
C)

c

-<

r
.

VI

-i

m

m

r

m

.._

7"

~ ;:;ti >m

•
GUY L. STEELE JR.

MAC LISP
SCHEME
SPICE LISP
ZETALISP

PSL
NIL

z~ c ;:;ti

~ ~ REFERENCE MANUAL
m

COMMON LISP

THE LANGUAGE

Would it be wonderful if, under the

pressure of all these difficulties, the

Convention should have been forced

into some deviations from that artifi

cial structure and regular symmetry

which an abstract view of the subject

might lead an ingenious theorist to

bestow on a constitution planned in

his closet or in his imagination?

-James Madisori, The Federalist

No. 37, January 11, 1788

COMMON LISP

THE LANGUAGE

GUY L. STEELE JR.
Carnegie-Mellon University
Tartan Laboratories Incorporated

with contributions by

SCOTT E. FAHLMAN
Carnegie-Mellon University

RICHARD P. GABRIEL
Stanford University
Lawrence Livermore National Laboratory

DAVID A. MOON
Symbolics, Incorporated

DANIEL L. WEINREB
Symbolics, Incorporated

mamaama
Digital Press

Copyright © 1984 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of the publisher.

987654321

Printed in the United States of America.

Designed by David Ford. Automatically typeset from magnetic tape by Waldman Graphics,
Pennsauken, New Jersey. Printed and bound by Halliday Lithographers, Hanover, Massachusetts.

Order number EY-00031-DP

"ADA" is a registered trademark of the U.S. Government-Ada Joint Program Office. "DEC,"
"PDP," "VAX," and "VMS" are trademarks of Digital Equipment Corporation. "IBM" is a
registered trademark of International Business Machines Corporation. "Multics" is a registered
trademark of Honeywell Inc. "Tang" is a brand name of General Foods Corporation. "UNIX" is
a trademark of Bell Laboratories.

Library of Congress Cataloging in Publication Data

Steele, Guy.
Common LISP: The Language.

Includes bibliographical references and index.
1. LISP (Computer program language) I. Title.

II. Title: Common LISP: The Language.
QA76.73.L23S73 1984 001.64'24 84-7681
ISBN 0-932376-41-X

Contents

1. Introduction 1

1. 1. Purpose 1
1.2. Notational Conventions 4
1.2. l. Decimal Numbers 4
1.2.2. Nil, False, and the Empty

List 4
1.2.3. Evaluation, Expansion, and

Equivalence 4
1. 2 .4. Errors 5
1.2.5. Descriptions of Functions and

Other Entities 6
1.2.6. The Lisp Reader 8
1.2.7. Overview of Syntax 9

2. Data Types 11

2.1. Numbers 13
2.1.1. Integers 13
2.1.2. Ratios 15
2.1.3. Floating-point Numbers 16
2.1.4. Complex Numbers 19
2.2. Characters 20
2.2.1. Standard Characters 20
2.2.2. Line Divisions 21
2.2.3. Non-standard Characters 23
2.2.4. Character Attributes 23
2.2.5. String Characters 23
2.3. Symbols 23
2.4. Lists and Conses 26

2.5. Arrays 28
2.5.1. Vectors 29

2.5.2. Strings 30
2.5.3. Bit-Vectors 30
2.6. Hash Tables 31

2.7. Readtables 31

2.8. Packages 31
2.9. Pathnames 31
2.10. Streams 31
2.11. Random-States 31

2.12. Structures 32
2.13. Functions 32

2.14. Unreadable Data Objects 32

2.15. Overlap, Inclusion, and
Disjointness of Types 33

3. Scope and Extent 36

4. Type Specifiers 42

4.1. Type Specifier Symbols 42
4.2. Type Specifier Lists 42
4.3. Predicating Type Specifiers 43
4.4. Type Specifiers that

Combine 44
4.5. Type Specifiers that

Specialize 45
4.6. Type Specifiers that

Abbreviate 48

v

vi CONTENTS

4. 7. Defining New Type
Specifiers 50

4.8. Type Conversion Function 51
4.9. Determining the Type of an

Object 52

5. Program Structure 54

5. I. Forms 54
5. I. I. Self-Evaluating Forms 55
5.1.2. Variables 55
5.1.3. Special Forms 56
5.1.4. Macros 57
5.1.5. Function Calls 58
5.2. Functions 59
5.2.1. Named Functions 59
5.2.2.
5.3.

Lambda-Expressions 59
Top-Level Forms 66

5.3.1.
5.3.2.

Defining Named Functions 67
Declaring Global Variables and
Named Constants 68

5.3.3. Control of Time of
Evaluation 69

6. Predicates 71

6.1. Logical Values 72
6.2. Data Type Predicates 72
6.2.1. General Type Predicates 72
6.2.2. Specific Data Type

6.3.
6.4.

Predicates 73
Equality Predicates 77
Logical Operators 82

7. Control Structure 85

7.1. Constants and Variables 86
7.1.1. Reference 86
7.1.2. Assignment 91
7.2. Generalized Variables 93
..., " T':'~~-~.i.!-.- T-,. • .-,.,, : - 1{)'7
t.:J. ruut....uuu 1.uvut....auu11 IV/

7.4. Simple Sequencing 108

7.5. Establishing New Variable
Bindings 110

7.6. Conditionals 114
7.7. Blocks and Exits 119
7.8. Iteration 121
7.8.1. Indefinite Iteration 121
7.8.2. General Iteration 121
7.8.3. Simple Iteration Constructs 126
7.8.4. Mapping 128
7.8.5. The "Program Feature" 130
7.9. Multiple Values 133
7.9.1. Constructs for Handling Multiple

Values 133
7.9.2. Rules Governing the Passing of

Multiple Values 137
7.10. Dynamic Non-local Exits

8. Macros

8 .1. Macro Definition
8.2. Macro Expansion

9. Declarations 153

144
151

9.1. Declaration Syntax 153
9.2. Declaration Specifiers 157
9.3. Type Declaration for

Forms 161

10. Symbols 163

10.1. The Property List 163
10.2. The Print Name 167
10.3. Creating Symbols 168

11. Packages 171

11.1. Consistency Rules 172
11.2. Package Names 17~

/ll~rraiis1aiiligstrrngsto') l ... /
'·--- Symb.Qls 174 ./

11.4. Exporting···ancrriiipOrting
Symbols 176

139

CONTENTS

11.5.
11.6.
11. 7.

Name Conflicts 178
Built-in Packages 181
Package System Functions and
Variables 182

11. 8. Modules 188
11. 9. An Example 189

12. Numbers 193

12.1. Precision, Contagion, and
Coercion 193

12.2. Predicates on Numbers 195
12.3. Comparisons on Numbers 196
12.4. Arithmetic Operations 199
12.5. Irrational and Transcendental

Functions 203
12.5.1. Exponential and Logarithmic

Functions 203
12.5.2. Trigonometric and Related

Functions 205
12.5.3. Branch Cuts, Principal Values,

and Boundary Conditions in the
Complex Plane 210

12.6. Type Conversions and
Component Extractions on
Numbers 214

12.7. Logical Operations on
Numbers 220

12.8. Byte Manipulation
Functions 225

12.9. Random Numbers 228
12.10. Implementation Parameters 231

13. Characters 233

13 .1. Character Attributes 233
13.2. Predicates on Characters 234
13.3. Character Construction and

13.4.
13.5.

Selection 239
Character Conversions 241
Character Control-Bit
Functions 243

vii

14. Sequences 245

14.1. Simple Sequence Functions 247
14.2. Concatenating, Mapping, and

Reducing Sequences 249
14.3. Modifying Sequences 252
14.4. Searching Sequences for

Items 256
14.5. Sorting and Merging 258

15. Lists 262

15.1 Conses 262
15.2. Lists 264
15.3. Alteration of List Structure
15.4. Substitution of Expressions
15.5. Using Lists as Sets 275
15.6. Association Lists 279

16. Hash Tables 282

272
273

16.1. Hash Table Functions 283
16.2. Primitive Hash Function 285

17. Arrays 286

17 .1. Array Creation 286
17.2. Array Access 290
17. 3. Array Information 291
17 .4. Functions on Arrays of

Bits 293
17.5. Fill Pointers 295
17.6. Changing the Dimensions of an

Array 297

18. Strings 299

18.1. String Access 299
18.2.
18.3.

String Comparison 300
String Construction and
Manipulation 302

viii CONTENTS

19. Structures 305

19.1.
19.2.

19.3.

19.4.
19.5.

19.6.

Introduction to Structures 305
How to Use Defstruct 307

Using the Automatically Defined

Constructor Function 309

Defstruct Slot-Options 310

Defstruct Options 311
By-position Constructor

Functions 315
19. 7. Structures of Explicitly Specified

Representational Type 316

19. 7 .1. Unnamed Structures 317

19.7.2. Named Structures 318

19.7.3. Other Aspects of Explicitly

Specified Structures 319

20. The Evaluator 321

20 .1. Run-Time Evaluation of

Forms 321
20.2. The Top-Level Loop 324

21. Streams 327

21.1. Standard Streams 327

21.2. Creating New Streams 329

21.3. Operations on Streams 332

22. Input/Output 333

22.1. Printed Representation of LISP

Objects 333

22.1.1. What the Read Function

Accepts 334

22.1.2. Parsing of Numbers and

Symbols 339

22.1.3. Macro Characters 346

22.1.4. Standard Dispatching Macro

Character Syntax 351

22.1.5. The Readtable 360
22. L6. Whi!t the Print Function

Produces 365

22.2. Input Functions 374

22.2.1. Input from Character

Streams 374
22.2.2.

22.3.

22.3.1.

Input from Binary Streams

Output Functions 382

Output to Character

Streams 382

382

22.3.2 Output to Binary Streams 385
22.3.3. Formatted Output to Character

Streams 385

22.4. Querying the User 407

23. File System Interface 409

23.1. File Names 409
23.1.1. Pathnames 410

23.1.2. Pathname Functions 413

23.2. Opening and Closing Files 418
23.3. Renaming, Deleting, and Other

File Operations 423

23.4. Loading Files 426

23.5. Accessing Directories 427

24. Errors 428

24.1. General Error-Signalling

Functions 429

24.2. Specialized Error-Signalling

Forms and Macros 433

24.3. Special Forms for Exhaustive

Case Analysis 435

25. Miscellaneous Features 438

25.1. The Compiler 438

25.2. Documentation 439
25.3. Debugging Tools 440

25.4. Environment Inquiries 443
25.4.1. Time Functions 443
25.4.2. Other Environment

Inquiries 447
25.5. Identity Function 448

References 449

Index 451

Acknowledgments

COMMON LISP was designed by a diverse group of people affiliated with many
institutions. Contributors to the design and implementation of COMMON LISP and
to the polishing of this manual are hereby gratefully acknowledged:

Paul Anagnostopoulos
Dan Aronson
Alan Bawden
Eric Benson

Jon Bentley
Jerry Boetje
Gary Brooks
Rodney A. Brooks
Gary L. Brown
Richard L. Bryan
Glenn S. Burke
Howard I. Cannon
George J. Carrette
Robert Cassels
Monica Cellio
David Dill
Scott E. Fahlman
Richard J. Fateman
Neal Feinberg
Ron Fischer
John Foderaro
Steve Ford

Digital Equipment Corporation
Carnegie-Mellon University
Massachusetts Institute of Technology
University of Utah, Stanford University, and Symbolics,
Incorporated
Carnegie-Mellon University and Bell Laboratories
Digital Equipment Corporation
Texas Instruments
Stanford University
Digital Equipment Corporation
Symbolics, Incorporated
Massachusetts Institute of Technology
Symbolics, Incorporated
Massachusetts Institute of Technology
Symbolics, Incorporated
Carnegie-Mellon University
Carnegie-Mellon University
Carnegie-Mellon University
University of California, Berkeley
Carnegie-Mellon University
Rutgers University
University of California, Berkeley
Texas Instruments

ix

x ACKNOWLEDGMENTS

Richard P. Gabriel

Joseph Ginder
Bernard S. Greenberg
Richard Greenblatt
Martin L. Griss
Steven Handerson
Charles L. Hedrick
Gail Kaiser
Earl A. Killian
Steve Krueger
John L. Kulp
Jim Large
Rob Maclachlan
William Maddox
Larry M. Masinter
John McCarthy
Michael E. McMahon
Brian Milnes
David A. Moon
Beryl Morrison
Don Morrison
Dan Pierson
Kent M. Pitman
Jonathan Rees
Walter van Roggen
Susan Rosenbaum
William L. Scherlis
Lee Schumacher
Richard M. Stallman
Barbara K. Steele
Guy L. Steele Jr.

Peter Szolovits
William vanMelle
Ellen Waldrum
Allan C. Wechsler
Daniel L. Weinreb
Inn T 'l.Th~ta.
-'VJ..l .L...I, ' ' J.J.J.LV

Skef Wholey

Stanford University and Lawrence Livermore National
Laboratory
Carnegie-Mellon University and Perq Systems Corp.
Symbolics, Incorporated
Lisp Machines Incorporated (LMI)
University of Utah and Hewlett-Packard Incorporated
Carnegie-Mellon University
Rutgers University
Carnegie-Mellon University
Lawrence Livermore National Laboratory
Texas Instruments
Symbolics, Incorporated
Carnegie-Mellon University
Carnegie-Mellon University
Carnegie-Mellon University
Xerox Corporation, Palo Alto Research Center
Stanford University
Symbolics, Incorporated
Carnegie-Mellon University
Symbolics, Incorporated
Digital Equipment Corporation
University of Utah
Digital Equipment Corporation
Massachusetts Institute of Technology
Yale University
Digital Equipment Corporation
Texas Instruments
Carnegie-Mellon University
Carnegie-Mellon University
Massachusetts Institute of Technology
Carnegie-Mellon University
Carnegie-Mellon University and Tartan Laboratories
Incorporated
Massachusetts Institute of Technology
Xerox Corporation, Palo Alto Research Center
Texas Instruments
Symbolics, Incorporated
Symbolics, Incorporated
Xerox Coiporation, Palo Alto Research Center
Carnegie-Mellon University

ACKNOWLEDGMENTS

Richard Zippel
Leonard Zubkoff

Massachusetts Institute of Technology
Carnegie-Mellon University and Tartan Laboratories
Incorporated

xi

Some contributions were relatively small; others involved enormous expenditures
of effort and great dedication. A few of the contributors served more as worthy
adversaries than as benefactors (and do not necessarily endorse the final design
reported here), but their pointed criticisms were just as important to the polishing
of COMMON LISP as all the positively phrased suggestions. All of the people named
above were helpful in one way or another, and I am grateful for the interest and
spirit of cooperation that allowed most decisions to be made by consensus after
due discussion.

Considerable encouragement and moral support were also provided by:

Norma Abel
Roger Bate
Harvey Cragon
Dennis Duncan
Sam Fuller
A. Nico Habermann
Berthold K. P. Horn
Gene Kromer
Gene Matthews
Allan Newell
Dana Scott
Harry Tennant
Patrick H. Winston
Lowell Wood
William A. Wulf

Digital Equipment Corporation
Texas Instruments
Texas Instruments
Digital Equipment Corporation
Digital Equipment Corporation
Carnegie-Mellon University
Massachusetts Institute of Technology
Texas Instruments
Texas Instruments
Carnegie-Mellon University
Carnegie-Mellon University
Texas Instruments
Massachusetts Institute of Technology
Lawrence Livermore National Laboratory
Carnegie-Mellon University and Tartan Laboratories
Incorporated

I am very grateful to each of them.
Jan Zubkoff of Carnegie-Mellon University provided a great deal of organization,

secretarial support, and unfailing good cheer in the face of adversity.
The development of COMMON LISP would most probably not have been possible

without the electronic message system provided by the ARPANET. Design decisions
were made on several hundred distinct points, for the most part by consensus, and
by simple majority vote when necessary. Except for two one-day face-to-face
meetings, all of the language design and discussion was done through the ARPANET
message system, which permitted effortless dissemination of messages to dozens
of people, and several interchanges per day. The message system also provided

xii ACKNOWLEDGMENTS

automatic archiving of the entire discussion, which has proved invaluable in the
preparation of this reference manual. Over the course of thirty months, approxi
mately 3000 messages were sent (an average of three per day), ranging in length
from one line to twenty pages. Assuming 5000 characters per printed page of text,
the entire discussion totaled about 1100 pages. It would have been substantially
more difficult to have conducted this discussion by any other means, and would
have required much more time.

The ideas in COMMON LISP have come from many sources and been polished
by much discussion. I am responsible for the form of this manual, and for any
errors or inconsistencies that may remain; but the credit for the design and support
of COMMON LISP lies with the individuals named above, each of whom has made
significant contributions.

The organization and content of this manual were inspired in large part by the
MacLISP Reference Manual by David A. Moon and others[l2], and by the LISP
Machine Manual (fourth edition) by Daniel Weinreb and David Moon[21], which
in turn acknowledges the efforts of Richard Stallman, Mike McMahon, Alan Baw
den, Glenn Burke, and "many people too numerous to list."

I thank Phyllis Keenan, Chase Duffy, Virginia Anderson, John Osborn, and
Jonathan Baker of Digital Press for their help in preparing this book for publication.
Jane Blake did an admirable job of copy-editing. James Gibson and Katherine
Downs of Waldman Graphics were most cooperative in typesetting this book from
my on-line manuscript files.

I am grateful to Carnegie-Mellon University and to Tartan Laboratories Incor
porated for supporting me in the writing of this manual over the last three years.

Part of the work on this book was done in conjunction with the Carnegie-Mellon
University Spice Project, an effort to construct an advanced scientific software
development environment for personal computers. The Spice Project is supported
by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-
78-C-1551. The views and conclusions contained in this book are those of the
author and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Most of the writing of this book took place between midnight and 5 A.M. I am
grateful to Barbara, Julia, and Peter for putting up with it, and for their love.

Guy L. Steele Jr.
Pittsburgh, Pennsylvania
March 1984

1

Introduction

COMMON LISP is a new dialect of LISP, a successor to MACLISP [12, 15], influenced
strongly by ZETALISP [21, 13] and also to some extent by SCHEME [18] and INTERLISP
[20].

1.1. Purpose

COMMON LISP is intended to meet these goals:

Commonality

COMMON LISP originated in an attempt to focus the work of several implementation
groups, each of which was constructing successor implementations of MACLISP
for different computers. These implementations had begun to diverge because of
the differences in the implementation environments: microcoded personal com
puters (ZETALISP, SPICE LISP), commercial timeshared computers (NIL), and su
percomputers (S-1 LISP). While the differences among the several implementation
environments of necessity will continue to force certain incompatibilities among
the implementations, COMMON LISP serves as a common dialect to which each
implementation makes any necessary extensions.

Portability

COMMON LISP intentionally excludes features that cannot be implemented easily
on a broad class of machines. On the one hand, features that are difficult or
expensive to implement on hardware without special microcode are avoided or
provided in a more abstract and efficiently implementable form. (Examples of this
are the invisible forwarding pointers and locativ~s of ZETALISP. Some of the prob-

2 COMMON LISP

lems that they solve are addressed in different ways in COMMON LISP.) On the
other hand, features that are useful only on certain "ordinary" or "commercial"
processors are avoided or made optional. (An example of this is the type declaration
facility, which is useful in some implementations and completely ignored in others.
Type declarations are completely optional and for correct programs affect only
efficiency, not semantics.) COMMON LISP is designed to make it easy to write
programs that depend as little as possible on machine-specific characteristics, such
as word length, while allowing some variety of implementation techniques.

Consistency

Most LISP implementations are internally inconsistent in that by default the inter
preter and compiler may assign different semantics to correct programs. This se
mantic difference stems primarily from the fact that the interpreter assumes all
variables to be dynamically scoped, whereas the compiler assumes all variables to
be local unless explicitly directed otherwise. This difference has been the usual
practice in LISP for the sake of convenience and efficiency, but can lead to very
subtle bugs. The definition of COMMON LISP avoids such anomalies by explicitly
requiring the interpreter and compiler to impose identical semantics on correct
programs so far as possible.

Expressiveness

COMMON LISP culls what experience has shown to be the most useful and under
standable constructs from not only MACLISP, but also INTERLISP, other LISP dia
lects, and other programming languages. Constructs judged to be awkward or less
useful have been excluded. (An example is the store construct of MACLISP.)

Compatibility

Unless there is a good reason to the contrary, COMMON LISP strives to be compatible
with ZETALISP, MACLISP, and INTERLISP, roughly in that order.

Efficiency

COMMON LISP has a number of features designed to facilitate the production of
high-quality compiled code in those implementations whose developers care to
invest effo11 in an opti111izing compiler. One implementation of COivHviON LISP,
namely S-1 LISP, already has a compiler that produces code for numerical com
putations that is competitive in execution speed with that produced by a FORTRAN

INTRODUCTION 3

compiler [3]. The S-1 LISP compiler extends the work done in MACLISP to produce
extremely efficient numerical code [7].

Power

Co MM ON LISP is a descendant of MACLISP, which has traditionally placed emphasis
on providing system-building tools. Such tools may in turn be used to build the
user-level packages such as INTERLISP provides; these packages are not, however,
part of the COMMON LISP core specification. It is expected such packages will be
built on top of the COMMON LISP core.

Stability

It is intended that COMMON LISP will change only slowly and with due deliberation.
The various dialects that are supersets of COMMON LISP may serve as laboratories
within which to test language extensions, but such extensions will be added to
COMMON LISP only after careftil examination and experimentation.

The goals of COMMON LISP are thus very close to those of STANDARD LISP [11]
and PORTABLE STANDARD LISP [16]. COMMON LISP differs from STANDARD LISP
primarily in incorporating more features, including a richer and more complicated
set of data types and more complex control structures.

This book is intended to be a language specification rather than an implemen
tation specification (although implementatioh notes are scattered throughout the
text). It defines a set of standard language concepts and constructs that may be
used for communication of data structures and algorithms in the COMMON LISP
dialect. This set of concepts and constructs is sometimes referred to as the "core
COMMON LISP language" because it contains conceptually necessary or important
features. It is not necessarily implementationally minimal. While many features
could be defined in terms of others by writing LISP code, and indeed may be
implemented that way, it was felt that these features should be conceptually prim
itive so that there might be agreement among all users as to their usage. (For
example, bignums and rational numbers could be implemented as LISP code given
operations on fixnums. However, it is important to the conceptual integrity of the
language that they be regarded by the user as primitive, and they are useful enough
to warrant a standard definition.)

For the most part, this book defines a programming language, not a programming
environment. A few interfaces are defined for invoking such standard programming
tools as a compiler, an editor, a program trace facility, and a debugger, but very
little is said about their nature or operation. It is expected that one or more extensive
programming environments will be built using COMMON LISP as a foundation, and
will be documented separately.

4 COMMON LISP

1.2. Notational Conventions

A number of special notational conventions are used throughout this book.

1.2.1. Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit indication
to the contrary. (Decimal notation is normally taken for granted, of course.
Unfortunately, for certain other dialects of LISP, MACLISP in particular, the default
notation for numbers is octal (base 8) rather than decimal, and so the use of decimal
notation for describing COMMON LISP is, taken in its historical context, a bit unusual!)

1.2.2. Nil, False, and the Empty List

In COMMON LISP, as in most LISP dialects, the symbol nil is used to represent
both the empty list and the "false" value for Boolean tests. An empty list may, of
course, also be written () ; this normally denotes the same object as n i 1. (It is
possible, by extremely perverse manipulation of the package system, to cause the
sequence of letters nil to be recognized not as the symbol that represents the empty
list but as another symbol with the same name. This obscure possibility will be
ignored in this manual.) These two notations may be used interchangeably as far
as the LISP system is concerned. However, as a matter of style, this manual uses
the notation () when it is desirable to emphasize the use of an empty list, and uses
the notation nil when it is desirable to emphasize the use of the Boolean "false."
The notation 'nil (note the explicit quotation mark) is used to emphasize the use
of a symbol. For example:

(defun three() 3)

(append ' () ' ()) =? ()

(not nil) =? t

(get 'nil 'color)

;Emphasize empty parameter list.
;Emphasize use of empty lists
;Emphasize use as Boolean "false"
;Emphasize use as a symbol

Any data object other than nil rs construed to be Boolean "not false," that is,
"true." The symbol t is conventionally used to mean "true" when no other value
is more appropriate. When a function is said to "return false" or to "be false" in
some circumstance, this means that it returns nil. However, when a function is
said to "return true" or to "be true" in some circumstance, this means that it returns
some value other than nil, but not necessarily t.

1.2.3. Evaluation, Expansion, and Equivalence

Execution of code in LISP is called evaluation because executing a piece of code
normally results in a data object called the value produced by the code. The symbol
=? is used in examples to indicate evaluation. For example,

INTRODUCTION 5

(+ .::; 5) ~ g

means "the result of evaluating the code (• .::; s) is (or would be, or would have
been) c:i."

The symbol-> is used in examples to indicate macro expansion. For example,

(push xv)----> (setf v (cons xv))

means "the result of expanding the macro-call form (push xv) is (setf v (cons

x v)) . " This implies that the two pieces of code do the same thing; the second
piece of code is the definition of what the first does.

The symbol - is used in examples to indicate code equivalence. For example,

(gcd x (gcd y z)) == (gcd (gcd x y) z)

means "the value and effects of evaluating the form (gcd x (gcd y z)) are always
the same as the value and effects of (gcd (gcd x y) z) for any values of the
variables x, y, and z." This implies that the two pieces of code do the same thing;
however, neither directly defines the other in the way macro expansion does.

1.2.4. Errors

When this manual specifies that it "is an error" for some situation to occur, this
means that:

• No valid COMMON LISP program should cause this situation to occur.

• If this situation occurs, the effects and results are completely undefined as far
as adherence to the COMMON LISP specification is concerned.

• No COMMON LISP implementation is required to detect such an error. Of course,
implementors are encouraged to provide for detection of such errors wherever
reasonable.

This is not to say that some particular implementation might not define the effects
and results for such a situation; the point is that no program conforming to the
COMMON LISP specification may correctly depend on such effects or results.

On the other hand, if it is specified in this manual that in some situation "an
error is signalled," this means that:

• If this situation occurs, an error will be signalled (see error and cerror).

• Valid COMMON LISP programs may rely on the fact that an error will be signalled.

• Every COMMON LISP implementation is required to detect such an error.

6 COMMON LISP

Table 1-1: Sample Function Description

sample-function argl arg2 &optional arg3 arg4 [Function]

The function sample-function adds together argl and arg2, and then multiplies the result
by arg3. If arg3 is not provided or is nil, the multiplication isn't done. sample-function

then returns a list whose first element is this result and whose second element is arg4 (which
defaults to the symbol foo). For example:

(sample-function 3 ~) =? (7 foo)
(sample-function 1 2 2 'bar) =? (b bar)

In general, (sample-function x y) =(list (• x y) 'foo).

Table 1-2: Sample Variable Description

•sample-variable• [Variable]

The variable •sample-variable• specifies how many times the special form sample
special-form should iterate. The value should always be a non-negative integer or nil

(which means iterate indefinitely many times). The initial value is o.

Table 1-3: Sample Constant Description

sample-constant [Constant]

The named constant sample-constant has as its value the height of the terminal screen in
furlongs times the base-2 logarithm of the implementation's total disk capacity in bytes, as
a floating-point number.

In places where it is stated that so-and-so "must" or "must not" or "may not"
be the case, then it "is an error" if the stated requirement is not met. For example,
if an argument "must be a symbol," then it "is an error" if the argument is not a
symbol. In all cases where an error is to be signalled, the word "signalled" is
always used explicitly in this manual.

1.2.5. Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described
using a distinctive typographical fonnat. Definition 1-1 illustrates the manner in
which COMMON LISP functions are documented. The first line specifies the name
of the function, the manner in which it accepts arguments, and the fact that it is a
function. If the function takes many arguments, then the names of the arguments

INTRODUCTION 7

Table 1-4: Sample Special Form Description

sample-special-form [name] ({var}*) {form}+ [Special form]

This evaluates each form in sequence as an implicit progn, and does this as many times as
specified by the global variable •sample-variable•. Each variable var is bound and
initialized to .;3 before the first iteration, and unbound after the last iteration. The name
name, if supplied, may be used in a return-from form to exit from the loop prematurely.
If the loop ends normally, sample-special-form returns nil. For example:

(setq •sample-variable• 3)

(sample-special-form () form] form2)

This evaluates for ml , form2, for ml , f orm2, for ml , f orm2 in that order.

Table 1-5: Sample Macro Description

sample-macro var {tag I statement}* [Macro]

This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro x (return (+ xx))) ::? 86

(sample-macro var. body)---> (prog ((var 43)). body)

may spill across two or three lines. The paragraphs following this standard header
explain the definition and uses of the function and often present examples or related
functions.

Sometimes two or more related functions are explained in a single combined
description. In this situation the headers for all the functions appear together,
followed by the combined description.

In general, actual code (including actual names of functions) appears in this
typeface: (cons a b). Names that stand for pieces of code (metavariables) are
written in italics. In a function description, the names of the parameters appear in
italics for expository purposes. The word &optional in the list of parameters
indicates that all arguments past that point are optional; the default values for the
parameters are described in the text. Parameter lists may also contain &rest, in
dicating that an indefinite number of arguments may appear, or &key, indicating
that keyword arguments are accepted. (The &optional/&rest/&key syntax is ac
tually used in COMMON LISP function definitions for these purposes.)

Definition 1-2 illustrates the manner in which a global variable is documented.
The first line specifies the name of the variable and the fact that it is a variable.

8 COMMON LISP

Purely as a matter of convention, all global variables used by COMMON LISP have
names beginning and ending with an asterisk.

Definition 1-3 illustrates the manner in which a named constant is documented.
The first line specifies the name of the constant and the fact that it is a constant.
(A constant is just like a global variable, except that it is an error ever to alter its
value or to bind it to a new value.)

Definitions 1-4 and 1-5 illustrate the documentation of special forms and macros,
which are closely related in purpose. These are very different from functions.
Functions are called according to a single, specific, consistent syntax; the
&optional/ &rest/ &key syntax specifies how the function uses its arguments in
ternally, but does not affect the syntax of a call. In contrast, each special form or
macro can have its own idiosyncratic syntax. It is by special forms and macros
that the syntax of COMMON LISP is defined and extended.

In the description of a special form or macro, an italicized word names a cor
responding part of the form that invokes the special form or macro. Parentheses
stand for themselves, and should be written as such when invoking the special
form or macro. Brackets, braces, stars, plus signs, and vertical bars are metasyn
tactic marks. Brackets, [and] , indicate that what they enclose is optional (may
appear zero times or one time in that place); the square brackets should not be
written in code. Braces, { and}, simply parenthesize what they enclose, but may
be followed by a star, *, or a plus sign, + ; a star indicates that what the braces
enclose may appear any number of times (including zero, that is, not at all),
whereas a plus sign indicates that what the braces enclose may appear any non
zero number of times (that is, must appear at least once). Within braces or brackets,
a vertical bar, I, separates mutually exclusive choices. In summary, the notation
{x}* means zero or more occurrences of x, the notation {x} + means one or more
occurrences of x, and the notation [x] means zero or one occurrence of x. These
notations are also used for syntactic descriptions expressed as BNF-like productions,
as in Table 22-2.

In the last example in Definition 1-5, notice the use of dot notation. The dot
appearing in the expression (sample-macro var . body) means that the name
body stands for a list of forms, not just a single form, at the end of a list. This
notation is often used in examples.

1.2.6. The Lisp Reader

The term "LISP reader" refers not to you, the reader of this manual, nor to some
person reading LISP code, but specifically to a LISP procedure, namely the function
read, that reads characters from an input stream and interprets them by parsing as
representations of LISP objects.

INTRODUCTION 9

1.2. 7. Overview of Syntax

Certain characters are used in special ways in the syntax of COMMON LISP. The
complete syntax is explained in detail in chapter 22, but a quick summary here
may be useful:

A left parenthesis begins a list of items. The list may contain any number of
items, including zero. Lists may be nested. For example, (cons (car x) (car

y)) is a list of three things, of which the last two are themselves lists.

A right parenthesis ends a list of items.

An acute accent (also called single quote or apostrophe) followed by an expression
form is an abbreviation for (quoteform). Thus 'foo means (quote foo)

and '(cons 'a 'b) means (quote (cons (quote a) (quote b))).

Semicolon is the comment character. It and all characters up to the end of the
line are discarded.

Double quotes surround character strings: "This is a thirty-nine character

string."

\ Backslash is an escape character. It causes the next character to be treated as
a letter rather than for its usual syntactic purpose. For example, A\ (B denotes
a symbol whose name is consists of the three characters A, (, and B. Similarly,
"\'"' denotes a character string containing one character, a double quote,
because the first and third double quotes serve to delimit the string, and the
second double quote serves as the contents of the string. The backslash causes
the second double quote to be taken literally, and prevents it from being
interpreted as the terminating delimiter of the string.

Vertical bars are used in pairs to surround the name (or part of the name) of
a symbol that has many special characters in it. It is roughly equivalent to
putting a backslash in front of every character so surrounded. For example,
: A (B) : , A: (: B:) : , and A\ (B \) all mean the symbol whose name consists of
the four characters A, (, B, and) .

The number sign signals the beginning of a complicated syntactic structure.
The next character designates the precise syntax to follow. For example, #0105

means 1058 (105 in octal notation); #x1D5 means 105 16 (105 in hexadecimal
notation); #b1011 means 10112 (1011 in binary notation); # \ L denotes a char
acter object for the character L; and # (ab c) denotes a vector of three elements
a, b, and c. A particularly important case is that # 'fn means (functionfn),

in a manner analogous to 'form meaning (quote form).

Grave accent (' 'backquote") signals that the next expression is a template that
may contain commas. The backquote syntax represents a program that will
construct a data structure according to the template.

1 0 COMMON LISP

Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example,
network: reset denotes the symbol named reset in the package named
network. A leading colon indicates a keyword, a symbol that always evaluates
to itself. The colon character is not actually part of the print name of the
symbol. This is all explained in chapter 11; until you read that, just keep in
mind that a symbol notated with a leading colon is in effect a constant that
evaluates to itself.

Brackets, braces, question mark, and exclamation point (that is, r, J, {, } , ? ,

and !) are not used for any purpose in standard COMMON LISP syntax. These
characters are explicitly reserved to the user, primarily for use as macro characters
for user-defined lexical syntax extensions. See section 22.1.3.

All code in this manual is written using lowercase letters. COMMON LISP is
generally insensitive to the case in which code is written. Internally, names of
symbols are ordinarily converted to and stored in uppercase form. There are ways
to force case conversion on output if desired; see *print-case*. In this manual,
wherever an interactive exchange between a user and the LISP system is shown,
the input is exhibited with lowercase letters and the output with uppercase letters.

2

Data Types

COMMON LISP provides a variety of types of data objects. It is important to note
that in LISP it is data objects that are typed, not variables. Any variable can have
any LISP object as its value. (It is possible to make an explicit declaration that a
variable will in fact take on one of only a limited set of values. However, such a
declaration may always be omitted, and the program will still run correctly. Such
a declaration merely constitutes advice from the user that may be useful in gaining
efficiency. See declare.)

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many
LISP objects belong to more than one such set, and so it doesn't always make sense
to ask what the type of an object is; instead, one usually asks only whether an
object belongs to a given type. The predicate typep may be used to ask whether
an object belongs to a given type, and the function type-of returns a type to which
a given object belongs.

The data types defined in COMMON LISP are arranged into a hierarchy (actually
a partial order) defined by the subset relationship. Certain sets of objects, such as
the set of numbers or the set of strings, are interesting enough to deserve labels.
Symbols are used for most such labels (here, and throughout this book, the word
"symbol" refers to atomic symbols, one kind of LISP object, elsewhere known as
literal atoms). See chapter 4 for a complete description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type, which
contains no objects, is denoted by nil. A type called common encompasse,s all the
data objects required by the COMMON LISP language. A COMMON LISP implemen
tation is free to provide other data types that are not subtypes of common.

The following categories of COMMON LISP objects are of particular interest:
numbers, characters, symbols, lists, arrays, structures, and functions. There are
others as well. Some of these categories have many subdivisions. There are also
standard types defined to be the union of two or more of these categories. The
categories listed above, while they ate data types, are neither more nor less "real"

11

12 COMMON LISP

than other data types; they simply constitute a particularly useful slice across the
type hierarchy for expository purposes.

Here are brief descriptions of various COMMON LISP data types. The remaining
sections of this chapter go into more detail, and also describe notations for objects
of each type. Descriptions of LISP functions that operate on data objects of each
type appear in later chapters.

• Numbers are provided in various forms and representations. COMMON LISP pro
vides a true integer data type: any integer, positive or negative, has in principle
a representation as a COMMON LISP data object, subject only to total memory
limitations (rather than machine word width). A true rational data type is pro
vided: the quotient of two integers, if not an integer, is a ratio. Floating-point
numbers of various ranges and precisions are also provided, as well as Cartesian
complex numbers.

• Characters represent printed glyphs such as letters or text formatting operations.
Strings are one-dimensional arrays of characters. COMMON LISP provides for a
rich character set, including ways to represent characters of various type styles.

• Symbols (sometimes called atomic symbols for emphasis or clarity) are named
data objects. LISP provides machinery for locating a symbol object, given its
name (in the form of a string). Symbols have property lists, which in effect
allow symbols to be treated as record structures with an extensible set of named
components, each of which may be any LISP object. Symbols also serve to name
functions and variables within programs.

• Lists are sequences represented in the form of linked cells called conses. There
is a special object (the symbol nil) that is the empty list. All other lists are built
recursively by adding a new element to the front of an existing list. This is done
by creating a new cons, which is an object having two components called the
car and the cdr. The car may hold anything, and the cdr is made to point to the
previously existing list. (Conses may actually be used completely generally as
two-element record structures, but their most important 1use is to represent lists.)

• Arrays are dimensioned collections of objects. An array can have any non-negative
number of dimensions and is indexed by a sequence of integers. A general array
can have any LISP object as a component; other types of arrays are specialized
for efficiency and can hold only certain types of LISP objects. It is possible for
two arrays, possibly with differing dimension information, to share the same set
of elements (such that modifying one array modifies the other also) by causing
one to be displaced to the other. One-dimensional arrays of any kind are called
vectors. One-dimensional arrays of characters are called strings. One-dimensional
arrays of bits (that is, of integers whose values are 0 or 1) are called bit-vectors.

DATA TYPES 13

• Hash tables provide an efficient way of mapping any LISP object (a key) to an
associated object.

• Readtables are used to control the built-in expression parser read.

• Packages are collections of symbols that serve as name spaces. The parser rec
ognizes symbols by looking up character sequences in the current package.

• Pathnames represent names of files in a fairly implementation-independent man
ner. They are used to interface to the external file system.

• Streams represent sources or sinks of data, typically characters or bytes. They
are used to perform 1/0, as well as for internal purposes such as parsing strings.

• Random-states are data structures used to encapsulate the state of the built-in
random-number generator.

• Structures are user-defined record structures, objects that have named compo
nents. The defstruct facility is used to define new structure types. Some COMMON

LISP implementations may choose to implement certain system-supplied data
types, such as bignums, readtables, streams, hash tables, and pathnames, as
structures, but this fact will be invisible to the user.

• Functions are objects that can be invoked as procedures; these may take argu
ments and return values. (All LISP procedures can be construed to return values
and therefore every procedure is a function.) Such objects include com
piledjunctions (compiled code objects). Some functions are represented as a list
whose car is a particular symbol such as lambda. Symbols may also be used as
functions.

These categories are not always mutually exclusive. The required relationships
among the various data types are explained in more detail in section 2.15.

2.1. Numbers

Several kinds of numbers are defined in COMMON LISP. They are divided into
integers; ratios; floating-point numbers, with names provided for up to four different
floating-point representations; and complex numbers.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most
programming languages, COMMON LISP in principle imposes no limit on the magnitude
of an integer; storage is automatically allocated as necessary to represent large
integers.

I 4 COMMON LISP

In every COMMON LISP implementation there is a range of integers that are
represented more efficiently than others; each such integer is called afixnum, and
an integer that is not a fixnum is called a bignum. COMMON LISP is designed to
hide this distinction as much as possible; the distinction between fixnums and
bignums is visible to the user in only a few places where the efficiency of repre
sentation is important. Exactly which integers are fixnums is implementa
tion-dependent; typically they will be those integers in the range - 2n to 2n - I ,
inclusive, for some n not less than 15. See most-positive-fixnum and
most-negative-fixnum.

Integers are ordinarily written in decimal notation, as a sequence of decimal
digits, optionally preceded by a sign and optionally followed by a decimal point.
For example:

0

-0

+6

21l

102£;.

-1

155112100£;333095595£;000000.

;Zero
; This always means the same as o
; The first perfect number
; The second perfect number
; Two to the tenth power
; eTii

; 25 factorial (25 !), probably a bignum

Compatibility note: MAcL1sP and ZETALISP normally assume that integers are written in
octal (radix-8) notation unless a decimal point is present. INTERLISP assumes integers are
written in decimal notation and uses a trailing Q to indicate octal radix; however, a decimal
point, even in trailing position, always indicates a floating-point number. This is of course
consistent with FORTRAN. AoA does not permit trailing decimal points, but instead requires
them to be embedded. In COMMON LISP, integers written as described above are always
construed to be in decimal notation, whether or not the decimal point is present; allowing
the decimal point to be present permits compatibility with MAcL1sP.

Integers may be notated in radices other than ten. The notation

#nnrddddd or mnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More precisely,
one may write #, a non-empty sequence of decimal digits representing an unsigned
decimal integer n, r (or R), an optional sign, and a sequence of radix-n digits, to
indicate an integer written in radix n (which must be between 2 and 36, inclusive).
Only legal digits for the specified radix may be used; for example, an octal number
may contain only the digits 0 through 7. For digits above 9, letters of the alphabet

DATA TYPES 15

of either case may be used in order. Binary, octal, and hexadecimal radices are
useful enough to warrant the special abbreviations # b for # 2 r, # o for # ll r, and # x

for #16r. For example:

2.1.2. Ratios

#2r11010101

#b11010101

#b+11010101

#0325

#xD5

#16r+D5

#o-300

#3r-21010

#25R-7H

#xACCEDED

;Another way of writing 213 decimal
; Ditto
;Ditto
; Ditto, in octal radix
; Ditto, in hexadecimal radix
;Ditto
; Decimal - 192, written in base 8
; Same thing in base 3
; Same thing in base 25
; 181202413, in hexadecimal radix

A ratio is a number representing the mathematical ratio of two integers. Integers
and ratios collectively constitute the type rational. The canonical representation
of a rational number is as an integer if its value is integral, and otherwise as the
ratio of two integers, the numerator and denominator, whose greatest common
divisor is one, and of which the denominator is positive (and in fact greater than
1, or else the value would be integral). A ratio is notated with / as a separator,
thus: 315. It is possible to notate ratios in non-canonical (unreduced) forms, such
as t;/6, but the LISP function prin1 always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such that the
denominator evenly divides the numerator, then the result is immediately converted
to the equivalent integer. This is called the rule of rational canonicalization.

Rational numbers may be written as the possibly signed quotient of decimal
numerals: an optional sign followed by two non-empty sequences of digits separated
by a 1. This syntax may be described as follows:

ratio : : = [sign] {digit}+ 1 {digit}+

The second sequence may not consist entirely of zeros. For example:

2/3

L; /6

-17/23

-30517575125/32765

10/5

; This is in canonical form
; A non-canonical form for the same number
; A not very interesting ratio
;This is (-5/2) 15

; The canonical form for this is 2

16 COMMON LISP

To notate rational numbers in radices other than ten, one uses the same radix
specifiers (one of mnR, #O, #B, or #X) as for integers. For example:

#o-101175

#3r120/21

#Xbc/ad

#XFADED/FACADE

; Octal notation for - 651 61

; Ternary notation for 1517

; Hexadecimal notation for 1111111 7 3

;Hexadecimal notation for 1027565/16L;3593L;

2.1.3. Floating-Point Numbers

COMMON LISP allows an implementation to provide one or more kinds of floating-point
number, which collectively make up the type float. A floating-point number is a
(mathematical) rational number of the form sfbe-p, wheres is + 1 or -1, the
sign; b is an integer greater than 1, the base or radix of the representation; p is a
positive integer, the precision (in base-b digits) of the floating-point number; f is
a positive integer between bp- I and bP - 1 (inclusive), the signijicand; and e is an
integer, the exponent. The value of p and the range of e depends on the implementation
and on the type of floating-point number within that implementation. In addition,
there is a floating-point zero; depending on the implementation, there may also be
a "minus zero." If there is no minus zero, then o. o and -o. o are both interpreted
as simply a floating-point zero.

Implementation note: The form of the above description should not be construed to require
the internal representation to be in sign-magnitude form. Two's-complement and other rep
resentations are also acceptable. Note that the radix of the internal representation may be
other than 2, as on the IBM 360 and 370, which use radix 16; see float-radix.

Floating-point numbers may be provided in a variety of precisions and sizes,
depending on the implementation. High-quality floating-point software tends to
depend critically on the precise nature of the floating-point arithmetic, and so may
not always be completely portable. To aid in writing programs that are moderately
portable, however, certain definitions are made here:

• A short floating-point number (type short-float) is of the representation of
smallest fixed precision provided by an implementation.

• A long floating-point number (type long-float) is of the representation of the
largest fixed precision provided by an implementation.

• Intermediate between short and long formats are two others, arbitrarily called
single and double (types single-float and double- float).

DATA TYPES 17

Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size

Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

The precise definition of these categories is implementation-dependent. However,
the rough intent is that short floating-point numbers be precise to at least four
decimal places or so (but also have a space-efficient representation); single float
ing-point numbers, to at least seven decimal places; and double floating-point
numbers, to at least fourteen decimal places. It is suggested that the precision
(measured in "bits," computed asp log2b) and the exponent size (also measured
in "bits," computed as the base-2 logarithm of one plus the maximum exponent
value) be at least as great as the values in Table 2-1.

Floating-point numbers are written in either decimal fraction or computerized
scientific notation: an optional sign, then a non-empty sequence of digits with an
embedded decimal point, then an optional decimal exponent specification. If there
is no exponent specifier, then the decimal point is required, and there must be
digits after it. The exponent specifier consists of an exponent marker, an optional
sign, and a non-empty sequence of digits. For preciseness, here is a modified-BNP
description of floating-point notation.

floating-point-number : : = [sign] {digit}* decimal-point {digit}+ [exponent]
I [sign] {digit}+ [decimal-point {digit}*] exponent

sign : : = + I -
decimal-point : : =

digit : : = D I 1 I 2 I 3 I L; I 5 I 6 I 7 I ll I 9

exponent : : = exponent-marker [sign] {digit}+

exponent-marker : : = e I s I f I d I 1 I E I s I F I D I L

If no exponent specifier is present, or if the exponent marker e (or E) is used, then
the precise format to be used is not specified. When such a representation is read
and converted to an internal floating-point data object, the format specified by the
variable *read-default-float-format* is used; the initial value of this variable
is single-float.

The letters s, f, d, and 1 (or their respective uppercase equivalents) explicitly
specify the use of short, single, double, and long format, respectively.

I 8 COMMON LISP

Examples of floating-point numbers:

0.0

OED

- . 0

0.

o.oso

DsD

3.1~1592653559793235~d0

6.02E+23

602E+21

3.1010299957f-1

-O.ODOOOODD1s9

; Floating-point zero in default format
; Also floating-point zero in default format
; This may be a zero or a minus zero,
; depending on the implementation
; The integer zero, not a floating-point zero!
; A floating-point zero in short format
; Also a floating-point zero in short format
; A double-format approximation to 1T

; Avogadro's number, in default format
;Also Avogadro's number, in default format
; log10 2, in single format
; e7ri in short format, the hard way

The internal format used for an external representation depends only on the
exponent marker, and not on the number of decimal digits in the external repre
sentation.

While COMMON LISP provides terminology and notation sufficient to accom
modate four distinct floating-point formats, not all implementations will have the
means to support that many distinct formats. An implementation is therefore per
mitted to provide fewer than four distinct internal floating-point formats, in which
case at least one of them will be "shared" by more than one of the external format
names short, single, double, and long according to the following rules:

• If one internal format is provided, then it is considered to be single, but serves
also as short, double, and long. The data types short-float, single-float,

double-float, and long-float are considered to be identical. An expression
such as (egl 1. oso 1. Odo) will be true in such an implementation because the
two numbers 1. oso and 1. Odo will be converted into the same internal format
and therefore be considered to have the same data type, despite the differing
external syntax. Similarly, (typep 1.010 'short-float) will be true in such
an implementation. For output purposes all floating-point numbers are assumed
to be of single format, and so will print using the exponent letter E or F.

• If two internal formats are provided, then either of two correspondences may be
used, depending on which is the more appropriate:

• One format is short; the other is single and serves also as double and long.
The data types single-float, double-float, and long-float are consid
ered to be identical, but short-float is distinct. An expression such as (egl

1.oso 1.DdD) will be false, but (egl 1.DfD 1.DdD) will be true. Similarly,

DATA TYPES 19

(typep 1. OLD 'short - float) will be false, but (t ypep 1. OLD •sing le-float)

will be true. For output purposes all floating-point numbers are assumed to
be of short or single format.

• One format is single and serves also as short; the other is double and serves
also as long. The data types short-float and single-float are considered
to be identical, and the data types double-float and long-float are con
sidered to be identical. An expression such as (eql 1. oso 1. Odo) will be
false, as will (eql 1.DfD 1.DdD); but (eql 1.DdD 1.DLD) will be true.
Similarly, (typep 1.DLD 'short-float) will be false, but (typep 1.DLD

'double-float) will be true. For output purposes all floating-point numbers
are assumed to be of single or double format.

• If three internal formats are provided, then either of two correspondences may
be used, depending on which is the more appropriate:

• One format is short; another format is single; and the third format is double
and serves also as long. Similar constraints apply.

• One format is single and serves also as short; another is double; and the third
format is long.

Implementation note: It is recommended that an implementation provide as many distinct
floating-point formats as feasible, given Table 2-1 as a guideline. Ideally, short-format
floating-point numbers should have an "immediate" representation that does not require heap
allocation; single-format floating-point numbers should approximate IEEE proposed standard
single-format floating-point numbers; and double-format floating-point numbers should ap
proximate IEEE proposed standard double-format floating-point numbers [9, 5, 6].

2.1.4. Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with a real
part and an imaginary part each of which is a non-complex number (integer, ratio,
or floating-point number). It should be emphasized that the parts of a complex
number are not necessarily floating-point numbers; in this, COMMON LISP is like
PL/I and differs from FORTRAN. However, both parts must be of the same type:
either both are rational, or both are of the same floating-point format.

Complex numbers may be notated by writing the characters #C followed by a
list of the real and imaginary parts. If the two parts as notated are not of the same
type, then they are converted according to the rules of floating-point contagion as

20 COMMON LISP

described in chapter 12. (Indeed, #C (ab) is equivalent to If, (complex a b); see
the description of the function complex.) For example:

#C(3.0s1 2;0S-1)

#C(S -3)

#C(S/3 7.0)

#C(O 1)

; A Gaussian integer
;Will be converted internally to #C(1.66666 7.0)

; The imaginary unit, that is, i

The type of a specific complex number is indicated by a list of the word complex

and the type of the components; for example, a specialized representation for
complex numbers with short floating-point parts would be of type (complex

short-float). The type complex encompasses all complex representations.
A complex number of type (complex rational), that is, one whose components

are rational, can never have a zero imaginary part. If the result of any computation
would be a complex rational with a zero imaginary part, the result is immediately
converted to a non-complex rational number by taking the real part. This is called
the rule of complex canonicalization. This rule does not apply to complex numbers
whose parts are floating-point numbers; #C (s. o o. o) and s. o are different.

2.2. Characters

Characters are represented as data objects of type character. There are two subtypes
of interest, called standard-char and string-char.

A character object can be notated by writing # \ followed by the character itself.
For example, # \ g means the character object for a lowercase g. This works well
enough for printing characters.• Non-printing characters have names, and can be
notated by writing #\ and then the name; for example, #\Space (or #\SPACE or
#\space or #\sPaCE) means the space character. The syntax for character names
after # \ is the same as that for symbols. However, only character names that are
known to the particular implementation may be used.

2.2.1. Standard Characters

COMMON LISP defines a "standard character set" (subtype standard-char) for two
purposes. COMMON LISP programs that are written in the standard character set
can be read by any COMMON LISP implementation; and COMMON LISP programs
that use only standftrd characters as data objects are most likely to be portable. The
COMMON LISP character set consists of a space character #\Space, a newline
character #\Newline, and the following ninety-four non-blank printing characters
or their equivalents:

DATA TYPES 21

" # $ I & I () * + I D 1 2 3 4 5 6 7 8 g > ?

® A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z [\ l "

a b c d e f g h i j k 1 m n o p q r s t u v w x y z { } -

The COMMON LISP standard character set is apparently equivalent to the ninety-five
standard ASCII printing characters plus a newline character. Nevertheless, COMMON
LISP is designed to be relatively independent of the ASCII character encoding. For
example, the collating sequence is not specified except to say that digits must be
properly ordered, the uppercase letters must be properly ordered, and the lowercase
letters must be properly ordered (see char< for a precise specification). Other
character encodings, particularly EBCDIC, should be easily accommodated (with
a suitable mapping of printing characters).

Of the ninety-four non-blank printing characters, the following are used in only
limited ways in the syntax of COMMON LISP programs:

[l { } ? ! " _ - $ I

All of these characters except ! and _ are used within format strings as formatting
directives. Except for this, [, J, <, >, ? , and ! are not used in COMMON LISP and
are reserved to the user for syntactic extensions; " and _ are not yet used in
COMMON LISP, but are part of the syntax of reserved tokens, and are reserved to
implementors; - is not yet used in COMMON LISP, and is reserved to implementors;
and $ and I are normally regarded as alphabetic characters, but are not used in the
names of any standard COMMON LISP functions, variables, or other entities.

The following characters are called semi-standard:

#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of COMMON LISP need to support them; but those
implementations that use the standard ASCII character set should support them,
treating them as corresponding respectively to the ASCII characters BS (octal code
010), HT (011), LF (012), FF (014), CR (015), and DEL (177). These characters are
not members of the subtype standard-char unless synonymous with one of the
standard characters specified above. For example, in a given implementation it
might be sensible for the implementor to define #\Linefeed or #\Return to be
synonymous with #\Newline, or #\Tab to be synonymous with #\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing
portable software, simply because there is so little agreement among operating
systems. Some use a single character to delimit lines; the recommended ASCII

22 COMMON LISP

character for this purpose is the line feed character LF (also called the new line
character, NL), but some systems use the carriage return character CR. Much more
common is the two-character sequence CR followed by LF. Frequently line divisions
have no representation as a character but are implicit in the structuring of a file
into records, each record containing a line of text. A deck of punched cards has
this structure, for example.

COMMON LISP provides an abstract interface by requiring that there be a single
character, #\Newline, that within the language serves as a line delimiter. (The
language c has a similar requirement.) An implementation of COMMON LISP must
translate between this internal single-character representation and whatever external
representation(s) may be used.

Implementation note: How the character called #\Newline is represented internally is not
specified here, but it is strongly suggested that the ASCII LF character be used in COMMON
LISP implementations that use the ASCII character encoding. The ASCII CR character is a
workable, but in most cases inferior, alternative.

The requirement that a line division be represented as a single character has
certain consequences. A character string written in the middle of a program in such
a way as to span more than one line must contain exactly one character to represent
each line division. Consider this code fragment:

(setq a-string "This string
contains
forty-two characters.")

Between g and c there must be exactly one character, #\Newline; a two-character
sequence, such as #\Return and then #\Newline, is not acceptable, nor is the
absence of a character. The same is true betweens and f.

When the character #\Newline is written to an output file, the COMMON LISP

implementation must take the appropriate action to produce a line division. This
might involve writing out a record or translating #\New line to a CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding, uses the
CR/LF sequence externally to delimit lines, uses LF to represent # \Newline internally, and
supports #\Return as a data object corresponding to the ASCII character CR, the ques
tion arises as to what action to take whert the program writes out #\Return followed by
#\Newline. It should first be noted that# \Return is not a standard COMMON LISP character,
and the action to be taken when #\Return is written out is therefore not defined by the
COMMON LISP language. A plausible approach is to buffer the #\Return character, and
suppress it if and only if the next character is #\New line (the net effect is to generate a
CR/LF sequence). Another plausible approach is simply to ignore the difficulty and declare
that writing #\Return and then #\Newline results in the sequence cR/cR/LF in the output.

DATA TYPES 23

2.2.3. Non-standard Characters

Any implementation may provide additional characters, whether printing characters
or named characters. Some plausible examples:

#\7r #\a #\Break #\Home-Up #\Escape

The use of such characters may render COMMON LISP programs non-portable.

2.2.4 Character Attributes

Every object of type character has three attributes: code, bits, andfont. The code
attribute is intended to distinguish among the printed glyphs and formatting functions
for characters; it is a numerical encoding of the character proper. The bits attribute
allows extra flags to be associated with a character. The font attribute permits a
specification of the style of the glyphs (such as italics). Each of these attributes
may be understood to be a non-negative integer.

The font attribute may be notated in unsigned decimal notation between the #

and the \. For example, #3\a means the letter a in font 3. This might mean the
same thing as #\a if font 3 were used to represent Greek letters. Note that not all
COMMON LISP implementations provide for non-zero font attributes; see
char-font-limit.

The bits attribute may be notated by preceding the name of the character by the
names or initials of the bits, separated by hyphens. The character itself may be
written instead of the name, preceded if necessary by \. For example:

#\Control-Meta-Return

#\Hyper-Space

#\Control-A

#\C-M-Return

#\Meta-Control-Q

#\Meta-\a

#\Meta-Hyper-\:

#\Hyper-\7r

Note that not all COMMON LISP implementations provide for non-zero bits attributes;
see char-bits-limit.

2.2.5. String Characters

Any character whose bits and font attributes are zero may be contained in strings.
All such characters together constitute a subtype of the characters; this subtype is
called string-char.

2.3. Symbols

Symbols are LISP data objects that serve several purposes and have several interesting
characteristics. Every object of type symbol has a name, called its print name.

24 COMMON LISP

Given a symbol, one can obtain its name in the form of a string. Conversely, given
the name of a symbol as a string one can obtain the symbol itself. (More precisely,
symbols are organized into packages, and all the symbols in a package are uniquely
identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By convention this
is always a list whose even-numbered components (calling the first component
zero) are symbols, here functioning as property names, and whose odd-numbered
components are associated property values. Functions are provided for manipu
lating this property list; in effect, these allow a symbol to be treated as an extensible
record structure.

Symbols are also used to represent certain kinds of variables in LISP programs,
and there are functions for dealing with the values associated with symbols in this
role.

A symbol can be notated simply by writing its name. If its name is not empty,
and if the name consists only of uppercase alphabetic, numeric, or certain
"pseudo-alphabetic" special characters (but not delimiter characters such as paren
theses or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name. Any
uppercase letters that appear in the (internal) name may be written in either case
in the external notation (more on this below). For example:

FROBBOZ

frobboz

fRObBoz

unwind-protect

+$

1+

+1

pascal_style

b"2-L;•a•c

file.rel.L;3

/usr/games/zork

;The symbol whose name is FROBBOZ

; Another way to notate the same symbol
; Yet another way to notate it
; A symbol with a - in its name
; The symbol named + $

; The symbol named 1 +

; This is the integer 1, not a symbol.
; This symbol has an underscore in its name.
; This is a single symbol!

It has several special characters in its name.
;This symbol has periods in its name.
; This symbol has slashes in its name.

In addition to letters and numbers, the following characters are normally considered
to be "alphabetic" for the purposes of notating symbols:

+ - * I @ $ % " & \ < > ~ •

Some of these characters have conventional purposes for naming things; for ex
ample, symbols that name special variables generally have names beginning and
ending with •. The last character listed above, the period, is considered alphabetic

DATA TYPES 25

provided that a token does not consist entirely of periods. A single period standing
by itself is used in the notation of conses and dotted lists; a token consisting of
two· or more periods is syntactically illegal. (The period also serves as the decimal
point in the notation of numbers.)

The following characters are also alphabetic by default, but are explicitly re
served to the user for definition as reader macro characters (see section 22.1.3) or
any other desired purpose, and therefore should not be used routinely in names of
symbols:

?![]{}

A symbol may have uppercase letters, lowercase letters, or both in its print
name. However, the LISP reader normally converts lowercase letters to the corre
sponding uppercase letters when reading symbols. The net effect is that most of
the time case makes no difference when notating symbols. Case does make a
difference internally and when printing a symbol. Internally the symbols that name
all standard COMMON LISP functions, variables, and keywords have uppercase
names; their names appear in lower case in this manual for readability. Typing
such names with lowercase letters works because the function read will convert
lowercase letters to the equivalent uppercase letters.

If a symbol cannot be simply notated by the characters of its name because the
(internal) name contains special characters or lowercase letters, then there are two
"escape" conventions for notating them. Writing a \ character before any character
causes the character to be treated itself as an ordinary character for use in a symbol
name; in particular, it suppresses internal conversion of lowercase letters to their
uppercase equivalents. If any character in a notation is preceded by \, then that
notation can never be interpreted as a number. For example:

\ (

\+1

+\1

\frobboz

3. M159265\s0

3. M159265\SO

3. M159265s0

APL\\360

apl\\360

\(b"2\)\ -\ L;•a•c

; The symbol whose name is (
; The symbol whose name is + 1

; Also the symbol whose name is • 1

;The symbol whose name is fROBBOZ

;The symbol whose name is 3. M15926Sso

;A different symbol, whose name is 3. M15926SSO

; A short-format floating-point approximation to TI

;The symbol whose name is APL\360

;Also the symbol whose name is APL\360

;The name is (B"2) - L;•A•C.

It has parentheses and two spaces in it.
; The name is (b "2) - .; • a • c .

The letters are explicitly lowercase.

26 COMMON LISP

It may be tedious to insert a \ before every delimiter character in the name of a
symbol if there are many of them. An alternative convention is to surround the
name of a symbol with vertical bars; these cause every character between them to
be taken as part of the symbol's name, as if \ had been written before each one,
excepting only : itself and \, which must nevertheless be preceded by \. For
example:

I Ill

' '
l(bA2) - L;*a•c:

:frobboz:

lAPL\360l

lAPL\\360l

:apl\\3601

I\ I\ I I

l(BA2) - L;•A•Cl

2.4. Lists and Conses

; The same as writing \"
;The name is (bA2) - L;•a•c

;The name is frobboz, not FROBBOZ

;The name is APL360, because
the \ quotes the 3

;The name is APL\360

;The name is apl \360

; Same as \ : \ : : the name is : :
; The name is (BA 2) - L; • A • c .

It has parentheses and two spaces in it.
; The name is (b A 2) - L; •a• c .

A cons is a record structure containing two components called the car and the cdr.
Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose cdr
component is a list. A list is therefore a chain of conses linked by their cdr
components and terminated by nil, the empty list. The car components of the
conses are called the elements of the list. For each element of the list there is a
cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank
space (space, tab, or return characters), and surrounded by parentheses. For ex
ample:

(a b c)

(2.0sO (a 1) #\•)

; A list of three symbols
; A list of three things: a short floating-point

number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no
elements.

A dotted list is one whose last cons does not have nil for its cdr, rather some
other data object (which is also not a cons, or the first-mentioned cons would not
be the last cons of the list). Such a list is called "dotted" because of the special

DATA TYPES 27

notation used for it: the elements of the list are written between parentheses as
before, but after the last element and before the right paren~hesis are written a dot
(surrounded by blank space) and then the cdr of the last coos. As a special case,
a single cons is notated by writing the car and the cdr between parentheses and
separated by a space-surrounded dot. For example:

(a L;)

(a b c . d)

; A cons whose car is a symbol
and whose cdr is an i-nteger

; A dotted list with three elements whose last cons
has the symbol d in its cdr

Compatibility note: In MAcL1sP, the dot in dotted-list notation need not be surrrnmded by
white space or other delimiters. The dot is required to be delimited in COMMON LISP, as in
ZETALISP.

It is legitimate to write something like (a b . (c d)) ; this means tbe same as
(a b c d) . The standard LISP output routines will never print a list in the first
form, however; they will avoid dot notation wherever possible.

Often tbe term list is used to refer either to true lists or to dotted lists. When
the distinction is important, the term "true list" will be used to refer to a list
terminated by nil. Most functions advertised to operate on lists expect to be given
true lists. Throughout this manual, unless otherwise specified, it is an error to pass
a dotted list to a function that is specified to require a list as an argument.

Implementation note: Implementors are encouraged to use the equivalent of the predicate
endp wherever it is necessary to test for the end of a list. Whenever feasible, this test should
explicitly signal an error if a list is found to be terminated by a non-nil atom. However,
such an explicit error signal is not required, because some such tests occur in important
loops where efficiency is important. In such cases, the predicate atom may be used to test
for the end of the list, quietly treating any non-nil list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other conses
transitively accessible to it through car and cdr links until non-conses are reached;
these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply
useful points of view about structures of conses. There are yet other terms, such
as association list. None of these are true LISP data types. Conses are a data type,
and nil is the sole object of type nu 11. The LISP data type list is taken to mean
the union of the cons and null data types, and therefore encompasses both true
lists and dotted lists.

28 COMMON LISP

2.5. Arrays

An array is an object with components arranged according to a Cartesian coordinate
system. In general, these components may be any LISP data objects.

The number of dimensions of an array is called its rank (this terminology is
borrowed from APL); the rank is a non-negative integer. Likewise, each dimension
is itself a non-negative integer. The total number of elements in the array is the
product of all the dimensions.

An implementation of COMMON LISP may impose a limit on the rank of an array,
but this limit may not be smaller than 7. Therefore, any COMMON LISP program
may assume the use of arrays of rank 7 or less. (A program may determine the
actual limit on array ranks for a given implementation by examining the constant
array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other prop
erties of the array, such as the dimensions themselves, may be used. If the rank is
zero, then there are no dimensions, and the product of the dimensions is then by
definition l. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the se
quence must equal the rank of the array. Each index must be a non-negative integer
strictly less than the corresponding array dimension. Array indexing is therefore
zero-origin, not one-origin as in (the default case of) FORTRAN.

As an example, suppose that the variable foo names a 3-by-5 array. Then the
first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3, or 4. One
may refer to array elements using the function aref; for example, (a ref foo

2 1) refers to element (2, 1) of the array. Note that a ref takes a variable number
of arguments: an array, and as many indices as the array has dimensions. A zero-rank
array has no dimensions, and therefore aref would take such an array and no
indices, and return the sole element of the array.

In general, arrays can be multidimensional, can share their contents with other
array objects, and can have their size altered dynamically (either enlarging or
shrinking) after creation. A one-dimensional array may also have a fill pointer.

Multidimensional arrays store their components in row-major order; that is, in
ternally a multidimensional array is stored as a one-dimensional array, with the
multidimensional index sets ordered lexicographically, last index varying fastest.
This is important in two situations: (1) when arrays with different dimensions share
their contents, and (2) when accessing very large arrays in a virtual-memory im
plementation. (The first situation is a matter of semantics; the second, a matter of
efficiency.)

An array that is not displaced to another array, has no fill pointer, and is not to
have its size adjusted dynamically after creation is called a simple array. The user

DATA TYPES 29

may provide declarations that certain arrays will be simple. Some implementations
can handle simple arrays in an especially efficient manner; for example, simple
arrays may have a more compact representation than non-simple arrays.

"'\'" 2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP and constitute the type
vector (which is therefore a subtype of array). Vectors and lists are collectively
considered to be sequences. They differ in that any component of a one-dimensional
array can be accessed in constant time, whereas the average component access
time for a list is linear in the length of the list; on the other hand, adding a new
element to the front of a list takes con_stant time, whereas the same operation on
an array takes time linear in the length of the array.

A general vector (a one-dimensional array that can have any data object as an
element, but has no additional paraphernalia) can be notated by notating the com
ponents in order, separated by whitespace and surrounded by # (and) . For example:

(a b c) ; A vector of length 3
#(2 3 5 7 11 13 17 19 23 29 31 37 ~1 ~3 ~7)

; A vector containing the primes below 50
() ; An empty vector

Note that when the function read parses this syntax, it always constructs a simple
general vector.

Rationale: Many people have suggested that brackets be used to notate vectors, as cab c J

instead of # (a b c). This notation would be shorter, perhaps more readable, and certainly
in accord with cultural conventions in other parts of computer science and mathematics.
However, to preserve the usefulness of the user-definable macro-character feature of the
function read, it is necessary to leave some characters to the user for this purpose. Expe
rience in MAcL1sP has shown that users, especially implementors of languages for use in
artificial intelligence research, often want to define special kinds of brackets. Therefore
COMMON LISP avoids using brackets and braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays for
efficiency in the case where all the components are of the same specialized (typi
cally numeric) type. All implementations provide specialized arrays for the cases
when the components are characters (or rather, a special subset of the characters);
the one-dimensional instances of this specialization are called strings. All imple
mentations are also required to provide specialized arrays of bits, that is, arrays of
type (array bit); the one-dimensional instances of this specialization are called
bit-vectors.

30 COMMON LISP

2.5.2. Strings

A string is siml"lY a veet;oc of characters. More precisely, a string is a specialized
vector whose ele'!B0Dts are of type string-char. The type string is therefore a
subtype of the~ vector. A string can be written as the sequence of characters
contained in the s~g, preceded and followed by a " (double quote) character.
Any 11 or \ character in the sequence must additionally have a ' character before
it. For example:

"\"APL\\360?\" h,e cried."
11 :x: = 'l-x-1"'

; A string with three characters in it
; An empty string
; A string with twenty characters
; A ten-character string

Notice that al'ly verticlitll bar : in a string need not be preceded by a \. Similarly,
any double quote in like name of a symbol written using vertical-bar notation need
not be preceded by a \. The double-quote and vertical-bar notations are similar but
distinct: double quotes ioo.icate a character string containing the sequence of characters,
whereas vertical bars indicate a symbol whose name is the contained sequence of
characters.

The characters cootained by the double quotes, taken from left to right, occupy
locations within the snring with increasing indices. The leftmost character is string
element number 0, the next one is element number 1, and so on.

Note that the ftmetioo. prin1 will print any character vector (not just a simple
one) using this syntax, b1;1:t the function read will always construct a simple string
when it reads this syntax.

2.5.3 Bit-Veet9rs

A bit-vector can be written as the sequence of bits contained in the string, preceded
by u; any delimiter character, such as whitespace, will terminate the bit-vector
syntax. For example:

#*10110 ; A five-bit bit-vector; bit 0 is a 1
;An empty bit-vector

The bits notated following the # *, taken from left to right, occupy locations within
the bit-vector with increasing indices. The leftmost notated bit is bit-vector element
number 0, the next o~ is element number 1, and so on.

The function prin1 will print any bit-vector (not just a simple one) using this
syntax, but the function read will always construct a simple bit-vector when it
reads this syntax.

DATA TYPES 31

2.6. Hash Tables

Hash tables provide an efficient way of mapping any LISP object (a key) to an
associated object. They are provided as primitives of COMMON LISP because some
implementations may need to use internal storage management strategies that would
make it very difficult for the user to implement hash tables himself in a portable
fashion. Hash tables are described in chapter 16.

2. 7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP

expression parser. In particular, a readtable indicates for each character with syntax
macro character what its macro definition is. This is a mechanism by which the
user may reprogram the parser to a limited but useful extent. See section 22.1.5.

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes
symbols by looking up character sequences in the current package. Packages can
be used to hide names internal to a module from other code. Mechanisms are
provided for exporting symbols from a given package to the primary "user" package.
See chapter 11.

2.9. Pathnames

Pathnames are the means by which a COMMON LISP program can interface to an
external file system in a reasonably implementation-independent manner. See section
23.1.1.

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all
functions that perform 1/0 do so with respect to a specified stream. The function
open takes a pathname and returns a stream connected to the file specified by the
pathname. There are a number of standard streams that are used by default for
various purposes. See chapter 21.

2.11. Random-States

An object of type random-state is used to encapsulate state information used by
the pseudo-random number generator. For more information about random-state

objects, see section 12.9.

32 COMMON LISP

2.12. Structures

Structures are instances of user-defined data types that have a fixed number of
named components. They are analogous to records in PASCAL. Structures are declared
using the defstruct construct; defstruct automatically defines access and
constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure
type may specify a print procedure to use for objects of that type (see the
: print-function option to defstruct). The default notation for structures is:

s (structure-name
slot-name-I slot-value-I
slot-name-2 slot-value-2

...)

where #S indicates structure syntax, structure-name is the name (a symbol) of the
structure type, each slot-name is the name (also a symbol) of a component, and
each corresponding slot-value is the representation of the LISP object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall or apply function,
and is to be executed as code when arguments are supplied.

A compiled-function is a compiled code object.
A lambda-expression (a list whose car is the symbol lambda) may serve as a

function. Depending on the implementation, it may be possible for other lists to
serve as functions. For example, an implementation might choose to represent a
"lexical closure" as a list whose car contains some special marker.

A symbol may serve as a function; an attempt to invoke a symbol as a func
tion causes the contents of the symbol's function cell to be used. See
symbol-function and defun.

The result of evaluating a function special form will always be a function.

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects cannot
necessarily be reliably reconstructed from a printed representation, and so they are
usually printed in a format informative to the user but not acceptable to the read

function:

#<Useful information>

DATA TYPES 33

The LISP reader will signal an error on encountering # < .

As a hypothetical example, an implementation might print

#<stack-pointer si:rename-within-new-definition-maybe #0311037552>

for an implementation-specific "internal stack pointer" data type whose printed
representation includes the name of the type, some information about the stack slot
pointed to, and the machine address (in octal) of the stack slot.

2.15. Overlap, Inclusion, and Disjointness of Types

The COMMON LISP data type hierarchy is tangled and purposely left somewhat
open-ended so that implementors may experiment with new data types as extensions
to the language. This section explicitly states all the defined relationships between
types, including subtype/supertype relationships, disjointness, and exhaustive
partitioning. The user of COMMON LISP should not depend on any relationships
not explicitly stated here. For example, it is not valid to assume that because a
number is not complex and not rational that it must be a float, because
implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object of type
y is also of type x, and y is said to be a subtype of x. If types x and y are disjoint,
then no object (in any implementation) may be both of type x and of type y. Types
a1 through an are an exhaustive union of type x if each aj is a subtype of x, and
any object of type x is necessarily of at least one of the types aj; a1 through an are
furthermore an exhaustive partition if they are also pairwise disjoint.

• The type t is a supertype of every type whatsoever. Every object belongs to
type t.

• The type nil is a subtype of every type whatsoever. No object belongs to type
nil.

The types cons, symbol, array, number, and character are pairwise
disjoint.

• The types rational, float, and complex are pairwise disjoint subtypes of
number.

• The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive partition
of the type rational. This is purposely avoided here in order to permit compatible exper
imentation with extensions to the COMMON LISP rational number system.

34 COMMON LISP

• The types fixnum and bignum are disjoint subtypes of integer.

Rationale: It might be thought that fixnum and bignum should form an exhaustive partition
of the type integer. This is purposely avoided here in order to permit compatible experi
mentation with extensions to the COMMON LISP integer number system, such as the idea of
adding explicit representations of infinity or of positive and negative infinity.

• The types short-float, single-float, double-float, and long-float are
subtypes of float. Any two of them must be either disjoint or identical; if
identical, then any other types between them in the above ordering must also be
identical to them (for example, if single-float and long-float are identical
types, then double-float must be identical to them also).

• The type null is a subtype of symbol; the only object of type null is nil.

• The types cons and null form an exhaustive partition of the type list.

• The type standard-char is a subtype of string-char; string-char is a sub
type of character.

• The type string is a subtype of vector, for string means (vector

string-char).

• The type bit-vector is a subtype of vector, for bit-vector means (vector

bit).

• The types (vector t), string, and bit-vector are disjoint.

The type vector is a subtype of array; for all types x, the type (vector X) is
the same as the type (array x (•)).

• The type simple-array is a subtype of array.

• The types simple-vector, simple-string, and simple-bit-vector are dis
joint subtypes of simple-array, for they respectively mean (simple- array t

(*)),(simple-array string-char(*)), and (simple- array bit(*)).

• The type simple-vector is a subtype of vector, and indeed is a subtype of
(vector t).

• The type simple-string is a subtype of string. (Note that although string

is a subtype of vector, simple-string is not a subtype of simple-vector.)

Rationale: The type simple-vector might better have been designated simple
general-vector, but in this instance euphony and user convenience were deemed more
important to the design of COMMON LISP than a rigid symmetry.

DATA TYPES 35

• The type simple-bit-vector is a subtype of bit-vector. (Note that although
bit-vector is a subtype of vector, simple-bit-vector is not a subtype of
simple-vector.)

• The types vector and list are disjoint subtypes of sequence.

• The types hash-table, teadtable, package, pathname, stream, and
random-state are pairwise disjoint.

• Any two types created by defstruct are disjoint unless one is a supertype of
the other by virtue of the : include option.

• An exhaustive union for the type common is formed by the types cons, symbol,
(array X) where xis either tor a subtype of common, string, fixnum, bignum,
ratio, short-float, single-float, double-float, long-float, (complex
X) where xis a subtype of common, standard-char, hash-table, read table,
package, pathname, stream, random-state, and all types created by the user
via defstruct. An implementation may not unilaterally add subtypes to common;
however, future revisions to the COMMON LISP standard may extend the defi
nition of the common data type.

Note that a type such as number or array may or may not be a subtype of common,
depending on whether or not the given implementation has extended the set of
objects of that type.

3

Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope
and extent are frequently useful. These notions arise when some object or construct
must be referred to from some distant part of a program. Scope refers to the spatial
or textual region of the program within which references may occur. Extent refers
to the interval of time during which references may occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is no
way to refer to this parameter from any other place but within the body of the
defun. Similarly, the extent of the parameter x (for any particular call to copy-cell)

is the interval from the time the function is invoked to the time it is exited. (In the
general case, the extent of a parameter may last beyond the time of function exit,
but that cannot occur in this simple case.)

Within COMMON LISP, a referenceable entity is established by the execution of
some language construct, and the scope and extent of the entity are described
relative to the construct and the time (during execution of the construct) at which
the entity is established. For the purposes of this discussion, the term "entity" refers
not only to COMMON LISP data objects, such as symbols and conses, but also to
variable bindings (both ordinary and special), catchers, and go targets. It is im
portant to distinguish between an entity and a name for the entity. In a function
definition such as

(defun foo (x y) (* x (+ y 1)))

there is a single name, x, used to refer to the first parameter of the procedure
whenever it is invoked; however, a new binding is established on every invocation.
A binding is a particular parameter instance. The value of a reference to the name
x depends not only on the scope within which it occurs (the one in the body of

36

SCOPE AND EXTENT 37

foo in the example occurs in the scope of the function definition's parameters) but
also on the particular binding or instance involved. (In this case, it depends on the
invocation during which the reference is made). More complicated examples appear
at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing
COMMON LISP:

• Lexical scope. Here references to the established entity can occur only within
certain program portions that are lexically (that is, textually) contained within
the establishing construct. Typically the construct will have a part designated
the body, and the scope of all entities established will be (or include) the body.

Example: the names of parameters to a function normally are lexically scoped.

• Indefinite scope. References may occur anywhere, in any program.

• Dynamic extent. References may occur at any time in the interval between es
tablishment of the entity and the explicit disestablishment of the entity. As a
rule, the entity is disestablished when execution of the establishing construct
completes or is otherwise terminated. Therefore entities with dynamic extent
obey a stack-like discipline, paralleling the nested executions of their establishing
constructs.

Example: the with-open-file construct opens a connection to a file and creates
a stream object to represent the connection. The stream object has indefinite
extent, but the connection to the open file has dynamic extent: when control
exits the with-open-file construct, either normally or abnormally, the stream
is automatically closed.

Example: the binding of a "special" variable has dynamic extent.

• Indefinite extent. The entity continues to exist so long as the possibility of ref
erence remains. (An implementation is free to destroy the entity if it can prove
that reference to it is no longer possible. Garbage collection strategies implicitly
employ such proofs.)

Example: most COMMON LISP data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have indef
inite extent. (By contrast, in ALGOL the bindings of lexically scoped parameters
of a procedure have dynamic extent.) The function definition

(defun compose (f g)

#'(lambda (x) (funcall f (fuhcall g x))))

when given two arguments, immediately returns a function as its value. The
parameter bindings for f and g do not disappear because the returned function,

38 COMMON LISP

when called, could still refer to those bindings. Therefore

(funcall (compose #'sqrt #'abs) -9.0)

produces the value 3 . o. (An analogous procedure would not necessarily work
correctly in typical ALGOL implementations, or, for that matter, in most LISP

dialects.)

In addition to the above terms, it is convenient to define dynamic scope to mean
indefinite scope and dynamic extent. Thus we speak of "special" variables as having
dynamic scope, or being dynamically scoped, because they have indefinite scope
and dynamic extent: a special variable can be referred to anywhere as long as its
binding is currently in effect.

The above definitions do not take into account the possibility of shadowing. Remote
reference of entities is accomplished by using names of one kind or another. If two
entities have the same name, then the second may shadow the first, in which case an
occurrence of the name will refer to the second and cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with the
same name are textually nested, then references within the inner construct refer to
the entity established by the inner one; the inner one shadows the outer one. Outside
the inner construct but inside the outer one, references refer to the entity established
by the outer construct. For example:

(defun test (x z)

(let ((z (* x 2))) (print z))

z)

The binding of the variable z by the let construct shadows the parameter binding
for the function test. The reference to the variable z in the print form refers to
the let binding. The reference to z at the end of the function refers to the parameter
named z.

In the case of dynamic extent, if the time intervals of two entities overlap, then
one interval will necessarily be nested within the other one. This is a property of
the design of COMMON LISP.

Implementation note: Behind the assertion that dynamic extents nest properly is the as
sumption that there is only a single program or process. COMMON LISP does not address the
problems of multiprogramming (timesharing) or multiprocessing (more than one active
processor) within a single LISP environment. The documentation for implementations that
extend COMMON LISP for multiprogramming or multiprocessing should be very clear on what
modifications are induced by such extensions to the rules of extent and scope. Implementors
should note that COMMON LISP has been carefully designed to allow special variables to be
implemented using either the "deep binding" technique or the "shallow binding" technique,
but the two techniques have different semantic and performance implications for multipro
gramming and multiprocessing.

SCOPE AND EXTENT 39

A reference by name to an entity with dynamic extent will always refer to the
entity of that name that has been most recently established that has not yet been
disestablished. For example:

(defun fun1 (x)

(catch 'trap (+ 3 (fun2 x))))

(defun fun2 (y)

(catch 'trap (* 5 (fun3 y))))

(defun fun3 (z)

(throw 'trap z))

Consider the call (fun 1 7) . The result will be 1 o. At the time the th row is executed,
there are two outstanding catchers with the name trap: one established within
procedure fun 1, and the other within procedure fun 2. The latter is the more recent,
and so the value 7 is returned from the catch form in fun2. Viewed from within
fun3, the catch in fun2 shadows the one in fun1. Had fun2 been defined as

(de fun fun2 (y)

(catch 'snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in fun1

would not be shadowed. The result would then have been 7.

As a rule this manual simply speaks of the scope or extent of an entity; the
possibility of shadowing is left implicit.

The important scope and extent rules in COMMON LISP follow:

• Variable bindings normally have lexical scope and indefinite extent.

• Variable bindings that are declared to be special have dynamic scope (indefinite
scope and dynamic extent).

• A catcher established by a catch or unwind-protect special form has dynamic
scope.

• An exit point established by a block construct has lexical scope and dynamic
extent. (Such exit points are also established by do, prog, and other iteration
constructs.)

• The go targets established by a tag body, named by the tags in the tagbody,

and referred to by go have lexical scope and dynamic extent. (Such go targets
may also appear as tags in the bodies of do, prog, and other iteration constructs.)

• Named constants such as nil and pi have indefinite scope and indefinite extent.

The rules of lexical scoping imply that lambda-expressions appearing in the
function construct will, in general, result in "closures" over those non-special

40 COMMON LISP

variables visible to the lambda-expression. That is, the function represented by a
lambda-expression may refer to any lexically apparent non-special variable and get
the correct value, even if the construct that established the binding has been exited
in the course of execution. The compose example shown earlier in this chapter
provides one illustration of this. The rules also imply that special variable bindings
are not "closed over" as they may be in certain other dialects of LISP.

Constructs that use lexical scope effectively generate a new name for each es
tablished entity on each execution. Therefore dynamic shadowing cannot occur
(though lexical shadowing may). This is of particular importance when dynamic
extent is involved. For example:

(defun contorted-example (f g x)

(if(=xD)

(funcall f)

(block here

/,I

(+ 5 (contorted-example g

#'(lambda ()

(return-from here 4))

(- x 1))))))

Consider the call (contorted-example nil nil 2). This produces the result 4 ..

During the course of execution, there are three calls on contorted-example,

interleaved with two establishments of blocks:

(contorted-example nil nil 2)

(block here1 ...)

(contorted-example nil

(block here2 ...)

#'(lambda() (return-from here 1 4))

1)

(contorted-example #'(lambda() (return-from here 1 4))

#'(lambda () (return-from here2 4))

D)

(funcall f)

where f ='? #' (lambda () (return-from here1 4))

(return-from here1 4)

SCOPE AND EXTENT 41

At the time the funcall is executed there are two block exit points outstanding,
each apparently named here. In the trace above, these exit points are distinguished
for expository purposes by subscripts. The return-from form executed as a result
of the funcall operation refers to the outer outstanding exit point (here 1), not the
inner one (here2). This is a consequence of the rules of lexical scoping: it refers
to that exit point textually visible at the point of execution of the function construct
(here abbreviated by the #' syntax) that resulted in creation of the function object
actually invoked by the funcall.

If, in this example, one were to change the form (fun call f) to (funcall g),

then the value of the call (contorted-example nil nil 2) would be 9. The value
would change because the funcall would cause the execution of (return-from

here2 ;:;) , thereby causing a return from the inner exit point (here2). When that
occurs, the value;:; is returned from the middle invocation of contorted-example,

5 is added to that to get 9, and that value is returned from the outer block and the
outermost call to contorted-example. The point is that the choice of exit point
returned from has nothing to do with its being innermost or outermost; rather, it
depends on the lexical scoping information that is effectively packaged up with a
lambda-expression when the function construct is executed.

This function contorted-example works only because the function named by
f is invoked during the extent of the exit point. Block exit points are like non-special
variable bindings in having lexical scope, but differ in having dynamic extent rather
than indefinite extent. Once the flow of execution has left the block construct, the
exit point is disestablished. For example:

(defun illegal-example ()

(let ((y (block here #'(lambda (z) (return-from here z)))))

(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following
incorrect reasoning: the let statement binds the variable y to the value of the block

construct; this value is a function resulting from the lambda-expression. Because
y is not a number, it is invoked on the value 5. The return-from should then
return this value from the exit point named here, thereby exiting from the block
again and giving y the value 5 which, being a number, is then returned as the
value of the call to illegal-example.

The argument fails only because exit points are defined in COMMON LISP to have
dynamic extent. The argument is correct up to the execution of the return-from.

The execution of the return-from is an error, however, not because it cannot
refer to the exit point, but because it does correctly refer to an exit point and that
exit point has been disestablished.

4

Type Specifiers

In COMMON LISP, types are named by LISP objects, specifically symbols and lists,
called type specifiers. Symbols name predefined classes of objects, whereas lists
usually indicate combinations or specializations of simpler types. Symbols or lists
may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4- 1 . In
addition, when a structure type is defined using defstruct, the name of the structure
type becomes a valid type symbol.

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list
is subsidiary type information. In many cases a subsidiary item may be unspecified.
The unspecified subsidiary item is indicated by writing •. For example, to completely
specify a vector type, one must mention the type of the elements and the length
of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float •)

To leave the element type unspecified, one would write

(vector • 100)

Suppose that two type specifiers are the same except that the first has a • where

42

TYPE SPECIFIERS 43

Table 4-1: Standard Type Specifier Symbols

array fixnum package simple-vector

atom float pathname single-float

bignum function random-state standard-char

bit hash-table ratio stream

bit-vector integer rational string

character keyword read table string-char

common list sequence symbol

compiled-function long-float short-float t

complex nil simple-array vector

cons null simple-bit-vector

double-float number simple-string

the second has a more explicit specification. Then the second denotes a subtype
of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such
items may simply be dropped rather than writing an explicit • for each one. If
dropping all occurrences of • results in a singleton list, then the parentheses may
be dropped as well (the list may be replaced by the symbol in its car). For example,
(vector double-float•) may be abbreviated to (vector double-float), and
(vector • •) may be abbreviated to (vector) and then to simply vector.

4.3. Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects
that satisfy the predicate named by predicate-name, which must be a symbol whose
global function definition is a one-argument predicate. (A name is required;
lambda-expressions are disallowed in order to avoid scoping problems.) For ex
ample, the type (satisfies numberp) is the same as the type number. The call
(typep x '(satisfies p)) results in applying p to x and returning t if the result
is true and nil if the result is false.

As an example, the type string-char could be defined as

(deftype string-char ()

'(and character (satisfies string-char-p)))

See deftype.

44 COMMON LISP

It is not a good idea for a predicate appearing in a satisfies type specifier to
cause any side effects when invoked.

4.4. Type Specifiers That Combine

The following type specifier lists define a data type in terms of other types or
objects.

(member object] object2 ...)

This denotes the set containing precisely those objects named. An object is of this
type if and only if it is eql to one of the specified objects.

Compatibility note: This is approximately equivalent to what the INTERLISP DECL package
calls memq.

(not type)

This denotes the set of all those objects that are not of the specified type.

(and type] type2 ...)

This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to what the INTERLISP DECL package calls
allof.

When typep processes an and type specifier, it always tests each of the com
ponent types in order from left to right and stops processing as soon as one com
ponent of the intersection has been found to which the object in question does not
belong. In this respect an and type specifier is similar to an executable and form.
The purpose of this similarity is to allow a satisfies type specifier to depend on
filtering by previous type specifiers. For example, suppose there were a function
primep that takes an integer and says whether it is prime. Suppose also that it is
an error to give any object other than an integer to primep. Then the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not be
invoked unless the object in question has already been determined to be an integer.

TYPE SPECIFIERS 45

(or type] type2 ...)

This denotes the union of the specified types. For example, the type list by
definition is the same as (or null cons). Also, the value returned by the function
position is always of type (or null (integer o *)) (either nil or a non-negative
integer).

Compatibility note: This is roughly equivalent to what the INTERLISP DECL package calls
oneof.

As for and, when typep processes an or type specifier, it always tests each of
the component types in order from left to right and stops processing as soon as
one component of the union has been found to which the object in question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols.
These specializations may be reflected by more efficient representations in the
underlying implementation. As an example, consider the type (array short-float).

Implementation A may choose to provide a specialized representation for arrays of
short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only
short-float objects, you may optionally specify to make-array the element type
short-float. This does not require make-array to create an object of type (array

short-float); it merely permits it. The request is construed to mean, "Produce
the most specialized array representation capable of holding short-floats that the
implementation can provide." Implementation A will then produce a specialized
array of type (array short-float), and implementation B will produce an or
dinary array of type (array t).

If one were then to ask whether the array were actually of type (array

short-float), implementation A would say "yes," but implementation B would
say "no." This is a property of make-array and similar functions: what you ask
for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrim
ination. Declaring to make-array that elements will always be of type short-float

permits optimization. Similarly, declaring that a variable takes on values of type
(array short-float) amounts to saying that the variable will take on values that
might be produced by specifying element type short-float to make-array. On
the other hand, if the predicate typep is used to test whether an o_bject is of type
(array short-float), only objects actually of that specialized type can satisfy
the test; in implementation B no object can pass that test.

46 COMMON LISP

The valid list-format names for data types are as follows:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of the
type element-type and whose dimensions match dimensions. For declaration pur
poses, this type encompasses those arrays that can result by specifying element-type
as the element type to the function make-array; this may be different from what
the type means for discrimination purposes. element-type must be a valid type
specifier or unspecified. dimensions may be a non-negative integer, which is the
number of dimensions, or it may be a list of µon-negative integers representing the
length of each dimension (any dimension may be unspecified instead), or it may
be unspecified. For example:

(array integer 3)

(array integer (* • •))

(array• (~ 5 6))

(array character (3 •))

(array short-float ())

; Three-dimensional arrays of integers
; Three-dimensional arrays of integers
; 4-by-5-by-6 arrays
; Two-dimensional arrays of characters
; that have exactly three rows
;Zero-rank arrays of short-format
; floating-point numbers

Note that (array t) is a proper subset of (array•). The reason is that (array

t) is the set of arrays that can hold any COMMON LISP object (the elements are of
type t, which includes all objects). On the other hand, (array •) is the set of all
arrays whatsoever, including for example arrays that can hold only characters. Now

>\(array character) is not a subset of (array t); the two sets are in fact disjoint
because (array character) is not the set of all arrays that can hold characters,
but rather the set of arrays that are specialized to hold precisely characters and no
other objects. To test whether an array foo can hold a character, one should not use

(typep foo '(array character))

but rather

(subtypep 'character (array-element-type foo))

See array-element-type.

(simple-array element-type dimensions)

This is equivalent to (array element-type dimensions) except that it additionally
specifies that objects of the type are simple arrays. (See section 2.5.)

TYPE SPECIFIERS 47

(vector element-type size)

This denotes the set of specialized one-dimensional arrays whose elements are all
of type element-type and whose lengths match size. This is entirely equivalent to
(array element-type (size)). For example:

(vector double-float)

(vector * 5)

(vector t 5)

(vector (mod 32) *)

; Vectors of double-format
; floating-point numbers
; Vectors of length 5
; General vectors of length 5
; Vectors of integers between 0 and 31

The specialized types (vector string-char) and (vector bit) are so useful
that they have the special names string and bit-vector. Every implementation
of COMMON LISP must provide distinct representations for these as distinct specialized
data types.

(simple-vector she)

This is the same as (vector t size) except that it additionally specifies that its
elements are simple general vectors.

(complex type)

Every element of this type is a complex number whose real part and imaginary
part are each of type type. For declaration purposes, this type encompasses those
complex numbers that can result by giving numbers of the specified type to the
function complex; this may be different from what the type means for discrimi
nation purposes. As an example, Gaussian integers might be described as (comp lex

integer), even in implementations where giving two integers to the function
complex results in an object of type (complex rational).

(function (argl-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep will
signal an error if it encounters a specifier of this form. Every element of this type
is a function that accepts arguments at least of the types specified by the argj-type
forms and returns a value that is a member of the types specified by the value-type
form. The &optional, &rest, and &key markers may appear in the list of argument
types. The value-type may be a values type specifier in order to indicate the types
of multiple values.

As an example, the function cons is of type (function (t t) cons), because

48 COMMON LISP

it can accept any two arguments and always returns a cons. The function cons is
also of type (function (float string) list), because it can certainly accept
a floating-point number and a string (among other things), and its result is always
of type list (in fact a cons is never null, but that does not matter for this type
declaration). The function truncate is of type (function (number number) (values

number number)), as well as of type (function (integer (mod B)) integer).

(values valuel-type value2-type ...)

This type specifer is extremely restricted: it may be used only as the value-type in
a function type specifier or in a the special form. It is used to specify individual
types when multiple values are involved. The &optional, &rest, and &key mark
ers may appear in the value-type list; they thereby indicate the parameter list of a
function that, when given to multiple-value-call along with the values, would
be suitable for receiving those values.

4.6. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type
specifiers that would be far too verbose to write out explicitly (using, for example,
member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each be
an integer, a list of an integer, or unspecified. An integer is an inclusive limit, a
list of an integer is an exclusive limit, and • means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively. The type fixnum is
simply a name for (integer smallest largest) for implementation-dependent values
of smallest and largest (see most-negative-fixnum and most-positive-fixnum).

The type (integer o 1) is so useful that it has the special name bit.

(mod n)

Denotes the set of non-negative integers less than n. This is equivalent to (integer

o n-1) or to (integer D (n)).

(signed-byte s)

Denotes the set of integers that can be represented in two's-complement form in a
byte of s bits. This is equivalent to (integer -2s-J 2s- 1 - I). Simply signed-byte

or (signed-byte •)is the same as integer.

1YPE SPECIFIERS 49

(unsigned-byte S)

Denotes the set of non-negative integers that can be represented in a byte of s bits.
This is equivalent to (mod 2"), that is, (integer o 2' - l). Simply unsigned-byte

or (unsigned-byte•) is the same as (integer o •),the set of non-negative
integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must each
be a rational, a list of a rational, or unspecified. A rational is an inclusive limit, a
list of a rational is an exclusive limit, and • means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively.

(float low high)

Denotes the set of floating-point numbers between low and high. The limits low
and high must each be a floating-point number, a list of a floating-point number,
or unspecified; a floating-point number is an inclusive limit, a list of a floating-point
number is an exclusive limit, and • means that a limit does not exist and so
effectively denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)
(single-float low high)
(double-float low high)
(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be one
of the appropriate format.

(string size)

Means the same as c array string-char (size)) : the set of strings of the indicated
size.

(simple-string s~e)

Means the same as (simple-array string-char (size)) : the set of simple strings
of the indicated size.

(bit-vector s~e)

Means the same as (array bit (size)) : the set of bit-vectors of the indicated size.

50 COMMON LISP

(simple-bit-vector she)

This means the same as (simple-array bit (size)): the set of bit-vectors of the
indicated size.

4. 7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new
structure type with defstruct automatically causes the name of the structure to
be a new type specifier symbol. Second, the deftype special form can be used to
define new type-specifier abbreviations.

deftype name lambda-list {declaration I doc-string}* {form}* [Macro]

This is very similar to a defmacro form: name is the symbol that identifies the
type specifier being defined, lambda-list is a lambda-list (and may contain &optional

and nest markers), and the forms constitute the body of the expander function.
If we view a type specifier list as a list containing the type specifier name and
some argument forms, the argument forms (unevaluated) are bound to the
corresponding parameters in lambda-list. Then the body forms are evaluated as an
implicit p\rogn, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation. The name is returned as the
value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an &optional

parameter, the default value is *,not nil.

If the optional documentation string doc-string is present, then it is attached to
the name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

(deftype mod (n) '(integer D (,n)))

(deftype list () '(or null cons))

(deftype square-matrix (&optional type size)

"SQUARE-MATRIX includes all square two-dimensional arrays."

'(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))

If the type name defined by deftype is used simply as a type specifier symbol, it
is interpreted as a type specifier list with no argument forms. Thus, in the example
above, square-matrix would mean (array• (* *)), the set of two-dimensional

1YPE SPECIFIERS 51

arrays. This would unfortunately fail to convey the constraint that the two dimensions
be the same; (square-matrix bit) has the same problem. A better definition is:

(defun equidirnensional (a)

(or (< (array-rank a) 2)

(apply#'= (array-dimensions a))))

(deftype square-matrix (&optional type size)

'(and (array ,type (,size ,size))

(satisfies equidirnensional)))

4.8. Type Conversion Function

The following function may be used to convert an object to an equivalent object
of another type.

coerce object result-type [Function]

The result-type must be a type specifier; the object is converted to an "equivalent"
object of the specified type. If the coercion cannot be performed, then an error is
signalled. In particular, (coerce x 'nil) always signals an error. If object is
already of the specified type, as determined by typep, then it is simply returned.
It is not generally possible to convert any object to be of any type whatsoever;
only certain conversions are permitted:

• Any sequence type may be converted to any other sequence type, provided the
new sequence can contain all actual elements of the old sequence (it is an error
if it cannot). If the result-type is specified as simply array, for example, then
(array t) is assumed. A specialized type such as string or (vector (comp lex

short-float)) may be specified; of course, the result may be of either that
type or some more general type, as determined by the implementation. Elements
of the new sequence will be eql to corresponding elements of the old sequence.
If the sequence is already of the specified type, it may be returned without
copying it; in this, (coerce sequence type) differs from (concatenate type
sequence), for the latter is required to copy the argument sequence. In particular,
if one specifies sequence, then the argument may simply be returned if it already
is a sequence.

(coerce '(ab c) 'vector) ~#(ab c)

• Some strings, symbols, and integers may be converted to characters. If object
is a string of length 1, then the sole element of the string is returned. If object

52 COMMON LISP

is a symbol whose print name is of length 1, then the sole element of the print
name is returned. If object is an integer n, then (int-char n) is returned. See
character.

(coerce "a" 'character) ~ #\a

• Any non-complex number can be converted to a short-float, single-float,

double-float, or long-float. If simply float is specified, and object is not
already a float of some kind, then the object is converted to a single-float.

(coerce o 'short-float) ~ o.oso
(coerce 3.510 'float) ~ 3.510

(coerce 7/2 'float) ~ 3.5

• Any number can be converted to a complex number. If the number is not already
complex, then a zero imaginary part is provided by coercing the integer zero to
the type of the given real part. (If the given real part is rational, however, then
the rule of canonical representation for complex rationals will result in the im
mediate re-conversion of the result from type complex back to type rational.)

(coerce ~.5s0 'complex) ~ #C(~.5SO O.OSO)

(coerce 7/2 'complex) ~ 7/2

(coerce #C(7/2 0) '(complex double-float))

~ #C(3.5DO O.ODO)

• Any object may be coerced to type t.

(coerce x 't) == (identity x) == x

Coercions from floating-point numbers to rationals and from ratios to integers
are purposely not provided because of rounding problems. The functions rational,

rationalize, floor, ceiling, truncate, and round may be used for such pur
poses. Similarly, coercions from characters to integers are purposely not provided;
char-code or char-int may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

The following function may be used to obtain a type specifier describing the type
of a given object.

type-of object [Function]

(type-of object) returns an implementation-dependent result: some type of which
the object is a member. Implementors are encouraged to arrange for type-of to

TYPE SPECIFIERS 53

return the most specific type that can be conveniently computed and is likely to be
useful to the user. If the argument is a user-defined named structure created by
defstruct, then type-of will return the type name of that structure. Because the
result is implementation-dependent, it is usually better to use type-of primarily
for debugging purposes; however, in a few situations portable code requires the
use of type-of, such as when the result is to be given to the coerce or map
function. On the other hand, often the typep function or the typecase construct
is more appropriate than type-of.

Compatibility note: In MACLISP the function type-of is called typep, and anomalously
so, for it is not a predicate.

5

Program
Structure

In chapter 2 the syntax was sketched for notating data objects in COMMON LISP.

The same syntax is used for notating programs because all COMMON LISP programs
have a representation as COMMON LISP data objects.

LISP programs are organized as forms and functions. Forms are evaluated (rel
ative to some context) to produce values and side effects. Functions are invoked
by applying them to arguments. The most important kind of form performs a
function call; conversely, a function performs computation by evaluating forms.

In this chapter forms are discussed first, and then functions. Finally, certain "top
level" special forms are discussed; the most important of these is defun, whose
purpose is to define a named function.

5.1. Forms

The standard unit of interaction with a COMMON LISP implementation is the form,
which is simply a data object meant to be evaluated as a program to produce one
or more values (which are also data objects). One may request evaluation of any
data object, but only certain ones are meaningful. For instance, symbols and lists
are meaningful forms, while arrays normally are not. Examples of meaningful
forms are 3, whose value is 3, and (• 3 ;;) , whose value is 7. We write 3 =? 3

and (• 3 ;;) =? 7 to indicate these facts. (=? means "evaluates to.")
Meaningful forms may be divided into three categories: self-evaluating forms,

such as numbers; symbols, which stand for variables; and lists. The lists in tum
may be divided into three categories: special forms, macro calls, and function calls.

Any COMMON LISP data object not explicitly defined here to be a valid form is
not a valid form. It is an error to evaluate anything but a valid form.

54

PROGRAM STRUCTURE 55

Implementation note: An implementation is free to make implementation-dependent ex
tensions to the evaluator, but is strongly encouraged to signal an error on any attempt to
evaluate anything but a valid form or an object for which a meaningful evaluation extension
has been purposely defined.

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms. When
such an object is evaluated, that object (or possibly a copy in the case of numbers
or characters) is returned as the value of the form. The empty list (), which is
also the false value nil, is also a self-evaluating form: the value of nil is nil.

Keywords (symbols written with a leading colon) also evaluate to themselves: the
value of : start is : start.

5.1.2. Variables

Symbols are used as names of variables in COMMON LISP programs. When a symbol
is evaluated as a form, the value of the variable it names is produced. For example,
after doing (setq i terns J), which assigns the value J to the variable named
items, then items ~ J. Variables can be assigned to, as by setq, or bound, as
by let. Any program construct that binds a variable effectively saves the old value
of the variable and causes it to have a new value, and on exit from the construct
the old value is reinstated.

There are actually two kinds of variables in COMMON LISP, called lexical (or
static) variables and special (or dynamic) variables. At any given time either or
both kinds of variable with the same name may have a current value. Which of
the two kinds of variable is referred to when a symbol is evaluated depends on the
context of the evaluation. The general rule is that if the symbol occurs textually
within a program construct that creates a binding for a variable of the same name,
then the reference is to the variable specified by the binding; if no such program
construct textually contains the reference, then it is taken to refer to the special
variable of that name.

The distinction between the two kinds of variable is one of scope and extent. A
lexically bound variable can be referred to only by forms occurring at any place
textually within the program construct that binds the variable. A dynamically bound
(special) variable can be referred to at any time from the time the binding is made
until the time evaluation of the construct that binds the variable terminates. There
fore ~~_Qi~c!i_f!g __ QfYJlii<ihl~s_ i01[l()~es a spatial limitatign 011_ occ:µ1-rences of.

56 COMMON LISP

references (but no temporal limitation, for the binding continues to exist as long
as the possibility of reference remains). Conversely, dynamic binding of variables
imposes a temporal limitation on occurrences of references (but no spatial limita
tion). For more information on scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that
variable is called the global value of the (special) variable. A global value can be
given to a variable only by assignment, because a value given by binding is by
definition not global.

It is possible for a special variable to have no value at all, in which case it is
said to be unbound. By default, every global variable is unbound unless and until
explicitly assigned a value, except for those global variables defined in this manual
or by the implementation already to have values when the LISP system is first
started. It is also possible to establish a binding of a special variable and then cause
that binding to be valueless by using the function makunbound. In this situation
the variable is also said to be "unbound," although this is a misnomer; precisely
speaking, it is bound but valueless. It is an error to refer to a variable that is
unbound.

Certain global variables are reserved as "named constants." They have a global
value and may not be bound or assigned to. For example, the symbols t and nil
are reserved. One may not assign a value tot or nil, and one may not bind tor
nil. The global value oft is always t, and the global value of nil is always nil.
Constant symbols defined by defconstant also become reserved and may not be
further assigned to or bound (although they may be redefined, if necessary, by
using defconstant again). Keyword symbols, which are notated with a leading
colon, are reserved and may never be assigned to or bound; a keyword always
evaluates to itself.

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element
of the list. If the first element is one of the symbols appearing in Table 5-1, then
the list is called a special form. (This use of the word "special" is unrelated to its
use in the phrase "special variable.")

Special forms are generally environment and control constructs. Every special
form has its own idiosyncratic syntax. An example is the if special form: (if p

(+ x ,:;) s) in COMMON LISP means what "if p then x + 4 else 5" would mean in
ALGOL.

The evaluation of a special form normally produces a value or values, but the
evaluation may instead call for a non-local exit; see return-from, go, and
throw.

PROGRAM STRUCTURE 57

Table 5-1: Names of All COMMON LISP Special Forms

block if progv
catch labels quote
compiler-let let return-from
declare let• setq
eval-when macro let tagbody
fl et multiple-value-call the
function multiple-value-prog1 throw
go progn unwind-protect

The set of special forms is fixed in COMMON LISP; no way is provided for the
user to define more. The user can create new syntactic constructs, however, by
defining macros.

The set of special forms in COMMON LISP is purposely kept very small because
any program-analyzing program must have special knowledge about every type of
special form. Such a program needs no special knowledge about macros because
it is simple to expand the macro and operate on the resulting expansion. (This is
not to say that many such programs, particularly compilers, will not have such
special knowledge. A compiler may be able to produce much better code if it
recognizes such constructs as typecase and multiple-value-bind and gives
them customized treatment.)

An implementation is free to implement as a macro any construct described
herein as a special form. Conversely, an implementation is free to implement as a
special form any construct described herein as a macro if an equivalent macro
definition is also provided. The practical consequence is that the predicates
macro-function and special-forrn-p may both be true of the same symbol. It
is recommended that a program-analyzing program process a form that is a list
whose car is a symbol as follows:

I. If the program has particular knowledge about the symbol, process the form
using special-purpose code. All of the symbols listed in Table 5-1 should fall
into this category.

2. Otherwise, if macro-function is true of the symbol, apply either macroexpand

or macroexpand-1, as appropriate, to the entire form and then start over.

3. Otherwise, assume it is a function call.

5.1.4. Macros

If a form is a list and the first element is not the name of a special form, it may
be the name of a macro; if so, the form is said to be a macro call. A macro is

58 COMMON LISP

essentially a function from forms to forms that will, given a call to that macro,
compute a new form to be evaluated in place of the macro call. (This computation
is sometimes referred to as macro expansion.) For example, the macro named
return will take a form such as (return x) and from that form compute a new
form (return-from nil x). We say that the old form expands into the new form.
The new form is then evaluated in place of the original form; the value of the new
form is returned as the value of the original form.

There are a number of standard macros in COMMON LISP, and the user can define
more by using defrnacro.

Macros provided by a COMMON LISP implementation as described herein may
expand into code that is not portable among differing implementations. That is, a
macro call may be implementation-independent because the macro is defined in
this manual, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros defined in
this manual, as far as is possible, in such as way that the expansion will not contain any
implementation-dependent special forms, nor contain as forms data objects that are not
considered to be forms in COMMON LrsP. The purpose of this restriction is to ensure that
the expansion can be processed by a program-analyzing program in an implementa
tion-independent manner. There is no problem with a macro expansion containing calls to
implementation-dependent functions. This restriction is not a requirement of COMMON LISP;
it is recognized that certain complex macros may be able to expand into significantly more
efficient code in certain implementations by using implementation-dependent special forms
in the macro expansion.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that
names a special form or macro, then the list is assumed to be afunction call. The
first element of the list is taken to name a function. Any and all remaining elements
of the list are forms to be evaluated; one value is obtained from each form, and
these values become the arguments to the function. The function is then applied
to the arguments. The functional computation normally produces a value, but it
may instead call for a non-local exit; see th row. A function that does return may
produce no value or several values; see values. If and when the function returns,
whatever values it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (• ;; s)) . The symbol
• names the addition function, not a special form or macro. Therefore the two
forms 3 and (• ;; s) are evaluated to produce arguments. The form 3 evaluates
to 3, and the form (• ;; s) is a function call (to the multiplication function).

PROGRAM STRUCTURE 59

Therefore the forms .:; and s are evaluated, producing arguments .:; and s for the
multiplication. The multiplication function calculates the number 20 and returns it.
The values 3 and 20 are then given as arguments to the addition function, which
calculates and returns the number 23. Therefore we say (• 3 (* .:; s)) ~ 23.

5.2. Functions

There are two ways to indicate a function to be used in a function call form. One
is to use a symbol that names the function. This use of symbols to name functions
is completely independent of their use in naming special and lexical variables. The
other way is to use a lambda-expression, which is a list whose first element is the
symbol lambda. A lambda-expression is not a form; it cannot be meaningfully
evaluated. Lambda-expressions and symbols, when used in programs as names of
functions, can appear only as the first element of a function-call form, or as the
second element of the function special form. Note that symbols and
lambda-expressions are treated as names of functions in these two contexts. This
should be distinguished from the treatment of symbols and lambda-expressions as
function objects, that is, objects that satisfy the predicate functionp, as when
giving such an object to apply or funcall to be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be
given to a function by using the defun construct. A local name can be given to a
function by using the flet or labels special form. When a function is named, a
lambda-expression is effectively associated with that name along with information
about the entities that are lexically apparent at that point. If a symbol appears as
the first element of a function-call form, then it refers to the definition established
by the innermost flet or labels construct that textually contains the reference,
or to the global definition (if any) if there is no such containing construct.

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:

(lambda lambda-list . body)

The first element must be the symbol lambda. The second element must be a list.
It is called the lambda-list, and specifies names for the parameters of the function.

60 COMMON LISP

When the function denoted by the lambda-expression is applied to arguments, the
arguments are matched with the parameters specified by the lambda-list. The body
may then refer to the arguments by using the parameter names. The body consists
of any number of forms (possibly zero). These forms are evaluated in sequence,
and the results of the last form only are returned as the results of the application
(the value nil is returned if there are zero forms in the body). The complete syntax
of a lambda-expression is:

(lambda <{var}*
[&optional {var I (var [iniiform [svar]]) }*]
[&rest var]
[&key {var I <{var I <keyword van} [iniiform [svarlJ>}*

[&allow-other-keys]]

[&aux {var I (var [iniiform]>}*]>
{declaration I documentation-string}*
{form}*>

Each element of a lambda-list is either a parameter specifier or a lambda-list
keyword; lambda-list keywords begin with &. (Note that lambda-list keywords are
not keywords in the usual sense; they do not belong to the keyword package. They
are ordinary symbols each of whose names begins with an ampersand. This
terminology is unfortunately confusing but is retained for historical reasons.)

In all cases a var or svar must be a symbol, the name of a variable; each keyword
must be a keyword symbol, such as : start. An iniiform may be any form.

A lambda-list has five parts, any or all of which may be empty:

• Specifiers for the required parameters. These are all the parameter specifiers up
to the first lambda-list keyword; if there is no such lambda-list keyword, then
all the specifiers are for required parameters.

• Specifiers for optional parameters; If the lambda-list keyword &optional is
present, the optional parameter specifiers are those following the lambda-list
keyword &optional up to the next lambda-list keyword or the end of the list.

• A specifier for a rest parameter. The lambda-list keyword &rest, if present,
must be followed by a single rest parameter specifier, which in tum must be
followed by another lambda-list keyword or the end of the lambda-list.

• Specifiers for keyword parameters. If the lambda-list keyword &key is present,
all specifiers up to the next lambda-list keyword or the end of the list are keyword
parameter specifiers. The keyword parameter specifiers may optionally be fol
lowed by the lambda-list keyword &allow-other-keys.

PROGRAM STRUCTURE 61

• Specifiers for aux variables. These are not really parameters. If the lambda-list
keyword &aux is present, all specifiers after it are auxiliary variable specifiers.

When the function represented by the lambda-expression is applied to arguments,
the arguments and parameters are processed in order from left to right. In the
simplest case, only required parameters are present in the lambda-list; each is
specified simply by a name var for the parameter variable. When the function is
applied, there must be exactly as many arguments as there are parameters, and
each parameter is bound to one argument. Here, and in general, the parameter is
bound as a lexical variable unless a declaration has been made that it should be a
special binding; see defvar, proclaim, and declare.

In the more general case, if there are n required parameters (n may be zero),
there must be at least n arguments, and the required parameters are bound to the
first n arguments. The other parameters are then processed using any remaining
arguments.

If optional parameters are specified, then each one is processed as follows. If
any unprocessed arguments remain, then the parameter variable var is bound to
the next remaining argument, just as for a required parameter. If no arguments
remain, however, then the initform part of the parameter specifier is evaluated, and
the parameter variable is bound to the resulting value (or to nil if no initform
appears in the parameter specifier). If another variable name svar appears in the
specifier, it is bound to true if an argument was available, and to false if no
argument remained (and therefore initform had to be evaluated). The variable svar
is called a supplied-p parameter; it is bound not to an argument but to a value
indicating whether or not an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or
may not be a rest parameter. If there is a rest parameter, it is bound to a list of
all as-yet-unprocessed arguments. (If no unprocessed arguments remain, the rest
parameter is bound to the empty list.) If there is no rest parameter and there are
no keyword parameters, then there should be no unprocessed arguments (it is an
error if there are).

Next, any keyword parameters are processed. For this purpose the same argu
ments are processed that would be made into a list for a rest parameter. (Indeed,
it is permitted to specify both &rest and &key. In this case the remaining arguments
are used for both purposes; that is, all remaining arguments are made into a list
for the &rest parameter, and are also processed for the &key parameters. This is
the only situation in which an argument is used in the processing of more than one
parameter specifier.) If &key is specified, there must remain an even number of
arguments; these are considered as pairs, the first argument in each pair being

62 COMMON LISP

interpreted as a keyword name and the second as the corresponding value. It is an
error for the first object of each pair to be anything but a keyword.

Rationale: This last restriction is imposed so that a compiler may issue warnings about
certain malformed calls to functions that take keyword arguments. It must be remembered
that the arguments in a function call that evaluate to keywords are just like any other
arguments, and may be any evaluable forms. A compiler could not, without additional
context, issue a warning about the call

(fill seq item x y)

because in principle the variable x might have as its value a keyword such as : start.
However, a compiler would be justified in issuing a warning about the call

(fill seq item D 10)

because the constant o is definitely not a keyword. Similarly, if in the first case the variable
x had been declared to be of type integer then type analysis could enable the compiler to
justify a warning.

In each keyword parameter specifier must be a name var for the parameter
variable. If an explicit keyword is specified, then that is the keyword name for the
parameter. Otherwise the name var serves to indicate the keyword name, in that a
keyword with the same name (in the keyword package) is used as the keyword.
Thus

(de fun foo (&key radix (type 'integer)) ...)

means exactly the same as

(defun foo (&key ((:radix radix)) ((:type type) 'integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively
processed from left to right. For each keyword parameter specifier, if there is an
argument pair whose keyword name matches that specifier's keyword name (that
is, the names are eq), then the parameter variable for that specifier is bound to the
second item (the value) of that argument pair. If more than one such argument pair
matches, it is not an error; the leftmost argument pair is used. If no such argument
pair exists, then the initform for that specifier is evaluated and the parameter
variable is bound to that value (or to n i 1 if no initform was specified). The variable
svar is treated as for ordinary optional parameters: it is bound to true if there was
a matching argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any
parameter specifier, unless at least one of the following two conditions is met:

PROGRAM STRUCTURE 63

• &allow-other-keys was specified in the lambda-list.

Among the keyword argument pairs is a pair whose keyword 1s : allow

other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to match no
parameter specified, and the argument pair is simply ignored (but such an argument
pair is accessible through the &rest parameter if one was specified). The purpose
of these mechanisms is to allow sharing of argument lists among several functions
and to allow either the caller or the called function to specify that such sharing
may be taking place.

After all parameter specifiers have been processed, the auxiliary variable speci
fiers (those following the lambda-list keyword &aux) are processed from left to
right. For each one, the initform is evaluated and the variable var bound to that
value (or to nil if no initform was specified). Nothing can be done with &aux

variables that cannot be done with the special form let*:

(lambda (x y &aux (a (car x)) (b 2) c) ...)

=(lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.
Whenever any initform is evaluated for any parameter specifier, that form may

refer to any parameter variable to the left of the specifier in which the initform
appears, including any supplied-p variables, and may rely on the fact that no other
parameter variable has yet been bound (including its own parameter variable).

Once the lambda-list has been processed, the forms in the body of the
lambda-expression are executed. These forms may refer to the arguments to the
function by using the names of the parameters. On exit from the function, either
by a normal return of the function's value(s) or by a non-local exit, the parameter
bindings, whether lexical or special, are no longer in effect. (The bindings are not
necessarily permanently discarded, for a lexical binding can later be reinstated if
a "closure" over that binding was created, perhaps by using function, and saved
before the exit occurred).

Examples of &optional and &rest parameters:

((lambda (a b) (+ a (* b 3))) t; 5) =? 19

((lambda (a &optional (b 2)) (+ a (* b 3))) t; 5) =? 19

((lambda (a &optional (b 2)) (+ a (. b 3))) t;) => 10

((lambda (&optional (a 2 b) (C 3 d) &rest x) (list a b c d x)))

=? (2 nil 3 nil nil)

64 COMMON LISP

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list ab c d x))

6)

~ (6 t 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list ab c d x))

6 3)

~ (6 t 3 t nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 1l)

~ (6 t 3 t (1l))

((lambda (&optional (a 2 b) {C 3 d) &rest x) (list ab c d x))

6 3 1l 9 10 11)

~ (6 t 3 t (1l 9 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list a b c d)) 1 2)

~ (1 2 nil nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6)

~ (1 2 6 nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :d ll)

~ (1 2 nil 1l)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6

~ (1 2 6 1l)

((lambda (a b &key c d) (list a b c d)) 1 2 :d ll

~ (1 2 6 ll)

((lambda (a b &key c d) (list a b c d)) :a 1 : d ll

~ (:a161l)

((lambda (a b &key c d) (list a b c d)) :a :b :c

~ (:a :b : d nil)

Examples of mixtures:

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

1) ~ (1 3 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

1 2) ~ (1 2 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

:c 7) ~ (:c 7 nil :c ())

:d 1l)

:c 6)

:c 6)

:d)

PROGRAM STRUCTURE 65

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

16:c7) =?(1671(:c7))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

1 6 : d 5) =? (1 6 nil 5 (: d 5))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list ab c d x))

1 6 :d 5 :c g :d 10) =? (1 6 g 5 (:d 5 :c g :d 10))

All lambda-list keywords are permitted, but not terribly useful, in
lambda-expressions appearing explicitly as the first element of a function-call form.
They are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use as
lambda-list keywords and should not be used as variable names. Implementations
of COMMON LISP are free to provide additional lambda-list keywords.

lambda-list-keywords [Constant]

The value of lambda- list-keywords is a list of all the lambda-list keywords used
in the implementation, including the additional ones used only by defmacro. This
list must contain at least the symbols &optional, &rest, &key, &allow-other

keys, &aux, &body, &whole, and &environment.

As an example of the use of &allow-other-keys and :allow-other-keys,

consider a function that takes two keyword arguments of its own and also accepts
additional keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs

&key (start D) end &allow-other-keys)

(apply #'make-array dims

:initial-element (subseq str start end)

:allow-other-keys t

keyword-pairs))

This function takes a string and dimensioning information and returns an array of
the specified dimensions, each of whose elements is the specified string. However,
: start and : end keyword arguments may be used in the usual manner (see chapter
14) to specify that a substring of the given string should be used. In addition, the
presence of &allow-other-keys in the lambda-list indicates that the caller may
specify additional keyword arguments; the &rest argument provides access to

66 COMMON LISP

them. These additional keyword arguments are fed to make-array. Now make-array
normally does not allow the keywords : start and : end to be used, and it would
be an error to specify such keyword arguments to make-array. However, the
presence in the call to make-array of the keyword argument: allow-other-keys
with a non-nil value causes any extraneous keyword arguments, including : start
and :end, to be acceptable and ignored.

lambda-parameters-limit [Constant]

The value of lambda-parameters-limit is a positive integer that is the upper
exclusive bound on the number of distinct parameter names that may appear in a
single lambda-list. This bound depends on the implementation but will not be
smaller than 50. Implementors are encouraged to make this limit as large as prac
ticable without sacrificing performance. See call-arguments-limit.

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implementation is
via a read-eval-print loop: the system repeatedly reads a form from some input
source (such as a keyboard or a disk file), evaluates it, and then prints the value(s)
to some output sink (such as a display screen or another disk file). Any form
(evaluable data object) is acceptable; however, certain special forms are specifically
designed to be convenient for use as top-level forms, rather than as forms embedded
within other forms in the way that (+ 3 ;;) is embedded within (if p (+ 3 ;;)

6). These top-level special forms may be used to define globally named functions,
to define macros, to make declarations, and to define global values for special
variables.

It is not illegal to use these forms at other than top level, but whether it is
meaningful to do so depends on context. Compilers, for example, may not rec
ognize these forms properly in other than top-level contexts. (As a special case,
however, if a progn form appears at top level, then all forms within that progn
are considered by the compiler to be top-level forms.)

Compatibility note: In MAcLrsP, a top-level progn is considered to contain top-level forms
only if the first form is (quote compile). This odd marker is unnecessary in COMMON

LISP.

Macros are usually defined by using the special form defmacro. This facility is
fairly complicated, and is described in chapter 8.

PROGRAM STRUCTURE 67

5.3.1. Defining Named Functions

The defun special form is the usual means of defining named functions.

defun name lambda-list {declaration I doc-string}* {form}* [Macro]

Evaluating a defun form cause~ the symbol name to be a global name for the
function specified by the lambda-expression

(lambda lambda-list {declaration I doc-string}* {form}*)

defined in the lexical environment in which the de fun form was executed. Because
de fun forms normally appear at top level, this is normally the null lexical environment.

If the optional documentation string doc-string is present, then it is attached to
the name as a documentation string of type function; see documentation. If
doc-string is not followed by a declaration, it may be present only if at least one
form is also specified, as it is otherwise taken to be a form. It is an error if more
than one doc-string is present.

The forms constitute the body of the defined function; they are executed as an
implicit progn.

The body of the defined function is implicitly enclosed in a block construct
whose name is the same as the name of the function. Therefore return-from may
be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well by
de fun. The name is returned as the value of the de fun form. For example:

(defun discriminant (a b c)

(declare (number ab c))

"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value bA2-~•a•c is calculated.

The quadratic equation a•xA2+b•x+c=D has real, multiple,

or complex roots depending on whether this calculated

value is positive, zero, or negative, respectively."

(- (* b b) (*~a c)))

::? discriminant

and now (discriminant 1 2/3 -2) ::? 76/9

It is permissible to use defun to redefine a function, to install a corrected version
of an incorrect definition, for example! It is permissible to redefine a macro as a
function. It is an error to attempt to redefine the name of a special form (see Table
5-1) as a function.

68 COMMON LISP

5.3.2. Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally defined variables. The defconstant special form is used for defining
named constants.

defvar name [initial-value [documentation]]
defparameter name initial-value [documentation]
defconstant name initial-value [documentation]

[Macro]
[Macro]
[Macro]

defvar is the recommended way to declare the use of a special variable in a
program.

(defvar variable)

proclaims variable to be special (see proclaim), and may perform other
system-dependent bookkeeping actions. If a second "argument" is supplied,

(def var variable initial-value)

then variable is initialized to the result of evaluating the form initial-value unless
it already has a value. The initial-value form is not evaluated unless it is used; this
fact is useful if evaluation of the initial-value form does something expensive like
creating a large data structure. The initialization is performed by assignment, and
so assigns a global value to the variable unless there are currently special bindings
of that variable. Normally there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning of
the variable, whereas an ordinary special proclamation offers the temptation to
declare several variables at once and not have room to describe them all.

(defvar •visible-windows• D

"Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but defparameter requires an initial-value
form, always evaluates the form, and assigns the result to the variable. The se
mantic distinction is that defvar is intended to declare a variable changed by the
program, whereas defparameter is intended to declare a variable that is normally
constant but can be changed (possibly at run time), where such a change is con
sidered a change to the program. defparameter therefore does not indicate that
the quantity never changes; in particular, it does not license the compiler to build
assumptions about the value into programs being compiled.

defconstant is like defparameter but does assert that the value of the variable
name is fixed and does license the compiler to build assumptions about the value

PROGRAM STRUCTURE 69

into programs being compiled. (However, if the compiler chooses to replaces ref
erences to the name of the constant by the value of the constant in code to be
compiled, perhaps in order to allow further optimization, the compiler must take
care that such "copies" appear to be egl to the object that is the actual value of
the constant. For example, the compiler may freely make copies of numbers but
must exercise care when the value is a list.)

It is an error if there are any special bindings of the variable at the time the
defconstant form is executed (but implementations may or may not check for
this).

Once a name has been declared by defconstant to be constant, any further
assignment to or binding of that special variable is an error. This is the case for
such system-supplied constants as t and most-positive-fixnum. A compiler may
also choose to issue warnings about bindings of the lexical variable of the same
name.

For any of these constructs, the documentation should be a string. The string is
attached to the name of the variable, parameter, or constant under the variable

documentation type; see the documentation function.
These constructs are normally used only as top-level forms. The value returned

by each of these constructs is the name declared.

5.3.3. Control of Time of Evaluation

The eval-when special form allows pieces of code to be executed only at compile
time, only at load time, or when interpreted but not compiled. Its uses are relatively
esoteric.

eval-when ({situation}*) {form}* [Special Form]

The body of an eval-when form is processed as an implicit progn, but only in the
situations listed. Each situation must be a symbol, either compile, load, or eval.

eval specifies that the interpreter should process the body. compile specifies
that the compiler should evaluate the body at compile time in the compilation
context. load specifies that the compiler should arrange to evaluate the forms in
the body when the compiled file containing the eval-when form is loaded.

The eval-when construct may be more precisely understood in terms of a model
of how the compiler processes forms in a file to be compiled. Successive forms
are read from the file using the function read. These top-level forms are normally
processed in what we shall call not-compile-time mode. There is another mode
called compile-time-too mode. The eval-when special form controls which of these
two modes to use.

70 COMMON LISP

Every form is processed as follows:

• If the form is an eval-when form:

• If the situation load is specified:

• If the situation compile is also specified, or if the current processing mode
is compile-time-too and the situation eval is also specified, then process
each of the forms in the body in compile-time-too mode.

• Otherwise, process each of the forms in the body in not-compile-time mode.

• If the situation load is not specified:

• If the situation compile is specified, or if the current processing mode is
compile-time-too and the situation eval is specified, then evaluate each of
the forms in the body in the compiler's executing environment.

• Otherwise, ignore the eval-when form entirely.

• If the form is not an eval-when form, then do two things. First, if the current
processing mode is compile-time-too mode, then evaluate the form in the com
piler's executing environment. Second, perform normal compiler processing of
the form (compiling functions defined by defun forms, and so on).

One example of the use of eval-when is that if the compiler is to be able to
properly read a file that uses user-defined reader macro characters, it is necessary
to write

(eval-when (compile load eval)

(set-macro-character #\$ #'(lambda (stream char)

(declare (ignore char))

(list 'dollar (read stream)))))

This causes the call to set-macro-character to be executed in the compiler's
execution environment, thereby modifying its reader syntax table.

6

Predicates

A predicate is a function that tests for some condition involving its arguments and
returns nil if the condition is false, or some non-nil value if the condition is true.
One may think of a predicate as producing a Boolean value, where nil stands for
false and anything else stands for true. Conditional control structures such as cond,
if, when, and unless test such Boolean values. We say that a predicate is true
when it returns a non-nil value, and is false when it returns nil; that is, it is true
or false according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter p (which stands
for "predicate"). COMMON LISP uses a uniform convention in hyphenating names
of predicates. If the name of the predicate is formed by adding a p to an existing
name, such as the name of a data type, a hyphen is placed before the final p if and
only ifthere is a hyphen in the existing name. For example, number begets numberp
but standard-char begets standard-char-p. On the other hand, if the name of
a predicate is formed by adding a prefixing qualifier to the front of an existing
predicate name, the two names are joined with a hyphen and the presence or
absence of a hyphen before the final p is not changed. For example, the predicate
string-lessp has no hyphen before the p because it is the string version of lessp
(a MACLISP function that has been renamed < in COMMON LISP). The name
string-less-p would incorrectly imply that it is a predicate that tests for a kind
of object called a string-less, and the name stringlessp would connote a
predicate that tests whether something has no strings (is "stringless") !

The control structures that test Boolean values only test for whether or not the
value is nil, which is considered to be false. Any other value is considered to be
true. Often a predicate will return nil if it "fails" and some useful value if it
"succeeds"; such a function can be used not only as a test but also for the useful
value provided in case of success. An example is member.

If no better non-nil value is available for the purpose of indicating success, by
convention the symbol t is used as the "standard" true value.

71

72 COMMON LISP

6.1. Logical Values

The names nil and t are constants in COMMON LISP. Although they are symbols
like any other symbols, and appear to be treated as variables when evaluated, it is
not permitted to modify their values. See defconstant.

nil [Constant]

The value of nil is always nil. This object represents the logical false value and
also the empty list. It can also be written () .

t [Constant]

The value oft is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in LISP are those that deal with data types;
that is, given a data object one can determine whether or not it belongs to a given
type, or one can compare two type specifiers.

6.2.1. General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then the
typep function is a set membership test, while subtypep is a subset test.

typep object type [Function]

typep is a predicate that is true if object is of type type, and is false otherwise.
Note that an object can be "of" more than one type, since one type can include
another. The type may be any of the type specifiers mentioned in chapter 4 except
that it may not be or contain a type specifier list whose first element is function
or values. A specifier of the form (satisfiesfn) is handled simply by applying
the function Jn to object (see funcall); the object is considered to be of the
specified type if the result is not nil.

subtypep type] type2 [Function]

The arguments must be type specifiers that are acceptable to typep. The two type
specifiers are compared; this predicate is true if type] is definitely a (not necessarily
proper) subtype of type2. If the result is nil, however, then type] may or may not

PREDICATES 73

be a subtype of type2 (sometimes it is impossible to tell, especially when satis

fies type specifiers are involved). A second returned value indicates the certainty
of the result; if it is true, then the first value is an accurate indication of the subtype
relationship. Thus there are three possible result combinations:

typel is definitely a subtype of type2 t t

nil t

nil nil

type] is definitely not a subtype of type2
subtypep could not determine the relationship

6.2.2. Specific Data Type Predicates

The following predicates test for individual data types.

null object [Function]

null is true if its argument is (), and otherwise is false. This is the same operation
performed by the function not; however, not is normally used to invert a Boolean
value, whereas null is normally used to test for an empty list. The programmer
can therefore express intent by the choice of function name.

(null x) = (typep x 'null)== (eq x '())

symbolp object [Function]

symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) == (typep x 'symbol)

Compatibility note: The INTERLISP equivalent of symbolp is called litatom.

atom object [Function]

The predicate atom is true if its argument is not a cons, and otherwise is false.
Note that (atom ' ()) is true, because () ==nil.

(atom·x) == (typep x 'atom)== (not (typep x 'cons))

Compatibility note: In some LISP dialects, notably INTERLISP, only symbols and numbers
are considered to be atoms; arrays and strings are considered to be neither atoms nor lists
(conses).

74 COMMON LISP

consp object [Function]

The predicate consp is true if its argument is a cons, and otherwise is false. Note
that the empty list is not a cons, so (consp ' ()) == (consp 'nil) :::? nil.

(consp x) == (typep x 'cons)== (not (typep x 'atom))

Compatibility note: Some LISP implementations call this function pairp or listp. The
name pairp was rejected for COMMON LISP because it emphasizes too strongly the dot
ted-pair notion rather than the usual usage of conses in lists. On the other hand, listp too
strongly implies that the cons is in fact part of a list, which after all it might not be; moreover,
() is a list, though not a cons. The name consp seems to be the appropriate compromise.

listp object [Function]

listp is true if its argument is a cons or the empty list () , and otherwise is false.
It does not check for whether the list is a "true list" (one terminated by nil) or a
"dotted list" (one terminated by a non-null atom).

(listp x) == (typep x 'list)== (typep x '(or cons null))

n umberp object [Function]

numberp is true if its argument is any kind of number, and otherwise is false.

(numberp x) == (typep x 'number)

in tegerp object [Function]

integerp is true if its argument is an integer, and otherwise is false.

(integerp x) == (typep x 'integer)

Compatibility note: In MACLISP this is called fixp. Users have been confused as to whether
this meant integerp or fixnump, and so the name integerp has been adopted here.

ra tionalp object [Function]

ra tionalp is true if its argument is a rational number (a ratio or an integer), and
otherwise is false.

(rationalp x) == (typep x 'rational)

PREDICATES 75

floatp object [Function]

floatp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) == (typep x 'float)

complexp object [Function]

complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) == (typep x 'complex)

characterp object [Function]

characterp is true if its argument is a character, and otherwise is false.

(characterp x) == (typep x 'character)

stringp object [Function]

stringp is true if its argument is a string, and otherwise is false.

(stringp x) == (typep x 'string)

bit-vector-p object [Function]

bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) == (typep x 'bit-vector)

vectorp object [Function]

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) == (typep x 'vector)

simple-vector-p object [Function]

vectorp is true if its argument is a simple general vector, and otherwise is false.

(simple-vector-p x) == (typep x 'simple-vector)

simple-string-p object [Function]

simple-string-pis true if its argument is a simple string, and otherwise is false.

(simple-string-p x) == (typep x 'simple-string)

76 COMMON LISP

simple-bit-vector-p object [Function]

simple- bit-vector-p is true if its argument is a simple bit-vector, and otherwise
is false.

(simple-bit-vector-p x) ~ (typep x 'simple-bit-vector)

arrayp object [Function]

arrayp is true if its argument is an array, and otherwise is false.

(arrayp x) == (typep x 'array)

packagep object [Function]

packagep is true if its argument is an package, and otherwise is false.

(packagep x) == (typep x 'package)

functionp object [Function]

functionp is true if its argument is suitable for applying to arguments, using for
example the funcall or apply function. Otherwise functionp is false.

functionp is always true of symbols, lists whose car is the symbol lambda,

any value returned by the function special form, and any values returned by the
function compile when the first argument is nil.

compiled-function-p object [Function]

compiled-function-p is true if its argument is any compiled code object, and
otherwise is false.

(compiled-function-p x) ~ (typep x 'compiled-function)

commonp object [Function]

commonp is true if its argument 1s any standard COMMON LISP data type, and
otherwise is false.

(commonp x) == (typep x 'common)

See also standard-char-p, string-char-p, streamp, random-state-p,

readtablep, hash-table-p, and pathnamep.

PREDICATES 77

6.3. Equality Predicates

COMMON LISP provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general). eq

and equal have the meanings traditional in LISP. eql was added because it is
frequently needed, and equalp was added primarily in order to have a version of
equal that would ignore type differences when comparing numbers and case
differences when comparing characters. If two objects satisfy any one of these
equality predicates, then they also satisfy all those that are more general.

eq x y [Function]

(eq x y) is true if and only if x and y are the same identical object. (lmplemen
tationally, x and y are usually eq if and only if they address the same identical
memory location.)

It should be noted that things that print the same are not necessarily eq to each
other. Symbols with the same print name usually are eq to each other because of
the use of the intern function. However, numbers with the same value need not
be eq, and two similar lists are usually not eq. For example:

(eq 'a 'b) is false.
(eq 'a 'a) is true.
(eq 3 3) might be true or false, depending on the implementation.
(eq 3 3. o) is false.
(eq 3. o 3. o) might be true or false, depending on the implementation.
(eq #C(3 -~) #C(3 -~))

might be true or false, depending on the implementation.
(eq #c(3 -~.D) #c(3 -~)) is false.
(eq (cons 'a 'b) (cons 'a 'c)) is false.
(eq (cons 'a 'b) (cons 'a 'b)) is false.
(eq ' (a . b) ' (a . b)) might be true or false.
(progn (setq x (cons 'a 'b)) (eg x x)) is true.
(progn (setq x '(a • b)) (eg x x)) is true.
(eg #\A #\A) might be true or false, depending on the implementation.
(eq "Foo" "Foo") might be true or false.
(eg "Foo" (copy-seq "Foo")) is false.
(eg "FOO" "foo") is false.

In COMMON LISP, unlike some other LISP dialects, the implementation is permitted
to make "copies" of characters and numbers at any time. (This permission is granted

78 COMMON LISP

because it allows tremendous performance improvements in many common situations.)
The net effect is that COMMON LISP makes no guarantee that eq will be true even
when both its arguments are "the same thing" if that thing is a character or number.
For example:

(let ((x S)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are characters or
numbers of the same type then their values are compared. Thus eql tells whether
two objects are conceptually the same, whereas eq tells whether two objects are
implementa(ionally identical. It is for this reason that eql, not eq, is the default
comparison predicate for the sequence functions defined in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind of object
that is represented in an "immediate" fashion will indeed have like-valued instances satisfy
eq. In some implementations, for example, fixnums and characters happen to "work."
However, no program should depend on this, as other implementations of COMMON LrsP

might not use an immediate representation for these data types.

An additional problem with eq is that the implementation is permitted to "col
lapse" constants (or portions thereof) appearing in code to be compiled if they are
equal. An object is considered to be a constant in code to be compiled if it is a
self-evaluating form or is contained in a quote form. This is why (eq "Foo"

''Foo") might be true or false; in interpreted code it would normally be false,
because reading in the form (eq "Foo" "Foo") would construct distinct strings
for the two arguments to eq, but the compiler might choose to use the same identical
string or two distinct copies as the two arguments in the call to eq. Similarly, (eq

' (a . b) ' (a . b)) might be true or false, depending on whether the constant
conses appearing in the quote forms were collapsed by the compiler. However,
(eq (cons 'a 'b) (cons 'a 'b)) is always false, because every distinct call to
the cons function necessarily produces a new and distinct cons.

eql x y [Function]

The eql predicate is true if its arguments are eq, or if they are numbers of the
same type with the same value, or if they are character objects that represent the
same character. An example follows.

PREDICATES

(e q 1 ' a ' b) is false.
(eql 'a 'a) is true.
(eql 3 3) is true.
(eql 3 3.0) is false.
(eql 3.0 3.0) is true.
(e q 1 # c (3 - L;) # c (3 - L;)) is true.
(eql #c(3 -L;.O) #c(3 -L;)) is false.
(eql (cons 'a 'b) (cons 'a 'c)) is false.
(eql (cons 'a 'b) (cons 'a 'b)) is false.
(eql '(a. b) '(a. b)) mightbetrueorfalse.
(progn (setq x (cons 'a 'b)) (eql xx)) istrue.
(progn (setq x '(a . b)) (eql x x)) is true.
(eql #\A #\A) is true.
(eql "Foo" "Foo") might be true or false.
(eql "Foo" (copy-seq "Foo")) is false.
(eql "FOO" "foo") is false.

79

Normally (eql 1. oso 1. oao) would be false, under the assumption that 1. oso

and 1. oao are of distinct data types. However, implementations that do not provide
four distinct floating-point formats are permitted to "collapse" the four formats into
some smaller number of them; in such an implementation (eql 1. oso 1. oao)

might be true. The predicate = will compare the values of two numbers even if
the numbers are of different types.

If an implementation supports positive and negative zeros as distinct values (as
in the IEEE proposed standard floating-point format), then (eql o.o -0.0) will be
false. Otherwise, when the syntax - o. o is read it will be interpreted as the value
o.o, and so (eql o.o -O.O) will be true. The predicate= differs from eql in that
(= o. o - o. o) will always be true, because = compares the mathematical values
of its operands, whereas eql compares the representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql and
their imaginary parts are eql. For example, (eql #C (L; 5) #C (L; 5)) is true and
(eql #C(L; 5) #C(L;.O 5.0)) is false. Note that while (eql #C(5.0 o.o) 5.0)

is false, (eql #C(5 O) 5) is true. In the case of (eql #C(5.0 o.o) 5.0) the two
arguments are of different types, and so cannot satisfy eql; that's all there is to it.
In the case of (eql #C (5 o) 5), however, #C (5 o) is not a complex number, but
is always automatically reduced by the rule of complex canonicalization to the
integer 5, just as the apparent ratio 20/L; is always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of eq.

While eql compares the values of numbers and characters, it does not compare

80 COMMON LISP

the contents of strings. To compare the characters of two strings, one should use
equal, equalp, string=, or string-equal.

Compatibility note: The COMMON LISP function eql is similar to the INTERLISP function
egp. However, eql considers 3 and 3. o to be different, whereas eqp considers them to be
the same; eqp behaves like the COMMON LISP= function, not like eql, when both arguments
are numbers.

equal x y [Function]

The equal predicate is true if its arguments are structurally similar (isomorphic)
objects. A rough rule of thumb is that two objects are equal if and only if their
printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared as for
eq. This method of comparing symbols can violate the rule of thumb for equal

and printed representations, but only in the infrequently occurring case of two
distinct symbols with the same print name.

Certain objects that have components are equal if they are of the same type and
corresponding components are equal. This test is implemented in a recursive man
ner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car's being equal and the
two cdr's being equal.

Two arrays are equal only if they are eq, with one exception: strings and
bit-vectors are compared element-by-element. If either argument has a fill pointer,
the fill pointer limits the number of elements examined by equal. Uppercase and
lowercase letters in strings are considered by equal to be distinct. (In contrast,
equalp ignores case distinctions in strings.)

Compatibility note: In ZETALISP, equal ignores the difference between uppercase and
lowercase letters in strings. This violates the rule of thumb about printed representations,
however, which is very useful, especially to novices. It is also inconsistent with the treatment
of single characters, which in ZETALISP are represented as fixnums.

Two pathname objects are equal if and only if all the corresponding components
(host, device, and so on) are equivalent. (Whether or not uppercase and lowercase
letters are considered equivalent in strings appearing in components depends on
the file name conventions of the file system.) Pathnames that are equal should be
functionally equivalent.

PREDICATES

(equal 'a 'b) is false.
(equal 'a 'a) is true.
(equal 3 3) is true.
(equal 3 3. o) is false.
(equal 3. o 3. o) is true.
(equal #c(3 -.<;) #c(3 -.<;)) istrue.
(equal #c(3 -CD) #c(3 -.<;)) isfalse.
(equal (cons 'a 'b) (cons 'a 'c)) is false.
(equal (cons 'a 'b) (cons 'a 'b)) is true.
(equal '(a . b) '(a . b)) is true.
(progn (setq x (cons 'a 'b)) (equal x x)) is true.
{progn (setq x '(a. b)) (equal xx)) is true.
(equal #\A #\A) is true.
(equal "Foo" "Foo") is true.
(equal "Foo" (copy-seq "Foo")) is true.
(equal "FOO" "foo") is false.

81

To compare a tree of conses, using eql (or any other desired predicate) on the
leaves, use tree-equal.

equalp x y [Function]

Two objects are equalp if they are equal; if they are characters and satisfy
char-equal, which ignores alphabetic case and certain other attributes of characters;
if they are numbers and have the same numerical value, even if they are of different
types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same type and
corresponding components are equalp. This test is implemented in a recursive
manner and may fail to terminate for circular structures. For conses, equalp is
defined recursively as the two car's being equalp and the two cdr's being equalp.

Two arrays are equalp if and only if they have the same number of dimensions,
the dimensions match, and the corresponding components are equalp. The spe
cializations need not match; for example, a string and a general array that happens
to contain the same characters will be equalp (though definitely not equal). If
either argument has a fill pointer, the fill pointer limits the number of elements
examined by equalp. Because equalp performs element-by-element comparisons
of strings and ignores the alphabetic case of characters, case distinctions are there
fore also ignored when equalp compares strings.

Two symbols can be equalp only if they are eq, that is, the same identical
object.

82 COMMON LISP

(equalp 'a 'b) is false.
(equalp 'a 'a) is true.
(equalp 3 3) is true.
(equalp 3 3.0) is true.
(equalp 3.0 3.0) is true.
(equalp #c(3 -L;) #c(3 -L;)) istrue.
(equalp #c(3 -L;.0) #c(3 -L;)) is true.
(equalp (cons 'a 'b) (cons 'a 'c)) is false.
(equalp (cons 'a 'b) (cons 'a 'b)) is true.
(e qua 1 p ' (a . b) ' (a . b)) is true.
(progn (setq x (cons 'a 'b)) (equalp x x)) is true.
(progn (setq x '(a . b)) (equalp x x)) is true.
(equalp #\A #\A) is true.
(equalp "Foo" "Foo") is true.
(equalp "Foo" (copy-seq "Foo")) is true.
(equalp "FOO" "foo") is true.

6.4. Logical Operators

COMMON LISP provides three operators on Boolean values: and, or, and not. Of
these, and and or are also control structures because their arguments are evaluated
conditionally. The function not necessarily examines its single argument, and so
is a simple function.

not X [Function]

not returns t if xis nil, and otherwise returns nil. It therefore inverts its argument
considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity. As
a matter of style, it is customary to use null to check whether something is the
empty list and to use not to invert the sense of a logical value.

and {form}* [Macro]

(and form] form2 ... J evaluates each form, one at a time, from left to right.
If any form evaluates to nil, the value nil is immediately returned without eval
uating the remaining forms. If every form but the last evaluates to a non-nil value,
and returns whatever the lastform returns. Therefore in general and can be used
both for logical operations, where nil stands for false and non-nil values stand
for true, and as a conditional expression. An example follows.

PREDICATES

(if (and (>= n O)

(< n (length a-simple-vector))
(eq (elt a-simple-vector n) 'foo))

(princ "Foo!"))

83

The above expression prints Foo! if element n of a -simple-vector is the symbol
foo, provided also that n is indeed a valid index for a-simple-vector. Because
and guarantees left-to-right testing of its parts, el tis not called if n is out of range.

To put it another way, the and special form does short-circuit Boolean evalua
tion, like the and then operator in ADA and what in some PASCAL-like languages
is called cand (for "conditional and"); the LISP and special form is unlike the
PASCAL or ADA and operator, which always evaluates both arguments.

In the previous example writing

(and (>= n 0)

(< n (length a-simple-vector))
(eq (elt a-simple-vector n) 'foo)
(princ "Foo!"))

would accomplish the same thing. The difference is purely stylistic. Some
programmers never use expressions containing side effects within and, preferring
to use if or when for that purpose.

From the general definition, one can deduce that (and x) """' x. Also, (and)
evaluates to t, which is an identity for this operation.

One can define and in terms of cond in this way:

(andxyz ... W)"""' (cond ((notX) nil)
((not y) nil)
((not Z) nil)

(t W))

See if and when, which are sometimes stylistically more appropriate than and for
conditional purposes. If it is necessary to test whether a predicate is true of cill
elements of a list or vector (element 0 and element 1 and element 2 and ...), then
the function every may be useful.

or {form}* [Macro]

(or forml form2 ...) evaluates each form, one at a time, from left to right. If
any form other than the last evaluates to something other than nil, or immediately
returns that non-nil value without evaluating the remaining forms. If every form

84 COMMON LISP

but the last evaluates to nil, or returns whatever evaluation of the last of the farms
returns. Therefore in general or can be used both for logical operations, where nil
stands for false and non-nil values stand for true, and as a conditional expression.

To put it another way, the or special form does short-circuit Boolean evaluation,
like the or else operator in ADA and what in some PASCAL-like languages is called
cor (for "conditional or"); the LISP or special form is unlike the PASCAL or ADA
or operator, which always evaluates both arguments.

From the general definition, one can deduce that (or x) == x. Also, (or) eval
uates to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or x y z ... W) - (cond (X) (y) (Z) .•• (t W))

See if and unless, which are sometimes stylistically more appropriate than or
for conditional purposes. If it is necessary to test whether a predicate is true of one
or more elements of a list or vector (element 0 or element 1 or element 2 or ...),
then the function some may be useful.

7

Control Structure

COMMON LISP provides a variety of special structures for organizing programs.
Some have to do with flow of control (control structures), while others control
access to variables (environment structures). Some of these features are implemented
as special forms; other are implemented as macros, which typically expand into
complex program fragments expressed in terms of special forms or other macros.

Function application is the primary method for construction of LISP programs.
Operations are written as the application of a function to its arguments. Usually,
LISP programs are written as a large collection of small functions, each of which
implements a simple operation. These functions operate by calling one another,
and so larger operations are defined in terms of smaller ones. LISP functions may
call upon themselves recursively, either directly or indirectly.

While the LISP language is more applicative in style than statement-oriented, it
nevertheless provides many operations that produce side effects, and consequently
requires constructs for controlling the sequencing of side effects. The construct
progn, which is roughly equivalent to an ALGOL begin-end block with all its
semicolons, executes a number of forms sequentially, discarding the values of all
but the last. Many LISP control constructs include sequencing implicitly, in which
case they are said to provide an "implicit progn." Other sequencing constructs
include prog1 and prog2.

For looping, COMMON LISP provides the general iteration facility do as well as
a variety of special-purpose iteration facilities for iterating or mapping over various
data structures.

COMMON LISP provides the simple one-way conditionals when and unless, the
simple two-way conditional if, and the more general multi-way conditionals such
as cond and case. The choice of which form to use in any particular situation is
a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines are
provided: block, return, return-from, catch, and throw.

85

86 COMMON LISP

The multiple-value constructs provide an efficient way for a function to return
more than one value; see values.

7.1. Constants and Variables

Because some LISP data objects are used to represent programs, one cannot always
notate a constant data object in a program simply by writing the notation for the
object unadorned; it would ambiguous whether a constant object or a program
fragment was intended. The quote special form resolves this ambiguity.

There are two spaces of variables in COMMON LISP, in effect: ordinary variables
and function names. There are some similarities between the two kinds, and in a
few cases there are similar functions for dealing with them, for example boundp

and fboundp. However, for the most part the two kinds of variables are used for
very different purposes: one to name defined functions, macros, and special forms,
and the other to name data objects.

7 .1.1. Ref ere nee

The value of an ordinary variable may be obtained simply by writing the name of
the variable as a form to be executed. Whether this is treated as the name of a
special variable or a lexical variable is determined by the presence or absence of
an applicable special declaration; see chapter 9.

The following functions and special forms allow reference to the values of con
stants and variables in other ways.

quote object [Special form]

(quote X) simply returns x. The object is not evaluated and may be any LISP

object whatsoever. This construct allows any LISP object to be written as a constant
value in a program. For example:

(setq a L;3)

(list a (cons a 3)) :::? (L;3 (L;3 . 3))

(list (quote a) (quote (cons a 3)) :::? (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type, a
standard abbreviation is defined for them: any form f preceded by a single quote
(') character is assumed to have (quote) wrapped around it to make (quote/).

For example:

CONTROL STRUCTURE 87

(setq x '(the magic quote hack))

is normally interpreted by read to mean

(setq x (quote (the magic quote hack)))

See section 22.1.3.

function Jn [Special form]

The value of function is always the functional interpretation ofjn;fn is interpreted
as if it had appeared in the functional position of a function invocation. In partic
ular, if fn is a symbol, the functional definition associated with that symbol is
returned; see symbol-function. Iffn is a lambda-expression, then a "lexical clo
sure" is returned, that is, a function that when invoked will execute the body of
the lambda-expression in such a way as to observe the rules of lexical scoping
properly. For example:

(defun adder (X) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that will add 3 to its argument:

(setq'add3 (adder 3))

(funcall add3 5) => ~
\ \, ·~

This works because function creates a closure of the inner lambda-expression that
is able to refer to the value 3 of the variable x even after control has returned from
the function adder.

More generally, a lexical closure in effect retains the ability to refer to lexically
visible bindings, not just values. Consider this code:

(defun two-funs (x)

(list (function (lambda () x))

(function (lambda (y) (setq x §)))))

(setq funs (two-funs 6))

(funcall (car funs)) => 6

(funcall (cadr funs) 0) => ;;3

(funcall (car funs)) => ;;3

The function two- funs returns a list of two functions, each of which refers to the
binding of the variable x created on entry to the function two-funs when it was
called with argument 6. This binding has the value 6 initially, but setq can alter

88 COMMON LISP

a binding. The lexical closure created for the first lambda-expression does not
"snapshot" the value b for x when the closure is created. The second function can
be used to alter the binding (to L;3, in the example), and this altered value then
becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set of bind
ings may be produced more than once, the various resulting closures may or may
not be eq, at the discretion of the implementation. For example:

(let ((x 5) (funs '()))

(dotimes (j :LO)

(push #'(lambda (z)
(if (null z) (setq x 0) (+ x z)))

funs))

funs)

The result of the above expression is a list of ten closures. Each logically requires
only the binding of x. It is the same binding in each case, so the ten closures may
or may not be the same identical (eq) object. On the other hand, the result of the
expression

(let ((funs '()))

(dotimes (j :LO)

(let ((x s))

(push (function (lambda (z)

(if (null z) (setq x 0) (+ x z))))

funs)))

funs)

is also a list of ten closures. However, in this cas~ no two of the closures may be
eq, because each closure is over a distinct binding of x, and these bindings can be
behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the simpler
expression

(let ((funs '()))

(dotimes (j :LO)

(let ((x 5))

(push (function (lambda (z) (+ x z)))

funs)))

funs)

is a list of ten closures that may be pairwise eq. Although one might think that a
different binding of x is involved for each closure (which is indeed the case), the

CONTROL STRUCTURE 89

bindings cannot be distinguished because their values are identical and immutable,
there being no occurrence of setg on x. A compiler would therefore be justified
in transforming the expression to

(let ((funs ' ()))

(dotimes (j 10)

(push (function (lambda (z) (+ 5 z)))

funs))

funs)

where clearly the closures may be the same after all. The general rule, then, is that
the implementation is free to have two distinct evaluations of the same function

form produce identical (eg) closures if it can prove that the two conceptually distinct
resulting closures must in fact be behaviorally identical with respect to invocation.
This is merely a permitted optimization; a perfectly valid implementation might
simply cause every distinct evaluation of a function form to produce a new closure
object not eg to any other.

Frequently a compiler can deduce that a closure in fact does not need to close
over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside entity.
In this important special case, the same "closure" may be used as the value for all
evaluations of the function special form. Indeed, this value need not be a closure
object at all; it may be a simple compiled function containing no environment
information. This example is simply a special case of the foregoing discussion and
is included as a hint to implementors familiar with previous methods of implementing
LISP. The distinction between closures and other kinds of functions is somewhat
pointless, actually, as COMMON LISP defines no particular representation for closures
and no way to distinguish between closures and non-closure functions. All that
matters is that the rules of lexical scoping be obeyed.

Since function forms are so frequently useful but somewhat cumbersome to
type, a standard abbreviation is defined for them: any form f preceded by #'

(# followed by an apostrophe) is assumed to have (function) wrapped around
it to make (function fl. For example,

(remove-if #'numberp '(1 ab 3))

is normally interpreted by read to mean

(remove-if (function numberp) '(1 ab 3))

See section 22.1.4.

90 COMMON LISP

symbol-value symbol [Function]

symbol-value returns the current value of the dynamic (special) variable named
by symbol. An error occurs if the symbol has no value; see boundp and makunbound.

Note that constant symbols are really variables that cannot be changed, and so
symbol-value may be used to get the value of a named constant. In particular,
symbol-value of a keyword will return that keyword.

symbol-value cannot access the value of a lexical variable.
This function is particularly useful for implementing interpreters for languages

embedded in LISP. The corresponding assignment primitive is set; alternatively,
symbol-value may be used with setf.

symbol- function symbol [Function]

symbol-function returns the current global function definition named by symbol.

An error is signalled if the symbol has no function definition; see fboundp. Note
that the definition may be a function or may be an object representing a special
form or macro. In the latter case, however, it is an error to attempt to invoke the
object as a function. If it is desired to process macros, special forms, and functions
equally well, as when writing an interpreter, it is best first to test the symbol with
macro-function and special-form-p and then to invoke the functional value
only if these two tests both yield false.

This function is particularly useful for implementing interpreters for languages
embedded in LISP.

symbol-function cannot access the value of a lexical function name produced
by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf with
symbol-function. Performing this operation causes the symbol to have only the
specified definition as its global function definition; any previous definition, whether
as a macro or as a function, is lost. It is an error to attempt to redefine the name
of a special form (see Table 5-1).

boundp symbol [Function]

boundp is true if the dynamic (special) variable named by symbol has a value;
otherwise, it returns nil.

See also set and makunbound.

fboundp symbol [Function]

fboundp is true if the symbol has a global function definition. Note that fboundp

CONTROL STRUCTURE 91

is true when the symbol names a special form or macro. macro-function and
special-form-p may be used to test for these cases.

See also symbol-function and fmakunbound.

special-form-p symbol [Function]

The function special-form-p takes a symbol. If the symbol globally names a
special form, then a non-nil value is returned; otherwise nil is returned. A re
turned non-nil value is typically a function of implementation-dependent nature
that can be used to interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a
symbol. This is possible because an implementation is permitted to implement any
macro also as a special form for speed. On the other hand, the macro definition
must be available for use by programs that understand only the standard special
forms listed in Table 5-1.

7.1.2. Assignment

The following facilities allow the value of a variable (more specifically, the value
associated with the current binding of the variable) to be altered. Such alteration
is different from establishing a new binding. Constructs for establishing new bindings
of variables are described in section 7. 5.

setq {var form}* [Special form]

The special form (setq var I form] var2 form2 ...) is the "simple variable as
signment statement" of LISP. First f orml is evaluated and the result is stored in the
variable var 1, then f orm2 is evaluated and the result stored in var2, and so forth.
The variables are represented as symbols, of course, and are interpreted as referring
to static or dynamic instances according to the usual rules. Therefore setq may be
used for assignment of both lexical and special variables.

setq returns the last value assigned, that is, the result of the evaluation of its
last argument. As a boundary case, the form (setq) is legal and returns nil. There
must be an even number of argument forms. For example, in

(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment
is performed before the second form is evaluated, allowing that form to use the
new value of x.

See also the description of setf, the COMMON LISP "general assignment state
ment'' that is capable of assigning to variables, array elements, and other locations.

92 COMMON LISP

psetq {var form}* [Macro]

A psetq form is just like a setq form, except that the assignments happen in
parallel. First all of the forms are evaluated, and then the variables are set to the
resulting values. The value of the psetq form is nil. For example:

(setq a 1)

(setq b 2)

(psetq a b b a)

a =? 2

b =? 1

In this example, the values of a and b are exchanged by using parallel assignment.
(If several variables are to be assigned in parallel in the context of a loop, the do

construct may be appropriate.)
See also the description of setf, the COMMON LISP "general parallel assignment

statement" that is capable of assigning to variables, array elements, and other
locations.

set symbol value [Function]

set allows alteration of the value of a dynamic (special) variable. set causes the
dynamic variable named by symbol to take on value as its value. Only the value
of the current dynamic binding is altered; if there are no bindings in effect, the
most global value is altered. For example,

(set (if (eq ab) 'c 'd) 'foo)

will either set c to foo or set d to foo, depending on the outcome of the test (eq

a b).

set returns value as its result.
set cannot alter the value of a local (lexically bound) variable. The special form

setq is usually used for altering the values of variables (lexical or dynamic) in
programs. set is particularly useful for implementing interpreters for languages
embedded in LISP. See also progv, a construct that performs binding rather than
assignment of dynamic variables.

makunbound symbol
fmakunbound symbol

[Function]
[Function]

makunbound causes the dynamic (special) variable named by symbol to become

CONTROL STRUCTURE 93

unbound (have no value). fmakunbound does the analogous thing for the global
function definition named by symbol. For example:

(setq a 1)

a ~ 1

(makunbound 'a)

a ~ causes an error

(de fun foo (x) (+ x 1))

(foo L;) ~ 5

(fmakunbound 'foo)

(foo L;) ~ causes an error

Both functions return symbol as the result value.

7.2. Generalized Variables

In LISP, a variable can remember one piece of data, that is, one LISP object. The
main operations on a variable are to recover that object, and to alter the variable
to remember a new object; these operations are often called access and update
operations. The concept of variables named by symbols can be generalized to any
storage location that can remember one piece of data, no matter how that location
is named. Examples of such storage locations are the car and cdr of a cons,
elements of an array, and components of a structure.

For each kind of generalized variable, typically there are two functions that
implement the conceptual access and update operations. For a variable, merely
mentioning the name of the variable accesses it, while the setq special form can
be used to update it. The function car accesses the car of a cons, and the function
rplaca updates it. The function symbol-value accesses the dynamic value of a
variable named by a given symbol, and the function set updates it.

Rather than thinking about two distinct functions that respectively access and
update a storage location somehow deduced from their arguments, we can instead
simply think of a call to the access function with given arguments as a name for
the storage location. Thus, just as x may be considered a name for a storage location
(a variable), so (car x) is a name for the car of some cons (which is in tum named
by x). Now, rather than having to remember two functions for each kind of gen
eralized variable (having to remember, for example, that rplaca corresponds to
car), we adopt a uniform syntax for updating storage locations named in this way,
using the setf macro. This is analogous to the way we use the setq special form
to convert the name of a variable (which is also a form that accesses it) into a form
that updates it. The uniformity of this approach is illustrated in the following table.

94 COMMON LISP

Access function Update function Update using setf

x (setq x datum) (setf x datum)

(car X) (rplaca x datum) (setf (car x) datum)

(symbol-value X) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to the
corresponding update function.

Given the existence of setf in COMMON LISP, it is not necessary to have setq,

rplaca, and set; they are redundant. They are retained in COMMON LISP because
of their historical importance in LISP. However, most other update functions (such
as putprop, the update function for get) have been eliminated from COMMON LISP

in the expectation that setf will be uniformly used in their place.

setf {place newvalue}* [Macro]

(setf place newvalue) takes a form place that when evaluated accesses a data
object in some location and "inverts" it to produce a corresponding form to update
the location. A call to the setf macro therefore expands into an update form that
stores the result of evaluating the form newvalue into the place referred to by the
access-form.

If more than one place-newvalue pair is specified, the pairs are processed se
quentially; that is,

(setf place] newvaluel
place2 newvalue2)

placen newvaluen)

is precisely equivalent to

(progn (setf place] newvaluel)
(set f place2 newvalue2)

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.

The form place may be any one of the following:

• The name of a variable (either lexical or dynamic).

CONTROL STRUCTURE 95

• A function call form whose first element is the name of any one of the following
functions:

aref car svref

nth cdr get

elt caar getf symbol-value

rest cadr gethash symbol-function

first cdar documentation symbol-plist

second cddr fill-pointer macro-function

third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr

. A function call form whose first element is the name of a selector function
constructed by defstruct.

• A function call form whose first element is the name of any one of the following
functions, provided that the new value is of the specified type so that it can be
used to replace the specified "location" (which is in each of these cases not truly
a generalized variable):

Function name

char

schar

bit

sbit

subseg

Required type

string-char

string-char

bit

bit

sequence

In the case of subseg, the replacement value must be a sequence whose elements
may be contained by the sequence argument to subseg. (Note that this is not so
stringent as to require that the replacement value be a sequence of the same type
as the sequence of which the subsequence is specified.) If the length of the
replacement value does not equal the length of the subsequence to be replaced,
then the shorter length determines the number of elements to be stored, as for
the function replace.

• A function call form whose first element is the name of any one of the following
functions, provided that the specified argument to that function is in tum a place

96 COMMON LISP

form; in this case the new place has stored back into it the result of applying
the specified "update" function (which is in each of these cases not a true update
function):

Function name

char-bit
ldb
mask-field

Argument that is a place

first
second
second

Update function used

set-char-bit
dpb
deposit-field

• A the type declaration form, in which case the declaration is transferred to the
newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer(+ y 3)))

• A call to apply where the first argument form is of the form #'name, that is,
(function name), where name is the name of a function, calls to which are
recognized as places by setf. Suppose that the use of setf with apply looks
like this:

(setf (apply #'name xi x2 ... xn rest) x0)

The setf method for the function name must be such that

(setf (name zl z2 ... zm) z0)

expands into a store form

(storefn zi1 zi2 ... zik zm)

That is, it must expand into a function call such that all arguments but the last
may be any permutation or subset of the new value zO and the arguments of the
access form, but the last argument of the storing call must be the same as the
last argument of the access call. See define-setf-rnethod for more details on
accessing and storing forms.

Given this, the sett-of-apply form shown above expands into

(apply #'storefn xi1 xi2 ... xik rest)

As an example, suppose that the variable indexes contains a list of subscripts
for a multidimensional array Joo whose rank is not known until run time. One
may access the indicated element of the array by writing

(apply #'aref foo indexes)

CONTROL STRUCTURE 97

and one may alter the value of the indicated element to that of newvalue by
writing

(setf (apply #'aref foo indexes) newvalue)

• A macro call, in which case setf expands the macro call and then analyzes the
resulting form.

• Any form for which a defsetf or define-setf-method declaration has been
made.

setf carefully arranges to preserve the usual left-to-right order in which the
various subforms are evaluated. On the other hand, the exact expansion for any
particular form is not guaranteed and may even be implementation-dependent; all
that is guaranteed is that the expansion of a sett form will be an update form that
works for that particular implementation, and that the left-to-right evaluation of
subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue. Therefore
(setf (car x) y) does not expand into precisely (rplaca x y), but into something
more like

(let ((G1 X) (G2 Y)) (rplaca G1 G2) G2)

the precise expansion being implementation-dependent.
The user can define new setf expansions by using defsetf.

psetf {place newvalue}* [Macro]

psetf is like setf except that if more than one place-newvalue pair is specified
then the assignments of new values to places are done in parallel. More precisely,
all subforms that are to be evaluated are evaluated from left to right; after all
evaluations have been performed, all of the assignments are performed in an un
predictable order. (The unpredictability matters only if more than one place form
refers to the same place.) psetf always returns nil.

shiftf {place}+ newvalue [Macro]

Each place form may be any form acceptable as a generalized variable to setf.

In the form (shiftf place] place2 ... placen newvalue), the values in place]
through placen are accessed and saved, and newvalue is evaluated, for a total of
n+ 1 values in all. Values 2 through n+ 1 are then stored into place] through
placen, and value 1 (the original value of place]) is returned. It is as if all the
places form a shift register; the newvalue is shifted in from the right, all values
shift over to the left one place, and the value shifted out of place] is returned.

...

98 COMMON LISP

For example:

(setq x (list 'a 'b 'c)) ::? (ab c)

(shiftf (cadr x) 'z) ::? b

and now x ::;, (a z c)

(shiftf (cadr x) (cddr x) 'g) ::;, z

and now x ::;, (a (c) . q)

The effect of (sh iftf place] place2 ... placen newvalue) is equivalent to

(let ((var] place])
(var2 place2)

(varn placen))
(setf place] var2)
(setf place2 var3)

(setf placen newvalue)
var])

except that the latter would evaluate any subforms of each place twice, whereas
shiftf takes care to evaluate them only once. For example:

(setq n D)

(setq x '(ab c d))

(shiftf (nth (setg n (+ n 1)) x) 'z)::;, b

and now x ::;, (a z c d)

but

(setg n D)

(setq x '(ab c d))

(prog1 (nth (setg n (+ n 1)) x)

(setf (nth (setq n (+ n 1)) x) 'z))::;, b

and now x ::;, (a b z d)

Moreover, for certain place forms sh iftf may be significantly more efficient than
the prog1 version.

Rationale: shiftf and rotatef have been included in COMMON LISP as generalizations
of two-argument versions formerly called swapf and exchf. The two-argument versions
have been found to be very useful, but the names were easily confused. The generalization
to many argument forms and the change of names were both inspired by the work of Suzuki
[19], which indicates that use of these primitives can make certain complex pointer-manipulation
programs clearer and easier to prove correct.

CONTROL STRUCTURE 99

rota tef {place}* [Macro]

Each place form may be any form acceptable as a generalized variable to setf.

In the form (rotatef place] place2 ... placen), the values in place] through
placen are accessed and saved. Values 2 through n and value 1 are then stored into
place] through placen. It is as if all the places form an end-around shift register
that is rotated one place to the left, with the value of place] being shifted around
the end to placen. Note that (rota tef place] place2) exchanges the contents of
place and place2.

The effect of (rotatefplaceJ place2 ... placennewvalue) is roughly equivalent
to

(psetf place] place2
place2 place3

placen place])

except that the latter would evaluate any subforms of each place twice, whereas
rotatef takes care to evaluate them only once. Moreover, for certain place forms
rota tef may be significantly more efficient.

rotatef always returns nil.

Other macros that manipulate generalized variables include getf, remf, incf,

decf, push, pop, assert, ctypecase, and cease.

Macros that manipulate generalized variables must guarantee the "obvious" se
mantics: subforms of generalized-variable references are evaluated exactly as many
times as they appear in the source program, and they are evaluated in exactly the
same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of
ldb, the generalized variables are both read and written in the same reference.
Preserving the source program order of evaluation and the number of evaluations
is particularly important.

As an example of these semantic rules, in the generalized-variable reference
(setf reference value) the value form must be evaluated after all the subforms
of the reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules or
has the same effect as such code. This is accomplished by introducing temporary
variables bound to the subforms of the reference. As an optimization in the imple
mentation, temporary Variables may be eliminated whenever it can be proven that
removing them has ho effect on the semantics of the program. For example, a
constant need never be saved in a temporary variable. A variable, or any form that
does not have side effects, need not be saved in a temporary variable if it can be

I 00 COMMON LISP

proven that its value will not change within the scope of the generalized-variable
reference.

COMMON LISP provides built-in facilities to take care of these semantic compli
cations and optimizations. Since the required semantics can be guaranteed by these
facilities, the user does not have to worry about writing correct code for them,
especially in complex cases. Even experts can become confused and make mistakes
while writing this sort of code.

Another reason for building in these functions is that the appropriate optimiza
tions will differ from implementation to implementation. In some implementatioP~
most of the optimization is performed by the compiler, while in uthers a simpler
compiler is used and most of the optimization is performed in the macros. The cost
of binding a temporary variable relative to the cost of other LISP operations may
differ greatly between one implementation and another, and some implementations
may find it best never to remove temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following general
ized-variable reference:

(incf (ldb byte-field variable))

This ought to expand into something like

(setq variable

(dpb (1+ (ldb byte-field variable))

byte-field

variable))

In this expansion example we have ignored the further complexity of returning the
correct value, which is the incremented byte, not the new value of variable. Note
that the variable byte-field is evaluated twice, and the variable variable is
referred to three times: once as the location in which to store a value, and twice
during the computation of that value.

Now consider this expression:

(incf (ldb (aref byte-fields (incf i))

(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((temp1 (aref byte-fields (incf i)))

(temp2 (determine-words-array)))

(setf (aref temp2 i)

(dpb (1+ (ldb temp1 (aref temp2 i)))

temp1

(aref temp2 i))))

CONTROL STRUCTURE IOI

Again we have ignored the complexity of returning the correct value. What is
important here is that the expressions (incf i) and (determine-words-array)

must not be duplicated because each may have a side effect or be affected by side
effects.

The COMMON LISP facilities provided to deal with these semantic issues include:

• Built-in macros such as setf and push that follow the semantic rules.

• The define-modify-macro macro, which allows new generalized-variable ma
nipulating macros (of a certain restricted kind) to be defined easily. It takes care
of the semantic rules automatically.

• The defsetf macro, which allows new types of generalized-variable references
to be defined easily. It takes care of the semantic rules automatically.

• The define-setf-method macro and the get-setf-method function, which
provide access to the internal mechanisms when it is necessary to define a com
plicated new type of generalized-variable reference or generalized
variable-manipulating macro.

define-modify-macro name lambda-list function [doc-string] [Macro]

This macro defines a read-modify-write macro named name. An example of such
a macro is incf. The first subform of the macro will be a generalized-variable
reference. The function is literally the function to apply to the old contents of the
generalized-variable to get the new contents; it is not evaluated. lambda-list de
scribes the remaining arguments for the function; these arguments come from the
remaining subforms of the macro after the generalized-variable reference. lambda-list
may contain &optional and &rest markers. (The &key marker is not permitted
here; &rest suffices for the purposes of define-modify-macro.) doc-string is
documentation for the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, except
that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
doc-string
'(setf ,reference

<function ,reference ,argl ,arg2 ...)))

where argl, arg2, ... , are the parameters appearing in lambda-list; appropriate
provision is made for a &rest parameter.

As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)

I 02 COMMON LISP

An example of a possibly useful macro not predefined in COMMON LISP is:

(define-modify-macro unionf (other-set &rest keywords) union)

defsetf access-Jn {updatejn [doc-string] I
lambda-list (store-variable)
{declaration I doc-string}* {form}*}

[Macro]

This defines how to setf a generalized-variable reference of the form (access
Jn ...) . The value of a generalized-variable reference can always be obtained
simply by evaluating it, so access-Jn should be the name of a function or a macro.

The user of defsetf provides a description of how to store into the general
ized-variable reference and return the value that was stored (because setf is defined
to return this value). The implementation of defsetf takes care of ensuring that
subforms of the reference are evaluated exactly once and in the proper left-to-right
order. In order to do this, defsetf requires that access-Jn be a function or a macro
that evaluates its arguments, behaving like a function. Furthermore, a setf of a
call on accessjn will also evaluate all of access-Jn's arguments; it cannot treat any
of them specially. This means that defsetf cannot be used to describe how to
store into a generalized variable that is a byte, such as (ldb field reference).

To handle situations that do not fit the restrictions imposed by defsetf, use de

fine-setf-method, which gives the user additional control at the cost of increased
complexity.

A defsetf declaration may take one of two forms. The simple form of defsetf

is

(defsetf access-Jn update-Jn [doc-string])

The update Jn must name a function (or macro) that takes one more argument than
accessjn takes. When setf is given a place that is a call on access-Jn, it expands
into a call on update-Jn that is given all the arguments to accessjn and also, as its
last argument, the new value (which must be returned by updatejn as its value).
For example, the effect of

(defsetf symbol-value set)

is built into the COMMON LISP system. This causes the form (setf (symbol-value

foo) fu) to expand into (set foo fu). Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.

CONTROL STRUCTURE 103

The complex form of defsetf looks like

(defsetf access-Jn lambda-list (store-variable) . body)

and resembles defmacro. The body must compute the expansion of a setf of a
call on access-Jn.

The lambda-list describes the arguments of access-Jn. &optional, &rest, and
&key markers are permitted in lambda-list. Optional arguments may have defaults
and "supplied-p" flags. The store-variable describes the value to be stored into the
generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for an extension to
multiple store variables that would receive multiple values from the second subform of
setf. The rules given below for coding setf methods discuss the proper handling of
multiple store variables to allow for the possibility that this extension may be incorporated
into COMMON LISP in the future.

The body forms can be written as if the variables in the lambda-list were bound
to subforms of the call on access-Jn and the store-variable were bound to the second
subform of setf. Plowever, this is not actually the case. During the evaluation of
the body forms, these variables are bound to names of temporary variables, gen
erated as if by gensym or gentemp, that will be bound by the expansion of setf

to the values of those subforms. This binding permits the body forms to be written
without regard for order-of-evaluation issues. defsetf arranges for the temporary
variables to be optimized out of the final result in cases where that is possible. In
other words, an attempt is made by defsetf to generate the best code possible in
a particular implementation.

Note that the code generated by the body forms must include provision for
returning the correct value (the value of store-variable). This is handled by the
body forms rather than by defsetf because in many cases this value can be returned
at no extra cost, by calling a function that simultaneously stores into the generalized
variable and returns the correct value.

An example of the use of the complex form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)

'(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)

,new-sequence))

l 04 COMMON LISP

The underlying theory by which setf and related macros arrange to conform to
the semantic rules given above is that from any generalized-variable reference one
may derive its "setf method," which describes how to store into that reference
and which subforms of it are evaluated.

Compatibility note: To avoid confusion, it should be noted that the use of the word "method"
here in connection with setf has nothing to do with its use in ZETALISP in connection with
message-passing and the ZETALISP "flavor system."

Given knowledge of the subforms of the reference, it is possible to avoid evaluating
them multiple times or in the wrong order. A setf method for a given access form
can be expressed as five values:

• A list of temporary variables.

• A list of value forms (subforms of the given form) to whose values the temporary
variables are to be bound.

• A second list of temporary variables, called store variables.

• A storing form.

• An accessing form.

The temporary variables will be bound to the values of the value forms as if by
let•; that is, the value forms will be evaluated in the order given and may refer
to the values of earlier value forms by using the corresponding variables.

The store variables are to be bound to the values of the newvalue form, that is,
the values to be stored into the generalized variable. In almost all cases only a
single value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary
variables (and also, in the case of the storing form, to the store variables). The
accessing form returns the value of the generalized variable. The storing form
modifies the value of the generalized variable and guarantees to return the values
of the store variables as its values; these are the correct values for setf to return.
(Again, in most cases there is a single store variable and thus a single value to be
returned.) The value returned by the accessing form is, of course, affected by
execution of the storing form, but either of these forms may be evaluated any
number of times, and therefore should be free of side effects (other than the storing
action of the storing form).

The temporary variables and the store variables are generated names, as if by
gensym or gentemp, so that there is never any problem of name clashes among
them, or between them and other variables in the program. This is necessary to

CONTROL STRUCTURE 105

make the special forms that do more than one setf in parallel work properly; these
are psetf, shiftf, and rotatef. Computation of the setf method must always
create new variable names; it may not return the same ones every time.

Some examples of setf methods for particular forms:

• For a variable x:

()

()

(g0001)

(setg x gDDD1)

x

• For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca gDDD2 gDDD3) gDDD3)

(car gDDD2)

• For (subseg seq s e):

(gDDD~ gDDOS g0006)

(seq s e)

(g0007)

(progn (replace gDOD~ gDDD7 :start1 gDDDS :end1 gDDD6)

gDDD7)

(subseg gDDD~ gDDDS gDDD6)

define-setf-method accessjn lambda-list
{declaration I doc-string}* {form}*

[Macro]

This defines how to setf a generalized-variable reference that is of the form
(access-Jn ...). The value of a generalized-variable reference can always be ob
tained simply by evaluating it, so accessjn should be the name of a function or a
macro.

The lambda-list describes the subforms of the generalized-variable reference, as
with defmacro. The result of evaluating the forms in the body must be five values
representing the setf method, as described above. Note that define-setf-method

106 COMMON LISP

differs from the complex form of defsetf in that while the body is being executed
the variables in lambda-list are bound to parts of the generalized-variable reference,
not to temporary variables that will be bound to the values of such parts. In addition,
define-setf-method does not have defsetf's restriction that access-Jn must be
a function or a function-like macro; an arbitrary defmacro destructuring pattern is
permitted in lambda-list.

By definition there are no good small examples of define-setf-method because
the easy cases can all be handled by defsetf. A typical use is to define the setf
method for ldb:

SETF method for the form (LDB bytespec int).
Recall that the int form must itself be suitable for SETF.

(define-setf-method ldb (bytespec int)
(multiple-value-bind (temps vals stores

store-form access-form)
(get-setf-method int) ;Get SETF method for int.

(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.
(stemp (first stores))) ; Temp var for int to store.

Return the SETF method for LDB as five values.
(values (cons btemp temps) ;Temporary variables.

(cons bytespec vals) ;Value forms.
(list store) ;Store variables.
'(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form
, store) ; Storing form.

'(ldb ,btemp ,access-form) ;Accessing form.
))))

get-setf-method form [Function]

get-setf-method returns five values constituting the setf method for form. The
form must be a generalized-variable reference. get-setf-method takes care of
error-checking and macro expansion and guarantees to return exactly one
store-variable.

As an example, an extremely simplified version of setf, allowing no more and
no fewer than two subforms, containing no optimization to remove unnecessary
variables, and not allowing storing of multiple values, could be defined by:

CONTROL STRUCTURE 107

(defmacro setf (reference value)

(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference)

(declare (ignore access-form))

'(let• ,(mapcar #'list

(append vars stores)

(append vals (list value)))

,store-form)))

get-setf-method-multiple-value .form [Function]

get-self-method-multiple-value returns five values constituting the setf method
for form. The form must be a generalized-variable reference. This is the same as
get-setf-method except that it does not check the number of store-variables; use
this in cases that allow storing multiple values into a generalized variable. There
are no such cases in standard COMMON LISP, but this function is provided to allow
for possible extensions.

7 .3. Function Invocation

The most primitive form for function invocation in LISP of course has no name;
any list that has no other interpretation as a macro call or special form is taken to
be a function call. Other constructs are provided for less common but nevertheless
frequently useful situations.

apply function arg &rest more-args [Function]

This applies function to a list of arguments. function may be a compiled-code
object, or a lambda-expression, or a symbol; in the latter case the global functional
value of that symbol is used (but it is illegal for the symbol to be the name of a
macro or special form). The arguments for the function consist of the last argument
to apply appended to the end of a list of all the other arguments to apply but the
function itself; it is as if all the arguments to apply except the function were given
to list• to create the argument list. For example:

(setq f '+) (apply f '(1 2)) =? 3

(setq f #'-) (apply f '(1 2)) =? -1

(apply #'max 3 5 '(2 7 3)) =? 7

(apply 'cons '((+ 2 3) ~)) =?

((+ 2 3) . ~) not (5 . ~)

(apply#'+'())=? D

1 OS COMMON LISP

Note that if the function takes keyword arguments, the keywords as well as the
corresponding values must appear in the argument list:

(apply #'(lambda (&key ab) (list ab)) '(:b 3)) ::>(nil 3)

This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #'make-array size :allow-other-keys t keys)))

(if double (concatenate (type-of v) v v) v)))

(foo .; :initial-contents '(a b c d) :double t)
=> #(a b c d a b c d)

funcall Jn &rest arguments [Function]

(funcallJnal a2 ... an) applies the functionJn to the arguments al, a2, ... ,
an. Jn may not be a special form nor a macro; this would not be meaningful. For
example:

(cons 1 2) => (1 . 2)

(setq cons (symbol-function '+))

(funcall cons 1 2) ::> 3

The difference between funcall and an ordinary function call is that the function
is obtained by ordinary LISP evaluation rather than by the special interpretation of
the function position that normally occurs.

Compatibility note: The COMMON LISP function funcall corresponds roughly to the INTERLISP

primitive app 1 y •.

call-arguments-limit [Constant]

The value of call-arguments-limit is a positive integer that is the upper exclusive
bound on the number of arguments that may be passed to a function. This bound
depends on the implementation, but will not be smaller than 50. (Implementors
are encouraged to make this limit as large as practicable without sacrificing
performance.) The value of call-arguments-limit must be as least as great as
that of lambda-parameters-limit. See also multiple-values-limit.

7 .4. Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms in
order. They differ only in what results are returned.

CONTROL STRUCTURE 109

progn {form}* [Special form]

The progn construct takes a number of forms and evaluates them sequentially, in
order, from left to right. The values of all the forms but the last are discarded;
whatever the last fonn returns is returned by the progn fonn. One says that all the
forms but the last are evaluated for effect, because their execution is useful only
for the side effects caused, but the last form is executed for value.

progn is the primitive control structure construct for "compound statements,"
such as begin-end blocks in ALGOL-like languages. Many LISP constructs are "im
plicit progn" forms, in that as part of their syntax each allows many forms to be
written that are to be evaluated sequentially, discarding the results of all forms but
the last and returning the results of the last fonn.

If the last fonn of the progn returns multiple values, then those multiple values
are returned by the progn form. If there are no forms for the progn, then the result
is nil. These rules generally hold for implicit progn forms as well.

prog1 first {form}* [Macro]

progl is similar to progn, but it returns the value of its first form. All the argument
forms are executed sequentially; the value the first form produces is saved while
all the others are executed and is then returned.

prog1 is most commonly used to evaluate an expression with side effects and
return a value that must be computed before the side effects happen. For example:

(progl (car x) (rplaca x 'foo))

alters the car of x to be too and returns the old car of x.
progl always returns a single valu~, even ifthe first form tries to return multiple

values. As a consequence of this, (pro g l x) and (pro g n x) may behave differently
if x can produce multiple values. See multiple-value-prog1. A point of style:
although progl can be used to force exactly a single value to be returned, it is
conventional to use the function values for this purpose.

prog2 first second {form}* [Macro]

prog2 is similar to prog1, but it returns the value of its second form. All the
argument forms are executed sequentially; the value of the second form is saved
while all the other forms are executed and is then returned. prog2 is provided
mostly for historical compatibility.

(prog2 a b c ... Z) = (progn a., (prog/j c ... Z))

110 COMMON LISP

Occasionally it is desirable to perform one side effect, then a value-producing
operation, then another side effect. In such a peculiar case, prog2 is fairly perspicuous.
For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))

;value is that of process-the-file

prog2, like prog1, always returns a single value, even if the second form tries
to return multiple values. As a consequence of this, (prog2 x y) and (progn

x y) may behave differently if y can produce multiple values.

7.5. Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression (or a
closure of a lambda-expression, as produced by function), new bindings are
established for the variables that are the paremeters of the lambda-expression. These
bindings initially have values determined by the parameter-binding protocol discussed
in section 5.2.2.

The following constructs may also be used to establish bindings of variables,
both ordinary and functional.

let ({var I (var value)}*) {declaration}* {form}* [Special form]

A let form can be used to execute a series of forms with specified variables bound
to specified values.

More precisely, the form

(let ((var] value])

(var2 value2)

(varm valuem))
declaration]

declaration2

declarationp
body]

body2

bodyn)

first evaluates the expressions value], value2, and so on, in that order, saving the
resulting values. Then all of the variables varj are bound to the corresponding

CONTROL STRUCTURE 111

values in parallel; each binding will be a lexical binding unless there is a special

declaration to the contrary. The expressions bodyk are then evaluated in order; the
values of all but the last are discarded (that is, the body of a let form is an implicit
progn). The let form returns what evaluating bodyn produces (if the body is
empty, which is fairly useless, let returns nil as its value). The bindings of the
variables have lexical scope and indefinite extent.

Instead of a list (varj value}), one may write simply varj. In this case varj is
initialized to nil. As a matter of style, it is recommended that varj be written only
when that variable will be stored into (such as by setq) before its first use. If it
is important that the initial value is nil rather than some undefined value, then it
is clearer to write out (varj nil) if the initial value is intended to mean "false"
or (varj ' ()) if the initial value is intended to be an empty list. Note that the code

(let (x)

(declare (integer x))

(setq x (gcd y z))

...)

is incorrect; although x is indeed set before it is used, and is set to a value of the
declared type integer, nevertheless x momentarily takes on the value nil in
violation of the type declaration.

Declarations may appear at the beginning of the body of a let. See declare.

let• ({var I (var value)}*) {declaration}* {form}* [Special form]

let• is similar to let, but the bindings of variables are performed sequentially
rather than in parallel. This allows the expression for the value of a variable to
refer to variables previously bound in the let• form.

More precisely, the form

(let• ((var] value])
(var2 value2)

(varm valuem))
declaration]
declaration2

declarationp
body]
body2

bodyn)

112 COMMON LISP

first evaluates the expression value], then binds the variable var] to that value;
then it evaluates value2 and binds var2; and so on. The expressions body} are then
evaluated in order; the values of all but the last are discarded (that is, the body of
a let* form is an implicit progn). The let• form returns the results of evaluating
bodyn (if the body is empty, which is fairly useless, let• returns nil as its value).
The bindings of the variables have lexical scope and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case varj is
initialized to nil. As a matter of style, it is recommended that varj be written only
when that variable will be stored into (such as by setq) before its first use. If it
is important that the initial value is nil rather than some undefined value, then it
is clearer to write out (varj nil) if the initial value is intended to mean "false"
or (varj ' ()) if the initial value is intended to be an empty list.

Declarations may appear at the beginning of the body of a let•. See declare.

compiler-let ({var J (var value)}*) {form}* [Special form]

When executed by the LISP interpreter, compiler-let behaves exactly like let

with all the variable bindings implicitly declared special. When the compiler
processes this form, however, no code is compiled for the bindings; instead, the
processing of the body by the compiler (including, in particular, the expansion of
any macro calls within the body) is done with the special variables bound to the
indicated values in the execution context of the compiler. This is primarily useful
for communication among complicated macros.

Declarations may not appear at the beginning of the body of a compiler-let.

Rationale: Because of the unorthodox handling by compiler-let of its variable bindings,
it would be complicated and confusing to permit declarations that apparently referred to the
variables bound by compiler-let. Disallowing declarations eliminates the problem.

progv symbols values {form}* [Special form]

progv is a special form that allows binding one or more dynamic variables whose
names may be determined at run time. The sequence of forms (an implicit progn)

is evaluated with the dynamic variables whose names are in the list symbols bound
to corresponding values from the list values. (If too few values are supplied, the
remaining symbols are bound and then made to have no value; see makunbound.

If too many values are supplied, the excess values are ignored.) The results of the
progv form are those of the last form. The bindings of the dynamic variables are
undone on exit from the progv form. The lists of symbols and values are computed
quantities; this is what makes progv different from, for example, let, where the
variable names are stated explicitly in the program text.

CONTROL STRUCTURE J 13

progv is particularly useful for writing interpreters for languages embedded in
LISP; it provides a handle on the mechanism for binding dynamic variables.

fl et ({ (name lambda-list {declaration I doc-string}*
{form}*)}*) {form}*

labels <{(name lambda-list {declaration I .Joe-string}*
{form}*)}*) {form}*

macrolet ({ (name varlist {declaration I doc-string}*
{form}*)}*) {form}*

[Special form]

[Special form]

[Special form]

fl et may be used to define locally named functions. Within the body of the flet

form, function names matching those defined by the flet refer to the locally
defined functions rather than to the global function definitions of the same name.

Any number of functions may be simultaneously defined. Each definition is
similar in format to a defun form: first a name, then a parameter list (which may
contain &optional, &rest, or &key parameters), then optional declarations and
documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))

;; The safesqrt function is used in two places.

(safesqrt (apply #'+ (map 'list #'safesqrt longlist))))

The labels construct is identical in form to the flet construct. These constructs
differ in that the scope of the defined function names for flet encompasses only
the body, whereas for labels it encompasses the function definitions themselves.
That is, labels can be used to define mutually recursive functions, but flet

cannot. This distinction is useful. Using flet one can locally redefine a global
function name, and the new definition can refer to the global definition; the same
construction using labels would not have that effect.

(defun integer-power (n k)

(declare (integer n))

;A highly "bummed" integer

; exponentiation routine.

(declare (type (integer D •) k))

(labels ((exptD (x k a)

(declare (integer x a) (type (integer D •) k))

(cond ((zerop k) a)

((evenp k) (expt1 (*xx) (floor k 2) a))

(t (exptD (•xx) (floor k 2) (• x a)))))

(expt1 (x k a)

(declare (integer x a) (type (integer 1 •) k))

(cond ((evenp k) (expt1 (• x x) (floor k 2) a))

(t (exptD (•xx) (floor k 2) (• x a))))))

(expto n k 1)))

114 COMMON LISP

macrolet is similar in form to flet but defines local macros, using the same
format used by defmacro. The names established by macro let as names for macros
are lexically scoped.

Macros often must be expanded at "compile time" (more generally, at a time
before the program itself is executed), and so the run-time values of variables are
not available to macros defined by macrolet. The precise rule is that the ma
cro-expansion functions defined by macrolet are defined in the global environ
ment; lexically scoped entities that would ordinarily be lexically apparent are not
visible within the expansion functions. However, lexically scoped entities are vis
ible within the body of the macro let form and are visible to the code that is the
expansion of a macro call. The following example should make this clear:

(defun foo (x flag)

(macrolet ((fudge (z)

;The parameters x and flag are not accessible
; at this point; a reference to flag would be to
; the global variable of that name.
'(if flag (* ,z ,z) ,z)))

;The parameters x and flag are accessible here.
(+ x

(fudge x)

(fudge (+ x 1)))))

The body of the macro let becomes

(+ x

(if flag (*xx) x))

(if flag (* (+ x 1) (+ x 1)) (+ x 1)))

after macro expansion. The occurrences of x and flag legitimately refer to the
parameters of the function foo because those parameters are visible at the site of
the macro call which produced the expansion.

7 .6. Conditionals

The traditional conditional construct in LISP is cond. However, if is much simpler
and is directly comparable to conditional constructs in other programming languages,
so it is considered to be primitive in COMMON LISP and is described first. COMMON

CONTROL STRUCTURE I 15

LISP also provides the dispatching constructs case and typecase, which are often
more convenient than cond.

if test then [else] [Special form]

The if special form corresponds to the if-then-else construct found in most algebraic
programming languages. First the form test is evaluated. If the result is not nil,
then the form then is selected; otherwise the form else is selected. Whichever form
is selected is then evaluated, and if returns whatever evaluation of the selected
form returns.

(if test then else) = (cond (test then) (t else))

but if is considered more readable in some situations.
The else form may be omitted, in which case if the value of test is nil then

nothing is done and the value of the if form is nil. If the value of the if form
is important in this situation, then the and construct may be stylistically preferable,
depending on the context. If the value is not important, but only the effect, then
the when construct may be stylistically preferable.

when test {form}* [Macro]

(when test form] form2 ...) first evaluates test. If the result is. nil, then no
form is evaluated, and nil is returned. Otherwise the forms constitute an implicit
progn and are evaluated sequentially from left to right, and the value of the last
one is returned.

(when p a b C)

(when p a b C)

(when p a b C)

(when p a b C)

-

(and p {progn ab C))

(cond (p a b C))

(if p (progn ab C) nil)
(unless (not(ij> a b c)

As a matter of style, when is normally used to conditionally produce some side
effects, and the value of the when-form is normally not used. If the value is relevant,
then it may be stylistically more appropriate to use and or if.

unless test {form}* [Macro]

(unless testforml form2 ...) first evaluates test. If the result is not.nil, then
the forms are not evaluated, and nil is returned. Otherwise the forms constitute

I 16 COMMON LISP

an implicit progn and are evaluated sequentially from left to right, and the value
of the last one is returned.

(unless p a b Cl
(unless p a b Cl
(unless pa b Cl ~

(cond ((not Pl ab Cll
(if p nil (progn ab Cll
(when (not Pl a b Cl

As a matter of style, unless is normally used to conditionally produce some side
effects, and the value of the unless-form is normally not used. If the value is
relevant, then it may be stylistically more appropriate to use if.

cond {(test {form}* l }* [Macro]

A cond form has a number (possibly zero) of clauses, which are lists of forms.
Each clause consists of a test followed by zero or more consequents. For example:

(cond (test-] consequent-I-I consequent-1-2 ... l
(test-2 l
(test-3 consequent-3-1 ... l
... l

The first clause whose test evaluates to non-nil is selected; all other clauses are
ignored, and the consequents of the selected clause are evaluated in order (as an
implicit progn).

More specifically, cond processes its clauses in order from left to right. For each
clause, the test is evaluated. If the result is nil, cond advances to the next clause.
Otherwise, the cdr of the clause is treated as a list of forms, or consequents; these
forms are evaluated in order from left to right, as an implicit progn. After eval
uating the consequents, cond returns without inspecting any remaining clauses.
The cond special form returns the results of evaluating the last of the selected
consequents; if there were no consequents in the selected clause, then the single
(and necessarily non-null) value of the test is returned. If cond runs out of clauses
(every test produced nil, and therefore no clause was selected), the value of the
cond form is nil.

If it is desired to select the last clause unconditionally if all others fail, the
standard convention is to use t for the test. As a matter of style, it is desirable to
write a last clause (t nil l if the value of the cond form is to be used for something.
Similarly, it is in questionable taste to let the last clause of a cond be a "singleton
clause"; an explicit t should be provided. (Note moreover that (cond ... (Xl l
may behave differently from (cond ... (t Xl l if x might produce multiple values;
the former always returns a single value, whereas the latter returns whatever values
x returns. However, as a matter of style it is preferable to obtain this behavior by

CONTROL STRUCTURE I 17

wntmg (cond ... (t (valuesx))), using the values function explicitly to
indicate the discarding of any excess values.) For example:

(setq z (cond (a 'foo) (b 'bar))) ; Possibly confusing
(setq z (cond (a 'foo) (b 'bar) (t nil))) ;Better
(cond (a b) (c d) (e)) ; Possibly confusing
(cond (a b) (c d) (t e)) ; Better
(cond (a b) (c d) (t (values e))) ; Better (if one value

needed)
(cond (a b) (c)) ; Possibly confusing
(cond (a b) (t c)) ;Better
(if a b c) ; Also better

A LISP cond form may be compared to a continued if-then-else as found in many
algebraic programming languages:

(cond <P ...)
(q ...)
(r ...)

(t ...))

roughly
corresponds

to

case keyform {<{<{key}*) I key} {form}*)}*

if p then ...
else if q then
else if r then

else

[Macro]

case is a conditional that chooses one of its clauses to execute by comparing a
value to various constants, which are typically keyword symbols, integers, or
characters (but may be any objects). Its form is as follows:

(case keyform
(keylist-1 consequent-]-] consequent-1-2 ...)
(keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...)
...)

Structurally case is much like cond, and it behaves like cond in selecting one
clause and then executing all consequents of that clause. However, case differs in
the mechanism of clause selection.

The first thing case does is to evaluate the form keyform to produce an object
called the key object. Then case considers each of the clauses in tum. If key is in
the keylist (that is, is eql to any item in the keylist) of a clause, the consequents
of that clause are evaluated as an implicit progn; case returns what was returned
by the last consequent (or nil if there are no consequents in that clause). If no
clause is satisfied, case returns nil.

118 COMMON LISP

The keys in the keylists are not evaluated; literal key values must appear in the
keylists. It is an error for the same key to appear in more than one clause; a
consequence is that the order of the clauses does not affect the behavior of the
case construct.

Instead of a keylist, one may write one of the symbols t and otherwise. A
clause with such a symbol always succeeds and must be the last clause (this is an
exception to the order-independence of clauses). See also ecase and cease, each
of which provides an implicit otherwise clause to signal an error if no clause is
satisfied.

If there is only one key for a clause, then that key may be written in place of a
list of that key, provided that no ambiguity results. Such a "singleton key" may
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a
cons.

Compatibility note: The ZETALISP caseq construct uses eq for the comparison. In ZETALISP
caseq therefore works for fixnums but not bignums. The MACLISP caseq construct simply
prohibits the use of bignums; indeed, it permits only fixnums and symbols as clause keys.
In the interest of hiding the fixnum-bignum distinction, and for ge11eral language consistency,
case uses eql in COMMON LISP.

The INTERLISP selectq construct is similar to case.

typecase keyform {<type {form}*)}* [Macro]

typecase is a conditional that chooses one of its clauses by examining the type
of an object. Its form is as follows:

(t ypecase keyform
(type-I consequent-I -I consequent-I -2 ...)
(type-2 consequent-2-I ...)
(type-3 consequent-3-I ...)
...)

Structurally typecase is much like cond or case, and it behaves like them in
selecting one clause and then executing all consequents of that clause. It differs in
the mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an
object called the key object. Then typecase considers each of the clauses in turn.
The type that appears in each clause is a type specifier; it is not evaluated, but is
a literal type specifier. The first clause for which the key is of that clause's specified
type is selected, the consequents of this clause are evaluated as an implicit progn,

CONTROL STRUCTURE I 19

and typecase returns what was returned by the last consequent (or nil if there
are no consequents in that clause). If no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for type to indicate
that the clause should always be selected. See also etypecase and ctypecase,

each of which provides an implicit otherwise clause to signal an error if no clause
is satisfied.

It is permissible for more than one clause to specify a given type, particularly
if one is a subtype of another; the earliest applicable clause is chosen. Thus for
typecase, unlike case, the order of the clauses may affect the behavior of the
construct. For example:

(typecase an-object

(string ...)

((array t) ...)

((array bit) ...)

(array ...)

((or list number) ...)

(t ...))

; This clause handles strings.
; This clause handles general arrays.
; This clause handles bit arrays.
; This handles all other arrays.
; This handles lists and numbers.
; This handles all other objects.

A COMMON LISP compiler may choose to issue a warning if a clause cannot be
selected because it is completely shadowed by earlier clauses.

7. 7. Blocks and Exits

The block and return- from constructs provide a structured lexical non-local exit
facility. At any point lexically within a block construct, a return-from with the
same name may be used to perform an immediate transfer of control that exits from
the block. In the most common cases this mechanism is more efficient than the
dynamic non-local exit facility provided by catch and throw, described in section
7.10.

block name iform}* [Special form]

The block construct executes eachform from left to right, returning whatever is
returned by the 1astform. If, however, a return or return-from form that specifies
the same name is executed during the execution of some form, then the results
specified by the return or return-from are immediately returned as the value of
the block construct, and execution proceeds as if the block had terminated normally.
In this, block differs from progn; the progn construct has nothing to do with
return.

120 COMMON USP

The name is not evaluated; it must be a symbol. The scope of the name is lexical;
only a return or return-from textually contained in someform can exit from the
block. The extent of the name is dynamic. Therefore it is only possible to exit
from a given run-time incarnation of a block once, either normally or by explicit
return.

The de fun form implicitly puts a block around the body of the function defined;
the block has the same name as the function. Therefore one may use return-from

to return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences that
may be surprising to users and implementors of other LISP systems. For example,
the return-from in the following example actually does "work" in COMMON LISP

as one might expect:

(block loser

(catch 'stuff

(mapcar #'(lambda (x) (if (numberp x)

(hairyfun x)

(return-from loser nil)))

items)))

Depending on the situation, a return in COMMON LISP may not be simple. A
return can break up catchers if necessary to get to the block in question. It is
possible for a "closure" created by function for a lambda-expression to refer to
a block name as long as the name is lexically apparent.

return-from name [result]

return [result]

[Special form]
[Macro]

return-from is used to return from a block or from such constructs as do and
prog that implicitly establish a block. The name is not evaluated and must be a
symbol. A block construct with the same name must lexically enclose the occurrence
of return-from; whatever the evaluation of result produces is immediately returned
from the block. (If the result form is omitted, it defaults to nil. As a matter of
style, this form ought to be used to indicate that the particular value returned doesn't
matter.)

The return-from form itself never returns and cannot have a value; it causes
results to be returned from a block construct. If the evaluation of result produces
multiple values, those multiple values are returned by the construct exited.

(returnform) is identical in meaning to (return-from nilform); it returns
from a block named nil. Blocks established implicitly by iteration constructs such
as do are named nil, so that return will exit properly from such a construct.

CONTROL STRUCTURE 121

7 .8. Iteration

COMMON LISP provides a number of iteration constructs. The loop construct provides
a trivial iteration facility; it is little more than a progn with a branch from the
bottom back to the top. The do and do• constructs provide a general iteration
facility for controlling the variation of several variables on each cycle. For specialized
iterations over the elements of a list or n consecutive integers, do list and dotimes

are provided. The tagbody construct is the most general, permitting arbitrary go

statements within it. (The traditional prog construct is a synthesis of tag body,

block, and let.) Most of the iteration constructs permit statically defined non-local
exits in the form of the return-from and return statements.

7 .8.1. Indefinite Iteration

The loop construct is the simplest iteration facility. It controls no variables, and
simply executes its body repeatedly.

loop {form}* [Macro]

Each form is evaluated in tum from left to right. When the last form has been
evaluated, then the first form is evaluated again, and so on, in a never-ending cycle.
The loop construct never returns a value. Its execution must be terminated explicitly,
using return or throw, for example.

loop, like most iteration constructs, establishes an implicit block named nil.

Thus return may be used to exit from a loop with specified results.
A loop construct has this meaning only if every form is non-atomic (a list). The

case where some form (possibly more than one) is atomic is reserved for future
extensions.

Implementation note: There have been several proposals for a powerful iteration mechanism
to be called loop. One version is provided in ZETALISP. Implementors are encouraged to
experiment with extensions to the loop syntax, but users should be advised that in all
likelihood some specific set of extensions to loop will be adopted in a future revision of
COMMON LISP.

7 .8.2. General Iteration

In contrast to loop, do and do• provide a powerful and general mechanism for
repetitively recalculating many variables.

122 COMMON LISP

do ({ (var [init [step]])}*) (end-test {result}*)
{declaration}* {tag I statement}*

do* ({(var [init [step]])}*) (end-test {form}*)
{declaration}* {tag I statement}*

[Macro]

[Macro]

The do special form provides a generalized iteration facility, with an arbitrary
number of "index variables.'' These variables are bound within the iteration and
stepped in parallel in specified ways. They may be used both to generate successive
values of interest (such as successive integers) or to accumulate results. When an
end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

(do ((var] initl step])
(var2 init2 step2)

(varn initn stepn))
(end-test . result)

{declaration}*
. tagbody)

A do* loop looks exactly the same except that the name do is replaced by do*.

The first item in the form is a list of zero or more index-variable specifiers. Each
index-variable specifier is a list of the name of a variable var, an initial value init,
and a stepping form step. If init is omitted, it defaults to nil. If step is omitted,
the var is not changed by the do construct between repetitions (though code within
the do is free to alter the value of the variable by using setq).

An index-variable specifier can also be just the name of a variable. In this case,
the variable has an initial value of nil and is not changed between repetitions. As
a matter of style, it is recommended that an unadorned variable name be written
only when that variable will be stored into (such as by setq) before its first use.
If it is important that the initial value is nil rather than some undefined value,
then it is clearer to write out (varj nil) if the initial value is intended to mean
"false" or (varj ' ()) if the initial value is intended to be an empty list.

Before the first iteration, all the init forms are evaluated, and each var is bound
to the value of its respective init. This is a binding, not an assignment; when the
loop terminates, the old values of those variables will be restored. For do, all of
the init forms are evaluated before any var is bound; hence all the init forms may
refer to the old bindings of all the variables (that is, to the values visible before
beginning execution of the do construct). For do*, the first in it form is evaluated,
then the first var is bound to that value, then the second init form is evaluated,

CONTROL STRUCTURE 123

then the second var is bound, and so on; in general, the initj form can refer to the
new binding vark if k < j, and otherwise to the old binding of vark.

The second element of the loop is a list of an end-testing predicate form end-test
and zero or more result forms. This resembles a cond clause. At the beginning of
each iteration, after processing the variables, the end-test is evaluated. If the result
is nil, execution proceeds with the body of the do (or do>) form. If the result is
not nil, the result forms are evaluated in order as an implicit progn, and then do
returns. do returns the results of evaluating the last result form. If there are no
result forms, the value of do is nil. Note that this is not quite analogous to the
treatment of clauses in a cond form, because a cond clause with no result forms
returns the (non-nil) result of the test.

At the beginning of each iteration other than the first, the index variables are
updated as follows. All the step forms are evaluated, from left to right, and the
resulting values are assigned to the respective index variables. Any variable that
has no associated step form is not assigned to. For do, all the step forms are
evaluated before any variable is updated; the assignment of values to variables is
done in parallel, as if by psetq. Because all of the step forms are evaluated before
any of the variables are altered, a step form when evaluated always has access to
the old values of all the index variables, even if other step forms precede it. For
do•, the first step form is evaluated, then the value is assigned to the first var,

then the second step form is evaluated, then the value is assigned to the second
var, and so on; the assignment of values to variables is done sequentially, as if by
setq. For either do or do•, after the variables have been updated, the end-test is
evaluated as described above, and the iteration continues.

If the end-test of a do form is nil, the test will never succeed. Therefore this
provides an idiom for "do forever": the body of the do is executed repeatedly,
stepping variables as usual. (The loop construct performs a "do forever" that steps
no variables.) The infinite loop can be terminated by the use of return, re
turn-from, go to an outer level, or throw. For example:

(do ((j D (+ j 1)))

(nil)
(format t "~%Input ~n:" j)

(let ((item (read)))

; Do forever.

(if (null item) (return) ;Process items until nil seen.
(format t "~&output ~n: ~s" j (process item)))))

The remainder of the do form constitutes an implicit tagbody. Tags may appear
within the body of a do loop for use by go statements appearing in the body (but
such go statements may not appear in the variable specifiers, the end-test, or the

124 COMMON LISP

result forms). When the end of a do body is reached, the next iteration cycle
(beginning with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return statement
may be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to code
in the do body, to the bindings of the do variables, to the init forms, to the step
forms, to the end-test; and to the result forms.

Compatibility note: "Old-style" MAcL1sP do loops, that is, those of the form (do var init
step end-test. body), are not supported in COMMON LISP. Such old-style loops are considered
obsolete, and in any case are easily converted to a new-style do with the insertion of three
pairs of parentheses. In practice the compiler can catch nearly all instances of old-style do

loops because they will not have a legal format anyway.

Here are some examples of the use of do:

(do ((i D (+ i 1)) ; Sets every null element of a -vector to zero.
(n (length a-vector)))

((= in))

(when (null (aref a-vector i))

(setf (aref a-vector i) 0)))

The construction

(do ((x e (cdr x))

(oldxxx))

((null x))

body)

exploits parallel assignment to index variables. On the first iteration, the value of
oldx is whatever value x had before the do was entered. On succeeding iterations,
oldx contains the value that x had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in the
step forms of a do, and the body is empty. For exampl~,

(do ((x foo (cdr x))

(y bar (cdr y))

(z '() (cons (f (car x) (car y)) z)))

((or (null x) (null y))

(nreverse z)))

does the same thing as (rnapcar # 'f foo bar). Note that the step computation
for z exploits the fact that variables are stepped in parallel. Also, the body of the

CONTROL STRUCTURE 125

loop is empty. Finally, the use of nreverse to put an accumulated do loop result
into the correct order is a standard idiom. Another example:

(defun list-reverse (list)

(do ((x list (cdr x))

(y '() (cons (car x) y)))

((endp x) y)))

Note the use of endp rather than null or atom to test for the end of a list; this
may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car
of each cons is a list of symbols, and the cdr of each cons is a list of equal length
containing corresponding values. Such a data structure is similar to an association
list, but is divided into "frames"; the overall structure resembles a rib-cage. A
lookup function on such a data structure might be:

(defun ribcage-lookup (sym ribcage)

(do ((r ribcage (cdr r)))

((null r) nil)

(do ((s (caar r) (cdr s))

(v (cdar r) (cdr v)))

((nulls))

(when (eq (car s) sym)

(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do

loops.)
A do loop may be explained in terms of the more primitive constructs block,

return, let, loop, tagbody, and psetq as follows:

(block nil

(let ((var] initl)
(var2 init2)

(varn initn))
{declaration}*
(loop (when end-test (return (orogn . result)))

(tagbody . tagbody)
(psetq var] step]

var2 step2

varn stepn))))

126 COMMON LISP

do* is exactly like do except that the bindings and steppings of the variables are
performed sequentially rather than in parallel. It is as if, in the above explanation,
let were replaced by let* and psetq were replaced by setq.

7 .8.3. Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each value
taken by a single variable. They are expressible in terms of do, but capture very
common patterns of use.

Both dolist and dotimes perform a body of statements repeatedly. On each
iteration a specified variable is bound to an element of interest that the body may
examine. dolist examines successive elements of a list, and dotimes examines
integers from 0 to n - 1 for some specified positive integer n.

The value of any of these constructs may be specified by an optional result form,
which if omitted defaults to the value nil.

The return statement may be used to return immediately from a dolist or
dotimes form, discarding any following iterations that might have been performed;
in effect, a block named nil surrounds the construct. The body of the loop is
implicitly a tagbody construct; it may contain tags to serve as the targets of go

statements. Declarations may appear before the body of the loop.

dolist (var list.form [result.form]) {declaration}* {tag I statement}* [Macro]

dolist provides straightforward iteration over the elements of a list. First do list

evaluates the form list.form, which should produce a list. It then executes the body
once for each element in the list, in order, with the variable var bound to the
element. Then result.form (a single form, not an implicit progn) is evaluated, and
the result is the value of the do list form. (When the result.form is evaluated, the
control variable var is still bound, and has the value nil.) If result.form is omitted,
the result is n i 1.

(dolist (x '(ab c d)) (prin1 x) (princ" "))=?nil

after printing "a b c d

An explicit return statement may be used to terminate the loop and return a
specified value.

dotimes (var count.form [result.form]) {declaration}* {tag I statement}* [Macro]

dotimes provides straightforward iteration over a sequence of integers. The expres
sion (do times (var count.form result.form) . progbody) evaluates the form count
form, which should produce an integer. It then performs progbody once for each
integer from zero (inclusive) to count (exclusive), in order, with the variable var

CONTROL STRUCTURE 127

bound to the integer; if the value of countform is zero or negative, then the progbody
is performed zero times. Finally, resultform (a single form, not an implicit progn)

is evaluated, and the result is the value of the do times form. (When the resultform
is evaluated, the control variable var is still bound, and has as its value the number
of times the body was executed.) If resultform is omitted, the result is nil.

An explicit return statement may be used to terminate the loop and return a
specified value.

Here is an example of the use of dotimes in processing strings:

;; ; True if the specified subsequence of the string is a

;;; palindrome (reads the same forwards and backwards).

(defun palindromep (string &optional

(start 0)

(end (length string)))

(dotirnes (k (floor (- end start) 2) t)

(unless (char-equal (char string (+start k))

(char string (-end k 1)))

(return nil))))

(palindromep "Able was I ere I saw Elba") =? t

(palindromep "A man, a plan, a canal--Panama ! ") =? nil

(remove-if-not #'alpha-char-p ;Remove punctuation.

"A man, a plan, a canal--Panama!")

=? "Amanap lanacanalPanama"

(palindromep

(remove-if-not #'alpha-char-p

(palindromep

(remove-if-not

#'alpha-char-p

"A man, a plan, a canal--Panama!")) =? t

"Unremarkable was I ere I saw Elba Kramer, nu?")) =? t

(palindromep

(remove-if-not

#'alpha-char-p

"A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal--Panamal")) =? t

128 COMMON LISP

Altering the value of var in the body of the loop (by using setq, for example)
will have unpredictable, possibly implementation-dependent results. A COMMON

LISP compiler may choose to issue a warning if such a variable appears in a setq.

Compatibility note: The dotimes construct is the closest thing in COMMON LISP to the
INTERLISP rptq construct.

See also do-symbols, do-external-symbols, and do-all-symbols.

7 .8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces
of one or more sequences. The result of the iteration is a sequence containing the
respective results of the function applications. There are several options for the
way in which the pieces of the list are chosen and for what is done with the results
returned by the applications of the function.

The function map may be used to map over any kind of sequence. The following
functions operate only on lists.

mapcar function list &rest more-lists
maplist function list &rest more-lists
mapc function list &rest more-lists
mapl function list &rest more-lists
mapcan function list &rest more-lists
mapcon function list &rest more-lists

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

For each these mapping functions, the first argument is a function and the rest must
be lists. The function must take as many arguments as there are lists.

ma pear operates on successive elements of the lists. First the function is applied
to the car of each list, then to the cadr of each list, and so on. (Ideally all the lists
are the same length; if not, the iteration terminates when the shortest list runs out,
and excess elements in other lists are ignored.) The value returned by mapcar is a
list of the results of the successive calls to the function. For example:

(mapcar #'abs '(3 -~ 2 -5 -6)) =? (3 ~ 2 5 6)

(mapcar #'cons '(ab c) '(1 2 3)) =? ((a 1) (b. 2) (c. 3))

map list is like mapcar except that the function is applied to the list and successive

CONTROL STRUCTURE

cdr' s of that list rather than to successive elements of the list. For example:

(maplist #'(lambda (x) (cons 'foo x))

'(abed))

:} ((foo a b c d) (foo b c d) (foo c d) (foo d))

(map list #' (lambda (x) (if (member (car x) (cdr x)) O 1)))

'(ab a c db c))

:} (0 0 1 0 1 1 1)

; An entry is 1 if the corresponding element of the input
list was the last instance of that element in the input list.

129

mapl and mapc are like maplist and mapcar respectively, except that they do not
accumulate the results of calling the function.

Compatibility note: In all LISP systems since LISP 1.5, mapl has been called map. In the
chapter on sequences it is explained why this was a bad choice. Here the name map is used
for the far more useful generic sequence mapper, in closer accordance to the computer
science literature, especially the growing body of papers on functional programming.

These functions are used when the function is being called merely for its side
effects, rather than its returned values. The value returned by mapl or mapc is the
second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist respectively, except that they
combine the results of the function using nconc instead of list. That is,

(mapcon f xl ... xn)
== (apply #'nconc (maplist f xl ... xn))

and similarly for the relationship between mapcan and ma pear. Conceptually, these
functions allow the mapped function to return a variable number of items to be put
into the output list. This is particularly useful for effectively returning zero or one
item:

(mapcan #'(lambda (x) (and (numberp x) (list x)))

'(a 1 b c 3 ~ d 5))

:}(13~5)

In this case the function serves as a filter; this is a standard LISP idiom using
mapcan. (The function remove-if-not might have been useful in this particular
context, however.) Remember that nconc is a destructive operation, and therefore
so are mapcan and mapcon; the lists returned by the function are altered in order
to concatenate them.

130 COMMON LISP

Sometimes a do or a straightforward recursion is preferable to a mapping oper
ation; however, the mapping functions should be used wherever they naturally
apply because this increases the clarity of the code.

The functional argument to a mapping function must be acceptable to apply; it
cannot be a macro or the name of a special form. Of course, there is nothing wrong
with using a function that has &optional and &rest parameters as the functional
argument.

7 .8.5. The "Program Feature"

LISP implementations since LISP 1.5 have had what was originally called "the
program feature," as if it were impossible to write programs without it! The prog

construct allows one to write in an ALGOL-like or FORTRAN-like statement-oriented
style, using go statements that can refer to tags in the body of the prog. Modem
LISP programming style tends to use prog rather infrequently. The various iteration
constructs, such as do, have bodies with the characteristics of a prog. (However,
the ability to use go statements within iteration constructs is very seldom used in
practice.)

Three distinct operations are performed by prog: it binds local variables, it
permits use of the return statement, and it permits use of the go statement. In
COMMON LISP, these three operations have been separated into three distinct con
structs: let, block, and tagbody. These three constructs may be used inde
pendently as building blocks for other types of constructs.

tagbody {tag I statement}* [Special form]

The part of a tagbody after the variable list is called the body. An item in the
body may be a symbol or an integer, in which case it is called a tag, or an item
in the body may be a list, in which case it is called a statement.

Each element of the body is processed from left to right. A tag is ignored; a
statement is evaluated, and its results are discarded. If the end of the body is
reached, the tagbody returns nil.

If (go tag) is evaluated, control jumps to the part of the body labelled with the
tag.

Compatibility note: The "computed go" feature of MACLISP is not supported. The syntax
of a computed go is idiosyncratic, and the feature is not supported by ZETALISP, NIL, or
INTERLISP. The computed go has been infrequently used in MAcLISP anyway, and is easily
simulated with no loss of efficiency by using a case statement each of whose clauses
performs a (non-computed) go.

CONTROL STRUCTURE 131

The scope of the tags established by a tagbody is lexical, and the extent is
dynamic. Once a tagbody construct has been exited, it is no longer legal to go to
a tag in its body. It is permissible for a go to jump to a tagbody that is not the
innermost tagbody construct containing that go; the tags established by a tagbody

will only shadow other tags of like name.
The lexical scoping of the go targets named by tags is fully general and has

consequences that may be surprising to users and implementors of other LISP

systems. For example, the go in the following example actually does "work" in
COMMON LISP as one might expect:

(tagbody

(catch 'stuff

(mapcar #'(lambda (x) (if (numberp x)

(hairyfun x)

(go lose)))

(return)

lose

items))

(error "I lost big!"))

Depending on the situation, a go in COMMON LISP does not necessarily correspond
to a simple machine "jump" instruction! A go can break up catchers if necessary
to get to the target. It is possible for a "closure" created by function for a
lambda-expression to refer to a go target as long as the tag is lexically apparent.
See chapter 3 for an elaborate example of this.

prog ({var I (var [init]) }*) {declaration}* {tag I statement}*
prog • ({var I (var [init]) }*) {declaration}* {tag I statement}*

[Macro]
[Macro]

The prog construct is a synthesis of let, block, and tagbody, allowing bound
variables and the use of return and go within a single construct. A typical prog

construct looks like this:

(prog (var] var2 (var3 init3) var4 (var5 init5))
{declaration}*

tag]

tag2

statement]

statement2
statement3
statement4

statement5

132 COMMON LISP

The list after the keyword p rog is a set of specifications for binding var 1, var2,
etc., which are temporary variables bound locally to the prog. This list is processed
exactly as the list in a let statement: first all the init forms are evaluated from left
to right (where nil is used for any omitted init form), and then the variables are
all bound in parallel to the respective results. Any declaration appearing in the
prog is used as if appearing at the top of the let body.

The body of the prog is executed as if it were a tagbody construct; the go

statement may be used to transfer control to a tag.
A prog implicitly establishes a block named nil around the entire prog con

struct, so that return may be used at any time to exit from the prog construct.
Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(prog (x y z) ;Initialize x, y, z to nil

(setq y (car w) z (cdr w))

loop

(cond ((null y) (return x))

((null z) (go err)))

rejoin

err

(setq x (cons (cons (car y) (car z)) x))

(setq y (cdr y) z (cdr z))

(go loop)

(cerror "Will self-pair extraneous items"

"Mismatch - gleep ! S" y)

(setq z y)

(go rejoin)))

which is accomplished somewhat more perspicuously by:

(defun prince-of-clarity (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(do ((y (car w) (cdr y))

(z (cdr w) (cdr z))

(x '() (cons (cons (car y) (car z)) x)))

((null y) x)

(when (null z)

(cerror "Will self-pair extraneous items"

"Mismatch - gleep ! S" y)

(setq z y))))

CONTROL STRUCTURE 133

The prog construct may be explained in terms of the simpler constructs block,

let, and tagbody as follows:

(prog variable-list {declaration}* . body)
- (block nil (let variable-list {declaration}* (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is that
the binding and initialization of the temporary variables is done sequentially, so
that the init form for each one can use the values of previous ones. Therefore prog*

is to prog as let* is to let. For example,

(prog* ((Y z) (x (car y)))

(return x))

returns the car of the value of z.

go tag [Special form]

The (go tag) special forin is used to do a "go to" within a tagbody construct.
The tag must be a symbol or an integer; the tag is not evaluated. go transfers
control to the point in the body labelled by a tag eql to the one given. If there is
no such tag in the body, the bodies of lexically containing tagbody constructs (if
any) are examined as well. It is an error if there is no matching tag lexically visible
to the point of the go.

The go form does not ever return a value.
As a matter of style, it is recommended that the user think twice before using a

go. Most purposes of go can be accomplished with one of the iteration primitives,
nested conditional forms, or return-from. If the use of go seems to be unavoid
able, perhaps the control structure implemented by go should be packaged as a
macro definition.

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes,
however, it is convenient for a function to compute several objects and return them.
COMMON LISP provides a mechanism for handling multiple values directly. This
mechanism is cleaner and more efficient than the usual tricks involving returning
a list of results or stashing results in global variables.

7.9.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to produce
multiple values and to receive them. If the caller of a function does not request

134 COMMON LISP

multiple values, but the called function produces multiple values, then the first
value is given to the caller and all others are discarded; if the called function
produces zero values, then the caller gets nil as a value.

The primary primitive for producing multiple values is values, which takes any
number of arguments and returns that many values. If the last form in the body of
a function is a values with three arguments, then a call to that function will return
three values. Other special forms also produce multiple values, but they can be
described in terms of values. Some built-in COMMON LISP functions, such as
floor, return multiple values; those that do are so documented.

The special forms and macros for receiving multiple values are as follows:

multiple-value-list

multiple-value-call

multiple-value-prog1

multiple-value-bind

multiple-value-setg

These specify a form to evaluate and an indication of where to put the values
returned by that form.

values &rest args

All of the arguments are returned, in order, as values. For example:

(defun polar (x y)

(values (sqrt (+ (*xx) (* y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 ~-0)

(vector r theta))

~ #(5.0 0.9272952)

[Function]

The expression (values) returns zero values. This is the standard idiom for
returning no values from a function.

Sometimes it is desirable to indicate explicitly that a function will return exactly
one value. For example, the function

(defun foo (x y)

(floor (+ x y) y))

will return two values because floor returns two values. It may be that the second
value makes no sense, or that for efficiency reasons it is desired not to compute
the second value. The values function is the standard idiom for indicating that
only one value is to be returned, as shown in the following example.

CONTROL STRUCTURE 135

(defun foo (x y)

(values (floor(+ x y) y)))

This works because values returns exactly one value for each of its argument
forms; as for any function call, if any argument form to values produces more
than one value, all but the first are discarded.

There is absolutely no way in COMMON LISP for a caller to distinguish between
returning a single value in the ordinary manner and returning exactly one "multiple
value." For example, the values returned by the expressions (+ 1 2) and (values

(+ 1 2)) are identical in every respect: the single value 3.

multiple-values-limit [Constant]

The value of multiple-values-limit is a positive integer that is the upper ex
clusive bound on the number of values that may be returned from a function. This
bound depends on the implementation, but will not be smaller than 20. (Imple
mentors are encouraged to make this limit as large as practicable without sacrificing
performance.) See lambda -parameters- limit and call-arguments- limit.

values-list list [Function]

All of the elements of list are returned as multiple values. For example:

(values-list (list ab c)) ~(values ab c)

In general,

(values-list list) = (apply #'values list)

but values-list may be clearer or more efficient.

multiple-value-list form [Macro]

multiple-value-list evaluates form and returns a list of the multiple values it
returned. For example:

(multiple-value-list (floor -3 ~)) =? (-1 1)

multiple-value-list and values-list are therefore inverses of each other.

multiple-value-call function {form}* [Special form]

multiple-value-call first evaluates function to obtain a function and then eval
uates all of the forms. All the values of the forms are gathered together (not just

136 COMMON LISP

one value from each) and are all given as arguments to the function. The result of
multiple-value-call is whatever is returned by the function. For example:

(+ (floor 5 3) (floor 1g L;))

=(+1L;):::}5

(multiple-value-call #'+ (floor 5 3) (floor 1g L;))

= (+ 1 2 L; 3) :::} 10

(multiple-value-list form) - (multiple-value-call #'list form)

multiple-value-prog1 form {form}* [Special form]

multiple-value-prog1 evaluates the firstform and saves all the values produced
by that form. It then evaluates the other forms from left to right, discarding their
values. The values produced by the first form are returned by multiple-value-prog1.

See prog1, which always returns a single value.

multiple-value-bind ({var}*) values-form {declaration}* {form}* [Macro]

The valuesjorm is evaluated, and each of the variables var is bound to the re
spective value returned by that form. If there are more variables than values re
turned, extra values of nil are given to the remaining variables. If there are more
values than variables, the excess values are simply discarded. The variables are
bound to the values over the execution of the forms, which make up an implicit
progn. For example:

(multiple-value-bind (x) (floor 5 3) (list x)) :::} (1)

(multiple-value-bind (x y) (floor 5 3) (list x y)):::} (1 2)

(multiple-value-bind (x y z) (floor 5 3) (list x y z))

=? (1 2 nil)

multiple-val ue-setq variables form [Macro]

The variables must be a list of variables. The form is evaluated, and the variables
are set (not bound) to the values returned by that form. If there are more variables
than values returned, extra values of nil are assigned to the remaining variables.
If there are more values than variables, the excess values are simply discarded.

Compatibility note: In ZETALISP this is called multiple-value. The added clarity of the
name multiple-value-setq in COMMON LISP was deemed worth the incompatibility with
ZETALISP.

CONTROL STRUCTURE 137

multiple-value-setq always returns a single value, which is the first value returned
by form, or nil if form produces zero values.

7.9.2. Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to be
the value of one of its subforms. For example, the value of a cond is the value of
the last form in the selected clause. In most such cases, if the subform produces
multiple values, then the original form will also produce all of those values. This
passing back of multiple values of course has no effect unless eventually one of
the special forms for receiving multiple values is reached.

To be explicit, multiple values can result from a special form under precisely
these circumstances:

Evaluation and Application

• eval returns multiple values if the form given it to evaluate produces multiple
values.

• apply, funcall, and multiple-value-call pass back multiple values from
the function applied or called.

Implicit progn contexts

• The special form progn passes backs multiple values resulting from evaluation
of the last subform. Other situations referred to as "implicit progn," where
several forms are evaluated and the results of all but the last form are discarded,
also pass back multiple values from the last form. These situations include the
body of a lambda-expression, in particular those constructed by defun, defmacro,

and deftype. Also included are bodies of the constructs eval-when, progv,

let, let*, when, unless, block, multiple-value-bind, and catch, as well
as clauses in such conditional constructs as case, typecase, ecase, etypecase,

cease, and ctypecase.

Conditional constructs

• if passes back multiple values from whichever subform is selected (the then
form or the else form).

• and and or pass back multiple values from the last subform but not from subforms
other than the last.

138 COMMON LISP

• cond passes back multiple values from the last subform of the implicit progn of
the selected clause. If, however, the clause selected is a singleton clause, then
only a single value (the non-nil predicate value) is returned. This is true even
if the singleton clause is the last clause of the cond. It is not permitted to treat
a final clause (x) as being the saine as (t x) for this reason; the latter passes
back multiple values from the form x.

Returning from a block

• The block construct passes back multiple values from its last subform when it
exits normally. If return-from (or return) is used to terminate the block
prematurely, then return - from passes back multiple values from its sub form
as the values of the terminated block. Other constructs that create implicit
blocks, such as do, dolist, dotimes, prog, and prog*, also pass back multiple
values specified by return-from (or return).

• do passes back multiple values from the last form of the exit clause, exactly as
if the exit clause were a cond clause. Similarly, do list and do times pass back
multiple values from the resultform if that is executed. These situations are all
examples of implicit uses of return-from.

Throwing out of a catch

• The catch construct returns multiple values if the result form in a throw exiting
from such a catch produces multiple values.

Miscellaneous situations

• multiple-value-prog1 passes back multiple values from its first subform.
However, prog1 always returns a single value.

• unwind-p~otect returns multiple values if the form it protects returns mutliple
values.

• the returns multiple values if the form it contains returns multiple values.

Among special forms that never pass back multiple values are setq, multiple
value-setq, prog1, and prog2. The conventional way to force only one value to
be returned from a form x is to write (values x).

The most important rule about multiple values is: No matter how many values
a form produces, if the form is an argument form in a function call, then
exactly one value (the first one) is used.

CONTROL STRUCTURE 139

For example, if you write (cons (floor x)) , then cons will always receive
exactly one argument (which is of course an error), even though floor returns two
values. To pass both values from floor to cons, one must write something like
(multiple-value-call #'cons (floor x)). In an ordinary function call, each
argument form produces exactly one argument; if such a form returns zero values,
nil is used for the argument, and if more than one value, all but the first are
discarded. Similarly, conditional constructs such as if that test the value of a form
will use exactly one value, the first one, from that form and discard the rest; such
constructs will use nil as the test value if zero values are returned.

7.10. Dynamic Non-local Exits

COMMON LISP provides a facility for exiting from a complex process in a non-local,
dynamically scoped manner. There are two classes of special forms for this purpose,
called catch forms and throw forms, or simply catches and throws. A catch form
evaluates some subforms in such a way that, if a throw form is executed during
such evaluation, the evaluation is aborted at that point and the catch form immediately
returns a value specified by the throw. Unlike block and return (section 7.7),
which allow for exiting a block form from any point lexically within the body of
the block, the catch/throw mechanism works even if the throw form is not textually
within the body of the catch form. The throw need only occur within the extent
(time span) of the evaluation of the body of the catch. This is analogous to the
distinction between dynamically bound (special) variables and lexically bound (local)
variables.

catch tag {form}* [Special form]

The catch special form serves as a target for transfer of control by throw. The
form tag is evaluated first to produce an object that names the catch; it may be any
LISP object. A catcher is then established with the object as the tag. The forms are
evaluated as an implicit progn, and the results of the last form are returned, except
that if during the evaluation of the forms a throw should be executed such that the
tag of the throw matches (is eq to) the tag of the catch and the catcher is the most
recent outstanding catcher with that tag, then the evaluation of the forms is aborted
and the results specified by the throw are immediately returned from the catch

expression. The catcher established by the catch expression is disestablished just
before the results are returned.

The tag is used to match throws with catches. (catch 'fooform) will catch a
(throw 'fooform) but not a (throw 'barform). It is an error if throw is done
when there is no suitable catch ready to catch it.

140 COMMON LISP

Catch tags are compared using eq, not eql; therefore numbers and characters
should not be used as catch tags.

Compatibility note: The name catch comes from MAcLrsP, but the syntax of catch in
COMMON LISP is different. The MACLISP syntax was (catch form tag), where the tag was
not evaluated.

unwind-protect protected-form {cleanupjorm}* [Special farm]

Sometimes it is necessary to evaluate a form and make sure that certain side effects
take place after the form is evaluated; a typical example is:

(progn (start-motor)

(drill-hole)

(stop-motor))

The non-local exit facility of COMMON LlsP creates a situation in which the above
code won't work, however: if drill-hole should do a throw to a catch that is
outside of the progn form (perhaps because the drill bit broke), then (stop-motor)

will never be evaluated (and the motor will presumably be left running). This is
particularly likely if drill-hole causes a LISP error and the user tells the error-handler
to give up and abort the computation. (A possibly more practical example might
be:

(prog2 (open-a-file)

(process-file)

(close-the-file))

where it is desired always to close the file when the computation is terminated for
whatever reason. This case is so important that COMMON LISP provides the special
form with-open-file for this purpose.)

In order to allow the example hole-drilling program to work, it can be rewritten
using unwind-protect as follows:

(unwind-protect

(progn (start-motor)

(drill-hole))

(stop-motor))

If drill- hole does a throw that attempts to quit out of the unwind-protect, then
(stop-motor) will be executed.

CONTROL STRUCTURE 141

This example assumes that it is correct to call stop-motor even if the motor
has not yet been started. Remember that an error or interrupt may cause an exit
even before any initialization forms have been executed. Any state restoration code
should operate correctly no matter where in the protected code an exit occurred.
For example, the following code is not correct:

(unwind-protect

(progn (incf •access-count•)

(perform-access))

(decf •access-count•))

If an exit occurs before completion of the incf operation the decf operation will
be executed anyway, resulting in an incorrect value for •access-count•. The
correct way to code this is as follows:

(let ((old-count •access-count•))

(unwind-protect

(progn (incf •access-count•)

(perform-access))

(setq •access-count• old-count)))

As a general rule, unwind-protect guarantees to execute the cleanupjorms
before exiting, whether it terminates normally or is aborted by a throw of some
kind. (If, however, an exit occurs during execution of the cleanup-forms, no special
action is taken. The cleanupjorms of an unwind-protect are not protected by
that unwind-protect, though they may be protected if that unwind-protect oc
curs within the protected form of another unwind-protect.) unwind-protect

returns whatever results from evaluation of the protected-form and discards all the
results from the cleanupjorms.

It should be emphasized that unwind-protect protects against all attempts to
exit from the protected form, including not only such "dynamic exit" facilities such
as throw but also such "lexical exit" facilities as go and return-from. Consider
this situation:

(tagbody

(let ((x 3))

(unwind-protect

out

(if (numberp x) (go out))

(print x)))

...)

142 COMMON LISP

When the go is executed, the call to print is executed first, and then the transfer
of control to the tag out is completed.

throw tag result [Special form]

The throw special form transfers control to a matching catch construct. The tag
is evaluated first to produce an object called the throw tag; then the result form is
evaluated, and its results are saved (if the result form produces multiple values,
then all the values are saved). The most recent outstanding catch whose tag matches
the throw tag is exited; the saved results are returned as the value(s) of the catch.
A catch matches only if the catch tag is eq to the throw tag.

In the process, dynamic variable bindings are undone back to the point of the
catch, and any intervening unwind-protect cleanup code is executed. The result
form is evaluated before the unwinding process commences, and whatever results
it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no unwinding
of the stack is performed, and an error is signalled. When the error is signalled,
the outstanding catchers and the dynamic variable bindings are those in force at
the point of the throw.

Implementation note: These requirements imply that throwing should typically make two
passes over the control stack. In the first pass it simply searches for a matching catch. In
this search every catch must be considered, but every unwind-protect should be ignored.
On the second pass the stack is actually unwound, one frame at a time, undoing dynamic
bindings and outstanding unwind-protect constructs in reverse order of creation until the
matching catch is reached.

Compatibility note: The name throw comes from MACLISP, but the syntax of throw in
COMMON LISP is different. The MACLISP syntax was (throw form tag), where the tag was
not evaluated.

B

Macros

The COMMON LISP macro facility allows the user to define arbitrary functions that
convert certain LISP forms into different forms before evaluating or compiling them.
This is done at the expression level, not at the character-string level as in most
other languages. Macros are important in the writing of good code: they make it
possible to write code that is clear and elegant at the user level, but that is converted
to a more complex or more efficient internal form for execution.

When eval is given a list whose car is a symbol, it looks for local definitions
of that symbol (by fl et, labels, and macro let); if that fails, it looks for a global
definition. If the definition is a macro definition, then the original list is said to be
a macro call. Associated with the definition will be a function of two arguments,
called the expansion function. This function is called with the entire macro call as
its first argument (the second argument is a lexical environment); it must return
some new LISP form, called the expansion of the macro call. (Actually, a more
general mechanism is involved; see macroexpand.) This expansion is then eval
uated in place of the original form.

When a function is being compiled, any macros it contains are expanded at
compilation time. This means that a macro definition must be seen by the compiler
before the first use of the macro.

More generally, an implementation of COMMON LISP has great latitude in de
ciding exactly when to expand macro calls within a program. For example, it is
acceptable for the defun special form to expand all macro calls within its body at
the time the defun form is executed and record the fully expanded body as the
body of the function being defined. (An implementation might even choose always
to compile functions defined by de fun, even when operating in an "interpretive"
mode!)

Macros should be written in such a way as to depend as little as possible on the
execution environment to produce a correct expansion. To ensure consistent be-

143

144 COMMON LISP

havior, it is best to ensure that all macro definitions are available, whether to the
interpreter or compiler, before any code containing calls to those macros is intro
duced.

In COMMON LISP, macros are not functions. In particular, macros cannot be used
as functional arguments to such functions as apply, funcall, or map; in such
situations, the list representing the "original macro call" does not exist, and cannot
exist, because in some sense the arguments have already been evaluated.

8.1. Macro Definition

The function macro-function determines whether a given symbol is the name of
a macro. The defmacro construct provides a convenient way to define new macros.

macro-function symbol [Function]

The argument must be a symbol. If the symbol has a global function definition
that is a macro definition, then the expansion function (a function of two arguments,
the macro-call form and an environment) is returned. If the symbol has no global
function definition, or has a definition as an ordinary function or as a special form
but not as a macro, then nil is returned. The function macroexpand is the best
way to invoke the expansion function.

It is possible for both macro-function and special-form-p to be true of a
symbol. This is possible because an implementation is permitted to implement any
macro also as a special form for speed. On the other hand, the macro definition
must be available for use by programs that understand only the standard special
forms listed in Table 5-1.

macro-function cannot be used to determine whether a symbol names a locally
defined macro established by macrolet; macro-function can examine only global
definitions.

setf may be used with macro-function to install a macro as a symbol's global
function definition:

(setf (macro-function symbol) jn)

The value installed must be a function that accepts two arguments, an entire macro
call and an environment, and computes the expansion for that call. Performing this
operation causes the symbol to have only that macro definition as its global function
definition; any previous definition, whether as a macro or as a function, is lost. It
is an error to attempt to redefine the name of a special form (see Table 5-1).

MACROS 145

defmacro name lambda-list {declaration I doc-string}* {form}* [Macro]

defmacro is a macro-defining macro that arranges to decompose the macro-call
form in an elegant and useful way. defmacro has essentially the same syntax as
defun: name is the symbol whose macro definition we are creating, lambda-list is
similar in form to a lambda-list, and the forms constitute the body of the expander
function. The defmacro construct arranges to install this expander function, as the
global macro definition of name. The expander function is effectively defined in
the global environment; lexically scoped entities established outside the defmacro

form that would ordinarily be lexically apparent are not visible within the body of
the expansion function. The name is returned as the value of the defmacro form.

If we view the macro call as a list containing a function name and some argument
forms, in effect the expander function and the list of (unevaluated) argument forms
is given to apply. The parameter specifiers are processed as for any
lambda-expression, using the macro-call argument forms as the arguments. Then
the body forms are evaluated as an implicit progn, and the value of the last form
is returned as the expansion of the macro call.

If the optional documentation string doc-string is present (if not followed by a
declaration, it may be present only if at least one form is also specified, as it is
otherwise taken to be aform), then it is attached to the name as a documentation
string of type function; see documentation.

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list
keywords &optional, &rest, &key, &allow-other-keys, and &aux. For
&optional and &key parameters, initialization forms and "supplied-p" parameters
may be specified, just as for de fun. Three additional markers are allowed in defmacro

variable lists only:

&body

&whole

This is identical in function to &rest, but it informs certain
output-formatting and editing functions that the remainder of the
form is treated as a body, and should be indented accordingly.
(Only one of &body or &rest may be used.)

This is followed by a single variable that is bound to the entire
macro-call form; this is the value that the macro definition function
receives as its single argument. &whole and the following variable
should appear first in the lambda-list, before any other parameter
or lambda-list keyword.

This is followed by a single variable that is bound to an environment
representing the lexical environment in which the macro call is
to be interpreted. This environment may not be the complete

146 COMMON LISP

lexical environment; it should be used only with the function
macroexpand for the sake of any local macro definitions that the
macrolet construct may have established within that lexical
environment. This is useful primarily in the rare cases where a
macro definition must explicitly expand any macros in a subform
of the macro call before computing its own expansion.

See lambda-list-keywords.

defmacro, unlike any other COMMON LISP construct that has a lambda-list as
part of its syntax, provides an additional facility known as destructuring. Anywhere
in the lambda-list where a parameter name may appear, and where ordinary lambda-list
syntax (as described in section 5.2.2) does not otherwise allow a list, a lambda-list
may appear in place of the parameter name. When this is done, then the argument
form that would match the parameter is treated as a (possibly dotted) list, to be
used as an argument forms list for satisfying the parameters in the embedded
lambda-list. As an example, one could write the macro definition for dolist in
this manner:

(defmacro dolist ((var listform &optional resultform)

&rest body)

...)

More examples of embedded lambda-lists in defmacro are shown below.
Another destructuring rule is that defmacro allows any lambda-list (whether

top-level or embedded) to be dotted, ending in a parameter name. This situation
is treated exactly as if the parameter name that ends the list had appeared preceded
by &rest. For example, the definition skeleton for dolist shown above could
instead have been written

(defmacro dolist ((var listform &optional resultform)

. body)

...)

If the compiler encounters a defmacro, the new macro is added to the compi
lation environment, and a compiled form of the expansion function is also added
to the output file so that the new macro will be operative at runtime. If this is not
the desired effect, the defmacro form can be wrapped in an eval-when construct.

It is permissible to use defmacro to redefine a macro (for example, to install a
corrected version of an incorrect definition!), or to redefine a function as a macro.
It is an error to attempt to redefine the name of a special form (see Table 5-1) as
a macro.

MACROS 147

See also macrolet, which establishes macro definitions over a restricted lexical
scope.

Suppose, for the sake of example, that it were desirable to implement a condi
tional construct analogous to the FORTRAN arithmetic IF statement. (This of course
requires a certain stretching of the imagination and suspension of disbelief.) The
construct should accept four forms: a test-value, a negjorm, a zero-form, and a
posjorm. One of the last three forms is chosen to be executed according to whether
the value of the test-form is positive, negative, or zero. Using defmacro, a defi
nition for such a construct might look like this:

(defmacro arithmetic-if (test neg-form zero-form pos-form)

(let ((var (gensym)))

'(let ((,var ,test))

(cond ((< ,var D) ,neg-form)

((= ,var D) ,zero-form)

(t ,pos-form)))))

Note the use of the backquote facility in this definition. See section 22.1.3. Also
note the use of gensym to generate a new variable name. This is necessary to avoid
conflict with any variables that might be referred to in neg-form, zero-form, or
pos-form.

If the form is executed by the interpreter, it will cause the function definition of
the symbol arithmetic-if to be a macro associated with which is a two-argument
expansion function roughly equivalent to:

(lambda (calling-form environment)

(declare (ignore environment))

(let ((var (gensym)))

(list 'let

(list (list 'var (cadr calling-form)))

(list 'cond

(list (list'< var 'D) (caddr calling-form))

(list (list'= var 'D) (cadddr calling-form))

(list 't (fifth calling-form))))))

The lambda-expression is produced by the defmacro declaration. The calls to list

are the (hypothetical) result of the backquote (•) macro character and its associated
commas. The precise macro expansion function may depend on the implementation,
for example providing some degree of explicit error checking on the number of
argument forms in the macro call.

Now, if eval encounters

148 COMMON LISP

Now, if eval encounters

(arithmetic-if (- x ~.O)

(- x)

(error "Strange zero")

x)

this will be expanded into something like

(let ((g~07 (- x ~.O)))

(cond ((< g~07 O) (- x))

((= g~ 07 O) (error "Strange zero"))

(t x)))

and eval tries again on this new form. (It should be clear now that the backquote
facility is very useful in writing macros, since the form to be returned is normally
a complex list structure, typically consisting of a mostly constant template with a
few evaluated forms here and there. The backquote template provides a "picture"
of the resulting code, with places to be filled in indicated by preceding commas.)

To expand on this example, stretching credibility to its limit, we might allow
the pas-form and zerojorm to be omitted, allowing their values to default to nil,

in much the same way that the else form of a COMMON LISP if construct may be
omitted:

(defmacro arithmetic-if (test neg-form

&optional zero-form pos-form)

(let ((var (gensym)))

'(let ((,var ,test))

(cond ((< ,var 0) ,neg-form)

((= ,var O) ,zero-form)

(t ,pos-form)))})

Then one could write

(arithmetic-if (- x ~.O) (print x))

which would be expanded into something like

(let ((g~Oll (- x ~. 0)))

(cond ((< g~Oll 0) (print x))

((= g~Oll 0) nil)

(t nil)))

MACROS 149

The resulting code is correct but rather silly-looking. One might rewrite the macro
definition to produce better code when posjorm and possibly zerojorm are omitted,
or one might simply rely on the COMMON LISP implementation to provide a compiler
smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defmacro lambda-list
to express the structure of a complicated macro-call syntax. If no lambda-list key
words appear, then the defmacro lambda-list is simply a list, nested to some extent,
containing parameter names at the leaves. The macro-call form must have the same
list structure. For example, consider this macro definition:

(defmacro halibut ((mouth eye1 eye2)

...)

((fin1 length1) (fin2 length2))

tail)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the following values for its
parameters:

Parameter Value

mouth m

eye1 (car eyes)

eye2 (cdr eyes)

fin1 f1

length1 (count-scales f1)

fin2 f2

length2 (count-scales f2)

tail my-favorite-tail

The following macro call would be in error because there would be no argument
form to match the parameter length1:

(halibut (m (car eyes) (cdr eyes))

((f1) (f2 (count-scales f2)))

my-favorite-tail)

The following macro call would be in error because a symbol appears in the call
where the structure of the lambda-list requires a list.

150 COMMON LISP

(halibut my-favorite-head

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

The fact that the value of the variable my-favorite-head might happen to be a
list is irrelevant here. It is the macro call itself whose structure must match that of
the defmacro lambda-list.

The llSe of lambda-list keywords adds even greater flexibility. For example,
suppose it is convenient within the expansion function for halibut to be able to
refer to the list whose components are called mouth, eye1, and eye2 as head. One
may write this:

(defmacro halibut ((&whole head mouth eye1 eye2)

((fin1 length1) (fin2 length2))

tail)

Now consider the same valid macro call as before:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the same values for its parameters
and also a value for the parameter head:

Parameter

head (m (car eyes) (cdr eyes))

The stipulation, that an embedded lambda-list is permitted only where ordinary
lambda-list syntax would permit a parameter name but not a list, is made to prevent
ambiguity. For example, one may not write

(defmacro loser (x &optional (a b &rest c) &rest z)

...)

because ordinary lambda-list syntax does permit a list following &optional; the
list (ab &rest c) would be interpreted as describing an optional parameter named
a whose default value is that of the form b, with a supplied-p parameter named
&rest (not legal), and an extraneous symbol c in the list (also not legal). An almost
correct way to express this is

(defmacro loser (x &optional ((ab &rest c)) &rest z)

...)

MACROS 151

The extra set of parentheses removes the ambiguity. However, the definition is
now incorrect because a macro call such as (loser (car pool)) would not provide
any argument form for the lambda-list (a b &rest c), and so the default value
against which to match the lambda-list would be nil because no explicit default
value was specified. This is in error because nil is an empty list; it does not have
forms to satisfy the parameters a and b. The fully correct definition would be either

(defmacro loser (x &optional ((ab &rest c) '(nil nil)) &rest z)

...)

or

(defmacro loser (x &optional ((&optional ab &rest c)) &rest z)

...)

These differ slightly: the first requires that if the macro call specifies a explicitly
then it must also specify b explicitly, whereas the second does not have this
requirement. For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

8.2. Macro Expansion

The macroexpand function is the conventional means for expanding a macro call.
A hook is provided for a user function to gain control during the expansion process.

macroexpand form &optional env
macroexpand-1 form &optional env

[Function]
[Function]

If form is a macro call, then macroexpand-1 will expand the macro call once and
return two values: the expansion and t. If form is not a macro call, then the two
values form and nil are returned.

Aform is considered to be a macro call only if it is a cons whose car is a symbol
that names a macro. The environment env is similar to that used within the evaluator
(see evalhook); it defaults to a null environment. Any local macro definitions
established within env by macrolet will be considered. If only form is given as
an argument, then the environment is effectively null, and only global macro
definitions (as established by defmacro) will be considered.

152 COMMON LISP

Macro expansion is carried out as follows. Once rnacroexpand-1 has determined
that a symbol names a macro, it obtains the expansion function for that macro.
The value of the variable *rnacroexpand-hook* is then called as a function of
three arguments: the expansion function, the form, and the environment env. The
value returned from this call is taken to be the expansion of the macro call. The
initial value of *rnacroexpand-hook* is funcall, and the net effect is to invoke
the expansion function, giving itform and env as its two arguments. (The purpose
of *Inacroexpand- hook* is to facilitate various techniques for improving interpre
tation speed by caching macro expansions.)

The evaluator expands macro calls as if through the use of rnacroexpana-1; the
point is that eval also uses * rnacroexpand- hook*.

rnacroexpand is similar to rnacroexpand-1, but repeatedly expands form until
it is no longer a macro call. (In effect, rnacroexpand simply calls rnacroexpand-1

repeatedly until the second value returned is nil.) A second value oft or nil is
returned as for rnacroexpand-1, indicating whether the original form was a macro
call.

Inacroexpand-hook [Variable]

The value of * rnacroexpand-hook * is used as the expansion interface hook by
rnacroexpand-1.

9

Declarations

Declarations allow you to specify extra information about your program to the LISP

system. With one exception, declarations are completely optional and correct
declarations do not affect the meaning of a correct program. The exception is that
special declarations do affect the interpretation of variable bindings and references,
and so must be specified where appropriate. All other declarations are of an advisory
nature, and may be used by the LISP system to aid the programmer by performing
extra error checking or producing more efficient compiled code. Declarations are
also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such
as a type declaration), but an implementation is not required to detect such errors
(though such detection, where feasible, is to be encouraged).

9.1. Declaration Syntax

The declare construct is used for embedding declarations within executable code.
Global declarations and declarations that are computed by a program are established
by the proclaim construct.

declare {decl-spec}* [Special form]

A declare form is known as a declaration. Declarations may occur only at the
beginning of the bodies of certain special forms; that is, a declaration may occur
only as a statement of such a special form, and all statements preceding it (if any)
must also be declare forms (or possibly documentation strings, in some cases).
Declarations may occur in lambda-expressions and in the forms listed here.

153

154 COMMON LISP

defmacro

defsetf

def type

de fun

dO*

do-all-symbols

do-external-symbols

do-symbols

do

do list

dotimes

fl et

labels

let

let*

locally

macro let

multiple-value-bind

prog

prog*

It is an error to attempt to evaluate a declaration. Those special forms that permit
declarations to appear perform explicit checks for their presence.

Compatibility note: In MACLISP, declare is a special form that does nothing but return
the symbol declare as its result. The MACLISP interpreter knows nothing about declarations
but just blindly evaluates them, effectively ignoring them. The MAcL1sP compiler recognizes
declarations but processes them simply by evaluating the subforms of the declaration in the
compilation context. In COMMON LISP it is important that both the interpreter and compiler
recognize declarations (especially special declarations) and treat them consistently, and so
the rules about the structure and use of declarations have been made considerably more
stringent. The odd tricks played in MACLISP by writing arbitrary forms to be evaluated
within a declare form are better done in both MACLISP and COMMON LISP by using
eval-when.

It is permissible for a macro call to expand into a declaration and be recognized
as such, provided that the macro call appears where a declaration may legitimately
appear. (However, a macro call may not appear in place of a decl-spec.)

Each decl-spec is a list whose car is a symbol specifying the kind of declaration
to be made. Declarations may be divided into two classes: those that concern the
bindings of variables, and those that do not. (The special declaration is the sole
exception: it effectively falls into both classes, as explained below.) Those that
concern variable bindings apply only to the bindings made by the form at the head
of whose body they appear. For example, in

(defun foo (x)

(declare (type float x)) ...

(let ((x 'a)) ...)

...)

DECLARATIONS 155

the type declaration applies only to the outer binding of x, and not to the binding
made in the let.

Compatibility note: This represents a difference from MACLISP, in which type declarations
are pervasive.

Declarations that do not concern themselves with variable bindings are pervasive,
affecting all code in the body of the special form. As an example of a pervasive
declaration,

(de fun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should not be
open-coded but called as an out-of-line subroutine.

Some special forms contain pieces of code that, properly speaking, are not part
of the body of the special form. Examples of this are initialization forms that
provide values for bound variables, and the result forms of iteration constructs. In
all cases such additional code is within the scope of any pervasive declarations
appearing before the body of the special form. Non-pervasive declarations have no
effect on such code, except (of course) in those situations where the code is defined
to be within the scope of the variables affected by such non-pervasive declarations.
For example:

(defun few (x &optional (y •print-circle•))

(declare (special •print-circle•))

...)

The reference to •print-circle• in the first line of this example is special because
of the declaration in the second line.

(defun nonsense (k x z)

(foo z x)

(let ((j (foo k x))

(x (. k k)))

;First call to foo

;Second call to foo

(declare (inline foo) (special x z))

(foo x j z))) ;Third call to foo

In this rather nonsensical example, the inline declaration applies to the second
and third calls to too, but not to the first one. The special declaration of x causes
the let form to make a special binding for x, and causes the reference to x in the
body of the let to be a special reference. The reference to x in the second call to

156 COMMON LISP

foo is also a special reference. The reference to x in the first call to foo is a local
reference, not a special one. The special declaration of z causes the reference to
z in the call to foo to be a special reference; it will not refer to the parameter to
nonsense named z, because that parameter binding has not been declared to be
special. (The special declaration of z does not appear in the body of the defun,

but in an inner construct, and therefore does not affect the binding of the parameter.)

locally {declaration}* {form}* [Macro]

This special form may be used to make local pervasive declarations where desired.
It does not bind any variables and therefore cannot be used meaningfully for
declarations of variable bindings. (Note that the special declaration may be used
with locally to pervasively affect references to, rather than bindings of, variables.)
For example:

(locally (declare (inline floor) (notinline car cdr))

(declare (optimize space))

(floor (car x) (cdr y)))

proclaim decl-spec [Function]

The function proclaim takes a decl-spec as its argument and puts it into effect
globally. (Such a global declaration is called a proclamation.) Because proclaim

is a function, its argument is always evaluated. This allows a program to compute
a declaration and then put it into effect by calling proclaim.

Any variable names mentioned are assumed to refer to the dynamic values of
the variable. For example, the proclamation

(proclaim '(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always be a
floating-point number. Similarly, any function names mentioned are assumed to
refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless locally
shadowed. For example,

(proclaim '(inline floor))

advises that floor should normally be open-coded in-line by the compiler (but in
the situation

(defun foo (x y) (declare (notinline floor)) ...)

DECLARATIONS 157

it will be compiled out-of-line anyway in the body of foo, because of the shadowing
local declaration to that effect).

As a special case (so to speak), proclaim treats a special declarationjorm as
applying to all bindings as well as to all references of the mentioned variables. For
example, after

(proclaim '(special x))

then in a function definition such as

(de fun example (x) ...)

the parameter x will be bound as a special (dynamic) variable rather than as a
lexical (static) variable. This facility should be used with caution. The usual way
to define a globally special variable is with defvar or defparameter.

9.2. Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct is said
to be "affected" by a declaration if it occurs within the scope of a declaration.

special

(special var] var2 ...) specifies that all of the variables named are to be con
sidered special. This specifier affects variable bindings but also pervasively affects
references. All variable bindings affected are made to be dynamic bindings, and
affected variable references refer to the current dynamic binding rather than the
current local binding. For example:

(defun hack (thing •mod•)

(declare (special •mod•))

(hack1 (car thing)))

(defun hack1 (arg)

(declare (special •mod•))

(if (atom arg) •mod•

; The binding of the parameter
•mod• is visible to hack1,

; but not that of thing.

; Declare references to •mod •

; within hack1 to be special.

(cons (hack1 (car arg)) (hack1 (cdr arg)))))

Note that it is conventional, though not required, to give special variables names
that begin and end with an asterisk.

l 58 COMMON LISP

A special declaration does not affect bindings pervasively. Inner bindings of
a variable implicitly shadow a special declaration and must be explicitly re-declared
to be special. (However, a special proclamation does pervasively affect bindings;
this exception is made for reasons of convenience and compatibility with MAcLISP.)
For example:

(proclaim '(special x))

(defun example (x y)

(declare (special y))

(let ((y 3) (X (* X 2)))

; x is always special.

(print (+ y (locally (declare (special y)) y)))

(let ((y L;)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are special
and therefore dynamically scoped, but the middle binding is lexically scoped. The
two arguments to + are different, one being the value, which is 3, of the lexically
bound variable y, and the other being the value of the special variable named y (a
binding of which happens, coincidentally, to lexically surround it at an outer level).
All the bindings of x and references to x are special, however, because of the
proclamation that x is always special.

As a matter of style, use of special proclamations should be avoided. The
defvar and defparameter macros are the conventional means for proclaiming
special variables in a program.

type

(type type var 1 var2 ...) affects only variable bindings and specifies that the
variables mentioned will take on values only of the specified type. In particular,
values assigned to the variables by setq, as well as the initial values of the vari
ables, must be of the specified type.

type

(type var] var2 ...) is an abbreviation for (type type var] var2 ...) , provided
that type is one of the symbols appearing in Table 4-1.

ftype

(ftype type function-name- I function-name-2 ...) specifies that the named func
tions will be of the functional type type, an example of which follows.

DECLARATIONS

(declare (ftype (function (integer list) t) nth)

(ftype (function (number) float) sin cos))

159

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

function

(function name arglist result-type] result-type2 ...) is entirely equivalent to

(ftype (function arglist result-type] result-type2 ...) name)

but may be more convenient for some purposes. For example:

(declare (function nth (integer list) t)

(function sin (number) float)

(function cos (number) float))

The syntax mildly resembles that of defun: a function name, then an argument
list, then a specification of results.

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

in line

(in line function] function2 ...) specifies that it is desirable for the compiler to
open-code calls to the specified functions; that is, the code for a specified function
should be integrated into the calling routine, appearing "in line" in place of a
procedure call. This may achieve extra speed at the expense of debuggability (calls
to functions compiled in-line cannot be traced, for example). This declaration is
pervasive. Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

notinline

(notinline function] function2 ...) specifies that it is undesirable to compile
the specified functions in-line. This declaration is pervasive. A compiler is not free
to ignore this declaration.

160 COMMON LISP

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by net or labels), then the
declaration applies to that local definition and not to the global function definition.

ignore

(ignore var] var2 ... varn) affects only variable bindings and specifies that the
bindings of the specified variables are never used. It is desirable for a compiler to
issue a warning if a variable so declared is ever referred to or is also declared
special, or if a variable is lexical, never referred to, and not declared to be ignored.

optimize

(optimize (quality] value]) (quality2 value2) . ..) advises the compiler that each
quality should be given attention according to the specified corresponding value.
A quality is a symbol; standard qualities include speed (of the object code), space

(both code size and run-time space), safety (run-time error checking), and com

pilation-speed (speed of the compilation process). Other qualities may be rec
ognized by particular implementations. A value should be a non-negative integer,
normally in the range o to 3. The value o means that the quality is totally unim
portant, and 3 that the quality is extremely important; 1 and 2 are intermediate
values, with 1 the "normal" or "usual" value. One may abbreviate (quality 3) to
simply quality. This declaration is pervasive. For example:

(defun often-used-subroutine (x y)

(declare (optimize (safety 2)))

(error-check x y)

(hairy-setup x)

(do ((i D (+ i 1))

(z x (cdr z)))

((null z) i)

;; This inner loop really needs to burn.

(declare (optimize speed))

(declare (fixnum i))

)))

declaration

(declaration name] name2 ...) advises the compiler that each namej is a valid
but non-standard declaration name. The purpose of this is to tell one compiler not

DE CLARA T/ONS 161

to issue warnings for declarations meant for another compiler or other program
processor. This kind of declaration may be used only as a proclamation. For ex
ample:

(proclaim '(declaration author

target-language

target-machine))

(proclaim '(target-language ada))

(proclaim '(target-machine IBM-650))

(defun strangep (x)

(declare (author "Harry Tweeker"))

(member x '(strange weird odd peculiar)))

An implementation is free to support other (implementation-dependent) decla
ration specifiers as well. On the other hand, a COMMON LISP compiler is free to
ignore entire classes of declaration specifiers (for example, implementa
tion-dependent declaration specifiers not supported by that compiler's implemen
tation!), except for the declaration declaration specifier. Compiler implementors
are encouraged, however, to program the compiler to issue by default a warning
if the compiler finds a declaration specifier of a kind it never uses. Such a warning
is required in any case if a declaration specifier is not one of those defined above
and has not been declared in a declaration declaration.

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of some
form will be of a particular type. Using declare one can declare the type of the
value held by a bound variable, but there is no easy way to declare the type of the
value of an unnamed form. For this purpose the the special form is defined; (the

type form) means that the value of form is declared to be of type type.

the value-type form [Special Form]

The form is evaluated; whatever it produces is returned by the the form. In ad
dition, it is an error if what is produced by the form does not conform to the data
type specified by value-type (which is not evaluated). (A given implementation
may or may not actually check for this error. Implementations are encouraged to
make an explicit error check when running interpretively.) In effect, this declares

162 COMMON LISP

that the user undertakes to guarantee that the values of the form will always be of
the specified type. For example:

(the string (copy-seq x))

(the integer (+ x 3))

(+ (the integer x) 3)

(the (complex rational) (* z 3))

(the (unsigned-byte 5) (logand x

; The result will be a string.
; The result of + will be an integer.
; The value of x will be an integer.

mask))

The values type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))

(the (values string t)

(gethash the-key the-string-table))

Compatibility note: This construct is borrowed from the INTERLISP DECL package; INTERLISP,

however, allows an implicit progn after the type specifier rather than just a single form.
The MACLISP fixnum-identity and flonum-identity constructs can be expressed as
(the fixnum X) and (the single-float x).

10

Symbols

A LISP symbol is a data object that has three user-visible components:

• The property list is a list that effectively provides each symbol with many mod
ifiable named components.

• The print name must be a string, which is the sequence of characters used to
identify the symbol. Symbols are of great use because a symbol can be located
once its name is given (typed, say, on a keyboard). It is ordinarily not permitted
to alter a symbol's print name.

• The package cell must refer to a package object. A package is a data structure
used to locate a symbol once given the symbol's name. A symbol is uniquely
identified by its name only when considered relative to a package. A symbol
may appear in many packages, but it can be owned by at most one package. The
package cell points to the owner, if any. Package cells are discussed along with
packages in chapter 11.

A symbol may actually have other components for use by the implementation.
One of the more important uses of symbols is as names for program variables; it
is frequently desirable for the implementor to use certain components of a symbol
to implement the semantics of variables. See symbol-value and symbol

function. However, there are several possible implementation strategies, and so
such possible components are not described here.

10.1. The Property List

Since its inception, LISP has associated with each symbol a kind of tabular data
structure called a property list (plist for short). A property list contains zero or
more entries; each entry associates with a key (called the indicator), which is
typically a symbol, an arbitrary LISP object (called the value or, sometimes, the

163

I 64 COMMON LISP

property). There are no duplications among the indicators; a property list may only
have one property at a time with a given name. In this way, given a symbol and
an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference
is that a property list is an object with a unique identity; the operations for adding
and removing property-list entries are destructive operations that alter the property
list rather than making a new one. Association lists, on the other hand, are normally
augmented non-destructively (without side effects) by adding new entries to the
front (see aeons and pairlis).

A property list is implemented as a memory cell containing a list with an even
number (possibly zero) of elements. (Usually this memory cell is the property-list
cell of a symbol, but any memory cell acceptable to setf can be used if getf and
remf are used.) Each pair of elements in the list constitutes an entry; the first item
is the indicator, and the second is the value. Because property-list functions are
given the symbol and not the list itself, modifications to the property list can be
recorded by storing back into the property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Properties are
created by using get within a setf form.

COMMON LISP does not use a symbol's property list as extensively as earlier
LISP implementations did. Less-used data, such as compiler, debugging, and docu
mentation information, is kept on property lists in COMMON LISP.

Compatibility note: In older LISP implementations, the print name, value, and function
definition of a symbol were kept on its property list. The value cell was introduced into
MACLISP and INTERLISP to speed up access to variables; similarly for the print-name cell
and function cell (MACLISP does not use a function cell). Recent LISP implementations such
as SPICE LISP, ZETALISP, and NIL have introduced all of these cells plus the package cell.
None of the MACLISP system property names (expr, fexpr, macro, array, subr, lsubr,
fsubr, and in former times value and pname) exist in COMMON LISP.

In COMMON LISP, the notion of "disembodied property list" introduced in MAcL1sP is
eliminated. It tended to be used for rather kludgy things, and in ZETALISP is often associated
with the use of locatives (to make it "off by one" for searching alternating keyword lists).
In COMMON LISP special sett-like property-list functions are introduced: getf and remf.

get symbol indicator &optional default [Function]

get searches the property list of symbol for an indicator eq to indicator. The first
argument must be a symbol. If one is found, then the corresponding value is
returned; otherwise default is returned. If default is not specified, then nil is used

SYMBOLS 165

for default. Note that there is no way to distinguish an absent property from one

whose value is default.

(get x y) == (getf (symbol-plist x) y)

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for

example:

(get 'foo 'baz) ::;, 3

(get 'foo 'hunoz)::;, "Huh?"

(get 'foo 'zoo) ::;, nil

Compatibility note: In MAcLISP, the first argument to get could be a list, in which case
the cdr of the list was treated as a so-called "disembodied property list." The first argument
to get could also be any other object, in which case get would always return nil. In
COMMON LISP, it is an error to give anything but a symbol as the first argument to get.

What COMMON LISP calls get, INTERLISP calls getprop.
What MACLISP and INTERLISP call putprop is accomplished in COMMON LISP by using

get with setf.

setf may be used with get to create a new property-value pair, possibly re

placing an old pair with the same property name. For example:

(get 'clyde 'species) ::;, nil

(setf (get 'clyde 'species) 'elephant) ::;, elephant
and now (get 'clyde 'species) ::;, elephant

The default argument may be specified to get in this context; it is ignored by

setf, but may be useful in such macros as push that are related to setf:

(push item (get sym 'token-stack '(initial-item)))

means the approximately the same as

(setf (get sym 'token-stack '(initial-item))
(cons item (get sym 'token-stack '(initial-item))))

which in tum would be treated as simply

(setf (get sym 'token-stack)
(cons item (get sym 'token-stack '(initial-item))))

l 66 COMMON LISP

rernprop symbol indicator [Function]

This removes from symbol the property with an indicator eq to indicator. The
property indicator and the corresponding value are removed by destructively splicing
the property list. It returns nil if no such property was found, or non-nil if a
property was found.

(rernprop x y) """ (rernf (syrnbol-plist x) y)

For example, if the property list of foo is initially

(color blue height 6.3 near-to bar)

then the call

(rernprop 'foo 'height)

returns a non-nil value after altering foo's property list to be

(color blue near-to bar)

syrnbol-plist symbol [Function]

This returns the list that contains the property pairs of symbol; the contents of the
property-list cell are extracted and returned.

Note that using get on the result of syrnbol-plist does not work. One must
give the symbol itself to get or else use the function getf.

setf may be used with syrnbol-plist to destructively replace the entire property
list of a symbol. This is a relatively dangerous operation, as it may destroy im
portant information that the implementation may happen to store in property lists.
Also, care must be taken that the new property list is in fact a list of even length.

Compatibility note: In MAcL1sP, this function is called plist; in INTERLISP, it is called
getproplist.

getf place indicator &optional default [Function]

getf searches the property list stored in place for an indicator eq to indicator. If
one is found, then the corresponding value is returned; otherwise default is returned.
If default is not specified, then nil is used for default. Note that there is no way
to distinguish an absent property from one whose value is default. Often place is
computed from a generalized variable acceptable to setf.

SYMBOLS 167

setf may be used with getf, in which case the place must indeed be acceptable
as a place to setf. The effect is to add a new property-value pair, or update an
existing pair, in the property list kept in the place. The default argument may be
specified to getf in this context; it is ignored by setf but may be useful in such
macros as push that are related to setf. See the description of get for an example
of this.

Compatibility note: The INTERLISP function listget is similar to getf. The INTERLISP

function listput is similar to using getf with setf.

remf place indicator [Macro]

This removes from the property list stored in place the property with an indicator
eq to indicator. The property indicator and the corresponding value are removed
by destructively splicing the property list. remf returns nil if no such property
was found, or some non-nil value if a property was found. The form place may
be any generalized variable acceptable to setf. See remprop.

get-properties place indicator-list [Function]

get-properties is like getf, except that the second argument is a list of indi
cators. get-properties searches the property list stored in place for any of the
indicators in indicator-list until it finds the first property in the property list whose
indicator is one of the elements of indicator-list. Normally place is computed from
a generalized variable acceptable to setf.

get-properties returns three values. If any property was found, then the first
two values are the indicator and value for the first property whose indicator was
in indicator-list, and the third is that tail of the property list whose car was the
indicator (and whose cadr is therefore the value). If no property was found, all
three values are nil. Thus the third value serves as a flag indicating success or
failure and also allows the search to be restarted after the property found if desired.

10.2. The Print Name

Every symbol has an associated string called the print name. This string is used
as the external representation of the symbol: if the characters in the string are typed
in to read (with suitable escape conventions for certain characters), it is interpreted
as a reference to that symbol (if it is interned); and if the symbol is printed, print

l 68 COMMON LISP

types out the print name. For more information, see the sections on the reader
(section 22.1.1) and printer (section 22.1.6).

symbol-name sym [Function]

This returns the print name of the symbol sym. For example:

(symbol- name 'xyz) =? "XYZ"

It is an extremely bad idea to modify a string being used as the print name of a
symbol. Such a modification may tremendously confuse the function read and the
package system.

10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one that
is indexed by its print name in a catalogue called a package. Every time anyone
asks for a symbol with that print name, he gets the same (eq) symbol. Every time
input is read with the function read, and that print name appears, it is read as the
same symbol. This property of symbols makes them appropriate to use as names
for things and as hooks on which to hang permanent data objects (using the property
list, for example).

Interned symbols are normally created automatically; the first time something
(such as the function read) asks the package system for a symbol with a given
print name, that symbol is automatically created. The function used to ask for an
interned symbol is intern, or one of the functions related to intern.

Although interned symbols are the most commonly used, they will not be dis
cussed further here. For more information, see chapter 11.

An uninterned symbol is a symbol used simply as a data object, with no special
cataloguing (it belongs to no particular package). An uninterned symbol is printed
as #: followed by its print name. The following are some functions for creating
uninterned symbols.

make-symbol print-name [Function]

(make-symbol print-name) creates a new uninterned symbol, whose print name
is the string print-name. The value and function bindings will be unbound and the
property list will be empty.

The string actually installed in the symbol's print-name component may be the
given string print-name or may be a copy of it, at the implementation's discretion.

SYMBOLS 169

The user should not assume that (symbol-name (make-symbol x)) is eq to x,
but also should not alter a string once it has been given as an argument to
make-symbol.

Implementation note: An implementation might choose, for example, to copy the string
to some read-only area, in the expectation that it will never be altered.

copy-symbol sym &optional copy-props [Function]

This returns a new uninterned symbol with the same print name as sym. If copy-props
is non-nil, then the initial value and function definition of the new symbol will
be the same as those of sym, and the property list of the new symbol will be a
copy of sym's. If copy-props is nil (the default), then the new symbol will be
unbound and undefined, and its property list will be empty.

gensym &optional x [Function]

gensym invents a print name and creates a new symbol with that print name. It
returns the new, uninterned symbol.

The invented print name consists of a prefix (which defaults to G), followed by
the decimal representation of a number. The number is increased by one every time
gensym is called.

If the argument xis present and is an integer, then x must be non-negative, and
the internal counter is set to x for future use; otherwise the internal counter is
incremented. If x is a string, then that string is made the default prefix for this and
future calls to gensym. After handling the argument, gensym creates a symbol as
it would with no argument. For example:

(gensym) ~ G7

(gensym "FOO-") ~ FOO-ll

(gensym 32) ~ F00-32

(gensym) ~ F00-33

(gensym "GARBAGE-") ~ GARBAGE-3t;

gensym is usually used to create a symbol that should not normally be seen by
the user and whose print name is unimportant except to allow easy distinction by
eye between two such symbols. The optional argument is rarely supplied. The
name comes from "generate symbol," and the symbols produced by it are often
called "gensyms."

170 COMMON LISP

Compatibility note: In earlier versions of LISP, such as MACLISP and INTERLISP, the print
name of a gensym was of fixed length, consisting of a single letter and a fixed-length decimal
representation with leading zeros if necessary, for example, GDDD7. This convention was
motivated by an implementation consideration, namely that the name should fit into a single
machine word, allowing a quick and clever implementation. Such considerations are less
relevant in COMMON LISP. The consistent use of a mnemonic prefixes can make it easier for
the programmer, when debugging, to determine what code generated a particular symbol.
The elimination of the fixed-length decimal representation prevents the same name from
being used twice unless the counter is explicitly reset.

If it is desirable for the generated symbols to be interned, and yet guaranteed to
be symbols distinct from all others, then the function gentemp may be more ap
propriate to use.

gen temp &optional prefix package [Function]

gentemp, like gensym, creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern) in the package (which defaults
to the current package; see •package*). gentemp guarantees the symbol will be a
new one not already existing in the package. It does this by using a counter as
gensym does, but if the generated symbol is not really new, then the process is
repeated until a new one is created. There is no provision for resetting the gen temp

counter. Also, the prefix for gen temp is not remembered from one call to the next;
if prefix is omitted, the default prefix T is used.

symbol-package sym [Function]

Given a symbol sym, symbol-package returns the contents of the package cell of
that symbol. This will be a package object or nil.

keywordp object [Function]

The argument may be any LISP object. The predicate keywordp is true if the
argument is a symbol and that symbol is a keyword (that is, belongs to the keyword
package). Keywords are those symbols that are written with a leading colon. Every
keyword is a constant, in the sense that it always evaluates to itself. See constantp.

1 1

Packages

One problem with earlier LISP systems is the use of a single name space for all
symbols. In large LISP systems, with modules written by many different programmers,
accidental name collisions become a serious problem. COMMON LISP addresses this
problem through the package system, derived from an earlier package system
developed for ZETALISP [21]. In addition to preventing name-space conflicts, the
package system makes the modular structure of large LISP systems more explicit.

A package is a data structure that establishes a mapping from print names (strings)
to symbols. The package thus replaces the "oblist" or "obarray" machinery of
earlier LISP systems. At any given time one package is current, and this package
is used by the LISP reader in translating strings into symbols. The current package
is, by definition, the one that is the value of the global variable •package*. It is
possible to refer to symbols in packages other than the current one through the use
of package qualifiers in the printed representation of the symbol. For example,
foo: bar, when seen by the reader, refers to the symbol whose name is bar in the
package whose name is foo. (Actually, this is true only if bar is an external symbol
of foo, that is, a symbol that is supposed to be visible outside of foo. A reference
to an internal symbol requires the intentionally clumsier syntax foo: :bar.)

The string-to-symbol mappings available in a given package are divided into two
classes, external and internal. We refer to the symbols accessible via these map
pings as being external and internal symbols of the package in question, though
really it is the mappings that are different and not the symbols themselves. Within
a given package, a name refers to one symbol or to none; if it does refer to a
symbol, then it is either external or internal in that package, but not both.

External symbols are part of the package's public interface to other packages.
External symbols are supposed to be chosen with some care and are advertised to
users of the package. Internal symbols are for internal use only, and these symbols
are normally_ hidden from other packages. Most symbols are created as internal
symbols; they become external only if they appear explicitly in an export command
for the package.

A symbol may appear in many packages. It will always have the same name

171

172 COMMON LISP

wherever it appears, but it may be external in some packages and internal in others.
On the other hand, the same name (string) may refer to different symbols in
different packages.

Normally, a symbol that appears in one or more packages will be owned by one
particular package, called the home package of the symbol; that package is said to
own the symbol. Every symbol has a component called the package cell that
contains a pointer to its home package. A symbol that is owned by some package
is said to be interned. Some symbols are not owned by any package; such a symbol
is said to be uninterned, and its package cell contains nil.

Packages may be built up in layers. From the point of view of a package's user,
the package is a single collection of mappings from strings into internal and external
symbols. However, some of these mappings may be established within the package
itself, while other mappings are inherited from other packages via the use-package

construct. (The mechanisms responsible for this inheritance are described below.)
In what follows, we will refer to a symbol as being accessible in a package if it
can be referred to without a package qualifier when that package is current, re
gardless of whether the mapping occurs within that package or via inheritance. We
will refer to a symbol as being present in a package if the mapping is in the package
itself and is not inherited from somewhere else.

A symbol is said to be interned in a package if it is accessible in that package
and also is owned (by either that package or some other package). Normally all
the symbols accessible in a package will in fact be owned by some package, but
the terminology is useful when discussing the pathological case of an accessible
but unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to be
interned in the package if it was not already; this process is performed by the
function intern. If the symbol was previously unowned, then the package it is
being interned in becomes its owner (home package); but if the symbol was pre
viously owned by another package, that other package continues to own the symbol.

To unintern a symbol from the package means to cause it to be not present and,
additionally, to make the symbol urtinterned if the package was the symbol's home
package (owner). This process is performed by the function unintern.

U.1. Consistency Rules

Package-related bugs can be very subtle and confusing: things are not what they
appear to be. The COMMON LISP package system is designed with a number of
safety features to prevent most of the common bugs that would otherwise occur in
normal use. This may seem over-protective, but experience with earlier package
systems has shown that such safety features are needed.

PACKAGES 173

In dealing with the package system, it is useful to keep in mind the following
consistency rules, which remain in force as long as the value of •package• is not
changed by the user or his code:

• Read-read consistency: Reading the same print name always results in the same
(eq) symbol.

• Print-read consistency: An interned symbol always prints as a sequence of char
acters that, when read back in, yields the same (eq) symbol.

• Print-print consistency: If two interned symbols are not eq, then their printed
representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit interning
caused by typing in LISP forms, loading files, etc. This has the important impli
cation that, as long as the current package is not changed, results are reproducible
regardless of the order of loading files or the exact history of what symbols were
typed in when. The rules can only be violated by explicit action: changing the
value of •package•, forcing some action by continuing from an error, or calling
one of the "dangerous" functions unintern, unexport, shadow, shadowing

import, or unuse-package.

11.2. Package Names

Each package has a name (a string) and perhaps some nicknames. These are assigned
when the package is created, though they can be changed later. A package's name
should be something long and self-explanatory, like editor; there might be a
nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package translates
a package name or nickname into the associated package. The function pack

age- name returns the name of a package. The function package- nicknames returns
a list of all nicknames for a package. The function rename-package removes a
package's current name and nicknames and replaces them with new ones specified
by the user. Package renaming is occasionally useful when, for development pur
poses, it is desirable to load two versions of a package into the same LISP. One
can load the first version, rename it, and then load the other version, without getting
a lot of name conflicts.

When the LISP reader sees a qualified symbol, it handles the package-name part
in the same way as the symbol part with respect to capitalization. Lowercase
characters in the package name are converted to corresponding uppercase characters
unless preceded by the escape character \ or surrounded by : characters. The
lookup done by the find-package function is case-sensitive, like that done for

174 COMMON LISP

symbols. Note that : Foo: : : Bar: refers to a symbol whose name is Bar in a
package whose name is Foo. By contrast, : Foo: Bar: refers to a seven-character
symbol that has a colon in its name (as well as two uppercase letters and four
lowercase letters) and is interned in the current package. Following the convention
used in this manual for symbols, we will show ordinary package names using
lowercase letters, even though the name string is internally represented with up
percase letters.

Most of the functions that require a package-name argument from the user accept
either a symbol or a string. If the user supplies a symbol, its print name will be
used; the print name will already have undergone case-conversion by the usual
rules. If the user supplies a string, he must be careful to capitalize the string so as
to match exactly the string that names the package.

11.3. Translating Strings to Symbols

The value of the special variable *package• must always be a package object (not
a name). Whatever package object is currently the value of •package• is referred
to as the current package.

When the LlsP reader has, by parsing, obtained a string of characters thought to
name a symbol, that name is looked up in the current package. This lookup may
involve looking in other packages whose external symbols are inherited by the
current package. If the name is found, the corresponding symbol is returned. If
the name is not found (that is, there is no symbol of that name accessible in the
current package), a new symbol is created for it and is placed in the current package
as an internal symbol. Moreover, the current package becomes the owner (home
package) of the symbol, and so the symbol becomes interned in the current package.
If the name is later read again while this same package is current, the same symbol
will then be found and returned.

Often it is desirable to refer to an external symbol in some package other than
the current one. This is done through the use of a qualified name, consisting of a
package name, then a colon, then the name of the symbol. This causes the symbol's
name to be looked up in the specified package, rather than in the current one. For
example, editor: buffer refers to the external symbol named buffer accessible
in the package named editor, regardless of whether there is a symbol named
buffer in the current package. If there is no package named editor, or if no
symbol named buffer is accessible in editor, or if buffer is an internal symbol
in editor, the LISP reader will signal a correctable error to ask the user what he
really wants to do.

On rare occasions, a user may need to refer to an internal symbol of some

PACKAGES 175

package other than the current one. It is illegal to do this with the colon qualifier,
since accessing an internal symbol of some other package is usually a mistake.
However, this operation is legal if a doubled colon : : is used as the separator in
place of the usual single colon. If editor: :buffer is seen, the effect is exactly
the same as reading buffer with *package• temporarily rebound to the package
whose name is editor. This special-purpose qualifier should be used with caution.

The package named keyword contains all keyword symbols used by the LISP

system itself and by user-written code. Such symbols must be easily accessible
from any package, and name conflicts are not an issue because these symbols are
used only as labels and never to carry package-specific values or properties. Be
cause keyword symbols are used so frequently, COMMON LISP provides a special
reader syntax for them. Any symbol preceded by a colon but no package name
(for example : foo) is added to (or looked up in) the keyword package as an external
symbol. The keyword package is also treated specially in that whenever a symbol
is added to the keyword package the symbol is always made external; the symbol
is also automatically declared to be a constant (see defconstant) and made to
have itself as its value. This is why every keyword evaluates to itself. As a matter
of style, keywords should always be accessed using the leading-colon convention;
the user should never import or inherit keywords into any other package. It is an
error to try to apply use-package to the keyword package.

Each symbol contains a package cell that is used to record the home package of
the symbol, or nil if the symbol is uninterned. This cell may be accessed by using
the function symbol-package. When an interned symbol is printed, if it is a symbol
in the keyword package, then it is printed with a preceding colon; otherwise, if it
is accessible (directly or by inheritance) in the current package, it is printed without
any qualification; otherwise, it is printed with the name of the home package as
the qualifier, using : as the separator if the symbol is external and : : if not.

A symbol whose package slot contains nil (that is, has no home package) is
printed preceded by #:. It is possible, by the use of import and unintern, to
create a symbol that has no recorded home package, but that in fact is accessible
in some package. The system does not check for this pathological case, and such
symbols will always be printed preceded by # : •

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar

When read, looks up BAR among the external symbols of the package named FOO.

Printed when symbol bar is external in its home package foo and is not accessible
in the current package.

176 COMMON LISP

foo: :bar

When read, interns BAR as if FOO were the current package. Printed when symbol
bar is internal in its home package foo and is not accessible in the current package.

:bar

When read, interns BAR as an external symbol in the keyword package, and makes
it evaluate to itself. Printed when the home package of symbol bar is keyword.

#:bar

When read, creates a new uninterned symbol named BAR. Printed when the symbol
bar is uninterned (has no home package), even in the pathological case that bar
is uninterned but nevertheless somehow accessible in the current package.

All other uses of colons within names of symbols are not defined by COMMON

LISP but are reserved for implementation-dependent use; this includes names that
end in a colon, contain two or more colons, or consist of just a colon.

11.4. Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two
ways.

First, any individual symbol may be added to a package by use of the function
import. The form (import 'editor: buffer) takes the external symbol named
bu£fer in the editor package (this symbol was located when the form was read
by the LISP reader) and adds it to the current package as an internal symbol. The
symbol is then present in the current package. The imported symbol is not auto
matically exported from the current package, but if it is already present and exter
nal, then the fact that it is external is not changed. After the call to import it is
possible to refer to buffer in the importing package without any qualifier. The
status of buffer in the package named editor is unchanged, and editor remains
the home package for this symbol. Once imported, a symbol is present in the
importing package and can be removed only by calling unintern.

If the symbol is already present in the importing package, import has no effect.
If a distinct symbol with the name buffer is accessible in the importing package
(directly or by inheritance), then a correctable error is signalled, as described in
section 11.5, because import avoids letting one symbol shadow another.

A symbol is said to be shadowed by another symbol in some package if the first

PACKAGES 177

symbol would be accessible by inheritance if not for the presence of the second
symbol. If the user really wants to import a symbol without the possibility of
getting an error because of shadowing, he should use the function shadowing

import. This inserts the symbol into the specified package as an internal symbol,
regardless of whether another symbol of the same name will be shadowed by this
action. If a different symbol of the same name is already present in the package,
that symbol will first be uninterned from the package (see unintern). The new
symbol is added to the package's shadowing-symbols list. shadowing-import

should be used with caution. It changes the state of the package system in such a
way that the consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This causes
a package to inherit all of the external symbols of some other package. These
symbols become accessible as internal symbols of the using package. That is, they
can be referred to without a qualifier while this package is current, but they are
not passed along to any other package that uses this package. Note that use-package,

unlike import, does not cause any new symbols to be present in the current package
but only makes them accessible by inheritance. use-package checks carefully for
name conflicts between the newly imported symbols and those already accessible
in the importing package. This is described in detail in section 11.5.

Typically a user, working by default in the user package, will load a number
of packages into his LISP to provide an augmented working environment; then he
will call use-package on each of these packages so that he can easily access their
external symbols. unuse-package undoes the effects of a previous use-package.

The external symbols of the used package are no longer inherited. However, any
symbols that have been imported into the using package continue to be present in
that package.

There is no way to inherit the internal symbols of another package; to refer to
an internal symbol, the user must either make that symbol's home package current,
use a qualifier, or import that symbol into the current package.

When intern or some other function wants to look up a symbol in a given
package, it first looks for the symbol among the external and internal symbols of
the package itself; then it looks through the external symbols of the used packages
in some unspecified order. The order does not matter; according to the rules for
handling name conflicts (see below), if conflicting symbols appear in two or more
packages inherited by package X, a symbol of this name must also appear in X

itself as a shadowing symbol. Of course, implementations are free to choose other,
more efficient ways of implementing this search, as long as the user-visible be
havior is equivalent to what is described here.

The function export takes a symbol that is accessible in some specified package
(directly or by inheritance) and makes it an external symbol of that package. If the

178 COMMON LISP

symbol is already accessible as an external symbol in the package, export has no
effect. If the symbol is directly present in the package as an internal symbol, it is
simply changed to external status. If it is accessible as an internal symbol via
use-package, the symbol is first imported into the package, then exported. (The
symbol is then present in the specified package whether or not the package contin
ues to use the package through which the symbol was originally inherited.) If the
symbol is not accessible at all in the specified package, a correctable error is
signalled that, upon continuing, asks the user whether the symbol should be im
ported.

The function unexport is provided mainly as a way to undo erroneous calls to
export. It works only on symbols directly present in the current package, switching
them back to internal status. If unexport is given a symbol already accessible as
an internal symbol in the current package, it does nothing; if it is given a symbol
not accessible in the package at all, it signals an error.

11.5. Name Conflicts

A fundamental invariant of the package system is that within one package any
particular name can refer to at most one symbol. A name conflict is said to occur
when there is more than one candidate symbol and it is not obvious which one to
choose. If the system does not always choose the same way, the read-read consistency
rule would be violated. For example, some programs or data might have been read
in under a certain mapping of the name to a symbol. If the mapping changes to a
different symbol, and subsequently additional programs or data are read, then the
two programs will not access the same symbol even though they use the same
name. Even if the system did always choose the same way, a name conflict is
likely to result in a mapping from names to symbols different from what was
expected by the user, causing programs to execute incorrectly. Therefore, any time
a name conflict is about to occur, an error is signalled. The user may continue
from the error and tell the package system how to resolve the conflict.

It may be that the same symbol is accessible to a package through more than
one path. For example, the symbol might be an external symbol of more than one
used package, or the symbol might be directly present in a package and also
inherited from another package. In such cases there is no name conflict. The same
identical symbol cannot conflict with itself. Name conflicts occur only between
distinct symbols with the same name.

The creator of a package can tell the system in advance how to resolve a name
conflict through the use of shadowing. Every package has a list of shadowing
symbols. A shadowing symbol takes precedence over any other symbol of the same

PACKAGES 179

name that would otherwise be accessible to the package. A name conflict involving
a shadowing symbol is always resolved in favor of the shadowing symbol, without
signalling an error (except for one exception involving import described below).
The functions shadow and shadowing-import may be used to declare shadowing
symbols.

Name conflicts are detected when they become possible, that is, when the pack
age structure is altered. There is no need to check for name conflicts during every
name lookup.

The functions use-package, import, and export check for name conflicts.
use-package makes the external symbols of the package being used accessible to
the using package; each of these symbols is checked for name conflicts with the
symbols already accessible. import adds a single symbol to the internals of a
package, checking for a name conflict with an existing symbol either present in
the package or accessible to it. import signals a name conflict error even if the
conflict is with a shadowing symbol, the rationale being that the user has given
two explicit and inconsistent directives. export makes a single symbol accessible
to all the packages that use the package from which the symbol is exported. All
of these packages are checked for name conflicts: (exports p) does (find-symbol

(symbol-names) q) for each package q in (package-used-by-listp). Note
that in the usual case of an export during the initial definition of a package, the
result of package-used-by-list will be nil and the name-conflict checking will
take negligible time.

The function intern, which is the one used most frequently by the LISP reader
for looking up names of symbols, does not need to do any name-conflict checking,
because it never creates a new symbol if there is already an accessible symbol with
the name given.

shadow and shadowing-import never signal a name-conflict error because the
user, by calling these functions, has specified how any possible conflict is to be
resolved. shadow does name-conflict checking to the extent that it checks whether
a distinct existing symbol with the specified name is accessible and, if so, whether
it is directly present in the package or inherited. In the latter case, a new symbol
is created to shadow it. shadowing-import does name-conflict checking to the
extent that it checks whether a distinct existing symbol with the same name is
accessible; if so, it is shadowed by the new symbol, which implies that it must be
unintemed if it was directly present in the package.

unuse-package, unexport, and unintern (when the symbol being unintemed
is not a shadowing symbol) do not need to do any name-conflict checking because
they only remove symbols from a package; they do not make any new symbols
accessible.

180 COMMON LISP

Giving a shadowing symbol to unintern can uncover a name conflict that had
previously been resolved by the shadowing. If package A uses packages B and C,
A contains a shadowing symbol x, and B and C each contain external symbols
named x, then removing the shadowing symbol x from A will reveal a name conflict
between b: x and c: x if those two symbols are distinct. In this case unin tern will
signal an error.

Aborting from a name-conflict error leaves the original symbol accessible. Pack
age functions always signal name-conflict errors before making any change to the
package structure. When multiple changes are to be made, however, for example
when export is given a list of symbols, it is permissible for the implementation
to process each change separately, so that aborting from a name conflict caused by
the second symbol in the list will not unexport the first symbol in the list. However,
aborting from a name-conflict error caused by export of a single symbol will not
leave that symbol accessible to some packages and inaccessible to others; with
respect to each symbol processed, export behaves as if it were as an atomic
operation.

Continuing from a name-copflict error should offer the user a chance to resolve
the name conflict in favor of either of the candidates. The package structure should
be altered to reflect the resolution of the name conflict, via shadowing-import,

unintern, or unexport.

A name conflict in use-package between a symbol directly present in the using
package and ap external symbol of the used package may be resolved in favor of
the first symbol by making it a shadowing symbol, or in favor of the second symbol
by uninterning the first symbol from the using package. The latter resolution is
dangerous if the symbol to be uninterned is an external symbol of the using pack
age, since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited by the
using package from other packages may be resolved in favor of either symbol by
importing it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol
already present in a package that would inherit the newly-exported symbol may be
resolved in favor of the exported symbol by uninterning the other one, or in favor
of the already-present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two distinct
symbols with the same name from two other packages may be resolved in favor
of either symbol by importing it into the using package and making it a shadowing
symbol, just as with use-package.

A name conflict in import between the· symbol being imported and a symbol
inherited from some other package may be resolved in favor of the symbol being
imported by making it a shadowing symbol, or in favor of the symbol already

PACKAGES 181

accessible by not doing the import. A name conflict in import with a symbol
already present in the package may be resolved by uninteming that symbol, or by
not doing the import.

Good user-interface style dictates that use-package and export, which can
cause many name conflicts simultaneously, first check for all of the name conflicts
before presenting any of them to the user. The user may then choose to resolve all
of them wholesale or to resolve each of them individually, the latter requiring a
lot of interaction but permitting different conflicts to be resolved different ways.

Implementations may offer other ways of resolving name conflicts. For instance,
if the symbols that conflict are not being used as objects but only as names for
functions, it may be possible to "merge" the two symbols by putting the function
definition onto both symbols. References to either symbol for purposes of calling
a function would be equivalent. A similar merging operation can be done for
variable values and for things stored on the property list. In ZETALISP, for example,
one can also forward the value, function, and property cells so that future changes
to either symbol will propagate to the other one. Some other implementations are
able to do this with value cells but not with property lists. Only the user can know
whether this way of resolving a name conflict is adequate, because it will work
only if the use of two non-eq symbols with the same name will not prevent the
correct operation of his program. The value of offering symbol-merging as a way
of resolving name conflicts is that it can avoid the need to throw away the whole
LISP world, correct the package-definition forms that caused the error, and start
over from scratch.

11.6. Built-in Packages

The following packages, at least, are built into every COMMON LISP system:

lisp

The package named lisp contains the primitives of the COMMON LISP system. Its
external symbols include all of the user-visible functions and global variables that
are present in the COMMON LISP system, such as car, cdr, •package*, etc. Almost
all other packages will want to use lisp so that these symbols will be accessible
without qualification.

user

The user package is, by default, the current package at the time a COMMON LISP

system starts up. This package uses the lisp package.

182 COMMON LISP

keyword

This package contains all of the keywords used by built-in or user-defined LISP

functions. Printed symbol representations that start with a colon are interpreted as
referring to symbols in this package, which are always external symbols. All sym
bols in this package are treated as constants that evaluate to themselves, so that
the user can type : foo instead of ': foo.

system

This package name is reserved to the implementation. Normally this is used to
contain names of implementation-dependent system-interface functions. This pack
age uses lisp and has the nickname sys.

11.7. Package System Functions and Variables

Some of the functions and variables in this section are described in previous sections
but are included here for completeness.

It is up to each implementation's compiler to ensure that when a compiled file
is loaded, all of the symbols in the file end up in the same packages that they
would occupy if the LISP source file were loaded. In most compilers, this will be
accomplished by treating certain package operations as though they are surrounded
by (eval-when (compile load eval) ...); see eval-when. These operations
are make-package, in-package, shadow, shadowing-import, export,

unexport, use-package, unuse-package, and import. To guarantee proper com
pilation in all COMMON LISP implementations, these functions should appear only
at top level within a file. As a matter of style, it is suggested that each file contain
only one package, and that all of the package setup forms appear near the start of
the file. This is discussed in more detail, with examples, in section 11.9.

Implementation note: In the past, some LISP compilers have read the entire file into LISP

before processing any of the forms. Other compilers have arranged for the loader to do all
of its intern operations before evaluating any of the top-level forms. Neither of these tech
niques will work in a straightforward way in COMMON LISP because of the presence of
multiple packages.

For the functions described here, all optional arguments named package default
to the current value of •package•. Where a function takes an argument that is
either a symbol or a list of symbols, ;m argument of nil is treated as an empty
list of symbols. Any argument described as a package name may be either a string
or a symbol. If a symbol is supplied, its print name will be used as the package
name; if a string is supplied, the user must be take care to specify the same
capitalization used in the package name, normally all capitals.

PACKAGES 183

[Variable]

The value of this variable must be a package; this package is said to be the current
package. The initial value of *package* is the user package.

The function load rebinds •package* to its current value. If some form in the
file changes the value of *package* during loading, the old value will be restored
when the loading is completed.

make-package package-name &key : nicknames : use [Function]

This creates and returns a new package with the specified package name. As
described above, this argument may be either a string or a symbol. The : nicknames

argument must be a list of strings to be used as alternative names for the package.
Once again, the user may supply symbols in place of the strings, in which case
the print names of the symbols are used. These names and nicknames must not
conflict with any existing package names; if they do, a correctable error is signalled.

The : use argument is a list of packages or the names (strings or symbols) of
packages whose external symbols are to be inherited by the new package. These
packages must already exist. If not supplied, : use defaults to a list of one package,
the lisp package.

in-package package-name &key :nicknames :use [Function]

The in-package function is intended to be placed at the start of a file containing
a subsystem that is to be loaded into some package other than user. If there is not
already a package named package-name, this function is similar to make-package,

except that after the new package is created, •package* is set to it. This binding
will remain in force until changed by the user (perhaps with another in-package

call) or until the *package* variable reverts to its old value at the completion of
a load operation.

If there is an existing package whose name is package-name, the assumption is
that the user is re-loading a file after making some changes. The existing package
is augmented to reflect any new nicknames or new packages in the : use list (with
the usual error checking), and *package* is then set to this package.

find-package name [Function]

The name must be a string that is the name or nickname for a package. This
argument may also be a symbol, in which case the symbol's print name is used.
The package with that name or nickname is returned; if no such package exists,
find-package returns nil. The matching of names observes case (as in
string=).

184 COMMON LISP

package-name package [Function]

The argument must be a package. This function returns the string that names that
package.

package-nicknames package [Function]

The argument must be a package. This function returns the list of nickname strings
for that package, not including the primary name.

rename-package package new-name &optional new-nicknames [Function]

The old name and all of the old nicknames of package are eliminated and are
replaced by new-name and new-nicknames. The new-name argument is a string or
symbol; the new-nicknames argument, which defaults to nil, is a list of strings or
symbols.

package-use-list package [Function]

A list of other packages used by the argument package is returned.

package-used-by-list package [Function]

A list of other packages that use the argument package is returned.

package-shadowing-symbols package [Function]

A list is returned of symbols that have been declared as shadowing symbols in this
package by shadow or shadowing-import. All symbols on this list are present in
the specified package.

list-all-packages [Function]

This function returns a list of all packages that currently exist in the LISP .system.

intern string &optional package [Function]

The package, which defaults to the current package, is searched for a symbol with
the name specified by the string argument. This search will include inherited sym
bols, as described in section 11.4. If a symbol with the specified name is found,
it is returned. If no such symbol is found, one is created and is installed in the
specified package as an internal symbol (as an external symbol if the package is

PACKAGES 185

the keyword package); the specified package becomes the home package of the
created symbol.

Two values are returned. The first is the symbol that was found or created. The
second value is nil if no pre-existing symbol was found, and takes on one of three
values if a symbol was found:

:internal

:external

:inherited

The symbol was directly present in the package as an internal
symbol.

The symbol was directly present as an external symbol.

The symbol was inherited via use-package (which impiies that
the symbol is internal).

Compatibility note: Conceptually, intern translates a string to a symbol. In MACLISP and
several other dialects of LISP, intern can take either a string or a symbol as its argument;
in the latter case, the symbol's print name is extracted and used as the string. However,
this leads to some confusing issues about what to do if intern finds a symbol that is not
eq to the argument symbol. To avoid such confusion, COMMON LISP requires the argument
to be a string.

find-symbol string &optional package [Function]

This is identical to intern, but it never creates a new symbol. If a symbol with
the specified name is found in the specified package, directly or by inheritance,
the symbol found is returned as the first value and the second value is as specified
for intern. If the symbol is not accessible in the specified package, both values
are nil.

unintern symbol &optional package [Function]

If the specified symbol is present in the specified package, it is removed from that
package and also from the package's shadowing-symbols list if it is present there.
Moreover, if the package is the home package for the symbol, the symbol is made
to have no home package. Note that in some circumstances the symbol may con
tinue to be accessible in the specified package by inheritance. unintern returns t

if it actually removed a symbol, and nil otherwise.
unintern should be used with caution. It changes the state of the package system

in such a way that the consistency rules do not hold across the change.

Compatibility note: The equivalent of this in MAcLISP is remob.

186 COMMON LISP

export symbols &optional package [Function]

The symbols argument should be a list of symbols, or possibly a single symbol.
These symbols become acc.essible as external symbols in package. See section 11.4
for details. export returns t.

By convention, a call to export listing all exported symbols is placed near the
start of a file to advertise which of the symbols mentioned in the file are intended
to be used by other programs.

unexport symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. These
symbols become internal symbols in package. It is an error to unexport a symbol
from the keyword package. See section 11.4 for details. unexport returns t.

import symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. These
symbols become internal symbols in package and can therefore be referred to
without having to use qualified-name (colon) syntax. import signals a correctable
error if any of the imported symbols has the same name as some distinct symbol
already accessible in the package. See section 11.4 for details. import returns t.

shadowing-import symbols &optional package [Function]

This is like import, but it does not signal an error even if the importation of a
symbol would shadow some symbol already accessible in the package. In addition
to being imported, the symbol is placed on the shadowing-symbols list of package.
See section 11.5 for details. shadowing-import returns t.

shadowing-import should be used with caution. It changes the state of the
package system in such a way that the consistency rules do not hold across the
change.

shadow symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. The print
name of each symbol is extracted, and the specified package is searched for a
symbol of that name. If such a symbol is present in this package (directly, not by
inheritance), then nothing is done. Otherwise, a new symbol is created with this
print name, and it is inserted in the specified package as an internal symbol. The
symbol is also placed on the shadowing-symbols list of package. See section 11.5
for details. shadow returns t.

PACKAGES 187

shadow should be used with caution. It changes the state of the package system
in such a way that the consistency rules do not hold across the change.

use-package packages-to-use &optional package [Function]

The packages-to-use argument should be a list of packages or package names, or
possibly a single package or package name. These packages are added to the use-list
of package if they are not there already. All external symbols in the packages to
use become accessible in package as internal symbols. See section 11.4 for details.
It is an error to try to use the keyword package. use-package returns t.

unuse-package packages-to-unuse &optional package [Function]

The packages-to-unuse argument should be a list of packages or package names,
or possibly a single package or package name. These packages are removed from
the use-list of package. unuse-package returns t.

find-all-symbols string-or-symbol [Function]

find-all-symbols searches every package in the LISP system to find every symbol
whose print name is the specified string. A list of all such symbols found is
returned. This search is case-sensitive. If the argument is a symbol, its print name
supplies the string to be searched for.

do-symbols (var [package [result-form]]) {declaration}* [Macro]
{tag I statement}*

do-symbols provides straightforward iteration over the symbols of a package. The
body is performed once for each symbol accessible in the package, in no particular
order, with the variable var bound to the symbol. Then result-form (a single form,
not an implicit progn) is evaluated, and the result is the value of the do-symbols

form. (When the result-form is evaluated, the control variable var is still bound
and has the value nil.) If the result-form is omitted, the result is nil. return

may be used to terminate the iteration prematurely. If execution of the body affects
which symbols are contained in the package, other than possibly to remove the
symbol currently the value of var by using unintern, the effects are unpredictable.

do-external-symbols (var [package [result]]) {declaration}*
{tag I statement}*

[Macro]

do-external-symbols is just like do-symbols, except that only the external sym
bols of the specified package are scanned.

188 COMMON LISP

do-all-symbols (var [resultjorm]) {declaration}* {tag I statement}* [Macro]

This is similar to do-symbols but executes the body once for every symbol con
tained in every package. (This will not process every symbol whatsoever, because
a symbol not accessible in any package will not be processed. Normally, unintemed
symbols are not accessible in any package.) It is not in general the case that each
symbol is processed only once, because a symbol may appear in many packages.

11.8. Modules

A module is a COMMON LISP subsystem that is loaded from one or more files. A
module is normally loaded as a single unit, regardless of how many files are
involved. A module may consist of one package or several packages. The file-loading
process is necessarily implementation-dependent, but COMMON LISP provides some
very simple portable machinery for naming modules, for keeping track of which
modules have been loaded, and for loading modules as a unit.

modules [Variable]

The variable *modules* is a list of names of the modules that have been loaded
into the LISP system so far. This list is used by the functions provide and require.

provide module-name
require module-name &optional pathname

[Function]
[Function]

Each module has a unique name (a string). The provide and require functions
accept either a string or a symbol as the module-name argument. If a symbol is
provided, its print name is used as the module name. If the module consists of a
single package, it is customary for the package and module names to be the same.

The provide function adds a new module name to the list of modules maintained
in the variable *modules*, thereby indicating that the module in question has been
loaded.

The require function tests whether a module is already present (using a
case-sensitive comparison); if the module is not present, require proceeds to load
the appropriate file or set of files. The pathname argument, if present, is a single
pathname or a list of pathnames whose files are to be loaded in order, left to right.
If the pathname argument is nil or is not provided, the system will attempt to
determine, in some system-dependent manner, which files to load. This will typ
ically involve some central registry of module names and the associated file lists.

Implementation note: One way to implement such a registry on many operating systems
is simply to use a distinguished "library" directory within the file system, where the name
of each file is the same as the module it contains.

PACKAGES

Table 11-1: An Initialization File

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it.

(require 'calculus)
(use-package 'calculus)

;I use CALCULUS a lot. Load it.

;Get easy access to its
; exported symbols.

(require 'newtonian-mechanics) ;Ditto for NEWTONIAN-MECHANICS.
(use-package 'newtonian-mechanics)

I just want a few thing from RELATIVITY,
and other things conflict.
Import only what I need into the USER package.

(require 'relativity)
(import '(relativity:speed-of-light

relativity:ignore-small-errors))

These are worth loading, but I will use qualified names,
such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols
I might need from these packages.

(require 'phlogiston)
(require 'alchemy)

;;; End of Lisp init file for I. Newton.

11.9. An Example

189

Most users will want to load and use packages but will never need to build one.
Often a user will load a number of packages into the user package whenever he
uses COMMON LISP. Typically an implementation might provide some sort of
initialization file mechanism to make such setup automatic when the LISP starts up.
Table 11-1 shows such an initialization file, one that simply causes other facilities
to be loaded.

When each of two files uses some symbols from the other, one must be careful
to arrange the contents of the file in the proper order. Typically each file contains
a single package that is a complete module. The contents of such a file should
include the following items, in order:

1. A call to provide that announces the module name.
2. A call to in-package that establishes the package.
3. A call to shadow that establishes any local symbols that will shadow symbols

that would otherwise be inherited from packages that this package will use.

J 90 COMMON LISP

Table 11-2: File alchemy

;;; ; Alchemy functions, written and maintained by Merlin, Inc.

(provide 'alchemy)

(in-package 'alchemy)

There is nothing to shadow.

Here is the external interface.

;The module is named ALCHEMY.

;So is the package.

(export '(lead-to-gold gold-to-lead

antimony-to-zinc elixir-of-life))

This package/module needs a function from

the PHLOGISTON package/module.

(require 'phlogiston)

We don't frequently need most of the external symbols from

PHLOGISTON, so it's not worth doing a USE-PACKAGE on it.

We'll just use qualified names as needed. But we use

one function, MAKE-FIRE-BOTTLE, a lot, so import it.

It's external in PHLOGISTON, and so can be referred to

here using ":" qualified-name syntax.

(import '(phlogiston:make-fire-bottle))

;;; Now for the real contents of this file.

(defun lead-to-gold (x)

"Takes a quantity of lead and returns gold."

(when (> (phlogiston:heat-flow x) ;Using a qualified symbol.

3)

(make-fire-bottle x))

(gild X))

;;; And so on

;Using an imported symbol.

4. A call to export that establishes all of this package's external symbols.
5. Any number of calls to require to load other modules that the contents of

this file might want to use or refer to. (Because the calls to require follow
the calls to in-package, shadow, and export, it is possible for the packages
that may be loaded to refer to external symbols in this package.)

6. Any number of calls to use-package, to make external symbols from other
packages accessible in this package.

7. Any number of calls to import, to make symbols from other packages present
in this package.

8. Finally, the definitions making up the contents of this package/module.

PACKAGES

Table 11-3: File phlogiston

;; ; Phlogiston functions, by Thermofluidics, Ltd.

(provide 'phlogiston)

(in-package 'phlogiston)

There is nothing to shadow.

;The module is named PHLOGISTON.

;So is the package.

Here is the external interface.

(export '(heat-flow cold-flow mix-fluids separate-fluids

burn make-fire-bottle))

;; ; This file uses functions from the ALCHEMY package/module.

(require 'alchemy)

We use alchemy functions a lot, so use the package.

This will allow symbols exported from the ALCHEMY package

to be referred to here without the need for qualified names.

(use-package 'alchemy)

No calls to IMPORT are needed here.

The real contents of this package/module.

(defun heat-flow (amount x y)

"Make some amount of heat flow from x to y."

(when feeling-weak

(quaff (elixir-of-life)))

(push-heat amount x y))

;; ; And so on ...

;No qualifier needed.

191

The following mnemonic sentence may be helpful in remembering the proper
order of these calls:

Put in seven extremely random user interface commands.

Each word of the sentence corresponds to one item in the above ordering:
Put Provide

IN IN-package

Seven Shadow

EXtremely Export

Random Require

USEr USE-package

Interface
commands

Import

contents of package/module

The sentence says what it helps you to do.

192 COMMON LISP

Now, suppose for the sake of example that the phlogiston and alchemy pack
ages are single-file, single-package modules as described above. The phlogiston

package needs to use the alchemy package, and the alchemy package needs to use
several external symbols from the phlogiston package. The definitions in the
alchemy and phlogiston files (see Tables 11-2 and 11-3) allow a user to specify
require statements for either of these modules, or for both of them in either order,
and all relevant information will be loaded automatically and in the correct order.

For very large modules whose contents are spread over several files (the lisp

package is an example), it is recommended that the user create the package and
declare all of the shadows and external symbols in a separate file, so that this can
be loaded before anything that might use symbols from this package.

12

Numbers

COMMON LISP provides several different representations for numbers. These
representations may be divided into four categories: integers, ratios, floating-point
numbers, and complex numbers. Many numeric functions will accept any kind of
number; they are generic. Other functions accept only certain kinds of numbers.

In general, numbers in COMMON LISP are not true objects; eq cannot be counted
upon to operate on them reliably. In particular, it is possible that the expression

(let ((x z) (Y z)) (eq x y))

may be false rather than true if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough
design freedom to produce exceptionally efficient numerical code on conventional architec
tures. MAcLISP requires this freedom, for example, in order to produce compiled numerical
code equal in speed to FORTRAN. COMMON LISP makes this same restriction, if not for this
freedom, then at least for the sake of compatibility.

If two objects are to be compared for "identity," but either might be a number,
then the predicate eql is probably appropriate; if both objects are known to be
numbers, then = may be preferable.

12.1. Precision, Contagion, and Coercion

In general, computations with floating-point numbers are only approximate. The
precision of a floating-point number is not necessarily correlated at all with the
accuracy of that number. For instance, 3.142857142857142857 is a more precise
approximation to 1T than 3.14159, but the latter is more accurate. The precision
refers to the number of bits retained in the representation. When an operation
combines a short floating-point number with a long one, the result will be a long

193

194 COMMON LISP

floating-point number. This rule is made to ensure that as much accuracy as possible
is preserved; however, it is by no means a guarantee. COMMON LISP numerical
routines do assume, however, that the accuracy of an argument does not exceed
its precision. Therefore when two small floating-point numbers are combined, the
result will always be a small floating-point number. This assumption can be overridden
by first explicitly converting a small floating-point number to a larger representation.
(COMMON LISP never converts automatically from a larger size to a smaller one.)

Rational computations cannot overflow in the usual sense (though of course there
may not be enough storage to represent one), as integers and ratios may in principle
be of any magnitude. Floating-point computations may get exponent overflow or
underflow; this is an error.

When rational and floating-point numbers are compared or combined by a nu
merical function, the rule of floating-point contagion is followed: when a rational
meets a floating-point number, the rational is first converted to a floating-point
number of the same format. For functions such as + that take more than two
arguments, it may be that part of the operation is carried out exactly using rationals
and then the rest is done using floating-point arithmetic.

For functions that are mathematically associative (and possibly commutative), a
COMMON LISP implementation may process the arguments in any manner consistent
with associative (and possibly commutative) rearrangement. This does not affect
the order in which the argument forms are evaluated, of course; that order is always
left to right, as in all COMMON LISP function calls. What is left loose is the order
in which the argument values are processed. The point of all this is that imple
mentations may differ in which automatic coercions are applied because of differing
orders of argument processing. As an example, consider this expression:

(+ 1/3 2/3 1.DDD 1.0 1.DE-15)

One implementation might process the arguments from left to right, first adding
113 and 213 to get 1, then converting that to a double-precision floating-point
number for combination with 1. ODD, then successively converting and adding 1. o
and 1. DE -15. Another implementation might process the arguments from right to
left, first performing a single-precision floating-point addition of 1. o and 1. DE-15

(and probably losing some accuracy in the process!), then converting the sum to
double precision and adding 1. DD o, then converting 213 to double-precision
floating-point and adding it, and then converting 113 and adding that. A third
implementation might first scan all the arguments, process all the rationals first to
keep that part of the computation exact, then find an argument of the largest
floating-point format among all the arguments and add that, and then add in all
other arguments, converting each in tum (all in a perhaps misguided attempt to
make the computation as accurate as possible). In any case, all three strategies are

NUMBERS 195

legitimate. The user can of course control the order of processing explicitly by
writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.0DO 1.0E-15) 1.0)

The user can also control all coercions simply by writing calls to coercion functions
explicitly.

In general, then, the type of the result of a numerical function is a floating-point
number of the largest format among all the floating-point arguments to the function;
but if the arguments are all rational, then the result is rational (except for functions
that can produce mathematically irrational results, in which case a single-format
floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers never
result from a numerical function unless one or more of the arguments is complex.
(Exceptions to this rule occur among the irrational and transcendental functions,
specifically expt, log, sqrt, asin, acos, acosh, and atanh; see section 12.5.)
When a non-complex number meets a complex number, the non-complex number
is in effect first converted to a complex number by providing an imaginary part
of 0.

If any computation produces a result that is a ratio of two integers such that the
denominator evenly divides the numerator, then the result is immediately converted
to the equivalent integer. This is called the rule of rational canonicalization.

If the result of any computation would be a complex rational with a zero imagi
nary part, the result is immediately converted to a non-complex rational number
by taking the real part. This is called the rule of complex canonicalization. Note
that this rule does not apply to complex numbers whose components are float
ing-point numbers. Whereas #C (5 o) and 5 are not distinct values in COMMON

LISP (they are always eql), #C(5.0 o.O) and 5.0 are always distinct values m

COMMON LISP (they are never eql, although they are equalp).

12.2. Predicates on Numbers

Each of the following functions tests a single number for a specific property. Each
function requires that its argument be a number; to call one with a non-number is
an error.

zerop number [Function]

This predicate is true if number is zero (either the integer zero, a floating-point
zero, or a complex zero), and is false otherwise. Regardless of whether an
implementation provides distinct representations for positive and negative

196 COMMON LISP

floating-point zeros, (zerop -o. o) is always true. It is an error if the argument
number is not a number.

plusp number [Function]

This predicate is true if number is strictly greater than zero, and is false otherwise.
It is an error if the argument number is not a non-complex number.

minusp number [Function]

This predicate is true if number is strictly less than zero, and is false otherwise.
Regardless of whether an implementation provides distinct representations for positive
and negative floating-point zeros, (minusp -O.O) is always false. (The function
float-sign may be used to distinguish a negative zero.) It is an error if the
argument number is not a non-complex number.

oddp integer [Function]

This predicate is true if the argument integer is odd (not divisible by two), and
otherwise is false. It is an error if the argument is not an integer.

evenp integer [Function]

This predicate is true if the argument integer is even (divisible by two), and otherwise
is false. It is an error if the argument is not an integer.

See also the data-type predicates integerp, rationalp, floatp, complexp,

and numberp.

12.3. Comparisons on Numbers

Each of the functions in this section requires that its arguments all be numbers; to
call one with a non-number is an error. Unless otherwise specified, each works on
all types of numbers, automatically performing any required coercions when arguments
are of different types.

= number &rest more-numbers
1 = number &rest more-numbers
< number &rest more-numbers
> number &rest more-numbers
< = number &rest more-numbers
>= number &rest more-numbers

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

NUMBERS 197

These functions each take one or more arguments. If the sequence of arguments
satisfies a certain condition:

all the same
1 = all different
< monotonically increasing
> monotonically decreasing
< = monotonically nondecreasing
> = monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared
using = and I=, but the others require non-complex arguments. Two complex
numbers are considered equal by = if their real parts are equal and their imaginary
parts are equal according to =. A complex number may be compared to a non-complex
number with = or / =. For example:

(= 3 3) is true. (I= 3 3) is false.
(= 3 5) is false. (I= 3 5) is true.
(= 3 3 3 3) is true. (I= 3 3 3 3) is false.
(= 3 3 5 3) is false. (I= 3 3 5 3) is false.
(= 3 [, 5 2) is false. (/ = 3 [, 5 2) is true.
(= 3 2 3) is false. (/= 3 2 3) is false.
(< 3 5) is true. (< = 3 5) is true.
(< 3 -5) is false. (< = 3 -5) is false.
(< 3 3) is false. (< = 3 3) is true.
(< 0 3 L; [, 7) is true. (< = 0 3 L; [, 7) is true.
(< 0 3 L; L; b) is false. (< = 0 3 L; L; b) is true.
(> L; 3) is true. (>= L; 3) is true.
(> L; 3 2 1 0) is true. (> = L; 3 2 1 0) is true.
(> L; 3 3 2 0) is false. (> = L; 3 3 2 0) is true.
(> L; 3 1 2 0) is false. (> = L; 3 1 2 0) is false.
(= 3) is true. (I= 3) is true.
(< 3) is true. (<= 3) is true.
(= 3.0 #C(3.0 0. 0)) is true. (I= 3.0 #C(3.0 1. 0)) is true.
(= 3 3. 0) is true. (= 3.0sO 3.0dO) is true.
(= 0.0 -0. 0) is true. (= 5/2 2. 5) is true.
(> 0.0 - 0. 0) is false. (= 0 -0. 0) is true.

With two arguments, these functions perform the usual aritnmetic comparison tests.
With three or more arguments, they are useful for range checks as shown in the

198 COMMON LISP

following example:

(<= 0 x 9)

(< 0.0 x 1.0)

(< -1 j (lengths))

(<= O j k (- (lengths) 1))

;true if x is between 0 and 9, inclusive
; true if x is between 0.0 and 1.0, exclusive
; true if j is a valid index for s
; true if j and k are each valid
; indices for s and also j -o:k

Rationale: The "unequality" relation is called / = rather than < > (the name used in PASCAL)

for two reasons. First, / = of more than two arguments is not the same as the a r of < and
> of those same arguments. Second, unequality is meaningful for complex numbers even
though < and > are not. For both reasons it would be misleading to associate unequality
with the names of < and >.

Compatibility note: In COMMON LISP, the comparison operations perform "mixed-mode"
comparisons: (= 3 3. o) is true. In MAcLrsP, there must be exactly two arguments, and
they must be either both fixnums or both floating-point numbers. To compare two numbers
for numerical equality and type equality, use eql.

max number &rest more-numbers
min number &rest more-numbers

[Function]
[Function]

The arguments may be any non-complex numbers. max returns the argument that
is greatest (closest to positive infinity). min returns the argument that is least (closest
to negative infinity).

For max, if the arguments are a mixture of rationals and floating-point numbers,
and the largest argument is a rational, then the implementation is free to produce
either that rational or its floating-point approximation; if the largest argument is a
floating-point number of a smaller format than the largest format of any float
ing-point argument, then the implementation is free to return the argument in its
given format or expanded to the larger format. More concisely, the implementation
has the choice of returning the largest argument as is or applying the rules of
floating-point contagion, taking all the arguments into consideration for contagion
purposes. Also, if one or more of the arguments are equal, then any one of them
may be chosen as the value to return. Similar remarks apply to min (replacing
"largest argument" by "smallest argument").

(max 6 12) :::? 12 (min 6 12) :::? 6

(max -6 -12) :::? -6 (min -6 -12) :::? -12

(max 1 3 2 -7) :::? 3 (min 1 3 2 -7) :::? -7

(max -2 3 0 7) :::? 7 (min -2 3 0 7) :::? -2

(max 3) :::? 3 (min 3) :::? 3

NUMBERS

(max 5.0 2) ~ 5.0

(max 3.0 7 1) ~ 7 or 7.0

(max 1.0sO 7.0dO) ~ 7. OdO

(min 1.0sO 7.0dO) ~ 1. OsO

(max 3 1 1.0sO 1.0dO) ~ 3

(min 3 1 1.0sO 1.0dO) ~ 1

(min 5.0 2) ~ 2 or 2.0

(min 3.0 7 1) ~ 1 or 1.0

or 1.oao

or 3.oao

or 1.oso or 1.oao

12.4. Arithmetic Operations

199

Each of the functions in this section requires that its arguments all be numbers; to
call one with a non-number is an error. Unless otherwise specified, each works on
all types of numbers, automatically performing any required coercions when arguments
are of different types.

+ &rest numbers [Function]

This returns the sum of the arguments. If there are no arguments, the result is o,
which is an identity for this operation.

Compatibility note: While +is compatible with its use in ZETALISP, it is incompatible with
MACLISP, which uses + for fixnum-only addition.

- number &rest more-numbers [Function]

The function - , when given one argument, returns the negative of that argument.
The function - , when given more than one argument, successively subtracts

from the first argument all the others, and returns the result. For example,
(- 3 L; 5) ~ -6.

Compatibility.note: While - is compatible with its use in ZETALISP, it is incompatible with
MAcLISP, which uses - for fixnum-only subtraction. Also, - differs from difference as
used in most LISP systems in the case of one argument.

* &rest numbers [Function]

This returns the product of the arguments. If there are no arguments, the result is
1, which is an identity for this operation.

Compatibility note: While * is compatible with its use in ZETALISP, it is incompatible with
MACLISP, which uses * for fixnum-only multiplication.

200 COMMON LISP

1 number &rest more-numbers [Function]

The function 1, when given more than one argument, successively divides the first
argument by all the others and returns the result.

With one argument, / reciprocates the argument.
1 will produce a ratio if the mathematical quotient of two integers is not an exact

integer. For example:

(I 12 4) :::> 3

(/ 13 4) => 13/4

(/ -5) => -1//)

(/ 3 4 S) :::> 3/20

To divide one integer by another producing an integer result, use one of the functions
floor, ceiling, truncate, or round.

If any argument is a floating-point number, then the rules of floating-point con
tagion apply.

Compatibility note: What / does is totally unlike what the usual 11 or quotient operator
does. In most LISP systems, quotient behaves like I except when dividing integers, in
which case it behaves like truncate of two arguments; this behavior is mathematically
intractable, leading to such anomalies as

(quotient 1.0 2.0) ~ 0.5 but (quotient 1 2) ~ O

In contrast, the COMMON LISP function / produces these results:

(I 1.0 2.0) ~ o.5 and (/ 1 2) ~ 112

In practice quotient is used only when one is sure that both arguments are integers, or
when one is sure that at least one argument is a floating-point number. I is tractable for its
purpose and "works" for any numbers.

1+ number
1- number

(1 + x) is the same as (+ x 1) .

[Function]
[Function]

(1- x) is the same as (- x 1). Note that the short name may be confusing:
(1- x) does not mean 1-x; rather, it means x-1.

Rationale: These are included primarily for compatibility with MAcLISP and ZETALISP.

Some programmers prefer always to write (+ x 1) and (- x 1) instead of (1 + x) and
(1- x).

NUMBERS 201

Implementation note: Compiler writers are very strongly encouraged to ensure that
(1 + x) and (+ x 1) compile into identical code, and similarly for (1- x) and (- x 1) ,

to avoid pressure on a LISP programmer to write possibly less clear code for the sake of
efficiency. This can easily be done as a source-language transformation.

incf place [delta]
decf place [delta]

[Macro]
[Macro]

The number produced by the form delta is added to (incf) or subtracted from
(decf) the number in the generalized variable named by place, and the sum is
stored back into place and returned. The form place may be any form acceptable
as a generalized variable to setf. If delta is not supplied, then the number in place
is changed by 1. For example:

(setq n D)
(incf n) =? 1 and now n =? 1

(decf n 3) =? -2 and now n =? -2

(decf n -5) =? 3 and now n =? 3

(decf n) =? 2 and now n =? 2

The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))

except that the latter would evaluate any subforms of place twice, whereas incf

takes care to evaluate them only once. Moreover, for certain place forms incf

may be significantly more efficient than the setf version.

conjugate number [Function]

This returns the complex conjugate of number. The conjugate of a non-complex
number is itself. For a complex number z,

(conjugate z) ==(complex (realpart z) (- (imagpart z)))

For example:

(conjugate #C(3/5 4/5)) =? #C(3/5 -4/5)

(conjugate #C(D.DDD -1.DDD)) =? #C(D.DDD 1.DDD)

(conjugate 3.7) =? 3.7

202 COMMON LISP

gcd &rest integers [Function]

This returns the greatest common divisor of all the arguments, which must be
integers. The result of gcd is always a non-negative integer. If one argument is
given, its absolute value is returned. If no arguments are given, gcd returns o,
which is an identity for this operation. For three or more arguments,

(gcd abc ... Z) = (gcd (gcd ab) c ... z)

Here are some examples of the use of gcd:

(gcd 9:L -t;9) ~ 7

(gcd 63 -t;2 35) ~ 7

(gcd 5) ~ 5

(gcd -t;) ~ t;

(gcd) ~ o

lcm integer &rest more-integers [Function]

This returns the least common multiple of its arguments, which must be integers.
The result of lcm is always a non-negative integer. For two arguments that are not
both zero,

(lcm ab) == (I (abs (*ab)) (gcd ab))

If one or both arguments are zero,

(lcm a 0) = (lcm o a) = o

For one argument, lcm returns the absolute value of that argument. For three or
more arguments,

(lcm ab c ... Z) - (lcm (lcm ab) c ... z)

Some examples:

(lcm :Lt; 35) ~ 70

(lcm o 5) ~ o
(lcm :L 2 3 t; 5 6) ~ 60

Mathematically, (lcm) should return infinity. Because COMMON LISP does not
have a representation for infinity, lcm, unlike gcd, always requires at least one
argument.

NUMBERS 203

12.5. Irrational and Transcendental Functions

COMMON LISP provides no data type that can accurately represent irrational numerical
values. The functions in this section are described as if the results were mathematically
accurate, but actually they all produce floating-point approximations to the true
mathematical result in the general case. In some places mathematical identities are
set forth that are intended to elucidate the meanings of the functions; however, two
mathematically identical expressions may be computationally different because of
errors inherent in the floating-point approximation process.

When the arguments to a function in this section are all rational and the true
mathematical result is also (mathematically) rational, then unless otherwise noted
an implementation is free to return either an accurate result of type ration a 1 or
a single-precision floating-point approximation. If the arguments are all rational
but the result cannot be expressed as a rational number, then a single-precision
floating-point approximation is always returned.

The rules of floating-point contagion and complex contagion are effectively obeyed
by all the functions in this section except expt, which treats some cases of rational
exponents specially. When, possibly after contagious conversion, all of the argu
ments are of the same floating-point or complex floating-point type, then the result
will be of that same type unless otherwise noted.

Implementation note: There is a "floating-point cookbook" by Cody and Waite [4] that
may be a useful aid in implementing the functions defined in this section.

12.5.1. Exponential and Logarithmic Functions

Along with the usual one-argument and two-argument exponential and logarithm
functions, sqrt is considered to be an exponential function, because it raises a
number to the power 112.

exp number [Function]

Returns e raised to the power number, where e is the base of the natural logarithms.

expt base-number power-number [Function]

Returns base-number raised to the power power-number. If the base-number is of
type rational and the power-number is an integer, the calculation will be exact
and the result will be of type rational; otherwise a floating-point approximation
may result.

204 COMMON LISP

When power-number is o (a zero of type integer), then the result is always the
value one in the type of base-number, even if the base-number is zero (of any
type). That is:

(expt x 0) ==(coerce 1 (type-of X))

If the power-number is a zero of any other data type, then the result is also the
value one, in the type of the arguments after the application of the contagion rules,
with one exception: it is an error if base-number is zero when the power-number
is a zero not of type integer.

Implementations of expt are permitted to use different algorithms for the cases
of a rational power-number and a floating-point power-number; the motivation is
that in many cases greater accuracy can be achieved for the case of a rational
power-number. For example, (expt pi 16) and (expt pi 16. o) may yield slightly
different results if the first case is computed by repeated squaring and the second
by the use of logarithms. Similarly, an implementation might choose to compute
(expt x 3/2) as if it had been written (sqrt (expt x 3)), perhaps producing
a more accurate result than would (ex pt x 1. 5). It is left to the implementor to
determine the best strategies.

The result of expt can be a complex number, even when neither argument is
complex, if base-number is negative and power~number is not an integer. The
result is always the principal complex value. Note that (ex pt - ll 113) is not
permitted to return - 2; while - 2 is indeed one of the cube roots of - ll, it is not the
principal cube root, which is a complex number approximately equal to
#C(0.51.73205).

log number &optional base [Function]

Returns the logarithm of number in the base base, which defaults toe, the base of
the natural logarithms. For example:

(log ll.O 2) :;? 3.0

(log 100.0 10) =? 2.0

The result of (log ll 2) may be either 3 or 3. o, depending on the implementation.
Note that log may return a complex result when given a non-complex argument

if the argument is negative. For example:

(log -1.0) ==(complex o.o (float pi 0.0))

NUMBERS 205

sqrt number [Function]

Returns the principal square root of number. If the number is not complex but is
negative, then the result will be a complex number. For example:

(sqrt c1. O) =? 3. O

(sqrt -9.0) =? #c(O.O 3.0)

The result of (sqrt 9) may be either 3 or 3. o, depending on the implementation.
The result of (sqrt -9) may be either #c(O 3) or #c(O.O 3.0).

isqrt integer [Function]

Integer square root: the argument must be a non-negative integer, and the result is
the greatest integer less than or equal to the exact positive square root of the
argument. For example:

(isqrt 9) =? 3

(isqrt 12) =? 3

(isqrt 300) =? 17

(isqrt 325) =? 111

12.5.2. Trigonometric and Related Functions

Some of the functions in this section, such as abs and signurn, are apparently
unrelated to trigonometric functions when considered as functions of real numbers
only. The way in which they are extended to operate on \:Omplex numbers makes
the trigonometric connection clear.

abs number [Function]

Returns the absolute value of the argument. For a non-complex number,

(abs x) ==' (if (rninusp x) (- x) x)

and the result is always of the same type as the argument.
For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (real part z) 2) (ex pt (imagpart Z) 2)))

Implementation note: The careful implementor will not use this formula directly for all
complex numbers but will instead handle very large or very small components specially to
avoid intermediate overflow or underflow.

206 COMMON LISP

For example:

(abs #c(3.0 -~.O)) =? 5.0

The result of (abs #c (3 ~)) may be either 5 or 5. o, depending on the implementation.

phase number [Function]

The phase of a number is the angle part of its polar representation as a complex
number. That is,

(phase x) = (atan (imagpart x) (realpart x))

The result is in radians, in the range - 1T (exclusive) to 1T (inclusive). The phase
of a positive non-complex number is zero; that of a negative non-complex number
is 7T. The phase of zero is arbitrarily defined to be zero.

If the argument is a complex floating-point number, the result is a floating-point
number of the same type as the components of the argument. If the argument is a
floating-point number, the result is a floating-point number of the same type. If
the argument is a rational number or complex rational number, the result is a
single-format floating-point number.

signum number

By definition,

(signum X) =(if (zerop X) x (/ x (abs X)))

[Function]

For a rational number, sign um will return one of -1, o, or 1 according to whether
the number is negative, zero, or positive. For a floating-point number, the result
will be a floating-point number of the same format whose value is minus one, zero,
or one. For a complex number z, (signum z) is a complex number of the same
phase but with unit magnitude, unless z is a complex zero, in which case the result
is z. For example:

(signum 0) =? O

(signum -3.7L5) =? -1.0LO

(signum ~/5) =? 1

(signum #C(7.5 10.0)) =? #C(0.6 0.5)

(signum #C(0.0 -1~.7)) ='? #C(O.O -1.0)

For non-complex rational numbers, signum is a rational function, but it may be
irrational for complex arguments.

NUMBERS

sin radians
cos radians
tan radians

207

[Function]
[Function]
[Function]

sin returns the sine of the argument, cos the cosine, and tan the tangent. The
argument is in radians. The argument may be complex.

cis radians [Function]

This computes ei·radians_ The name cis means "cos + i sin," because e;e = cos (}
+ i sin e. The argument is in radians and may be any non-complex number. The
result is a complex number whose real part is the cosine of the argument and whose
imaginary part is the sine. Put another way, the result is a complex number whose
phase is the equal to the argument (mod 27T) and whose magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a single angle
together than to perform two disjoint calculations.

asin number
acos number

[Function]
[Function]

asin returns the arc sine of the argument, and acos the arc cosine. The result is
in radians. The argument may be complex.

The arc sine and arc cosine functions may be defined mathematically for an
argument x as follows:

Arc sine
Arc cosine

- i log (ix+ \if="?)
- i log (x + i\11="?)

Note that the result of either as in or acos may be complex even if the argument
is not complex; this occurs when the absolute value of the argument is greater than
one.

Implementation note: These formulae are mathematically correct, assuming completely
accurate computation. They may be terrible methods for floating-point computation! Imple
mentors should consult a good text on numerical analysis. The formulas given above are
not necessarily the simplest ones for real-valued computations, either; they are chosen to
define the branch cuts in desirable ways for the complex case.

atan y &optional x [Function]

An arc tangent is calculated and the result is returned in radians.

208 COMMON LISP

With two arguments y and x, neither argument may be complex. The result is
the arc tangent of the quantity y/x. The signs of y and x are used to derive quadrant
information; moreover, x may be zero provided y is not zero. The value of a tan

is always between - 7r (exclusive) and 7r (inclusive). The following table details
various special cases.

Condition Cartesian locus Range of result

y = 0 x> 0 Positive x-axis 0
y>O x> 0 Quadrant I 0 < result < 1r!2
y> 0 x = 0 Positive y-axis 7r/2
y>O x< 0 Quadrant II 7r/2 < result < 7r
y = 0 x< 0 Negative x-axis 1r
y < 0 x< 0 Quadrant III - 7r < result < - 7r/2
y < 0 x = 0 Negative y-axis -1r/2
y<O x> 0 Quadrant IV - 7r/2 < result < 0
y = 0 x = 0 Origin error

With only one argument y, the argument may be complex. The result is the arc
tangent of y, which may be defined by the following formula:

Arc tangent - i log (0 + iy) V110 + y2))

Implementation note: This formula is mathematically correct, assuming completely accu
rate computation. It may be a terrible method for floating-point computation! Implementors
should consult a good text on numerical analysis. The formula given above is not necessarily
the simplest one for real-valued computations, either; it is chosen to define the branch cuts
in desirable ways for the complex case.

For a non-complex argument y, the result is non-complex and lies between - 7r/2
and 7r/2 (both exclusive).

Compatibility note: MAcLisP has a function called atan whose range is from 0 to 2rr.
Almost every other programming language (ANSI FORTRAN, IBM PL/I, INTERLISP) has a
two-argument arc tangent function with range - rr to rr. ZETALISP provides two two-argument
arc tangent functions, atan (compatible with MACLISP) and atan2 (compatible with all
others).

NUMBERS 209

COMMON LISP makes two-argument a tan the standard one with range - 7T to 7f. Observe
that this makes the one-argument and two-argument versions of a tan compatible in the
sense that the branch cuts do not fall in different places. The INTERLISP one-argument
function arctan has a range from 0 to 7f, while nearly every other programming language
provides the range - 7Tl2 to 7Tl2 for one-argument arc tangent! Nevertheless, since INTERLISP

uses the standard two-argument version of arc tangent, its branch cuts are inconsistent
anyway.

pi [Constant]

This global variable has as its value the best possible approximation to Tr in long

floating-point format. For example:

(defun sind (x) ;The argument is in degrees.
(sin (* x (/ (float pix) 1~0))))

An approximation to Tr in some other precision can be obtained by writing (float

pix), where x is a floating-point number of the desired precision, or by writing
(coerce pi type), where type is the name of the desired type, such as short-float.

sinh number [Function]

cash number [Function]
tanh number [Function]

asinh number [Function]
acosh number [Function]

atanh number [Function]

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine,
and arc tangent functions, which are mathematically defined for an argument x as
follows:

Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic arc sine
Hyperbolic arc cosine
Hyperbolic arc tangent

(ex - e-x)/2

(ex+ e-x)/2
(ex - e-x)l(ex + e-x)

log (x + Vf+?)
~-----

log (x+(x+ l)Y(x-1)/(x+ 1))

log ((l +x)\/l- l/x2)

Note that the result of acosh may be complex even if the argument is not
complex; this occurs when the argument is less than one. Also, the result of atanh

may be complex even if the argument is not complex; this occurs when the absolute
value of the argument is greater than one.

210 COMMON LISP

Implementation note: These formulae are mathematically correct, assuming completely
accurate computation. They may be terrible methods for floating-point computation! Imple
mentors should consult a good text on numerical analysis. The formulas given above are
not necessarily the simplest ones for real-valued computations, either; they are chosen to
define the branch cuts in desirable ways for the complex case.

12.5.3. Branch Cuts, Principal Values, and Boundary Conditions
in the Complex Plane

Many of the irrational and transcendental functions are multiply defined in the
complex domain; for example, there are in general an infinite number of complex
values for the logarithm function. In each such case, a principal value must be
chosen for the function to return. In general, such values cannot be chosen so as
to make the range continuous; lines in the domain called branch cuts must be
defined, which in tum define the discontinuities in the range.

COMMON LISP defines the branch cuts, principal values, and boundary conditions
for the complex functions following a proposal for complex functions in APL[14].
The contents of this section are borrowed largely from that proposal.

Compatibility note: The branch cuts defined here differ in a few very minor respects from
those advanced by W. Kahan, who considers not only the "usual" definitions but also the
special modifications necessary for IEEE proposed floating-point arithmetic, which has infin
ities and minus zero as explicit computational objects. For example, he proposes that
V-4+0i =2i, but V-4-0i = -2i.

It may be that the differences between the APL proposal and Kahan's proposal will be
ironed out. If so, COMMON LISP may be changed as necessary to be compatible with these
other groups. Any changes from the specification below are likely to be quite minor, probably
concerning primarily questions of which side of a branch cut is continuous with the cut
itself.

sqrt

The branch cut for square root lies along the negative real axis, continuous with
quadrant II. The range consists of the right half-plane, including the non-negative
imaginary axis and excluding the negative imaginary axis.

phase

The branch cut for the phase function lies along the negative real axis, continuous
with quadrant II. The range consists of that portion of the real axis between - 1T

(exclusive) and 1T (inclusive).

NUMBERS 211

log

The branch cut for the logarithm function of one argument (natural logarithm) lies
along the negative real axis, continuous with quadrant II. The domain excludes the
origin. For a complex number z, log z is defined to be (log lzl)+i phase(z).
Therefore the range of the one-argument logarithm function is that strip of the
complex plane containing numbers with im<:ginary parts between - 1T (exclusive)
and 1T (inclusive).

The two-argument logarithm function is defined as logb z= (log z)/(log b). This
defines the principal values precisely. The range of the two-argument logarithm
function is the entire complex plane. It is an error if z is zero. If z is non-zero and
b is zero, the logarithm is taken to be zero.

exp

The simple exponential function has no branch cut.

ex pt

The two-argument exponential function is defined as fr= ex log b. This defines the
principal values precisely. The range of the two-argument exponential function is
the entire complex plane. Regarded as a function of x, with b fixed, there is no
branch cut. Regarded as a function of b, with x fixed, there is in general a branch
cut along the negative real axis, continuous with quadrant II. The domain excludes
the origin. By definition, o0 = I. If b = 0 and the real part of x is strictly positive,
then fr= 0. For all other values of x, OX is an error.

as in

The following definition for arc sine determines the range and branch cuts:

arcsin z= -i log (i z+~)

The branch cut for the arc sine function is in two pieces: one along the negative
real axis to the left of - 1 (inclusive), continuous with quadrant II, and one along
the positive real axis to the right of 1 (inclusive), continuous with quadrant IV.
The range is that strip of the complex plane containing numbers whose real part is
between - 7T/2 and 7T/2. A number with real part equal to - 7T/2 is in the range if
and only if its imaginary part is non-negative; a number with real part equal to 7T/2
is in the range if and only if its imaginary part is non-positive.

212 COMMON LISP

a cos

The following definition for arc cosine determines the range and branch cuts:

arccos z= -i log (z+i ~)

or, which is equivalent,

arccos z = (1T/2)- arcsiri z

The branch cut for the arc cosine function is in two pieces: one along the negative
real axis to the left of - I (inclusive), continuous with quadrant II, and one along
the positive real axis to the right of I (inclusive), continuous with quadrant IV.
This is the same branch cut as for arc sine. The range is that strip of the complex
plane containing numbers }Vhose real part is between 0 and 1T. A number with real
part equal to 0 is in the range if and only if its imaginary part is non-negative; a
number with real part equal to 1T is in the range if and only if its imaginary part
is non-positive.

a tan

The following definition for (one-argument) arc tangent determines the range and
branch cuts:

arctan z = - i log ((1 + i z) Yl/(1 + z2))

Beware of simplifying this formula; "obvious" simplifications are likely to alter the
branch cuts or the values on the branch cuts incorrectly. The branch cut for the
arc tangent function is in two pieces: one along the positive imaginary axis above
i (exclusive), continuous with quadrant II, and one along the negative imaginary
axis below - i (exclusive), continuous with quadrant IV. The points i and - i are
excluded from the domain. The range is that strip of the complex plane containing
numbers whose real part is between -1Tl2 and 1Tl2. A number with real part equal
to - 1Tl2 is in the range if and only if its imaginary part is strictly positive; a
number with real part equal to 1Tl2 is in the range if and only if its imaginary part
is strictly negative. Thus the range of arc tangent is identical to that of arc sine
with the points - 1Tl2 and 1T/2 excluded.

asinh

The following definition for the inverse hyperbolic sine determines the range and
branch cuts:

arcsinh z =log (z + v'f+?)

NUMBERS 213

The branch cut for the inverse hyperbolic sine function is in two pieces: one along
the positive imaginary axis above i (inclusive), continuous with quadrant I, and
one along the negative imaginary axis below - i (inclusive), continuous with quad
rant III. The range is that strip of the complex plane containing numbers whose
imaginary part is between - 7T/2 and 7T/2. A number with imaginary part equal to
- 7T/2 is in the range if and only if its real part is non-positive; a number with
imaginary part equal to 7T/2 is in the range if and only if its real part is non-negative.

acosh

The following definition for the inverse hyperbolic cosine determines the range and
branch cuts:

arccosh z=log (z+(z+ l)Y(z-1)/(z+ 1))

The branch cut for the inverse hyperbolic cosine function lies along the real axis
to the left of 1 (inclusive), extending indefinitely along the negative real axis,
continuous with quadrant II and (between 0 and 1) with quadrant I. The range is
that half-strip of the complex plane containing numbers whose real part is non-negative
and whose imaginary part is between - 7T (exclusive) and 7T (inclusive). A number
with real part zero is in the range if its imaginary part is between zero (inclusive)
and 7T (inclusive).

atanh

The following definition for the inverse hyperbolic tangent determines the range
and branch cuts:

arctanh z =log ((1 + z)\if=17.?)

Beware of simplifying this formula; "obvious" simplifications are likely to alter the
branch cuts or the values on the branch cuts incorrectly. The branch cut for the
inverse hyperbolic tangent function is in two pieces: one along the negative real
axis to the left of -1 (inclusive), continuous with quadrant III, and one along the
positive real axis to the right of 1 (inclusive), continuous with quadrant I. The
points - 1 and 1 are excluded from the domain. The range is that strip of the
complex plane containing numbers whose imaginary part is between - 7T/2 and
7T/2. A number with imaginary part equal to - 7T/2 is in the range if and only if
its real part is strictly negative; a number with imaginary part equal to 7T/2 is in
the range if and only if its real part is strictly positive. Thus the range of the inverse

214 COMMON LISP

hyperbolic tangent function is identical to that of the inverse hyperbolic sine func
tion with the points - m/2 and m/2 excluded.

With these definitions, the following useful identities are obeyed throughout the
applicable portion of the complex domain, even on the branch cuts:

sin i z = i sinh z
cos i z = cosh z
taniz = itanhz

sinh i z = i sin z
cosh i z = cos z

arcsin i z = i arcsinh z

arctan i z = i arctanh z
arcsinh i z i arcsin z
arctanh i z = i arctan z

12.6. Type Conversions and Component Extractions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types
if necessary, the following functions are provided to allow specific conversions of
data types to be forced when desired.

float number &optional other [Function]

This converts any non-complex number to a floating-point number. With no second
argument, if number is already a floating-point number, then number is returned;
otherwise a single-float is produced. If the argument other is provided, then it
must be a floating-point number, and number is converted to the same format as
other. See also coerce.

rational number
rationalize number

[Function]
[Function]

Each of these functions converts any non-complex number to be a rational number.
If the argument is already rational, it is returned. The two functions differ in their
treatment of floating-point numbers.

rational assumes that the floating-point number is completely accurate and
returns a rational number mathematically equal to the precise value of the float
ing-point number.

rationalize assumes that the floating-point number is accurate only to the
precision of the floating-point representation, and may return any rational number
for which the floating-point number is the best available approximation of its for
mat; in doing this it attempts to keep both numerator and denominator small.

It is always the case that

(float (rational x) x) == x

NUMBERS 215

and

(float (rationalize x) x) ""' x

That is, rationalizing a floating-point number by either method and then converting
it back to a floating-point number of the same format produces the original number.
What distinguishes the two functions is that rational typically has a simple,
inexpensive implementation, whereas rationalize goes to more trouble to produce
a result that is more pleasant to view and simpler for some purposes to compute
with.

numerator rational
denominator rational

[Function]
[Function]

These functions take a rational number (an integer or ratio) and return as an integer
the numerator or denominator of the canonical reduced form of the rational. The
numerator of an integer is that integer; the denominator of an integer is 1. Note
that

(gcd (numerator X) (denominator X))::? 1

The denominator will always be a strictly positive integer; the numerator may be
any integer. For example:

(numerator (/ B -6))::? -~

(denominator (/ B -6))::? 3

There is no fix function in COMMON LISP because there are several interesting
ways to convert non-integral values to integers. These are provided by the functions
below, which perform not only type-conversion but also some non-trivial calcu
lations as well.

floor number &optional divisor
ceiling number &optional divisor
truncate number &optional divisor
round number &optional divisor

[Function]
[Function]
[Function]
[Function]

In the simple one-argument case, each of these functions converts its argument
number (which must not be complex) to be an integer. If the argument is already
an integer, it is returned directly. If the argument is a ratio or floating-point number,
the functions use different algorithms for the conversion.

216 COMMON LISP

floor converts its argument by truncating toward negative infinity; that is, the
result is the largest integer that is not larger than the argument.

ceiling converts its argument by truncating toward positive infinity; that is, the
result is the smallest integer that is not smaller than the argument.

truncate converts its argument by truncating toward zero; that is, the result is
the integer of the same sign as the argument and which has the greatest integral
magnitude not greater than that of the argument.

round converts its argument by rounding to the nearest integer; if number is
exactly halfway between two integers (that is, of the form integer+0.5), then it
is rounded to the one that is even (divisible by two).

The following table shows what the four functions produce when given various
arguments.

Argument floor ceiling truncate round

2.6 2 3 2 3

2.5 2 3 2 2

2.L; 2 3 2 2

0.7 0 1 0 1

0.3 0 1 0 0

-0.3 -1 0 0 0

-0.7 -1 0 0 -1

-2. L; -3 -2 -2 -2

-2.5 -3 -2 -2 -2

-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type
of rounding or truncation applied to the result of dividing the number by the divisor.
For example, (floor 5 2) = (floor (/ 5 2)) but is potentially more efficient.
The divisor may be any non-complex number. The one-argument case is exactly
like the two-argument case where the second argument is 1.

Each of the functions actually returns two values, whether given one or two
arguments. The second result is the remainder and may be obtained using multiple

val ue- bind and related constructs. If any of these functions is given two arguments
x and y and produces results q and r, then q·y+r=x. The first result q is always
an integer. The remainder r is an integer if both arguments are integers, is rational
if both arguments are rational, and is floating-point if either argument is float
ing-point. One consequence is that in the one-argument case the remainder is
always a number of the same type as the argument.

When only one argument is given, the two results are exact; the mathematical
sum of the two results is always equal to the mathematical value of the argument.

NUMBERS 217

Compatibility note: The names of the functions floor, ceiling, truncate, and round
are more accurate than names like fix that have heretofore been used in various LISP
systems. The names used here are compatible with standard mathematical terminology (and
with PU!, as it happens). In FORTRAN ifix means truncate. ALGOL 68 provides round
and uses entier to mean floor. In MAcLISP, fix and ifix both mean floor (one is
generic, the other ftonum-inlfixnum-out). In INTERLISP, fix means truncate. In ZETALISP,
fix means floor and fixr means round. STANDARD LISP provides a fix function but
does not specify precisely what it does. The existing usage of the name fix is so confused
that it seemed best to avoid it altogether.

The names and definitions given here have recently been adopted by ZETALISP, and
MAcLISP and NIL seem likely to follow suit.

mod number divisor

rem number divisor
[Function]

[Function]

mod performs the operation floor on its two arguments and returns the second
result of floor as its only result. Similarly, rem performs the operation truncate

on its arguments and returns the second result of truncate as its only result.

mod and rem are therefore the usual modulus and remainder functions when

applied to two integer arguments. In general, however, the arguments may be
integers or floating-point numbers.

(mod 13 t;) ::;. 1 (rem 13 t;) ::;. 1

(mod -13 t;) ::;. 3 (rem -13 t;) ::;. -1

(mod 13 -t;) ::;. -3 (rem 13 -t;) ::;. 1

(mod -13 -t;) ::;. -1 (rem -13 -t;) ::;. -1

(mod 13. t; 1) ::? O.t; (rem 13. t; 1) ::;. 0 .t;

(mod -13. t; 1) ::;. 0.6 (rem -13. t; 1) ::;. -0. t;

Compatibility note: The INTERLISP function remainder is essentially equivalent to the
COMMON LISP function rem. The MACLISP function remainder is like rem but accepts only
integer arguments.

ffloor number &optional divisor
fceiling number &optional divisor
ftruncate number &optional divisor
fround number &optional divisor

[Function]
[Function]
[Function]
[Function]

These functions are just like floor, ceiling, truncate, and round, except that

the result (the first result of two) is always a floating-point number rather than an

218 COMMON LISP

integer. It is roughly as if ffloor gave its arguments to floor, and then applied
float to the first result before passing them both back. In practice, however,
ffloor may be implemented much more efficiently. Similar remarks apply to the
other three functions. If the first argument is a floating-point number, and the
second argument is not a floating-point number of longer format, then the first
result will be a floating-point number of the same type as the first argument. For
example:

(ffloor -~.7) =? -5.D and 0.3

(ffloor 3.SdD) =? 3.DdD and D.SdD

decode-float float [Function]
scale-float float integer [Function]
float-radix float [Function]
float-sign float] &optionalfloat2 [Function]
float-digits float [Function]
float-precision float [Function]
integer-decode-float float [Function]

The function decode-float takes a floating-point number and returns three values.
The first value is a new floating-point number of the same format representing

the significand; the second value is an integer representing the exponent; and the
third value is a floating-point number of the same format indicating the sign. Let
b be the radix for the floating-point representation; then decode-float divides the
argument by an integral power of b so as to bring its value between lib (inclusive)
and 1 (exclusive), and returns the quotient as the first value. If the argument is
zero, however, the result equals the absolute value of the argument (that is, if there
is a negative zero, its significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must
be raised to produce the appropriate power for the division. If the argument is zero,
any integer value may be returned, provided that the identity shown below for
scale-float holds.

The third value of decode-float is a floating-point number, of the same format
as the argument, whose absolute value is one and whose sign matches that of the
argument.

The function scale-float takes a floating-point number f (not necessarily be
tween lib and 1) and an integer k, and returns (• f (expt (float b fl k)). (The
use of scale-float may be much more efficient than using exponentiation and
multiplication, and avoids intermediate overflow and underflow if the final result
is representable.)

NUMBERS

Note that

(multiple-value-bind (signif expon sign)

(decode-float f)
(scale-float signif expon))

= (abs f)

and

(multiple-value-bind (signif expon sign)

(decode-float f)
(* (scale-float signif expon) sign))

=f

219

The function float-radix returns (as an integer) the radix b of the floating-point
argument.

The function float-sign returns a floating-point number z such that z andfioatl

have the same sign and also such that z and fioat2 have the same absolute value.
The argumentfioat2 defaults to the value of (float 1fioatl); (float-sign x)

therefore always produces a 1. o or -1. o of appropriate format according to the
sign of x. (Note that if an implementation has distinct representations for negative
zero and positive zero, then (float-sign -D.D) =? -1.0.)

The function float-digits returns, as a non-negative integer, the number of
radix-b digits used in the representation of its argument (including any implicit
digits, such as a "hidden bit"). The function float-precision returns, as a
non-negative integer, the number of significant radix-b digits present in the argu
ment; if the argument is (a floating-point) zero, then the result is (an integer) zero.
For normalized floating-point numbers, the results of float-digits and
float-precision will be the same, but the precision will be less than the number
of representation digits for a denormalized or zero number.

The function integer-decode-float is similar to decode-float but for its
first value returns, as an integer, the significand scaled so as to be an integer.
For an argument f, this integer will be strictly less than

(expt b (float-precision fl)

but no less than

(expt b (- (float-precision fl 1))

except that if f is zero, then the integer value will be zero.

220 COMMON LISP

The second value bears the same relationship to the first value as for decode-float:

(multiple-value-bind (signif expon sign)

(integer-decode-float fl
(scale-float (float signif fl expon))

= (abs fl
The third value of integer-decode-float will be 1 or -1.

Rationale: These functions allow the writing of machine-independent, or at least ma
chine-parameterized, floating-point software of reasonable efficiency.

complex realpart &optional imagpart [Function]

The arguments must be non-complex numbers; a number is returned that has real
part as its real part and imagpart as its imaginary part, possibly converted according
to the rule of floating-point contagion (thus both components will be of the same
type). If imagpart is not specified, then (coerce o (type-of realpart)) is ef
fectively used. Note that if both the realpart and imagpart are rational and the
imagpart is zero, then the result is just the realpart because of the rule of canonical
representation for complex rationals. It follows that the result of complex is not
always a complex number; it may be simply a rational.

realpart number
imagpart number

[Function]
[Function]

These return the real and imaginary parts of a complex number. If number is a
non-complex number, then realpart returns its argument number and imagpart

returns (• o number), which has the effect that the imaginary part of a rational
is o and that of a floating-point number is a floating-point zero of the same format.

12. 7. Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error
to supply a non-integer as an argument. The functions all treat integers as if they
were represented in two's-complement notation.

Implementation note: Internally, of course, an implementation of COMMON LISP may or
may not use a two's-complement representation. All that is necessary is that the logical
operations perform calculations so as to give this appearance to the user.

The logical operations provide a convenient way to represent an infinite vector
of bits. Let such a conceptual vector be indexed by the non-negative integers. Then

NUMBERS 221

bit j is assigned a "weight" 2j. Assume that only a finite number of bits are ones
or only a finite number of bits are zeros. A vector with only a finite number of
one-bits is represented as the sum of the weights of the one-bits, a positive integer.
A vector with only a finite number of zero-bits is represented as -1 minus the sum
of the weights of the zero-bits, a negative integer.

This method of using integers to represent bit-vectors can in tum be used to
represent sets. Suppose that some (possibly countably infinite) universe of discourse
for sets is mapped into the non-negative integers. Then a set can be represented as
a bit vector; an element is in the set if the bit whose index corresponds to that
element is a one-bit. In this way all finite sets can be represented (by positive
integers), as well as all sets whose complements are finite (by negative integers).
The functions logior, log and, and logxor defined below then compute the union,
intersection, and symmetric difference operations on sets represented in this way.

logior &rest integers [Function]

This returns the bit-wise logical inclusive or of its arguments. If no argument is
given, then the result is zero, which is an identity for this operation.

logxor &rest integers [Function]

This returns the bit-wise logical exclusive or of its arguments. If no argument is
given, then the result is zero, which is an identity for this operation.

logand &rest integers [Function]

This returns the bit-wise logical and of its arguments. If no argument is given,
then the result is -1, which is an identity for this operation.

logeqv &rest integers [Function]

This returns the bit-wise logical equivalence (also known as exclusive nor) of its
arguments. If no argument is given, then the result is -1, which is an identity for
this operation.

lognand integer] integer2
lognor integer] integer2
logandc1 integer] integer2
logandc2 integer] integer2
logorc1 integer 1 integer2
logorc2 integer 1 integer2

[Function]

[Function]
[Function]
[Function]
[Function]
[Function]

222 COMMON LISP

These are the other six non-trivial bit-wise logical operations on two arguments.
Because they are not associative, they take exactly two arguments rather than any
non-negative number of arguments.

(lognand nl n2) - (lognot (logand nl n2)}

(lognor nl n2) - (lognot (logier nl n2)}

(logandc1 nl n2) (logand (lognot nl) n2)

(logandc2 nl n2) - (logand nl (log not n2})

(logiorc1 nl n2) (logier (lognot nl) n2)
(logiorc2 nl n2) - (logier nl (log not n2})

The ten bit-wise logical operations on two integers are summarized in this table:

Argument 1 D D

Argument 2 D 1

log and D D

logior D 1
logxor D 1
logeqv 1 D

lognand 1 1
lognor 1 D

logandc1 D 1
logandc2 D D

logorc1 1 1
logorc2 1 D

boole op integer] integer2
boole-clr

boo le-set

boole-1

boole-2

boole-c1

boole-c2

boole-and

boole-ior

boole-xor

boole-eqv

boole-nand

boo le-nor

boole-andc1

boole-andc2

boole-orc1

boole-orc2

1 1

D

D

1

1

D

1

D

D

1

D

1

1

1

1

D

1

D

D

D

D

1

1

Operation name

and
inclusive or
exclusive or
equivalence (exclusive nor)
not-and
not-or
and complement of argl with arg2
and arg l with complement of arg2
or complement of argl with arg2
or argl with complement of arg2

[Function]
[Constant]

[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]

NUMBERS 223

The function boole takes an operation op and two integers, and returns an integer
produced by performing the logical operation specified by op on the two integers.
The precise values of the sixteen constants are implementation-dependent, but they
are suitable for use as the first argument to boole:

integer] D D 1 1
integer2 D 1 D 1 Operation performed

boole-clr D D D 0 always 0
boo le-set 1 1 1 1 always I
boole-1 0 0 1 1 integer]
boole-2 0 1 0 1 integer2
boole-c1 1 1 0 0 complement of integer 1
boole-c2 1 0 1 0 complement of integer2
boo le-and 0 0 0 1 and
boole-ior 0 1 1 1 inclusive or
boole-xor 0 1 1 0 exclusive or
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 not-and
boole-nor 1 0 0 0 not-or
boole-andc1 0 1 0 0 and complement of integer] with integer2
boole-andc2 0 D 1 0 and integer I with complement of integer2
boole-orc1 1 1 0 1 or complement of integer] with integer2
boole-orc2 1 0 1 1 or integer] with complement of integer2

boole can therefore compute all sixteen logical functions on two arguments. In
general,

(boole boole-and x y) - (logand x y)

and the latter is more perspicuous. However, boole is useful when it is necessary
to parameterize a procedure so that it can use one of several logical operations.

lognot integer [Function]

This returns the bit-wise logical not of its argument. Every bit of the result is the
complement of the corresponding bit in the argument.

(logbitp j (log not X)) == (not (logbitp j X))

log test integer 1 integer2 [Function]

log test is a predicate that is true if any of the bits designated by the l's in integer 1

are 1 's in integer2.

(logtest X y) ==(not (zerop (logand x y)))

224 COMMON LISP

logbitp index integer [Function]

logbitp is true if the bit in integer whose index is index (that is, its weight is
2index) is a one-bit; otherwise it is false. For example:

(log bi tp 2 6) is true
(log bi tp o 6) is false
(logbitp kn) == (ldb-test (byte 1 k) n)

ash integer count [Function]

This function shifts integer arithmetically left by count bit positions if count is
positive, or right - count bit positions if count is negative. The sign of the result
is always the same as the sign of integer.

Mathematically speaking, this operation performs the computation
floor(integer· 2count).

Logically, this moves all of the bits in integer to the left, adding zero-bits at the
bottom, or moves them to the right, discarding bits. (In this context the question
of what gets shifted in on the left is irrelevant; integers, viewed as strings of bits,
are "half-infinite," that is, conceptually extend infinitely far to the left.) For
example:

(logbitp j (ash nk)) _(and(>= jk) (logbitp (- jk) n))

logcount integer [Function]

The number of bits in integer is determined and returned. If integer is positive,
then 1 bits in its binary representation are counted. If integer is negative, then the
o bits in its two's-complement binary representation are counted. The result is
always a non-negative integer. For example:

(logcount 13) => 3 ; Binary representation is
(logcount -13) => 2 ; Binary representation is
(logcount 30) => L; ; Binary representation is
(logcount -30) => L; ; Binary representation is

The following identity always holds:

(logcount x) - (logcount (- (+ x 1)))

- (logcount (lognot x))

integer-length integer

This function performs the computation

... 0001101

... 1110011

... 0011110

... 1100010

ceiling(log2(if integer < 0 then - integer else integer + 1))

[Function]

NUMBERS 225

This is useful in two different ways. First, if integer is non-negative, then its
value can be represented in unsigned binary form in a field whose width in bits is
no smaller than (integer-length integer). Second, regardless of the sign of
integer, its value can be represented in signed binary two's-complement form in a
field whose width in bits is no smaller than (+ (integer-length integer) 1).

For example:

(integer-length 0) :::} 0

(integer-length 1) :::} 1

(integer-length 3) :::} 2

(integer-length <';) :::} 3

(integer-length 7) :::} 3

(integer-length -1) :::} D

(integer-length -t;) :::} 2

(integer-length -7) :::} 3

(integer-length -/)) :::} 3

Compatibility note: This function is similar to the MACLISP function ha u long. One may
define haulong as

(haulong x) ==(integer-length (abs x))

12.8. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous
bits appearing anywhere in an integer. Such a contiguous set of bits is called a
byte. Here the term byte does not imply some fixed number of bits (such as eight),
rather a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate
a specific byte position within an integer. The representation of a byte specifier is
implementation-dependent; in particular, it may or may not be a number. It is
sufficient to know that the function byte will construct one, and that the
byte-manipulation functions will accept them. The function byte accepts two in
tegers representing the position and size of the byte and returns a byte specifier.
Such a specifier designates a byte whose width is size and whose bits have weights
2position +size - I through 2position.

byte size position [Function]

byte takes two integers representing the size and position of a byte and returns a
byte specifier suitable for use as an argument to byte-manipulation functions.

226 COMMON LISP

byte-size bytespec
byte-position bytespec

[Function]
[Function]

Given a byte specifier, byte-size returns the size specified as an integer;
byte-position similarly returns the position. For example:

(byte-size (byte j k)) =:; j
(byte-position (byte j k)) =:; k

ldb bytespec integer [Function]

bytespec specifies a byte of integer to be extracted. The result is returned as a non
negative integer.

(logbitp} (ldb (byte sp) n)) =:;(and (<js) (logbitp (+jp) n))

The name of the function ldb means "load byte."

Compatibility note: The MACLISP function haipart can be implemented in terms of ldb

as follows:

(defun haipart (integer count)

(let ((x (abs integer)))

(if (minusp count)

(ldb (byte (- count) D) x)

(ldb (byte count (max D (- (integer-length x) n)))

x))))

If the argument integer is specified by a form that is a place form acceptable to
setf, then setf may be used with ldb to modify a byte within the integer that is
stored in that place. The effect is to perform a dpb operation and then store the
result back into the place.

ldb-test bytespec integer [Function]

ldb-test is a predicate that is true if any of the bits designated by the byte specifier
bytespec are l's in integer; that is, it is true if the designated field is non-zero.

(ldb-test bytespec n) =(not (zerop (ldb bytespec n)))

mask-field bytespec integer [Function]

This is similar to ldb; however, the result contains the specified byte of integer in
the position specified by bytespec, rather than in position 0 as with ldb. The result
therefore agrees with integer in the byte specified but has zero-bits everywhere
else. For example:

NUMBERS

(ldb bs (mask-field bs n)) == (ldb bs n)

(logbitp j (mask-field (byte sp) n))

==(and(>= j p) (< j (+ ps)) (logbitp j n))

(mask-field bs n) == (logand n (dpb -1 bs O))

227

If the argument integer is specified by a form that is a place form acceptable to
setf, then setf may be used with mask-field to modify a byte within the integer
that is stored in that place. The effect is to perform a deposit-field operation
and then store the result back into the place.

dpb newbyte bytespec integer [Function]

This returns a number that is the same as integer except in the bits specified by
byte spec. Let s be the size specified by bytespec; then the low s bits of new byte
appear in the result in the byte specified by byte spec. The integer new byte is
therefore interpreted as being right-justified, as if it were the result of ldb. For
example:

(logbitp j (dpb m (bytes p) n))

==(if (and(>= j p) (< j (+ p S)))

(logbitp (-jp) m)

(logbitp j n))

The name of the function dpb means "deposit byte."

deposit-field newbyte bytespec integer [Function]

This function is to mask-field as dpb is to ldb. The result is an integer that
contains the bits of new byte within the byte specified by bytespec, and elsewhere
contains the bits of integer. For example:

(logbitp j (dpb m (bytes Pl n))

==(if (and (>=jp) (<j (+ps)))

(logbitp j m)

(logbitp j n))

Implementation note: If the bytespec is a constant, one may of course construct, at compile
time, an equivalent mask m, for example by computing (deposit-field -1 bytespec D).

Given this mask m, one may then compute

(deposit-field newbyte bytespec integer)

228 COMMON LISP

by computing

(logior (logand newbyte m) (log and integer (log not m)))

where the result of (log not m) can of course also be computed at compile time. However,
the following expression may also be used and may require fewer temporary registers in
some situations:

(logxor integer (logand m (logxor integer newbyte)))

A related, though possibly less useful, trick is that

(let ((z (log and (logxor x y) m)))

(setg x (logxor z x))

(setg y (logxor z y)))

interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of
x and y for which m is o.

12.9. Random Numbers

The COMMON LISP facility for generating pseudo-random numbers has been carefully
defined to make its use reasonably portable. While two implementations may produce
different series of pseudo-random numbers, the distribution of values should be
relatively independent of such machine-dependent aspects as word size.

random number &optional state [Function]

(random n) accepts a positive number n and returns a number of the same kind
between zero (inclusive) and n (exclusive). The number n may be an integer or a
floating-point number. An approximately uniform choice distribution is used. If n
is an integer, each of the possible results occurs with (approximate) probability
l!n. (The qualifier "approximate" is used because of implementation considerations;
in practice, the deviation from uniformity should be quite small.)

The argument state must be an object of type random-state; it defaults to the
value of the variable •random-state•. This object is used to maintain the state of
the pseudo-random-number generator and is altered as a side effect of the random

operation.

Compatibility note: random of zero arguments as defined in MAcLrsP has been omitted
because its value is too implementation-dependent (limited by fixnum range).

Implementation note: In general, even if random of zero arguments were defined as in
MAcLrsP, it is not adequate to define (random n) for integral n to be simply (mod (random)

n); this fails to be uniformly distributed if n is larger than the largest number produced by
random, or even if n merely approaches this number. This is another reason for omitting

NUMBERS 229

random of zero arguments in COMMON LISP. Assuming that the underlying mechanism
produces "random bits" (possibly in chunks such as fixnums), the best approach is to produce
enough random bits to construct an integer k some number d of bits larger than
(integer-length n) (see integer-length), and then compute (mod kn). The quantity
d should be at least 7, and preferably 10 or more.

To produce random floating-point numbers in the half-open range LA. B), accepted practice
(as determined by a look through the Collected Algorithms from the ACM, particularly
algorithms 133, 266, 294, and 370) is to compute X-(B-A) +A, where Xis a floating-point
number uniformly distributed over [0.0, 1.0) and computed by calculating a random integer
N in the range (0, M) (typically by a multiplicative-congruential or linear-congruential
method mod M) and then setting X=NIM. See also LIO]. If one takes M = 21, wheref is
the length of the significand of a floating-point number (and it is in fact common to choose
M to be a power of two), then this method is equivalent to the following assem
bly-language-level procedure. Assume the representation has no hidden bit. Take a float
ing-point 0.5, and clobber its entire significand with random bits. Normalize the result if
necessary.

For example, on the DEC PDP-10, assume that accumulator Tis completely random (all
36 bits are random). Then the code sequence

LSH T,-'l
FSC T,1211.

; Clear high 9 bits; low 27 ate random.
; Install exponent and normalize.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0).
(Instead of the LSH instruction, one could do

TLZ T,777000 ;That's 777000 octal.

but if the 36 random bits came from a congruential random-number generator, the high-order
bits tend to be "more random" than the low-order ones, and so the LSH would be better for
uniform distribution. Ideally all the bits would be the result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the
hidden bit is. The method can be adapted as follows. Take a floating-point 1.0 and clobber
the explicit significand bits with random bits; this produces a random floating-point number
in the range [1.0, 2.0). Then simply subtract 1.0. In effect, we let the hidden bit creep in
and then subtract it away again.

For example, on the DEC VAX, assume that register T is completely random (but a little
less random than on the PDP-10, as it has only 32 random bits). Then the code sequence

INSV #AX/11,#7,#'l,T
SUBF #AF1.0,T

; Install correct sign bit and exponent.
;Subtract 1.0.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0).
Again, if the low-order bits are not random enough, then the instruction

ROTL #7 ,T

should be performed first.
Implementors may wish to consult reference (17] for a discussion of some efficient meth

ods of generating pseudo-random numbers.

230 COMMON LISP

•random-state• [Variable]

This variable holds a data structure, an object of type random-state, that encodes
the internal state of the random·number generator that random uses by default. The

nature of this data structure is implementation-dependent. It may be printed out
and successfully read back in, but may or may not function correctly as a ran
dom-number state object in another implementation. A call to random will perform
a side effect on this data structure. Lambda-binding this variable to a different
random-number state object will correctly save and restore the old state object, of

course.

make-random-state &optional state [Function]

This function returns a new object of type random-state, suitable for use as the
value of the variable •random-state•. If state is nil or omitted, random-state
returns a copy of the current random-number state object (the value of the variable
•random-state*). If state is a state object, a copy of that state object is returned.
If state is t, then a new state object is returned that has been "randomly" initialized
by some means (such as by a time-of-day clock).

Rationale: COMMON LISP purposely provides no way to initialize a random-state object
from a user-specified "seed." The reason for this is that the number of bits of state infor
mation in a random-state object may vary widely from one implementation to another,
and there is no simple way to guarantee that any user-specified seed value will be "random
enough." Instead, the initialization of random-state objects is left to the implementor in
the case where the argument tis given to make-random-state.

To handle the common situation of executing the same program many times in a repro
ducible manner, where that program uses random, the following procedure may be used:

1. Evaluate (make-random-state t) to create a random-state object.

2. Write that object to a file, using print, for later use.

3. Whenever the program is to be run, first use read to create a copy of the random-state
object from the printed representation in the file. Then use the random-state object
newly created by the read operation to initialize the random-number generator for the
program.

It is for the sake of this procedure for reproducible execution that implementations are
required to provide a read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without going
through the prinUread process, simply by using the make-random-state function to copy
the object; this allows the same sequence of random numbers to be generated many times
within a single program.

NUMBERS 231

Implementation note: A recommended way to implement the type random-state is effectively
to use the machinery for defstruct. The usual structure syntax may then be used for
printing random-state objects; one might look something like

#S(RANDOM-S1A1E DATA #(1~ ~9 98~36589 7863~5 873~65832~ ...))

where the components are of course completely implementation-dependent.

random-state-p object [Function]

random-state-p is true if its argument is a random-state object, and otherwise is
false.

(random-state-p x) (typep x 'random-state)

12.10. Implementation Parameters

The values of the named constants defined in this section are
implementation-dependent. They may be useful for parameterizing code in some
situations.

most-positive-fixnum
most-negative-fixnum

[Constant]
[Constant]

The value of most-positive-fixnum is that fixnum closest in value to positive
infinity provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to negative
infinity provided by the implementation.

most-positive-short-float
least-positive-short-float
least-negative-short-float
most-negative-short-float

[Constant]
[Constant]
[Constant]
[Constant]

The value of most-positive-short-float is that short-format floating-point number
closest in value to (but not equal to) positive infinity provided by the implemen
tation.

The value of least-positive-short-float is that positive short-format float
ing-point number closest in value to (but not equal to) zero provided by the im
plementation.

The value of least-negative-short-float is that negative short-format float
ing-point number closest in value to (but not equal to) zero provided by the im
plementation. (Note that even if an implementation supports minus zero as a distinct
short floating-point value, least-negative-short-float must not be minus zero.)

232 COMMON LISP

The value of most-negative-short-float is that short-format floating-point
number closest in value to (but not equal to) negative infinity provided by the
implementation.

most-positive-single-float

least-positive-single-float

least-negative-single-float

most-negative-single-float

most-positive-double-float

least-positive-double-float

least-negative-double-float

most-negative-double-float

most-positive-long-float

least-positive-long-float

least-negative-long-float

most-negative-long-float

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]
[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

These are analogous to the constants defined above for short-format floating-point
numbers.

short-float-epsilon

single-float-epsilon

double-float-epsilon

long-float-epsilon

[Constant]

[Constant]

[Constant]

[Constant]

These constants have as value, for each floating-point format, the smallest positive
floating-point number e of that format such that the expression

(not (= (float 1 e) (+ (float 1 e) e)))

is true when actually evaluated.

short-float-negative-epsilon

single-float-negative-epsilon

double-float-negative-epsilon

long-float-negative-epsilon

[Constant]

[Constant]

[Constant]

[Constant]

These constants have as value, for each floating-point format, the smallest positive
floating-point number e of that format such that the expression

(not(= (float 1 e) (- (float 1 e) e)))

is true when actually evaluated.

13

Characters

COMMON LISP provides a character data type; objects of this type represent printed
symbols such as letters.

In general, characters in COMMON LISP are not true objects; eq cannot be counted
upon to operate on them reliably. In particular, it is possible that the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eg in the case of characters allows the implementor
enough design freedom to produce exceptionally efficient code on conventional architectures.
In this respect the treatment of characters exactly parallels that of numbers, as described in
chapter 12.

If two objects are to be compared for "identity," but either might be a character,
then the predicate eql is probably appropriate.

13.1. Character Attributes

Every character has three attributes: code, bits, and font. The code attribute is
intended to distinguish among the printed glyphs and formatting functions for
characters. The bits attribute allows extra flags to be associated with a character.
The font attribute permits a specification of the style of the glyphs (such as italics).

char-code-limit [Constant]

The value of char-code-limit is a non-negative integer that is the upper exclusive
bound on values produced by the function char-code, which returns the code
component of a given character; that is, the values returned by char-code are
non-negative and strictly less than the value of char-code-limit.

233

234 COMMON LISP

char-font-limit [Constant]

The value of char-font- limit is a non-negative integer that is the upper exclusive
bound on values produced by the function char-font, which returns the font
component of a given character; that is, the values returned by char-font are
non-negative and strictly less than the value of char-font-limit.

Implementation note: No COMMON LISP implementation is required to support non-zero
font attributes; if it does not, then char-font-limit should be 1.

char-bits-limit [Constant]

The value of char- bi ts-limit is a non-negative integer that is the upper exclusive
bound on values produced by the function char-bits, which returns the bits
component of a given character; that is, the values returned by char-bits are
non-negative and strictly less than the value of char-bits-limit. Note that the
value of char-bits-limit will be a power of two.

Implementation note: No COMMON LISP implementation is required to support non-zero
bits attributes; if it does not, then char-bits-limit should be 1.

13.2. Predicates on Characters

The predicate characterp may be used to determine whether any LISP object is a
character object.

standard-char-p char [Function]

The argument char must be a character object. standard-char-p is true if the
argument is a "standard character," that is, an object of type standard-char.

Note that any character with a non-zero bits or font attribute is non-standard.

graphic-char-p char [Function]

The argument char must be a character object. graphic-char-p is true if the
argument is a "graphic" (printing) character, and false if it is a "non-graphic"
(formatting or control) character. Graphic characters have a standard textual rep-

CHARACTERS 235

resentation as a single glyph, such as A or • or =. By convention, the space character
is considered to be graphic. Of the standard characters all but #\Newline are
graphic. The semi-standard characters #\Backspace, #\Tab, #\Rubout, #\Line
feed, #\Return, and #\Page are not graphic.

Programs may assume that graphic characters of font 0 are all of the same width
when printed, for example, for purposes of columnar formatting. (This does not
prohibit the use of a variable-pitch font as font 0, but merely implies that every
implementation of COMMON LISP must provide some mode of operation in which
font 0 is a fixed-pitch font.) Portable programs should assume that, in general,
non-graphic characters and characters of other fonts may be of varying widths.

Any character with a non-zero bits attribute is non-graphic.

string-char-p char [Function]

The argument char must be a character object. string-char-pis true if char can
be stored into a string, and otherwise is false. Any character that satisfies
standard-char-p also satisfies string-char-p; others may also.

alpha-char-p char [Function]

The argument char must be a character object. alpha-char-pis true if the argu
ment is an alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any character
with a non-zero bits attribute cannot be alphabetic. Whether a character is alpha
betic may depend on its font number.

Of the standard characters (as defined by standard-char-p), the letters A through
z and a through z are alphabetic.

upper-case-p char
lower-case-p char
both-case-p char

The argument char must be a character object.

[Function]

[Function]

[Function]

upper-case-p is true if the argument is an uppercase character, and otherwise
is false.

lower-case-pis true if the argument is a lowercase character, and otherwise is
false.

both-case-p is true if the argument is an uppercase character and there is a
corresponding lowercase character (which can be obtained using char-downcase),

236 COMMON LISP

or if the argument is a lowercase character and there is a corresponding uppercase
character (which can be obtained using char-upcase).

If a character is either uppercase or lowercase, it is necessarily alphabetic (and
therefore is graphic, and therefore has a zero bits attribute). However, it is per
missible in theory for an alphabetic character to be neither uppercase nor lowercase
(in a non-Roman font, for example).

Of the standard characters (as defined by standard-char-p), the letters A through
z are uppercase and a through z are lowercase.

digit-char-p char &optional (radix IO) [Function]

The argument char must be a character object, and radix must be a non-negative
integer. If char is not a digit of the radix specified by radix, then digi t-char-p

is false; otherwise it returns a non-negative integer that is the "weight" of char in
that radix.

Digits are necessarily graphic characters.
Of the standard characters (as defined by standard-char-p), the characters o

through 9, A through z, and a through z are digits. The weights of o through 9 are
the integers 0 through 9, and of A through z (and also a through z) are 10 through
35. digi t-char-p returns the weight for one of these digits if and only if its
weight is strictly less than radix. Thus, for example, the digits for radix 16 are

0 1 2 3 ~ 5 6 7 5 9 A B C D E F

Here is an example of the use of digit-char-p:

(defun convert-string-to-integer (str &optional (radix 10))

"Given a digit string and optional radix, return an integer."

(do ((j o (+ j 1))

(n D (+ (* n radix)

(or (digit-char-p (char str j) radix)
(error "Bad radix-~n digit: ~c"

radix

(chat str j))))))

((= j (length str)) n)))

alphanurnericp char [Function]

The argument char must be a character object. alphanurnericp is true if char is
either alphabetic or numeric. By definition,

(alphanurnericp x)

=(or (alpha-char-p x) (not (null (digit-char-p x))))

CHARACTERS 237

Alphanumeric characters are therefore necessarily graphic (as defined by
graphic-char-p).

Of the standard characters (as defined by stanaara-char-p), the characters o
through 9, A through z, and a through z are alphanumeric.

char= character &rest more-characters
char I= character &rest more-characters
char< character &rest more-characters
char> character &rest more-characters
char<= character &rest more-characters
char>= character &rest more-characters

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

The arguments must all be character objects. These functions compare the objects
using the implementation-dependent total ordering on characters, in a manner anal
ogous to numeric comparisons by = and related functions.

The total ordering on characters is guaranteed to have the following properties:

• The standard alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z

a<b<c<d<e<f<g<h<i<j<k<l<rn<n<o<p<g<r<s<t<u<v<w<x<y<z

0<1<2<3<~<5<6<7<B<9

either 9<A or Z<D

either 9<a or z<D

This implies that alphabetic ordering holds within each case (upper and lower),
and that the digits as a group are not interleaved with letters. However, the
ordering or possible interleaving of uppercase letters and lowercase letters is
unspecified. (Note that both the ASCII and the EBCDIC character sets conform to
this specification. As it happens, neither ordering interleaves uppercase and low
ercase letters: in the ASCII ordering, 9<A and Z<a, whereas in the EBCDIC ordering
z<A and Z<D.)

• If two characters have the same bits and font attributes, then their ordering by
char< is consistent with the numerical ordering by the predicate < on their code
attributes.

• If two characters differ in any attribute (code, bits, or font), then they are dif
ferent.

The total ordering is not necessarily the same as the total ordering on the integers
produced by applying char-int to the characters (although it is a reasonable
implementation technique to use that ordering).

238 COMMON LISP

While alphabetic characters of a given case must be properly ordered, they need
nqt be contiguous; thus (char<= #\ax #\z) is not a valid way of determining
whether or not x is a lowercase letter. That is why a separate lower-case-p

predicate is provided.

(char= #\d #\d) is true.
(char/= #\d #\d) is false.
(char= #\d #\x) is false.
(char/= #\d #\x) is true.
(char= #\d #\D) is false.
(char/= #\d #\D) is true.
(char= #\d #\d #\d #\d) is tru<;:.
(char/= #\d #\d #\d #\d) is false.
(char= #\d #\d #\x #\d) is false.
(char/= #\d #\d #\x #\d) is false.
(char= #\d #\y #\x #\c) is false.
(char/= #\d #\y #\x #\c) is true.
(cl)ar= #\d #\c #\d) is false.
(char/= #\d #\c #\d) is false.
(char< #\d #\x) is true.
(char<= #\d #\x) is true.
(char< #\d #\d) is false.
(char<= #\d #\d) is true.
(char< #\a #\e #\y #\z) is true.
(char<= #\a #\e #\y #\z) is true.
(char< #\a #\e #\e #\y) is false.
(char<= #\a #\e #\e #\y) is true.
(char> #\e #\d) is true.
(char>= #\e #\d) is true.
(char> #\d #\c #\b #\a) is true.
(char>= #\d #\c #\b #\a) is true.
(char> #\d #\d #\c #\a) is false.
(char>= #\d #\d #\c #\a) is true.
(char> #\e #\d #\b #\c #\a) is false.
(char>= #\e #\d #\b #\c #\a) is false.
(char> #\z #\A) may be true or false.
(char> #\Z #\a) may be true or false.

There is no requirement that (eq cl c2) be true merely because (char= cl c2)

is true. While eq may distinguish two character objects that char= does not, it is

CHARACTERS 239

distinguishing them not as characters, but in some sense on the basis of a lower-level
implementation characteristic. (Of course, if (eq c1 c2) is true, then one may
expect (char= c1 c2) to be true.) However, eql and equal compare character
objects in the same way that char= does.

char-equal character &rest more-characters
char-not-equal character &rest more-characters
char-lessp character &rest more-characters
char-greaterp character &rest more-characters
char-not-greaterp character &rest more-characters
char-not-lessp character &rest more-characters

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

The predicate char-equal is like char=, and similarly for the others, except ac
cording to a different ordering such that differences of bits attributes and case are
ignored, and font information is taken into account in an implementation-dependent
manner. For the standard characters, the ordering is such that A= a, B = b, and so
on, up to z = z, and furthermore either 9 <A or z < o. For example:

(char-equal #\A #\a) is true
(char= #\A #\a) is false
(char-equal #\A #\Control-A) is true

The ordering may depend on the font information. For example, an implementation
might decree that (char-equal #\p #\p) be true, but that (char-equal #\p #\1T)

be false (where #\1T is a lowercase pin some font). Assuming italics to be in font
1 and the Greek alphabet in font 2, this is the same as saying that (char-equal
#0\p #1\p) may be true and at the same time (char-equal #O\p #2\p) may be
false.

13.3. Character Construction and Selection

These functions may be used to extract attributes of a character and to construct
new characters.

char-code char [Function]

The argument char must be a character object. char-code returns the code attribute
of the character object; this will be a non-negative integer less than the (normal)
value of the variable char-code-limit.

240 COMMON LISP

char-bits char [Function]

The argument char must be a character object. char-bits returns the bits attribute
of the character object; this will be a non-negative integer less than the (normal)
value of the variable char-bits-limit.

char-font char [Function]

The argument char must be a character object. char-font returns the font attribute
of the character object; this will be a non-negative integer less than the (normal)
value of the variable char-font-limit.

code-char code &optional (bits o) (font o) [Function]

All three arguments must be non-negative integers. If it is possible in the
implementation to construct a character object whose code attribute is code, whose
bits attribute is bits, and whose font attribute is font, then such an object is returned;
otherwise nil is returned.

For any integers c, b, and/, if (code-char c b j) is not nil then

(char-code (code-char c b j)) :::;> c
(char-bits (code-char c b fl) =? b
(char-font (code-char c bf)) =?f

If the font and bits attributes of a character object c are zero, then it is the case
that

(char= (code-char (char-codec)) c)

is true.

make-char char &optional (bits 0) (/onto) [Function]

The argument char must be a character, and bits and font must be non-negative
integers. If it is possible in the implementation to construct a character object whose
code attribute is the same as the code attribute of char, whose bits attribute is bits,
and whose font attribute is font, then such an object is returned; otherwise nil is
returned.

If bits and font are zero, then make-char cannot fail. This implies that for every
character object one can "tum off' its bits and font attributes.

CHARACTERS 241

13.4. Character Conversions

These functions perform various transformations on characters, including case
conversions.

character object [Function]

The function character coerces its argument to be a character if possible; see
coerce.

(character x) ~ (coerce x 'character)

char-upcase char
char-downcase char

[Function]
[Function]

The argument char must be a character object. char-upcase attempts to convert
its argument to an uppercase equivalent; char-downcase attempts to convert its
argument to a lowercase equivalent.

char-upcase returns a character object with the same font and bits attributes as
char, but with possibly a different code attribute. If the code is different from
char's, then the predicate lower-case-p is true of char, and upper-case-p is
true of the result character. Moreover, if (char= (char-upcase x) x) is not true,
then it is true that

(char= (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits
attributes as char, but with possibly a different code attribute. If the code is different
from char's, then the predicate upper-case-pis true of char, and lower-case-p
is true of the result character. Moreover, if (char= (char-downcase x) x) is not
true, then it is true that

(char= (char-upcase (char-downcase x)) x)

Note that the action of char-upcase and char-downcase may depend on the bits
and font attribute of the character. In particular, they have no effect on a character
with a non-zero bits attribute, because such characters are by definition not alphabetic.
See alpha-char-p.

digit-char weight &optional (radix 10) (font o) [Function]

All arguments must be integers. digit-char determines whether or not it is pos
sible to construct a character object whose font attribute is font, and whose code

242 COMMON LISP

is such that the result character has the weight weight when considered as a digit
of the radix radix (see the predicate digit-char-p). It returns such a character if
that is possible, and otherwise returns nil.

digit-char cannot return nil if font is zero, radix is between 2 and 36 inclu
sive, and weight is non-negative and less than radix.

If more than one character object can encode such a weight in the given radix,
one will be chosen consistently by any given implementation; moreover, among
the standard characters, uppercase letters are preferred to lowercase letters. For
example:

(digit-char 7) :? #\ 7

(digit-char 12) :? nil

(digit-char 12 16) :? #\C ;not #\c

(digit-char 6 2) :? nil

(digit-char 1 2) :? #\1

Note that no argument is provided for specifying the bits component of the returned
character, because a digit cannot have a non-zero bits component. The reasoning
is that every digit is graphic (see digit-char-p) and no graphic character has a
non-zero bits component (see graphic-char-p).

char-int char [Function]

The argument char must be a character object. char-int returns a non-negative
integer encoding the character object.

If the font and bits attributes of char are zero, then char-int returns the same
integer char-code would. Also,

(char= c1 c2) == (= (char-int c1) (char-int c2))

for characters c1 and c2.
This function is provided primarily for the purpose of hashing characters.

int-char integer [Function]

The argument must be a non-negative integer. int-char returns a character object
c such that (char-int c) is equal to integer, if possible; otherwise int-char

returns false.

char-name char [Function]

The argument char must be a character object. lf the character has a name, then
that name (a string) is returned; otherwise nil is returned. All characters that have

CHARACTERS 243

zero font and bits attributes and that are non-graphic (do not satisfy the predicate
graphic-char-p) have names. Graphic characters may or may not have names.

The standard newline and space characters have the respective names Newline
and Space. The semi-standard characters have the names Tab, Page, Rubout,
Linefeed, Return, and Backspace.

Characters that have names can be notated as # \ followed by the name. (See
section 22.1.4.) Although the name may be written in any case, it is stylish to
capitalize it thus: #\Space.

char-name will only locate "simple" character names; it will not construct names
such as control-Space on the basis of the character's bits attribute.

name-char name [Function]

The argument name must be an object coerceable to a string as if by the function
string. If the name is the same as the name of a character object (as determined
by string-equal), that object is returned; otherwise nil is returned.

13.5. Character Control-Bit Functions

COMMON LISP provides explicit names for four bits of the bits attribute: Control,
Meta, Hyper, and Super. The following definitions are provided for manipulating
these. Each COMMON LISP implementation provides these functions for compatibility,
even if it does not support any or all of the bits named below.

char-control-bit
char-meta-bit
char-super-bit
char-hyper-bit

[Constant]
[Constant]
[Constant]
[Constant]

The values of these named constants are the "weights" (as integers) for the four
named control bits. The weight of the control bit is 1; of the meta bit, 2; of the
super bit, ;:;; and of the hyper bit, ll.

If a given implementation of COMMON LISP does not support a particular bit,
then the corresponding constant is zero instead.

char-bit char name [Function]

char-bit takes a character object char and the name of a bit, and returns non-nil
if the bit of that name is set in char, or nil if the bit is not set in char. For
example:

(char-bit #\Control-X :control) =? true

244 COMMON LISP

Valid values for name are implementation-dependent, but typically are :control,
: meta, : hyper, and : super. It is an error to give char-bit the name of a bit not
supported by the implementation.

If the argument char is specified by a form that is a place form acceptable to
setf, then setf may be used with char-bit to modify a bit of the character stored
in that place. The effect is to perform a set-char-bit operation and then store
the result back into the place.

set-char-bit char name newvalue [Function]

char-bit takes a character object char, the name of a bit, and a flag. A character
is returned that is just like char except that the named bit is set or reset according
to whether newvalue is non-nil or nil. Valid values for name are implementa
tion-dependent, but typically are :control, :meta, :hyper, and :super. For
example:

(set-char-bit #\X :control t) ~ #\Control-X
(set-char-bit #\Control-X :control t) ~ #\Control-X
(set-char-bit #\Control-X :control nil) ~ #\X

14

Sequences

The type sequence encompasses both lists and vectors (one-dimensional arrays).
While these are different data structures with different structural properties leading
to different algorithmic uses, they do have a common property: each contains an
ordered set of elements. Note that nil is considered to be a sequence, of length
zero.

There are some operations that are useful on both lists and arrays because they
deal with ordered sets of elements. One may ask the number of elements, reverse
the ordering, extract a subsequence, and so on. For such purposes COMMON LISP

provides a set of generic functions on sequences:

elt reverse map remove

length nreverse some remove-duplicates

subseq concatenate every delete

copy-seq position notany delete-duplicates

fill find note very substitute

replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version. Such versions are indicated
by adding a suffix (or, occasionally, a prefix) to the basic name of the operation.
In addition, many operations accept one or more optional keyword arguments that
can modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion,
then the criterion may be specified in one of two ways. The basic operation accepts
an item, and elements are tested for being eql to that item. (A test other than eql

can be specified by the :test or :test-not keyword. It is an error to use both of
these keywords in the same call.) The variants formed by adding - if and - if- not

to the basic operation name do not take an item, but instead a one-argument

245

246 COMMON LISP

predicate, and elements are tested for satisfying or not satisfying the predicate. As
an example,

(remove item sequence)

returns a copy of sequence from which all elements eql to item have been removed;

(remove item sequence : test #'equal)

returns a copy of sequence from which all elements equal to item have been
removed;

(remove-if #'numberp sequence)

returns a copy of sequence from which all numbers have been removed.
If an operation tests elements of a sequence in any manner, the keyword argu

ment : key, if not nil, should be a function of one argument that will extract from
an element the part to be tested in place of the whole element. For example, the
effect of the MACLISP expression (assq i tern seq) could be obtained by

(find item sequence : test # 'eq : key #'car)

This searches for the first element of sequence whose car is eq to item.
For some operations it can be useful to specify the direction in which the se

quence is conceptually processed. In this case the basic operation normally processes
the sequence in the forward direction, and processing in the reverse direction is
indicated by a non-nil value for the keyword argument : from-end. (The process
ing order specified by the : from-end is purely conceptual. Depending on the object
to be processed and on the implementation, the actual processing order may be
different. For this reason a user-supplied test function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated upon.
Such operations have keyword arguments called : start and : end. These argu
ments should be integer indices into the sequence, with start~end (it is an error if
start>end). They indicate the subsequence starting with and including element
start and up to but excluding element end. The length of the subsequence is there
fore end - start. If start is omitted, it defaults to zero; and if end is omitted or nil,
it defaults to the length of the sequence. Therefore if both start and end are omitted
the entire sequence is processed by default. For the most part, subsequence spec
ification is permitted purely for the sake of efficiency; one can simply call subseq
instead to extract the subsequence before operating on it. Note, however, that
operations that calculate indices return indices into the original sequence, not into
the subsequence:

(position #\b "foobar" :start 2 :end 5) =? 3

(position #\b (subseq "foobar" 2 5)) =? 1

SEQUENCES 247

If two sequences are involved, then the keyword arguments : staru, : end1,

: start2, and : end2 are used to specify separate subsequences for each sequence.
For some functions, notably remove and delete, the keyword argument :count

is used to specify how many occurrences of the item should be affected. If this is
nil or is not supplied, all matching items are affected.

In the following function descriptions, an element x of a sequence "satisfies the
test" if any of the following holds:

• A basic function was called, testfn was specified by the keyword : test, and
(funcall testfn item (keyfn X)) is true.

• A basic function was called, testfn was specified by the keyword :test-not,

and (funcall testfn item (keyfn X)) is false.

• An -if function was called, and (funcall predicate (keyfn X)) is true.

• An -if-not function was called, and (funcall predicate (keyfn x)) is false.

In each case keyfn is the value of the : key keyword argument (the default being
the identity function). See, for example, remove.

In the following function descriptions, two elements x and y taken from se
quences "match" if either of the following holds:

• testfn was specified by the keyword :test, and (funcall testfn (keyfn x)
(keyfn y)) is true.

• testfn was specified by the keyword :test-not, and (funcall testfn (keyfn x)
(keyfn y)) is false.

See, for example, search.

You may depend on the order in which arguments are given to testfn; this permits
the use of non-commutative test functions in a predictable manner. The order of
the arguments to testfn corresponds to the order in which those arguments (or the
sequences containing those arguments) were given to the sequence function in
question. If a sequence function gives two elements from the same sequence ar
gument to testfn, they are given in the same order in which they appear in the
sequence.

Whenever a sequence function must construct and return a new vector, it always
returns a simple vector (see section 2.5). Similarly, any strings constructed will be
simple strings.

14.1. Simple Sequence Functions

Most of the following functions perform simple operations on a single sequence;
make-sequence constructs a new sequence.

248 COMMON LISP

e 1 t sequence index [Function]

This returns the element of sequence specified by index, which must be a non-negative
integer less than the length of the sequence as returned by length. The first element
of a sequence has index o.

(Note that el t observes the fill pointer in those vectors that have fill pointers.
The array-specific function aref may be used to access vector elements that are
beyond the vector's fill pointer.)

setf may be used with el t to destructively replace a sequence element with a
new value.

subseq sequence start &optional end [Function]

This returns the subsequence of sequence specified by start and end. subseq always
allocates a new sequence for a result; it never shares storage with an old sequence.
The result subsequence is always of the same type as the argument sequence.

setf may be used with subseq to destructively replace a subsequence with a
sequence of new values; see also replace.

copy-seq sequence [Function]

A copy is made of the argument sequence; the result is equalp to the argument
but not eq to it.

(copy-seq X) == (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

length sequence [Function]

The number of elements in sequence is returned as a non-negative integer. If the
sequence is a vector with a fill pointer, the "active length" as specified by the fill
pointer is returned. See section 17. 5.

reverse sequence [Function]

The result is a new sequence of the same kind as sequence, containing the same
elements but in reverse order. The argument is not modified.

nreverse sequence [Function]

The result is a sequence containing the same elements as sequence but in reverse
order. The argument may be destroyed and re-used to produce the result. The result
may or may not be eq to the argument, so it is usually wise to say something like

SEQUENCES 249

(setq x (nrever:se x)), because simply (nreverse x) is not guaranteed to leave
a reversed value in x.

make-sequence type size &key : initial-element [Function]

This returns a sequence of type type and of length size, each of whose elements
has been initialized to the :initial-element argument. If specified, the
: initial-element argument must be an object that can be an element of a sequence
of type type. For example:

(make-sequence '(vector double-float) 100

:initial-element 1d0)

If an : initial-element argument is not specified, then the sequence will be
initialized in an implementation-dependent way.

14.2. Concatenating, Mapping, and Reducing Sequences

The functions in this section each operate on an arbitrary number of sequence
except for reduce, which is included here because of its conceptual relationship
to the mapping functions.

concatenate result-type &rest sequences [Function]

The result is a new sequence that contains all the elements of all the sequences in
order. All of the sequences are copied from; the result does not share any structure
with any of the argument sequences (in this concatenate differs from append).

The type of the result is specified by result-type, which must be a subtype of
sequence, as for the function coerce. It must be possible for every element of
the argument sequences to be an element of a sequence of type result-type.

If only one sequence argument is provided and it has the type specified by
result-type, concatenate is required to copy the argument rather than simply
returning it. If a copy is not required, but only possible type-conversion, then the
coerce function may be appropriate.

map result-type function sequence &rest more-sequences [Function]

The function must take as many arguments as there are sequences provided; at least
one sequence must be provided. The result of map is a sequence such that element
j is the result of applying function to element j of each of the argument sequences.
The result sequence is as long as the shortest of the input sequences.

If the function has side effects, it can count on being called first on all the
elements numbered o, then on all those numbered 1, and so on.

250 COMMON LISP

The type of the result sequence is specified by the argument result-type (which
must be a subtype of the type sequence), as for the function coerce. In addition,
one may specify nil for the result type, meaning that no result sequence is to be
produced; in this case the function is invoked only for effect, and map returns nil.
This gives an effect similar to that of mapc.

Compatibility note: In MAcL1sP, ZETALrsP, INTERLISP, and indeed even LISP 1.5, the
function map has always meant a non-value-returning version. However, standard computer
science literature, including, in particular, the recent wave of papers on "functional pro
gramming," have come to use map to mean what in the past LISP implementations have
called mapcar. To simplify things henceforth, COMMON LISP follows current usage, and
what was formerly called map is named mapl in COMMON LISP.

For example:

(map 'list #'- '(1 2 3 L;)) :::? (-1 -2 -3 -L;)

(map 'string
#'(lambda (x) (if (oddp x) #\1 #\0))
I (1 2 3 L;))

:::? "1010"

some predicate sequence &rest more-sequences
every predicate sequence &rest more-sequences
notany predicate sequence &rest more-sequences
notevery predicate sequence &rest more-sequences

[Function]
[Function]
[Function]
[Function]

These are all predicates. The predicate must take as many arguments as there are
sequences provided. The predicate is first applied to the elements with index o in
each of the sequences, and possibly then to the elements with index 1, and so on,
until a termination criterion is met or the end of the shortest of the sequences is
reached.

If the predicate has side effects, it can count on being called first on all the
elements numbered o, then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-nil value;
some returns that value. If the end of a sequence is reached, some returns nil.
Thus, considered as a predicate, it is true if some invocation of predicate is true.

every returns nil as soon as any invocation of predicate returns nil. If the end
of a sequence is reached, every returns a non-nil value. Thus, considered as a
predicate, it is true if every invocation of predicate is true.

notany returns nil as soon as any invocation of predicate returns a non-nil
value. If the end of a sequence is reached, notany returns a non-nil value. Thus,
considered as a predicate, it is true if no invocation of predicate is true.

SEQUENCES 251

note very returns a non-nil value as soon as any invocation of predicate returns
nil. If the end of a sequence is reached, notevery returns nil. Thus, considered
as a predicate, it is true if not every invocation of predicate is true.

Compatibility note: The order of the arguments here is not compatible with INTERLISP and
ZETALISP. This is to stress the similarity of these functions to map. The functions are
therefore extended here to functions of more than one argument, and to multiple sequences.

reduce function sequence &key : from-end : start
:end :initial-value

[Function]

The reduce function combines all the elements of a sequence using a binary
operation; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or "reduced" using the
function, which must accept two arguments. The reduction is left-associative, un
less the : from-end argument is true (it defaults to nil), in which case it is
right-associative. If an : initial-value argument is given, it is logically placed
before the subsequence (after it if : from-end is true) and included in the reduction
operation.

If the specified subsequence contains exactly one element and no : initial
value is given, then that element is returned and the function is not called. If the
specified subsequence is empty and an : initial-value is given, then the
:initial-value is returned and thefunction is not called.

If the specified subsequence is empty and no : initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the func
tion does. (This is the only case where the function is called with other than two
arguments.)

(reduce #'+ , (1 2 3 L;)) =? 10

(reduce #'- , (1 2 3 L;)) - (- (- (- 1 2) 3) L;) =? -8

(reduce #'- , (1 2 3 L;) :from-end t) ; Alternating sum.
- (- 1 (- 2 (- 3 L;))) =? -2

(reduce #'+ , ()) =? 0

(reduce #'+ , (3)) =? 3

(reduce #'+ ' (foo)) =? foo
(reduce #'list , (1 2 3 L;)) =? (((1 2) 3) L;)

(reduce #'list , (1 2 3 L;) :from-end t) =? (1 (2 (3 L;)))

(reduce #'list , (1 2 3 L;)

=? ((((foo 1) 2) 3) L;)

(reduce #'list '(1 2 3 L;)

:initial-value

:from-end t :initial-value 'foo)
=? (1 (2 (3 (L; foo))))

'foo)

252 COMMON LISP

If the function produces side effects, the order of the calls to the function can be
correctly predicted from the reduction ordering demonstrated above.

The name "reduce" for this function is borrowed from APL.

14.3. Modifying Sequences

Each of these functions alters the contents of a sequence or produces an altered
copy of a given sequence.

fill sequence item &key : start : end [Function]

The sequence is destructively modified by replacing each element of the subse
quence specified by the : start and : end parameters with the item. The item may
be any LISP object but must be a suitable element for the sequence. The item is
stored into all specified components of the sequence, beginning at the one specified
by the : start index (which defaults to zero), up to but not including the one
specified by the :end index (which defaults to the length of the sequence). fill

returns the modified sequence. For example:

(setq x (vector 'a 'b 'c 'd 'e))? #(ab c de)

(fill x 'z :start 1 :end 3) ? #(a z z d e)

and now x ? #(a z z d e)

(fill x 'p) ? #{p p p p p)

and now x ? #{p p p p p)

replace sequence] sequence2 &key : start1 : end1

:start2 :end2

[Function]

The sequence sequence] is destructively modified by copying successive elements
into it from sequence2. The elements of sequence2 must be of a type that may be
stored into sequencel. The subsequence of sequence2 specified by : start2 and
: end2 is copied into the subsequence of sequence] specified by : start1 and
: end1. (The arguments : start1 and : start2 default to zero. The arguments
: end1 and : end2 default to nil, meaning the end of the appropriate sequence.) If
these subsequences are not of the same length, then the shorter length determines
how many elements are copied; the extra elements near the end of the longer
subsequence are not involved in the operation. The number of elements copied
may be expressed as:

(min (- endl start]) (~ end2 start2))

The value returned by rep lace is the modified sequence].

SEQUENCES 253

If sequence] and sequence2 are the same (eq) object and the region being mod
ified overlaps the region being copied from, then it is as if the entire source region
were copied to another place and only then copied back into the target region.
However, if sequence] and sequence2 are not the same, but the region being
modified overlaps the region being copied from (perhaps because of shared list
structure or displaced arrays), then after the replace operation the subsequence of
sequence] being modified will have unpredictable contents.

remove item sequence &key :from-end :test :test-not
:start :end :count :key

remove-if test sequence &key : from-end : start
:end :count :key

remove-if-not test sequence &key :from-end :start
:end :count :key

[Function]

[Function]

[Function]

The result is a sequence of the same kind as the argument sequence that has the
same elements except that those in the subsequence delimited by : start and : end
and satisfying the test (see above) have been removed. This is a non-destructive
operation; the result is a copy of the input sequence, save that some elements are
not copied. Elements not removed occur in the same order in the result that they
did in the argument.

The : count argument, if supplied, limits the number of elements removed; if
more than :count elements satisfy the test, then of these elements only the leftmost
are removed, as many as specified by :count.

A non-nil : from-end specification matters only when the :count argument is
provided; in that case only the rightmost :count elements satisfying the test are
removed. For example:

(remove t; '(1 2 t; 1 3 t; 5)) ::> (1 2 1 3 5)

(remove t; '(1 2 t; 1 3 t; 5) :count 1) ::> (1 2 1 3 t; 5)

(remove t; '(1 2 t; 1 3 t; 5) :count 1 :from-end t)
=> (1 2 t; 1 3 5)

(remove 3 '(1 2 t; 1 3 t; 5) :test #'>) ::> (t; 3 t; 5)

(remove-if #'oddp '(1 2 t; 1 3 t; 5)) ::> (2 t; t;)

(remove-if #'evenp '(1 2 t; 1 3 t; 5) :count 1 :from-end t)
=> (1 2 t; 1 3 5)

The result of remove may share with the argument sequence; a list result may share
a tail with an input list, and the result may be eq to the input sequence if no
elements need to be removed.

254 COMMON LISP

delete item sequence &key : from-end : test : test-not
:start :end :count :key

delete- if test sequence &key : from-end : start
:end :count :key

delete- if-not test sequence &key : from -end : start
:end :count :key

[Function]

[Function]

[Function]

This is the destructive counterpart to remove. The result is a sequence of the same
kind as the argument sequence that has the same elements except that those in the
subsequence delimited by : start and : end and satisfying the test (see above) have
been deleted. This is a destructive operation. The argument sequence may be
destroyed and used to construct the result; however, the result may or may not be
eg to sequence. Elements not deleted occur in the same order in the result that
they did in the argument.

The :count argument, if supplied, limits the number of elements deleted; if
more than :count elements satisfy the test, then of these elements only the leftmost
are deleted, as many as specified by :count.

A non-nil : from -end specification matters only when the : count argument is
provided; in that case only the rightmost :count elements satisfying the test are
deleted. For example:

(delete L; I (1 2 L; 1 3 <; S)) ::? (1 2 1 3 5)

(delete <; ' (1 2 L; 1 3 <; 5) :count 1) ::? (1 2 1 3 <; 5)

(delete <; ' (1 2 L; 1 3 <; 5) :count 1 :from-end t)

::? (1 2 L; 1 3 5)

(delete 3 ' (1 2 L; 1 3 L; 5) :test #'>) ::? (<; 3 L; 5)

(delete-if #'oddp ' (1 2 L; 1 3 L; 5)) ::? (2 <; L;)

(delete-if #'evenp '(1 2 L; 1 3 L; 5) :count 1 :from-end t)
:?(12L'.;135)

Compatibility note: In MAcLISP, the delete function uses an equal comparison rather
than eql, which is the default test for delete in COMMON LISP. Where in MACLISP one
would write (delete x y), one must in COMMON LISP write (delete x y : test#' equal)

to get the completely identical effect. Similarly, one can get the precise effect, and no more,
of the MACLISP (de lg x y) by writing in COMMON LISP (delete x y : test # 'eq).

remove-a uplicates sequence &key : from-end : test : test- not [Function]
:start :end :key

delete-duplicates sequence &key :from-end :test :test-not [Function]
:start :end :key

SEQUENCES 255

The elements of sequence are compared pairwise, and if any two match, then the
one occurring earlier in the sequence is discarded (but if the : from-end argument
is true, then the one later in the sequence is discarded). The result is a sequence
of the same kind as the argument sequence with enough elements removed so that
no two of the remaining elements match. The order of the elements remaining in
the result is the same as the order in which they appear in sequence.

remove-duplicates is the non-destructive version of this operation. The result
of remove-duplicates may share with the argument sequence; a list result may
share a tail with an input list, and the result may be eq to the input sequence if no
elements need to be removed.

delete-duplicates may destroy the argument sequence.
Some examples:

(remove-duplicates '(ab c b d de))::} (a c b de)

(remove-duplicates '(ab c b d de) :from-end t) ::} (ab c de)

(remove-duplicates '((foo #\a) (bar#\%) (baz #\A))

:test #'char-equal :key #'cadr)

::} ((bar#\%) (baz #\A))

(remove-duplicates '((foo #\a) (bar#\%) (baz #\A))

:test #'char-equal :key #'cadr :from-end t)

::} ((foo #\a) (bar #\%))

These functions are useful for converting a sequence into a canonical form
suitable for representing a set.

substitute newitem olditem sequence &key :from-end :test

:test-not :start

:end :count :key

substitute-if newitem test sequence &key : from-end

:start :end

:count :key

subs ti tu te-if-not newitem test sequence &key : from-end

:start :end

:count :key

[Function]

[Function]

[Function]

The result is a sequence of the same kind as the argument sequence that has the
same elements except that those in the subsequence delimited by :start and :end

and satisfying the test (see above) have been replaced by newitem. This is a
non-destructive operation; the result is a copy of the input sequence, save that some
elements are changed.

The : count argument, if supplied, limits the number of elements altered; if more

256 COMMON LISP

than : count elements satisfy the test, then of these elements only the leftmost are
replaced, as many as specified by : count.

A non-nil : from-end specification matters only when the :count argument is
provided; in that case only the rightmost :count elements satisfying the test are
replaced. For example:

(substitute "I 4 '(l 2 4 l 3 4 5)) ~ (l 2 "I l 3 "I 5)

(substitute "I 4 '(l 2 4 l 3 4 5) :count l) ~ (l 2 "I l 3 4 5)

(substitute "I 4 I (l 2 4 l 3 4 5) :count l :from-end t)
~ (l 2 4 l 3 "I 5)

(substitute "I 3 I (l 2 4 l 3 4 5) :test #'>) ~ ("I "I 4 "I 3 4 5)

(substitute-if "I #'oddp '(l 2 4 l 3 4 5)) ~ ("I 2 4 "I "I 4 "I)

(substitute-if "I #'evenp '(l24l345) :count l :from-end t)
~ (l 2 4 l 3 "I 5)

The result of substitute may share with the argument sequence; a list result may
share a tail with an input list, and the result may be eq to the input sequence if no
elements need to be changed.

See also subst, which performs substitutions throughout a tree.

nsubstitute newitem olditem sequence &key :from-end :test
:test-not :start
:end :count :key

nsubstitute-if newitem test sequence &key : from-end
:start :end
:count :key

nsubstitute-if-not newitem test sequence &key :from-end
:start :end
:count :key

[Function]

[Function]

[Function]

This is the destructive counterpart to substitute. The result is a sequence of the
same kind as the argument sequence that has the same elements except that those
in the subsequence delimited by : start and : end and satisfying the test (see above)
have been replaced by newitem. This is a destructive operation. The argument
sequence may be destroyed and used to construct the result; however, the result
may or may not be eq to sequence.

See also nsubst, which performs destructive substitutions throughout a tree.

14.4. Searching Sequences for Items

Each of these functions searches a sequence to locate one or more elements satisfying
some test.

SEQUENCES

find item sequence &key : from-end : test : test-not
:start :end :key

find- if test sequence &key : from-end : start : end : key
find-if-not test sequence &key :from-end :start :end :key

257

[Function]

[Function]
[Function]

If the sequence contains an element satisfying the test, then the leftmost such
element is returned; otherwise nil is returned.

If : start and : end keyword arguments are given, only the specified subsequ
ence of sequence is searched.

If a non-nil : from-end keyword argument is specified, then the result is the
rightmost element satisfying the test.

P~~~/1 item seq7lce ~ :~.:5ill-d :tes1; :t~st-ngt
=~!a,r.t : e_!)g : ~x

position-if test sequence &key :from-end :start :end :key
position-if-not test sequence &key :from-end

:start :end :key

[Function]

[Function]
[Function]

If the sequence contains an element satisfying the test, then the index within the
sequence of the leftmost such element is returned as a non-negative integer; other
wise nil is returned.

If : start and : end keyword arguments are given, only the specified subsequ
ence of sequence is searched. However, the index returned is relative to the entire
sequence, not to the subsequence.

If a non-nil : from-end keyword argument is specified, then the result is the
index of the rightmost element satisfying the test. (The index returned, however,
is an index from the left-hand end, as usual.)

count itemsequence&key :from-end :test :test-not
:start :end :key

[Function]

count- if test sequence &key : from-end : start : end : key [Function]
count- if-not test sequence &key : from-end : start : end : key [Function]

The result is always a non-negative integer, the number of elements in the specified
subsequence of sequence satisfying the test.

The : from-end argument does not affect the result returned; it is accepted purely
for compatibility with other sequence functions.

mismatch sequence] sequence2 &key : from-end : test : test-not [Function]
:key :start1 :start2
:end1 :end2

258 COMMON LISP

The specified subsequences of sequence] and sequence2 are compared ele
ment-wise. If they are of equal length and match in every element, the result is
nil. Otherwise, the result is a non-negative integer. This result is the index within
sequence] of the leftmost position at which the two subsequences fail to match;
or, if one subsequence is shorter than and a matching prefix of the other, the result
is the index relative to sequence] beyond the last position tested.

If a non-nil : from-end keyword argument is given, then one plus the index of
the rightmost position in which the sequences differ is returned. In effect, the
(sub)sequences are aligned at their right-hand ends; then, the last elements are
compared, the penultimate elements, and so on. The index returned is again an
index relative to sequence I.

search sequence] sequence2 &key :from-end :test :test-not [Function]
:key :start1 :start2 :end1 :end2

A search is conducted for a subsequence of sequence2 that element-wise matches
sequence I. If there is no such subsequence, the result is nil; if there is, the result
is the index into sequence2 of the leftmost element of the leftmost such matching
subsequence.

If a non-nil : from-end keyword argument is given, the index of the leftmost
element of the rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no
guarantee on the number of times the test is made. For example, search with a
non-nil : from-end argument might actually search a list from left to right instead
of from right to left (but in either case would return the rightmost matching sub
sequence, of course). Therefore it is a good idea for a user-supplied predicate to
be free of side effects.

14.5. Sorting and Merging

These functions may destructively modify argument sequences in order to put a
sequence into sorted order or to merge two already sorted sequences.

sort sequence predicate &key : key
stable-sort sequence predicate &key : key

[Function]
[Function]

The sequence is destructively sorted according to an order determined by the predicate.
The predicate should take two arguments, and return non-nil if and only if the
first argument is strictly less than the second (in some appropriate sense). If the
first argument is greater than or equal to the second (in the appropriate sense), then
the predicate should return nil.

SEQUENCES 259

The sort function determines the relationship between two elements by giving
keys extracted from the elements to the predicate. The : key argument, when
applied to an element, should return the key for that element. The : key argument
defaults to the identity function, thereby making the element itself be the key.

The : key function should not have any side effects. A useful example of a : key

function would be a component selector function for a defstruct structure, used
in sorting a sequence of structures.

(sort a p :key S) ==(sort a #'(lambda (x y) (p (S x) (s y))))

While the above two expressions are equivalent, the first may be more efficient in
some implementations for certain types of arguments. For example, an implementation
may choose to apply s to each item just once, putting the resulting keys into a
separate table, and then sort the parallel tables, as opposed to applying s to an item
every time just before applying the predicate.

If the : key and predicate functions always return, then the sorting operation will
always terminate, producing a sequence containing the same elements as the orig
inal sequence (that is, the result is a permutation of sequence). This is guaranteed
even if the predicate does not really consistently represent a total order (in which
case the elements will be scrambled in some unpredictable way, but no element
will be lost). If the : key function consistently returns meaningful keys, and the
predicate does reflect some total ordering criterion on those keys, then the elements
of the result sequence will be properly sorted according to that ordering.

The sorting operation performed by sort is not guaranteed stable. Elements
considered equal by the predicate may or may not stay in their original order. (The
predicate is assumed to consider two elements x and y to be equal if (funcall

predicatexy) and (funcallpredicateyx) are both false.) The function stable-sort

guarantees stability, but may be slower than sort in some situations.
The sorting operation may be destructive in all cases. In the case of an array

argument, this is accomplished by permuting the elements in place. In the case of
a list, the list is destructively reordered in the same manner as for nreverse. Thus
if the argument should not be destroyed, the user must sort a copy of the argument.

Should execution of the : key function or the predicate cause an error, the state
of the list or array being sorted is undefined. However, if the error is corrected,
the sort will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to the
predicate, sorting will be much faster if the predicate is a compiled function rather
than interpreted.

An example:

(setq foovector (sort foovector #'string-lessp :key #'car))

260 COMMON LISP

If foovector contained these items before the sort

("Tokens" "The Lion Sleeps Tonight")
("Carpenters" "Close to You")
("Rolling Stones" "Brown Sugar")
("Beach lioys" "I Get Around"}
("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Beatles" "I Want to Hold Your Hand"}

then after the sort foovector would contain

("Beach Boys" "I Get Around"}
("Beatles" "I Want to Hold Your Hand"}
("Carpenters" "Close to You"}
("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Rolling Stones" "Brown Sugar"}
("Tokens" "The Lion Sleeps Tonight"}

merge result-type sequence] sequence2 predicate &key : key [Function]

The sequences sequence] and sequence2 are destructively merged according to an
order determined by the predicate. The result is a sequence of type result-type,
which must be a subtype of sequence, as for the function coerce. The predicate
should take two arguments and return non-nil if and only if the first argument is
strictly less than the second (in some appropriate sense). If the first argument is
greater than or equal to the second (in the appropriate sense), then the predicate
should return n i 1..

The merge function determines the relationship between two elements by giving
keys extracted from the elements to the predicate. The : key function, when applied
to an element, should return the key for that element; the : key function defaults
to the identity function, thereby making the element itself be the key.

The : key function should not have any side effects. A useful example of a : key
function would be a component selector function for a defstruct structure, used
to merge a sequence of structures.

If the : key and predicate functions always return, then the merging operation
will always terminate. The result of merging two sequences x and y is a new
sequence z, such that the length of z is the sum of the lengths of x and y, and z
contains the all the elements of x and y. If xl and x2 are two elements of x, and
xl precedes x2 in x, then xl precedes x2 in z, and similarly for elements of y. In
short, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then z
will also be correctly sorted as showQ in this example.

SEQUENCES 261

(merge 'list '(1 3 ~ 6 7) '(2 S B) #'<) ~ (1 2 3 ~ S 6 7 B)

If x or y is not so sorted, then z will not be sorted, but will nevertheless be an
interleaving of x and y.

The merging operation is guaranteed stable; if two or more elements are con
sidered equal by the predicate, then the elements from sequence] will precede
those from sequence2 in the result. (The predicate is assumed to consider two
elements x and y to be equal if (funcall predicate x Y> and (funcall predicate
y x) are both false.) For example:

(merge 'string "BOY" "nosy" #'char-lessp) ~ "BnOosYy"

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY". The function
char-lessp ignores case, and so considers the characters Y and y to be equal, for
example; the stability property then guarantees that the character from the first
argument (Y) must precede the one from the second argument (y).

15

Lists

A cons, or dotted pair, is a compound data object having two components called
the car ahd cdr. Each component may be any LISP object. A list is a chain of
conses linked by cdr fields; the chain is terminated by some atom (a non-cons
object). An ordinary list is terminated by nil, the empty list (also written ()) . A
list whose cdr chain is terminated by some non-nil atom is called a dotted list.

The recommended predicate for testing for the end of a list is endp.

15.1. Conses

These are the basic operations on conses viewed as pairs rather than as the constituents
of a list.

car list [Function]

This returns the car of list, which must be a cons or (); that is, list must satisfy
the predicate listp. By definition, the car of () is (). If the cons is regarded as
the first cons of a list, then car returns the first element of the list. For example:

(car ' (a b c)) ? a

See first. The car of a cons may be altered by using rplaca or setf.

cdr list [Function]

This returns the cdr of list, which must be a cons or (); that is, list must satisfy
the predicate listp. By definition, the cdr of () is (). If the cons is regarded as
the first cons of a list, then cdr returns the rest of the list, which is a list with all
elements but the first of the original list. For example:

(cdr '(ab c)) ? (b c)

262

LISTS 263

See rest. The cdr of a cons may be altered by using rplacd or setf.

caar list [Function]
cadr list [Function]
cdar list [Function]

cddr list [Function]

caaar list [Function]

caadr list [Function]

cadar list [Function]

caddr list [Function]

cdaar list [Function]

cdadr list [Function]

cddar list [Function]

cdddr list [Function]

caaaar list [Function]

caaadr list [Function]

caadar list [Function]

caaddr list [Function]

cadaar list [Function]

cadadr list [Function]

caddar list [Function]

cadddr list [Function]

cdaaar list [Function]

cdaadr list [Function]

cdadar list [Function]

cdaddr list [Function]

cddaar list [Function]

cddadr list [Function]

cdddar list [Function]

cddddr list [Function]

All of the compositions of up to four car and cdr operations are defined as separate
COMMON LISP functions. The names of these functions begin with c and end with
r, and in between is a sequence of a and d letters corresponding to the composition
performed by the function. For example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the second element of the
list, caddr the third, and cadddr the fourth. If the first element of a list is a list,
then caar is the first element of the sublist, cdar is the rest of that sublist, and
cadar is the second element of the sublist, and so on.

264 COMMON LISP

As a matter of style, it is often preferable to define a function or macro to access
part of a complicated data structure, rather than to use a long car/cdr string. For
example, one might define a macro to extract the list of parameter variables from
a lambda-expression:

(defmacro lambda-vars (lambda-exp) '(cadr ,lambda-exp))

and then use lambda-vars for this purpose instead of cadr. See also defstruct,

which will automatically define new record data types and access functions for
instances of them.

Any of these functions may be used to specify a place for setf.

cons x y [Function]

cons is the primitive function to create a new cons whose car is x and whose cdr
is y. For example:

(cons 'a 'b) ::} (a . b)

(cons 'a (cons 'b (cons 'c '())))::}(ab c)

(cons 'a '(b c d)) ::} (ab c d)

cons may be thought of as creating a cons, or as adding a new element to the front
of a list.

tree-equal x y &key :test :test-not [Function]

This is a predicate that is true if x and y are isomorphic trees with identical leaves,
that is, if x and y are atoms that satisfy the test (by default eql), or if they are
both conses and their car's are tree-equal and their cdr's are tree-equal. Thus
tree-equal recursively compares conses (but not any other objects that have
components). See equal, which does recursively compare certain other structured
objects, such as strings.

15.2. Lists

The following functions perform various operations on lists.

endp object [Function]

The predicate endp is the recommended way to test for the end of a list. It is false
of conses, true of nil, and an error for all other arguments.

LISTS 265

Implementation note: Implementations are encouraged to signal an error, especially in the
interpreter, for a non-list argument. The endp function is defined so as to allow compiled
code to perform simply an atom check or a null check if speed is more important than
safety.

list-length list [Function]

list-length returns, as an integer, the length of list. list-length differs from
length when the list is circular; length may fail to return, whereas list-length

will return nil. For example:

(list-length '()) ::> D

(list-length '(ab c d))::} ~

(list-length '(a (b c) d))::} 3

(let ((x (list 'ab c)))

(rplacd (last x) x)

(list-length x)) ::} nil

list-length could be implemented as follows:

(defun list-length (x)

(do ((n D (• n 2))

(fast x (cddr fast))

(slow x (cdr slow)))

(nil)

;Counter.

;Fast pointer: leaps by 2.

;Slow pointer: leaps by 1.

;; If fast pointer hits the end, return the count.

(when (endp fast) (return n))

(when (endp (cdr fast)) (return(• n 1)))

If fast pointer eventually equals slow pointer,

then we must be stuck in a circular list.

(A deeper property is the converse: if we are

stuck in a circular list, then eventually the

fast pointer will equal the slow pointer.

That fact justifies this implementation.)

(when (and (eq fast slow) (> n 0)) (return nil))))

See length, which will return the length of any sequence.

nth n list [Function]

(nth n list) returns the nth element of list, where the car of the list is the "zeroth"
element. The argument n must be a non-negative integer. If the length of the list

266 COMMON USP

is not greater than n, then the result is (), that is, nil. (This is consistent with the
idea that the car and cdr of () are each () .) For example:

(nth D ' (foo bar gack)) ~ foo

(nth 1 '(foo bar gack)) ~bar

(nth 3 '(foo bar gack)) ~ ()

Compatibility note: This is not the same as the INTERLISP function called nth, which is
similar to but not exactly the same as the COMMON LISP function nthcdr. This definition
of nth is compatible with ZETALISP and NIL. Also, some people have used macros and
functions called nth of their own in their old MAcL1sP programs, which may not work the
same way.

nth may be used to specify a place to setf; when nth is used in this way, the
argument n must be less than the length of the list.

Note that the arguments to nth are reversed from the order used by most other
sequence selector functions such as el t.

first list [Function]
second list [Function]
third list [Function]
fourth list [Function]
fifth list [Function]
sixth list [Function]
seven th list [Function]
eighth list [Function]
ninth list [Function]
tenth list [Function]

These functions are sometimes convenient for accessing particular elements of a
list. first is the same as car, second is the same as cadr, third is the same as
caddr, and so on. Note that the ordinal numbering used here is one-origin, as
opposed to the zero-origin numbering used by nth:

(fifth x) ~ (nth ~ x)

setf may be used with each of these functions to store into the indicated position
of a list.

rest list [Function]

rest means the same as cdr but mnemonically complements first. setf may be
used with rest to replace the cdr of a list with a new value.

LISTS 267

nthcdr n list [Function]

(nthcdr n list) performs the cdr operation n times on list, and returns the result.
For example:

(nthcdr 0 , (a b c)) :::} (a b c)
(nthcdr 2 , (a b c)) :::} (c)
(nthcdr .i; , (a b c)) :::} ()

In other words, it returns the nth cdr of the list.

Compatibility note: This is similar to the INTERLISP function nth, except that the INTERLISP

function is one-based instead of zero-based.

(car (nthcdr n x)) ~ (nth n x)

last list [Function]

last returns the last cons (not the last element!) of list. If list is () , it returns ().
For example:

(setq x '(ab c d))
(last x) :::} (d)
(rplacd (last x) '(e f))
x:::}'(abcdef)
(last '(ab c . d)) :::} (c . d)

list &rest args

list constructs and returns a list of its arguments. For example:

(list 3 .i; 'a (car '(b. c)) (+ 6 -2)):::} (3 L; ab L;)

list* arg &rest others

[Function]

[Function]

list* is like list except that the last cons of the constructed list is "dotted." The
last argument to list* is used as the cdr of the last cons constructed; this need
not be an atotn. If it is not an atom, then the effect is to add several new elements
to the front of a list. For example:

(list* 'a 'b 'c 'd) :::} (ab c . d)

This is like

(cons 'a (cons 'b (cons 'c 'd)))

268 COMMON USP

Also:

(list* 'a 'b 'c '(def}} ? (ab c def}
(liSt*X}=x

make-list size &key : initial-element [Function]

This creates and returns a list containing size elements, each of which is initialized
to the : initial-elelilent argument (which defaults to nil). size should be a
non-negative integer. For example:

(make-list 5) ? (nil nil nil nil nil}
(make-list 3 :initial-element 'rah} ? (tah rah rah}

append .&rest lists [Function]

The arguments to append are lists. The resµlt is a list that is the concatenation of
the arguments. The arguments are not destroyed. For example:

(append '(ab c} '(def} '() '(g}}? (ab c def g}

Note that append copies the top-level list structure of each of its arguments except
the last. The function concatenate can perform a similar operation, but always
copies all its arguments. See also nconc, which is like append but destroys all
arguments but the last.

The last argument actually need not be a list but may be any LISP object, which
becomes the tail end of the constructed list. For example, (append ; (a b c} 'd}
? (a b c • d).

(append x ' (}} is an idiom once frequently used to copy the list x, but the
copy-list function is more appropriate to this task.

copy-list list [Function]

This returns a list that is equal to list, but not eq. Ortly the top level of list structure
is copied; that is, copy-list copies in the cdr direction but not in the car directfon.
If the list is "dotted," that is, (cdr (last list)} is a non-nil atom, this will be
true of the returned list also. See also copy-seq and copy-tree.

copy-alist list [Function]

copy-alist is for copying association lists. The top level of list structure of list
is copied, just as for copy-list. In addition, each element of list that is a cons is
replaced in the copy by a new cons with the same car and cdr.

LISTS 269

copy-tree object [Function]

copy-tree is for copying trees of conses. The argument object may be any LISP

object. If it is not a cons, it is returned; otherwise the result is a new cons of the
results of calling copy-tree on the car and cdr of the argument. In other words,
all conses in the tree are copied recursively, stopping only when non-conses are
encountered. Circularities and the sharing of substructure are not preserved.

Compatibility note: This function is called copy in INTERLISP.

revappend X y [Function]

(revappend x y) is exactly the same as (append (reverse X) y) except that it
is potentially more efficient. Both x and y should be lists. The argument xis copied,
not destroyed. Compare this with nreconc, which destroys its first argument.

nconc &rest lists [Function]

nconc takes lists as arguments. It returns a list that is the arguments concatenated
together. The arguments are changed, rather than copied. (Compare this with append,
which copies arguments rather than destroying them.) For example:

(setg x '(ab c))
(setg y '(def))
(nconc x y) :? (a b c d e f)
x :? (a b c d e f)

:-.lote, in the example, that the value of x is now different, since its last cons has
been rplacd'd to the value of y. If one were then to evaluate (nconc x y) again,
it would yield a piece of "circular" list structure, whose printed representation
would be (a b c d e f d e f d e f ...) , repeating forever; if the •print-circle•
switch were non-nil, it would be printed as (a b c . #1 = (d e f . #1#)).

nreconc x y [Function]

(nreconc x y) is exactly the same as (nconc (nreverse X) y) except that it is
potentially more efficient. Both x and y should be lists. The argument xis destroyed.
Compare this with revappend.

push item place [Macro]

The form place should be the name of a generalized variable containing a list; item
may refer to any LISP object. The item is consed onto tpe front of the list, and the

270 COMMON LISP

augmented list is stored back into place and returned. The form place may be any
form acceptable as a generalized variable to setf. If the list held in place is viewed
as a push-down stack, then push pushes an element onto the top of the stack. For
example:

(setq x '(a (b c) d))

(push 5 (cadr x)) ::} (5 b c) and now x::} (a (5 b c) d)

The effect of (push item place) is roughly equivalent to

(setf place (cons item place))

except that the latter would evaluate any subforms of place twice, while push takes
care to evaluate them only once. Moreover, for certain place forms push may be
significantly more efficient than the setf version.

push new item place &key : test : test-not : key [Macro]

The form place should be the name of a generalized variable containing a list; item
may refer to any LISP object. If the item is not already a member of the list (as
determined by comparisons using the : test predicate, which defaults to eql), then
the item is consed onto the front of the list, and the augmented list is stored back
into place and returned; otherwise the unaugmented list is returned. The form place
may be any form acceptable as a generalized variable to setf. If the list held in
place is viewed as a set, then pushnew adjoins an element to the set; see adjoin.

The keyword arguments to pushnew follow the conventions for the generic se
quence functions. See chapter 14. In effect, these keywords are simply passed on
to the adjoin function.

push new returns the new contents of the place. For example:

(setq x '(a (b c) d))

(pushnew 5 (cadr x))::} (5 b c)

(pushnew 'b (cadr x))::} (5 b c)

The effect of

(pushnew item place :test p)

is roughly equivalent to

and now x ::} (a (5 b c) d)

and x is unchanged

(setfplace (adjoin item place :testp))

except that the latter would evaluate any subforms of place twice, while push new

takes care to evaluate them only once. Moreover, for certain place forms push new

may be significantly more efficient than the setf version.

LISTS 271

pop place [Macro]

The form place should be the name of a generalized variable containing a list. The
result of pop is the car of the contents of place, and as a side effect the car of
the contents is stored back into place. The form place may be any form acceptable
as a generalized variable to setf. If the list held in place is viewed as a push-down
stack, then pop pops an element from the top of the stack and returns it. For
example:

(setq stack '(ab c))

(pop stack) ~ a and now stack ~ (b c)

The effect of (pop place) is roughly equivalent to

(prog1 (car place) (setf place (cdr place)))

except that the latter would evaluate any subforms of place three times, while pop

takes care to evaluate them only once. Moreover, for certain place forms pop may
be significantly more efficient than the setf version.

butlast list &optional n [Function]

This creates and returns a list with the same elements as list, excepting the last n
elements. n defaults to 1. The argument is not destroyed. If the list has fewer than
n elements, then () is returned. For example:

(butlast '(ab c d)) ~ (ab c)

(butlast '((ab) (c d))) ~ ((a b))

(butlast '(a))~()

(butlast nil)~()

The name is from the phrase "all elements but the last."

nbutlast list &optional n [Function]

This is the destructive version of butlast; it changes the cdr of the cons n+ 1
from the end of the list to nil. n defaults to 1. If the list has fewer than n elements,
then nbutlast returns (), and the argument is not modified. (Therefore one nor
mally writes (setq a (nbutlast a)) rather than simply (nbutlast a).) For
example:

(setq foo '(ab c d))

(nbutlast foo) ~ (a b c)

foo ~ (a b c)

(nbutlast '(a)) ~ ()

(nbutlast 'nil) ~ ()

272 COMMON LISP

ldiff list sublist [Function]

list should be a list, and sublist should be a sublist of list, that is, one of the conses
that make up list. ldiff (meaning "list difference") will return a new (freshly
consed) list, whose elements are those elements of list that appear before sublist.
If sublist is not a tail of list (and in particular if sublist is nil), then a copy of the
entire list is returned. The argument list is not destroyed. For example:

(setq x '(ab c de))

(setq y (cdddr x))::? (de)

(ldiff x y) ::? (a b c)

but
(ldiff '(ab c d) '(c d))::? (ab c d)

since the sublist was not eq to any part of the list.

15.3. Alteration of List Structure

The functions rplaca and rplacd may be used to make alterations in already
existing list structure, that is, to change the car or cdr of an existing cons. One
may also use setf in conjunction with car and cdr.

The structure is not copied but is destructively altered; hence caution should be
exercised when using these functions, as strange side effects can occur if portions
of list structure become shared. The nconc, nreverse, nreconc, and nbutlast

functions, already described, have the same property, as do certain of the generic
sequence functions such as delete. However, they are normally not used for this
side effect; rather, the list-structure modification is purely for efficiency, and com
patible non-modifying functions are provided.

rplaca x y [Function]

(rp 1 ac a x y) changes the car of x to y and returns (the modified) x. x must be a
cons, but y may be any LISP object. For example:

(setq g '(ab c))

(rplaca (cdr g) 'd) ::? (d c)

Now g ::? (a d c)

rplacd x y [Function]

(rplacd x y) changes the cdr of x toy and returns (the modified) x. x must be a
cons, but y may be any LISP object. For example:

LISTS

(setq x '(ab c))

(rplacd x 'd) ~ (a . d)

Now x ~ (a . d)

15.4. Substitution of Expressions

273

A number of functions are provided for performing substitutions within a tree. All
take a tree and a description of old subexpressions to be replaced by new ones.
They come in non-destructive and destructive varieties and specify substitution
either by two arguments or by an association list.

The naming conventions for these functions and for their keyword arguments
generally follow the conventions for the generic sequence functions. See chapter 14.

subst new old tree &key :test :test-not :key

subst-if new test tree &key :key

subst-if-not new test tree &key :key

[Function]
[Function]
[Function]

(subst new old tree) makes a copy of tree, substituting new for every subtree or
leaf of tree (whether the subtree or leaf is a car or a cdr of its parent) such that
old and the subtree or leaf satisfy the test. It returns the modified copy of tree.
The original tree is unchanged, but the result tree may share with parts of the
argument tree.

Compatibility note: In MAcLISP, subst is guaranteed not to share with the tree argument,
and the idiom (subst nil nil x) was used to copy a tree x. In COMMON LISP, the function
copy-tree should be used to copy a tree, as the subst idiom will not work.

For example:

(subst 'tempest 'hurricane

'(shakespeare wrote (the hurricane)))

~ (Shakespeare wrote (the tempest))

(subst 'foo 'nil '(Shakespeare wrote (twelfth night)))

~ (shakespeare wrote (twelfth night . foo) . foo)

(subst '(a . cons) '(old . pair)

'((old . spice) ((old . shoes) old . pair) (old . pair))
:test #'equal)

~ ((old . spice) ((old . shoes) a . cons) (a . cons))

274 COMMON LISP

This function is not destructive; that is, it does not change the car or cdr of any
already existing list structure. One possible definition of subst:

(defun subst (old new tree &rest x &key test test-not key)

(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)

new)

((atom tree) tree)

(t (let ((a (apply #'subst old new (car tree) x))

(d (apply #'subst old new (cdr tree) x)))

(if (and (eql a (car tree))

(eql d (cdr tree)))

tree

(cons ad))))))

See also substitute, which substitutes for top-level elements of a sequence.

nsubst new old tree &key : test : test-not : key

nsubst-if new test tree &key :key

nsubst- if- not new test tree &key : key

[Function]
[Function]
[Function]

nsubst is a destructive version of subst. The list structure of tree is altered by
destructively replacing with new each leaf or subtree of the tree such that old and
the leaf or subtree satisfy the test.

sublis alist tree &key :test :test-not :key [Function]

sublis makes substitutions for objects in a tree (a structure of conses). The first
argument to sublis is an association list. The second argument is the tree in which
substitutions are to be made, as for subst. sublis looks at all subtrees and leaves
of the tree; if a subtree or leaf appears as a key in the association list (that is, the
key and the subtree or leaf satisfy the test), it is replaced by the object it is
associated with. This operation is non-destructive. In effect, sublis can perform
several subst operations simultaneously. For example:

(sublis '((x . 100) (z . zprime))

'(plus x (minus g z x p) ~ . x))

='> (plus 100 (minus g zprime 100 p) ~ . 100)

(sublis '(((+ x y) . (- x y)) ((- x y) . (+ x y)))

'(• (/ (+ x y) (+ x p)) (- x y))

:test #'equal)

='> (* (/ (- x y) (+ x p)) (+ x y))

LISTS 275

nsublis alist tree &key :test :test-not :key [Function]

nsublis is like sublis but destructively modifies the relevant parts of the tree.

15.5. Using Lists as Sets

COMMON LISP includes functions that allow a list of items to be treated as a set.
There are functions to add, remove, and search for items in a list, based on various
criteria. There are also set union, intersection, and difference functions.

The naming conventions for these functions and for their keyword arguments
generally follow the conventions for the generic sequence functions. See chapter 14.

member item list &key :test :test-not :key

member-if predicate list &key : key

member-if-not predicate list &key :key

[Function]
[Function]
[Function]

The list is searched for an element that satisfies the test. If none is found, nil is
returned; otherwise, the tail of list beginning with the first element that satisfied
the test is returned. The list is searched on the top level only. These functions are
suitable for use as predicates. For example:

(member 'snerd '(ab c d)) =?nil

(member-if #'numberp '(a #\Space 5/3 foo)) =? (5/3 foo)

(member 'a '(g (a y) cad ea f)) =? (ad ea f)

Note, in the last example, that the value returned by member is eq to the portion
of the list beginning with a. Thus rplaca on the result of member may be used to
alter the found list element, if a check is first made that member did not return
nil.

See also find and position.

Compatibility note: In MACLISP, the member function uses an equal comparison rather
than eql, which is the default test for member in COMMON LISP. Where in MACLISP one
would write (member x y), in COMMON LISP one must write (member x y :test #'equal)
to get a completely identical effect. Similarly, one can get the precise effect, and no more,
of the MACLISP (memq x y) by writing in COMMON LISP (member x y :test #'eq).

tailp sublist list [Function]

This predicate is true if sublist is a sublist of list (i.e., one of the conses that makes
up list); otherwise it is false. Another way to look at this is that tailp is true if
(nthcdr n list) is sublist, for some value of n. See ldiff.

276 COMMON LISP

adjoin item list &key : test : test-not : key [Function]

adjoin is used to add an element to a set, provided that it is not already a member.
The equality test defaults to eql.

(adjoin item list) == (if (member item list) list (cons item list))

In general, the test may be any predicate; the item is added to the list only if there
is no element of the list that "satisfies the test."

adjoin deviates from the usual rules described in chapter 14 for the treatment
of arguments narped item and key. If a key function is specified, it is applied to
item as well as to each element of the list. The rationale is that if the item is not
yet in the list, it soon will be, and so the test is more properly viewed as being
between two elements rather than between a separate item and an element.

(adjoin item list :key jn)
= (if (member (jn item) list : key Jn) list (cons item list))

See pushnew.

union list] list2 &key :test :test-not :key

nunion list] list2 &key :test :test-not :key

[Function]
[Function]

union takes two lists and returns a new list containing everything that is an element
of either of the lists. If there is a duplication between two lists, only one of the
duplicate instances will be in the result. If either of the arguments has duplicate
entries within it, the redundant entries may or may not appear in the result. For
example:

(union '(ab c) '(fa d))

:::} (a b c f d) or (b c f a d) or (d f a b c) or

(union '((x 5) (y 6)) '((z 2) (x L;)) :key #'car)

:::} ((x s) (y 6) (z 2)) or ((x L;) (y 6) (z 2)) or

There is no guarantee that the order of elements in the result will reflect the
ordering of the arguments in any particular way. The implementation is therefore
free to use any of a variety of strategies. The result list may share cells with, or
be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the union operation may be
described as follows. For all possible ordered pairs consisting of one element from
list] and one element from list2, the test is used to determine whether they "match."
For every matching pair, at least one of the two elements of the pair will be in the
result. Moreover, any element from either list that matches no element of the other

LISTS 277

will appear in the result. All this is very general, but probably not particularly
useful unless the test is an equivalence relation.

The : test-not argument can be useful when the test function is the logical
negation of an equivalence test. A good example of this is the function mismatch,
which is logically inverted so that possibly useful information can be returned if
the arguments do not match. This additional "useful information" is discarded in
the following example; mismatch is used purely as a predicate.

(union '(#(ab) #(5 O 6) #(f 3))

'(#(5 o 6) (ab) #(g h))
:test-not
#'mismatch)

=? (#(ab) #(5 O 6) #(f 3) #(g h))
=?((ab) #(f 3) #(5 D 6) #(g h))

; One possible result
; Another possible result

Using :test-not #'mismatch differs from using :test #'equalp, for example,
because mismatch will determine that# (ab) and (ab) are the same, while equalp
would regard them as not the same.

nunion is the destructive version of union. It performs the same operation but
may destroy the argument lists, using their cells to construct the result.

intersection list] list2 &key : test : test-not : key
nintersection list] list2 &key :test :test-not :key

[Function]

[Function]

intersection takes two lists and returns a new list containing everything that is
an element of both argument lists. If either list has duplicate entries, the redundant
entries may or may not appear in the result. For example:

(intersection '(ab c) '(fad))=? (a)

There is no guarantee that the order of elements in the result will reflect the ordering
of the arguments in any particular way. The implementation is therefore free to
use any of a variety of strategies. The result list may share cells with, or be eq to,
either of the arguments if appropriate.

In general, the test may be any predicate, and the intersection operation may be
described as follows. For all possible ordered pairs consisting of one element from
list] and one element from list2, the test is used to determine whether they "match."
For every matching pair, exactly one of the two elements of the pair will be put
in the result. No element from either list appears in the result that does not match
an element from the other list. All this is very general, but probably not particularly
useful unless the test is an equivalence relation.

278 COMMON LISP

nintersection is the destructive version of intersection. It performs the
same operation, but may destroy list] using its cells to construct the result. (The
argument list2 is not destroyed.)

set-difference list] list2 &key :test :test-not :key

nset-difference list] list2 &key :test :test-not :key

[Function]
[Function]

set-difference returns a list of elements of list] that do not appear in list2. This
operation is not destructive.

There is no guarantee that the order of elements in the result will reflect the
ordering of the arguments in any particular way. The implementation is therefore
free to use any of a variety of strategies. The result list may share cells with, or
be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the set difference operation may
be described as follows. For all possible ordered pairs consisting of one element
from list] and one element from list2, the test is used to determine whether they
"match." An element of listl appears in the result if and only if it does not match
any element of list2. This is very general and permits interesting applications. For
example, one can remove from a list of strings all those strings containing one of
a given list of characters:

;; Remove all flavor names that contain "c" or "w".

(set-difference '("strawberry" "chocolate" "banana"

"lemon" "pistachio" "rhubarb")

'(#\C #\W)

:test

#'(lambda (s c) (find cs)))

:::} ("banana" "rh ubar.b" "lemon") ; One possible ordering.

nset-difference is the destructive version of set-difference. This operation
may destroy listl.

Compatibility note: An approximately equivalent INTERLISP function is !difference.

set-exclusive-or list] list2 &key :test :test-not :key

nset-exclusive-or list] list2 &key :test :test-not :key

[Function]
[Function]

set-exclusive-or returns a list of elements that appear in exactly one of list]
and list2. This operation is not destructive.

There is no guarantee that the order of elements in the result will reflect the

LISTS 279

ordering of the arguments in any particular way. The implementation is therefore
free to use any of a variety of strategies. The result list may share cells with, or
be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the set-exclusive-or operation may
be described as follows. For all possible ordered pairs consisting of one element
from list] and one element from list2, the test is used to determine whether they
"match." The result contains precisely those elements of list] and list2 that appear
in no matching pair.

nset-exclusi ve-or is the destructive versi0n of set-exclusive-or. Both lists
may be destroyed in producing the result.

subsetp list] list2 &key : test : test-not : key [Function]

subsetp is a predicate that is true if every element of list] appears in ("matches"
some element of) list2, and false otherwise.

15.6. Association Lists

An association list, or a-list, is a data structure used very frequently in LISP. An
a-list is a list of pairs (conses); each pair is an association. The car of a pair is
called the key, and the cdr is called the datum.

An advantage of the a-list representation is that an a-list can be incrementally
augmented simply by adding new entries to the front. Moreover, because the
searching function assoc searches the a-list in order, new entries can "shadow"
old entries. If an a-list is viewed as a mapping from keys to data, then the mapping
can be not only augmented but also altered in a non-destructive manner by adding
new entries to the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve
a key given a datum. For this purpose, the "reverse" searching function rassoc is
provided. Other variants of a-list searches can be constructed using the function
find or member.

It is permissible to let nil be an element of an a-list in place of a pair. Such an
element is not considered to be a pair but is simply passed over when the a-list is
searched by assoc. \

aeons key datum a-list [Function]

aeons constructs a new association list by adding the pair (key . datum) to the
old a-list.

(aeons x y a) ~ (cons (cons x y) a)

280 COMMON LISP

pairlis keys data &optional a-list [Function]

pairlis takes two lists and makes an association list that associates elements of
the first list to corresponding elements of the second list. It is an error if the two
lists keys and data are not of the same length. If the optional argument a-list is
provided, then the new pairs are added to the front of it.

The new pairs may appear in the resulting a-list in any order; in particular, either
forward or backward order is permitted. Therefore the result of the call

(pairlis '(one two) '(1 2) '((three. 3) (four. 19)))

might be

((one . 1) (two . 2) (three . 3) (four . 19)}

but could equally well be

((two . 2) (one . 1) (three . 3) (four . 19))

assoc item a-list &key : test : test-not : key
assoc- if predicate a-list
assoc- if-not predicate a-list

[Function]
[Function]
[Function]

Each of these searches the association list a-list. The value is the first pair in the
a-list such that the car of the pair satisfies the test, or nil if there is no such pair
in the a-list. For example:

(assoc 'r '((a . b) (c . d) (r
~ (r . X)

x) (s. y) (r. z)))

(assoc 'goo '((foo . bar) (zoo goo)))~ nil
(assoc '2 ' ((1 a b c) (2 b c d) (-7 x y z))) ~ (2 b c d)

It is possible to rplacd the result of assoc provided that it is not nil, in order to
"update" the "table" that was assoc's second argument. (However, it is often better
to update an a-list by adding new pairs to the front, rather than altering old pairs.)
For example:

(setq values '((x . 100) (y . 200) (z . 50)))

(assoc 'y values) ~ (y . 200)

(rplacd (assoc 'y values) 201)

(assoc 'y values) ~ (Y . 201) now

A typical trick is to say (cdr (assoc x y)) . Because the cdr of nil is guaranteed
to be nil, this yields nil if no pair is found or if a pair is found whose cdr is
nil. This is useful if nil serves its usual role as a "default value."

LISTS 281

The two expressions

(assoc item list : test fn)

and

(find item list :test fn :key #'car)

are equivalent in meaning with one important exception: if nil appears in the a-list
in place of a pair, and the item being searched for is nil, find will blithely compute
the car of the nil in the a-list, find that it is equal to the item, and return nil,

whereas assoc will ignore the nil in the a-list and continue to search for an actual
pair (cons) whose car is nil. See find and position.

Compatibility note: In MAcLISP, the assoc function uses an equal comparison rather than
eql, which is the default test for assoc in COMMON LISP. Where in MACLISP one would
write (assoc x y), in COMMON LISP one must write (assoc x y :test #'equal) to get
the completely identical effect. Similarly, one can get the precise effect, and no more, of
the MACLISP (as sq x y) by writing in COMMON LISP (assoc x y : test # 'eq).

In INTERLISP, assoc uses an eq test, and sassoc uses an INTERLISP equal test.

rassoc item a-list &key :test :test-not :key

rassoc - if predicate a-list
rassoc- if-not predicate a-list

[Function]

[Function]

[Function]

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfies the
test, rather than the car. If the a-list is considered to be a mapping, then rassoc

treats the a-list as representing the inverse mapping. For example:

(rassoc 'a '((a . b) (b . c) (c . a) (z . a)))~ (c . a)

The expressions

(rassoc item list : test fn)

and

(find item list : test fn : key # 'cdr)

are equivalent in meaning, except when the item is nil and nil appears in place
of a pair in the a-list. See the discussion of the function assoc.

16

Hash Tables

A hash table is a LISP object that can efficiently map a given LISP object to another
LISP object. Each hash table has a set of entries, each of which associates a
particular key with a particular value. The basic functions that deal with hash tables
can create entries, delete entries, and find the value that is associated with a given
key. Finding the value is very fast, even if there are many entries, because hashing
is used; this is an important advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try to
add a second value, it will replace the first. Also, adding a value to a hash table
is a destructive operation; the hash table is modified. By contrast, association lists
can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are
compared with eq, eql, or equal. In other words, there are hash tables that hash
on Lisp objects (using eq or eql) and there are hash tables that hash on tree
structure (using equal).

Hash tables are ~reated with the function make-hash-table, which takes various
options, including which kind of hash table to make (the default being the eql

kind). To look up a key and find the associated value, use gethash. New entries
are added to hash tables using setf with gethash. To remove an entry, use
remhash. Here is a simple example.

(setq a (make-hash-table))

(setf (gethash 'color a) 'brown)

(setf (get hash 'name a) 'fred)

(gethash 'color a) :::} brown

(gethash 'name a) :::} fred

(gethash 'pointy a) :::} nil

In this example, the symbols color and name are being used as keys, and the
symbols brown and fred are being used as the associated values. The hash table

282

HASH TABLES 283

has two items in it, one of which associates from color to brown, and the other
of which associates from name to fred.

Keys do not have to be symbols; they can be any LISP object. Likewise, values
can be any LISP object.

When a hash table is first created, it has a size, which is the maximum number
of entries it can hold. Usually the actual capacity of the table is somewhat less,
since the hashing is not perfectly collision-free. With the maximum possible bad
luck, the capacity could be very much less, but this rarely happens. If so many
entries are added that the capacity is exceeded, the hash table will automatically
grow, and the entries will be rehashed (new hash values will be recomputed, and
everything will be rearranged so that the fast hash lookup still works). This is
transparent to the caller; it all happens automatically.

Compatibility note: This hash table facility is compatible with ZETALISP. It is similar to
the hasharray facility of INTERLISP, and some of the function names are the same. However,
it is not compatible with INTERLISP. The exact details and the order of arguments are designed
to be consistent with the rest of MACLISP rather than with INTERLISP. For instance, the order
of arguments to maphash is different, there is no "system hash table," and there ·is not the
INTERLISP restriction that keys and values may not be nil.

16.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as keys
and associate other objects with them.

make-hash-table &key :test :size
:rehash-size :rehash-threshold [Function]

This function creates and returns a new hash table. The : test argument determines
how keys are compared; it must be one of the three values #'eq, #'eql, or #'equal,
or one of the three symbols eq, eql, or equal. If no test is specified, eql is
assumed.

The : size argument sets the initial size of the hash table, in entries. (The actual
size may be rounded up from the size you specify to the next "good" size, for
example to make it a prime number.) You won't necessarily be able to store
precisely this many entries into the table before it overflows and becomes bigger,
but this argument does serve as a hint to the implementation of approximately how
many entries you intend to store.

The : rehash-size argument specifies how much to increase the size of the hash
table when it becomes full. This can be an integer greater than zero, which is the

284 COMMON LISP

number of entries to add, or it can be a floating-point number greater than one,
which is the ratio of the new size to the old size. The default value for this argument
is implementation-dependent.

The : rehash-threshold argument specifies how full the hash table can get
before it must grow. This can be an integer greater than zero and less than the
: rehash-size (in which case it will be scaled whenever the table is grown), or it
can be a floating-point number between zero and one. The default value for this
argument is implementation-dependent.

An example of the use of make-hash-table:

(make-hash-table :rehash-size 1.5

:size (* number-of-widgets ~3))

hash-table-p object [Function]

hash-table-pis true if its argument is a hash table, and otherwise is false.

(hash-table-p x) == (typep x 'hash-table)

gethash key hash-table &optional default [Function]

gethash finds the entry in hash-table whose key is key and returns the associated
value. If there is no such entry, gethash returns default, which is nil if not
specified.

gethash actually returns two values, the second being a predicate value that is
true if an entry was found, and false if no entry was found.

setf may be used with get hash to make new entries in a hash table. If an entry
with the specified key already exists, it is removed before the new entry is added.
The default argument may be specified to gethash in this context; it is ignored by
setf, but may be useful in such macros as in cf that are related to setf:

(incf (gethash a-key table 0))

n1eans the approximately the satnc as

(setf (gethash a-key table O) (+ (gethash a-key table O) 1))

which in turn would be treated as simply

(setf (gethash a-key table) (+ (gethash a-key table 0) 1))

remhash key hash-table [Function]

remhash removes any entry for key in hash-table. This is a predicate that is true
if there was an entry or false if there was not.

HASH TABLES 285

maphash function hash-table [Function]

For each entry in hash-table, maphash calls function on two arguments: the key of
the entry and the value of the entry. If entries are added to or deleted from the
hash table while a maphash is in progress, the results are unpredictable, with one
exception: if the function calls remhash to remove the entry currently being processed
by the function, or performs a setf of gethash on that entry to change the associated
value, then those operations will have the intended effect. For example:

; ; Alter every entry in MY-HASH-TABLE, replacing the value with

;; its square root. Entries with negative values are removed.

(maphash #'(lambda (key val)

(if (minusp val)

(remhash key my-hash-table)

(setf (gethash key my-hash-table)

(sqrt val))))

my-hash-table)

maphash returns nil.

clrhash hash-table [Function]

This removes all the entries from hash-table and returns the hash table itself.

hash-table-count hash-table [Function]

This returns the number of entries in the hash-table. When a hash table is first
created or has been cleared, the number of entries is zero.

16.2. Primitive Hash Function

The function sxhash is a convenient tool for the user who needs to create more
complicated hashed data structures than are provided by hash-table objects.

sxhash object [Function]

sxhash computes a hash code for an object and returns the hash code as a non-negative
fixnum. A property of sxhash is that (equal x y) implies (= (sxhash X)

(sxhash y)).

The manner in which the hash code is computed is implementation-dependent,
but is independent of the particular "incarnation" or "core image." Hash values
produced by sxhash may be written out to files, for example, and meaningfully
read in again into an instance of the same implementation.

17

Arrays

An array is an object with components arranged according to a rectilinear coordinate
system. In principle, al1 array in COMMON LISP may have any number of dimensions,
including zero. (A zero-dimensional array has exactly one element.) In practice,
an implementation may limit the number of dimensions supported, but every COMMON

LISP implementation must support arrays of up to seven dimensions. Each dimension
is a non-negative integer; if any dimension of an array is zero, the array has no
elements.

An array may be a general array, meaning each element may be any LISP object,
or it may be a specialized array, meaning that each element must be of a given
restricted type.

One-dimensional arrays are called vectors. General vectors may contain any LISP

object. Vectors whose elements are restricted to type string-char are called
strings. Vectors whose elements are restricted to type bit are called bit-vectors.

17 .1. Array Creation

Do not be daunted by the many options of the function make-array! All that is
required to construct an array is a list of the dimensions; most of the options are
for relatively esoteric applications.

make-array dimensions &key :element-type : initial-element [Function]
:initial-contents :adjustable

:fill-pointer :displaced-to

:displaced-index-offset

This is the primitive function for making arrays. The dimensions argument should
be a list of non-negative integers that are to be the dimensions of the array; the
length of the list will be the dimensionality of the array. Each dimension must be
smaller than array-dimension-limit, and the product of all the dimensions must

286

ARRAYS 287

be smaller than array-total-size-limit. Note that if dimensions is nil then a
zero-dimensional array is created. For convenience when making a one-dimensional
array, the single dimension may be provided as an integer rather than a list of one
integer.

An implementation of COMMON LISP may impose a limit on the rank of an array,
but this limit may not be smaller than 7. Therefore, any COMMON LISP program
may assume the use of arrays of rank 7 or less. The implementation-dependent
limit on array rank is reflected in array-rank-limit.

The keyword arguments for make-array are as follows:

:element-type

This argument should be the name of the type of the elements of the array; an
array is constructed of the most specialized type that can nevertheless accommodate
elements of the given type. The type t specifies a general array, one whose elements
may be any LISP object; this is the default type.

:initial-element

This argument may be used to initialize each element of the array. The value must
be of the type specified by the :element-type argument. If the :initial-element

option is omitted, the initial values of the array elements are undefined (unless the
: initial-contents or: displaced-to option is used). The : initial- element

option may not be used with the : initial-con tents or : displaced-to option.

:initial-contents

This argument may be used to initialize the contents of the array. The value is a
nested structure of sequences. If the array is zero-dimensional, then the value
specifies the single element. Otherwise, the value must be a sequence whose length
is equal to the first dimension; each element must be a nested structure for an array
whose dimensions are the remaining dimensions, and so on. For example:

(make-array ' (L; 2 3) :initial-contents

' (((a b C) (1 2 3))

((d e f) (3 1 2))

((g h i) (2 3 1))

((j k 1) (0 0 0))))

The numbers of levels in the structure must equal the rank of the array. Each leaf
of the nested structure must be of the type specified by the : type option. If the

288 COMMON LISP

: initial-con tents option is omitted, the initial values of the array elements are
undefined (unless the :initial-element or :displaced-to option is used). The
:initial-contents option may not be used with the :initial-element or
:displaced-to option.

:adjustable

This argument, if specified and not nil, indicates that it must be possible to alter
the array's size dynamically after it is created. This argument defaults to nil.

:fill-pointer

This argument specifies that the array should have a fill pointer. If this option is
specified and not nil, the array must be one-dimensional. The value is used to
initialize the fill pointer for the array. If the value t is specified, the length of the
array is used; otherwise the value must be an integer between 0 (inclusive) and the
length of the array (inclusive). This argument defaults to nil.

:displaced-to

This argument, if specified and not nil, specifies that the array will be a displaced
array. The argument must then be an array; make-array will create an indirect or
shared array that shares its contents with the specified array. In this case the
:displaced-index-offset option may be useful. It is an error ifthe array speci
fied as the :displaced-to argument does not have the same :element-type as
the array being created. The :displaced-to option may not be used with the
: initial-element or: initial-contents option. This argument defaults to nil.

:displaced-index-offset

This argument may be used only in conjunction with the displaced-to option. It
must he a non-negative integer (it defaults to zero); it is made to be the index-offset
of the created shared array.

When an array A is given as the :displaced-to argument to make-array when
creating array B, then array B is said to be displaced to array A. Now the total
number of elements in an array, called the total size of the array, is calculated as
the product of all the dimensions (see array-total-size). It is required that the
total size of A be no smaller than the sum of the total size of B plus the offset n
specified by the : displaced- index-offset argument. The effect of displacing is
that array B does not have any elements of its own, but instead maps accesses to
itself into accesses to array A. The mapping treats both arrays as if they were

ARRAYS 289

one-dimensional by taking the elements in row-major order, and then maps an
access to element k of array B to an access to element k + n of array A.

If make-array is called with the : adjustable, : fill-pointer, and
:displaced-to arguments each either unspecified or nil, then the resulting array
is guaranteed to be a simple array. (See section 2.5.)

Here are some examples of the use of make-array:

; ; Create a one-dimensional array of five elements.
(make-array 5)

; ; Create a two-dimensional array, 3 by 4, with four-bit elements.
(make-array '(3 ~) :element-type '(mod 16))

; ; Create an array of single-floats.
(make-array 5 :element-type 'single-float))

; ; Making a shared array.
(setg a (make-array '(~ 3)))

(setg b (make-array B :displaced-to a

:displaced-index-offset 2))

Now it is the case that:
(aref b 0) - (aref a D 2)

(aref b 1) - (aref a 1 D)

(aref b 2) - (aref a 1 1)

(aref b 3) - (aref a 1 2)

(aref b ~) - (aref a 2 D)

(aref b 5) - (aref a 2 1)

(aref b 6) - (aref a 2 2)

(aref b 7) - (aref a 3 D)

The last example depends on the fact that arrays are, in effect, stored in row-major
order for purposes of sharing. Put another way, the indices for the elements of an
array are ordered lexicographically.

Compatibility note: Both ZETALISP, as described in reference (21], and FORTRAN [1, 2]
store arrays in column-major order.

array-rank-limit [Constant]

The value of array-rank-limit is a positive integer that is the upper exclusive
bound on the rank of an array. This bound depends on the implementation but will

290 COMMON LISP

not be smaller than 8; therefore every COMMON LISP implementation supports
arrays whose rank is between 0 and 7 (inclusive). (Implementors are encouraged
to make this limit as large as practicable without sacrificing performance.)

array-dimension-limit [Constant]

The value of array-dimension-limit is a positive integer that is the upper ex
clusive bound on each individual dimension of an array. This bound depends on
the implementation but will not be smaller than 1024. (Implementors are encour
aged to make this limit as large as practicable without sacrificing performance.)

array-total-size-limit [Constant]

The value of array-total-size-limit is a positive integer that is the upper
exclusive bound on the total number of elements in an array. This bound depends
on the implementation but will not be smaller than 1024. (Implementors are en
couraged to make this limit as large as practicable without sacrificing performance.)

The actual limit on array size imposed by the implementation may vary according
to the :element-type of the array; in this case the value of array-total

size-limit will be the smallest of these individual limits.

vector &rest objects [Function]

The function vector is a convenient means for creating a simple general vector
with specified initial contents. It is analogous to the function list.

(vector a1 a 2 ... an>
~ (make-array (list n) :element-type t

:initial-contents (list a1 az ... an))

17 .2. Array Access

The function aref is normally used for accessing an element of an array. Other
access functions, such as svref, char, and bit may be more efficient in specialized
circumstances.

aref array &rest subscripts [Function]

This accesses and retums the element of array specified by the subscripts. The
number of subscripts must equal the rank of the array, and each subscript must be
a non-negative integer less than the corresponding array dimension.

ARRAYS 291

aref is unusual among the functions that operate on arrays in that it completely
ignores fill pointers. aref can access without error any array element, whether
active or not. The generic sequence function el t, however, observes the fill pointer;
accessing an element beyond the fill pointer with elt is an error.

setf may be used with aref to destructively replace an array element with a
new value.

Under some circumstances it is desirable to write code that will extract an ele
ment from an array a given a list z of the indices, in such a way that the code
works regardless of the rank of the array. This is easy using apply:

(apply #'aref a z)

(The length of the list must of course equal the rank of the array.) This construction
may be used with setf to alter the element so selected to some new value w:

(setf (apply #'aref a z) w)

svref simple-vector index [Function]

The first argument must be a simple general vector, that is, an object of type
simple-vector. The element of the simple-vector specified by the integer index
is returned. The index must be non-negative and less than the length of the vector.

setf may be used with svref to destructively replace a simple-vector element
with a new value.

svref is identical to aref except that it requires its first argument to be a simple
vector. In some implementations of COMMON LISP, svref may be faster than aref

in situations where it is applicable. See also schar and sbit.

17 .3. Array Information

The following functions extract from an array interesting information other than
the elements.

array-element-type array [Function]

array-element-type returns a type specifier for the set of objects that can be
stored in the array. This set may be larger than the set requested when the array
was created; for example, the result of

(array-element-type (make-array S :element-type '(mod 5)))

could be (mod s), (mod 1l), fixnum, t, or any other type of which (mod s) is a
subtype. See subtypep.

292 COMMON LISP

array-rank array [Function]

This returns the number of dimensions (axes) of array. This will be a non-negative
integer. See array-rank-limit.

Compatibility note: In ZETALISP, this is called array-#-dims. This name causes problems
in other LISP dialects because of the 1 character.

array-dimension array axis-number [Function]

The length of dimension number axis-number of the array is returned. array may
be any kind of array, and axis-number should be a non-negative integer less than
the rank of array. If the array is a vector with a fill pointer, array-dimension

returns the total size of the vector, including inactive elements, not the size indicated
by the fill pointer. (The function length will return the size indicated by the fill
pointer.)

Compatibility note: This is similar to the ZETALISP function array-dimension-n, but
takes its arguments in the other order, and is zero-origin for consistency instead of one-origin.
In ZETALISP (array-dimension-n D) returns the length of the array leader.

array-dimensions array [Function]

array-dimensions returns a list whose elements are the dimensions of array.

array-total-size array [Function]

array-total-size returns the total number of elements in the array, calculated
as the product of all the dimensions.

(array-total-size X)

~(apply#'* (array-dimensions X))
= lro.An,......o JJl.-i. /::i.rr::i.u-A;monQ;f"'\hQ Y\\ - ,..._.___.. " -- ,....,..._.._....._l ...,..,._ • .,_..~..., •• ..., .. .,,I

Note that the total size of a zero-dimensional array is 1. The total size of a
one-dimensional array is calculated without regard for any fill pointer.

array-in-bounds-p array &rest subscripts [Function]

This predicate checks whether the subscripts are all legal subscripts for array. The
predicate is true if they are all legal; otherwise it is false. The subscripts must be
integers. The number of subscripts supplied must equal the rank of the array. Like
aref, array-in-bounds-p ignores fill pointers.

ARRAYS 293

array-row-major-index array &rest subscripts [Function]

This function takes an array and valid subscripts for the array and returns a single
non-negative integer less than the total size of the array that identifies the accessed
element in the row-major ordering of the elements. The number of subscripts
supplied must equal the rank of the array. Each subscript must be a non-negative
integer less than the corresponding array dimension. Like aref, array-row
maj or-index ignores fill pointers.

A possible definition of array-row-major-index, with no error-checking,
would be

(defun array-row-major-index (a &rest subscripts)
(apply #'+ (maplist #'(lambda (x y)

(* (car x) (apply#'• (cdr y))))
subscripts
(array-dimensions a))))

For a one-dimensional array, the result of array-row-major-index always equals
the supplied subscript.

adjustable-array-p array [Function]

This predicate is true if the argument (which must be an array) is adjustable, and
otherwise is false.

17 .4. Functions on Arrays of Bits

The functions described in this section operate only on arrays of bits, that is,
specialized arrays whose elements are all o or 1.

bit bit-array &rest subscripts [Function]
sbit simple-bit-array &rest subscripts [Function]

bit is exactly like aref but requires an array of bits, that is, one of type (array
bit) . The result will always be o or 1.

sbit is like bit but additionally requires that the first argument be a simple
array (see section 2.5).

Note that bit and sbit, unlike char and schar, allow the first argument to be
an array of any rank.

setf may be used with bit or sbit to destructively replace a bit-array element
with a new value.

bit and sbi tare identical to aref except for the more specific type requirements
on the first argument. In some implementations of COMMON LrsP, bit may be

294 COMMON LISP

faster than aref in situations where it is applicable, and sbit may similarly be
faster than bit.

bit-and bit-array] bit-array-2 &optional result--bit-array [Function]
bit-ior bit-array] bit-array-2 &optional result-bit-array [Function]
bit-xor bit-array] bit-array-2 &optional result-bit-array [Function]
bit-eqv bit-array] bit-array-2 &optional result-bit-array [Function]
bit-nand bit-array] bit-array2 &optional result-bit-array [Function]
bit-nor bit-array] bit-array2 &optional result-bit-array [Function]
bit-andc1 bit-array] bit-array2 &optional result-bit-array [Function]
bit-andc2 bit-array] bit-array2 &optional result-bit-array [Function]
bit-orc1 bit-array] bit-array2 &optional result-bit-array [Function]
bit-orc2 bit-array] bit-array2 &optional result-bit-array [Function]

These functions perform bit-wise logical operations on bit-arrays. All of the ar
guments to any of these functions must be bit-arrays of the same rank and dimen
sions. The result is a bit-array of matching rank and dimensions, such that any
given bit of the result is produced by operating on corresponding bits from each
of the arguments.

If the third argument is nil or omitted, a new array is created to contain the
result. If the third argument is a bit-array, the result is destructively placed into
that array. If the third argument is t, then the first argument is also used as the
third argument; that is, the result is placed back in the first array.

The following table indicates what the result bit is for each operation as a function
of the two corresponding argument bits.

argument] D D 1 1
argument2 D 1 D 1 Operation name

bit-and D D D 1 and
bit-ior D 1 1 1 inclusive or
bit-xor D 1 1 D exclusive or
bit-eqv 1 D D 1 equivalence (exclusive nor)
bit-nand 1. 1 1 0 not-and
bit-nor 1 D D D not-or
bit-andc1 D 1 D D and complement of argument] with

argument2
bit-andc2 D D 1 D and argument] with complement of

argument2
bit-orc1 1 1 D 1 or complement of argument] with

argument2
bit-orc2 1 D 1 1 or argument/ with complement of

argument2

ARRAYS

For example:

(bit-and #•1100 #•1010) ~ #•1000

(bit-xor #•1100 #•1010) ~ #•0110

(bit-andc1 #•1100 #•1010) ~ #•0100

See logand and related functions.

bit-not bit-array &optional result-bit-array

295

[Function]

The first argument must be an array of bits. A bit-array of matching rank and
dimensions is returned that contains a copy of the argument with all the bits in
verted. See lognot.

If the second argument is nil or omitted, a new array is created to contain the
result. If the second argument is a bit-array, the result is destructively placed into
that array. If the second argument is t, then the first argument is also used as the
second argument; that is, the result is placed back in the first array.

17.5. Fill Pointers

Several functions for manipulating a fill pointer are provided in COMMON LISP to
make it easy to incrementally fill in the contents of a vector and, more generally,
to allow efficient varying of the length of a vector. For example, a string with a
fill pointer has most of the characteristics of a PL/I varying string.

The fill pointer is a non-negative integer no larger than the total number of
elements in the vector (as returned by array-dimension); it is the number of
"active" or "filled-in" elements in the vector. The fill pointer constitutes the "active
length" of the vector; all vector elements whose index is less than the fill pointer
are active, and the others are inactive. Nearly all functions that operate on the
contents of a vector will operate only on the active elements. An important excep
tion is a ref, which can be used to access any vector element whether in the active
region of the vector or not. It is important to note that vector elements not in the
active region are still considered part of the vector.

Implementation note: An implication of this rule is that vector elements outside the active
region may not be garbage-collected.

Only vectors (one-dimensional arrays) may have fill pointers; multidimensional
arrays may not. (Note, however, that one can create a multidimensional array that
is displaced to a vector that has a fill pointer.)

296 COMMON LISP

array-has-fill-pointer-p array [Function]

The argument must be an array. array-has-fill-pointer-p returns t ifthe array
has a fill pointer, and otherwise returns nil. Note that array-has-fill- pointer-p

always returns nil if the array is not one-dimensional.

fill-pointer vector [Function]

The fill pointer of vector is returned. It is an error if the vector does not have a
fill pointer.

setf may be used with fill-pointer to change the fill pointer of a vector.
The fill pointer of a vector must always be an integer between zero and the size
of the vector (inclusive).

vector-push new-element vector [Function]

vector must be a one-dimensional array that has a fill pointer, and new-element
may be any object. vector-push attempts to store new-element in the element of
the vector designated by the fill pointer, and to increase the fill pointer by one. If
the fill pointer does not designate an element of the vector (specifically, when it
gets too big), it is unaffected and vector-push returns nil. Otherwise, the store
and increment take place and vector-push returns the former value of the fill
pointer (one less than the one it leaves in the vector); thus the value of vector-push

is the index of the new element pushed.

vector-push-extend new-element vector &optional extension [Function]

vector-push-extend is just like vector-push except that if the fill pointer gets
too large, the vector is extended (using adjust-array) so that it can contain more
elements. If, however, the vector is not adjustable, then vector-push-extend

signals an error. The optional argument extension, which must be a positive integer,
is the minimum number of elements to be added to the vector if it must be extended;
it defaults to a "reasonable" implementation-dependent value.

vector-pop vector [Function]

vector must be a one-dimensional array that has a fill pointer. If the fill pointer is
zero, vector-pop signals an error. Otherwise the fill pointer is decreased by one,
and the vector element designated by the new value of the fill pointer is returned.

ARRAYS 297

17.6. Changing the Dimensions of an Array

This function may be used to resize or reshape an array. Its options are similar to
those of make-array.

adjust-array array new-dimensions &key

:element-type

:initial-element

:initial-contents

: fill-pointer

:displaced-to

:displaced-index-offset

[Function]

adjust-array takes an array and a number of other arguments as for make-array.

The number of dimensions specified by new-dimensions must equal the rank of
array.

adjust-array returns an array of the same type and rank as array, with the
specified new-dimensions. In effect, the array argument itself is modified to con
form to the new specifications, but this may be achieved either by modifying the
array or by creating a new array and modifying the array argument to be displaced
to the new array.

In the simplest case, one specifies only the new-dimensions and possibly an
: initial-element argument. Those elements of array that are still in bounds
appear in the new array. The elements of the new array that are not in the bounds
of array are initialized to the : initial-element; if this argument is not provided,
then the initial contents of any new elements are undefined.

If :element-type is specified, then array must be such that it could have been
originally created with that type; otherwise an error is signalled. Specifying
:element-type to adjust-array serves only to require such an error check.

If :initial-contents or :displaced-to is specified, then it is treated as for
make-array. In this case none of the original contents of array appears in the new
array.

If : fill-pointer is specified, the fill pointer of the array is reset as specified.
An error is signalled if array had no fill pointer already.

adjust-array may, depending on the implementation and the arguments, sim
ply alter the given array or create and return a new one. In the latter case the given
array will be altered so as to be displaced to the new array and have the given new
dimensions.

It is not permitted to call adjust-array on an array that was not created with

298 COMMON LISP

the : adjustable option. The predicate adjustable-array-p may be used to
determine whether or not an array is adjustable.

If adjust-array is applied to an array that is displaced to another array x, then
afterwards neither array nor the returned result is displaced to x unless such dis
placement is explicitly re-specified in the call to adjust-array.

For example, suppose that the 4-by-4 array m looks like this:

#2A(alpha beta gamma delta

epsilon zeta eta theta

iota kappa lambda mu

nu xi omicron pi

Then the result of

(adjust-array m ' (3 5) :initial-element 'baz)

is a 3-by-5 array with contents

#2A(alpha beta gamma delta baz

epsilon zeta eta theta baz

iota kappa lambda mu baz

Note that if array a is created displaced to array b and subsequently array b is
given to adjust-array, array a will still be displaced to array b; the effects of
this displacement and the rule of row-major storage order must be taken into
account.

18

Strings

A string is a specialized vector (one-dimensional array) whose elements are characters.
Specifically, the type string is identical to the type (vector string-char),

which in tum is the same as (array string-char (*)).

Any string-specific function defined in this chapter whose name begins with the
prefix string will accept a symbol instead of a string as an argument provided
that the operation never modifies that argument; the print name of the symbol is
used. In this respect the string-specific sequence operations are not simply spe
cializations of generic versions; the generic sequence operations described in chap
ter 14 never accept symbols as sequences. This slight inelegance is permitted in
COMMON LISP in the name of pragmatic utility. One may get the effect of having
a generic sequence function operate on either symbols or strings by applying the
coercion function string to any argument whose data type is in doubt.

Also, there is a slight non-parallelism in the names of string functions. Where
the suffixes equalp and eql would be more appropriate, for historical compatibility
the suffixes equal and = are used instead to indicate case-insensitive and case-sensitive
character comparison, respectively.

Any LISP object may be tested for being a string by the predicate stringp.

Note that strings, like all vectors, may have fill pointers (though such strings
are not necessarily simple). String operations generally operate only on the active
portion of the string (below the fill pointer). See fill-pointer and related func
tions.

18.1. String Access

The following functions access a single character element of a string.

299

300 COMMON LISP

char string index [Function]
schar simple-string index [Function]

The given index must be a non-negative integer less than the length of string, which
must be a string. The character at position index of the string is returned as a
character object. (This character will necessarily satisfy the predicate string-char-p.)

As with all sequences in COMMON LISP, indexing is zero-origin. For example:

(char "Floob-Boober-Bab-Boober-Bubs" D) => #\F

(char "Floob-Boober-Bab-Boober-Bubs" 1) => #\l

See aref and el t. In effect,

(chars j) == (aref (the strings) j)

setf may be used with char to destructively replace a character within a string.
For char, the string may be any string; for schar, it must be a simple string.

In some implementations of COMMON LISP, the function schar may be faster than
char when it is applicable.

18.2. String Comparison

The naming conventions for these functions and for their keyword arguments generally
follow the conventions for the generic sequence functions. See chapter 14.

string= string] string2 &key : start1 : end1 : start2 : end2 [Function]

string= compares two strings and is true if they are the same (corresponding
characters are identical) but is false if they are not. The function equal calls
string= if applied to two strings.

The keyword arguments : start1 and : start2 are the places in the strings to
start the comparison. The arguments : end1 and : end2 are the places in the strings
to stop comparing; comparison stops just before the position specified by a limit.
The start arguments default to zero (beginning of string), and the end arguments
(if either omitted or nil) default to the lengths of the strings (end of string), so
that by default the entirety of each string is examined. These arguments are pro
vided so that substrings can be compared efficiently.

string= is necessarily false if the (sub)strings being compared are of unequal
length; that is, if

(not (= (- end1 start1) (- end2 start2)))

is true, then string= is false.

STRINGS

(string=

(string=

(string=

11 foo 11

11 foo 11

"foo"

"foo") is true
"Foo") is false
"bar") is false

(string= "together" "frog" :start1 1 :end1 3 :start2 2)

is true

Compatibility note: string= is called strequal in INTERLISP.

301

string-equal string] string2 &key :start1 :end1 :start2 :end2 [Function]

string-equal is just like string= except that differences in case are ignored; two
characters are considered to be the same if char-equal is true of them. For example:

(string-equal "foo" "Foo") is true

string<

string>

string<=

string>=

string/=

string] string2 &key : start1 : end1 : start2 : end2

string 1 string2 &key : start1 : end1 : start2 : end2

string] string2 &key : start1 : end1 : start2 : end2

string] string2 &key : start1 : end1 : start2 : end2

string] string2 &key : start1 : end1 : start2 : end2

[Function]
[Function]
[Function]
[Function]
[Function]

These functions compare the two string arguments lexicographically, and the result
is nil unless string] is respectively less than, greater than, less than or equal to,
greater than or equal to, or not equal to string2. If the condition is satisfied,
however, then the result is the index within the strings of the first character position
at which the strings fail to match; put another way, the result is the length of the
longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the
character of a is less than the corresponding character of b according to the function
char< , or if string a is a proper prefix of string b (of shorter length and matching
in all the characters of a).

The keyword arguments : start1 and : start2 are the places in the strings to
start the comparison. The keyword arguments : end1 and : end2 are the places in
the strings to stop comparing; comparison stops just before the position specified
by a limit. The "start" arguments default to zero (beginning of string), and the
"end" arguments (if either omitted or nil) default to the lengths of the strings (end
of string), so that by default the entirety of each string is examined. These argu
ments are provided so that substrings can be compared efficiently. The index re
turned in case of a mismatch is an index into string 1.

302 COMMON LISP

string- lessp string] string2 &key : start1 : end1

:start2 :end2

string-grea terp string] string2 &key : start1 : end1

:start2 :end2

string-not-greaterp string] string2 &key : start1 : end1

:start2 :end2

string-not-lessp string 1 string2 &key :start1 :end1

:start2 :end2

string-not-equal string 1 string2 &key :start1 :end1

:start2 :end2

[Function]

[Function]

[Function]

[Function]

[Function]

These are exactly like string<, string>, string<=, string>=, and string/=,

respectively, except that distinctions between uppercase and lowercase letters are
ignored. It is as if char-lessp were used instead of char< for comparing char
acters.

18.3. String Construction and Manipulation

Most of the interesting operations on strings may be performed with the generic
sequence functions described in chapter 14. The following functions perform additional
operations that are specific to strings.

make-string s~e &key :initial-element [Function]

This returns a string (in fact a simple string) of length size, each of whose characters
has been initialized to the : initial-element argument. If an: initial-element

argument is not specified, then the string will be initialized in an implementa
tion-dependent way.

Implementation note: It may be convenient to initialize the string to null characters, or to
spaces, or to garbage ("whatever was there").

A ~tring is really just a one-dimensional array of "string characters" (that is,
those characters that are members of type string-char). More complex character
arrays may be constructed using the function make-array.

string-trim character-bag string
string-left-trim character-bag string
string-right-trim character-bag string

[Function]
[Function]
[Function]

string-trim returns a substring of string, with all characters in character-bag
stripped off the beginning and end. The function string-left-trim is similar but

STRINGS 303

strips characters off only the beginning; string-right-trim strips off only the
end. The argument character-bag may be any sequence containing characters. For
example:

(string-trim '(#\Space #\Tab #\Newline) " garbanzo beans

") :::} "garbanzo beans"

(string-trim " (*)" " (•three (silly) words•) ")

:::} "three (silly) words"

(string-left-trim " (*)" " (•three (silly) words•) ")

:::} "three (silly) words•) "

(string-right-trim " (•)" " (•three (silly) words•) ")

:::} " (•three (silly) words"

If no characters need to be trimmed from the string, then either the argument string

itself or a copy of it may be returned, at the discretion of the implementation.

string-upcase string &key :start :end

string-downcase string &key : start : end

string-capitalize string &key : start : end

[Function]
[Function]
[Function]

string-upcase returns a string just like string with all lowercase characters re
placed by the corresponding uppercase characters. More precisely, each character
of the result string is produced by applying the function char-upcase to the cor
responding character of string.

string-downcase is similar, except that uppercase characters are converted to
lowercase characters (using char-downcase).

The keyword arguments : start and : end delimit the portion of the string to be
affected. The result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument require
conversion, the result may be either the argument or a copy of it, at the imple
mentation's discretion. For example:

(string-upcase "Dr. Livingston, I presume?")

:::} "DR. LIVINGSTON, I PRESUME?"

(string-downcase "Dr. Livingston, I presume?")

:::} "dr. livingston, i presume?"

(string-upcase "Dr. Livingston, I presume?" :start 6 :end 10)

:::} "Dr. Li VINGston, I presume?"

string-capitalize produces a copy of string such that, for every word in the
copy, the first character of the word, if case-modifiable, is uppercase and any other
case-modifiable characters in the word are lowercase. For the purposes of

304 COMMON LISP

string-capitalize, a word is defined to be a consecutive subsequence consisting
of alphanumeric characters or digits, delimited at each end either by a
non-alphanumeric character or by an end of the string. For example:

(string-capitalize " hello ") ::} " Hello "

(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")

? "Occluded Casements Forestall Inadvertent Defenestration"

(string-capitalize 'kludgy-hash-search) ? "Kludgy-Hash-Search"

(string-capitalize "DON'T!") ::} "Don'T!" ;not "Don't!"

(string-capitalize "pipe 13a, foo16c") ? "Pipe 13a, Foo16c"

Compatibility note: Very approximate INTERLISP equivalents to string-upcase,
string-downcase, and string-capitalize are u-case, 1-case with second argument
nil, and 1-ca.se with second argument t.

nstring-upcase string &key : start : end

nstr ing-downcase string &key : start : end

nstring-capi talize string &key : start : end

[Function]
[Function]
[Function]

These functions are just like string-upcase, string-downcase, and
string-capitalize but destructively modify the argument string by altering
case-modifiable characters as necessary.

The keyword arguments : start and : end delimit the portion of the string to be
affected. The argument string is returned as the result.

string x [Function]

Most of the string functions effectively apply string to such of their arguments
as are supposed to be strings. If x is a string, it is returned. If x is a symbol, its
print name is returned. If xis a string character (a character of type string-char),

then a string containing that one character is returned. In any other situation, an
error is signalled.

To convert a sequence of characters to a string, use coerce. (Note that (coerce

x 'string) will not succeed if xis a symbol. Conversely, string will not convert
a list or other sequence to be a string.)

To get the string representation of a number or any other LISP object, use
prin1-to-string, princ-to-string, or format.

19

Structures

COMMON LISP provides a facility for creating named record structures with named
components. In effect, the user can define a new data type; every data structure of
that type has components with specified names. Constructor, access, and assignment
constructs are automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the
structure facility, which is very simple and allows the user to take advantage of
the type-checking, modularity, and convenience of user-defined record data types.
The second part, beginning with section 19.5, discusses a number of specialized
features of the facility that have advanced applications. These features are com
pletely optional, and you needn't even know they exist in order to take advantage
of the basics.

19.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the user
to create and use aggregate data types with named elements. These are like "structures"
in PL/I, or "records" in PASCAL.

As an example, assume you are writing a LISP program that deals with space
ships in a two-dimensional plane. In your program, you need to represent a space
ship by a LISP object of some kind. The interesting things about a space ship, as
far as your program is concerned, are its position (represented as x and y coordi
nates), velocity (represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components:
x-position, y-position, x-velocity, y-velocity, and mass. This structure could in tum
be implemented as a LISP object in a number of ways. It could be a list of five
elements; the x-position could be the car, the y-position the cadr, and so on.
Equally well it could be a vector of five elements: the x-position could be element
0, they-position element 1, and so on. The problem with either of these represen-

305

306 COMMON LISP

tations is that the components occupy places in the object that are quite arbitrary
and hard to remember. Someone looking at (cadddr ship1) or (aref ship1 3)

in a piece of code might find it difficult to determine that this is accessing the
y-velocity component of ship1. Moreover, if the representation of a ship should
have to be changed, it would be very difficult to find all the places in the code to
be changed to match (not all occurrences of cadddr are intended to extract the
y-velocity from a ship).

Ideally components of record structures should have names. One would like to
write something like (ship-y-velocity ship1) instead of (cadddr ship1). One
would also like a more mnemonic way to create a ship than this:

(list D D D D D)

Indeed, one would like ship to be a new data type, just like other LISP data types,
that one could test with typep, for example. The defstruct facility provides all
of this.

defstruct itself is a macro that defines a structure. For the space ship example,
one might define the structure by saying:

(defstruct ship

x-position

y-position

x-velocity

y-velocity

mass)

This declares that every ship is an object with five named components. The eval
uation of this form does several things:

• It defines ship-x-position to be a function of one argument, a ship, that returns
the x-position of the ship; sh ip-y-position and the other components are given
similar function definitions. These functions are called the access functions, as
they are used to access elements of the structure_

• The symbol ship becomes the name of a data type of which instances of ships
are elements. This name becomes acceptable to typep, for example; (typep x

'ship) is true if x is a ship and false if x is any object other than a ship.

• A function named ship - p of one argument is defined; it is a predicate that is
true if its argument is a ship and is false otherwise.

• A function called make-ship is defined that, when invoked, will create a data
structure with five components, suitable for use with the access functions. Thus
executing

STRUCTURES 307

(setq ship2 (make-ship))

sets ship2 to a newly created ship object. One can specify the initial values of
any desired component in the call to make-ship by using keyword arguments
in this way:

(setq ship2 (make-ship :mass •default-ship-mass•

:x-position O

:y-position O))

This constructs a new ship and initializes three of its components. This function
is called the constructor function because it constructs a new structure.

• The # s syntax can be used to read instances of ship structures, and a printer
function is provided for printing out ship structures. For example, the value of
the variable ship2 shown above might be printed as

#S(ship x-position 0 y-position 0 x-velocity nil

y-velocity nil mass 170000.0)

• A function called copy-ship of one argument is defined that, when given a
ship object, will create a new ship object that is a copy of the given one. This
function is called the copier function.

• One may use setf to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because defstruct

behaves as if it generates an appropriate defsetf form for each access function.

This simple example illustrates the power of defstruct to provide abstract
record structures in a convenient manner. defstruct has many other features as
well for specialized purposes.

19.2. How to Use Defstruct

All structures are defined through the defstruct construct.

defstruct name-and-options [doc-string] {slot-description}+ [Macro]

This defines a record-structure data type. A general call to defstruct looks like
the following example.

308 COMMON LISP

(defstruct (name option-I option-2 ...)
doc-string
slot-description-I
slot-description-2
...)

The name must be a symbol; it becomes the name of a new data type consisting
of all instanq:s of the structure. The function typep will accept and use this name
as appropriate. The name is returned as the value of the defstruct form.

Usually no options are needed at all. If no options are specified, then one may
write simply name instead of (name) after the word defstruct. The syntax of
options and the options provided are discussed in section 19.5.

If the optional documentation string doc-string is present, then it is attached to
the name as a documentation string of type structure; see documentation.

Each slot-description-} is of the form

(slot-name default-init
slot-option-name-I slot-option-value-I
slot-option-name-2 slot-option-value-2
...)

Each slot-name must be a symbol; an access function is defined for each slot. If
no options and no default-init are specified, then one may write simply slot-name
instead of (slot-name) as the slot description. The default-init is a form that is
evaluated each time a structure is to be constructed; the value is used as the initial
value of the slot. If no default-init is specified, then the initial contents of the slot
are undefined and implementation-dependent. The available slot-options are de
scribed in section 19.4.

Compatibility note: Slot-options are not currently provided in ZETALISP, but this is an
upward-compatible extension.

defstruct not only defines an access function for each slot, but also arranges
for setf to work properly on such access functions, defines a predicate named
name-p, defines a constructor function named make-name, and defines a copier
function named copy-name. All names of automatically created functions are in
terned in whatever package is current at the time the defstruct form is processed
(see *package*). Also, all such functions may be declared in line at the discretion
of the implementation to improve efficiency; if you do not want some function
declared inline, follow the defstruct form with a notinline declaration to
override any automatic inline declaration.

STRUCTURES 309

19.3. Using the Automatically Defined Constructor Function

After you have defined a new structure with defstruct, you can create instances
of this structure by using the constructor function. By default, defstruct defines
this function automatically. For a structure named foo, the constructor function is
normally named make-foo; you can specify a different name by giving it as the
argument to the : constructor option, or specify that you don't want a normal
constructor function at all by using nil as the argument (in which case one or
more "by-position" constructors should be requested; see section 19.6.

A call to a constructor function, in general, has the form

(name-of-constructor-function
slot-keyword-I form-I
slot-keyword-2 form-2
...)

All arguments are keyword arguments. Each slot-keyword should be a keyword
whose name matches the name of a slot of the structure (defstruct determines
the possible keywords simply by interning each slot-name in the keyword package).
All the keywords and forms are evaluated. In short, it is just as if the constructor
function took all its arguments as &key parameters. For example, the ship structure
shown in section 19 .1 has a constructor function that takes arguments roughly as
if its definition were

(defun make-ship (&key x-position y-position

x-velocity y-velocity mass)

...)

If slot-keyword-} names a slot, then that element of the created structure will be
initialized to the value ofform-j. If no pair slot-keyword-} andform-j is present for
a given slot, then the slot will be initialized by evaluating the default-init form
specified for that slot in the call to defstruct. (In other words, the initialization
specified in the defstruct defers to any specified in a call to the constructor
function.) If the default initialization form is used, it is evaluated at construction
time, but in the lexical environment of the defstruct form in which it appeared.
If the defstruct itself also did not specify any initialization, the element's initial
value is undefined. You should always specify the initialization, either in the
defstruct or in the call to the constructor function, if you care about the initial
value of the slot.

Each initialization form specified for a defstruct component, when used by
the constructor function for an otherwise unspecified component, is re-evaluated
on every call to the constructor function. It is as if the initialization forms were

310 COMMON LISP

used as init forms for the keyword parameters of the constructor function. For
example, if the fonn { gensym) were used as an initialization form, either in the
constructor-function call or as the default initialization form in the defstruct form,
then every call to the constructor function would call gensym once to generate a
new symbol.

19.4. DefstrQct Slot-Options

Each slot-description in a defstruct form may specify one or more slot-options.
A slot-option consists of a pair of a keyword and a value (which is not a form to
be evaluated, but the value itself). For example:

{defstruct ship

{ x-position D.D :type short-float)

{y-position D.D :type short-float)

(x-velocity D.D :type short-float)

(y-velocity D.D :type short-float)

(mass •default-ship-mass• :type short-float :read-only t))

This specifies that each slot will always contain a short-format floating-point number,
and that the last slot may not be altered once a ship is constructed.

The available slot-options are:

:type

The option : type type specifies that the contents of the slot will always be of the
specified data type. This is entirely analogous to the declaration of a variable or
function; indeed, it effectively declares the result type of the access function. An
implementation may or may not choose to check the type of the new object when
initializing or assigning to a slot. Note that the argument form type is not evaluated;
it must be a valid type specifier.

:read-only

The option : read - on 1 y x, where x is not nil, specifies that this slot may not be
altered; it will always contain the value specified at construction time. setf will
not accept the access function for this slot. If x is nil, this slot-option has no
effect. Note that the argument form x is not evaluated.

Note that it is impossible to specify a slot-option unless a default value is speci
fied first.

STRUCTURES 311

19.5. Defstruct Options

The preceding description of defstruct is all that the average user will need (or
want) to know in order to use structures. The remainder of this chapter discusses
more complex features of the defstruct facility.

This section explains each of the options that can be given to defstruct. A
defstruct option may be either a keyword or a list of a keyword and arguments
for that keyword. (Note that the syntax for defstruct options differs from the
pair syntax used for slot-options. No part of any of these options is evaluated.)

:cone-name

This provides for automatic prefixing of names of access functions. It is conven
tional to begin the names of all the access functions of a structure with a specific
prefix, the name of the structure followed by a hyphen. This is the default behavior.

The argument to the :cone-name option specifies an alternate prefix to be used.
(If a hyphen is to be used as a separator, it must be specified as part of the prefix.)
If nil is specified as an argument, then no prefix is used; then the names of the
access functions are the same as the slot names, and it is up to the user to name
the slots reasonably.

Note that no matter what is specified for : cone-name, with a constructor function
one uses slot keywords that match the slot names, with no prefix attached. On the
other hand, one uses the access-function name when using setf. Here is an example:

(defstruct door knob-color width material)

(setq my-door (make-door :knob-color 'red :width 5.0))

(door-width my-door) =? 5.0

(setf (door-width my-door) ~3.7)

(door-width my-door) =? ~3.7

(door-knob-color my-door) =? red

:constructor

This option takes one argument, a symbol, which specifies the name of the con
structor function. If the argument is not provided or if the option itself is not
provided, the name of the constructor is produced by concatenating the string
"MAKE-" and the name of the structure, putting the name in whatever package is
current at the time the defstruct form is processed (see •package•). If the
argument is provided and is nil, no constructor function is defined.

This option actually has a more general syntax that is explained in section 19.6.

312 COMMON LISP

:copier

This option takes one argument, a symbol, which specifies the name of the copier
function. If the argument is not prbvided or if the option itself is not provided, the
name of the copier is produced by concatenating the string "COPY-" and the name
of the structure, putting the name in whatever package is current at the time the
defstruct form is processed (see •package•). If the argument is provided and is
nil, no copier function is defined.

The automatically defined copier function simply makes a new structure and
transfers all components verbatim from the argument into the newly created struc
ture. No attempt is made to make copies of the components. Corresponding com
ponents of the old and new structures will therefore be eql.

:predicate

This option takes one argument, which specifies the name of the type predicate. If
the argument is not provided or if the option itself is not provided, the name of
the predicate is made by concatenating the name of the structure to the string " -P",

putting the name in whatever package is current at the time the defstruct form
is processed (see •package•). If the argument is provided and is nil, no predicate
is defined. A predicate can be defined only if the structure is "named"; if the : type

option is specified and the : named option is not specified, then the : predicate

option must either be unspecified or have the value nil.

:include

This option is used for building a new structure definition as an extension of an
old structure definition. As an example, suppose you have a structure called person

that looks like this:

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since
astronauts are people too, you would like them to also have the attributes of name,
age, and sex, and you would like LISP functions that operate on person structures
to operate just as well on astronaut structures. You can do this by defining
astronaut with the : include option, as follows:

(defstruct (astronaut (:include person)

(:cone-name astro-))

helmet-size

(favorite-beverage 'tang))

The : include option causes the structure being defined to have the same slots

STRUCTURES 313

as the included structure. This is done in such a way that the access functions for
the included structure will also work on the structure being defined. In this example,
an astronaut will therefore have five slots: the three defined in person and the
two defined in astronaut itself. The access functions defined by the person

structure can be applied to instances of the astronaut structure, and they will
work correctly. Moreover, astronaut will have its own access functions for com
ponents defined by the person structure. The following examples illustrate how
you can use astronaut structures:

(setq x (make-astronaut :name 'buzz

:age L;5.

:sex t

:helmet-size 17.5))

(person-name x) :::} buzz

(astro-name x) :::} buzz

(astro-favorite-beverage x) :::} tang

The difference between the access functions person-name and astro- name is
that person-name may be correctly applied to any person, including an astronaut,

while astro-name may be correctly applied only to an astronaut. (An imple
mentation may or may not check for incorrect use of access functions.)

At most one : include option may be specified in a single defs truct form.
The argument to the : include option is required and must be the name of some
previously defined structure. If the structure being defined has no : type option,
then the included structure must also have had no : type option specified for it. If
the structure being defined has a : type option, then the included structure must
have been declared with a : type option specifying the same representation type.

If no : type option is involved, then the structure name of the including structure
definition becomes the name of a data type, of course, and therefore a valid type
specifier recognizable by typep; moreover, it becomes a subtype of the included
structure. In the above example, astronaut is a subtype of person; hence

(typep (make-astronaut) 'person)

is true, indicating that all operations on persons will also work on astronauts.
The following is an advanced feature of the : include option. Sometimes, when

one structure includes another, the default values or slot-options for the slots that
came from the included structure are not what you want. The new structure can
specify default values or slot-options for the included slots different from those the
included structure specifies, by giving the : include option as:

(:include name slot-description-I slot-description-2 ...)

314 COMMON LISP

Each slot-description-} must have a slot-name or slot-keyword that is the same as
that of some slot in the included structure. If slot-description-} has no default-init,
then in the new structure the slot will have no initial value. Otherwise its initial
value form will be replaced by the default-init in slot-description-}. A normally
writable slot may be made read-only. If a slot is read-only in the included structure,
then it must also be so in the including structure. If a type is specified for a slot,
it must be the same as, or a subtype of, the type specified in the included structure.
If it is a strict subtype, the implementation may or may not choose to error-check
assignments.

For example, if we had wanted to define astronaut so that the default age for
an astronaut is t; s, then we could have said:

(defstruct (astronaut (:include person (age t;S)))

helmet-size

(favorite-beverage 'tang))

:print-function

This option may be used only if the : type option is not specified. The argument
to the : print-function option should be a function of three arguments, in a form
acceptable to the function special form, to be used to print structures of this type.
When a structure of this type is to be printed, the function is called on three
arguments: the structure to be printed, a stream to print to, and an integer indicating
the current depth (to be compared against •print-level•). The printing function
should observe the values of such printer-control variables as *print-escape* and
•print-pretty•.

If the :print-function option is not specified and the :type option also not
specified, then a default printing function is provided for the structure that will
print out all its slots using # s syntax (see section 22 .1.4).

:type

The : type option explicitly specifies the representation to be used for the structure.
It takes one argument, which must be one of the types enumerated below.

Specifying this option has the effect of forcing a specific representation and of
forcing the components to be stored in the order specified in the defstruct form
in corresponding successive elements of the specified representation. It also pre
vents the structure name from becoming a valid type specifier recognizable by
type p. See section 19. 7 for details.

Normally this option is not specified, in which case the structure is represented
in an implementation-dependent manner.

STRUCTURES 315

vector

This produces the same result as specifying (vector t). The structure is
represented as a general vector, storing components as vector elements. The
first component is vector element I if the structure is : named, and element
0 otherwise.

(vector element-type)
The structure is represented as a (possibly specialized) vector, storing com
ponents as vector elements. Every component must be of a type that can be
stored in a vector of the type specified. The first component is vector element
1 if the structure is : named, and element 0 otherwise. The structure may be
: named only if the type symbol is a subtype of the specified element-type.

list

The structure is represented as a list. The first component is the cadr if the
structure is : named, and the car if it is : unnamed.

:named

The : named option specifies that the structure is "named"; this option takes no
argument. If no : type option is specified, then the structure is always named; so
this option is useful only in conjunction with the : type option. See section 19. 7
for a further description of this option.

:initial-offset

This allows you to tell defstruct to skip over a certain number of slots before it
starts allocating the slots described in the body. This option requires an argument,
a non-negative integer, which is the number of slots you want defstruct to skip.
The :initial-offset option may be used only ifthe :type option is also speci
fied. See section 19. 7. 3 for a further description of this option.

19.6. By-position Constructor Functions

If the : constructor option is given as (:constructor name arglist), then instead
of making a keyword-driven constructor function, defstruct defines a "positional"
constructor function, taking arguments whose meaning is determined by the
argument's position rather than by a keyword. The arglist is used to describe
what the arguments to the constructor will be. In the simplest case something like

316 COMMON LISP

(:constructor rnake-foo (ab c)) defines make-foo to be a three-argument
constructor function whose arguments are used to initialize the slots named a, b,

and c.
In addition, the keywords &optional, &rest, and &aux are recognized in the

argument list. They work in the way you might expect, but there are a few fine
points worthy of explanation. Consider this example:

(:constructor create-foe

(a &optional b (c 'sea) &rest d &aux e (f 'eff)))

This defines create-foe to be a constructor of one or more arguments. The first
argument is used to initialize the a slot. The second argument is used to initialize
the b slot. If there isn't any second argument, then the default value given in the
body of the defstruct (if given) is used instead. The third argument is used to
initialize the c slot. If there isn't any third argument, then the symbol sea is used
instead. Any arguments following the third argument are collected into a list and
used to initialize the a slot. If there are three or fewer arguments, then nil is
placed in the a slot. The e slot is not initialized; its initial value is undefined.
Finally, the f slot is initialized to contain the symbol e ff.

The actions taken in the b and e cases were carefully chosen to allow the user
to specify all possible behaviors. Note that the &aux "variables" can be used to
completely override the default initializations given in the body.

With this definition, one can write

(create-foe 1 2)

instead of

(make-foo :a 1 :b 2)

and of course create-foe provides defaulting different from that of make-foo.

It is permissible to use the : constructor option more than once, so that you
can define several different constructor functions, each taking different parameters.

Because a constructor of this type operates By Order of Arguments, it is some
times known as a BOA constructor.

19. 7. Structures of Explicitly Specified Representational Type

Sometimes it is important to have explicit control over the representation of a
structure. The : type option allows one to specify that a structure must be implemented
in a particular way, using a list or a specific kind of vector, and to specify the
exact allocation of structure slots to components of the representation. A structure

STRUCTURES 317

may also be "unnamed" or "named," according to whether the structure name is
stored in (and thus recoverable from) the structure.

19. 7 .1. Unnamed Structures

Sometimes a particular data representation is imposed by external requirements,
and yet it is desirable to document the data format as a defstruct-style structure.
For example, consider expressions built up from numbers, symbols, and binary
operations such as + and *. An operation might be represented as it is in LISP, as
a list of the operator and the two operands. This fact can be expressed succinctly
with defstruct in this manner:

(defstruct (binop (:type list))
(operator '? :type symbol)
operand-1
operand-2)

This will define a constructor function make-binop and three selector functions,
namely binop-operator, binop-operand-1, and binop-operand-2. (It will not,
however, define a predicate binop-p, for reasons explained below.)

The effect of make-binop is simply to construct a list of length three:

(make-binop :operator '+ :operand-1 'x :operand-2 5)

~ (+ x 5)

(make-binop :operand-2 ~ :operator '*)

~ (* nil ~)

It is just like the function list except that it takes keyword arguments and performs
slot defaulting appropriate to the binop conceptual data type. Similarly, the selector
functions binop-operator, binop-operand-1, and binop-operand-2 are essentially
equivalent to car, cadr, and caddr, respectively. (They might not be completely
equivalent because, for example, an implementation would be justified in adding
error-checking code to ensure that the argument to each selector function is a
length-3 list.)

We speak of binop as being a "conceptual" data type because binop is not made
a part of the COMMON LISP type system. The predicate typep will not recognize
binop as a type specifier, and type-of will return list when given a binop
structure. Indeed, there is no way to distinguish a data structure constructed by
make-binop from any other list that happens to have the correct structure.

There is not even any way to recover the structure name binop from a structure
created by make-binop. This can be done, however, if the structure is "named."

318 COMMON LISP

19.7.2. Named Structures

A "named" structure has the property that, given an instance of the structure, the
structure name (that names the type) can be reliably recovered. For structures
defined with no : type option, the structure name actually becomes part of the
COMMON LISP data-type system. The function type-of, when applied to such a
structure, will return the structure name as the type of the object; the predicate
typep will recognize the structure name as a valid type specifier.

For structures defined with a :type option, type-of will return a type specifier
such as list or (vector t), depending on the type specified to the : type option.
The structure name does not become a valid type specifier. However, if the : named

option is also specified, then the first component of the structure (as created by a
defstruct constructor function) will always contain the structure name. This al
lows the structure name to be recovered from an instance of the structure and
allows a reasonable predicate for the conceptual type to be defined: the automati
cally defined name-p predicate for the structure operates by first checking that its
argument is of the proper type (list, (vector t), or whatever) and then checking
whether the first component contains the appropriate type name.

Consider the binop example shown above, modified only to include the : named

option:

(defstruct (binop (:type list) :named)

(operator '? :type symbol)

operand-1

operand-2)

As before, this will define a constructor function make-binop and three selector
functions binop-operator, binop-operand-1, and binop-operand-2. It will also
define a predicate bin op - p.

The effect of rnake-binop is now to construct a list of length four:

(make-binop :operator '+ :operand-1 'x :operand-2 5)

~ (binop + x 5)

(make-binop :operand-2 4 :operator '•)

~ (binop • nil 4)

The structure has the same layout as before except that the structure name binop

is included as the first list element. The selector functions binop-operator,

binop-operand-1, and binop-operand-2 are essentially equivalent to cadr, caddr,

and cadddr, respectively. The predicate binop-p is more or less equivalent to the

following definition.

STRUCTURES 319

(defun binop-p (x)

(and (consp x) (eq (car x) 'binop)))

The name binop is still not a valid type specifier recognizable to typep, but at
least there is a way of distinguishing binop structures from other similarly defined
structures.

19. 7 .3. Other Aspects of Explicitly Specified Structures

The : initial-offset option allows one to specify that slots be allocated beginning
at a representational element other than the first. For example, the form

(defstruct (binop (:type list) (:initial-offset 2))

(operator '? :type symbol)

operand-1
operand-2)

would result in the following behavior for make-binop:

(make-binop :operator '+ :operand-1 'x :operand-2 5)

=? (nil nil + x 5)

(make-binop :operand-2 ~ :operator '*)

=? (nil nil * nil~)

The selector functions binop-operator, binop-operand-1, and binop-operand-2

would be essentially equivalent to caddr, cadddr, and car of cddddr, respectively.
Similarly, the form

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator '? :type symbol)
operand-1

operand-2)

would result in the following behavior for make-binop:

(make-binop :operator '+ :operand-1 'x :operand-2 5)

=? (nil nil binop + x 5)

(make-binop :operand-2 ~ :operator '*)

=? (nil nil binop * nil~)

If the : include is used with the : type option, then the effect is first to skip
over as many representation elements as needed to represent the included structure,

320 COMMON LISP

then to skip over any additional elements specified by the : initial-offset op
tion, and then to begin allocation of elements from that point. For example:

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator '? :type symbol)

operand-1

operand-2)

(defstruct (annotated-binop (:type list)

(:initial-offset 3)

(:include binop))

commutative associative identity)

(make-annotated-binop :operator '*
:operand-1 'x

:operand-2 S

:commutative t

:associative t

: identity 1)

=? (nil nil binop * x s nil nil nil t t 1)

The first two nil elements stem from the : initial-offset of 2 in the definition
of binop. The next four elements contain the structure name and three slots for
binop. The next three nil elements stem from the : initial-offset of 3 in the
definition of annotated- binop. The last three list elements contain the additional
slots for an annotated-binop.

20

The Evaluator

The mechanism that executes LISP programs is called the evaluator. More precisely,
the evaluator accepts a form and performs the computation specified by the form.
This mechanism is made available to the user through the function eval.

The evaluator is typically implemented as an interpreter that traverses the given
form recursively, performing each step of the computation as it goes. An interpre
tive implementation is not required, however. A permissible alternative approach
is for the evaluator first to completely compile the form into machine-executable
code and then invoke the resulting code. This technique virtually eliminates in
compatibilities between interpreted and compiled code, but also renders the evalhook

mechanism relatively useless. Various mixed strategies are also possible. All of
these approaches should produce the same results when executing a correct pro
gram, but may produce different results for incorrect programs. For example, the
approaches may differ as to when macro calls are expanded; macro definitions
should not depend on the time at which they are expanded. Implementors should
document the evaluation strategy for each implementation.

20.1. Run-Time Evaluation of Forms

The function eval is the main user interface to the evaluator. Hooks are provided
for user-supplied debugging routines to obtain control during the execution of an
interpretive evaluator. The functions evalhook and applyhook provide alternative
interfaces to the evaluator mechanism for use by these debugging routines.

eval form [Function]

The form is evaluated in the current dynamic environment and a null lexical
environment. Whatever results from the evaluation is returned from the call to
eval.

Note that when you write a call to eval two levels of evaluation occur on the
argument form you write. First the argument form is evaluated, as for arguments
to any function, by the usual argument evaluation mechanism (which involves an

321

322 COMMON LISP

implicit use of eval). Then the argument is passed to the eval function, where
another evaluation occurs. For example:

(eval (list 'cdr (car '((quote (a . b)) c)))) ~ b

The argument form (list 'cdr (car '((quote (a. b)) c))) is evaluated in
the usual way to produce the argument (cdr (quote (a . b))) ; this is then given
to eval because eval is being called explicitly, and eval evaluates its argument
(cdr (quote (a . b))) to produce b.

If all that is required for some application is to obtain the current dynamic value
of a given symbol, the function symbol-value may be more efficient than eval.

•evalhook•
•applyhook•

[Variable]
[Variable]

If the value of •evalhook• is not nil, then eval behaves in a special way. The
non-nil value of •evalhook• should be a function that takes two arguments, a
form and an environment; this is called the eval hook function. When a form is to
be evaluated (any form at all, even a number or a symbol), whether implicitly or
via an explicit call to eval, no attempt is made to evaluate the form. Instead, the
hook function is invoked and is passed the form to be evaluated as its first argument.
The hook function is then responsible for evaluating the form; whatever is returned
by the hook function is assumed to be the result of evaluating the form.

The variable •applyhook• is similar to •evalhook• but is used when a function
is about to be applied to arguments. If the value of •applyhook• is not nil, then
eval behaves in a special way. The non-nil value of •applyhook• should be a
function that takes three arguments, a function, a list of arguments, and an envi
ronment; this is called the apply hook function. When a function is about to be
applied to a list of arguments, no attempt is made to apply the function. Instead,
the hook function is invoked and is passed the function and the list of arguments
as its first and second arguments. The hook function is then respcmsible for eval
uating the form; whatever is returned by the hook function is assumed to be the
result of evaluating the form. The apply hook function is used only for application
of ordinary functions within eval. It is not used for applications via apply or
funcall, for applications by such functions as map or reduce, or for invocation
of macro-expansion functions by either eval or macroexpand.

The last argument passed to either kind of hook function contains information
about the lexical environment in an implementation-dependent format. These ar
guments are suitable for the functions evalhook, applyhook, and macroexpand.

When either kind of hook function is invoked, both •evalhook* and *applyhook*
are rebound to the value nil around the invocation of the hook function. This is
so that the hook function will not be invoked recursively on evaluations and ap
plications that occur in the course of executing the code of the hook function. The

THE EVALUATOR 323

functions evalhook and applyhook are useful for performing recursive evaluations
and applications within the hook function.

The hook feature is provided as an aid to debugging. The step facility is im
plemented using this hook.

If a non-local exit causes a throw back to the top level of LISP, perhaps because
an error could not be corrected, then *evalhook* and *applyhook* are automat
ically reset to nil as a safety feature.

evalhook form evalhoolifn applyhoolifn &optional env
applyhook function args evalhoolifn applyhoolifn &optional env

[Function]
[Function]

The functions evalhook arid applyhook are provided to make it easier to exploit
the hook feature.

In the case of evalhook, the form is evaluated. In the case of applyhook, the
function is applied to the list of arguments args. In either case, for the duration of
the operation the variable *evalhook* is bound to evalhoolifn, and *applyhook*

is bound to applyhookfn. Furthermore, the env argument is used as the lexical
environment for the operation; env defaults to the null environment. The check for
a hook function is bypassed for the evaluation of the form itself (for evalhook) or
for the application of the function to the args itself (for applyhook), but not for
subsidiary evaluations and applications. such as evaluations of subforms. It is this
one-shot bypass that makes evalhook and applyhook so useful.

Here is an example of a very simple tracing routine that uses just the evalhook

feature.

(defvar *hooklevel* D)

(defun hook (x)

(let ((*evalhook* 'eval-hook-function))

(eval x)))

(defun eval-hook-function (form &optional env)

(let ((*hooklevel* (+ *hooklevel* 1)))
(format *trace-output* "-%-V@TForm: -s"

(* *hooklevel* 2) form)
(let ((values (multiple-value-list

(evalhook form
#'eval-hook-function

nil

env))))
(format *trace-output* "-%-V@TValue:-<- s->"

(* *hooklevel* 2) values)

(values-list values))))

324 COMMON LISP

Using these routines, one might see the following interaction:

(hook '(cons (floor *print-base* 2) 'b))

Form: (CONS (FLOOR *PRINT-BASE* 2) (QUOTE B))

Form: (FLOOR *PRINT-BASE* 3)

Form: *PRINT-BASE*

Value: 10

Form: 3

Value: 3

Value: 3 1

Form: (QUOTE B)

Value: B

Value: (3 . B)

(3 • B)

constantp object [Function]

If the predicate constantp is true of an object, then that object, when considered
as a form to be evaluated, always evaluates to the same thing; it is a constant. This
includes self-evaluating objects such as numbers, characters, strings, bit-vectors,
and keywords, as well as all constant symbols declared by defconstant, such as
nil, t, and pi. In addition, a list whose car is quote, such as (quote foo), is
considered to be a constant.

If constantp is false of an object, then that object, considered as a form, might
or might not always evaluate to the same thing.

20.2. The Top-Level Loop

Normally one interacts with LISP through a "top-level read-eval-print loop," so
called because it is the highest level of control and consists of an endless loop that
reads an expression, evaluates it, and prints the results. One has an effect on the
state of the LISP system only by invoking actions that have side effects.

The precise nature of the top-level loop for COMMON LISP is purposely not
rigorously specified here so that implementors can experiment to improve the user
interface. For example, an implemenfor may choose to require line-at-a-time input,
or may provide a fancy editor or complex graphics-display interface. An imple
mentor may choose to provide explicit prompts for input, or may choose (as MAcLISP

does) not to clutter up the transcript with prompts.
The top-level loop is required to trap all throws and recover gracefully. It is also

required to print all values resulting from evaluation of a form, perhaps on separate
lines. If a form returns zero values, as little as possible should be printed.

The following variables are maintained by the top-level loop as a limited safety

THE EVALUATOR 325

net, in case the user forgets to save an interesting input expression or output value.
(Note that the names of some of these variables violate the convention that names
of global variables begin and end with an asterisk.) These are intended primarily
for user interaction, which is why they have short names. Use of these variables
should be avoided in programs.

++

+++

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the top-level loop, the variable + is bound to
the previous form read by ,he loop. The variable • • holds the previous value of •
(that is, the form evaluated two interactions ago), and••• holds the previous value
of••.

[Variable]

While a form is being evaluated by the top-level loop, the variable - is bound to
the form itself; that is, it is the value about to be given to • once this interaction
is done.

•• ...
[Variable]

[Variable]
[Variable]

While a form is being evaluated by the top-level loop, the variable • is bound to
the result printed at the end of the last time through the loop; that is, it is the value
produced by evaluating the form in •. If several values were produced, • contains
the first value only; • contains nil if zero values were produced. The variable • •
holds the previous value of• (that is, the result printed two interactions ago), and
• • • holds the previous value of • •.

If the evaluation of + is aborted for some reason, then the values associated with
•, • •, and • • • are not updated; they are updated only if the printing of values is
at least begun (though not necessarily completed).

II

Ill

[Variable]

[Variable]
[Variable]

While a form is being evaluated by the top-level loop, the variable / is bound to
a list of the results printed at the end of the last time through the loop; that is, it

326 COMMON LISP

is a list of all values produced by evaluating the fomi in +. The value of * should
always be the same as the car of the value of 1. The variable 11 holds the previous
value of / (that is, the results printed two interactfons ago), and 111 holds the
previous value of 11. Therefore the value of • • should always be the same as the
car of 11, and similarly for • • • and 111.

If the evaluation of + is aborted for some reason, then the values associated with
1, 11, arid 111 are rtot updated; they are updated only if the printing of values is
at ieast begun (though not necessarily completed).

As an example of the processing of these variables, consider the following
possible transcript, where > is a prompt by the top-level loop for user input:

>(cons - ~)

((CONS - ~) CONS - -)

>(values)

>(cons ;a 'b)

(A • B)

>(hairy-loop)"G
QUIT to top level.

>(floor 13 L;)

3

1

At this point we have:

+++ ::;> (cons •a 'b)
++ ::;> (hairy-loop)

+ ::;> (floor 13 4)

;Interaction 1
; Cute, huh?

;Interaction 2
; There is nothing to print.
;Interaction 3
; There is a single value.

;Interaction t;

; (User aborts the computation.)

;Interaction s
; There are two values.

** • ::} NIL I I I ::} ()

•* ::;> (A B) II ~ ((A B))

• ::;> 3 I ::;> (3 1)

21

Streams

Streams are objects that serve as sources or sinks of data. Character streams produce
or absorb characters; binary streams produce or absorb integers. The normal action
of a COMMON LISP system is to read characters from a character input stream,
parse the characters as representations of COMMON LISP data objects, evaluate each
object (as a form) as it is read, and print representations of the results of evaluation
to an output character stream.

Typically streams are connected to files or to an interactive terminal. Streams,
being LISP objects, serve as the ambassadors of external devices by which in
puUoutput is accomplished.

A stream, whether a character stream or a binary stream, may be input-only,
output-only, or bidirectional. What operations may be performed on a stream de
pends on which of the six types of stream it is.

21.1. Standard Streams

There are several variables whose values are streams used by many functions in
the LISP system. These variables and their uses are listed here. By convention,
variables that are expected to hold a stream capable of input have names ending
with -input, and similarly -output for output streams. Those expected to hold a
bidirectional stream have names ending with - io.

•standard-input• [Variable]

In the normal LISP top-level loop, input is read from •standard-input• (that is,
whatever stream is the value of the global variable •standard-input*). Many
input functions, including read and read-char, take a stream argument that defaults
to •standard-input•.

•standard-output• [Variable]

In the normal LISP top-level loop, output is sent to •standard-output• (that is,
whatever stream is the value of the global variable •standard-output>). Many

327

328 COMMON LISP

output functions, including print and write-char, take a stream argument that
defaults to *Standard-output*.

error-output [Variable]

The value of •error-output* is a stream to which error messages should be sent.
Normally this is the same as •standard-output*, but •standard-output* might
be bound to a file and *error-output> left going to the terminal or a separate file
of error messages.

•query-io• [Variable]

The value of •query-io• is a stream to be used when asking questions of the user.
The question should be output to this stream, and the answer read from it. When
the normal input to a program may be coming from a file, questions such as "Do
you really want to delete all of the files in your directory?" should nevertheless be
sent directly to the user; and the answer should come from the user, not from the
data file. For such purposes •query-io• should be used instead of *Standard-input*

and •standard-output>. •query-io• is used by such functions as yes-or-no-p.

•debug-io• [Variable]

The value of •debug-io• is a stream to be used for interactive debugging purposes.
This is often the same as the value of •query- io., but need not be.

•terminal-io• [Variable]

The value of •terminal-io• is ordinarily the stream that connects to the user's
console. Typically, writing to this stream would cause the output to appear on a
display screen, for example, and reading from the stream would accept input from
a keyboard. It is intended that standard input functions such as read and read-char,

when used with this stream, would cause "echoing" of the input into the output
side of the stream. (The means by which this is accomplished are of course highly
implementation-dependent.)

•trace-output• [Variable]

The value of •trace-output• is the stream on which the trace' function prints
its output.

•standard-input•, •standard-output•, •error-output•, *trace-output*,

query-io, and *debug-io* are initially bound to synonym streams that pass all

STREAMS 329

operations on to the stream that is the value of •terminal-io•. (See
make-synonym-stream.) Thus any operations performed on those streams will go
to the terminal.

No user program should ever change the value of •terminal-io•. A program
that wants (for example) to divert output to a file should do so by binding the value
of •standard-output•; that way error messages sent to •error-output• can still
get to the user by going through •terminal-io•, which is usually what is desired.

21.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that open
files; see with-open-file and open. The following functions construct streams
without reference to a file system

make-synonym-stream symbol [Function]

make-synonym-stream creates and returns a "synonym-srream." Any operations
on the new stream will be performed on the stream that is then the value of the
dynamic variable named by the symbol. If the value of the variable should change
or be bound, then the synonym stream will operate on the new stream.

make-broadcast-stream &rest streams [Function]

This returns a stream that only works in the output direction. Any output sent to
this stream will be sent to all of the streams given. The set of operations that may
be performed on the new stream is the intersection of those for the given streams.
The results returned by a stream operation are the values resulting from performing
the operation on the last stream in streams; the results of performing the operation
on all preceding streams are discarded. If no streams are given as arguments, then
the result is a "bit sink"; all output to the resulting stream is discarded.

make-concatenated-stream &rest streams [Function]

This returns a stream that only works in the input direction. Input is taken from
the first of the streams until it reaches end-of-file; then that stream is discarded,
and input is taken from the next of the streams, and so on. If rio arguments are
given, the result is a stream with no content; any input attempt will result in
end-of-file.

make-two-way-stream input-stream output-stream [Function]

This returns a bidirectional stream that gets its input from input-stream and sends
its output to output-stream.

330 COMMON LISP

make-echo-stream input-stream output-stream [Function]

This returns a bidirectional stream that gets its input from input-stream and sends
its output to output-stream. In addition, all input taken from input-stream is echoed
to output-stream.

make-string-input-stream string &optional start end [Function]

This returns an input stream. The input stream will supply, in order, the characters
in the substring of string delimited by start and end; after the last character has
been supplied, the stream will then be at end-of-file.

make-string-output-stream [Function]

This returns an output stream that will accumulate all output given it for the benefit
of the function get-output-stream-string.

get-output-stream -string string-output-stream [Function]

Given a stream produced by make-string-output-stream, this returns a string
containing all the characters output to the stream so far. The stream is then reset;
thus each call to get-output-stream-string gets only the characters since the
last such call (or the creation of the stream, if no such previous call has been
made).

with-open-stream (var stream) {declaration}* {form}* [Macro]

The form stream is evaluated and must produce a stream. The variable var is bound
with the stream as its value, and then the forms of the body are executed as an
implicit progn; the results of evaluating the last form are returned as the value of
the with-open-stream form. The stream is automatically closed on exit from the
with-open-stream form, no matter whether the exit is normal or abnormal; see
close. The stream should be regarded as having dynamic extent.

with-input-from-string (var string {keyword value}*) [Macro]
{declaration}* {form}*

The body is executed as an implicit progn with the variable var b~mnd to a character
input stream that supplies successive characters from the value of the form string.
with-input-from-string returns the results from the last form of the body.

The input stream is automatically closed on exit from the
with-input-from-string form, no matter whether the exit is normal or abnormal.

STREAMS 331

The stream should be regarded as having dynamic extent.
The following keyword options may be used:

:index

The form after the : index keyword should be a place acceptable to setf.

If the with-input-from-string form is exited normally, then the place will
have stored into it the index into the string indicating the first character not
read (the length of the string if all characters were used). The place is not
updated as reading progresses, but only at the end of the operation.

:start

The : start keyword takes an argument indicating, in the manner usual for
sequence functions, the beginning of a substring of string to be used.

:end

The : end keyword takes an argument indicating, in the manner usual for
sequence functions, the end of a substring of string to be used.

Here is an example of the use of with-input-from-string:

(with-input- from-string (s "Animal Crackers" : index j : start 6)

(read s)) =? crackers

As a side effect, the variable j is set to 15.

The : start and : index keywords may both specify the same variable, which
is a pointer within the string to be advanced, perhaps repeatedly by some containing
loop.

with-output-to-string (var [string]) {declaration}* {form}* [Macro]

The body is executed as an implicit progn with the variable var bound to a character
output stream. All output to that stream is saved in a string. This may be done irt
one of two ways.

If no string argument is provided, then the value of with-output- from-string

is a string containing all the collected output.
If string is specified, it must be a string with a fill pointer; the output is incre

mentally appended to the string, as if using vector-push-extend if the string is
adjustable, and otherwise as if using vector-push. In this case with-output

to-string returns the results from the last form of the body.
In either case, the output stream is automatically closed on exit from the

with-output-from-string form, no matter whether the exit is normal or abnor
mal. The stream should be regarded as having dynamic extent.

332 COMMON LISP

21.3. Operations on Streams

This section contains discussion of only those operations that are common to all
streams. Input and output is rather complicated and is discussed separately in
chapter 22. The interface between streams and the file system is discussed in
chapter 23.

streamp object [Function]

streamp is true if its argument is a stream, and otherwise is false.

(streamp x) == (typep x 'stream)

input-stream-p stream [Function]

This predicate is true if its argument (which must be a stream) can handle input
operations, and otherwise is false.

output-stream-p stream [Function]

This predicate is true if its argument (which must be a stream) can handle output
operations, and otherwise is false.

stream-element-type stream [Function]

A type specifier is returned to indicate what objects may be read from or written
to the argument stream, which must be a stream. Streams created by open will
have an element type restricted to a subset of character or integer, but in
principle a stream may conduct transactions using any LISP objects.

close stream &key : abort [Function]

The argument must be a stream. The stream is closed. No further input/output
operations may be performed on it. However, certain inquiry operations may still
be performed, and it is permissible to close an already closed stream.

If the : abort parameter is not nil (it defaults to nil), it indicates an abnormal
termination of the use of the stream. An attempt is made to clean up any side
effects of having created the stream in the first place. For example, if the stream
performs output to a file that was newly created when the stream was created, then
if possible the file is deleted and any previously existing file is not superseded.

22

Input/Output

COMMON LISP provides a rich set of facilities for performing inpuUoutput. All
inpuUoutput operations are performed on streams of various kinds. This chapter is
devoted to stream data transfer operations. Streams are discussed in chapter 21,
and ways of manipulating files through streams are discussed in chapter 23.

While there is provision for reading and writing binary data, most of the 1/0
operations in COMMON LISP read or write characters. There are simple primitives
for reading and writing single characters or lines of data. The format function can
perform complex formatting of output data, directed by a control string in manner
similar to a FORTRAN FORMAT statement or a PL/I PUT EDIT statement. The most
useful 1/0 operations, however, read and write printed representations of arbitrary
LISP objects.

22.1. Printed Representation of LISP Objects

LISP objects in general are not text strings, but complex data structures. They have
very different properties from text strings as a consequence of their internal
representation. However, to make it possible to get at and talk about LISP objects,
LISP provides a representation of most objects in the form of printed text; this is
called the printed representation, which is used for inpuUoutput purposes and in
the examples throughout this manual. Functions such as print take a LISP object
and send the characters of its printed representation to a stream. The collection of
routines that does this is known as the (LISP) printer. The read function takes
characters from a stream, interprets them as a printed representation of a LISP

object, builds that object, and returns it; the collection of routines that does this is
called the (LISP) reader.

Ideally, one could print a LISP object and then read the printed representation
back in, and so obtain the same identical object. In practice this is difficult and for
some purposes not even desirable. Instead, reading a printed representation pro
duces an object that is (with obscure technical exceptions) equal to the originally
printed object.

333

334 COMMON LISP

Most LISP objects have more than one possible printed representation. For ex
ample, the integer twenty-seven can be written in any of these ways:

27 27. #033 #X1B #b11011 #.(•333) 111/3

A list of two symbols A and B can be printed in many ways:

(A B) (a b) (a b) (\A :an

B

The last example, which is spread over three lines, may be ugly, but it is legitimate.
In general, wherever whitespace is permissible in a printed representation, any
number of spaces and newlines may appear.

When print produces a printed representation, it must choose arbitrarily from
among many possible printed representations. It attempts to choose one that is
readable. There are a number of global variables that can be used to control the
actions of print, and a number of different printing functions.

This section describes in detail what is the standard printed representation for
any Lisp object, and also describes how read operates.

22.1.1. What the Read Function Accepts

The purpose of the LISP reader is to accept characters, interpret them as the printed
representation of a LISP object, and construct and return such an object. The reader
cannot accept everything that the printer produces; for example, the printed
representations of compiled code objects cannot be read in. However, the reader
has many features that are not used by the output of the printer at all, such as
comments, alternative representations, and convenient abbreviations for frequently
used but unwieldy constructs. The reader is also parameterized in such a way that
it can be used as a lexical analyzer for a more general user-written parser.

The reader is organized as a recursive-descent parser. Broadly speaking, the
reader operates by reading a character from the input stream and treating it in one
of three ways. Whitespace characters serve as separators but are otherwise ignored.
Constituent and escape characters are accumulated to make a token, which is then
interpreted as a number or symbol. Macro characters trigger the invocation of
functions (possibly user-supplied) that can perform arbitrary parsing actions, in
cluding recursive invocation of the reader.

More precisely, when the reader is invoked, it reads a single character from the
input stream and dispatches according to the syntactic type of that character. Every
character that can appear in the input stream must be of exactly one of the following

INPUT/OUTPUT 335

kinds: illegal, whitespace, constituent, single escape, multiple escape, or macro.
Macro characters are further divided into the types terminating and non-terminating
(of tokens). (Note that macro characters have nothing whatever to do with macros
in their operation. There is a superficial similarity in that macros allow the user to
extend the syntax of COMMON LISP at the level of forms, while macro characters
allow the user to extend the syntax at the level of characters.) Constituents addi
tionally have one or more attributes, the most important of which is alphabetic;
these attributes are discussed further in section 22.1.2.

The parsing of COMMON LISP expressions is discussed in terms of these syntactic
character types because the types of individual characters are not fixed but may be
altered by the user (see set-syntax-from-char and set-macro-character). The
characters of the standard character set initially have the syntactic types shown in
Table 22-1. Note that the brackets, braces, question mark, and exclamation point
(that is, [, l, <, } , ? , and !) are normally defined to be constituents, but they are
not used for any purpose in standard COMMON LISP syntax and do not occur in the
names of built-in COMMON LISP functions or variables. These characters are ex
plicitly reserved to the user. The primary intent is that they be used as macro
characters; but a user might choose, for example, to make ! be a single escape
character (as it is in PORTABLE STANDARD LISP).

The algorithm performed by the COMMON LISP reader is roughly as follows:

1. If at end of file, perform end-of-file processing (as specified by the caller of
the read function). Otherwise, read one character from the input stream, call
it x, and dispatch according to the syntactic type of x to one of steps 2 to 7.

2. If x is an illegal character, signal an error.

3. If x is a whitespace character, then discard it and go back to step 1 .

4. If x is a macro character (at this point the distinction between terminating and
non-terminating macro characters does not matter), then execute the function
associated with that character. The function may return zero values or one
value (see values).

The macro-character function may of course read characters from the input
stream; if it does, it will see those characters following the macro character.
The function may even invoke the reader recursively. This is how the macro
character (constructs a list: by invoking the reader recursively to read the
elements of the list.

If one value is returned, then return that value as the result of the read
operation; the algorithm is done. If zero values are returned, then go back to
step 1.

5. If xis a single escape character (normally \), then read the next character and

336 COMMON USP

Table 22-1: Standard Character Syntax Types

<tab> whitespace <page> whitespace <newline> whitespace
<space> whitespace ® constituent terminating macro

constituent* A constituent a constituent
terminating macro B constituent b constituent

non-terminating macro c constituent c constituent
$ constituent D constituent d constituent
% constituent E constituent e constituent
& constituent F constituent f constituent

terminating macro G constituent g constituent
terminating macro H constituent h constituent
terminating macro I constituent i constituent
constituent J constituent constituent
constituent K constituent k constituent
terminating macro L constituent 1 constituent
constituent M constituent m constituent
constituent N constituent n constituent
constituent 0 constituent 0 constituent

0 constituent p constituent p constituent
1 constituent Q constituent q constituent
2 constituent R constituent r constituent
3 constituent s constituent s constituent
L; constituent T constituent t constituent
5 constituent u constituent u constituent
6 constituent v constituent v constituent
7 constituent w constituent w constituent
II constituent x constituent x constituent
9 constituent y constituent y constituent

constituent z constituent z constituent
terminating macro constituent* constituent*
constituent single escape multiple escape
constituent constituent* constituent*
constituent constituent constituent

? constituent* constituent <rubout> constituent
<backspace> constituent <return> whitespace <linefeed> whitespace

*The characters marked with an asterisk are initially constituents, but are reserved to the user for use
as macro characters or for any other desired purpose.

call it y (but if at end of file, signal an error instead). Ignore the usual syntax
of y and pretend it is a constituent whose only attribute is alphabetic. (If y is
a lowercase character, leave it alone; do not replace it with the corresponding
uppercase character.) Use y to begin a token, and go to step 8.

INPUT/OUTPUT 337

6. If x is a multiple escape character (normally :), then begin a token (initially
containing no characters) and go to step 9.

7. If x is a constituent character, then it begins an extended token. After the entire
token is read in, it will be interpreted either as representing a LISP object such
as a symbol or number (in which case that object is returned as the result of
the read operation), or as being of illegal syntax (in which case an error is
signalled). If x is a lowercase character, replace it with the corresponding
uppercase character. Use x to begin a token, and go on to step 8.

8. (At this point a token is being accumulated, and an even number of multiple
escape characters have been encountered.) If at end of file, go to step 10.
Otherwise, read a character (call it y), and perform one of the following actions
according to its syntactic type:

• If y is a constituent or non-terminating macro then do the following. If y is
a lowercase character, replace it with the corresponding uppercase character.
Append y to the token being built, and repeat step 8.

• If y is a single escape character, then read the next character and call it z
(but if at end of file, signal an error instead). Ignore the usual syntax of z
and pretend it is a constituent whose only attribute is alphabetic. (If z is a
lowercase character, leave it alone; 'do not replace it with the corresponding
uppercase character.) Append z to the token being built, and repeat step 8.

• If y is a multiple escape character, then go to step 9.

• If y is an illegal character, signal an error.

If y is a terminating macro character, then it terminates the token. First
"unread" the character y (see unread-char), and then go to step 10.

• If y is a whitespace character, then it terminates the token. First "unread"
the character y if appropriate (see read-preserving-whitespace), and
then go to step 10.

9. (At this point a token is being accumulated, and an odd number of multiple
escape characters have been encountered.) If at end of file, signal an error.
Otherwise, read a character (call it y), and perform one of the following actions
according to its syntactic type:

• If y is a constituent, macro, or whitespace character, then ignore the usual
syntax of that character and pretend it is a constituent whose only attribute
is alphabetic. (If y is a lowercase character, leave it alone; do not replace
it with the corresponding uppercase character.) Append y to the token being
built, and repeat step 9.

• If y is a single escape character, then read the next character and call it z
(but if at end of file, signal an error instead). Ignore the usual syntax of z

338 COMMON LISP

and pretend it is a constituent whose only attribute is alphabetic. (If z is a

lowercase character, leave it alone; do not replace it with the corresponding
uppercase character.) Append z to the token being built, and repeat step 9.

• If y is a multiple escape character, then go to step 8.

• If y is an illegal character, signal an error.

10. An entire token has been accumulated. Interpret it as representing a LISP object
and return that object as the result of the read operation, or signal an error if
the token is not of legal syntax.

As a rule, a single escape character never stands for itself but always serves to
cause the following character to be treated as a simple alphabetic character. A
single escape character can be included in a token only if preceded by another
single escape character.

A multiple escape character also never stands for itself. The characters between
a pair of multiple escape characters are all treated as simple alphabetic characters,
except that single escape and multiple escape characters must nevertheless be preceded

by a single escape character to be included.

Compatibility note: In MACLISP, the 1 character is implemented as a macro character that
reads characters up to the next unescaped 1 and then makes a token; no characters are ever
read beyond the second I of a matching pair. In COMMON LISP, the second I does not
terminate the token being read but merely reverts to the ordinary (rather than multiple-escape)
mode of token accumulation. This results in some differences in the way certain character
sequences are interpreted. For example, the sequence 1foo1 I bar I would be read in MACLISP

as two distinct tokens ; too; and ; bar;, whereas in COMMON LISP it would be treated as
a single token equivalent to ; foobar;. The sequence ; foo I bar I baz I would be read in
MACLISP as three distinct tokens I foo I, bar, and I baz I, whereas in COMMON LISP it would
be treated as a single token equivalent to 1 fooBARbaz I; note that the middle three lowercase
letters are converted to uppercase letters as they do not fall within a matching pair of vertical
bars.

One reason for the different treatment of 1 in COMMON LISP lies in the syntax for pack
age-qualified symbol names. A sequence such as I foo: bar I ought to be interpreted as a
symbol whose name is foo: bar; the colon should be treated as a simple alphabetic character
because it lies within a pair of vertical bars. The symbol ; bar; within the package I foo;

can be notated, not as ; too: bar;, but as ; foo I : I bar I; the colon can serve as a package
marker because it falls outside the vertical bars, and yet the notation is treated as a single
token thanks to the new rules adopted in COMMON LISP.

In MACLISP, the parentheses are treated as additional character types. In COMMON LISP

they are simply macro characters, as described in section 22.1.3.
What MACLISP calls a "single character object" (tokens of type single) are not provided

for explicitly in COMMON LISP. They can be viewed as simply a kind of macro character.
That is, the effect of

INPUT/OUTPUT

(setsyntax '$ 'single nil)
(setsyntax '% 'single nil)

in MACLISP can be achieved in COMMON LISP by

(defun single-macro-character (stream char)
(declare (ignore stream))
(intern (string char)))

(set-macro-character '$ #'single-macro-character)
(set-macro-character '% #'single-macro-character)

22.1.2. Parsing of Numbers and Symbols

339

When an extended token is read, it is interpreted as a number or symbol. In general,
the token is interpreted as a number if it satisfies the syntax for numbers specified
in Table 22-2; this is discussed in more detail below.

The characters of the extended token may serve various syntactic functions as
shown in Table 22-3, but it must be remembered that any character included in a
token under the control of an escape character is treated as alphabetic rather than
according to the attributes shown in the table. One consequence of this rule is that
a whitespace, macro, or escape character will always be treated as alphabetic within
an extended token because such a character cannot be included in an extended
token except under the control of an escape character.

To allow for extensions to the syntax of numbers, a syntax for potential numbers
is defined in COMMON LISP that is more general than the actual syntax for numbers.
Any token that is not a potential number and does not consist entirely of dots will

Table 22-2: Actual Syntax of Numbers

number : : = integer I ratio I floating-point-number
integer : : = [sign] {digit}+ [decimal-point]
ratio : : = [sign] {digit}+ I {digit}+
floating-point-number : : = [sign] {digit}* decimal-point {digit}+ [exponent]

I [sign] {digit}+ [decimal-point {digit}*] exponent
sign : : = + I -
decimal-point : : =

digit : : = D I 1 I 2 I 3 I ~ I 5 I 6 I 7 I IJ I 9

exponent : : = exponent-marker [sign] {digit}+

exponent-marker : : = e I s I f I d I 1 I E I s I F I D I L

The notation {x}* means zero or more occurrences of x, the notation {x} + means one or more occurrences
of x, and the notation [x] means zero or one occurrences of x.

340 COMMON LISP

Table 22-3: Standard Constituent Character Attributes

$

%

&

0

1

2

3
.:;

s
6

7

Cl

'1

>

?

@

[

alphabetic
alphabetic *
alphabetic *
alphabetic
alphabetic
alphabetic
alphabetic *
alphabetic *
alphabetic *
alphabetic
alphabetic *
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
package marker
alphabetic *
alphabetic
alphabetic
alphabetic
alphabetic
alphabetic
alphabetic
alphabetic *
alphabetic
alphabetic
alphabetic
alphabetic *
alphabetic
alphabetic *
alphabetic
alphabetic

<backspace>
<tab>
<newline>
<linefeed>
<page>
<return>
<space>

A, a
B, b

C, c
D, d

E, e
F, f

G, g

H, h

I, i

J,

K; k

L, 1

M, m
N, n

o, 0

P, p

Q, q

R, r

s, s

T, t

u, u

v, v

II, w

x, x
y, y

z, z
<rubout>

illegal
illegal *
illegal *
illegal *
illegal
illegal *
illegal *
alphabetic, plus sign
alphabetic, minus sign
alphabetic, dot, decimal point
alphabetic, ratio marker
alphadigit
alphadigit
alphadigit
alphadigit, double-float exponent marker
alphadigit, float exponent marker
alphadigit, single-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit, long-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit, short-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
illegal

The interpretations in this table apply only to characters whose syntactic type is constituent. Entries
marked with an asterisk are normally shadowed because the indicated characters are of syntactic type
whitespace, macro, single escape, or multiple escape. Characters with the alphadigit attribute are
interpreted as having the digit or alphabetic attribute according to whether or not the character is a valid
digit in the radix specified by •read-base•. Characters with the illegal attribute cannot ever appear in
a token except under the control of an escape character.

INPUT/OUTPUT 341

always be taken to be a symbol, now and in the future; programs may rely on this
fact. Any token that is a potential number but does not fit the actual number syntax
defined below is a reserved token and has an implementation-dependent interpre
tation; an implementation may signal an error, quietly treat the token as a symbol,
or take some other action. Programmers should avoid the use of such reserved
tokens. (A symbol whose name looks like a reserved token can always be written
using one or more escape characters.)

A token is a potential number if it satisfies the following requirements:

• It consists entirely of digits, signs (• or -), ratio markers (1), decimal points
(.), extension characters (" or _), and number markers. (A number marker is a
letter. Whether a letter may be treated as a number marker depends on context,
but no letter that is adjacent to another letter may ever be treated as a number
marker. Floating-point exponent markers are instances of number markers.)

• It contains at least one digit. (Letters may be considered to be digits, depending
on the value of •read-base*, but only in tokens containing no decimal points.)

• It begins with a digit, sign, decimal point, or extension character.

• It does not end with a sign.

As examples, the following tokens are potential numbers, but they are not actually
numbers as defined below, and so are reserved tokens. (They do indicate some
interesting possibilities for future extensions.)

1. ?J

6/ 17

-3/L;+6.7J

3 .1. 2. 6

3.1L;1_592 653 559_793_235 L; -3.7+2.6i-6.17j+19.6k

12/25/53

The following tokens are not potential numbers but are always treated as symbols:

I

foo+

/5

ab.Cd

1+ 1-

The following tokens are potential numbers if the value of •read-base• is 16 (an
abnormal situation), but they are always treated as symbols if the value of
•read-base• is 10 (the usual value):

bad-face 25-dec-53 a/b fad_cafe

It is possible for there to be an ambiguity as to whether a letter should be treated
as a digit or as a number marker. In such a case, the letter is always treated as a
digit rather than as a number marker.

Note that the printed representation for a potential number may not contain any
escape characters. An escape character robs the following character of all syntactic
qualities, forcing it to be strictly alphabetic and therefore unsuitable for use in a

342 COMMON LISP

potential number. For example, all of the following representations are interpreted
as symbols, not numbers:

\256 25\6t; 1.0\E6 :100: 3\.M159 : 3/ t;: 3\/t; 5 '' ''

In each case, removing the escape character(s) would allow the token to be treated
as a number.

If a potential number can in fact be interpreted as a number according to the
BNF syntax in Table 22-2, then a number object of the appropriate type is con
structed and returned. It should be noted that in a given implementation it may be
that not all tokens conforming to the actual syntax for numbers can actually be
converted into number objects. For example, specifying too large or too small an
exponent for a floating-point number may make the number impossible to represent
in the implementation. Similarly, a ratio with denominator zero (such as -351000)

cannot be represented in any implementation. In any such circumstance where a
token with the syntax of a number cannot be converted to an internal number
object, an error is signalled. (On the other hand, an error must not be signalled for
specifying too many significant digits for a floating-point number; an appropriately
truncated or rounded value should be produced.)

There is an omission in the syntax of numbers, as described in Table 22-2, in
that the syntax does not account for the possible use of letters as digits. The radix
used for reading integers and ratios is normally decimal. However, this radix is
actually determined by the value of the variable •read-base•, whose initial value
is 10. •read-base• may take on any integral value between 2 and 36; let this
value be n. Then a token x is interpreted as an integer or ratio in base n if it could
be properly so interpreted in the syntax mRx (see section 22.1.4). So, for example,
if the value of •read-base• is 16, then the printed representation

(a small face in a bad place)

would be interpreted as if the following representation had been read with
•read-base• set to 10:

(10 small 6t;206 in 10 2959 place)

because four of the seven tokens in the list can be interpreted as hexadecimal
numbers. This facility is intended to be used in reading files of data that for some
reason contain numbers not in decimal radix; it may also be used for reading
programs written in LISP dialects (such as MACLISP) whose default number radix
is not decimal. Non-decimal constants in COMMON LISP programs or portable
COMMON LISP data files should be written using #O, #X, #B, or #nR syntax.

When •read-base• has a value greater than ten, an ambiguity is introduced

INPUT/OUTPUT 343

into the actual syntax for numbers because a letter can serve as either a digit or an
exponent marker; a simple example is 1ED when the value of *read-base* is 16.

The ambiguity is resolved in accordance with the general principle that interpre
tation as a digit is preferred to interpretation as a number marker. The consequence
in this case is that if a token can be interpreted as either an integer or a floating-point
number, then it is taken to be an integer.

If a token consists solely of dots (with no escape characters), then an error is
signalled, except in one circumstance: if the token is a single dot and occurs in a
situation appropriate to "dotted list" syntax, then it is accepted as a part of such
syntax. Signalling an error catches not only misplaced dots in dotted list syntax,
but also lists that were truncated by *print-length* cutoff, because such lists
end with a three-dot sequence (...) . Examples:

(a b)

(a.b)

(a. b)

(a .b)

(a \. b)

(a I. I b)

(a \ ... b)

(a I ... : b)

(a b c)

.iot

(. b)

(a .)
(a b)

(a b)

(a b c ...)

; A dotted pair of a and b

; A list of one element, the symbol named a. b

; A list of two elements a . and b

; A list of two elements a and . b

; A list of three elements a, . , and b

; A list of three elements a, . , and b

; A list of three elements a, ... , and b

;A list of three elements a, ... , and b

; A dotted list of a and b with c at the end
; The symbol whose name is . iot

;Illegal; an error is signalled.
; Illegal; an error is signalled .
;Illegal; an error is signalled.
; Illegal; an error is signalled.
; Illegal; an error is signalled.

In all other cases, the token is construed to be the name of a symbol. If there
are any package markers (colons) in the token, they divide the token into pieces
used to control the lookup and creation of the symbol.

If there is a single package marker, and it occurs at the beginning of the token,
then the token is interpreted as a keyword, that is, a symbol in the : keyword

package. The part of the token after the package marker must not have the syntax
of a number.

If there is a single package marker not at the beginning or end of the token, then
it divides the token into two parts. The first part specifies a package; the second
part is the name of an external symbol available in that package. Neither of the
two parts may have the syntax of a number.

If there are two adjacent package markers not at the beginning or end of the
token, then they divide the token into two parts. The first part specifies a package;

344 COMMON LISP

the second part is the name of a symbol within that package (possibly an internal
symbol). Neither of the two parts may have the syntax of a number.

If a symbol token contains no package markers, then the entire token is the name
of the symbol. The symbol is looked up in the default package; see *package*.

All other patterns of package markers, including the cases where there are more
than two package markers or where a package marker appears at the end of the
token, presently do not mean anything in COMMON LISP; see chapter 11. It is
therefore currently an error to use such patterns in a COMMON LISP program. The
valid patterns for tokens may be summarized as follows:

nnnnn
xxxxx
:xxxxx

ppppp :xxxxx

PP PPP: : xxxxx

a number
a symbol in the current package
a symbol in the keyword package
an external symbol in the ppppp package
a (possibly internal) symbol in the ppppp package

where nnnnn has the syntax of a number, and xxxxx and ppppp do not have the
syntax of a number.

read-base [Variable]

The value of *read - base• controls the interpretation of tokens by read as being
integers or ratios. Its value is the radix in which integers and ratios are to be read;
the value may be any integer from 2 to 36 (inclusive) and is normally 10 (decimal
radix). Its value affects only the reading of integers and ratios. In particular, float
ing-point numbers are always read in decimal radix. The value of •read-base•

does not affect the radix for rational numbers whose radix is explicitly indicated
by #O, #X, #B, or mR syntax or by a trailing decimal point.

Care should be taken when setting •read - base• to a value larger than 1 o,
because tokens that would normally be interpreted as symbols may be interpreted
as numbers instead. For example, with •read-base• set to 16 (hexadecimal radix),
variables with names such as a, b, f, bad, and face will be treated by the reader
as numbers (with decimal values 10, 11, 15, 2989, and 64206, respectively). The
ability to alter the input radix is provided in COMMON LISP primarily for the purpose
of reading data files in special formats, rather than for the purpose of altering the
default radix in which to read programs. The user is strongly encouraged to use
#O, #X, #B, or mR syntax when notating non-decimal constants in programs.

Compatibility note: This variable corresponds to the variable called ibase in MACLISP and
to the function called radix in INTERLISP.

INPUT/OUTPUT 345

•read-suppress•' [Variable]

When the value of •read-suppress• is nil, the LISP reader operates normally.
When it is not nil, then most of the interesting operations of the reader are
suppressed; input characters are parsed, but much of what is read is not interpreted.

The primary purpose of •read-suppress• is to support the operation of the
read-time conditional constructs#+ and#- (see section 22.l.4). It is important for
these constructs to be able to skip over the printed representation of a LISP expres
sion despite the possibility that the syntax of the skipped expression may not be
entirely legal for the current implementation; this is because a primary application
of # + and # - is to allow the same program to be shared among several LISP

implementations despite small incompatibilities of syntax.
A non-nil value of •read-suppress• has the following specific effects on the

COMMON LISP reader:

• All extended tokens are completely uninterpreted. It matters not whether the
token looks like a number, much less like a valid number; the pattern of package
markers also does not matter. An extended token is simply discarded and treated
as if it were nil; that is, reading an extended token when *read-suppress* is
non-nil simply returns nil. (One consequence of this is that the error concerning
improper dotted-list syntax will not be signalled.)

• Any standard # macro-character construction that requires, permits, or disallows
an infix numerical argument, such as mR, will not enforce any constraint on the
presence, absence, or value of such an argument.

• The #\ construction always produces the value nil. It will not signal an error
even if an unknown character name is seen.

• Each of the #B, #O, #X, and #R constructions always scans over a following
token and produces the value n i 1. It will not signal an error even if the token
does not have the syntax of a rational number.

• The #• construction always scans over a following token and produces the value
nil. It will not signal an error even if the token does not consist solely of the
characters o and 1.

• Each of the # . and #, constructions reads the following form (in suppressed
mode, of course) but does not evaluate it. The form is discarded and nil is
produced.

• Each of the #A, # s, and # : constructions reads the following form (in suppressed
mode, of course) but does not interpret it in any way; it need not even be a list
in the case of # s, or a symbol in the case of # : . The form is discarded and nil
is produced.

• The #= construction is totally ignored. It does not read a following form. It
produces no object, but is treated as whitespace.

346 COMMON LISP

• The ## construction always produces nil.

Note that, no matter what the value of *read-suppress*, parentheses still con
tinue to delimit (and construct) lists; the # (construction continues to delimit vec
tors; and comments, strings, and the quote and backquote constructions continue
to be interpreted properly. Furthermore, such situations as ') , # <, #) , and #<space>

continue to signal errors.
In some cases, it may be appropriate for a user-written macro-character definition

to check the value of *read-suppress* and avoid certain computations or side
effects if its value is not nil.

22.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that
macro character is invoked and may produce an object to be returned. This function
may read following characters in the stream in whatever syntax it likes (it may
even call read recursively) and return the object represented by that syntax. Macro
characters may or may not be recognized, of course, when read as part of other
special syntaxes (such as for strings).

The reader is therefore organized into two parts: the basic dispatch loop, which
also distinguishes symbols and numbers, and the collection of macro characters.
Any character can be reprogrammed as a macro character; this is a means by which
the reader can be extended. The macro characters normally defined are as follows:

The left-parenthesis character initiates reading of a pair or list. The function read

is called recursively to read successive objects until a right parenthesis is found to
be next in the input stream. A list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis
need not immediately follow the printed representation of the last object; whitespace
characters and comments may precede it. This can be useful for putting one object
on each line and making it easy to add new objects:

(defun traffic-light (color)

(case color

(green)

(red (stop))

(amber (accelerate))
))

;Insert more colors after this line.

INPUT/OUTPUT 347

It may be that no objects precede the right parenthesis, as in () or () ; this reads
as a list of zero objects (the empty list).

If a token that is just a dot, not preceded by an escape character, is read after
some object then exactly one more object must follow the dot, possibly followed
by whitespace, followed by the right parenthesis:

(a b c . d)

This means that the cdr of the last pair in the list is not nil, but rather the object
whose representation followed the dot. The above example might have been the
result of evaluating

(cons 'a (cons 'b (cons 'c 'd))) =>(ab c . d)

Similarly, we have

(cons 'znets 'wolq-zorbitan) :::'? (znets . wolq-zorbitan)

It is permissible for the object following the dot to be a list:

(a b c a . (e f . (g))) is the same as (a b c a e f g)

but this is a non-standard form that print will never produce.

The right-parenthesis character is part of various constructs (such as the syntax for
lists) using the left-parenthesis character and is invalid except when used in such
a construct.

The single-quote (accent acute) character provides an abbreviation to make it easier
to put constants in programs. 'foo reads the same as (quote Joo): a list of the
symbol quote andfoo.

Semicolon is used to write comments. The semicolon and all characters up to and
including the next newline are ignored. Thus a comment can be put at the end of
any line without affecting the reader. (A comment will terminate a token, but a
newline would terminate the token anyway.)

The double quote character begins the printed representation of a string. Characters
are read from the input stream and accumulated until another double quote is
encountered. An exception to this occurs if a single escape character is seen; the

348 COMMON LISP

;;;; COMMENT-EXAMPLE function.

This function is useless except to demonstrate comments.

(Actually, this example is much too cluttered with them.)

Notice that there are several kinds of comments.

(defun comment-example (x y) ;X is anything; Y is an a-list.

(cond ((listp x) x) ;If Xis a list, use that.

;; Xis now not a list. There are two other cases.

((symbolp x)

; ; Look up a symbol in the a-list.

(cdr (assoc x y))) ;Remember, (cdr nil) is nil.

Do this when all else fails:

(t (cons x ;Add x to a default list.

'((lisp t) ;LISP is okay.

(f6rtran nil) ;FORTRAN is not.

(pl/i -SOD) ;You can put comments in "data"

(ada . 001) ; as well as in "programs".

;; COBOL??

(teco -1.De9))))))

This example illustrates a few conventions for comments in common use. Comments
may begin with one to four semicolons.

• Single-semicolon comments are all aligned to the same column at the right;
usually each comments about only the line it is on. Occasionally two or three
contain a single sentence together; this is indicated by inaenting all but the first
by a space (after the semicolon).

• Double-semicolon comments are aligned to the level of indentation of the code.
A space follows the two semicolons. Usually each describes the state of the
program at that point or describes the section that follows.

• Triple-semicolon comments are aligned to the left margin. Usually they are not
used within function definitions but precede them in large blocks.

• Quadruple-semicolon comments are interpreted as subheadings.

Compatibility note: These conventions arose among users of MACLISP and have been found
to be very useful. The conventions are conveniently exploited by certain software tools,
such as the EMACS editor and the ATSIGN listing program developed at MIT.

escape character is discarded, the next character is accumulated, and accumulation
continues. When a matching double quote is seen, all the accumulated characters

INPUT/OUTPUT 349

up to but not including the matching double quote are made into a simple string
and returned.

The backquote (accent grave) character makes it easier to write programs to con
struct complex data structures by using a template. As an example, writing

'(cond ((numberp ,x) ,@y) (t (print ,x) ,@y))

is roughly equivalent to writing

(list 'cond

(cons (list •numberp x) y)

(list* 't (list 'print x) y))

The general idea is that the backquote is followed by a template, a picture of a
data structure to be built. This template is copied, except that within the template
commas can appear. Where a comma occurs, the form following the comma is to
be evaluated to produce an object to be inserted at that point. Assume b has the
value 3, for example, then evaluating the form denoted by ' (ab , b , (• b 1) b)

produces the result (a b 3 .-; b) .

If a comma is immediately followed by an at-sign (@), then the form following
the at-sign is evaluated to produce a list of objects. These objects are then "spliced"
into place in the template. For example, if x has the value (a b c), then

'(x ,x ,®x foo ,(cadr x) bar ,(cdr x) baz ,®(cdr x))

::;. (x (a b c) a b c foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of several
situations in which backquote can be used, a possible interpretation of that situation
as an equivalent form is given. Note that the form is equivalent only in the sense
that when it is evaluated it will calculate the correct result. An implementation is
quite free to interpret backquote in any way such that a backquoted form, when
evaluated, will produce a result equal to that produced by the interpretation shown
here.

• 'basic is the same as 'basic, that is, (quote basic), for any form basic that is
not a list or a general vector.

• ',form is the same as form, for any form, provided that the representation of
form does not begin with "@" or ". ". (A similar caveat holds for all occurrences
of a form after a comma.)

• ' , @form is an error.

350 COMMON LISP

• '(xi x2 x3 ... xn . atom) may b"e interpreted to mean

(append [xi] [x2] [x3] . . . [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

• [form] is interpreted as (list 'form), which contains a backquoted form that
must then be further interpreted.

• [,form] is interpreted as (1 is t form) .

• [,@form] is interpreted simply as form.

• '(xi x2 x3 ... xn) may be interpreted to mean the same as the backquoted
form '(xi x2 x3 ... xn . nil), thereby reducing it to the previous case.

• '(xi x2 x3 ... xn . ,form) may be interpreted to mean

(append [xi] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described above.

• '(xi x2 x3 ... xn . ,@form) is an error.

• '#(xi x2 x3 . . . xn) may be interpreted to mean

(apply #'vector '(xi x2 x3 ... xn))

No other uses of comma are permitted; in particular, it may not appear within
the #A or #S syntax.

Anywhere ", @" may be used, the syntax ", . " may be used instead to indicate
that it is permissible to destroy the list produced by the form following the ", . ";
this may permit more efficient code, using nconc instead of append, for example.

If the backquote syntax is nested, the innermost backquoted form should be
expanded first. This means that if several commas occur in a row, the leftmost one
belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret a back
quoted form as any form that, when evaluated, will produce a result that is equal

to the result implied by the above definition. In particular, no guarantees are made
as to whether the constructed copy of the template will or will not share list structure
with the template itself. As an example, the above definition implies that

' ((I a b) f C ,@d)

will be interpreted as if it were

{append (list (append (list a) (list 'b) 'nil)) (list c) d 'nil)

but it could also be legitimately interpreted to mean any of the following.

INPUT /OUTPUT

(append (list

(append (list

(append (list

(list* (cons a

(list* (cons a

(list* (cons a

(append

(append

(cons a

I (b))

(list

I (b))

(list a) (list 'b))) (list c) d)

(list a) '(b))) (list c) d)

'(b))) (list c) d)

c d)

'b)) c d)

c (copy-list d))

351

(There is no good reason why copy-list should be performed, but it is not
prohibited.)

The comma character is part of the backquote syntax and is invalid if used other
than inside the body of a backquote construction as described above.

This is a dispatching macro character. It reads an optional digit string and then
one more character, and uses that character to select a function to run as a
macro-character function.

The # character also happens to be a non-terminating macro character. This is
completely independent of the fact that it is a dispatching macro character; it is a
coincidence that the only standard dispatching macro character in COMMON LISP

is also the only standard non-terminating macro character.
See the next section for predefined # macro-character constructions.

22.1.4. Standard Dispatching Macro Character Syntax

The standard syntax includes forms introduced by the # character. These take the
general form of a #, a second character that identifies the syntax, and following
arguments in some form. If the second character is a letter, then case is not important;
#O and #o are considered to be equivalent, for example,

Certain # forms allow an unsigned decimal number to appear between the # and
the second character; some other forms even require it. Those forms that do not
explicitly permit such a number to appear forbid it.

The currently-defined # constructs are described below and summarized in Table
22-4; more are likely to be added in the future. However, the constructs # ! , #?,

r , # l , # { , and #} are explicitly reserved for the user and will never be defined
by the COMMON LISP standard.

352 COMMON LISP

Table 22-4: Standard # Macro Character Syntax

! undefined* #<backspace> signals error
#" undefined #<tab> signals error
reference to #= label #<newline> signals error
#$ undefined #<linefeed> signals error
#% undefined #<page> signals error
#& undefined #<return> signals error
#' function abbreviation #<space> signals error
#(simple vector #+ read-time conditional
#) signals error #- read-time conditional
#• bit-vector #. read-time evaluation

#' load-time evaluation #/ undefined
#0 used for infix arguments #A, #a array
#1 used for infix arguments #B, #b binary rational
#2 used for infix arguments #C, #c complex number
#3 used for infu arguments #D, #d undefined
#C, used for infix arguments #E, #e undefined
#5 used for infix arguments #F, #f undefined
#6 used for infix arguments #G, #g undefined
#7 used for infix arguments #H, #h undefined
#/j used for infix arguments #I, #i undefined
#9 used for infix arguments #J, #j undefined
#: uninterned symbol #K, #k undefined
#; undefined #L, #l undefined
#(signals error #M, #m undefined
#= label following object #N, #n undefined
#) undefined #Q, #Q octal rational
#? undefined* #P, #p undefined
#@ undefined #Q, #q undefined
[undefined* #R, #r radix-n rational
#\ character object #S, #S structure
#] undefined* #T, #t undefined
#A undefined #U, #U undefined
undefined #V, #V undefined
#' undefined #W, #W undefined
#{ undefined* #X, #X hexadecimal rational
#I balanced comment #Y, #y undefined
#} undefined* #Z, #Z undefined
#~ undefined #<rubout> undefined

* The combinations marked by an asterisk are explicitly reserved to the user and will never be defined
by COMMON LISP.

INPUT/OUTPUT 353

#\

#\X reads in as a character object that represents the character x. Also, #\name

reads in as the character object whose name is name. Note that the backslash \
allows this construct to be parsed easily by EMACS-like editors.

In the single-character case, the character x must be followed by a non-constituent
character, lest a name appear to follow the # \. A good model of what happens is
that after # \ is read, the reader backs up over the \ and then reads an extended
token, treating the initial \ as an escape character (whether it really is or not in
the current readtable).

Uppercase and lowercase letters are distinguished after # \; #\A and #\a denote
different character objects. Any character works after # \, even those that are nor
mally special to read, such as parentheses. Non-printing characters may be used
after # \, although for them names are generally preferred.

#\name reads in as a character object whose name is name (actually, whose
name is (string-upcase name); therefore the syntax is case-insensitive). The
name should have the syntax of a symbol. The following names are standard across
all implementations:

newline

The character that represents the division between lines

space

The space or blank character

The following names are semi-standard; if an implementation supports them, they
should be used for the described characters and no others.

rubout

The rubout or delete character

page

The form-feed or page-separator character

tab

The tabulate character

backspace
The backspace character

return
The carriage return character

linefeed

The line-feed character

354 COMMON LISP

In some implementations, one or more of these characters might be a synonym
for a standard character; #\Linefeed might be the same as 1\Newline for example.

When the LISP printer types out the name of a special character, it uses the same
table as the ,, \ reader; therefore any character name you see typed out is acceptable
as input (in that implementation). Standard names are always preferred over
non-standard names for printing.

The following convention is used in implementations that support non-zero bits
attributes for character objects. If a name after "' is longer than one character and
has a hyphen in it, then it may be split into the two parts preceding and following
the first hyphen; the first part (actually, string-upcase of the first part) may then
be interpreted as the name or initial of a bit, and the second part as the name of
the character (which may in turn contain a hyphen and be subject to further split
ting). For example:

#\Control-Space
#\C-M-Return

#\Control-Meta-Tab
#\H-S-M-C-Rubout

If the character name consists of a single character, then that character is used.
Another \ may be necessary to quote the character.

#\Control-%
#\Control-\a

#\Control-Meta-\"
#\Meta->

If an unsigned decimal integer appears between the ,, and \ , it is interpreted as a
font number, to become the font attribute of the character object (see char-font).

,,,
,, 'foo is an abbreviation for (function/oo). Joo may be the printed representation
of any LISP object. This abbreviation may be remembered by analogy with the '
macro-character, since the function and quote special forms are similar in form.

#(

A series of representations of objects enclosed by ,, (and) is read as a simple
vector of those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the ,, and (, it specifies explicitly
the length of the vector. In that case, it is an error if too many objects are specified
before the closing) , and if too few are specified, the last object (it is an error if
there are none in this case) is used to fill all remaining elements of the vector. For
example,

INPUT/OUTPUT

#(a b c c c c)

#6(a b C C C C)

#6(a b c)

#6(a b c c)

355

all mean the same thing: a vector of length 6 with elements a, b, and four instances
of c. The notation # () denotes an empty vector, as does # o () (which is legitimate
because it is not the case that too few elements are specified).

#•

A series of binary digits (o and 1) preceded by #• is read as a simple bit-vector
containing those bits, the leftmost bit in the series being bit 0 of the bit-vector.

If an unsigned decimal integer appears between the # and •, it specifies explicitly
the length of the vector. In that case, it is an error if too many bits are specified,
and if too few are specified the last one (it is an error if there are none in this case)
is used to fill all remaining elements of the bit-vector. For example,

#•101111

#6•101111

#6•101

#6*1011

all mean the same thing: a vector of length 6 with elements 1, o, 1, 1, 1, and 1.

The notation #* denotes an empty bit-vector, as does # o • (which is legitimate
because it is not the case that too few elements are specified).

#:

#:Joo requires Joo to have the syntax of an unqualified symbol name (no embedded
colons). It denotes an uninterned symbol whose name isJoo. Every time this syntax
is encountered, a different unintemed symbol is created. If it is necessary to refer
to the same uninterned symbol more than once in the same expression, the # =

syntax may be useful.

#.

#.Joo is read as the object resulting from the evaluation of the LISP object repre
sented by Joo, which may be the printed representation of any LISP object. The
evaluation is done during the read process, when the #. construct is encountered.
The #. syntax therefore performs a read-time evaluation of Joo. By contrast, #,

(see below) performs a load-tim~ evaluation.

356 COMMON LISP

Both #. artd #, allow you to include, in an expression being read, an object that
does not have a convenient printed representation; instead of writing a represen
tation for the object, you write an expression that will compute the object.

#I

,Joo is read as the object resulting from the evaluation of the LISP object repre
sented by Joo, which may be the printed representation of any LISP object. The
evaluation is done during the read process, unless the compiler is doing the read
ing, in which case it is arranged that Joo will be evaluated when the file of compiled
code is loaded. The #, syntax therefore performs a load-time evaluation of Joo.
By contrast, #. (see above) performs a read-time evaluation. In a sense, #, is like
specifying (eval load) to eval-when, whereas #. is more like specifying (eval

compile). It makes no difference when loading interpreted code; when code is to
be compiled, however, #. specifies compile-time evaluation and #, specifies load-time
evaluation.

#brational reads rational in binary (radix 2). For example, #81101 == 13, and
#b101/11 == 513.

#0

#orational reads rational in octal (radix 8). For example, #037115 == 31 /13, and
#0777 == 511.

#X

#xrational reads rational in hexadecimal (radix 16). The digits above 9 are the
letters A through F (the lowercase letters a through f are also acceptable). For
example, #XFDD = 3MO.

#radixrrational reads rational in radix radix. radix must consist of only digits,
and it is read in decimal; its value must be between 2 and 36 (inclusive).

For example, #3r1D2 is another way of writing 11, and #LLR32 is another way
of writing 3 5. For radices larger than 10, letters of the alphabet are used in order
for the digits after 9.

INPUT/OUTPUT 357

#llA

The syntax mAobject constructs an n-dimensional array, using object as the value
of the : initial-contents argument to make-array.

The value of n makes a difference: #2A((D 15) (foo 2 (hot dog))), for
example, represents a 2-by-3 matrix:

D

foo

1

2

5

(hot dog)

In contrast, #LA ((D 1 5) (foo 2 (hot dog))) represents a length-2 array whose
elements are lists:

(D 1 5) (foo 2 (hot dog))

Furthermore, #DA ((D 1 5) (foo 2 (hot dog))) represents a zero-dimensional
array whose sole element is a list:

((D 1 5) (foo 2 (hot dog)))

Similarly, #DAfoo (or, more readably, #DA foo) represents a zero-dimensional array
whose sole element is the symbol foo. The expression #1Afoo would not be legal
because foo is not a sequence.

#S

The syntax #s(name slot] value] slot2 value2 ...) denotes a structure. This is
legal only if name is the name of a structure already defined by defstruct and if
the structure has a standard constructor macro, which it normally will. Let cm stand
for the name of this constructor macro; then this syntax is equivalent to

#.(cm keyword] 'value] keyword2 'value2 ...)

where each keywordj is the result of computing

(intern (string slotj) 'keyword)

(This computation is made so that one need not write a colon in front of every slot
name.) The net effect is that the constructor macro is called with the specified slots
having the specified values (note that one does not write quote marks in the #S

syntax). Whatever object the constructor macro returns is returned by the #S syntax.

#ll=

The syntax m=object reads as whatever LISP object has object as its printed rep
resentation. However, that object is labelled by n, a required unsigned decimal

358 COMMON LISP

integer, for possible reference by the syntax #ll# (below). The scope of the label
is the expression being read by the outermost call to read. Within this expression
the same label may not appear twice.

#ll#

The syntax #ll#, where n is a required unsigned decimal integer, serves as a ref
erence to some object labelled by m=; that is, #ll# represents a pointer to the same
identical (eg) object labelled by m=. This permits notation of structures with shared
or circular substructure. For example, a structure created in the variable y by this
code:

(setg x (list 'p 'g))

(setg y (list (list 'a 'b) x 'foo x))

(rplacd (last y) (cdr y))

could be represented in this way:

((ab) . #1=(#2=(p g) foo #2# . #1#))

Without this notation, but with *print-length* set to 10, the structure would
print in this way:

((ab) (pg) foo (pg) (pg) foo (pg) (pg) foo (pg) ...)

A reference #ll# may occur only after a label m=; forward references are not
permitted. In addition, the reference may not appear as the labelled object itself
(that is, one may not write m= m#), because the object labelled by m= is not
well defined in this case.

#+

The # + syntax provides a read-time conditionalization facility; the syntax is

#+feature form

If feature is "true," then this syntax represents a LISP object whose printed
representation is form. If feature is "false," then this syntax is effectively whitespace;
it is as if it did not appear.

The feature should be the printed representation of a symbol or list. If feature
is a symbol, then it is true if and only if it is a member of the list that is the value
of the global variable *features*.

INPUT/OUTPUT 359

Compatibility note: MAcL1sP uses the status special form for this purpose, and ZETALISP
duplicates status essentially only for the sake of (status features). The use of a variable
allows one to bind the features list, when compiling, for example.

Otherwise, feature should be a Boolean expression composed of and, or, and not
operators on (recursive) feature expressions.

For example, suppose that in implementation A the features spice and perq are
true, and in implementation B the feature lispm is true. Then the expressions on
the left below are read the same as those on the right in implementation A:

(cons #+spice "Spice" #+lispm "Lispm" x)

(setq a '(1 2 #+perq ~3 #+(not perq) 27))

(let ((a 3) #+(or spice lispm) (b 3))

(foo a))

In implementation B, however, they are read in this way:

(cons #+spice "Spice" #+lispm "Lispm" x)

(setq a '(1 2 #+perq ~3 #+(not perq) 27))

(let ((a 3) #+(or spice lispm) (b 3))

(foo a))

(cons "Spice" x)
(setq a '(1 2 ~3))

(let ((a 3) (b 3))

(foo a))

(cons "Lispm" x)

(setq a '(1 2 27))

(let ((a 3) (b 3))

(foo a))

The 1 • construction must be used judiciously if unreadable code is not to result.
The user should make a careful choice between read-time conditionalization and
run-time conditionalization.

The 1 • syntax operates by first reading the feature specification and then skipping
over the form if the feature is "false." This skipping of a form is a bit tricky because
of the possibility of user-defined macro characters and side effects caused by the
1. and 1, constructions. It is accomplished by binding the variable *read-suppress*
to a non-nil value and then calling the read function. See the description of
read-suppress for the details of this operation.

#-

1 -feature form is equivalent to 1 + (not feature) form.

#:

1: ... : 1 is treated as a comment by the reader, just as everything from a semicolon
to the next newline is treated as a comment. Anything may appear in the comment,
except that it must be balanced with respect to other occurrences of 1 : and : 1.

Except for this nesting rule, the comment may contain any characters whatsoever.

360 COMMON LISP

The main purpose of this construct is to allow "commenting out" of blocks of
code or data. The balancing rule allows such blocks to contain pieces already so
commented out. In this respect the # ; ... ; # syntax of COMMON LISP differs from
the / * ... • / comment syntax used by PL/I and c.

#(

This is not legal reader syntax. It is used in the printed representation of objects
that cannot be read back in. Attempting to read a #< will cause an error. (More
precisely, it is legal syntax, but the macro-character function for it signals an error.)

#<space>, #<tab>, #<newline>, #<page>, #<return>

A # followed by a whitespace character is not legal reader syntax. This prevents
abbreviated forms produced via •print-level• cutoff from reading in again, as
a safeguard against losing information. (More precisely, this is legal syntax, but
the macro-character function for it signals an error.)

#)

This is not legal reader syntax. This prevents abbreviated forms produced via
*print-level• cutoff from reading in again, as a safeguard against losing infor
mation. (More precisely, this is legal syntax, but the macro-character function for
it signals an error.)

22.1.5. The Readtable

Previous sections describe the standard syntax accepted by the read function. This
section discusses the advanced topic of altering the standard syntax either to provide
extended syntax for LISP objects or to aid the writing of other parsers.

There is a data structure called the readtable that is used to control the reader.
It contains information about the syntax of each character equivalent to that in
Table 22-1. It is set up exactly as in Table 22-1 to give the standard COMMON LISP

meanings to all the characters, but the user can change the meanings of characters
to alter and customize the syntax of characters. It is also possible to have several
readtables describing different syntaxes and to switch from one to another by
binding the variable •readtable•.

Even if an implementation supports characters with non-zero bits and font attri
butes, it need not (but may) allow for such characters to have syntax descriptions
in the readtable. However, every character of type string-char must be repre
sented in the readtable.

INPUT/OUTPUT 361

•readtable• [Variable]

The value of •readtable• is the current readtable. The initial value of this is a
readtable set up for standard COMMON LISP syntax. You can bind this variable to
temporarily change the readtable being used.

To program the reader for a different syntax, a set of functions are provided for
manipulating readtables. Normally, you should begin with a copy of the standard
COMMON LISP readtable and then customize the individual characters within that
copy.

copy- read table &optional from-readtable to-readtable [FunctionJ

A copy is made of from-readtable, which defaults to the current readtable (the
value of the global variable •readtable*). If from-readtable is nil, then a copy
of a standard COMMON LISP readtable is made. For example,

(setq •readtable• (copy-readtable nil))

will restore the input syntax to standard COMMON LISP syntax, even if the original
readtable has been clobbered (assuming it is not so badly clobbered that you cannot
type in the above expression!). On the other hand,

(setq •readtable• (copy-readtable))

will merely replace the current readtable with a copy of itself.
If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise, to-readtable

must be a readtable, which is destructively copied into.

readtablep object [Function]

readtablep is true if its argument is a readtable, and otherwise is false.

(readtablep x) == (typep x 'readtable)

set-syntax-from-char to-char from-char [Function]
&optional to-readtable from-readtable

This makes the syntax of to-char in to-readtable be the same as the syntax of
from-char infrom-readtable. The to-readtable defaults to the current readtable (the
value of the global variable •readtable*), and from-readtable defaults to nil,

meaning to use the syntaxes from the standard LISP readtable.
Only attributes as shown in Table 22-1 are copied; moreover, if a macro char

acter is copied, the macro definition function is copied also. However, attributes

362 COMMON LISP

as shown in Table 22-3 are not copied; they are "hard-wired" into the ex
tended-token parser. For example, if the definition of s is copied to •, then • will
become a constituent that is alphabetic but cannot be used as an exponent indicator
for short-format floating-point number syntax.

It "works" to copy a macro definition from a character such as " to another
character; the standard definition for " looks for another character that is the same
as the character that invoked it. It doesn't "work" to copy the definition of (to <,
for example; it can be done, but it lets one write lists in the form <a b c) , not
<a b c}, because the definition always looks for a closing parenthesis, not a clos
ing brace. See the function read-delimited-list, which is useful in this con
nection.

set-macro-character char function
&optional non-terminating-p readtable

get-macro-character char &optional readtable

[Function]

[Function]

set-macro-character causes char to be a macro character that when seen by
read causes function to be called. If non-terminating-p is not nil (it defaults to
nil), then it will be a non-terminating macro character: it may be embedded within
extended tokens. set-macro-character returns t.

get-macro-character returns the function associated with char and, as a sec
ond value, returns the non-terminating-p flag; it returns nil if char does not have
macro-character syntax. In each case, readtable defaults to the current readtable.

The function is called with two arguments, stream and char. The stream is the
input stream, and char is the macro character itself. In the simplest case, function
may return a LISP object. This object is taken to be that whose printed representation
was the macro character and any following characters read by the function. As an
example, a plausible definition of the standard single quote character is:

(defun single-quote-reader (stream char)
(declare (ignore char))
(list 'quote (read stream t nil t)))

(set-macro-character #\' #'single-quote-reader)

(Note that tis specified for the recursive-p argument to read; see section 22.2.1.)
The function reads an object following the single-quote and returns a list of the
symbol quote and that object. The char argument is ignored.

The function may choose instead to return zero values (for example, by using
(values) as the return expression). In this case, the macro character and whatever

INPUT/OUTPUT 363

it may have read contribute nothing to the object being read. As an example, here
is a plausible definition for the standard semicolon (coinment) character:

(defun semicolon-reader (stream char)

(declare (ignore char))

;; First swallow the rest of the current input line.

;; End-of-file is acceptable for terminating the comment.

(do () ((char= (read-char stream nil #\Newline t) #\Newline)))

;; Return zero values.

(values))

(set-macro-character #\; #'semicolon-reader)

(Note that t is specified for the recursive-p argument to read-char; see section
22.2.1.)

The function should not have any side effects other than on the stream. Because
of backtracking and restarting of the read operation, front ends (such as editors
and rubout handlers) to the reader may cause function to be called repeatedly during
the reading of a single expression in which the macro character only appears once.

Compatibility note: The ability to return either zero or one value is the closest COMMON

LISP macro characters come to the splicing macro characters of MAcLISP or the splice

macro characters of INTERLISP. The COMMON LISP definition does not allow the splicing of
arbitrarily many values, but it does allow a macro-character function to decide after it is
invoked whether or not to yield a value, an option not possible in MACLISP or iNTERLISP.

MACLisP has nothing equivalent to non-terminating macro characters. The INTERLISP

equivalents of terminating and non-terminating macro characters are macro characters with
the ALWAYS or FIRST option, respectively. COMMON LISP has nothing equivalent to the
INTERLISP ALONE macro-character option.

make-dispatch-macro-character char &optional [Function]
non-terminating-p readtable

This causes the character char to be a dispatching macro character in readtable
(which defaults to the current readtable). If non-terminating-pis not nil (it defaults
to nil), then it will be a non-terminating macro character: it may be embedded
within extended tokens. make-dispatch-macro-character returns t.

Initially every character in the dispatch table has a character-macro function that
signals an error. Use set-dispatch-macro-character to define entries in the
dispatch table.

364 COMMON LISP

set-dispatch-macro-character disp-char sub-char function
&optional readtable

get-dispatch-macro-character disp-char sub-char
&optional readtable

[Function]

[Function]

set-dispatch-macro-character causes function to be called when the disp-char
followed by sub-char is read. The readtable defaults to the current readtable. The
arguments and return values for function are the same as for normal macro char
acters except that function gets sub-char, not disp-char, as its second argument
and also receives a third argument that is the non-negative integer whose decimal
representation appeared between disp-char and sub-char, or nil if no decimal
integer appeared there.

The sub-char may not be one of the ten decimal digits; they are always reserved
for specifying an infix integer argument. Moreover, if sub-char is a lowercase
character (see lower-case-p), its uppercase equivalent is used instead. (This is
how the rule is enforced that the case of a dispatch sub-character doesn't matter.)

set-dispatch-macro-character returns t.

get-dispatch-macro-character returns the macro-character function for
sub-char under disp-char, or nil if there is no function associated with sub-char.

If the sub-char is one of the ten decimal digits, get-dispatch-macro-character

always returns nil. If sub-char is a lowercase character, its uppercase equivalent
is used instead.

For either function, an error is signalled if the specified disp-char is not in fact
a dispatch character in the specified readtable. It is necessary to use
make-dispatch-macro-character to set up the dispatch character before speci
fying its sub-characters.

As an example, suppose one would like #$foo to be read as if it were (dollars

Joo) . One might say:

(de fun : #$-reader: (stream subchar arg)

(declare (ignore subchar atg))

(list 'dollars (read stream t nil t)))

(set-dispatch-macro-character#\##\$ #'1#$-readerl)

Compatibility note: This macro-character mechanism is different from those in MACLISP,

INTERLISP, and ZETALISP. Recently LISP systems have implemented very general readers,
even readers so programmable that they can parse arbitrary compiled BNF grammars. Un
fortunately, these readers can be complicated to use. This design is an attempt to make the
reader as simple as possible to understand, use, and implement. Splicing macros have been
eliminated; a recent informal poll indicates that no one uses them to produce other than zero
or one value. The ability to access parts of the object preceding the macro character has

INPUT/OUTPUT 365

been eliminated. The MAcL1sr single-character-object feature has been eliminated because
it is seldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into sin
gle-character-object macros, and then use read purely as a lexical analyzer on top of which
to build a parser. It is unnecessary, however, to cater to more complex lexical analysis or
parsing than that needed for COMMON LISP.

22.1.6. What the Print Function Produces

The COMMON LISP printer is controlled by a number of special variables. These
are referred to in the following discussion and are fully documented at the end of
this section.

How an expression is printed depends on its data type, as described in the
following paragraphs.

Integers

If appropriate, a radix specifier may be printed; see the variable •print-radix•.

If an integer is negative, a minus sign is printed and then the absolute value of the
integer is printed. Integers are printed in the radix specified by the variable
•print-base• in the usual positional notation, most significant digit first. The
number zero is represented by the single digit o and never has a sign. A decimal
point may then be printed, depending on the value of •print-radix•.

Ratios

If appropriate, a radix specifier may be printed; see the variable •print-radix•.

If the ratio is negative, a minus sign is printed. Then the absolute value of the
numerator is printed, as for an integer; then a 1; then the denominator. The numerator
and denominator are both printed in the radix specified by the variable •print-base•;

they are obtained as if by the numerator and denominator functions, and so ratios
are always printed in reduced form (lowest terms).

Floating-point numbers

If the sign of the number (as determined by the function float-sign) is negative,
then a minus sign is printed. Then the magnitude is printed in one of two ways.
If the magnitude of the floating-point number is either zero or between 10-3 (inclusive)
and 107 (exclusive), it may be printed as the integer part of the number, then a
decimal point, followed by the fractional part of the number; there is always at

366 COMMON LISP

least one digit on each side of the decimal point. If the format of the number does
not match that specified by the variable *read-default-float-format*, then the
exponent marker for that format and the digit o are also printed. For example, the
base of the natural logarithms as a short-format floating-point number might be
printed as 2. 7111211so.

For non-zero magnitudes outside of the range 10- 3 to 107, a floating-point
number will be printed in "computerized sckntific notation." The representation
of the number is scaled to be between 1 (inclusive) and 10 (exclusive) and then
printed, with one digit before the decimal point and at least one digit after the
decimal point. Next the exponent marker for the format is printed, except that if
the format of the number matches that specified by the variable *read-default

floa t- format*, then the exponent marker E is used. Finally, the power of ten by
which the fraction must be multiplied to equal the original number is printed as a
decimal integer. For example, Avogadro's number as a short-format floating-point
number might be printed as 6. 02s23.

Complex numbers

A complex number is printed as #C, an open parenthesis, the printed representation
of its real part, a space, the printed representation of its imaginary part, and finally
a close parenthesis.

Characters

When •print-escape• is nil, a character prints as itself; it is sent directly to the
output stream. When •print-escape• is not nil, then #\ syntax is used. For
example, the printed representation of the character #\A with control and meta bits
on would be #\CONTROL-META-A, and that of #\a with control and meta bits on
would be #\CONTROL-META-\a.

Symbols

When •print-escape* is nil, only the characters of the print name of the symbol
are output (but the case in which to print any uppercase characters in the print
name is controlled by the variable •print-case•).

The remaining paragraphs describing the printing of symbols cover the situation
when •print-escape* is not nil.

Backslashes \ and vertical bars : are included as required. In particular, back-

INPUT/OUTPUT 367

slash or vertical-bar syntax is used when the name of the symbol would be otherwise
treated by the reader as a potential number (see section 22.1.2). In making this
decision, it is assumed that the value of *print-base* being used for printing
would be used as the value of *read-base* used for reading; the value of
read-base at the time of printing is irrelevant. For example, if the value of
print-base were 16 when printing the symbol face, it would have to be printed
as \FACE or \Face or : FACE:, because the token face would be read as a hexa
decimal number (decimal value 64206) if *read-base* were 16.

The case in which to print any uppercase characters in the print name is controlled
by the variable *print-case*. As a special case, nil may sometimes be printed
as () instead, when *print-escape* and *print-pretty* are both not nil.

Package prefixes may be printed (using colon syntax) if necessary. The rules for
package qualifiers are as follows. When the symbol is printed, if it is in the keyword
package, then it is printed with a preceding colon; otherwise, if it is accessible in
the current package, it is printed without any qualification; otherwise, it is printed
with qualification. See chapter 11.

A symbol that is unintemed (has no home package) is printed preceded by #:

if the variables *print-gensym* and *print-escape* are both non-nil; if either
is nil, then the symbol is printed without a prefix, as if it were in the current
package.

Implementation note: Because the #: syntax does not intern the following symbol, it is
necessary to use circular-list syntax if *print-circle* is not nil and the same unintemed
symbol appears several times in an expression to be printed. For example, the result of

(let ((x (make-symbol "FOO"))) (list xx))

would be printed as (#:foo#:foo) if•print-circle• were nil, but as (#1=#:foo#1#)
if *print-circle• were not nil.

The case in which symbols are printed is controlled by the variable *print-case*.

Strings

The characters of the string are output in order. If *print-escape* is not nil, a
double quote is output before and after, and all double quotes and single escape
characters are preceded by backslash. The printing of strings is not affected by
print-array. If the string has a fill pointer, then only those characters below
the fill pointer are printed.

368 COMMON LISP

Conses

Wherever possible, list notation is preferred over dot notation. Therefore the following
algorithm is used:

1. Print an open parenthesis, (.

2. Print the car of the cons.

3. If the cdr is a cons, make it the current cons, print a space, and go to step 2.

4. If the cdr is not null, print a space, a dot, a space, and the cdr.

5. Print a close parenthesis,) .

This form of printing is clearer than showing each individual cons cell. Although
the two expressions below are equivalent, and the reader will accept either one and
produce the same data structure, the printer will always print such a data structure
in the second form.

(a (b. ((c. (d. nil)). (e. nil))))

(a b (c d) e)

The printing of conses is affected by the variables *print-level* and
print-length.

Bit-vectors

A bit-vector is printed as # • followed by the bits of the bit-vector in order. If
*print-array• is nil, however, then the bit-vector is printed in a format (using
#<) that is concise but not readable. If the bit-vector has a fill pointer, then only
those bits below the fill pointer are printed.

Vectors

Any vector other than a string or bit-vector is printed using general-vector syntax;
this means that information about specialized vector representations will be lost.
The printed representation of a zero-length vector is # () . The printed representation
of a non-zero-length vector begins with # (. Following that, the first element of the
vector is printed. If there are any other elements, they are printed in turn, with a
space printed before each additional element. A close parenthesis after the last
element terminates the printed representation of the vector. The printing of vectors
is affected by the variables *print-level* and *print-length*. If the vector
has a fill pointer, then only those elements below the fill pointer are printed.

If *print-array* is nil, however, then the vector is not printed as described
above, but in a format (using #<)that is concise but not readable.

INPUT/OUTPUT 369

Arrays

Normally any array other than a vector is printed using mA format. Let n be the
rank of the array. Then # is printed, then n as a decimal integer, then A, then n
open parentheses. Next the elements are scanned in row-major order. Imagine the
array indices being enumerated in odometer fashion, recalling that the dimensions
are numbered from 0 to n - 1. Every time tht, index for dimension j is incremented,
the following actions are taken:

1. If j < n - 1, then print a close parenthesis.

2. If incrementing the index for dimension j caused it to equal dimension j, reset
that index to zero and increment dimensionj-1 (thereby performing these three
steps recursively), unless j = 0, in which case simply terminate the entire al
gorithm. If incrementing the index for dimension j did not cause it to equal
dimension j, then print a space.

3. If j < n - 1, then print an open parenthesis.

This causes the contents to be printed in a format suitable for the : ini

tial-contents argument to make-array. The lists effectively printed by this
procedure are subject to truncation by •print-level• and •print-length•.

If the array is of a specialized type, containing bits or string-characters, then the
innermost lists generated by the algorithm given above may instead be printed
using bit-vector or string syntax, provided that these innermost lists would not be
subject to truncation by •print- length•. For example, a 3-by-2-by-4 array of
string-characters that would ordinarily be printed as

#3A(((#\S #\t #\o #\p) (#\S #\p #\o #\t))

((#\p #\O #\s #\t) (#\p #\O #\t #\s))

((#\t #\o #\p #\S) (#\O #\p #\t #\S)))

may instead be printed more concisely as

#3A(("stop" "spot") ("post" "pots") ("tops" "opts"))

If •print-array• is nil, then the array is printed in a format (using #<) that
is concise but not readable.

Random-states

COMMON LISP does not specify a specific syntax for printing objects of type
random-state. However, every implementation must arrange to print a random-state
object in such a way that, within the same implementation of COMMON LISP, the

370 COMMON LISP

function read can construct from the printed representation a copy of the random-state
object as if the copy had been made by make-random-state.

Pathnames

COMMON LISP does not specify a specific syntax for printing objects of type pathname.

However, every implementation must arrange to print a pathname in such a way
that, within the same implementation of COMMON LISP, the function read can
construct from the printed representation an equivalent instance of the pathname
object.

Structures defined by defstruct are printed under the control of the
: print-function option to defstruct. If the user does not provide a printing
function explicitly, then a default printing function is supplied that prints the struc
ture using # s syntax (see section 22.1.4.)

Any other types are printed in an implementation-dependent manner. It is rec
ommended that printed representations of all such objects begin with the characters
< and end with > so that the reader will catch such objects and not permit them
to be read under normal circumstances. It is specifically and purposely not required
that a COMMON LISP implementation be able to print an object of type hash-table,

readtable, package, stream, or function in a way that can be read back in
successfully by read; the use of # < syntax is especially recommended for the
printing of such objects.

When debugging or when frequently dealing with large or deep objects at top
level, the user may wish to restrict the printer from printing large amounts of
information. The variables *print-level* and *print-length* allow the user
to control how deep the printer will print and how many elements at a given level
the printer will print. Thus the user can see enough of the object to identify it
without having to wade through the entire expression.

print-escape [Variable]

When this flag is nil, then escape characters are not output when an expression
is printed. In particular, a symbol is printed by simply printing the characters of
its print name. The function princ effectively binds *print-escape* to nil.

When this flag is not nil, then an attempt is made to print an expression in such
a way that it can be read again to produce an equal structure. The function prin1

effectively binds *print-escape* to t. The initial value of this variable is t.

Compatibility note: •print-escape• controls what was called slashification in MACLISP.

INPUT/OUTPUT 371

print-pretty [Variable]

When this flag is nil, then only a small amount of whitespace is output when
printing an expression.

When this flag is not nil, then the printer will endeavor to insert extra whitespace
where appropriate to make the expression more readable. A few other simple
changes may be made, such as printing 'fo0 instead of (quote foo).

The initial value of *print-pretty* is implementation-dependent.

•print-circle* [Variable]

When this flag is nil (the default), then the printing process proceeds by recursive
descent; an attempt to print a circular structure may lead to looping behavior and
failure to terminate.

When this flag is not nil, then the printer will endeavor to detect cycles in the
structure to be printed, and to use m= and #ll# syntax to indicate the circularities.

•print-base* [Variable]

The value of •print-base* determines in what radix the printer will print rationals.
This may be any integer from 2 to 3 6, inclusive; the default value is 1 o (decimal
radix). For radices above 10, letters of the alphabet are used to represent digits
above 9.

Compatibility note: MACLISP calls this variable base, and its default value is 5, not 1 o.
In both MAcL1sP and COMMON LrsP, floating-point numbers are-always printed in deci

mal, no matter what the value of •print-base•.

•print-radix• [Variable]

If the variable •print-radix• is non-nil, the printer will print a radix specifier
to indicate the radix in which it is printing a rational number. To prevent confusion
of the letter o with the digit o, and of the letter B with the digit ll, the radix specifier
is always printed using a lowercase letter. For example, if the current base is
twenty-four (decimal), the decimal integer twenty-three would print as #2t;rN. If
•print-base• is 2, ll, or 16, then the radix specifier used is #b, #o, or #x. For
integers, base ten is indicated by a trailing decimal point instead of a leading radix

372 COMMON LISP

specifier; for ratios, however, #1Dr is used. The default value of •print-radix•

is nil.

•print-case• [Variable]

The read function normally converts lowercase characters appearing in symbols
to corresponding uppercase characters, so that internally print names normally
contain only uppercase characters. However, users may prefer to see output using
lowercase letters or letters of mixed case. This variable controls the case (upper,
lower, or mixed) in which to print any uppercase characters in the names of symbols
when vertical-bar syntax is not used. The value of •print-case• should be
one of the keywords : upcase, : downcase, or : capitalize; the initial value is
: upcase.

Lowercase characters in the internal print name are always printed in lowercase,
and are preceded by a single escape character or enclosed by multiple escape
characters. Uppercase characters in the internal print name are printed in upper
case, in lower case, or in mixed case so as to capitalize words, according to the
value of •print-case•. The convention for what constitutes a "word" is the same
as for the function string-capitalize.

•print-gensym• [Variable]

The •print-gensym• variable controls whether the prefix #; is printed before
symbols that have no home package. The prefix is printed if the variable is not
nil. The initial value of •print-gensym• is t.

•print-level•

•print-length•

[Variable]

[Variable]

The •print-level• variable controls how many levels deep a nested data object
will print. If •print-level• is nil (the initial value), then no control is exercised.
Otherwise, the value should be an integer, indicating the maximum level to be
printed. An object to be printed is at level o; its components (as of a list or vector)
are at level 1; and so on. If an object to be recursively printed has components and
is at a level equal to or greater than the value of •print-level*, then the object
is printed as simply #.

The •print-length• variable controls how many elements at a given level are
printed. A value of nil (the initial value) indicates that there be no limit to the
number of components printed. Otherwise, the value of •print-length• should
be an integer. Should the number of elements of a data object exceed the value

INPUT/OUTPUT 373

•print- length•, the printer will print three dots, ... , in place of those elements
beyond the number specified by •print-length•. (In the case of a dotted list, if
the list contains exactly as many elements as the value of •print-length*, and
in addition has the non-null atom terminating it, that terminating atom is printed
rather than printing three dots.)

•print-level• and •print-length• affect the printing not only of lists, but
also of vectors, arrays, and any other object printed with a list-like syntax. They
do not affect the printing of symbols, strings, and bit-vectors.

The LISP reader will normally signal an error when reading an expression that
has been abbreviated because of level or length limits. This signal is given because
the # dispatch character normally signals an error when followed by whitespace
or) , and because ... is defined to be an illegal token, as are all tokens consisting
entirely of periods (other than the single dot used in dot notation).

As an example, here are the ways the object

(if (member x y) (+ (car x) 3) '(foo. #(ab c d "Baz")))

would be printed for various values of •print-level• =v and •print-length• =n.

v n output

D 1 #
1 1 (if ...)
1 2 (if # ...)
1 3 (if # # ...)
1 <; (if # # #)
2 1 (if ...)
2 2 (if (member x ...) ...)
2 3 (if (member x y) (+ # 3) ...)
3 2 (if (member x ...) ...)
3 3 (if (member x y) (+ (car x) 3) ...)
3 <; (if (member x y) (+ (car x) 3) ' (foo #(a b c d ...)))

•print-array• [Variable]

If print-array is nil, then the contents of arrays other than strings are never
printed. Instead, arrays are printed in a concise form using # < that gives enough
information for the user to be able to identify the array, but does not include the
entire array contents. If print-array is not nil, non-string arrays are printed
using#(,#*, or mA syntax. The initial value of •print-array• is implementa
tion-dependent.

374 COMMON LISP

22.2. Input Functions

The input functions are divided into two groups: those that operate on streams of
characters and those that operate on streams of binary data.

22.2.1. Input from Character Streams

Many character input functions take optional arguments called input-stream,
eof-error-p, and eof-value. The input-stream argument is the stream from which
to obtain input; if unsupplied or nil it defaults to the value of the special variable
•standard-input•. One may also specify t as a stream, meaning the value of
the special variable •terrninal-io•.

The eof-error-p argument controls what happens if input is from a file (or any
other input source that has a definite end) and the end of the file is reached. If
eof-error-p is true (the default), an error will be signalled at end of file. If it is
false, then no error is signalled, and instead the function returns eof-value.

Functions such as read that read the representation of an object rather than a
single character will always signal an error, regardless of eof-error-p, if the file
ends in the middle of an object representation. For example, if a file does not
contain enough right parentheses to balance the left parentheses in it, read will
complain. If a file ends in a symbol or a number immediately followed by end-of-file,
read will read the symbol or number successfully and when called again will see
the end-of-file and only then act according to eof-error-p. Similarly, the function
read- line will successfully read the last line of a file even if that line is terminated
by end-of-file rather than the newline character. If a file contains ignorable text at
the end, such as blank lines and comments, read will not consider it to end in the
middle of an object. Thus an eof-error-p argument controls what happens when
the file ends between objects.

Many input functions also take an argument called recursive-p. If specified and
not nil, this argument specifies that this call is not a "top-level" call to read but
an imbedded call, typically from the function for a macro character. It is important
to distinguish such recursive calls for three reasons.

First, a top-level call establishes the context within which the m= and #ll# syntax
is scoped. Consider, for example, the expression

(cons '#3=(p qr) '(x y . #3#))

If the single quote macro character were defined in this way:

(set-macro-character
#\'

#'(lambda (stream char)

(declare (ignore char))

(list 'quote (read stream))))

INPUT/OUTPUT 375

then the expression could not be read properly, because there would be no way to
know when read is called recursively by the first occurrence of ' that the label
#3= would be referred to later in the containing expression. There would be no
way to know because read could not determine that it was called by a macro-character
function rather than from "top level." The correct way to define the single quote
macro character uses the recursive-p argument:

(set-macro-character

#\'

#'(lambda (stream char)

(declare (ignore char))

(list 'quote (read stream t nil t))))

Second, a recursive call does not alter whether the reading process is to preserve
whitespace or not (as determined by whether the top-level call was to read or
read-preserving-whitespace). Suppose again that single-quote had the first,
incorrect, macro-character definition shown above. Then a call to
read-preserving-whitespace that read the expression 'foo would fail to pre
serve the space character following the symbol foo because the single-quote macro
character function calls read, not read-preserving-whitespace, to read the
following expression (in this case foo). The correct definition, which passes the
value t for the recursive-p argument to read, allows the top-level call to determine
whether whitespace is preserved.

Third, when end-of-file is encountered and the eof-error-p argument is not nil,

the kind of error that is signalled may depend on the value of recursive-p. If
recursive-p is not nil, thrn the end-of-file is deemed to have occurred within the
middle of a printed representation; if recursive-p is nil, then the end-of-file may
be deemed to have occurred between objects rather than within the middle of one.

read &optional input-stream eof-error-p eof-value recursive-p [Function]

read reads in the printed representation of a LISP object from input-stream, builds
a corresponding LISP object, and returns the object.

Note that when the variable •read-suppress• is not nil, then read reads in a
printed representation as best it can, but most of the work of interpreting the
representation is avoided (the intent being that the result is to be discarded anyway).
For example, all extended tokens produce the result nil regardless of their syntax.

•read-default-float-format• [Variable]

The value of this variable must be a type specifier symbol for a specific float
ing-point format; these include short-float, single-float, double-float,

376 COMMON LISP

long-float, and may include implementation-specific types as well. The default
value is single-float.

read-default-float-format indicates the floating-point format to be used
for reading floating-point numbers that have no exponent marker or have e or E

for an exponent marker. (Other exponent markers explicitly prescribe the float
ing-point format to be used.) The printer also uses this variable to guide the choice
of exponent markers when printing floating-point numbers.

read-preserving-whitespace &optional [Function]
in-stream eof-error-p
eof-value recursive-p

Certain printed representations given to read, notably those of symbols and num
bers, require a delimiting character after them. (Lists do not, because the close
parenthesis marks the end of the list.) Normally read will throw away the delim
iting character if it is a whitespace character; but read will preserve the character
(using unread-char) if it is syntactically meaningful, because it may be the start
of the next expression.

The function read-preserving-whitespace is provided for some specialized
situations where it is desirable to determine precisely what character terminated the
extended token.

As an example, consider this macro-character definition:

(defun slash-reader (stream char)

(declare (ignore char))

(do ((path (list (read-preserving-whitespace stream))

(cons (progn (read-char stream nil nil t)

(read-preserving-whitespace

stream))

path)))

((not (char= (peek-char nil stream nil nil t) #\/))

(cons 'path (nreverse path)))))

(set-macro-character #\/ #'slash-reader)

(This is actually a rather dangerous definition to make because expressions such
as (/ x 3) will no longer be read properly. The ability to reprogram the reader
syntax is very powerful and must be used with caution. This redefinition of / is
shown here purely for the sake of example.)

Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

INPUT/OUTPUT 377

The / macro reads objects separated by more / characters; thus /usr/games/zork

is intended to read as (path usr games zork). The entire example expression
should therefore be read as

(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-whitespace, then
after the reading of the symbol zork, the following space would be discarded; the
next call to peek-char would see the following 1, and the loop would continue,
producing this interpretation:

(zyedh (path usr games zork usr games boggle))

On the other hand, there are times when whitespace should be discarded. If a
command interpreter takes single-character commands, but occasionally reads a
LISP object, then if the whitespace after a symbol is not discarded it might be
interpreted as a command some time later after the symbol had been read.

Note that read-preserving-whitespace behaves exactly like read when the
recursive-p argument is not nil. The distinction is established only by calls with
recursive-p equal to nil or omitted.

read-delimited-list char &optional input-stream recursive-p [Function]

This reads objects from stream until the next character after an object's represen
tation (ignoring whitespace characters and comments) is char. (The char should
not have whitespace syntax in the current readtable.) A list of the objects read is
returned.

To be more precise, read-delimited-list looks ahead at each step for the
next non-whitespace character and peeks at it as if with peek-char. If it is char,
then the character is consumed and the list of objects is returned. If it is a constituent
or escape character, then read is used to read an object, which is added to the end
of the list. If it is a macro character, the associated macro function is called; if the
function returns a value, that value is added to the list. The peek-ahead process is
then repeated.

This function is particularly useful for defining new macro characters. Usually
it is desirable for the terminating character char to be a terminating macro character
so that it may be used to delimit tokens; however, read-delimited-list makes
no attempt to alter the syntax specified for char by the current readtable. The user
must make any necessary changes to the readtable syntax explicitly. The following
example illustrates this.

Suppose you wanted # w b c ... z} to read as a list of all pairs of the elements
a, b. c, ... , z; for example:

378 COMMON LISP

{ p q z a } reads as ((p q) (p z) (p a) (q z) (q a) (z a))

This can be done by specifying a macro-character definition for # { that does two
things: read in all the items up to the}, and construct the pairs. read-delimited-list

performs the first task.

(defun l#{-reader: (stream char arg)

(declare (ignore char arg))

(mapcon #'(lambda (x)

(mapcar #'(lambda (Y) (list (car x) y)) (cdr x)))

(read-delimited-list#\} stream t)))

(set-dispatch-macro-character#\##\{ #'l#{-reader:)

(set-macro-character#\} (get-macro-character#\) nil))

(Note that t is specified for the recursive-p argument.)
It is necessary here to give a definition to the character } as well to prevent it

from being a constituent. If the line

(set-macro-character#\} (get-macro-character#\) nil))

shown above were not included, then the } in

#{p q z a}

would be considered a constituent character, part of the symbol named a}. One
could correct for this by putting a space before the } , but it is better simply to use
the call to set-macro-character.

Giving } the same definition as the standard definition of the character) has the
twin benefit of making it terminate tokens for use with read - delimited - list and
also making it illegal for use in any other context (that is, attempting to read a
stray } will signal an error).

Note that read-delimited-list does not take an eof-error-p (or eof-value)
argument. The reason is that it is always an error to hit end-of-file during the
operation of read-delimited-list.

read-line &optional input-stream eof-error-p eof-value recursive-p [Function]

read- line reads in a line of text terminated by a newline. It returns the line as a
character string (without the newline character). This function is usually used to
get a line of input from the user. A second returned value is a flag that is false if
the line was terminated normally, or true if end-of-file terminated the (non-empty)
line. If end-of-file is encountered immediately (that is, appears to terminate an

INPUT/OUTPUT 379

empty line), then end-of-file processing is controlled in the usual way by the
eof-error-p, eof-value, and recursive-p arguments.

The corresponding output function is write-line.

read-char &optional input-stream eof-error-p eof-value recursive-p [Function]

read-char inputs one character from input-stream and returns it as a character
object.

The corresponding output function is write-char.

unread-char character &optional input-stream [Function]

unread-char puts the character onto the front of input-stream. The character
must be the same character that was most recently read from the input-stream. The
input-stream "backs up" over this character; when a character is next read from
input-stream, it will be the specified character followed by the previous contents
of input-stream. unread-char returns nil.

One may apply unread-char only to the character most recently read from
input-stream. Moreover, one may not invoke unread-char twice consecutively
without an intervening read-char operation. The result is that one may back up
only by one character, and one may not insert any characters into the input stream
that were not already there.

Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism
for allowing the LISP reader and other parsers to perform one-character lookahead in the
input stream. This protocol admits a wide variety of efficient implementations, such as
simply decrementing a buffer pointer. To have to specify the character in the call to
unread-char is admittedly redundant, since at any given time there is only one character
that may be legally specified. The redundancy is intentional, again to give the implementation
latitude.

peek-char &optional peek-type input-stream [Function]
eof-error-p eof-value recursive-p

What peek-char does depends on the peek-type, which defaults to nil. With a
peek-type of nil, peek-char returns the next character to be read from input-stream,
without actually removing it from the input stream. The next time input is done
from input-stream, the character will still be there. It is as if one had called
read-char and then unread-char in succession.

If peek-type is t, then peek-char skips over whitespace characters (but not
comments!), and then performs the peeking operation on the next character. This

380 COMMON LISP

is useful for finding the (possible) beginning of the next printed representation of
a LISP object. The last character examined (the one that starts an object) is not
removed from the input stream.

If peek-type is a character object, then peek-char skips over input characters
until a character that is char= to that object is found; that character is left in the
input stream.

listen &optional input-stream [Function]

The predicate listen is true if there is a character immediately available from
input-stream, and is false if not. This is particularly useful when the stream obtains
characters from an interactive device such as a keyboard. A call to read-char

would simply wait until a character was available, but listen can sense whether
or not input is available and allow the program to decide whether or not to attempt
input. On a non-interactive stream, the general rule is that listen is true except
when at end-of-file.

read-char-no-hang &optional input-stream eof-error-p [Function]
eof-value recursive-p

This function is exactly like read-char, except that if it would be necessary to
wait in order to get a character (as from a keyboard), nil is immediately returned
without waiting. This allows one to efficiently check for input availability and get
the input if it is available. This is different from the listen operation in two ways.
First, read-char-no-hang potentially actually reads a character, whereas listen

never inputs a character. Second, listen does not distinguish between end-of-file
and no input being available, whereas read-char-no-hang does make that dis
tinction, returning eof-value at end-of-file (or signalling an error if no eof-error-p
is true) but always returning nil if no input is available.

clear-input &optional input-stream [Function]

This clears any buffered input associated with input-stream. It is primarily useful
for clearing type-ahead from keyboards when some kind of asynchronous error has
occurred. If this operation doesn't make sense for the stream involved, then
clear-input does nothing. clear-input returns nil.

read- from-string string &optional eof-error-p eof-value
&key :start :end

:preserve-whitespace

[Function]

INPUT/OUTPUT 381

The characters of string are given successively to the LISP reader, and the LISP

object built by the reader is returned. Macro characters and so on will all take
effect.

The arguments : start and : end delimit a substring of string beginning at the
character indexed by : start and up to but not including the character indexed by
: end. By default : start is o (the beginning of the string) and : end is (length

string). This is the same as for other string functions. "
The flag :preserve-whitespace, if provided and not nil, indicates that the

operation should preserve whitespace as for read-preserving-whitespace. It
defaults to nil.

As with other reading functions, the arguments eof-error-p and eof-value control
the action if the end of the (sub)string is reached before the operation is completed;
reaching the end of the string is treated as any other end-of-file event.

read-from-string returns two values; the first is the object read, and the second
is the index of the first character in the string not read. If the entire string was
read, the second result will be either the length of the string or one greater than
the length of the string. The parameter :preserve-whitespace may affect this
second value.

(read-from-string "(a b c)") ~ (a b c) and 7

parse-integer string &key : start : end : radix [Function]
:junk-allowed

This function examines the substring of string delimited by : start and : end

(which default to the beginning and end of the string). It skips over whitespace
characters and then attempts to parse an integer. The : radix parameter defaults
to 10 and must be an integer between 2 and 36.

If :junk-allowed is not nil, then the first value returned is the value of the
number parsed as an integer or nil if no syntactically correct integer was seen.

If: junk-allowed is nil (the default), then the entire substring is scanned. The
returned value is the value of the number parsed as an integer. An error is signalled
if the substring does not consist entirely of the representation of an integer, possibly
surrounded on either side by whitespace characters.

In either case, the second value is the index into the string of the delimiter that
terminated the parse, or it is the index beyond the substring if the parse terminated
at the end of the substring (as will always be the case if junk-allowed is false).

Note that parse-integer does not recognize the syntactic radix-specifier pre
fixes #O, #B, #X, and mR, nor does it recognize a trailing decimal point. It permits
only an optional sign (+ or -) followed by a non-empty sequence of digits in the
specified radix.

382 COMMON LISP

22.2.2. Input from Binary Streams

COMMON LISP currently specifies only a very simple facility for binary input: the
reading of a single byte as an integer.

read-byte binary-input-stream &optional eof-error-p eof-value [Function]

read-byte reads one byte from the binary-input-stream and returns it in the form
of an integer.

22.3. Output Functions

The output functions are divided into two groups: those that operate on streams of
characters and those that operate on streams of binary data. The function format

operates on streams of characters but is described in a section separate from the
other character-output functions because of its great complexity.

22.3.1. Output to Character Streams

These functions all take an optional argument called output-stream, which is where
to send the output. If unsupplied or nil, output-stream defaults to the value of the
variable *Standard-output*. If it is t, the value of the variable *terminal-io•

is used.

write object &key : stream : escape : radix : base

:circle :pretty :level :length

:case :gensym :array

[Function]

The printed representation of object is written to the output stream specified by
:stream, which defaults to the value of •standard-output<.

The other keyword arguments specify values used to control the generation of
the printed representation. Each defaults to the value of the corresponding global
variable: see •print-escape•, •print-radix•, •print-base*, •print-circle•,

*print-pretty•, •print-level•, •print-length•, •print-case•,

•print-gensym•, and •print-array<. (This is the means by which these vari
ables affect printing operations: supplying default values for the write function.)
Note that the printing of symbols is also affected by the value of the variable
package.

write returns object.

INPUT/OUTPUT

prin1 object &optional output-stream
print object &optional output-stream

383

[Function]
[Function]

pprint object &optional output-stream [Function]
princ object &optional output-stream [Function]

prin1 outputs the printed representation of object to output-stream. Escape char
acters are used as appropriate. Roughly speaking, the output from prin1 is suitable
for input to the function read. prin1 returns object.

(prin1 object output-stream)
= (write object : stream output-stream : escape t)

print is just like prin1 except that the printed representation of object is preceded
by a newline (see terpri) and followed by a space. print returns object.

ppr int is just like print except that the trailing space is omitted and the object
is printed with the •print-pretty• flag non-nil to produce "pretty" output. pprint
returns no values (that is, it returns what the expression (values) returns: zero
values).

princ is just like prin1 except that the output has no escape characters. A
symbol is printed as simply the characters of its print name; a string is printed
without surrounding double quotes; and there may be differences for other data
types as well. The general rule is that output from princ is intended to look good
to people, while output from prin1 is intended to be acceptable to the function
read. princ returns object.

(pr inc object output-stream)
""' (write object : stream output-stream : escape nil)

Compatibility note: In MAcLrsP, the functions prin1, print, and pr inc return t, not the
argument object.

write-to-string object &key :escape :radix :base

prin1-to-string object
princ-to-string object

:circle :pretty :level :length
:case :gensym :array

[Function]

[Function]
[Function]

The object is effectively printed as if by write, print, or princ, respectively,
and the characters that would be output are made into a string, which is returned.

384 COMMON LISP

Compatibility note: The INTERLISP function mkstring corresponds to the COMMON LISP

function princ-to-string.

write-char character &optional output-stream [Function]

write-char outputs the character to output-stream, and returns character.

write-string string &optional output-stream &key : start : end

write-line string &optional output-stream &key : start : end

[Function]
[Function]

write-string writes the characters of the specified substring of string to the
output-stream. The : start and : end parameters delimit a substring of string in
the usual manner (see chapter 14). write-line does the same thing, but then
outputs a newline afterwards. (See read- line.) In either case, the string is returned
(not the substring delimited by : start and : end).

In some implementations these may be significantly more efficient than an ex
plicit loop using write-char.

terpri &optional output-stream
fresh-line &optional output-stream

terpri outputs a newline to output-stream. It is identical in effect to

(write-char #\Newline output-stream)

terpri returns nil.

[Function]
[Function]

fresh-line is similar to terpri but outputs a newline only if the stream is not
already at the start of a line. (If for some reason this cannot be determined, then
a newline is output anyway.) This guarantees that the stream will be on a "fresh
line" while consuming as little vertical distance as possible. fresh- line is a
predicate that is true if it output a newline, and otherwise false.

finish-output &optional output-stream
force-output &optional output-stream
clear-output &optional output-stream

[Function]
[Function]
[Function]

Some streams may be implemented in an asynchronous or buffered manner. The
function finish-output attempts to ensure that all output sent to output-stream
has reached its destination, and only then returns nil. force-output initiates the
emptying of any internal buffers but returns nil without waiting for completion or
acknowledgment.

INPUT/OUTPUT 385

The function clear-output, on the other hand, attempts to abort any outstand
ing output operation in progress in order to allow as little output as possible to
continue to the destination. This is useful, for example, to abort a lengthy output
to the terminal when an asynchronous error occurs. clear-output returns nil.

The precise actions of all three of these operations are implementation-de
pendent.

22.3.2. Output to Binary Streams

COMMON LISP currently specifies only a very simple facility for binary output: the
writing of a single byte as an integer.

write-byte integer binary-output-stream [Function]

write-byte writes one byte, the value of integer. It is an error if integer is not
of the type specified as the : element-type argument to open when the stream
was created. The value integer is returned.

22.3.3. Formatted Output to Character Streams

The function format is very useful for producing nicely formatted text, producing
good-looking messages, and so on. format can generate a string or output to a
stream.

Formatted output is performed not only by the format function itself, but by
certain other functions that accept a control string "the way format does." For
example, error-signalling functions such as cerror accept format control strings.

format destination control-string &rest arguments [Function]

format is used to produce formatted output. format outputs the characters of
control-string, except that a tilde (-) introduces a directive. The character after the
tilde, possibly preceded by prefix parameters and modifiers, specifies what kind of
formatting is desired. Most directives use one or more elements of arguments to
create their output; the typical directive puts the next element of arguments into
the output, formatted in some special way. It is an error if no argument remains
for a directive requiring an argument, but it is not an error if one or more arguments
remain unprocessed by a directive.

The output is sent to destination. If destination is nil, a string is created that
contains the output; this string is returned as the value of the call to format. In all
other cases format returns nil, performing output to destination as a side effect.

386 COMMON LISP

If destination is a stream, the output is sent to it. If destination is t, the output is
sent to the stream that is the value of the variable *Standard-output*. If desti
nation is a string with a fill pointer, then in effect the output characters are added
to the end of the string (as if by use of vector-push-extend).

The format function includes some extremely complicated and specialized fea
tures. It is not necessary to understand all or even most of its features to use format

effectively. The beginner should skip over anything in the following documentation
that is not immediately useful or clear. The more sophisticated features are there
for the convenience of programs with complicated formatting requirements.

A format directive consists- of a tilde (~), optional prefix parameters separated
by commas, optional colon(:) and at-sign (®) modifiers, and a single character
indicating what kind of directive this is. The alphabetic case of the directive char
acter is ignored. The prefix parameters are generally integers, notated as optionally
signed decimal numbers. Examples of control strings:

11 "'"'3 I -L; :@8 11

""", +L;S"

; This is an s directive with no parameters or modifiers.
;This is ans directive with two parameters, 3 and -4,

and both the colon and at-sign flags.
; Here the first prefix parameter is omitted and takes

on its default value, while the second parameter is 4.

Sometimes a prefix parameter is used to specify a character, for instance the padding
character in a right- or left-justifying operation. In this case a single quote (')
followed by the desired character may be used as a prefix parameter, to mean the
character object that is the character following the single quote. For example, you
can use ~s, 'Dd to print an integer in decimal radix in five columns with leading
zeros, or ~s, '* d to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter v (or v),

which takes an argument from arguments as a parameter to the directive. Normally
this should be an integer or character object, as appropriate. Thi<> feature allows
variable-width fields and the like. If the argument used by a v parameter is nil,
the effect is as if the parameter had been omitted. You may also use the character
in place of a parameter; it represents the number of arguments remaining to be
processed.

It is an error to give a format directive more parameters than it is described here
as accepting. It is also an error to give colon or at-sign modifiers to a directive in
a combination not specifically described here as being meaningful.

Here are some relatively simple examples to give you the general flavor of how
format is used.

(format nil "foo") ~ "foo"

(setq x 5)

INPUT/OUTPUT

(format nil "The answer is -n." x) ::? "The answer is 5."

(format nil "The answer is -3n." x) ::? "The answer is 5."

(format nil "The answer is -3, 'DD." x) ::? "The answer is 005."

(format nil "The answer is -:n." (expt L;7 x))
::? "The answer is 22"1, 3L; 5, 007."

(setq y "elephant")

(format nil "Look at the -A!" y) ::? "Look at the elephant!"

(format nil "Type -:c to -A."
(set-char-bit #\D :control t)
"delete all your files")

::? "Type Control-D to delete all your files."

(setq n 3)

(format .nil "-D item-:P found." n) ::? "3 items found."

(format nil "-R dog-:[s are-; is-1 here." n (= n 1))

::? "three dogs are here."

(format nil "-R dog-:*-[S are-; is-: ;s are-1 here." n)
::? "three dogs are here."

(format nil "Here -[are-;is-:;are-1 -:*-R pupp-:@p." n)
::? "Here are three puppies."

387

In the descriptions of the directives which follows, the terin arg in general refers
to the next item of the set of arguments to be processed. The word or phrase at
the beginning of each description is a mnemonic (not necessarily an accurate one!)
for the directive.

-A

Ascii. An arg, any LISP object, is printed without escape characters (as by princ).
In particular, if arg is a string, its characters will be output verbatim. If arg is nil
it will be printed as nil; the colon modifier (-:A) will cause an arg of nil to be
printed as () , but if arg is a composite structure, such as a list or vector, any
contained occurrences of nil will still be printed as nil.

-mincolA inserts spaces on the right, if necessary, to make the width at least
mincol columns. The@ modifier causes the spaces to be inserted on the left rather
than the right.

-mincol,colinc,minpad,padc'iarA is the full form of-A, which allows elaborate
control of the padding. The string is padded on the right (or on the left if the @

388 COMMON LISP

modifier is used) with at least minpad copies of padchar; padding characters are
then inserted colinc characters at a time until the total width is at least mincol. The
defaults are o for mincol and minpad, 1 for co/inc, and the space character for
padchar.

-s

S-expression. This is just like -A, but arg is printed with escape characters (as by
prin1 rather than princ). The output is therefore suitable for input to read. -s
accepts all the arguments and modifiers that -A does.

-o

Decimal. An arg, which should be an integer, is printed in decimal radix. -o will
never put a decimal point after the number.

-mincolD uses a column width of mincol; spaces are inserted on the left if the
number requires fewer than mincol columns for its digits and sign. If the number
doesn't fit in mincol columns, additional columns are used as needed.

-mincol,padcharD uses padchar as the pad character instead of space.
If arg is not an integer, it is printed in -A format and decimal base.
The ® modifier causes the number's sign to be printed always; the default is to

print it only if the number is negative. The : modifier causes commas to be printed
between groups of three digits; the third prefix parameter may be used to change
the character used as the comma. Thus the most general form of ~o is -mincol,
padchar, commacharD.

~B

Binary. This is just like -o but prints in binary radix (radix 2) instead of decimal.
The full form is therefore ~mincol, padchar, commacharB.

-o

Octal. This is just like -o but prints in octal radix (radix 8) instead of decimal.
The full form is therefore -mincol, padchar, commacharo.

-x
Hexadecimal. This is just like -o but prints in hexadecimal radix (radix 16) instead
of decimal. The full form is therefore ~mincol, padchar, commacharx.

INPUT/OUTPUT 389

Compatibility note: In MAcL1sP and ZETALISP the ~x directive outputs a space, and ~nx

outputs n spaces, in a manner analogous to FORTRAN x format. In COMMON LISP the directive
~@r is used for that purpose.

~R

Radix. ~nR prints arg in radix n. The modifier flags and any remaining parameters
are used as for the ~n directive. Indeed, ~n is the same as ~10R. The full form
here is therefore ~radix, mincol, padchar, commacharR.

If no arguments are given to ~R, then an entirely different interpretation is given.
The argument should be an integer; suppose it is L;.

• ~R prints arg as a cardinal English number: four.

• ~:R prints arg as an ordinal English number: fourth.

• ~@R prints arg as a Roman numeral: rv.

• ~: @R prints arg as an old Roman numeral: IIII.

~p

Plural. If arg is not eql to the integer 1, a lowercases is printed; if arg is eql to
1, nothing is printed. (Notice that if arg is a floating-point 1. o, the s is printed.)

~: P does the same thing, after doing a ~: • to back up one argument; that is, it
prints a lowercase s if the last argument was not 1. This is useful after printing a
number using ~n.

~®p prints y if the argument is 1, or ies if it is not. ~: ®p does the same thing,
but backs up first.

(format nil "~D tr~:@p/~D win~:P" 7 1) =? "7 tries/1 win"
(format nil "~D tr~:@p/~D win~:P" 1 D) =? "1 try/D wins"
(format nil "~D tr~:@p/~D win~:P" 1 3) =? "1 try/3 wins"

~c

Character. The next arg should be a character; it is printed according to the
modifier flags.

~c prints the character in an implementation-dependent abbreviated format. This
format should be culturally compatible with the host environment.

~: c spells out the names of the control bits and represents non-printing characters
by their names: Control-Meta-F, Control-Return, Space. This is a "pretty"
format for printing characters.

390 COMMON LISP

~: ®C prints what ~: c would, and then if the character requires unusual shift keys
on the keyboard to type it, this fact is mentioned: Con tro 1-iJ (Top-F). This is the
format used for telling the user about a key he is expected to type, in prompts, for
instance. The precise output may depend not only on the implementation, but on
the particular 1/0 devices in use.

~®c prints the character in a way that the LISP reader can understand, using # \

syntax.

Rationale: In some implementations the ~s directive would accomplish what ~c does, but
the ~c directive is compatible with LISP dialects such as MAcL1sP that do not have a character
data type.

~p

Fixed-format floating-point. The next arg is printed as a floating-point number.
The full form is ~w, d, k, overfiowchar, padcharF. The parameter w is the width

of the field to be printed; d is the number of digits to print after the decimal point;
k is a scale factor that defaults to zero.

Exactly w characters will be output. First, leading copies of the character padchar
(which defaults to a space) are printed, if necessary, to pad the field on the left.
If the arg is negative, then a minus sign is printed; if the arg is not negative, then
a plus sign is printed if and only if the ® modifier was specified. Then a sequence
of digits, containing a single embedded decimal point, is printed; this represents
the magnitude of the value of arg times !Ok, rounded to d fractional digits. (When
rounding up and rounding down would produce printed values equidistant from the
scaled value of arg, then the implementation is free to use either one. For example,
printing the argument 6. 375 using the format ~L;, 2F may correctly produce either
6 . 3 7 or 6 . 3 ll.) Leading zeros are not permitted, except that a single zero digit is
output before the decimal point if the printed value is less than one, and this single
zero digit is not output after all if w = d + 1.

If it is impossible to print the value in the required format in a field of width w,
then one of two actions is taken. If the parameter overfiowchar is specified, then
w copies of that parameter are printed instead of the scaled value of arg. If the
overfiowchar parameter is omitted, then the scaled value is printed using more than
w characters, as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect, a
value is chosen for w in such a way that no leading pad characters need to be
printed and exactly d characters will follow the decimal point. For example, the

INPUT/OUTPUT 391

directive ~, 2F will print exactly two digits after the decimal point and as many as
necessary before the decimal point.

If the parameter dis omitted, then there is no constraint on the number of digits
to appear after the decimal point. A value is chosen for d in such a way that as
many digits as possible may be printed subject to the width constraint imposed by
the parameter w and the constraint that no trailing zero digits may appear in the
fraction, except that if the fraction to be printed is zero, then a single zero digit
should appear after the decimal point if permitted by the width constraint.

If both w and d are omitted, then the effect is to print the value using ordinary
free-format output; prin1 uses this format for any number whose magnitude is
either zero or between 10- 3 (inclusive) and 107 (exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if dis also omitted,
so small) that more than 100 digits would have to be printed, then an implemen
tation is free, at its discretion, to print the number using exponential notation
instead, as if by the directive ~E (with all parameters to ~E defaulted, not taking
their values from the ~p directive).

If arg is a rational number, then it is coerced to be a single-float and then
printed. (Alternatively, an implementation is permitted to process a rational number
by any other method that has essentially the same behavior but avoids such hazards
as loss of precision or overflow because of the coercion. However, note that if w
and d are unspecified and the number has no exact decimal representation, for
example 113, some precision cutoff must be chosen by the implementation: only
a finite number of digits may be printed.)

If arg is a complex number or some non-numeric object, then it is printed using
the format directive ~wn, thereby printing it in decimal radix and a minimum field
width of w. (If it is desired to print each of the real part and imaginary part of a
complex number using a ~p directive, then this must be done explicitly with two
~p directives and code to extract the two parts of the complex number.)

Examples:

(defun foo (x)

xxxxxx))

(foo 3.M15'1)

(foo -3.M15'1)

(foo 100.0)

(foo 123t;.O)

(foo 0.006)

=? " 3.Ml 31.t;2l 3.1t;l3.M16l3.Ml3.M15'1"

=?" -3.Ml-31.t;2l -3.Ml-3.M2l-3.Ml-3.M15'1"

=? "100.00l••••••l100.00l 100.0l100.00l100.0"

=? "123t;.OOl••••••l??????l123t;.Ol123t;.OOl123t;.O"

=? " 0.011 0.061 0.011 0.00610.0110.006"

392 COMMON LISP

Compatibility note: The ~p directive is similar to the Fw.d edit descriptor in FORTRAN.

The presence or absence of the ® modifier corresponds to the effect of the FORTRAN ss
or SP edit descriptor; nothing in COMMON LISP corresponds to the FORTRAN s edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified
by the FORTRAN kP edit descriptor.

In FORTRAN, the leading zero that precedes the decimal point when the printed value is
less than one is optional; in COMMON LISP, the implementation is required to print that zero
digit.

In COMMON LISP, the w and d parameters are optional; in FORTRAN, they are required.
In COMMON LISP, the pad character and overflow character are user-specifiable; in FOR

TRAN, they are always space and asterisk, respectively.
A FORTRAN implementation is prohibited from printing a representation of negative zero;

COMMON LISP permits the printing of such a representation when appropriate.
In MACLISP and ZETALISP, the ~p format directive takes a single parameter: the number

of digits to use in the printed representation. This incompatibility between COMMON LISP

and MAcLISP was introduced for the sake of cultural compatibility with FORTRAN.

~E

Exponential floating-point. The next arg is printed as a floating-point number in
exponential notation.

The full form is -w, d, e, k, overfiowchar, padchar, exponentcharE. The param
eter w is the width of the field to be printed; d is the number of digits to print after
the decimal point; e is the number of digits to use when printing the exponent; k
is a scale factor that defaults to one (not zero).

Exactly w characters will be output. First, leading copies of the character padchar
(which defaults to a space) are printed, if necessary, to pad the field on the left.
If the arg is negative, then a minus sign is printed; if the arg is not negative, then
a plus sign is printed if and only if the ® modifier was specified. Then a sequence
of digits, containing a single embedded decimal point, is printed. The form of this
sequence of digits depends on the scale factor k. If k is zero, then d digits are
printed after the decimal point, and a single zero digit appears before the decimal
point if the total field width will permit it. If k is positive, then it must be strictly
less than d + 2; k significant digits are printed before the decimal point, and d - k + 1
digits are printed after the decimal point. If k is negative, then it must be strictly
greater than - d; a single zero digit appears before the decimal point if the total
field width will permit it, and after the decimal point are printed first - k zeros
and then d + k significant digits. The printed fraction must be properly rounded.
(When rounding up and rounding down would produce printed values equidistant
from the scaled value of arg, then the implementation is free to use either one.

INPUT/OUTPUT 393

For example, printing the argument 637. s using the format ~11, 2E may correctly
produce either 6.37E+D2 or 6.31lE+D2)

Following the digit sequence, the exponent is printed. First the character param
eter exponentchar is printed; if this parameter is omitted, then the exponent marker
that prin1 would use is printed, as determined from the type of the floating-point
number and the current value of •read-default-float-format•. Next, either a
plus sign or a minus sign is printed, followed by e digits representing the power
of ten by which the printed fraction must be multiplied to properly represent the
rounded value of arg.

If it is impossible to print the value in the required format in a field of width w,
possibly because k is too large or too small or because the exponent cannot be
printed in e character positions, then one of two actions is taken. If the parameter
overjlowchar is specified, then w copies of that parameter are printed instead of
the scaled value of arg. If the overjlowchar parameter is omitted, then the scaled
value is printed using more than w characters, as many more as may be needed;
if the problem is that d is too small for the specified k or that e is too small, then
a larger value is used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a
value is chosen for w in such a way that no leading pad characters need to be
printed.

If the parameter d is omitted, then there is no constraint on the number of digits
to appear. A value is chosen for d in such a way that as many digits as possible
may be printed subject to the width constraint imposed by the parameter w, the
constraint of the scale factor k, and the constraint that no trailing zero digits may
appear in the fraction, except that if the fraction to be printed is zero then a single
zero digit should appear after the decimal point if permitted by the width constraint.

If the parameter e is omitted, then the exponent is printed using the smallest
number of digits necessary to represent its value.

If all of w, d, and e are omitted, then the effect is to print the value using
ordinary free-format exponential-notation output; prin1 uses this format for any
non-zero number whose magnitude is less than 10- 3 or greater than or equal to
107.

If arg is a rational number, then it is coerced to be a single-float and then
printed. (Alternatively, an implementation is permitted to process a rational number
by any other method that has essentially the same behavior but avoids such hazards
as loss of precision or overflow because of the coercion. However, note that if w
and d are unspecified and the number has no exact decimal representation, for
example 113, some precision cutoff must be chosen by the implementation: only
a finite number of digits may be printed.)

394 COMMON LISP

If arg is a complex number or some non-numeric object, then it is printed using
the format directive ~wn, thereby printing it in decimal radix and a minimum field
width of w. (If it is desired to print each of the real part and imaginary part of a
complex number using a ~E directive, then this must be done explicitly with· two
~E directives and code to extract the two parts of the complex number.)

Examples:

(defun foo (x)

(format nil

x x

(foo 3.14159)

(foo -3.14159)

(foo 1100.0)

(foo 1100. OLD)

(foo 1.1E13)

x x))

=? .. 3.14E+O: 31.42$-01:+.0D3E+03: 3.14E+O"

=? " -3.14E+0:-31.42$-01:-.003E+03: -3.14E+O"

=? " 1.1DE+3: 11.00$+02:+.001E+06: 1.10E+3"

=? " 1.101+3: 11.00$+02:+.0011+06: 1.101+3"

=? "*********: 11.00$+12:+.001E+16: 1.10E+13"

(foo 1.11120) =? "*********:??????????:%%%%%%%%%:1.101+120"

(foo 1.111200) =? "*********:??????????:%%%%%%%%%:1.101+1200"

As an example of the effects of varying the scale factor, the code

(dotimes (k 13)

(format t "~scale factor ~2D: :"'13,6,2,VEI"

(- k 5) 3.14159))

produces the following output:

Scale factor -5: O.DOODD3E+06:

Scale factor -4: 0.000031E+05l

Scale factor -3: 0.000314E+04:

Scale factor -2: D. 003142E+03:

Scale factor -1: 0.031416E+02:

Scale factor 0: 0.314159E+01:

Scale factor 1: 3 .141590E+OO:

Scale factor 2: 31.4159DE-01:

Scale factor 3: 314 .159DE-02:

Scale factor 4: 3141.59DE-03:

Scale factor 5: 31415. 9DE-04:

Scale factor 6: 314159.0E-05:

Scale factor 7: 3141590 .E-06:

INPUT/OUTPUT 395

Compatibility note: The -E directive is similar to the Ew.d and Ew.dEe edit descriptors in
FORTRAN.

The presence or absence of the ® modifier corresponds to the effect of the FORTRAN s s
or SP edit descriptor; nothing in COMMON LISP corresponds to the FORTRAN s edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified
by the FORTRAN kP edit descriptor; note, however, that the default value for k is one in
COMMON LISP, as opposed to the default value of zero in FORTRAN. (On the other hand,
note that a scale factor of one is used for FORTRAN list-directed output, which is roughly
equivalent to using -E with thew, d, e, and overflowchar parameters omitted.)

In COMMON LISP, thew and d parameters are optional; in FORTRAN, they are required.
In FORTRAN, omitting e causes the exponent to be printed using either two or three digits;

if three digits are required, then the exponent marker is omitted. In COMMON LISP, omitting
e causes the exponent to be printed using as few digits as possible; the exponent marker is
never omitted.

In COMMON LISP, the pad character and overflow character are user-specifiable; in FOR

TRAN they are always space and asterisk, respectively.
A FORTRAN implementation is prohibited from printing a representation of negative zero;

COMMON LISP permits the printing of such a representation when appropriate.
In MACLISP and ZETALISP, the -E format directive takes a single parameter: the number

of digits to use in the printed representation. This incompatibility between COMMON LISP

and MACLISP was introduced for the sake of cultural compatibility with FORTRAN.

-G

General floating-point. The next arg is printed as a floating-point number in either
fixed-format or exponential notation as appropriate.

The full form is -w, d, e, k, overfiowchar, padchar, exponentcharG. The format
in which to print arg depends on the magnitude (absolute value) of the arg. Let n
be an integer such that 10n- 1sarg<IOn. (If arg is zero, let n be 0.) Let ee equal
e+2, or 4 if e is omitted. Let ww equal w-ee, or nil if w is omitted. If dis
omitted, first let q be the number of digits needed to print arg with no loss of
information and without leading or trailing zeros; then let d equal (max q (min n
7)) . Let dd equal d- n.

If Osddsd, then arg is printed as if by the format directives

-ww, dd, , overflowchar, padcharF-ee®T

Note that the scale factor k is not passed to the -p directive. For all other values
of dd, arg is printed as if by the format directive

-w, d, e, k, overflowchar, padchar, exponentcharE

In either case, an ® modifier is specified to the -p or -E directive if and only if
one was specified to the -G directive.

396 COMMON LISP

Examples:

(defun foo (x)

(format nil "~9,2,1,, '*G:~9,3,2,3, '?,, '$G:~9,3,2,o, '%G:~9,2G"

x x x))

(foo 0.0314159) ~ " 3.14E-2:314.2$-04:0.314E-01: 3.14E-2"

(foo o.31q59> ~ " 0.31 :0.3M :0.3M 0.31

(foo 3.14159) ~ " 3.1 3.14 3.14 3.1

(foo 31.4159) ~ " 31. 31.4 31.4 31.

(foo 314.159) ~ " 3.14E+2: 314. 314. 3.14E+2"

(foo 3141.59) ~ " 3.14E+3:314.2$+01:0.314E+04: 3.14E+3"

(foo 3141.5910) ~ " 3.141+3:314.2$+01:0.3141+04: 3.141+3"

(foo 3.14E12) ~ "*********:314.2$+10:0.314E+13: 3.141+12"

(foo 3.141120) ~ "*********1?????????1%%%%%%%%%13 .. 1L;L+120 11

(foo 3.1411200) ~ "*********:?????????:%%%%%%%%%:3.141+1200"

Compatibility note: The ~G directive is similar to the Gw .d edit descriptor in FORTRAN.

The COMMON LISP rules for deciding between the use of ~p and ~E are compatible with
the rules used by FORTRAN but have been extended to cover the cases where w or dis omitted
or where e is specified.

In MACLISP and ZETALISP, the ~G format directive is equivalent to the COMMON LISP

~@• directive. This incompatibility between COMMON LISP and MAcLISP was introduced for
the sake of cultural compatibility with FORTRAN.

~$

Dollars floating-point. The next arg is printed as a floating-point number in
fixed-format notation. This format is particularly convenient for printing a value
as dollars and cents.

The full form is ~d, n, w, padchar$. The parameter d is the number of digits to
print after the decimal point (default value 2); n is the minimum number of digits
to print before the decimal point (default value l); w is the minimum total width
of the field to be printed (default value 0).

First padding and the sign are output. If the arg is negative, then a minus sign
is printed; if the arg is not negative, then a plus sign is printed if and only if the
® modifier was specified. If the : modifier is used, the sign appears before any
padding, and otherwise after the padding. If w is specified and the number of other
characters to be output is less than w, then copies of padchar (which defaults to a
space) are output to make the total field width equal w. Then n digits are printed

INPUT/OUTPUT 397

for the integer part of arg, with leading zeros if necessary; then a decimal point;
then d digits of fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have to be
printed, where m is the larger of w and 100, then an implementation is free, at its
discretion, to print the number using exponential notation instead, as if by the_
directive -w, q, , , , padcharE, where w and padchar are present or omitted ac
cording to whether they were present or omitted in the ~$ directive, and where
q = d + n - 1, where d and n are the (possibly default) values given to the -$

directive.
If arg is a rational number, then it is coerced to be a single-float and then

printed. (Alternatively, an implementation is permitted to process a rational number
by any other method that has essentially the same behavior but avoids such hazards
as loss of precision or overflow because of the coercion.)

If arg is a complex number or some non-numeric object, then it is printed using
the format directive -wn, thereby printing it in decimal radix and a minimum field
width of w. (If it is desired to print each of the real part and imaginary part of a
complex number using a -$ directive, then this must be done explicitly with two
-$ directives and code to extract the two parts of the complex number.)

-%

This outputs a #\Newline character, thereby terminating the current output line
and beginning a new one (see terpri). -n% outputs n newlines. No arg is used.
Simply putting a newline in the control string would work, but -% is often used
because it makes the control string look nicer in the middle of a LISP program.

Unless it can be determined that the output stream is already at the beginning of a
line, this outputs a newline (sec fresh-line). -n& calls fresh-line and then
outputs n - 1 newlines. -o & does nothing.

-· '
This outputs a page separator character, if possible. -n: does this n times. is
vertical bar, not capital I.

Tilde. This outputs a tilde. -n- outputs n tildes.

398 COMMON LISP

-<newline>

Tilde immediately followed by a newline ignores the newline and any following
non-newline whitespace characters. With a : , the newline is ignored, but any
following whitespace is left in place. With an @, the newline is left in place, but
any following whitespace is ignored. This directive is typically used when a format
control string is too long to fit nicely into one line of the program:

(defun type-clash-error (fn nargs argnum right-type wrong-type)

(format •errorcoutput•

"-&-s requires its -:[-:R-;-•-J -

argument to be of type -s,-%but it was called -

with an argument of type -s.-%"

fn (eql nargs 1) argnum right-type wrong-type))

(type-clash-error 'aref nil 2 'integer 'vector) prints:
AREF requires its second argument to be of type INTEGER,

but it was called with an argument of type VECTOR.

(type-clash-error 'car 1 1 'list 'short-float) prints:
CAR requires its argument to be of type LIST,

but it was called with an argument of type SHORT-FLOAT.

Note that in this example newlines appear in the output only as specified by the
-& and -% directives; the actual newline characters in the control string are sup
pressed because each is preceded by a tilde.

-T

Tabulate. This spa~~s over to a given column. -colnum,colincT will output suf
ficient spaces to move the cursor to column colnum. If the cursor is already at or
beyond column colnum, it will output spaces to move it to column col
num + k*colinc for the smallest positive integer k possible, unless co/inc is zero,
in which case no spaces are output if the cursor is already at or beyond column
colnum. colnum and co/inc default to 1.

Ideally, the current column position is determined by examination of the desti
nation, whether a stream or string. (Although no user-level operation for deter
mining the column position of a stream is defined by COMMON LISP, such a facility
may exist at the implementatipn level.) If for some reason the current absolute
column position cannot be determined by direct inquiry, format may be able to
deduce the current column position by noting that certain directives (such as -% ,

or -&, or -A with the argument being a string containing a newline) cause the

INPUT/OUTPUT 399

column position to be reset to zero, and counting the number of characters emitted
since that point. If that fails, format may attempt a similar deduction on the riskier
assumption that the destination was at column zero when format was invoked. If
even this heuristic fails or is implementationally inconvenient, at worst the ~T
operation will simply output two spaces. (All this implies that code that uses format

is more likely to be portable if all format control strings that use the ~T directive
either begin with ~% or ~ & , or are designed to be used only when the destination
is known from other considerations to be at column zero.)

~@T performs relative tabulation. ~colrel, colinc@T outputs colrel spaces and then
outputs the smallest non-negative number of additional spaces necessary to move
the cursor to a column that is a multiple of colinc. For example, the directive
~::i, ll®T outputs three spaces and then moves the cursor to a "standard multi
ple-of-eight tab stop" if not at one already. If the current output column cannot be
determined, however, then colinc is ignored, and exactly co/rel spaces are output.

The next arg is ignored. ~n* ignores the next n arguments.
~: * "ignores backwards"; that is, it backs up in the list of arguments so that the

argument last processed will be processed again. ~n: * backs up n arguments.
When within a ~{ construct (see below), the ignoring (in either direction) is

relative to the list of arguments being processed by the iteration.
~n® * is an "absolute goto" rather than a "relative goto": it goes to the nth arg,

where 0 means the first one; n defaults to 0, so ~® * goes back to the first arg.
Directives after a ~n®* will take arguments in sequence beginning with the one
gone to. When within a ~{ construct, the "goto" is relative to the list of arguments
being processed by the iteration.

Indirection. The next arg must be a string, and the one after it a list; both are
consumed by the ~? directive. The string is processed as a format control string,
with the elements of the list as the arguments. Once the recursive processing of
the control string has been finished, then processing of the control string containing
the ~? directive is resumed. Example:

(format nil "~? ~n" "<~A ~D>" '("Foo" 5) 7) =>"<Foo 5> 7"

(format nil "~? ~n" "<~A ~D>" ' ("Foo" 5 1£;) 7) => "<Foo 5> 7"

Note that in the second example three arguments are supplied to the control string
"<~A ~n>", but only two are processed and the third is therefore ignored.

400 COMMON LISP

With the ® modifier, only one arg is directly consumed. The arg must be a
string; it is processed as part of the control string as if it had appeared in place of
the -®? construct, and any directives in the recursively processed control string
may consume arguments of the control string containing the -®? directive. Ex
ample:

(format nil "-@? -n" "<-A -n>" "Foo" 5 7) =? "<Foo 5> 7"

(format nil "-@? -n" "<-A -n>" "Foo" 5 1L; 7) =? "<Foo 5> 1L;"

Here is a rather sophisticated example. The format function itself, as implemented
at one time in ZETALISP, used a routine internal to the format package called
format-error to signal error messages; format-error in tum used error, which
used format recursively. Now format-error took a string and arguments, just
like format, but also printed the control string to format (which at this point was
available in the global variable •ctl-string•) and a little arrow showing where
in the processing of the control string the error occurred. The variable •ctl-index•

pointed one character after the place of the error.

(defun format-error (string &rest args)

(error nil "-?-%-v@T i -%-3@T\"-A\"-%"

;Example

string args (+ •ctl-index• 3) •ctl-string•))

(The character set used in the ZET ALISP implementation contains a down-arrow
character i , which is not a standard COMMON LISP character.) This first processed
the given string and arguments using -? , then output a newline, tabbed a variable
amount for printing the down-arrow, and printed the control string between double
quotes (note the use of \" to include double quotes within the control string). The
effect was something like this:

(format t "The item is a -[Foo-;Bar-;Loser-J." 'guux)

>>ERROR: The argument to the FORMAT "-[" command

must be a number.

"The item is a -[Foo-;Bar-;Loser-J."

Implementation note: Implementors may wish to report errors occurring within fa rm at

control strings in the manner outlined here. It looks pretty flashy when done properly.

The format directives after this point are much more complicated than the fore
going; they constitute control structures that can perform case conversion, condi
tional selection, iteration, justification, and non-local exits. Used with restraint,

INPUT/OUTPUT 401

they can perform powerful tasks. Used with abandon, they can produce completely
unreadable and unmaintainable code.

The case-conversion, conditional, iteration, and justification constructs can con
tain other formatting constructs by bracketing them. These constructs must nest
properly with respect to each other. For example, it is not legitimate to put the
start of a case-conversion construct in each arm of a conditional and the end of the
case-conversion construct outside the conditional:

;Illegal!

One might expect this to produce either "abcDEFMNO" or "ghiJKLMNO", depending
on whether x is false or true; but in fact the construction is illegal because the
~ r ... ~; ... ~ J and ~ (... ~) constructs are not properly nested.

The processing indirection caused by the ~? directive is also a kind of nesting
for the purposes of this rule of proper nesting. It is not permitted to start a bracketing
construct within a string processed under control of a ~? directive and end the
construct at some point after the ~? construct in the string containing that construct,
or vice versa. For example, this situation is illegal:

(format nil "~?ghi~)" "abc~@(def") ; Illegal!

One might expect it to produce "abcDEFGHI", but in fact the construction is illegal
because the ~? and ~ (... ~) constructs are not properly nested.

~(str~)

Case conversion. The contained control string str is processed, and what it produces
is subject to case conversion.

With no flags, every uppercase character are converted to the corresponding
lowercase character.

~: (capitalizes all words, as if by string-capitalize.

~@(capitalizes just the first word and forces the rest to lower case.
~:@ (converts every lowercase character to the corresponding uppercase char

acter.
In this example ~® (is used to cause the first word produced by ~@R to be

capitalized:

(format nil "~@R ~(~@R~)" 1-<; 1-<;) ::} "XIV xiv"

(defun f (n) (format nil "~@(~R~) error~:P detected." n))

(f 0) ::} "Zero errors detected."

(f 1) ::} "One error detected."

(f 23) ::} "Twenty-three errors detected."

402 COMMON LISP

- r strO-; strl - ; ... - ; strn- l

Conditional expression. This is a set of control strings, called clauses, one of
which is chosen and used. The clauses are separated by - ; and the construct is
terminated by - J. For example,

"-rsiamese-;Manx-;Persian-1 Cat"

The argth clause is selected, where the first clause is number 0. If a prefix parameter
is given (as -nc), then the parameter is used instead of an argument. (This is useful
only if the parameter is specified by #, to dispatch on the number of arguments
remaining to be processed.) If arg is out of range then no clause is selected (and
no error is signalled.). After the selected alternative has been processed, the control
string continues after the -1 .

- r strO-; str 1-; ... - ; strn-: ; default-1 has a default case. If the last - ; used to
separate clauses is - : ; instead, then the last clause is an "else" clause that is
performed if no other clause is selected. For example:

"-rsiamese-;Manx-;Persian-:;Alley-J Cat"

- : rfalse- ; true- J selects the false control string if arg is nil, and selects the true
control string otherwise.

-® r true- i tests the argument. If it is not nil, then the argument is not used up
by the - r command but remains as the next one to be processed, and the one
clause true is processed. If the arg is nil, then the argument is used up, and the
clause is not processed. The clause therefore should normally use exactly one
argument, and may expect it to be non-nil. For example:

(setq *print-level* nil *print-length* 5)

(format nil

"-@r print level = -n-J-@[print length

print-level *print-length*)

:::? " print length = 5"

The combination of - r and # is useful, for example, for dealing with English
conventions for printing lists:

(setq foo "Items:-#[none-; -s-; -s and -s

-: ;-@{-#[-; ana-1 -s-·,->-J.")

(format nil foo)

:::? "Items: none."

(format nil foo 'foo)

:::? "Items: FOO."

INPUT/OUTPUT

(format nil foo 'foo 'bar)

:::} "Items: FOO and BAR."

(format nil foo 'foo 'bar 'baz)

:::} "Items: FOO, BAR, and BAZ."

(format nil foo 'foo 'bar 'baz 'quux)

:::} "Items: FOO, BAR, BAZ, and QUUX."

-· '
This separates clauses in - [and -< constructions. It is an error elsewhere.

-i

This terminates a - [. It is an error elsewhere.

-<str->

403

Iteration. This is an iteration construct. The argument should be a list, which is
used as a set of arguments as if for a recursive call to format. The string str is
used repeatedly as the control string. Each iteration can absorb as many elements
of the list as it likes as arguments; if str uses up two arguments by itself, then two
elements of the list will get used up each time around the loop. If before any
iteration step the list is empty, then the iteration is terminated. Also, if a prefix
parameter n is given, then there will be at most n repetitions of processing of str.
Finally, the -A directive can be used to terminate the iteration prematurely.

Here are some simple examples:

(format nil "The winners are:-< -s->."
'(fred harry jill))

:::} "The winners are: FRED HARRY JILL."

(format nil "Pairs:-< <-s,-s>-}." '(a 1 b 2 c 3))

:::} "Pairs: <A,1> <B,2> <C,3>."

- : <str-> is similar, but the argument should be a list of sublists. At each repetition
step, one sublist is used as the set of arguments for processing str; on the next
repetition, a new sublist is used, whether or not all of the last sublist had been
processed. Example:

(format nil "Pairs:-:< <-s,-s>-}."

'((a 1) (b 2) (c 3)))

:::} "Pairs: <A,1> <B,2> <C,3>."

404 COMMON LISP

-@{str-} is similar to -{str-}, but instead of using one argument that is a list, all
the remaining arguments are used as the list of arguments for the iteration. Example:

(format nil "Pairs:-@{ <-s,-s>-}."

'a 1 'b 2 'c 3)

~ "Pairs: <A,1> <B,2> <C,3>."

If the iteration is terminated before all the remaining arguments are consumed,
then any arguments not processed by the iteration remain to be processed by any
directives following the iteration construct.

- : @ { str} combines the features of - : { str} and -® { str-}. All the remaining
arguments are used, and each one must be a list. On each iteration, the next
argument is used as a list of arguments to str. Example:

(format nil "Pairs:-:@{ <-s,-s>-}."

'(a 1) '(b 2) '(c 3))

~ "Pairs: <A,1> <B,2> <C,3>."

Terminating the repetition construct with - : } instead of - } forces str to be processed
at least once, even if the initial list of arguments is null (however, it will not
override an explicit prefix parameter of zero).

If str is empty, then an argument is used as str. It must be a string and precede
any arguments processed by the iteration. As an example, the following are equiv
alent:

(apply #'format stream string arguments)

(format stream "-1{-:}" string arguments)

This will use string as a formatting string. The -1{ says it will be processed at
most once, and the - : } says it will be processed at least once. Therefore it is
processed exactly once, using arguments as the arguments. This case may be
handled more clearly by the -? directive, but this general feature of -{ is more
powerful than - ? .

-}

This terminates a -{. It is an error elsewhere.

-mincol, co line, minpad, padchar<str->

Justification. This justifies the text produced by processing str within a field at least
mincol columns wide. str may be divided up into segments with - ; , in which case
the spacing is evenly divided between the text segments.

INPUT/OUTPUT 405

With no modifiers, the leftmost text segment is left justified in the field, and the
rightmost text segment right justified; if there is only one text. element, as a special
case, it is right justified. The : modifier causes spacing to be introduced before the
first text segment; the ® modifier causes spacing to be added after the last. The
minpad parameter (default o) is the minimum number of padding characters to be
output between each segment. The padding character is specified by padchar,
which defaults to the space character. If the total width needed to satisfy these
constraints is greater than mincol, then the width used is mincol + k*colinc for the
smallest possible non-negative integer value k; colinc defaults to 1, and mincol
defaults to o .

Examples:

(format nil "-1D<foo-;bar->") =? "foo bar"

(format nil "-1o:<foo-;bar->") =? foo bar"

(format nil "-1o:@<foo-;bar->") =? foo bar "
(format nil u-1o<foobar->") =? foobar"

(format nil "-1o:<foobar->") =? foobar"

(format nil u-1o@<foobar->") =? "foobar

(format nil u-1o:@<foobar->") =? foobar

Note that str may include format directives. All. the clauses in str are processed
in order; it is the resulting pieces of text that are justified.

The -A directive may be used to tenninate processing of the clauses prematurely,
in which case only the completely processed clauses are justified.

If the first clause of a - < is terminated with - : ; instead of - ; , then it is used in
a special way. All of the clauses are processed (subject to -A, of course), but the
first one is not used in performing the spacing and padding. When the padded
result has been determined, then if it will fit on the current line of output, it is
output, and the text for the first clause is discarded. If, however, the padded text
will not fit on the current line, then the text segment for the first clause is output
before the padded text. The first clause ought to contain a newline (such as a -%

directive). The first clause is always processed, and so any arguments it refers to
will be used; the decision is whether to use the resulting segment of text, not
whether to process the first clause. If the - : ; has a prefix parameter n, then the
padded text must fit on the current line with n character positions to spare to avoid
outputting the first clause's text. For example, the control string

can be used to print a list of items separated by commas without breaking items
over line boundaries, beginning each line with,;; . The prefix parameter 1 in -1: ;

·: '

406 COMMON LISP

accounts for the width of the comma that will follow the justified item if it is not
the last element in the list, or the period if it is. If - : ; has a second prefix parameter,
then it is used as the width of the line, thus overriding the natural line width of
the output stream. To make the preceding example use a line width of 50, one
would write

If the second argument is not specified, then format uses the line width of the
output stream. If this cannot be determined (for example, when producing a string
result), then format uses 7 2 as the line length.

->

Terminates a -<. It is an error elsewhere.

Up and oiit. This is an escape construct. If there are no more arguments remaining
to be processed, then the immeqiately enclosing -{ or"'< construct is terminated.
If there is no such enclosing construct, then the entire formatting operation is
terminated. In the -< case, the formatting is performed, but no more segments are
processed before doing the justification. The -A shoulc! appear only at the beginning
of a -< clause, because it aborts the entire clause it appears in (as well as all
following clauses). -A may appear anywhere in a -{ construct.

(setq donestr "Done.-A -D warning-:!'.-A -D error-:!'.")

(format nil donestr) => "Done."

(format nil donestr 3) => "Done. 3 warnings."

(format nil donestr 1 5) => "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero.
(Hence -A is equivalent to -#A.) If two parameters are given, termination occurs
if they are equal. If three parameters are given, termination occurs if the first is
less th&n or equal to the second &nd the second is less than or equal to the third.
Of course, this is useless if all the prefix parameters are constants; at least one of
them should be a # or a v parameter.

If -A is used within a - : < construct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current
step only); the next iteration step commences immediately. To terminate the entire
iteration process, use - : A.

If -A appears within a control string being processed under the control of a -?

directive, but not withi11 any -{ or -< construct within that string, then the string
being processed will be terminated, thereby ending processing of the -? directive.

INPUT/OUTPUT 407

Processing then continues within the string containing the -? directive at the point
following that directive.

If -A appears within a - c or - (construct, then all the commands up to the -A

are properly selected or case-converted, the - c or - (processing is terminated, and
the outward search continues for a-< or-< construct to be terminated. For example:

(setq tellstr "-@c-@c-R-i-· -A.-1"1
(format nil tellstr 23) ~ "Twenty-three."

(format nil tellstr nil "losers") ~ "Losers."

(format nil tellstr 23 "losers") ~ "Twenty-three losers."

Here are some examples of the use of -A within a -< construct.

~ "FOO BAR"

~ "FOO BAR BAZ"

Compatibility note: The -o directive and user-defined directives of ZETALISP have been
omitted here, as well as control lists (as opposed to strings), which are rumored to be
changing in meaning.

22.4. Querying the User

The following functions provide a convenient and consistent interface for asking
questions of the user. Questions are printed and the answers are read using the
stream *query-io*, which normally is synonymous with *terminal-io* but can
be rebound to another stream for special applications.

y-or-n-p &optional format-string &rest arguments [Function]

This predicate is for asking the user a question whose answer is either "yes" or
"no." It types out a message (if supplied), reads an answer in some
implementation-dependent manner (intended to be short and simple, like reading
a single character such as Y or N), and is true if the answer was "yes" or false if
the answer was "no."

If the format-string argument is supplied and not nil, then a fresh-1 ine oper
ation is performed; then a message is printed as if the format-string and arguments
were given to format. Otherwise it is assumed that any message has already been
printed by other means. If you want a question mark at the end of the message,

408 COMMON LISP

you must put it there yourself; y-or-n-p will not add it. However, the message
should not contain an explanatory note such as (Y or N), because the nature of
the interface provided for y-or- n -p by a given implementation might not involve
typing a character on a keyboard; y -or - n -p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable
guery-io.

Here are some examples of the use of y-or-n-p:

(y-or-n-p "Produce listing file?")

(y-or-n-p "Cannot connect to network host ~s. Retry?" host)

y-or-n-p should only be used for questions that the user knows are coming or
in situations where the user is known to be waiting for a response of some kind.
If the user is unlikely to anticipate the question, or if the consequences of the
answer might be grave and irreparable, then y-or-n-p should not be used because
the user might type ahead and thereby accidentally answer the question. For such
questions as "Shall I delete all of your files?" it is better to use yes-or-no-p.

yes-or-no-p &optional format-string &rest arguments [Function]

This predicate, like y-or- n -p, is for asking the user a question whose answer is
either "Yes" or "No." It types out a message (if supplied), attracts the user's
attention (for example, by ringing the terminal's bell), and reads a reply in some
implementation-dependent manner. It is intended that the reply require the user to
take more action than just a single keystroke, such as typing the full word yes or
no followed by a newline.

If the format-string argument is supplied and not nil, then a fresh-line oper
ation is performed; then a message is printed as if the format-string and arguments
were given to format. Otherwise it is assumed that any message has already been
printed by other means. If you want a question mark at the end of the message,
you must put it there yourself; yes-or-no-p will not add it. However, the message
should not contain an explanatory note such as (Yes or No) because the nature
of the interface provided for yes-or-no-p by a given implementation might not
involve typing the reply on a keyboard; yes-or-no-p will provide such a note if
appropriate.

All input and output are performed using the stream in the global variable
guery-io.

To allow the user to answer a yes-or-no question with a single character, use
y-or-n-p. yes-or-no-p should be used for unanticipated or momentous questions;
this is why it attracts attention and why it requires a multiple-action sequence to
answer it.

23

File System Interface

A frequent use of streams is to communicate with a file system to which groups of
data (files) can be written and from which files can be retrieved.

COMMON LISP defines a standard interface for dealing with such a file system.
This interface is designed to be simple and general enough to accommodate the
facilities provided by "typical" operating system environments within which COMMON

LISP is likely to be implemented. The goal is to make COMMON LISP programs
that perform only simple operations on files reasonably portable.

To this end, COMMON LISP assumes that files are named, that given a name one
can construct a stream connected to a file of that name, and that the names can be
fit into a certain canonical, implementation-independent form called a pathname.

Facilities are provided for manipulating pathnames, for creating streams con
nected to files, and for manipulating the file system through pathnames and streams.

23.1. File Names

COMMON LISP programs need to use names to designate files. The main difficulty
in dealing with names of files is that different file systems have different naming
formats for files. For example, here is a table of several file systems (actually,
operating systems that provide file systems) and what equivalent file names might
look like for each one:

System

TOPS-20

TOPS-10

ITS

MULTICS

TENEX

VAX/vMS

UNIX

File name

<LISPIO>FORMAT.FASL.13

FORMAT.FAS[1,t;J

LISPIO;FORMAT FASL

>udd>LispIO>forrnat.fasl

<LISPIO>FORMAT.FASL;13

[LISPIOJFORMAT.FAS;13

/usr/lispio/forrnat.fasl

409

410 COMMON LISP

It would be impossible for each program that deals with file names to know about
each different file name format that exists; a new COMMON LISP implementation
might use a format different from any of its predecessors. Therefore, COMMON
LISP provides two ways to represent file names: namestrings, which are strings in
the implementation-dependent form customary for the file system, and pathnames,
which are special abstract data objects that represent file names in an
implementation-independent way. Functions are provided to convert between these
two representations, and all manipulations of files can be expressed in
machine-independent terms by using pathnames.

In order to allow COMMON LISP programs to operate in a network environment
that may have more than one kind of file system, the pathname facility allows a
file name to specify which file system is to be used. In this context, each file system
is called a host, in keeping with the usual networking terminology.

23.1.1. Pathnames

All file systems dealt with by COMMON LISP are forced into a common framework,
in which files are named by a LISP data object of type pathname.

A pathname always has six components, described below. These components
are the common interface that allows programs to work the same way with different
file systems; the mapping of the pathname components into the concepts peculiar
to each file system is taken care of by the COMMON LISP implementation.

host

The name of the file system on which the file resides.

device

Corresponds to the "device" or "file structure" concept in many host file systems:
the name of a (logical or physical) device containing files.

directory

Corresponds to the "directory" concept in many host file systems: the name of a
group of related files (typically those belonging to a single user or project).

name

The name of a group of files that can be thought of as conceptually the "same"
file.

FILE SYSTEM INTERFACE 411

type

Corresponds to the "filetype" or "extension" concept in many host file systems.
This says what kind of file this is. Files with the same name but different type are
usually related in some specific way, such as one being a source file, another the
compiled form of that source, and a third the listing of error messages from the
compiler.

version

Corresponds to the "version number" concept in many host file systems. Typically
this is a number that is incremented every time the file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather, it is
a specification (possibly only a partial specification) of how to access a file. A
pathname need not correspond to any file that actually exists, and more than one
pathname can refer to the same file. For example, the pathname with a version of
"newest" may refer to the same file as a pathname with the same components
except a certain number as the version. Indeed, a pathname with version "newest"
may refer to different files as time passes, because the meaning of such a pathname
depends on the state of the file system. In file systems with such facilities as "links,"
multiple file names, logical devices, and so on, two pathnames that look quite
different may tum out to address the same file. To access a file given a pathname,
one must do a file system operation such as open.

Two important operations involving pathnames are parsing and merging. Parsing
is the conversion of a namestring (which might be something supplied interactively
by the user when asked to supply the name of a file) into a pathname object. This
operation is implementation-dependent, because the format of namestrings is im
plementation-dependent. Merging takes a pathname with missing components and
supplies values for those components from a source of defaults.

Not all of the components of a pathname need to be specified. If a component
of a pathname is missing, its value is nil. Before the file system interface can do
anything interesting with a file, such as opening the file, all the missing components
of a pathname must be filled in (typically from a set of defaults). Pathnames with
missing components may be used internally for various purposes; in particular,
parsing a namestring that does not specify certain components will result in a
pathname with missing components.

A component of a pathname can also be the keyword : w 11 d. This is only useftd
when the pathname is being used with a directory-manipulating operation, where
it means that the pathname component matches anything. The printed representation
of a pathname typically designates : w 11 d by an asterisk; however, this is
host-dependent.

412 COMMON LISP

What values are allowed for components of a pathname depends, in general, on
the pathname's host. However, in order for pathnames to be usable in a sys
tem-independent way, certain global conventions are adhered to. These conventions
are stronger for the type and version than for the other components, since the type
and version are explicitly manipulated by many programs, while the other com
ponents are usually treated as something supplied by the user that just needs to be
remembered and copied from place to place.

The type is always a string or nil or : wild. It is expected that most programs
that ·deal with files will supply a default type for each file.

The version is either a positive integer or a special symbol. The meanings of
nil and : wild have been explained above. The keyword : newest refers to the
largest version number that already exists in the file system when reading a file,
or to a version number greater than any already existing in the file system when
writing a new file. Some COMMON LISP implementors may choose to define other
special version symbols. Some semi-standard names, suggested but not required
to be supported by every COMMON LISP implementation, are :oldest, to refer to
the smallest version number that exists in the file system; : previous, to refer to
the version previous to the newest version; and : installed, to refer to a version
that is officially installed for users (as opposed to a working or development ver
sion. Some COMMON LISP implementors may also choose to attach a meaning to
non-positive version numbers (a typical convention is that o is synonymous with
: newest &nd -1 with : previous), but such interpretations are implementa
tion-dependent.

The host may be a string, indicating a file system, or a list of strings, of which
the first names the file system and the rest may be used for such a purpose as
inter-network routing.

The device, directory, and name can each be a string (with host-dependent rules
on allowed characters and length) or possibly some other COMMON LISP data struc
ture (in which case such a component is said to be structured and has an imple
mentation-dependent format). Structured components may be used to handle such
file system features as hierarchical directories. COMMON LISP programs do not need
to know about structured components unless they do host-dependent operations.
Specifying a string as a pathname component for a host that requires a structured
component will cause conversion of the string to the appropriate form.

The best way to compare two pathnames for equality is with equal, not eql.

(On pathnames, eql is simply the same as eq.) Two pathname objects are equal

if and only if all the corresponding components (host, device, and so on) are
equivalent. (Whether or not uppercase and lowercase letters are considered equiv
alent in strings appearing in components depends on the file name conventions of
the file system.) Pathnames that are equal should be functionally equivalent.

FILE SYSTEM INTERFACE 413

Some host file systems have features that do not fit into this pathname model.
For instance, directories might be accessible as files; there might be complicated
structure in the directories or names; or there might be a way to specify a directory
relative to a "current" directory, such as the < syntax in MULTICS or the special
" .. "file name of UNIX. Such features are not allowed for by the standard COMMON

LISP file system interface. An implementation is free to accommodate such features
in its pathname representation and provide a parser that can process such specifi
cations in namestrings; such features are then likely to work within that single
implementation. However, note that once a program depends explicitly on any such
features, it will not be portable.

23.1.2. Pathname Functions

These functions are what programs use to parse and default file names that have
been typed in or otherwise supplied by the user.

Any argument called pathname in this manual may actually be a pathname, a
string or symbol, or a stream. Any argument called defaults may likewise be a
pathname, a string or symbol, or a stream.

In the examples, it is assumed that the host named CMUC runs the TOPS-20

operating system, and therefore uses TOPs-20 file system syntax; furthermore, an
explicit host name is indicated by following the host name with a double colon.
Remember, however, that namestring syntax is implementation-dependent, and this
syntax is used here purely for the sake of examples.

pathname pathname [Function]

The pathname function converts its argument to be a pathname. The argument may
be a pathname, a string or symbol, or a stream; the result is always a pathname.

truename pathname [Function]

The true name function endeavors to discover the "true name" of the file associated
with the pathname within the file system. If the pathname is an open stream already
associated with a file in the file system, that file is used. The "ttue name" is returned
as a pathname. An error is signalled if an appropriate file cannot be located within
the file system for the given pathname.

The truename function may be used to account for any file-name translations
performed by the file system, for example.

414 COMMON LISP

For example, suppose that Doc: is a TOPS-20 logical device name that is trans
lated by the TOl>S-20 file system to be PS: <DOCUMENTATION>.

(setq file (open "C!'1UC: : DOC: DUMPER. HLP"))
(namestririg (pathname file))~ "CMUC::DOC:DUMPER.HLP"
(namestring (truename file))
~ "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.:L3"

parse-namestring thing &optional host defaults
&key :start :end :junk-allowed

[Function]

This turns thing into a pathname. The thing is usually a string (that is, a namestring),
but it may be a symbol (in which case the print name is used) or a pathname or
stream (in which case no parsing is needed, but an error check may be made for
matching hosts).

This function does not, in general, do defaulting of pathname comportents, even
though it has an argument named defaults; it only does parsing. The host and
def au/ts arguments are present because in some implementations it may be that a
namestring can oniy be parsed with reference to a particular file name syntax of
several available in the implementation. If host is non-nil, it must be a host name
that could appear in the host component of a pathname, or nil; if host is nil then
the host name is extracted from the default pathname in def au/ts and used to
determine the syntax convention. The defaults argument defaults to the value of
•default-pathname-defaults•.

For a string (or symbol) argument, parse-namestring parses a file name within
it in the range delimited by the : start and : end arguments (which are integer
indices into string, defaulting to the beginning and end of the string).

If :junk-allowed l.s not nil, then the first value returned is the pathname
parsed, or nil if no syntactically correct pathname was seen.

If : junk-allowed is nil (the default), then the entire substring is scanned. The
returned value is the pathname parsed. An error is signalled if the substring does
not consist entirely of the representation of a pathname, p0ssibly surrounded on
either side by whitespace characters if that is appropriate to the cultural conventions
of the implementation.

In either case, the second value is the index into the string of the delimiter that
terminated the parse, or the index beyond the substring if the parse terminated at
the end of the substring (as will always be the case if : junk-allowed is false).

If thing is not a string or symbol, then start (which defaults to zero in any case)
is always returned as the second value.

Parsing an empty string always succeeds, producing a pathname with all com
ponents (except the host) equal to nil.

FILE SYSTEM INTERFACE 415

Note that if host is specified and not nil, and thing contains a manifest host
name, an error is signalled if the hosts do not match.

If thing contains an explicit host name and no explicit device name, then it may
be appropriate, depending on the :mplementation environment, for parse-namestring

to supply the standard default device for that host as the device component of the
resulting pathname.

merge-pathnames pathname &optional defaults default-version [Function]

This is the function that most programs should call to process a file name supplied
by the user. It fills in unspecified components of pathname from the defaults, and
returns a new pathname. The pathname and defaults arguments may each be a
pathname, stream, string, or symbol. The returned value will always be a path
name.

defaults defaults to the value of •default-pathname-defaults•. de
fault-version defaults to : newest.

Here is an example of the use of merge-pathnames:

(merge-pathnames "CMUC::FORMAT"

"CMUC:: PS: <LISPIO>. FASL")

=? a pathname object that re-expressed as a namestring would be
"CMUC::PS:<LISPIO>FORMAT.FASL.D"

Defaulting of pathname components is done by filling in components taken from
another pathname. This is especially useful for cases such as a program that has
an input file and an output file, and asks the user for the name of both, letting the
unsupplied components of one name default from the other. Unspecified compo
nents of the output pathname will come from the input pathname, except that the
type should default not to the type of the input but to the appropriate default type
for output from this program.

The pathname merging operation takes as input a given pathname, a defaults
pathname, and a default version, and returns a new pathname. Basically, the miss
ing components in the given pathname are filled in from the defaults pathname,
except that if no version is specified the default version is used. The default version
is usually : newest; if no version is specified the newest version in existence should
be used. The default version can be nil, to preserve the information that it was
missing in the input pathname.

If the given pathname explicitly specifies a host and does not supply a device,
then if the host component of the defaults matches the host component of the given
pathname, then the device is taken from the defaults; otherwise the device will be
the default file device for that host. Next, if the given pathname does not specify

416 COMMON LISP

a host, device, directory, name, or type, each such component is copied from the
defaults. The merging rules for the version are more complicated and depend on
whether the pathname specifies a name. If the pathname doesn't specify a name,
then the version, if not provided, will come from the defaults, just like the other
components. However, if the pathname does specify a name, then the version is
not affected by the defaults. The reason is that the version "belongs to" some other
file name and is unlikely to have anything to do with the new one. Finally, if this
process leaves the version missing, the default version is used.

The net effect is that if the user supplies just a name, then the host, device,
directory, and type will come from the defaults, but the version will come from
the default version argument to the merging operation. If the user supplies nothing,
or just a directory, the name, type, and version will come over from the defaults
together. If the host's file name syntax provides a way to input a version without
a name or type, the user can let the name and type default but supply a version
different from the one in the defaults.

default-pathname-defaults [Variable]

This is the default pathname-defaults pathname; if any pathname primitive that
needs a set of defaults is not given one, it uses this one. As a general rule, however,
each program should have its own pathname defaults rather than using this one.

make-pathname &key :host :device :directory :name [Function]
:type :version :defaults

Given some components, make-pathname constructs and returns a pathname. After
the components specified explicitly by the : host, : device, : directory, : name,

: type, and : version arguments are filled in, the merging rules used by
merge-pathnames are used to fill in any missing components from the defaults
specified by the : defaults argument. The default value of the : defaults argu
ment is a pathname whose host component is the same as the host component of
the value of *default-pathname-defaults*, and whose other components are
all nil.

Whenever a pathname is constructed, whether by make-pathname or some other
function, the components may be canonicalized if appropriate. For example, if a
file system is insensitive to case, then alphabetic characters may be forced to be
all uppercase or all lowercase by the implementation.

pathnamep object [Function]

This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x} == (typep x 'pathname}

FILE SYSTEM INTERFACE

pathname-host pathname
pathname-device pathname
pathname-directory pathname
pathname-name pathname
pathname-type pathname
pathname-version pathname

417

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

These return the components of the argument pathname, which may be a pathname,
string or symbol, or stream. The returned values can be strings, special symbols,
or some other object in the case of structured components. The type will always
be a string or a symbol. The version will always be a number or a symbol.

names tr ing pathname
file-namestring pathname
directory-namestring pathname
host-namestring pathname
enough-namestring pathname &optional defaults

[Function]
[Function]
[Function]
[Function]
[Function]

The pathname argument may be a pathname, a string or symbol, or a stream that
is or was open to a file. The name represented by pathname is returned as a namelist
in canonical form.

If pathname is a stream, the name returned represents the name used to open
the file, which may not be the actual name of the file (see truename).

namestring returns the full form of the pathname as a string. f ile-namestring

returns a string representing just the name, type, and version components of the
pathname; the result of directory-namestring represents just the directory-name
portion; and host-namestring returns a string for just the host~name portion. Note
that a valid namestring cannot necessarily be constructed simply by concatenating
some of the three shorter strings in some order.

enough-namestring takes another argument, defaults. It returns an abbreviated
namestring that is just sufficient to identify the file named by pathname when
considered relative to the defaults (which defaults to the value •default

pathname-defaults•). That is, it is required that

(merge-pathnames (enough-namestring pathname defaults)
defaults)

(merge-pathnames (parse-namestring pathname nil defaults)
defaults)

in all cases; and the result of enough-namestring is, roughly speaking, the shortest
reasonable string that will still satisfy this criterion.

418 COMMON LISP

user- homedir-pa th name &optional host [Function]

Returns a pathname for the user's "home directory" on host. The host argument
defaults in some appropriate implementation-dependent manner. The concept of
"home directory" is itself somewhat implementation-dependent, but from the point
of view of COMMON LISP it is the directory where the user keeps personal fiies
such as initialization files and mail. If it is impossible to determine this information,
then nil is returned instead of a pathname; however, user-homedir-pathnarne

never returns nil if the host argument is not specified. This function returns a
pathname without any name, type, or version component (those components are
all nil).

23.2. Opening and Closing Files

When a file is opened, a stream object is constructed to serve as the file system's
ambassador to the LISP environment; operations on the stream are reflected by
operations on the file in the file system. The act of closing the file (actually, the
stream) ends the association; the transaction with the file system is terminated, and
input/output may no longer be performed on the stream. The stream function close

may be used to close a file; the functions described below may be used to open
them. The basic operation is open, but with-open-file is usually more convenient
for most applications.

open filename &key :direction :element-type

:if-exists :if-does-not-exist

[Function]

This returns a stream that is connected to the file specified by filename. The filename
is the name of the file to be opened; it may be a string, a pathname, or a stream.
(If the filename is a stream, then it is not closed first or otherwise affected; it is
used merely to provide a file name for the opening of a new stream.)

The keyword arguments specify what kind of stream to produce and how to
handle errors:

:direction

This argument specifies whether the stream should handle input, output, or
both.

:input

The result will be an input stream. This is the default.

:output

The result will be an output stream.

FILE SYSTEM INTERFACE 419

: io

The result will be a bidirectional stream.

:probe

The result will be a no-directional stream (in effect, the stream is created
and then closed). This is useful for determining whether a file exists
without actually setting up a complete stream.

:element-type

This argument specifies the type of the unit of transaction for the stream.
Anything that can be recognized as being a finite subtype of character or
integer is acceptable. In particular, the following types are recognized:

string-char

The unit of transaction is a string-character. The functions read-char

and/or write-char may be used on the stream. This is the default.

(unsigned-byte n)

The unit of transaction is an unsigned byte (a non-negative integer) of
size n. The functions read-byte and/or write-byte may be used on
the stream.

unsigned-byte

The unit of transaction is an unsigned byte (a non-negative integer);
the size of the byte is determined by the file system. The functions.
read-byte and/or write-byte may be used on the stream.

(signed-byte n)

The unit of transaction is a signed byte of size n. The functions read-byte

and/or write-byte may be used on the stream.

signed-byte

The unit of transaction is a signed byte; the size of the byte is deter
mined by the file system. The functions read-byte and/or write-byte

may be used on the stream.

character

The unit of transaction is any character, not just a string-character. The
functions read-char and/or write-char may be used on the stream.

bit

The unit of transaction is a bit (values o and 1). The functions read-byte

and/or write-byte may be used on the stream.

(mod n)

The unit of transaction is a non-negative integer less than n. The func
tions read-byte and/or write-byte may be used on the stream.

420 COMMON LISP

:default

The unit of transaction is to be determined by the file system, based
on the file it finds. The type can be determined by using the function
stream-element-type.

:if-exists

This argument specifies the action to be taken ifthe :direction is :output

or : io and a file of the specified name already exists. If the direction is
:input or :probe, this argument is ignored.

:error

Signal an error. This is the default when the version component of the
filename is not : newest.

:new-version

Create a new file with the same file name, but with a larger version
number. This is the default when the version component of the filename
is : newest.

:rename

Rename the existing file to some other name, and then create a new
file with the specified name.

:rename-and-delete

Rename the existing file to some other name and then delete it (but
don't expunge it, on those systems that distinguish deletion from ex
punging). Then create a new file with the specified name.

:overwrite

The existing file is used, and output operations on the stream will
destructively modify the file. If the : direction is : io, the file is
opened in a bidirectional mode that allows both reading and writing.
The file pointer is initially positioned at the beginning of the file; how
ever, the file is not truncated back to length zero when it is opened.
This mode is most useful when the file-position function can be
used on the stream.

:append

The existing file is used, and output operations on the stream will
destructively modify the file. The file pointer is initially positioned at
the end of the file. If the : direction is : io, the file is opened in a
bidirectional mode that allows both reading and writing.

FILE SYSTEM INTERFACE 421

:supersede

Supersede the existing file. If possible, the implementation should ar
range not to destroy the old file until the new stream is closed, against
the possibility that the stream will be closed in "abort" mode (see
close). This differs from : new-version in that : supersede creates
a new file with the same name as the old one, rather than a file name
with a higher version number.

nil
Do not create a file or even a stream. Instead, simply return nil to
indicate failure.

If the :direction is :output or :io and the value of :if-exists is
: new-version, then the version of the (newly created) file that is opened
will be a version greater than that of any other file in the file system whose
other pathname components are the same as those of filename.

If the : direction is : input or : probe or the value of: if-exists is not
: new-version, and the version component of the filename is : newest, then
the file opened is that file already existing in the file system that has a version
greater than that of any other file in the file system whose other pathname
components are the same as those of filename.

Implementation note: The various file systems in existence today have widely differing
capabilities. A given implementation may not be able to support all of these options in
exactly the manner stated. An implementation is required to recognize all of these option
keywords and to try to do something "reasonable" in the context of the host operating system.
Implementors are encouraged to approximate the semantics specified here as closely as
possible.

As an example, suppose that a file system does not support distinct file versions and does
not distinguish the notions of deletion and expunging (in some file systems file deletion is
reversible until an expunge operation is performed). Then :new-version might be treated
the same as : rename or : supersede, and : rename-and-delete might be treated the same
as :supersede.

If it is utterly impossible for an implementation to handle some option in a manner close
to what is specified here, it may simply signal an error. The opening of files is an area
where complete portability is too much to hope for; the intent here is simply to make things
as portable as possible by providing specific names for a range of commonly supportable
options.

:if-does-not-exist

This argument specifies the action to be taken if a file of the specified name
does not already exist.

422 COMMON LISP

:error

Sigrial an error. This is the default if the :direction is :input, or if
the :if-exists argument is :overwrite or :append.

:create

Create an empty file with the specified name, and then proceed as if it
had already existed (but do not perform any processing directed by the
: if-exists argument). This is the default if the : direction is : output

or : io, and the : if-exists argument is anything but : overwrite or
: append.

hil

Do not create a file or even a stream. Instead, simply return nil to
indicate failure. This is the default if the : direction is : probe.

When the caller is finished with the stream, it shOuld close the file by using the
close function. The with-open-file form does this automatically, and so is
preferred for most purposes. open should be used only when the control structure
of the program necessitates opening and closing of a file in some way more comtJlex
than provided by with-open-file. It is suggested that any program that uses open

directly should use the special form unwind-protect to close the file if an abnor
mal exit occurs.

with-open-file (stream.filename {options}*>
{declaration}* {form}*

[Macro]

with-open-file evaluates the forms of the body (an implicit progn) with the
variable stream bound to a stream that reads or writes the file named by the value
of filename. The options are evaluated and are used as keyword arguments to the
function open.

When control leaves the body, either normally or abnormally (such as by use of
throw), the file is automatically closed. If a new output file is being written, and
control leaves abnormaily, the file is aborted and the file system is left, so far as
possible, as if the file had never been opened. Because with-open-file always
closes the file, even when an error exit is taken, it is preferred over open for most
applications .

.filename is the name of the file to be opened; it may be a string, a pathname,
or a stream. For example:

FILE SYSTEM INTERFACE

(with-open-file (ifile name :direction :input)

(with-open-file (ofile (merge-pathname-defaults ifile

nil

:direction :output

:if-exists :supersede)

(transduce-file ifile ofile)))

"out")

423

Implementation note: While with-open-file tries to automatically close the stream on
exit from the construct, for robustness it is helpful if the garbage collector can detect
discarded streams and automatically close them.

23.3. Renaming, Deleting, and Other File Operations

These functions provide a standard interface to operations provided in some form
by most file systems. It may be that some implementations of COMMON LISP cannot
support them all completely.

rename-file file new-name [Function]

The specified file is renamed to new-name (which must be a filename). The file
may be a string, a pathname, or a stream. If it is an open stream associated with
a file, then the stream itself and the file associated with it are affected (if the file
system permits).

rename-file returns three values if successful. The first value is the new-name
with any missing components filled in by performing a merge-pathnames operation
using file as the defaults. The second value is the true name of the file before it
was renamed. The third value is the truename of the file after it was renamed.

If the renaming operation is not successful, an error is signalled.
It is an error to specify a filename containing a : wild component, for file to

contain a nil component where the file system does not permit a nil component,
or for the result of defaulting missing components of new-name from file to contain
a nil component where the file system does not permit a nil component.

Compatibility note: This corresponds to the function called renamef in MACLISP and
ZETALISP. The name renamef is not used in COMMON LISP because the convention that a
trailing f means "file" conflicts with the use of a trailing f for forms related to setf.

424 COMMON LISP

delete-file file [Function]

The specified file is deleted. The file may be a string, a pathname, or a stream. If
it is an open stream associated with a file, then the stream itself and the file
associated with it are affected (if the file system permits), in which case the stream
may or may not be closed immediately, and the deletion may be immediate or
delayed until the stream is explicitly closed, depending on the requirements of the
file system.

delete-file returns a non-nil value if successful. It is left to the discretion of
the implementation whether an attempt to delete a nonexistent file is considered to
be successful. If the deleting operation is not successful, an error is signalled.

It is an error to specify a file name that contains a : wild component or one that
contains a nil component where the file system does not permit a nil
component.

Compatibility note: This corresponds to the function called deletef in MAcL1sP and
ZETALISP.

probe-file file [Function]

This predicate is false if there is no file named file, and otherwise returns a pathname
that is the true name of the file (which may be different from file because of file
links, version numbers, or other artifacts of the file system). Note that if the file

is an open stream associated with a file, then probe-file cannot return nil but
will produce the true name of the associated file. See true name and the : probe
value for the : direction argument to open.

Compatibility note: This corresponds to the function called probef in MAcL1sP and ZETALISP.

file-write-date file [Function]

file can be a filename or a stream that is open to a file. This returns the time at
which the file was created or last written as an integer in universal time format
(see section 25.4.1), or nil if this cannot be determined.

file-author file [Function]

file can be a filename or a stream that is open to a file. This returns the name of
the author of the file as a string, or nil if this cannot be determined.

FILE SYSTEM INTERFACE 425

file-position file-stream &optional position [Function]

file-position returns or sets the current position within a random-access file.
(f ile-pos itionfile-stream) returns a non-negative integer indicating the cur

rent position within the file-stream, or nil if this cannot be determined. The file
position at the start of a file will be zero. The value returned by file-position

increases monotonically as input or output operations are performed. For a character
file, performing a single read-char or write-char operation may cause the file
position to be increased by more than 1 because of character-set translations (such
as translating between the COMMON LISP #\Newline character and an external
ASCII carriage-return/line-feed sequence) and other aspects of the implementation.
For a binary file, every read-byte or write-byte operation increases the file
position by 1.

(file -position file-stream position) sets the position within file-stream to be
position. The position may be an integer, or : start for the beginning of the stream,
or : end for the end of the stream. If the integer is too large or otherwise inappro
priate, an error is signalled (the file-length function returns the length beyond
which file-position may not access). An integer returned by file-position

of one argument should, in general, be acceptable as a second argument for use
with the same file. With two arguments, file-position returns t if the reposi
tioning was performed successfully, or nil if it was not (for example, because the
file was not random-access).

Implementation note: Implementations that have character files represented as a sequence
of records of bounded size might choose to encode the file position as, for example,
record-number*256 +character-within-record. This is a valid encoding because it increases
monotonically as each character is read or written, though not necessarily by I at each step.
An integer might then be considered "inappropriate" as a second argument to file-position
if, when decoded into record number and character number, it turned out that the specified
record was too short for the specified character number.

Compatibility note: This corresponds to the function called filepos in MAcLrsP and
ZETALISP.

file-length file-stream [Function]

file-stream must be a stream that is open to a file. The length of the file is returned
as a non-negative integer, or nil if the length cannot be determined. For a binary
file, the length is specifically measured in units of the :element-type specified
when the file was opened (see open).

426 COMMON LISP

Compatibility note: This corresponds to the function called lengthf in MAcLrsP and
ZETALISP.

23.4. Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are
typically stored in files; the expressions in the file are mostly special forms such
as de fun, defmacro, and defvar, which define the functions and variables of the
program.

Loading a compiled ("fasload") file is similar, except that the file does not
contain text but rather pre-digested expressions created by the compiler that can
be loaded more quickly.

load filename &key : verbose : print : if-does-not-exist [Function]

This function loads the file named by filename into the LISP environment. It is
assumed that a text (character file) can be automatically distinguished from an
object (binary) file by some appropriate implementation-dependent means, possibly
by the file type. The defaults for filename are taken from the variable *default
pathname-defaults*. If the filename (after the merging in of the defaults) does
not explicitly specify a type, and both text and object types of the file are available
in the file system, load should try to select the more appropriate file by some
implementation-dependent means.

If the first argument is a stream rather than a pathname, then load determines
what kind of stream it is and loads directly from the stream.

The :verbose argument (which defaults to the value of *load-verbose*), if
true, permits load to print a message in the form of a comment (that is, with a
leading semicolon) to *Standard-output* indicating what file is being loaded and
other useful information.

The : print argument (default nil), if true, causes the value of each expression
loaded to be printed to •standard-output*. If a binary file is being loaded, then
what is printed may not reflect precisely the contents of the source file, but never
theless some information will be printed.

If a file is successfully loaded, load always returns a non-nil value. If
: if-does-not-exist is specified and is nil, load just returns nil rather than
signalling an error if the file does not exist.

•load-verbose* [Variable]

This variable provides the default for the : verbose argument to load. Its initial
. value is implementation-dependent.

FILE SYSTEM INTERFACE 427

23.5. Accessing Directories

The following function is a very simple portable primitive for examining a directory.
Most file systems can support much more powerful directory-searching primitives,
but no two are alike. It is expected that most implementations of COMMON LISP

will extend the semantics of the directory function or provide more powerful
primitives.

directory pathname &key [Function]

A list of pathnames is returned, one for each file in the file system that matches
the given pathname. (The pathname argument may be a pathname, a string, or a
stream associated with a file.) For a file that matches, the truenarne appears in the
result list. If no file matches the pathname, it is not an error; directory simply
returns nil, the list of no results. Keywords such as : wild and : newest may be
used in pathname to indicate the search space.

Implementation note: It is anticipated that an implementation may need to provide addi
tional parameters to control the directory search. Therefore directory is specified to take
additional keyword arguments so that implementations may experiment with extensions,
even though no particular keywords are specified here.

As a simple example of such an extension, for a file system that supports the notion of
cross-directory file links, a keyword argument : links might, if non-nil, specify that such
links be included in the result list.

24

Errors

Errors may be signalled for a variety of reasons. Many built-in COMMON LISP
functions may signal an error when given incorrect arguments. Other functions,
described in this chapter, may be called by user programs for the purpose of
signalling an error.

When an error is signalled, it is handled in an implementation-dependent way.
It is expected that each implementation of COMMON LISP will provide an interactive
debugger that prints the error message along with suitable contextual information
such as which function detected the error. The user may interact with the debugger
to examine or modify the state of the program in various ways, including aban
doning the current computation ("aborting to top level") and continuing from the
error. What "continuing" means depends on how the error is signalled; the details
of this are specified below for each error signalling function.

An implementation may also choose to provide means (such as the errset

special form in MACLISP) for a program to trap all errors and prevent the debugger
from stepping in for certain errors.

Rationale: Error-handling of adequate flexibility and power for all systems written in COMMON

LrsP appears to require a complex error classification system. Experience with several er
ror-handling systems in such dialects as MAcL1sP and ZETALISP indicates that further ex
perimentation is needed in this area; it is too early to define a standard error-handling
mechanism. Therefore COMMON LISP provides standard ways to signal errors, but no standard
ways to handle errors. Of course a complete LISP system requires error-handling mecha
nisms, but many useful portable programs do not require them. It is expected that a future
revision of COMMON LISP will address the problem of portable error-handling mechanisms.

Compatibility note: What is here called "continuing," ZETALISP calls "proceeding" from
an error.

428

ERRORS 429

24.1. General Error-Signalling Functions

The functions in this section provide various mechanisms for signalling warnings,
breaks, continuable errors, and fatal errors.

In each case, the caller specifies an error message (a string) that may be processed
(and perhaps displayed to the user) by the error-handling mechanism. All messages
are constructed by applying the function format to the quantities nil, for
mat-string, and all the args to produce a string.

An error message string should not contain a newline character at either the
beginning or end, and should not contain any sort of herald indicating that it is an
error. The system will take care of these according to whatever its preferred style
may be.

Conventionally, error messages are complete English sentences ending with a
period. Newlines in the middle of long messages are acceptable. There should be
no indentation after a newline in the middle of an error message. The error message
need not mention the name of the function that signals the error; it is assumed that
the debugger will make this information available.

Implementation note: If the debugger in a particular implementation displays error mes
sages indented from the prevailing left margin (for example, indented by seven spaces
because they are prefixed by the seven-character herald "Error: "), then the debugger
should take care of inserting the appropriate indentation into a multi-line error message.
Similarly, a debugger that prefixes error messages with semicolons so that they appear to
be comments should take care of inserting a semicolon at the beginning of each line in a
multi-line error message. These rules are suggested because, even within a single imple
mentation, there may be more than one program that presents error messages to the user,
and they may use different styles of presentation. The caller of error cannot anticipate all
such possible styles, and so it is incumbent upon the presenter of the message to make any
necessary adjustments.

COMMON LISP does not specify the manner in which error messages and other
messages are displayed. For the purposes of exposition, a fairly simple style of
textual presentation will be used in the examples in this chapter. The character >

is used to represent the command prompt symbol for a debugger.

error format-string &rest args [Function]

This function signals a fatal error. It is impossible to continue from this kind of
error; thus error will never return to its caller.

The debugger printout in the following example is typical of what an imple
mentation might print when error is called. Suppose that the (misspelled) symbol

430 COMMON LISP

emergnecy-shutdown has no property named command (all too likely, as it is
probably a typographical error for emergency-shutdown).

(defun command-dispatch (cmd)

(let ((fn (get cmd 'command)))

(if (not (null fn))

(funcall fn))

(error "The command ~s is unrecognized." cmd))))

(command-dispatch 'emergnecy-shutdown)

Error: The command EMERGNECY-SHUTDOW~ is unrecognized.

Error signalled by function COMMAND-DISPATCH.

>

Compatibility note: ZETALISP calls this function ferror. MAcL1sP has a function named
error that takes different arguments and can signal either a fatal or a continuable error.

cerror continue-format-string errorjormat-string &rest args [Function]

cerror is used to signal continuable errors. Like error, it signals an error and
enters the debugger. However, cerror allows the program to be continued from
the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns nil.

The code that follows the call to cerror will then be executed. This code should
correct the problem, perhaps by accepting a new value from the user if a variable
was invalid.

If the code that corrects the problem interacts with the program's use and might
possibly be misled, it should make sure the error has really been corrected before
continuing. One way to do this is to put the call to cerror and the correction code
in a loop, checking each time to see if the error has been corrected before termi
nating the loop.

The continue-format-string argument, like the errorjormat-string argument, is
given as a control string to format along with the args to construct a message
string. The error message string is used in the same way that error uses it. The
continue message string should describe the effect of continuing. The intent is that
this message can be displayed as an aid to the user in deciding whether and how
to continue. For example, it might be used by an interactive debugger as part of
the documentation of its "continue" command.

The content of the continue message should adhere to the rules of style for error
messages. It should not include any statement of how the "continue" command is
given, since this may be different for each debugger. (It is up to the debugger to

ERRORS 431

supply this information according to its own particular style of presentation and
user interaction.)

Here is an example where the caller of cerror, if continued, fixes the problem
without any further user interaction:

(let ((nvals (list-length vals)))

(unless (= nvals 3)

(cond ((< nvals 3)

(cerror "Assume missing values are zero."

"Too few values in -s;-%

three are required, -

but -R -:cwere-;was-J supplied."

nvals (= nvals 1))

(setq vals (append vals (subseq '(O O O) nvals))))

(t (cerror "Ignore all values after the first three."

"Too many values in -s;-%

three are required, -

but -R were supplied."

nvals)

(setq vals (subseq vals O 3))))))

If vals were the list (-L;7), the interaction might look like this:

Error: Too few values in (-L;7);

three are required, but one was supplied.

Error signalled by function EXAMPLE.

If continued: Assume missing values are zero.

>

In this example, a loop is used to ensure that a test is satisfied. (This example
could be written more succinctly using assert or check-type, which indeed
supply such loops.)

(do ()

((known-wordp word) word)

(cerror "You will be prompted for a replacement word."

"-sis an unknown word (possibly misspelled)."

word)

(format •query-io• "-&New word: ")

(setq word (read •query-io•)))

In complex cases where the errorjormat-string uses some of the args and the
continuejormat-string uses others, it may be necessary to use the format directives

432 COMMON LISP

~* and ~®* to skip over unwanted arguments in one or both of the format control
strings.

Compatibility note: The ZETALISP function fsignal is similar to this, but returns : no-action
rather than nil, and fails to distinguish between the error message and the continue message.

warn format-string &rest args [Function]

warn prints an error message, but normally doesn't go into the debugger. (However,
this may be controlled by the variable *break-on-warnings*.) warn returns nil.

This function would be just the same as format with the output directed to the
stream in *error-output*, except that warn may perform various implementa
tion-dependent formatting and other actions. For example, an implementation of
warn should take care of advancing to a fresh line before and after the error message
and perhaps supplying the name of the function that called warn.

Compatibility note: The ZETALISP function compiler: warn is an approximate equivalent
to this.

*break-on-warnings [Variable]

If *break-on-warnings* is not nil, then the function warn behaves like break.

It prints its message and then goes to the debugger or break loop. Continuing
causes warn to return nil. This flag is intended primarily for use when the user is
debugging programs that issue warnings; in "production" use, the value of
break-on-warnings should be nil.

break &optional format-string &rest args [Function]

break prints the message and goes directly into the debugger, without allowing
any possibility of interception by programmed error-handling facilities. (Right now,
there aren't any error-handling facilities defined in COMMON LISP, but there might
be in particular implementations, and there will be some defined by COMMON LISP

in the future.) When continued, break returns nil. It is permissible to call break

with no arguments; a suitable default message will be provided.
break is presumed to be used as a way of inserting temporary debugging "break

points" in a program, not as a way of signalling errors; it is expected that continuing
from a break will not trigger any unusual recovery action. For this reason, break

ERRORS 433

does not take the additional format control-string argument that cerror takes.
This and the lack of any possibility of interception by programmed error-handling
are the only program-visible differences between break and cerror. The inter
active debugger may choose to display them differently; for instance, a cerror

message might be prefixed with the herald "Error: " and a break message with
"Break: ". This depends on the user-interface style of the particular implemen
tation. A particular implementation may choose, according to its own style and
needs, when break is called to go into a debugger different from the one used for
handling errors. For example, it might go into an ordinary read-eval-print loop
identical to the top-level one except for the provision of a "continue" command
that causes break to return nil.

Compatibility note: In MAcL1sP, break is a special form (FEXPR) that takes two optional
arguments. The first is a symbol (it would be a string if MACLISP had strings), which is not
evaluated. The second is evaluated to produce a truth value specifying whether break should
break (true) or return immediately (false). In COMMON LISP one makes a call to break
conditional by putting it inside a conditional form such as when or unless.

24.2. Specialized Error-Signalling Forms and Macros

These facilities are designed to make it convenient for the user to insert error checks
into his code.

check-type place typespec &optional string [Macro]

check-type signals an error if the contents of place are not of the desired type.
If the user continues from this error, he will be asked for a new value; check-type

will store the new value in place and start over, checking the type of the new value
and signalling another error if it is still not of the desired type. Subforms of place
may be evaluated multiple times because of the implicit loop generated. check-type

returns nil.

The place must be a generalized variable reference acceptable to setf. The
typespec must be a type specifier; it is not evaluated. The string should be an
English description of the type, starting with an indefinite article ("a" or "an"); it
is evaluated. If string is not supplied, it is computed automatically from typespec.
(The optional string argument is allowed because some applications of check-type

may require a more specific description of what is wanted than can be generated
automatically from the type specifier.)

The error message will mention place, its contents, and the desired type.

434 COMMON LISP

Implementation note: An implementation may choose to generate a somewhat differently
worded error message if it recognizes that place is of a particular form, such as one of the
arguments to the function that called check-type.

Examples:

(setq aardvarks '(sam harry fred))

(check-type aardvarks (vector integer))

Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a vector of integers.

(setq naards 'foo)

(check-type naards (integer 0 *) "a positive integer")

Error: The value of NAARDS, FOO, is not a positive integer.

Compatibility note: In ZETALISP the equivalent facility is called check-arg-type.

assert test-form [({place}*) [string {arg}*]] [Macro]

assert signals an error if the value of testjorm is nil. Continuing from this error
will allow the user to alter the values of some variables, and assert will then start
over, evaluating test-form again. assert returns nil.

testjorm is any form. Each place (there may be any number of them, or none)
must be a generalized-variable reference acceptable to setf. These should be vari
ables on which testjorm depends, whose values may sensibly be changed by the
user in attempting to correct the error. Subforms of each place are only evaluated
if an error is signalled, and may be re-evaluated if the error is re-signalled (after
continuing without actually fixing the problem).

The string is an error message string, and the args are additional arguments;
they are evaluated only if an error is signalled, and re-evaluated if the error is
signalled again. The function format is applied in the usual way to string and args
to produce the actual error message. If string is omitted (and therefore also the
args), a default error message is used.

Implementation note: The debugger need not include the test-form in the error message,
and the places should not be included in the message, but they should be made available
for the user's perusal. If the user gives the "continue" command, he should be presented
with the opportunity to alter the values of any or all of the references. The details of this
depend on the implementation's style of user interface, of course.

ERRORS

Examples:

(assert (valve-closed-p v1))

(assert (valve-closed-p v1) () "Live steam is escaping!")

(assert (valve-closed-p v1)

((valve-manual-control v1))

"Live steam is escaping!")

Note here that the user is invited to change BASE,

but not the bounds MINBASE and MAXBASE.

(assert (<= minbase base maxbase)

(base)

"Base ~n is not in the range [~n, ~n l"

base minbase maxbase)

Note here that it is probably not desirable to include the

entire contents of the two matrices in the error message.

It is reasonable to assume that the debugger will give

the user access to the values of the places A and B.

(assert (= (array-dimension a 1)

(array-dimension b 0))

(a b)

"Cannot multiply a ~n-by-~D matrix ~

and a ~n-by-~D matrix."

(array-dimension a 0)

(array-dimension a 1)

(array-dimension b 0)

(array-dimension b 1))

24.3. Special Forms for Exhaustive Case Analysis

• 435

The syntax for etypecase and ctypecase is the same as for typecase, except
that no otherwise clause is permitted. Similarly, the syntax for ecase and cease

is the same as for case except for the otherwise clause.
et ypecase and ecase are similar to t ypecase and case, respectively, but signal

a non-continuable error rather than returning nil if no clause is selected.
ctypecase and cease are also similar to typecase and case, but signal a

continuable error if no clause is selected.

etypecase keyform {<type {form}*)}* [Macro]

This control construct is similar to typecase, but no explicit otherwise or t

436 COMMON. LISP

clause is permitted. If no clause is satisfied, etypecase signals an error with a
message constructed from the clauses. It is not permissible to continue from this
error. To supply his own error message, the user should use typecase with an
otherwise clause containing a call to error. The name of this function stands for
"exhaustive type case" or "error-checking type case." For example:

(setq x 1/3)

(etypecase x

(integer x)

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither

an integer nor a symbol.

ctypecase keyplace {(type {form}*)}* [Macro]

This control construct is similar to typecase, but no explicit otherwise or t

clause is permitted. The keyplace must be a generalized variable reference acceptable
to setf. If no clause is satisfied, ct ypecase signals an error with a message
constructed from the clauses. Continuing from this error causes ctypecase to
accept a new value from the user, store it into keyplace, and start over, making
the type tests again. Subforms of keyplace may be evaluated multiple times. The
name of this function stands for "continuable exhaustive type case."

ecase keyform { ({({key}*) I key} {form}*)}* [Macro]

This control construct is similar to case, but no explicit otherwise or t clause is
permitted. If no clause is satisfied, ecase signals an error with a message con
structed from the clauses. It is not permissible to continue from this error. To
supply an error message, the user should use case with an otherwise clause
containing a call to error. The name of this function stands for "exhaustive case"
or "error-checking case." For example:

(setq x 1/3)

(ecase x

(alpha (foo))

(omega (bar))

((zeta phi) (baz)))

Error: The value of x, 1/3, is not

ALPHA, OMEGA, ZETA, or PHI.

ERRORS 437

cease keyform {<{<{key}*) I key} {form}*)}* [Macro]

This control construct is similar to case, but no explicit otherwise or t clause is
permitted. The keyplace must be a generalized variable reference acceptable to
setf. If no clause is satisfied, cease signals an error with a message constructed
from the clauses. Continuing from this error causes cease to accept a new value
from the user, store it into key place, and start over, making the clause tests again.
Subforms of keyplace may be evaluated multiple times. The name of this function
stands for "continuable exhaustive case."

Rationale: The special forms etypecase, ctypecase, ecase, and cease are included in
COMMON LISP, even though a user could write them himself using the other standard facilities
provided, because it is likely that many users will want these. COMMON LISP therefore
provides a standard consistent set rather than allowing a variety of incompatible dialects to
develop.

In addition, experience has shown that some LISP programmers are too lazy to put an
appropriate otherwise clause into every case statement to check for cases they didn't
anticipate, even if they would agree that it will probably hurt them later. If an otherwise
clause can be included very easily by adding one character to the name of the construct, it
is perhaps more likely that programmers will take the trouble to do it.

Thee versions do nothing more than supply automatically generated otherwise clauses,
but correct implementation of the c versions requires some care. It is therefore especially
important that the c versions be provided by the system so users don't have to puzzle them
out on their own. Individual implementations may be able to do a better job of supporting
these special forms, using their own idiosyncratic facilities, than can be done using the
error-signalling facilities defined by COMMON LISP.

25

Miscellaneous Features

In this chapter are described various things that don't seem to fit neatly anywhere
else in this book: the compiler, the documentation function, debugging aids,
environment inquiries (including facilities for calculating and measuring time), and
the identity function.

25.1. The Compiler

The compiler is a program that may make code run faster by translating programs
into an implementation-dependent form that can be executed more efficiently by
the computer. Most of the time you can write programs without worrying about
the compiler; compiling a file of code should produce an equivalent but more
efficient program. When doing more esoteric things, you may need to think carefully
about what happens at "compile time" and what happens at "load time." Then the
difference between the syntaxes#. and#, becomes important, and the eval-when

construct becomes particularly useful.
Most declarations are not used by the COMMON LISP interpreter; they may be

used to give advice to the compiler. The compiler may attempt to check your
advice and warn you if it is inconsistent.

Unlike most other LISP dialects, COMMON LISP recognizes special declarations
in interpreted code as well as compiled code. This potential source of incompati
bility between interpreted and compiled code is thereby eliminated in COMMON

LISP.

The internal workings of a compiler will of course be highly implementa
tion-dependent. The following functions provide a standard interface to the com
piler, however.

compile name &optional definition [Function]

If definition is supplied, it should be a lambda-expression, the interpreted function

438

MISCELLANEOUS FEATURES 439

to be compiled. If it is not supplied, then name should be a symbol with a definition
that is a lambda-expression; that definition is compiled and the resulting compiled
code is put back into the symbol as its function definition.

The definition is compiled and a compiled-function object produced. If name is
a non-nil symbol, then the compiled-function object is installed as the global
function definition of the symbol and the symbol is returned. If name is nil, then
the compiled-function object itself is returned. For example:

(de fun foo ...) ::} foo
(compile 'foo) ::} foo

; Now foo runs faster.

; A function definition.
; Compile it.

(compile nil '(lambda (ab c) (- (* b b) (* L; a c))))
::} a compiled function of three arguments that computes b2 - 4ac

compile-file input-pathname &key :output-file [Function]

The input-pathname must be a valid file specifier, such as a pathname. The defaults
for input-filename are taken from the variable •default-pathname-defaults•.
The file should be a LISP source file; its contents are compiled and written as a
binary object file.

The : output-file argument may be used to specify an output pathname; it
defaults in a manner appropriate to the implementation's file system conventions.

disassemble name-or-compiledjunction [Function]

The argument should be either a function object, a lambda-expression, or a symbol
with a function definition. If the relevant function is not a compiled function, it is
first compiled. In any case, the compiled code is then "reverse-assembled" and
printed out in a symbolic format. This is primarily useful for debugging the com
piler, but also often of use to the novice who wishes to understand the workings
of compiled code.

Implementation note: Implementors are encouraged to make the output readable, preferably
with helpful comments.

25.2. Documentation

A simple facility is provided for attaching strings to symbols for the purpose of
on-line documentation. Rather than using the property list of the symbol, a separate

440 COMMON LISP

function documentation is provided so that implementations can optimize the
storage of documentation strings.

documentation symbol doc-type
This function returns the documentation string of type doc-type for the symbol,

or nil if none exists. Both arguments must be symbols. Some kinds of documen
tation are provided automatically by certain COMMON LISP constructs if the user
writes an optional documentation string within them:

Construct Documentation Type

def var variable

defparameter variable

def constant variable

de fun function

defmacro function

defstruct structure

def type type

defsetf setf

In addition, names of special forms may also have function documentation. (Macros
and special forms are not really functions, of course, but it is convenient to group
them with functions for documentation purposes.)

setf may be used with documentation to update documentation information.

25.3. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently
dependent on the host environment that their complete definition is beyond the
scope of this manual. However, they are also sufficiently useful as to warrant
mention here. It is expected every implementation will provide some version of
these utilities, however clever or however simple.

trace {Junction-name}* [Macro]
untrace {function-name}* [Macro]

Invoking trace with one or more function names (symbols) causes the functions
named to be traced. Henceforth, whenever such a function is invoked, information
about the call, the arguments passed, and the eventually returned values, if any,
will be printed to the stream that is the value of •trace-output•. For example:

MISCELLANEOUS FEATURES 441

(trace fft gcd string-upcase)

If a function call is open-coded (possibly as a result of an inline declaration),
then such a call may not produce trace output.

Invoking untrace with one or more function names will cause those functions
not to be traced any more.

Tracing an already traced function, or untracing a function not currently being
traced, should produce no harmful effects, but may produce a warning message.

Calling trace with no argument forms will return a list of functions currently
being traced.

Calling untrace with no argument forms will cause all currently traced functions
to be no longer traced.

trace and untrace may also accept additional implementation-dependent ar

gument formats. The format of the trace output is implementation-dependent.

step form [Macro]

This evaluates form and returns what form returns. However, the user is allowed
to interactively "single-step" through the evaluation of form, at least through those
evaluation steps that are performed interpretively. The nature of the interaction is
implementation-dependent. However, implementations are encouraged to respond
to the typing of the character ? by providing help including a list of commands.

time form [Macro]

This evaluates form and returns what form returns. However, as a side effect,
various timing data and other information are printed to the stream that is the value
of *trace-output•. The nature and format of the printed information is imple
mentation-dependent. However, implementations are encouraged to provide such
information as elapsed real time, machine run time, storage management statistics,
and so on.

Compatibility note: This facility is inspired by the INTERLISP facility of the same name.
Note that the MACLISP/ZETALISP function time does something else entirely, namely return
a quantity indicating relative elapsed real time.

describe object [Function]

describe prints, to the stream in the variable *Standard-output*, information
about the object. Sometimes it will describe something that it finds inside something

442 COMMON LISP

else; such recursive descriptions are indented appropriately. For instance, describe

of a symbol will exhibit the symbol's value, its definition, and each of its properties.
describe of a floating-point number will exhibit its internal representation in a
way that is useful for tracking down round-off errors and the like. The nature and
format of the output is implementation-dependent.

describe returns no values (that is, it returns what the expression (values)

returns: zero values).

inspect object [Function]

inspect is an interactive version of describe. The nature of the interaction is
implementation-dependent, butthe purpose of inspect is to make it easy to wander
through a data structure, examining and modifying parts of it. Implementations are
encouraged to respond to the typing of the character ? by providing help, including
a list of commands.

room &optional x [Function]

room prints, to the stream in the variable •standard-output*, information about
the state of internal storage and its management. This might include descriptions
of the amount of memory in use and the degree of memory compaction, possibly
broken down by internal data type if that is appropriate. The nature and format of
the printed information is implementation-dependent. The intent is to provide in
formation that may help a user to tune his program to a particular implementation.

(room nil) prints out a minimal amount of information. (room t) prints out a
maximal amount of information. Simply (room) prints out an intermediate amount
of information that is likely to be useful.

ed &optional x [Function]

If the implementation provides a resident editor, this function should invoke it.
(ed) or (ed nil) simply enters the editor, leaving you in the same state as the

last time you were in the editor.
(ed pathname) edits the contents of the file specified by pathname. The path

name may be an actual pathname or a string.
(ed symbol) tries to let you edit the text for the function named symbol. The

means by which the function text is obtained is implementation-dependent; it might
involve searching the file system, or pretty-printing resident interpreted code, for
example.

MISCELLANEOUS FEATURES 443

dribble &optional pathname [Function]

(dribblepathoome) rebinds •standard-input• and •standard-output•, and/or
takes other appropriate action, so as to send a record of the input/output interaction
to a file named by pathname. The primary purpose of this is to create a readable
record of an interactive session.

(drib b 1 e) terminates the recording of input and output and closes the dribble
file.

apropos string &optional package
apropos- list string &optional package

[Function]
[Function]

(apropos string) tries to find all available symbols whose print names contain
string as a substring. (A symbol may be supplied for the string, in which case the
print name of the symbol is used.) Whenever apropos finds a symbol, it prints
out the symbol's name; in addition, information about the function definition and
dynamic value of the symbol, if any, is printed. If package is specified and not
nil, then only symbols available in that package are examined; otherwise "all"
packages are searched, as if by do-all-symbols. Because a symbol may be avail
able by way of more than one inheritance path, apropos may print information
about the same symbol more than once. The information is printed to the stream
that is the value of •standard-output•. apropos returns no values (that is, it
returns what the expression (values) returns: zero values).

apropos-list performs the same search that apropos does, but prints nothing.
It returns a list of the symbols whose print names contain string as a substring.

25.4. Environment Inquiries

Environment inquiry functions provide information about the environment in which
a COMMON LISP program is being executed. They are described here in two categories:
first, those dealing with determination and measurement of time, and second, all
the others, most of which deal with identification of the computer hardware and
software.

25.4.1. Time Functions

Time is represented in three different ways in COMMON LISP: Decoded Time,
Universal Time, and Internal Time. The first two representations are used primarily
to represent calendar time, and are precise only to one second. Internal Time is

444 COMMON LISP

used primarily to represent measurements of computer time (such as run time) and
is precise to some implementation-dependent fraction of a second, as specified by
internal-time-units-per-second. Decoded Time format is used only for absolute
time indications. Universal Time and Internal Time formats are used for both
absolute and relative times.

Decoded Time format represents calendar time as a number of components:

• Second: an integer between 0 and 59, inclusive.

• Minute: an integer between 0 and 59, inclusive.

• Hour: an integer between 0 and 23, inclusive.

• Date: an integer between 1 and 31, inclusive (the upper limit actually depends
on the month and year, of course).

• Month: an integer between 1 and 12, inclusive; 1 means January, 12 means
December.

• Year: an integer indicating the year A.D. However, if this integer is between 0
and 99, the "obvious" year is used; more precisely, that year is assumed that is
equal to the integer modulo 100 and withiri fifty years of the current year (in
clusive backwards and exclusive forwards). Thus, in the year 1978, year 28 is
1928 but year 27 is 2027. (Functions that return time in this format always return
a full year number.)

Compatibility note: This is incompatible with the ZETALISP definition in two ways. First,
in ZETALISP a year between 0 and 99 always has 1900 added to it. Second, in ZETALISP

time functions return the abbreviated year number between 0 and 99 rather than the full
year number. The incompatibility is prompted by the imminent arrival of the twenty-first
century. Note that (mod year 100) always reliably converts a year number to the abbreviated
form, while the inverse conversion can be very difficult.

• Day-of-week: an integer between 0 and 6, inclusive; 0 means Monday, 1 means
Tuesday, and so on; 6 means Sunday.

• Daylight-saving-time-p: a flag that, if not nil, indicates that daylight saving time
is in effect.

• Time-zone: an integer specified as the number of hours west of GMT (Greenwich
Mean Time). For example, in Massachusetts the time zone is 5, and in California
it is 8. Any adjustment for daylight saving time is separate from this.

Universal Time represents time as a single non-negative integer. For relative
time purposes, this is a number of seconds. For absolute time, this is the number
of seconds since midnight, January 1, 1900 GMT. Thus the time 1 is 00:00:01

MISCELLANEOUS FEATURES 445

(that is, 12:00:01 A.M.) on January 1, 1900 GMT. Similarly, the time 2398291201
corresponds to time 00:00:01 on January 1, 1976 GMT. Recall that the year 1900
was not a leap year; for the purposes of COMMON LISP, a year is a leap year if
and only if its number is divisible by 4, except that years divisible by 100 are not
leap years, except that years divisible by 400 are leap years. Therefore the year
2000 will be a leap year. (Note that the "leap seconds" that are sporadically inserted
by the world's official timekeepers as an additional correction are ignored; COMMON

LISP assumes that every day is exactly 86400 seconds long.) Universal Time format
is used as a standard time representation within the ARPANET; see reference [8].
Because the COMMON LISP Universal Time representation uses only non-negative
integers, times before the base time of midnight, January 1, 1900 GMT cannot be
processed by COMMON LISP.

Internal Time also represents time as a single integer, in terms of an implemen
tation-dependent unit. Relative time is measured as a number of these units. Ab
solute time is relative to an arbitrary time base, typically the time at which the
system began running.

get-decoded-time [Function]

The current time is returned in Decoded Time format. Nine values are returned:
second, minute, hour, date, month, year, day-of-week, daylight-saving-time-p, and
time-zone.

Compatibility note: In ZETALISP the time-zone is not currently returned. Consider, however,
the use of COMMON LISP in some mobile vehicle. It is entirely plausible that the time zone
might change from time to time.

get-universal-time [Function]

The current time of day is returned as a single integer in Universal Time format.

decode-universal-time universal-time &optional time-zone [Function]

The time specified by universal-time in Universal Time format is converted to
Decoded Time format. Nine values are returned: second, minute, hour, date, month,
year, day-of-week, daylight-saving-time-p, and time-zone.

Compatibility note: In ZETALISP the time-zone is not currently returned. Consider, however,
the use of COMMON LISP in some mobile vehicle. It is entirely plausible that the time-zone
might change from time to time.

446 COMMON LISP

The time-zone argument defaults to the current time zone.

encode-universal-time second minute hour date month year
&optional time-zone

[Function]

The time specified by the given components of Decoded Time format is encoded
into Universal Time format and returned. If you don't specify time-zone, it defaults
to the current time zone adjusted for daylight saving time. If you provide time-zone
explicitly, no adjustment for daylight saving time is performed.

internal-time-units-per-second [Constant]

This value is an integer, the implementation-dependent number of internal time
units in a second. (The internal time unit must be chosen so that one second is an
integral multiple of it.)

Rationale: The reason for allowing the internal time units to be implementation-dependent
is so that get-internal-run-time and get-internal-real-time can execute with min
imum overhead. The idea is that it should be very likely that a fixnum will suffice as the
returned value from these functions. This probability can be tuned to the implementation by
trading off the speed of the machine against the word size. Any particular unit will be
inappropriate for some implementations: a microsecond is too long for a very fast machine,
while a much smaller unit would force many implementations to return bignums for most
calls to get-internal-time, rendering that function less useful for accurate timing
measurements.

get-internal-run-time [Function]

The current run time is returned as a single integer in Internal Time format. The
precise meaning of this quantity is implementation-dependent; it may measure real
time, run time, CPU cycles, or some other quantity. The intent is that the difference
between the values of two calls to this function be the amount of time between the
two calls during which computational effort was expended on behalf of the executing
program.

get-internal-real-time [Function]

The current time is returned as a single integer in Internal Time format. This time
is relative to an arbitrary time base, but the difference between the values of two
calls to this function will be the amount of elapsed real time between the two calls,
measured in the units defined by internal-time-units-per-second.

MISCELLANEOUS FEATURES 447

sleep seconds [Function]

(sleep n) causes execution to cease and become dormant for approximately n

seconds of real time, whereupon execution is resumed. The argument may be any
non-negative non-complex number. sleep returns nil.

25.4.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can be
produced, nil is returned instead of a string.

Rationale: These inquiry facilities are functions rather than variables against the possibility
that a COMMON Lrsp process might migrate from machine to machine. This need not happen
in a distributed environment; consider, for example, dumping a core image file containing
a compiler and then shipping it to another site.

lisp-implementation-type [Function]

A string is returned that identifies the generic name of the particular COMMON LISP

implementation. Examples: "Spice LISP", "Zetalisp".

lisp-implementation-version [Function]

A string is returned that identifies the version of the particular COMMON LISP

implementation; this information should be of use to maintainers of the
implementation. Examples: "1192", "53. 7 with complex numbers", "17<';6.9A,

NEW IO 53, ETHER 5. 3".

machine-type [Function]

A string is returned that identifies the generic name of the computer hardware on
which COMMON LISP is running. Examples: "DEC PDP-10", "DEC VAX-11/7/lO".

machine-version [Function]

A string is returned that identifies the version of the computer hardware on which
COMMON LISP is running. Example: "KL1D, microcode 9".

machine-instance [Function]

A string is returned that identifies the particular instance of the computer hardware

448 COMMON LISP

on which COMMON LISP is running; this might be a local nickname, for example,
and/or a serial number. Examples: "MIT-MC", "CMU GP-VAX".

software-type [Function]

A string is returned that identifies the generic name of any relevant supporting
software. Examples: "Spice'', "TOPS-20", "ITS".

software-version [Function]

A string is returned that identifies the version of any relevant supporting software;
this information should be of use to maintainers of the implementation.

short-site-name

long-site-name

[Function]
[Function]

A string is returned that identifies the physical location of the computer hardware.
Examples of short names: "MIT AI Lab", "CMU-CSD". Examples of long names:

"MIT Artificial Intelligence Laboratory"

"Massachusetts Institute of Technology

Artificial Intelligence Laboratory"

"Carnegie-Mellon University Computer Science Department"

See aho user-homedir-pathname.

•features• [Variable]

The value of the variable •features• should be a list of symbols that name
"features" provided by the implementation. Most such names will be implemen
tation-specific; typically a name for the implementation will be included. One
standard feature name is ieee-floating-point, which should be present if and
only if full IEEE proposed floating-point arithmetic [9] is supported.

The value of this variable is used by the # + and # - reader syntax.

25.5. Identity Function

This function is occasionally useful as an argument to other functions that require
functions as arguments. (Got that?)

identity object [Function]

The object is returned as the value of identity.

References

1. ANSI X3J3 Committee. "Draft Proposed American National Standard FORTRAN."
ACM S/GPLAN Notices 11, 3 (March 1976).

2. American National Standard Programming Language FORTRAN. ANSI X3.9-1978
edition. American National Standards Institute, Inc. (New York, New York, 1978).

3. Brooks, Rodney A.; Gabriel, Richard P.; and Steele, Guy L., Jr. "An Optimizing
Compiler for Lexically Scoped LISP." Proceedings of the 1982 Symposium on Compiler
Construction. ACM SIGPLAN (Boston, June 1982), 261-275. Proceedings published
as ACM SIGPLAN Notices 17, 6 (June 1982).

4. Cody, William J., Jr., and Waite, William. Software Manual for the Elementary Func
tions. Prentice-Hall (Englewood Cliffs, New Jersey, 1980).

5. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard for Floating
Point Arithmetic." Computer 13, I (Jan. 1980), 68-79. Errata for this paper appeared
as [6].

6. Coonen, Jerome T. "Errata for 'An Implementation Guide to a Proposed Standard for
Floating-Point Arithmetic'." Computer 14, 3 (March 1981), 62. These are errata for
[5].

7. Fateman, Richard J. "Reply to an Editorial." ACM S/GSAM Bulletin 25 (March 1973),
9-11.

8. Harrenstien, Kenneth L. Time Server. Request for Comments (RFC) 738 (NIC 42218),
ARPANET Network Working Group (Oct. 1977). Available from the ARPANET Net
work Information Center.

9. IEEE Computer Society Standard Committee, Microprocessor Standards Subcommittee,
Floating-Point Working Group. "A Proposed Standard for Binary Floating-Point Arith
metic." Computer 14, 3 (March 1981), 51-62.

10. Knuth, Donald E. The Art of Computer Programming. Volume 2: Seminumerical Al
gorithms.Addison-Wesley (Reading, Massachusetts, 1969).

11. Marti, J.; Hearn, A.C.; Griss, M.L.; and Griss, C. "Standard LISP Report." Sf GP LAN
Notices 14, IO (Oct. 1979), 48-68.

12. Moon, David. MacLISP Reference Manual, Revision 0. M.I.T. Project MAC (Cam
bridge, Massachusetts, April 1974).

13. Moon, David; Stallman, Richard; and Weinreb, Daniel. LISP Machine Manual, Fifth
Edition. MIT Artificial Intelligence Lab. (Cambridge, Massachusetts, January 1983).

450 COMMON LISP

14. Penfield, Paul, Jr. "Principal Values and Branch Cuts in Complex APL." APL 81
Conference Proceedings. ACM SIGAPL (San Francisco, Sept. 1981), 248-256. Pro
ceedings published as APL Quote Quad 12, 1 (September 1981).

15. Pitman, Kent M. The Revised MacLISP Manual. MIT/LCR/TR 295, MIT Lab. for
Computer Science (Cambridge, Massachusetts, May 1983).

16. The Utah Symbolic Computation Group. The Portable Standard LISP Users Manual.
Tech. Rept. TR-10, Department of Computer Science, University of Utah (Salt Lake
City, Jan. 1982).

17. Reiser, John F. Analysis of Additive Random Number Generators. Tech. Rept. STAN
CS-77-601, Stanford University Computer Science Department (March 1977).

18. Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on SCHEME: A
Dialect of LISP. AI Memo 452, MIT Artificial Intelligence Lab. (Cambridge, Massa
chusetts, Jan. 1978).

19. Suzuki, Norihisa. "Analysis of Pointer 'Rotation'." Comm. ACM 25, 5 (May 1982),
330-335.

20. Teitelman, Warren, et al. lnterLISP Reference Manual. Xerox Palo Alto Research
Center (Palo Alto, California, 1978). Third revision.

21. Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. MIT
Artificial Intelligence Lab. (Cambridge, Massachusetts, July 1981).

22. White, Jon L. "NIL: A Perspective." Proceedings of the 1979 MACSYMA Users'
Conference. MIT Laboratory for Computer Science (Cambridge, Massachusetts, June
1979).

Index

a-list 279
: abort keyword

for close 332
abs function 205-206
access functions 306
access operation functions 93-94
aeons function 279
acos function 207; 195, 212
acosh function 209-210; 195, 213
ADA 14, 83, 84
adjoin function 276; 270
adjust-array function 297; 296
: adjustable keyword

for make-array 288; 286, 289
adjustable-array-p function 293: 298
ALGOL 37, 56, 85, 130, 217
alteration of list structure 272
alpha-char-p function 235
alphanumericp function 236-237
and macro 82-83; 44, 45, 115, 137
APL 28, 210, 252
append function 268; 269
: append keyword

for if-exists option to open 420
apply function 107-108; 32, 96, 130, 137,

144, 145, 291, 322
applyhook function 323-324; 321, 322
•applyhook• variable 322-323
apropos function 443
apropos-list function 443
aref function 290-291; 28, 95, 248, 293,

295
arithmetic operations 199-202
array 12, 28-29, 286-298, 369

access 290-291
bit vector 30
changing dimensions of 297-298
creation of 286-298
displaced 288
fill pointers 295-297
functions for bit array 293-295
general 286
information 291-293
predicate 76

shared 288
specialized 286
string 30
vector 29

:array keyword
for write 382
for write-to-string 383

array-dimension function 292; 295
array-dimension-limit constant 290; 286
array-dimensions function 292
array-element-type function 291
array-has-fill-pointer-p function 296
array-in-bounds-p function 292
array-rank function 292
array-rank-limit constant 289-290; 28,

287
array-row-major-index function 293
array-total-size function 292
array-total-size-limit constant 290; 287
arrayp function 76
ash function 224
asin function 207; 195, 210
asinh function 209-210; 211-212
assert macro 434-435; 99, 431
assignment of constants and variables 91-93
assoc function 280-281; 279
assoc-if function 280-281
assoc-if-not function 280-281
association list 125, 279-281

as a substitution table 274
compared to hash table 282
compared to property list 164

atan function 207-209; 212
atanh function 209-210; 195, 213-214
atom predicate 73
atom function 73; 27, 125
atomic symbols-see symbols

: base keyword
for write 382
for write-to-string 383

bignum 14
binding 36-37, 38, 39, 55-56, 87-89

new variables 110-114

451

452 INDEX

bit function 293-294; 95, 290
bit keyword

for :element-type option to open 419
bit string

infinite 220-221
integer representation 220-221

bit-and function 294--295
bit-andc1 function 294--295
bit-andc2 function 294--295
bit-eqv function 294--295
bit-ior function 294--295
bit-nand function 294--295
bit-nor function 294--295
bit-not function 295
bit-orc1 function 294--295
bit-orc2 function 294--295
bit vector 12, 29, 30, 286, 368

predicate 75
bit-vector-p function 75
bit vector representation 220-221
bit- xor function 294--295
block special form 119-120; 39, 57, 85, 121,

124, 126, 130, 131, 133, 137, 138
boole function 222-223
boole constants 222-223
both-case-p function 235-236
boundary conditions for complex

functions 210-214
boundp function 90
branch cuts for complex functions 210-214
break function 432-433
•break-on-warnings• variable 432
butlast function 271
byte 225
byte function 225
byte manipulation functions 225-228
byte specifiers 225
byte-position function 226
byte-size function 226

c language 22, 360
call-arguments-limit constant 108
canonicalization

complex 20, 195
rational 15, 195

car 12, 26-27, 262-264
car/cdr composition functions 263; 95
car function 262; 93, 94, 95, 272
:case keyword

for write 382
for write-to-string 383

case macro 117-118; 115, 119, 130, 137,
435, 436, 437

catch 139
catch special form 139-140; 39, 57, 85, 119,

137, 138, 142
cease macro 437; 99, 118, 137, 435
cdr 12, 26-27, 262-264
cdr function 262-263; 95, 272
ceiling function 215-217; 52, 200
cerror function 430-432; 385, 433

char function 300; 95, 290
char-bit function 243-244; 96
char-bits function 240; 234
char-bits- limit constant 234
char-code function 239; 52, 233
char-code-limit constant 233
char-control-bit constant 243
char-downcase function 241; 235
char-equal function 239; 81, 301
char-font function 240; 234
char-font-limit constant 234
char-greaterp function 239
char-hyper-bit constant 243
char-int function 242; 52, 237
char-lessp function 239; 261, 302
char-meta-bit constant 243
char- name function 242-243
char-not-equal function 239
char-not-greaterp function 239
char- not-lessp function 239
char-super-bit constant 243
char-upcase function 241; 236
char/= function 237-239
char< function 237-239; 301, 302
char<= function 237-239
char= function 237-239; 380
char> function 237-239
char>= function 237-239
characters 12, 20-23, 233-244, 366

attributes 23, 233-234
coercion to string 304
construction 239-240
control bit functions 243-244
conversions 241-243
line divisions 21-22
macros 246-351
non-standard 23
predicate 75
predicates on 234--239
selection 239-240
standard 20-21
string 23
syntax 334--339

character function 241
character keyword

for :element-type option to open 419
characterp function 75; 234
check-type macro 433-435; 431
:circle keyword

for write 382
for write-to-string 383

cis function 207
cleanup forms 141
clear-input function 380
clear-output function 384--385
close function 332; 418, 422
closure 87-89
clrhash function 285
code-char function 240
coerce function 51-52; 53, 249, 304
coercions 193-195
comments 347-348

INDEX

common date type predicate 76
COMMON LISP goals of 1-3
commonp function 76
compatibility notes

INTERLISP 14, 44, 45, 73, 80, 108, 118,
128, 130, 162, 164, 165, 166, 167,
208-209, 217, 250, 251, 266, 267, 269,
278, 281, 283, 301, 304, 344, 364--365,
384, 441

LISP 1.5 129, 250
MACLISP 14, 27, 53, 66, 74, 118, 124,

130, 140, 142, 154, 155, 162, 164, 165,
166, 185, 198, 199, 200, 208-209, 210,
217, 225, 226, 228, 250, 254,.266, 273,
275, 281, 283, 338, 344, 348, 359, 363,
364--365, 370, 371, 383, 389, 392, 395,
396, 423, 424, 425, 426, 428, 430, 433,
441

NIL 130, 164, 217, 266
SPICE LISP 164
STANDARD LISP 217
ZETALISP 14, 27, 80, 104, 118, 130, 136,

199, 200, 208, 217, 250, 251, 266, 289,
292, 363, 364--365, 389, 392, 395, 396,
~7,4TI,~4.4~.~6,4~.~0.~2,
434, 441

compile function 438-439
compile-file function 439
compiled function predicate 76
compiled-function-p function 76
compiler 438-439
compiler-let special form I 12; 57
complex function 220; 47
complex number 12, 13, 19-20, 193, 366

predicate 75
complexp function 75
: cone-name keyword

for defstruct · 311
concatenate function 249; 245, 268
cond macro 116--117; 71, 83, 84, 114--115,

123, 137
conditionals 114--119

and 82-83
or 83-84; 82
during read 359

conjugate function 201
cons 12, 25, 26--27, 262-274, 368

predicate 7 4
cons function 266; 47, 48
consp function 74
constantp 324
constructor function 307, 309-310, 315
: constructor keyword

for defstruct 311; 309-310, 315
contagion 193-195

complex 195
floating point 194

control structure 85
conversion of type 51-52
copier function 307
: copier keyword

for defstruct 312

copy-alist function 268
copy-list function 268
copy-readtable function 361
copy-seq function 248; 245
copy-symbol function 169
copy-tree function 269; 273
cos function 207
cosh function 209-210
count function 257
:count keyword 247

for delete 254
for delete-if 254
for delete-if-not 254
for nsubstitute 256
for nsubstitute-if 256
for nsubstitute-if-not 256
for remove 253
for remove-if 253
for remove-if-not 253
for substitute 255-256
for substitute-if 255-256
for substitute-if-not 255-256

count-if function 257
count-if-not function 257
: create keyword

453

for if-does-not-exist option to open 422
ctypecase macro 436; 99, 119, 137, 435
current package 17 4

data types 11-35
arrays 28-30
characters 20--23
conses 26--27
functions 32
hash tables 31
hierarchy of 11, 33
lists 26--27
numbers 12, 13-20
packages 31
pathnames 31
predicates, general 72-73
predicates, specific 73-76
random states 31
read tables 31
streams 31
structures 32
symbols 23-26
unreadable objects 32-33

debugging tools 440--443
•debug-io• variable 328
de cf macro 201; 99
declaration

declaration 160--161
function 159
function type 158-159
ignore 160
inline 159
notinline 159-160
optimize I 60
special 157
type 158

declaration declaration 160--161

454 INDEX

declarations 153-162
specifiers 157-161
syntax 153-157
type, for forms 161-162

declare special form 153-156; 57, 124, 161
decode-float function 218-220
decode-universal-time function 445-446
:default keyword

for type option to open 420
•def au 1 t-pa th name-defau 1 ts• variable 416;

414, 415, 417, 426, 439
: defaults keyword

for make-pathname 416
defconstant macro 68-69; 50, 56, 324, 440
define-modify-macro macro 101-102
define-sett-method macro 105-106; 97,

IOI, 102
defmacro macro 145-151; 50, 58, 66, 137,

144, 154, 426, 440
defparameter macro 68-69; 157, 158, 440
defsetf macro 102-104; 97, 101, 154, 440
defstruct 305-320

options 311-315
slot options 310

defstruct macro 307-308; 13, 32, 50, 95,
231, 264, 305-310, 370, 440

deftype macro 50--51; 137, 154, 440
defun macro 57; 54, 59, 120, 137, 143, 145,

154, 426, 440
defvar macro 68-69; 157, 158, 426, 440
delete function 254; 247, 272
delete-duplicates function 254-255
delete-file function 424
delete-if function 254
delete-if-not function 254
denominator 15
denominator function 215; 365
deposit-field function 227; 95
describe function 441-442
destructuring 146
device (pathname component) 410
: device keyword

for make-pathname 416
digit-char function 241-242
digit-char-p function 236
: direction keyword

for open 418-419; 420
directory (pathname component) 410
directory function 427
: directory keyword

for make-pathname 416
directory- namestring function 417
disassemble function 439
dispatching macro 351-360
displaced array 288
:displaced-index-offset keyword

for adjust-array 297-298
for make-array 288-289; 286

: displaced-to keyword
for adjust-array 297-298
for make-array 288; 286, 287, 289

do macro 122-126; 39, 85, 92, 121, 129,
130, 138, 154

do• macro 122-126; 121, 154
do-all-symbols macro 188; 154, 443
do-external-symbols macro 187; 154
do-symbols macro 187; 154
documentation 439-440
documentation function 440; 95
dolist macro 126; 121, 138, 146, 154 ;
dotimes macro 126-128; 121, 138, 154
dotted list 25, 26, 27, 262, 267
double-float-epsilon constant 232
double-float-negative-epsilon

constant 232
dpb function 227-228; 96
dribble function 443
dynamic extent 37, 41
dynamic exit 139
dynamic scope 38-41
dynamic variable-see special variable

ecase macro 436; 118, 137
ed function 442
eighth function 266; 95
:element-type keyword

for adjust-array 297-298
for make-array 287; 286
for open 419-420; 383, 418, 425

elt function 248; 95, 245, 266, 291
encode-universal-time function 446
: end keyword 246

for count 257
for count-if 257
for count-if-not 257
for delete 254
for delete-duplicates 254-255
for delete-if 254
for delete-if-not 254
for fill 252
for find 257
for find-if 257
for find-if-not 257
for nstring-capitalize 304
for nstring-downcase 304
for nstring-upcase 304
for nsubstitute 256
for nsubstitute 256
for nsubstitute-if 256
for nsubstitute-if-not 256
for parse-integer 381
for parse-namestring 414-415
for position 257
for position-if 257
for position-if-not 257
for read-from-string 380--381
for reduce 251
for remove 253
for remove-duplicates 254-255
for remove-if 253
for remove-if-not 253
for string-capitalize 303-304
for string-downcase 303-304
for string-upcase 303-304
for substitute 255-256
for substitute-if 255-256

INDEX

for substitute-if-not 255-256
for write-line 384
for write-string 384
for with-input-from-string 331
argument to file-position 425

: end1 keyword 247
for mismatch 257~258
for replace 252-253
for search 258
for string-equal 301
for string-greaterp 302
for string-lessp 302
for string-not-equal 302
for string-not-greaterp 302
for string-not-lessp 302
for string/= 301
for string< 301
for string<= 301
for string= 300
for string> 301
for string>= 301

:end2 keyword 247
for mismatch 257-258
for replace 252-253
for search 258
for string-equal 301
for string-grea terp 302
for string- lessp 302
for string-not-equal 302
for string-not-greaterp 302
for string-not-lessp 302
for string I= 301
for string< 301
for string<= 301
for string= 300
for string> 301
for string>= 301

endp function 264-265; 27, 125, 262
enough-namestring function 417
environment inquiries 443-448
environment structure 85
eq function 77-78; 140, 233, 239, 282

compared to equal 80
eql function 78-80; 77, 193, 198, 233, 239,

282
equal function 80-81; 77, 282, 300
equality predicates 77
equalp function 81-82; 77, 80, 277
errors 5-6, 428-437
error function 429-430
: error keyword

for if-does-not-exist option to open 422
for if-exists option to open 420

•error-output+ variable 328; 329, 432
:escape keyword

for write 382
for write-to-string 383

etypecase macro 435-436; 119, 137
eval function321-322; 137, 143, 148, 152
eval-when special form 69-70; 57, 137, 146,

154, 356, 438
evalhook function 323-324; 321, 322
•evalhook • variable 322-323

evaluation of forms 321-324
even predicate 196
evenp function 196
every function 250; 83
exhaustive partition 33
exhaustive union 33

455

exp function 203; 210
export function 186; 177-178, 179, 180,

181, 182
exporting symbols 17&-178
expt function 203-204; 195, 210
extent 3&-41

rules for 39
external symbols 171-172, 174-175, 176, 178
: external keyword

for second value from intern 185

fboundp function 90-91
fceiling function 217-218
•features• variable 448; 358
ffloor function 217-218
fifth function 266; 95
file

accessing directories 427
closing 418-423
deleting 423-426
loading 426
names 409-418
opening 418-423
operations 418-426
renaming 423-426

file-author function 424
file-length function 425-426
file-namestring function 417
file-position function 425
file-write-date function 424
fill function 252
fill pointer 28, 295-296
fill-pointer function 296; 95, 299
:fill-pointer keyword

for adjust-array 297-298
for make-array 288; 286, 289

find function 257; 279, 281
find-all-symbols function 187
find- if function 257
find-if-not function 257
find-package function 183; 173
find-symbol function 185
finish-output function 384-385
first function 266; 95
fixnum 14
flet special form 113; 57, 59, 90, 143, 154,

159, 160
float function 214
float-digits function 218-220
float-precision function 218-220
float-radix function 218-220
float-sign function 218-220; 196, 365
floating-point

contagion 194
number 12, 13, l&-19, 193, 365-366
predicate 75

floatp function 75

456 INDEX

floor function 215-217; 52, 134, 200
flow of control 85
fmakunbound function 92-93
force-output function 384-385
format function 385-387; 304, 382, 400, 407

408, 429, 430,434 '
formatted output 385-407
forms

error-signalling 433-435
function calls 58-59
macros 57-58
self-evaluating 55
special 56-57
top-level 66-70
variables 55-56

FORTRAN 2, 14, 19, 28, 130, 147, 193, 208,
217, 289, ~33, 389, 392, 395, 397

fourth funcuon 266; 95
fresh-line function 384; 397, 407, 408
: fro.m-end keyword 246

for count 257
for count-if 257
for count-if-not 257
for delete 254
for delete-duplicates 254-255
for delete-if 254
for delete-if-not 254
for find 257
for find- if 257
for find-if-not 257
for mismatch 257-258
for nsubstitute 256
for nsubstitute-if 256
for nsubstitute-if-not 256
for position 257
for position-if 257
for position-if-not 257
for reduce 251
for remove 253
for remove-duplicates 254-255
for remove- if 253
for remove-if-not 253
for search 258
for substitute 255
for substitute-if 255
for substitute-if-not 255

fround function 217-218
ftruncate function 217-218
ftype declaration 158-159
funcall function 108; 32, 137 144 152

322 ' ' '
functions 13, 32

byte manipulation 225-228
calls 58-59
character control bit 243-244
defining named 67
error-signalling 429-433
exponential 203-205
hash table 283-285
identify 448-449
input 374-382
invocation 107-108
irrational 203

lambda expressions 59-66
logarithmic 203-205
named 59
output 382-407
pathname 413-418
predicate 7 6
rational 203
samples of 6-8
time 443-447
transcendental 203
trigonometric 205-210

function declaration 159
function special form 87-89; 32, 39, 57
functionp function 76

gcd function 202
general array 286
generalized variables 93-107
generic functions 193
gensym function 169-170; 103, 104, 147
:gensym keyword

for write 382
for write-to-string 383

gentemp function 170; 103, 104
get function 164-165; 94, 95, 166
get-decoded-time function 445
get-dispatch-macro-character

function 364-365
get-internal-real-time function 446
get-internal-run-time function 446
get-macro-character function 362-363
get-output-stream-string function 330
get-properties function 167
get-setf-method function 106-107; IOI
get-setf-rnethod-multiple-value

function 107
get-universal-time function 445
getf function 166-167; 95, 99, 164
gethash function 284; 95, 282, 285
go special form 133; 39, 57, 123, 126 130

131, 132, 141 ' '
graphic-char-p function 234-235

hash table 13, 31, 282-285
predicate 284

hash-table-count function 285
hash-table-p function 284
home directory 418
home package 172
host (pathname component) 410
: host keyword

for make-pathname 416
host-namestring function 417

identity function 448
if special form 115; 57, 71, 83, 84 114

116, 137' 148 ' '
:if-does-not-exist keyword

for load 426
for open 421-422; 418

: if-exists keyword
for open 420-421; 418

INDEX

ignore declaration 160
imagpart function 220
implementation notes 3, 16, 19, 22, 27, 38,

SS, S8, 78, 121, 142, 169, 182, 188, 201,
203, 20S, 207, 208, 210, 220, 227,
228-229, 231, 234, 26S, 29S, 302, 367,
400, 421, 423, 425, 427, 429, 434, 439

implementation parameters 231-232
implicit progn 85, 109, Ill, 112, 115, 116,

117, 123, 137, 145
import function 186; 176, 179, 180--181, 182
importing symbols 176--178
in-package function 183
incf macro 201; 99, 101
: include keyword

for defstruct 312-314; 319
: index keyword

for with-input-from-string 331
index offset 288-289
indicator 163
indirect array 288
: inherited keyword

for second value from intern 18S
: initial-contents keyword

for adjust-array 297-298
for make-array 287-288; 286, 369

: initial-element keyword
for adjust-array 297-298
for make-array 287; 286, 288
for make-list 268
for make-sequence 249
for make-string 302

: initial-offset keyword
for defstruct 315; 319-320

: initial-value keyword
for reduce 251

inline declaration 159; IS5
in-package function 183; 182
:input keyword

for direction option to open 418; 420
input, output 333-408
input-stream-p function 332
inspect function 442
int-char function 242
integer 12, 13--15, 193, 365

predicate 7 4
integer-decode-float function 218-220
integer-length function 224
in tegerp function 74
INTERLISP 1, 2, 3, see also compatibility notes
intern function 184--185; 77, 168, 172, 177,

179
: internal keyword

for second value from intern 185
internal symbol 171-172, 174--175, 176--178
internal-time-units-per-second

constant 446; 444
interned symbol 168, 172, 175
intersection function 277-278
:io keyword

for direction option to open 419; 420
isqrt function 205
iteration 121-133

general 121-126
indefinite 121
mapping 128--130
program feature 130--133
simple constructs 126--128

: junk-allowed keyword
for parse-integer 381
for parse-namestring 414-41S

: key keyword 246
for adjoin 276
for assoc 280
for count 2S7
for count-if 257
for count-if-not 257
for delete 254
for delete-duplicates 254--2SS
for delete-if 254
for delete-if- not 254
for find 257
for find-if 257
for find-if-not 257
for intersection 277
for member 275
for member-if 275
for member-if-not 275
for merge 260--261
for mismatch 2S7-258
for nintersection 277
for nset-difference 278
for nset-exclusive-or 278-279
for nsublis 275
for nsubst 274
for nsubst-if 274
for nsubst-if- not 274
for nsubsti tute 256
for nsubsti tute-if 256
for nsubstitute-if-not 256
for nunion 276--277
for position 257
for position-if 257
for position-if-not 257
for rassoc 281
for remove 253
for remove-duplicates 254--255
for remove-if 253
for remove-if-not 253
for search 258
for set-difference 278
for set-exclusive-or 278-279
for sort 258-260
for stable-sort 258--260
for sublis 274
for subsetp 279
for subst 273-274
for subst-if 273-274
for subst-if-not 273--274
for substitute 255-256
for substitute-if 255-256
for substitute-if-not 255-256
for union 276--277

457

458 INDEX

keyword function 170
keyword package 175, 182
keywords

for defstruct slot descriptions 310
for second value from intern 185

labels special form 113; 57, 59, 90, 143,
154, 159---160

lambda expression 59---66
lambda list keywords 145
lambda- list-keywords constant 65-66
lambda-parameters-limit constant 66
last function 267
lcm function 202
ldb function 226; 96, 99, 106
ldb-test function 226
ldiff function 272
least-negative-double-float constant 232
least-negative-long-float constant 232
least- nega ti ve-short-floa t constant 231
least-negative-single-float constant 232
least-positive-double-float constant 232
least-positive-long-float constant 232
least-positive-short-float constant 231
least-positive-single-float constant 232
length function 248; 245, 265, 292
: length keyword

for write 382
for write-to-string 383

let special form 110-111; 55, 57, 112, 121,
130, 131, 132, 133, 137, 154

let• special form 111-112; 57, 63, 104, 133,
137, 154

: level keyword
for write 382
for write-to-string 383

lexical closure 87
lexical scope 3 7-41
lexical variable 55-56
LISP 1.5-see compatibility notes
lisp-implementation-type function 447
lisp-implementation-version function 447
lisp package 181
LISP reader 8
lists 12, 26-27, 262-281

alteration of structure 272-273
predicate 74
substitution of expressions 273-275
syntax 346-360
using as sets 275-279
see also association list, cons, dotted list,

and property list
list function 267
list• function 267-268; 107
list-all-packages function 184
list-length function 265
listen function 380
listp function 74; 262
load function 426; 183
•load-verbose• variable 426
locally macro 156; 154
log function 204; 195, 210

logand function 221; 222
logandcl functidn 221-222
logandc2 function 221-222
logbi tp function 224
logcount function 224
logeqv function 221-222
logical operations 220-226
logical operators on nil and non-nil

values 82
logical values 72
logior function 221; 222
lognand function 221-222
lognor function 221-222
lognot function 223
logorcl function 221-222
1ogorc2 function 221-222
logtest function 223-224
1ogxor function 221; 222
long-float-epsilon constant 232
long-float-negative-epsilon constant 232
long-site-name function 448
loop macro 121; 123
lower-case-p function 235-236; 238, 241

machine-instance function 447-448
machine-type function 447
machine-version function 447
MACLISP l, 2, 3, 29, 158, 193, 324, 342, see

also compatibility notes
macros 57-58, 143-152

call 143
characters 346-351
definition 144-151
dispatching 351-360
error-signalling 433-435
expansion 142, 151-152
syntax 351-360

macro-function function 144; 57, 90, 91, 95
macroexpand function 151-152; 144, 146,

322
macroexpand-1 function 151-152
•macroexpand-hook• variable 152
macrolet special form 93-94; 57, 143, 146,

147, 151, 154
make-array function 286-289; 45, 66, 303
make-broadcast-stream function 329
make-char function 240
make-concatenated-stream function 329
make-dispatch-macro-character

function 363; 364
make-echo-stream function 330
make-hash-table function 283-284; 282
make-list function 268
make-package function 183; 182
make-pathname function 416
make-random-state function 230; 370
make-sequence function 249; 245, 247
make-string function 302
make-string-input-stream function 330
make-string-output-stream function 330
make-symbol function 168-169
make-synonym-stream function 329

INDEX

make-two-way-stream function 329
makunbound function 92-93; 56
map function 249-250; 53, 128, 129, 144,

245, 322
mapc function 128-129; 250
mapcan function 128-129
mapcar function 128-129
mapcon function 128-129
maphash function 285
mapl function 128-129
maplist function 128-129
mapping 128-130
mask-field function 226; 96
max function 198-199
member function 275; 71, 279
member-if function 275
member-if- not function 275
merge function 260-261
merge-pathnames function 415-416; 423
merging

of pathnames 411
of symbols 181
sorted sequences 260-261

min function 198-199
minusp function 196
mismatch function 257-258; 277
mod function 217
(mod n) keyword

for : element-type option to open 419
•modules• variable 188
most-negative-double-float constant 232 '
most-negative-fixnum constant 231
most-negative-long-float constant 232
most-negative-short-float constant 231
most-negative-single-float constant 232
most-positive-double-float constant 232
most-positive-fixnum constant 231; 69
most-positive-long-float constant 232
most-positive-short-float constant 231
most-positive-single-float constant 232
multiple values 133-139

constructs for handling 13 3-13 7
rules governing parsing of 137-138

multiple-value-bind macro 136; 134, 137,
154, 216

multiple-value-call special form 135-136;
48, 57, 134, 137

multiple-value-list macro 135; 134
multiple-value-prog1 special form 136; 57,

134, 138
multiple-value-setq macro 136-137; 134,

138
multiple-values-limit constant 1325

name (pathname component) 410
name conflicts 178-181
: name keyword

for make-pathname 416
name-char function 243
: named keyword

for defstruct 315; 312, 318
namestring function 417

naming conventions for predicates 71
nbutlast function 271; 272
nconc function 269; 129, 272
new variable bindings 110-114
:new-version keyboard

for if-exists option to open 420
: nicknames keyword

for make-package 183
for in-package 183

NIL (New hnplementation of LISP)
see also compatibility notes

nil constant 72; 4, 27, 39, 245, 324
nil keyword

459

for if-does-not-exist option to open 422
for if-exists option to open 421

nintersection function 277-278
ninth function 266; 95
non-local exit 139
non-standard characters 23
not function 82; 73
notany function 250
notational conventions 4-10

empty list 4
equivalence = 5
errors 5-6
evaluations ~ 4-5
expansion --. 5
false 4
functions 6-8
nil 4
samples 6-8
syntax 9-10

notevery function 250-251
notinline declaration 159-160; 308
nreconc function 269; 272
nreverse function 248-249; 125, 245, 272
nset-difference function 278
nset-exclusive-or function 278-279
nstring-capitalize function 304
nstring-downcase function 304
nstring-upcase function 304
nsublis function 275
nsubst function 274
nsubst-if function 274
nsubst-if-not function 274
nsubstitute function 256
nsubstitute-if function 256
nsubstitute-if-not function 256
nth function 265-266; 95
nthcdr function 267
null function 73; 82, 125
number 12, 13-20, 193-233

arithmetic operations 199-202
coercion 193-195
comparisons on 196-199
complex 19-20
contagion 193-194
floating-point 16-19
integers 13-15
logical operations 220-226
precision of 193-194
predicates on 195-196

460 INDEX

number (continued)
random 228-231
ratios 15-16

numberp function 74
numerator 15
numerator function 215; 365
nunion function 276--277

oddp function 196
open function 418-422; 332, 385
optimize declaration 160
or macro 83-84; 82, 137
output-see input
: output keyword

for direction option to open 418; 420
:output-file keyword

for compile-file 439
output-stream-p function 332
:overwrite keyword

for if-exists option to open 420

package 13, 24, 31, 171-192
built in 181-182
consistency, rules for 172-173, 177
current 174
example 189-192
home 172
keyword 175
names 173-174
qualifiers 171
strings 173-174
system 171

package cell 163, 172
•package• variable 183; 171, 174, 182, 382
package-name function 184; 173
package-nicknames function 184; 173
package-shadowing-symbols function 184
package-use-list function 184
package-used-by-list function 184
packagep function 76
pairlis function 280
parse-integer function 381
parse-namestring function 414-415
parsing 339

of pathnames 411
PASCAL 32, 83, 84, 198, 305
pathname 13, 31, 370--373

components 410-413
functions 413-418

pathname function 413
pathname-device function 417
pathname-directory function 417
pathname-host function 417
pathname-name function 417
pathname-type function 417
pathname-version function 417
pathnamep function 416
peek-char function 379-380
phase function 206; 210
pi constant 209; 39, 324
PLiI 19, 208, 217, 295, 305, 333, 360

plist 163, 24
plusp function 196
pop macro 271; 99
PORTABLE STANDARD LISP 3, 335
position of a byte 227
position function 257; 45
position-if function 257
position-if-not function 257
pprint function 383
:predicate keyword

for defstruct 312
predicates 71-84

data type 72
definition of 71
equality 77
true and false 71

:preserve-whitespace keyword
for read-from-string 380--381

:pretty keyword
for write 382
for write-to-string 383

prin1 function 383; 15, 30, 370, 383, 388,
391, 393

prin1-to-string function 383; 304
princ function 383; 370, 387
princ-to-string function 383; 304
principal values for complex

functions 210--214
print function 383; 167, 328, 333-334
:print keyword

for load 426
print name 23, 163, 167-168, 299

coercion to string 304
•print-array• variable 373; 367, 368, 369
•print-base• variable 371; 365, 367
•print-case• variable 372; 366, 367
•print-circle• variable 371; 269, 367
•print-escape• variable 370; 314, 366,

367
:print-function keyword

for defstruct 314, 370
•print-ge1>sym• variable 372; 367
•print-length• variable 372-373; 343, 368,

369, 370
•print-level• variable 372-373; 314, 360,

368, 369, 370
•print-pretty< variable 371; 314, 367, 383
•print-radix• variable 371-372; 365
printed representation 333-334
printer 333-334, 365
:probe keyword

for direction option to open 419; 420
probe-file function 424
proclaim function 156--157; 153
proclamation 156
prog macro 131-133; 39, 121, 130, 138, 154
prog• macro 131-133; 138, 154
prog1 macro)09; 85, 98, 138
prog2 macro 109-110; 85, 138
progn special form 109; 57, 66, 85, 119,

123, 137
program feature 130--133

INDEX

program structure 54-70
forms 54-59
functions 59-66
top level forms 66-70

progv special form 112-113; 57, 137
property 164
property list 12, 24, 163-165

compared to association list 164
compared to hash table 282

provide function 188
psetf macro 97; 105
psetq macro 92; 123
push macro 269-270; 99, 101, 165
pushnew macro 270
putprop function 94

qualified name 174
•query-io• variable 328; 407, 408
querying the user 407-408
quote special form 86-87; 57
quotient 200

: radix keyword
for parse-integer 381
for write 382
for write-to-string 383

random function 228-229
random numbers 228-231
random-state 13, 31, 369-370

predic&te 231
•random-state• variable 230
random-state-p function 231
rank 28
rassoc function 281; 279
rassoc-if function 281
rassoc-if-not function 281
ratio 12, 13, 15-16, 193, 365
rational 15

predicate 7 4
rationale 29, 33, 34, 62, 98, 103, 112, 193,

198, 200, 220, 230, 233, 379, 390, 428,
437, 446, 447

rational function 214-215; 52
rationalize function 214-215; 52
rationalp function 74
read function 375; 8, 13, 29, 32, 327, 328,

333, 335, 344, 370, 372, 374, 382, 383,
388

•read - base• variable 344; 341, 342, 367
read-byte function 382
read-.char function 379; 327, 328, 380, 419,

425
read-char-no-hang function 380
*read-default-float-format•

variable 375-376; 17, 366, 393
read-delimited-list function 377-378; 362
read-eval-print loop 324
read-from-string function 380--381
read-line function 378-379; 374
:read-only keyword

for defstruct slot-descriptions 310

461

read-preserving-whitespace
function 376-377; 375, 381

•read-suppress• variable 345-346; 359, 375
reader 333-334
readtable 13, 31, 360--365

predicate 361
•readtable• variable 361; 360
readtablep function 361
realpart function 220
record structure 305-307
reduce function 251-252; 249, 322
reference to constants and variables 86-91
: rehash-size keyword

for make-hash-table 283-284
:rehash-threshold keyboard

for make-hash-table 283-284
rem function 217
remf macro 167; 99, .164
remhash function 284; 282, 285
remove function 253; 247
remove-duplicates function 254-255
remove-if function 253
remove-if-not function 253; 129
remprop function 166
: rename keyword

for if-exists option to open 420
:rename-and-delete keyword

for if-e-xists option to open 420
rename-file function 423
rename-package function 184; 173
replace function 252-253; 95
require function 188
reserved token 341
rest function 266; 95
return macro 120; 85, 119, 121, 123, 124,

126, 127, 132, 137, 187
return-from special form 120; 57, 67, 85,

119, 121, 123, 133, 137, 141
revappend function 269
reverse function 248; 245
room function 442
rotatef macro 99; 98, 105
round function 215-217; 52, 200
rplaca function 272; 93, 94, 262
r/placd function 272-273; 263
rules for passing multiple values 137-138

S-1 LISP 1, 3
samples '

constant 6-7
function 6
macro 7-8
special form 7-8
variable 6-7

sb it function 293-294; 95
scale-float function 218-220
schar flinction 300; 95
SCHEME 1
scope 36-41

rules for 39
search function 258
second function 266; 95

·462 INDEX

semantics of program, handling of 99-101
sequences 245-261

concatenating 249-252
mapping 249-252
merging 258-261
modifying 252-256
reducing 249-252
searching for items 256-258
simple functions 247-249
sorting 258-261

set list representation 275
set function 92; 90, 93, 94
set-char-bit function 244; 96
set-difference function 278
pet-dispatch-~acro-character

function 364-365; 363
set-exclusive-or function 278-279
set-macro-character function 362-363; 70,

378
set-syntax-from-char function 361-362
setf macro 94-97; 90, 93, 99, 101,

104-105, 144, 164, 165, 166, 167, 201,
226, 244, 248, 262, 266, 270, 271, 272,
282, 284, 285, 291, 293, 296, 300, 310,
433, 434, 440

setq special form 91; 55, 57, 92, 93, 94,
111, 122, 123, 138

sets
bit-vector representation 220--221
infinite 220--221
integer representation 220--221

seventh function 266; 95
shadow function 182-183; 173, 179, 182
shadowing 38, 40, 176-177, 178-180
shadowing-import function 186; 173, 177,

179, 180, 182
shared array 288
shiftf macro 97-98; 99, 105
short-float-epsilon constant 232
short-float-negative-epsilon

constant 232
short-site-name function 448
signed-byte keyword

for :element-type option to open 419
(signed-byte n) keyword

for :element-type option to open 419
signum function 206; 205
simple-bit-vector-p function 76
simple sequencing 108-110
simple-string-p function 75
simple-vector-p function 75
sin function 207
single-float-epsilon constant 232
single-float-negative-epsilon

constant 232
sinh function 209-210
sixth function 266; 95
:size keyword

for make-hash-table 283-284
sleep function 447
software-type function 448
software-version function 448

some function 250; 84
sort function 258-260
sorting sequences 258-261
special declaration 157-158; 153, 154, 156
special-form-p function 91; 57, 90, 144
specialized array 45-48, 286
special variable 55-56
SPICE LISP 1, 164
sqrt function 205; 195, 203, 210
stab le-sort function 258-260
STANDARD LISP 3

see also compatibility notes
standard characters 20--21
standard-char-p function 234
•standard-input• variable 327; 328-329,

374, 443
•standard-output< variable 327-328; 329,

382, 387, 426, 441, 442, 443
: start keyword 246

for count 257
for count-if 257
for count-if-not 257
for delete 253
for delete-duplicates 253-254
for delete-if 253
for delete-if-not 253
for fill 252
for find 257
for find-if 257
for find-if-not 257
for nstring-capitalize 304
for nstring-downcase 304
for nstring-upcase 304
for nsubsti tute 256
for nsubstitute-if 256
for nsubstitute-if-not 256
for parse-integer 381
for parse-namestring 414-415
for position 257
for position-if 257
for position-if-not 257
for read-from-string 380--381
for reduce 251
for remove 253
for remove-duplicates 253-254
for remove-if 253
for remove- if- not 253
for string-capitalize 303-304
for string-downcase 303-304
for string-upcase 303-304
for substitute 255-256
for substitute-if 255-256
for substitute-if-not 255-256
for write-line 384
for write-string 384
for with-input-from-string 331
argument to file-position 425

:start1 keyword 247
for mismatch 257-258
for replace 252-253
for search 258
for string-equal 301

INDEX

for string-greaterp 302
for string-lessp 302
for string-not-equal 302
for string-not-greaterp 302
for string-not-lessp 302
for string/= 301
for string< 301
for string<= 301
for string= 300
for string> 301
for string>= 301

:start2 keyword 247
for mismatch 257-258
for rep lace 252-253
for search 258
for string-equal 301
for string-greaterp 302
for string-lessp 302
for string-not-equal 302
for string-not-greaterp 302
for string-not-lessp 302
for string I= 301
for string< 301
for string<= 301
for string= 300
for string> 301
for string>= 301

static variable-see lexical variable
step macro 441; 322
stream 13, 31, 327-332

creating 329-331
operations on 332
standard 327-329

: stream keyword
for write 382

stream-element-type function 382; 420
streamup function 332
string 12, 29, 30, 286, 299-304, 367

access to 299-300
characters 23
comparison 300-306
construction 302-304
manipulation 302-304
predicate 75

string function 304; 299
string syntax 348-349
string-capitalize function 303-304; 372,

401
string-char 20, 30, 95, 360, 419
string-char-p function 235; 286, 300
string-downcase function 303-304
string-equal function 301; 80
string-greaterp function 302
string- left-trim function 302-303
string-lessp function 302
string-not-equal function 302
string-not-greaterp function 302
stri,ng-not-lessp function 302
string-right-trim function 302-303
string-trim function 302-303
string-upcase function 303-304
string I= function 301; 302

string< function 301; 302
string<= function 301; 302
string= function 300-301; 80, 183
string> function 301; 302
string>= function 301; 302
stringp function 75; 299
structured pathname components 411-412
structures 13, 32, 305-320

aspects of specified 319-320
named 318-319
unnamed 317

sublis function 274
subseq function 248; 95, 245
subsetp function 279
subst function 273-274
subst-if function 273-274
subst-if-not function 273-274
substitute function 255-256
substitute-if function 255-256
substitute-if-not function 255-256
substitution 273-275
subtypep function 72-73
:supersede keyword

for if-exists option to open 421
svref function 291; 95, 290
sxhash function 285
symbol 11, 12, 23-26, 163-170, 366--367

coercion to a string 299
creating 168-170
exporting 178
external 171-172, 174--175
importing 176--178
internal 171-172, 174--175
interned 168
predicate 73
symbol qualifier 175-176
syntax of 339-346
variables 55-56
uninterned 168

symbol-function function 90; 95

463

symbol- name function 168
symbol-package function 170; 175
symbol-plist function 166; 95
symbol-value function 90; 93, 94, 95, 322
symbolp function 73
syntax

acceptable characters 334--346
macro 346--360
used in book 9-10

system package 182
sys package 182

t constant 72; 69, 324
tagbody special form 130-131; 39, 57, 121,

123, 126, 132, 133
tailp function 278
tan function 207
tanh function 209-210
tenth function 266; 95
•terminal-io• variable 328; 329, 374, 382,

407
terpri function 384

464 INDEX

: test keyword 245
for adjoin 276
for assoc 280
for count 257
for delete 254
for delete-duplicates 254--255
for find 257
for intersection 277-278
for make-hash-table 283
for member 275
for mismatch 257-258
for nintersection 277-278
for nset-difference 278
for nset-exclusive-or 278-279
for nsublis 275
for nsubst 274
for nsubstitute 256
for nunion 276-277
for position 257
for rassoc 281
for remove 253
for remove-duplicates 254--255
for search 258
for set-difference 278
for set-exclusive-or 278-279
for sublis 274
for subsetp 279
for subst 273-274
for substitute 255-256
for tree-equal 264
for union 276-277

: test-not keyword
for adjoin 276
for assoc 280
for count 257
for delete 254
for delete-duplicates 254--255
for find 257
for intersection 277-278
for member 275
for mismatch 257-258
for nintersection 277-278
for nset-difference 278
for nset-exclusive-or 278-279
for nsublis 275
for nsubst 274
for nsubsti tute 256
for nunion 276-277
for position 257
for rassoc 281
for remove 253
for remove-duplicates 254--255
for search 258
for set-difference 278
for set-exclusive-or 278-279
for subl1s 274
for subsetp 279
for subst 273-274
for substitute 255-256
for tree-equal 264
for union 276-277

the special form 162-163; 48, 57, 96, 138
third function 266; 95
throw 139
throw special form 142; 57, 85, 119, 121,

123, 138, 139, 141, 422
time

decoded 443-447
internal 443-447
universal 443-44 7

time macro 441
top level loop 324--326
trace macro 440-441; 328
•trace-output• variable 328; 440, 441
tree 27
tree-equal function 264; 81
truename function 413-414; 423, 427
truncate function 215-217; 48, 52, 200
type 158
type (pathname component) 411
type conversion function 51-52
type declaration 158; 155
:type keyword

for make-pathname 416
for defstruct slot-descriptions 310
for defstruct 314--315; 312, 313, 316,

318, 319
type specifiers 42-53

abbreviated 48-50
combining 44--45
defining new 50-57
determining type 52-53
lists 42-43
predicating 43-44
specialized 45-48
symbols 42
type conversion function 52-53

type-of function 52-53; 11, 318
typecase macro 118-119; 53, 115, 137, 435,

436
typep function 72; 11, 44, 45, 47, 53, 306,

308, 313, 317

unexport function 186; 173, 178, 179, 180,
182

unintern function 185; 172, 173, 179-180
unintemed symbol 168, 172
union function 276-277
unless macro 115-116; 71, 84, 137
unre<1dable data objects 32-33
unread char function 379
unsigned-byte keyword

for :element-type option to open 419
untrace macro 440-441
unuse-package function 187; 173, 177, 178,

179, 182
unwind protection 140-142
unwind-protect special form 140-142; 39,

57, 138, 142
update functions 93-94
upper-case-p function 235-236; 241

INDEX

: use keyword
for in-package 183
for make-package 183

use-package function 187; 175, 177, 179,
180, 181, 182

user-homedir-pathname function 418
user package 181

value 163
values function 134--135; 109, 117
values-list function 135
variables 55-56
vector 12, 29, 286, 368

predicate 7 5
vector function 290
vector-pop function 296
vector-push function 296; 331
vector-push-extend function 296; 331, 386
vectorp function 75
: verbose keyword

for load 426
version (pathname component) 411
: version keyword

for make-pathname 416

warn function 432
when macro 115; 71, 83, 137
with-input-from-string macro 330-331
with-open-file macro 422-423
with-open-stream macro 330
with-output-to-string macro 331
write function 382; 383
write-byte function 385; 419
write-char function 384; 328, 379, 419, 425
write-line function 384; 3,79
write-string function 384
write-to-string function 383

y-or-n-p function 407-408
yes-or-no functions 407-408
yes-or-no-p function 408; 328

ZETALISP 1, 2, see also compatibility notes

• function 199
• variable 325
• • variable 325
• • • variable 325

+ function 199
+ variable 325
+ + variable 325
+ + + variable 325

- function. 199
variable 325

1 function 200
1 variable 325-326

I I variable 325-326
111 variable 325-326
1: function 196--198

1+ function 200-201
1- function 200-201

< function 192-198; 23 7
< : function 196--198

function 196--198; 79, 193, 237

> function 196--198
> : function 196--198

(page separators) 397
403

-% (new line) format directive 397
-& (fresh line) format directive 397
-((case conversion) format directive 401

465

-. (ignore argument) format directive 399
- < (justification) format directive 404--406
-, 406
- <new line> (ignore whitespace) format

directive 398
-? (indirection) format directive 399-400; 401

(Tilde) format directive 397
-[(conditional) format directive 402-403
-1 403

(loop escape) format directive 406--407
-A (Ascii) format directive 387-388
-s (Binary) format directive 388
-c (Character) format directive 389-390
-o (Decimal) format directive 388
>E (Exponential floating-point) format

directive 392-395
>F (Fixed-format floating-point) format

directive 390-392
-$ (Dollars) format directive 396--397
-G (General floating-point) format

directive 395-396
-o (Octal) format directive 388
-p (Plural) format directive 389
-R (Radix) format directive 389
-s (S-expression) format directive 388
-T (Tabulate) format directive 398-399
-x (heXadecimal) format directive 388
-! (iteration) format directive 403-404
-} 404

" (double quote) macro character 34 7
• (dispatching) macro character 351

(single quote) macro character 347
(left parenthesis) macro character 346--34 7
(right parenthesis) macro character 347

, (comma) macro character 351
(semicolon) macro character 347-348
(back quote) macro character 349-351

••• a magnificent job. I have never seen a language description
that is more complete or more precise, yet each chapter is
thoroughly enjoyable and subtly witty. The book is absolutely
indispensable for all serious LISP students and users; its high
quality is a major reason why Common LISP is~ LISP of
the future.

- Professor Patrick Winston
Director, Artificial Intelligence Laboratory, MIT, and author of USP
(with Berthold K.P. Horn) and Artificial Intelligence

In COMMON USP; The Language, Guy L. Steele Jr. describes
the first version of LISP des&sned to be used as a common
d~ by all workers In the field of artlflclal lnteH1ience. The
culmination of three years of collaborative work by more than
60 contributors from pernment, Industry, and academia,
COMMON USP Is destined to become the most wldely
llnplemented version of the language of the 1980's. And
COl91QN USP; The Lartgwge Is destined to become a stan
dard reference on the desk of every computer science student
and professional. The book Includes:

• Complete COMMON LISP language specifications.
• Preclle descriptions d all standard lanauage construas.
• Notes on key differences between COMMON LISP

and other dialects.
• Notes on ways to Implement unique or amblauous

cases.

