

o 

.,/ 

1 12·length messages 
1 14-length messages 
1 18-length messages 

,'-
,-,0'-

/",-

,-t-' 

+" 
-t-' 

-+-

-i" 

_v 

,-i" 

..... -
,+ 

+ 

1 234 5 
Synthetic work units (900 iterations/message) 

309 



310 

Figure 12-36 

IV. Experiments 

Saturation Curves for 3- and 6-Processor Fully Connected Networks 

:;
1OOr 

! I 
If) 
Q) 
III 80 III 
II) 
II) 
Q) 

e 
:t 60 
Q; 
.Q 

iQ 
:lo .. 
Q) 40 :s 
r::: 
~ 

o 

1/2-length messages 
1 14-length messages 
1I8-length messages 

Triangles-3 processors 
Boxes-6 processors 

.A 

1 234 5 
Synthetic work units (900 iterations/message) 

A correction factor similar to the correction factor obtained by comparing the basic 
and emulated three-processor workloads can be applied. A correction factor one­
half as large as that needed for the three-processor configuration predicts the six­
processor curves almost exactly for large workloads. This halving of the correction 
factor is consistent with the notion that the observed overhead is due to the extra 
computation required by the emulation routines. With six processors instead of 
three, the emulation overhead per processor is halved for any given message rate. 
The correction factors derived for three- and six-processor cases will be applied later 
to the raw data when making detailed comparisons of the interconnection structures. 

The raw data for the six-processor nearest-neighbor and ring structures are 
presented in Figure 12-37. The reduced connectivity of the ring network is reflected 
in its poorer performance as compared to the nearest neighbor at long message 
lengths, though they exhibit similar behavior at shorter message lengths. 

12.3.5. Usable Processing Power 

Of particular interest to multiprocessor designers is the amount of useful work they 
can obtain for a given application on· various architectures. One way of estimating 
this is to compare the processing power that is "left over" for an application after 
subtracting the overhead of message transportation. This was done by first subtract­
ing out the emulation overhead, as described in the previous section, and then 
computing the percentage of time the processors were executing the application. 
The computation times were calculated from the number of synthetic-workload loop 
iterations executed per external message (received from the message-event 
generator) and the measured external message rates. 



Figure 12-37 

12. Experiments in Multiprocessor Architecture 

Six-Processor Nearest-Neighbor and Ring Results 

o 

..••••.•.••. & •••••• :':.:.:':.: •. :: 

_------~--.. - - - _I>.::;:; ::;:; -
•• :J>''''- ..- _0 

::~--::~-::~-::~~-::; ::; ::;:; ~ ::;:; ::;:; - ------- ~~~:::~~!~~:~~:~:~ 
~ - - - 1IS-length messages 

Circle-ring 
Triangle-nearest neighbor 

1 2 3 4 5 
Synthetic work units (900 iterations/message) 

311 

The results of the calculations of usable processing power can be used to com­
pare the various network configurations. Figure 12-38 compares the long-message­
length (scale of one-half) results for all network configurations, after adjustment for 
overhead. At first glance, it appears that the usable processing power of each 
processor, with two processors per cluster, is substantially higher than with only one 
processor. This is because each processor handles only half the messages sent or 
received by the cluster. Thus if the amount of processing done by each cluster is 
directly determined by the incoming message rate, as it is in the system modeled 
here, the message rate per processor must be considered. Figure 12-39 compares 
the three-processor configuration of the fully connected network with the six­
processor configuration, after accounting for the lessened message rate per proces­
sor. Note that the six-processor architecture is actually using its processors less 
efficiently than the three processor configuration. Note also that the pOint where 
each curve intersects the X-axis is the message rate that will saturate that architec­
ture. 

Even though the experiments involved only a small number of processors, some 
interesting results can be seen. Again, examining Figure 12-38, it is seen th~t for 
this application a six-processor ring utilizes its processors no more effectively than a 
three-processor nearest neighbor. Of course, more processing power is available 
because each cluster contains two processors. Notice, though, that above 20 mes­
sages per second, a three-processor fully connected system has more than twice as 
much available power per processor than the six-processor ring. Thus it would 
definitely be the preferred system at high message rates. Below 20 messages a 
second, the six-processor ring has more total processing power available and might 



312 

Figure 12-38 

Figure 12-39 

IV, Experiments 

Usable Processing Power for Various Architectures 

~ 100r 
CS"= I ..... 
'" (I) 

~ 
0 80 Q. 
O'l 
r::: 
'iii 
tI) 
(I) 
0 60 0 ... 
Q. 

.! 

.Q 
CQ 
tI) 40 
::) 

20 

o 

- , .. - 3 processors 
. . . . . .. 6 processors 

Triangle-nearest neighbor 
Star-fully connected 
Circle-ring 
In all cases, 1 12·length messages used 

'. 
'. 

20 40 60 
External message rate (messages/sec.) 

Comparison of Usable Processing Power, Adjusted for Per-Processor Message Rates 

-.. 100 
~ ... 
(I) 

~ 

8. 80 
O'l 
r::: 
'iii 
tI) 
(I) g 60 
... 
Q. 

.! 

.Q 

~ 40 
::) 

20 

o 

~ .. 
lit .......... 

" 

• 
* '"'' '. 

* 

10 20 

1 processor per subtask 
2 processors per subtask 

.\.. 

'"'' "" 
"" 

30 40 
External message rate (messages/sec.) 



Figure 12-40 

12. Experiments in Multiprocessor Architecture 

Comparison of Six-Processor Interconnection Schemes 

.. 

20 

o 20 40 

_ ... - 1 12·length messages 
. . . . . .. 1 14·length messages 

Circle-ring 
Triangle-nearest neighbor 
Star-fully connected 

60 80 100 
External message rate (messages/sec.) 

313 

be preferred if large amounts of processing were required. It would be cheaper than 
either the six-processor nearest-neighbor or fully connected systems, provided it 
supplied sufficient processing power. 

Of particular interest is the relative performance of the three multiprocessor ar­
chitectures when six processors are employed, as the connectivity of the intercon­
nection structures has a great effect on the results. Figure 12-40 compares the 
curves produced by all three structures when one-half and one-fourth length mes­
sages are used. The effects of emulation overhead have been factored out in these 
graphs so that direct performance comparison is possible. The ring and nearest­
neighbor networks provide similar amounts of processing power to their application 
tasks, though at long message lengths, the nearest neighbor does perform slightly 
better. In all cases, the fully connected architecture performs markedly better, doing 
almost as well with long messages as the other two architectures do with short 
messages. At an external message rate of 20 messages per second, the fully 
connected network provides almost 2.5 times the processing potential of the 
nearest-neighbor network. Although the fully connected network requires 15 inter­
connection links to the nearest neighbor's 7, it often is the better choice. 

These experiments demonstrate how it is possible to use em*, or other testbeds, 
to emulate alternative multiprocessor architectures. The methods employed can 
easily be extended to emulate additional multiprocessors covering a large class of 
interconnection mechanisms as well. Although some of the overhead incurred in 
emulating the routing algorithms is due to the emulation software, this can be 
measured by comparison with nonemulated systems, as was done for the basic 
experiment. Once the overhead is subtracted, detailed studies of comparative net-



314 

12.4. Summary 

IV. Experiments 

work performance are possible. It is expected that the methodologies presented in 
this chapter, in conjunction with an experimental environment such as that described 
in Chapter 10, can furnish accurate assessments of the results of experiments on 
other multiprocessor systems. 

Multiprocessor experiments rely on a timing facility to measure time-related infor­
mation. The Cm* timing facility uses a system clock and provides a number of 
system calls to read the clock. Preliminary experiments showed wide variance of 
the clock readings, due to the multiword structure of the Cm* clock and the computa­
tional load. Several experiments were performed with the goal of alleviating this 
problem. The latency, resolution, and variance of the timing measurements were 
calibrated, and improved clock-reading algorithms were developed. Two methods of 
compensating for clock variance were evaluated. Both methods are based on the 
idea of sensing the average load and using it to correct the time measurement. 

Calibration of the timing facility is a prerequisite to performance measurement on 
a multiprocessor. Another aspect of calibrating the experimental infrastructure is to 
study the virtual software/hardware architecture running on Cm*. Two such sets of 
experiments have been described. The first one investigates the implementation of 
triple-modular redundancy and voting for increased availability. A number of im­
plementation parameters were varied, such as synchronization strategies, com­
munication and voting overhead, granularity of voting, and voter queue lengths. 
Based on the experimental results, an analytical model was created to generalize 
and predict the voting behavior. 

The second set of experiments relate to the emulation of interconnection architec­
tures on the top of Cm*. Cm* was configured to compare alternative interconnection 
strategies. Certain communication paths were created and removed by modifying 
the microcode, simulating the effect of changes in the interconnection network. Four 
different multiprocessor configurations were emulated: the basic connection, which 
used standard MEDUSA communication primitives (for overhead calibration); the fully 
connected configuration with software routing tables; the nearest-neighbor con­
figuration; and a ring configuration. For performance comparisons, a real-time syn­
thetic application was implemented on these architectures. The results illustrate the 
effectiveness of the various interconnections for the application under study. For 
example, a six-processor ring utilizes its processor no more efficiently than a three­
processor nearest neighbor. 

These experiments show how one can use Cm*, or other testbeds, to emulate 
alternative multiprocessor architectures. The methods can easily be extended to 
emulate additional multiprocessors, covering a large class of interconnection 
mechanisms as well. Although some of the overhead incurred in emulating the 
routing algorithms is due to the emulation software, this can be measured by com­
parison with nonemulated systems, as was done for the basic experiment. Once the 
overhead is subtracted, detailed studies of comparative network performance are 
possible. It is expected that the methodologies presented in this chapter, in conjunc-



12. Experiments in Multiprocessor Architecture 315 

tion with an experimental environment, such as that described in Chapter 10, can 
furnish accurate assessments of the results of experiments on other multiprocessor 
systems. 

At this point, we have described the Cm* hardware architecture, the operating 
systems, the software and experiment development environments, the parallel al­
gorithm taxonomy, the timing facility, the interconnection emulation, and the ex­
perimental results. The interested reader can now peruse the details of the various 
Cm* experiments, as described in Appendix A. 

Acknowledgments. Section 12.1 was adapted from [Kong et al. 83] by Thomas H. Kong, 
Alfred Z. Spector, and Daniel P. Siewiorek; Section 12.2 was condensed from [York et al. 83] 
by Gary York, Daniel P. Siewiorek, and Zary Z. Segall; and Section 12.3 was adapted from 
[Wilson et al. 83] by Andrew W. Wilson, Daniel P. Siewiorek, and Zary Z. Segall. 





Appendix A 
Experiments Performed on Cm* 

A.1. Unicluster Partial Differential Equation Solver 

Algorithm name: Partial differentia! equations (PDE). 
Cm* configuration: Eight Cm's, one cluster. 
Operating system: Smap microcode. 
Other software in environment: None. 
Experimenter: Levy Raskin, 1978. 
Reference: [Raskin 78]. 

The objective is to solve Laplace's partial differential equation (POE) with given 
boundary conditions (Dirichlet's problem) by the method of finite differences. The 
equation 

is solved for pOints of an m-by-n rectangular grid, where only the values at the outer 
edges of the grid are given. The solution is found iteratively. On each iteration the 
new value of every element is set to the arithmetic mean of the values of its four 
adjacent neighbors. Each process runs on its own dedicated processor; it performs 
the iteration for a fixed, contiguous subset of the grid array, which will be called a 
task. Thus the processes are distinguishable. 

Raskin implemented several different variations [8audet 78] of this algorithm. All 
methods use one process per processor, so these two terms can be used inter­
changeably. The processes iterate on equal-sized partitions of the grid. One process 
(the master) starts the other slave processes and then works on a portion of the grid 
array, just like a slave process. 

1. The Jacobi Method. At the beginning of each iteration, a processor retrieves 
its partition from a global array. New values are computed for each element of 
the partition, then stored back into the global array. This storing is performed 
inside a critical section. The processor then checks its error vector (computed 
from the difference of the new and old values in its partition). If the error 
vector is smaller than a prespecified limit, the processor reports that it has 
finished. Otherwise it blocks until the other processors have completed the 
current iteration. Iterations are performed until all processors have finished. 

2. The Asynchronous Jacobi Method. This method is the same as method 1, 
except that a processor does not wait for the other processors to finish before 
starting on the next iteration. 

317 



318 

Table A-l 

Appendix 

3. The Asynchronous Gauss-Seidel Method. This method is similar to method 
2, except that the processor uses newly computed values as soon as they are 
available instead of the values known at the beginning of the iteration. 

4. The Purely Asynchronous Method. To compute new array values, this 
method uses the most recent values of all components by reading them 
directly from the global array and writing the updated values back to the global 
array (without any critical sections or synchronization). It uses a critical sec­
tion only for a processor to report that it has finished. 

Results. Raskin studied these algorithms using a 21-by-24 array (504 elements) on 
a one-cluster em* system with a maximum of eight processors. Measurements 
were directed toward two goals: to determine how much degradation would be 
caused by mapped memory references (see Section 4.2) and to compare the perfor­
mance of the four methods. 

MAPPED MEMORY REFERENCE TIMES. Each memory reference made by a process 
falls into one of four classes: The reference is either to code, to the process stack, to 
a private variable, or to a global variable. Using a uniprocessor version of each 
algorithm, Raskin measured execution time when each class of memory reference 
was mapped by the Kmap rather than proceeding directly to local memory. (Since 
only one cluster was in use, these were all intracluster references.) The results are 
presented in Table A-1 and graphed in Figure A-1. For each method in the figure, 
the first bar represents execution time without any mapped references, and the last 
bar gives execution time when all memory references are mapped. The middle bars 
show execution time when exactly one class of memory references is mapped. 
Regardless of which algorithm was being measured, placing the global variables in 
mapped memory degraded performance about 4 percent, mapped globals cost 16 to 
18 percent, and mapped code cost about 130 percent. Methods 3 and 4 were 
always about twice as fast as methods 1 and 2. 

Uniprocessor POE Memory Reference Overheads 

2. Asynch. 3. Asynch. 4. Purely 
1. Jacobi Jacobi Gauss-Seidel asynchronous 

%of %of %of %of 
local local local local 

Memory reference Exec. exec. Exec. exec. Exec. exec. Exec. exec. 
pattern time time time time time time time time 

All local 362 100 355.5 100 181 100 165.5 100 

Only globals 
mapped 378 104.5 370 104 188 104 173 104.5 

Only private vars. 
107 mapped 405 112 399 112 203.5· 112 176.5 

Only stack mapped 420 116 413 116 210 116 196 118.5 

Only code mapped 835.5 231 820 231 417 230 382 231 

All mapped 954 263.5 948 267 478 264 433 261.5 



Figure A-1 

A. Experiments Performed on Cm* 319 

Comparison of Uniprocessor POE Implementations 

~ 
1000 

"0 
c: 900 0 u 
CI> 
~ 800 

CI> 

~ 700 
c: 
.2 6()() 
~ u 
CI> 500 
~ 

m 
I I I 

I I 
400 r--r--

300 

200 

100 

0 

IT L 
o S 

INIG 
C t C 
a a o A 

1:1~ 
I C d I 
S k e I 

Jacobi 

m 
I I I 

r---
_r-

L 
o S 

N G C t C 
o I a a o A 
n 0 I c d I 
e b. S k e I 

Labels on bars indicate which 
type of data is mapped. 

Labels on X·axis indicate which 
PDE method is used. 

-
r--

C 
r--r--r--r-- o A _r--_r--

d I 

N G L S 
e I 

N G L S 

-
r--

C 
o A 
d I 
e I 

Asynch. Jacobi Asynch. Gauss-Seidel Pureiyasynch. 

SHARED-MEMORY CONTENTION AND REFERENCE DEGRADATION. Raskin also 
measured multiprocessor versions of each algorithm. Some memory references 
were made directly to local memory; others were mapped to nonlocal memory. 
Some of those non local memory references were to objects that were shared by all 
the processes. For example, all processes might access the same copy of the code, 
leading to Kmap and memory contention. The graphs for method 1 (Figure A-2) and 
method 4 (Figure A-3) are typical, but note that methods 3 and 4 are again ap­
proximately twice as fast as methods 1 and 2 in all cases. 

A closer look at these graphs shows the effects of two kinds of overhead: non­
local (mapped) memory references and memory contention. Each graph shows 
three curves. 

• The first curve plots results for runs that incur the least possible amount of 
either kind of overhead. No data is shared except globals (which must neces­
sarily be shared), so memory contention is kept to a minimum. Similarly, no 
memory references are mapped except references to global data, which must 
be mapped if the data is shared. 

• The second curve shows what happens when all memory references are 
mapped. These runs incur maximum mapping overhead but minimum conten­
tion overhead. The curve levels off or turns upward at about six processors, 
which indicates that at this point, mapping overhead begins to dominate, prob­
ably due to saturation of the Kmap. 

• The third curve illustrates the effect of mapping all memory references and 
sharing all data, thus maximizing both mapping and contention overhead. No 



320 

Figure A-2 

Figure A-3 

Appendix 

Influence of Mapped and Shared References on Method 1 (Jacobi) POE Execution Time 

~ 1000, 
a 9001\ 
\oJ 
Q) 

~ 
Q) 

~ 700 
c: 
.~ 600 
~ o 
Q) 500 
~ 

400 

• All mapped and shared 
o An mapped, only globals shaied 
[] Code and stack local, globals shared 

o~--~----~----~--~----~----~--~ 
1 2 3 4 5 6 7 8 

Number of processors 

Influence of Mapped and Shared References on Method 4 (Purely Asynchronous) POE 
Execution Time 

c: 
.~ 300 
~ o 
Q) 250 
~ 

200 

• All mapped and shared 
o All mapped, only globals shared 
[] Code and stack local, globals shared 

: 
o~----~----~--~~--~~--~~--~----~ 

1 2 3 4 5 6 7 8 
Number of processors 



Figure A-4 

A. Experiments Performed on em* 

Comparison of Multiprocessor POE Execution Times 

[J Jacobi (method 1 ) 
o Asynchronous Jacobi (method 2) 

• Asynchronous Gauss-Seidel (method 3) 
t:. Purely asynchronous (method 4) 

o~--~----~----~----~--~----~----~ 
1 2 3 4 5 6 7 8 

Number of processors 

321 

further improvement is possible beyond four processors because of saturation 
of the shared memory. Consequently, these experiments demonstrate that, 
as processors are added, shared memory saturates before the Kmap. 

SPEEDUP OF THE FOUR METHODS_ It is instructive to compare the four methods 
against each other, in terms of both execution time and speedup. We can re-plot the 
curves for each method for the case in which only globals are shared. The methods 
whose synchronization requirements are less demanding find the solution more 
quickly (Figure A-4). Despite requiring more synchronization, however, method 2 
exhibits more speedup than method 3 (Figure A-5) because the uniprocessor 
asynchronous Gauss-Seidel method has a large speed advantage over the 
uniprocessor asynchronous Jacobi method-an advantage that cannot quite be 
maintained as processors are added . 

.. 2. Unicluster Quicksort 

Algorithm name: Quicksort. 
em* configuration: Eight Cm's, one cluster. 
Operating system: Smap microcode. 
Other software in environment: None. 
Experimenter: Levy Raskin, 1978. 
Reference: [Raskin 78]. 



322 

Figure A-5 

Appendix 

Comparison of Multiprocessor POE Speedup 

~8r 
Q) 6. Purely asynchronous (method 4) 
(I) 7 e Asynch. Gauss-Seide! (method 3) 
~ 0 Asynch. Jacobi (method 2) 

o Jacobi (method 1) 

6 

5 

4 

3 

2 

1~--~--~--~--~~--~--~--~ 
1 2 3 45678 

Number of processors 

In the multiprocessor quicksort [Sedgewick 78], a number of indistinguishable 
processes, one per processor, take part in sorting a global array of integers. The 
processors share a stack, which contains descriptors for continuous subsets of the 
array that have yet to be sorted. 

On each pass, a processor tries to pop a descriptor for a new subset from the 
shared stack. If successful, the processor partitions the subset into two smaller 
ones, consisting, respectively, of all elements less than and greater than an es­
timated median value. (The estimate of the median is rather crude; it is the median 
of the first, middle, and last elements in the subset. This is just Slightly more 
sophisticated than the simplest implementation of quicksort, which on each iteration 
partitions a set into two subsets, the first consisting of the elements less than the 
middle element.) After this partitioning, a deSCriptor for the shorter of the new 
subsets is pushed onto the stack, and the longer subset is further partitioned in the 
same way. When a subset cannot be partitioned further, the processor pops the 
next deSCriptor from the shared stack. 

Unlike the POE algorithm, the multiprocessor quicksort algOrithm [Raskin 78] 
cannot approach linear speedup (see Section 11.3.1). Its theoretical speedup S 
(assuminQ zero implementation penalty) can be computed from 

1 
- = - + 
S N 

log2N 
2 -

N 

log2 M 

2 

N 
(2) 



Figure A-6 

A. Experiments Performed on Cm* 

The Cost of Mapped Quicksort References 

-
122% 

-
100% G 

20 I 
0 

N b 

10 0 a 
n I 
e s 

o 

;---
'--119% 
111% 

L 
0 S 
c t 
a a 
I c 
s k 

274% 

229% 

C 
0 A 
d I 
e I 

Labels on bars 
indicate which 
type of data 
is mapped . 

. _ . ..,_ .... _;:,-'-.. _._. 
to percentage of 
execution time 
with all data 
local. 

100% = 25.54 sec. 

323 

where N is the number of processes and M is the number of elements sorted. Note 
that the speedup is enhanced if M grows large relative to N. Raskin's experiments 
used an M of 1B,000. With two processors, the theoretical speedup is 1.B7. For an 
M of 1 ,BOO, the theoretical two-processor speedup would be only 1.B3. 

Like the multiprocessor POE, the multiprocessor quicksort employs a master / 
slave implementation. After starting the slaves, the master participates in the sort, 
just like the slaves. The master and each slave execute on distinct processors. The 
shared stack, the vector of numbers to be sorted, and the other global variables are 
kept in the local memory of the em that runs the master. 

Results. Raskin sorted an array of 1B,000 elements on a one-cluster system with a 
maximum of eight processors. As in the POE experiment (Section A.1), the goals 
were to measure degradation due to mapped memory references and to measure 
the speedup as the number of processors was increased. 

Oata referenced by a process can be classified into four categories: executable 
code, private variables, global variables, and the process stack.1 Unlike the POE, the 
quicksort references global variables more frequently than priv.ate variables; other­
wise its reference patterns are similar. Since only one cluster was in use, all 
references are intracluster. These values are graphed in Figure A-6. 

1 This refers to the callI retum and expression-evaluation stack, not the shared stack of subset descriptors, 
which are global variables. 



324 

Figure A·7 

Appendix 

Multiprocessor Quicksort Speedup 

So8r 
"2 I '" 0 Code and stack local, globals shared 
Q) 7 0 All mapped, only globals shared 
~ • All mapped and shared 

6 

5 

4 

3 
Theoretical speedu~ " " " ""_" .A-~~ __ 

2 

1~--~--~--~--~~--~--~--~ 
1 2 3 45678 

Number of processors 

Figure A· 7 shows how speed varies according to the number of processors used. 
Comparing the different curves illustrates how mapped references and memory 
contention affect the results. If all data is shared, memory saturates at about three 
processors. If all data is mapped, the Kmap saturates at five to six processors. 
Adding additional processors slows down the experiment. Note the similarities be­
tween this experiment and the uniprocessor POE (see Section A.1). 

A.3. Integer Programming 

Algorithm name: Set-partitioning integer programming. 
Cm* configuration: Eight Cm's, one cluster. 
Operating system: Smap microcode. 
Other software in environment: None. 
Experimenter: Levy Raskin, 1978. 
Reference: [Raskin 78]. 

Set-partitioning integer programming implemented for Cm* [Raskin 78] uses an 
enumeration algorithm that performs an n-ary tree search in a large, relatively 
sparse binary matrix for a minimum-cost solution. The matrix is two-dimensional; its 
size is usually on the order of hundreds by thousands. The problem is to solve 

min(c· x I A x = e, Xj = 0 or 1 for 0 .:::; j .:::; N) 



A. Experiments Performed on Cm* 

where A is an M-by-N binary matrix, 
c is a vector of length N, 
and e is the identity vector of length M. 

325 

As an example, consider the airline-crew scheduling problem. The rows of the A 
matrix correspond to a set of flight legs to be covered during a specified period, and 
the columns of A correspond to a possible sequence of tours of flight legs made by 
one crew; c is a vector containing the cost of each tOUi. A feasible solution consists 
of a set of tours that satisfy all the flight legs (one and only one crew makes a flight 
leg). The algorithm seeks the solution with the lowest cost. 

The multiprocessor version of this algorithm has a negligible algorithm penalty 
and hence a theoretical possibility of linear speedup. Raskin used a master / slave 
implementation, with the master initializing a shared stack of possible search-path 
solutions. Each process ran on a dedicated processor. The slave processes popped 
the stack each time they needed more work to do. A global variable maintained the 
cost of the best solution encountered so far. Each process compared its current cost 
value with this variable, backtracking in the search when the global cost was lower. 

Results. The algorithm was run on five different sets of data (the five "cases"), 
again with a maximum of eight processors in one cluster. Two versions of the 
algorithm were investigated. In the first version, the processors communicated by 
shared memory, making direct memory references to, for example, the shared stack. 
The second version simulated a network, with the processors communicating via 
messages, which were copied from the local memory of the sender to the local 
memory of the receiver ("pass-by-value"). 

EXPERIMENTS USING SHARED MEMORY. As in the two previous experiments 
(Sections A.1 and A.2), Raskin studied the penalty that mapped references imposed 
on the performance of the uniprocessor version. Three of the cases (cases 1,2, and 
4) were measured, and results are presented in Figure A-B. The behavior of the 
three cases was so similar (the penalty of mapping a particular class of references 
never varied by more than 3 percent from case to case) that only one set of bars is 
shown, representing the average overhead in the three cases. An interesting 
anomaly in the speedup is the fact that case 1 achieved greater than linear speedup 
(see Section 11.2). The speedup curves are plotted in Figure A-9. 

MULTIPROCESSOR / NETWORK COMPARISON. Cm* can easily be configured to emu­
late a computer network (see Section 12.3) if non local memory references are 
disallowed (for example, by removing the associated microcode from the Kmap) and 
all interprocessor communication is performed by message passing. Raskin carried 
out further experiments with the integer-programming algorithm, varying several 
parameters: 

• Configuration -multiprocessor vs. network . 
• Acknowledge mechanism -simulated hardware vs. software. 



326 

Figure A-a 

Figure A·9 

Appendix 

The Cost of Mapped Integer-Programming References 

Q) 300r 

.~ 275~ 
I:: 

~250 
::J 
(,) 

~225 

'Ca200 
(,) 

~ 175 
o 

2m 

270'l' 

Labels on bars 
indicate which type 
of data is mapped. 

Percentages determined 
by taking average of 
three of the cases. c: 150 

Q) 

~ 125 
'"14Q; Case 1: 100% = 79.1 sec. 

cf 
100 

75 

50 

25 

o 

l-

r-~ Wi); 102'l' 108 

L 

G 
0 
c 

N I a 
0 I 

0 b s 
n s. 
e 

Case 2: 100% = 19.5sec 
Case 4: 100% = 204.4 sec. 

S 
t C a 

0 c d A 
k I e I 

Speedup of the Multiprocessor Integer-Programming Algorithm 

o Linear speedup 
[J Case 1 
• Case2 
b. Case3 
)( Case4 

8 0 Case5 

7 

6 

5 

4 

3 

2 

1~-----*--------~----~----~--------~----~------
1 2 3 45678 

Number of processors 



A. Experiments Performed on em" 327 

• Network bandwidth--from a minimum of SK bits / second to a maximum of 
approximately 1.3M bits / second. 

When shared memory was used in the multiprocessor configuration, the Smap 
microcode (Appendix D) was used; in the absence of contention, intracluster 
references took 8.3 J.Ls. and intercluster references 26.2 J.Ls. In the network con­
figuration, the shortest possible packet, consisting of three words, could be trans-
mitted in 85 j.Ls., and each additional "/oid took about 12 I-Ls. 

To transfer messages reliably, it is necessary to inform the sending processor 
whether the message has been successfully transmitted so that it may retransmit if 
necessary. To simulate hardware acknowledgment, the Kmap was programmed to 
set a flag bit in the first word of the sending processor's copy of the message after it 
had been successfully transmitted. To perform software acknowledgment, the 
receiving processor sent an acknowledge message back to the sending processor 
after successful receipt of a message. Including buffer allocation and deallocation 
and message generation or decoding, it took about 1.1 ms. to send a packet, 0.7 
ms. to receive a message, and 0.6 ms. to acknowledge a packet. 

The maximum bandwidth of the emulated network was about 1 .3M bits I second. 
Lower bandwidths were simulated by causing the Kmap to delay a certain amount of 
time between successive word transfers. 

The integer-programming application requires relatively little interprocess com­
munication, and thus it performs quite well on the emulated network. In several 
cases, its performance with maximum network bandwidth is nearly indistinguishable 
from that of the multiprocessor configuration (Figures A-10 and A-11). Also, be­
cause of the light message traffic, the results did not perceptibly depend on which 
acknowledge mechanism was used. As the communication bandwidth was de­
creased below SOK bits / second, however, performance did noticeably deteriorate. 
Figure A-12 presents the results for case 1 . 

A.4. The Speech-Recognition System Harpy 

Algorithm name: The speech-recognition system Harpy. 
Cm* configuration: Eight Cm's, one cluster. 
Operating system: Smap microcode 
Other software in environment: None 
Experimenter: Peter Feiler, 1977. 
Reference: [Fuller et al. 77] 

Harpy [Lowerre 76] is a speech-recognition system developed at Carnegie-Mellon 
University (CMU). Its knowledge of speech is represented in the form of a weighted 
directed graph. Each node in the graph represents a phoneme, and each weighted 
arc represents a legal transition from one phoneme to another, with the weight 
representing the probability of the transition. Harpy has recognized speech in 



328 

Figure A-10 

Figure A-11 

Appendix 

Comparison of Integer Programming on Network and Multiprocessor Configurations, 

Cases 1 and 2 

Network 
Multiprocessor 

OL---------~--------~--------~--------~--------~--------~----~ 
1 2 3 4 5 6 7 8 

Number of processors 

Comparison of Integer Programming on Network and Multiprocessor Configurations, 
Cases 3 through 5 

Network 
Multiprocessor 

O~--~----~----~----~--~~--~----~ 
1 2 3 4 5 6 7 8 

Number of processors 



Figure A-12 

A. Experiments Performed on em'" 

Effect of Bandwidth on Network Version of Integer Programming 

Ci) 80 
"tI c: 
o 
(J 
Q) 

~ 70 
Q) 

~ 
c: 
.2 I 
"5 60 
(J 
Q) 

~ 

50 

40 

30 

20 

10 

o 5K bits/sec. 
t. 11 K bits/sec. 
¢ 45K bits/sec. 
• about 160K bits/sec. 
D about 1.3M bits/sec. 
o Multiprocessor 

329 

o~----~------~------~------~------~------~----~ 
1 234 5 6 7 8 

Number of processors 

several different application areas, or task domains, among which are information 
retrieval and voice-activated numerical calculations. Only this latter task was imple­
mented on em*; it is known as DESCAL (desk calculator). Its vocabulary is 32 words, 
and it recognizes speech utterances of the form "Alpha gets four times gamma." 
The task domain is also structured in the form of a weighted directed graph. Both 
graphs are constructed by a preprocessor program, which runs on a uniprocessor; it 
is not part of the multiprocessor implementation. The preprocessor determines the 
arcs and their weights based on the rules of English syntax B:nd its knowledge of the 
probability of particular utterances in the task domain. For DESCAL, the graph con­
sists of about 1 ,000 nodes, and the average branching factor is approximately four 
(the average node has an average of four immediate neighbors). 

The beam search algorithm employed by Harpy lends itself to parallelization, as it 
searches several paths through the graph simultaneously, keeping track of the one 



330 Appendix 

with the highest probability. If more than one path reaches a terminal node of the 
graph, the one with the highest probability is selected as the meaning of the ut­
terance. 

Harpy was originally implemented on a DEC-10 uniprocessor. The first parallel 
implementation was built for the C.mmp multiprocessor [Wulf et al. 81]. It was later 
modified for Cm* by Feiler, who used a master I slave implementation in which the 
master process receives data from another computer (most experiments were per­
formed on prerecorded data) and prepares it for the slaves. Only the slaves par­
ticipate in the search. In addition, one Cm is dedicated to performing utility routines, 
so a maximum of six slave processes can be used. 

Results. Feiler ran Harpy with one to six slave processors. Speedup varied from 
1.87 with two processors to 3.44 with five and 3.60 with six. From experiments on 
C.mmp, speedup was not expected to increase beyond eight to ten processors. 
Feiler also experimented with mapped code and data references by the slave 
processes (see Section A.1). A mapped stack cost almost 14 percent, and mapped 
code cost about 150 percent. 

Further experiments measured the effects of different synchronization 
mechanisms. The Smap microcode, like the other Cm* microcodes, provides an 
Indivisible Decrement operation. This is useful to synchronize updates to, say, a 
shared stack but is not the best way to implement private semaphores. A process 
that is busy-waiting on such a semaphore invokes Kmap operations very frequently, 
which can slow down the Kmap in servicing other requests. A better solution is for 
the process to busy-wait on a local memory location, as illustrated in Figure A-13. 

When synchronized access is required to a large data structure, such as the 
graphs Harpy uses, one must decide how much of the data structure to lock. Locking 
a single node is time-efficient because there is only a small probability of a process 
blocking while waiting to access the node, but it is space-inefficient because of the 
amount of memory devoted to locks. Locking the entire graph is space-efficient but 
time-inefficient because only one process at a time can access the graph. In the 
DESCAL experiment, however, the difference is hardly noticeable until six slaves are 
used (Figure A-14). 

A.S. Harpy on a Simulated Computer Network 

Algorithm name: The speech-recognition syst9m Harpy. 
Cm* configuration: Eight Cm's, one cluster. 
Operating system: Smap microcode. 
Other software in environment: None. 
Experimenter: Levy Raskin, 1978. 
Reference: [Raskin 78]. 

Raskin experimented with Harpy (see Section A.4), comparing its performance on 
the Cm* multiprocessor to its performance on a network simulated using em· (see 



Figure A-13 

Figure A-14 

A. Experiments Performed on Cm* 

Local Semaphores vs. Kmap-Implemented Semaphores in Harpy 

15 

10 

D Kmap-implemented semaphores 
o Semaphores in local memory 

---e--

5~--------~--------~--------~--------~~---------
1 2 3 4 5 6 

Number of slave processors 

/ 

Locking Nodes vs. Locking Graph in Harpy 

~ 30 
'll c: 
o 
(J 
Q) 

~25 
Q) 

~ 

15 

10 

D Global graph lock 
o Per-node locks 

-~ 

5~--------~--------~--------~--------~--------~ 
1 2 3 4 5 6 

Number of slave processors 

331 



332 Appendix 

Section A.3). Unlike the integer-programming application, Harpy requires a high 
degree of interprocess communication due to its low branching factor. A naive 
reimplementation of the multiprocessor algorithm for a network would have resulted 
in an unacceptably high message rate. Consequently, certain optimizations were 
made in the network version of the algorithm. All the read-only data structures were 
replicated in the local memory of each slave processor, the read I write data struc­
tures were made local to the processor that was expected to make heaviest use of 
them, and more of the reconstitution calculations were performed by the master so 
that some of its processing overlapped with that of the slaves. In the course of the 
experiments, the same three factors were varied as for the integer-programming 
algorithm: 

• Configuration-multiprocessor vs. network. 
• Acknowledge mechanism-simulated hardware vs. software. 

• Network bandwidth. 

Results. Because of Harpy's higher message traffic compared to the integer­
programming implementation, the performance of both hardware- and software­
acknowledge network algorithms suffers (Figure A-1S). Neither version of Harpy 
shows a speedup with more than two slave processors. With one slave processor, 
both of the network algorithms outperform the multiprocessor algorithm. This is 
explained by the greater overlap between master and slave processors in the 
network version and by the more optimal placement of the data structures. (No 
experiments were carried out with data-structure placement on the multiprocessor 
version. For a detailed consideration of the effects of data-structure placement, see 
Section A.7.) Figure A-16 shows that message bandwidth is still not critical; it could 
be reduced by a factor of ten with little perceptible effect on execution time. 
Nonetheless, a higher bandwidth is required than for the integer-programming 
example. 

A.6. Fast Fourier Transform Experiments Using Algol 68 

Algorithm name: Fast Fourier Transform (FFT). 
Cm* configuration: Ten Cm's, one cluster. 
Operating system: Special-purpose kernel. 
Other software in environment: Algol 68 run-time system. 
Experimenters: Peter Hibbard, Andy Hisgen, Thomas Rodeheffer, 1977. 
References: [Fuller et al. 77]. 

A substantial subset of Algol 68 was originally implemented on C.mmp [Wulf et 
al. 81]. It was derived from full Algol 68 by omitting infrequently used facilities and 
imposing restrictions to simplify compilation, but it was still somewhat more powerful 
than PLI I. To take advantage of the opportunities for parallelism presented by the 
multiprocessor on which it ran, it was extended to include several constructs for 
specifying concurrent execution and synchronization of processes. 



Figure A-15 

Figure A-16 

A. Experiments Performed on em* 

Network vs. Multiprocessor Implementation of Harpy 

2 

D Multiprocessor 
o Network, "hardware" acknowledge 
• Network, "software" acknowledge 

3 4 5 6 7 
Number of slave processors 

Effect of Bandwidth on Network Version of Harpy 

~70 
c:: 
o 
~60 
~ 
Q) 

~50 
c:: 
.E 
"540 o 
Q) 

~ 
30 

D about 11K bits/sec. 
• about 45K bits/sec. 
o 160K bits/sec. 
t.. about 1 .3M bits/sec. 

O~----~------~----~------~----~------~ 
1 2 3 456 7 

Number of slave processors 

333 



334 

Figure A-17 

Appendix 

Speedup of Fast Fourier Transform, Varying Pipelining Overhead 

5 

4 

3 

2 

lJ. Slowed down by factor of 10 
• Slowed down by iactor of 4 
o Slowed down by factor of 2 
o Std. floating. pOint operation cost 

.' 

Linear speedU~ •• ·• 

.' 

1'---~----~--~----~--~----~ 
1 2 3 4 5 6 7 

Number of processors 

The compiler was then transported to em·, and a small special-purpose kernel 
was written to handle segment allocation, interrupts, and 110 and to collect perfor­
mance statistics. The objective of the experiments was to study the automatic 
decomposition of programs into small subprocesses that could execute in parallel. 
To facilitate this, multiple parallel-instruction pipelines were implemented in software. 
The "instructions" in these pipelines were the primitive actions of the Algol 68 
run-time system, such as floating-point operations, array indexing, and the assign­
ment of large values. A master process placed the actions in the pipeline, and the 
actions were then executed by the slave processes. 

One expects speedup to improve as the overhead of pipeline manipulation 
decreases. But how can this be tested experimentally? Given the constraints of the 
em· hardware, it is not possible to speed up the pipeline operations to an arbitrary 
degree. The same effect can be obtained, however, by slowing down the 
"instructions" in the pipeline as much as desired. Hence, to study the effects of 
pipelining overhead on speedup, an FFT program was run, with floating-point opera­
tions slowed down successively by factors of one (normal speed), two, four, and ten. 
Figure A-17 shows how speedup varied as pipeline overheads decreased. 

A.7. Multicluster Partial Differential Equation Solver 

Algorithm name: Partial differential equations (POE). 
em· configuration: 50 em's, 5 clusters. 
Operating system: Smap microcode, STAROS microcode, MEDUSA microcode. 



A. Experiments Performed on Cm* 

Other software in environment: NEST. 
Experimenter: Jarek Deminet, 1979-80. 
References: [Jones and Gehringer 80, Deminet 82]. 

335 

Deminet modified Raskin's partial differential equation algorithm (see Section 
A.1) for the multicluster Cm*. All experiments were conducted using method 4 
(purely asynchronous), since it was the best-performing of Raskin's implemen­
tations. Deminet used three different Cm* microcodes and consideied fOUi main 
issues (which will be listed later). The three microcodes were Smap (Appendix D), 
STAROS (Section 6.1), and MEDUSA (Section 5.1). These experiments used STAROS 
and MEDUSA microcode but not the entire STAROS and MEDUSA operating systems. 
Deminet used none of the software portion of STAROS and only part of the software 
portion of MEDUSA. Instead, he wrote a small kernel called NEST, which handled 
communication with the master and slave processors and with the user (see Section 
9.1). NEST was capable of running with three different procedure libraries, one each 
for the STAROS, MEDUSA, and Smap microcodes. 

Most of Deminet's experiments used NEST, but a few of the early ones used the 
"standalone" code inherited from Raskin. The standalone code was more difficult to 
use because it provided no means of handling queries from the user while the 
experiment was running. It was also less efficient because the master process was 
required to field clock interrupts and increment a counter that kept track of execution 
time, in addition to its regular duties of taking part in the experiment. 

Deminet investigated these four issues: 

1. The influence of grid size on execution time and speedup. 
2. The time "wasted" by processes that had to make many remote references. 
3. The placement of the processes that had the most work to do. 
4. The distribution of data among several clusters. 

Results. THE EFFECT OF GRID SIZE. The experiment was run with varying numbers 
of processors for grid sizes of 20-by-20, 40-by-40, and 150-by-150, using the Smap 
microcode. A 20-by-20 grid was the largest that could be accommodated in the 
standalone version because the grid had to share a 64K address space with the 
code for the master and the slaves and with the downloading software. The NEST 
version was used with the larger grid sizes. As shown in Figure A-18, greater 
speedup was obtained with the standalone version than with the NEST version. It is 
nearly linear, with a coefficient of 0.77. The performance of the NEST version 
seemed to deteriorate after 25 processors were reached. With the NEST version, the 
larger grid size continually showed more speedup than the smaller grid size. 

Ironically, the superior speedup of the standalone version is a result of its in­
efficiency. In the more efficient NEST version, each processor had less work to do, 
although the grid was referenced the same number of times as by the standalone 
version. This caused greater memory contention and communication overhead, 
which eventually led to an increase in run time as processors were added. Figure 
A-19 compares performance of the standalone and NEST versions when run on grids 



336 

Figure A-18 

Figure A-19 

Appendix 

POE-Grid Size vs. Speedup Using Smap Microcode 

20 

15 

10 

5 

o 5 10 15 

Linear speedup 

[J Standalone version, grid size 20 x 20 
11 Nest version, grid size 150 x 150 
o Nest version, grid size 40 x 40 

20 25 30 35 40 
Number of processors 

POE-Execution Time of NEST and Standalone Versions 

c: 
.~ 
"5 
u 
Q) 25 
~ 

16 

10 

6 

4 

3 
0 5 10 15 

[J Standalone version 
11 Nest version 

20 25 30 35 40 
Number of processors 



Table A-2 

A. Experiments Performed on Cm* 337 

of the same size. Note that the vertical scale is logarithmic. The NEST version is up 
to four times as fast as the standalone version. This is another illustration of the 
danger of equating speedup with performance. 

TIME "WASTED" BY SLOW PROCESSES. The fastest process in the multiprocessor 
PDE is the process that runs in the em containing the global data. As the number of 
processes is increased, this process tended to show nearly linear speedup;2 for the 
Smap version, its speedup was proportional to the numbei of piOcessOis with a 
coefficient of approximately 0.87. The speedup of the slowest process was at least 
90 percent as great as the speedup of the fastest process, as long as only one 
cluster was in use. As soon as a cluster boundary was crossed, the speedup of the 
slowest process dropped (due to the performance overhead of slow intercluster 
references), then increased slightly as more processors were added. Eventually, 
Kmap contention became significant, and the speedup of the slowest process 
gradually decreased. The effect was noted using all three microcodes. Its mag­
nitude with a large configuration is shown in Table A-2. 

Speed Ratio of Slowest to Fastest Process with a Large Configuration 

Speed ratio 
Number of of slowest 

Microcode processes to fastest 

Smap 38 30% 
STAROS 36 5% 
MEDUSA 37 15% 

IMPROVED PROCESS SELECTION. The processes that operate on the outer boun­
daries of the grid finish in fewer iterations than the processes in the center of the 
grid. Suppose we placed the processes with the most work-those near the center 
of the grid-in the same cluster as the grid. These processes would make more 
references, but this would be offset by the fact that the references take less time. 
There would be no "worst-case" processes with a large number of slow intercluster 
references. The task force finishes when its last process terminates, so its execution 
time would be reduced. This strategy is called improved process selection. 

Figure A-20 shows that improved process selection made a significant difference 
when the number of processors was greater than about 16--in other words, when 
more than two clusters were in use. (These results were obtained using the Smap 
microcode.) At 35 processes, the improvement was about 20 percent. 

2 "Speedup" is computed as the ratio of the time for one iteration of the uniprocess task force to the time for 
one iteration of the fastest process in the multiprocess task force. 



338 

Figure A-20 

Appendix 

PDE-The Effect of Improved Process Selection, Using Smap Microcode 

Linear : 
12 Speedup.:' 

10 

8 

6 

4 

2 

o 5 10 15 

A Improved process selection 
[J Ordinary process selection 

20 25 30 35 40 
Number of processors 

Figure A-21 presents the results of the same experiments but using microcode. 
The speedup is linear as long as the configuration is unicluster but reaches a 
maximum at ten processors and drops sharply thereafter. The STAROS microcode 
provides more functionality than the Smap microcode, and as a result, many of its 
operations, including intercluster references, take longer. Since these experiments 
were performed, however, this overhead has been reduced by several optimizations. 
Improved process selection does make a difference, especially in the region of 
decreasing speedup. This constitutes additional evidence that the cost of inter­
cluster references is a major reason for STAROS'S lower speedup, relative to the 
other microcodes. 

DISTRIBUTED DATA. Another way to improve the performance of the task force is to 
cut down the number of intercluster references by distributing portions of the grid to 
all clusters used in the experiment. In Deminet's experiments, a 150-by-150 grid was 
distributed evenly among these clusters, and processes were assigned to maximize 
intracluster locality of references. 

As illustrated in Figure A-22, the distributed data result was noticeably better at 
about 16 processors but then dipped between 20 and 21 processors, just as the 
experiment entered its third cluster.3 The dip is called the crossover phenomenon. It 
is caused by the fact that the data is uniformly distributed between clusters but the 

3 This experiment used a slightly different Cm* configuration from the previous one, with more processors 
per cluster. The centralized data experiments were also made with fewer processors per cluster, so the two 
curves on this graph are not strictly comparable. Nonetheless, at a gross level, the impression they give is 
accurate. 



Figure A-21 

Figure A-22 

A. Experiments Performed on em* 339 

PDE-The Effect of Improved Process Selection, Using STAROS Microcode 

Llnea<Up::'1\. 

S~i \ 
:'1 \ \ 

4 

3 

2 

o 5 10 15 20 

A Improved process selection 
o Ordinary process selection 

25 30 35 40 
Number of processors 

PDE-Effects of Distributed Data, Using Smap Microcode 

20 

15 

o 

A Distributed data 
o Centralized data 

5 10 15 

Linear 
speedup 

20 25 

/ 

30 35 40 
Number of processors 



340 

Figure A-23 

Appendix 

POE-Effects of Distributed Data, Using STAROS Microcode 

14 

12 

10 

8 

6 

4 

o 

Linear 
speedup,: 

10 20 30 40 50 
Number of processors 

processes are not, causing a larger than usual number of intercluster references. 
Also note that when data is distributed, the speedup curve continues to increase with 
greater numbers of processors; it does not reach a maximum and then decline, as 
with the centralized-data experiments, which are more subject to the effects of 
contention. One explanation is the fact that the slowest process in the 37-process 
distributed-data task force runs at about 68 percent of the speed (iterations per unit 
time) of the fastest one, compared with less than 30 percent in the centralized-data 
version. 

Results with STAROS microcode also show that distributing data helps speedup, 
although once again, maximum speedup was less than with the Smap microcode. 
The STAROS microcode was under development during the experimentation period, 
and Figure A-23 graphs results for two different versions. The "old" microcode is the 
same version that was used for the ordinary / improved processor-selection experi­
ments. The "new" version incorporated several improvements, notably optimizations 
of intracluster and intercluster memory references. 

The maximum speedup with centralized data (from Figure A-21) was less than 9, 
whereas with distributed data, it grew to a maximum of about 13 at 18 processors 
with the old microcode and 18.1 at 28 processors with the new microcode. At that 
point, the slowest process ran with about 66 percent of its potential speed. The 
crossover phenomenon is more pronounced here, probably because STAROS inter­
cluster references are about four times slower than intracluster references, com­
pared to three times slower with Smap. 

The crossover phenomenon is also conspicuous in the experiments that used 
MEDUSA microcode. The best speedup is 19, compared to 18 with STAROS and 26 
with Smap (Figure A-24). 



Figure A-24 

A. Experiments Performed on Cm* 

POE-Effects of Distributed Data, Using MEDUSA Microcode 

Q. 20 
~ 
"tl 
~ 18 
Q. 

C/) 16 

14 

o 

o Centralized data 
t::. Distributed data 

5 10 

Linear 

speeduP .. ·• n 
/ V 

15 20 25 

341 

30 35 40 
Number of processors 

A.S. Multicluster Quicksort 

Algorithm name: Quicksort. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: Smap microcode, STAROS microcode, MEDUSA microcode. 
Other software in environment: NEST. 
Experimenter: Jarek Deminet, 1979-80. 
References: [Jones and Gehringer 80, Deminet 82]. 

The quicksort implementation that Deminet used is a modification of Raskin's 
(see Section A.2) for the multicluster em*. Deminet altered the algorithm to cut down 
on references to the shared stack. Raskin's version had continued partitioning a 
subset until it had only one element. Deminet's version stopped the partitioning 
when some threshold value-usually ten elements-was reached. If the size of a 
subset was under the threshold, it was immediately sorted using an insertion sort 
instead of being partitioned or pushed onto the stack. Deminet studied how the 
threshold and the size of the array to be sorted influenced execution time and 
speedup. His experiments were performed on all three microcodes: Smap, STAROS, 
and MEDUSA. 

Results. THE INFLUENCE OF THE THRESHOLD. Using the Smap microcode, the 
quicksort program was run on a 20,480-element array, using thresholds of 1 to 40. 
The best speedup was usually achieved with a threshold of 10, but speedup was far 
below the theoretical limit, especially when more than 8 processors were in use. 



342 Appendix 

Contrast this with the distributed POE (see Section A.7). In that experiment, 
adding additional processors always seemed to decrease execution time. This is not 
true for the quicksort. Performance improved only until 8 to 10 processors were 
being used (Figure A-25); this is calied the critical point. With more processors, 
performance deteriorated. Why did this happen? At first glance, one might assume 
that it was due to contention for the lock on the global stack, which contains descrip­
tors for subsets to be sorted. If this were true, the critical point should have grown 
lower as the threshold was decreased, for subsets must then be partitioned more 
often before the insertion sort is used; consequently, lock operations become more 
frequent. However, the critical point reached its maximum value of 10 processors 
with a threshold of 5. When the threshold was increased to 10, the critical pOint 
decreased to 9 processors; for a threshold of 20, it fell to 8 processors. That 
indicates that contention for shared memory was a more serious bottleneck than 
contention for the lock. As the threshold becomes higher, larger subsets are sorted 
by insertion, and this increases the number of simple memory references to the 
shared array. 

Results for the STAROS (Figure A-26) and MEDUSA (Figure A-27) versions are 
similar. In all three cases, maximum speedup was obtained with a threshold of 10. 
Again, maximum speedup with ~he Smap microcode (3.86) was slightly higher than 
with STAROS (3.19) or MEDUSA (3.25); this can be attributed to the greater 
functionality provided by the latter two microcodes. Rarely was there a significant 
performance drop when crossing a cluster boundary. In the MEDUSA experiments, 
the critical point for a threshold of 5 was lower than for a threshold of 20. This is the 
opposite observation from that noted with the Smap microcode, and though the 
evidence is not striking, it may indicate that contention for the lock is more of a 
bottleneck than contention for shared memory in the MEDUSA version. 

THE SIZE OF THE SORTED ARRAY. The speedup equation (see Section A.2) predicts 
that as the size of the array to be sorted increases, so will the speedup, and 
Oeminet's experiments bore this out. Of the three data sizes, the largest (20,480 
elements) yielded the greatest speedup, while the smallest (5,000 elements) 
provided the least (Figure A-28). The results for 5,000 elements are quite irregular, 
since the time of that experiment was very short, and a small absolute difference 
could cause a large relative difference. 

A.9. Railway-Network Simulation 

Algorithm name: Railway-network simulation (Net). 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: Smap microcode, STAROS microcode. 
Other software in environment: NEST. 
Experimenter: Jarek Oeminet, 1979-80. 
References: [Jones and Gehringer 80, Oeminet 82]. 



Figure A-25 

A. Experiments Performed on em* 

Speedup of Quicksort with Different Threshold Values, Using Smap Microcode 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

Theoretical: 
speedup :' 

[] Threshold = 1 
A Threshold = 5 
¢ Threshold = 10 
o Threshold = 20 
• Threshold = 40 

O.OL-----~----~----~------~----~----~----~----~ 

343 

o 2 4 6 8 10 12 14 16 
Number of processors 



344 

Figure A-26 

Appendix 

Speedup of Quicksort with Different Threshold Values, Using STAROS Microcode 

Q. 3.5r 

~ I 
(I) 

~ 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

Theoretical: 
speedup :' 

o Threshold = 1 
ll. Threshold = 5 
<> Threshold = 10 
o Threshold = 20 
• Threshold = 40 

o.o~----~------~------~------~------~----~~----~ 
o 2 4 6 8 10 12 14 

Number of processors 



Figure A-27 

A. Experiments Performed on em* 

Speedup of Quicksort with Different Threshold Values, Using MEDUSA Microcode 

2.5 

2.0 

1.5 

1.0 

0.5 

Theoretical: 
speedup:' 

I::. Threshold = 5 
o Threshold = 10 
o Threshold = 20 

o.ooL-------~2--------4~------~6--------·8------~1~0------~12 

Number of processors 

345 



346 

Figure A-28 

Appendix 

Speedup of Quicksort for Different Data Sizes, Threshold = 10 

~4.0r 
Q) 
Q) 3.5 
~ 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
0 2 4 6 

o 20,480 elements 
Cl 10,000 elements 
A 5,000 elements 

8 10 12 14 16 
Number of processors 

The simulation program is implemented as a task force, compnslng 63 
processes, each of which represents a station. Two stations may be connected by a 
unidirectional track. For a given station A, a set of previous stations includes each 
station B for which there is a track from B to A. The stations exchange messages 
representing trains. The route of each train is an attribute of the train, determined 
when the train is created. Each station serves the trains in the order in which they 
arrive. 

Each process maintains its own simulated time. At any given moment, the simu­
lated time probably will be different in different processes; thus the simulated time of 
sending a train from one station to another is unrelated to the real time when the 
message representing the train was created. Even the real-time order of events may 
be different from the simulated-time order. Suppose, for example, that station A 
sends a message to station C at real time 5. At this moment station A's clock may 
show simulated time 50. Station B may send a message to C at real time 7, but its 
clock may then show simulated time 40. The second message should be serviced by 
C before the first one, since only the simulated time is relevant. Consequently, a 
station-process must block until it knows the simulated time of the arrival of the next 
train from each station. 

Several station processes may run on each processor. There exists one ad­
ditional process, the reporter, which records data sent to it by the stations. The 
reporter must be running at all times. If it were multiplexed, all other processes 



Figure A-29 

A. Experiments Performed on em* 347 

Execution Time of Railway-Network Simulation, Using Smap Microcode 

(;) 20 
"0 a 18 
(J 
Q) 

~ 16 
Q) 

~ 14 

8 

6 

4 

2 

o 

~ 
\ \ 

5 

o More frequent blocking 
~ Less frequent blocking 

10 15 20 25 30 35 40 45 
Number of processors 

would be blocked. As a result, this application may not be run on a single processor. 
In fact, this task force will fit in a minimum of four em's. 

Results. It is very difficult to estimate speedup for this algorithm because running 
time depends not only on the number of processors but also on the distribution of 
processes among them. In the implemented version, processes may not move from 
one processor to another. If they did, it probably would be necessary to move their 
private data to avoid the penalty of remote references. To move data would itself 
impose an overhead. Thus the run time of the experiment depends heavily on the 
initial assignment of processes to processors. Figure A-29 graphs the run time 
versus number of processors, using the Smap microcode. The curves plot the 
results for two different versions. The versions differ in one parameter that deter­
mines the travel time of trains between stations. It influences the average number of 
processes blocked at any given time. The region at the left of the graph is steeply 
decreasing because the average number of runnable processes is greater than the 
number of processors. Farther to the right, the curves exhibit apparently random 
fluctuations, perhaps due to variations in the suitability of the initial assignment of 
processes to processors. As expected, the version with less-frequent blocking out­
performs the other version. 

Figure A-30, which shows the results using the STAROS microcode, is less 
regular than the previous one. One explanation may be that the relative position of 
two communicating processes may influence performance more heavily with the 
STAROS microcode, whose intercluster references cost more. 



348 

Figure A-30 

Appendix 

Execution Time of Railway-Network Simulation, Using STAROS Microcode 

~ 20r 

~ 1Rl o .-
(l) 

~ 16 
(l) 

~ 14 
c: 
.g 12 
:::J 
tJ 
(l) 10 
~ 

8 

6 

4 

2 

0 

r.J 

~ 

5 

Cl More frequent blocking 
A Less frequent blocking 

10 15 20 25 30 35 40 

Number of processors 

A.10. Power-Systems Simulation 

Algorithm name: Power-systems simulation. 
Cm* configuration: Ten Cm's, one cluster. 
Operating system: STAROS (version 1). 
Other software in environment: None. 
Experimenters: R. C. Dugan, Ivor Durham, and Sarosh Talukdar, 1979. 
References: [Dugan et al. 79, Durham et al. 79]. 

The simulation of large electrical networks is the subject of extensive work in the 
power-systems industry. The Cm* implementation utilizes the network model, which 
exhibits inherent para"elism in stages that account for more than half of its time. An 
electrical network is modeled hierarchically; it is composed of a set of devices, each 
of which may be made up of more primitive devices. A nonprimitive device is called 
a macrodevice. Any primitive device or macrodevice may be characterized by the 
behavior of voltage and current values at its terminals. The mathematical model for a 
device is called its macromodel. Experience with an earlier uniprocessor implemen­
tation [Talukdar 79] indicated that more than 50 percent, and up to 97 percent, of the 
time was spent solving the macromodels. 

The algorithm performs two steps iteratively. Phase I solves the macromodels. 
This phase is susceptible to para"elism. Each Phase I processor repeatedly extracts 
an unprocessed device from the pool of unprocessed devices. The new voltage and 
current values for the device's output terminals are computed from the correspond-



A. Experiments Performed on em* 349 

ing values for its input terminals, according to the macromodel. The resulting vol­
tages and currents form part of a single linear system. When all the devices have 
been processed, Phase II begins. It solves the linear system. The Phase II Phase II 
cycle computes the results for a single time step. Then the cycle is performed again 
for the next time step and continued until the simulation is finished. 

The experiment utilized a nine-processor em* cluster, with one process per 
processor. One of the processes was the management process, which coordinated 
the simulation. Among otb,.er duties, it was responsible for placing the devices back 
into the device pool at the start of each iteration. A communication process was 
used to ship data and results back and forth between em* and a PDP-10 computer. 
This allowed the user interface and report programs to take advantage of the editors 
and other utilities that comprise the more mature software environment of the 
PDP-10. The Phase II process, and up to six Phase I processes, occupied the 
remaining processors. While the Phase I processes were executing, the Phase II 
processor serviced another device pool containing the single voltage source re­
quired in the sample network. All interprocess communication was via shared vari­
ables rather than message passing. 

The device pool was implemented as a set of STAR OS basic objects with a 
counting lock. The management process "put" the devices into the pool by resetting 
the counting-lock value to the number of devices in the pool. A Phase I process 
selected a device from the pool by performing an Indivisible Decrement on the 
counting lock. The result was used to index into the set of capabilities for the basic 
objects representing the devices. When the lock value became zero, there were no 
more devices left to process. 

The theoretical speedup of this algorithm is less than linear because only one of 
its two phases is parallel. Assuming that the solution of the linear system in Phase II 
takes a constant amount of time and that there is a certain fixed overhead in each 
step of the iteration, the theoretical speedup is given by 

N 
+ T Phase /I + T Overhead 

The theoretical speedup is then computed as E1 I EN' where E1 is the time required 
to perform the computation with only one· Phase I processor. A single-phase, 100 
pi-section transmission line was simulated [Dugan et al. 79]. The actual speedup, as 
shown in Figure A-31 , is much lower. This is due partially to memory contention, 
which is not accounted for by the model, and also to the fact that as the number of 
processors in Phase I increases, so does the frequency of non local references to the 
device pool. 

The execution time of the simulation on em* can be compared with the execution 
time of a strictly uniprocessor simulation run on the PDP-10. Ignoring 110 costs for 
both versions, em* could execute about 0.93 iterations per second with one Phase I 
processor, while the PDP-10 could execute about 4.36 iterations per second. With 
six Phase I processors in action, the rate rose to about 3.0 iterations per second. 



350 

Figure A-31 

Appendix 

Speedup of Power-Systems Simulation 

4 

2 

Theoretical 
speedup ••••• 

3 4 5 6 
Number of processors in Phase' 

Considering the slowness of LSI-11 floating-point operations, the Cm* simulation 
performed quite well. 

A.11. A New Implementation of Power-Systems Simulation 

Algorithm name: Power-systems simulation. 
em* configuration: 50 ym's, 5 clusters (only 1 or 2 clusters used for these 

experiments). 
Operating system: Smap microcode. 
Other software in environment: NEST. 

Experimenter: Mike Carey, 1980. 
References: [Carey 80, Talukdar et al. 81, Talukdar et al. 82]. 

The original goal of the power-systems study was to determine how much the 
simulation could be speeded up using a multiprocessor. It partitioned the system into 
a fixed number of macrodevices. Since a given power system can be partitioned into 
different numbers of macrodevices, one might also study how the decomposition of 
the system affects the performance of the model. A reimplementation of the power­
systems experiment made it possible to vary this parameter and others to study the 
effect on execution time. The new version was less sophisticated than the original in 
two respects: 

1. In the original version, the Phase I processes selected macrodevices from the 
shared pool whenever they needed more work to perform. In the new version, 



A. Experiments Performed on em'" 351 

each Phase I process worked on one and only one macrodevice. Thus the 
number of macrodevices was equal to the number of Phase I processes and 
the number of Phase I processors. 

2. To save time in Phase II, the original version used band-matrix techniques and 
LU decomposition, but the new version used full-matrix techniques and Gaus­
sian elimination. 

Carey [Carey 80] describes severa! experiments using the new system. \'''Ie will 
consider two of them. The first experiment measured the time required to simulate a 
single time step, and the second measured the time consumed by a single Phase I 
iteration. Both these experiments varied two factors: the number of Phase I 
processes and the number and type of non local references. 

Each memory reference made by a process falls into one of four categories: 
code, process stack, private data, or global data (see Section A.1). Global data is 
always shared and hence almost always non local. In these experiments, the process 
stack was always local. The private data-vectors and matrices-used by the 
Phase I processes could be placed either in the local Cm or in some other Cm, as 
could the procedure code. 

As other experiments have demonstrated (Sections A.1, A.2, and A.3), when 
more than three or four processors were used, contention for global data seriously 
impeded performance. During each iteration of the simulation, the Phase I 
processes busy-wait for the Phase II process to finish, and vice versa. This leads to 
high contention, which can be lessened by decreasing the frequency of reference to 
global data that records how many Phase I or Phase II processes have finished. 
This was done by inserting a delay loop of about 100 J.Ls. between consecutive 
references to these global variables. 

Carey studied five configurations of local and non local references by varying 
these factors: 

1. Local process code and data. Code and private data resided on the same 
Cm that was executing the Phase I process. 

2. Tight synchronization delay loops. Code and private data were still local, but 
the 100-microsecond interreference delay was removed. 

3. Non/oca/ data. The delay loop was used, but private data was placed in a 
remote Cm. 

4. Non/ocal code. The delay loop was used, and private data was local, but the 
Phase I processes executed non local code. 

5. Non/oca/ shared code. Like configuration 4 except that the Phase I processes 
shared a single copy of the code. 

The network simulated in the first experiment consisted of eleven devices. Ten 
were pi-sections (details may be found in [Carey 80]), and the eleventh was a 
nonlinear resistive load. In different runs, the number of Phase I processes was 
varied. One Phase I process was always dedicated to the nonlinear resistive load. 
The other Phase I processes serviced equal numbers of pi-sections; there were 



352 

Figure A-32 

Appendix 

Execution Time per Timestep in Power-Systems Simulation 

2 

• Nonlocal shared procedure cocle 
o Nonlocal procedure code 
A Nonlocal data 
<> Tight synchronization delay loops 
o Local procedure code and data 

3 4 5 6 7 8 9 10 11 
Number of processors in Phase I 

either one, two, five, or ten of them servicing, respectively, ten, five, two, or one 
device each. Thus the total number of Phase I processes ranged from two to eleven. 
The only other process in the system was the single Phase II process. 

Not surprisingly, the results (Figure A-32) show that configuration 1 is the fastest 
for any number of Phase I processes. When the number of Phase I processors in 
the other configurations increases past three, contention exacts its toll. Configuration 
2 is only 5 percent slower than configuration 1 with three Phasa I processors, but it 
is 24 percent slower with six and 23 percent slower with eleven processors. 

Configurations 3 and 4 exhibited mapping overhead. Configuration 3 had an 
advantage because private-data references were less frequent than code ref­
erences. Its advantage over configuration 4 did not, however, grow as the number 
of processors was increased; in fact, it fell from a high of 25 percent at three 
processors to a low of 12 percent at eleven. The overhead of mapped code 
(configuration ~ compared to configuration 1) also declined slightly as the number of 
Phase I processors increased, from 136 percent with two processors to 88 percent 
at five and 86 percent at eleven. 

Configuration 5 shows the effects of both mapping and contention overhead. The 
exceptionally large rise between six and eleven processors may be attributed to two 
factors. The first is intercluster references. Given the Cm* configuration at the time of 
the experiments, not all eleven processes would fit into the same cluster. Some 

references to the code had to be intercluster, increasing the mapping overhead. The 
second factor is contention for the Kmap. When the number of processors seeking 
Kmap service rises above seven, a context cannot be allocated immediately (see 
Section 2.2.2), introducing a further source of delay.This effect is much less visible 



A. Experiments Performed on Cm* 353 

without shared memory because memory references complete much faster; there­
fore, contexts become available much faster and the system is unlikely to run out. 

For all configurations, the optimal number of processors is three. This is due to 
the fact that full-matrix techniques were employed in Phase II, causing the com­
plexity of this phase to be O(n3) in the number of macrodevices. In these experi­
ments, each pi-section Phase I process dealt with the same number of devices, so 
the complexity of Phase II grew with the cube of the number of pi-section proces­
sors. Phase II execution time quickly dominated the oveiall simulation time, which 
began to increase when the number of Phase I processes was increased past three. 
By contrast, in the earlier implementation (see Section A.1 0), the number of devices 
in the system was constant, and so was the execution time of Phase II. 

The second experiment introduced another variable-the distribution of 
processes and data among clusters. In some runs, the code or data of Phase I 
processes was placed in a different cluster from the em on which the processes 
were running. Each of the Phase I processes, except the nonlinear-load process, 
simulated an eight pi-section macrodevice. In Figure A-33, four of the curves are 
coincident, namely the curves for configurations 1 and 2 with intracluster or inter­
cluster references. This is because each Phase I iteration, which takes several 
seconds, makes only four references to global data. In these configurations, only the 
global data was ever intercluster, and the reference rate to it was so low that it made 
no perceptible difference in execution time per iteration. Similarly, the low reference 
rate to global data rendered insignificant the presence or absence of the 100-
microsecond interreference delay. 

In the intercluster experiments with configurations 3, 4, and 5, not only the global 
data but also the private data and I or procedure code was in a different cluster from 
some of the processes. The curves in Figure A-33 marked "intercluster references" 
plot the execution time for those processes. Here, the intercluster memory-reference 
rate is high enough to induce significant performance degradation. 

Except for the two shared-code curves, all the curves in this figure are essentially 
flat. This indicates that time per iteration is independent of the number of Phase I 
processors, which is true because the processors do not make enough references to 
global data to interfere with each other. However, with shared code, the iteration 
time rises as the number of processors is increased. At ten processors, it is 8.6 
times as high as with local code (configuration 1) when the shared code is cluster­
local and 14.3 times as high when the shared code is intercluster. 

A.12. AMPL Partial Differential Equation Solver 

Algorithm name: Partial differential equations (POE). 
em* configuration: 50 em's, 5 clusters. 

Operating system: MEDUSA. 

Other software in environment: AMPL run-time system. 
Experimenter: Roger Dannenberg, 1980-81. 
References: [Dannenberg 81]. 



354 

Figure A-33 

Appendix 

Time per Phase I Iteration in Power-Systems Simulation 

_50r 
~--I 
o o 
Q) 

~40 
r:::: 

~ 
tt! 
Q) 

·':::30 ... 
Q) 

Q. 
Q) 

e 
".0:20 
Q) 

tn 
tt! 
~ 
<t 10 

0 
1 

o Nonlocal shared procedure code 
o Nonlocal procedure code 
A Nonlocal data 
o Tight synchronization delay loops 
o Local procedure code and data 

Solid lines for intracluster references ...... 
Broken lines for intercluster references 

I!I: 6 6 6 

0 a a a a a 

2 3 4 5 6 7 

.!I I!I: I!I: ~ 

e e e 0 

8 9 10 11 
Number of processors in Phase I 

Dannenberg's partial differential equation (POE) solver was written in AMPL 
(Section 8.2). It uses the finite difference method to solve Laplace's POE with 
specified boundary conditions. Two versions of this algorithm were implemented. 
The first uses synchronous communication. The grid is divided into slices, and a 
slave process is created to compute the solution for each slice (see Figure A-34). 
(This organization is similar to, but not quite the same as, the one that Raskin 
[Section A.1] and Deminet [Section A.7] used.) The slave processes share the 
values on the edges of the slices. After finishing its current iteration, a processor 
communicates the values on the edge to its neighbor. Synchronization is main­
tained only by waiting on edges, so neighboring slaves are synchronized to within 
only one iteration. In a program with n slaves, if the first slave is computing iteration 
i, then the last slave could be computing any iteration from i - (n -1) to; + (n - 1). 
To help detect when convergence has been achieved, each slave sends a status 
message to a master process after each iteration. 

Dannenberg varied both the number and the placement of slave processes. In 
one set of experiments, the number of slaves was varied, and all the slaves ran on a 
single CP / AP pair (page 184). The measurements reveal the cost of dividing the 
grid among communicating processes while keeping the processing power constant. 
In the other set of experiments, the number of CP I AP pairs was varied, but each 
pair contained a single slave. This permitted measurement of the speedup obtained 
by adding additional processors. In all cases, the grid size was 34 by 34. Figure 
A-35(a) (white bars) displays the elapsed time to execute the experiments, and 
Figure A-35(b) shows how much CPU time was used by all the processors. These 



Figure A-34 

A. Experiments Performed on em* 

Structure of Dannenberg's POE Program 

Slaves 

Edge 

exchange 

messages 

355 

'¥ 
4 

values do not include the time to create processes or initialize the grid. Total CPU 
time increases slightly as processors are added; a maximum speedup of 3.1 is 
achieved with four processors. 

An extra CP / AP pair was used for the master process, which creates the slaves 
and detects when the computation has converged. Keeping the master in a separate 
processor pair facilitated measuring the processing time taken by the master. In the 
worst case (with four slaves), the master uses only 3 percent of the total CPU time. 

The white bars in Figure A-36 show how many iterations were needed for the 
computation to converge for various numbers of slaves. Since the computation is 
synchronous, the number of iterations is not affected by the placement of the slaves. 
The number generally increases as the number of slaves increases because the rate 
of convergence depends on the order in which values of the grid are updated. 

The amount of data accessed within each slave can easily be compared to the 
amount of data transferred in messages. The four neighbors of the current point are 
read to compute its new value, and the current point itself is read to test for conver­
gence. Thus at any interior grid pOint, each iteration reads five data points from the 
grid and writes one. Hence there are a total of 

(5 + 1) x 32 x 32 = 6,144 

local data accesses per iteration. Table A-3 expresses the number of edge points 
passed in messages as a percentage of this value. Message overhead increases as 



356 

Figure A-3S 

Appendix 

Performance of AMPL POE 

~ 700r 

! I 
Q.) 600 

.~ 
t:: 
.~ 500 
'5 
(,) 

~ 400 
Q.) 

iO 
Q) 

ex: 300 

200 

100 

o 

580 594 
-

532 528 -

669665 nmn \:'Vhite baiS-synchionous PDE 
Shaded bars-asvnchronoll~ POF - - _':... - --

497491 
,-

269 279 
,-

159162 -

2 4 8 <- No. of slaves -> 2 4 

Single CP/AP pair 

(a): Elapsed Time for AMPL POE Execution 

~800 
(,) 
Q.) 

~ 700 
Q.) 

.§ 
:; 600 
Q.. 
C,) 

I:i 500 

~ 
400 

300 

200 

100 

0 

r 

~534 
~61~ 

I 

746 
-712 

One CP/AP pair per slave 

White bars-synchronous POE 

Shaded bars-asynchronous POE 

536
554 

~496 
,-

645 
618 -

2 4 8 <-No.ofslaves-> 2 4 

Single CP/AP pair One CP/AP pair per slave 

(b): CPU Time Used in AMPL POE Execution 



Figure A-36 

Table A-3 

A. Experiments Performed on Cm* 

Number of Iterations for the AMPL PDE to Converge 

(I) 600 
t: 
.2 
C5 
.~ 500 
.... 
o ... 
.5 400t 
E 
::J c: 

300 

200 

100 

o 

522 

~I 
380 382 1111111 

355 355 
,-

-

2 4 

White bars-synchronous PDE 
Shaded bars-asynchronous PDE 

436 

380;: ril 
355355 -
.---

8 <- # slaves -) 1 2 4 

440 

n 
I I 

8 
Single CP / AP pair One CP/AP pair per slave 

357 

the partition size decreases. In other words, overhead increases with the number of 
slaves. 

To gauge the effect of code quality on the results, the inner loop of the slave 
program was manually optimized by modifying the BLlss-11 code produced by the 
AMPL compiler. Subscript range checking was removed, and strength reduction was 
performed to eliminate multiplications in subscript calculations. Both these transfor­
mations could be performed by a modern optimizing compiler. For the version with 
two slaves and a single CP / AP pair, the execution time dropped from 531 to 75 
seconds, a sevenfold improvement. A small amount of time also could have been 
saved by eliminating debugging statements, error-detection code, and instrumen­
tation, all of which are outside the inner loop. 

In Dannenberg's asynchronous version of the POE, each slave checks its ports 
for new edge values at the beginning of an iteration. If a message has arrived, the 
slave uses it to update its grid. If no new edge values are present, the slave 

Relative Message Overhead in AMPL Synchronous PDE 

Number of 
slaves 

2 
4 
8 

Message 
overhead 

1.2% 
3.4 
8.0 



358 Appendix 

performs an iteration using the old values instead of waiting. The shaded bars in 
Figures A-35 and A-36 illustrate the behavior of the asynchronous POE. One 
egregious point in Figure A-36 is immediately apparent: When the four-slave version 
is run on a single processor, an average of 522 iterations are required, compared to 
an average of 397 iterations if the number of slaves is doubled or 436 iterations if the 
four slaves are dispersed on separate processors. 

The explanation for this behavior is simple. A FIFO ready-to-run queue is used to 
schedule processes. A process is selected from the queue only when another 
process is suspended after sending a message, initiating a create operation, or 
trying to accept a message from an empty port. The slaves on either edge of the grid 
have only one neighbor and send only one message after each iteration. Each slave 
in the interior of the grid has two neighbors and sends two messages per iteration. 
The interior slaves are therefore suspended twice as often as the two edge slaves 
and thus execute about half as many iterations when all processes reside on a 
single CP / AP pair. The effect is maximal with four slaves, since half are edge and 
half are interior slaves. 

It is surprising to observe that the synchronous POE generally outperforms the 
asynchronous POE in execution time and speedup, although the margin is small. In 
all previous POE experiments, the asynchronous POE has proven more efficient by 
a large margin. At first glance, one might assume the anomaly is due to the extra 
iterations, and hence extra messages, required by the asynchronous version. The 
cost of message passing, after all, is much higher than the cost of lock operations 
used in the other POE implementations. But message passing does not contribute 
much to the overall execution time; even for the four-slave system, it amounts to 
only about 20 seconds total of execution time. Rather, the explanation lies in noting 
that the "synchronous" POE is not quite as synchronous as Raskin and Deminet's; it 
requires a processor to synchronize with only one or two neighbors, not with all other 
processors after each iteration, as in the synchronous Jacobi method used by the 
other experimenters. However, Dannenberg's "asynchronous" implementation is es­
sentially the asynchronous Jacobi method-the second slowest-of Raskin and 
Deminet. Since the difference in synchronism is slight, the direct and indirect (e.g., 
copying edges) cost of the extra messages sent by the asynchronous version may 
be enough to tip the balance against it. 

A.13. Matrix Multiplication in AMPL 

Algorithm name: Matrix multiplication. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: MEDUSA. 

Other software in environment: AMPL run-time system. 
Experimenter: Roger Dannenberg, 1980-81. 
References: [Dannenberg 81]. 

A parallel matrix-multiplication algorithm was implemented in AMPL (Figure A-37). 
The algorithm uses several different kinds of processes: 



Figure A-37 

A. Experiments Performed on em* 359 

Structure of Dannenberg's Matrix-Multiplication Program 

• Two matrix processes initially hold the two matrices to be multiplied. They 
divide the matrices into some number of submatrices (16 in these exper­
iments). On command, the matrix processes send a submatrix to a slave 
process. 

• A master process commands the two matrix processes to send submatrices to 
a slave, whenever the slave is ready for more work. 

• The slave processes multiply the sub matrices they have been sent. When a 
slave has finished, it sends the result submatrix to a result process and sends 
its name to the master, which then assigns it more work. 

• The result process accepts submatrices from the slaves and assembles and 
sums them to form the complete product matrix. 

Notice that the slaves' work assignments are nondeterministic and depend on 
their relative speeds. In these experiments, the number of slaves was varied from 
one to four and the matrix size was held constant at 40 by 40. The same sets of 
experiments were run as for the AMPL POE. In one set, the number of slaves was 
varied from one to four, while all processes-master, slave, and otherwise-ran on 
a single CP / AP pair (see page 184). In the other set, the number of processors 
varied from one to four, with each CP / AP pair containing a single process. In this 
set of experiments, additional processors were used for the master, matrix, and 
result processes. In all cases, measurements were started after all processes were 
created and ended after the complete product matrix had been formed. 

Figure A-38 shows real execution time and CPU time for both sets of experi­
ments. Included in these values are about 10 seconds of CP and AP time consumed . 



360 

Figure A-38 

Appendix 

Performance of AMPL Matrix-Multiplication Algorithm 

~ 
,iQ. ~ 

~ 

I-
..!Z. 

10 ~ 

o 
1 2 4 <-# slaves-) 1 2 4 

Single CP/AP pair One CP/AP pair per slave 

(a): Elapsed Time for AMPL Matrix Multiplication 

-50 
U 
II) 

~ 
II) 

~ 40 
::) 

~ 
'i 30 

~ 
20 

10 

o 

,. 
~ ~ ~ 

2-
~ ~ 

2 4 <- # slaves -) 1 2 4 

Single CP/AP pair One CP/AP pair per slave 

(b): CPU Time Used in AMPL Matrix Multiplication 



A. Experiments Performed on em" 361 

by the master and result processes and 2.3 seconds used by the two matrix 
processes. Buffering in the result process allows the slaves to run without blocking, 
even with high utilization of the CP / AP pair on which the result process executes. 
As the number of slaves grows large, the execution time of the result process would 
come to dominate the overall performance; it could also be decomposed to compute 
its sums in parallel. 

To compute the ratio of data sent in memory to data accessed from local 
memory, notice that each eiement in the resuit matrix is computed from the product 
of two vectors of length 40. Consequently, 80 elements are fetched for each one 
stored. The total number of accesses is 

(80 + 1) x 40 x 40 = 129,600. 

The total number of message bytes, as computed in Table A-4, is 19,968, inde­
pendent of the number of slaves. Thus data sent in messages is 15 percent of the 
number of array accesses. In the AMPL implementation of matrix multiplication, a 
few more local accesses are performed because vectors are not multiplied all at 
once, and many more accesses are made during subscript calculation. 

A.14. Simulation of Molecular Motion 

Algorithm names: Metropolis, molecular dynamics. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: MEDUSA. 

Other software in environment: None. 
Experimenters: Neil Ostlund, Peter Hibbard, and Bob Whiteside, 1980~4. 
References: [Jones and Gehringer 80, Ostlund et al. 82a, Ostlund et al. 82b]. 

Given the microscopic interactions between particles, we want to predict the 
static and dynamic properties of a collection of such particles. Macroscopic quan­
tities are obtained by an averaging according to one of two methods--ensemble 
averaging or time averaging. 

The Metropolis method [Metropolis et al. 53] employs ensemble averaging. A 
Metropolis "Monte Carlo" calculation is made up of a large number of passes, during 
which the average value of some property is computed. (We will ignore the computa­
tion of the property and concentrate on the process of ensemble averaging.) During 
each pass, an attempt is made to move each particle in the collection. When a 
particle is moved, its coordinates are randomly perturbed, producing a new con­
figuration. The new configuration is then either "accepted" or "rejected," with a 
probability based on the change in energy of the system caused by the move. If the 
new configuration is accepted, then the new coordinates are used during each 
subsequent attempt to move a particle; otherwise, the old coordinates are used. 

The bottleneck of the calculation for each move is the computation of the binding 
energy for each particle, which involves O(N) calculations. The parallel algorithm 
uses K processors in an attempt to reduce the complexity of this step to O(N / K). 



362 

Table A-4 

Appendix 

Number of Words Transmitted in Messages during AMPL Matrix Multiplication 

One message from a matrix process to a slave, or a slave to the result process, 
contains 

a 1 0-by-1 0 submatrix 

For each submatrix multiplication, the following information is sent: 

• three messages, two matrix --;;. slave and one slave ~ result 
• a slave-port reference (refport) to matrix proce~;s A 
• a slave-port reference (refport) to matrix process B 
• a four-word command to the slave 

a refport telling where to send results 
two 16-bit integers giving row and column 

Subtotal 

• a slave-port reference back to the master when the slave is done 
• row and column numbers to result process 

Subtotal 
There are 4 x 4 x 4 = 64 submatrix multiplications 

100 words 

300 words 
2 

2 
2 

2 

4 

2 
2 

312 

altogether: Total 64 x 312 = 19,968 words 

The interactions can be evaluated in parallel without interprocessor communication, 
but the contributions calculated by each processor must be added together. The 
complexity of this step is O(N). In addition, the computation must be synchronized 
at each move. 

The molecular-dynamics algorithm [Verlet 67] uses time averaging. First, an initial 
set of velocities for the particles is calculated. Given an initial set of coordinates, the 
velocities can be used to predict a set of coordinates at a later time. A summation is 
again performed to find the binding energy, but with this algorithm, the summation 
can be reordered to allow a processor to sum its subset of binding energies locally, 
with the global summation being required only once at the end of the computation. 

These simulations are described by Ostlund, Hibbard, and Whiteside [Ostlund et 
al. 82a]. This problem is representative of the general problems involved in the 
theoretical study of molecular motion. The results shown in Figure A-39 are for a 
system of 50 particles. 

The molecular-dynamics algorithm shows better speedup than the Metropolis 
algorithm. One factor is that the molecular-dynamics algorithm avoids performing 
sums of shared variables. In addition, since particles move simultaneously rather 
than one at a time, the O(N2) serial computation of the binding energy is converted 
to an O(N2 / K) parallel computation using K processors. A processor computes 
O(N2/ K) interactions between synchronizations, instead of O(N / K) interactions as 
in the Metropolis algorithm. 

Both graphs exhibit a zigzag pattern because the particles are parceled out 
among the processors as evenly as possible (there is still only one process per 



Figure A-39 

A. Experiments Performed on em* 363 

Speedup of Metropolis vs. Molecular Dynamics Algorithm 

Q.25 
.g 
Q) 
Q) 
Q. 
rJ)20 o Molecular-dynamics method 

o Metropolis method 

o 5 10 15 20 25 
Number of processors 

processor, however). Each time there is a decrease in the number of particles 
handled by the "busiest" processor, speedup increases markedly. Note, for ex­
ample, how speedup "jumps" between 24 to 25 processors; in the latter case, no 
processor need handle more than two particles. The 25-processor system is an 
example of matching parallelism, as described on page 246. 

Both these algorithms for molecular motion are synchronous, requiring-lockstep 
iteration; in contrast to the POE, no asynchronous molecular dynamics equation is 
known. Evidently, the synchronization penalty would be large, especially for the 
Metropolis algorithm. Relatively little computation is performed between synchro­
nization pOints. Also, before each synchronization point, each process requires 
exclusive access to the global summation variable, hence the processes must con­
tend for its lock. Lastly, there is a serial step after each attempt to move a particle, 
as the master decides whether to accept the move and perturbs the coordinates of 
another particle to generate the next configuration. _ _ 

In practice, these factors seem to cause little degradation in comparison with 
other parallel algorithms, such as those described in Sections A.2, A.5, A.7, and 
A.11. These algorithms exhibit declining speedup after some critical point, while the 
Metropolis algorithm continues to gain speed as more processors are added. More 
amazingly, the molecular-dynamics algorithm, which suffers the same synchroniza­
tion and contention penalties, albeit somewhat less often, shows more nearly linear 
speedup than any other algorithm implemented on em* (except the "lucky" run of 
the integer-programming problem; see Section A.3). How can this be? 



364 

Figure A-40 

Appendix 

Effect of Processor Speed on Speedup of Metropolis Algorithm 

o 

Linear 
e LSI-11 processors speedup 
o "Fast" processors 
o "Very fast". processors 

5 10 15 20 25 
Number of processors 

The explanation is actually quite simple. The binding-energy calculations are 
performed in double-precision floating-point arithmetic, which on the LSI-11 is imple­
mented by software procedures. The tremendous overhead of software simulation 
tends to mask the overhead of synchronization and the serial phase. Firmware or 
hardware floating-point arithmetic would speed up these operations by one or two 
orders of magnitude. It is not very difficult to simulate faster floating-point operations. 
Because we are interested in the performance, rather than the results, of the 
Metropolis algorithm, the binding-energy computation can simply be replaced by a 
delay loop. By changing the length of the delay loop, then, it is possible to simulate 
faster or slower floating-point arithmetic. 

Figure A-40 illustrates the impact of simulating faster floating-point operations. 4 

The "fast" curve reports the results of experiments in which simulated floating-point 
arithmetic was speeded up by a factor of 10. Here the critical point (maximum 
speedup) occurs at 23 processors. Using "very fast" simulated arithmetic-a factor 
of 100 faster than the LSI-11-the critical point is reached at just 8 processors. All 
results subsequently presented in this section have been derived using "fast" 
processors. 

Since synchronization overhead becomes more conspicuous with increasing 
processor speed, it is desirable to reformulate the algorithm to relax the synchroniza­
tion requirements. Recall that during each pass, an attempt is made to move each 
particle in the collection. Lockstep iteration occurs because no processor is allowed 

4 A different version of code was used in this experiment from that used for Figure A"39; hence the two 
curves are slightly different. 



A. Experiments Performed on Cm* 365 

to begin working on the (i + 1 )st move until all processors have completed work on 
the ith move. One way of visualizing this approach is to suppose that the coor­
dinates of the trial move have been deposited in a single buffer, that all processors 
read from this buffer until they are finished, and that the master then decides 
whether to accept or reject the trial move. 

Suppose, instead, that we modify the algorithm to use two buffers. During the 
attempt to move the ith particle, the first of these buffers, called the current buffer, 
contains the tria! coordinates of the ith move, just as in the Pi6Vious vSislon of the 
algorithm. The other buffer holds the trial coordinates for the (i + 1 )st move, except 
that the position of the ith particle is temporarily marked "unknown." When a 
processor finishes computing the binding energy for its particle, it switches to the 
other buffer and starts computing the binding energy for a particle in the (i + 1 )st trial 
configuration, subject only to the restriction that it must skip the contribution of the ith 
particle for a while because its coordinates are not known until all processors have 
finished working on the ith trial configuration. 

Some processors happen to be slightly faster than others, but eventually all 
processors finish computing their binding energy for the ith trial configuration and 
leave the current buffer. When this happens, the last processor "turns out the lights" 
by (a) making the accept/ reject decision for the ith trial move and updating the 
coordinates appropriately, (b) generating the coordinates for the (i + 2)nd trial move, 
and (c) making the current buffer the other buffer, and vice versa. Those processors 
that were waiting to learn the coordinates of the ith particle can now proceed to 
complete their calculations for the (i + 1 )st configuration and move on to the 
(i + 2)nd configuration. 

Notice how the synchronization requirements have been relaxed: The "fastest" 
processor, when it is nearly finished with the (i + 1 )st configuration, can be nearly 
two configurations ahead of the "slowest" processor, which may be just starting on 
the ith configuration. Before actually finishing work on the (i + 1 )st configuration, 
however, the fastest pro~essor must wait for the slowest processor to complete the 
ith configuration. Figure A-41 shows that the double-buffered algorithm has almost 
linear speedup out to about 15 processors and significantly outperforms its single­
buffered counterpart thereafter. Several factors contribute to its improved perfor­
mance. First, the lack of a global synchronization point decreases contention for the 
lock on the global summation variable. Contention is further reduced because the 
processors get "skewed" the first time they contend for the lock and remain skewed 
instead of being "realigned" at the global synchronization point. This decreases the 
probability that two processors will subsequently request the lock at the same time. 
Finally, there is no serial phase to add the binding-energy contributions. Rather, as 
the last processor is performing this summation at the end of the ith configuration, 
the other processors can be proceeding to work on the (i + 1 )st configuration. 

SystOliC Algorithms. Experience with the Metropolis algorithm seems to suggest 
the following question: If two buffers are better than one, then are n buffers better 
than two (where n is the number of particles in the system)? Perhaps, if other 
modifications are made. Recall that in the computation of the (i + 1 )st trial move, the 



366 

Figure A-41 

Appendix 

Speedup of Single- and Double-Buffered Algorithm 

Linear 
o "Single-buffered" algorithm speedup 
II "Double-buffered" algorithm 

o 5 10 15 20 25 
Number of processors 

contribution of the ith particle had to be skipped for a while until its coordinates 
became known. In the hypothetical n-buffer algorithm, in the computation of the nth 
trial move, the contribution of the n - 1 other particles would have to be "skipped" 
until their coordinates became known. 

This algorithm will not be explored in detail. Instead, we will give an inexact, but 
intuitive, explanation of how this idea can be converted into a working algorithm. 
With the n-buffer algorithm, the processors working in the first buffer may complete 
their work without knowing the final decision on any of the new coordinates. Proces­
sors working in the second buffer must know the new coordinates of the first particle; 
processors in the third buffer must know the new coordinates of the first two par­
ticles, and so forth. Imagine that we had n processors and could arrange to have 
one of them working in each buffer. They could receive the new coordinates of 
particles one by one, as they become available. Intuitively, this seems to suggest an 
algorithm where the coordinates of a particle either are broadcast or move down a 
pipeline. Such an algorithm is known as a systolic algorithm, because data "pulses" 
from each processor to one of its neighbors at the end of each step in the computa­
tion. In the Cm* implementation, the coordinates are passed from one processor to 
another by means of MEDUSA messages. 

The systolic Metropolis algorithm was implemented by Whiteside [Whiteside et al. 
82, Whiteside et al. 83]. Its speedup for a system of 50 is shown in Figure A-42. 
Notice that it, like the molecular-dynamics algorithm (see Figure A-39) , shows 
prominent steps at each point of matching parallelism. The reason is the same: 
When there are fewer processors than particles, some of the processors do com-



FigureA-42 

A. Experiments Performed on Cm* 

SystoliC VS. Nonsystolic Metropolis Algorithm 

Q.25 
::l 
1) 
Q) 
Q) 
Q. 

rt) 20 

15~ 

10 

5 

o 

Linear .' 
o "Double-buffered" algorithm speedup 

o Systolic algorithm .................... ~ 
• Systol;c load balancing .. ~r I 

.. ' r:/"' .fi J 

5 10 15 20 25 
Number of processors 

367 

putations for one more particle than other processors. The execution time of the 
entire experiment is bounded by the speed of the "busier" processors. The systolic 
algorithm can be modified to diminish this effect. To balance the load among proces­
sors, at the end of each computation step, the busier processors "send" one of their 
particles to a neighboring processor. Like the communication of coordinates, this can 
be accomplished by message passing. Notice that the systolic load-balancing al­
gorithm exhibits none of the steps of the original systOlic algorithm. It does achieve 
generally lower speedup, however, perhaps due to the overhead of MEDUSA mes­
sage operations relative to the shared-memory approach taken by the double­
buffered algorithm. 

A.1S. Comparative Implementations of Ada Rendezvous 

Algorithm name: Ada rendezvous. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: MEDUSA. 

Other software in environment: None. 
Experimenters: Anita Jones and Anders Ardo, 1981 ~2. 
Reference: [Jones and Ardo 82]. 

In principle, a rendezvous, as defined in Ada, is just a special case of message 
passing. The message-passing systems of STAROS and MEDUSA have the ability to 
buffer messages; a message can be sent by one process and later received by 
another process, with the sending process performing other work in the meantime. If 



368 

Figure A-43 

Figure A-44 

Appendix 

the mailbox or pipe is full, however, the Send cannot be completed until space is 
freed for the new message. Ada rendezvous is similar, except that the buffer 
(mailbox or pipe) has a size of zero; there is nowhere for messages to wait before 
being received. Consequently, the Send cannot be compieted until the instant that 
the Receive is performed. Of course, the Receive cannot complete until the Send is 
performed, so the sending and receiving processes must execute their message­
communication statements simultaneously. This is the origin of the term "ren­
dezvous." 

Rendezvous can be implemented in several ways. The most straightforward 
method is via message passing, but because a rendezvous can communicate infor­
mation in both directions, a single rendezvous may require two messages. In 
special cases, a rendezvous also can be implemented using shared memory. To 
investigate these alternatives, we will consider an example. 

The example is a task force organized according to the "server" paradigm. A set 
of identical worker processes are responsible for performing variable-length work 
requests. We will refer to the work requests as "tasks," corresponding to the usage 
of the term on page 244. Each time a process finishes performing a task, it begins 
work on a new task, until there are no more tasks to do. The number of tasks, and 
the length of each task, may be dynamically generated or known a priori. If the 
tasks are dynamically generated, there must be some way of telling a worker which 
task it is to perform next. This is known as an assignment of work. 

In Ada, the obvious implementation is to use a master process to assign tasks to 
the workers. If there are n tasks altogether, the code for the master is that shown in 
Figure A-43. A worker executes the code shown in Figure A-44. 

Master Process Code 

for WorklD in 1 .. n loop 
accept Assign (ld : out integer) do 

delay Ta ; -- simulate an assignment cost of Ta 
Id := Worl<ld ; 

end Assign; 
end loop; 
for i in 1 .. NumWorkers loop 

accept Assign (ld : out integer) do 
Id:= NoWork ; 

end Assign ; 
end loop; 

Worker Process Code 

loop 
Master.Assign (MyWorkld ); 
exit when MyWorkld = NoWork ; 

delay T (MyWorkld); -- simulate processing cost 
end loop; 



A. Experiments Performed on em'" 369 

Jones and Ardo studied the performance of four implementations of the rendez­
vous in this program. In all cases, each processor executed only a single process. 

Message-passing implementation. A worker sends its process number to the 
master when it is able to take on a new task, and the master responds by 
sending the worker a message containing the task number. When there are 
no more new tasks to start, the master instead sends a message containing a 
special task number that means "no more work." The messages are con­
veyed through MEDUSA pipes. Since there is only one process per processor, 
the Receive operations can specify a very large pause time, so context-swap 
overhead is never incurred. This implementation strategy uses no shared 
memory and hence could be applied on a computer network as well as a 
multiprocessor. 

Busy-waiting on shared variables. A worker waits on a shared variable until it is 
assigned work by the master process. The master polls the shared variables 
until it finds a worker that needs more work. It then assigns a task to the 
worker and communicates the identity of the newly assigned task via another 
shared variable. Thus there are two arrays of shared variables. One array 
records, for each worker, whether that worker is waiting for work. The other 
array records, for each worker, the task number that the worker has been 
assigned. Since only the master can write into the first array and only one 
worker writes into any element of the second array, no locks are needed on 
either array. If there were more than one process per processor, this im­
plementation would be very inefficient because a busy-waiting process often 
would prevent another process from executing. 

In-line embedded code. Instead of having a master process assign tasks to the 
workers, the workers can do the 'assignment themselves by procedure calls. 
The number of the last task to be assigned is held in a global variable, which 
is protected by a lock. A worker that needs a new task calls a procedure that 
locks this variable, then reads and increments it. The MEDUSA Indivisible 
Increment instruction can be used for thi$ purpose. Although there is no 
master, one worker is distinguished in that it initializes the counter and starts 
the other workers by unlocking the global counter variable. This strategy 
correctly implements the semantics of Ada rendezvous in the example 
program, even though it might be difficult for a compiler to notice the optimiza­
tion. 

Static assignment. If the lengths of all tasks are known before execution begins, 
the tasks can be divided among the workers all at once-in other words, 
statically. Each worker merely executes its set of tasks, without communicat­
ing with a master or any other worker; synchronization is needed only to start 
and stop the task force. Clearly, this is the most efficient implementation when 
it is possible. 

Results. When a task is aSSigned to a worker, the worker may have to obtain 
access to a set of data that defines it. We will call this the "assignment cost" and 



370 

Figure A-45 

Appendix 

distinguish it from the cost of implementing the rendezvous itself. The performance 
of the four strategies depends on the assignment cost and the lengths of the tasks. 
Notice also that the in-line and static assignment strategies, which lack a master 
process, have a built-in advantage over message passing and busy-waiting: With n 
processors, they can accommodate n workers instead of n - 1 . 

The first experiment assumed that the assignment cost and the task lengths were 
both zero. It therefore measured only communication and synchronization costs. 
The results are given in Figure A-45. The message-passing implementation is the 
slowest of the four for small numbers of processors. Its execution time is dominated 
by the approximately 1.2 ms. that are needed to perform the four pipe operations 
that convey the two messages. Some overlap obviously occurs because the 
cumulative time is less than the sum of the times for the four pipe operations 
(Section 7.4.2). From the fact that performance iegrades very slowly as processes 
are added, we can deduce that Kmap contention is not a serious factor. 

The in-line code approach suffers contention overhead, as indicated by its wor­
sening performance as more processors are added. Several kinds of contention are 
responsible-contention for the memory word that is used as a lock and contention 
for Kmap contexts, for example. As the lock operations go cross-cluster at about 12 
processors, the slope of the curve increases, reflecting the higher intercluster access 
times. In contrast, the busy-waiting solution does not experience contention; its 
performance actually improves with greater numbers of processes, up to about four 
or five, as loop control becomes less significant with respect to the body of the loop 

Synchronization and Communication Costs in Various Rendezvous Implementations 

II) 1.4 
.:c 
II) 

~ 
01.2 
0 q 
.... 
Q; 1.0 
Q. ...... 
c.i 
!0.8 

CD 

~0.6 
c:: 
.2 
~0.4 
CD 
>< 
CD 

~0.2 
~ 

0.0 
0 2 4 

• Message transmission 
o In-line embedded code 
to Busy-waiting 
o Static assignment 

Time to assign work: 0 
Time to process work unit: 0 

6 8 10 12 14 16 18 20 
Number of processors 



Figure A-46 

A. Experiments Performed on em* 

Performance of Rendezvous Implementations when Task-Processing Dominates 

\ 
\ 

o 2 4 

• Message transmission 
II Busy·waiting 
o In-line embeddEld code 
o Static assignment 

Time to assign work: 0 
Time to process work unit: 0 - 100 ms., random 

6 8 10 12 14 16 18 20 
Number of processors 

371 

that polls the worker processes. Static allocation is the cheapest strategy, as ex­
pected. After about seven processors are reached, it is constantly cheaper than the 
busy-waiting approach by a factor of three. 

Figure A-46 shows what happens when assignment cost is negligible (0.1 ms.) 
and processing cost (randomly varying between 0 and 100 ms.) dominates. There is 
little difference between the four implementations, except for the built-in advantage 
of the in-line and static-assignment strategies. This advantage is most pronounced 
when there are few processes. With two worker processes, for example, each has 
only half as much work as a single worker would have. By the time the number of 
workers reaches 20, the advantage nearly vanishes. 

From this experiment, some general guidelines can be'derived. First, the rendez­
vous implementation strategy has the greatest effect when rendezvous occurs fre­
quently. If a task executes for, say, twenty times as long as it takes for a rendez­
vous to occur (an average 50 ms. versus 2.4 ms.), the synchronization strategy is of 
little import. Second, runaway contention is the most serious problem faced by a 
synchronization mechanism. Even a method that nominally requires much more 
execution time will perform better on large task forces if it is not subject to conten­
tion. Finally, when the number of processors is small, it is wasteful to dedicate one 
of them to a master process that performs no tasks. If the number of processors is 
larger-15 or more in this example-the presence of a master has little influence on 
performance. 



372 Appendix 

A.16. Transaction-Processing System 

Algorithm name: Transaction-processing system. 
Cm* configuration: 50 Cm's, 5 clusters (only 3 clusters used). 
Operating system : MEDUSA. 
Other software in environment: None. 
Experimenter: John Robinson, 1982. 
Reference: [Robinson 82]. 

A transaction-processing system is a database system that, in principle, allows 
any of the users sharing the database to modify it. Examples include airline reser­
vations systems, point-of-sale inventory-management systems, and program­
documentation systems that update a database whenever a change is made to a 
module of the program. Among the key problems in designing such systems are how 
to distribute and cache data in the various levels of the memory hierarchy and how 
to synchronize accesses to the data to ensure that queries access a consistent copy 
of the data and that updates are indivisible. 

Robinson implemented a transaction-processing system on Cm* under the 
MEDUSA operating system. He utilized two data-placement strategies and two main 
synchronization policies. The data-placement strategies were as follows: 

• MEDUSA random-access files were used for the shared memory of the 
database. 

• The database was placed in four otherwise unused Cm's, each with 128K 
bytes of memory, and accessed through the shared descriptor list. The goal 
was to simulate a database placed on fast disks rather than in primary 
memory. Reads and writes of 512-byte pages were performed using Kmap 
Block Move operations. The maximum block-move rate is approximately 300 
blocks per second. 

The synchronization, or concurrency control policy, must ensure that conflicting 
accesses to the database (for example, two concurrent writes of the same infor­
mation or a write during a read of overlapping data) cannot take place. Many 
concurrency control policies are possible. Robinson considers two in detail: the 
locking policy and the optimistiC policy. 

• The locking policy stipulates that an arriving read or write request will wait for 
all conflicting transactions, and an arriving read / write request will wait until 
the completion of all transactions that are in progress. 

• The optimistic policy never requires a transaction to wait; conflicting trans­
actions "race" to the finish. The transaction that "wins" is allowed to finish, 
while all other conflicting transactions are aborted just before the point of 
conflict. For example, two concurrent write transactions are allowed to 
proceed until the second attempts to write data that has been written by the 
first; at this point, the second transaction is aborted. 



Figure A-47 

A. Experiments Performed on Cm* 373 

The transaction-processing system consisted of up to 11 processes (MEDUSA 

activities): a master process, up to 8 transaction processors, a concurrency control 
process, and a global memory manager. Each process was allocated its own Cm, 
and the code, stack, and private data was always local to the Cm. 

In a real transaction-processing system, transactions would be obtained from 
outside the system, usually from some sort of user interface. In this simulation, 
however, each transaction processor randomly generated the transactions it 
processed. These transactions consisted of insertions, deletions, and queries, \&/nich 
accessed random tuples in the database. 

Results. Figure A-47 shows that as processors were added, the MEDUSA File 
System soon became a bottleneck. One process, the MEDUSA File System activity, 
was responsible for managing the disk. Only one disk access could be made at a 
time, so as soon as the File System process saturated, no further increase in 
throughput was possible. In fact, throughput decreased, probably because 

• with the locking policy, processors waiting for I/O had locks on a considerable 
portion of the database, increasing the likelihood that a subsequent trans­
action would have to wait. 

• with the optimistic policy, more transactions were outstanding, increasing the 
frequency of conflicts between transactions and hence the frequency with 
which transactions had to be aborted and restarted from the beginning. 

Saturation would have occurred with even fewer processors, if the transaction 

Throughput of Transaction-Processing System 

"tl 5.O 
r::: 
o 
g4.5 
CI) 

" ~4.0 
.e 
ti3.5 
lIS 
CI) 

~3.0 
!:: 
-g 2.5 

i 
Q.2.0 
E 
81.5 

0.5 

_ -El 

.G-' :::' ,G~--------"t!_-:::_-_: -_ ' ___ --A 

,,' is. 

:,:::::.'1:.-, .. SoUd Unes-Medusa file 110 

14:" Dotted lines-Block-move liD 

.:"" [J Locking policy 
A Optimistic policy 

o.o~--~--~--~--~--~~-------
1 234 5 6 7 8 

Number of transaction processors 



374 

Figure A-48 

Appendix 

Number of Aborted and Restarted Transactions 

a 1.0r 
~ I 
!Q 
I/) 
c: 
~0.8 

~ 
.! 
~0.6 
o 
CJ 
"-
~ 
~0.4 
~ 
~ 
CD 
0) 

eO.2 
~ 
q: 

So!id lines-Medusa file !lO 
Dotted lines-Block·move 1/0 

o Locking policy 
A Optimistic policy 

! 

A"""A 

.0- ..... 0 ... "0 

2 3 4 5 6 7 8 
Number of transaction processors 

processors had not cached pages in local memory. Figure A-48 provides evidence 
for the high rate of conflicts under the optimistic policy. Note that even under the 
locking policy, transactions must be aborted occasionally to prevent deadlock. 

Contention for the file system is a serious problem because there is only one disk 
and one MEDUSA File System activity. When 1/0 is performed with Kmap Block 
Moves, contention would be for the Kmap and for shared memory instead. Seven 
Kmap contexts can be allocated to Block Moves, however, and there are 384 pages 
in the simulated database, so contention for these resources is much less likely. 

Examining the other two curves of Figure A-47, it is evident that Block Move 1/0 
yields much higher throughput and also that more transaction processors can be 
utilized effectively. As more processors are added, the increase in throughput slows, 
due to conflicts between transactions. Eventually, the increasing number of restarts 
dominates (Figure A-48) with the optimistic policy, and throughput decreases. With 
the locking policy, throughput continues to increase with up to eight transaction 
processors. 

A.17. Parallel Garbage Collector 

Algorithm name: STAROS Garbage Col/ector. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: STAROS. 
Other software in environment: None. 
Experimenter: Robert J. Chansler, Jr., 1982. 
Reference: [Chansler 82]. 



Figure A-49 

A. Experiments Performed on Cm* 

Speedup of the STAROS Garbage Collector 

Q.7 
.g 
Q) 
Q) 

~6 

5 
I 

4 

3 

2 

• No cache, 303 objects 
o Shared cache, 292 objects 
t:,. Local cache, 486 objects 
o Local cache, 304 objects 
o Local cache, 260 objects 

Linear 
speedup " 

.' 

.' 

........ 

1 __ --~----~--~--------~----~ 
1 2 3 ·4 5 6 7 

Number of processors 

375 

As described in Section 6.6, STAROS uses garbage collection to reclaim the 
memory occupied by inaccessible objects. The STAROS Garbage Collector runs in 
parallel with other activity in the system and, in fact, may itself be composed of 
several processes that run in parallel with each other. Like other parallel garbage 
collectors, the STAROS Garbage Collector must treat as accessible all objects 
created while garbage collection is in progress. Consequently, the longer it takes to 
collect garbage, the more overall work there is to perform. Conversely, as the 
Garbage Collector speeds up (for example, by employing multiple garbage­
collection processes), the overall work is less. The Garbage Col/ector, then, has the 
unusual property that its theoretical speedup is greater than linear. Section 11.2 
discusses this aspect in more detail. 

Chansler measured the speedup of the Garbage Collector in several different 
experiments. The experiments are classified according to the type of cache used for 
the information on which objects have.Peen marked. A field in the descriptor for an 
object, called the color field, tells whether it has been marked. As explained in 
Section 6.1.1, a STAROS process must read the descriptor for an object in order to 
access it. When the Garbage Col/ector needs to check the color of the object, it 
must read the descriptor again, unless it maintains a cache of object colors. If it 
chooses to maintain a cache, the cache may be either local to the garbage-collection 
process or shared among all garbage-collection processes. 

Figure A-49 (which reproduces Figure 11-4) shows the results of one experiment 
each without a cache and with a shared cache and three experiments with a local 
cache. (The three experiments were made with three different STAROS workloads.) 
Notice that only the no-cache experiment ever shows greater than linear speedup, 



376 Appendix 

and then only with two or three processors. The absolute execution time of the 
Garbage Collector with this implementation, however, is about 25 percent longer 
than in any other experiment. With a cache, the Garbage Collector makes fewer 
overall references to shared data, but because a greater fraction of its references 
are to shared data, contention during these references is greater. The no-cache 
implementation has less contention and higher speedup. Like the "slow-processor" 
Metropolis algorithm, its inefficiency makes it more susceptible to speedup. 

A.18. Traveling-Salesman Problem 

Algorithm name: Traveling-salesman problem. 
Cm* configuration: 50 Cm's, 5 clusters (only 4 clusters used). 
Operating system: StAROS. 

Other software in environment: None. 
Experimenter: Joe Mohan, 1982. 
Reference: [Mohan 83]. 

The traveling-salesman problem (TSP) is to find the minimum-cost "tour" that 
visits each element of a set of "cities," given a cost matrix that specifies the cost of 
moving from each city to any other city in the set. More precisely, given a complete 
graph G = (V,E), where V is a set of n vertices and E is the set of m edges where 
m = n(n - 1), if cij is the cost associated with edge (i, I), [cij] will be the cost matrix of 
the graph G. TSP is the problem of finding a Hamiltonian circuit of G with the 
minimum cost. 

TSP has obvious applications to vehicle routing, and it underlies many other 
optimization problems such as sequencing and scheduling. While it is easy to state, 
it is hard to solve-in fact, it is NP-complete. When an exact solution is desired, 
some form of branch-and-bound algorithm usually is used. Typically, such al­
gorithms perform much better than the worst case if good bounding heuristics are 
employed. 

Mohan experimented with an algorithm based on the work of Little, Murty, 
Sweeny, and Karel [Little et al. 63]-called the LMSK algorithm for short. Following 
Mohan [Mohan 83], we describe the algorithm as follows: 

The LMSK algorithm works by partitioning the set of all possible tours into 
progressively smaller subsets (which are represented on the nodes of a state-space 
tree), computing a lower bound on the cost of the best tour in each partition, and 
then expanding the state-space tree incrementally toward the goal node, using 
heuristics to guide its search toward the solution node. The node-selection heuristic 
chooses, from among all the leaf nodes of the current tree, that leaf node whose 
estimated lower-bound tour cost is the least. The edge-selection heuristic computes 
the increments in tour cost when different edges are excluded from the tour and 
chooses the edge that causes the maximum increment. The description of the al­
gorithm below explains how the nodes and edges thus chosen are used. 

Starting with a tree consisting of just the root node, which represents the set of all 



A. Experiments Performed on Cm* 377 

tours, the algorithm repeatedly executes these steps in sequence: It first chooses, 
from all the leaf nodes of the current tree, the node that is most likely to lead to the 
solution (using the node-selection heuristic) and designates it to be the next expan­
sion node; it then chooses one or more edges (legs of a tour) using the edge­
selection heuristic; it sets up the child nodes with all the different combinations of 
inclusion and exclusion of the selected edges; and finally, it computes for each child 
node the lower-bound cost of all tours in the subset defined by the child node. For 
any given node, each of its chUd nodes corresponds to that subset of the tours of the 
parent node, with the additional constraint of including or excluding one or more 
edges. The algorithm terminates when a leaf node is found that represents a single 
complete tour with a cost less than or equal to the lower-bound costs of all possible 
tours, which are represented by the leaf nodes of the current state-space tree. 

Here is a high-level representation of the algorithm: 

repeat 

1. Select node in state-space tree with least lower-bound tour cost. 
2. Select one or more edges using edge-selection heuristic. 
3. For each child corresponding to one inclusion / exclusion combination of the 

selected edges, 

3.1 . Create a node object and link it to tree. 
3.2. Derive cost matrix for child node. 
3.3. Reduce matrix and find new lower bound for all tours defined by 

child node until a full tour, with cost less than or equal to the lower 
bounds on al~ possible tours, is obtained. 

Mohan experimented with two different parallel decompositions of this algorithm. 
One implementation, known as TSP1, unfolded the for loop of step 3, parceling out 
different iterations to different processors. The other implementation, known as 
TSP2, unfolded the outer repeat loop. TSP1 can be characterized as a multiphase 
algorithm (see Section 11.4.1). The master process performs steps 1 and 2, then 
activates the slaves, one for each child node, which work concurrently on step 3. 
TSP2 is structured as an asynchronous collection of processes. Each process, 
during each iteration, selects one edge and sets up two child nodes-one of which 
includes the edge in the tour and one of which excludes it. The processes communi­
cate via the state-space tree and global variables, synchronizing their accesses with 
spin locks (mutual-exclusion locks). In TSP1, processors are idle during the master 
phase and while the faster slave processes wait for the slower ones to finish. By 
contrast, TSP2 processors are idle only during startup "transients (when there are 
more processes than nodes) and while waiting on one of the spin locks. 

The number of slave processes in TSP1 is always a power of two, specifically 
n = 2k, where k is the number of edges selected in step 2. In the experiments, n 
ranged from 2 to 16. Speedup was computed by comparing execution times to 
twice the execution time observed for n = 2. Each TSP2 process selected one edge; 
1 to 16 processes were used, and speedup was computed in the normal fashion. 



378 

Figure A-50 

Appendix 

Speedup of TSP1 

~ 16 r 0 Speedup (aCtual) 
- I i.l. Speedup adjusted ior nodes generated 
~ 14~ 
~ Best soiution times among aii piacements 

12 

10 

8 

6 

.' 

... Ir-­.' /'" .<./ ' 

--
__ A 

.~fr~-~----~8--____________ ~ 4 

2 

o 2 4 6 8 10 12 14 16 

Number of processors 

Results. EFFECTIVENESS OF HEURISTICS. Figure A-50 plots the speedup of TSP1. 
Two curves are shown. The lower curve is the observed speedup; note that it 
declines as n increases above four. The dashed curve is an attempt to separate 
synchronization overhead (page 242) from parallelization overhead (page 248). As 
the number of processes grows, more computation is done between successive 
applications of the heuristics. The heuristics become less effective, so more nodes 
are generated and more total work done. We can say that the heuristic granularity 
has increased [Mohan et a/. 85]. If the execution time is scaled by the number of 
nodes generated, using as a base the number of nodes generated for a parallelism 
of two, the dashed curve is obtained. More detail may be found in Section 11.5.3. 

INTRACLUSTER AND SYSTEMWIDE CONTENTION. Since each TSP2 process selects 
only one edge, regardless of the number of processes in the system, the heuristic 
granularity remains constant, and the speedup continues to rise as more processors 
are added. Nonetheless, the speedup becomes more and more sublinear as the 
number of processors grows (Figure A-51). Perhaps the convexity of the speedup 
curve can be explained by contention. 

TSP2 experiences contention for several resources. Some of these resources 
are replicated in each cluster (the Kmaps, the map buses, and the Object Manager); 
this is called cluster-level contention. If there is only a single instance of a resource 
for which a process contends, that process is said to experience system-level 
contention. System-unique resources include global data (for example, the state­
space tree), spin locks, critical sections of procedures, and the intercluster bus. 
Mohan ran a set of experiments to estimate the effects of cluster-level contention by 
varying the number of processes but keeping the number of processes per cluster 



A. Experiments Performed on Cm* 379 

Figure A-51 Speedup of TSP2 

§- 16 0 Speedup (actual) 

-g Best solution times 
8. 14 among all placements 

C/) 

12 

tOl 

o 2 4 6 8 10 12 14 16 

Number of processors 

Figure A-52 Speedup of TSP2, Normalized for Cluster-Level Contention 

Q. 16 
~ o 1 process per cluster "0 
Cb A 2 processes per cluster Cb 14 
~ o 4 processes per cluster 0 

12 

10 

0 

8 
" A 

6 

4 ~' 

2 ,t1 
[:i 

0 2 4 6 8 10 12 14 16 

Number of processors 



380 

Figure A-53 

Appendix 

Execution Time VS. Placement for TSP1 

~ 350r 
"l:I 
c:: 
o 
~ 300 
~ 
Q) 

~ 250 
c:: 
.2 
:; 200 
(,,) 
Q) 

>< 
IJ..j 150 

100 

50 

0' 

o 2 processes 
11 4 processes 
o 8 processes 
o 16 processes 

o~--~--~--~--~--~--~--~ 
123 4 5 6 7 8 

Number of processes in one cluster 

constant. Any degradation in speedup, then, should be primarily due to system-level 
contention. 

The results, shown in Figure A-52,5 indicate that speedup is nearly linear until 
parallelism reaches 16. This suggests that cluster-level contention is the primary 
source of degradation at a parallelism of 8 and below. 

PLACEMENT OF PROCESSES. Like Deminet (see Section A.7), Mohan studied the 
distribution of processes among clusters. Unique among all the experimenters on 
em*, he studied the effect of distributing the same number of processes among 
different numbers of clusters. It is not clear a priori what the optimal number of 
processes per cluster is because two conflicting factors are at work. As the number 
of processes per cluster increases, the average reference time decreases as expen­
sive intercluster references become less frequent, and cluster-level contention grows 
and leads to higher execution times. For TSP1 (Figure A-53), the best performance 
is obtained when processes are distributed among several clusters. In fact, execu­
tion time seems to increase linearly with the number of processors per cluster. TSP2 
(Figure A-54) also seems to perform best with widely distributed processes. When 
both processes of a two-process task force are moved into a single cluster, there is 
a greater absolute increase in TSP2 execution time than in TSP1 execution time; 
this probably reflects the greater parallelism in TSP2, due to the lack of a serial 

5 Many of the speedup values in this figure appear higher than those in Figure A-51. This is because each 
one-cluster, m-processor-per-cluster configuration is arbitrarily assigned a speedup of m. (This is analogous 
to the way speedup is computed for TSP1, with a base Case of two processors.) Computing other speedups 
with respect to this value yields different results from computing them in the normal fashion. 



Figure A-54 

A. Experiments Performed on Cm* 

Execution Time VS. Placement for TSP2 

50 

[] 2 processes 
t:. 4 processes 
o 8 processes 
<> 16 processes 

o 

G· .•.••••.••. .()... _ ••• _ ..• _ ••. -<> 
~ ... 

o~--~--~--~--~--~--~--~ 
1 234 5 678 

Number of processes in one cluster 

381 

phase. The increase in execution times is not so dramatic for larger task forces, 
especially for the 16-process configuration. Nonetheless, in every case, the best­
performing configuration is the one that uses the most clusters. 

Although the experiments are not directly comparable, it is interesting to contrast 
this observation with Oeminet's discovery of the crossover phenomenon (see Sec­
tion A.7), where an increase in intercluster references tends to outweigh the benefi­
cial effects of adding several additional processors. It may be that the POE makes 
heavier use of intercluster references, or Deminet might have observed different 
results if he had always distributed his processes evenly among clusters. Future 
research will be required to shed more light on the effects of process placement. 

EXECUTION TIME, SYNCHRONISM, AND THE SERIAL PHASE. A glance at Figures A-53 
and A-54 reveals that TSP2 outperformed TSP1 for all numbers and configurations 
of processes. Several factors account for the difference. TSP1 encounters sig­
nificantly more synchronization overhead because the slave processes work in a 
lockstep fashion under the control of the master process. TSP1 executes steps 1 
and 2 serially, whereas TSP2 executes them in parallel. Finally, the synchronous na­
ture of TSP1 leads its processes to request global resources at approximately the 
same time; this clustering increases contention and execution time. 

TSP is a valuable case study because it demonstrates that an important class of 
search algorithms can be effectively parallelized. At first glance, search algorithms 
seem not to lend themselves to parallel processing because they make extensive 
use of global data without any predictable access patterns. Furthermore, search 
heuristics may be applied less frequently, and hence become less effective. TSP2 



382 Appendix 

has overcome both these difficulties by a judicious choice of decomposition 
strategies. 

A.19. Design-Rule Checking on MEDUSA 

Algorithm name: Design-rule checking. 
Cm* configuration: 50 Cm's, 5 clusters. 
Operating system: MEDUSA. 

Other software in environment: None. 
Experimenter: Francesco Gregoretti, 1983-84. 
Reference: [Gregoretti and Segall 84]. 

A VLSI (very large scale integration) circuit design must conform to certain rules 
that specify the minimum allowable distance between adjacent circuit elements. 
Most circuit elements are represented as rectangles whose sides are parallel to the 
coordinate axes of the chip. The problem of deciding whether a pair of rectangles 
are "too close" can be solved by determining whether a pair of slightly larger rec­
tangles overlap. The complexity of modern VLSI circuits demands computer assis­
tance in this task. Indeed, the process is frequent and expensive enough to warrant 
multiprocessing as a means of reducing overall design time. 

It is possible to define a circuit by listing all the rectangles that comprise it, but it is 
much more efficient to describe a large circuit in a hierarchical fashion. A memory 
chip, for instance, can be viewed at ascending levels of abstraction as a collection of 
rectangles, transistors, memory cells, and memory-cell rows. Caltech Intermediate 
Form, or CIF, is a layout language that describes a design as a set of symbols. 
Each symbol is made up of rectangles and instances of other symbols whose posi­
tions are given relative to the local origin of the symbol. To prevent infinite recursion, 
a symbol must be defined before it can be used. 

During design-rule checking, errors are reported if two rectangles lie within the 
minimum permissible distance. Various component counts are also maintained, but 
the bulk of the work consists of finding overlapping elements. 

A typical VLSI design consists of relatively few symbols but many symbol 
instances. Thus a sequential program to check a hierarchical description [Hon 
83] generally proceeds by checking symbol definitions (rather than symbol 
instances) recursively. The components of an individual symbol are compared 
against each other. If a component is an instance of another symbol, that symbol is 
checked in the same way (unless it has already been checked). This process con­
tinues until all symbols in the design have been checked. Three mutually recursive 
procedures are used: 

Check Symbol (CS) examines a single CIF symbol and counts the number of 
overlaps between its components. It calls CS recursively on all the symbol's 
components and then calls CSS (below) on each pair of component symbols 
to see whether they overlap. 



TableA-5 

A. Experiments Performed on Cm" 383 

Circuits Analyzed by Gregoretti's Design-Rule Checker 

Number of 
Circuit Number of rectangle Number of Regularity 
name rectangles intersections symbols index 

FIFO 71,761 218,432 22 93.2 
Cherry 7,416 20,395 35 13.14 
Pads 4,263 13,123 8 16.33 
'T' __ .&. 

I") 00404 t::. n"7n 1")-:) 2.77 I t:::iL '::',011 V,VIV '::'u 

Slice 525 1,324 9 1.075 

Compare Symbol to Rectangle (CSR) compares a rectangle against a symbol in­
stantiation and counts the overlaps between the rectangle and the component 
rectangles of the symbol. 

Compare Symbols (CSS) compares two symbols and counts the number of 
times a component rectangle of one overlaps a rectangle of the other. 

The algorithm is structured as a top-down tree search. It begins with a call to CS for 
the top-level symbol. Eventually, it reaches a point where it compares two primitive 
rectangles. Most of the research on this algorithm has to do with finding an efficient 
method for pruning the search tree. 

One of the most effective ways to prune the search tree is by finding the 
bounding box of each symbol. The bounding box is the smallest rectangle that sur­
rounds all the symbol's components. If the bounding boxes of two symbols do not 

overlap, then obviously CSS does not have to checK for overlap of their components 
either. At the time the description of a symbol is read in, its bounding box can be cal­
culated, and a call to CS can be generated for it; this makes it easy to avoid the 
need to redo these tasks. 

The main difference between a sequential and a parallel design-rule checker is 
that the parallel algorithm must "parcel out" some of the CS, CSR, and CSS tasks to 
other processors. This is done by maintaining a common queue of tasks that must 
be performed.lnstead of performing a recursive task itself, a processor may place 
the d,escription of it in the common queue rather than execute it locally. Processors 
that "run out of" recursive calls to perform then obtain more work by removing the 
first task description from the queue. 

Due to the high branching factor of the task tree, it is impractical to place all 
recursive task invocations in the queue, lest the queue grow to an unmanageable 
size. According to a strategy developed by Lane [Lane 84], a task is placed in the 
queue only if the length of the queue is less than some predetermined upper bound 
(somewhat larger than the number of processors). 

Gregoretti input the description of five different NMOS integrated circuits to his 
design-rule checker. Table A-5 summarizes their characteristics. The regularity in­
dex is defined as the ratio of the number of rectangle instances in the entire circuit to 
the number of rectangle definitions in the hierarchical description. It gives an idea of 
how concisely the hierarchical description captures the layout. 



384 Appendix 

Execution time to check each design is shown in Figure A-55 speedup is shown 
in Figure A-56. Linear speedup is approached only by the Cherry and FIFO layouts. 
The others seem to saturate at some point, after which their execution times oscil­
iate. Evidentiy, this is because the Test, Pads, and Slice layouts have terminal sym­
bois with a iarge number of primitive rectangles. The time to check or compare these 
large leaf symbols bounds the execution time from below. Nonetheless, the Pads 
layout, being more regular than Test or Slice, can be executed in an order of mag­
nitude less time. 

A little reflection suggests that the lower execution-time bound can be circum­
vented by breaking CS invocations into calls of CSR and CSS as follows: For every 
element i of the symbol, 

• if element i is a rectangle, then queue a CSR task for the element and a 
hypothetical symbol comprising all tokens that follow i in the symbol definition . 

• if element i is an instance of some other symbol, then queue a CSS task be­
tween the called symbol and the hypothetical symbol described above. 

Naturally, increasing the number of tasks in this fashion raises the overhead of 
queueing and recursion. For circuits that have no large leaf symbols, this can result 
in extra execution time (up to 20 percent in the case of FIFO). Where large leaf sym­
bols are present, removing the lower bound more than makes up for this effect. 
Figure A-57 shows speedup of the design-rule checker modified in this way. Note 
that a speedup plateau is still reached, though at a much higher level than before. 
This is probably due to the asymmetry of the CSR and. CSS tasks for the hypotheti­

cal symbols; the task for i = 1 still has a lot of work to do, while the last one must ex­
amine only two elements. Further research might examine whether it is feasible to 
break up these tasks further, or to avoid breaking up CS tasks that are smaller than 
a given threshold, in order to reduce the overhead. 

A.20. Design-Rule Checking on STAROS 

Algorithm name: Design-rule checking. 
Cm* configuration: 50 em's, 5 clusters. 
Operating system: STAROS. 
Other software in environment: None. 
Experimenter: Tom Lane, 1983-84. 
Reference: [Lane 84]. 

Lane implemented design-rule checking under the STAROS operating system. He 
used the same general algorithm as Hon did [Hon 83], but his implementation differs 
in particulars from that of Gregoretti. Because he wished to use a straightforward al­
gorithm to count the number of intersecting rectangles in the entire circuit, he was 



Figure A-55 

Figure A-56 

A. Experiments Performed on Cm* 

Execution Time of Gregoretti's Design-Rule Checker 

'C;)350 
1l 
c:: 
0 

~ 
~300 

..!e 
Q) 

~250 
c:: \\ 
0 
:g200 
0 
Q) 

~ 150 

100 

50 

o FIFO 
o Cherry 
o Pads 
A Test 
o Slice 

o 23456 7 8 9 10 11 12 13 14 15 

Speedup of Gregoretti's Design-Rule Checker 

0. 14 
.§ 
Q) 

Q) 12 
c% 

10 

8 

6 

4 

2 

o FIFO 
o Cherry 
o Pads 
A Test 
o Slice 

Linear 
speedu~ .. · 

Number of processors 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Number of processors 

385 



386 

Figure A-57 

Appendix 

Speedup of Gregoretti's Modified Design-Rule Checker 

10 

8 

6 

4 

2 

o FIFO 

o Cherry 
o Pads 
t:.. Test 
o Slice 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Number of processors 

unable to avoid redoing CS for each instance of a symbol. He made multiple copies 
of the elF description to decrease contention, and varied the number of copies. 
When there was a copy in the local memory of each em, the interprocessor com­
munication bandwidth was quite low, since only the common queue of task descrip­
tions needed to be shared. All his experiments broke CS invocations into calls of 
CSR and CSS, as Gregoretti did in his modified experiment. 

Lane's program was used to analyze two VLSI circuit designs. One was a 
hardware FIFO queue, which used 1,717 elF statements to describe 85,486 rec­
tangles. The other was a random-access memory (RAM), using only 371 statements 
to describe 196,992 rectangles. Figure A-58 plots run time (mean of several runs) for 
each of the designs, with one copy of the CIF data per cluster; Figure A-59 shows 
speedup. While speedup is monotonically increasing for both the designs, the curves 
are slightly convex. The sublinear speedup is due in part to processor idle time, 
averaging about 5 percent for the FIFO design and 2 percent for the RAM. 

If processor idle time were the only factor preventing linear speedup, the speedup 
would equal the average number of busy processors. Actually, the speedup is 
slightly less than this, a fact that can be attributed to two factors: contention for 
shared memory (the elF data and the common task queue) and overhead of mes­
sage operations to send and receive from the task queue. The magnitude of these 
effects can be estimated by dividing the speedup by the average number of busy 
processors. If this fraction is subtracted from 100 percent, the result is the percent­
age of run time lost due to contention and communication effects (Figure A-60). 

This figure suggests that contention for CIF data is a more significant overhead 



Figure A-58 

Figure A-59 

A. Experiments Performed on Cm* 387 

Execution Time of Lane's Design-Rule Checker 

(;)5000 
"'0 
t: 

~4000 \ 

~ \ 
~ .. ,,"" I \ ,,;;;,';)vvv 

:i 
(.) 
CD 

~ 
. 2000 

1000 

o 5 10 

Speedup of Lane's Design-Rule Checker 

Q.,35 
.g 

CD 
CD 30 
~ 

25 

20 

15 

10 

5 

o 

o FIFO queue design 
[J RAM design 

5 10 

o FIFO queue design 
o RAM design -

15 20 25 30 35 
Number of processors 

Linear 

s~~'p'·' 

15 20 25 30 35 
Number of processors 



388 Appendix 

than contention for, and manipulation of, the common queue. Overhead increases 
significantly out to the first cluster boundary (at eight processors), then nearly levels 
off. If queue manipulation were the major overhead, we would expect the overhead 
to continue to rise-perhaps even faster, since costly intercluster accesses are now 
required. In fact, overhead drops slightly at nine and ten processors. This is consis­
tent with the notion that a second, relatively contention-free copy of data in the new 
cluster lowers the overhead more than intercluster queue manipulation raises it. 

More support for this explanation comes from overhead measurements when the 
experiment is run with a single copy of the CIF data (Figure A-61). The overhead 
continues to rise almost linearly, even after the first cluster boundary is crossed. In 
fact, the slope of the curve increases slightly, ostensibly as a result of the intercluster 
accesses. By contrast, replicating the data in each Cm differs little from using one 
copy per cluster. The reason is that the CIF data is held in objects that are smaller 
than 4K bytes, so memory accesses still require Kmap mediation (see Section 
6.1.1). There is some improvement owing to reduced contention, but it is slight. 

A.21. Parallel Production Systems: OPS3 

Algorithm name: Parallel Production Systems: OPS3. 
Cm* configuration: approximately 30 Cm's, 4 clusters. 
Operating system: MEDUSA. 

Other software in environment: NEST. 

Experimenters: Mike Rychener, Joe Kownacki, Zary Segall, 1983-86. 
References: [Rychener 80, Brownston et al. 85]. 

OPS3 is a language that can be used in rule-based programming for production 
systems, which have found wide application in artificial intelligence and the design of 
expert systems. Rule-based programming is founded upon the production rule, 
which consists of two parts: a left-hand side (LHS), which specifies conditions or 
patterns to be searched for, and a right-hanq side (RHS), which represents changes 
to be made to working memory whenever the corresponding LHS is matched. The 
execution of an OPS3 program consists of a series of recognize-act cycles. In each 
cycle, a match is recognized in the LHS of some rule, and the action specified by its 
RHS is executed. It is possible for more than one LHS to match working memory 
during a cycle; in this case, a conflict is said to occur. One of the matches must be 
chosen by a process known as conflict resolution (CR). 

CR proceeds as follows. Each time a match is found, information representing the 
match (specifying which rule matched and what data caused it to match) is recorded 
in a small data structure called an instantiation. During the CR stage, all the instan­
tiations are evaluated based on criteria built into the program, and the one that best 
"promotes program execution" is chosen. This instantiation determines which RHS 
is to be executed. Working memory is then updated accordingly. 

OPS3 programs tend to be characterized by large numbers of rules and long exe­
cution times. Matching consumes most of this time-90 to 95 percent in a typical 
program. While matching involves vast amounts of reading, however, it requires 
very little writing. Matching produces relatively few instantiations, and a single 



Figure A-60 

Figure A-61 

A. Experiments Performed on Cm* 389 

Overhead of Contention and Communication in Lane's Design-Rule Checker 

c: 25 
.e 
~ 

~ 
(J 

't: 
E 20 
~ 
0 $/ 
(,) 

'tJ 
c: 15 
C1l 
c: .e c: 
Q) 10 c: o FIFO queue design 
0 o RAM design (J 

2 
t; 
..e 

5 

c: 
Q) 
(J ... 
Q) 
Q. 0 5 10 15 20 25 30 35 

Number of processors 

Effects of Duplicating CIF Data on Overhead (FIFO Queue Design) 

o Single copy of CIF data 
o Copy in each cluster 
6. Copy in each Cm 

5 10 15 20 25 30 35 
Number of processors 



390 Appendix 

instantiation is unlikely to be larger than ten words. The other phases of the 
program are unlikely to be a bottleneck. CR is unlikely to limit performance because 
of the slow and staggered rate at which matches are produced. The typical RHS 
makes only a few modifications to working memory, so the action phase usually 
finishes quickly. 

Fortunately, the matching phase is quite susceptible to parallelism. Each rule is 
examined independently so the rules can be parceled out among several proces­
sors. Because the rules are static in nature, it is not necessary to modify them once 
the program has begun execution. Relatively little information must be written, so 
contention for working memory is not a problem. Indeed, the matching phase of an 
OPS3 program almost perfectly fits the "small independent computations" paradigm 
of algorithms that approach linear speedup. The algorithm exhibits the multiphase 
structure introduced in Section 11.4.1. Both the length of the reconstitution phase 
and the other overheads are small (Figure 11-5), rendering the algorithm as a whole 
susceptible to near-linear speedup. 

eM* IMPLEMENTATION. Parallel OPS3 is implemented on em* with three different 
kinds of processes (Figure A-62). First, there are the matching processes, each of 
which executes on a dedicated processor. The rules are partitioned between the lo­
cal memories of these processors at load time. The memory that contains the rules 
is known as the program memory, or PM. In contrast to PM is working memory, or 
WM. This memory comprises a set of working memory units, or WMUs, which store 
data. Working memory is replicated in each processor and updated in parallel. 

A single process is responsible for CR and action execution. It is active during the 
matching phase, comparing each new instantiation against the "best" instantiation 
so far. During the action phase it executes alone. In addition to these functions, it 
also handles communication between matching processes, as described below. A 
user-interface process rounds out the OPS3 task force. It handles communication 
with the terminal and sets the agenda for the other processors. 

The only shared memory in the task force is a small communication area, which 
resides in the CR / action processor and is implemented as a pool of buffer slots. 
When matching processors produce an instantiation, they transfer it back to the 
communication area. As each matching process completes the recognition cycle, it 
signals CR / action using the same communication area. Communication occurs in­
frequently and does not significantly affect performance. 

When the action phase modifies working memory, it places in the communication 
area a condensed representation of changes, known as the refraction set. Upon 
completion, the action phase signals the matching processes, which then update 
their copy of WM from the refraction set. This organization serves to remove all 
memory contention from PM and WM accesses. The only remaining sources of con­
tention overhead are references to the communication area and updating with the 
refraction set. References to the communication area are so infrequent that conten­
tion is negligible; refraction-set contention is brief because the amount of data trans­
ferred is small. Most of the deviation from linear speedup is caused instead by un­
balanced matching-processor workloads, a point that we shall return to later. 



Figure A-62 

A. Experiments Performed on Cm* 391 

Structure of Parallel OPS3 

MATCH #i 

Parse CR/Action o PMatch #n 0 

A naive, or unfiltered, implementation of matching would examine all the rules 
during each cycle. Furthermore, each variable unit (component of an LHS) would be 
compared to all WM units in each matching cycle. This strategy is inordinately ex­
pensive, and it is better to "filter" the rules or the data. Using the technique of rule 
filtering, the only rules examined during a matching cycle are those relevant to the 
changes made to WM during the previous action cycle. 

Data filtering is a little more complicated to explain. Each variable unit and WM 
unit is endowed with three "anchors," which represent characteristics that best typify 
its attributes. For example, if an OPS3 program manipulated geometric shapes, an 
anchor might identify a certain rule as looking for a "ball" or a "block." Matching for 
this rule would ignore WM units that contained shapes other than balls or blocks, not 
even considering their other characteristics such as size and color. The choice of 
anchors is crucial in performance because.they control the order of comparison. The 
three most salient characteristics should be programmed as anchors. OPS3 limits 
the number of anchors per variable unit to three, as experience has demonstrated 
that additional anchors have little impact on performance. 

THE TIC-TAC-TOE PROGRAM. The parallel production-system experiments on em* 
were run using a tic-tac-toe program written in OPS3. This program was tailored to 
provide a parallel-processing workload of interesting proportions but still of manage­
able size. The program makes moves for both the X and the 0 players. It also per­
forms the functions of a "referee," examining the board for ~ win after each move. It 
consists of 23 rules, of which 9 are considered to determine the computational 
characteristics of the program. These examine the board for specific X and 0 pat-



392 

Figure A-63 

Appendix 

Performance of OPS3 Tic-Tac-Toe Program, with and without Filtering 

:: 350r 
Qi 
~ 
0300 

~ 
.§ 250 
:; 
o 
~ 200 

150 

100 

50 

<> No filtering 
A Data filtering only 
o Rule filtering only 

o Rule and WM unit filtering 

o 2 3 4 5 6 7 8 9 10 

Number of matching processors 

terns to determine the next move, or if there is a next move. They consist of player 
rules, which examine the board for a line empty except for one player mark, a line 
that has two opponent marks, or a line with two player marks, along with other 
similar patterns. The referee rules examine the board for a line full of identical marks 
or no empty positions. The other rules are simpler and primarily perform control 
functions for the program. The working memory for the program represents each of 
the nine board positions by an individual WM unit. The value of a position's mark at­
tribute is empty, X, or O. 

Results. Figure A-63 shows how filtering affects execution time for different num­
bers of processors. The unfiltered case represents a situation in which all 23 rules of 
the tic-tac-toe program are examined each cycle. In addition, each variable unit of 
each LHS is compared to all WM units during the examination process. The com­
binatorial number of comparisons is drastically affected by filtering. For example, 

there are 27,705 such comparisons without data filtering and 3,762 with filtering. 
When rule filtering is added, this number drops to 2,877. 

Without rule filtering, 989 rules are examined during the execution of the 
program; with rule filtering, this number decreases to 155. As a result, no more than 
8 rules are examined each cycle. These 8 rules are the ones that produce the player 
moves during the game. Note that the minimum execution time for the filtered case 
is reached at the point where 8 matching processes are executing in parallel. In this 
situation, each rule resides in a separate process, so parallelism is maximal at this 
pOint. 



Figure A-64 

Figure A-65 

A. Experiments Performed on Cm* 

Observed vs. Optimal Execution Time for OPS3 Tie-Tae-Toe 

60 

40 

20 

\ 
o Filtered execution time 
• Ideal time (only longest rules) 
• Ideal time (only successful rules) 

.-------------. . -----------------------------------------. 
o 2 3 4 5 6 7 8 9 10 

Number of matching processors 

Time to Make Local Copies of WM Data in Tie-Tae-Toe Program 

o 2 3 4 5 6 7 8 9 10 
Number of matching processors 

393 



394 Appendix 

Figure A-64 ~ompares the observed execution time for both kinds of filtering to 
the theoretical minimum execution time. The lower of the two "ideal" lines 
represents the calculated execution time (for one matching process) in the impos­
sible case where only the correct rule is examined and executed each cycle. This 
situation is unrealizable because it assumes a 100 percent a priori knowledge of the 
OPS3 program execution sequence. In one sense, it does not even provide a fair 
comparison. The successful rules in a production-systems program are not neces­
sarily the longest-executing rules. If each processor executed exactly one rule, the 
execution time would be determined by the longest rule, since CR cannot complete 
before all possible instantiations have been created. Using the time to match and ex­
ecute the longest rule in place of the successful rule, the higher of the two "ideal" 
lines is obtained. At eight processors, the observed execution time is only 25 percent 
higher than the theoretical minimum. 

As we have seen so often before, the poorest algorithm again shows the best 
speedup. At eight processors, the speedup of the unfiltered algorithm is 4.5, while it 
is only 2.6 in the case where both kinds of filtering are used. Part (generally 5 to 10 
percent) of the deviation from linear speedup can be explained by the cost of main­
taining local copies of WM in each matching processor. The cumulative cost over 40 
cycles is shown in Figure A-65. The curve represents both filtered and nonfiltered 
cases because the same changes are made to WM in both cases. The fact that the 
deviation from linearity is so large testifies to the effect of unbalanced workloads. 

The configuration of matching and CR / action processes was varied in an attempt 
to discover how distribution across clusters would affect execution time. Surprisingly, 
placing the CR / action process in a separate cluster had no perceptible effect on 
performance. The OPS3/ Cm* design strove to minimize interprocess communica­
tion and succeeded to the extent that communication overhead was insignificant. 

Acknowledgment. The discussion of the LMSK algorithm in Section A.18 was taken directly 
from [Mohan 83]. 



Appendix B 
Coscheduling Performance 

Section 5.5 explained the need to ensure that all activities (or processes) of a task 
force are simultaneously assigned to piocessois in Oider to prevent activities from 
blocking for unnecessarily long periods of time when they communicate via mes­
sages. Suppose, for example, several processes are executing on a multiprocessor 
and sending and receiving messages among themselves, but that the system's 
scheduling policy allows half the processes to execute only in odd time slices and 
the other half only in even time slices. If the processes are interacting frequently, it is 
likely that most or all of the processes in the executing half will block awaiting 
messages from processes in the descheduled half. Regardless of the raw speed of 
the processes or of the interprocess communication mechanism in this example, the 
processes will be able to interact only as frequently as the system reschedules 
processors. Even more intelligent schedulers than the one in this example can 
produce similar behavior unless they take into account the communication patterns 
of the processes. 

A task force is said to be coscheduled when all its runnable activities are execl.'t­
ing simultaneously on different processors. Each of the activities in that task force 
also is said to be coscheduled. If at least one activity of a task force is executing but 
the task force is not coscheduled, then it is said to be fragmented; the collection of 
executing activities is referred to as the executing fragment of the task force. The 
coscheduling algorithms described in this section include both allocation and 
scheduling. It is important that scheduling be efficient because it occurs frequently. 
Allocation occurs less often, so it can involve more complex decisions. All the al­
gOrithms below assume that activities are never moved once they have been 
created and that a given activity executes on only a single processor. 

The system is considered to contain p processors. At any given time, the 
scheduler on each processor can choose between at most a activities.1 Thus activity 
space consists of pa activity slots to which activities may be assigned. Task-force 
allocation consists of assigning each activity of the task force to an empty activity 
slot. The value a is assumed to be large enough so that allocation always succeeds. 
Scheduling consists of selecting one activity slot in each processor, the activity in 
which it is to be executed by that processor. The slot assignment of an activity is not 
changed during its lifetime, and each activity is allowed to execute only on the 
processor to which it was assigned. The algorithms assume that no task force 
contains more than p activities. 

1 In MEDUSA p ranges from about 10 to SO, depending on the configuration, and a is fixed arbitrarily at 16. 

395 



396 Appendix 

B.1. Three Algorithms for Coscheduling 

The three coscheduling algorithms discussed in the following sections derive their 
"fiavor" iargeiy from their views of activity space. The first algorithm views activity 
space as a two-dimensionai matrix of activities, while the second and third al­
gorithms view activity space as a linear sequence. 

B. 1. 1. The Matrix Method 

Figure 8-1 

The matrix coscheduling algorithm is a very simple one, and it performs surprisingly 
well. The space of all activity slots is organized as a matrix with a rows and p 
columns (see Figure 8-1). The activity slots in one column comprise all those 
belonging to a single processor. A row of the matrix selects one activity from each 
processor. 

Allocation: See if there are enough unused slots in row 0 of the matrix to accommodate 
all the activities of the task force. If not, then attempt to assign all the 
activities to slots in row 1, and so on, until a single row is found that can hold 
the entire task force. 

Scheduling: This. algorithm uses a round-robin mechanism to multiplex the system be­
tween the different rows of the matrix. In time slice 0, each activity in row 0 
is given highest execution priority on its processor, thereby coscheduling all 
task forces in that row. In time slice 1, row 1 is coscheduled, and so on, 
until all task forces have been scheduled. Then return to row 0 and repeat. 

When a row is scheduled for execution, it is likely that one or more of the activity 
slots in that row will either be empty or contain activities that are blocked (e.g., while 
awaiting terminal input). Each processor so affected scans its activities for an activity 
in another slot that is runnable. If row n has highest priority, then the other slots for 
that processor are searched for a runnable activity in row order n -1, n - 2 , ... , 

Two-Dimensional Process Space in the Matrix Algorithm 

Processor 0 
Activity 0 

• 

Processor 0 
Activitya-1 

Processor p-1 
Activity 0 

• 

Processor p-1 
Activity a-1 



B. Coscheduling Performance 397 

0, a - 1, a - 2, ... , n + 1.2 If an activity in one of these slots is runnable, it is allowed 
to execute as an alternate. Unless empty activity slots cause all the other activities 
in the alternate's task force to run, the alternate will execute as a fragment. 

The alternate selection method presented above is applied independently by 
each processor; no attempt is made to select alternates in a way that maximizes 
coscheduling, except that the same selection algorithm is run by each processor. 
Thus it is almost certain that alternates will execute as fragments; an alternate that 
really needs coscheduling will block as soon as it attempts interactions with de­
scheduled activities. The method does have the nice property that there is a clean 
separation between global and local scheduling decisions. At a global level, all that 
must be done is to select the high-priority row of the matrix. Given the number of that 
row, each processor e&n schedule itself and perform alternate selection indepen­
dently. The simulation results presented below suggest that the gains to be had by 
selecting alternates centrally would be small; furthermore, a central scheduler would 
have to decide what to do with a processor anytime there is a change in the 
execution status of any activity belonging to that processor. With the simple-minded 
alternate selection, changes in execution status are handled locally by the kernel of 
the activity's processor. Global intervention occurs only on time-slice boundaries. 

The attractive features of the matrix algorithm are the simpliCity of its allocation 
and scheduling algorithms and the clean separation between local and global 
scheduling decisions. The algorithm has several drawbacks. First, the rigid partition­
ing of activity space into nonoverlapping blocks means that there are likely to be 
many unused activity slots in each row, especially when there are many task forces 
with just over p / 2 activities. This inefficiency is reminiscent of internal fragmentation 
in paged Virtual-memory systems. The other two algorithms are attempts to solve 
this problem; we shall see that they, in turn, suffer from an effect similar to external 
fragmentation in segmented-memory systems. A second disadvantage of the matrix 
method is the simple-mindedness of the alternate selection algorithm, which could 
cause opportunities for coscheduling to be missed. Finally, the matrix algorithm 
causes the execution priority of the whole system to change at the same time. Thus 
shared facilities used for context swapping (e.g., paging devices) will be loaded 
unevenly. 

B.1.2. The Continuous Algorithm 

Most of the drawbacks of the matrix algorithm arise because of the rigid partitioning 
of process space into the rows of the matrix. The continuous algorithm uses a 
different view of activity space to achieve denser packing and smoother scheduling 
(Figure B-2). For this algorithm, activity space is viewed as a sequence of activity 
slots. The activity slots in any p consecutive positions of the sequence belong to 
different processors. The allocation and scheduling algorithms consider at a par­
ticular moment a window of p consecutive positions in the sequence and slide the 

2 The direction of this search is significant. The activity in row n - 1 was scheduled in the previouS time slot 
and hence is most likely to have all of its memory pages and other execution state still loaded. 



398 

Figure 8-2 

Appendix 

Activity Space for the Continuous Algorithm 

Each processor's Each processor's Each processor's 
activity 0 activity 1 activity 2 

It 
Processor 0 

Activity 0 

,& A A 

t' • 
Processor p-1 ~ 

Activity 0 ~ 

It • 
Processor 0 ~ 

Activity 2 ~ 

t' 
Processor p-1 

Activity 2 

Window for allocation/scheduling !I---------I! -+ 

Processor i 
Activity 1 

Processor i-1 
Activity 2 

window across the sequence over time. For purposes of the algorithms below, 
activity slot 0 in processor 0 is considered to be in the leftmost position of the 
sequence, and activity slot a - 1 of processor p - 1 is considered to be in the 
rightmost position. 

Allocation 

Scheduling 

Place a window with p slots at the left end of the activity se­
quence. See whether there are enough empty slots in the window 
to accommodate the new task force. If not, then move the window 
one or more positions to the right until the leftmost activity slot in 
the window is empty but the slot just outside the window to the left 
is full. Repeat this until a window position is found that can 
contain the entire task force. 
Place a scheduling window of width p processors at the left end of 
the activity sequence. At the beginning of each time slice, move 
the window one or more slots to the right until the leftmost activity 
in the window is the leftmost activity of a task force that has not 
yet been coscheduled in the current sweep. When the window 
has advanced far enough that all existing activities have received 
execution time, return the window to the left side and start a new 
sweep. When the window contains empty activity slots or ac­
tivities that are not runnable, use the alternate selection mech­
anism from the matrix algorithm. 

There are several reasons for moving the allocation and scheduling windows in 
the way described above. In the case of the allocation window, there is no particular 
advantage in testing a window position if its leftmost slot is occupied; moving the 
window another slot will eliminate the occupied slot and may add an unoccupied slot 
at the right end. In addition, there is no point in testing a window position if an 
unoccupied slot has just been lost off the window's left edge; the best that could 
have happened is to add another unoccupied slot on the right side, which makes the 
new window poSition equivalent to the old position. There is much in common 
between this method of task-force allocation and the "bit-map" method of memory 
allocation; see, for example, Chapter 8 of [Habermann 76]. 



Figure 8-3 

Table 8-1 

B. Coscheduling Performance 

Unequal Treatment of Task Forces by Naive Continuous Algorithm 

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 

=~~J........J.--L.--i-J..-ITIIJTI 
o 5 10 15 20 
I I I I I I I I I I I I I I I I I I I I I I I I I .-

1------------11 ... Activity space 
Scheduling window 

An Example of Unequal Treatment of Different Task Forces 

Task force 

TF1 
TF2 
TF3 
TF4 
TF5 
TF6 
TF7 
TF8 

Coscheduled slices per scheduling sweep 

Move window to 
next task force 

1 
2 
3 
4 
1 
1 
2 
1 

Move window to 
noncoscheduled TF 

399 

There are similar arguments for moving the scheduling window so that its leftmost 
slot is always the leftmost slot of a task force. If the leftmost window slot is empty, 
nothing is lost by moving the scheduling window another slot to the right. If the 
leftmost slot is occupied but its activity is not the leftmost slot of a task force, then 
that task force cannot possibly be coscheduled; we might as well advance the 
window to the next task force. Moving to the leftmost slot of a task force guarantees 
that every window position coschedules at least one task force and every task force 
is coscheduled at least once in every sweep. 

If the scheduling window were simply advanced one task force each time slice, 
however, task forces of different size and location would receive unequal treatment. 
For example, consider the situation of Figure 8-3 and Table 8-1. where p is 10 and 
a task force with ten activities is surrounded by several task forces with two ac­
tivities. The scheduling window tends to move more slowly across small task forces 
than across large ones, thereby giving the small ones more coscheduled time slices; 
in the left column of the table, notice that TF4 receives four coscheduled slices to 
every one for TF5. In addition, large task forces cast a "shadow" over the task 
forces just to their right; although TF4 and TF6 each have two activities, TF4 
receives much more coscheduled time than TF6. Finally, task forces at the left end 
of the activity sequence receive harsher treatment than those at the right end (the 
left end of the sequence casts a shadow equivalent to that of a task force with p 
activities). To reduce this discrimination, the scheduling window should be moved 
each time slice, until (a) its leftmost activity is the leftmost activity of a task force and 



400 Appendix 

(b) that task force has not yet been coscheduled in the current sweep across activity 
space. 

The continuous algorithm reduces the problems caused by the rigidity of the row 
structure in the matrix algorithm. Task forces can be packed more tightly in activity 
space because empty slots that would have been in separate rows under the matrix 
algorithm may still lie within the allocation window used by the continuous algorithm. 
The context-swapping load is distributed more evenly by the continuous algorithm 
than the matrix algorithm because not all processors change scheduling priority 
each time slice. In spite of its dense packing of task forces, the continuous algorithm 
generally requires fewer position checks during allocation than the matrix algorithm; 
for details, see the results of the simulation described below. 

Unfortunately, the continuous algorithm still suffers from several drawbacks. The 
most serious problem concerns divisions within task forces. When the activity se­
quence becomes populated with many small "holes" (contiguous empty slots), new 
task forces are likely to be divided among several holes; the distance in the activity 
sequence between the leftmost and rightmost activiti~s of a new task force, referred 
to as its width, may be substantially greater than the size of the task force. A small 
task force with a large width will have similar scheduling properties to a large task 
force with the same width, as there are only a few scheduling window positions for 
which the task force will be coscheduled. As task forces become split between 
several holes, even the improved scheduling algorithm discussed above becomes 
unfair: Small contiguous task forces will receive many more coscheduled time slices 
than those that are large or badly split. This situation is analogous to external 
fragmentation in segmentation systems, where utilization of primary memory de­
grades substantially if the memory becomes too fragmented. The simulation results 
will verify that the continuous algorithm's behavior deteriorates badly as the system 
load increases and activity space becomes fragmented. 

B.1.3. The Undivided Algorithm 

This algorithm is identical to the continuous algorithm in every respect except that 
during allocation, all the activities of each new task force are required to be con­
tiguous in the linear activity sequence (Le., the task force may not be divided be­
tween two or more holes). The undivided algorithm does not pack activity space 
quite as efficiently as the continuous algorithm, but it reduces fragmentation and 
thus results in substantially better system behavior under heavy loads (see the 
simulation results). In fact, this algorithm performed smoothly under a variety of 
system conditions and showed the least sensitivity of the three algorithms to factors 
such as task-force size and load. 

B.2. Analysis of the Algorithms by Simulation 

A simulation model was written to provide a more quantitative understanding of the 
algorithms. The simulator analyzes the scheduling behavior of a 50-processor sys-



B. Coscheduling Performance 401 

tem using each of the above three scheduling algorithms under a variety of synthetic 
loads. 

B.2.1. Parameters of the Simulations 

Because of the paucity of experience with production workloads on general-purpose 
multiprocessors, there exists almost no information on how such systems are ex­
ercised by concurrent programs. !n addition, the simulation was carried out relatively 
early in the history of em"', when there were reiativeiy few experimentai programs to 
analyze. The simulation experiments were therefore based on a simple-minded 
model parameterized in the following way: 

Size The expected task-force size (individual task forces were chosen from a 
pseudo-random exponential size distribution). 

Load The expected ratio of the number of runnable activities to the number of 
processors. (This value is used in generating task-force arrivals. Arrivals 
are most likely to be generated when the load is zero; the arrival rate 
declines linearly until it reaches zero when the load is twice as high as the 
expected load. This models the reluctance of users to submit jobs to a 
heavily loaded system.) 

Lifetime The expected lifetime of task forces (actual lifetimes are chosen from a 
pseudorandom exponential distribution). 

Idle fraction The simulator permits task forces to be in the system without being run­
nable. The idle fraction is defined as the expected fraction of the task 
forces' lifetime that they are not runnable; task forces are made runnable 
and not runnable for pseudorandom exponential periods of time based on 
the idle fraction. Most of the results presented below assume a zero idle 
fraction; Section B.2.4 discusses the effects of idle time. 

For lack of a suitable model of communication between activities of a task force, 
the simulator does not allow a task force to be partially runnable. All the activities of 
a task force are made runnable or not runnable together. F'Jrtunately, this assump­
tion leads to a pessimistic estimate of coscheduling. 3 

Since the purpose of the simulation is to measure how effective the three al­
gorithms are, most of the results are presented in terms of coscheduling 
effectiveness. Coscheduling effectiveness is the mean (across all the time slices of a 
simulation run) of the ratio of the total number of processors executing coscheduled 
activities to the total number of processors with runnable activities. A coscheduling 
effectiveness of 1.0 is ideal. Coscheduling effectiveness measures the system's 
ability to coschedule task forces, not the response time that will be seen by in­
dividual users or the overall performance of the system. In situations where co­
scheduling is not needed (for example, when there is no interprocess com-

3 In a real system, if a task force is only partially coscheduled, the executing fragment might block on 
communication with the descheduled part of the task force; another task force might become coscheduled by 
the alternate selection mechanism. In the simulator, the fragment continues to execute even though it is not 
coscheduled, and hence it leads to a lower overall estimate of coscheduling. 



402 Appendix 

munication), overall system performance may not depend on coscheduling effec­
tiveness. 

B.2.2. Effectiveness as a Function of Load 

Figure B-4 

Figure 8-4 plots the coscheduling effectiveness of the three coscheduling al­
gorithms as a function of system load for a mean task force size of 13.5 activities 
and no idle time. As expected, all the algorithms performed quite well for under­
loaded systems and deQraded as the system load increased. Above a load of two or 
three, the coscheduling effectiveness leveled off at about two-thirds. 

The same overall behavior as in Figure 8-4 was observed for all system con­
ditions that were simulated. This can be understood by considering the two factors 
that result in a coscheduling effectiveness less than 1.0: 

Straddling. In the continuous and undivided algorithms, it is possible for a task' 
force to straddle the right end of the scheduling window. If this occurs, then 
those activities inside the window will execute as a fragment and lower the 
system's coscheduling effectiveness. 

Alternate Selection. In all three algorithms, alternate selection occurs when there 
are vacant activity slots in the current high-priority portion of activity -space. 
Because of its simple-minded ness, alternate selection will almost never result 
in coscheduling. If there are other runnable activities in the processors for 

Coscheduling Effectiveness of Three Algorithms 

~ 1. 
~ 
c: 

.~ 
ti .9 
~ 
II) 

tn 
.~ 
~ .8 

.c: 
(.) 
~ 

8 .7 

.6 

o Matrix algorithm 
f.. Continuous algorithm 
o Undivided algorithm 

Avg. task-force size: 13.5 activities 
No idle task forces 

.5~~~~~~~~~~-----~-----~ 

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 
System load 



B. Coscheduling Performance 403 

which alternate selection occurs, they will likely execute as fragments and 
degrade the system's coscheduling effectiveness. 

For an average system load less than 1 .0, almost all activities are allocated in the 
first row (for the matrix method) or in the first p activities in the sequence (for the 
other two methods). Thus straddling almost never occurs. When vacant slots exist in 
the high-priority portion of activity space, it is likely that the processors involved 
IV"\nt",in n,... "'Mi\litio~ ",t ",II· ~in"o tho ",...~"honillin" offo"ti\lono",,,, i", ~otorn"lino~ ,...nl" 
"""'IILQ.III IIV Q""'YILI"'~ WI. ""'I', ~I'I"'V LIIV VV'''''V''V'''''W'III~ "'11"''''LIYYllvQ.;J I,.;;J uv"'-'.IIII.I""" "'1111 

by processors with runnable activities, these holes will not degrade effectiveness. 
When the average system load becomes greater than 1.0, then both straddling and 
alternate selection begin to occur, and scheduling effectiveness degrades. Strad­
dling and alternate selection are functions of how task forces are packed into activity 
space; for large loads the packing arrangement becomes independent of load (it 
depends only on the task-force size distribution and the allocation algorithm), so 
coscheduling effectiveness levels off. 

Figure 8-4 also plots 80 percent confidence intervals for the undivided algorithm, 
shown as vertical lines in the figure. The confidence intervals are for individual time 
slices: in any given time slice, one can expect the coscheduling effectiveness to fall 
within the range of the bars with 80 percent probability. Note that the short-term 
fluctuations for any single algorithm are larger than the differences between the 
algorithms. In spite of the short-term fluctuations, however, the average over several 
time slices converges very quickly. Different runs with different random seeds 
produced identical average effectiveness values to within several significant digits. 

B.2.3. Effectiveness as a Function of Task-Force Size 

The differences between the algorithms are most apparent in comparisons of system 
performance under varying task-force sizes. Figure 8-5 shows how scheduling effec­
tiveness varies as a function of task force size tor an average load of two. For each 
size, the algorithm showed similar behavior (as a function of load) to that of Figure 
8-4, with variations only in the level at which effectiveness stabilized for high loads~ 

The data in Figure 8-5 supports the predictions made earlier. For very small and 
very large task forces, all three algorithms should perform quite well. In the limiting 
cases of average size 1 or 50, the scheduling effectiveness of each algorithm is 1. 
The continuous algorithm performs worst when there are many small task forces. 
Under these conditions, the average hole size will be small; task forces are likely to 
be fragmented between several small holes and hence have widths much larger 
than their sizes. As the average task-force size increases, so does the average size 
of the holes; task-force fragmentation occurs less drastically, so coscheduling effec­

tiveness improves. 
The matrix algorithm is not as prone to fragmentation as the continuous al­

gorithm, so its performance does not fall as rapidly when task-force size increases. 
As the average task-force size approaches 25 (one-half the number of processors), 
however, the matrix algorithm is unable to pack them very densely in the matrix 
rows. At an average size of 25, activity space will only be about 50 percent packed; 



404 

Figure 8·5 

B.2.4. Idle Task Forces 

Appendix 

Coscheduling Effectiveness as a Function of Mean Task-Force Size 

~ 1,Or\ 
~ I 
.~ 
U .9 
.! .... 

CD 

.~ 
~ .8 

.(: 
u 

8 .7 

.6 

D ~Y1atrix algoiithm 
A Continuous algorithm 
o Undivided algorithm 

System load: 2.0 
No idle task forces 

.5~----~----~----~--------~ o 5 10 15 20 25 
A verage task-force size 

alternate selection does not produce much coscheduling, so the coscheduling effec­
tiveness is only about 50 percent. 

The undivided algorithm offers a compromise where large task forces can be 
packed relatively densely, but small task forces do not cause fragmentation. It shows 
less sensitivity to task-force size than either of the other two algorithms. Since no 
data is available on what kind of task-force size distribution to expect in actual 
systems, the undivided algorithm appears to be the best choice. 8ecause the un­
divided algorithm performed worst with a mean task force size of 13.5 activities, that 
size was used for most of the remaining measurements discussed in this section. 

In actual systems, all activities cannot be expected to be runnable all the time. If a 
task force becomes idle while waiting for some external event such as terminal input, 
then its activities occupy slots in activity space without being runnable. This will likely 
reduce the degree of coscheduling in the system by causing more alternate selec­
tion to occur. Experience with time-sharing systems indicates that most programs 
spend most of their time in an idle state, so the simulator was modified to provide 
data on the effects of idle task forces. 

Figure 8-6 plots coscheduling effectiveness as a function of load for an average 

task-force size of 13.5 and an idle fraction of one-half. Although the general behavior 
of the algorithms is not altered greatly by idle time, a comparison of Figures 8-4 and 
8-6 shows that the continuous algorithm suffers somewhat more from idle time than 



Figure B-6 

Figure B-7 

B. Coscheduling Performance 

Coscheduling Effectiveness with an Idle Fraction of 0.5 

.8L 

.6 

o Matrix algorithm 
A Continuous algorithm 
o Undivided algorithm 

Avg. task-force size: 13.5 activities 
Idle fraction: 0.5 

.5~--~--~----~--~--~----~--~ 
.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 

Systemioad 

Coscheduling Effectiveness as a Function of Idle Time 

II) 1.0 
II) 
II) 
c: 
.~ 
U .9 
~ 
II) 

0) 

.~ 
~ .8 

.r:: 
u 

8 .7 

.6 

o Matrix algorithm 
A Continuous algorithm 
o Undivided algorithm 

Average task-force size: 13.5 activities 
System load: 0.5 

.5~~--~~--~~--~~--~~~ 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
Idle fraction 

405 



406 Appendix 

the other two algorithms. Figure 8-7 charts coscheduling effectiveness as a function 
of idle fraction for an average system load of one-half. For very large idle fractions 
the performance degradation is one-third or greater. 

The curves of Figure 8-7 can be explained as follows. In the limiting case of very 
high idle fractions, oniy one task force in the high-priority portion of activity space 
(the current row or scheduling window) will be runnable. If any other task forces are 
to be coscheduled, then that coscheduling must occur as a result of alternate selec­
tion. Note also that with an average load of 0.5 and an average task-force size of 
13.5, on the average two or more task forces will be runnable at any given time. The 
continuous algorithm tends to fragment task forces so that it is quite likely that the 
runnable task forces will overlap in their processor usage; hence only one will be 
coschedulable. 80th the undivided algorithm and matrix algorithm tend to allocate 
task forces in contiguous slots (the undivided algorithm by design, the matrix al­
gorithm by a quirk of its implementation), so there will be fewer overlaps between the 
runnable task forces. Thus under high idle fractions the matrix and undivided al­
gorithms have somewhat better characteristics than the continuous algorithm. 

B.2.5. Relative Treatment of Different-Size Task Forces 

Figure 8-8 graphs the coscheduled fraction as a function of task-force size for the 
undivided algorithm under three different system loads. The coscheduled fraction 
for a task force is defined as the ratio of the number of coscheduled time slices 
received by the task force to the number of time slices when at least one of the task 
force's activities is executing. Under light loads all task forces are nearly always co­
scheduled, but under moderate or heavy loads the largest task forces are co­
scheduled less than one-third of the time. Although Figure 8-8 contains data for just 
the undivided algorithm, the corresponding data for the other two algorithms is 
similar. 

In Figure 8-9 the average fraction of the activities of a task force executing is 
plotted as a function of task-force size. Once again, all task forces receive good, 
nearly identical treatment when the system is lightly loaded; large task forces suffer 
somewhat more than small task forces as the load increases. It is encouraging to 
note, however, that even under heavy loads, the average executing fragment for 
large task forces contains more than half the activities of the task force. The vertical 
bars in Figure 8-8 are 80 percent confidence intervals for the behavior of any single 
task force in the load = 1 .0 curve. 

Figure 8-10 shows the relative number of time slices given to each size executing 
fragment for large task forces (30 to 50 activities), using the undivided algorithm 
under three different system loads. The rightmost point in each curve is the overall 
coscheduled fraction for task forces with sizes between 30 and 50. 



Figure B-8 

Figure 8-9 

B. Coscheduling Performance 

Fraction of Time that Task Forces Are Scheduled 

c: 
.~ 
U 
CQ .. .... 
~ 
.! 
:::s 
~ 
Cb 

.c::: 
(,) 

S 
0 

1.0 

.9 

\:: .8 

.7 

"6~ '\ -............ 

~ .5 

.4 0 LoadO.5 
I:. Load 1.0 

.3 0 Load2.0 

.2 Average task-force size: 13.5 activities 
Undivided algorithm 

.1 

o 10 20 30 40 50 
Task-force size 

Average Size of Executing Fragments, as a Fraction of Total Task Force 

Avg. task-force size: 13.5 activities 
Undivided algorithm 

.5L---~~--~----~----~----~ 
o 10 20 30 40 50 

Task-force size 

407 



408 

Figure 8-10 

Appendix 

Fraction of Time Slices Used by Various-Sized Task-Force Fragments 

~ .9r 
~.8 
Q) 

~ .7 
..... 
o 
.§ .6 

U 
~ .5 
u.. 

.4 

.3 

. 2 

[J load 0.5 
ll. load 1.0 
o load2.0 

Average task-force size: 13.5 activities 
Undivided algorithm 
No idle task forces 

Graph shows the fraction of time slices 
given to execution fragments of various 
sizes for task forces of 30 - 50 activities . 

.0 .1.2.3.4.5.6.7.8.9 1.0 
Fraction of task force executing 

B.3. Efficiency of Allocation and Scheduling 

Table 8-2 

The simulator gathered data about the amount of work involved in allocation and 
scheduling (see Table 8-2). During allocation the undivided algorithm required 
many more potential task-force locations to be checked than either of the other two 
algorithms. The continuous algorithm consistently required the least number of 
checks but produced somewhat less coscheduling as a result. The continuous and 
undivided algorithms provided smoother processor scheduling, with only about half 
as many context swaps occurring in each time slice as occurred with the matrix 
algorithm. 

Allocation and Scheduling Statistics for the Three Algorithms 

Average number of positions 
examined during each allocation 

Average fraction of processors 
context swapping each time slice 

Matrix 
algOrithm 

1.6 

.67 

Undivided 
algorithm 

1.3 

.37 

Continuous 
algorithm 

8.7 

.37 



8.4. Summary 

B. Coscheduling Performance 409 

The coscheduling of task forces is in many ways very similar to the dynamic alloca­
tion of memory. Naive scheduling algorithms can easily lead to thrashing, but with a 
little care, quite acceptable degrees of coscheduling appear to be obtainable. The 
algorithms presented here represent three sets of trade-offs involving the cost of 
allocation and scheduling, the density of packing (both within a task force and for the 
system as a whole), and forms of internal and external fragmentation. The con­
tinuous algorithm provides fast allocation and scheduling and dense packing of the 
system as a whole, but it is prone to severe external fragmentation. It consistently 
performs worse than the other two algorithms. The matrix algorithm provides fast 
allocation and scheduling but suffers from internal fragmentation when many large 
task forces are present. Its overall performance, however, was only occasionally 
worse than the undivided algorithm, and its implementation is by far the simplest. 
For these reasons the matrix algorithm is implemented in the current version of 
MEDUSA. The undivided algorithm requires rather more effort in allocation than either 
of the other two algorithms but provides for dense packing both within task forces 
(they are always allocated contiguously) and for the system as a whole; this resulted 
in insensitivity of the algorithm to several conditions that had strong effects on the 
other algorithms. 

For moderate system loads (around 1.0), a coscheduling effectiveness of be­
tween 0.7 and 0.9 can be expected. Application programmers can expect small task 
forces to be coscheduled almost all the time under almost any conditions; under 
moderate loads, large task forces will be coscheduled about half the time, with the 
average executing fragment containing about four-fifths of the activities of the task 
force. 

Some caution must be exercised in interpreting the simulation results because 
the algorithms and the simulation program do not take into account several factors 
that could affect performance. The simulator does not measure the effect of location 

specifiers on the algorithms (see Chapter 8); extensive use of location specifiers is 
most likely to harm the continuous and undivided algorithms by increasing the width 
of task forces. The algorithms described here contain no provision for the dynamiC 
addition of activities to task forces. Although the algorithms can be extended to 
include dynamic task-force expansion, it appears that coscheduling will suffer some­
what as a result. The random distributions used in the simulation were chosen 
almost arbitrarily because no data is available on what kind of load to expect in a 
running system. It is encouraging to note that the simulation results are only mildly 
sensitive to the task-force size distribution and idle fraction. If the real-world load 
differs substantially from the simulated load, the results presented here could be 
invalidated. 

Acknowledgment. This appendix has been condensed from [Ousterhout 82]. 





Appendix C 
Performance of Parallel Algorithms 

Chapter 11 studied severa! factors that affect the performance of paralle! algorithms. 
One of the major tools in this study was a performance model created by Vrsaiovic 
et al. [Vrsalovic et al. 84a, Vrsalovic et al. 84b]. Models of algorithm / architecture 
combinations are essential, both to discover how to optimize algorithms for existing 
architectures and to develop new ~lrchitectures whose characteristics are well suited 
for running important algorithms. This appendix develops the Vrsalovic model, which 
uses the characteristics of architectures and algorithms to predict the performance of 
C1 particular algorithm on a particular architecture. 

Several earlier multiprocessor models [Bhandarkar 75, Baskett and Smith 76, 
Marsan and Gregoretti 81, Marsan and Gerla 82] were based on statistical methods, 
predicting statistical mean values for performance over some time interval. It was 
shown [Vrsalovic and Siewiorek 83] that the performance of a parallel system in the 
short term-during one loop iteration, for example-can also be used to model 
long-term performance. Like the model of Kinney and Arnold [Kinney and Arnold 
78], the model presented here represents a parallel computation as a sequence of 
identical loop iterations. Unlike a standard queueing or simulation model, it does not 
account for randomness in loop iteration times. Hence it may be unsuitable for 
applications where unpredictable branching or data dependencies cause iteration 
times to vary widely. Although it models only the parallel phase of a multiprocessor 
computation, it can easily be extended to consider a serial phase as well. It is 
computationally simpler than many queueing or simulation models, however, and 
thus may offer a more tractable means of dealing with complex but regular computa­
tions. 

The model presented here explains performance differences between synchro­
nous and asynchronous algorithms. It accounts for the effects of different processor 
and global-memory speeds. It also considers the different ways in which algorithms 
decompose for parallel processing-for example, dividing a computation into N 
processes does not necessarily mean that each process does 1 / Mh as much work 
as the original. The model will be described in two stages. In the rest of this 
section, we outline a simple and intuitive model whose capabilities are limited. Later 
sections describe a more detailed and powerful version of it. 

C.1. A Simple Analytical Model 

The model assumes a muHiprocessor composed of N processors, each of which has 
its own private memory for code and local data. In addition, each processor has 

This appendix has been adapted from [Vrsalovic et aJ. 84b] by Dalibor Vrsalovic, Daniel 
P. Siewiorek, Zary Z. Segall, and Edward F. Gehringer. 

411 



412 

Figure C-1 

Appendix 

General Architecture of a Multiprocessor System 

Local memories 

Processors 

Connection network 

Common 
resources 

access, via the interconnection network, to the common resources of the system, 
notably a global memory (Figure C-1). Access time to the global memory is indepen­
dent of the location of the processor accessing it. Requests for common resources 
are granted on a FIFO basis rather than according to a priority scheme. This allows 
the waiting time to be modeled as a linear function of N. 

The model assumes that the parallel workload is infinitely decomposable. Each 
process performs a series of identical iterations. Each iteration is made up of a 
single period of processing and a single period of access to global memory (access 
to local memory is "charged" to processing time rather than being modeled 
separately). Due to the large number of iterations, startup transients are neglected. 
We defined the following: 

tp == the processing time within an iteration 

ta == the global access time within an iteration 

tw == the waiting time due to contention for global resources 

The model utilizes the concept of effective processing power, which is defined as 
the number of processors in the system times the average utilization of each proces­
sor. The effective processing power E can be expressed as 

(1 ) 

Let us assume that the load is balanced (Le., that tp and ta are the same for all 
processors). In the case of a synchronous workload, all processors must finish the 
current iteration before any processor may begin a new iteration. In the worst (that 



C. Performance of Parallel Algorithms 413 

is, most synchronous) case, all processors attempt to access memory at precisely 
the same time. The completion time for the iteration will be determined by the 
processor whose access finishes last. This processor waits for tw = (N - 1 ) ta time 
units. Since the rest of the processors must wait for the last processor to finish, all 
other processors also have tw = ( N - 1 ) tao If the load is balanced, the sum in equa­
tion 1 degenerates to multiplication by N, from which we obtain 

and thus, 

N 
E = 1 + (N - 1 )p , 

where 

AI 
IV 

I?\ ,--, 

(3) 

If the workload is asynchronous, and the processors are executing the same instruc­
tions, they will soon become "skewed" so that they attempt their global accesses at 
different times. Thus there will be no contention if N - 1 processors have time to 
complete their accesses while the Nth is processing-that is, if tp?(N- 1)ta' or, 
equivalently, when P.:S 1/ N. 

Hence when N.:S 1 / p, iteration time is dominated by processing time and E = N. 
When N > 1 / p, however, contention does occur, and the waiting time for each task 
is ( N - 1) ta - tp' In this case, iteration time is dominated by access time, and 

ta + tp 1 
E=1 

N ta + tp + (N - 1) ta - tp P 

Thus in the asynchronous case, 

E = min [N, 1 / p ] (4) 

Figure C-2 gives a general idea of the shape of these curves for p = 1/3 and p = 1/10. 

Note that E is convex for the synchronous load and linear for the asynchronous load 
until the maximum is reached at E = 1/p. 

The expressions given above for E have been derived under the assumption that 
global access and local processing are atomic operations and that each iteration has 
only one period of each kind. In practice, this is seldom true-an iteration frequently 
consists of several interleaved processing and access periods. However, the ex­
pressions we have given for E in the synchronous case and asynchronous cases, 
respectively, turn out to be lower and upper performance bounds for all arrange­
ments of processing and access periods within an iteration. 



414 

Figure C-2 

Appendix 

Effective Processing Power in the Synchronous and Asynchronous Cases 

3 

2 

1 

o 

Cp=3 
o p = iO 

Solid lines-synchronous 
Dotted lines-asynchronous ,0 

",0' 

2 4 6 8 

,53- - -0 -- -e- -- 0- - -0- - - 0 - - -E)- - - <3 - - -E)--- -0- --0 

10 12 14 16 1P 20 
Nutnberofprocessors 

Intuitively, the worst case is encountered when synchronization is required after 
each consecutive processing-access pair. There is obviously no case worse than for 
all processes to request access to global memory at the same time and then wait for 
each other to finish in order to perform simultaneous accesses again. In such a 
system, 

E = 1 (5) 
N 

where k ranges over the processing-access pairs in the iteration. Because tw 
depends linearly on ta and N, equation (5) yields the same result as would only one 
atomic pair (tpl ta) having a duration equal to the length of an iteration. Hence this 
case is equivalent to the synchronous case described above. 

We shall demonstrate that, for a given total processing time tp and access time ta 
in an iteration, upper-bound performance is achieved by an asynchronous algorithm 

with a single (tpl ta) pair. 

CLAIM. The asynchronous case of N parallel processes, each with only one atomic 
pair (tp' ta) per iteration, yields the best performance of all cases with access and 
processing periods interleaved within the iteration. 

PROOF. Given an iteration with a single (t~ ta) pair, suppose we rearrange it into M 

pairs (tpk' tak) such that I tPk = tp and I tak = tao For this case to be "better" 



C. Performance of Parallel Algorithms 415 

than the original iteration, the total waiting time must be shorter than in the originaL 
case. If the first case had no waiting time, then it was optimal, and no further im­
provements are possible. 

Now consider the case in which the original iteration has a positive waiting time. 
For this to happen, each process must finish its processing in less time than it takes 
for all the processes to complete their accesses. Hence tw = (N - 1 )ta - tp and the 
time to complete one iteration is tp + ta + tw = Nta' Since this is the time required for 
a!! processes to access the shared data, improvement on this time is not possible, 
so any optimai rearrangement must compiete one iteration for aii processes in Nta' 

Therefore, no rearrangement of the original one-pair iterations can reduce total 
waiting time, so the one-pair asynchronous iterations are optimal as originally 
claimed. 

Though simple, the model just presented is quite limited in its scope of applica­
tion. It cannot predict the effects of changing processor speed or global access time. 
Its implicit assumption that p does not depend on N is at odds with the structure of 
many parallel algorithms. The rest of this appendix will set forth a more refined 
model capable of describing a wider range of architectures and applications. Section 
C.2 introduces the parameters of the model and shows how it can be used to derive 
upper and lower bounds for the performance of a parallel algorithm. Section C.3 
shows how the model can be used to predict the effectiveness of increasing the 
speed of processors or global memory; Section C.4 uses the model to predict 
speedup. 

C.2. The Refined Analytical Model 

In this section, we augment the basic model by adding parameters for architectural 
factors such as processor and memory speed (Section C.2.1) and introducing 
decomposition functions (Section C.2.2) to describe how processing and access 
times change as the number of processors varies. 

C.2.1. Architectural Refinements 

Let us introduce three parameters that we can use to quantify architectural dif­

ferences: 



416 Appendix 

• p, processor speed relative to the speed of a reference processor, which we 
assign a speed of 1 . 

• q, global access speed. The speed of accessing global memory relative to the 
speed of a reference memory with a speed of 1 . 

• r, global access throughput. The value of this parameter is the number of 
processors that can simultaneously access the global memory without conten­
tion. This value may depend not only on hardware features (e.g., architecture 
of the interconnection network and existence of multiple global resources) but 
also on the algorithm decomposition and the partitioning of global data among 
multiple global resources. 

Many performance metrics do not depend on the processing and access times 
themselves but merely on the ratio between them. Define the processing-to-access 
ratio of a workload as 

(6) 

A list of all model parameters is presented in Table C-1. For the moment, assume 
that x is constant and independent of the number of processes in the parallel decom­
position, although it will be seen later that this is only a special case. Since p = 

1 / (1 + x), substitution of (6) into (3) and (4) yields 

E= N(1 +x) 
N+x 

and 

E=min[N,1+x] 

(7) 

(8) 

Note that both expressions are 1 when N = 1. As x grows large, both approach N, 
reflecting the declining influence of access time. Between the two extremes, the 
asynchronous E is always larger. 

Influence of the Processor and Access Speed. When the processing speed is 
increased (or decreased), tp is changed proportionately. Similarly, improving the 
global access speed will shorten ta' The modified processing and access times will 

be 

t' == tp 
p P 

t 
t' == ~ 
a q 

and, consequently, the modified processing-to-access ratio is 

t' 
x' == p r a 

= x!L 
p 



Table C-1 

c. Performance of Parallel Algorithms 417 

Parameters of the Model 

E 

N 
P 
q 

r 

s 

x 

& 

f..l.qr 

p 

Effective processing power, the "effective" number of processors working co­
operatively on every iteration (page 412). 
The access decomposition function, the ratio of global access time in a uniproces­
sor implementation to global access time by an individual process in a multiproces­
sor implementation (page 419). 
The processing decomposition function, the ratio of processing time in a 
uniprocessor implementation to processing time for an individual process in a 
multiprocessor implementation (page 419). 
The number of processors in the system (page 411). 
Processor speed relative to the reference processor (page 416). 
Global access speed, the speed at which global memory can be accessed, 
relative to the speed of a reference memory (page 416). 
Global access throughput, the number of processors that can simultaneously 
access a common resource without contention (page 416). 
Speedup, the ratio of the reference iteration time in a uniprocessor implementation 
to the iteration time of an individual process in a parallel implementation (page 
423). 
Access time for a subprocess within a cycle (page 412). 

Modified access time, the time it takes to make ta accesses to a memory of speed 
q (page 416). 
Access time for a uniprocessor implementation within a cycle (page 419). 

Cycle time, the sum of the iteration time (tp+ta) and the waiting time tw (page 
420). 
Iteration time, the sum of processing and access time for a single process in an 
iteration (page 423). 
Iteration time for the uniprocessor implementation (page 423). 

Processing time for a subprocess within a cycle (page 412). 
Modified processing time, the time it takes a processor of speed ps to perform tp 
units of work (page 416). 
Processing time for a uniprocessor implementation within a cycle (page 419). 

Waiting time due to contention for a subprocess within a cycle (page 412). 

Processing-to-access ratio for a subprocess, equal to tp / ta (page 416). 
Modified processing-to-access ratio, defined as t ~ / t ~ (page 416). 
Processing-to-access ratio for a uniprocessor implementation, equal to Tp ITa 
(page 419). 
Average utilization of an individual processor with a p of 1 (page 422). 
q I r-efficiency, the (theoretical) percentage decrease in cycle time that would occur 
if q and r were infinite (page 421). 
p-efficiency, the (theoretical) percentage decrease in cycle time that would occur if 
p were infinite (page 421). 
The fraction of time a processor spends performing global accesses, tal (ta + tp) 
(page 413). 



418 Appendix 

Substitution of x' for x in (7) and (8) gives 

E = N(p + qx) 
Np+qx 

and 

E = min IN, 1 + qxlp] 

(9) 

In the synchronous case, when N> 1, increasing q increases E; increasing pleads 
to a decrease in E, however, as access time grows more significant, making it more 
difficult to use the increased processing power. The same effects are present in the 
asynchronous case after contention begins to occur. 

Influence of the Connection Throughput. To investigate interconnection networks 
that allow more than one processor to access data simultaneously without degrada­
tion, recall from (2) that, assuming a balanced load, 

The waiting time of a process obviously depends on r, the number of processes that 
can simultaneously access the data without contention. If parallel access is pos­
sible, r measures this parallelism. Changing r affects the system only insofar as it 
affects waiting time; the waiting time for a process is proportional to the integer 
LN / rJ. (If there are seven processes, for example, and r is 2, then the seventh 
process must wait for three sets of two processes to complete their accesses; hence 
the waiting time is proportional to 3.) To keep the performance-prediction functions 
continuous, let us approximate the waiting time of a parallel process by defining tw to 
be proportional to N / r: 

t = [N -1J t w, r a (10) 

for the synchronous case, and 

(11 ) 

for the asynchronous case [Vrsalovic and Siewiorek 83]. (We have just replaced N 
by N / r in the equations of Section C.1.) Substituting the definitions of (10) and (11) 
and the result of (9) into the definition of E, we derive 

E = , N _p_+_q_x_ 
Np +qrx 

(12) 



c. Performance of Parallel Algorithms 419 

E = min [N, r (1 + qx I p)] (13) 

See Figure 11-11 for a comparison of changes to q versus changes to r. 

It is interesting to predict the results of a "brute-force" application of a huge 
number of processors. A few conclusions can be drawn by analyzing the 
limN -';?>coE(N): 

• The maximal E for synchronous systems is E(oo) = r(1 + qx I p). In the case of 
a large qx/p (Le., a large amount of processing pei iteiation), a ieasonable E 
could be obtained using a conservative architecture with r approximately equal 
to 1. Conversely, in the case of small qxlp (i.e., a small amount of processing 
per iteration), the only means of improving E is to use an architecture I algo­
rithm combination with a larger r . 

• For an asynchronous system, there is no gain at all by increasing N beyond 
r (1 + qx I p) because E will not increase for an N greater than this. 

C.2.2. Decomposition of an Algorithm into Processes 

When an algorithm is partitioned for parallel processing, each of the processes has 
less work (access and I or processing) to do than the original uniprocessor algorithm. 
The amount of work mayor may not fall proportional to the number of processors 
that are added. A process that participates in solving a Poisson partial differential 
equation (PDE) (Section 11.3.2), for example, makes a number of global accesses 
that are proportional to the perimeter of the grid on which it operates, and the size of 
the perimeter does not fall proportionate to the decrease in the area of the grid. This 
suggests that we incorporate two functions fp and fa into the model to describe how 
the processing and access time per processor changes as processors are added to 
the system. Let the uppercase letters Tp and Ta denote the processing and access 
times in a one-processor system and the lowercase letters tp and ta denote the times 
in the multiprocessor version. Now, define 

(14) 

Unless fp = fa (the "special case" referred to in Section C.2.1), the processing-to­

access ratio x will change as N varies. Let X be defined as Tpl Ta; then 

x(N) = tp(N) =!E- ~ = X ~ 
ta(N) Ta fp fp 

The substitution of (15) into (12) and (13) yields the final expressions for E: 

E = rN(pfp + qxfa) 

Npfp + qrxfa 
synchronous case 

(15) 

(16) 



420 Appendix 

asynchronous case (17) 

An ordered pair (fp; fa) is said to define a decomposition group. Two of the more 
common decomposition groups are (N ; N)-linear decrease in processing and ac­
cess times-and (N; vN) (like the POE referred to above). Section 11.3.2 explores 
decomposition groups in more detail. 

C.3. The Effect of Architectural Changes 

Now that the performance model has been extended to encompass processor and 
memory speed, we can characterize the situations when it is more cost-effective to 
increase processing power rather than improve memory performance or vice versa. 
let us begin by considering how changes in p, q, and r affect tp and tao From (14) 
we have tp = Tp / fp and a similar expression for ta, but increasing the processor 
speed to p will decrease tp by 1/ p, so 

T 
t = --E.... 
p pfp 

C.3.1. The Synchronous Case 

(18) 

let us define the cycle time as the sum of the iteration time and the waiting time: 

and hence 

Thus the cycle time is made up of two distinct components: 

• a part proportional to the processing time 

• a part proportional to the access time 

Although cycle time will always decrease as p, q, or r is increased, there will be 
some situations in which the tcp or tca component will be so small that even bringing 



C. Performance of Parallel Algorithms 421 

it down to near zero via huge investments in hardware would improve performance 
very little. If p were infinite, then the tcp component would be zero; and an infinite q 
or r would mean a tca of zero. Let 

..,,""~ ~ofi""o ",_oHi"io"'''II.. ""n~,., / ,_oHi"io",,,II.. ""c. tho tho"roti"",,1 nor,..o""t..",..o 
QIIU \.Avllliv ",,-v'''''''''''''''T ~p UII ..... '1" ""'''v'~'''''r ~qr ..... -.JI Lllv Lln;;;V.VlI.n,"""'1 t-'vl"'vIILQ~v 

decrease in cycle time by making p, q, or r infinite: 

ILp 
tcp 

= 1 / [1 + NfxPJ x 100 
tcp + tca Xqr 

tca [ xqrJ 
ILqr = 

tcp + tca 
= 1/ 1 + Nfxp x 100 

It is probably more cost-effective to concentrate on reducing the larger of ILp or IL r 

by increasing p or by increasing both q and r. q 

C.3.2. The Asynchronous Case 

In the asynchronous case, there are two different possibilities: 

1. No waiting time: 

The cycle time does not depend on r and the efficiency factors are 

and 

ILqr =[ QX] 
1 +­pfx 

2. Waiting time equal to [(N / r) -1] ta - tp' This is the case where 

[ N -1J t > t rap 



422 

C.4. Speedup 

Appendix 

or 

(19) 

In this case, the cycle time does not depend on p because global access by all 
N processors takes longer than processing anyway: 

N t = - t era 

or, using the notation defined in (18), 

There is obviously no benefit to increasing p beyond the value given by (19). 
The efficiency factors are I-Lp = 0 and I-Lqr = 100 for such an asynchronous 
case. 

The design process inevitably involves trade-offs between cost and performance. 
It is' impossible to say which cost / performance trade-offs should be made in a 
particular design, but the approach of balancing efficiency factors (f.Lp = I-Lqr) may be 
worthwhile to consider, at least in the initial design phases. 

Effective processing power, as defined in equation 1, can be viewed as the amount 
of computation a system can perform in tp + ta time units. Let us define the iteration 
time 

In the reference uniprocessor system, p = q = r = 1. For this system, E = 1 since t; = tc 
because of the absence of degradation in the uniprocessor case. In a multiprocessor 
system 8, the average utilization of an individual processor, is defined as 

E 
8 == N (20) 

Intuitively, we expect an N-processor system to have a higher E than a uniprocessor 
system but not necessarily N times as high, since the waiting time tw may be 
nonzero. Usually, the amount of waiting increases with the number of processors; 
this is reflected in a decreasing 8. 

While it is obviously desirable for a system designer to keep resource utilization 
high, the designer's main concern is to minimize the amount of time needed to 



C. Performance of Parailei Aigorithms 423 

complete an application-in other words, to speed it up as much as possible by 
using multiple processors. We will use the speedup factor S to measure the perfor­
mance of a multiprocessor system compared with the reference uniprocessor sys­
tem. Speedup has been defined in several different ways [Kurskal 83]. We will 
define it as a ratio of cycle times: 

It is useful to express S in a slightly different form to illustrate how it is influenced by 
the utilization 8 and the decomposed iteration time tj (note that Tj == Tp + Ta = Te)' 

r. 
S(N) = 8~ 

t; 
(21) 

Speedup is thus the ratio between the reference iteration time and the decomposed 
iteration time, slowed by the utilization 8. If the processor speed p or the memory 
speed q is changed from unity, Ti changes accordingly, so 

Tp r. = -
I P 

Substituting the results of (22) and (23) into (21) yields 

Tp Ta 
+-

S(N) = 8 P q 

Tp Ta 
+-

pfp qfa 

(22) 

(23) 

Using the definition of 8 from equation (20) and substituting for E using (16), we 

derive 

rfip(p + qX) 
S= -----

Npfp + qrXfa 
(24) 

for the synchronous case, and substituting for E using (17), 

. r: p + qX P + qX] S = min I fip f + Xf ,rfa --
I- P p q a Np 

(25) 

Notice that if p = q = r= 1 f", = fp = N these equations reduce to (7) and (8). From 
these equations, we can draw this general conclusion: While effective processing 



424 Appendix 

power depends only on the ratio of the decomposition functions fp and fa' speedup 
also depends on their values. In practical terms, this means that it is possible to 
decompose an algorithm into a set of processes that exhibit high processor utiliza­
tion but low speedup. 

C.S. Calibrating the Model with Experimental Data 

This section compares the predictions of the model with the results of three 
previously published experiments [Whiteside et al. 83, Whiteside et al. 82]. Because 
the original source code was not readily available, it was necessary to estimate the 
relationship between tp and tao These values were estimated by attempting to fit the 
predicted curves to the measured curves, but it should be noted that the same 
choice of values produces a good fit for all the curves on each graph. 

C.S.1. Processor-Speed Variations 

This experiment illustrates the influence of processor speed on performance. The 
parallel workload was an implementation on the em* multiprocessor of a molecular­
dynamics algorithm. It consists of a number of parallel processes, each calculating 
the binding energy between particles. After all calculations are done, the final result 
is saved as global data to be used in the next iteration. This description implies that 
local processing time for a decomposed process is variable and equal to 

T 
t = ..1!.. 
P N 

The global access time is fixed and equal to the time required for returning a final 
result to global memory. Therefore, 

Consequently, the decomposition functions are 

To ensure an atomic access for every process, a locking mechanism is used. 
Speedup was measured as a function of the processor speed. While the speed of 
the processor hardware could not be varied, faster processors could be simulated by 
replacing the slow LSI-11 floating-point calculations by "synthetic procedures," 
which took less time than the calculations and returned arbitrary results. (The goal 
was to study the effect of processor speed, so it did not matter that the results were 
incorrect.) 

Figure C-33hows both measured and theoretical results, assuming an estimated 



Figure C-3 

c. Performance of Paraliei Algorithms 

Molecular Dynamics Speedup, Dependency on Processor-Speed Variations 

Q.20 
::l 
"tl 
~ 18 
Q. 

C/) 16 

14 
I 

12 

10 

8 

6 

4 

o 

A ps = 1; X = 1800 + 42 
a ps = 10; X = 180 + 42 
o ps = 100; X = 18 + 42 

Dotted lines-predicted 
Solid lines-measured 

5 10 15 20 25 
Number of processors 

425 

X. Although the synchronous case is supposed to be the worst case, the measured 
performance for slow processors is worse than the theoretical lower bound due to 
the lack of matching parallelism (see page 247). Some processors have much more 
work to do than others. Therefore, when processors are slow and tp is dominant in 
the iteration, the idle processors induce a non monotonic performance curve and 
exhibit worse perform~nce than theoretically predicted for a balanced load. 

C.S.2. Speedup versus Synchronization 

In the second experiment, speedup was measured for various degrees of 
synchronization between processes. Experimental and theoretical results for the two 
extreme cases (full synchronization and no synchronization) are given in Figure C-4. 
The X of the synchronous implementation is only about half as large as the X of its 
asynchronous counterpart because the omitted synchronization code consists 
mainly of access to common data. 

The implementation for molecular-dynamic simulation analyzed here is a typical 
one-pair implementation (the kind considered in the proof of Section C.1), and for 
that reason the measured results are very close to the upper and lower bounds, 
respectively. 



426 

Figure C-4 

Appendix 

Influence of Synchronization on Molecular Dynamics Calculations 

Q.25 
.g 
Q) 
Q) 
Q. 
C/J20 

15 

10 

5 

o 

o Asynchronous 
o Synchronous 

Dotted lines-predicted 
Solid lines-measured 

,(3' 
" 0' 

,,,-G,o 

,(!/ 
o '0 

,fii 

5 10 15 20 25 
Number of processors 

C.5.3. Matrix Multiplication 

The decomposition functions for matrix multiplication with the creation of local copies 
are as follows [Vrsalovic et a/. 85]: 

f = (MTiter + Tcopy)N 

p MTiter + Tcopy v'N 

and 

f = v'N a 

where Titer is the time needed to perform a single iteration (which calculates a single 
element of the result matrix) and T copy is the additional processing time required to 
copy a single matrix element to local memory (including its share of the loop 
overhead). Let Tacc be the time it takes to perform one global access, exclusive of 
waiting time, and let 

(26) 

express the relationship between access and processing speeds without reference 
to particular hardware technologies. 



Figure C-S 

C. Performance oj Parallel Algorithms 427 

Speedup of Matrix Multiplication 

0. 18 

~ 
~ 

t. M = 48 
o M = 3e 
[J M = 24 0. 

CI) 15 

9 

6 

Dotted lines-predicted 
Solid lines-measured 

4 8 12 16 
Number of processors 

We ran the local-copies algorithm on Cm*. The constants k1 and k2 were 
measured at 1.694 and 3.678, respectively. Correlation of the experimental and 
predicted curves is quite good but falls off somewhat as more processors are added, 
largely because of the undecomposable constant overhead added to each process 
by the need to perform loop initialization and to read the clock. This overhead grows 
more significant as processors are added and the work per process declines. To try 
and factor out the effect of this overhead, which we called T;nit' we solved the 
following system of equations 

T;nit + 483Titer = 82.3 ms. (measured processing time for M = 48 without local 
copies) 

Tinit + 243Titer = 10.3 ms. (measured processing time for M = 24 without local 
copies) 

The results of Titer = 7.4 x 10-4 and T;nit = 1.14 x 10-2 "predicted" the execution time 
for M = 36 within 1 percent. From this we derived the revised decomposition func­
tions: 

We can proceed as before to derive equations to predict speedup. These equations 



428 

C.6. Summary 

Appendix 

are graphed against the observed values in Figure C-5. The measured values are 
everywhere within 5 percent of the predicted values. The close correspondence 
deteriorates slightly for increasing values of N. One probable reason is that the 
initialization of the inner loop grows more significant as it gets shorter; for M = 24 
and N = 16, the inner loop is executed only six times before it terminates. 

We have defined a simple multiprocessor model, which was then enhanced to 
accommodate architectural parameters such as processors and memories of dif­
ferent speeds. The model has shown that improving processor or memory speed is 
effective only up to a point. The model bounds the worst performance that can be 
expected from a synchronous algorithm and predicts the best performance that can 
be achieved by an asynchronous one. 

The performance of the multiprocessor implementation of an algorithm is fre­
quently expressed in terms of speedup. Speedup is a function of the wayan 
algorithm is decomposed. We have defined decomposition functions for the 
processing and access times, which tell how the per-process times change as the 
number of processors is increased. Algorithms can be divided into decomposition 
groups based on these functions-groups that display characteristic speedup 
curves for varying numbers of processors. 



Appendix D 
Smap: the Simple Microcode 

Written during the spring of 1977, Smap was one of the first microcode systems for 
the Cm* Kmaps. !t closely reflects the underlying Cm* haidwaie but can haidly be 
called an operating system, hence its inclusion in this appendix. No attempt was 
made in its design to provide protection or generality because its primary use was 
seen as a base for benchmark programs and diagnostics for the hardware. 

The main function of the simple microcode is to allow each processor to as­
sociate any 4,096-byte physical page in the system with any of the pages in the im­
mediate address space of the processor. A page in the system is identified by its 
cluster number, em within the cluster, and high-order 6 bits of its base address. A 
page in the immediate address space of the processor is identified by the address 
space of the processor (user / kernel) and the high-order 4 bits of the processor ad­
dress; it is referred to as a window. Once a window has been associated with a 
physical page by writing the mapping tables in the Siocal and Kmap, all references 
to the window are mapped to the physical page, with the bottom 12 bits of the 
processor's address serving as the offset into the page. In binding a window to a 
physical page in its local memory, a processor may choose to have references to the 
page proceed directly through the Siocal or mapped via the Kmap. 

The Siocal mapping table and the mapping table maintained by the Kmap on 
behalf of a processor are both addressable from the processor. A processor may 
therefore make any page in the system addressable to itself simply by writing into 
the appropriate entries in these tables. The microcode does not provide any 
protection. 

The remainder of the microcode is made up of a variety of synchronization 
operations that are useful in making indivisible access to shared data and in coor­
dinating the actions of processors working on a common task. There is one opera­
tion to indivisibly increment an arbitrary word in memory and four operations to 
indivisibly decrement an arbitrary word in memory. The decrement operations vary 
along two dimensions-conditionality and manner of notification. Unconditional 
decrements are performed regardless of the old contents of the target location; 
conditional decrements are not performed if the old value of the operation is zero. A 
processor can select from two methods of notification, synchronous and 
asynchronous. In the synchronous method, the processor examines a result location 
that is set after the operation completes; in the asynchronous method, it is inter­
rupted when the result of the operation is zero. 

Smap contains simple facilities to aid processors in handling errors. When an er­
ror occurs during a microcode operation, the Kmap does not attempt to recover from 
the error. Instead, it collects as much information about the error as it can and stores 
this information in a place that is accessible to the invoking processor; it then inter-

429 



430 Appendix 

rupts the processor to signal the error. Recovery from the error is left entirely up to 
the invoking processor. 

There are certain quirks in the implementation of Smap that prevent it from 
functioning in a robust way when large amounts of contention are generated at a 
particular Siocai. The problem has to do with the way in which the microcode 
handles a busy Siocal condition when it tries to reference the memory of a Cm. The 

. solution used simply waits a fixed amqunt of time and then retries the reference. 
Although this is simple to implement and turns out to be the most efficient solution as 
long as it works, it runs into problems when large numbers of processors are con­
tinually referencing a given em. The amount of time a given context waits for a busy 
Siocal to become free is nondeterministic and may be large enough to exceed any 
reasonable time-out period for components that are waiting for the reference to 
complete. Because the hardware of Cm* provides no way to recognize return re­
quests from operations that have already been timed out, arbitrary damage may 
result when such a request does return. 

John Ousterhout wrote the initial single-cluster version of Smap; Andy 
Bechtolsheim added intercluster references, and Pradeep Sindhu undertook a major 
revision to incorporate synchronization operations and better error reporting. 

Acknowledgment. This appendix was originally written by Pradeep Sindhu for [Jones and 
Gehringer 80]. 



Bibliography 

[Ackerman 78] 
W. B. Ackerman. "A structure processing facility for data flow computers." In G. Jack 
Lipovski [editor], Proceedings of the 1978 International Conference on Parallel 
Processing. IEEE Computer Society, August 1978,166-172. 

[Adams and Siegel 82] 
G. B. Adams and H. J. Siegel. "On the number of permutations performable by the 
augmented data manipulator." IEEE Transactions on Computers C-31 (4): 270-277 
(April 1982). 

[Anderson and Jensen 75] 
G. A. Anderson and E. D. Jensen. "Computer interconnection structures: taxonomy, 
characteristics and examples." Computing Surveys 7(4): (December 1975),197-213. 

[Baker 78] 
Henry G. Baker, Jr. "List processing in real time on a serial computer." Communications 
oftheACM 21(4): 280-294 (April 1978). 

[Baskett and Smith 76] 
F. Baskett and A. J. Smith. "Interference in multiprocessor computer systems and inter­
leaved memory." Communications of the ACM 19(6): 327-334 (June 1976). 

[Baudet 78] 
G. M. Baudet. "The design and analysis of algorithms for asynchronous multiprocessors." 
Ph.D. diss., Carnegie-Mellon University, April 1978. 

[Bell and Newell 71) 
C. G. Bell and A. Newell. Computer Structures: Readings and Examples. New York: 
McGraw-Hili, 1971. 

[Bell et al. 72] 
C. G. Bell, J. L. Eggert, J. Grason, and P. Williams. '"The description and the use of register 
transfer modules (RTM's)." IEEE Transactions on Computers C-21 (5): 495-500 
(May 1972). 

[Bhandarkar 75] 
D. P. Bhandarkar. "Analysis of memory interference in multiprocessors."' IEEE Trans­
actions on Computers C-24(9): 897-908 (September 1975). 

[Bhuyan and Agrawal 84] 
Laxmi N. Bhuyan and Dharma P. Agrawal. "Generalized hypercube and hyperbus struc­
tures for a computer network."' IEEE Transactions on Computers C-33(4): 323-333 
(April 1984). 

[Brownston et al. 85] 
Lee Brownston, Robert Farrell, Elaine Kant, and N. Martin. Programming Expert Systems 
in OPS5: An Introduction to Rule-Based Programming. Reading. MA: Addison-Wesley. 
1985. 

[Carey 80] 
Michael J. Carey. "Parallel processing for power system transient simulation: a case 
study." Master's thesis, Carnegie-Mellon University, December 1980. 

[Cerf 72] 
V. Cerf. Multiprocessors, semaphores and a graph model of computation. Technical 
Report 7223. Computer Science Department. UCLA. April 1972. 

[Chansler 82] 
Robert J. Chansler. Jr. "Coupling in systems with many processors." Ph.D. diss., 
Carnegie-Mellon University. August 1982. Also available as Efficient Use of Systems WIth 

Many Processors. Ann Arbor, Mich.: UMI Research Press. 1982. 

431 



432 Bibliography 

[Chen 75] 
T. Chen. "Overlap and pipeline processing." In H. Stone (editor), Introduction to Computer 
Architecture. Chicago: Science Research Associates, Inc., 1975,375-431. 

[CMU 79] 
Robert J. Chansler, Jr., Ivor Durham, Wayne Gramlich, Anita Jones, Karsten Schwans, and 
Steven Vegdahl. STAROS design manual. Unpublished report from STAROS group, 
Carnegie-Mellon University, 1979. 

[Dannenberg 81] 
Roger B. Dannenberg. AMPL.· deSign, implementation, and evaluation of a multiprocessing 
language. Technical Report, Department of Computer Science, Carnegie-Mellon Univer­
sity, March 1981. 

[Davies 78] 
D. Davies and J. Wakerly. "Synchronization and matching in redundant systems." IEEE 
Transactions on Computers C-27(6): 531-539 (June 1978). 

[Deminet 82] 
Jaroslaw Deminet. "Experience with multiprocessor algorithms." IEEE Transactions on 
Computers C-31 (4): 278-287 (April 1982). 

[Dijkstra 78] 
Edsger W. Dijkstra, et al. "On-the-fly garbage collection: an exercise in cooperation." 
Communications of the ACM 21 (11 ): 966-975 (November 1978). 

[Dugan et al. 79] 
R. C. Dugan, I. Durham, and S. N. Talukdar. "An algorithm for power system simulation by 
parallel processing." In Text of abstracts, Summer Power Meeting. IEEE Power En­
gineering Society, 1979. 

[Durham et al. 79] 
I. Durham, R. C. Dugan, A. K. Jones, and S. N. Talukdar. "Power system simulation on a 
multiprocessor." In Text of abstracts, Summer Power Meeting. IEEE Power Engineering 
Society,1979. 

[Feng 81] 
T. Feng. "A survey of interconnection networks." IEEE Computer 14(12): 12-27 (De­
cember 1981). 

[Forman 79] 
P. Forman and K. Moses. "SIFT: multiprocessor architecture for software implemented 
fault tolerance flight control and avionics computers." In Proceedings of the Third Digital 
Avionics Systems Conference: 325-329 (November 1979). 

[Fuller et al. 73] 
S. H. Fuller, D. P. Siewiorek, and R. J. Swan. "Computer modules: an architecture for large 
digital modules." In Proceedings of the First Annual Symposium on Computer Archi­
tecture (reprinted as Computer Architecture News 2[4]). ACM / SIGARCH, University of 
Florida, Gainesville, December 1973, 231-236. 

[Fuller et al. 75] 
S. H. Fuller, D. P. Siewiorek, V. Lesser, W. Brantley, and R. J. Swan. Proposal for multiple 
processor systems based on DEC's Western Digital microcomputers. Unpublished 
report, Departments of Computer Science and Electrical Engineering, Carnegie-Mellon 
University, January 1975. 

[Fuller et al. 77] 
Samuel H. Fuller, Anita K. Jones, and Ivor Durham [eds.]. Cm* review, June 1977. 
Technical Report, Department of Computer SCience, Carnegie-Mellon University,1977. 

[Fuller et al. 78] 
S. H. Fuller, J. K. Ousterhout, L. Raskin, P. Rubinfeld, P. S. Sindhu, and R. J. Swan. 
"Multi-microprocessors: an overview and working example." Proceedings of the IEEE 
66(2): 216-228 (February 1978). 



Bibliography 433 

[Gehringer et al. 82] 
Edward F. Gehringer, Anita K. Jones, and Zary Z. Segall. "The Cm* testbed." IEEE 
Computer 15(10}: 40-53 (October 1982). 

[Gehringer and Chansier 82] 
Edward F. Gehringer and Robert J. Chansler, Jr. STAROS user and system structure 
manual. Technical Report, Department of Computer Science, Carnegie-Mellon University, 
July 1982. 

[Goldberg 80] 
J. Goldberg, C. Weinstock, M. Green, W. Kautz, L. Lamport, and P. Melliar-Smith. 
Deveiopment and evaiuation of a SiFT computer: SIFT operating system. Interim 
Technical Report 2, SRI International, April 1980. 

[Goldberg 81] 
J. Goldberg. "The SIFT computer and its development." In Proceedings of the Fourth 
Digital Avionics Systems Conference, SRI International: November 1981. 

[Gostelow 71] 
K. P. Gostelow. "Flow of control, resource allocation, and the proper termination of 
programs." Ph.D. diss., University of California, Los Angeles, December 1971. 

[Gregoretti and Segall 84] 
Francesco Gregoretti and Zary Segall. "Analysis and evaluation of VLSI design rule 
checking implementation in a multiprocessor." In Proceedings of the 13th International 
Conference on Parallel Processing. IEEE Computer Society, August 21-23,1984, 7-14. 

[Habermann 76] 
A. Nico Habermann. An Introduction to Operating System Design. Chicago: Science 
Research Associates, 1976. 

[Habermann et al. 76] 
A. Nico Habermann, Lawrence Flon, and Lee Cooprider. "Modularization and hierarchy in 
a family of operating systems." Communications of the ACM 19: 266-272 (May 1976). 

[Haynes et al. 82] 
Leonard S. Haynes, Richard L. Lau, Daniel P. Siewiorek, and David W. Mizell. "A survey of 
highly parallel computing." IEEE Computer 15(1}: 9-24 (January 1982). 

[Hibbard 80] 
Peter G. Hibbard. Personal communication 1980. 

[Hoare 78] 
C.A.A. Hoare. "Communicating sequential processes." Communications of the ACM 
21 (8): 666-677 (August 1978). 

[Hon 83] 
Robert W. Hon. "The hierarchical analysis of VLSI designs." Ph.D. diss., Carnegie-Mellon 
University, December 1983. Published as Technical Report CMU-CS-83-170. 

[Jones and Ardo 82] 
Anita K. Jones and Anders Ardo. "Comparative efficiency of different implementations of 
the Ada rendezvous." In Proceedings of the AdaTEC Conference on Ada. October 
1982, 212-223. 

[Jones and Gehringer 80] 
Anita K. Jones and Edward F. Gehringer [eds.]. The Cm* multiprocessor project: a research 
review. Technical Report CMU-CS-80-131, Department of Computer Science, Carnegie­
Mellon University, July 1980. 

[Jones and Schwans 79] 
Anita K. Jones and Karsten Schwans. "TASK forces: distributed software for solving 
problems of substantial size." In Proceedings of the Fourth International Conference on 
Software Engineering. ACM/SIGSOFT, Munich, September 14-16,1979. 

[Jones and Schwans 80] 
A. K. Jones and K. Schwans. The TASK language specification. Unpublished report, 
Department of Computer Science, Carnegie-Mellon University, July 1980. 



434 Bibliography 

[Keedy 79] 
J. Leslie Keedy. A comparison of two process structuring models. MONADS Report No.4, 
Department of Computer Science, Monash University, 1979. 

[Kinney and Arnold 78] 
L. L. Kinney and R. G. Arnold. "Analysis of a multiprocessor system with a shared 
bus." In Proceedings of the 5th Annual Symposium on Computer Architecture. Palo 
Alto, CA, April 3-5, 1978, 89-95. 

[Kleinrock 75] 
Leonard Kleinrock. Queueing Systems. Vol. 2: Computer Applications. New York: John 
Wiley & Sons, 1975. 

[Kong 82] 
Thomas H. Kong. "Measuring time for performance evaluation of multiprocessor sys­
tems." Master's thesis, Department of Electrical Engineering, Carnegie-Mellon University, 
November 1982. 

[Kong et a/. 83] 
Thomas H. Kong, Alfred Z. Spector, and Daniel P. Siewiorek. Measuring time in mUlti­
processor systems. Unpublished report, Department of Computer Science, Carnegie-Mellon 
University, July 1983. 

[Kruskal 83] 
C. P. Kruskal. "Searching, merging, and sorting in parallel computation." IEEE Trans­
actions on Computers C-32(10): 942-946 (October 1983). 

[Kung and Song 77] 
H. T. Kung and S. W. Song. "An efficient parallel garbage collection system and its 
correctness proof." In Proceedings of the 18th Annual Symposium on Foundations of 
Computer Science. IEEE Computer Society, October 1977, 120-131. (Also available as a 
Carnegie-Mellon University Computer Science Department Technical Report, September 
1977.). 

[Lampson 80] 
Butler W. Lampson and David D. Redell. "Experience with processes and monitors in 
Mesa." Communications of the ACM 23(2): 105-117 (February 1980). 

[Lampson and Sproull 79] 
B. W. Lampson and R. F. Sproull. "An open operating system for a Single-user 
machine." In Proceedings of the Seventh Symposium on Operating Systems Principles. 
ACM/SIGOPS, Pacific Grove, California, December 10-12,1979,98-105. 

[Lane 84] 
Tom Lane. A parallel algorithm for VLSI design rule checking. Unpublished report, 
September 3, 1984. 

[Lauer and Needham 78] 
H. C. Lauer and R. M. Needham. "On the duality of operating system structures." 
In Proceedings of the Second. International Symposium on Operating Systems. 
IRIA, 1978. Reprinted in Operating Systems Review 13(2): 3-19 (April 1979). 

[Lawrie 75] 
D. H. Lawrie. "Access and alignment of data in an array processor." IEEE Transactions on 
Computers C-24(12): 1145-1155 (December 1975). 

[Lee 80] 
R. B. Lee. "Performance characteristics of parallel processor organizations." Ph.D. diss., 
Stanford University, May 1980. 

[Levin 77] 
Roy Levin. "Program structures for exceptional condition handling." Ph.D. diss., Carnegie­
Mellon University, 1977. 

[Levin et a/. 75] 
R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. "Policy I mechanism separation in 
Hydra." In Proceedings of the Fifth Symposium on Operating Systems Principles. 



Bibliography 435 

(Reprinted as ACM Operating Systems Review, 9[5]). ACM / SIGOPS, University of Texas at 
Austin, November 19-21,1975,132-140. 

[Levy 74] 
H. Levy. Simulation of two algorithms on computer modules. Technical report, Depart­
ment of Computer Science, Carnegie-Mellon University, May 1974. 

[Little et al. 63] 
J.D.C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. "An algorithm for the traveling 
salesman problem." Operations Research 11 (November-December 1963), 972-989. 

r. _ ..... ____ '-7~' 

L LUWt:II t: I OJ 

Bruce Lowerre. "The Harpy speech recognition system." Ph.D. diss., Carnegie-Mellon 
University, April 1976. 

[Marsan and Gerla 82] 
M. A. Marsan and M. Gerla. "Markov models for multiple-bus multiprocessor sys­
tems." IEEE Transactions on Computers C-31 (3): 239-248 (March 1982). 

[Marsan and Gregoretti 81] 
M. A. Marsan and F. Gregoretti. "Memory interference models for a multimicroprocessor 
model with shared bus and Single external common memory." Euromicro J. 
(February 1981) 124-133. 

[McConnel 81] 
S. McConnel and D. Siewiorek. "Synchronization and voting." IEEE Transactions on 
Computers C-30(2): 161-164 (February 1981). 

[McConnel et al. 79a] 
S. R. McConnel, D. P. Siewiorek, and M. M. Tsao. "The measurement and analysis of 
transient errors in digital computer systems." In FTCS9, IEEE Computer Society, 1979, 
67-70. 

[McConnel et al. 79b] 
S. R. McConnel, D. P. Siewiorek, and M. M. Tsao. Transient error data analysis. Technical 
Report CMU-CS-79-121, Department of Computer Science, Carnegie-Mellon University, 
May 1979. 

[Mehrotra and Gehringer 85] 
Ravi Mehrotra and Edward F. Gehringer. "Superlinear speedup through randomized 
algorithms." In Proceedings of the 14th International Conference on Parallel 
Processing. St. Charles, IL, August 20-23, 1985, 291-300. 

[MetropoliS et al. 53] 
N. MetropOliS, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. "Equation of 
state calculations by fast computing machines." J. Chem. Phys. 21: 1087-1092 
(June 1953). 

[Michalopoulos 82] 
D. Michalopoulos. "Uniquely maneuverable fighter plane to use digital processors." IEEE 
Computer (October 1982) 120-121. 

[Mohan 82] 
Joseph Mohan. A study in parallel computation-the traveling salesman problem. 
Technical Report CMU-CS-82-136, Department of Computer Science, Carnegie- Mellon 
,University, August 1982. 

[Mohan 83] 
Joseph Mohan. "Experience with two parallel programs solving the traveling salesman 
problem." In Proceedings of the 12th International Conference on Parallel Processing. 
IEEE Computer Society, August 23-26, 1983, 191-193. 

[Mohan 84] 
Joseph Mohan. "Performance of parallel programs: model and analyses." Ph.D. diss., 
Department of Computer Science, Carnegie-Mellon University, July 1984. 



436 Bibliography 

[Mohan et a/. 85] 
Joseph Mohan, Anita K. Jones, Edward F. Gehringer, and Zary Z. Segall. "Granularity of 
parallel computation." In Edmond L. Gallizzi et a/. [editors], Proceedings of the Eighteenth 
Hawaii International Conference on System Sciences, Vol. 1, January 1985, 249-256. 

[Nelson 81] 
Bruce J. Nelson. "Remote procedure calL" Ph.D. diss., Department of Computer Science, 
Carnegie-Mellon University, May 1981. 

[Organick 72] 
Elliott I. Organick. The Multics System: An Examination of Its Structure. Cambridge, MA: 
The MIT Press, 1972. 

[Organick 83] 
Elliot I. Organick. A Programmer's View of the Intel 432 System. New York: McGraw-Hili, 
1983. 

[Ostlund et a/. 82a] 
N. S. Ostlund, P. G. Hibbard, and R. A. Whiteside. "A case study in the application of a 
tightly-coupled multiprocessor to scientific computations." In B. Alder, S. Fernbach, and 
M. Rotenberg [editors], Parallel Computations. New York: Academic Press, 1982, 
315-364. 

[Ostlund et a/. 82b] 
Neil S. Ostlund, Robert A. Whiteside, and Peter G. Hibbard. "Computational chemistry and 
computer science." Journal of Physical Chemistry 86(12): 2190-2197 (June 10, 1982). 

[Ousterhout 80] 
John K. Ousterhout. "Partitioning and cooperation in a distributed multiprocessor operating 
sytem: MEDUSA." Ph.D. diss., Carnegie-Mellon University, April 1980. 

[Ousterhout 82] 
John K. Oustemout. "Scheduling techniques for concurrent systems." In Proceedings of 
the Third International Conference on Distributed Computer Systems. October 1982, 
22-31. 

[Parnas 72] 
D. Parnas. "On the criteria to be used in decomposing systems into mod­
ules." Communications of the ACM 15: 1053-1058 (December 1972). 

[Patterson and Sequin 81] 
David Patterson and Carlo Sequin. "RISC I: a reduced instruction set VLSI computer." 
In Proceedings of the Eighth Annual Symposium on Computer Architecture. May 12-14, 
1981,443-457. 

[Preparata and Vuillemin 81] 
F. P. Preparata and J. Vuillemin. "The cube-connected cycles: a versatile network for 
parallel computation." Communications of the ACM 24(5): 300-309 (May 1981). 

[Raskin 78] 
Levy Raskin. "Performance evaluation of multiple processor systems." Ph.D. diss., 
Carnegie-Mellon University, August 1978. Published as Technical Report CMU-CS-78-141. 

[Reilly 83] 
M. H. Reilly. "A resource management system for multiple processors with support for 
automatic experiment supervision." Master's thesis, Department of Electrical Engineering, 
Carnegie-Mellon University, March 1983. 

[Robinson 82] 
John T. Robinson. "Design of concurrency controls for transaction processing 
systems." Ph.D. diss., Carnegie-Mellon University, April 1982. Published as Technical 
Report CMU-CS-82-114. 

[Rychener 80] 
Michael D. Rychener.OPS3 production system language tutorial and reference man­
ual. Unpublished Report, Department of Computer Science, Carnegie-Mellon University, 
March 1980. 



Bibliography 437 

[Scelza 79] 
D. A. Scelza. An auto-diagnostic program for Cm*. Department of Computer Science, 
Carnegie-Mellon University, internal report, April 1979. 

[Scelza et 81. 81] 
Donald A. Scelza, John K. Ousterhout, and Rudy Nedved. The MEDUSA task force linker 
user documentation. Department of Computer Science, Carnegie-Mellon Univers-ity, internal 
report, September 1981. 

[Schwan and Jones 86] 
Karsten Schwan and Anita K. Jones. IEEE Software 3(3): 60-70 (May 1986). 

[Schwans 82] 
Karsten Schwans. "Tailoring software for multiple processor systems." Ph.D. diss., Car­
negie-Mellon University, October 1982. 

[Sedgewick 78] 
R. Sedgewick. "Implementing quicksort programs." Communications of the ACM 
21(10): 847-857 (October 1978). 

[Segall 83] 
Z. Segall, A. Singh, R. Snodgrass, A. Jones, and D. Siewiorek. "An integrated instrumen­
tation environment for multiprocessors." IEEE Transactions on Computers C-32(1): 
4-14 (January 1983). 

[Siegel 85] 
Howard Jay Siegel. Interconnection Networks for Large-Scale Parallel Processing. 
Lexington, MA: Lexington Books, 1985. 

[Siewiorek et a/. 78a] 
D. P. Siewiorek, V. Kini, H. Mashburn, S. R. McConnel, and M. Tsao. "A case study of 
C.mmp, Cm*, and C.vmp: part I-experiences with fault tolerance in multiprocessor 
systems." Proceedings of the IEEE 66(10): 1178-1199 (October 1978). 

[Siewiorek et a/. 78b] 
D. P. Siewiorek, V. Kini, R. Joobbani, and H. Bellis. "A case study of C.mmp, Cm*, and 
C.vmp: part II-predicting and calibrating reliability of multiprocessor systems." 
Proceedings of the IEEE 66(10): 1200-1220 (October 1978). 

[Siewiorek et a/. 82] 
Daniel P. Siewiorek, C. Gordon Bell, and Allen P. Newell. Computer Structures: Principles 
and Examples. New York: McGraw-Hili, 1982. 

[Sindhu 84] 
Pradeep S. Sindhu. "Distribution and reliability in a multiprocessor operating 
system." Ph.D. diss., Carnegie-Mellon University, April 1984. Published as Technical 
Report CMU-CS-84-125. 

[Sindhu and Singh 83] 
Pradeep Sindhu and Ajay Singh. Performance evaluation of message mechanisms. 
Unpublished report, Carnegie-Mellon University, April 1983. 

[Singh 81] 
A. Singh. "Pegasus: A workload generator for multiprocessors." Master's thesis, Carnegie­
Mellon University, Department of Electrical Engineering, 1981. 

[Singh et a/. 82] 
Ajay Singh and Zary Segall. "Synthetic workload generation for experimentation with 
multiprocessors." In Proceedings of the 3rd International Conference on Distributed 
Computing Systems. October 1982, 778-785. 

[Snodgrass 82] 
Richard Snodgrass. "Monitoring Distributed Systems." Ph.D. diss., Carnegie-Mellon 
University, 1982. 

[Stone 75] 
Harold S. Stone. Introduction to Computer Architecture. Chicago: Science Research 
Associates, 1975 , chapter 11 . 



438 Bibliography 

[Stonebraker 76] 
M. Stonebraker, E. Wong, P. Kreps, and G. Held. "The design and implementation of 
INGRES." ACM TODS 1(3): 189-222 (September 1976). 

[Swan 78] 
Richard J. Swan. "The switching structure and addressing architecture of an extensible 
multiprocessor, Cm'"." Ph.D. diss., Carnegie-Mellon University, August 1978. 

[Swan et a/. 76] 
R. J. Swan, S. H. Fuller, and D. P. Siewiorek. "The structure and architecture of Cm*: a 
modular multi-microprocessor." In Computer Science Research Review. Carnegie-Mellon 
University, Department of Computer Science, 1975-76,25-47. 

[Swan et a/. 77] 
Richard J. Swan, Samuel H. Fuller, and D. P. Siewiorek. "Cm*: A modular, multi­
microprocessor." In Proceedings of the National Computer Conference. AFIPS, 1977, 
637-644. 

[Talukdar 79] 
Sarosh N. Talukdar. "On using MIMD-type multiprocessors-some performance bounds, 
metrics, and algorithmic issues." In Proceedings of the 10th Pittsburgh Modeling and 
Simulation Conference (1979) 1167-1173. 

[Talukdar et a/. 81] 
S. N. Talukdar, M. J. Carey, and S. S. Pyo. "Multiprocessors for power system 
problems." Joho-Shori (Information Processing Society of Japan) 22(12): (December 
1981). 

[Talukdar et a/. 82] 
S. N. Talukdar, M. J. Carey, and S. S. Pyo. "Multiprocessors for power systems-some 
programming and research issues." In Proceedings of the IFAC Symposium on Digital 
Control. IFAC, January 1982. 

[Thurber 74] 
K. J. Thurber. "Interconnection networks-a survey and assessment." In AFIPS Con­
ference Proceedings, National Computer Conference (1974) 909-919. 

[Tsao 78] 
M. M. Tsao. "A study of transient errors on Cm*.'· Master's thesis, Department 
of Electrical Engineering, Carnegie-Mellon University, December 1978. 

[Ullman 80] 
J. D. Ullman. Principles of Database Systems. Potomac, MD: Computer Science Press, 
1980. 

[Verlet 67] 
L. Verlet. "Computer experiments on classical fluids: Part 1-thermodynamic properties of 
lennard-Jones molecules." Physical Review 159: 98-103 (1967). 

[Vrsalovic 83] 
D. Vrsalovic and D. P. Siewiorek. "Performance analysis of multiprocessor based control 
systems." In Proceedings of the Real-Time Systems Symposium (December 1983) 
73-78. 

[Vrsalovic et a/. 84a] 
Dalibor Vrsalovic, Daniel P. Siewiorek, Zary Z. Segall, and Edward F. Gehringer. 
"Performance prediction for multiprocessor systems." In Proceedings of the 13th Inter­
national Conference on Parallel Processing. IEEE Computer Society, August 21-23, 
1984, 139-146. 

[Vrsalovic et a/. 84b] 
Dalibor Vrsalovic, Daniel.P. Siewiorek, Zary Z. Segall, and Edward F. Gehringer. 
Perl or mance prediction and calibration for a class of multiprocessor systems. 
Technical Report, Department of Computer Science, Carnegie-Mellon University, 1984. 



Bibliography 439 

[Vrsalovic et al. 85] 
Daliber Vrsalovic, Edward F. Gehringer, Zary Z. Segall, and Daniel P. Siewiorek. "The 
influence of parallel decomposition strategies on the performance of multiprocessor 
systems." In Proceedings of the 12th Annual International Symposium on Computer 
Architecture. Boston, June 17-19,1985,396-405. 

[Weide 78] 
Bruce W. Weide. "Statistical methods in algorithm design and analysis." Ph.D. diss., 
Carnegie-Mellon University, August 1978. Published as Technical Report CMU-CS-78-142. 

[Whiteside et al. 82] 
Robert A. Whiteside, Peter G. Hibbard, and Neil S. Ostlund. "Systolic algorithms for Monte 
Carlo simulations." In Proceedings of the Third International Conference on Distributed 
Computing Systems. Miami I Ft. Lauderdale, October 18-22, 1982, 800-804. 

[Whiteside et al. 83] 
Robert A. Whiteside, Peter G. Hibbard, and Neil S. Ostlund. "Conventional" and systOlic 
parallel algorithms for Monte Carlo simulations of molecular motions. Unpublished 
report, Submitted to ACM Transactions on Computer Systems, 1983. 

[Wilkes 77] 
M. V. Wilkes. "Beyond today's computers." In Information Processing '77 (lFIP 1977 
Congress). North Holland Publishing Company, 1977, 1-5. 

[Wilkes and Needham 79] 
M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer and Its Operating 
System. New York: Elsevier North Holland, 1979. 

[Wilson et al. 83] 
A. W. Wilson, D. P. Siewiorek, and Z. Z. Segall. "Evaluation of multiprocessor interconnect 
structures with the Cm* testbed." In Proceedings of the 1983 International Conference on 
Parallel Processing (1983). 

[Wirth 77] 
N. Wirth. "Design and implementation of Modula." Software-Practice and Experience 
7(1): 67-84 (1977). 

[Wulf et al 70] 
W. Wulf, et al. Buss-11 Programmer's Manual. Digital Equipment Corporation, 1970. 

[Wulf72] 
William A. Wulf. "C.mmp: a multi-mini processor." In Fall Joint Computer Conference, 
Proceedings 41 (II). AFIPS, 1972,765-777. 

[Wulf et al. 74] 
W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. "HYDRA: 
The kernel of a multiprocessor operating system." Communications of the ACM 
17(6): 337-345 (June 1974). 

[Wulf et al. 81] 
William A. Wulf, Roy Levin, and Samuel P. Harbison. HYDRAIC.mmp: An Experimental 
Computer System. New York: McGraw-HiII,1981. 

[York et al. 83] 
Gary York, Daniel P. Siewiorek, and Zary Z. Segall. Software voting in asynchronous 
NMR computer structures. Technical Report CMU-CS-83-128, Department of Computer 
Science, Carnegie-Mellon University, May 6,1983. 





Index 

Absent functions, 98, 157 
Abstract capabilities, 92, 93-94 
Abstract objects, 89, 90, 93-94, 111 
Abstract types, 97 
ACB, 69, 71 
Accept statements, in AMPL, 173-175, 195, 

198,200 
Access overhead, 223, 234-235, 239--241,258, 

262-263,271 
Access penalty, 248 
Access speed, 416 
Acknowledgment 

mechanism, 327 
packets, 27 

ACS, 303-304 
Action (in B-Ianguage), 211, 212-213 
Activities, 63, 75, 183, 395 

as opposed to processes, 110 
Activity Control Block (ACB), 69, 71 
Activity slots, 395 
Activity space, coscheduling and, 396-400 
Activity thrashing, 84 
Activity working set, 84 
Actuator Control System (ACS), 303-304 
Ada rendezvous, 367-371 
Adder program, 170 
Address mapping, 14-24,56-61 

controller (Kmap), 12 
in the Siocal, 17 
in Smap, 429 
software vs. cache, 165 
STAR OS vs. MEDUSA, 31, 33 

Addressability, change of, 116, 117 
Address spaces, in ECHOES, 202-204 
Algol, 68,332-334 
Algorithm/implementation interaction, 233, 242-

250,264-270 
Algorithm iteration, 242-244 
Algorithm penalty, 232-234, 271 
Algorithms 

Ada rendezvous, 367-371 
asynchronous, 235-239,242-247,414-415 
beam-search,329--330 
clock-reading, 275-282 
consumer, 230-231 
contention resolution, 32, 34-36 
coscheduling, 85,396-409 
decomposition, 419--420 
design-rule checking, 256, 382-388 
Fast Fourier Transform (FFT), 332-334, 348-

350 
floating-point, 240 
garbage collection, parallel, 102-110, 188-

193,374-376 

integer programming, 228, 324-327 
LMSK,376 
matrix multiplication, 358-361 
Metropo!is, 262-263, 361-367 
molaculai-dYiiamics, 262, 361-357 
multiphase, 233 
overhead and, 258-259 
Parallel Production Systems: OPS3, 388-394 
parallel vs. sequential, 225-226 
Partial Differential Equations (POE), 317-321, 

334-341,353-358 
performance of, 411-428 
power-systems simulation, 255, 260, 261, 

321-324,348-353 
producer/consumer, 230-231 
quicksort, 341-342 
railway-network simulation (Net), 342-348 
randomized, 226 
search,228-230, 381 
speech recognition system Harpy, 327-332 
synchronous, 242-247 
systolic, 365-367 
transaction-processing system, 257-258, 

372-374 
traveling-salesman problem, 256, 376-382 
unicluster quicksort, 321-324 

Allocate Object function, 99 
Alternate selection, in coscheduling algorithms, 

402-403 
ALTO file system, 72 
AMPL constructs 

const, 170 
port, 168, 171 
refmod, 176-177 
refport, 168, 172, 176 
var, 168, 170 

AMPLlanguage, 148, 166-179 
evaluation of, 178-179 
functions, 177 
language design issues, 177-178 
matrix multiplication, 358-361 
messages, 170-177 
modules, 167 
partial differential equations, 353-358 
performance measurements, 194-198 
ports, 170-177 
processor allocation, 178 
program elements, 167-170 
programs, 167 
storage allocation, 177 

AMPL nonterminals 
<accept item>, 171 
<accept list>, 171 
<accept statement>, 171 

441 



442 Index 

AMPL nonterminals-Continued 
<block>, 169 
<constant>, 170 
<constant declaration>, 169, 170 
<constant definition>, 170 
<digit>, 170 
<expression>, 170, 171 
<identifier>, 169, 170 
<integer>, 170 
<letter>, 1 70 
<module declarations>, 169 
<module definition>, 169 
<parameter list>, 169 
<port declarations>, 169, 171 
<port definition>, 171 
<port specification>, 171 
<program>, 169 
<send statement>, 171 
<statement>, 169 
<string>, 170 
<stringchar> , 170 
<type declaration>, 169 
<variable declarations>, 169, 170 
<variable definition>, 170 

AMPL run-time system, 181, 183-201 
create function in, 198 
vs. ECHOES, 201-202,205-206 
garbage collection in, 188--193, 198 
on MEDUSA, 183-193 
ports in, 184 
process pairs in, 184-186 
send operations, 195-198 
send statements in, 186-188 
static measurements, 195 

AMPL statements 
accept, 173-175 
If, 169 
module, 168--169 
select, 173-175 
send,172-173 
while, 169 

AMPLtypes, 175-177 
Amplification, 56, 111 

in MEDUSA, 68-69 
in STAROS, 69, 93-94 

Amplify Capability instruction, 94, 123, 124 
AnyOf construct, in TASK, 159, 162-163 
Application processor (AP), 184-185 

garbage collection and, 190-191 
send statements and, 186-187 

Ardo, Anders, 367 
Argument segments in ECHOES, 203 
Assignment, in Ada, 368, 369-370 
Asynchronous algorithms, 242-247 

structure, 251-252, 258--259 
Asynchronous method for POE, 357-358 
Asynchronous Gauss-Seidel, 318 
Asynchronous Jacobi, 317 
Asynchronous pipeline computation, 256 
Asynchronous procedure calls, 54 

Asynchronous workload, multiprocessor model 
and,413-414,421-422 

Attributes, special, 156-158 
Auto-Diagnostic Master, 26 
Auto-Diagnostic program, 40, 45 

B-Ianguage, 211-214, 218, 304 
B-Ianguage constructs 

begin, 214 
end, 214 
MsgEvent, 213, 214, 215 
sensor, 213, 215 
vary, 213, 216-217 

Backpointers, 65-66, 81 
Bail out function, 100 
Bandwidth 

network emulation, 327 
of references to global memory, 239 

Banner, 26 
Basic objects, 56, 90 
BDL,82 
Beam search algorithm, 329-330 
Bechtolsheim, Andy, 430 
Begin construct, in the B language, 214 
Black objects, 104 
BLISS, 148, 157, 183,201 
Block instruction, 88,95 
Block Move instruction, 196,374 
Block transfer, 21, 120, 128 
Block-Transfer instruction, 120 
Blocking, 128, 138--141 

automatic vs. voluntary, 127 
scheduling and, 395 

Bounding box, 383 
Buddy, 82,86 
Buddy Descriptor List (BDL), 82 
Buddy exceptions, 82 
Buddyreports,81,82 
Buddy system, 198 
Buffering, 211 

object, 212 
in pipes and mailboxes, 53, 95,129-130 
Metropolis algorithm and, 365-367 

Burst errors, 41 
Busy loop, Siocal, 38 
Busy-waiting, 138-140,330,369 
Bypass, 71 

Cache, 59 
coherence, 66 
MEDUSA vs. STAROS, 31, 33 

Call instruction, 201, 203-206 
Caltech Intermediate Form (elF), 382, 386 
Capabilities, 56, 154 

abstract, 92 
creation of, 99, 231 
data, 92 
fully privileged, 94 
objects and, 88-89 
plug, 124 



Index 

representation, 92 
structure and uses, 91-92 
token, 92 

Capability addressing, 65, 87 
Capability instructions, 122-124 
Capability list, 89, 111 
Capability mailboxes, 94, 157 
Capability portion, 89 
Capability rights, 91 
Capability slots, 89, 154 
Carey, ~.~ike, 350 
Carrier, 98 

lifeboat, 100 
Change addressability, 116, 117 
Chansler, Robert J., Jr., 374 
Checksum errors, 41 
Chip failure, 39-40 
CIF,382 
Circuit switching, 15 
Circular-wait condition, 67 
Client, 93-94 
Clock,273-287,314 

algorithms, for reading, 274-282, 314 
Cm*, 274, 314 
compensating process, 282-283 
in multiprocessors, 274-282, 314 
line-frequency, 279, 283 
stimulus-controller module, 217 
tick interval, 281 

Clock-read pairs, 282-283 
Closed-system recovery prelude, 80 
Close File instruction, 75 
Cluster-level contention, 378-379 
Clusters, 15, 27 

garbage collection and, 103, 106-107 
Kmap and, 21 
mapped memory reference 
performance, 31 

CM,11 
Cm's, See Computer Modules 
Cm*, 2 

architecture, 3 
clock, 274, 314 
communication with, 24-27 
design evolution, 12-14 
purpose of, 4-5 
stages of development of, 5-7 
synchronization granularity, 4 

Cm* hardware architecture, 11-28 
design of, 12-14 
structure of, 14-24 

See also Hardware 
Cm * Host, 24-27 
CMIC, 181 
C.mmp, 11, 267, 332 
CMU-built components, reliability of, 38 
Coarse-grain exception handling, 83 
Code, mapped,36-37 
Color, of objects, 102, 104 
Commit phase, 84, 86 

Communication, 24-27 
among Cm* resources, 26 
bandwidth, 327 
between computers, 11 
CM Host and, 26 
in FFT, 349 
intermodule, 11 
interprocessor, 299, 327 
packet-switched, 15 

See also Messages 
Communication Processor (CP), 184-185 

garbage collection and, 189-193 
send statements and, 186-187 

Completion time, 225 
Complex templates, 150, 154, 158 
Computer Module (Cm) project, 11 
Computer modules (Cm's), 12, 15, 16-18 

defined,12 
design of, 12-14 
destination, 21 
execution speed of, 29-30 
Kmap interface, 19-21 
master, in NEST, 181-182 
slave, in NEST, 182 

Concurrency control policies, 372 

443 

Conditional message operations, 70 
Conditional Receive instruction, 70, 94-95, 96, 

121,126,129-130,292-293 
Conditional Send instruction, 53, 70, 129-130 
Conflict, in production systems, 388 
Connection throughput, 418-419 
const construct, in AMPL, 170 
Construction description, 148 
Consumer algorithms, 230-231 
Contention, 114 

algorithms, 34-36 
cluster-level, 378-379 
in MEDUSA, 68, 374 
kmap, 337,352,370 
lock,342 
resolution of, in Smap, 32 
shared memory, 121, 263, 319, 342, 351, 386 
system-level resource, 378-379 
throughput performance and, 32, 34 

Contention overhead, 233, 235-239, 258-259, 
263-264,271 

Contexts, 18 
orphan, 67 

Context swaps, 20, 70 
avoidance of, 128 
and continuous coscheduling algorithm, 400 
Pmap,20 

Continuous coscheduling algorithm, 397-400, 
402-409 

Co-objects, 76-78, 86 
Copies, local, 248-250 
Copy Capability instruction, 90, 123, 191 
Coroutines, 75-76 
Coscheduled fraction, 406 
Coscheduling, 72,84-85 



444 Index 

Coscheduling-Continued 
algorithms for, 396-409 
defined,395 
MEDUSA,55 

performance, 395-409 
Coscheduling effectiveness, 401 

idle fraction and, 404-406 
load and, 402-403 
task-force size and, 403-404, 406 

Co-SDL,78 
Counting lock, 349 
CP, See Communication Processor 
Create Capability instruction, 93 

data type, 123 
representation type, 123 

Create function, in AMPL, 198 
Create token, 92 
Critical point, 342 
Crossbar switches, 4 
Crossover phenomenon, 338-340,381 
Current process capability, 97 
CYCLES, 115 
Cycle stealing, 21 
Cycle time, 42~422 

DA Link, 27 
Dannenberg, Roger, 166, 200, 353, 358 
Database systems, 372-374 
Data capabilities, 92 
Data filtering, 391-394 
Dataflow architecture, 3, 166 
Data mailboxes, 94 
Data portion, 89, 97 
Data RAM, 18,21 
Data word, 91 
Deadlock, 67, 74-76 

during recovery from exceptions, 78-80 
prevention, 15,74,130,374 

Deal/ocate Object function, 99 
Deamplification, 111 
Deamplify Capability instruction, 94, 123 
Debugging, 72, 85, 1 00, 20~201 
DEC-l0, 27 
Decomposition, 419-420, 424 
Decomposition functions, 237-239 
Decomposition groups, 420 
Decomposition overhead, 258-259 
Decomposition penalty, 232, 233 
Decreasing failure rate, 45 
Decrement, 90 

See also Indivisible Decrement instruction 
Deminet, Jarek, 181-182,257,263,335,341, 

342 
Deque, 121 
Deque objects, 90 

garbage collector, 103-104 
Derived relations, 215 
DESCAL,329 
Descriptor lists, 65-66, 68 

utility (UDL), 73 

Memory Manager and, 72 
Descriptors, 64 , 

accesses to, 66 
cached, 66 
for co-objects, 78 
MEDUSA,56 

STAROS, 89, 91 
validityof,31 

Descriptor segment, 202 
Descriptor slots, 65 
Design-rule checking, 256 

on MEDUSA, 382-384 
on STAROS, 384-388 

Destination computer module (Cm), 21 
Destination Kmap, 22 
Device pool, 348-349 
Diagnostic Processor (DP), 26 
Diagnostic tests, 4~41 
Dire,ctories 

in MEDUSA, 72 
in STAROS, 91 
in UNIX, 72 

Dirichlet's problem, 264-265, 317 
Distributed data, POE, 338-340 
Divide phase, in partitioning algorithm structure, 

254 
Domains, 215 
DP,26 
Dugan, R. C., 261, 348 
Dynamic partitioning, of data, 232 

ECHOES, 36, 181,201-206 
addressing system, 202-204 
vs. AMPL run-time system, 201-202, 205-206 
contention resolution algorithm, 36 
measurements in, 204-205 

Edge-selection heuristic, 376-378 
Effective processing power, 412 
Elapsed time, 225 
end construct, in the B language, 214 
Ensemble averaging method, 268, 361 
Errors, transient, 40-42 
Establish XOL instruction, 120-121 
Event records, 218 
Event relation, 215 
Event system, 54 
Event variable, 70 
Events, 71, 95 
Eventable objects, 71 
Exception conditions, 72, 80, 81 
Exception handling, 80, 83-84 
Exception Manager utility, 72, 79, 80, 81-82, 86 
Exception reporting, 80, 81-82 
Exceptions 

MEDUSA, 8~84 
serious, 100 
STAROS, 100 

Exclude Memory function, 99 
Executable code, 64 
Execute phase, 84, 86 



Index 

Executing fragment, 395 
Execution speed, 29-30 
Execution time, 225, 245 

in FFT, 349 
vs.speedup, 226 
task,247 

Experiment control, 216 
Experiment management, 216 
Experiment schema, 207 

See also Schema entries 
External Descriptor List (XDL), 68, 120-121 
External fragmentation, 397, 400 
External reports, 81, 82 

Fast Fourier Transforms (FFT), 262, 332-334, 
348-350 

Fault-tolerance, 73 
FCFS service, 68 
Feiler, Peter, 327 
File control blocks, 63, 71, 72 
File object, 212 
File System utility, 64, 72, 74, 85, 372-374 
File-transfer system, 27 
Filtering 

data, 391-394 
rule, 391-394 

Fine-grain exception handling, 83 
Finite differences method, 266 
Flagboxes, 82 
Flags, 82 
Floating-point algorithms, 240 
Fork instruction, 201, 203-206 
Forward messages, 22 
4K-byte basic objects, 56, 89, 105, 161, 387 
Four-read clock algorithm, 276-277, 279, 283-

286 
Fragmentation 

external, 397, 400 
internal, 397 

Fragmented task forces, 395 
Front End lines, 24-25 
Front pointers, 90 
Fully connected interconnection structure, 4, 

299-300,305-310 
Fully privileged capability, 94 
Functions, 98,148 

absent, 98 
AMPL,177 
present, 98 
STAROS, 87, 96-100 

Function templates, 148 

Gallop test, 41 
Garbage collection, 92, 102-110, 188-193, 

374-376 
in AMPL, 173, 188-193, 198 
deque, 103-104 
local, 103 
master, 191 
measurements of, 110 

performance aspects of, 106-110 
red,104 

445 

in STAROS, 92, 102-111,230-231,374-376 
token, 92, 102 

Garbage Col/ector module, STAROS, 92, 102-
111,230-231,374-376 

Garbage objects, 102 
Gate segment, 203 
Gehringer, Ed, 115, 230 
GiveSigna!, 135 
Giobaiaccess, 235, 240,242 
Global data, 46 
Global memory speed, 239-241 
Global stack, 342 
Global synchronization points, 235, 242 
Global variables, mapping of, 36-37 
Gosling, James, 181 
Granularity, 289 

heuristic, 378 
implications for reading clock, 287 
synchronization, 4 
voting, 293, 296-299 

Gregoretti, Francesco, 382 
Grid size 

PDE and, 335-337 

Hard failures, 39-40 
Hardware 

hard (permanent) errors, 46 
performance measurements on, 29-47 
reliability studies, 38-47 
throughput studies, 29-38 
transient errors, 46 
utilization and growth potential, 38 

Hardware attributes, 162 
Hardware resources, 161-164 
Hardware voting, 288 
Harpy, 327-332 
Heuristics 

edge-section, 376-378 
effectiveness of, 378 
node-selection, 376-378 
search algorithm, 381 

Hibbard, Peter, 332, 361 
Hierarchical switches, for locating MEDUSA ob-

jects,4 
Hints, 66 
Hisgen, Andy, 332 
Hit ratio, 37 
Holes, in activity sequence, 400 
Hooks, 25 
Hooks bus, 25 
Hooks processors, 25 
Host, 24-27 

1/0 devices, 16-17 
1/0 memory-mapped, 274 
1/0 SUbsystems, 53 
Idle fractions, 404-406 
Idle loop, 38 



446 Index 

If statement, in AMPL, 169 
liE, See Integrated Instruction Environment 
Implementation penalty, 233, 234-241 
Improved process selection, PDE, 337-338 
Improvement factor, for clock readings, 282 
Include Memory function, 99 
Indivisible Decrement instruction, 68, 90, 330 
Indivisible Increment instruction, 68, 90, 117-

118,121,349 
InitialCode attribute, 156, 157 
Initiators, 208 
In-line embedded code, in Ada, 369-371 
In-line internal reports, 81 
Instantiation, 87, 164,388-390 
Instruction-set test, 41 
Integer programming, 29, 30, 46, 228 

Harpy and, 332 
hit ratio for, 37 
set-partitioning, 324-327 

Integrated Instrumentation Environment (liE), 7, 
207-222 

design of, 209-210 
functionalityof,207-209 
instrumentation stimulus, 210-214 
relational monitor, 214-216 
resident monitor, 218-219 
schema management, 219-222 
stimulus controller, 216-217 

Intel, 69, 432 
Interaction times, 130-142 
Intercluster bus, 15, 22, 28 
Intercluster messages, 22, 23-24 
Intercluster references 

in MEDUSA and STAROS, 32-34 
in Smap, 33 

Interconnection networks, multiprocessor model 
and,418-419 

Interconnection structures, 4, 299-315 
fully connected, 299-300, 305-310 
multistage networks, 299 
nearest-neighbor, 299, 300, 308-310, 313 
point-to-point networks, 299 
ring, 300, 313 
shared-bus networks, 299 

Interface module, 182 
Internal fragmentation, 397 
Internal-queue voter, 289 
Internal reports, 81-82 
Interrupt-and-trap test, 41 
Intracluster references, 19, 31 
Invocation 

carriers, 98 
mailboxes, 98, 157 
pipes, 68, 73, 75, 76 

Invoke instruction, 97, 98, 99, 111 
Isolated errors, 41 
Items, 90 
Iteration, 155-156 

algorithm, 242-244 

process, 242-244 
Iteration time, 422 

Jacobi method for PDE, 317 
Jones, Anita, 367 

Kazar, Mike, 201 
Kbus, 18, 19,22 

out queue, 19,20-21 
Kernel, 57, 63, 69, 85 

facilities provided by, 64-69 
pause time and, 71 

Kernel process, 57 
Kmaps, 12-15, 19-24,27,28, 142,204 

addressing and, 57-59 
co-objects and, 78 
deadlock and, 67 
debugging, 25 
destination, 22 
errors, 41 
functions of, 18 
hardware, 18 
interface between, 22-24 
interface with computer modules, 19-21 
master, 23 
microcode measurement and, 114-116 
slave, 23 
source, 21 
as transaction controllers, 18 

Kong, Tom, 29 
Kownacki, Joe, 388 

Lane, Tom,383,384 
Languages 

for multiprocessors, 147-179 
for unip~cessors, 147 

Latency, 133-142 
Least-Squared Error (LSE), 43 
Left-Hand Side (LHS), of production rule, 388 
Lifeboat carrier, 1 00 
Linc, 18,22 
Linear speedup, 227 
List processing, 102 
LMSK algorithm, 376 
Load balancing, 71 

systolic, 367 
Loader module, 6, 164 
Load Window instruction, 57, 117, 121, 124, 

157-158 
Local copies, 248-250 
Local memory references, 12,36-37,351 
Location specifiers, 152, 163-164, 409 
Locked objects, 80 
Locking policy, in transaction-processing sys­

tem, 372-374 
Locks 

in Ada rendezvous, 369 
in AMPL garbage collection, 191-192 
in Harpy, 330 



Index 

on quicksort's global stack, 342 
Lockstep processors, 3 
Logging in, 26 
Logical parallelism, 244,247 
Long-term averaging technique, 282-287 
Low-level operating-system primitives, 21 
LSE,43 
LHS, 388 
LSI-11, 25-27, 61 

~.1cConne!!, Steve, 42 
MACE utility, 72, 85 
Macrodevice, 261 

in FFT, 348 
in power-systems simulation, 350-351 

Macromodel,261 
in FFT, 348 

Mailboxes, 53, 76, 90-91, 94-96, 126 
invocation, 98 
private, 98 
return, 98 

Mailbox objects, 90 
Management process, in FFT, 349 
Map bit, 57 
Map bus, 19 
Map bus monitor, 29 
Mapped memory references, 19,57,318,319 

execution time and, 37 
throughput of, 30-36 

See a/so Memory References 
Mapping processor (Pmap), 18 
Master computer module (Cm), 20 

in NEST, 181-182 
Master context, 81 
Master Kmap, 23 
Master process 

in Ada, 368 
FFT and, 334 
in Harpy, 330 
in integer programming, 325 
in matrix multiplication algorithm, 359 
in multiphase algorithm structure, 253 
in POE, 317, 354-355 
in quicksort, 323 

Matching parallelism, 247-248 
Matrix coscheduling algorithm, 396-397, 402-

409 
Matrix multiplication 

in AMPL, 358-361 
multiprocessor model and, 426-427 

Matrix processes, 359 
Maximum Likelihood Estimator (MLE), 43 
Maximum sustainable message rate, 304 
Mean Time Between Errors (MTBE), 45 
Mean Time To Failure (MTTF), 39 
Mechanisms, 63 
MEDLlNK, 148-166, 179 

evaluation of, 165-166 
MEDUSA, 63--86 

activities, 63 
addressing, 56-61 
AMPL on, 183-193 
amplification in, 68-69 
architecture, vs. STAROS, 61 
cache,31,33 
change of addressability in, 117 
clock-reading routines, 274-282 
design rule checking on, 382-384 
with enhanced utilities, 76 
exceptions, 80=84 
goals of, 51-56 
intercluster memory references, 32-34 
kernel,63 
levels of, 63 

447 

mapped memory reference performance, 30-
36 

maximum throughput, 32, 34 
mechanisms, 63 
message system, 53--55, 69-70, 126-142, 

300-301 
microcode reliability, 66-68 
object orientation of, 147 
objects, 56 
POE,334-341 
performance of, 113--114, 116-121, 125 
potential of, 86 
robustness considerations, 76-80 
space costs, 118-119 
synchronization operations, 117-118 
task forces, 52, 150-151, 179 
throughput of, 46 
transaction-processing system for, 372-374 
utilities, 63, 71-80, 85-86 

Mehrotra, Ravi, 230 
Memory 

allocation of, 64, 71 
deallocation of, 64, 71 
diagnostics, 40-41 
locality, 36-37 

Memory Manager utility, 64, 71-72, 74, 80, 85 
Memory references, 114-116 

See a/so Mapped Memory References 
Memory sharing, 3 
Memory test, 41 
Memory units, 4 
Message communication 

pure, 132-133 
unnecessary, 70-71 
value vs. reference-based, 137-141, 144 

Message passing, in Ada, 367-371 
Message rate, maximum sustainable, 304 
Messages,52-55,94-96,111 

in AMPL, 170-177, 184-185 
blocking, 127 
in MEDUSA, 63, 69-71, 300-301 
MEDUSA vs. STAROS, 126-142 
overlapped delivery, 127 
performance, 129-130 



448 Index 

Messages-Continued 
size, 127 
symmetry, 127 
system performance, 126-142 
value- vs. reference-based, 127, 130, 135-

136 
Message-transfer operation, 21 
Metropolis algorithm, 257, 262-263, 268-269, 

361-367 
systolic, 365-367 

Microcode 
performance of, 116-126 
reliability, 66-68 

Microcycles, length of, 114-115 
MIL 217B model, 40 
Mis-placed objects, 106-107 
MLE,43 
Modularity, 51 
Module object, 91, 97 
Modules, 56 

in AMPL, 172 
Modules, STAROS, 87, 96-100,110-111 

Garbage Collector, 92, 102-111, 230-231, 
374-376 

Loader, 6, 164 
Nucleus, 87, 88-94, 110-111 
Object Manager, 92,99, 103, 106, 110 
Process Creator, 101 
Task Forces, 99-100 

Module statement, in AMPL, 168-169 
Module templates, 148 

in AMPL, 186 
Module time, 39 
Mohan,Joe,244-247,254,376 
Molecular-dynamics method, for molecular mo-

tion, 262, 268-269, 361-367 
MsgEvent construct, 213, 214, 215 
MTBE,45 
MTTF,39 
Multicluster Kmap operations, 22-23 
Multicluster partial differential solver, 334-341 
Multicluster quicksort, 341-342 
Multicomputers, 3 
Mufti-Event Wait instruction, 54, 70, 76 
Multiphase algorithms, 233 

structure, 253-254, 258-259 
Multiple shared buses, 4 
Multiple-bus connections, 12-14 
Multiplexers, 100-101, 111 
Multiplexing, 55, 76 
Multiprocessors, 1-8 

advantages of, 1 
algorithm measures on, 225-226, 228 
architecture emulation, 302, 314 
clocks in, 274-282, 314 
defined, 2-3 
experimental,4-5 
hierarchical, 147 
interconnection structures, 299 315 
languages for, 147-179 

models of, 411-428 
parallel algorithm performance and, 273 
procedure calls in, 54 
task forces, 52 
usable processing power, 310-314 

Multistage networks, 4, 299 
MUMBLE, 36, 201 

Name construct, 154 
Nearest-neighbor interconnection, 299, 300, 

308-310,313 
NEST,181-183,335-337 
NEST environment, 115, 182 
Net, See Railway-network simulation 
Network 

bandwith,327 
integer programming algorithm and, 325-327 
model, 261, 348 

New construct, 154, 157 
N-Modular Redundancy (NMR), 288, 290 
Node-selection heuristic, 376-378 
Nonlocal memory references, 19,23,68,319 

in power-systems simulation, 351 
Nonserious exceptions, 100 
Nucleus, 87, 110-111 

facilities provided by, 88-94 
NumberOf construct, 162 
NumSlaves processes, 155 

Object code, 165 
Object exceptions, 82 
Object graph, 91, 102, 110 
Object Manager module, 92, 99, 103, 106, 110 
Object names, 89, 104 
Object orientation, 147 
Objects, 55-56, 57 

abstract, 89, 90, 93-94, 111 
basic, 56, 90 
buffer, 212 
colors of, 102, 104 
creating, 101, 103-104 
deque,90 
eventable,71 
file, 212 
garbage, 102 
locked,80 
mis-placed, 106-107 
module, 91, 97 
page,64,158 
private, 79 
reachable, 189 
red, 104, 108-109 
representation, 89, 90, 93 
root, 189 
semaphore, 212 
shared, 76, 79 
shared data, 212 
standby, 78, 79 
STAROS, 111 
subtask, 212 



Index 

table, 212 
task description of, 88-91, 152-155 
task-force, 212 
objects, 104 

Object status function, 99 
One-read clock algorithm, 277-279, 284-287 
Open File instruction, 75 
Operating systems, 5, 6 

alternatives to, 181 
cost, 113 
overview, 51-61 
performance, 113-144 
procedure- vs. process-oriented, 201 

See a/so MEDUSA, STAROS 
OPS3,388-394 
Optimistic policy, 372-374 
Orphan contexts, 67 
Ostlund, Neil, 361 
Ousterhout, John, 74, 85, 430 
Out-of-line internal reports, 81-82 
Out queue, 19,20-21 
Overhead 

access, 233, 234-235,239-241, 262-263, 
271 

algorithm structure and, 258-259 
contention, 233, 235-239, 263-264, 271 
parallelization, 233, 248-250, 269-270 
reconstitution, 233-234, 261, 271 
separation, 232-233, 260, 271 
synchronization, 233, 242-247, 264-269 

Overlapped delivery, 127 
Overloading, MEDUSA, 71 

Packet acknowledgment, 27 
Packet quota mechanism, 27 
Packet switching, 15, 28 
Page, 57 
Page objects, 56, 64, 158 
Parallel algorithms, 8 

factors influencing performance, 259-270 
factors limiting speedup in, 231-250 
performance of, 225-272, 411-428 
vs. sequential, 225-226 
speedup in, 225-231 
structure of, 251-259, 271 
taxonomy, 250-259 

See a/so Algorithms 
Parallel architectures, 8 
Parallel computation structures 

asynchronous,251-252,258-259 
multiphase, 253-254, 258-259 
overhead and, 258-259 
partitioning, 254-256, 258-259 
pipeline, 256-259 
synchronous, 252-253,258-259 
transaction-processing, 257-259 

Parallel computations, 250-251 
Parallelism 

logical, 244, 247 
matching, 247-248 

449 

physical, 244, 247 
Parallelization overhead, 233, 248-249, 269-

270 
Parallel phase, 253-254 
Parallel processors 

classes of, 3 
design, 12-14 

Parallel production systems, 388-394 
Parallel structure, 251 
Parameter block. 61, 125 
Parameterization, 155 
Parent reports, 81, 82 
Parity errors, 81 
Parity test, 45 
Partial Differential Equations (PDE), 29, 30, 46, 

263,264-268 
AMPL, 353-358 
asynchronous Gauss-Seidel method, 318 
asynchronous Jacobi method for, 317 
asynchronous vs. synchronous, 354-358 
distributed data, 338-340 
grid size and, 335-337 
hit ratio for, 37 
improved process selection, 337-338 
multicluster, 334-341 
purely asynchronous method for, 318 
speedup and, 335-337 
task force, 150-151 
unicluster, 317-321 

Partitioning, 155, 232-233 
structure, 254-256, 258-259 

Path, of capabilities, 102 
Pause time, 70-71, 128 
PDE. See Partial Differential Equations 
PDL,65,68-69, 73,82,151 
PDP-10, 26 
Pegasus user interface, 304 
Performance Estimation Program (PEP), 244-

245 
Period relation, 215 
Permanent errors, 39-40, 46 
Physical parallelism, 244, 247 
Pipeline algorithm structure, 256-259 
Pipelined multiple-execution-unit uniprocessors, 

3 
Pipes, 53, 56, 64 

vs. AMPL ports, 184 
invocation, 68, 73, 75, 76 
MEDUSA vs. UNIX, 69-70 
return, 73, 76 

Plug, 124 
Pmap, 18, 19-21,33,67 
PM,390 
PMS (Processor-Memory-Switch), 12 
POint-to-point interconnection, 299 
Pools, 261 
Portal Delivery function, 95, 96, 128 
Portal location, 95 
Portal number, 91 
Portals, 95, 96 



450 Index 

Port construct, in AMPL, 168, 171 
Ports, in AMPL 170-177,184 
Power-systems simulation, 348-353 
Preallocation, 204 
Present construct, 157 
Present functions, 98 
Primitive relation, 215 
Private Descriptor List (POL), 65, 68-69, 73, 82, 

151 
PrivateMailbox attribute, 157 
Private mailboxes, 98, 157 
Private objects, 79 
Private variables, mapping of, 36-37 
Privileged operations, 120-121 
Procedure calls, 54 
Procedure-oriented operating systems, 201 
Process construct, 154, 157 
Process creation, 198,201-206 
Process Creator module, 101 
Process descriptor table, in AMPL, 186 
Process frame, in AMPL, 186, 191 
Processing efficiency, 131-132 
Processing speed, 416 
Process iteration, 242-244 
Process name, in AMPL, 191, 192 
Process-oriented operating systems, 201 
Process pairs, in AMPL, 184-186 
Processor-Memory-Switch (PMS), 12 
Process-to-process interaction times, 130-142 
Process sets, 97 
Process switching. See Context swaps; 

Multiplexing 
Processes 

in AMPL, 182-201, 206 
ECHOES,201-206 
placement of, 380-381 

Processor allocation, AMPL, 178 
Processors, scheduling and, 395 
ProcessStack mailboxes. 157 
Production rule, 388 
Program Memory (PM), 390 
Protected call stack, 203 
Protection, 26, 32 
Proximity relations, 159-161, 165 
Purely asynchronous method, for POE, 318, 335 
Pure message communication, 132-133 

Queues, 36 
in AMPL, 172, 186-188 

Queueing delays, 114 
Quicksort, 29, 30, 37, 38, 46, 255, 260 

critical point, 342 
hit ratio for, 37 
multicluster, 341-342 
threshold for, 341-342 
unicluster, 321-324 

Railway-network simulation (Net), 257, 342-348 
Randomized algorithms, 226 
Raskin, Levy, 29, 266, 317, 321, 324, 330 

Reachable objects, 189 
Read access, 20 
Read Capability instruction, 123 
Read instruction, 88 
Read-only bit, 58 
Read Word instruction, 121 
Read/write access, 68-69 
Real-time measurement, 114-116 
Rear pOinters, 90 
Reawaken Sleeping Activity instruction, 120-

121 
Receive handler, in AMPL, 186-187 
Receive instruction, 53, 56, 64, 94-95, 96, 127-

130,292-293,306-307 
Ada and, 368, 369 
latency and, 134-135 
in MEDUSA, 70-71 
throughput and, 134-135 

Receptacles, 218 
Recognize-act cycles, 388 
Reconstitution overhead, 233-234, 258-259, 

261,271 
Reconstitution phase, in partitioning algorithm 

structure, 254-255 
Recovery, 78-79, 86 
Red objects, 104, 108-109 
ref construct, in TASK, 155 
refmod construct, in AMPL, 176-177 
refport construct, in AMPL, 168, 172, 176 
Refraction set, 390 
Registered Receive instruction, 70, 94-95, 96, 

128 
Register-transfer module (RTM) project, 11 
Registration mode, 91 
Relational monitor, 214-216,220 
Relations, 215 
Reliability studies, 38-45 
Remote Cms, 182 
Remote memory access, 21 
Rendezvous, Ada, 367-371 
Replication, 78, 155 
Reply handler, in AMPL, 187 
Reporter, in railway-network simulation, 346 
Representation capabilities, 92, 93-94 
Representation objects, 89, 90, 93 
Resident monitor, 218-219 
Resource allocation, 147-148, 158, 165 
Resource control, 26 
Resource ordering, 67 
Resource-usage directives, 148, 150, 158-164 
Restrict Capability instruction, 123 
Result process, in matrix multiplication algo-

rithm, 359 
Return instruction, 204-205 
Return mailbox, 98 
Return message, 22, 135 
Return pipe, 73, 76 
Return request, 21 
Right-Hand Side (RHS), of production rule, 388 
Rights word, 91-92 



Index 

Ring interconnection structure, 300, 313 
Robinson, John, 257, 372 
Robustness, 51,65, 76-80,86 
Rodeheffer, Thomas, 332 
Root objects, 189 
Roots, 102 
Routing tables, 300, 306 
RTM project, 11 
Rule filtering, 391-394 
Run queues, 101 

Pmap, 19,20 
Runs, 207 
Rychener, Mike, 388 

Saturation, 38 
Schedulers, 100-101 

STAROS,55 
Scheduling parameters, 101 
Scheduling window, 397-400 
Schema, 207-209 
Schema instance, 207, 209, 210, 220-222 
Schema interpreter, 220 
Schema manager, 209-210, 219-222 
SDL, 15, 65, 69, 73 
SEADS transient-error statistical analysis pro-

gram, 42 
Search algorithms, 228-230, 381 
Search list, 101 
Security, 26 
Segall, Zary, 388 
Select statements, in AMPL, 173-175 
Semaphores, 64, 212 
Send buffer, in AMPL, 186 
Send instruction, 53, 56, 64, 73, 88, 94-95, 

127-130,292-293,304,306-307 
Ada and, 368 
in AMPL, 195-198 
latency and, 134-135 
in MEDUSA, 70-71 
throughput and, 134-135 

Send statement, in AMPL, 172-173, 186-188 
Sensor construct, 213, 215 
Sensor description, 218 
Sensors, 210 
Separation overhead, 232-233, 260, 271 
Separation phase, in partitioning algorithm 

structure, 254 
Sequence-number voter, 290 
Serial line connections, 24-25, 26 
Serial phase, of multiphase algorithm structure, 

253-254 
Serious exceptions, 100 
Serious flag, 100 
Server paradigm, in Ada, 368 
Servers, 208 
Service classes, 74-75 
Service request, 19 
Set-partitioning integer programming, 29, 324-

327 
Shadow bit, 78 

Shadow objects, 86 
Shadows, 78, 79,399 
Shared buses, 4 

networks, 299 
Shared data object, 212 

451 

Shared Descriptor Lists (SDL), 15, 65, 69, 73 
Shared memory, 12 

contention, 319 
in integer programming, 325 
PDE,319 

~ ..... ,.. ...... ~ _ ..... : ........ "'..... ~~ ""7n 
vllOI IC'U VUJ'IC'vlo::t, I U, I::J 

Short-term averaging technique, 283-287 
SIFT,288 
Signal-Processing Unit (SPU), 303-304 
SIMD architecture, 3 
Simple templates, 152-155 
Simple voter, 289 
Simultaneous errors, 41-42 
Sindhu, Pradeep, 78, 84, 430 
Singularities, 51, 76 
Slave em, in NEST, 182 
Slave context, 23, 24, 67, 81 
Slave function, 155 
Slave Kmap, 23 
Slav,e process 

FFT and, 334 
in Harpy, 330 
in integer programming, 325 
in matrix multiplication algorithm, 359 
in multiphase algorithm structure, 253 
in PDE, 317, 354-359 
in quicksort, 323 

Siocal busy loop, 38 
Siocal registers, 57-58 
Siocals, 14, 19,27,32,90 

address mapping in, 16-17 
addressing and, 57 
diagnostic test, 41 
in MEDUSA, 68 
in Smap, 429-430 

Smap, 429-430 
change-addressability in, 117 
intercluster memory references, 33 
mapped memory reference performance, 30-

35 
maximum throughput, 32, 34 
operating system performance, 113, 114 
synchronization operations, 117-118 
throughput of, 46 

Software Implemented Fault Tolerant (SIFT) 
computer, 288 

Software voting, 288 
Source Kmap, 22 
Space bit, 58 
Space costs, 116, 118-119 
Special attributes, 156-158 
Speech-recognition system Harpy, 327-332 
Speedup,225-227,270-271 

factors limiting, 231-250 
FFT and, 334, 349 



452 Index 

Speedup-Continued 
linear, 227 
molecular dynamics, 362 
multiprocessor model and, 422-425, 428 
POE methods, 321, 335-337 
quicksort threshold and, 341 
in railway-network simulation, 347 
superlinear, 227-231 

Speedup factor, 423 
SPU, 303-304 
Stack,121 

mapping of, 36-37 
shared, in quicksort, 322 

Stack attribute, 156-157 
Stack objects, 157 
Standalone benchmark, 182 
Standalone code, for POE, 335 
Standalone system, 6 
Standby objects, 78, 79, 86 
STAROS, 87-112 

addressing, 56-61 
amplification and, 69 
architecture, vs. MEDUSA, 61 
cache, 31, 33 
change-addressability in, 117 
clock-reading routines, 274-282 
contention resolution algorithm, 36 
design rule checking on, 384-388 
exceptions, 100 
functions, 96-100 
garbage collection in, 102-110, 111, 191-

193,230-231,374-378 
goals of, 51-56 
intercluster memory references, 32-34 
levels of, 87 
mailboxes, 76 
mapped memory reference performance, 30-

36 
maximum throughput, 32, 34 
messagesin,53-55,94-96 
message-system performance, 126-142 
modules, 96-100 
Nucleus, 88-94 
object orientation of, 147 
objects, 56 
operating system performance, 113-114 
POE, 334-340 
performance of, 116-119, 121-125 
read/write access in, 68-69 
scheduling, 100-101 
space costs, 118-119 
special attributes, 158 
synchronization operations, 117-118 
task force, 52, 179 
task-force object creation, 164 
throughput of, 46 

Starvation, 32, 34, 35, 46, 67-68 
Static measurements 

in Ada, 369-371 
of AMPL run-time system, 195 

Static partitioning, of data, 232 
Station, in railway-network simulation, 346 
Stimulus, instrumented, 209, 210-214 
Stimulus controller, 210, 216-217 
Storage allocation, AMPL, 177 
Straddling, in coscheduling algorithms, 402-403 
Subtask object, 212 
Subtask processes, 288 
Superlinear speedup, 227-231 
Swan, Richard, 15 
Swap out, 20, 21 
Switching hierarchy, 15 
Switching structure, 15, 27 
Symbol definitions, 382 
Symbol instances, 382 
Symmetry, 127 
Synchronization, 11 

granularity, 4 
multiprocessor model and, 420-421, 425 
operations, 116, 117-118 
overhead, 233,242-247, 258,264-269, 364-

365 
pipeline, 256 

Synchronous algorithms, 235-239, 242-247 
structure, 252-253, 258-259 

Synchronous method for POE, 354-358 
Synchronous procedure calls, 54 
Synchronous workload, multiprocessor model 

and,412-414 
Synthetic workloads, 282 
System-level contention, 378-379 
Systolic algorithms, 365-367 

Table object, 212 
Talukder, Sarosh, 348 
TASK, 148-166, 179 

evaluation of, 165-166 
in POE experiment, 317 
simple templates, 152-155 

TASK attributes 
InitialCode, 156-157 
PrivateMailbox, 157 
Stack, 156-157 
Window, 158 

TASK constructs 
anyOf, 159, 162-163 
name, 150, 154 
new, 149, 154 
numberOf,162 
process, 154 
ref, 155 
use, 154, 155 
where, 163 

Task domains, in Harpy, 329 
Task execution time, 247 
Task-force allocation, 395 
Task-Force Control Block (TFCB), 76 

descriptor, 82 
Task Force Manager utility, 55, 63, 72, 85 
Task-force object, 212 



Index 

Task forces, 51-52, 72,99-100 
coscheduling, 84-85,395-409 
fragmented, 395 
idle, 404--406 

Task-force size, coscheduling effectiveness and, 
403-409 

Task-force template, 148 
Task graphs, 211, 250 
TASK nonterminals 

<Access Expr>, 152, 153, 156 
<Actual attribute>, 153 
<Actual Expr> , 153 
<Actual Parameter>, 153 
<Actual Parameter Name>, 152, 156 
<Actual Parameters>, 155 
<Arth Expr> , 152, 159 
<Comp Name>, 152, 155, 156 
<Complex Template>, 151 
<Complex Template Name>, 151 
< Component>, 155 
< Construction Description>, 151, 155 
<Directive>, 159 
<Entry-Point Name>, 152, 157 
<Expr>, 152, 153 
<Filename>, 153 
<Formal Parameter>, 153 
<Formal Parameter Name>, 152, 153, 156 
<Formal Parameters>, 151, 153 
<Function Description>, 151 
<Function Name>, 152, 155, 157 
<Hard Att>, 153, 159 
<Hard Att Value>, 159 
<Hardware Set Name>, 159 
<High Umit> , 156 
<Identifier>, 152, 153, 159 
<Index>, 153, 156, 159 
<Integer>, 153, 156, 157, 159 
<Iterated Name>, 156 
<iteration>, 153, 155, 156, 159 
<lterName>, 156 
<Key Expr> , 153 
<Keyword Name>, 153 
<Low Umit> , 156 
<Module Description>, 151 
<Obj Attr> , 153 
<Object Name>, 152, 153, 155, 157, 159 
<Operation>, 155 
<Opr>, 159 
<Predefined Set Name>, 159 
<Proximity Degree>, 159 
<Re10pr>, 159 
<Resource-Usage Directives>, 151, 159 
<Selection>, 159 
<Selection Expr> , 159 
<Set Expr> , 159 
<Set Name>, 159 
<Simple Name>, 152, 156, 159 
<Simple Objecttype>, 151 
<Simple Template>, 151,153 
<Special Attr> , 153,157 

<Special Attributes>, 155 
<Task-Force Description>, 151 
<Template>, 151 
<Template Name>, 155 
<Templates>, 151 
<Unquoted string>, 152 
<Var Expr> , 153, 156 
<Var Type>, 152, 153 
< Variable>, 156 

Tasks, voting and, 288 
Tempiates 

complex, 150, 154, 158 
function, 148 
module, 148 
task-force, 148 
task simple, 152-155 

TerminalinBuffer, 154 
TerminalOutBuffer, 154 
TFCB, 76, 82 
Threshold, for quicksort, 341-342 
Throughput, 46, 133-142 

of mapped memory references, 30--36 
measurements, 138-142 
memory iocality and, 36-37 
maximum, 32, 34 
studies, 29-38 
voting and, 290-291 

Throughput (T) measures, 137-138 
Time averaging, 362 
Time measurement, 273-287 
Time step, 261, 349 
TMR,288 
Token capability (tokens), 92, 93 
Tracing, 114-116 
Trains, in railway-network simulation, 346 
Transaction identifiers, 73, 81 
Transaction-processing algorithm structure, 

257-259 
Transaction-processing system, 372-374 
Transfer Capability instruction, 90, 123 
Transient errors, 40-46 

453 

Traveling-salesman problem, 254, 256, 376-382 
Triple-Modular Redundancy (TMR), 288 
Tuples, 215 
Type managers, 56, 93-94, 111 
Types, 

abstract, 97 
AMPL, 175--177 

Type tokens, 93 

UDL,73 
Unconditional message operations, 70 
Unconditional Receive instruction, 70, 127, 

128,130 
Unconditional Send instruction, 53, 70, 127 
Undivided coscheduling algorithm, 85, 400, 

402-209 
Unicluster partial differential equations, 317-

321 
Unicluster quicksort, 321-324 



454 Index 

Uniprocessors, 1, 52 
algorithms, 147,225-226,228 
functions of, 3 
procedure calls in, 54 
types of, 3 

UNIX@),72 
pipes, 69-70 

Use construct, 154, 157 
User interface, 220 
User process, 57 
User space, 57 
Utilities, MEDUSA, 54, 63, 71-80, 85-86 

amplification and, 68-69 
communication by, 73 
Exception Manager, 72, 79, 80, 81-82, 86 
File System, 64, 72, 74, 85, 372-374 
Memory Manager, 64,71-72,74,80,85 
multiplexing, 76 
pause time and, 71 
Task Force Manager, 55, 63, 72, 85 

Utility Descriptor List (UDL), 73 

Var construct, in AMPL, 168, 170 
Vary construct, 213, 216-217 
Varying-read clock algorithm, 275-276 
VAX 11/780, 26-27 
Victims, 81,82,86 
Virtual buffers, 302 
Virtual channels, 27 
Virtual hardware resources, 162 
VLSI circuit design, 382, 386 
Voters, 288 

overhead experiments, 290-293 
queue-length experiments, 294-299 
types of, 289-290 

Voting, 288-289 
Vrsalovic, Dalibor, 244-247, 270, 411 

Wait 
mUlti-event, 54 
in MEDUSA, 70-71 

Wei bull distribution, 40, 43-45 
Weide, Bruce, 229 
Where construct, in TASK, 163 
While statement, in AMPL, 169 
White objects, 104 
Whiteside, Bob, 257, 361, 366 
Width, in activity sequence, 400 
Wilkes, Maurice, 230 
Window attribute, 158 
Window number, 58 
Window registers, 59 
Windows, 57 

cache structure and, 31 
scheduling, 397-400 
in Smap, 429 

Workers, in Ada, 368 
Working Memory (WM), 390-394 
Working Memory Units (WMUs), 390 
Workload generator, 211 
Write access, 20 
Write Descriptor instruction, 120-121 
Write instruction, 88 
Write references, 59 

XDL. See External descriptor list 

Yellow objects, 104 
York, Gary, 290 



Ordering Information 

To order additional copies of this book and related titles, fill in and mail this form or call the 
toll-free telephone number below. Orders under $50 must be prepaid by check or credit card; 
postage and handling are free on prepaid orders. 

Digital Press/Order Processing 
Digital Equipment Corporation 
12A Esquire Road 
Billerica, MA 01862 

Qty. AuthoriTitle Order No. Price* Total 

Gehringer et al. Parallel Processing: Cm* EY-6709E-DP $40.00 

SiewiorekiSwarz: Reliable System Design EY-AX016-DP 45.00 

Levy: Capability-Based Systems EY-00011-DP 28.00 

I----

Total 
r--

Add state sales tax 
I----

Total remitted 
'----

Method of Payment 

__ Check included (Make checks __ MasterCardlVisa 
payable to Digital Equipment Charge Card Acc't No. 
Corporation) 

Expiration Date 
__ Purchase order (Please attach) 

Authorized Signature 

Name Phone 

Address 

City State Zip __ 

Toll-free Order Number 

To order books by MasterCard or VISA, call 1-800-343-8321. Phone lines are open from 8:00 
A.M. to 4:00 P.M., Eastern time. 

·Price and terms quoted are U.S. only and are subject to change without notice. For prices outside the 
U.S., contact the nearest office of Educational Services, Digital Equipment Corporation. 




	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456

