
~ ·DIGITAL
GUIDE TO
Software Development

The Digital Guide to
Software Development

Corporate User Publications Group / Digital Equipment Corporation

Digital Press

Copyright © 1989 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of the publisher.

9 8 7 6 5 4 3 2 1

Printed in the United States of America.

Order number EY-CI78E-DP
ISBN 1-55558-035-1

Editors: Michael Catano, Dean Fachon, H. Jim Hager
Manuscript Editor: Kathe Rhoades
Illustrator: Lynne Kenison
Compositor: Corporate User Publications (CUP/ASG),

Digital Equipment Corporation

The following are some of the trademarks and registered trademarks of Digital Equipment
Corporation; third-party trademarks and other Digital Equipment Corporation trademarks
are listed in the back of the book.

DEC MASSBUS RT
DECmate PDP UNIBUS
DECUS P/OS ULTRIX
DECwriter Professional VAX
DIBOL Rainbow VMS

mamaama1M RSTS VT
RSX Work Processor

This book was prepared using VAX DOCUMENT, Version 1.1.

Contents

PREFACE xiii

CHAPTER 1 THE DIGITAL PHASE REVIEW PROCESS 1

1.1 STRATEGY AND REQUIREMENTS PHASE 4

1.2 PLANNING AND PRELIMINARY DESIGN PHASE 7

1.3 DETAILED DESIGN AND IMPLEMENTATION PHASE 8

1.4 QUALIFICATION PHASE 8

1.5 MANUFACTURING PHASE 9

1.6 RETIREMENT PHASE 9

CHAPTER 2 SOFTWARE DEVELOPMENT TOOLS 11

2.1 SOFTWARE DEVELOPMENT TOOLS 12
2.1.1 VAXset 12
2.1.2 VAX Language-Sensitive Editor 14
2.1.3 VAX Source Code Analyzer 15
2.1.4 VAX DEClTest Manager 16
2.1.5 VAX Performance and Coverage Analyzer 17
2.1.6 VAX DEC/Code Management System 18
2.1.7 VAX DEC/Module Management System 20
2.1.8 VAX SCAN 20
2.1.9 VAX CDD/PLUS 22
2.1.10 The VMS Debugger 23

iii

2.2 MANAGEMENT AND COMMUNICATIONS TOOLS
2.2.1 VAX Software Project Manager
2.2.2 The VAX/VMS Mail Utility
2.2.3 VAX Notes

2.3 DOCUMENTATION TOOLS
2.3.1 VAX DIGITAL Standard Runoff
2.3.2 VAX DOCUMENT
2.3.3 DECwrite

2.4 VMS UTILITIES
2.4.1 The Message Utility
2.4.2 The Command Definition Utility
2.4.3 The VMS Run-Time Library
2.4.4 VAX C Run-Time Library

2.5 SUMMARY OF SOFTWARE DEVELOPMENT TOOLS

CHAPTER 3 PROJECT MANAGEMENT

3.1

3.2

3.3

iv

DEVELOPMENT PROJECTS AND TEAMS
3.1.1
3.1.2

Product Team
Development Team
3.1.2.1 Responsibilities of the Engineering Project

Leader • 46
3.1.2.2

3.1.2.3

Responsibilities of Development Team
Members • 47
Progress Reports and Team Meetings • 48

PROJECT PLANNING AND CONTROL
3.2.1
3.2.2
3.2.3

Project Schedule
Project Control
The VAX Software Project Manager

PROJECT DOCUMENTATION
3.3.1 Marketing Requirements Document

26
26
29
29

30
30
31
33

34
34
35
35
38

39

43

43
43
45

49
49
52
54

54
56

3.3.2 Product Requirements Document
3.3.3 Alternatives/Feasibility Study
3.3.4 Product Specification
3.3.5 Development Plan
3.3.6 High-Level Design Document
3.3.7 Detailed Design Document
3.3.8 Field Test Plan
3.3.9 Field Test Report

CHAPTER 4 PLANNING AND PRELIMINARY DESIGN

4.1

4.2

4.3

4.4

4.5

4.6

4.7

HIGH-LEVEL DESIGN
4.1.1 High-Level Design Process
4.1.2 High-Level Testing Analysis

DESIGN METHODOLOGIES

PROTOTYPES

HUMAN INTERFACE DESIGN
4.4.1 Usability Issues

4.4.1 .1 Requirements • 68
4.4.1 .2 Specifications • 68
4.4.1 .3 Iterative Design • 71

4.4.2 DECwindows

DESIGN REVIEWS
4.5.1 Design Review Guidelines

STANDARDS
4.6.1

4.6.2
4.6.3

The VAX Procedure Calling and Condition Handling
Standard
VAX/VMS Modular Programming Standard
IEEE Standards

PLANNING INTERNATIONAL PRODUCTS

56
57
57
58
59
59
60
60

61

62
63
64

66

66

67
67

71

75
75

78

78
80
81

81

v

CHAPTER 5 DESIGN AND IMPLEMENTATION

5.1 DETAILED DESIGN PROCESS
5.1.1 Logical Modules and Physical Modules
5.1.2 Design Documents

5.2 IMPLEMENTING BASE LEVELS
5.2.1 Types of Base Levels
5.2.2 Requirements Analysis
5.2.3 Build Procedures
5.2.4 Product Kits

CHAPTER 6 CODING GUIDELINES FOR IMPLEMENTATION

6.1

6.2

6.3

6.4

vi

SELECTING GUIDELINES
6.1.1
6.1.2
6.1.3

Examine Existing Source Code
Use the Language-Sensitive Editor
Build Program Modules
6.1 .3.1 Module Preface • 96
6.1 .3.2 Module Declarations • 99
6.1.3.3 Procedure Description • 101
6.1.3.4 Examples of LSE Language Constructs • 106

CHOOSING AN IMPLEMENTATION LANGUAGE

IMPROVING CODE READABILITY
6.3.1 Symbols
6.3.2 Case Conventions
6.3.3 Spacing
6.3.4 Formatting Comments

6.3.4.1 Block Comments • 112
6.3.4.2 Line Comments • 112
6.3.4.3 Formatting Comments with LSE • 114

NAMING CONVENTIONS
6.4.1
6.4.2

File Names
Directories

83

86
87
88

88
89
89
90
92

93

93
94
94
95

107

108
109
109
110
111

115
115
118

6.5

6.4.3
6.4.4
6.4.5

6.4.6
6.4.7

Procedures
Modules
Variables
6.4.5.1 Global Variables • 120
6.4.5.2 Local Variables • 121
Naming Conventions for Objects
File Image IDs
6.4.7.1 Image File ID and Image Name Fields • 122
6.4.7.2 Shareable Images • 123

CODE REVIEWS
6.5.1 Informal Walkthroughs
6.5.2 Formal Inspections
6.5.3 Code Inspection Guidelines

CHAPTER 7 THE TESTING PROCESS

7.1

7.2

7.3

7.4

7.5

LEVELS OF TESTING
7.1.1
7.1.2

Unit Testing
Integrated Testing

TYPES OF TESTS
7.2.1
7.2.2

White Box Tests
Black Box Tests

TESTING AND DESIGN
7.3.1 Design Considerations

7.3.1.1 Bottom-Up and Top-Down Approaches • 134
7.3.1 .2 Product Dependencies • 135

7.3.2 Regression Testing

PERFORMANCE TESTING
7.4.1
7.4.2

Running Regression Tests
Resolving Performance Problems

SUMMARY OF TESTING GUIDELINES

118
119
120

122
122

123
123
124
125

127

128
130
131

131
132
133

133
133

135

139
140
140

142

vii

CHAPTER 8 QUALIFICATION 145

8.1 PREPARING FOR FIELD TEST 145
8.1.1 Problem Report System 146
8.1.2 Internal Field Test 147
8.1.3 Early Evaluation Field Test 148

8.2 CONDUCTING THE EXTERNAL FIELD TEST 148
8.2.1 Fixing Errors 149
8.2.2 Final Verification: Field Test Upgrade Kits 150

8.3 CLOSING THE FIELD TEST 150
8.3.1 Manufacturing Verification 150
8.3.2 Field Test Reports 151
8.3.3 Product Evaluation Report 152
8.3.4 Release Notes 152

CHAPTER 9 MAINTENANCE 155

9.1 PLANNING FOR MAINTENANCE 156

9.2 MAINTENANCE PROCEDURES 157
9.2.1 Project Environment 157
9.2.2 Project Conventions 159
9.2.3 Project Communication 160
9.2.4 Design Documentation 161
9.2.5 Test Plans 162
9.2.6 Code Conventions 163
9.2.7 Build Procedures 164
9.2.8 Maintenance Document 165
9.2.9 DEC/CMS Libraries 165
9.2.10 Problem Reports 166

9.3 SOFTWARE DEVELOPMENT PRODUCTIVITY 171
9.3.1 Productivity Metrics 171
9.3.2 Measurement Techniques 172

viii

APPENDIX A CODING CONVENTIONS FOR VAX C 175

A.1 SUPPORT TOOLS 175

A.2 MODULE ORGANIZATION 176

A.3 ORGANIZATION OF C SOURCE FILES 178

A.4 ORGANIZATION OF HEADER FILES 179

A.5 COMMENTS 180

A.6 NAMING CONVENTIONS 181
A.6.1 General Considerations 181
A.6.2 Local Names 182
A.6.3 Global Names 182
A.6.4 Reserved Names 183

A.7 DEFINITIONS 185

A.8 DECLARATIONS 186
A.8.1 Structure Declarations 188
A.8.2 Function Declarations 189
A.8.3 Type Compatibility 189
A.8.4 Pointers 190

A.9 FUNCTIONS 190
A.9.1 Definition 190
A.9.2 Exception Handling 193

A.10 STATEMENTS 193
A.10.1 Indentation of Compound Statements 194
A.10.2 The if Statement 196
A.10.3 The for Statement 197
A.10.4 The while and do Statements 199

ix

A.10.5
A.10.6

The switch Statement
The goto Statement

A.11 EXPRESSIONS AND OPERATORS

A.12 PORTABILITY

APPENDIX B INTERNATIONAL PRODUCT DEVELOPMENT

B.1 INTERNATIONAL PRODUCT MODEL

B.2 INTERNATIONAL SOFTWARE DESIGN GUIDELINES

APPENDIX C INDUSTRY STANDARDS

C.1 IEEE STANDARDS

C.2 SOURCES FOR OTHER STANDARDS

APPENDIX D ADDITIONAL READING

D.1 APPLICATIONS AND TOOLS

D.2 SOFTWARE DEVELOPMENT

x

200
202

202

204

207

207

211

213

213

215

219

219

223

TRADEMARKS 227

INDEX 229

EXAMPLES
6-1 LSE Template for a Bliss Module Preface 97
6-2 LSE Template for a Bliss Module's Declaration 100
6-3 LSE Template for a Bliss Routine 101
6-4 LSE Template for a C Module 104
6-5 Proper Capitalization in a Pascal Program 110
6-6 Spacing in a BASIC Program 111
6-7 Block Comments in a FORTRAN Program 112
6-8 Justified Line Comments in a C Program 113
6-9 Unjustified Line Comments in a C Program 113
6-10 Block Comment in a C Program 113

FIGURES
1-1 The Phase Review Process for Product Development 2
1-2 Strategy and Requirements Phase 6
2-1 VMS Tools for Software Development 13
3-1 Product Team Interactions 44
3-2 Development Team Members 45
3-3 Mapping Units to Calendar 52
3-4 Project Control Model 53
3-5 Information Flow Among Phase Documents 55
4-1 Planning and Preliminary Design Phase 62
4-2 Modular Design Levels 65
4-3 Design Review Process 76
5-1 Design and Implementation Phase 85
7-1 Code Testing Process 129
7-2 Unit and Integrated Levels of Testing 130
7-3 DEC/Test Manager and Regression Testing 137

xi

7-4 Performance Test Process 141

9-1 Use of DEC/CMS Groups for Maintenance 166

9-2 Variant Development 168

9-3 Multiple D~C/CMS Libraries 169

B-1 International Product Model 208

TABLES
2-1 Data Types Supported by VAX Software Project Manager 27

2-2 VMS Run-Time Library Facilities 37

3-1 Responses to Common Task-Related Problems 48

4-1 Sample Usability Specification Table 69

4-2 DECwindows Run-Time Libraries 73

4-3 VAX Register Use 79

5-1 Problems in Preparing Base Levels 91

6-1 Naming Conventions for Common Files 117

6-2 Examples of Entry Point Names 119

6-3 Relationships Among File, Module, and Procedure Names 119

6-4 Global Variable Code Values 120

6-5 Naming Conventions for Objects 122

7-1 White Box Tests and Black Box Tests 132

8-1 Resolution of Critical Errors 149

9-1 Relative Costs of Fixing Software Errors 156

xii

Preface

There are many approaches to developing software products. This book
provides insight on how engineering teams develop software at Digital
Equipment Corporation.

The suggestions offered here are based on our accumulated experience
in turning software concepts into successful products. Through the
development of the VMS operating system and its many layered prod
ucts, Digital's development community has learned a great deal about
using structured software development and programming standards to
deliver high-quality products.

The Digital approach to software development is called the phase
review process. This process divides the life cycle of software products
into six phases and provides a set of measurable events for each.
In this way, the software development process is divided into more
manageable pieces.

The Digital Guide to Software Development was written for individuals
seeking information about a practical, efficient, and standardized ap
proach to the software development process. These individuals include
software development managers and engineers, software technical writ
ers, and those studying software engineering. This book concentrates
on the activities of the software development team and the phases in
which they are most interested and most involved.

The software development cycle used at your company may be quite
similar to or somewhat different from the process described here.
However, if you are looking for ways to enhance productivity through
out your development process, this book can help you in two ways:

xiii

xiv

1. Over the life cycle of a software product, it is easier and cheaper
to develop and maintain the software if you use a structured and
practical software development methodology, such as the phase
review process.

2. The productivity of your software development team can be in
creased if you use a wide spectrum of software development tools to
implement your methodology. This book discusses the tools used at
Digital that are also available to you.

This book is organized as follows:

• Chapter 1, The Digital Phase Review Process, introduces the phase
review process used at Digital for developing software applications
and provides a brief description of each phase.

• Chapter 2, Software Development Tools, reviews the software
development tools used at Digital. You can use these tools in your
software development efforts.

• Chapter 3, Project Management, provides guidelines for managing
a software development project. This chapter emphasizes the
team approach to software development. It also discusses the
role and responsibilities of project team members from a variety
of functional groups such as software engineering, marketing,
manufacturing, and customer services.

• Chapter 4, Planning and Preliminary Design, details the tasks you
perform in the preliminary stages of software development to get
your project off to the right start. Tasks discussed include high
level design, design methodologies, design reviews, and standards.

• Chapter 5, Design and Implementation, is the first of three chapters
devoted to the design and implementation phase. This chapter
discusses developing base levels and build procedures for base
levels.

• Chapter 6, Coding Guidelines for Implementation, focuses on
coding guidelines for implementing the detailed software design.
This chapter includes information on selecting coding guidelines,
methods of improving code readability, choosing an implementation
language, conducting code reviews, and naming conventions.

• Chapter 7, The Testing Process, concentrates on the testing pro
cesses used to verify an implementation against its design. It
discusses the levels of testing you need to perform, the types of
tests to perform, and some approaches to designing tests.

• Chapter 8, Qualification, presents procedures for field testing the
product and qualifying it for final production.

• Chapter 9, Maintenance, provides some guidelines for minimizing
maintenance costs associated with developing a software product.
Maintenance costs can account for a significant portion of engineer
ing resources throughout each phase of software development.

• Appendix A, Coding Conventions for VAX C, provides guidelines for
coding software using the C programming language. By using the
guidelines discussed in this chapter, you can take the steps needed
to increase the portability of your software product and decrease
the costs of your development efforts.

• Appendix B, International Product Development, presents a model
for creating a product for an international market. This is becoming
more important in today's global marketplace.

• Appendix C, Industry Standards, summarizes IEEE standards and
other nonproprietary standards.

• Appendix D, Additional Reading, contains the name and order
number of a variety of Digital documents discussed in this book. It
also contains information about other helpful books.

xv

Chapter 1

The Digital Phase Review Process

Developing software applications is a labor-intensive activity. The size
and complexity of software applications continue to increase, and user
expectations of software applications have grown more sophisticated.
For these reasons, the difficulty of managing software development
activities has continued to increase, as have the personnel costs of
software development and maintenance.

To effectively deal with these issues, Digital has developed an approach
to software development called the phase review process, illustrated in
Figure 1-1. This process has the following basic characteristics:

• It divides the life cycle of a software product into six phases.

• It identifies a set of plans, activities, and documents that are
reviewed at the end of each phase before moving on to the next.

• It brings together participants from key functional groups at the
end of each phase to determine whether the project has met its
goals for the phase and whether the project should proceed as
planned.

This chapter introduces the phase review process, describing in general
terms the activities and responsibilities associated with each phase.
Succeeding chapters provide more information on phases highlighted in
Figure 1-1. These are the phases in which the software development
team are most involved.

The Digital Phase Review Process 1

Figure 1-1: The Phase Review Process for Product Development

Strategy and
Requirements

Man ufactu ri ng

No

Retirement

The phase review process defines the project life cycle over six phases.
The life cycle begins with the identification of a product opportunity
that is consistent with the company's product strategy. The product
requirements are clearly defined, the preliminary design is established,
and then refined and implemented. The product is qualified by field
testing and, when ready for release, sent to manufacturing for du
plication. The life cycle ends with an integrated plan to retire the
product.

2 The Digital Phase Review Process

Ideas for software products come from a variety of sources. Sometimes
the impetus comes from engineering; other times it comes from mar
keting. Sometimes the product is more than an idea; it may already
be in use on a small scale in an internal group. Sometimes it may be
an adaptation of an existing software product. In any case, when a
product is to become a company product, a product team is formed.
Then, the product and the product team are submitted to the discipline
of the phase review process.

The product team is led by a product manager who guides the project
through all of its development phases. At Digital, the typical product
team includes representatives from the following functional groups:

• Engineering

• Product management

• Finance

• Manufacturing

• Customer services

• Marketing

• Sales

The phase review process provides an operational guideline for manag
ing a product through its life cycle. The process provides a common set
of planning, measurement, and implementation tools to help product
teams deliver high-quality systems to customers. Each phase has a
set of required plans, activities, and documents. The process is simple,
dynamic, and flexible. It encourages and facilitates effective coopera
tion and commitment among the cross-functional groups. The process
helps ensure that the necessary documents exist and are reviewed
by the appropriate people and groups. It also improves the discipline
and predictability required to effectively develop and deliver the final
product.

A key feature of the phase review process is the formal review held at
the end of each phase. At this time, the product manager convenes a
phase review meeting to determine whether the product has met the
milestones for the current phase and is ready to move to the next one.
Attendees include managers and key contributors from each functional
group represented on the product team. This meeting is a critical
one. At this forum the software engineers and other functional groups
review the status of the project, demonstrate that the product performs

The Digital Phase Review Process 3

according to its plans, and agree on any changes that may be needed
before moving on to the next phase. '

This book concentrates on phases for which the software engineering
development team is principally responsible. These include the follow
ing, each of which is highlighted in Figure 1-1 and described in greater
detail in succeeding chapters:

• Planning and Preliminary Design

• Design and Implementation

• Qualification

In the remaining sections in this chapter, however, we will briefly
discuss every phase in the Digital phase review process in order to
provide the context.

1.1 Strategy and Requirements Phase

The strategy and requirements phase marks the start of a product's
development life cycle. The primary activity during this phase is
to investigate a specific market need that has been identified. The
product team assesses the feasibility of technical options, market risks
and strategies, and product requirements.

In planning strategy and requirements, the product team considers
technical approaches to building the intended product. Individuals
outside the immediate product team are consulted for their expertise in
relevant areas. Often, possible solutions to difficult technical problems
are prototyped to make sure the implementation risks are well under
stood. By the end of this phase of development, the system is generally
defined, and a business decision is made on whether to proceed.

During the strategy and requirements phase, the members of the
product team share the following responsibilities:

• Funding the project

• Proposing a product that is consistent with the company's strategy

• Building a coordinated plan that incorporates subordinate plans
from all functional groups

• Planning for the manufacturing and production process

4 The Digital Phase Review Process

• Providing marketing information

• Developing service requirements and sales strategy

Product team members also have specific individual tasks, which are
described in more detail below. Figure 1-2 summarizes the tasks and
documents that are a part of this phase.

• Product manager

With input from all members of the product team, the product man
ager prepares a preliminary business plan outlining the product's
priorities, goals, market needs, international requirements (if any),
and projected financial costs and sales. Similarly, the product man
ager also prepares a product requirements document that outlines
the technical requirements of the product.

• Marketing project manager

Prepares a marketing requirements statement that demonstrates
an understanding of the market in which the proposed product will
compete.

• Engineering project leader

Leads the engineering development team (described in Chapter 3).
The engineering development team reviews the technical feasibility
of the product and prepares a list of alternatives. Typically, the
team begins work on several documents necessary for planning and
preliminary design:

Preliminary product specification

- Preliminary development plan

- Preliminary documentation plan

• Customer services representative

Prepares the customer services impact/requirements statement,
which analyzes how the product requirements will affect the
customer services group.

• Sales representative

Prepares the sales impact/requirements statement, which outlines
the product sales support requirements and tools needed to support
the product.

The Digital Phase Review Process 5

Figure 1-2: Strategy and Requirements Phase

Users

I

Advanced
Development

Preliminary
Development

Plan

Sales

Product
Management

Requirements
Gathering

Marketing

ReqUir5=Jeents I
Document

...... -

Alternatives/
Feasibility t--

Study

Preliminary
Specification

Other
Engineers

I

Wish List

Schedule
Estimate

...... _, '- '=r
~-----------------+----------------~

Preliminary
Documentation ~--I~

Plan

'-

6 The Digital Phase Review Process

Phase
Review

Preliminary
Business

Plan

'-

• Manufacturing project manager

Prepares the manufacturing impact statement, if necessary, which
analyzes how the product will affect the manufacturing group.

• Finance representative

Prepares a financial needs statement and maintains administrative
control over budgeting.

See Chapter 3, Project Management, for additional information on the
members of a product team and project documentation.

1.2 Planning and Preliminary Design Phase

The objectives of planning and preliminary design are to create com
plete product specifications, a preliminary design, and an integrated
project-implementation plan. This plan helps ensure that the commit
ments made by all functions involved in the project can be achieved.

During this phase, the product manager updates the business plan to
reflect the input from the entire development team. The engineering
project leader distributes the engineering plan, which contains the
product specification, the development plan, and a schedule. The
engineering plan defines how and when the product will be built,
tested, and delivered.

The software engineering development team also prepares a verification
test plan. This plan describes how the product will be tested and
verified to comply with the product specification, the manufacturing
plan, and the support guidelines.

Representatives from marketing, sales, customer services, and technical
documentation prepare documents outlining plans and strategies for
meeting the product's requirements within their respective groups.
These plans contain sections on how to sell and support the product,
deliver training, and develop and deliver user documentation.

Chapter 4, Planning and Preliminary Design, contains more informa
tion on planning and preliminary design.

The Digital Phase Review Process 7

1.3 Detailed Design and Implementation Phase

The objective of the detailed design and implementation phase is to
execute the plans made during planning and preliminary design. The
product design is completed and the product is coded and verified by
internal testing. The goal is to demonstrate that the product has met
the product specifications and design.

During this phase, members of the product team update their respec
tive plans to reflect any changes. Team members also submit their
respective product support plans. Plans for field testing are finalized.

More information about the design and implementation phase is
included in the following chapters:

• Chapter 5, Design and Implementation

• Chapter 6, Coding Guidelines for Implementation

• Chapter 7, The Testing Process

1 .4 Qual ification Phase

The objective of qualification is to field test the product at selected
external sites representing a cross-section of customers. The field
test process should demonstrate, through testing and feedback, that
the product meets its requirements and specifications. By the end
of this phase, the development team has master copies of the final
product ready to send to the manufacturing group for duplication and
distribution to customers.

During this phase, product team members update their plans, and the
development team ensures that the prodJct is ready for release:

• The product manager, along with the development manager, en
sure that the product performs to specification and is ready for
manufacturing and shipping to customers.

• The documentation manager verifies that the product documenta
tion is complete and technically accurate.

• The manufacturing manager confirms that the product meets the
minimum criteria for shipping the product to customers.

8 The Digital Phase Review Process

Chapter 8, Qualification, has more information on qualifying the design
for production.

1.5 Manufacturing Phase

When a product is ready for manufacturing, the master copies of the
software and documentation are given to the production group for
duplication. The product is then mass produced, packaged, delivered,
and serviced in a way that is satisfactory to customers.

Market performance evaluations are conducted periodically to deter
mine if the planned market and product goals are being achieved. The
results of this evaluation are used as part of the decision to continue,
enhance, or retire the product from the marketplace.

1.6 Retirement Phase

A product enters the last phase of the life cycle when it is to be retired.
The objective of the retirement phase is to phase out all marketing
and manufacturing responsibilities and transfer all service-related
manufacturing responsibilities to the customer services organization.
A product is phased out in a manner that fulfills any internal and
external commitments.

At retirement, the phase-out plan is reviewed, the customer base is
migrated to replacement products, and the product is phased out. The
various groups stop supporting the product. The product team plans
how the phase-out will be handled, what will be done with any existing
product inventory, and what strategy will be used to phase out services
of the product.

The Digital Phase Review Process 9

Chapter 2

Software Development Tools

The demand for more complex, high-quality software is growing at an
unprecedented rate. As software becomes a more important part of the
products and services that businesses offer, and plays a more important
role in the management of business, the ability to match the demand
for software development and maintenance is now crucial. In an
attempt to meet these demands, Computer Aided Software Engineering
(CASE) has emerged.

This chapter provides an overview of a number of CASE tools and
other software tools used at Digital to implement various elements of
its software development process. At Digital, CASE is an integrated
set of software tools and services that enable efficient implementation
of disciplined software engineering methodologies and procedures.
The Digital CASE environment contains a set of integrated tools
for designing, coding, testing, and maintenance of complex software
applications, as well as for project management, documentation, and
communication among developers.

Although tools cannot solve all the problems of software development
organizations, they help developers accomplish the following goals:

• Create a more predictable and disciplined development process

• Create high-quality, error-free software

• Achieve greater efficiency in the development process

• Reduce time-consuming maintenance tasks

• Complete a software project as specified

• Deliver a finished software product earlier

Software Development Tools 11

The integrated software development tools available for the VMS
operating system provide an especially rich and robust environment
for software development. Figure 2-1 associates some of the tools
discussed in this chapter with the stages of the project development in
which they are used.

2.1 Software Development Tools

Problems most often faced by programmers today fall into three basic
categories. Programmers must increase their programming output,
improve its quality, and manage the complexity of their programming
tasks. The tools discussed in this section can help meet each of these
challenges. At Digital, programmers use the following tools to help
them design, code, build, test, and maintain software:

2.1.1 VAXset

VAXset
VAX Language-Sensitive Editor
VAX Source Code Analyzer
VAX DECtrest Manager
VAX Performance and Coverage Analyzer
VAX DEC/Code Management System
VAX DEClModule Management System
VAX SCAN
VAX CDDIPLUS
VMS Debugger

The VAXset software is a package of six integrated tools designed
specifically to automate many of the repetitive tasks of software devel
opment. These tools, discussed in the next sections, include:

VAX Language-Sensitive Editor
VAX Source Code Analyzer
VAX Performance and Coverage Analyzer
VAX DECtrest Manager
VAX DEC/Code Management System
VAX DEClModule Management System

12 Software Development Tools

Figure 2-1 : VMS Tools for Software Development

Req

ication Stage

Desi n Stage

_ Primary Use

1:::::::::::::::::::::::::::::::1 Occasional Use

DIGITAL Standard Runoff, VAX DOCUMENT

VAX Notes, VAXIVMS Mail

VAX Language-Sensitive Editor

VAX DEC/Code Management System

VAX Software Project Manager

I

VAX DEC/Module Management System

Compilers, VMS Linker

VMS Debugger

VAX Performance and Coverage Analyzer

V AX Source Code Analyzer

VAX DEC/Test Manager

For information on using the VAXset tools together to develop software
applications, see A Methodology for Software Development Using VMS
Tools.

Software Development Tools 13

2.1.2 VAX Language-Sensitive Editor

In today's environment, software engineers need a productivity tool
that can help them code faster and more accurately, regardless of their
experience level. Digital's software engineers use the VAX Language
Sensitive Editor software (LSE) to develop and maintain source code.
LSE is a multilanguage text editor that provides source code templates
for each language it supports. These templates help both the novice
and the experienced programmer build programs faster, using the
correct syntax and punctuation.

With the editor's language templates, engineers can create an entire
skeletal structure by successively expanding keywords (called tokens)
and placeholders. Placeholders specify positions within the template
at which an engineer must either choose an option from a menu or
enter program code. For example, suppose a user wants to enter a
WHILE loop in a Pascal program. To do so, the user types the WHILE
keyword and then expands that construct by pressing the "expand" key.
In response, LSE produces the following text:

WHILE % {expression} % DO
% {statement} %

Within this template, there are two placeholders: one for the Boolean
expression, %{expression}%, and one for the statement that forms the
loop body, %{statement}%. In this example, pressing the expand key
when the cursor is on %{statement}% displays a list of valid Pascal
statements. The user can then choose the desired statement or type
over the placeholder to replace it with the desired program code.

LSE provides the following features:

• Provides source code templates for the constructs in the following
VAX programming languages and products:

VAX Ada
VAX BASIC
VAX Bliss-32
VAXC
VAXCDD
VAX COBOL
VAX DATATRIEVE
VAXDIBOL
VAX DOCUMENT

14 Software Development Tools

VAX FORTRAN
VAX MACRO
VAX Pascal
VAX PLII
VAX SCAN
VAXELN Pascal

• Tailors the editing sessions for each of the VAX languages and
products that support LSE

• Uses source code templates that are both formatted and language
specific to enter source code quickly and efficiently

• Allows coding, compiling, reviewing, and correcting of compile-time
errors without leaving the editing session

• Provides interactive editing capabilities during a debugging session

• Allows engineers to tailor the defined language environments or to
define their own environment

• Provides integrated access to the cross-referencing features of the
VAX Source Code Analyzer (see Section 2.1.3)

In short, LSE enables programmers to produce syntactically correct
code even if they do not know the language very well.

For more information on LSE, see the Guide to VAX Language-Sensitive
Editor and VAX Source Code Analyzer.

2.1.3 VAX Source Code Analyzer

The VAX Source Code Analyzer software (VAX SeA) helps Digital
software engineers understand the complexities of a large software
project by allowing them to make inquiries about the symbols in its
source code. This tool works with supporting compilers to provide
multilanguage, interactive cross-referencing and static analysis. With
VAX SeA, engineers can move easily through all the project's files,
quickly locating the definition of any symbol name or any references
made to that symbol name.

Using the cross-referencing capabilities of VAX SeA, engineers can
display information about program symbol names in their source files.
The FIND command greatly simplifies the following cross-referencing
tasks:

Software Development Tools 15

• Locating symbol names and the occurrences (other uses) of the
names

• Locating a specified set of names or partial names; wildcards are
permitted

• Locating symbol names based on their specific characteristics (such
as routine names, variable names, or source files)

• Locating symbol names based on their specific occurrences (such as
the primary declaration of a symbol, read or write occurrences of a
symbol, or occurrences of a file)

For example, the cross-referencing capability of VAX SCA allows
engineers to quickly find all the locations where a symbol name is used
throughout an application, thus helping them to better understand the
results of any changes to a symbol name. VAX SCA eliminates the need
for searching through hard-copy listings for symbol names.

Engineers can get information about program structure, that is, the
interrelation of routines, symbols, and files by using the static analysis
capabilities of VAX SCA. Static analysis features include the following:

• Routine call relationships are displayed relative to a specified
routine.

• Routine calls are analyzed for consistency, with specific regard to
the numbers and data types of arguments passed and the types of
values returned.

For more information on VAX SCA, see the Guide to VAX Language
Sensitive Editor and VAX Source Code Analyzer.

2.1.4 VAX DECITest Manager

During the design and implementation phase, development teams must
ensure that the application being developed performs to specification.
The VAX DECtrest Manager software organizes software tests and
automates the way tests are run and results are evaluated. To use
DECtrest Manager, software developers first write test scripts for their
software: each test script consists of input to the software that will
test various software functions. As the software is run under each test
script, the DEC/Test Manager captures the output.

16 Software Development Tools

DECtrest Manager is based on the concept of regression testing.
Regression testing is a method of ensuring that software in develop
ment runs correctly and that newly added features do not affect the
correct execution of those previously tested.

In regression testing, the development team runs established software
tests to compare the current test results with previously established
benchmark results. These benchmark results must be duplicated if the
software is functioning properly. If the current results do not match
the benchmark results, the current software may contain errors. The
software is said to have "regressed" in that it does not conform with
previously established behavior. In this case, the current software
version needs to be reworked.

DECtrest Manager has the following features:

• Lets engineers create scripts of software tests

• Sets up the test environment so that tests are executed under
controlled conditions

• Executes specific tests, groups of tests, and combinations of test
groups, either interactively or in batch mode

• Compares the results of each executed test with its benchmark test
results to determine differences

• Records an interactive terminal session and associates it with a test
description

• Allows engineers to group test descriptions into meaningful combi
nations for later runs

• Allows engineers to examine test result files interactively

• Generates summary reports of test set runs

For more information on DECtrest Manager, see the Guide to VAX
DEC/Test Manager.

2.1.5 VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer software (VAX PCA) is
another tool that is used during testing. Engineers use VAX PCA to
analyze the run-time behavior of an application under development.
It analyzes test coverage by measuring which parts of an application
are or are not executed by a given set of test data. Engineers use this

Software Development Tools 17

information to create tests that thoroughly exercise the application.
VAX PCA also pinpoints execution bottlenecks and other performance
problems. Using this information, the development team can modify
modules to run faster.

VAX PCA can collect, analyze, and report on the following types of data:

• Program counter sampling data-Provides a good overview of where
a program consumes the most time.

• Page fault data-Helps determine what sectio~s of the program
cause the most page faults.

• Exact execution counts-Provides the exact number of times a
program executes specified locations, thereby helping the team to
understand a program's dynamic behavior.

• Test coverage data-Shows which code paths are or are not exe
cuted during testing.

• System services data-Shows which sections of the program call
system services.

• Input/Output data-Details all VMS Record Management Services
(VMS RMS) calls in a program, thus helping development teams
to understand a program's input/output behavior. VMS RMS
software is a data management tool that provides an interface
at the application-program level to record and file management
functions.

For more information on VAX PCA, see the Guide to VAX Performance
and Coverage Analyzer.

2.1.6 VAX DEC/Code Management System

Maintaining software configuration management and keeping track
of source code files during development are tough challenges for any
software development team. If the wrong version is linked or the latest
changes are lost, the team can lose days or even weeks trying to correct
the problem. To overcome such problems, development teams at Digital
use the VAX DEC/Code Management System (DEC/CMS) software to
coordinate source code files. DEC/CMS software is used to ensure that
the files are always up-to-date and available, and to construct software
versions.

18 Software Development Tools

The DEC/CMS software is a tool that all team members can use
managers, system analysts, technical writers, and engineers. At
Digital, engineers use it to organize and maintain all their program
source files. They also use it to track everything that happens to
project files during development. DEC/CMS records every change, the
reason for the change, who made it, and when.

DEC/CMS can also be used to merge modifications and store cur
rent and historic versions of the files in a central library. Using the
class feature of DEC/CMS, development teams can associate a unique
DEC/CMS class name to each file and element related to a specific
software version. Thus, the class identifies all the files and elements
related to a specific version and provides a method of proper software
configuration management.

DEC/CMS can store any binary file, including a project's object files
and its executable images. The code management aspects of software
configuration management are especially important on large projects
that develop over a long period of time and have multiple versions of
the developing software.

DEC/CMS works on any file created with an editor. Team members
use it to store documents, plans, specifications, status reports, or other
records.

In summary, DEC/CMS performs the following functions:

• Keeps track of files at every phase of development

• Monitors changes in files to avoid conflict

• Allows team members to concurrently work on the same file without
the risk of losing the changes made by any team member, while
reporting any conflicts

• Conserves disk space as it stores the source files for documentation
and code

• Supplies source material for generating project activity reports

• Maintains a history of library activity

• Stores files from other software development tools

For more information on DEC/CMS, see the Guide to VAX DEC / Code
Management System.

Software Development Tools 19

2.1.7 VAX DEC/Module Management System

When building a software system, engineers must include the correct
version of each software component. To maintain proper software
configuration management at Digital, software engineers use VAX
DEClModule Management System (DECIMMS) software. DECIMMS
provides a consistent means of automating the building of modular
software applications, from simple programs of one or two files to
complex programs consisting of many source files, message files, and
documentation. DECIMMS software builds a system faster because
it builds only the parts that require building. No time is wasted in
recompiling and linking modules that have not changed since the
previous system build.

After DECIMMS is set up to handle a software application, it can
build the application with one command. DECIMMS then manages the
system build by retrieving the proper version of each source code file
from a DEC/CMS library.

DECIMMS provides the following features:

• Builds only the parts that need building, thereby building the
system more quickly

• Consistently reproduces the same system each time it is built,
thereby increasing the accuracy of the build

For more information on DECIMMS, see the Guide to VAX DEC / Module
Management System.

2.1.8 VAX SCAN

Development teams frequently need to reformat or transform existing
source files and other project files to match the standard used on the
current project. Also, a team might need to translate the program
source code from one language variant to another, for example from
DECSYSTEM-20 BASIC-PLUS-2 to VAX BASIC. The VAX SCAN
software helps programmers create tools to solve such cumbersome and
time-consuming text-processing tasks.

20 Software Development Tools

The VAX SCAN programming language is designed to help software
development teams create their own text-processing tools, that is, tools
that manipulate text strings and files.

The features of VAX SCAN include the following:

• Implemented as a high-level language

• Has extensive string-processing capabilities, including operators for
complex pattern matching

• Capable of calling VAX SCAN routines from other VAX languages

• Capable of calling routines written in other VAX languages from
VAX SCAN

• Capable of calling the VMS Run-Time Library (RTL) and System
Service routines from VAX SCAN

• Integrated for use with the VMS Debugger

• Integrated for use with LSE

The program created with VAX SCAN contains statements that define
the following:

• Rules for building "tokens" from the characters in the input stream

• Rules for defining patterns of tokens that are to be recognized in
the input stream

• Actions performed by the application when it recognizes a pattern

The input and output streams of text can be defined as a file, a string,
or a routine address, which can be called back to obtain the text.
Thus, VAX SCAN applications can be designed either as independent
applications or as part of larger systems.

VAX SCAN rules for building tokens and for defining and recognizing
grammars (patterns) help developers create applications more quickly
than is possible with a traditional programming language such as
COBOL or Pascal. Thus, VAX SCAN gives developers the potential to
create applications to solve problems that were left unresolved in the
past.

Another feature of VAX SCAN is that it is a compiled rather than an
interpreted implementation. Because it is compiled and conforms to
the VAX Procedure Calling and Condition Handling Standard, VAX
SCAN procedures can easily be integrated with procedures written
in other languages and system services. (This standard describes

Software Development Tools 21

the techniques used by all VAX languages for invoking routines and
passing data between them. See Section 4.6.1 for more information.)

For more information on VAX SCAN, see the Guide to VAX SCAN.

2.1.9 VAX COD/PLUS

Managing data requires significant time and effort in application
development, especially when two or more applications need to share
some common data. The need for a central repository of data definitions
has gained increased recognition in recent years. Incorrectly defined
data is a major source of errors and delay in the development process;
applications programmers need accurate definitions.

At Digital, software development teams use the VAX CDDIPLUS
(Common Data Dictionary) data base. VAX CDDIPLUS permits data
administrators to store accurate and complete definitions in a central
location accessible to all. VAX CDDIPLUS efficiently helps manage and
control definitions across the modules that make up an application.
By planning for its use early in a project, a team can simplify its
management tasks.

VAX CDDIPLUS software is designed to be used throughout the life cy
cle of a software development effort. It stores data definitions common
to many separate programs, which may be written in many different
languages. CDDIPLUS is particularly well suited to commercial en
vironments where multiple application programs access large central
data bases.

By storing data definitions in a central repository, VAX CDDIPLUS
provides the following benefits to a project:

• Eliminates the need to define data within application modules.

• Reduces redundancy (multiple copies of the same data definitions)
and inconsistency. To change a data definition that affects several
application modules, the user needs to make the change only once
in VAX CDDIPLUS, then recompile the affected modules.

• Enables multiple modules, even those written in different lan
guages, to share one or more definitions.

22 Software Development Tools

The CDDIPLUS system"lets developers create, analyze, and administer
metadata for a software development project. Metadata is data that
both describes data and defines how the data is used.

The actual data values are stored and maintained outside of the
data dictionary in DEC/CMS libraries or in a data base management
system. The metadata in VAX CDDIPLUS keeps track of the location,
type, format, size, change history, and use of the data. The dictionary
controls all changes to the metadata. Thus, a developer can manage
information and application resources more effectively by allowing
shared and controlled access to all meta data (usually fields and records)
and by auditing the dictionary's use.

For more information on VAX CDDIPLUS, see the VAX CDD/Plus
Common Dictionary Operator User's Guide and the VAX CDD / Plus
Common Dictionary Operator Reference Manual. For more infor
mation about using VAX CDDIPLUS with VAX languages, see the
documentation for the particular language.

2.1.10 The VMS Debugger

Digital engineers use the VMS Debugger software to observe and debug
a program as it executes and to manipulate the program interactively.
By issuing debugger commands at the terminal, engineers can carry
out the following tasks:

• Start, stop, and resume the execution of the program

• Trace the execution path of the program

• Monitor selected locations, variables, or events

• Examine and modify the contents of variables or force events to
occur

• In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink the program

Software Development Tools 23

Programming Language Support

The VMS Debugger works with the following VAX languages: Ada,
BASIC, Bliss-32, C, COBOL, DIBOL, FORTRAN, MACRO-32, Pascal,
PLII, RPG, and VAX SCAN. The Debugger recognizes the syntax,
expressions, data typing, and other constructs of a given language. If
a program is written in more than one language, the user can change
from one to another during the debugging session.

Symbolic Debugging

The VMS Debugger is a symbolic debugger. Program locations can be
referenced by the symbolic names used for them in the program (the
names of variables, routines, labels, and so on). It is not necessary to
use virtual addresses to refer to memory locations.

Support for All Data Types

The Debugger understands all language data types, such as integer,
floating point, enumeration, record, and array. It displays program
variables according to their declared type.

Flexible Data Format

The VMS Debugger permits a variety of data forms and types for entry
and display. By default, the source language of the program determines
the format used for the entry and display of data. Other formats can
be specified. For example, the contents of a program location can be
entered or displayed in ASCII, hexadecimal, octal, or decimal notation.

Starting and Resuming Program Execution

The GO and STEP commands start and resume program execution.
The GO command causes the program to execute until a breakpoint is
reached, a watchpoint is modified, an exception condition occurs, or the
program terminates. The STEP command executes a specified number
of lines or instructions, or up to the next instruction of a specified class.

Breakpoints

The SET BREAK command suspends program execution at specified
locations so the developer can check the current status of the program.
Rather than specify a location, you can also suspend execution on
certain classes of instructions, on every source line, or on certain types
of events, such as exceptions and Ada tasking events.

24 Software Development Tools

Tracepoints

The SET TRACE command monitors the path of program execution
through specific locations. When a tracepoint is triggered, the VMS
Debugger reports that the tracepoint was reached and then continues
execution. As with the SET BREAK command, you can also trace
through classes of instructions and monitor events.

Watchpoints

The SET WATCH command causes execution to stop whenever a
particular variable or other memory area has been modified. When a
watchpoint is triggered, the VMS Debugger suspends execution at that
point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

The EXAMINE command lets the engineer determine the value of a
variable or program location. The DEPOSIT command lets the engineer
change that value and then continue execution to see the effect of the
change, without having to recompile, relink, and rerun the program.

Evaluation of Expressions

The EVALUATE command computes the value of a source language
expression or an address expression. You can specify expressions and
operators in the syntax of the language to which the VMS Debugger is
currently set.

Control Structures

Logical control structures (FOR, IF, REPEAT, WHILE) can be used in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly exe
cutable). The SET IMAGE command references the symbols declared
in a shareable image.

Software Development Tools 25

Terminal Support

The VMS Debugger supports all of Digital's VT-series terminals and
Micro VAX workstations. It uses multiple windows on the terminal
screen to display extensive program state information. With this
information developers can find program bugs rapidly and efficiently.

For more information on the VMS debugger, see the VMS Debugger
Manual.

2.2 Management and Communications Tools

Many of the problems encountered in developing large and complex
software projects are associated with managing all of the tasks in the
process and making certain all members of the development team
have the same timely information. This section discusses the following
management and communications tools used at Digital:

• VAX Software Project Manager

• VAXlVMS Mail Utility

• VAX Notes

2.2.1 VAX Software Project Manager

From the earliest stages of a project, the development team needs to
be able to monitor schedules, budgets, and staff requirements. Teams
at Digital use the VAX Software Project Manager project management
system to generate project schedules and simplify the process of esti
mating, planning, and controlling software development projects. The
VAX Software Project Manager has the following capabilities:

• Manipulates data required to manage software projects that have
up to 5000 tasks and require up to 20 different resources.

• Supports three styles of interaction: menu mode, a command-line
mode, and a callable interface. All VAX Software Project Manager
functions can be carried out using either the menu mode or the
command-line mode. The callable interface provides a read-only
mechanism for extracting project data for use outside the VAX
Software Project Manager system.

26 Software Development Tools

VAX Software Project Manager supports an extensive collection of
project-related data. Developers can enter, manipulate, and view vary
ing amounts of data depending on the amount and depth of scheduling
and reporting information needed on their project. Table 2-1 summa
rizes the types of data supported by VAX Software Project Manager.

Table 2-1 : Data Types Supported by VAX Software Project Manager
Data Type Description

Tasks Individual tasks required to satisfy project objec
tives and product specifications

Milestones Critical points in time

Resources Personnel, equipment, supplies, and other materi
als used to carry out tasks

Schedules Dates and resources assigned to carry out tasks

Calendar Calendar against which to schedule

Estimation hierarchy

Software work break
down structure

Precedence network

User preference data

Access control lists

A tree-structured model, composed of estimation
nodes that contain cost and effort estimates for the
project

A tree-structured model of project tasks used for
detailed planning

A chronological map of a project showing dependen
cies among tasks and milestones

Optional ways to specify how VAX Software Project
Manager displays its information

A list of accounts that can access and change
project data

VAX Software Project Manager provides a powerful set of tools to help
developers efficiently manipulate the project data. These tools include
estimating, planning, control, and operational environment facilities.

Estimation Facility

The estimation facility allows the team to generate project schedules
based on a range of assumptions about the amount and quality of
available resources. This "what if' analysis can help development
teams consider major trade-offs before committing to a project schedule.

Software Development Tools 27

The estimation facility is based on the widely accepted COCOMO
(Constructive Cost Model) estimation model developed by Dr. Barry
Boehm.1 It uses algorithms that need as input the number of lines of
code for the project. The facility allows the user to specify "cost drivers"
that can push estimates for the project higher or lower; for example,
programmer skills, product complexity, the programming environment,
and so on.

Planning Facility

The planning facility generates task-level schedules. The schedules
are more detailed than those of the estimation facility because more
is known about the software project. Both the estimation and plan
ning facilities allow the project manager to perform interactive "what
if' analysis confidently at varying levels of detail. Additionally, the
planning facility produces a project plan that can serve as a baseline
against which to compare actual progress.

Control Facility

The control facility helps project leaders monitor and report project
progress and costs, anticipate potential problem areas, and ensure the
efficient use of all resources by comparing the progress of the project
against the project plan.

Operational Environment Facility

The operational environment facility provides the means to control
the environment in which VAX Software Project Manager operates;
specifically, which project data base to use, who can use the system, and
what each person can read and write in the project data base. Other
tools in this facility allow the user to specify the resources a project
has, their capabilities, their associated costs, and their availability at
different times.

For more information on the VAX Software Project Manager, see the
Guide to VAX Software Project Manager.

1 Barry Boehm, Software Engineering Economics. Prentice-Hall: Englewood Cliffs, New Jersey, 1981.

28 Software Development Tools

2.2.2 The VAX/VMS Mail Utility

A communications tool that is widely used by Digital's development
teams is the VAXNMS Mail Utility (MAIL). Team members use MAIL
to send electronic messages to other people on the system or any other
computer that is connected to the system by means of the DECnet-VAX
networking software. VAXNMS Mail can make communications almost
instantaneous. For many Digital engineers, MAIL often replaces the
telephone.

For more information on MAIL, see the VMS Mail Utility Manual.

2.2.3 VAX Notes

Throughout the software development process development team mem
bers need to collect information for product requirements, design, and
development, as well as to exchange general project information. At
Digital, development teams make extensive use of the VAX Notes
computer conferencing system. The VAX Notes system enables team
members to conduct conferences on line, thereby reducing or elimi
nating much of the time and expense required to arrange and attend
meetings. VAX Notes conferences can also provide a faster alternative
to reviewing project documents in hard-copy format. The capability
of VAX Notes to organize information can also simplify the process of
including review comments in final documents.

VAX Notes is organized into "topics," in which a written "note" starts
the discussion of each topic. Members of the conference can create
new topics at any time and they can reply to existing notes and other
people's replies. All information is stored on line and is easily examined
from any node in the user's computer network. Some of the features of
VAX Notes include:

• Distributed Access. Notes conferences can reside on and be ac
cessed from any VMS system on which VAX Notes has been
installed. Team members do not need an account on the system
where the conference resides in order to participate.

Software Development Tools 29

• Moderator Support. A moderator is the person responsible for
managing a conference. The moderator can restrict access to a
specific group of participants by specifying names and network
locations. VAX Notes allows both moderated and unmoderated
conferences.

• Simple Conference Structure. VAX Notes uses numbered topics and
replies to maintain the discussions in a conference, so there is no
difficult hierarchy to navigate. Participants can choose topics and
replies they want to read at any time.

• Use of Existing Text. Participants can create text outside of VAX
Notes and then add the text to the Notes conference.

For more information on VAX Notes, see the Guide to VAX Notes.

2.3 Documentation Tools

A successful software product must have high-quality documentation.
This includes both project documents, such as product specifications
and design documents; and user documents, such as user manuals and
installation guides. This section describes the following documentation
tools used by development teams at Digital:

• VAX DIGITAL Standard Runoff

• VAX DOCUMENT

• DECwrite

2.3.1 VAX DIGITAL Standard Runoff

The VAX DIGITAL Standard Runoff (DSR) text-formatting utility helps
developers create and maintain the extensive documentation necessary
to support a development effort. The DSR command set supports
documents as simple as a form letter or as complex as a multichapter
manual.

The input to DSR is a file containing the text of the document and the
DSR formatting codes. The output file is the formatted document that
can be printed. After DSR has run, the original file remains available
for further editing.

30 Software Development Tools

DSR has commands for a range of formatting needs, including the
following basic elements:

• Pages

• Titles
• Section headers

• Graphics, lists, and notes

• Indexes and tables of contents

For more information on DSR, see the VAX DIGITAL Standard Runoff
Reference Manual.

2.3.2 VAX DOCUMENT

Digital's development teams use the VAX DOCUMENT batch document
composition system to create project documentation, such as prod-
uct specifications and other design documents, and the software user
documentation to support the product. VAX DOCUMENT has facil
ities to create, maintain, revise, format, and print complex technical
documents.

The VAX DOCUMENT system produces high-quality output on a range
of Digital laser printers. Many different fonts are available for all of
these printers in a variety of point sizes and weights, including italic,
boldface, medium, and bold italic. Thus, documents prepared with VAX
DOCUMENT look typeset.

To use VAX DOCUMENT, the user creates and edits an ASCII file
in which text and markup instructions are entered. The markup
instructions contain no specific device or format information. Instead,
they identify the text elements (such as headings, bulleted lists, or
tables) that define the structure of the document. A separate file,
referenced by DOCUMENT when it processes the text file, defines the
typographic style of the document and its elements.

Writing a file using VAX DOCUMENT has several advantages:

• The writer can concentrate on the content of the information rather
than the format.

Software Development Tools 31

• The final appearance of the document can be changed easily with
out changing the marked-up file. The marked-up file is simply
reprocessed, referencing a design file that will produce a different
design. For example, one design file might produce output in two
column format and another design file might produce output that
spans the full width of the page.

• The documents that are produced have a consistent format.

Technical documentation for customers typically requires graphic
illustrations to support text discussions. VAX DOCUMENT allows a
writer to merge computer-generated graphic files into the final output
document. Different tools can be used to create the graphic files as
long as the files are encoded in the correct protocol for the device.
DOCUMENT accepts sixel-encoded graphic files for Digital's LN03
and LN03-PLUS laser printers. It also accepts POSTSCRIPT-encoded
graphic files for Digital's LN03R ScriptPrinter and PrintServer 40 laser
printers.

VAX DOCUMENT also provides files that define the typographic style
of several types of documents:

• Letters
• Overhead transparencies and 35mm slides

• Articles
• User manuals with software-specific information

• Military specifications

• General-purpose documents

The VAX Language-Sensitive Editor supports VAX DOCUMENT. The
source files can be stored in a DEC/CMS library.

The user can specify output from VAX DOCUMENT to be printed or
displayed on any Digital character-cell terminal and monospaced line
printer. The user can also specify printing on the following Digital laser
printers: LN03, LN03-PLUS, LN03R ScriptPrinter, and Print Server
40. These printers produce very high-quality text and graphics output.

For more information on VAX DOCUMENT, see the VAX DOCUMENT
User Manual, Volume 1, the VAX DOCUMENT User Manual, Volume 2,
and Step-by-Step: Writing with VAX DOCUMENT.

32 Software Development Tools

2.3.3 DECwrite

Another documentation tool that is useful to Digital's development
teams is the DECwrite new-generation WYSIWYG (What You See
Is What You Get) information processing tool. DECwrite allows the
user to create, edit, format, store, interchange, compose, and chart
information in documents. DECwrite features a bitmapped display that
shows text, graphics, and images in correct relative size and position
as they will appear on output to PostScript printers. It is designed
for the DECwindows environment. (DECwindows is an easily learned
graphic user interface that stays consistent across a wide range of
Digital desktop devices. See Section 4.4.2 for more information.)

DECwrite is a page-oriented application, which makes it attractive to
team members who need to create layout-intensive documents such
as product brochures. It is also a document-oriented application, so
team members use it for structured documents such as proposals
and specifications. DECwrite allows multiple files to be stored under
one document name, thereby automatically creating a document with
multiple sections or chapters. In batch mode, it can generate an index
and a table of contents with separate sections for figures and tables.

DECwrite has a basic graphics editor for drawing lines, rectangles,
squares, ellipses, circles, arcs, polylines, and freehand strokes. Any of
these shapes can be drawn with different line weights and styles and
can be filled with a variety of patterns. Once drawn, graphics objects
can be modified, moved, copied, scaled, aligned relative to one another,
grouped, or deleted. These graphics objects can be placed anywhere on
a document page and can overlap text on the page.

DECwrite also accepts hitmapped images from scanners, paint pro
grams, or screen capture facilities, all of which can be included in
documents. These images may be cropped and scaled to fit a specific
region of a page.

Software Development Tools 33

2.4 VMS Utilities

The VMS operating system has many powerful program develop
ment utilities. This section describes some of the most widely used,
including:

The Message Utility
The Command Definition Utility
The VMS Run-Time Library
The VAX C Run-Time Library

2.4.1 The Message Utility

The Message Utility is used to construct informational, warning, or
error messages in standard VMS format. Messages can indicate other
conditions, for example, that a routine has run successfully or that a
default value· has been assigned.

Developers create a source file that specifies the information used in
messages, message codes, and message symbols. Then they compile
the message source file with the MESSAGE command and link the
resulting object module with their facility object module. When a
program is run, the Put Message ($PUTMSG) system service finds the
information to use in the message by using a message argument vector.

The message argument vector includes the message code, which is a
32-bit value that uniquely identifies the message. Developers can refer
to the message code in programs by means of a global symbol called the
message symbol, which is also defined by information from the message
source file.

The message source file consists of message definition statements and
directives that define the message text, the message code values, and
the message symbol. The various elements that can be included in a
message source file are the following:

• Facility directive

• Severity directive

• Base message number directive

• Message definition

• Literal directive

34 Software Development Tools

• Identification directive

• Listing directive

• End directive

After the message file is compiled, the message object module must be
linked with the facility object module (created when the source file was
compiled) to produce one executable image file.

For more information on the Message Utility, see the VMS Message
Utility Manual and the Guide to VMS Programming Resources.

2.4.2 The Command Definition Utility

The Command Definition Utility (CDU) software creates, deletes, or
changes command definitions in a command table. CDU invokes a
program when the user enters a unique Digital Command Language
(DCL) command. As input, the CDU accepts a command table or a file
that contains command definitions. The CDU processes this input to
create a new command table in the form of executable code or an object
module.

The CDU provides a way to define command-line syntax. The command
table is used by the command-line interpreter (CLI) to parse com
mands. The CLl's parser is callable from the VAX Common Language
Environment.

For more information on command definition, see the VMS Command
Definition Utility Manual and the Guide to VMS Programming
Resources.

2.4.3 The VMS Run-Time Library

The VMS Run-Time Library (RTL) contains two types of procedures:

• General-purpose procedures

• Language-support procedures

The general-purpose procedures are intended to be called explicitly
from programs to perform common operations. The language-support
procedures are intended to be called implicitly by compiler-generated
code.

Software Development Tools 35

The general-purpose procedures in the RTL follow the VAX Procedure
Calling and Condition Handling Standard (see Section 4.6.1) and the
VAXNMS Modular Programming Standard (see Section 4.6.2).

The RTL provides the following features and capabilities:

• The resource allocating procedures of the RTL provide a central
repository for process resources such as virtual memory and event
flags.

• Because many of the procedures are shared, they take up less space
in memory.

• When new versions of the RTL are installed, engineers do not need
to revise the calling program and generally do not need to relink.

The RTL contains several facilities that are groups of procedures that
perform related operations. Table 2-2 lists the RTL facilities.

The general-purpose routines use explicit procedure or function calls.
The following list briefly describes the types of general-purpose rou
tines:

DECtaik Routines

These routines are used to control Digital's DECtalk devices. DECtalk
is a voice synthesizer that converts computer alphanumeric text into
human-quality speech. DECtalk speaks this data through its own
internal speakers, an external audio system, or over a telephone.

General Utility Routines

These routines obtain records from devices, manipulate strings, convert
data types for 110, allocate resources, obtain system information,
signal exceptions, establish condition handlers, enable detection of
hardware exceptions, and process cross-reference d,ata. Frequently
used string-handling procedures have both JSB and CALL entry points.

Mathematical Routines

Mathematical routines perform common arithmetic, algebraic, and
trigonometric functions. Frequently used mathematical routines have
both JSB and CALL entry points.

36 Software Development Tools

Table 2-2: VMS Run-Time Library Facilities
Facility Description

General-Purpose Routines

DTK$

LIB$

MTH$

PPL$

SMG$

STR$

DECtalk routines

General utility routines

Mathematical routines

Parallel processing routines

Screen management routines

String manipulation routines

Language-Support Procedures

OTS$

BAS$

COB$

FOR$

PAS$

PLI$

RPG$

Language-independent support routines

BASIC-specific support routines

COBOL-specific support routines

FORTRAN-specific support routines

Pascal-specific support routines

PUI-specific support routines

RPG-specific support routines

Resource Allocation Routines

Resource allocation routines allocate and deallocate virtual memory,
VMS local event flag numbers, BASIC and FORTRAN logical unit
numbers, and dynamic strings.

Screen Management Routines

Screen management routines perform terminal-independent screen
management functions. These routines help developers design, com
pose, and track complex images on a video screen. For more informa
tion on the screen management routines, see the VMS RTL Screen
Management (SMG$) Manual.

Parallel Processing Routines

These routines simplify subprocess creation, interprocess communica
tion, and resource sharing for parallel applications.

Software Development Tools 37

Signaling and Condition-Handling Routines

These routines perform operations that entail handling exception con
ditions, such as signaling exceptions, establishing condition handlers,
and enabling the detection of hardware exceptions.

Syntax Analysis Routines

Syntax analysis routines analyze the syntax of strings. The library
includes a table-driven parser called LIB$TPARSE and a procedure
called LIB$LOOKUP _KEY that recognizes keywords.

Cross-Reference Routines

The cross-reference routines accept cross-reference data, summarize it,
and format it for output. Programs access the cross-reference routines
through a set of control blocks and format definition tables.

Language-Independent Support Routines

Language support routines are intended to be called implicitly by
language compilers and compiled code. Compiler-generated code uses
these routines to do specific tasks such as data-type conversions.

Language-Specific Support Facilities

The language-specific routines provide features such as compiled code
support, file processing, format processing, error processing, and I/O
processing.

For more information on the RTL routines, see the VMS Run-Time
Library Routines Volume.

2.4.4 VAX C Run-Time Library

The primary purpose of the VAX C Run-Time Library is to allow C
programs to perform I/O operations; the C language itself has no
facilities for reading and writing information. The VAX C RTL also
provides a means to perform many other tasks. The functions and
macros supported by the VAX C RTL are as follows:

• Standard I/O functions and macros
• Terminal functions and macros

• Character-handling functions and macros

38 Software Development Tools

• String- and list-handling functions and macros

• Mathematical functions

• Signal functions

• Memory allocation functions

• Subprocess functions

• System functions

• Cursor Screen Management functions and macros

For more information on the VAX C Run-Time Library, refer to the VAX
C Run-Time Library Reference Manual.

2.5 Summary of Software Development Tools

Here is a brief summary of the software development tools discussed in
this chapter:

VAX Language-Sensitive Editor

Simplifies programming in any VAX language by providing multi
window, screen-oriented functions specifically designed for program
development and maintenance.

VAX Source Code Analyzer

Helps software engineers understand the complexities of a large soft
ware project by allowing them to make inquiries about the symbols
used in the project's code.

VAX DECITest Manager

Automates regression testing of software under development by exe
cuting user-supplied test data and automatically comparing the results
with the expected test results.

VAX Performance and Coverage Analyzer

Analyzes the run-time behavior of software under development by
performing test coverage analysis, which measures the parts of a user
program executed or not executed by a given set of test data.

Software Development Tools 39

VAX DEC/Code Management System

Acts as the library system for storing, managing, and recording valu
able information about the project files.

VAX DEC/Module Management System

Helps manage the building of application systems from component
modules by determining which modules need to be recompiled after
modifications and performing the appropriate actions to ensure that the
software system is compiled and linked with the latest changes.

VAX SCAN

Helps software development teams create their own text-processing
tools. It provides complex pattern-matching programming functions.

VAX CDD/PLUS

Makes it easier for software engineers to set up and maintain data
definitions.

VMS Debugger

Provides interactive functions for debugging software.

VAX Software Project Manager

Simplifies planning and organization of medium-to-l~rge development
projects by generating schedules to track and manage project tasks.

VAX/VMS Mail Utility

Lets team members send electronic messages to other people on the
system or any other computer that is connected to the system by means
of the DECnet-VAX networking software.

VAX Notes

Enables the development team to create and access online conferences
or meetings, thus reducing the need to travel and coordinate schedules.

VAX DIGITAL Standard Runoff

Provides text-formatting functions for text editors.

40 Software Development Tools

VAX DOCUMENT

Provides tools for text creation, text and graphics integration, so
phisticated document formatting, and typeset-quality output on laser
printers.

DECwrite

Enables developers to create, edit, format, store, interchange, compose,
and chart information in their documents. Features a bitmapped
display and is designed for the DECwindows environment.

Message Utility

Enables the software development team to construct informational,
warning, or error messages to be used by the software application.

Command Definition Utility

Used to create, delete, or change command definitions in a command
table.

VMS Run-Time Library

Provides a series of procedures designed to be called from programs to
perform common operations.

Software Development Tools 41

Chapter 3

Project Management

Project management is the process of coordinating the several inter
related tasks of developing a product and bringing it to market. As
project teams develop larger and more complex applications, managing
the life cycle becomes more difficult and more time-consuming. Good
project management is therefore vital to the success of a software
development project.

This chapter discusses some of the key concepts in project management.
The chapter is divided into three main topics:

• Development projects and teams

• Project planning and control

• Project documentation

3.1 Development Projects and Teams

Digital relies on product teams to develop and deliver products. This
approach recognizes that bringing a new product to market on time and
within budget requires cooperation and shared decision-making.

3.1.1 Product Team

Every product-development effort requires the interaction of manage
ment, marketing, engineering, customer services, sales, manufacturing,
and finance. Generally, these team members are first brought together
by the product and marketing managers.

Project Management 43

Figure 3-1 shows the interactions among members of a typical product
team.

Figure 3-1 : Product Team Interactions

Customer
Services

Representative

Sales
Representative

Supervisory
Review

I'

If

Marketing
Project Manager

The product team shares these responsibilities:

Engineering
Project Leader

Manufacturing
Project Manager

• Monitoring development progress against the business plan

• Ensuring that software developers understand the user's perspec
tive

44 Project Management

• Evaluating prototypes for functionality

• Continuously reviewing product plans and documenting changes

The product team resolves all issues that arise while carrying out these
responsibilities.

3.1.2 Development Team

The team within a software engineering organization responsible for
delivering the product is generally called the project or development
team. Figure 3-2 shows typical development team members.

Figure 3-2: Development Team Members

Product Manager

Software
Engineers

Technical
Writers

Engineering
Manager

Other
Groups

Release
Engineer

Project Management 45

An engineering project leader directs the daily engineering activities
of the development team and represents its interests on the product
team. Members of this team include one or more software engineers,
technical writers, release engineers, field test administrators, software
manufacturing planners, and administrative personnel.

The success of a project lies in the effectiveness of the team. One
measure of effectiveness is the communication among team members.
At Digital, the primary communications tools are meetings, reports,
and electronic dialogue (MAIL and VAX Notes). Another measure of
effectiveness is the ability of all individuals to manage their tasks on
the project, as described in the next sections.

3.1.2.1 Responsibilities of the Engineering Project Leader

The engineering project leader plays a central role in product develop
ment. He or she is responsible for the following:

• Coordinating the daily engineering activities required to
meet the criteria for each phase of development. To meet this
responsibility, the engineering project leader:

Plans projects

Manages activities

Evaluates status

Manages change

• Ensuring that the engineering plan is consistent with the
support plans of the product development team and that all
support plans receive the necessary engineering attention.
To meet this responsibility, the engineering project leader:

46 Project Management

Participates in product development team meetings

Conducts regular team meetings with the development team
members

Reviews and approves all team documents

Submits status reports

Identifies and manages items that change the scope of the
project

• Keeping engineering management fully informed of project
developments. To meet this responsibility, the engineering project
leader:

Identifies resource requirements for the project

Negotiates commitments for project resources

Reviews the performance of project team members

Recognizes performance problems with assigned personnel and
notifies the appropriate managers

Submits regular status reports

• Building an effective development team. To meet this respon-
sibility, the engineering project leader:

Directs and coordinates all resources on project tasks

Assigns individual team members to complete each task

Analyzes necessary trade-offs required to respond to changes in
the needs of the project

Provides a regular forum to communicate project status and
accomplishments

Manages changes and suggestions from the team

Manages dependencies with other resources on the project

Identifies dependencies that affect the start and completion of
each task

Estimates the time and effort needed to complete each task and
schedule start and completion dates

Specifies the criteria that will indicate that a particular task is
complete

Sets priorities and identifies potential risks and conflicts

3.1.2.2 Responsibilities of Development Team Members

Each team member develops a specific portion of the product. As a
group, they also review the work of their fellow team members to
ensure the cohesion of their efforts. Working with the project leader,
team members are responsible for:

• Planning their tasks to ensure efficient budgeting of time
and resources. To meet this responsibility, team members:

Make sure their tasks are clearly defined

Project Management 47

Understand how much time each task requires and ensure that
time is available for all task commitments
Confer with the project leaq.er if they need help in planning
their tasks or in redefining tasks that are not properly defined

• Maintaining a list of their tasks and tracking their progress
against the planned schedule.

• Working on tasks according to the development schedule.
To meet this responsibility, team members bring difficult problems
to the attention of their project leader promptly. Table 3-1 lists
several common types of problems and courses of action to follow.

Table 3-1 : Responses to Common Task-Related Problems
Type of Problem

Improperly defined task

Missing task

Prerequisite not met

Revision required after the task
is complete

3.1.2.3 Progress Reports and Team Meetings

Response

Discuss problem with project leader
immediately. No matter how much time
is spent planning, new information may
cause changes in a task, priority, or
content.

Discuss problem with project leader
immediately.

The project leader may need to alter
priorities of other tasks to allow a task
to begin, or defer a task at that point
and start another task.

Do not wait until the last minute to
check if the task is complete. Discuss
progress with others at status re
view meetings as well as with the
project leader. The impact of rework is
generally underestimated.

Regular progress reports facilitate communication between team
members and the project leader and provide the project leader with
information needed to manage the project.

Progress reports include the following information:

48 Project Management

• Tasks or components worked on

• Time spent on each task

• Time remaining on all tasks

• Tasks completed

Progress reports are the key topic at team meetings, which are typically
held once a week. During the meeting, the project leader identifies
the accomplishments and problems from the previous week and sets
goals for the upcoming week. This information, collected weekly, can
contribute to a monthly project report.

Team meetings are most useful when everyone is prepared and ready
to participate actively. Team members should be able to discuss their
current status and their plans for the next two to four weeks. Thus,
everyone is made aware of what the others are doing.

3.2 Project Planning and Control

The purpose of project planning is to carry a project through all phases
of development on time and within budget while meeting all tech
nicalobjectives. Effective project planning entails the following key
activities:

• Identifying the project tasks

• Identifying the resources necessary to carry out the project tasks

• Organizing the tasks and resources to meet project objectives

Although most of the planning occurs when the preliminary and
final engineering plans are prepared, in reality the project plan is
continuously updated to reflect the project's evolution.

3.2.1 Project Sched,ule

During preliminary planning, the development team prepares a project
schedule. The schedule depends on many factors:

• The resources available for the project (people, equipment, and so
on)

• Dependencies on other projects

Project Management 49

• Marketing needs

• Special field testing requirements

The following checklist contains tasks and other items to consider when
allocating time for the schedule:

• Project Work
Producing prototypes

Su pporting prototypes

Testing

Responding to reported problems with the software

Fixing errors in the code

Installing operating systems

Verifying the product on new hardware or operating systems

Testing performance

Adjusting for delays in other projects that affect the schedule

Reviewing documentation and code

Holding project meetings

Preparing review documents

• Overhead
Administrative work (for example, demonstrations)

Training

Presentations and business trips

Vacations

Staffing changes

Digital's development teams use the following steps to establish realis
tic schedules:

1. Produce a product design with enough detail to minimize risks.

2. Divide the project into units or tasks suitable for scheduling.

The team uses the physical design of the software to divide the
project into units or tasks that are easy to schedule. Note that a
logical design might not directly correspond to a task that can be
scheduled.

50 Project Management

3. Estimate the time to complete tasks.

Team members estimate the time necessary to complete their
individual tasks, including overhead.

4. Determine milestones.

Milestones are important points in the project that typically reflect
significant progress in the product's development.

5. Determine critical paths, that is, the completion order and depen
dencies among tasks.

6. Define the actual time period in which project activities will be
completed.

7. Assign people to tasks.

The project leader makes sure that assigned parties agree with the
time estimates.

8. Schedule actual working hours.

Add time for meetings, vacations, and so on. For example, a
project leader may have a task that requires four days. If 50
percent of the assigned engineer's time is taken with overhead,
then the job actually will take eight days to complete. The resulting
schedule consists of a series of milestones mapped to calendar
dates. Figure 3-3 depicts this mapping process.

Depending on the type of project, the schedule may have to allow for
a significant degree of uncertainty, particularly for projects whose
requirements are not well defined. To cope with this uncertainty, the
team regularly updates and reevaluates the project schedule. In effect,
during much of the project, scheduling is an ongoing process.

As the project advances, however, scheduling dependencies increase
between the groups represented on the project team. Furthermore, the
schedule must become increasingly firm as the dates for field test and
manufacturing approach.

Project Management 51

Figure 3-3: Mapping Units to Calendar

Design

Design Review

Testing

3.2.2 Project Control

Clearinghouse
Approval

Coding

To ensure a successful outcome, the development team needs a project
control strategy. Digital's development teams use the following project
control model, adapting it as necessary to the needs of the project.
Each function is typically carried out by the project leader.

52 Project Management

• Directing: Assigning project tasks to team members or outside
groups; redirecting tasks and assigning special action items as
required.

• Monitoring: Staying abreast of the progress of individual tasks
and the project itself by personally observing tasks and reviewing
formal and informal status reports.

• Evaluating: Comparing actual progress to the schedule; the com
parison leads to decisions regarding the project or task, reviews
held, and reports prepared for management.

• Replanning: Updating the project plan or task assignments.

Figure 3-4 illustrates the project control model. For simplicity, the
functions in the model are represented as discrete blocks. In practice,
of course, the operations may overlap.

Figure 3-4: Project Control Model

Directing Monitoring

Replanning

Evaluating

Yes

Project
Complete

As a part of the control strategy, the engineering project leader can
examine how the updated schedules deviate from original schedules.
U sing statistical analysis, the project leader may uncover a consistent
pattern of deviation the team can use to set up future schedules. In

Project Management 53

this way, the schedule more accurately reflects the ongoing progress of
the proj ect.

3.2.3 The VAX Software Project Manager

At Digital, scheduling and task assignment are facilitated by the VAX
Software Project Manager. This tool, described in Section 2.2.1, helps
automate the process of mapping the scheduled tasks to a calendar
and assigning the tasks to team members. The VAX Software Project
Manager provides several advantages over other methods of project
management:

• Quickly generates schedules, thereby making them easier to main
tain; any changes or unforeseen events can be factored into new
schedules.

• Communicates information to the entire development team rather
than limiting access to the project leader.

• Helps prevent mechanical or mathematical errors in schedules after
the team determines what units it will use.

3.3 Project Documentation

Good project documentation is essential to successful project manage
ment. This section describes a number of the project-related documents
used at Digital to plan and control product development:

• Market requirements document

• Product requirements document

• Alternatives/feasibility study

• High level design document

• Detailed design document

• Product specification

• Development plan

• Field test plan

• Field test results

54 Project Management

Figure 3-5 shows the flow of information among the various documents
as related to the development phases.

Figure 3-5: Information Flow Among Phase Documents

STRATEGY AND
REQUIREMENTS

Alternatives/
Feasibility

Study

Product
Requirements ~

Document

Marketing
Requirements

Document

--r---------------------------------
PLANNING
AND
PRELIMINARY
DESIGN

High-Level I Product
Specification Design Document M

'----...,..-----'

-----+ Development Plan

--r-----------------------r---------
DESIGN
AND
IMPLEMENTATION

Detailed
Design Document

QUALIFICATION

Field Test
Plan

Field Test
Report

Project Management 55

3.3.1 Marketing Requirements Document

The marketing requirements document has the following purposes:

• Demonstrates an understanding of the marketplace that this
product will satisfy. It presents market requirements from the
customer's perspective.

• Analyzes customer needs and describes customer priorities, in
ternational considerations, and possible trade-offs in the areas of
pricing, cost of ownership, delivery, function, quality, ease-of-use,
performance, compatibility, and serviceability.

• Reviews the product position compared to competitive products.

The product or marketing manager prepares the marketing require
ments document during the strategy and requirements phase, with
help from other marketing organizations.

3.3.2 Product Requirements Document

The product requirements document has the following purposes:

• Defines in measurable terms the goals, capabilities, and external
characteristics of the product.

• Describes the requirements of the product as agreed to by the
product team.

• Proposes what the final packaged product will look like to the
customer.

• Describes in detail the primary product features that will be
delivered to satisfy both critical market needs and success factors
that were identified in the marketing requirements document.

• Defines the specific technical requirements of the product.

• Identifies the methods, tools, processes, and metrics that will be
used to deliver and verify the quality of the stated features.

• Identifies international requirements.

• Identifies interdependencies.

56 Project Management

The product manager prepares the product requirements document
during the strategy and requirements phase with help from engineer
ing, marketing, customer services, and other product and engineering
groups.

3.3.3 Alternatives/Feasibility Study

The alternatives/feasibility study analyzes the trade-offs required to
deliver a product that meets the conditions of the product requirements
document. It quantifies the total life-cycle costs of the alternatives for
meeting the requirements.

The alternatives/feasibility study has the following purposes:

• Identifies options within the company and industry that will allow
development using existing company products (available concur
rently or in development).

• Identifies and describes various approaches for meeting the condi
tions defined in the product requirements document. Focuses on
methods required to acquire and integrate the product within the
constraints of cost and schedule.

• Specifies the interdependencies involved in developing the product.

• Identifies alternative product and component design approaches.

• Identifies the cost requirements by phase based on the recom
mended schedule.

The engineering development team prepares the alternatives/feasibility
study during the strategy and requirements phase.

3.3.4 Product Specification

A product specification describes in measurable terms the goals, capa
bilities, and external characteristics of a component software product.
It is the development team's commitment to meet the product require
ments.

Project Management 57

The product specification is based on the product requirements doc
ument. Usually, it also corresponds to a reference from a system
specification; that is, the document that describes the plan to deliver
the total system, of which this product may be a component. Additional
characteristics of the product specification include the following:

• Serves as the starting point for much of the design work for the
product

• Helps identify the tasks required to create the product

• Estimates the resources needed to deliver the product

• Provides a measure against which the product is evaluated

• Serves as the source document to be used by the service organiza
tions and by other engineering groups, both hardware and software,
to plan other components of the system

3.3.5 Development Plan

The development plan serves as the master plan and schedule for
successfully delivering a component software product. It is used to
manage the product development effort.

The development plan has the following purposes:

• Describes the major tasks of each functional group.

• Details the commitments, schedules, and costs of all functional
groups that are responsible for the product's objectives.

• Identifies when product reviews will occur in relation to the efforts
of functional groups.

• Describes the development project for designing, building, testing,
evaluating, and delivering the product.

• Lists the major issues and risks identified in the strategy and
requirements phase that are critical to the design freeze.

The development team prepares the development plan during the
planning and preliminary design phase, with help from the product
manager and marketing representative.

58 Project Management

3.3.6 High-Level Design Document

The high-level design document describes the design for the system
that meets the functional requirements detailed in the product specifi
cation. The high-level design document translates the requirements of
the product specification into a physical model showing how the devel
opment team will design and integrate the system components into a
complete product.

In planning a software product, a Digital product team divides each
system into components that represent a part of the capabilities of
the product. These components provide a basis for planning, de
veloping, and integrating the product. The high-level design of the
system establishes the system interfaces and data structures and the
test specification for system integration. The high-level design for
each component establishes the component interfaces and data struc
tures, processing within the component, and the test specification for
component integration.

The primary audience for the high-level design document consists of
design engineers who will design components of the system, review
engineers who will review the designs, maintenance engineers who will
support the system, and the project manager.

3.3.7 Detailed Design Document

The detailed design document translates the high-level designs into
module designs and test procedures. Each module design with its
associated test procedure is then used during the design and imple
mentation phase. The detailed design also describes the procedures
the development team will use for unit and integration testing of the
component or system.

The detailed design document corresponds to the current version of the
software. Changes to the design are reflected in changes to the design
documentation.

Project Management 59

3.3.8 Field Test Plan

The field test plan has the following purposes:

• Serves as the master plan for field testing a component software
product.

• Serves as the operational plan used to track the product's testing
effort.

• Describes what is to be tested during field test.

• Describes the strategy for carrying out the field test.

• Describes how the field test sites are selected.

• Describes how the field test will be evaluated.

• Describes the major tasks of each functional group.

• Details the responsibilities and schedules of internal groups and
test sites during the field test.

The development team prepares the field test plan during the design
and implementation phase, with help from the product manager and
field test administrator.

3.3.9 Field Test Report

The field test report collects and summarizes the results from the field
test. It contains information such as the following:

• A general overview of the field test. This section describes each test
site and includes information such as the location of each test site,
and the start date and end date of the test at each site.

• A section for each field test site. These sections contain information
about how the customers used the product, including their general
applications as well as actual field test use. It also describes the
customers' reactions to the product.

• A problem report section. This section describes all problem reports
submitted and their resolution.

The field test administrator prepares the field test report with help
from the product manager and development team.

60 Project Management

Chapter 4

Planning and Preliminary Design

Mter the documents of the strategy and requirements phase are
written and approved, attention turns to the software engineering
development team and the planning and preliminary design phase
begins. During this phase, the development team, with help from the
rest of the product team, determines precisely what to build and how
to build it. The product specification, the development plan (schedule)
and the high-level design document are prepared. When the project
specifications are complete, ~nalysis and design can then take place
and the software product takes on full-system definition.

During this phase, top-level designs are prepared for all forms, data
structures, program modules, file formats, and human interfaces based
on the information in the product specification. The completed design
gives the project technical definition. The design document makes it
possible to keep the design specifications in one location, accessible
to all software engineers. As the project evolves, so does the design
document.

Figure 4-1 shows the relationships among the key engineering tasks
and documents of this phase.

Planning and Preliminary Design 61

Figure 4-1: Planning and Preliminary Design Phase

STRATEGY AND
REQUIREMENTS

PLANNING AND
PRELIMINARY
DESIGN

Prototype

Alternatives/
Feasibility

Work

Design ~
....... ___ ---'1 ~ High-Level

Design
Reviews

~ Design

V'------r-----'

Design
Documents ~

-

Project
Schedule

Product
Specification

Update
Plans

Phase
Review

DESIGN AND
IMPLEMENTATION

4.1 High-Level Design

Detailed
Design

The high-level design work provides information that the develop
ment team can use to prepare preliminary versions of the product
specification and the development plan, including the project schedule.

62 Planning and Preliminary Design

The product requirements document and the alternatives and feasi
bility study, written in the strategy and requirements phase, form the
basis for the high -level design.

4.1.1 High-Level Design Process

A Digital development team typically considers two major areas of
system design:

• High-level design (sometimes called logical design or analysis)
identifies the multiple components (modules) of a product. The
high-level design also identifies the interactions among components,
the relative size and scope of the components, and any shared
components. The team provides enough detail on each design
component to write the detailed designs.

• Detailed design (sometimes called physical design or implemen
tation design) divides the product into units based on how each
component will be implemented. The team provides enough detail
on each design unit to allow the code to be written. Section 5.1.2
provides information on detailed design.

During high-level design, the development team begins to define
the product components, design criteria, design constraints, and the
functional design of each component. The functional designs specify
the inputs, outputs, and processing of data. Data flow diagrams can be
useful in preparing high-level designs. The finished high-level design
documents include both component and systemwide test designs.

When designing an application, the Digital design team plans cen
tralized and common functions and designs the application's system
of modules to produce efficient interaction among them. The develop
ment team also attempts to create routines that are highly modular. A
modular approach to design has several benefits:

• Changes to the code are made in one place in the application rather
than in several places that reuse the same source code.

• The development team can write tests more easily for modular
routines because their functions are carefully delimited.

• Many utilities can access other routines directly without going
through functional routines.

Planning and Preliminary Design 63

• Tests are more likely to find code errors because some sections,
for example, the common access level or entry points, would be
repeatedly tested along with the functional routines. The result
should be fewer errors.

• Highly modular code can be reused more easily in other applica
tions.

Modular routines have the following characteristics:

• They have one primary function.

• They are standalone.

• They are callable.

• They contain sufficient levels of error checking to detect problems
that occur during their execution.

As Figure 4-2 illustrates, a modularly designed application can be
represented as a series of levels. The user interface is at the highest
level, followed by the functional level, the access level, and the data
base level. The functional level contains the various utilities or routines
that give the application its functional capabilities. The modularity in
this example enables the utilities in the functional level to use the
data base through a common access level or entry point. Thus, each
utility in the functional level does not need its own individual routines
to access the data base. Instead, the access level has a common set of
routines that all the utilities in the functional level use to access the
data base.

4.1.2 High-Level Testing Analysis

High-level testing analysis refers to the testing strategy needed for
the product and is a part of the high-level design. The product re
quirements document serves as the starting point for high-level testing
analysis. For analysis, the team can use the product itself (assuming
the development effort is for a new version of an existing product) or a
prototype.

64 Planning and Preliminary Design

Figure 4-2: Modular Design Levels

User Interface

J ~
I I

Functional Level
(Modular Utilities)

i I I

~ ~
Access Level

Data Base

The VAX DEClTest Manager, described in Chapter 2, is an automated
regression testing tool that can serve as a resource in planning the
testing strategy. See Section 2.1.4 for more information on the VAX
DEClTest Manager.

The results of testing analysis take several forms:

• Details on the test system requirements for the product specifica
tion and the development plan

• Support for the schedule estimate
• Information that becomes part of the high-level and detailed design

documents

Refer to Section 7.3.1 for additional information on the relationship
between design and test planning.

Planning and Preliminary Design 65

4.2 Design Methodologies

Designs can be communicated by means of written documents, coded
and commented files, or both. Each method has a significant shortcom
ing. The subjectivity and lack of precision of natural language creates
difficulties as the team translates the designs into highly structured,
high-level coding languages. On the other hand, using a programming
language to communicate a design introduces such fine detail that the
true power and flexibility of design work may be lost.

Digital's solution to this problem is to use design methodologies. The
various methodologies (Yourdon, Warnier and Orr, and so on) provide a
rigid syntax (operators, operands), data (nouns), and a grammar that
governs the relationships among the component parts of the design.

The syntax and grammar of such formal methodologies provide two
major benefits:

• They provide ways to validate designs.

• They minimize the ambiguity inherent in the design medium.

When choosing a methodology, determine what is most commonly used
in your own company. Learning several methodologies is not practi
cal for the actual design process. If your group favors no particular
methodology, personal preference can be the deciding factor.

See Appendix D, Additional Reading, for recommended reading on
design methodologies.

4.3 Prototypes

The development team may choose to produce an operational prototype
for a subset of the application to achieve some or all of the following
goals:

• Demonstrate whether or not product features are feasible

• Gather data on usability and performance issues

• Communicate design and implementation ideas

• Solicit user feedback

66 Planning and Preliminary Design

Producing a prototype entails four steps:

1. Setting the goals for the prototype and communicating them to
management.

2. Producing enough designs to make it possible to carry out the
coding.

3. Choosing a programming language.

4. Writing the code.

The language chosen for the prototype is often the implementation
language. However, fourth-generation languages are particularly useful
for developing prototypes quickly (for example, VAX RALLY, VAX SQL,
and the VAX COBOL GENERATOR).

Once the prototype is running, the team may gather statistics on its
use to measure the prototype against the product's requirements. The
prototype can be particularly helpful in designing the human interface.
The team may also use the prototype to present information at a design
review meeting.

4.4 Human Interface Design

To create a truly useful product, every development team needs to un
derstand how and why customers will use it. Without this knowledge,
the team stands little chance of creating an effective product that is
easy to use.

4.4.1 Usability Issues

Advances in interface design have led users to expect systems that are
easy to learn and use. Development teams need to consider how to
design the system's architecture to meet those expectations. Digital's
DECwindows interface, described in Section 4.4.2, has been devel
oped to make a consistent human interface available to developers of
software applications.

Planning and Preliminary Design 67

An experienced development team recognizes that a principal test of
software quality is how easily a user can learn and use it. To pass this
test, the team must anticipate the user's needs, which is not always
easy to do. In developing a human interface design, the Digital devel
opment team follows the phases of the development process discussed
in this book: requirements, specifications, design, and iterative imple
mentation and testing. During each of these phases, human factors
experts can help ensure that the final product meets users' needs.

4.4.1.1 Requirements

Gathering requirements is often one of the most difficult tasks in
any software project. This is especially true for interface design.
Typically, the team needs to learn about the users, their needs, and
about competitive products. Human factors specialists can provide
useful information on user requirements. The development team has
an easier time if the product is similar to products that team members
have used or developed, or if the users have similar experience.

Observations gathered in laboratory settings are helpful, but they
reflect an artificial and limited environment that differs from the one
in which customers are likely to work. By observing customers in their
work environment, the development team can better understand the
customer's needs.

4.4.1.2 Specifications

To design a good user interface, the development team must know what
it wants to achieve and how to measure its objectives. There is no list
of usability objectives that applies to every product. Usability objectives
for a particular product must reflect the type of work for which it is
used, users' experiences with similar products, the technology available,
and the resources of the development team.

Developers can construct a usability specification table to summarize
the attribute components and help the development team make trade
offs among desired levels for many of the application's attributes.
Table 4-1 shows part of a generic usability specification table.

68 Planning and Preliminary Design

Table 4-1: Sample Usability Specification Table
Performance Worst Planned Best Current
Attribute Measuring Technique Metric Case Level Case Level

Initial use Benchmark task from use Speed metric 10% 20% 30% 1-14%
data, performed by practiced s=pcrr1

designer in a given time; may
be harder at mastery level

Occasional use Speed metric 25% 50% 65% 30-40%

Mastery Speed metric 50% 75% 90% 25-85%

Installation Install on test system Time to 30 15
install cor- min. min.
rectly

1 Work Speed (S): P is the percent of task completed (according to a scoring scheme); C is a constant equal to
the time an optimal user needs to complete the task; T is the time spent of task in minutes.

Mter establishing usability attributes, the team devises a technique for
collecting information on user performance for each attribute. Possible
techniques include the following:

• Ask the user to perform a specific task (benchmarking)

• Monitor the user during unstructured use (logging, observing)

• Interview the user

• Survey users
• Ask the user to complete a questionnaire

• Ask the user to describe critical incidents that reveal successes or
failures

To measure user performance, the team needs to quantify the informa
tion it has gathered. Possible measurements include the following:

• Time required to complete a task

• Percentage of task completed

• Percentage of task completed per unit time

• Ratio of successes to failures
• Time spent resolving errors

Planning and Preliminary Design 69

• Percentage or number of errors
• Percentage or number of competitive products that the product is

better than

• Number of commands used

• Frequency with which online help and documentation are consulted

• Time spent using online help or documentation

• Percentage of favorable and unfavorable user comments

• Number of repetitions of failed commands

• Number of runs of successes and of failures

• Number of times interface misleads users

• Number of good and bad features recalled by users

• Number of available commands not used

• Number of regressive behaviors

• Number of users who prefer the product over another

• Number of times users need to work around a problem

• Number of times users are disrupted from a work task by the
product

• Number of times users lose control of the system

• Number of times users express frustration or satisfaction

For each measurement, the team also establishes what it considers
a good performance, a bad performance, the level of performance it
seeks, and the level that the product can deliver at a given phase in its
development. The following can provide a basis for comparison:

• An existing system or previous version

• A competitive system
• Doing the task without a computer

• An absolute scale

• Other prototypes
• Users' earlier performance

• Each individual component of a system

• A successive split of the difference between best and worst values
observed in user tests

70 Planning and Preliminary Design

While establishing user performance goals, the team also considers
these questions:

• How well do the attributes reflect system usability?

• Do all team members agree on each attribute?

• Can each attribute be measured in practice?

• Are resources available to measure all the attributes?

• Are the users defined clearly enough to find representative users?

4.4.1.3 Iterative Design

Iterative design to improve usability means incremental, evolutionary,
and conscious iteration. This kind of development requires early, re
peated feedback from typical users. Subsets of the system are tested
early in the development cycle with actual users. Throughout the de
velopment cycle, the team enhances the software in small, incremental
versions that incorporate the feedback from users. Each new version
improves the system's quality. Improvements are measured against the
target levels of usability attributes.

4.4.2 OECwindows

The rapid evolution of the workstation market and the technological
advances in workstations have created the need to change the inter
face design of many software products. The DECwindows architecture
frees developers from many interface issues and allows them to con
centrate on the functional levels of the application. The DECwindows
architecture integrates the graphics programming interfaces of three
operating systems: VMS, ULTRIX, and MS-DOS. The primary features
of DECwindows include the following:

• A common user interface that adheres to industry-standard PC
conventions

• A set of personal productivity applications (for example, electronic
mail and personal data base query)

• Network-transparent windowing and communication between VAX
systems, VAXmate computers, and other industry-standard PCs,
using the X Window System (the industry-standard window system
for graphics programming interfaces developed at MIT)

Planning and Preliminary Design 71

• Common application environments that use the industry-standard
X Toolkit, software, and an extensible toolkit

The DECwindows architecture allows a user on any workstation,
running any operating system, to use windows transparently in a
networked environment. It also allows windowing programs to be
transported easily.

The DECwindows programming environment provides both the stan
dard X Toolkit and the Digital XUI Toolkit (X User Interface) with
additional features.

Common User Interface

The common user interface has the following characteristics:

• Window and user-interface managers

• Programming libraries

The window and user-interface managers make it easy to display
and use multiple windows on the workstation screen. They allow the
user to create new windows and manipulate existing ones. Window
management is common to both the VMS and ULTRIX operating
systems. The use of a common style of human interface across both
operating systems ensures that the users who work with both operating
systems need not learn more than one interface.

Procedural interfaces or bindings define how users access run-time
programming libraries from a particular language. Existing specifica
tions for the X Window System run-time libraries have been provided
by MIT; future specifications are expected from the ongoing work on X
standards. These specifications include the MIT-defined Xlib and the C
language bindings.

Run-time libraries provide a number of functions:

• Resource management capabilities

• Graphics and text display

• Menu and other high-level input mechanisms

• Access to input events
• Data exchange between applications or the code that executes the

application

72 Planning and Preliminary Design

Table 4-2 lists and describes some specific run-time libraries.

Table 4-2: DECwindows Run-Time Libraries
Run-Time Library

Xlib

X Toolkit

XUI Toolkit

DEC GKS1

DEC PHIGS2

IGraphical Kernel System

Description

Basic graphics and windowing code standard in the
industry

Industry-standard user-interface tools

DECwindows application user interface

Digital's implementation of industry-standard 2D
graphics library

Digital's implementation of industry-standard 3D
graphics library

2Programmer's Hierarchical Interactive Graphics System

Developers can use all of these libraries. For example, Xlib has the
functionality to draw a line and the X Toolkit can create a primitive
menu. The X Toolkit is a package of tools for programmers that extends
the basic functionality provided by the X Window System to support
human interface construction within user applications. It does so by
providing application programmers with a common set of intrinsic
routines for developing industry-standard applications. The X Toolkit
library allows programmers to create menus, scroll bars, and other
user-interface features.

The Digital XUI Toolkit (X User Interface) is the programmer and user
interface developed by Digital for X-based workstations. It provides
additional routines for creating complex applications based on the X
Window System. It defines the style, behavior, and human interface
applications. In addition, it provides for resource management and
internationalization. The XUI Toolkit makes it easier to write applica
tions with consistent qualities. Its industry-standard libraries ensure
compatibility with industry standards such as GKS and PHIGS.

DEC GKS (Graphical Kernel System) is the graphics library for pro
gramming applications requiring the generation of 2D pictures with
large amounts of data. It is best suited for generating static pictures
such as complex charts and graphs. DEC GKS provides a rich set of

Planning and Preliminary Design 73

input and output graphics functions as well as device independence.
Applications written in DEC GKS are portable between device and
operating systems.

DEC PHIGS (Programmer's Hierarchical Interactive Graphics System)
is a graphics subroutine library for applications requiring interactive,
real-time editing of 3D dynamic pictures with realistic appearance. It
offers a variety of high-level primitives for creating graphics elements,
including advanced lighting, shading, and depth cueing primitives,
powerful ways to control the hierarchy and relation of graphics data.
Applications written in DEC PHIGS are portable between device and
operating systems.

Network Transparency

The DECwindows architecture provides a common network-transparent
application environment that is based on the X Window System.

An application developed for the DECwindows environment runs on a
VAX computer using either the VMS or ULTRIX operating system, and
directs its input and output to a DECstation or VAXstation workstation.
Because both the VMS and ULTRIX operating systems understand the
X communications protocol, both can run the same applications.

The application is local if the input and output occur on the same
workstation that is executing the application. Requests of the applica
tion are translated on the local processor to manipulate the hardware
through the local processor's device drivers. The application is remote
if input and output from the application occur over the network (for
example, if the application runs on a VAX 8800 in a computer labora
tory while users manipulate that application from workstations in their
offices). For the remote applications, requests are transported over the
network using the X protocol. On the remote node, a server translates
the application requests and then manipulates the hardware through
that node's local device drivers.

The DECwindows architecture also supports the integration of
industry-standard PCs into Digital's computing environment. VAX
system-based applications written for the DECwindows environment
can use networked PCs as a windowed display device. The PC re
ceives the X protocol requests and serves as the user interface for the
VAX application; the PC maps the wire protocol packets onto PC calls
to support the remote application display. Thus, users can run local

74 Planning and Preliminary Design

PC applications outside the DECwindows environment and also have
access to VAX system-based applications in the network.

4.5 Design Reviews

The purpose of design reviews is to find and correct design errors
as early as possible (see Figure 4-3). For a typical review, one team
member distributes a design document to the rest of the team. After
reviewing the document, the team holds a review meeting at which
the team member most closely involved with the design might make
a formal presentation. During the meeting, the other team members
may question particular features of the design. Ultimately, the group
decides whether to use the design or to change it.

Design reviews also help engineers become familiar with parts of the
project they may not know; however, design reviews are not meant
to carry out design work itself. If the product is to be marketed in
ternationally, the design is reviewed in the context of the worldwide
requirements for the product.

The design review process is informal. Adopt a process that the entire
development team can work with. Design documents may undergo peer
review, either during periodic project meetings or between an engineer
and the project leader.

4.5.1 Design Review Guidelines

The following questions are answered during the design review:

1. Does the design help to meet at least one project goal?

2. Does the design implement any unnecessary functions?

3. Does the design identify all side effects and changed values?

4. Does the design properly address all human factors?

5. Is the design complete?

6. Is the design easy to understand and unambiguous?

Planning and Preliminary Design 75

Figure 4-3: Design Review Process

Design Documents

Reviewers

Review Meeting

Yes

Implement Code

7. Is the design self-contained? Could someone new to the project
successfully implement the project from the documentation alone?

8. Does the design show links among all applicable modules?

9. Does the design list all external dependencies?
10. Does the design consider packaging and installation requirements?

11. Does the design list all applicable control blocks, tables, data
structures, and all new functions for which they are used?

12. Does the design identify all new macros, symbols, and coding
conventions?

76 Planning and Preliminary Design

13. Does the design identify all specific values required and set?

14. Is the design written at an appropriate and consistent level of
detail?

15. Does the design address all known possible cases?

16. Does the design address all exception cases?

17. Does the design address abnormal cases and error conditions?

18. Does the design address all appropriate operating environments
and devices?

19. Does the design provide for new logic and function that is consistent
with existing logic and function?

20. Are all fields described correctly? Are any of the fields missing?

21. Should an external routine be used rather than performing the
function internally?

22. Does the module provide for all possible input parameters?

23. Does the module process and pass all parameters correctly?

24. Are all return codes, parameter formats, and so on correctly iden
tified? Alternatively, does the design document reference their
definitions adequately?

25. Are all issues of code protection addressed?

26. Does the design provide for reentrance or reusability?

27. Have performance issues been addressed?

28. Has storage size been addressed?

29. Does the function use existing facilities whenever possible?

30. Are there any paging or swapping issues?

31. Have the following issues been addressed:

Maintainability

Reliability

Evolvability

Functionality

Compatibility

User documentation

User training

Software specialist training

Planning and Preliminary Design 77

4.6 Standards

In the emerging environment of industry standards, developers need to
be familiar with the standards that are relevant to their own areas of
software development. Standards come from a number of sources. The
following sections introduce important software standards:

• For coding VMS applications:

- The VAX Procedure Calling and Condition Handling Standard

- The VAXlVMS Modular Programming Standard

• For migrating to open standards:

IEEE standards

International standards

4.6.1 The VAX Procedure Calling and Condition Handling Standard

The VAX Procedure Calling and Condition Handling Standard describes
the techniques used by all VAX languages for invoking routines and
passing data between them. By default, these conventions are followed
by all program calls in Digital's programming languages and other
layered products. The standard specifies the following attributes:

• Register use

• Stack use

• Function value return

• Argument list

The VAX Procedure Calling and Condition Handling Standard also
defines such attributes as the calling sequence, the argument data
types and descriptor formats, condition handling, and stack unwinding.
The VMS Utility Routines Manual discusses these additional attributes
in detail.

78 Planning and Preliminary Design

Register and Stack Use

The VAX Procedure Calling and Condition Handling Standard defines
several registers and their uses, as listed in Table 4-3.

Table 4-3: VAX Register Use
Register

PC

SP

FP

AP

RI
RO,RI

Use

Program counter

Stack pointer

Current stack frame pointer

Argument pointer

Environment value (when necessary)

Function value return registers

Any called routine can use registers R2 through Rll for computation,
and the AP register as a temporary register.

Function Value Return

A function is a routine that returns a single value to the calling routine.
The function value represents the return value that is assigned to the
function's identifier during execution. According to the VAX Procedure
Calling and Condition Handling Standard, a function value may be
returned either as an actual value or a condition value that indicates
success or failure.

Argument List

The VAX Procedure Calling and Condition Handling Standard also
defines a data structure called the argument list. Engineers use an
argument list to pass information to a routine and receive results. An
argument list is a collection of longwords in memory that represents a
routine parameter list and possibly includes a function value.

Planning and Preliminary Design 79

4.6.2 VAX/VMS Modular Programming Standard

The VAXlVMS Modular Programming Standard sets the minimum
criteria necessary to ensure the correct interface at the procedure
level between a team's software and software written by others. The
Guide to Creating VMS Modular Procedures contains full details on the
VAXlVMS Modular Programming Standard.

Scope of Standard

The VAXlVMS Modular Programming Standard gives engineers a
common environment in which to write code. If all engineers coding
VMS applications follow this standard, any modular procedure added
to a procedure library will not conflict with procedures currently in the
library or with procedures that might be added in the future.

The elements of the standard apply to library procedures and are sug
gested for other types of software, including utilities and application
programs. Each programming language supplied by Digital and im
plemented on the VMS operating system lets users write programs to
follow this standard.

The VAXlVMS Modular Programming Standard applies to procedures
that have a public entry point, that is, one that the VMS Linker can
locate by searching the default system libraries. This standard does not
apply to calls of internal routines in procedures that do not have public
entry points. This is true as long as the entire set of procedures follows
the standard.

Coding Rules

The VAXlVMS Modular Programming Standard governs the following
functions:

• The calling interface

• Initialization
• Reporting of exception conditions

• AST reentrance

• Resource allocation

• Format and content of coded modules

80 Planning and Preliminary Design

• Shareable images

• Upward compatibility

4.6.3 IEEE Standards

The Institute of Electrical and Electronics Engineers (IEEE) prepares
standards for applying engineering principles to developing and main
taining software. Both new engineers and experienced engineers need
to be aware of these standards. For new engineers, the standards serve
as valuable guidelines to recommended practices. For experienced
engineers, they serve as benchmarks against which to compare their
own practices, particularly since the IEEE standards are the result of
agreement among practicing professionals.

IEEE intends to review and update its standards every five years
to ensure that they remain up-to-date. See Appendix C, Industry
Standards, for a list of IEEE standards and source information for
IEEE and other external standards.

4.7 Planning International Products

The international marketplace is growing rapidly. In international
markets, the use of English and American standards and conventions
are often unacceptable. An international software product has the
following characteristics:

• It can be adapted to local needs by a group that is geographically
remote from the product's developers.

• After any appropriate adaptation, it is equally attractive in all the
markets.

The structure of the original product can make adaptation either
simple or complex. Building a product that a local group can modify
easily may require more time and care than building the product for
one geographical market. However, Digital's development teams try to
design products so that local engineering groups can adapt them easily.
No definitive standards exist for designing international software
products. However, Digital's experience in adapting software for use

Planning and Preliminary Design 81

outside the United States has generated a number of guidelines that
can improve the process.

For a discussion of these guidelines and the requirements of the inter
national markets, see Appendix B, International Product Development.

In addition to designing the product for adaptation to international
markets, development teams need to consider how to provide local
engineering teams with the necessary project information to carry
out their work. The local engineering team might need source code,
kit-build procedures, the test system, specification documents, design
documents, draft manuals, and so on. Project documents (product
requirements, product specifications, and development plan) detail
clearly the development team's plans to meet the needs of the local
engineering groups. This information includes:

• Who the local engineering contacts are

• When the source code will be available

• How the source code will be delivered

• What engineering documents will be made available

82 Planning and Preliminary Design

Chapter 5

Design and Implementation

When preliminary planning and design are complete, the development
team turns to the tasks of creating the detailed design, implementing
it, and testing the software. The tasks entail building source code
modules, then compiling, linking, and executing the resulting images.
User documentation is created, and software tests are conducted to
ensure that the implementation operates correctly.

Often, the system implementation consists of a series of stages or base
levels in which each adds more and more of the required functionality.
As the team implements and tests each base level, they may discover
unforeseen problems in implementing the design, meaning that speci
fications and designs might require revision. If so, the programs, the
tests, and the user documentation must also accurately reflect changes
in requirements or designs.

The project team must analyze the structure and performance of
the software in this phase. Reviews of the design, code, tests, and
documentation are held frequently.

Other groups are given copies of the software to determine how well
the program works under controlled conditions. Performance analysis
ensures that the system will meet certain customer-environment
requirements. When this phase is successfully completed, the project
should have software that works.

Design and Implementation 83

Information about the design and implementation phase are covered in
the following three chapters:

• This chapter, Chapter 5, discusses the major tasks of design and
implementation:

Producing a detailed design

Writing design documents

Implementing base levels

Producing product kits

• Chapter 6, Coding Guidelines for Implementation, focuses on the
coding conventions used for implementing the detailed design.

• Chapter 7, The Testing Process, concentrates on the testing process,
which verifies the product against the design.

Figure 5-1 shows the relationships among the key engineering tasks
and documents of design and implementation.

84 Design and Implementation

Figure 5-1: Design and Implementation Phase

PLANNING AND
PRELIMINARY DESIGN High-Level

Design

--lr-----------------
DESIGN AND
IMPLEMENTATION Detailed

I
I

Preliminary -
Plans I-

Code
Base-Level

Development

Kit
Build

Review
Plans

L

Design

Design
Documents

Testing

-----------------------------------~-----------------------------------
QUALI FICATION

Field Test
Preparation

Design and Implementation 85

5.1 Detailed Design Process

Detailed design has two primary goals:

• To understand enough of the details of implementation to reduce
the technical and schedule-related risks to an acceptable level

• To communicate and coordinate the activities associated with the
implementation process

For several reasons, the development team usually does not complete
all detailed designs before it starts coding:

• A detailed design that is not tightly coupled with the actual code is
less likely to represent that code accurately as coding proceeds.

• Significant portions of the detailed designs are likely to change
between early design work and coding. Such changes often occur
when the product relies on external deliverables not yet fully
specified.

• Additional design detail does not help developers to understand or
reduce the risks.

• Extremely detailed design may best be expressed and communi
cated using a program design language. In the absence of such a
language, the designers use the implementation language itself,
blurring the line between design and coding.

At Digital, the development team determines both the form of the
designs and the level of detail within them. The "acceptable level"
of risk is usually reached by consensus among the team members.
The team also decides how formal the process of communicating the
detailed designs among the members will be.

The following list shows the main input-to and output-from the detailed
design process.

• Input
Product requirements document

Alternatives/feasibility study

High-level design documents

Product specification

86 Design and Implementation

• Output
Detailed design documents

Functional prototype

Performance/usability evaluation of prototype

Implementation estimates

Identification/evaluation of technical risks

5.1.1 Logical Modules and Physical Modules

As part of the detailed design process, the development team identifies
the logical modules that are subsequently "packaged" into physical
modules.

Logical modules represent the features and functions the application
will have. Logical modules are packaged into physical modules that
make up the application and accomplish the features delineated in the
logical modules.

For example, a hypothetical application (SELF) is designed to be an
online system that operates over Digital's DECnet network to provide
"phone book" information about users on the network. SELF will
have an online user interface program (VIP) and a data base server
(DBS). The VIP will perform all of the user functions and reside on
any of the nodes in the network that communicates with the data base
server. Five physical modules will make up the VIP. One of these,
VIPMAIN.BAS is the master module and incorporates six logical
modules from the application's design:

• PROGRAM: VIP main program module

• LOCAL: Initialize VIP

• LOCAL: Terminate VIP

• LOCAL: Get a valid command

• LOCAL: Process a valid SELF command

• LOCAL: Error handling

Structure charts are useful for representing the relationships among
logical and physical designs.

Design and Implementation 87

5.1.2 Design Documents

A design document is a set of files that represent the design of the
product. These may take different forms:

• A written description of features of the code

• Pseudocode or high-level language code with embedded conlments

• Data-flow diagrams, structure charts, and supplementary text

The main purpose of the detailed design document is to translate
the high-level designs into module designs. These detailed designs
sufficiently document designs and tests to permit coding of the software
modules. In addition, the detailed designs, by relying on graphic
representation, pseudocode, and written text, allow engineers with
different programming language skills to participate in any design
review. The detailed design process, including its review stages, helps
to ensure that the product is taking shape properly and that component
and system interfaces are adequately considered. Finally, the design
documents serve as a resource for the maintenance team later in the
product's life cycle.

5.2 Implementing Base Levels

A base level is the set of files and documents that make up a specific
version of a product built at a specific time. It represents a particular
level of features for the product. In effect, base levels are stages in the
design, development, and maintenance of a product.

Base levels are important throughout the life cycle of the product.
During implementation, they provide a way of measuring progress and
a reference point for testing. During maintenance, they improve the
chances that the maintenance team can recover and modify a previous
version of the product.

88 Design and Implementation

5.2.1 Types of Base Levels

Projects have two types of base levels:

• Implementation base levels, which are used to develop and inte
grate levels of features for the product

• Maintenance base levels, which are used to correct problems or add
minor enhancements to the product

Managing base levels is an ongoing job for the engineering project
leader. The project leader assigns people to specific coding and testing
activities. The project leader also tracks the team's progress relative
to the development schedule. The project leader, and the development
team, must also decide when to freeze the code, that is, when to stop
changing a given set of modules for base-level testing.

5.2.2 Requirements Analysis

New requirements are an additional source of input for base-level
development.

Although the development team tries to accurately gauge the re
quirements and market for the product, suggestions for the product
may inspire changes throughout the development period. In conjunc
tion with other members of the product team, the development team
evaluates potential new requirements with respect to the following
issues:

• What is the business need for this requirement?

• Is it possible to implement the requirement?

• If so, what is the impact on development and documentation,
particularly on their schedules?

• What is the impact on training?

• Where does this requirement fit in a priority list?

• What does the product gain by adding this capability or feature?

• What does the product lose by not adding this capability or feature?

• Is it worth the cost (resources, impact on schedule) to implement it?

• Can this requirement be postponed until a subsequent release?

Design and Implementation 89

The team must understand the implications of implementing or not
implementing a new requirement. The development team can indicate
the cost of implementing a new requirement; product management
indicates the benefits of fulfilling the new requirement.

If a suggestion is approved as a requirement for the current release, the
team will need to update the project documents to reflect the addition.
Base-level development will need to reflect the new task assignments.
If the suggestion is not approved, the team may add it to the project's
"wish list."

Sometimes, trade-oft's must be made between market needs and time
to market. In some cases, the team postpones fulfilling a particular
requirement; in others, the demands of meeting the market needs
win out, and the schedule is changed. All members of the product
team must be aware of any decisions not to deliver some functional
capability.

5.2.3 Build Procedures

Development teams at Digital plan their build procedures and describe
them in the development plan. When possible, they use detailed
command procedures from existing products to help automate the build
process. They often use a combination of command procedures and the
tools described in Chapter 2, Software Development Tools, such as the
VAX DEClModule Management System (DECIMMS), VAX DEClTest
Manager, the VAX Language-Sensitive Editor (LSE), and the VAX
DEC/Code Management System (DEC/CMS).

A number of problems can occur while the team is preparing base
levels. Table 5-1 lists some of the more common problems and ways to
deal with them.

90 Design and Implementation

Table 5-1 : Problems in Preparing Base Levels
Problem Response

Too many errors in new software
during base-level build.

Too many rebuilds of the soft
ware because it fails regression
tests.

Failure of regression tests
caused by coupling new software
with old.

Partially completed modules do
not integrate properly in build.

Installation procedure and in
stallation kits have errors.

Halt the build process and assess the
completeness of the new software. An
additional review may be needed to confirm
that the new software is ready for the base
level.

Make sure that all tests are run before
rebuilding the system to minimize the
number of builds needed for the system.

Make sure that any old test procedures
that are replaced by new test procedures
are marked as not applicable for the next
base level. These may be applicable only
for a specific base level and are not re
quired for additional base-level tests.

Resist including partially completed mod
ules in the base level. Either do not freeze
and test the software during this base level
or redefine the module so that it can be
frozen in the base level.

To minimize the number of times the base
level build process is required, make sure
that the distribution kits and installation
procedures are tested thoroughly before the
formal test period.

Teams at Digital use the following guidelines for the build procedure:

• Teams agree on general work procedures that allow members to
manage development tasks efficiently and without conflicting with
each other's work.

• After working on modules, team members run unit tests on the
modules.

• After successful unit testing, team members link the modules and
create the images for the full application.

• Team members then run functional and regression tests on the
application. (See Section 7.3.2 for more information on regression
testing.)

Design and Implementation 91

• Assuming the test and build cycle is successful, the modules are
then checked back in to the DEC/CMS library. The team agrees
upon and follows check-in procedures.

• Using DECIMMS, DEClTest Manager, and DEC/CMS, the team
automates and tracks the steps of testing and building.

Once the modules reach an agreed-upon level of progress, the team
creates a DEC/CMS class that represents the most recently attained
base level and uses this class to produce software kits.

For more information on setting up build procedures and work pro
cedures using the VAXset tools, see A Methodology for Software
Development Using VMS Tools.

5.2.4 Product Kits

Development teams build kits at different points in the development of
the product. In general, the team assembles kits only after completing
a base level to ensure that the distributed software is stable. This
approach also minimizes the effort needed to prepare the kits.

Product kits are needed for the following testing activities:

• Testing by the development group on separate systems with dif
ferent versions of prerequisite software (for example, different
versions of VMS)

• Testing by internal users

• Testing by external field test sites

The types of kits and the amount of testing associated with them vary.
The product manager and development team determine the appropriate
media types for the product. If the product's installation must be tested
on all types of media, the team takes this into account as it considers
kit building and plans for the field test process.

Mter all testing is complete and satisfactory, the final kit is submitted
to manufacturing.

92 Design and Implementation

Chapter 6

Coding Guidelines for
Implementation

During the design and implementation phase, the development team
translates its designs into code. This chapter discusses general coding
guidelines. Appendix A contains specific guidelines for coding in the C
language.

The guidelines and coding conventions described in this chapter are
applicable to a range of languages. It is important to adopt guidelines
that promote consistent and efficient coding practices. This is partic
ularly helpful to engineers unfamiliar with an application's code. It is
also crucial for any future maintenance efforts on the software. Using
a consistent coding style helps software engineers produce good pro
grams. It allows engineers to adopt routines and data structures from
existing software. This process is much easier if the existing software
is readily understandable.

6.1 Selecting Guidelines

This section provides development teams with generic coding guide
lines applicable to different languages. Guidelines provide consis
tency within a project and may ease the transition to another project.
Language-specific guidelines for C are provided in Appendix A, Coding
Conventions for VAX C.

Coding Guidelines for Implementation 93

6.1.1 Examine Existing Source Code

Because team members may work on a number of projects, it is impor
tant for them to adjust their styles to differences in conventions. It is
usually appropriate to follow conventions established in any existing
source code. In order to maintain an existing product, the source code
should be consistent within an application. If it is necessary to use a
different convention from the one already established in an application,
the entire application is updated to reflect the new convention.

If modules from other projects are used, they are reformatted when
practical to conform to the project's conventions. When a program
contains undocumented code, comments are added to describe the code's
function. These comments help simplify future software maintenance
efforts.

6.1.2 Use the Language-Sensitive Editor

An excellent source of coding guidelines for new code is the VAX
Language-Sensitive Editor (LSE). It provides one of the easiest ways
for development teams to format code consistently. LSE has online
language templates for these languages:

VAX Ada
VAX BASIC
VAX Bliss-32
VAXC
VAXCDD
VAX COBOL
VAX DATATRIEVE
VAXDIBOL
VAX DOCUMENT
VAX FORTRAN
VAX MACRO
VAX Pascal
VAX PLII
VAX SCAN
VAXELN Pascal

94 Coding Guidelines for Implementation

The LSE language templates ensure consistent formatting, capitaliza
tion, indentation, and spacing. Although formatting standards are built
into the templates, development teams can modify them for their own
project and then save these modifications in an environment file. The
environment file can then be stored in a central directory. When the
team members log in to the system, they can automatically have access
to the central directory via information stored in their login command
file (LOGIN.COM). In this way, the modified templates can be shared
by everyone who uses LSE.

In addition to providing formatting consistency, LSE provides much of
the module and routine preface information for its supported languages.

6.1.3 Build Program Modules

A module is a single body of code and text that can be assembled and
compiled as a unit. Generally, it is part of a larger program or facility
created by linking all of the component modules and object code. A
facility is a collection of one or more modules that implement a set of
related functions or services.

A module has some self-evident identity. Typically, a module consists of
either of the following:

• A single function or data base

• A collection of related functions, anyone of which would be too
small for an independent module

The module's interface should be as clean as possible. Try to avoid side
effects. When they occur, document them in the routine header.

The goal in module design is to maximize cohesion and minimize
coupling. Cohesion is the degree to which the tasks performed by a
single program module are functionally related. Coupling is a measure
of the interdependence among modules.

The following sections describe the elements typically included in a
module at Digital. The inclusion of these elements is simplified by the
use of LSE and its standard module templates for all coding activities.
On the following pages, Bliss templates are used as examples.

Coding Guidelines for Implementation 95

To access the standard LSE module template for any VAX language,
the developer must first use LSE to create a file of the appropriate
language type. For example, to create the Bliss source file named
EXAMPLE that appears below, the developer first invokes LSE by
entering a VMS command and specifying the name of the file to be
created as EXAMPLE.BLI (BLI is the three-letter VMS file type used
to identify Bliss source files). In response, LSE opens the file and
associates it with the standard LSE Bliss template.

The template and file are linked by the single string [-MODULE-],
which LSE writes into the file as it creates it. Known as a placeholder,
this special keyword allows the developer to either call up the complete
Bliss module template through LSE keyboard commands or to bypass
it by deleting or typing over the placeholder.

Example 6-1 reproduces the standard LSE Bliss module template that
appears when the placeholder [-MODULE-] is expanded. This ex
panded template contains placeholders of its own for such elements as
the title and module level declarations. These in turn can be expanded,
deleted, or typed over and are discussed below.

6.1.3.1 Module Preface

At Digital, a module opens with a preface that documents its function,
use, and history. As shown in Example 6-1, developers at Digital
include the following elements:

o Title statement

The title statement specifies the title line in the listing file.

• Module statement

The module statement specifies the module name. If the object file
is inserted into an object library, this module name that appears in
a listing of the object library's contents. This name also appears in
a LINK map.

• Copyright statement

96 Coding Guidelines for Implementation

Example 6-1 : LSE Template for a Bliss Module Preface

[~%TITLE '[~quoted_chars~]'~] tt
MODULE {~name~} [~(module_switches)~] tt
BEGIN

COPYRIGHT (c) 1988 BY ~
COMPANY XYZ, ANYWHERE, USA.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE OF THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY COMPANY XYZ.

COMPANY XYX ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY COMPANY XYZ.

++
FACILITY:

[~tbs~]

ABSTRACT:

[~tbs~]

AUTHORS:

[~tbs~]

CREATION DATE: [~tbs~]

MODIFICATION HISTORY:
!--

•
•

• •
[~module_level_declarations-] ~
[-routine_declaration-]... ~
END End of module
ELUDOM

A standard copyright statement appears on the first page of every
source file. Note the following about the copyright statement:

When developing a new module, the year stated is the year of
the first release, not the year coding begins.

Coding Guidelines for Implementation 97

When modifying an existing program that has legal notices,
verify the validity of the statements. Add the year that the
code is changed to the existing copyright year. Separate the
years with a comma.

• Facility statement

A module may be a dedicated part of a larger linked facility, part of
several facilities, or a general-purpose library function. The facility
statement identifies the whole of which the module is part.

eD Abstract

The abstract briefly describes the function of the module, including
the design basis for any critical algorithms. If the module needs an
extensive functional description, it appears on the next page.

CD Authors

• Creation date
• Modification history

The modification history provides the detailed history of changes
made to the module, including the versions, the person editing the
module, and the last date of each version. It also lists the specific
changes made between base levels (during production) or releases,
along with a short description of each problem and its solution, and
appropriate references to related information.

Each history entry receives a maintenance number starting with
1. The maintenance numbers increase by one, are decimal, and are
never reset. Generally, the entries are ordered starting with the
most recent modification first; however, inherited code may preclude
this type of ordering. The goal is to maintain the chronological
consistency of entries among application modules. Engineers
can also use the maintenance numbers to attach maintenance
comments to all the lines of source code that were modified.

Note, however, that Digital's DEC/Code Management System
(DEC/CMS) can generate much of this change history automatically.
If the history attribute is defined for an element (typically an
application module), DEC/CMS includes the element history in
the output file when an engineer retrieves it from the DEC/CMS
library. The element history is a list of the transactions that
created each generation of the element. Each transaction record
consists of the generation number, user, date, time, and remark

98 Coding Guidelines for Implementation

associated with the command. The history attribute is defined by
using the /HISTORY qualifier with either the CREATE ELEMENT
or the MODIFY ELEMENT command.

If the notes and position attributes are both defined, DEC/CMS
embeds notes in the output file when the element is retrieved.
Notes are generation numbers embedded in the lines of the file.
They indicate the generation in which the line was inserted or
modified most recently. Notes appear at the horizontal position in
the line specified by the position attribute. Engineers can obtain
the same type of generation information by using the ANNOTATE
command. Annotated listings include a replacement history and
generation numbers that indicate when each line was inserted or
modified most recently.

CD Module level declarations

When expanded, this placeholder provides a template for the
module's declarations.

• Routine declaration

When expanded, this placeholder provides a menu of routines.

6.1.3.2 Module Declarations

Example 6-2 shows what happens when you expand the MODULE_
LEVEL_DECLARATIONS placeholder of Example 6-1.

The format is that of a Bliss template, but is used for other languages.
It contains the following sections:

• Table of contents

For Bliss, this lists, in order, all forward routine declarations with
a summary description of each.

.. Include files

Lists the specification of INCLUDE files or binary definitions. Lists
library REQUIRE FILES and library macros that define MACROs,
assembly parameters, systemwide equated symbols, and table
definitions.

Coding Guidelines for Implementation 99

Example 6-2: LSE Template for a Bliss Module's Declaration

MODIFICATION HISTORY:
!--

TABLE OF CONTENTS:

[~forward routine declaration~]
! - -

! INCLUDE FILES:

[~library_declaration~] .. .
[~require_declaration~] .. .
!
! MACROS:

o

[~macro_or_keywordmacro_declaration~] ...
!
! EQUATED SYMBOLS:
!
[~literal declaration~]

[~bind_declaration~]

! OWN STORAGE:

[~own_declaration~]

[~qlobal_declaration~]

!
! EXTERNAL REFERENCES:

[~external declarations~] .. .
[~routine_declaration~] .. .

END
ELUDOM

• Macros

End of module

Defines local macros other than structure definitions.

e Equated symbols

Lists LITERAL and BIND declarations.

• Own storage

Lists declaration of permanent storage allocations and local storage
structures.

100 Coding Guidelines for Implementation

• External references

List the specification of externals. For assembly language, only
WEAK or VALIDATION externals need to be listed.

6.1.3.3 Procedure Description

If you now expand the ROUTINE_DECLARATION placeholder in
Example 6-1 and choose the complex routine option from an LSE
generated menu, you get template additions shown in Example 6-3.
(Note that in Example 6-3, the MODULE~LEVEL_DECLARATIONS
placeholder is not expanded, nor is there a copyright statement.)

Example 6-3: LSE Template for a Bliss Routine

[-%TITLE ' [-quoted_chars-]'-]
MODULE {-name-} [-(module_switches)-]
BEGIN
!++

FACILITY:

[-tbs-]

ABSTRACT:

[-tbs-]

AUTHORS:

[-tbs-]

CREATION DATE: [-tbs-]

MODIFICATION HISTORY:
!--

Example 6-3 Cont'd. on next page

Coding Guidelines for Implementation 101

Example 6-3 (Cont.): LSE Template for a Bliss Routine

[-module level declarations-]
! - -

[-%SBTTL ' [-quoted chars-]'-]
[-GLOBAL-] ROUTINE-{-name-}[-(formals)-] : [-routine_attributes-] ...
!++

FUNCTIONAL DESCRIPTION: ..

[-tbs-]

FORMAL PARAMETERS:

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

[-description_or_none-]

{-routine_value_or_completion_codes-} ~

SIDE EFFECTS:

!--
BEGIN
[-declaration-] .. .
{-expression-} .. .
END;

[-routine_declaration-] ...
END
ELUDOM

End of module

Include the elements of a procedure description shown in Example 6-3
whether they are actually present or not.

.. Functional description

This section describes a procedure's purpose and documents its
interfaces. The description includes the rationale for using any
critical algorithms, including literature references, where applica
ble. Indicate in this section the reentrance characteristics of this
procedure if they differ from those given in the module's description.

102 Coding Guidelines for Implementation

• Formal parameters

Parameters conform to the VAX Procedure Calling and Condition
Handling Standard. For routines that conform to the calling
standard, the argument list pointer AP always points to the base of
the caller-supplied argument list. Bliss and MACRO routines local
to a module can pass arguments in registers.

The description of the arguments also includes the following:

• How the arguments are passed:

By value

By reference

By descriptor

• Type of parameter (for untyped languages such as Bliss)

• Mode of the parameter:
Read-only

Write-only

Read-write

6) Implicit inputs

List any inputs from storage, internal or external to the module,
that are not specified in the argument list. Usually all that will
appear here is NONE.

e Implicit outputs

List any outputs to internal or external storage that are not speci
fied in the argument list.

• Completion status or routine value

List the success or failure condition value symbols that could
be returned as completion codes in RO. If a procedure returns
a function value other than a condition value in RO, change the
heading to routine value.

• Side effects

In this section, describe any functional side effects not evident
from a procedure's calling sequence. Such side effects include
changes in storage allocation, process status, file operations, and
possible signaled conditions. In general, document anything out
of the ordinary that the procedure does to the environment. If a

Coding Guidelines for Implementation 103

side effect modifies local or global storage locations, document this
modification in the implicit output description.

Example 6-4 shows an expanded LSE template for a C module. Note
the similarity between the C module preface and that for Bliss shown
in Example 6-3.

Example 6-4: LSE Template for a C Module

[@#module@]

1*
**++
** FACILITY:
**
** [@tbs@]
**
** ABSTRACT:
**
** [@tbs@]
**
** AUTHORS:
**
** [@tbs@]
**
**
** CREATION DATE:
**

[@tbs@]

** MODIFICATION HISTORY:
**-
**1
[@include files@]
[@macro_definitions@]

[@preprocessor_line@] ...

[@comment@] ...

Example 6-4 Cont'd. on next page

104 Coding Guidelines for Implementation

Example 6-4 (Cont.): LSE Template for a C Module

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** [@tbs@]
**
** FORMAL PARAMETERS:
**
**
**
** IMPLICIT INPUTS:
**
**
**
** IMPLICIT OUTPUTS:
**
**
**
**
**
**
**
** SIDE EFFECTS:
**
**
**
**--
**/
{@main() OR main function that accept arguments from the command line@}
{

[@block_decl@] .. .

{@statement@} .. .

[@function_definition@] ...

Note that the called procedure specifies how it is to be called. The
calling procedure must invoke the procedure correctly. The procedure
description provides all the necessary information to determine how a
routine is to be called.

Coding Guidelines for Implementation 105

6.1.3.4 Examples of LSE Language Constructs

The previous examples show how LSE provides the text elements for
the module and routine prefaces. LSE also provides language construct
templates for all its supported languages.

For example, working with the routine declaration section of the
Bliss template brings you to the EXPRESSION placeholder. When
expanded, it displays a menu of expressions from which to choose. The
IF expression produces the following template:

IF {-expression-}
THEN

{-expression-}
[-ELSE {-expression-} -];
[-expression-] ...
END;

You could quickly fill in the EXPRESSION placeholder information by
typing over the new placeholders:

IF test
THEN

consequence
ELSE

alternative;
[-expression-] ...
END;

The following example shows an LSE template for a WHILE statement
in C.

while ({@expression@})
{@statement@}

[@statement@] ...

Directly typing over the placeholders produces the following generic
WHILE statement:

while (test)
loop~body;

[@statement@] ...

The templates represent accepted standards for effective language for
matting, complete with indenting, capitalization, and spacing. A team
can choose to modify the templates, in effect creating new conventions
for the project. The key point is that formatting conventions are readily
available and, through the use of LSE, can be applied consistently to
code.

106 Coding Guidelines for Implementation

6.2 Choosing an Implementation Language

Because the software being developed today is increasingly complex
and diverse, development teams need to carefully assess their choice of
implementation language. Increasingly, development teams at Digital
take advantage of the strengths and features of particular languages,
based on the needs of the application being developed.

The key elements to consider when choosing an implementation lan
guage are as follows:

• The development team will use a non-machine-dependent, high
level language.

• Project plans will indicate the implementation language chosen and
the rationale for the choice.

For the most part, the languages supported by Digital have equivalent
features. All conform to the VAX Procedure Calling and Conditioning
Standard and can be used in a multilanguage environment. They are
supported by Digital tools such as LSE, VAX Source Code Analyzer
(VAX SCA), and the VMS Debugger. Most have comparable compile
times and execution times. However, these are not the most important
issues when choosing an implementation language. Rather, consider
the following issues:

• Will this software ever need to be ported to another operating
system?

• Will this software ever need to be ported to another hardware
target?

• What languages do the engineers on the project already know?
How hard will it be to hire or train new people?

• How much code does the product have? How much will it share?

• What special language features does the application need? Does
the language being considered provide them?

• Will the team be doing low-level or high-level programming? Does
the language readily allow for this?

Coding Guidelines for Implementation 107

Each language has merits that can justify its use. For example, C is
a viable choice for those products to be offered on multiple operating
systems or multiple hardware targets. It is a good choice for products
to be transported to and from comparable C environments and for
applications that run with DECwindows.

Ada, a high-level language developed to highlight any portability
problems, is suitable for those projects that need to develop products
only for VMS. Besides providing powerful language features, Ada
reduces software life cycle costs by providing for modularization and
separate compilation using packages, scope rules, and a compilation
data base. Ada also allows both bottom-up and top-down program
development, while enhancing software reliability through strong
typing.

6.3 Improving Code Readability

Other readers can better understand source code if it is properly
structured, organized, and indented. The code should be constructed
into blocks with a limited amount of branching. In general, low-level
constructs should be indented more than high-level constructs. This
approach provides a visual indication of the control flow and allows
other engineers to better understand and modify it.

Regardless of the source of a project's coding guidelines, the conventions
described in the following sections have been shown to improve the
readability of programs:

• Symbols
• Case conventions

• Spacing conventions

• Formatting comments

108 Coding Guidelines for Implementation

6.3.1 Symbols

To ensure code readability it is best to use symbols, not numbers,
as much as possible. Because symbols are mnemonic, they clarify
programs and provide more information for cross-reference listings. It
is good coding practice to define a symbol for a constant that is used
a number of times. If the value for that symbol changes, the symbol's
value will need to redefined only once rather than in every place it
is used in the program. Thus, using symbols simplifies the task of
maintenance and facilitates cross-referencing.

6.3.2 Case Conventions

Case conventions should be appropriate to the language. U sing all
uppercase letters for the code is not desirable because it is difficult to
read. Avoid randomly scattering uppercase and lowercase letters in
the code. In general, keywords are one case, identifiers another. For
example, in Ada, where formatting conventions are more stringent,
you are expected to use lowercase letters for keywords and uppercase
letters for identifiers.

The C language distinguishes between uppercase and lowercase letters
in variable names and keywords. To ensure portability, global symbols
must never require case distinction. Lowercase letters are appropriate
for variable and function names, structure names, and keywords. Use
uppercase letters for preprocessor identifiers (macro names), symbols
defined with the VAX extension facilities globalref, globaldef, and
globalvalue to ensure correct access. Finally, if a symbol is created that
is external and has mixed case, all references to it must match the case
of the definition and the name must not conflict with other symbols
that have the same characters but different case.

Use uppercase and lowercase letters for all comments. Comments
that are complete sentences start with a capital letter and end with a
period.

When using languages that do not distinguish between uppercase and
lowercase letters, your development team should not depend heavily on
using case conventions as a way to convey vital information about the
code because they may be difficult to thoroughly enforce.

Coding Guidelines for Implementation 109

Example 6-5 shows how to use uppercase and lowercase letters prop
erly in a Pascal program.

Example 6-5: Proper Capitalization in a Pascal Program

{ Program to call LIB_LP_LINES and determine the
{ number of lines per line printer page.
}
PROGRAM lines (OUTPUT);

{ Declare the external procedure used by this
{ program.
}
FUNCTION lib_Ip_Iines : INTEGER; EXTERN;

{ Call lib_Ip_Iines and print the result.
}
BEGIN

WRITELN('Each page contains' ,lib_Ip_Iines,' lines.');
END. '

6.3.3 Spacing

Digital developers use the following spacing guidelines when permitted
by the coding language.

• Follow a comma (,) with a single space.

• Follow and precede an equal sign (=) with a single space.

• Follow an exclamation mark (!) or semicolon (;) with a single
space, to separate a comment from the source code.

• Precede and follow the arithmetic operators plus (+) and minus (-)
by spaces in expressions.

• Use blank lines to separate logically distinct (but physically close)
pieces of code.

• Be aware that appropriate spacing in code often makes it easier to
read.

• Use form feeds between routines.

110 Coding Guidelines for Implementation

The BASIC program in Example 6-6 shows proper spacing in a BASIC
program.

Example 6-6: Spacing in a BASIC Program

10 The following BASIC program converts a character
string representing a hexadecimal value to a
lonqword, then adds one to the result.

Declare the external routine used.

! Perform the conversion.
!
HEXVAL_ = "8001~BFA"
RET_STAT% = OTS_CVT_TZ_L (HEXVAL_, HEX%)

! Add one to the result.

HEX% = HEX% + 1

END

6.3.4 Formatting Comments

The importance of including comments cannot be overemphasized.
In any professional environment, many people will read the code.
Sometimes they will want to modify it to do something else; at other
times they will want to modify it to do what was originally intended.

A comment describes the purpose of a section of code. If written
properly, the code itself conveys this adequately. Most comments
describe what a source statement does. This category of comment is
imperative in form, as shown in the examples in this section.

This section describes how to format block comments and line com
ments, and how to use LSE to format comments.

Coding Guidelines for Implementation 111

6.3.4.1 Block Comments

Digital developers comment on blocks of statements by writing one or
more lines of text preceding the block. Comment lines begin with com
ment delimiters appropriate to the particular language. Example 6-7
shows an example of a FORTRAN program with exclamation points
being used as a delimiter. Frequently, the last comment line contains
only the comment delimiter. You may wish to set off block comments
with blank lines to make them easier to read. Comment delimiters are
followed by one space, as shown in Example 6-7.

Example 6-7: Block Comments in a FORTRAN Program

This program demonstrates a call to the
Run-Time Library procedure STR_PREFIX.

Initialize the strings to be used.

AS = "ABC"
BS = "DEF"

! Call STR PREFIX

ISTAT = STR_PREFIX (AS, BS)

END

When possible, indent the comment delimiter the same as the source
code it discusses, with the comment text separated by a single space.
Note that LSE automatically indents the delimiter this way. Never
write a comment that could be interpreted as a language statement.
Always include a block comment at the beginning of a major segment
of the program.

6.3.4.2 Line Comments

You can write brief comments on the same line as the statements
they describe. Be sure to indent them enough to separate them from
the statements. If more than one line comment appears in a block
of code, each new comment starts at the same position, as shown in
Example 6-8.

112 Coding Guidelines for Implementation

Example 6-8: Justified Line Comments in a C Program

while (!finish(»
inquire ();
process ();

1* Main sequence:*1
1* Get user request*1
1* And carry it out*1
1* As long as possible*1

Note that all line comments start at some specific column and are
flagged by a slash and an asterisk (/*). Compare Example 6-9 to
Example 6-8.

Example 6-9: Unjustified Line Comments in a C Program

while (!finish(» { 1* Main sequence: *1
inquire(); 1* Get user request *1
process(); 1* And carry it out *1

} 1* As long as possible *1

In general, it is best to use line comments to document variable def
initions and block comments to describe the computation process.
Example 6-8 would best be written as a block comment, as shown in
Example 6-10.

Example 6-10: Block Comment in a C Program

1*
* Main sequence: get and process all user requests.
*1

while (!finish(»
inquire ();
process 0;

Coding Guidelines for Implementation 113

6.3.4.3 Formatting Comments with LSE

Because LSE recognizes many of the comment portions of the code,
you can use LSE to format them. In addition, LSE treats comments
specially when a placeholder is erased or duplicated. Two commands
are useful: ALIGN and FILL.

When you use the ALIGN command, LSE lines up all the comments
within a region along the same columns. For example, here is a
commented program section:

IF (col >= R_Margin)
THEN

Begin
i := i + 1 ;

This is the start of an
! extended end-of-line comment block

j := j + i; ! another comment
to be filled

After you use the ALIGN command, the program section looks like this:

IF (col >= R_Margin)
THEN

Begin
i .- i + 1
j := j + i

This is the start of an
extended end-of-line comment block

another comment
to be filled

When you use the FILL command, LSE aligns and fills out each
comment line. For example, here is the same program section after
using the FILL command:

IF (col >= R_Margin)
THEN

Begin
i := i + 1 ;
j := j + i ;

This is the start of an extended
end-of-line comment block

another comment to be filled

Special handling of comments applies only to a trailing comment;
that is, one that is the last item on a line, excluding blank space.
LSE recognizes two types of comments: bracketed comments and line
comments. A bracketed comment has both a beginning and ending
delimiter; a line comment begins with a delimiter but terminates with
the end of the line.

114 Coding Guidelines for Implementation

6.4 Naming Conventions

Naming conventions are used in naming files, directories, facilities,
modules, procedures, program sections (PSECTs), and variables. The
naming conventions discussed in this section make it easier for devel
opment teams to carry out their work. They also make it easier for
maintenance teams to carry out theirs. See the Guide to Creating VMS
Modular Procedures for additional naming conventions.

NOTE

This section discusses software structures such as file names,
directories, and procedures. Any such structures supplied by
Digital have a dollar sign ($) in their name. The use of the
dollar sign ($) in the names of these software structures is
reserved for Digital.

To eliminate any possible conflict resulting from duplicate
names, do not use dollar signs ($) in the names of any
software structures you create. Instead, use an underscore
(_) character.

6.4.1 File Names

The purpose of a file-naming convention is to make the file names of
a product family or facility more consistent, organized, and easier to
identify. When you use such a convention, it will be easier to identify
which files are part of a particular software product family.

All file names use the following format:

fac <IDENTIFIER> <PURPOSE>.<FILE TYPE> - - -

Coding Guidelines for Implementation 115

The different parts of the syntax have the following meanings:

<IDENTIFIER>

<PURPOSE>

<FILE_TYPE>

The product's unique facility name, followed
by an underscore (_) character

An identifier string (optional)

Underscore character to separate parts

A string that identifies the purpose of the file

A string that identifies the type of data the file
contains

The facility name (fac) is a unique alphanumeric string containing
from 2 to 27 characters (2 to 4 characters are suggested). This string
is used as a prefix to uniquely identify a product and its components,
including file names. Facility names you supply should be followed by
an underscore (_) to identify the software not supplied by Digital.

The optional identifier string (IDENTIFIER) makes it possible to have
multiple files that serve the same purpose. Products that have multiple
files serving a similar purpose (for instance, more than one shareable
image library file, help file, startup file, and so on) need to include the
identifier string. Products that do not have multiple files serving a
similar purpose do not need to include the identifier string.

For example, if a product named Employee List has one startup file, no
identifier string is needed:

EMPLOYEES STARTUP.COM

A file type string (FILE TYPE) is a character string from 1 to 39
characters (3 or 4 characters are suggested) that identifies the file
based on its contents. When choosing a file type, consider a default file
type before creating a new one. Using a default file type helps to limit
the number of unique file types that reside on the system.

Software products often use files that are common to many products.
Some examples of commonly used files are help files, message files, and
run-time libraries. If your goal is to make the names of these files more
consistent, all products using these types of files should comply with
this standard.

116 Coding Guidelines for Implementation

Table 6-1 lists the common files and their associated naming conven
tion.

Table 6-1 : Naming Conventions for Common Files
Type of File

Help files

Main images

Message files

RTL images

Shareable images

Object libraries

Option files

Startup files

Release notes

Control programs

Initialization files

G Float RTL Images

H Float RTL Images

Client images

Server images

Naming Convention

fac_ <IDENTIFIER> _HE LP.HLB

fac_ <IDENTIFIER> _MAIN.EXE

fac_ <IDENTIFIER> _MSG.EXE

fac_ <IDENTIFIER> _RTL.EXE

fac_ <IDENTIFIER> _SHR.EXE

fac_ <IDENTIFIER> _OBJLIB.OLB

fac_ <IDENTIFIER> _OPTION. OPT

fac_ <IDENTIFIER> _STARTUP.COM

fac_ <version>.RELEASE_NOTES

fac_ <IDENTIFIER> _ CONTROL.EXE

fac_ <IDENTIFIER> _INIT.INI

fac_ <IDENTIFIER> _RTL_ G.EXE

fac_ <IDENTIFIER> _RTL_H.EXE

fac_CLIENT_ <purpose>

fac_SERVER_ <purpose>

The following examples show how to name client and server files
properly for the hypothetical product VAX QUALITY. The file type
.COM stands for a command file, and the file type .EXE stands for an
executable file.

QUAL_CLIENT_MAIN.EXE

QUAL_SERVER_MAIN.EXE

QUAL_CLIENT_STARTUP.COM

QUAL_SERVER_STARTUP.COM

QUAL_CLIENT_SHR.EXE

QUAL_SERVER_SHR.EXE

QUAL_CLIENT_MSG.EXE

QUAL_SERVER_OPTIONS.OPT

Coding Guidelines for Implementation 117

QUAL _ RTL . EXE

QUAL_OBJLIB.OLB

QUAL_HELl? . HLB

QUAL_INIT.INI

QUAL_010.RELEASE_NOTES

6.4.2 Directories

Top-level directory names must be consistent with the file-naming
convention. Correct directory names contain the following:

• The product's unique facility name

• The underscore (_) character

• An identifier string

The following example shows a top-level directory name for a product
called Employees List:

EMJ?LOYEES_SERVER.DIR

6.4.3 Procedures

When you create a procedure and give it a global name, other proce
dures in the same image can call it. In such an environment, global
procedures require a naming convention to prevent any name conflict
between global procedures in the same image.

The rules for naming entry points to procedures have this general form:

fac <SYMBOL>

fac

<SYMBOL>

118 Coding Guidelines for Implementation

A 2- to 4-character facility name, followed by an
underscore (_) character.

A symbol from 1 to 27 characters long. (The entire
procedure name may not exceed 31 characters in
length.)

The procedure name usually consists of a verb and its object, which
describe the action of the procedure. For example, a run-time library
procedure that calls a procedure STR_PREFIX might be called called
LIB_GET_STR.

Some procedures, even though assigned global names, are not intended
to be called from outside the facility in which they are located. These
procedures are only available internally, within a set of procedures, and
do not by themselves provide any features for the facility. The names of
these procedures you supply contain three underscores (___). (Three
underscores are necessary to avoid conflict condition value symbols you
define that use two underscores.)

The names in Table 6-2 are examples of procedure entry point names.

Table 6-2: Examples of Entry Point Names
Procedure Name

LIB_PRINT_REPORT

LIB ___ ADD_TAX

6.4.4 Modules

Description

Global procedures supplied by you

Internal procedure supplied by you

Module names are identical to file names except that module names do
not include file types.

Table 6-3 contains examples of module names with corresponding file
and procedure names.

Table 6-3: Relationships Among File, Module, and Procedure Names
File Name Module Name

LIB_SPRB32 LIB.;...SPR

Procedure Name

LIB_GET_SPR

LIB_FREE_SPR

MTH_EXP

Coding Guidelines for Implementation 119

6.4.5 Variables

This section describes naming conventions for local and global vari
ables.

6.4.5.1 Global Variables

Use the following format to name global variables:

The letter G indicates this is a global variable; the letter t indicates
the contents and use of the global variable. Table 6-4 lists the possible
values for t.

Table 6-4: Global Variable Code Values
Value
for t Content and Use

A Address

B Byte integer

C Single character

D D _floating

E Reserved for Digital

F F _floating

G G_floating

H H_floating

I Reserved for integer extensions

J Reserved for customers for escape to other codes

K Constant

L Longword integer

M Field mask

N Numeric string (all byte forms)

o Octaword

P Packed string

120 Coding Guidelines for Implementation

Table 6-4 (Cont.): Global Variable Code Values
Value
for t Content and Use

Q Quadword integer

R Records (structure)

S Field size

T Text (character) string

U Smallest unit of addressable storage

V Bit field

W Word integer

X Context dependent (generic)
y Context dependent (generic)

Z Unspecified or nonstandard

The format for addressable global arrays is similar:

The letter A represents a global array; the letter t corresponds to the
values in Table 6-4.

6.4.5.2 Local Variables

Local values follow the same format as global variables, except that
they lack the letter G, which indicates that a variable is global.

Use the following format to name local variables:

The letter t indicates the contents and use of the variable. Table 6-4
lists the possible values for t.

Coding Guidelines for Implementation 121

6.4.6 Naming Conventions for Objects

Table 6-5 contains naming conventions for common objects.

Table 6-5: Naming Conventions for Objects
Object

Facility-specific public macro
names

System macros using local
symbols or macros

System lock identifiers

PSECT names

Status code and condition
values

Data structure definitions

Rights data base identifiers

Queue names

Syntax

fac_ <FACILITY><SYSTEMLOCK>

fac_<PSECT_NAME>

fac __ <STATUS>

fac_K_CLASS_ <SYMBOLIC_CODE>lor fac_
K_DTYPE_ <SYMBOLIC_CODE>

fac_ <RIGHTS_IDENTIFIER>

fac_ <QUEUE_NAME>

IThe different symbolic codes are listed in Introduction to VMS System Routines.

6.4.7 File Image IDs

The guidelines in this' section apply to using the file image ID field in
.EXE files. You can see these fields by issuing an ANALYZEIIMAGE
command on any .EXE files. Any .EXE file belonging to a layered
product should conform to these standards.

6.4.7.1 Image File 10 and Image Name Fields

VMS layered products use the image file ID field to identify the product
name and version number.

The field is 15 characters long and has the following format:

<PRODUCT NAME> <VERSION IDENTIFIER>

122 Coding Guidelines for Implementation

The VMS Linker option IDENT = "15-byte string" sets this field. In
this case, the quotation marks must be used to delimit the string.

The image file ID field specifies the product name and version number;
therefore, the image name of the file is acceptable in this field. Because
VMS puts the image name in this field by default, you do not need to
do so.

6.4.7.2 Shareable Images

Some products use images that are shareable or that another group in
your organization supplies. In these cases, the group that provides the
image sets the image file ID area to reflect the current version of the
shareable image. The image ID then contains the information of the
base product to which it belongs.

For example, if you used an image (NLQ_SHR.EXE), the image ID area
of that executable image would be similar to the following:

IMAGE FILE ID: NLQ V3.S-2
IMAGE NAME: NLQ_ SHR

6.5 Code Reviews

The project's development plan describes code review requirements.
The purpose of code reviews is essentially the same as for design
reviews or requirements reviews: to enhance the quality of the product.
To this end, code reviews supplement the testing process described
in Chapter 7. The reviews can be less formal-walkthroughs-or can
entail formal inspection procedures.

6.5.1 Informal Walkthroughs

The code walkthrough process is similar to that for design reviews
(see Section 4.5). Typically informal, code walkthroughs can take
place during group meetings. The team holds walkthroughs as soon as
possible after engineers write the code and complete unit testing.

During code walkthroughs, the development team tries to accomplish
the following:

Coding Guidelines for Implementation 123

• Find errors in the code

• Make sure code comments are complete and accurate

• Ensure coding standards are followed

• Show new engineers on the team what is expected of their code,
particularly any group-specific methodology

• Help engineers become familiar with code other than their own

• Provide a forum for experienced engineers to share their knowledge
with less experienced engineers

6.5.2 Formal Inspections

Formal inspections are a type of technical peer review in which a small
group of engineers, led by a trained moderator, examines a process
document line-by-line to find problems. This process can be used for
any type of review.

At Digital, the engineer's supervisor selects and assigns the inspectors.
Each inspector contributes unique technical expertise to the inspection.
The supervisor does not attend the inspection. Typically four to six
people attend a single inspection, which lasts about 2 hours. The
reviewers are able to inspect about 500 lines of text or 250 lines of code
(excluding comments).

In every inspection, the document under review is compared with
one or more source documents. For example, module code may have
pseudocode as a source document along with the product specification
and design documents as supporting documents. As the inspectors
discover problems, they record and classify them by problem type.
When the inspection is complete, the engineer receives a list of the
problems found and their classification. The engineer is responsible for
correcting the problems.

The factor that limits formal inspections is the availability of time and
personnel. The time necessary for formal inspections must be built in
to what is often a tight schedule. The key to planning inspections is
to identify those documents that are to be inspected because of their
audience or importance.

124 Coding Guidelines for Implementation

Most inspections uncover at least one problem that could otherwise
result in a problem report. The cost of a formal inspection can be
justified because it requires only about half the time needed for dealing
with a problem report. Managers should encourage scheduling the
time needed for formal inspections; otherwise development teams may
forego them. In spite of these constraints, formal inspections remain
one option for helping ensure improved product quality.

6.5.3 Code Inspection Guidelines

At Digital the following questions are a part of any code inspection:

Function

1. Is there a concept, an underlying idea, that can be expressed
easily in plain language? Is it expressed in plain language in the
implemented code?

2. Does the function of this part have a clear place in the function of
the whole? Is this function clearly expressed?

3. Is the routine properly sheltered so that it can perform its function
reliably in spite of possible misuse?

Form

1. Is the style clean and clear?

2. Is it meaningful to all classes of readers who will see it?

3. Are there repeated code segments, whether within or between
routines?

4. Are comments useful or are they an excuse for poor coding?

5. Is the level of detail consistent?

6. Are standard practices followed?

7. Is initialization done properly and does the routine clean up after
initialization?

Coding Guidelines for Implementation 125

Economy

1. Are there redundant operations for which there is no compensating
benefit?

2. Is storage use consistent both internally and with external
specifications?

3. How much will it cost to modify? (Consider the three most likely
modifications.)

4. Is it simple?

126 Coding Guidelines for Implementation

Chapter 7

The Testing Process

After a program has been coded, it is tested. The testing process is
a part of the design and implementation phase. The primary goal of
testing is to make sure that the application performs as described in
the requirements and specifications documents. The benefit of testing
is that it reduces the long-term costs of the application by finding
and fixing code errors early in the development process when they
are relatively cheap to correct. The software maintenance costs are
similarly reduced.

As a part of the testing process, the development team considers the
following:

• Levels of testing

• Types of tests

• Regression testing

• Testing and design

• Performance testing

Another type of testing, field testing, is discussed in Chapter 8,
Qualification.

Throughout this chapter, frequent reference is made to the following
Digital products, which are useful in the testing process:

• VAX DEC/Code Management System (DEC/CMS)

• VAX Performance and Coverage Analyzer (VAX PCA)

• VAX DEC/Test Manager

The Testing Process 127

Figure 7-1 shows where testing fits in the development process. The
product develops in a series of progressive base levels, each marking a
new or different level of product features. Testing is required at each
stage of development. Two levels of testing are done: unit testing and
integrated testing. Regression testing is used to evaluate the results.
These tests, which are described in the following sections, form part of
the full application test suite; in turn, the full test suite is used as part
of the development team's periodic build and test cycle.

At Digital, when the development team decides to freeze the code for
a base level, it must test and review the base level before creating
a DEC/CMS class. The DEC/CMS class will associate all the source
modules for easy access. To build distribution kits of the media, the
team uses the base-level class. Base-level development continues if the
product is not yet complete, or ends if the DEC/CMS class represents
the final base level for release.

7.1 Levels of Testing

The complexity of the environment within which a team tests the
code determines the level of testing that is required. The two levels of
testing are:

• Unit testing

• Integrated testing

Unit testing takes place on code that constitutes the simplest en
vironment. In unit testing, engineers test a unit of code, such as
a subprogram, subroutine, internal procedure, or module before it
becomes part of a larger procedure.

Integrated testing takes place on code that constitutes a progressively
more complex environment as the individual units are combined into
larger functional components. More than one level of integrated testing
may be needed to test all functional components of a software product.

128 The Testing Process

Figure 7-1: Code Testing Process

No

Rebuild

Base-Level
Development

Code
Freeze

Design and
Implementation

Review

Unit
Testing

Integrated
Testing

Base-Level
Test

DEC/CMS
Class

Base-Level
Review

For example, a unit test for an accounts receivable module of a business
accounting package might determine whether the module correctly
calculates the total for a sale, including any taxes, to a customer.
Similarly, an integrated test might determine whether the items sold

The Testing Process 129

are subtracted in the inventory module of the business accounting
package.

In Figure 7-2, level 1 represents unit testing, and levels 2 and 3
represent integrated testing.

Figure 7-2: Unit and Integrated Levels of Testing

DD D
Level 1 Level 3

7.1.1 Unit Testing

Thorough unit testing is good coding practice. Typically, in unit testing
a specific test is written or an existing test modified for a unit of code.

Mter writing a test, Digital developers use the VAX Performance and
Coverage Analyzer (VAX PCA) together with the DEC/Test Manager to
see how effectively the test covers the code. If the DEC/Test Manager
indicates a high percentage of code is covered, the team can have
confidence that the test is a valid indicator of correctness. On the other
hand, if the DEC/Test Manager indicates that a low percentage of code
is covered by the test, the test is modified or augmented.

For instance, a team whose tests cover 85 percent (suggested minimum)
of the product's code paths can be more confident that their tests are
measuring the correctness of the product than a team whose test
coverage is only 68 percent. However, as the coverage values for the
application increase, the team must trade off the cost of developing new
and more comprehensive tests against the cost of fixing an otherwise

130 The Testing Process

undiscovered error. The type of application being developed also has a
large effect on this judgment.

7.1.2 Integrated Testing

The approach to integrated testing preferred at Digital is called incre
mental testing. With this approach, testing begins with a single unit.
Testing continues as more units are added to the original unit. Each
unit is thoroughly tested before it is included in the integrated testing
process. At each level, errors are corrected before going on to the next
level. At the last step, testing the units in combination, the entire
procedure should work correctly.

Incremental testing helps find the following types of errors:

• Problerris with the calling interface between units

• Incorrect assumptions about what values are returned and which
units they are returned to

• Unexpected transfer of control between units

Incremental testing has many advantages: the entire procedure need
not be complete to begin integrated testing. Debugging is simplified
because modules and interfaces can be tested as the system grows. In
addition, programming errors in the interfaces and incorrect assump
tions between units surface at an early stage. Finally, because existing
units are retested as new units are added to the test set, undesirable
or unexpected interactions among code units are more likely to be
detected.

7.2 Types of Tests

The unit and integrated tests are generally classified as "white box" or
"black box." Table 7-1 shows some characteristics of white box tests
and black box tests.

The Testing Process 131

Table 7-1: White Box Tests and Black Box Tests
White Box Tests

Primarily used for unit testing

Can be written in the design phase
only if documents are quite detailed

Used to examine how the results
were achieved at the code path level

7.2.1 White Box Tests

Black Box Tests

Primarily used for integrated testing

Can be written based on the require
ments, specifications, and design doc
uments; usually used for functional
tests

U sed to examine whether a procedure
produces the expected results without
concern for the underlying code

White box tests examine the internal workings of the code, that is, the
individual lines of code. A set of test data should test each statement,
decision, and condition. If a set of test data fails to do so, sections of
code that contain errors might be skipped. For example, compound or
nested decisions may have many possible branches of code; the test
data needs multiple values to force the execution of these branches.

Digital engineers find the VAX Performance and Coverage Analyzer
(VAX PCA) to be particularly useful for white box tests. When used
with the VAX DEClTest Manager, VAX PCA measures test coverage.
The coverage analysis takes two forms:

• Percentage of total coverage: Indicates how much of the code was
executed by the test data.

• Individual source line coverage: Shows which lines of code were
executed by the test data.

VAX PCA provides a way to mark code as acceptably not covered.
This method allows portions of the code to be bypassed during testing.
These portions are typically not testable or the conditions cannot
be reproduced. Coverage analysis considers these conditions when
calculating coverage percentages.

132 The Testing Process

7.2.2 Black Box Tests

Black box tests measure whether the procedure can produce the pre
dicted results for particular input values. A command procedure is
written that repetitively executes the tested procedure with different
input values.

The input values come from the following categories:

• Expected inputs

• Boundary values
• Illegal values

7.3 Testing and Design

The development team must plan for testing when they create an
application's design. The team should recognize that the product
eventually will be tested for validity and consistency. The verification
process uses standard testing procedures (for example, regression
testing) that the team can plan for.

7.3.1 Design Considerations

The design work generally reveals potential problems such as running
out of disk space or a possible failure of system services. If such
problems cannot be "designed out" of the system, having a record of
them can be valuable when the team prepares its tests.

The team writes the set of functional validation tests during prelimi
nary design to ensure that the tests measure the functions the software
is to perform. If the team writes the tests after the code is written,
their knowledge of the code may affect the way they write the tests.
This approach diminishes the objectivity of the test and the value of
the results.

Functional tests are usually black box tests and can be written based
on the requirements, specifications, and design documents. White box
tests can be written at the design phase only if the design documents
are quite detailed.

The Testing Process 133

A product's successful development is in large part measured against
the initial requirements and function list. Therefore, functional tests
provide a way to measure the success of the product's development.
At Digital, teams usually organize their functional tests on the basis
of some characteristic of the application: the command list or perhaps
objects manipulated by the application. For example, a test of the
VAX DEC/Code Management System (DEC/CMS) would exercise all
DEC/CMS commands.

An organization based on objects might validate all the attributes or
functions of an element (SHOW ELEMENT, CREATE ELEMENT,
DELETE ELEMENT, and so on). By organizing tests this way, it is
possible to run a subset of the test system or a DEC/Test Manager
group after having changed a particular feature. Note that DEC/Test
Manager allows individual tests to be members of more than one group.

When designing tests, the development team examines any product
dependencies and whether to take a bottom-up or a top-down approach
to testing.

7.3.1.1 Bottom-Up and Top-Down Approaches

Depending on the design of the application, the team takes either a
bottom-up or a top-down approach to its integrated testing. For a
bottom-up design, the team has an application that develops from
primitives-low-level functional units, such as data base routines or
file-handling routines that form the working base of the application.
As the application develops, the low-levels units are combined into
larger components. The higher-level combinations of units execute and
make use of the primitives to produce the functions of the application.
At the highest level, the user interface drives the lower levels of the
application.

To carry out tests on a bottom-up design, it is necessary to test the
primitives before higher levels of code exist. For this task, driver
programs must be written to execute the primitives by calling the
routines. In this way unit testing can begin, followed by integrated
testing as the application grows. The driver programs are used only
until the higher-level code is written.

134 The Testing Process

A top-down design creates a different set of circumstances for testing.
A top-down design starts with major functions, such as interface
routines or calling routines. These high-level units exist before the
primitives. After it is clear how they work together, the lower-level
functions are designed. The primitives will ultimately be needed to
carry out the work.

For top-down designs, dead-end units or "stubs" are created that return
dummy values to the higher-level calling routine. In this way, unit
testing can be carried out at higher levels and progress downward to
the lower levels as the application develops.

7.3.1.2 Product Dependencies

In designing tests, Digital's developers also consider a set of test data
that verify all levels of a product's dependencies on other products.
Tests that validate relationships between one product's components and
another product's components help development teams discover prob
lems when changes among dependent products occur. The following list
contains examples of dependencies for which development teams might
design validation tests:

• Operating system dependencies

• Hardware-specific dependencies

• Prerequisite products

• Optional products

• User interfaces

• International layers (translation dependencies)

7.3.2 Regression Testing

Regression testing is the most common technique for evaluating test
results. In regression testing, established software tests are run (white
box or black box) and the results compared with the successful results
from previous test runs. If the new results do not conform to the
previously verified results, the software being tested may contain
errors. If errors do exist, the software is said to have "regressed."
Thus, regression testing ensures that a program runs consistently
and that new features do not affect the correct execution of previously
tested features.

The Testing Process 135

This is a typical sequence of steps used in regression testing:

1. Write test scripts (command procedures or interactive session
records) to test the software.

2. Organize the tests and create a mechanism that lets the team
readily access the tests as needed.

3. Run the tests.

4. Examine the test results.

a. Compare the results of each test to the expected results. Note
any differences between the expected and actual results.

b. For incorrect test output, revise the program code to correct the
problem. Repeat steps 3 and 4 until the test output is correct.

c. Save the correct output as the validated test results.

5. Repeat steps 3 and 4 whenever the program is modified.

a. If the current and validated test results match, the program
being tested is working as expected.

b. If unexpected changes are found in the test results, the program
being tested may contain errors. Correct the program and rerun
the tests whose results did not match. Repeat this cycle until
all results are valid. For future test runs, use these validated
test results as references against which to compare the current
test results.

Digital's engineers use the VAX DEClTest Manager for organizing
software regression tests and test results. The DEClTest Manager
automates steps 2 through 4, although engineers must still create the
tests manually. Figure 7-3 shows the steps used in regression testing,
with those steps the DEClTest Manager automates indicated in the
outlined area.

Here is a typical sequence of steps for using the DEClTest Manager to
perform regression testing:

1. Create tests by writing test scripts to test the software.

2. Set up a DEClTest Manager system.

a. Create a DEClTest Manager library.

136 The Testing Process

Figure 7-3: DECITest Manager and Regression Testing

Tests
and

Test Data

----------------------------------~---------
Automated by

DECITest Manager Run

Expected
Results

(Benchmarks)

I

Compare
Test Results
to Benchmark

Examine
Comparison

Report

Tests

Generate
Test

Output

I

b. Identify each test and its related files to the DEClTest Manager.

c. Categorize the tests, if desired, by placing them in groups.

3. Run the tests.

a. Use the DEClTest Manager to collect the test or set of tests that
will be run. (DEClTest Manager can fetch tests directly from a
DEC/CMS library.)

b. Run the collection of tests either interactively or in batch
mode.

The Testing Process 137

4. Compare the current test results with the expected results for each
test. Mter the test results from the first run have been examined
and validated, the DECtrest Manager will automatically compare
new test results with the validated results for each test and record
any differences in a differences file.

5. Examine the test results. The DECtrest Manager provides an
interactive subsystem that allows access to test results immedi
ately. To simplify retesting, the DECtrest Manager also allows
engineers to update or create benchmark files that group all tests
that produce incorrect results.

6. Repeat steps 3 through 5 whenever you modify the program or add
new code.

The DECtrest Manager simplifies the testing process, thereby increas
ing the likelihood that all team members will test the application
consistently. The DECtrest Manager can provide the information to
answer questions such as the following:

• Who added a specific test?

• Who revised the test set and when?
• How often is the test set run?

• What are the variables used for?

To set up a test system, the engineers create tests and store the test
descriptions in a DECtrest Manager library to identify the tests and
their associated files to the DECtrest Manager. A test description
consists of a series of fields whose contents point to files and other
information needed to run the test. The core of the test description is
the template file. For tests that are not interactive, the template file
is a DCL command file created to run a specified test; for interactive
tests, the DECtrest Manager automatically creates a template file
when the interactive terminal session is recorded.

You can use the VAX Language-Sensitive Editor (LSE) to create tem
plate files more easily. LSE allows engineers to write generalized
templates for languages not supported by Digital. They can also write
LSE templates for the DECtrest Manager files if they have several
tests that share common characteristics. This approach makes it easier
to create and use tests.

For more information on the DECtrest Manager, see Section 2.1.4.

138 The Testing Process

While regression testing enables the development team to be certain
that successive versions of the software yield consistent test results,
the team also conducts performance testing to ensure that the software
performs its functions correctly.

7.4 Performance Testing

Performance testing helps ensure that a product performs its functions
at the required speed. Planning for performance testing starts at
the beginning of the project when product goals and requirements
are defined. Performance testing is a part of the product's initial
engineering plan.

Insofar as possible, the development team states the performance
requirements in measurable terms. When this is difficult, the product
requirements document provides some guidance as to the importance
of the product's performance. Increasingly, performance may affect a
product's acceptance in the marketplace. The performance of competing
products, therefore, can serve as comparative benchmarks.

The development team can approach performance testing in one of
three ways.

1. The team can design for performance. Techniques such as modeling
and prototyping help to assess the application's performance.
Techniques for validating designs help produce an application
design that can enhance performance.

2. The team can test performance during development. This approach
entails testing performance at the unit level. The team writes
tests and establishes performance benchmarks for each unit tested.
The drawback to this approach is the significant time and effort
required.

3. The development team can test the performance of the finished
product. This approach also requires tests and benchmarks.
However, the team creates the tests and benchmarks only for the
full application. For this reason, it is more practical than testing
during development.

The Testing Process 139

Assuming that the team chooses the third approach, the engineers
must first create the tests and benchmarks. This step is difficult
because it entails translating information from the requirements
and specification stages into tests and benchmarks that are specific
to individual products. Without meaningful benchmarks, however,
performance testing serves little purpose.

7.4.1 Running Regression Tests

Once the team establishes performance criteria for the product, it can
run appropriate regression tests. As mentioned earlier in this chapter,
the DEClTest Manager can help the team manage the tests and evalu
ate the results. Because the DEClTest Manager is a consistency-testing
tool, the development team has to write a filter for tests that collect
VMS accounting data at logout. Typical information includes CPU
time, elapsed time, and page fault data. To be meaningful, the tests
need to be run consistently, that is, on the same class of equipment un
der the same conditions. The team must ensure that these conditions
exist.

When the tests are run, the DEClTest Manager can compare bench
marks automatically with the data collected. This type of perfor
mance testing is suitable for applications that are batch-intensive.
The DEClTest Manager cannot measure human interface aspects of
performance. This is best addressed by human factors testing. (See
Section 4.4 for information on human interface design.)

7.4.2 Resolving Performance Problems

Experience has shown that it is difficult for engineers to intuitively
determine where the greatest performance problems occur in their
programs. The VAX Performance and Coverage Analyzer (VAX PCA)
can be extremely helpful in locating the problem in the source code.

If the regression testing shows that the application no longer compares
favorably with the established benchmarks, VAX PCA can be used to
help improve performance. Figure 7-4 shows where VAX PCA fits in
the performance testing process.

140 The Testing Process

Figure 7-4: Performance Test Process

Rewrite
Code

Use VAX PCA for
Performance
Debugging

No

DEClTest Manager
Regression Test

Performance
Tests and

Benchmarks

Next Build
Cycle

In effect, VAX PCA functions as a performance debugger, quickly identi
fying sections of code that consume the largest portions of performance
time. Once the bottlenecks are located, the code and its algorithms can
be rewritten.

VAX PCA can also help when a performance problem occurs during field
test. A performance problem in this sense does not reflect a section of
code whose logic fails to work; rather, it reflects a section of code that
performs inefficiently, perhaps in special circumstances. Examples of
this type of problem include hidden N 2 algorithms, code that is too
general, or code that is poorly designed.

The Testing Process 141

VAX PCA can be used in much the same way to solve both types of
performance problems. However, note that reacting to performance
problems that become apparent during field test is not the same as
developing a strategy of performance testing against benchmarks.

7.5 Summary of Testing Guidelines

This section summarizes the key guidelines covered in previous sections
of this chapter.

Error Testing

• Plan the application's design with testing in mind.

• Plan the testing itself as early as possible.

• Use black and white box tests to exercise the code.

• Perform thorough unit testing before beginning integrated testing.

• Use incremental testing at the integrated level.

• Devise complete functional tests for the product as it matures.

• Devise tests that verify correct error-handling.

• Use regression testing techniques with the DECtrest Manager to
automate and organize the testing process as part of a build/test
cycle.

• Use VAX PCA with the DECtrest Manager to determine the amount
of test coverage on tests; rewrite if necessary.

• After any developmental task (error fix, module written, and so on),
test the code unit as a unit and then as part of the application test
suite before checking the code unit back into the project DEC/CMS
code library.

Performance Testing

• Plan performance requirements and specifications for the applica
tion.

• Plan tests and benchmarks that define the application's accepted
performance.

142 The Testing Process

• Use the DEC/Test Manager to run regression tests that com
pare performance against established benchmarks as part of the
build/test cycle.

• Use VAX PCA to locate sections of code that perform inefficiently;
rewrite the sections.

For more information on testing, see the Guide to Creating VMS
Modular Procedures; see also The Art of Software Testing by Glenford
J. Myers (see Appendix D).

The Testing Process 143

Chapter 8

Qualification

After a fully functional software product is created, it is time to qualify
the product through field tests and to begin steps to release the product
to manufacturing. During the qualification phase, the software is in
use at selected external field test sites. The development team stays
in close contact with these sites, making sure any needed corrections
are reflected in the version of the software and documentation to be
shipped to the general customer base. In later stages of this test
period, source code and documentation are frozen, and final copies of
the distribution media and books are prepared.

8.1 Preparing for Field Test

The development team prepared a field test strategy as part of the
design and implementation phase of product development. This pre
liminary field test plan becomes part of the development plan. Thus,
it is available to help the team begin identifying appropriate field test
sites. Often, the product manager, with help from both the field test
administrator and the engineering project leader, takes care of this
task.

During design and implementation, the development team works out
specific details of the field test process, such as the site configurations
and problem reporting mechanisms. This information forms the basis
of the field test plan.

Qualification 145

The length of an effective field test varies with the product and the
sites. Given the time needed to set up, use, and provide feedback,
three to four months is generally the minimum field test period. When
scheduling a field test, bear in mind that feedback is less likely during
holidays and, for universities, at the end of semesters.

Before field test begins, the development team provides the customer
with all the information needed to test the product. This information
states clearly what the development team expects from the field test
sites.

Many of the administrative tasks associated with preparing for field
test are the responsibility of the field test administrator; for example,
the administrator completes any needed nondisclosure or licensing
agreements with the field test site, and distributes the field test kits.
The kits are assembled by the development team or release engineer.

The team devises a means of communicating with the field test sites
in order to gather feedback and respond to problems. This is often
accomplished formally through an online problem report system (see
Section 8.1.1), and informally through phone calls and site visits.
Before the field test begins, the problem report system is ready to
handle the problem reports from field test sites.

8.1.1 Problem Report System

Every development effort needs an effective means of assigning and
tracking problem reports throughout the life cycle of the product.
Problem reports originate from the following groups and at different
times in the product's life cycle:

• From the development group itself-at all stages of the product's
development, including unreleased versions

• From internal and external users of field test versions

• From internal and external users of released versions

The ideal setup for problem reporting is a single system that handles
all types of problem reports, including reports from field test sites.
An online problem report system provides users with an easy way
to forward problem reports, concerns, or suggestions to the product
developers. Useful features of such a system include the following:

146 Qualification

• Online access by both field test sites and developers

• Ease of editing problem report replies

• Standard format of online problem report

• Statistical tracking capabilities

• Flexible display of problem reports in a data base

• Capability to categorize problem reports with keywords (or some
counterpart) and status; for example, answered, unanswered,
closed, open, and so on

NOTE

Development teams can write their own problem reporting
system using Digital's VAX RALLY or VAX DATATRIEVE
software in combination with VMS RMS data base files.

Before submitting a product to manufacturing, the development team
tries to screen and respond to all problem reports. Typically, one person
on the team screens the reports and passes them along to the engineer
responsible for the feature in question. Often, development teams set
a goal of responding to their problem reports within a short period of
time, perhaps two days.

In addition to responding to problem reports, the development team
and the product manager meet to discuss the status of each field test
site and compare activity to milestones and schedules. The team may
need to revise schedules, depending on the quality of the field test.
Results of the review meetings are made available to all groups that
make up the product team.

8.1.2 Internal Field Test

Before a Digital development team sends test kits to external field test
sites, it typically has begun a formal field test within its own group.
Internal testing helps to pave the way for external testing. One benefit
is that internal tests uncover problems that the team can resolve before
undertaking the external test. It is also easier to distribute the product
and gain feedback.

For those products that will be sold worldwide, the internal field test
includes sites with a comparable worldwide distribution.

Qualification 147

8.1.3 Early Evaluation Field Test

One way that Digital developers get feedback on the product before the
full-scale external field test is to conduct an early evaluation field test
(EEFT). Conducting an EEFT entails testing an application at select
customer sites while the product is being developed. Perhaps only
65 percent of the product's features are ready, yet by having selected
customers field test the application early, the development team gains
valuable information as to whether the product has the right features
and is meeting its requirements.

Because the product is not finished, feedback from an EEFT can result
in significant redevelopment. Thus, an early evaluation is as much
a prototyping effort as it is a developmental engineering step. The
likelihood of redevelopment with a consequent impact on the product's
schedule requires that management support the EEFT's goals and the
development team be prepared for additional work.

Selecting and preparing sites is essential for an EEFT. The sites must
understand that the product they will test is unfinished and that they
can play a formative role in its development. For this reason, and
because of the close interaction between the sites and the development
team, it is best to carefully select a small number of sites.

8.2 Conducting the External Field Test

The development team has the following responsibilities during exter
nal field test:

• Responding to input from field test sites, including problems and
questions

• Informing field test sites of changes to the software

• Participating in reviews of field test sites

• Helping decide whether the field test is meeting its goals, or
whether it needs to be modified or extended

• Communicating regularly with other members of the product team

• Providing new field test upgrade kits as required

148 Qualification

Members of the development team contact field test sites regularly
to provide them with information on changes to the software and to
respond to problems and questions.

8.2.1 Fixing Errors

The development team's response to errors that are discovered during
field test depends on the severity of the error and when it is discovered.
The team fixes minor errors in the code that arise during field test. The
modified software is sent back to test sites as part of a field test update
kit to verify the changes. The team fixes any minor errors before the
code is frozen for production.

The development team must resolve critical errors before submitting
the product to manufacturing. Table 8-1 describes how the errors are
resolved, which in turn depends on when they are discovered.

Table 8-1 : Resolution of Critical Errors
If the error is discovered
after the development team ...

Sends out a field test upgrade
kit to the field (see Section 8.2.2)

Reviews and signs off the pro
duct documentation (assuming
the error affects the documenta
tion)

Submits the product to manu
facturing. This creates the most
serious problem.

The development team must ...

Analyze and solve the problem, make the
change, and test the software. Testing
helps validate the solution and may de
tect regressive effects elsewhere in the
software.

Repeat the final verification period to fix
the documentation. This usually means
delaying submission to manufacturing.

Withdraw the product from manufac
turing and repeat the entire verification
procedure.

Qualification 149

8.2.2 Final Verification: Field Test Upgrade Kits

Before the field test period ends, the development team sends upgrade
kits to the field test sites. An upgrade kit is submitted as the final
version of the software and the documentation, both of which will
eventually be sent to manufacturing.

This portion of the field test makes up the final verification of the
product. The project team sends out the upgrade kit to make sure
there are no undetected problems.

8.3 Closing the Field Test

The field test plan states how long the field test will last and the cri
teria for ending it. Conditions such as the quality of the field test
results or the severity of the software problem can force the develop
ment team to adjust the field test schedule. The decision to extend or
close the field test rests with the development team, which relies on
recommendations from the product team.

8.3.1 Manufacturing Verification

After the field test is completed, the development team meets the
following list of criteria to verify that the product is ready for manufac
turing:

• Testing is complete and all known problems in the code and docu
mentation have been corrected.

• The code is frozen.

• All software masters have been built and submitted to manufactur
ing.

• The final draft of all documentation is available, including installa
tion and installation verification procedures.

The development team may add its own criteria to this list. It also
includes time in the development schedule to verify that the product
meets all the criteria.

150 Qualification

To ensure that a stable product is delivered to manufacturing, all of
Digital's software products also meet the following final checks before
being submitted to manufacturing:

• The product can be installed according to the installation documen
tation.

• All demonstration programs and the distribution kit, including
documentation, are complete and accurate.

• All product documents (manuals, descriptions, and release notes)
are ready for the printer.

• The final verification of the product in its intended market environ
ment is complete.

• The development team has recorded and submitted for correction
all problems discovered during the product's final verification (after
the upgrade kit is sent out).

• The development team has corrected and verified errors that do not
affect the product's documentation.

When all checks are complete, the product is ready to be signed off by
all participants.

8.3.2 Field Test Reports

During the field test, the development team gets a great deal of feed
back from the test sites. This feedback is compiled into a report on
the field test results. The report organizes the data from the field test
sites, including the following types of information:

• Test results
• Problems (classified by priority) encountered by the test sites

• Responses to these problems

• Survey results of user perceptions

• Polling results

• Complications during testing

Typically, the project's field test administrator helps organize and
consolidate this information, for example, by statistically analyzing the
data.

Qualification 151

8.3.3 Product Evaluation Report

The product evaluation report represents the development team's
evaluation as to whether the product is ready to ship to customers.
After analyzing key sections of the field test results to substantiate
its evaluation, the development team makes the product evaluation
report available to the development supervisor and other members of
the product team.

The product evaluation report contains a condensed analysis of all the
testing and product evaluation that has been carried out. This includes
field test data, regression testing, software product description verifi
cation, and a serviceability evaluation report. The product evaluation
report is agreed to by the entire product team, and it includes these
items:

• Clearly stated test results and evaluations compared to each goal,
capability, and external characteristic as stated in the product
specification.

• A statement of the product's status compared to the defined soft
ware manufacturing submission criteria for the product. This
statement shows that the product meets the criteria for submission
to manufacturing (see Section 8.3.1).

• A statement of test and evaluation results compared to the goals
and capabilities defined in the customer services plan, the training
plan, and the software manufacturing plan.

8.3.4 Release Notes

Release notes provide a way to document significant changes to the
product since the last release and/or any last-minute changes that the
team could not include in the standard documentation. The following
items might be included in release notes:

• Code errors fixed before shipping

• Known code errors or restrictions

• Changes from last release

• Documentation changes and omissions

152 Qualification

Release notes do not contain information that is better documented
elsewhere, such as information on new features and installation proce
dure instructions.

Qualification 153

Chapter 9

Maintenance

Various studies have shown that from 60 to 70 percent of the cost of
software is incurred during maintenance. 1 Although this percentage
varies considerably from project to project, it does indicate that main
tenance accounts for a significant portion of engineering resources
throughout the life cycle of a software product.

Therefore, planning how to minimize maintenance costs is an ongoing
concern. This chapter highlights the planning required to address
maintenance concerns in all phases of software development.

Depending on the status of a product, maintenance tasks vary, but
these tasks are typical:

• Eliminating errors in the application

• Enhancing the application in response to customer feedback

• Solving regression problems (for example, the application does not
work on a particular system)

• Testing the application on new processors, both previous versions in
the field and new development versions

• Updating documentation to reflect changes in the application

• Analyzing statistics and metrics collected from customers using the
product

1 Guidance on Software Maintenance. NBS Special Publication 500-106. National Bureau of Standards,
1983.

Maintenance 155

9.1 Planning for Maintenance

The best way to reduce maintenance work is to minimize the avoidable
errors in the application. The farther along a product is in its develop
ment cycle, the higher the cost of fixing errors. Table 9-1 compares the
costs of fixing problems at various times in the development cycle.

Table 9-1 : Relative Costs of Fixing Software Errors
Time When Fixed

During design phase

During coding phase

Just before base-level test

During base-level test

During field test

Cost Multiplier

1

1.5

10

60

100

The maintenance team accomplishes its work more easily if develop
ment is carried out with maintenance in mind. This is particularly
important because often the maintenance team is made up of engineers
who did not participate in the original development work. If the devel
opment team uses the tools and follows the procedures described in the
previous chapters, the development process is easier for everyone. It is
during maintenance, however, that these procedures really show their
worth.

Without an effective set of work procedures, the maintenance team will
find itself with a series of potential problems, for example:

• It may not be able to reproduce code in the field.

• It may not know what tests were run and where the tests are
stored.

• It may not be able to review old versions of code.

• It may not update product specifications to reflect changes in code
or features.

156 Maintenance

9.2 Maintenance Procedures

This section emphasizes software development procedures that can
make software maintenance tasks easier and less costly:

• Project environment

• Project conventions

• Project communication

• Design documentation

• Test plans

• Code conventions

• Build procedures

• Maintenance document

• DEC/CMS libraries

• Problem reports

9.2.1 Project Environment

To set up the project environment, the development team must plan
such tasks as file storage, project directory and library structure, and
tool use.

Many tasks necessary to facilitate maintenance should have been done
during each of the phases already discussed in this guide. Here is a
quick review of some of the tools used to carry out these tasks. See
Chapter 2, Software Development Tools, for more detail.

• The VAX DEC/Code Management System (DEC/CMS) helps man
age and control file storage for both code and documentation. It
also facilitates software configuration management.

• The VAX DEClModule Management System (DECIMMS) can
control, in conjunction with DEC/CMS, the build process for the
application; DECIMMS is particularly useful if the project has not
already developed extensive build procedures for previous versions.

• The VAX DEClTest Manager helps organize and run project tests.

• The VAX Language-Sensitive Editor (LSE) simplifies coding con
ventions, source control, compilations, and editing and debugging
tasks.

Maintenance 157

• The VAX Source Code Analyzer (VAX SCA) provides cross
referencing and static analysis among an application's modules.
It is particularly useful for helping new engineers become familiar
with an application's code.

• The VAX Performance and Coverage Analyzer (VAX PCA) is an aid
for performance debugging.

• The VMS Debugger debugs code.

• VAX SCAN writes filters, extractors, and translators.

• VAX Notes makes many kinds of project communication easier
across the network.

In addition to these tools, the development team needs to establish a
problem-reporting mechanism to handle problem reports over the life
cycle of the product. This mechanism has features to both assign and
track problems reported with the software. Without such a mechanism
in place, the maintenance tasks will be much more difficult.

The tools the team chooses will affect the directory and library struc
ture for the project. The directory structure should fulfill three pur
poses:

1. Provide a comprehensive and adequate file storage hierarchy

2. Provide the necessary storage libraries for specific tools (for exam
ple, DEC/CMS, VAX SCA, and DEC/Test Manager libraries)

3. Have a structure that is readily understandable and accessible to
its users

A Methodology for Software Development Using VMS Tools provides
useful examples of how to set up a project's directories and libraries to
maximize the use of Digital's software development tools.

Once the team has designed its directory structure, team members
typically use logical names to speed access to particular directories
and to provide more generic specifications. A Methodology for Software
Development Using VMS Tools has examples of logical names as well.

158 Maintenance

9.2.2 Project Conventions

When setting up the directory hierarchy, team members agree on
conventions for the project. For example:

• Specification formats

• Design formats

• Naming conventions for files, modules, routines, and tests

• Conventions for DEC/CMS and DEC/Test Manager remarks that
are logged in the respective tool's history file

• Comment formats for module and routine prefaces

• Test headers (similar to module headers) that provide a test's name,
function, and any special requirements for running the tests

Previous chapters of this book describe how to establish such standards,
for example, by using LSE templates to enforce coding conventions (see
Chapter 6, Coding Guidelines for Implementation).

By agreeing on these standards early in the project and adhering to
them throughout, the team avoids confusion and conflict. An added
benefit is that standards provide a consistent framework for new team
members, enabling them to quickly learn about the project. Chapter 4,
Planning and Preliminary Design, Chapter 6, Coding Guidelines for
Implementation, and Chapter 7, The Testing Process, contain specific
information on relevant standards.

Coding Conventions

As explained in Chapter 6, development teams can use LSE to format
code consistently. Code that is formatted consistently is easier to
read, benefiting not only team members, but also engineers who may
maintain or update the application in the future. The use of LSE
and regular code reviews (described in Section 6.5) promote coding
consistency.

Naming Conventions

Adhering to naming conventions also helps both the development and
maintenance teams. Naming conventions for modules, routines, and
variables provide a number of benefits:

Maintenance 159

• Faster identification of code elements

• Easier access to files and directories using wildcard characters

• Faster learning by engineers new to a project

• Faster work with the VMS Debugger

• Easier maintenance of the software

See Section 6.4 and the Guide to Creating VMS Modular Procedures for
detailed information on naming conventions.

Conventions for DEC/CMS and DEClTest Manager Remarks

Another convention that Digital developers follow concerns the infor
mation put in the remarks of tools, notably DEC/CMS and DEClTest
Manager. These remarks should provide useful information, such as a
clear problem description. The engineers can then reference the module
and the routines that were modified.

Furthermore, the problem, its cause, and the number of the associated
report can be duplicated in the source code using the modification
history comments (see Section 6.1.3.1). The modification history com
ments specify which tests were run to check the effects of the code
changes. Engineers can track this information and cross-reference from
the report numbers to the code. This supplementary knowledge helps
engineers to more quickly understand the code.

9.2.3 Project Communication

Without communication, members of the team can easily lose track of
what other team members are doing. A number of problems can result:

• Team members may duplicate effort.

• Team members may miss opportunities to make use of reusable
code.

• The code design may not be truly modular.

• Modules developed by different team members may not work
together.

Several mechanisms can help to reduce these problems.

160 Maintenance

Project Account

To help make information easily accessible to all team members, the
team can set up a project account to receive all project-related MAIL
messages. This account can also store the results of project builds and
other relevant files, and be accessible to the entire team.

Project Conferences

VAX Notes can help a team organize many of its information-handling
tasks. Typical project needs met by VAX Notes include the following:

• A suggestion box as an ongoing "wish list" to plan for the next
release of the product

• A forum to keep up-to-date on issues and answers for customers
and internal users

• A place for public announcements, such as the availability of new
versions of software

Project Meetings

Project meetings need to be held frequently enough to maintain ade
quate communication within the project; once a week is appropriate for
many teams. All members need to stay up-to-date on all the project
work. The information they gain from the project meeting feeds back
into the development work, generating a better quality product.

Often, project meetings serve as review forums to help verify that team
members are following code, design, and specification conventions.
These reviews can also help transfer knowledge. For example, de
signers may not always implement their own designs. Design reviews
can help to ensure that the design is clear and understandable to the
engineer assigned the task of implementing the design. (Section 4.5
contains more information on design reviews; Section 6.5 has more
information on code reviews.)

9.2.4 Design Documentation

The design documentation provides a record of major design decisions,
for example:

Maintenance 161

• Alternatives not taken and why

• Future enhancements, including the range of possibilities and ideas
considered

• Failings or limitations of outside software and hardware, for
example, operating system version requirements and emulator
incompatibilities

The team can use an LSE design template to set up consistent means
of recording this type of information. They can refer to this information
when they make changes to the code.

Another task that helps with maintenance is reviewing (usually during
team meetings) the correlation between the specifications and the
designs. The team checks to see that all developers have designed those
features that meet the application's requirements and specifications.

See Section 4.5 for more information on design reviews.

9.2.5 Test Plans

As they are designing an application, the team also plans their tests.
Although pieces of the software may not be running, the team is likely
to be familiar with the software design and with any problems that
may occur during its implementation. When designing the application,
engineers can create a DEClTest Manager test stored in the test
system. In writing this test, they need to keep in mind the potential
problems uncovered during design. When a piece of running software
becomes available, the team can refer to the test. This approach helps
ensure that design knowledge is preserved.

At the design stage the team considers its white box and black box
testing strategy (see Section 7.2.2 and Section 7.2.1). The project
team must decide how much of each kind of testing will be done and
must determine an integration strategy for testing the design's coded
implementation.

162 Maintenance

9.2.6 Code Conventions

When writing code, engineers need to be concerned with more than
efficient algorithms. Maintaining the code is easier if it is formatted
consistently, commented clearly, and reviewed for its adherence to
project standards.

Using LSE

Projects that use LSE can enforce coding standards effectively for
formatting and use. The consistency provided by LSE greatly aids
maintainers as they attempt to modify code. An added benefit of LSE
is its capacity to provide online language help. LSE templates make
it much easier to fill in language constructs accurately, particularly in
those instances when an engineer is less familiar with the construct.
By expanding the LSE placeholders, an engineer gains additional
language information. In effect, engineers can use LSE as a learning
aid while producing code for their application.

Commenting

As the coding progresses, engineers make many design decisions.
Comments associated with the source code provide one of the best
ways for other team members to understand these design decisions
and to understand the limitations of the code. Engineers can document
potential problem areas at this same level in the code. They can use
LSE templates to ensure that comments are entered in a consistent
format.

Reviews

Regular code reviews enable the team to check for a number of char
acteristics important for maintenance. The team reviews for code
consistency and adherence to project standards. Reviews ensure that
the code reflects the current requirements, specifications, and designs.
Throughout the development cycle, team members must be able to
trace requirements to implemented code. This process is critical both
to the quality of the application and to changing or enhancing the
application.

Maintenance 163

9.2.7 Build Procedures

The team's build procedures accomplish a number of tasks to optimize
maintenance:

• Building base levels accurately

• Running and reviewing tests with major builds

• Developing base levels so that ongoing work continues while earlier
versions or variants are accessible

• Recording or documenting build procedures so that engineers can
re-create important base levels

Digital's DEClModule Management System (DECIMMS) provides a
number of advantages that make it a popular choice among Digital
engineers for building applications, particularly for new projects.
DECIMMS is partially integrated with DEC/CMS, so it can pull mod
ules directly from DEC/CMS during builds. Furthermore, DECIMMS
understands DEC/CMS classes. As a result, a development team can
save previous base levels in DEC/CMS as multiple unique classes.
These DEC/CMS class names, when properly designated to DECIMMS,
cause it to rebuild a previous version using only the files and elements
related to that version. Rebuilds of previous versions are particularly
useful during maintenance when multiple versions may be in the hands
of customers while the development team is working on new variant
development.

A useful feature of DECIMMS is the description file, which contains the
relationships among the modules in an application. The description file
serves as a useful record of the application's structure to maintainers.
Engineers can check any changes or additions to modules against the
description file. This permanent record removes much of the confusion
from build procedures during maintenance.

Engineers create and run tests in parallel with their coding. Coding
is not considered finished until tests with verified coverage exist. The
tests are run and reviewed with each build to catch problems as soon
as possible to reduce costs. Chapter 7, The Testing Process, contains
more information on testing.

164 Maintenance

9.2.8 Maintenance Document

The development team prepares a maintenance document, which pro
vides the maintenance team with key information about the software
system so that changes can be made with a minimum of difficulty. It
contains information such as the following:

• The location of all the relevant documents for the project, for
example, design documents in a DEC/CMS library

• Header comments for the source code

• Location of the code in the executable file

• Tools used during development, including version numbers

Engineers can create a maintenance document using a series of com
mands that retrieve and format all the related information from
project storage disks. They can then edit the resulting document.
Alternatively, they can write the information in the form of DIGITAL
Standard Runoff (DSR) or VAX DOCUMENT files, which can be pro
cessed to generate a formatted document.

To be useful, maintenance documents must accurately reflect the cur
rent state of the project. If developers fail to update project documents
over the development life cycle of the product, maintenance documents
have limited value.

The maintenance document can also be useful if a product is being
developed for international markets. In addition to basic project in
formation, maintainers might include information on how the design
of the product affects efforts to localize the product for a particular
country. This section of the document might describe which parts of
the application need to be changed to support languages other than
English. It might also detail how the modular design of the application
facilitates the changes.

9.2.9 DeC/CMS Libraries

Digital's DEC/Code Management System (DEC/CMS) software contains
elements and classes that can help organize and relate specification
and design stages. In addition, DEC/CMS classes and groups can save
time during maintenance.

Maintenance 165

For example, Figure 9-1 shows a DEC/CMS code library with two
groups, each containing two elements. The groups, designated in
this example as the FORTRAN group and the Pascal group, classify
functions with a common purpose. Engineers, either during implemen
tation or maintenance, can reserve the FORTRAN group to access all
the FORTRAN elements rather than specifying each element individ
ually. This type of organization saves time, particularly in fixing an
error during maintenance.

Figure 9-1: Use of DEC/CMS Groups for Maintenance

9.2.10 Problem Reports

FORTRAN Group

A.FOR L.FOR

o I
o

o

Pascal Group

C.PAS M.PAS
0

! 0

0

0

When a problem report comes in, a maintainer needs to know how
the project area is laid out. That is why, during the early phases of
development, the team considers the future needs for maintenance
when designing the project storage areas and the application. The
storage areas should provide easy access to specifications, designs, and
source code.

166 Maintenance

Once the system is fully accessible, the following series of steps can be
taken to isolate and correct problems:

1. Build the system, perhaps by using DECIMMS, to pull the modules
from DEC/CMS using the class name.

2. Locate the user's problem using the VMS Debugger, VAX SCA, and
LSE.

3. Reserve a modifiable source module directly from DEC/CMS using
LSE.

4. Edit the source code using LSE and following the existing format
ting conventions in the code.

5. Modify the associated requirements, specifications, design, and
user documentation as necessary; future maintainers thus have
complete information on any change.

6. Build the local system using modified files linked against the global
system.

7. Add any tests to the test system that check the modified code.

8. Verify the code path coverage on the new tests.

9. Replace the reserved modules in the DEC/CMS code library.

10. Create a new DEC/CMS class containing the code that eliminates
the problem; the modified code should be on a variant line of
descent in the DEC/CMS library.

11. Merge variant code into the next maintenance release of the soft
ware.

12. Answer the original problem report.

The following sections discuss how to use the development tools and
procedures to perform these tasks.

Making the Changes

Figure 9-2 shows how DEC/CMS helps engineers continue development
work on Version 2.0 while eliminating problems from Version 1.0, which
in this case is stored as a DEC/CMS class. The problems found in
Version 1.0 are corrected on a variant line of descent, which will be
merged back into a subsequent release.

Maintenance 167

Figure 9-2: Variant Development

Version 2.0
Development

MOD1.C

Corrections in
Version 1.0 Variant

MOC2.C

Having multiple DEC/CMS libraries can make it easier to trace the
code back to its designs, specifications, and requirements. For instance,
Figure 9-3 shows multiple DEC/CMS libraries for the requirements
documents, specifications, design documents, tests, and source code. By
using the same class name for all files and elements associated with a
specific version, maintainers can quickly pull out all files related to that
version. Thus, the information is readily available and maintainers
can easily modify the various documents if a coding change is made.
Finally, DEC/CMS records all the changes in the form of a history
record.

Testing the Changes

After locating and correcting the error, the maintenance engineers must
relink to build the image. The image must then be tested to ensure
that the code fix has not caused some other part of the application to
stop functioning properly. The VAX DECtrest Manager is useful for
running the appropriate regression tests. (See Section 7.3.2 for more
information on regression testing.)

168 Maintenance

Figure 9-3: Multiple DEC/CMS Libraries

Requirements Specifications Designs Code Tests

Class 1 Class 1 Class 1 Class 1 Class 1

This is the stage where planning the test system saves time. The test
set must be the one that corresponds to the product in the field, in this
case, the version that is the source of the error report. This test set
must be available to the maintainers, even though new development
work may be in progress.

To speed up the testing process, engineers can use the group feature
of DEClTest Manager that allows them to run a subset of tests. This
subset relates to the error fixed in the source code. For example,
engineers may run the data base subset of tests in a local work area. If
no problems occur for the smaller subset, they may run the full system
test for this version of the product. If the error is a small one, running
the subset of tests may be sufficient.

Another feature of DEClTest Manager that helps during maintenance
is the use of benchmark and template directories. Librarywide defaults
can be specified for both the benchmark directory and the template
directory. The default directories represent the set of tests and corre
sponding benchmarks that the development team accesses most often,
for example, a new version of the application under development.

These same default directories can be overridden during a DECtrest
Manager test collection. Overriding the defaults is useful when one
maintenance version is in the field and a different maintenance version
is undergoing development. In a typical maintenance scenario, a
problem report for Version 1.1 comes in. In response to the report,

Maintenance 169

maintainers initiate a DECtrest Manager test collection· by specifying
a directory with Version 1.1 tests and their corresponding benchmarks.
The Version 1.1 tests are run and compared to the valid Version 1.1
benchmarks.

The same tests could be running for Version 1.2; that is, Version 1.2
still uses the same test scripts to test the application. However, in the
case of a reported error in Version 1.1, the maintainer initiates the
DECtrest Manager test collection by specifying a different directory
for the benchmarks: Version 1.1 benchmarks. Although there would
be only one template set and one test set for Versions 1.1 and 1.2,
DECtrest Manager would use different directories for the benchmarks.

The integration of DEC/CMS with DEClTest Manager simplifies the
process of running tests for previous versions. If tests and bench
marks for maintenance Version 1.1 are stored in a DEC/CMS class,
maintainers can run them on the debugged Version 1.1. The tests and
benchmarks for Version 1.2 or Version 2.0 have separate DEC/CMS
classes and thus are not affected.

If the tests are new or produce different results because of the change
to the code, engineers must update the benchmarks. The new test re
sult files become the new benchmarks and are stored in the DEC/CMS
library for test benchmarks. DECtrest Manager does this automatically
when updated. Furthermore, both DEC/CMS and DECtrest Manager
provide a history of the changes.

Engineers check any new tests for code path coverage by using
DECtrest Manager and VAX PCA together. See Section 7.2.1 for
more information.

Performance Debugging

If the problem reported constitutes a performance weakness, the team
can consider using VAX PCA to find routines and lines of code that
consume the most time. It can then attempt to code the problem sec
tions again. Refer to Section 7.4 for more information on performance
debugging.

170 Maintenance

9.3 Software Development Productivity

The driving force behind efforts to improve productivity is the demand
of the market for reliable software products. At the same time, soft
ware applications have become more complex, which makes the task of
delivering reliable applications more difficult. Productivity metrics can
help a team achieve greater development productivity.

9.3.1 Productivity Metrics

During a project's life cycle, the development team is likely to be
interested in answers to the following types of questions:

• Has the product's defect rate gone down?

• What tools are being used and to what effect?

• What are the reasons for rework?

• Are problem reports under control?

• Is the schedule reasonable?

Collecting and evaluating software metrics can provide the answers.

The productivity of software development can be assessed in terms of
the people, the process, and the resulting software system.

• Engineering productivity entails such issues as how much work
developers do in a unit of time, their morale, the effect of training,
and trade-offs between creativity and discipline.

• To improvf> the productivity of the process, teams can investigate
what they can automate, the costs of automation, and how to
minimize obstacles and delays.

• The software system itself can be examined for its quality, reliabil
ity, error rate, complexity, and ease of maintenance.

To make improvements in productivity visible, teams must be able to
measure it. A software metric can be defined as a quantitative measure
that is used to characterize an attribute or quality of a software system
or the software development process. The parts of the system (require
ments, specifications, code, documentation, tests, and training) can be
characterized using a range of attributes:

Maintenance 171

• Usability

• Maintainability

• Extendibility

• Size

• Defect level

• Performance

• Completeness

The development process can also be characterized by several at
tributes:

• Cost of development in calendar time, effort, and money

• Predictability of the schedule

• Rate of defect discovery and repair

An appropriate choice of metric attributes depends on such factors as
the goals of the metric-collecting process, the questions to be answered,
and the computing environment.

9.3.2 Measurement Techniques

Three productivity attributes-size, defects, and cost-can be measured
readily and provide a useful range of information about software
development efforts. The particular situation and work environment
can provide a basis for determining the relative importance of these
productivity attributes.

Size

Lines of code (LOC) is a common metric used to measure the size of a
product. LOC may include source code plus comment lines. To count
LOC, teams must create data collecting procedures. Digital's VAX
SCAN, VAX DATATRIEVE, and DCL products can be used for this
purpose.

Another measure of product size is documentation size, including
number of pages, lines of help text, and lines of error messages.

172 Maintenance

Defects

The quality of a product can be determined by measuring its de
fects, typically from first shipment until the version is discontinued.
Operationally, defects can be treated as a count of code errors, design
errors, or documentation errors, or any combination of the three.

Cost

The cost of the product's development can be counted in person-months.
Cost data can be obtained from project accounting records.

Maintenance 173

Appendix A

Coding Conventions for VAX C

By following coding standards, engineers produce software that is more
reliable and easier to maintain and transport. This appendix provides
an example of the types of coding guidelines suggested for coding in the
VAX C programming language. This appendix represents one suggested
C language programming style. Other sources may suggest different C
language programming styles.

A.1 Support Tools

Much of Digital's software is intended to run on the VMS operating
system, the ULTRIX operating system, or both. Because the VAX C
compiler is available on both of these operating systems, its capabil
ities and restrictions form the basis for the programming guidelines
described in this appendix.

Digital also produces software intended to run on other operating sys
tems, for example, MS-DOS or OS/2. A single compiler is unlikely to be
available for all these operating systems. Section A.12 discusses porta
bility issues for programs that must run on computer architectures
other than VAX architecture.

The VAX C compiler produces high-quality informational, warning, and
error messages. Warning and informational messages usually indicate
some questionable use of the C language. For this reason, completed C
modules should never produce any diagnostic message when compiled.

Coding Conventions for VAX C 175

The VAX C compiler has a /STANDARD=PORTABLE qualifier that
causes the compiler to flag nonportable features of the C language.
The guidelines in this appendix explicitly prohibit many of these
nonportable features. Do not use the qualifier in the initial stages of
program development to help identify cases in which a program may
not conform to these guidelines. Note that this qualifier often produces
informational or warning diagnostics during the compilation of included
system header files. For this reason, do not use it when you compile
completed C modules.

The VAX Source Code Analyzer has a CHECK CALLS capability that
can help you find errors in the number and type of function arguments
that the VAX C compiler cannot identify.

The use of LSE templates that support these C programming guidelines
can make it much easier for all the engineers on a development team
to conform to the guidelines presented in the following sections.

A.2 Module Organization

Divide C programs cleanly into modules of related functions, data,
and types. With a small amount of discipline by the programmer, C
supports a modular style of programming that is very similar to that of
Ada or Modula-2. In this style of programming, a module consists of
two parts:

• An external specification that describes the facilities made available
by the module

• An implementation part that contains the actual functions and data
that match the external specification

In C, the external specification corresponds to a.h file (header file) and
the implementation part corresponds to a .c file (C source file). The.h
file has the following contents:

• extern declarations for all the global variables declared in the .c file

• Function prototypes declared with extern for all the global functions
declared in the .c file

• Declarations of any types and macros needed to use the extern
declarations and the function prototypes declared with extern

176 Coding Conventions for VAX C

The standard 110 library for C can serve as an example of a well
designed module that has a detailed external interface. Imagine that
there is a stdio module that consists of two parts: a stdio.h that
specifies the external interface of the module and (behind the scenes) a
stdio.c that implements that specification.

The stdio module exhibits several desirable properties of modules:

• It has a primary function (I/O, in this case).

• It is reusable by many different programs (a useful property that
unfortunately cannot be achieved by many modules).

• It specifies its external interface effectively.

The external specification of stdio, stdio.h, contains extern declarations
for the various I/O functions ({open, puts, (print{, and so on). It contains
declarations of the global data from the standard I/O library (stdin,
stdout, and so on). It even contains types (FILE) and constants (EOF)
made available by stdio.

As in the stdio example, the programming standard described in
this appendix requires that each .c file has a corresponding .h file
to describe the external interface to that .c file. Any other module
that uses the facilities made available by a .c file should include the
associated .h file. No.c file should ever contain an extern declaration
or redeclare a type from another .c file; these should be "imported" by
using a #include for the .h file. In addition, every .c file should use
a #include for its associated .h file to allow the compiler to check the
external specification of the module against its actual implementation.

If you use this coding standard, the compiler can do a fairly complete
job of intermodule type checking at compile time. Every module that
uses the facilities of another module does so by including the specifica
tion. Thus, as long as that specification is correct, no problems should
be caused by objects declared with the wrong type or functions called
with the wrong type or number of arguments. Finally, because the
external specification is checked against the actual implementation, the
specification should be correct.

This checking mechanism is not perfect. It could fail when macros
already defined in the file alter the contents of the included .h file.
(This type of problem is very rare.)

Coding Conventions for VAX C 177

A.3 Organization of C Source Files

A source file consists of several sections separated by blank lines or
a form feed. If a form feed separates sections, it should be the only
character on the line.

In general, source files should not exceed 1000 lines because larger
files are difficult to edit. One thousand lines represents about 12 to 15
pages of text. No source line should be longer than SO characters.

All C source files that are not header files should be given the .c file
type. The following organization applies to source files:

• Use a module header comment to describe the contents of the file
in a few sentences. This comment is followed by a copyright notice.
The prologue describes the purpose of the text in the file and makes
clear whether the file contains functions, data definitions, tables, or
support code.

• Specify header files with the #include preprocessor directive. See
Section AA for more information about header files.

Do not specify directories in an #include directive. Instead, use the
proper compiler qualifier to specify the directories for include files
at compile time (/INCLUDE on VMS; -Ion ULTRIX).

• Specify the #define, typedef, and structure definitions that apply
to the file as a whole. See Section A.7 and Section A.S for more
information about these definitions.

• Specify global data definitions. The use of global data is strongly
discouraged. Using function parameters properly makes global data
unnecessary. Where global data is unavoidable, use the following
order for definitions:

1. Any global variables defined in the file

2. File global (static) variables

• Specify prototypes for all static functions in the file. This list serves
as a table of contents for the module and satisfies any requirements
for forward declarations of static functions. The order of this list
corresponds to the order in which the functions are defined in the
file.

178 Coding Conventions f~r VAX C

• Place the function definitions last. If the file contains a relatively
large number of functions, put them in alphabetical order. If not,
higher-level functions should precede lower-level functions; group
related functions together. If the file contains the main() function,
place it first. Note, however, that if the compiler supports inlining
of functions, the definition of any function to be inlined may be
required to precede the definitions of functions that invoke it.
Separate all function definitions from each other with a form feed.

A.4 Organization of Header Files

Header files are included in other source files during compilation.
Some, such as stdio.h, are defined system-wide and must be included
by any C programs that use the standard I/O library. Others are used
within a single program or application.

Like .c files, header files consist of several sections separated by blank
lines or a form feed. If you use a form feed to separate sections, it
should be the only character on the line. All header files should have
the .h file type.

Header files begin with a module header comment that gives the file
name followed by a few sentences that tell what is in the file. The
copyright notice comes next. This is followed by the prologue, which
describes the purpose of the text in the file.

When you include header files, first include all the system header files
using the #include <file.h> form of the directive. Following the system
includes, put in all the application header files using the #include
"file.h" syntax of the directive.

Avoid nested header files because they may inadvertently be included
more than once. This can cause compilation errors because some
language constructs, such as typedef, must not appear more than
once in a single compilation unit. If you must nest header files, you
may prevent multiple compilations by using the #ifndef preprocessor
directive.

Coding Conventions for VAX C 179

For example:

#ifndef QUEUE LOADED
#define QUEUE:LOADED 1

typedef struct
{

#endif

You should not include nested header files with the #include ''foo.h''
format. The search semantics for this form differ between UNIX and
VMS systems. On VMS systems, the VAX C compiler looks first for
foo.h in the same directory as the top-level C source file. On the other
hand, most UNIX compilers (including VAX CIULTRIX) look first for
foo.h in the directory in which the immediately including file was
found.

Header files should contain any #define constants or macros, any
typedefs, or any extern declarations that are shared between two or
more modules of an application. Header files should not define (that is,
allocate) variables or contain code. If they do, it usually indicates that
the code was poorly partitioned between files.

A.S Comments

There are four general types of comments:

• The module header comment contains your company's standard
software copyright notice, the standard module template, and the
module level declarations.

• All routines should have a standard descriptive comment block.

• Block comments are narratives describing the purpose of a portion
of the program text. (See Section 6.3.4 for formatting examples.)

• Line comments appear on the same line as the code they describe.
(See Section 6.3.4 for formatting examples.)

Do not comment out C code for any purpose. If you need to comment
out temporary or debugging code, surround the code with the #if 0 and
#endif preprocessor directives on a line by themselves and aligned in
column one.

180 Coding Conventions for VAX C

A.6 Naming Conventions

Descriptive names are an important aid to reading and understanding
code. Names can describe the semantics of data or functions and may
contain tips as to the type of data and where data or functions are
defined. The guidelines in this appendix will help you to name things
so that other engineers will find it easier to understand the program.

A.6.1 General Considerations

All names should be long enough to be descriptive. Use underscores (_)
as boundaries between words or abbreviations in names, for example,
log_error _message().

Never require engineers to notice the slight differences between 1 (a
digit), I (lowercase letter), and I (uppercase letter). Another example
of a confusing series to avoid is 0, Q, and O. Similarly, avoid the "long
constant" identifier. The 11 is a long integer if the second character is
the letter L; instead, use lL.

The C programming language is case-sensitive. All keywords in the
language are lowercase. User-defined symbols may be in any case, but
case is significant when determining if symbols are equivalent. Case
can be used to distinguish different types of names, but you must be
careful to avoid ambiguity and errors.

To make them easy to identify, use uppercase for constants, macros, and
most type definitions (objects named using the #define or typedef con
structs). For the same reason, use lowercase for local variables, static
function names, function parameters, and structure/union members.

The names of external variables and functions may be outside your
control. The case of these names will have to conform to their external
definitions. Section A.6.3 has a set of guidelines for naming global
variables and functions.

Coding Conventions for VAX C 181

A.6.2 Local Names

Variable names must have the same use and meaning throughout a
program. Never redefine names in inner blocks or redeclare global
names within a function.

Local variables usually have their declaration and use close by.
Nevertheless, always provide comments describing use on local variable
declarations. It is acceptable to use shorter names for local variables.
Standard meaningful names for highly local (temporary) variables
include the following:

i, j, k
c, ch
p, cp, bp

A.6.3 Global Names

indexes
characters
pointers

Follow the rules in this section whenever global names are being
made available outside the C application. An example would be a C
application that is only a library of general-purpose routines made
available to other programs. Another example is a large subsystem
(such as a compiler's code generator) that has interfaces to other large
subsystems. The rules help when interfacing C code to code written
in assembler or Bliss. Those languages lack typing, so engineers
must keep in mind the attributes that the following naming scheme
describes:

• Global names should have a prefix (PFX) that indicates the facility
or application that defines them. For example, an application that
has a formally assigned facility code could use it as the prefix.
Other applications can choose a suitable abbreviation.

• Global routines that are directly callable by user programs should
have the form PFX_name. All other global routines should have the
form PFX_name. Because nonglobal routines lack the PFX_ prefix,
they are readily recognizable.

• Global variable and literal names should have the form PFX_t_
name, where t is the data type according to Table 6-4 in Chapter 6.

182 Coding Conventions for VAX C

• Module names should have the form PFX_name. Each source file
contains one C module. If the name of the module is PFX_name,
the name of the source file will be PFX_name.c.

• All macros of general utility should be defined in a single file, PFX_
macro.h, and their names should have the form _PFX_NAME.

A portability issue exists in that the dollar sign ($) is not an ANSI
C standard identifier character. However, it is a popular extension
supported by a large number of C compilers. If the target of your
program is not VMS or ULTRIX, you may want to verify that your
compiler supports dollar signs in identifiers.

A.6.4 Reserved Names

Common coding practice and the proposed ANSI C standard have
reserved many identifiers. In some cases, identifiers are reserved
because they are keywords in the various dialects of C. In other cases,
identifiers are reserved because they are used for a specific purpose
that the engineer is not permitted to interfere with. In still other cases,
identifiers are reserved to allow future expansion of the C language or
its libraries. Consequently, avoid reserved identifiers when choosing
names for the identifiers in your program.

The keywords of the C language are reserved. In general, the compiler
flags accidental uses of a keyword as a user identifier. However, new
keywords have been created by extensions to C, the language C++, and
by the draft ANSI C standard. (C++ is a new language based on C that
has greatly influenced the draft ANSI C standard. Future versions
of the C standard may borrow even more from C++.) Because not all
of these new keywords are known to all compilers, a program that
compiles without error does not ensure that future keywords are not
being misused.

The following list contains identifiers considered reserved because
they are used in ANSI C, because they are traditional VAX C or pcc 1

extensions, or because they are used in C++.

1 Portable C Compiler shipped with UNIX systems

Coding Conventions for VAX C 183

_align fortran noalias this

asm friend noshare variant_struct

class globaldef operator varianCunion

const globalref overload virtual

delete globalvalue public void

entry inline readonly volatile

enum new signed

All external identifiers are reserved that match the external names
used in the C library. The reason for this is that the C library is
allowed to call itself to do its work. The interdependence of the external
names in the library can be important; for example, printf may call
calloc. Thus, a program that defines an external name duplicating one
in the library may cause the entire library to stop working. The draft
ANSI C standard labels such programs "undefined"; VAX C labels them
"unsupported."

The draft ANSI C standard also reserves all external identifiers that
begin with any of the following prefixes, where (n) represents a letter:

• Underscore (_)

• is(n)

• torn)

• str(n)

• mem(n)

• wcs(n)

The external names in math.h with "f' or "1" suffixes are also reserved.
Because C allows external names to be converted to one case, all
lowercase, uppercase, and mixed case spellings of reserved external
names are also reserved external names.

Although the draft ANSI C standard allows a reserved external identi
fier to be used internally by a file, it is a potentially confusing to do so.
The draft ANSI C standard also reserves all identifiers that begin with
an underscore followed by an uppercase letter or another underscore.
Identifiers of this form are reserved not only from external use but from
use internal to a file.

184 Coding Conventions for VAX C

A.7 Definitions

In general, constants should never be coded directly; assign a mean
ingful name to them and assign their permanent value using a #define
directive. This makes it much easier to administer large and evolving
programs because you can change the constant value uniformly by
changing the #define directive and recompiling.

Specify all numeric constants by #define directives. Exceptions to this
rule are the values 0, 1, and -1 when used as relative array indices (if
p is a pointer to an array element, p[1] is the next element, and p[-l] is
the previous element).

Use compile-time computation to combine numeric constants into other
constants. Be sure to put all such expressions in parentheses because
the macro substitution may be requested in the middle of another
expression. For example:

#define ARRAY A SIZE 123
#define ARRAY-B-SIZE 456
#define BOTH_SIZE (ARRAY_A_SIZE + ARRAY_B_SIZE)

If it is necessary to change ARRAY_A_SIZE, the compiler will change
BOTH_SIZE without further intervention.

Often, the enumeration data type provides an improved way to manage
constant definitions because the names of enumerated constants are
available to the debugger. Such enumeration constants are integer
constants in VAX C without the /STANDARD=PORTABLE qualifier.
(They are also constants in the draft ANSI C standard.) However, if
you do use the /STANDARD=PORTABLE qualifier, VAX C will warn
about all operations on enumerated types beyond assignment and
comparison.

The following list contains names whose meanings are standardized in
C programs.

TRUE

FALSE

NULL

EOF

Boolean true

Boolean false

For comparison or assignment of pointers (defined in stdio.h)

End-of-file (defined in stdio.h)

Coding Conventions for VAX C 185

You should use the following definitions freely and consistently:

#define TRUE 1

#define FALSE 0

The names TRUE and FALSE are used to return Boolean values from
functions. Such return values may be used in Boolean expressions to
control program flow. For example:

On some systems, stdio.h contains definitions for TRUE and FALSE. In
that case, do not redefine them.

Even though C logical comparisons (for example, = =, 1=, >=) generate
the values 0 and 1, do not use these values numerically or in a non
Boolean expression. You may assign the result of a relational to a flag
(for example, flag = pointer 1= NULL;).

The proper way to test for the end of a string is by comparing the
current character to a zero character constant ('\ 0'). Do not compare
a character to the integer constant, 0, or the pointer constant, NULL.
Conceptually, they are the wrong type.

NULL is defined by stdio.h and should not be explicitly redefined in a
program.

A common problem in porting programs between operating systems
is dereferencing a null (zero) pointer. On some systems, a value of 0
is stored at location 0 so programs do run and may give the correct
answers. However, when these programs are ported to VMS, they fail.
Therefore, programs should always test a pointer value. against NULL
if its value might be suspect.

A.a Declarations

Always state types explicitly. Never leave function return values or
parameters to be defaulted implicitly (that is, int).

Use the const type modifier to signal data that should not change
during execution. The compiler will flag changes to such data. This
data will be allocated in nonwritable, potentially shareable sections of
memory.

186 Coding Conventions for VAX C

Declare all local data using the static or auto storage classes; auto is
implicit for variables declared within the scope of a function. However,
variables declared outside the scope of a function are implicitly declared
extern.

Explicitly declare functions that are for internal use of a specific module
with the static storage class. (Function definitions that lack an explicit
storage class are implicitly declared extern.)

The use of static or extern data declarations may make code non
reentrant. This is especially important for code that may need to
run at AST level under VMS or as a signal handler under ULTRIX.
Avoid using the static or extern storage classes if their use will produce
non-reentrant code.

Whenever a type is declared that includes function in its type descrip
tion, declare types of the function arguments. (To do this, you must use
the draft ANSI C function prototype syntax. This syntax is supported
by most compilers.) This rule applies not only when declaring func
tions, but also to pointers to functions, arrays of pointers to functions,
and so on.

If a declaration is complex, use typedef declarations to build it out
of separate parts. The next example shows the type of cryptically
constructed declaration to avoid.

int (*(apfi[15]» (float); /* Array of pointers to functions returning
ints */

The next example shows how to build the definition piece by piece,
which creates a much clearer declaration:

typedef int INT FUNC(float);
typedef INT_FUNC *PTR_TO_INTFUNC;

PTR_TO_INTFUNC apf[15];

/* Function returning int */
/* Pointer to int func */

/* Array of function ptrs */

Avoid using a comma-separated list in a single declaration to declare
more than one variable of the same type. A comma-separated list
makes it hard to read all the variables, as shown in the following
example:

int index, counter, sub_total, total;

Coding Conventions for VAX C 187

Instead, break the list across multiple lines and align it appropriately.
For example:

int index,
counter,
sub_total,
total;

A.8.1 Structure Declarations

Structures enhance the logical organization of code, offer consistent ad
dressing, and can significantly increase the efficiency and performance
of C programs.

In general, if the same index addresses two or more data in a program,
the data should be defined by a common structure. This design allows
the program to evolve easily in the future. For instance, it becomes
relatively easy to add another field to the structure or change the
allocation mechanism from static to dynamic. This lets the program
evolve (by adding another datum to the structure) or modify storage
allocation (from compiled to dynamic).

If a program processes symbols that each have attributes such as name,
type, flags, and associated value, do not define separate vectors. For
example:

char *name [NSYMB];
int type[NSYMB];
int flags[NSYMB];
int value[NSYMB];

Instead, define an array of structures:

typedef struct {

} SYMBOL;

char *name;
int type;
int flags;
int value;

SYMBOL symbol_table[NSYMB];

In general, use typedef to declare structs and unions as types. Avoid
declaring a tag for a struct or union unless the struct or union is
self referential, or if two or more structs or unions are all mutually
referential.

188 Coding Conventions for VAX C

typedef struct LISP_LIST_TAG {
struct LISP LIST TAG *car;
struct LISP=LIST=TAG *cdr;

} LISP_LIST;

All other references to this structure use the typedef name:

LISP_LIST *first; /* Pointer to a Lisp list */

A common C coding practice is to use the same name for the typedef
and the struct or union tag. Because this practice conflicts with the
C++ language, the coding standard described here does not allow it. In
those rare cases when you need to define a tag, choose a different name
from the typedef name of the struct or union.

A.8.2 Function Declarations

All function definitions should have a corresponding function prototype
declaration. All calls to functions are to be made in the presence
of a function prototype for the function being called. Most errors
in argument passing can be detected by the compiler if it has the
additional information provided by this type of declaration.

The proper way to obtain a function prototype for an external function
that is being called is to include the appropriate header file. Function
prototypes for all static functions in a file should be declared as part of
the standard format for .c files described in Section A.3.

Follow the modularity rules given in Section A.2.

A.8.3 Type Compatibility

Make sure that data types are compatible throughout a program. Most
cases in which data types conflict are actually programming errors.
Often, you can use the type-checking capability of the VAX C compiler
and the VAX Source Code Analyzer to find data type conflicts and the
corresponding program logic errors.

To make it easier to maintain type compatibility, use typedef to declare
all nonbase data types, explicit type casting where type conversion is
required, and the union data type to combine incompatible data types.

Coding Conventions for VAX C 189

A.8.4 Pointers

Pointers should be declared and used as "pointer to an object of type
X." For example, do not use a variable that is declared as "pointer to
int" as a pointer to a char.

If a pointer can point at one of a finite set of object types, it may be
declared using a union declaration. Otherwise, use an explicit type cast
to convert a pointer of one type to a pointer of another compatible type.

Integers and pointers are not compatible data types. Unfortunately, for
historical reasons most C compilers will provide an implicit type cast
between these two data types. However, do not consider them to be
compatible types.

The draft ANSI C standard introduces a new pointer type, the generic
pointer (void *). Any pointer may be converted to and from a void *
without losing any data. This is particularly useful in assignments,
function prototypes, comparisons, and conditional expressions. A
void * pointer may not be dereferenced unless it is cast to another
pointer type.

VAX C implements void * pointers. For pre-ANSI compilers that do
not implement such pointers, use char * instead.

A.9 Functions

This section describes important characteristics of functions, including
definition, parameters, return values, and exception handling.

A.9.1 Definition

In general, a function is a routine that processes one or more inputs
and generates one or more outputs, where each of the inputs and
outputs can be described concisely. Keep functions reasonably short.
This makes it easy for a maintenance engineer to read and understand
all of the function at one glance. Indications that a function might be
too long include a length greater than 100 lines (two pages), heavy
use of localized variables (whose active scope is less than the entire

190 Coding Conventions for VAX C

function), or conditional or loop statements nested more than four
levels.

Even when processing is linear (do first part, do second part), it helps
the maintainability of the code if the function is broken into separate
pieces. For example:

main(int argc, char *argv[])
{

setup (argc, argv);
process () ;
finish () ;

Parameters

A function should be designed with a "natural," easy-to-remember
calling sequence. Avoid functions with more than five arguments or a
variable number. Avoid functions with op-code arguments, where one
argument determines the number, type, and function of the others.

Describe each formal parameter in the function header comment. Use
the description to indicate the type and use of the parameter, including
whether the parameter (if a pointer) is used to read or modify memory.

In C, the arguments to functions are passed by value. For efficiency,
avoid passing structures as parameters to functions. (On a stack
machine, this will require that the contents of the structure be pushed
onto the stack when you invoke the function.) Instead, functions should
be declared as taking pointers to structures as parameters.

Define functions using the function prototype syntax. This approach
allows you to turn the definition into a declaration by extracting the
definitions with a text editor and appending a semicolon to the end.

Coding Conventions for VAX C 191

For example:

static char *alloc free memory(int char count);
static char *copy_strinq(char *source, char *target);
static char *save string(char *string);
static int strinq_length(char *eos_terminated_string);

static char *save._string (char *string)
/*

{

*++

*
*
*
*
*
*

Description:
Make a copy of a string

Keywords:
string, copy, memory allocation

* Parameters:
* char *string -- (In) Pointer to the string to copy

*
*
*
*
*
*
*
*
*
*-
*/

Side effects:
Enough memory for the copy is allocated from free memory

Exceptions:
None

Result:
Character pointer to the copy of the string or NULL

char *cp;

cp = alloc_free_memory(string_length(string) + sizeof(char»;

if (cp != NULL)
copy_string (string, cp);

return cp;

Return Values

All functions should either return a value or be explicitly declared as
a void function. A void function corresponds to a procedure in other
languages. Void functions are defined by the draft ANSI C standard
and may not be available in compilers that do not conform to ANSI C;
void functions are available in VAX C.

If a function computes a single value, it might be passed back to the
caller as the return value. However, it is often better to return a
status code that indicates the success or failure of the function. In
that case, any other values may be returned to the caller through

192 Coding Conventions for VAX C

pointers provided as function arguments. Avoid functions that return
structures.

Only in rare cases should a routine change the state of data other
than that passed into the function as arguments or directly referenced
through arguments. Any potential side effects on data not passed by
an argument are to be well documented in the function header.

Because subprocesses may call programs on UNIX and VMS, all
programs should exit by calling exit(). On UNIX, use exit(O) for success
and exit(l) for failure. On VMS, the appropriate status code should be
passed to exit().

A.9.2 Exception Handling

Simple functions that do not call other functions and have well-defined
exception conditions can best indicate exceptions to a caller by re
turning a status code as the return value of the function. For static
functions, you might return a value of TRUE or FALSE, which may be
used in a simple Boolean test. For external functions, return a more
explicit status code.

A function can be complex, calling many other functions and potentially
generating many different types of exceptions. If these routines simply
returned a status code, the caller would need to perform complex anal
ysis of the returned status code after each invocation of the function.
The C language does not provide any facilities to help engineers deal
with complex exception handling. However, if the program is specific
to VMS, it can use the VMS condition handling facility, which does
provide help.

A.10 Statements

Each line should contain only one statement. The only exception is the
else if construct (see Section A.I0.2). Note that an if statement and its
associated conditionally executed statement appear on separate lines.

Coding Conventions for VAX C 193

If a statement is too long for a single line, break it across lines at
meaningful boundaries. Do not break symbol names across lines. You
may break expressions across lines at operator boundaries, beginning
the new line with the operator indented so that it aligns with the
operator on the previous line. You also may break function calls at
argument boundaries, beginning each line with a new argument name
indented so that it lines up with the argument on the previous line.

For example:

rabp->rab_w_rsz = strlen(bufp->prefix)
+ strlen(bufp->text)
+ strlen(bufp->suffix)
+ sizeof(char);

status = sort file(file descriptor, get next record, put_sort ed_records ,
- SORT=ASCENDING, key_descriptors);

Always leave a blank space between reserved words and subsequent
open parenthesis, for example, if (condition) rather than if(condition).

A.10.1 Indentation of Compound Statements

A compound statement groups declarations and statements into a
single statement that is syntactically equivalent. Delimit compound
statements with braces.

Set off compound statements from surrounding code to emphasize
their role as single statement equivalents. Do so by using various
combinations of line breaks and indentation according to personal
preference. Today, C programmers commonly use two or three styles.
Anyone of these styles is acceptable as long as it is used consistently
within a program module and when modifying the code in an existing
module.

The forthcoming ANSI C standard promotes a consistent style for in
denting compound statements as developed in Kernighan and Ritchie's
(K&R) original book on C programming (see Appendix D). This is an
acceptable indentation style. For example:

if (size != 0) {
length += size;
printf ("Total length: %d", length);

194 Coding Conventions for VAX C

Many other style guides recommend an indentation of compound
statements that is common with languages that use BEGIN-END to
delimit blocks. There are two main variations of this style. The first
has the compound statement delimiters at outer block level; the second
has them at the inner block level.

For example:

if (size != 0)
{

length += size;
printf ("Total length: !lsd" I length);

if (size != 0)
{
length += size;
printf("Total length: !lsd" I length);
}

Individual projects should choose one of these three styles and use it
consistently. The remainder of this appendix shows examples of how to
format code in the K&R style and the first variation of the BEGIN-END
block style, which you can easily reformat into the second variation of
the BEGIN-END style.

If a compound statement is large (more than about 20 lines) or contains
nested compound statements, the closing braces should be commented
to indicate which block they delimit. For example:

for (sy = sytable; sy != NULL; sy = sy->sy_Iink)
{

if (sy->sy_flag == DEFINED)
{

/* if defined */
else
{

/* if undefined */
/* for all symbols */

Coding Conventions for VAX C 195

A.10.2 The if Statement

In its simplest form, the if statement contains a single, conditionally
executed statement. Place this statement on a separate line and indent
it one tab stop. For example:

if (day == monday)
count += 7;

If more than one statement is required to be conditionally executed, use
one of the following styles:

if (day == monday)
count += 7;
printf("Total: %d", count);

if (day == monday)
{

count += 7;
printf ("Total: %d", count);

If alternative statements are conditionally executed, you may add the
else clause to the if statement. If either of the conditionally executed
statements is compound, both should be compound. The following
examples show the two formats.

if (day != monday)
count += 31;

else {
count += 7
printf ("Total: %d", count);

if (day != monday)
{

count += 31;

else
{

count += 7
printf("Total: %d", count);

If the conditional test in an if statement is so complex that it requires
more than one line, break it at an && or I I operator, and line up
each expression under the preceding expression. Always enclose such
conditionally executed statements in braces. For example:

196 Coding Conventions for VAX C

if «this value == that value)
&& (n~er one != n~er two)
I I (symbol-z == symbol w)
&& (symbol:q < 10» -

return TRUE;

However, nested conditionals or loops should always enclose conditional
or loop code in braces. Note that the following example is difficult to
read:

for (dp = &values[O]; dp < top value; dp++)
if (dp->d value == arg value

&& (dp->d_flag & arg:flag) != 0)
return dp;

return NULL;

After reformatting with braces, the example is much easier to read:

for (dp = &values[O]; dp < top_value; dp++)
{

if (dp->d value == arg value
&& (dp->d_flag & arg_flag) != 0)

return dp;

return NULL;

Although there is no separate else if clause in the if statement, it may
be treated as such with the (else if (condition)) on a single line. For
example:

if (x == y)
size = 0.0;

else if (x == z)
size = 1.0;

else
size = transform(x, y, z);

A.10.3 The for Statement

Some experience is needed to decide what to put in a for statement and
what to put in the loop body. In general, put what is needed to control
the loop in the for statement and the process itself in the body.

Coding Conventions for VAX C 197

If the loop initialization is complex, place part of the initialization be
fore the loop. Avoid separating initialization expressions with commas.
If the loop control expression is complex, the use of a while statement
may be appropriate.

If the iteration expression is complex, move part of it into the body of
the for statement. Avoid separating iteration expressions with commas.

Another method of avoiding complexity in for statements is to use break
or continue statements or both in the for statement body. However,
exercise care when using these statements to control unusual break
out cases. For example, the code in the following example searches a
symbol table for an unused element:

for (sp = &sym[O]; sp < &sym[MAX_SYM]; sp++)
{

if «sp->sy flag & UNUSED) != 0)
break; -

if (sp >= &sym[MAX_SYM])
{

log_error_message(IIThe symbol table is full.");
return FALSE;

/* here to process symbol */

return TRUE;

If the three controlling expressions of a for statement are long, it may
help to put each of the expressions on a separate line. For example:

for (pointer = list head;
pOinter != NULL && pOinter->priority >= CRITICAL PRIORITY;
pOinter = pointer->next) -

Although the for (;;) statement may be used to create an indefinite loop
(presumably containing a break or return statement), the preferred
method is shown in the following example:

while (TRUE)

198 Coding Conventions for VAX C

Occasionally, a for statement or while statement will have a null body.
To indicate this, place a semicolon on a line by itself following the for or
while expression. For example:

for (i = 0; i < n && a[il != key; ++i)

A.10.4 The while and do Statements

The simplest while statement contains a single loop statement. Place it
on a separate line and indent it one tab stop. For example:

while (sp != NULL)
sp = sp->next;

If more than one statement is required in the loop, use one of the
following forms:

while (sp != NULL) {
total size = total size + sp->size;
total:length = total_length + sp->length;

while (sp != NULL)
{

total size = total size + sp->size;
total:length = total_length + sp->length;

If the conditional part of the while statement is so complex that it
requires more than one line, break it at an && or I I operator, and
line up each expression under the preceding expression. Always enclose
such conditionally executed statements in braces. For example:

while «sp->next->title != NULL)
&& (sp->title length == 0)
&& (sp->title:font != HELVETICA_HEAVY_12PT»

sp = sp->next;

Coding Conventions for VAX C 199

To clearly distinguish the while clause of the do statement from a while
statement, always enclose the body of the do statement in braces. Use
one of the following styles:

do {
size = get size(x, y, z);
x = next-point(x, y, z);

} while (x == y);

do
{

size = get size(x, y, z);
x = next-point(x, y, z);

while (x == y);

A.10.5 The switch Statement

The body of the switch statement is enclosed in braces and indented
one additional tab stop. Place each individual case clause on a new
line. Indent the associated statements one additional tab stop.

All switch statements should have a default case which, if not an
expected case, should signal a fatal error. The default case always
should be last.

Try not to use the characteristic of the switch statement that allows
a block of code associated with one case label to fall through to the
block of code associated with the next case label. In those cases where
it is unavoidable, make sure that it is well commented. However, you
may associate several case labels that have no intervening code with
one block of code. In the following example, the central algorithm of a
routine counts words. A new line, blank, or tab terminates a word, but
multiple blanks do not increase the number of words.

200 Coding Conventions for VAX C

eow = 0;

while «c = getchar(» != EOF)
{

switch (c)
{

case '\n':
lines++;
/*

/* Newline, */
/* count lines */

* Fall through to "end of word" case
*/

case' \ t' :
case' ,.

words += eow;
eow = 0;
letters++;
break;

default:
letters++;
eow = 1;
break;

words += eow;

/* Tabs, newlines, and blanks */
/* Form words. */

/* Don't count multiple runs */
/* But count all "whitespace" */

/* All the rest form a word */

/* Fix count of last word */

Note that the break following the last case is redundant. Nevertheless,
include it to make your intention clear. Including it also reduces the
likelihood that someone who adds a new case will forget to add the
break.

The next example shows an alternative format for the preceding switch
statement:

switch (c) {
case' \n' :

lines++;
/*

/* Newline, */
/* count lines */

* Fall through to "end of word" case
*/

case' \t' :
case

words += eow;
eow = 0;
letters++;
break;

default:
letters++;
eow = 1;
break;

/* Tabs, newlines, and blanks */
/* Form words. */

/* Don't count multiple runs */
/* But count all "whitespace" */

/* All the rest form a word */

Coding Conventions for VAX C 201

A.10.6 The goto Statement

The use of the goto statement is discouraged. It is potentially confusing
and programs can be written without resorting to its use.

A.11 Expressions and Operators

Because C has some operator precedence rules that differ from those of
other languages, enclose all expressions that contain mixed operators in
parentheses. This is particularly necessary when comparison or mask
operators (&, I, and 1\) are combined with shifts.

Traditionally, a C compiler can modify the order in which the operands
of an expression are evaluated. In the following example, there is no
guarantee that d(&x) is evaluated after b(&x) and c(&x) are evaluated.
The C compiler could generate code that first evaluates d(&x), then
b(&x) plus c(&x), and then the resulting sum.

a = (b(&x) + c(&x» + d(&X)i

The forthcoming ANSI C standard provides syntax that allows you
to control evaluation order; however, the provisions are not yet final.
Until C compilers follow the ANSI standard, you must write separate
statements with temporary variables to ensure the evaluation order.

For example:

temp = b(&x) + C(&X)i
a = temp + d(&X)i

Blanks should surround all assignment operators (for example, =,
+=). Using blanks helps to avoid ambiguity with some old, but still
supported, operators (for example, i=-l may be interpreted as i = -lor i
-= 1).

Blanks should appear after commas in argument lists to help separate
the arguments visually. On the other hand, macros with arguments
and function calls should not have a blank between the name and the
left parenthesis.

202 Coding Conventions for VAX C

C is an expression language, which means that the assignment expres
sion a = b itself has a value that can be embedded in a larger context.
Use this assignment expression sparingly. The following example
shows a standard C idiom.

while «value = *pointer++) != 0)
{

process(value);

Do not put a top-level assignment expression as the test expression
of an if, for, or while statement because another engineer can easily
misinterpret the assignment as a test for equality. Instead, rewrite
these test expressions so that the assignment is tested explicitly
against zero. The previous example illustrates this form.

Use side effects within expressions sparingly. Be suspicious of any
expression in which the target of an operator with a side effect (for
example, =, ++, --) appears more than once. For example, predicting
the results of the code in the next example is not easy; it will do
different things with different compilers.

func(*ptr++, *ptr++);
*ptr = *ptr++;
*ptr++ = *ptr;

The C language seldom guarantees the order of side effects. A compiler
can evaluate the operands of most operators in any order (to allow for
better optimization). For example, a compiler may evaluate the lvalue
expression on the left-hand side of an assignment before or after it
evaluates the right-hand side of the assignment. The only operators
that consistently evaluate their operands left to right are the logical
AND operator (&&), the logical OR operator (I I), the conditional
operator (?:), and the comma operator (,). Note that the comma operator
is not the same as the comma used to separate arguments to a function.
A function call may have its arguments evaluated in any order. Also
note that the logical and conditional operators are guaranteed to
evaluate only those operands needed to determine the value of the
expression.

Whenever conditional sequences contain both I I and &&, use paren
theses to make the sequences clearer.

Coding Conventions for VAX C 203

Use the increment (++) and decrement (--) operators sparingly. You
may use them when they are the only operators in a statement or when
the only additional operator is the simple assignment operator. You
may also use them in the iteration expression of the for statement. For
example:

--count;

i = count++;

for (i = 0; i < 10; i++)
count += array[i];

A.12 Portabi I ity

C is often the language of choice for many new software applications
because it is widely available and supported by a number of operating
systems. However, you need to be aware of some of the potential
problems that arise when porting C programs and should consider the
following issues:

• Most C compilers predefine symbols that may be used to isolate
machine-dependent code. For example, VAX C predefines the
following symbols: VAX, vax, VMS, ums, ultrix.

NOTE

The draft ANSI C standard may require that VAX C
change the names of these predefined symbols in the
future. The VAX C compiler also supports the !DEFINE
qualifier under VMS and the -Dxxx option under
ULTRIX to predefine a symbol without modifying the
source code.

• Different machines have different word sizes. Although the lan
guage guarantees that long int is at least as long as int, and short
int is never longer than int, it does not guarantee any specific word
length. Note that pointers and integers are not necessarily the
same size nor are all pointers the same size.

If you transport programs in which int and long sizes differ, double
check printf format statements. Some printf implementations
require %ld for longs, while others require %D.

204 Coding Conventions for VAX C

• Word size and constants can interact in unexpected ways. The
following example clears the low order three bits of an integer on a
PDP-Il. However, on a VAX., it also clears the upper halfword.

int Xi

X &= 0177770i

Instead use the following code, which is portable:

X &= -07i

• Use parentheses to ensure the order of evaluation. Avoid the
following sequences:

value = getchar() - getchar()i

value = *p++ - *P++i

*p = *P++i

func(*p++, *P++)i

In these sequences, different compilers evaluate the expressions
in different orders. Instead, rewrite these as shown in the next
example:

value = getchar()i
value -= getchar()i

value = *P++i
value -= *P++i

p[l] = *p;
P++i

temp = *P++i
func(temp, *P++)i

• Do not use code that takes advantage of two's complement arith
metic. In particular, avoid optimizations that replace division or
multiplication with shifts.

• Be aware that the VAX. signed character may become unsigned on
many other machines. If it matters whether characters are signed
or not, explicitly use the types signed char or unsigned char instead
of char.

• Do not assume any specific byte or bit ordering within words.

Coding Conventions for VAX C 205

• Be aware that some constructs that normally return a Boolean
result in other languages do not return a Boolean in C. An example
of incorrect code follows:

if (strcmp(s1, s2»
{

/* different */

Strcmp does not return TRUE or FALSE; instead, it returns a
negative value to indicate sl is less than s2, zero to indicate that
the strings are equal, or a positive value to indicate that sl is
greater than s2. Therefore, the result of strcmp should always be
compared against zero. For example:

if «strcmp(s1, s2) >= 0)
{

/* s1 greater than or equal to s2 */

• The bitwise logical operators in C have the wrong precedence to
test for a value of a specific bit without using parentheses. For
example:

if (flag_word & MASK == INTERESTING_BIT)

The preceding section of code would be interpreted as follows:

if (flag_word & (MASK == INTERESTING_BIT»

You must use parentheses to be sure that the code is evaluated
correctly. For example:

if «flag_word & MASK) == INTERESTING_BIT)

• Be suspicious of numeric values appearing in the code. Almost all
constants are better expressed as #define quantities.

• Become familiar with the standard library and use it for string and
character manipulation. Do not reimplement standard routines
because the person reading the code must then determine whether
the reimplemented code does something special. Locally developed
"standard" routines are a frequent source of errors because these
routines may be called by other parts of the library. Furthermore,
the standard library hides nonportable details that you might not
be aware of.

206 Coding Conventions for VAX C

Appendix B

International Product Development

To be competitive in today's marketplace, it is becoming increasingly
important to design products for international distribution. This
appendix presents a model and summarizes guidelines for international
product development.

B.1 International Product Model

The international product model used at Digital describes a software
system that functions interactively. The model also assumes that
customers use the system in a local environment, that is, using 10-
cal languages (French, German, and others), conventions, and user
interfaces. Such software is said to be localized.

The purpose of the model, shown in Figure B-1 is to identify the
components of international products.

In building international products, some portions or components re
main constant, while others change. The constant portion is called
the international base component, which represents the components
that are applicable worldwide. The portions that vary between coun
tries or markets are the user interface components, market-specific
components, and the country-specific components.

International Product Development 207

Figure 8-1: International Product Model

DELIVERABLE PRODUCT

I
I

Country-Specific Component
3 (D) -

~ 2
1

r--- -----------------------------------

I
I

- Market-Specific Component
(C)

I
I

- User Interface Component
(B)

- International Base Component
(A)

SOFTWARE PRODUCT (E)

208 International Product Development

I-
~

1

--
1

3
2

3
2

The engineering, packaging, and distribution of these components may
vary due to specific product or market requirements. However, it is
important to keep the integrity of the components intact to produce a
more flexible product that is easy for local engineering groups to adapt.

Separating the product into components makes it easier to develop
country, market, and user-language variations. It also reduces both
the development costs and maintenance costs of the product variations.
This component structuring scheme also adds significant flexibility in
the software packages offered worldwide.

During a product's development, the cross-functional team should verify
requirements for the content of each of the components. The members
of the cross-functional team must agree upon responsibilities for the
different components. The functional capabilities of these components
must be well defined. For example, the original engineering group may
agree to produce one country-specific component, and local engineering
groups may agree to develop other translated country-specific compo
nents. The product requirements, specification, and development plan
should clearly state what product characteristics will be developed and
supported and by whom.

The next sections define the terms used in the model.

International Base Component
This component consists of common modules whose generalized code
is applicable worldwide (with user-selected variants) without change.
Alternatively, this component may have external controls that provide
the variations required in an international product. Typically, the
international base component has no information about the language
employed to communicate with the user.

User Interface Component
This component contains information about the language employed
to communicate with the user. It is a language-specific component
that functions as a translation layer for processing input and output
text in the language of the user. For example, this component could
process user information, such as user messages, online help, and
documentation.

International Product Development 209

Market-Specific Component
This component provides features that make the product competitive
in a particular market or area. A market can be driven by regional
or country requirements as well as needs for specific features. For
example, the general market requirements for an office system would
be satisfied in the international base component; the market-specific
component could contain the modem, printer, local interconnect, and
power cords, which tend to vary by region or country. Because the
market-specific component must interface with the international base
component, both require a modular design with precisely defined
interfaces, including functional and performance specifications.

Country-Specific Component
This component contains information that is specific to a certain
country and is required before the product can be delivered locally. It
does not contain any code. Typical contents are warranties, service and
ordering information, license certificates, and terms and conditions.

Product Variations
Product variations refer to a range of products that have a common
base component but have different user interfaces and market-specific
components. Product variations do not have a country-specific compo
nent.

Software Product
The software product is one of a set of product variations. It combines
components that can be ordered and manufactured.

Deliverable Product
The deliverable product combines a product variation with a country
specific component to provide a product that is ready for delivery to the
customer.

210 International Product Development

B.2 International Software Design Guidelines

Use the following guidelines when developing software for international
markets:

• To allow easier translation, separate input and output text in the
user interface from the code that presents it.

• Use table-driven and modular replacement techniques to design
code for the international base and market-specific components that
can be easily adapted to international requirements.

• During design, separate the code for the user interface in distinct
modules. This will allow the user interface code to be modified
easily for specific user languages without affecting the bulk of
the product's functions. Use a forms management system such as
DECforms as the base for the user interface controller.

• Design for consistent functional and user interface behavior across
the various operating systems on which distributed software solu
tions will be produced.

• Follow the international product model shown in Figure B-l.

International Product Development 211

Appendix C

Industry Standards

This appendix summarizes IEEE standards of interest to software
engineers. It also lists suppliers of other standards.

C.1 IEEE Standards

For more information on any of the IEEE standards listed below,
see the Software Engineering Standards, published in 1987 by The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, New York 10017, USA.

Std 729-1983: Glossary of Software Engineering Terminology
This standard defines more than 500 software engineering terms
commonly used in the field. Its use helps provide consistency in termi
nology.

Std 730-1984: Software Quality Assurance Plans
This standard attempts to meet concerns for legal liability. It addresses
the needs of software applications whose failure could result in signifi
cant financial or social loss. The standard describes planned steps on a
project that would allow a development team to be assured that the ap
plication meets established technical requirements. Further, it provides
a format and minimum contents for Software Quality Assurance Plans.

Std 828-1983: Software Configuration Management Plans
This standard provides engineers with those requirements that are
necessary for configuration identification and control, status accounting
and reporting, and configuration audits and reviews.

Industry Standards 213

Std 829-1983: Software Test Documentation
The complete testing process is encompassed by eight documents whose
format and content are described by this standard. Three areas are
discussed: the test plan, the test specification, and test reporting. The
standard describes the extent, resources, and schedule of the testing
activities. Further, it describes items to be tested, functionality to be
tested, tasks to be completed, people who carry out the tasks, and the
plan risks.

Std 830-1984: Software Requirements Specifications
This standard provides different ways to specify software requirements.
Tutorial material describes specification methods and formats.

Std 983-1986: Software Quality Assurance Planning
This standard explains the sections of the Software Quality Assurance
Plan as described in Std 730-1984.

Std 990-1986: Ada as a Program Design Language
This standard recommends ways to effectively use program design
languages using Ada as the programming language.

Std 1002-1987: Taxonomy for Software Engineering Standards
This standard explains how to classify software engineering standards
based on their form and content.

Std 1008-1987: Software Unit Testing
This standard provides an integrated approach to system testing.

Std 1012-1986: Software Verification and Validation Plans
This standard describes minimum requirements for the content and
form of Software Verification and Validation Plans (SVVPs).

Std 1016-1987: Software Design Descriptions
This standard describes what to put in and how to organize software
design documents.

214 Industry Standards

C.2 Sources for Other Standards

This section contains supplier information for the following categories
of standards:

• Industry: Standards and technical papers from associations and
organizations such as IEEE

• Military: Documents in the public domain, including military
specifications, standards, and handbooks

• Government: Documents from all branches of the federal govern
ment, including federal specifications and standards. This includes
the following two series of documents published by the National
Bureau of Standards (NBS) in the U.S. Department of Commerce:

Federal Information Processing Standards Publication series
(FIPS PUBs)

Computer Science and Technology (NBS Special Publication
500-xx series)

• Foreign: Non-U.S. standards, such as British, German (DIN),
International Organization for Standardization (ISO), and
International Electrotechnical Commission (lEe)

Suppliers

American National Standards Institute (ANSI)
ANSI represents most foreign country specifications and supplies all
types of national standards. Although industry standards are available,
ANSI does not carry military and government standards.

1430 Broadway
New York, NY 10018
(212) 642-4900 (sales/ordering)
(212) 354-3300

Document Center
This center supplies industry, military, and government specifications
and standards.

1504 Industrial Way, Unit 9
Belmont, CA 94002
(415) 591-7600

Industry Standards 215

Document Engineering
This group supplies military and government standards and specifica
tions.

15210 Stagg Street
Van Nuys, CA 91405
(818) 782-1010

Global Engineering
This group supplies industry, military, government, and foreign specifi
cations and standards.

2625 Hickory Street
Santa Ana, CA 92707
(800) 854-7179
(714) 540-9870

Information Handling Service
This group supplies industry, military, and government specifications
and standards. IHS puts information on microfilm, microfiche, or on
line.

15 Inverness Way East
Inglewood, CO 80150
(800) 525-7052
(303) 790-0600

National Standards Association
This association supplies industry, military, and government specifica
tions and standards.

5161 River Road
Bethesda, MD 20816
(800) 638-8094
(301) 951-1389

216 Industry Standards

Naval Publications and Forms Center
The center supplies limited quantities of military, government, and
some industry specifications, standards, and handbooks. Documents
are free of charge.

5801 Tabor Avenue
Philadelphia, PA 19120-5009
(215) 697-3321 (shipment by first-class mail)
(215) 697-4834 (shipment by Federal Express)

U.S. Government Printing Office
This agency supplies V.S. government publications, including specifica
tions and standards.

Superintendent of Documents
V.S. Government Printing Office
Washington D.C. 20402

Industry Standards 217

Appendix D

Additional Reading

This appendix lists titles and tells how to order the documents and
books referenced throughout this guide. These resources are divided
into two main sections:

• Applications and tools

• Software development

The listings are alphabetical within each section. There is a table at
the end of this appendix showing you how to order documentation from
Digital.

D.1 Applications and Tools

Guide to VAX DEC/Code Management System
Order No. AI-KL03A-TE

Guide to VAX DEC/Module Management System
Order No. AI-Pl19C-TE

Guide to VAX DEClTest Manager
Order No. AI-Z330C-TE

Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer
Order No. AI-FY24B-TE

Guide to VAX Notes
Order No. AI-G98HA-TE

Additional Reading 219

Guide to VAX Performance and Coverage Analyzer
Order No. AI-EB54D-TE

Guide to VAX SCAN
Order No. AI-FU79B-TE

Guide to VAX Software Project Manager
Order No. AI-KP49A-TE

Guide to VMS Programming Resources
Order No. AA-LA57A-TE

Introduction to VMS System Routines
Order No. AA-LA66A-TE

A Methodology for Software Development Using VMS Tools
Order No. AA-HB16B-TE

This document describes how to use VMS tools with other VMS facili
ties to create an effective software development environment.

VAX COD/Plus Common Dictionary Operator Reference Manual
Order No. AA-KL45A-TE

VAX COD/Plus Common Dictionary Operator User's Guide
Order No. AA-KL46A-TE

VAX C Run-Time Library Reference Manual
Order No. AI-JP84A-TE

This manual provides reference information on the VAX C Run-Time
Library (RTL) functions and macros that provide I/O functionality,
character and string manipulation, mathematical functionality, er
ror detection, subprocess creation, system access, and windowing
capabilities.

VAX DOCUMENT User Manual, Volume 1
VAX DOCUMENT User Manual, Volume 2
Step-by-Step: Writing with VAX DOCUMENT
Order Nos. AA-JT84A-TE, AA-JT84A-TE, AA-JT85A-TE

VAX Text Processing Utility Manual
Order No. AA-LA14A-TE

220 Additional Reading

VMS Command Definition Utlity Manual
Order No. AA-LA60A-TE

VMS Message Utility Manual
Order No. AA-LA63A-TE

VMS RTL Screen Management (SMG$) Manual
Order No. AA-LA77A-TE

VMS Run-Time Library Routines Manual
Order No. AA-76A-TE

VMS Utility Routines Manual
Order No. AA-LA67A-TE

VMS Debugger Manual
Order No. AA-LA59A-TE

VAX GKS/OB V3.0 Document Set
Order No. QA-810AA-GZ; includes the following:

VAX GKS Reference Manual Volume 1
VAX GKS Reference Manual Volume 2
VAX GKS User Manual
Writing VAX GKS Handlers
VAX GKS Pocket Guide

VAX PHIGS V1.1 Document Set
Order No. QA-OKBAA-GZ; includes the following:

VAX PHIGS PHIGS$ Binding Manual
VAX PHIGS FORTRAN Binding Manual
VAX PHIGS C Binding Manual
VAX PHIGS Reference Manual

DECforms Document Set
Order No. QA-VCHAA-GZ; includes the following:

DECforms Guide to Developing Forms
DECforms Guide to Programming
DECforms Reference Manual
DECforms Guide to Converting VAX FMS Applications
DECforms Guide to Converting VAX TDMS Applications

Additional Reading 221

DECforms Summary Card
DECforms Keypad Card

VMS DECwindows User Kit
Order No. QA-09SAB-GZ; includes the following:

VMS DECwindows User's Guide
VMS DECwindows Desktop Applications Guide
Overview of VMS DECwindows

VMS DECwindows Programming Kit
Order No. QA-OOIAM-GZ; includes the following:

XUI Style Guide
VMS DECwindows Guide to Application Programming
VMS DECwindows User Interface Language Reference Manual
VMS DECwindows Toolkit Routines Reference Manual Part 1
VMS DECwindows Toolkit Routines Reference Manual Part 2
VMS DECwindows Guide to Xlib Programming: MIT C Binding
VMS DECwindows Guide to Xlib Programming: VAX Binding
VMS DECwindows Xlib Routines Reference Manual Part 1
VMS DECwindows Xlib Routines Reference Manual Part 2
VMS DECwindows Device Driver Manual
VMS Compound Document Architecture Manual

UL TRIX-32W (DECwindows) V1.1 Document Set
Order No. QA-OJQAA-GZ; includes the following:

UWS (ULTRIX Workstation Software) V2.0 Release notes
UWS Advanced Installation Guide
UWS Guide to UWS Window Manager
UWS Reference Pages, Section 1
UWS Introduction to UWS User Environment
UWS DECwindows User's Guide
UWS DECwindows Desktop Applications Guide
UWS Guide to DXDIFF VS DIFF Programming
UWS XUI Programming Overview
UWS Guide to Writing Applications for Widgets
UWS Guide to Porting Xlib Applications
UWS Guide to DXDB Debugger
UWS Guide to XUI User Interface
UWS Guide to XUI Toolkit Widgets
UWS Guide to Toolkit Intrinsics

222 Additional Reading

UWS Guide to Xlib Library
UWS X Window System Protocol
UWS Reference Pages Section 3
UWS Guide to X Toolkit Widgets
UWS User Interface Style Guide

D.2 Software Development

The Art of Software Testing
Myers, Glenford J. New York, N.Y.: John Wiley and Sons, 1979.

Discusses the purpose and nature of software testing. Contains infor
mation on test tools, debugging, code inspections, as well as techniques
for high level testing.

CASE: Using Software Development Tools
Fisher, Alan S. New York, N.Y.: John Wiley and Sons, 1988.

A recent overview of computer-aided software engineering technologies
and commercially available third-party CASE tools. Includes tools that
support analysis and design phases.

The Digital Dictionary
Marotta, Robert E., ed. Bedford, Mass.: Digital Press, 1986.
Order No. EY-3433E-DP

This document provides definitions for the terminology and acronyms
specific to Digital's products and working guidelines.

Guide to Creating VMS Modular Procedures
Order No. AA-FB84A-TE

This useful guide is part of the VMS documentation set. It describes
how to design and code procedures that conform to the VMS Modular
Programming Standard. It also describes how to insert modules into
an object module library, shareable image, or shareable image library.

Software Engineering: A Practitioner's Approach, 2nd Edition
Pressman, Roger S. New York, N.Y.: McGraw-Hill, 1987.

An excellent and widely used textbook covering the fundamentals of
software design and management.

Additional Reading 223

Software Engineering Standards
This book contains eleven standards relevant to the software engineer
ing process. Its purpose is to provide guidelines and recommendations
for the development and maintenance of software. Contact:

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, NY 10017

Structured Techniques for Computing
Martin, James, and Carma McClure. Englewood Cliffs, N.J.: Prentice
Hall, 1985.

Discusses strategies and techniques of structured analysis and design
including several design methodologies such as Yourdon and Warnier,
Orr.

The C Programming Language
Kernighan, Brian W., and Ritchie, Dennis M. Englewood Cliffs, N.J.:
Prentice-Hall, 1978.

Contains a tutorial on the C programming language as well as detailed
examples.

224 Additional Reading

How to Order Documentation from Digital

From Call

AJaska, 603-884-6660
Hawaii, or
New Hampshire

Rest of U.S.A.
and Puerto
Rico*

1-800-DIGITAL

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

* Prepaid orders from Puerto Rico, Call Digital's local subsidiary
(809-754-7575)

Canada 800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

Additional Reading 225

Trademarks

The following are trademarks of Digital Equipment Corporation.

DDIF LN03 ScriptPrinter VAX FORTRAN
DEC/CMS MicroVAX VAX MACRO
DECIMMS PrintServer VAX Notes
DECnet ULTRIX VAX RALLY
DECnet-VAX VAXC VAXRMS
DECstation VAXCDD VAX SCAN
DECSYSTEM-20 VAX COBOL GENERATOR VAXmate
DECwindows VAX DEC/Test Manager VAXstation
DECwrite VAX DATATRIEVE VMS Debugger
EDT VAXDIBOL VT
LN03 VAX DOCUMENT WPS-PLUS
LN03 PLUS VAXELN XUI

The following are third-party trademarks.

MS-DOS is a registered trademark of Microsoft Corporation.

OS/2 is a trademark of International Business Machines Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark of American Telephone & Telegraph
Company.

X Window System is a trademark of the Massachusetts Institute of
Technology.

Trademarks 227

A
Abstract, in module preface· 98
Ada, as implementation language· 108
Additional reading· 219 to 225
ALIGN command

use for commenting· 114
Alternatives/feasibility study· 57
A Methodology for Software Development Using VMS

Tools· 220
Applications and tools

sources of documentation· 219 to 223
Argument list

calling standard definition· 79
Array

naming convention for· 121
Assignment expression, use in C· 203
Author, in module preface· 98

B
Base level

definition· 88
maintenance control of· 164
management· 89
problems in building· 90
testing· 128
types· 89

Benchmark directories
in DEClTest Manager· 169

Benchmarks
performance testing· 139

Black box test· 133
See also Testing

Index

Block comment
See Comment

Bottom-up design

See also Design
for testing· 134

Bugs

See Errors
Build procedure· 90, 91

optimizing for maintenance· 164
Business plan

contents of· 5

c
C

as implementation language· 107
Calling Standard

attributes of· 78
Case conventions· 109, 11 0

in C· 181
COD/PLUS

See VAX COD/PLUS
CDU (Command Definition Utility)· 35
.c files See C language source files
Change history

with DEC/CMS· 98
C language· 175 to 206

See also C language compiler; C language
statements

case sensitivity· 181
comments in· 180
data definitions in· 178
declarations in· 186 to 190
definitions for· 185 to 186

229

C language (cont'd.)
external specification as .h file· 176
function definitions in· 179
functions in· 190 to 193
header files· 179 to 180
.h file organization· 179
implementation as .c file· 176
modular programming. 176
module organization· 178, 179
naming conventions for· 181 to 184
portability issues· 186, 204 to 206
reserved identifiers in· 183 to 184
reserved name in· 183
source files· 178 to 179

for implementation part of C module· 176
line length conventions· 178
organization of· 178

tools for· 176
use of form feed· 178

C language compiler
error messages· 175
predefined symbols for· 204
STANDARD=PORTABLE qualifier· 176, 185

C language statements· 193 to 202
do, formatting· 199 to 200
for, formatting· 197 to 199
goto, use of· 202
if, formatting· 196 to 197
indentation· 194 to 195
switch, formatting· 200 to 201
while, formatting· 199 to 200

Client image
naming convention for· 117

CMS
See DEC/CMS

Code Management System
See DEC/CMS

code reDesign review
for maintenance· 162

Code review· 123 to 126
for maintenance· 163
formal inspection· 124
guidelines for inspection· 125
walkthrough· 123

Coding guidelines· 93 to 126
See also C language; Naming conventions
choice of language· 107

230

Coding guidelines (cont'd.)
formatting· 106
for readability· 108 to 114
for reused code· 94
goals· 93
scope· 93
sources of· 93 to 95

Cohesion
in module design· 95

Command Definition Utility· 35
Comment

block· 112
bracketed· 114
case conventions for· 109
formatting with LSE· 114, 163
line· 112, 114
trailing· 114
types of· 180

Common Data Dictionary
See VAX COD/PLUS

Communication within project
tools for· 161

Configuration management
See Software configuration management

Constants, defining in C· 185
Control program

naming convention for· 117
Conventions

See Coding guidelines; Naming conventions
Copyright

in module preface· 95, 96
Coverage

by VAX Performance and Coverage Analyzer·
132

for tests· 130, 132
Creation date

in module preface· 98
Customer services representative· 5

D
Data definitions in C module· 178
Data dictionary

See VAX COD/PLUS
Data flow diagram

use in design document· 88

Data structure definition
naming convention for· 122

Data types
compatibility in C· 189, 190

DCl commands
command files use for testing· 138
use for counting lines of code· 172
use for defining syntax· 35
use with Command Definition Utility· 35

Debugger
See VMS Debugger

DEC/CMS· 18 to 19
change history· 98
overview· 18
use for build procedures· 90
use for maintenance· 157, 165, 167, 170

DEC/MMS· 20
features· 20
overview· 20
use for build procedures· 90
use for maintenance· 157, 164

DEClTest Manager· 16 to 17
features· 17
overview· 16
test organization· 134
use for coverage analysis· 130
use for maintenance· 157, 169 to 170
use for regression testing· 17, 136, 168
use for white box tests· 132

DECforms Document Set· 222
DEC GKS

See DEC GKS· 73
Declaration

See Module declaration
Declarations

C-specific· 186 to 190
functions in C· 189
structure of for C· 188

DEC PHIGS· 74
DECwindows· 71 to 75

architecture· 71
features· 71
goals· 71
network transparency· 74
run-time libraries· 72
user interface· 72

DECwrite· 33

Definitions
use of in C· 185 to 186

Design
See a/so Detailed design

High-level design
User interface

and lSE use· 162
documentation for maintenance· 161
for performance· 139
for testing· 133
levels of· 64

Design and implementation
overview· 84

Design and implementation phase· 8, 83 to 92
Design methodology· 224

choosing· 66
Yourdon· 66

Design review
guidelines· 75 to 77
process· 75
walkthrough· 123

Detailed design
See also Design
compared to high-level design· 63
inputs and outputs· 86

Detailed design document· 59
purpose· 88

Development plan· 58
Development team

See a/so Engineering project leader
common problems with assignments· 48
members of· 45
overview· 45, 49
responsibilities of· 49

Digital Command language commands
See DCl commands

DIGITAL Standard Runoff· 30 to 31
Digital standards

calling and condition handling· 78
modular programming· 80

Directory
naming convention for· 118

Directory structure
using logical names· 158

DOCUMENT
See VAX DOCUMENT

231

Documentation
errors discovered after sign-off· 149
sources of for applications and tools· 219
tools for· 30 to 33

Dollar sign ($)
use of in C· 183
use of in naming conventions· 115
use of reserved for Digital· 115

Do statement, C formatting· 199 to 200
DSR

See DIGITAL Standard Runoff· 30
DTM

See DEClTest Manager

E
Early evaluation field test· 148
Editors

DECwrite· 33
LSE· 14

Engineering project leader· 5
role on development team· 46

Engineering team
See Development team· 47

Entry point
naming convention for· 119

Error messages, constructing· 34
Errors

cost of fixing· 125, 156
fixing after documentation sign-off· 149
fixing after product submitted to manufacturing •

149
fixing during field test· 149

Error testing, guidelines· 142
Exception handling

in C· 193
EXPRESSION placeholder

example of use· 106
Expressions

See also C language statements
C precedence· 202

External field test· 148 to 150
External specification

in module declaration· 101
extern declaration

use in C· 176

232

F

Facility
definition of· 95

Facility name· 115,116
Facility statement

in module preface· 98
Field test

administrator, responsibilities· 146
closing· 150
early evaluation· 148
errors· 149
external· 148 to 150
feedback· 146
internal· 147
length· 150
length of· 146
minimum ending criteria for· 150
polling questions· 149
preparation of· 145
upgrade kits· 150

Field test plan· 60
preparation· 145

Field test report· 60
contents of· 151

Field test site
choosing· 145
reviewing· 147

File image 10
naming convention for· 122 to 123

File length· 178
File names

conventions· 115 to 118
in C· 183

File type
generic versus unique· 116
in C header file· 179
in C source file· 178
registering· 116

FILL command
use for commenting· 114

Finance representative· 7
Formal inspection

See Code review
Formal parameters

in module procedure· 103

Formatting code
LSE language examples· 106

Form feed
to separate C code sections· 178
to separate C function definitions· 179
to separate header file sections· 179
to separate routines· 110

For statement, C formatting. 197 to 199
Functional description

in module procedure· 102
Functional design

levels of· 64
Functional test

organizing with· 134
Functional value

calling standard definition· 79
Function declarations

in C· 189
Function definitions

order in C module· 179
Functions in C

G

definition of· 190
exception handling· 193
parameters of· 191
return value· 192

GKS
See DEC GKS

Global routines
naming in C· 182

Global variable
See Variable

goto statement, use in C· 202
Graphics editor· 33
Guidelines

See Coding guidelines; Design review
Guide to Creating VMS Modular Procedures· 223
Guide to VAX DEC/Code Management System· 219
Guide to VAX DEC/Module Management System •

219
Guide to VAX DEClTest Manager· 219
Guide to VAX Language-Sensitive Editor and VAX

Source Code Analyzer· 219
Guide to VAX Notes· 219

Guide to VAX Performance and Coverage Analyzer·
220

Guide to VAX SCAN· 220
Guide to VAX Software Project Manager· 220
Guide to VMS Programming Resources· 220

H
Header files

including in C· 179
organization of· 179 to 180

Help file
naming convention for· 117

.h file
external specification of C module· 176

.h files
See C language header files

High-level design
description· 62 to 64

High-level design document· 59
Human interface

design of· 67 to 75

IDENTIFIER string· 116
IEEE standards· 81, 213
If expression

LSE example of use· 106
If statement, C formatting· 196 to 197
Image file 10

naming convention· 122
Image name field

naming convention· 123
Implementation language· 107
Implicit input

in module procedure· 1 03
INCLUDE file

in module declaration· 99
Incremental testing

See Testing
Initialization file

naming convention for· 117
Inspection, formal

See also Code review; Design review
Integrated testing. 131

233

Integrated testing (cont'd.)
design for· 134

Internal field test· 147
International product model· 207 to 211
International requirements· 81 to 82

and maintenance document· 165
product model for· 207 to 211

Introduction to VMS System Routines· 220

K
Kits

L

field test upgrade· 150
types of· 92

Language, guidelines for choosing· 107
Language-Sensitive Editor

See LSE
Legal notices

in module preface· 97
Line comment

See Comment
Line length

C convention for· 178
Local variable

See Variable
Lock identifier

naming convention for· 122
Logical design· 87

description· 63
Logical name

use for directory· 158
LSE· 14 to 15

code formatting· 106, 159
coding conventions and· 94 to 106, 163
features· 14
for commenting· 114, 163
for design· 162
for maintenance· 157, 159
language support· 14, 94, 176
language templates· 14, 94, 95, 96, 106, 138,

163
modifying templates· 95
overview· 14
placeholders· 96

234

LSE (cont'd.)

use for build procedures· 90
use for creating DECfTest Manager test

descriptions· 138
LSE placeholders

example of· 99, 101, 106

M
Macro

naming convention for· 122
naming in C· 183

Macro definition
in module declaration· 100

Mail Utility
See VAXIVMS Mail Utility
project account· 161

Main image file
naming convention for· 117

Maintenance· 155 to 173
as percentage of project work· 155
costs· 155
costs of· 156
creating tests for· 164
document for· 165
planning tests for· 162
problems of· 156
project conventions for· 159
project environment for· 157
task summary of· 155
testing during· 168
tools for· 157
use of DEC/CMS for· 165, 167

Management and communications tools· 26,33
Manufacturing phase· 9
Manufacturing project manager· 7
Marketing project leader· 5
Marketing requirements· 5
Marketing requirements document· 56
Media, field test distribution· 92
Message file

naming convention for· 117
Message Utility· 34 to 35
Metrics of productivity· 171
MMS

See DEC/MMS

Modification history

with DEC/CMS· 98
Modular Programming Standard· 80 to 81
Module

See a/so Module declaration; Module preface;
Module procedure

definition of· 95
design of· 95
header for· 96, 178, 179
LSE C template for· 104
LSE placeholder for· 96
naming convention for· 119
naming in C· 183
organization of for C· 176, 178

Module declaration
components of· 99 to 101
template for· 99

Module Management System

See DEC/MMS
Module preface

components of· 96 to 99
template for· 96

Module procedure
components of· 101 to 104
template for· 101

Module statement
in module preface· 96

N
Naming conventions

description· 115 to 123
directories· 118
file image IDs· 122 to 123
file names· 115
file types· 116
in C· 181 to 184
modules· 119
objects· 122
procedures· 118 to 119
use for maintenance· 159
variables· 120 to 121

Notes conferences
See VAX Notes
for project communication· 161
use for maintenance· 158

o
Object library

naming convention for· 117
Operators

increment and decrement use C· 204
use of parentheses in C· 202

Option file
naming convention for· 117

Overhead
allowance for in schedule· 50, 51

p

Parameter
See Formal parameters

Parameters in C· 191
Parentheses

use in C expressions· 202, 203 to 206
PCA

See VAX Performance and Coverage Analyzer
Performance and Coverage Analyzer

See VAX Performance and Coverage Analyzer
Performance debugging

during maintenance· 170
Performance problems

locating with VAX PCA· 140
Performance testing· 139 to 142

criteria for user interface· 69
guidelines· 142

Phase review meeting
purpose of· 3

Phase review process
characteristics· 1
illustration of· 1
overview· 1 to 9

PHIGS
See DEC PHIGS· 74

Physical design· 87
Placeholders

See LSE, placeholders
Planning and preliminary design phase· 7, 61 to

82
Pointers

use of in C· 190

235

Polling for field test
See Field test

Portability of C· 186, 204 to 206
Precedence in C expressions· 202, 205, 206
Preface

See Module preface
Problem report maintenance· 166
Procedure

See Module procedure
Product evaluation report

contents· 152
Productivity

improving· 171
metrics of· 171

Product kits
See Kits

Product manager· 5
Product requirements document· 56 to 57
Product specification· 57 to 58
Product team

members· 43
responsibilities· 4, 44

Program design language
alternatives· 88

Progress reports· 48
Project account and conferences· 161
Project control

model for· 53
process for· 53

Project documentation· 54 to 60
alternatives/feasibility study· 57
detailed design document· 59
development plan· 58
field test plan· 60
field test report· 60
high-level design document· 59
marketing requirements document· 56
product requirements document· 56
product specifications· 57

Project leader
responsibilities of· 46

Project leader, engineering
managing base levels· 89

Project management· 43 to 60

See a/so VAX Software Project Manager
design for· 50

236

Project meeting
role in communication· 161

Project planning
tasks for· 49

Project schedule
preparing· 49
strategies for· 51
VAX Software Project Manager use for· 54

Project team
See Development team

Prototype
and early evaluation field test· 148
goals and process· 66
use· 67

PSECT
naming convention for· 122

Pseudocode
use in design document· 88

Q

Qualification· 145 to 153
Qualification phase· 8
Qualifying the design for production· 8
Quality and communication· 160
Queue name

naming convention for· 122

R
Readability guidelines· 108 to 114
Registers

calling standard definition· 79
Registration

of file types· 116
Regression testing· 17, 135 to 139, 140

causes of failure· 91
during maintenance· 168

Release notes, purpose of· 152
Release notes file

naming convention for· 117
Requirements

and field test· 145
for user interface design· 68
gathering in early evaluation field test· 148

Reserved identifiers
in C· 183 to 184

Resource materials· 219 to 225
Retirement phase· 9
Return values in C· 192
Review

See Code review; Design review
Rights data base identifier

naming convention for· 122
Risk assessment

during design· 86
RTL image file

naming convention for· 117
Runoff

See DIGITAL Standard Runoff
Run-time library

See VAX C RTL; VMS RTL

s
Sales impact· 7
Sales representative· 5
SCA

See VAX Source Code Analyzer
SCAN

See VAX SCAN
Schedule

See Project schedule
Screen management routines· 37
Server image

naming convention for· 117
Shareable image

image ID naming convention for· 123
Shareable image file

naming convention for· 117
Side effect

in module procedure· 103
use in C expressions· 203

Software configuration management· 18, 20
See also DEC/CMS

Software Engineering Standards· 224
Software life cycle

overview· 1 to 9
Source Code Analyzer

See VAX Source Code Analyzer
Source files

See also C language source files
file length conventions· 178

Source files (cont'd.)
organization of· 178 to 179

Spacing
around C operators· 202
use for code readability· 110, 111

Specification, product· 57 to 58
Standards· 213 to 217

IEEE· 81, 213
other, sources of· 215

Startup file
naming convention for· 117

Status code
naming convention for· 122

Storage allocation
in module declaration· 100

Strategy and requirements phase· 4
Structure chart

use in design document· 88
Structure declarations

for C· 188
Switch statement, C formatting· 200 to 201
Symbols

T

predefined in C· 204
use of· 109

Table of contents
in module declaration· 99

Task work
planning by team members· 47
problems· 48
status report of· 48

Team meetings· 49
Template directories

in DEClTest Manager· 169
Testing· 127 to 143

See also Performance testing
coverage for· 130, 132
DEClTest Manager descriptions for· 138
design for· 133
goals of· 127
guidelines, error· 142
guidelines, performance· 142
guidelines, summary of· 142
high-level· 64
incremental· 131

237

Testing (cont'd.)

levels of· 128, 130
maintenance strategy for· 162, 164
organization of· 134
overview· 127
regression· 135 to 139, 140
techniques for· 133
types of· 132
types of tests· 131

The Art of Software Testing· 223
Title statement

in module preface· 96
Tools

See also product-specific entries; VAXset tools
for creating documents· 30 to 33
for maintenance· 157
remarks· 160
use for application builds· 90
use in project life cycle· 13

Top-down design

See also Design
for testi ng· 134

Traceability, during maintenance· 168
Trailing comment

See Comment
Type compatibility in C· 189

u
ULTRIX-32W (DECwindows) V1.1 Document Set·

223
Unit testing· 130
Upgrade kit

field test· 150
Uppercase letters

use in source files· 109
Usability issues· 67
User interface

design of· 67 to 75
in DECwindows environment· 72
measuring· 69
performance levels for· 70

238

v
Variable

code values for· 120
naming conventions for global and local· 120
naming conventions for local and global

in C· 182
Variant development

during maintenance· 167
VAXNMS Mail Utility· 29
VAX CDD/PLUS· 22 to 23

overview· 22
VAX COD/Plus Common Dictionary Operator

Reference Manual· 220
VAX COD/Plus Common Dictionary Operator User's

Guide· 220
VAX C RTL· 38
VAX C Run-Time Library Reference Manual· 220
VAX DEC/Code Management System

See DEC/CMS
VAX DEC/Module Management System

See DEC/MMS
VAX DEClTest Manager

See also DEClTest Manager
use for build procedures· 90

VAX DOCUMENT· 31 to 32
overview· 31

VAX DOCUMENT User Manual, Volume 1· 220
VAX GKS/OB V3.0 Document Set· 221
VAX Language-Sensitive Editor

See LSE
VAX Notes· 29 to 30
VAX PCA

See VAX Performance and Coverage Analyzer
VAX Performance and Coverage Analyzer· 17 to

18
and performance testing· 140
and white box tests· 132
coverage analysis for tests· 130
features· 18
overview· 17
use for maintenance· 158

VAX PHIGS V1.1 Document Set· 221
VAX SCA

See VAX Source Code Analyzer
VAX SCAN· 20 to 22

VAX SCAN (cont'd.)
features· 21
overview· 20
use for counting lines of code· 172
use for maintenance· 158

VAXset tools
summary of· 12 to 20

VAX Software Project Manager· 28
features· 26
overview· 26
use of· 54

VAX Source Code Analyzer· 15 to 16
features· 15
overview· 15
use for maintenance· 158

VAX Text Processing Utility Manual· 220
VMS Command Definition Utlity Manual· 221
VMS Debugger· 23 to 26

overview· 23
use for maintenance· 158

VMS Debugger Manual· 221
VMS DECwindows User Kit· 222
VMS Message Utility Manual· 221
VMS RTL· 35 to 39

VMS RTL Screen Management (SMG$) Manual·
221

VMS Run-Time Library· 35
VMS Run-Time Library Routines Manual· 221
VMS utilities· 34 to 39
VMS Utility Routines Manual· 221

w
Walkthrough· 123

See also Code review; Design review
WHILE construct

C example· 106
While statement, C formatting· 199 to 200
White box test· 132
Wish list· 90
Word size in C· 204

x
Xlib· 72
X Toolkit· 72 to 73
XUI Toolkit· 72 to 75
X Window System· 74

239

Digital Press

~DIGITAL
GUIDE TO
Software Development
by the Corporate User Publications Group of Digital Equipment Corporation

-
Here, for the first time, is a concise introduction to the
methods and tools used by Digital's engineers to develop
high-quality software products - from end-user applications
to complex systems. .
Written for managers, programmers, documentation writers,
and students, this book describes Digital's incremental
approach to software development, known inside the
company as the "phase review process." Digital-developed
CASE (Computer Assisted Software Engineering) tools
are also examined with special emphasis on their role in
maintaining control over complex projects while improving
both team productivity and product qual ity.
Complete with bibliography and index, The Digital Guide
to Software Development provides an inside look at the
practices of a leading international provider of computer
systems.

12 Crosby Drive
Bedford , Massachusetts 01730

ORDER NUMBER EY-C178E-DP
DP ISBN 1-55558- 035-1
PH ISBN 0-13-211731-2

.,

