R E R MW

A File Transfer Protocol

i

R

Frank da Cruz

K ERMIT

Copyright © 1987 by Digital Equipment Corporation. All rights
reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without prior permission of the publisher.

This book was written using EMACS and EMACS:-like editors
on a DECSYSTEM-20, a VAX/UNIX system, and various mi-
crocomputers running Kermit (both for terminal emulation and
file transfer), and the drafts were formatted using the Scribe
Document Production System (Unilogic Ltd., 160 North Craig
Street, Pittsburgh, PA 15213). Converted to type by Waldman
Graphics, Inc. Printed and bound in the United States of Amer-
ica by the Murray Printing Company. Cover photos courtesy of
International Business Machines Corporation and Digital
Equipment Corporation.

The KERMIT File Transfer Protocol was named after the star of
THE MUPPET SHOW television series. The name is used by
permission of Henson Associates, Inc.

Designed by Diane Jaroch

987654321

Order number EY-6705E-DP

A list of trademarks cited in this book appears on page 372.

Library of Congress Cataloging in Publication Data
Da Cruz, Frank, 1944-
Kermit, a file transfer protocol.

Includes index.

1. Computer network protocols. L Title.
TK5105.5.D27 1987 005.7'1 86-16696
ISBN 0-932376-88-6

K ERMIT

A File Transfer Protocol
Frank da Cruz

Drawings by George Ulrich

cliloliltial]

Digital Press

CONTENTS

List of Figures viii
List of Tables X
Foreword xi
Preface xii
Acknowledgments xiv
PART I-THE BASICS

Introduction 2
History 2
Sharing versus Selling 5
Kermit versus Networks 6
Why Is This Book So Thick? 8
How to Get Kermit 9

The Basics 10
What Is a Protocol? 12
How the Kermit Protocol Works 14
Conventions Used in This Book 16
Getting Connected 20
How to Transfer Files with Kermit 29
The End of the Easy Part 44
PART I1-PRIMERS

Computers and Files 48
Hardware and Software 48
How Computers Represent Data 49
Operating Systems 50
The Console Terminal 51
Disks, Diskettes, Formats 52
Directories, Files 53
Naming Conventions for Files 56
File Organization 57
File Management 58
Encoding of Text 59
Versions of Files 63
End of File 64
Other File Attributes 64

Characteristics of Selected Systems 65

4, Data Communication 70

Serial Transmission 70
Asynchronous Transmission 72
Connectors and Pin Assignments 79
Duplex and Echo 83
Flow Control 85
Parity 89
Modems 90
Other Communication Equipment 96
Public Data Networks 98
Cables and Connectors Revisited 102
The IBM World 108
Data Communications Parameters of Selected Systems 113
PART I1i-USER GUIDE

5. Kermit Command Reference 116
Terminology and Syntax Review 116
The Command Dialog 118
Invoking Kermit Programs 120
Terminal Emulation Commands . 122
Commands for Transferring Files 127
Commands for Server Operation 139
Bureaucratic Commands 144
The SET Command 148
Login Scripts 164
Raw Download and Upload 169

6. Common Problems and How to Fix Them 172
Basic Connection Problems 172
File Transfer Problems 175
ASCII/EBCDIC Translation 180
If All Else Fails 182

7. Bootstrapping 184
Bootstrapping to the Local Micro 184
Bootstrapping in the Other Direction 190

For Many, the End 191

10.

11.

12.

vi CONTENTS

PART IV-PROGRAMMER GUIDE

How to Write a Kermit Program 194
Programming Language 194
Programming Style 196
The User Interface 198
Documentation 200
Frills 201
Testing 203
Submission 205
Protocol Specification 206
Basic File Transfer 206
Layers 212
Encoding and Decoding of Data 228
Initial Connection Negotiation 233
The Missing Pieces 236
Optional Features 240
Eighth-Bit Prefixing 240
Run-Length Encoding 243
Encoding Summary 248
Encoding Performance 248
Sacred Characters 252
Block Check Options 252
Graceful Interruption of File Transfer 258
The Client/Server Model 260
The I Packet 261
The Client 262
The Server 267
Advanced Options 270
The Capabilities Mask 270
Transmitting and Preserving File Attributes 272
Performance Options 282

13.

vii CONTENTS

Discussion and Analysis 298
Kermit Implementation Tricks 298
Kermit versus Other Protocols 303
It’s Too Late Now 307
APPENDIXES

Remaining Pieces of the Kermit Program 312
Kermit Command Summary 328
Kermit Packet Summary 336
The ASCII Character Set 340
Binary, Octal, and Hexadecimal Numbers 346
Glossary 352
References 370
Index 375

List of Figures

Figure 2-1. Two Computers, Two Kermit Programs 15
Figure 2-2. Kermit Packet Layout 15
Figure 2-3. Kermit File Transfer Example 17
Figure 2-4. Common Connector Configurations 21
Figure 2-5. Direct Hookup 22
Figure 2-6. Direct-Connect External Modem Hookup 23
Figure 2-7. Internal Modem Hookup 23
Figure 2-8. Terminal Emulation 28
Figure 2-9. Sample File Transfer Display Screen 34
Figure 2-10. Host-to-Host Kermit Operation 41
Figure 3-1. Simple Disk Organization 54
Figure 3-2. A Flat File System 55
Figure 3-3. A Hierarchical File System 55
Figure 4-1. A Computer , 71
Figure 4-2. A Computer That Can Communicate 71
Figure 4-3. Parallel Transmission 71
Figure 4-4. Serial Transmission 72
Figure 4-5. Asynchronous Serial Transmission of the Letter C 75
Figure 4-6. DB-25 Pin Assignments 81
Figure 4-7. IBM PC/AT 9-Pin RS-232-C Serial Port Pin Assignments 82
Figure 4-8. Macintosh 9-Pin RS-422 Serial Port Pin Assignments 82
Figure 4-9. Full-Duplex Communication 84
Figure 4-10. Half-Duplex Communication with In-Band Handshaking 84
Figure 4-11. Full-Duplex Flow Control - 87
Figure 4-12. The ASCII Letters B and C with Odd Parity 89
Figure 4-13. A Data Connection with Modems 93
Figure 4-14. DB-25 Connector Exterior 104
Figure 4-15. DB-25 Connector Interior 104
Figure 4-16. Typical DB-25 Null Modems 105
Figure 4-17. A Sample Macintosh Null Modem 107
Figure 4-18. A Sample PC/AT Modem Cable 107

Figure 4-19. IBM Mainframe Communication Environment 110

Figure 5-1.
Figure 6-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.

Figure E-1.

Local and Remote Kermit Programs

ASCII/EBCDIC Translation in Kermit

Kermit State Diagram

State Diagram for Sending Files

State Diagram for Receiving Files

Kermit and the ISO OSI Reference Model

Kermit Packet Format

Packet Fields and Protocol Layers

Basic Kermit Initialization String

Sample Kermit Session

Kermit Initialization String with Eighth-Bit Prefix
Kermit Initialization String with All Encoding Options
Kermit Initialization String with Block Check Option
Kermit Initialization String with Capabilities Mask
Kermit Initialization String with Long Packet Parameters
Kermit Extended-Length Packet

A Sliding Window

Kermit Initialization String with Sliding Window Parameters
Assignment of Bits to a Decimal Number

117
181
208
208
212
213
221
222
234
237
241
244
253
270
283
285
290
291
348

List of Tables

Table 1-1.
Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 8-1.
Table 9-1.
Table 9-2.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 10-6.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 12-1.
Table 13-1.

Table E-1.
Table E-2.

Major Kermit Implementations

Typical Settings for IBM Mainframe Communication
The ASCII Alphabet

Selected Portions of the EBCDIC Alphabet
Parts of an ASCII-to-EBCDIC Translate Table
Characteristics of Selected File Systems
Transmission Times for Selected Baud Rates
Typical UART Parameters

Popular Dialup Modem Protocols

X.3 PAD Parameters

Preferred X.3 Parameters for File Transfer
Communication Characteristics of Selected Systems
Sample Kermit Capabilities List

Basic Kermit Packet Types

Control Character Encoding

Eighth-Bit Prefix Encoding

Eighth-Bit Prefix Negotiations

Repeat Prefix Examples

Text File Character Distribution

UNIX Binary File Character Distribution
MS-DOS Binary File Character Distribution
Kermit Server Command Packet Types
Kermit Client States

Kermit Server Generic Commands

Kermit Server States

Kermit Sliding Window State Table

Kermit versus XMODEM over Telenet
Powers of Two, Eight, Ten, and Sixteen

The Numbers 0-32 in Various Bases

39
60
62
63
65
74
77
91
100
101
113
202
207
230
240
241
244
249
250
251
261
262
263
267

296

307
350
351

Foreword

It’s a great pleasure to see computer programs that were written for the sheer love of
it, by people who delight in improving the effectiveness of our machines. The rapid
growth of Kermit as a near-universal protocol for transferring files between computers
is also a convincing demonstration of the advantages of software sharing.

The authors of Kermit wisely decided not to keep their ideas proprietary, and they
soon found that hundreds of people were willing and able to refine and extend the
system. This book is the logical next step: It presents the concepts in tutorial fashion,
and gives detailed examples of the subtle pitfalls that were discovered, so that many
more people will be able to learn from the accumulated experience of the pioneer Kermit
volunteers. Once this knowledge becomes widespread, we can expect further advances
in both hardware and software.

People often mistakenly believe that low-level considerations of input and output
are not part of “real” computer science. The truth is just the opposite. Computer sci-
entists have a duty to understand real-world constraints and to deal with them in as
“clean” a way as possible. Therefore I hope that many readers of this book will be
challenged to find high-level concepts and invariant relations by which various versions
of the Kermit protocol can be proved correct in a mathematical sense.

It will be very interesting to see how this system evolves in the future. Can a de
facto standard continue to rely entirely on dedicated voluntary contributions and peer
pressure, or will some sort of stricter rules have to be enforced? Will a steady state be
reached? And how long will it be before dictionaries of the English language include
the new verb “to kermit”’—as in the sentence “I kermitted ten files during the Muppet
Show.”

Donald E. Knuth
Stanford, California

Preface

This book is for everyone who needs to move information from one computer to an-
other. It’s for the growing number of people who bring work home to personal computers
so they can spend more time with their families. It’s for university students with mi-
crocomputers in their dormitory rooms, and for university computer centers faced with
the microcomputer explosion. It’s for students, teachers, hobbyists, administrators, au-
thors, farmers, secretaries, scientists, anyone who might want to share and communi-
cate computer data with friends or coworkers. And it’s for hospitals, space flight centers,
city agencies, publishing houses, soft drink bottling plants, organizations of every kind
with diverse, incompatible computers of all sizes sprouting in every room and depart-
ment, who feel the same need on a grand scale. Computers are tools that should be
used to improve the quality of life on earth; this book presents a tool that can improve
the quality of our lives while we use computers.

Kermit is a computer file transfer protocol developed at Columbia University. The
Kermit protocol has enjoyed increasing popularity in recent years, enough—I hope—to
warrant publication of this book, which is intended to serve as a compendium of Kermit
information, ranging from instructions for basic use to an informal description of the
Kermit protocol. I won't try to put Kermit forth as the best of all possible file transfer
protocols, only to describe it as it has evolved. I hope that the result is something more—
and less—than a typical computer software user manual: more, because it supplies the
background and motivation usually lacking in manuals; less, because it does not try to
describe every command and peculiarity of each and every Kermit program; there are
far too many of them, and they change too often.

I've tried to improve upon earlier Kermit publications [6, 7, 8]' by presenting the
material in a more coherent, natural sequence. Tutorial sections have been added to
provide background in computing, file organization, and data communications. These
are independent from the other material and may be skipped by those who don’t need
tutoring. Case studies illustrate ways of coping with diverse computer systems and data
communications environments. The latter part of the book describes the Kermit pro-
tocol in detail, with each facet illustrated by some code from a working Kermit program.
At the end are a glossary, appendixes, and an index.

The book should prove useful to three distinct groups of people: those who wish to
use Kermit, those who wish to support its use within an organization, and those who
wish to create Kermit programs. Potential Kermit users need no particular experience

1. Citations refer to the Bibliography at the back of this book.

with computers; any necessary background can be picked up from the tutorials. Poten-
tial supporters of Kermit programs should also be able to learn whatever they need from
this book, particularly from the case studies. Those who want to create Kermit programs
should have a reading knowledge of the C programming language [19] to follow the
program examples given in the protocol specification.

This book may also find useful application in data communication or networking
courses (Kermit is a degenerate case of networking} as an introductory text or as a case
study in coping with a complicated reality. Even experienced protocol designers might
pick up a few useful tidbits. After all, Kermit is able to work in environments where
other protocols have not been so fortunate. And in the areas where Kermit is wanting,
designers can learn from our mistakes.

Kermit is more than a file transfer protocol; it is also the process by which the
protocol spreads and develops through the cooperation of a wide, diverse, and open
international community. Most Kermit programs are written and contributed by vol-
unteers, often working on their own time. The programs can vary markedly in both
style and quality, but tend to improve with age, as improvements are added. No docu-
ment can hope to pin down the Kermit universe for all time; new Kermit programs
appear, old ones change, and the protocol itself evolves. Even when a program remains
the same, changes in the underlying machine, operating system, or communications
environment can alter its behavior. This book attempts to describe Kermit as it is today,
in terms specific enough to be useful yet general enough to remain valid tomorrow, and
maybe even the next day.

Acknowledgments

Because so many have contributed to the Kermit storehouse, this book has more ac-
knowledgments than an Academy Award acceptance speech. As you flip past these
pages, I hope you will come away with a feeling for the scope of the Kermit effort.

Thanks and acknowledgments must go to the Columbia University Center for Com-
puting Activities (CUCCA, my employer), which has generously fostered our Kermit
development and support efforts even when there was no apparent tangible benefit to
itself; to Bill Catchings, the codesigner (with me) of the basic Kermit protocol, who
worked out many of the details and wrote several Kermit programs, including the first
two (for CP/M and the DECSYSTEM-20), and who suggested and coauthored the 1984
BYTE magazine article [8]; to Daphne Tzoar, who conquered IBM mainframe asynchron-
ous communications and wrote the next two Kermit programs (IBM System/370
VM/CMS and IBM PC), and who tirelessly kept the BITNET Kermit distribution up to
date; to Vage Kundakei, who advised and helped with all IBM mainframe aspects of
Kermit design and implementation; to Bruce Gilchrist, director of CUCCA, and Howard
Eskin, director of academic computing at CUCCA, who encouraged our early efforts
and promulgated and proselytized them beyond the walls of Columbia. Bill, Daphne,
and Howard are no longer at Columbia, but Kermit will haunt them long into their
new careers. Acknowledgments also to Coleen Markland, Bob Tschudi, Peter Howard,
and Robert Story for running the “Kermit factory,” and to Christine Gianone, who
coordinates all of this while simultaneously acting as Kermit consultant and publicist.

Outside of Columbia, credit goes to Bernie Eiben of Digital Equipment Corporation,
who was the first to “port”” one of our Kermit programs to a new machine, and who
promoted Kermit enthusiastically; to Philip Murton of the University of Toronto, who
wrote the first high-level language Kermit program (in PASCALY); to Nick Bush and Bob
McQueen of Stevens Institute of Technology (Hoboken, New Jersey), who suggested
many improvements to the protocol and contributed several major implementations,
including VAX/VMS Kermit; to Leslie Spira and her group at The Source Telecomputing
Corporation for the first implementation of “eighth-bit prefixing”’ (for the IBM PC and
Prime computers) and later for working out the sliding window extension along with
Hugh Matlock, John Mulligan, Larry Jordan, and Jan van der Eijk; also to Wael Bahaa-
El-Din at the University of Houston for a parallel investigation of sliding windows; to
Brian Nelson of the University of Toledo for an ambitious Kermit implementation that
encompasses the many DEC PDP-11 operating systems and provided the first working
examples of “attribute packets” and extended-length packets; to Herm Fischer of En-
cino, California, for valuable contributions to the development of the MS-DOS and
UNIX Kermit programs.

At this writing, there are nearly 200 different Kermit implementations. Here is a list
of some of institutions from which Kermit programs have sprung, and the names of
some of the contributors (located in the U.S. or Canada unless indicated otherwise):
ABC-Klubben Stockholm, Sweden (Torbjérn Alm); Aberdeen University, Scotland (Brian
Robertson); Advanced Computer Communications {Charles Carvalho); American Math-
ematical Society (Bill Hall); Atari Computer {Jack Palevich); Bankers Trust (Tad Mar-
shall); Brigham Young University (Bryan Peterson); Brighton Polytechnic, UK (D.J.
Rowland); Brown University (Peter DiCamillo); Brunel University, UK (Ralph Mitchell);
Bucknell University (Cheryl Ann Poostay); Bureau of Engraving Inc. (Randy Hippe);
California State University at Long Beach {Jack Bryans); Cantor Consulting (Charles J.
Cantor}; Carnegie-Mellon University (Dave King, Bdale Garbee); Cerritos College (Bruce
Tanner); Clemson University (Larry Afrin); the Colorado School of Mines (Dan Smith,
Joe Smith); Columbia University (besides those mentioned above: Jeff Damens, Bill
Schilit, Howie Kaye, Chris Maio, Bob Cattani, Rich Garland, Guy Valiquette, Norman
Weatherby, Peter Trei, Francis Wilson, Jon Beeson}; Control Data Corporation (Duane
Jergens, Ted Brown); Cornell University (Kate MacGregor, David Rossiter, Nick Gim-
brone); Corporate Data Exchange (Peter Brooks); CSIRO, Australia (Andrew Hunt); Dig-
ital Equipment Corporation (Bernie Eiben, Martin Minow, Larry Campbell, Dan
Schullman, Walt Lamia}; Du Pont Co. {Joe Smiley); Eastman Kodak Co. (Steve Archer);
General Electric Co. (Bob Wilson); Gothenburg University, Sweden (Stefan Lundberg);
Grinnell College (Albert Goodman); Harvard University (Stew Rubenstein, Steve Engel);
Harvard/Smithsonian Center for Astrophysics (John Chandler}; Helsinki University of
Technology, Finland {Kimmo Laaksonen); Hewlett-Packard Laboratories (Ken Poulton,
Frank Heartney, T.W. Cook); Honeywell Information Systems {Terry Carlin, Lee Hallin,
Mark Ahlstrom, David Cargo); the Hungarian Academy of Sciences {Janos Koppany);
Indiana/Purdue University (Marie Schriefer, James Harvey, Jim Griffin); INFOGEM,
France (Hubert de Langautier); InteCom Inc. {John Mealing); Intel Corporation (Teresa
Koo); Lancaster University, UK (Alan Phillips); Leigh Instruments Ltd. (Hanh Tuan
* Truong); Lisp Machines Inc. (Mark David, George Carrette); Litton Data Systems (Herm
Fischer); Los Alamos National Laboratory (Leah Miller, Dave Forslund}; Massachusetts
Institute of Technology (John Klensin); Merrell Dow Research Institute (Anthony Starks);
Metro-II {Randy McLaughlin); National Aeronautics and Space Administration (Dave
Tweten); Nippon Telephone and Telegraph, Japan (Ken-ichiro Murakami); the Norwe-
gian Institute of Technology (H. Eidnes, A. Lie); Oakland University (Paul Amaranth);
Oklahoma State University (Mark Vasoll, Gregg Wonderly); Philips International B.V.,
Netherlands (Frans van Grotel); Pima Community College (Vanya Cooper); Planning

xvi ACKNOWLEDGMENTS

Research Corporation (Jim Noble}; Polaris, Inc. (Ed Eldridge}; Prime Computer (Jeff Dun-
can); Queen’s University (Victor Lee); Quest Research (Scott Bertilson); RCA Labora-
tories (John Lee, Glenn Everhart); Research Machines, Ltd., England (Chris Kennington};
Rice University (Andrea Martin, Stan Barber); Rijksuniversiteit Groningen, Netherlands
(Ph.P. Visser, Johan Ph. Kelders); Rutgers University (Eric Lavitsky); Rutherford-Apple-
ton Laboratories (M.]. Loach); Salford University, UK (Tony Addyman); Soft Machines
(Bob Rubendunst); Southwest Texas State University (Randall Simmons); SPSS Inc. (Gene
Autrey-Hunley); Stanford University (Jim Celoni); Stevens Institute of Technology (Bob
McQueen, Nick Bush, Anton Mione, Stuart Hecht, David Stevens); Stockholm Univer-
sity, Sweden (Per Lindberg); Technical Research Centre of Finland (Tor Lillgvist); The
Source Telecomputing Corporation (Leslie Spira et al.); The Southwest Foundation for
Biomedical Research (Paul Mamelka); Technische Hogeschool Eindhoven, Netherlands
(.M.H. Smeets, B.].M. Morselt}; TransEra Corp. (Robert Raymond); Tulane University
(John Voigt); Universitit Bern, Switzerland (Franklin Davis}; Université Scientifique et
Medicale Grenoble, France (Jean-Luc Archimbaud); University College, Dublin, Ireland
{Barry Devlin); University of Arizona (Joellen Windsor); University of British Columbia
(Bruce Jolliffe); University of California at Berkeley (Greg Small); University of Chicago
(Ron Rusnak); University of Edinburgh, Scotland (Adam Albert-Recht); University of
Hawaii {Ian Gibbons); University of Kansas (Wes Hubert); University of Maryland (Edgar
Butt); University of Michigan (Chris Thomson, Gavin Eadie); University of Namur,
Belgium (Jacques Pierson); University of New South Wales, Australia (Peter Thew);
University of Oslo, Norway (Svein Johannessen, Knut Smaaland, Edward Hartmann);
University of Saskatchewan (Joe Angel); University of Southern California (Bob Larson,
Marco Papa); University of Tennessee at Knoxville (John Bray, James Grossen}; Univer-
sity of Texas at Austin (Jim Knutson, Steve Padgett}); University of Toledo (Brian Nel-
son); University of Toronto (Philip Murton); University of Trondheim, Norway (Frithjov
Iversen}; University of Vermont (Robert Detenbeck); University of Virginia (Olaf Pors);
University of Washington (Ron Blanford, David Ragozin, John Sambrook]); University
of Wisconsin (pAul sTevens, David Wilson); Utah State University (Joe Doupnik); the
U.S. Environmental Protection Agency (Bruce Wright); the U.S. National Institutes of
Health {Chuck Bacon, Roger Fajman); Victor Technologies Canada (W. Hertha); Virginia
Polytechnic Institute (R.A.L.); World Research Institute for Science & Technology (Chris
Barker). I've probably omitted as many contributors as I included (not intentionally!),
and the list grows constantly.

Thanks also to the Columbia University Computer Science department for playing
host to Kermit network distribution during 1984; to the proprietors of the various re-
search, educational, and volunteer computer networks for providing convenient paths
for the flow of Kermit programs and information; to the Oklahoma State University
Department of Computing and Information Sciences and Mark Vasoll for maintaining
a complete Kermit distribution for UUCP and Kermit server dialup access; to Digital
Equipment Corporation and Bernie Eiben for maintaining and providing dialup access
to the Kermit files; to Lancaster University and Alan Phillips for handling much of the
Kermit distribution in the United Kingdom; to the French DECUS Networks SIG and
Jean Dutertre of the Institut Frangaise du Pétrole for setting up a European Kermit

xvii ACKNOWLEDGMENTS

“distribution tree”’; to those who have set up Kermit redistribution mechanisms in
Scandinavia, Australia, and elsewhere; to Richard Garland, formerly of the Columbia
University Chemistry Department, Brian Nelson of the University of Toledo, Glenn
Everhart of RCA, and Stephen Attaya of Wiener Enterprises Inc, for periodically sub-
mitting the Kermit collection to the various DECUS SIGs; and also to Brian for provid-
ing dialup and BITNET access to PDP-11 and other Kermit files; to DECUS, SHARE,
PC-SIG, and other user groups for distributing Kermit on magnetic media; to those who
have translated Kermit documents into other languages; to the various hardware and
software producers who have included Kermit with their products at no extra charge;
to all those who have run sessions on Kermit at industry seminars and user group
conferences; and to everyone else who has helped in any way at all.

Thanks also to Richard Stallman of the Free Software Foundation, creator of the text
editor EMACS [28], which was used to write many of the Kermit programs and docu-
ments (including this book), and an early champion of the idea that software can be
developed by a broad, open, unorganized community without regard for personal en-
richment and shared by all without secrecy or license.

And thanks to those who supplied information on various topics: to Frank Wancho,
who helped with the summary of the Christensen protocol; to Bob Larson, Charlie
Spitzer, Alistair Milne, (the ubiquitous) Brian Nelson, William Lawrance, Gerard Gaye,
Jacob Palme, Ryan Popken, Lee Hallin, Roger Krall, and others who responded to my
queries about the peculiarities of sundry computer systems.

And thanks to those who helped in the production of this book: the editors and
production staff at Digital Press: John Osborn, Nancy Gustavesen, Chase Duffy, Mike
Meehan, Beth French, and to Barbara Murray and Geraldine Morse for their sensitive,
eagle-eyed copyediting, and to the staff of Waldman Graphics for overseeing the type-
setting. Thanks also to those who read the proposal or the manuscript and provided
helpful suggestions and comments: Don Knuth and Ralph Gorin of Stanford University,
J. Ray Scott of Carnegie-Mellon University, Kathy Hornbach of Lear Siegler, Inc., Bernie
Eiben of Digital Equipment Corporation, Bill Brindley of the DECUS Networks SIG,
Bill Catchings of Foundation Computer Systems, Brian Nelson of the University of
Toledo, and Vage Kundakgi and Christine Gianone of Columbia University. Need I say
that any errors remaining after the scrutiny of this crowd are mine alone?

Thanks too to John McNamara for writing the invaluable Technical Aspects of Data
Communication [25], and to Professor Lee Lidofsky of the Columbia University Engi-
neering School for first getting me hooked on computers so many years ago.

Finally, thanks to all the people and organizations I may have overlooked in the
foregoing, and to all those yet to come, for their contributions to Kermit Kultur.

This book is lovingly dedicated to my family: my wife, Judy, and my kids, Peter and
Amy, whom I shamefully neglected during the preparation of this book, and to my
mother, Vivian, and the memory of my brother Dennis.

Frank da Cruz (SY.FDC@CU20B)
New York City, March 1986

PART ONE

The 7Bds1;cs

1

Introduction

Computers are touching our lives in more ways every day. We see them at our schools
and workplaces. Our kids have them in their classrooms, and they’re asking for their
own at home. Computers send us bills, keep track of our grades, our salaries, our pen-
sions, our police records. They control our telephone system, traffic lights, aircraft,
spacecraft. Bookstores are choked with new computer books, and dustbins with old
ones.

As computers proliferate, the need to get information—*‘data’’—from one computer
to another becomes increasingly important. This was not a big problem in the old days,
when many people shared the same large central computer. Everything was in the same
place, in the same format, where it could be easily shared and moved from one appli-
cation to another. But now many offices (and homes) are their own little computer
centers, and no two are quite alike.

When we decentralize, we must learn to communicate. Our first sad lesson is that
computer manufacturers do not make this easy for us. Whether the result of deliberate
marketing decisions, or of the simple lack of pertinent standards, their products tend
to be incompatible in just those areas where we need compatibility. There are many
ways out of this predicament. This book presents what may be the cheapest.

History

At the height of the timesharing era at Columbia University, about 1980, our central
computers began to suffer from a glut of files. Disk storage space was running out, and
increasing numbers of students wanted to keep the computer files they accumulated
over their academic careers. The problem could not be solved simply by buying more
disks because, as somebody’s law states, “Usage will expand to consume all available
resources.’’!

A more decentralized approach was called for. Given the means, those who cared
about saving their files from term to term would take the trouble to do it themselves.
The newly popular floppy-disk-based microcomputers fit the bill nicely. The diskettes
were cheap, capacious, and easily carried and stored. But how could files be transferred

reliably from the university’s central computers to the microcomputer floppies, and
back?

1. This is a corollary to Parkinson’s Law, which says, “Work expands so as to fill the time available for
its completion.”

The problem took on a new dimension with the introduction of the IBM PC in 1981,
which struck a powerful blow to centralized computing. As the new generation of
personal computers began to rival the large central computers in several key application
areas, PCs [not only IBM) began to appear in offices all over campus, and soon spread
to the homes and dormitory rooms of faculty and students. The users of these PCs
needed to communicate and share their work—professors and students, researchers or
authors in collaboration, administrators up and down the “chain of command.” Com-
munication was required between PCs and the central systems, between PCs and other
{possibly incompatible) PCs, and between our central systems and minicomputers in
the academic departments. In short, everything had to “talk” to everything else.

But how? Computer networks were not a practical alternative in 1981, and today
they remain a costly one, even when you can find a network that provides the required
connections. The only medium that all our computers had in common was the “com-
munication port,” the place where a terminal or a “modem”’ is attached. The operation
of the communication port is relatively well defined and standardized, but it is not an
ideal medium for bulk transfers of data (for reasons that will be covered later). On the
other hand, it is usually standard equipment; with appropriate software it can do the
job for little or no additional hardware expense.

Several communication software packages were on the market in 1980-81, but they
were not available for all our systems. Even if they had been, the total cost would have
been enormous when multiplied by the number of microcomputers, minicomputers,
and mainframes we expected to arrive in the ensuing years. And even if the cost were
bearable, it would not have been wise to depend upon a single commercial vendor for
such an important function—the company could fail, or raise its prices suddenly, or
decline to add support for some new system.

Had we been aware of public domain communication protocols and programs, par-
ticularly MODEM? and its derivatives, we might have been tempted to adapt them to
our needs. But it turns out that MODEM would not have fulfilled one of our most basic
requirements: IBM mainframe communication.

Finally, for better or worse, we took the do-it-yourself approach. We invented a new
protocol and called it Kermit, after Kermit the Frog, star of ““The Muppet Show.”’® As

2. MODEM is more properly referred to as the Christensen protocol; MODEM, XMODEM, and so on,
are names of programs that implement this protocol. The Kermit and Christensen protocols are compared
in detail on pages 303-308.

3. Why? Mostly because there was a Muppets calendar on the wall when we were trying to think of a
name, and Kermit is a pleasant, unassuming sort of character. But since we weren't sure whether it was
OK to name our protocol after this popular television and movie star, we pretended that KERMIT was
an acronym; unfortunately, we could never find a good set of words to go with the letters, as readers of
some of our early source code can aftest. Later, while looking through a name book for his forthcoming
baby, Bill Catchings noticed that Kermit was a Celtic word for free, which is what all Kermit programs
should be, and words to this effect replaced the strained acronyms in our source code (Bill’s baby turned
out to be a girl, so he had to name her Becky instead). When BYTE Magazine was preparing our 1984
Kermit article for publication, they suggested we contact Henson Associates Inc. for permission to say
that we did indeed name the protocol aofter Kermit the Frog. Permission was kindly granted, and now
the real story can be told. | resisted the temptation, however, to call the present work “Kermit the Book.”

4 THE BASICS

T
i

0 i
2 ‘7.7’ ~<

5 INTRODUCTION

luck would have it, the few types of systems that our protocol initially had to support—
DECSYSTEM-20 and IBM 370-Series mainframes, CP/M and MS-DOS microcompu-
ters—exhibit among them nearly every imaginable quirk and idiosyncrasy of commu-
nication style and file organization, and our protocol was designed to encompass all of
them. The result has turned out to be adaptable to almost every new situation; its
flexibility accounts in large measure for its popularity. It must be said, however, that
had we known Kermit would eventually spread all over the globe (and beyond), we
might have thought a little more carefully about the basic design before unleashing it
(see ““It’s Too Late Now,” page 307).

By 1981 we had several no-frills Kermit programs running successfully. In 1982 we
began to present Kermit at computer user-group conferences like DECUS (the Digital
Equipment Corporation User Society] and SHARE (the IBM user society}, and we gladly
gave the programs, source code, and documentation to anyone who asked. Before long,
we began to receive new Kermit implementations back, and soon we had quite a col-
lection, one that continues to grow to this day.

Sharing versus Selling

Another reason for Kermit’s popularity is that it’s free. Kermit is one example of why
it’s good to share software of general utility (two others are EMACS [28] and TgX [20]).
If we had elected to keep it to ourselves, or to license and sell it, or to keep the source
code or protocol specification secret, it would never have reached its current level of
popularity. It would never have been written for so many different computers. It would
not have improved and evolved through the continuous contribution of bug fixes and
new versions, complaints and suggestions. It would never have threatened to become a
“de facto standard.” If the spirit of the ‘80s is “Don’t give away anything you can sell,”
then Kermit must be a child of the '60s.

Contrary to what you might expect from the foregoing polemic, Kermit programs
are not necessarily in the public domain. Many of them bear copyright notices to protect
their authors or sponsoring institutions against having their work turned into com-
mercial products. However, these copyright notices generally grant permission to any
individual or organization to use, copy, modify, or redistribute the program, source code,
or documentation as long as this is not done for profit, and the copyright notice and
author credits are retained. Commercial hardware and software vendors are allowed to
add Kermit protocol to their products provided they do not charge their customers extra
for it {at least not beyond the incremental cost of reproduction’and distribution), and
they agree to certain other easy terms.

Kermit distribution began at Columbia in 1981. Our original policy was: “Send us
a tape and a return mailer and we'll send you the Kermit distribution.” Since we were
not able to make floppy disks in a wide variety of formats, we preferred to send tapes
to institutional computing centers, which could take the responsibility for “bootstrap-
ping”’ the desired microcomputer implementations to floppy disk and distributing them
in appropriate formats to their users.

6 THE BASICS

By early 1983 the demand for Kermit tapes had grown far beyond our capacity to
produce them and still do our “real jobs.” To get our system programmers out of the
shipping room, we began to charge a distribution fee. This fee is not a software license
fee. It allows us to keep up with demand by hiring production workers, and it compen-
sates us for media, packaging, postage, computer utilization, and printing. It does not
reflect the amount of software on the tape, the quality of the software, or the amount
of effort that went into producing the software—only the “parts and labor”” required for
reproduction and shipping. '

For the benefit of those who have trouble with the fee, every effort is made to funnel
Kermit programs into alternative distribution channels. Kermit programs are submitted
regularly to user group libraries, and they are available on many computer networks
and dialup bulletin board systems. All who have received Kermit programs from Co-
lumbia or elsewhere are encouraged to share them with their friends and neighbors.

Kermit has been a comforting example of international cooperation on a personal
and institutional level. Kermit runs happily in both Irelands, both Chinas, both Ger-
manys. It can be found in the USA and the USSR, in Israel and Irag; in New Zealand
and New Caledonia, Chile and Czechoslovakia; in Malaysia and Mexico, Sweden and
Switzerland, Norway and the Netherlands, and practically anywhere else you can think
of. If a country has computers, many of them are probably running Kermit programs—
people’s basic needs are pretty much the same everywhere, and people who use com-
puters have begun to view the ability to transmit computer data as a basic need, even
a right. Kermit fosters the free exchange of information and ideas, and it works against
the trend toward information as commodity (or controlled substance).

Our attitudes about sharing spring from a spirit of respect for fellow humans and
other creatures. I trust and urge that Kermit be used only for peaceful and humane
purposes. It was not created and shared to further causes of nationalism, war, oppression,
or discrimination. Please use it in the spirit in which it is offered.

Kermit versus Networks

You have probably read about computer networks. Networks are based upon dedicated
physical connections between computers; they are the best way to put computers into
communication with each other. They're reliable, they’re fast, they support a variety of
functions, and they’re easy to use. They overcome all the same problems that Kermit
must cope with, and they do it better. So why bother with Kermit?

If you have a network, and it includes all the computers you care about, then you
don’t have to bother with Kermit. But networks are expensive, hard to install, and often
designed to work only with a particular vendor’s equipment. Many microcomputers
have no network option available; even when there is one, the expense can be prohib-
itive. And when the expense is tolerable, the logistics get in the way—cables must be
laid, holes drilled, satellites launched. So chances are that your microcomputer is not
on a network, or if it is, that some day you will need it to communicate with some
other computer that is not on your network.

Table 1-1: Major Kermit Implementations

Portable Environments

CP/M-80 (Many different systems; Assembler)

CP/M-86 (DEC Rainbow, NEC APC, several others; ASM86)

LISP (LMI, Symbolics; ZETALISP)

MS-DOS, PC-DOS (IBM PC family, DEC Rainbow, many others; MASM)

08-9 (TRS-80 Color Computer, and various 6809 and 68000 systems; C)
Software Tools (various systems; Ratfor)

Turbo Pascal (MS-DOS, CP/M-80, Apple II DOS)

UCSD p-System (IBM PC, Terak, and other systems; Pascal)

UNIX (VAX, SUN, many others; V7, 4.x BSD, System III & V, etc; C language)

Particular Mainframes, Minicomputers Not Covered Above

Burroughs B6800, B7900 (Algol)

Cray-1, Cray-XMP (CTSS; Fortran-77)

CDC Cyber 170 (NOS, NOS/BE; Fortran-77)

Data General (RDOS; Fortran-5), (AOS; Fortran-5), (AOS/VS; Pascal)
DEC PDP-11 (RT11, RSX11M, RSX11M +, RSTS/E, P/OS, etc; Macro-11),
DEC PDP-11 (MUMPS; MUMPS-11)

DEC VAX-11 (VMS; Bliss-32, Macro-32, Pascal/Fortran, or C)
DECsystem-10 (TOPS-10; Bliss-36, Macro);

DECSYSTEM-20 (TOPS-20; Macro)

GEC 4000 (0S4000; MUM/SERC)

Gould/SEL Concept 32 (MPX-32; Fortran)

Harris 800 {VOS; Pascal)

Honeywell (MULTICS; PL/I}, DPS-6,8 (GCOS; C, B), CP6 (Pascal or PL/6)
Hewlett-Packard 1000 (RTE-6/VM; Fortran) (RTE/A; Pascal)
Hewlett-Packard 3000 (MPE; SPL or Fortran)

IBM System/370 (VM/CMS, MVS/TSO, MVS/GUTS, MTS, MUSIC; Assembler)
ICL 2900 (VME; S3)

Perkin-Elmer 3200 Series (OS/32; Fortran)

PRIME (PRIMOS; PL/P)

Sperry/Univac-1100 (EXEC, OS-1100; Assembler, Ratfor, or Pascal)
Tandem Nonstop {Guardian; TAL)

Particular Microcomputers, PCs, Workstations Not Covered Above

Alpha Micro 68000 {Alpha 68K Assembler)

Acorn BBC Micro (0S1.20; ADE)

Apollo (Aegis; Pascal)

Apple II 6502 (Apple DOS; DEC-10/20 CROSS or Apple Assembler)

Apple Macintosh (SUMACC C)

Atari Home Computers (DOS; Action!)

Commodore 64 (DEC-10/20 CROSS or FORTH)

Commodore Amiga (Intuiton; C)

DEC Pro-300 Series (P/OS; Bliss-16 or Macro-11), (Pro/RT; Macro), (Venix; C)
ICL/Perq (Pascal)

Intel Development System (ISIS; PL/M), (iRMX-86; PL/M)

TRS80 Models LIIL4 (TRSDOS; ASM), Model 16 (Xenix; C), Color Computer (Asm]

8 THE BASICS

Network connections must be installed by “management.” They require special
“interface hardware,” operating system software, and so forth. Kermit programs, on the
other hand, run (with very few exceptions) in the computer’s ‘“user mode,” with no
special privileges or changes to the system software required. Once you have a copy of-
Kermit on your computer, you can establish your own connection to any other computer
that you can dial on the telephone or reach with a cable. Unlike proprietary networks,
Kermit always comes with source code and documentation, so even if there is no Kermit
program for your computer, a programmer can create one in a short time based on the
Kermit programs that have already been written or the examples in this book.

Networks are becoming increasingly widespread and interconnected, but they will
never encompass every computer in the world. Communication programs like Kermit
will always be needed to make the connections that aren’t already there: from home to
work, from business trip to home base, from space to earth.

Why Is This Book So Thick?

The Kermit book is several books in one—a political tract, an introduction to computers
and data communications, a reference manual, a protocol specification (not to mention
37 pages of acknowledgments). Different parts are appropriate to different audiences;
very few people will need to read it front to back. Much of the material is included
based on years of answering questions about Kermit, and if this book serves no other
purpose than to give my phone a rest, I'll be happy.

But you might still wonder why the book has to be so thick. Why can’t we have a
one-page Kermit manual, and be done with it? Is it because Kermit programs are defi-
cient in design, requiring people to work harder and know more than they really should
have to? On a superficial level, the answer may sometimes be yes. Remember that
many Kermit programs are contributed by volunteers working in their limited spare
time; to get the job done at all, they may have to skimp on the frills that are the bread
and butter of commercial software packages.

On a more fundamental level, it must be recognized that Kermit is a response to a
very complicated problem. Most computer programs operate in self-contained, con-
trolled environments; programmers of sufficient motivation and skill can go to great
lengths to shield users of these programs from the underlying details of machine archi-
tecture and file organization. But data communication programs like Kermit cannot
have this knowledge built in, because their successful operation depends upon factors
outside the computer—a murky world filled with all kinds of pitfalls and obstructions.
No matter how “artificially intelligent’” a communication program may claim to be,
you must sometimes lead it by the hand through the rough spots before it can begin its
work. You can think of this book as a detailed guide to that uncertain, complicated
world.

9 "INTRODUCTION

How to Get Kermit

The Columbia University Center for Computing Activities serves as a clearinghouse
for Kermit programs and information. All who create new Kermit programs, adapt ex-
isting ones to new systems, or fix bugs in or add features to existing programs are
encouraged to submit their work to Columbia for further distribution. Columbia, in
turn, makes all the Kermit material, including program source, as widely available as
possible.

It should be stressed again that all Kermit programs are provided “‘as is,” with no
warranty of any kind. Columbia University, the individual programmers, and the con-
tributing institutions make no claim as to their correct operation or the accuracy of
their documentation. Kermit is not a commercial venture; everyone does the best they
can in the time that they have, and all Kermit users are invited to fix bugs, improve
documentation, and contribute new versions, so that the collection will continue to
grow and each Kermit program will continue to improve.

As of February 1986, Kermit was available for about 200 different machines and
operating systems, and many additional versions were under development. Table 1-1
shows some of the major implementations, including the machine, operating system,
and the programming language used. Certain of the programs can run on more than one
computer. For instance, the IBM PC version runs on the IBM PC, XT, AT, and all the
compatibles; the UNIX version runs on dozens of different systems. For an up-to-date
list of available Kermit programs. along with ordering instructions, write to:

Kermit Distribution

Columbia University Center for Computing Activites
612 West 115th Street

New York, NY 10025

USA

2

The Basics

Imagine you have written a book, and you want to submit the manuscript to your
publisher, Fred, whose office is behind a high fence, marked “DEPOSIT MANUSCRIPTS
HERE,” with an arrow pointing to the top.! Your first thought is to throw the whole
thing over at once, but you wisely decide against this course because the last author
who submitted a large manuscript in this manner broke Fred’s foot. Instead, you decide
to send it a page at a time, folding each page into a paper airplane and flying it over the
fence.

This method works, up to a point. Fred is able to catch each page, flatten it out, and
put it into a folder before the next page arrives. But when the folder becomes full, he
has to make a trip back to the filing cabinet to file the folder away and get a new empty
one. Because of the fence, you don’t know he’s away, so you continue to send your
pages across. Some fall into puddles, some are carried away by stray dogs. This happens
each time Fred returns to the filing cabinet.

To make matters worse, the weather takes a bad turn. First, the wind begins to blow.
Sometimes it blows a page away just before Fred can catch it. Or it seizes a page before
it ever gets over the fence, so that Fred never even knows it is lost. And then it starts
to rain! Whenever a raindrop strikes a page, the words run together into an illegible
smear.

After the storm passes, the Banana Birds come out from hiding. Whenever these
creatures see the word banana in print, they attack the page furiously, leaving only a
hole where the word had been. They are soon joined by the Kumquat Birds, who fly off
with any piece of paper bearing the word kumgquat, which they use for building their
nests. And the Mocking Birds join the fun, too; they take great pleasure in manufac-
turing their own airplanes, covered with meaningless scribbles, and hurling them over
the fence amongst the real ones. Fortunately, the Snipper Birds (who bite off the noses
of airplanes as they fly past) are away for the season, visiting some disreputable cousins.

Meanwhile, as your skill at making airplanes improves, you are able to build and
throw them faster. At times, Fred can’t keep up, and he loses several pages this way.
He also misses pages when he is interrupted by telephone calls, or when visitors
drop by.

Toward the end of the day, when only 100 pages remain to be sent, Fred is suddenly
called to a meeting. Unfortunately, he doesn’t have a way to let you know about this,
$0 you continue to sail your manuscript over the fence, page by page. The pages that

1. This is the first of many silly analogies you will find in this book. It does not reflect the actual method
used to submit the present manuscript.

\
i
7[

A Mocking Bird

%

g
Y

747

s %/ ///////’
~\
X

(A Banand Bird

N

‘\\\\\w\w\\\\
y

T

y \\\\\\\\\\\ T
i
) \\\\s\\\\

i

A

ﬁ
{

B\

=)

A\

i
E

77777, /
\\\\\\ \\\\\“\\\\“\\\\\
7 \\\\\\\\ N

7

/
i \\
\“\\\\\\\\\\\ i

‘.\\'\\\“

i

%\\
)

12 THE BASICS

are lucky enough to survive the birds fall prey to the puddles and dogs. And to top it
off, Fred forgot to close the file cabinet drawer before he left, so all the pages he had
already filed blow away in a sudden gust of wind.

This story illustrates, without going into any technical detail, the kinds of hazards
that await us when we set out to transfer computer files. The manuscript is a file, the
fence is the separation between the two computers; the wind, the rain, and the birds
represent just a few unexpected properties of the communication medium. The dogs
and puddles correspond to the infamous “/bit bucket”” into which arriving data is® con-
signed when the computer is not ready to process it. The file cabinet is the computer’s
disk, and the folders are the system’s disk buffers. You and Fred are the computers
themselves, with their differing capabilities, speeds, and jobs to do.

If you had first tried submitting your manuscript on a sunny, calm, dry day (with
the birds wintering in the south), all might have worked perfectly. Yet the hazards are
real, and if you perform this operation often enough, they will take their toll: a normally
“clean” telephone connection will be attacked by a sudden burst of noise; a seemingly
attentive computer will turn its back on you at a critical moment; some rare arrange-
ment of characters in your data will plunge a piece of communication equipment into
catatonia. A set of rules and procedures, a protocol, is needed to ensure that when
problems like this arise, they can be detected and corrective action taken,

What Is a Protocol?

A protocol is a kind of etiquette, much like the conventions people follow regarding
introductions, greetings, conversation, and parting. Computers must observe similar
conventions if they are to exchange information with one another. They must agree to
speak the same language, at the same speed. They should know how to say hello and
goodbye to each other. They may have to agree that only one of them can talk at a time
(unless they’re New Yorkers!). It doesn’t matter very much what the rules are, as long
as the two parties can agree upon and follow them. Such a set of rules is called a protocol.

Kermit is a file transfer protocol. Its rules are designed to ensure that computer files®
can be transferred from one computer to another correctly and completely, despite the
many pitfalls that lie in the way. As a crude example, here is a protocol for submitting
manuscripts to Fred’s Press:

2. Yes, | know data is the plural of Latin datum, and | should say data are, or perhaps data sunt. But
alas, the word has entered English usage as a collective (singular) noun, despite the best efforts of the
Académie Anglaise.

3. Because you're reading this book, you probably have some idea of what files are. For now, let's just
say a file is a collection of information stored in approximately permanent form under a given name,
usually on a magnetic medium like a disk; files are described in detail in the Primer section of this book
(starting on page 48).

13 THE BASICS

* In order to avoid injury to Fred, don’t throw the whole manuscript at once. Fold each
page into a paper airplane, and fly the pages over the wall one by one. Number them
sequentially, so Fred can detect when a page is missing.

* Start your manuscript with a title page, so Fred can tell who it’s from and where to file
it. Launch the title page first.

* Send the pages in order. After sending a page to Fred, wait for a receipt before sending
the next page, to be sure he’s ready for it.

* To foil the Banana and Kumquat birds, substitute special code words on your airplanes
for banana and kumgquat. If Snipper Birds are in the vicinity, fold the airplanes so that
the nose contains no writing.

« If you wait too long for a reply from Fred, send another copy of the same page. If you
send, say, five copies with no reply, you can assume Fred has gone to a meeting, in
which case you give up and try again later.

« After you have sent the last page, you should send a special message telling Fred that
the transmission is complete. This message requires a receipt, so the previous rule
applies to it.

Of course, Fred must observe his end of the protocol:

* Begin by waiting for a title page. Ignore any papers that are not title pages. When the
title page arrives, open the appropriate file drawer, get an empty folder, and then send
back a receipt for the title page.

» When an expected page arrives successfully, decode any code words and then put it in
the folder. If the folder becomes full, go file it and get another empty folder. Then send
back a numbered receipt for the page, and wait for the next page.

* When a page arrives that has scribbles, smears, the wrong page number, or the same
page number as last time, send back a request for another copy of the desired page. This
takes care of the wind, rain, Mocking Birds, and lost receipts.

» When a special message arrives indicating that the manuscript has been completely
sent, file away the last folder, close the file drawer, and send a final receipt.

Now you have a fairly general and robust protocol for throwing a manuscript over a
fence. A real file transfer protocol must address the same concerns, which might be
stated somewhat more formally as follows:

* Identification: The name of each file should be transmitted with, but distinct from, its
contents, so that it can be automatically stored under its correct name on the target
computer system.

14 THE BASICS

* Delimitation: The beginning and end of each file should be marked clearly, so that the
target system can be certain that it has received it completely, with no extraneous
material at the beginning or end.

» Transparency: Information must be encoded during transmission to exclude patterns
that could trigger interference by intervening communications or computing equip-
ment.

* Synchronization: Information must not be transmitted to the target system faster than
it can be processed.

» Sequencing: The target system must be able to ensure that no data has been lost or
erroneously duplicated.

» Error Correction: The target system must be able to detect when information has been
corrupted during transmission, and recover the damaged information.

« Timeout: At least one of the systems must be able to detect when expected data does
not arrive in a reasonable amount of time, and request retransmission.

» Format Conversion: If the information is to be used on the target system (rather than
simply stored there), it must be converted to a form that is useful on the target system.*

We'll return to all these topics throughout the book.

How the Kermit Protocol Works

A file is transferred from one computer to another by a pair of Kermit programs, one
running on each computer, as shown in Figure 2-1. The Kermit programs carry out the
Kermit protocol by sending messages to each other through their communication ports.
This section describes the protocol briefly, just enough to give you an idea of how it
works. All the material presented here is covered more thoroughly in subsequent sec-
tions.

The Kermit protocol is character-oriented; data is transmitted in the form of discrete
characters, like A, B, C, rather than in some other form. The communication medium
itself is character-oriented, because it was designed for use by character devices like
data terminals. Most computers agree about how characters are represented, and they
agree that there are 128 of them altogether, of which 95 are printable (like A, B, C, 1,
2, 3), and the other 33 are reserved for control or formatting purposes. These characters
compose the ASCII character set [5] (listed in Appendix D on page 340). The control
characters sometimes cause computers and communication devices to react unpredict-

4. Format conversion didn’t come up in our story, because Fred is not picky about the manuscript format.
But another publisher might want your margins rearranged, your spacing changed, or your English
translated to Sanskrit.

15 THE BASICS

L2227

(2T 222273

- 'I.""'I.
£

Figure 2-1. Two Computers, Two Kermit Programs

ably, just as the names of certain fruits provoke the neighborhood birds to intercept our
paper airplanes. To promote transparency, Kermit encodes control characters as print-
able character sequences during transmission, just as we disguised the hazardous fruit
names in our manuscript.

Kermit transfers data by breaking it up into pieces and encapsulating the pieces
within packets, much as we broke our manuscript into separate pages for transmission.
In data communication, a packet is a sequence of characters arranged so that the begin-
ning and end, and the location of various control and data fields, can be unambiguously
identified. The control fields are used for synchronization, sequencing, and error detec-
tion, and the data field usually contains a piece of the file being transferred. A Kermit
packet is shown in Figure 2-2.

| mARK | LEN | sEQ [TYPE JLATA

Figure 2-2. Kermit Packet Layout

The MARK identifies the beginning of the packet. The length field (LEN) specifies
how long the rest of the packet is. The sequence number (SEQ) is used to detect lost or
duplicated packets. The TYPE field indicates the purpose or contents of the packet: file
name, file data, end of file, etc. The CHECK field contains a quantity formed by com-
bining all the other characters in the packet in some way (like adding them up). The
sender of the packet computes this value and includes it at the end of the packet. The

16 THE BASICS

receiver of the packet does the same computation and checks the result against the
value recorded in the packet. If the two values agree, the packet is accepted; if they
disagree, the packet has been corrupted and retransmission is requested.

- Figure 2-3 shows how a typical file transfer proceeds. The transfer is synchronized,
because the file sender waits for a response to each packet before sending the next one.
The receiver has time to file away the data, free from concern that the next packet will
arrive prematurely. The file sender begins the transfer by transmitting a Send-Initiation
packet to the receiver (packet zero in the figure). The ““Send-Init’”’ and its response are
greeting messages, in which the two programs settle upon etiquette: the longest packet
that will be tolerated, how long to wait for a packet before timing out, and so forth.
Then the sender transmits a File-Header packet (packet 1 in Figure 2-3) to tell the
receiver the name of the file that is about to arrive. Then come as many File-Data
packets (packets 2 and following) as are required to transmit the entire contents of the
file, which is encoded in printable characters to promote transparency. The sender fol-
lows the data packets by an End-of-File packet (27}. The File-Header, File-Data, End-of-
File sequence is repeated for each file to be sent, and the transaction is closed by an
End-of-Transaction packet (packet 54 in the figure).

The file receiver sends an ACK (positive acknowledgment) packet back to the sender
for each packet that has been received correctly. Then both Kermit programs advance
their current packet sequence numbers and move on to the next packet. If a packet is
corrupted in transit by noise or loss of characters (packet 4 in the figure), the check will

be wrong and the file receiver will NAK [negatively acknowledge) it, causing the sender

to retransmit the same packet. _,Q -
If the file sender does not receive an ACK within the prescribed timeout interval - ,ﬁ

(packet 30), it retransmits the same packet. If the file receiver does not receive an —=

expected packet within the timeout interval, it sends a NAK for the expected packet. ‘%W%‘ ;

The receiver uses the packet number to detect when the same packet arrives more than wl%ﬁ_ﬁ 7

once (like packet 30) to avoid writing redundant data into the file. Because the file %» = *% H

sender must receive a valid ACK for each packet before transmitting the next one, there /",»(fy“‘\ o (':\\x

is never a gap in the data. Finally, if the same packet is retransmitted too many times, Q,i{’;m,m%m

the protocol will declare that the transfer has failed.

Conventions Used in This Book

Before we proceed to the basic Kermit commands and examples, let’s endow some
commonly used words with specialized meanings:

* Computer: For the purposes of this book, a computer is a device that can communicate
over a “‘serial communication port,” store and manage files, and run programs (like
Kermit). A computer may also be called a computer system, a system, or a machine.

* Micro: This term is used synonymously with microcomputer, personal computer (PC),
and workstation. It denotes a self-contained, primarily single-user computer system.
These can range in power from a hobbyist’s inexpensive home computer to an engineer’s

17 THE BASICS

Sender Receiver

Send-Init(0) Sender and Receiver exchange greetings.
ACK(0)

File-Header(l) ——— Sender sends first filename to receiver.
ACK(1) Receiver acknowledges.

File-Data(R2) Sender sends first packet of file data.
ACK(2)

File-Data(3) Sender sends second data packet.
ACK(3)

File-Data(4) —xx~~p"% — Third data packet is corrupted by noise.
NAK (4) and receiver negatively acknowledges it.

File-Data(4) Sender retransmits third packet.
ACK(4) and this time receiver ACKs it.

File-Data packets are sent and acknowledged until the whole file is sent.

End-of-File(27) —m Sender indicates first file is complete.

ACK(27)
File-Header(28) — Name of second file.
ACK(28)
File-Data(29) — First data packet for second file.
ACK(29)
File-Data(30) — Second data packet for second file.
- - — —— ACK(30) ACK is lost somewhere.
File-Data(30) — Sender times out and retransmits.
ACK(30) Receiver ACKs.
File-Data(3l) ————> Third data packet . . .
ACK(31)

File-Data packets are sent and ACK’d until the whole file is sent.

End-of-File(53) — Sender indicates second file is complete.
ACK(53)

End-of-Transmission(54) —> Sender indicates no more files to come
ACK(54) and closes the transaction.

Figure 2-3. Kermit File Transfer Example

18 THE BASICS

$100,000 automated design workstation. The distinguishing characteristic of these sys-
tems, from Kermit’s point of view, is that the user’s primary access is through a special
console (keyboard and screen) that is distinct from the primary communication medium
{the serial port).

Mainframe: This term is used synonymously with minicomputer or timesharing sys-
tem. From Kermit’s viewpoint, all of these have in common that they are shared si-
multaneously by more than one user. Users communicate via terminals, over
communication lines that serve simultaneously as their primary access to the system
and the primary communication medium.

Local: This means the same in Kermit jargon as it does in everyday speech: “nearby.”
The local system is the closer of two systems, the one you interact with more directly.
A local Kermit program can interact with you via the keyboard and screen while it is
transferring files on a separate communication line. A micro is usually, but not always,
local.

Remote: By the same token, remote means “far away.” When two computers are con-
nected via Kermit, the more distant one is remote—if you have to go through computer
A to reach computer B, then A is local and B is remote. A remote Kermit program uses
the same communication line to transfer files that it uses to interact with you, which
means it cannot interact and transfer files at the same time. A mainframe is usually,
but not always, remote.

Host: In computer jargon, a host is a computer system that can accommodate multiple
simultaneous users (guests) and offer them a variety of services. This book uses the
word host to refer to a remote mainframe or timesharing system.

Over the years there have been many different styles of ““user interface’” (computer
jargon for how a computer communicates with a human) ranging from plugboards and
switches to cards and “job control language”’; from terminals and commands to mice
and windows. The most common form of human-machine interaction today is still the
terminal and command model, and this is the one we use in this book, even though
some Kermit programs use others.

Within the terminal and command model, there are several variations. Our focus is
on the interactive prompting, or conversational, style. The computer issues a prompt
and you respond by typing a command; the computer displays the results of your com-
mand, and then prompts you for your next command. And so on. This form of inter-
action is called a dialog. The prompt is the computer’s way of telling you that it is
ready for your next command. Kermit programs tend to have prompts like “Kermit>"
and simple commands composed of words, usually in the form of short imperative
sentences. In the following example, the program’s prompt “Kermit>" is followed by
the command “send foo.bar’:

Kermit>send foo.bar

19 THE BASICS

The computer types Kermit> and you type send foo.bar.

A command is composed of one or more fields. A field is like a word in a sentence;
it is surrounded by spaces, or else appears at the beginning or the end. The fields of
Kermit commands are either specific keywords, like SEND, SET, EXIT, HELP, FILE,
ON, OFF, or else operands, like numbers or filenames. In the description of a command,
a keyword is shown literally, whereas an operand is shown as a parameter, a symbol
for which you are to substitute a real value. For instance, if the parameter is number,
then you might substitute 13.

Here is the notation that is used to describe Kermit commands, as well as in sample
dialogs with the computer. A few additional conventions appear on page 119.

1. Parameters are shown in italics. For example, a command to delete a file might be
shown like this:

delete filename

which means that you would type the word delete and the following space literally,
and then you would type the name of an actual file. The most common parameters are:

filename The name of a single file
filespec A file specification, possibly referring to more than one file

number A number, usually in decimal notation

The method for specifying a group of files depends on the particular computer sys-
tem. Usually it is done by including a ““wildcard” character in the filename. For instance
“* TXT"” might denote all files whose names end with **. TXT".

2. In sample dialogs between a person and a computer, the part typed by the person is
in green ink, and the part typed by the computer is in plain black ink. In command
descriptions, colored ink is not used.

3. In command descriptions there is an implied carriage return at the end of the line.
In other words, when you see the end of a line, you should type a carriage return unless
otherwise indicated.

4. <CR> means “type carriage return.” This is used in contexts where the implied end
of line might not be obvious.

5. <NOCR> means that although the end of the line would normally imply a carriage
return, you shouldn’t type one here.

6. CTRL-A represents the Control-A character, one of the control characters from the
ASCII alphabet. Similarly, CTRL-B represents Control-B, and so on. To enter a control
character from the keyboard, hold down the Control {CTRL) key and press the indicated
letter.

7. “A is an alternative notation for Control-A, sometimes called ‘““uparrow’’ notation.
Computers often display control characters in this form.

20 THE BASICS

The following sample dialog shows how to “login’”’ to a (hypothetical) host computer
and start a file transfer with Kermit. The lines are numbered to help us talk about them
afterward:

(1) @ login username

(2) Password: password

(3) User username logged in at 6:45pm Monday, 7 October 1985
(4) @ kermit

(5) Kermit-XX>send filespec

(6) "lc <NOCR>

(7) Kermit-MS>receive

In line (1) the system has issued a prompt consisting of an atsign (®) and a space. You
type login, a space, and then your own username, and you enter the command with
a carriage return.

In line {2) the system responds by prompting for your password, which you type. In
line (3) the system issues a message; the sample shows that you would really see your
own username in the message, rather than the word username.

In line (4) you get the system’s atsign prompt again, and you type kermit, which
tells your computer to run the Kermit program. When the program starts, it issues its
own prompt, Kermit—XX>. Note that the system and the program have different prompts,
so that you know which one you are talking to; the system command language inter-
preter recognizes one set of commands and Kermit another. -

In line (5) you tell the Kermit program to send a file.

In line (6) you type a control character, Control-Rightbracket, followed by the letter
c,” with no carriage return. This cryptic sequence invokes another program’s prompt,
another different Kermit program on a different computer. To this program, you type
receive. And then. ..

But before we get ahead of ourselves, let’s see what it takes to establish communi-
cation between two computers.

i

Getting Connected

This section explains how to connect one computer to another. If you already know
how to make the connection you want, feel free to skip ahead to page 27 (Terminal
Emulation).

Before two computers can communicate, there must be a physical connection be-
tween them. In some cases, the connection is already there: a hardwired (dedicated,
permanent) line, or a terminal network. But you may have to make the connection
yourself by dialing a phone number or installing a cable. Once you have the physical
connection, you need software (like Kermit) that knows how to use it, and you need to
know how to use the software.

21 THE BASICS

The following discussion assumes you are connecting a micro to a mainframe, but
it would also apply to connections between micros, or between mainframes, with minor
and obvious changes in wording.

Cables, Connectors, Modems, and Ports

Before you can establish a physical connection, you need an asynchronous serial com-
munication port, sometimes called an asynchronous adapter, an RS-232 port, an EIA
connector, or some other combination of these words. We’ll just call it the serial port.
All terminals come with a serial port, and many, but not all, microcomputers carry
them as standard equipment. All mainframes have them too (with a few exceptions
we’ll discuss later]. The serial port generally appears on the back of your micro as a
connector with two rows of pins (or holes), either 25 or 9 of them, as shown in Figure
2—4. But if you don't see such a connector, read the next few paragraphs before rushing
out to buy a serial port.

The connector is there for you to plug a cable into. If you have a cable that will
reach the other computer, you need no more, provided the cable is wired correctly and
the plugs fit (Figure 2-5). If the other computer is too far away, you can call it up on
the telephone, using a modem (MOdulator-DEModulator]. Modems come in two basic
forms, internal and external. An external modem (Figure 2-6) is separate from your
microcomputer. It connects to the micro’s serial port with one cable and to the tele-
phone with another cable. Older external modems, called acoustic couplers, connect to
the phone’s handset with rubber cups. An internal modem (Figure 2-7}, on the other
hand, is inside your micro. It is connected internally to (or incorporates) your micro’s
serial port, so that all you see from the outside may be a modular phone jack. In this
case, you can still communicate, but only by telephone.

Figure 2-4. Common Connector Configurations

22 THE BASICS

Figure 2-5. Direct Hookup

23 THE BASICS

/MWMM

N
N
S T@@WL
Lime S
| | N
§§ s Modom,
S
N gt
Modemt-
Figure 2-6. Direct-Connect External Modem Hookup
Ty
/v
e | j/
7‘ 2@2 ‘)'ﬁﬂ'ﬂff \
Linet ‘ =) é
%ZMML& - 7 ?
e, |, VI [\
”ZL Mo % \ Tnamgrame.
) Modemy
> 4 a¥
.
<
RIS
&WAW
!

Figure 2-7. Internal Modem Hookup

.

24 THE BASICS

If you have an internal modem, you can skip ahead to “‘Dialups,” page 25. But you
should be aware that Kermit does not necessarily work with any particular internal
modem, even if it works with an external modem on the same system. The only way
to be certain is to try. If you’re in the market for a modem to use with Kermit, don’t
buy an internal modem unless you already know it will work with Kermit on your
system.

The kind of data communication cables we use are called EIA cables or RS-232-C
cables. A cable consists of an outer sleeve containing from 4 to 25 insulated wires,
which terminate at pins (or holes) within D-connectors at each end (Figure 2-4). These
connectors come in different shapes, different “genders,” with different numbers of
wires, and with different pin assignments. You will need a cable with just the right
combination of all these.

Gender: A connector is called “male” if pins protrude from it, and “female” if it has
holes. Only connectors of opposite gender can “mate.” For better or worse, this kind of
terminology is firmly rooted in data communications and also among electricians.®
Although there is a standard [9] that says computers and terminals should have male
connectors, you are just as likely to find them with female ones. Male connectors are
sometimes called plugs, and females receptacles.

Shape: D-connectors come in two major shapes, DB-25 (currently the most common)
and DB-9° (gaining popularity), described by international standards [15,16] respectively,
and shown in Figure 2-4. The DB-25 connector has two rows of pins {or holes), 13 on
top and 12 on the bottom. The DB-9 has 5 on top and 4 on the bottom. Both are shaped
like horizontally elongated trapezoids with rounded corners. The shell of the male con-
nector fits around the female connector, and the pins go into the holes. Properly speak-
ing, only the 25-pin version is an RS-232 connector.

Wires: All data cables must have at least four wires—one for transmit, one for receive,
and two for ground. When modems are involved (or when the serial port is intended for
use with a modem), additional wires carry signals used to monitor and control the phone
connection. When the transmit lead of one connecter goes to the receive lead of the
other, and vice versa, the cable is called a null modem cable, or a modem eliminator.
A null modem is used to connect one computer directly to another.

Manufacturers exhibit little consistency in the importance they attach to the various
pins. For this reason, computer supply houses often sell cables in several varieties—for
instance, with 4, 8, 10, 15, or 25 wires, and options as to which sets of pins are con-

5. As far as | can tell, no particular merit is ascribed to either gender.

6. Although “DB-9" is in common usage, it is probably a misnomer. Supply catalogs indicate that the
letter following the D denotes the connector’s shell size, and that the shell size for 9-pin connectors is E,
not B.

25 THE BASICS

nected. However, it is not always true that more wires are better; in null modem cables,
especially, certain modem signals need to be ignored, or cross-connected. There have
been cases where wiring, say, pins 9 or 10 (used for test voltages) has caused damage.
The only way to know which cable is right is to consult your dealer or the technical
documentation for your equipment.

The following sections discuss direct and dialup connections as they most commonly
occur. If this information is not enough to get you connected, consult the primers and
case studies in later sections of this book.

Direct Connections

A direct connection between two computers can be established by running a commu-
nication cable between their serial ports. But finding the right cable can be a major
hurdle. Most computer-to-computer connections require a null modem cable, because
the data that one system transmits is to be received by the other. So first, get a null-
modem cable that has a connector of the right shape and gender on each end and try it
out. If it doesn’t work, then (1) the cable is defective, (2) it has too few or too many
wires, or (3) you really needed a straight-through cable after all.

If you find yourself stuck with an uncooperative cable, you may have to do the kind
of fiddling described in the data communications primer (see “Cables and Connectors
Revisited,” page 102). Don't be timid. This book should include enough information to
make you an expert interfacer.

The RS-232-C standard [9] says that 50 feet (about 15 meters) is the maximum
distance for a direct connection. In practice, direct-connect cables are often several
hundred feet long. The maximum length depends upon the environment, the cable, and
the devices involved. If you need a direct connection over a longer distance (like several
thousand feet), you can use “line drivers” or specially shielded or low-capacitance cables
available from computer supply houses.

Direct connections can also be made over even longer distances, but not without
considerable investment of time and money in synchronous modems, leased dedicated
phone lines, microwave towers, satellite dishes, construction permits, FCC licenses,
and so on. Kermit may be used over long-distance direct connections, but it is beyond
the scope of this book to tell you how to establish those connections in the first place
(see McNamara [25]).

Dialups

When direct cabling is not feasible, computers may be connected through the telephone
system using modems. In the typical case, a mainframe has a “dialup line”’ available,
consisting of a serial port connected to an ‘‘auto-answer” modem, which in turn is
connected to a telephone. You initiate a connection by dialing the appropriate phone
number, waiting for the computer to answer, and then activating your modem. The
mechanics of this process vary, depending on your modem. Consult your modem man-
ual for any details that you don’t find here.

26 THE BASICS

You should be aware that there are several different, incompatible, types of modems.
Two modems work together only if they observe the same conventions as to the coding
and transmission of data on the phone line, and operate at the same speed. The speed
is called the “baud rate,” which is roughly equivalent to ten times the number of
characters the hardware can transmit per second; 1200 baud is equivalent to 120 char-
acters per second. The most common transmission standards in North America are
called Bell-103 {110-300 baud), Bell-212A (1200 baud)}, and Racal-Vadic VA3400 (also
1200 baud, but incompatible with Bell-212A).” Many modems automatically recognize
two or three different standards. These are called double (or triple) modems. You should
ensure that the modems you propose to use are compatible.

The local modem is called an “originate’” modem, because it initiates the call (if it
has an Originate/Answer switch, it should be set on Originate). The modem is situated
between your micro and the telephone. The modem connects to the telephone, using
either a modular phone jack (RJ-type, usually RJ11) supplied with the modem,® or acous-
tic cups. In some cases, the modem is installed between the modular outlet on your
wall and the telephone itself, using a telephone wire with RJ11 jacks at each end.
Consult your modem manual for installation instructions.

Unlike computers and terminals, external modems are fairly predictable in their use
of connectors. Every modem should have a female DB-25 connector, so the modem end
of your cable should have a male DB-25 connector, and the cable should always be
straight-through, with 10 wires for the transmit, receive, ground, and modem signals.
Your problem is reduced to finding such a cable with a connector of the appropriate
shape and gender on the other end; these should be stock items in computer stores.

Before attempting to establish a dialup connection, you must use Kermit or some
other software to set the baud rate of your PC’s serial port. This is normally done with
a command like SET SPEED or SET BAUD. Your PC’s baud rate must be the same as
the baud rate of the serial port on the remote computer; if they do not match, no
meaningful communication can take place. Furthermore, your baud rate must be one
supported by the modems involved in the connection.

If your modem has a built-in dialer, see the following paragraphs for how to use it
with Kermit. Otherwise, you must make the connection manually. The usual procedure
is as follows:

1. Dial the computer’s phone number. If the line is busy or doesn’t answer, try again
later. If a person answers, you probably dialed a wrong number—apologize and try again.

7. In Europe, Bell-103 is generally not used; 200-300 baud techniques (mostly variations on CCITT
Recommendation V.21) tend to differ from country to country. For 1200 baud, most European countries
recognize CCITT V.22, Bell-212A, or both. At 2400 baud, several different, competing, proposed standards
are emerging in the U.S. and Europe (AT&T 2224, V.22bis, V.26ter). See Table 4-3 on page 91.

8. This type of modem is called a “direct connect” modem. If you have a such a modem, but your phone
lacks modular jacks, you can convert the phone and the wall outlet using parts available in any hardware
store.

i

(]} s
i

7,

o

v
e

7
7

27 THE BASICS

2. When the computer answers the call {after one or two rings), you will hear an audible
tone, usually high in pitch.

3. If you have a direct-connect modem, switch it from voice to data (unless it does this
itself automatically). If you have an acoustic coupler, insert your handset into it with
the phone cord on the correct end.

4. If your modem has a “carrier” light, it should now come on. This means that the
two modems are engaged and communicating according to the same standard.

Terminal Emulation

By now, you should have a physical connection. Your PC must be instructed to transmit
and receive data over this connection. These instructions are carried out by a software
program, like Kermit.

In addition to its file transfer function, Kermit provides “terminal emulation”’ for
microcomputers. This means that the Kermit program can be told to make the micro
behave as if it were a terminal: to send the characters you type on the keyboard out the
serial port, and to display all the characters that arrive at the serial port on your screen.
No error detection or correction is done, any more than a real terminal would do.
Terminal emulation is not part of the Kermit protocol, only a convenient tool to aid in
its initiation. The particular terminal being emulated may range from a “dumb” ter-
minal with no special features to some particular “smart” terminal, depending on the
needs, whim, ambition, and skill of the contributing programmer.

The Kermit command that activates terminal emulation is CONNECT. After you
issue the CONNECT command, you are communicating with whatever device is con-
nected to your serial port. If you have a direct line to another computer, or if you have
already dialed up a computer, then you are connected to that computer. However, if
you have the type of modem that dials the phone for you, then you will be communi-
cating with the modem itself. Autodial modems contain their own little computers
with which you may have a dialog. You tell them to dial a number, they tell you whether
they succeeded or failed. For instance, if you have a Hayes-like modem [14], you could

type
ATD7654321<CR>

to have it dial the telephone number 765-4321. It might respond (depending on the
setting of certain switches on the modem) with “CONNECT” upon successful connec-
tion with a modem on the other end, or “NO CARRIER,” meaning that the phone didn’t
answer, or there was no modem connected to it. If the call was placed successfully, the
modem will automatically become transparent so you can communicate directly with
the dialed system. Consult your modem manual for details.

By this time, you should have reached the remote computer. Now you need to do
something to get its attention. Typing a carriage return or two is usually enough to
provoke a response. If you see a meaningful message on your screen, you’re connected.

28 THE BASICS

Otherwise, the problem might be that your cable is not wired correctly, the modem is
set up wrong, the baud rate is incorrect, etc. Consult Chapter 6, “Common Problems
and How to Fix Them,” page 172.

One final element of terminal emulation must now be mentioned: the “escape se-
quence.” You might have wondered how you ever get back to your local computer after
you’ve CONNECTed to the remote one. During terminal emulation, the Kermit pro-
gram looks at every character you type, and if it is not a certain predesignated ‘“escape
character,” it is transmitted. If it is the escape character, then the program waits for
you to type another character, which is taken to be a command, such as “C” for ““Close
Connection.” The escape character most often chosen is one that would rarely, if ever,
need to be typed at the remote system. A typical choice is Control-Rightbracket: the
mystery of the cryptic “~]C” from page 20 is now revealed. The basic functions of
terminal emulation are illustrated in Figure 2-8.

To summarize, terminal emulation is a mechanism that makes your PC behave like
a terminal; it enables you to communicate with two different computers using the same
keyboard and screen. CONNECT sends you to the remote system, and the escape se-
quence brings you back to the local one. If this discussion has left you confused, then
follow the examples to get a feel for how it works.

Figure 2-8. Terminal Emulation

29 THE BASICS

°

How to Transfer Files with Kermit
The Kermit protocol, and most Kermit programs, allow you to send a file reliably from
a microcomputer (PC) to a host, from the host to the PC, from host to host, or from PC
to PC, usually without any special regard for the nature of the particular machines
involved. The scenarios are similar, differing mainly in the details of how to establish
the connection.

The most common use of Kermit is between a PC and a mainframe, and this dis-
cussion assumes you are sitting at a PC which:

Is turned on and working
Is connected directly or via dialup to the mainframe
Has a Kermit program available on its disk or other local storage

Has sufficient free disk space to store new files

It is also assumed that you have the ability to log in to the mainframe, store or read
files there, and that a Kermit program is available on the mainframe. When one of the
systems lacks a Kermit program, you can’t use the Kermit protocol to transfer files (see
page 9 for how to get Kermit).

From system command level on your PC, run your local Kermit program and issue
the CONNECT command. Now you’re “talking” to the remote host. At this point you
must get its attention, log in, and then run the remote Kermit program.

Once you have a Kermit program on each end of the connection, the next step is to
tell each Kermit what to do. Suppose you want to transfer a file from the remote
computer to your PC. You would first tell the remote Kermit to SEND the file, then
““escape back” to the PC Kermit and tell it to RECEIVE the file. The transfer begins—
you can sit back and watch, or go make yourself a sandwich. While the packets go back
and forth (as shown in Figure 2-3), the PC Kermit will produce a running display on
your screen (see Figure 2-9), and it will notify you when the transfer is complete.

The desired file should now be on your PC disk. The Kermit protocol has ensured

_that the file arrived correctly and completely. Now you must clean up after yourself:

CONNECT back to the remote host, exit from Kermit on the host, log out from the
host if you're done, escape back to PC Kermit and exit from it. Now you can do whatever
you had planned for your file—edit it, print it on your PC printer, etc. Transferring a
file in the other direction works the same way, but with the SEND and RECEIVE
commands interchanged.

If you have to exchange several files in both directions, you will soon tire of escaping
back and forth and typing SEND and RECEIVE commands on each end. Most (but not
all) mainframe Kermit programs can be put into a “server mode’’ of operation, which
simplifies the process considerably, and most (not all) PC Kermit programs provide the
special commands required for communicating with Kermit servers. A Kermit server

30 THE BASICS

(on the mainframe) takes all its commands in packet form from the local Kermit pro-
gram {on the PC). For example, if you tell the local Kermit to SEND a file, the remote
Kermit server need not be told to RECEIVE it—it will do so automatically.

Basic Commands

The fundamental Kermit commands are described here very briefly. Details of syntax
may vary among systems, and additional options may be available. A detailed presen-
tation of Kermit commands is given in Chapter 5, and that may have to be supplemented
by documentation for your particular Kermit program. Note that when initiating a file
transfer, you must issue your command (SEND, RECEIVE, or SERVER| to the remote
Kermit first, then escape back to the local Kermit and issue the corresponding command
(RECEIVE, SEND, or GET].

.2
Typed almost anywhere within a Kermit command: List the commands, options, or
operands that are possible at this point.

*« HELP
Display a summary of Kermit commands and what they do.

» CONNECT
Act as a terminal to the remote system until the escape sequence is given.

* SET BAUD number
Set the serial port’s speed to the given baud rate. Sometimes available as SET SPEED.
When not available in either form, use a system utility to set the baud rate. The SET
command also has many other options.

* SEND filespec
Send the file or file group specified by filespec to the other Kermit, which must be given
a RECEIVE command, or else must be in server mode.

* RECEIVE
Passively wait for a file or file group to arrive from the other Kermit, which must be
given a SEND command.

» GET filespec
Actively request a Kermit server to send the specified file or files.

* REMOTE command
Some Kermit servers may be asked to perform functions beyond sending and receiving
files. These are invoked by the REMOTE command. For instance, REMOTE DIREC-
TORY will ask the remote Kermit server to send a file directory listing of the specified
remote files to your screen, and REMOTE DELETE will request the server to delete the
specified remote file.

31 THE BASICS

* BYE
Ask the server to terminate and log out your job from the remote system, so that you
need not CONNECT back and clean up.

* FINISH
Ask the server to terminate, but leave your remote job active so that you can CONNECT
to it again.

« EXIT
Exit from the Kermit program.

File Types

Before we proceed to real examples, there’s one more thing you should know. Kermit
is normally set up to work with text files. If you want to use Kermit to transfer binary
files, you may have to take some special measures. '

A text file is one that has been created by a human agent, or that is intended for
reading by a human. It contains only printable characters and formatting control char-
acters, like carriage return, linefeed, formfeed, and tab. It might be a document, or
electronic mail, or program source. Most likely, it was entered into the computer by
typing it into a text editor, but it might also be the output from a computer program.

A binary file is not intended to be directly understood by humans; it may be com-
posed of any arbitrary patterns or sequences. Binary files are usually used to control a
given device, or as input to a computer program. Examples include executable program
files (like KERMIT . EXE on the MS-DOS diskette), some word-processor documents (but
not others), numerical data in internal binary format, raster graphics for display, control
codes for a laser printer, and so forth.

For purposes of file transfer, the key question is whether the file is to be received in
a form that is useful on the target system. For text files to be usable after file transfer
between unlike systems, it is often necessary to convert the format. For instance, IBM
hosts store text files using a different alphabet than most other computers use. Different
systems may represent boundaries between lines of text in different ways. _

Binary files, on the other hand, generally cannot and should not be converted to
another system’s format, because their contents are meaningful only on their home
systems. Machine instructions for one system cannot be executed correctly on another
kind of system; internal representation of numbers will vary from system to system.

When most Kermit programs are told to send a file, they will perform format con-
versions appropriate to text files unless instructed to the contrary. Computers cannot
be relied upon to tell the difference between text and binary files automatically, and I
don’t think you’d want them to try—you are the one who knows what the file is, and
how it is to be used on the target system. If you really want files to be transferred
without conversion, you will usually have to take special measures. The method differs

32 THE BASICS

from system to system, but in general the technique is to issue the following command
(or one like it) to each Kermit program:

SET FILE TYPE BINARY
File formats and methods for coping with them will be recurring topics of this book.

Examples

The examples that follow cover the most common uses of Kermit—PC to host, PC to
server, PC to IBM mainframe, PC to PC, and host to host. If your particular situation
is not covered adequately by these examples, first check the handouts or built-in help
text for the Kermit programs you are using. If these don’t help, then pester the people
who run your computer systems to explain their communications setup to you. If they
can’t—or “they’’ are you—well, that’s what the rest of the book is for.

PC to Host In this example, you are sitting at a PC, which is connected through its
serial port to a DECSYSTEM-20 host computer, a typical timesharing system. The
details of its operation are not important; it could be a VAX/VMS system, a UNIX
system, or many other non-IBM hosts. The PC is local, the DEC-20 is remote. This
example also applies almost literally to any other microcomputer implementation of
Kermit. You have started up your PC and have the Kermit program on your disk. Begin
by running Kermit on the PC. Use Kermit’s CONNECT command to turn your PC into
a terminal. Log in on the DEC-20 and run Kermit there. Here is an example of this
procedure with the commands that you type printed in green. The material lined up on
the right-hand side is our commentary, not what you see on the screen.

A>kermit Run Kermit on the PC.
Kermit-MS V2.29
Type ? for Help

Kermit-MS> This is the Kermit prompt for the PC.
Kermit-MS>connect Connect to the DEC-20.
(Connecting to host, type Control-]C to return to the PC)

You are now connected to the DEC-20.
CU20B The system prints its herald.
@login user password Log in.

(Various greeting or notice messages are displayed.)

@kermit) Run Kermit on the DEC-20.
TOPS-20 Kermit Version 4.2(257)

Kermit-20> This is DEC-20 Kermit’s prompt.

33 THE BASICS

You are now ready to transfer files between the two machines.

The following example illustrates how to send files from the DEC-20 to the PC.

Kermit-20>send *.for Send all my FORTRAN files.

e Now escape back to the PC.
(Back at PC) The PC tells you you’re back.
Kermit-MS>receive Tell the PC that files are coming.

If you take more than about 5 seconds to get back to Kermit-MS and issue the
RECEIVE command, the first packets from the remote Kermit may arrive prematurely
and appear on your screen, but no harm will be done, because the packet will be re-
transmitted automatically until the PC acknowledges it.

Once the connection is established, the PC will show you what is happening. First
it clears the screen and waits for incoming packets; as packets arrive, the current file
name and packet number will be continuously displayed on the screen (Figure 2-9).
When the PC’s Kermi t—MS> prompt returns to your screen (with an accompanying beep
to catch your attention) the transfer is done. Notice the screen display. The status should
be indicated as Complete. If not, an error has occurred and an appropriate message
should be displayed to tell you why.

After you're finished transferring files, CONNECT back to the host, EXIT from the
remote Kermit program, log out, and escape back to the PC as you did previously:

Kermit-MS>connect Get back to the host.
(Connecting to host type CTRL-]C to return to PC.)
Kermit-20> Here we are.
Kermit—20>exit Get out of Kermit-20.
®logout Log out from the DEC-20

Logged out Job 55, User username, Accout account, TTY 146,
at 7-0ct-85 15:18:56, Used 0:00:17 in 0:21:55

"Jo Escape back to the PC.
(Back at PC)
Kermit-MS>exit Exit from the PC’s Kermit.

The files you transferred should now be on your PC disk. To send files from the PC to
the DEC-20, follow the same procedure but interchange the SEND and RECEIVE
commands.

The procedure outlined above demonstrates the minimum service you should expect
from any micro-mainframe Kermit connection, namely the ability to send files in either
direction by explictly issuing complementary SEND and RECEIVE commands for each
transfer.

34 THE BASICS

File Name: FOO.BAR

KBytes Transferred: 17
Percent Transferred: 58%
Sending: In Progress
Number of Packets: 193
Number of Retries: 2
Last Error: None
Last Warning: None

Figure 2-9. Sample File Transfer Display Screen

PC to Kermit Server Kermit server operation is a bit more advanced in the sense that
you will not necessarily find it available in a particular pair of Kermit programs. The
remote Kermit must have a SERVER command, and the local Kermit must have a GET
command and either FINISH or BYE (or both). If these conditions are not met, then
yowll have to stick with basic operation.

To use a Kermit server, you must connect to the remote host, log in, and run the
remote Kermit program, just as in the first example, but then issue the SERVER com-
mand. After putting the remote Kermit in server mode, you no longer have to tell one
side to SEND and the other to RECEIVE. Nor do you have to connect back to the remote
side to clean up and log out when you're done. Using the server, you can send as many
files back and forth as you like without ever having to connect back to the remote host.
Some servers perform additional functions, too, including directory listing, file deletion,
or disk usage reporting, invoked by the REMOTE command from the local Kermit.
(However, note that not all server-compatible PC Kermit programs provide REMOTE
commands, and not all Kermit servers can respond to them.)

The following example demonstrates the use of a Kermit server. The user is sitting
at a PC and the remote host is a DEC VAX running UNIX. Again, the particular ma-
chines and operating systems don’t matter very much.

A>kermit Run Kermit on the PC.
Kermit-MS V2.29

Kermit-MS> The PC Kermit’s prompt.
Kermit-MS>connect Connect to the UNIX system.
(Connecting to host, type Control-]C to return to the PC)

4.2 BSD UNIX The UNIX system prints its herald.
login: username

Password: password

Last login: Mon Oct 7 18:42:16 on ttyi6

35 THE BASICS

(The UNIX system prints various login messages here.)

% kermit Run UNIX Kermit.
C-Kermit, 4C(057) 31 Jul 85, 4.2 BSD

Type ? for help

C-Kermit>server Tell it to be a server.

C-Kermit server starting. Return to your local machine by typing its
escape sequence for closing the connection, and issue further commands
from there. To shut down the C-Kermit server, issue the FINISH or BYE
command.

*lc Now escape back to the PC.
(Back at PC.)
Kermit-MS>send foo.* Send all the “foo” files from my micro.

(The screen displays the progress of the transfer.)

Kermit-MS>remote dir *.c See what C programs are on the UNIX
system.

1s -1 *.c

-rw—-rw—r— 1 fdc 20368 Jun 14 16:18 ckudia.c

-rw-rw—r—— 1 fdc 8514 Jun 14 16:18 ckuscr.c

-rw—rw-r—— 1 fdc 17836 Jun 3 16:53 cutape.c

-rw—rw—r— 1 fdc 2457 Oct 7 14:55 foo.c

Kermit-MS>remote delete foo.c Get rid of an unwanted UNIX file.
rm -f foo.c [OK] Kermit shows the UNIX translation.
Kermit-MS>get *.c Download the remaining C programs to
the PC.

(The screen displays the progress.)

Kermit-MS>exit Exit from Kermit back to DOS.
A>

(Here you can do some work on the PC, edit files, whatever you like.)

A>kermit Run Kermit-MS some more.

Kermit-MS>send new.c Send another file.

Kermit-MS>bye Done; shut down and log out the Kermit
server.

A>

36 THE BASICS

This is much simpler. Once you’ve started the Kermit server on the remote end, you
can run Kermit as often as you like on the micro without having to go back and forth.
Make sure to shut the server down when you’re done by typing the BYE or FINISH
command. If you use BYE, you don’t have to connect back; if you use FINISH, you may
connect back and do other work on the host before logging out.

Note the use of the REMOTE command. The REMOTE DIRECTORY (shortened to
REMOTE DIR in the example) caused the UNIX Kermit server to display a listing of
the specified files on the PC’s screen, and the REMOTE DELETE command caused the
file foo.c to be deleted from the UNIX system. If only a basic Kermit program had
been available on the remote system, the user in this example would have had to
CONNECT and escape back five times, rather than just once, to do the same work.

PC to IBM Mainframe IBM System/370 series mainframes have a style of data com-
munication different from most other computers. Because of this, the following example
must use some terms that haven’t been presented yet.”

The preferred means of communication between an IBM mainframe and a user is
IBM’s 3270-Series full-screen block-mode terminal. Most PCs do not bear any resem-
blance to a 3270; the communication medium, hardware interface, and even the char-
acter alphabet are different. Under what conditions, then, can a PC be connected to an
IBM mainframe?

Most IBM mainframes have a “communications front end,” called a 3705 (there are
also equivalent or more advanced models from IBM as well as other companies). The
3705 may be configured to allow ordinary asynchronous ASCII terminals, or PCs that
emulate them, to operate in “line mode,” as opposed to 3270-style full-screen block
mode. Line-mode operation is sometimes called “TTY mode,” or even “TWX mode.”
If your system has a 3705 or equivalent front end with asynchronous ASCII line-mode
ports, then you may use Kermit with it through those ports, as long as your PC has the
requisite SET commands, described below.

Systems that do not provide line-mode ports may provide “‘protocol converters’”’ for
communicating with ASCII terminals and PCs. A protocol converter is a device or
software package, residing anywhere along the communication path, that translates
between the IBM character set and the PC’s ASCII character set, from 3270 screen
formatting commands to appropriate commands for the PC’s screen, and from the PC’s
function keys to 3270 function keys. Kermit can transfer files through a protocol con-
verter only if the protocol converter can be commanded to turn off its data format
conversion function. However, most Kermit programs can be used for terminal emu-
lation through protocol converters, even ones that can’t be made transparent.

As of this writing, the only protocol converters that have the required capability—
and which IBM host Kermit programs understand how to control—are the IBM Series/1

9. These terms will be covered in the data communications primer, which begins on page 70. IBM
mainframe communications is covered in detail in “The IBM World,” page 108.)

37 THE BASICS

and equivalents (4994, 7171) supporting the Yale ASCII Communications System. We
refer to this combination generically as the Series/l1. If you don’t know whether your
IBM host has the prerequisites for Kermit file transfer, check with your system manager.
It might help to bring this book with you. If the Kermit program on your IBM host gives
you an error message like “An ASCII terminal must be used,” then you are probably
accessing the system via a protocol converter that cannot operate transparently, or that
the host Kermit program does not know how to control. Again, consult your system
manager—there may be a better way into the system.

Once you've determined that you can make a connection to the IBM mainframe,
you must be prepared to cope with the idiosyncrasies of the IBM style of communication
by entering some special SET commands to your local PC Kermit. Don’t worry yet
about what they mean; just work through the following example.!® Note that some SET
commands apply to line-mode connections, others to Series/l connections; see Table
2-1. Our connection is between a PC and an IBM mainframe running the VM/CMS
operating system:

E>kermit Run Kermit on the PC.
Kermit-MS>

(These are the special commands for IBM host communication:)

Kermit-MS>set local-echo on (Line mode only)
Kermit-MS>set flow none (Line mode only)
Kermit-MS>set handshake xon (Line mode only)
Kermit-MS>set timer on (Line mode and Series/1)
Kermit-MS>set parity mark (Line mode and Series/1)

(Connect to the IBM host, log in, and start Kermit there.)

Kermit-MS>connect
(Connecting to host, type Control-]JC to return to PC)

<CR>

WELCOME TO CUVMA Greeting is displayed.
VM/370 ONLINE The system’s herald.
<CR> Type a carriage return.

!

10. A brief explanation of these special commands is given after the example, and they are described
thoroughly in Chapter 5, “Kermit Command Reference.”

38 THE BASICS

.login username Log in.
ENTER PASSWORD:
password Enter your password.

LOGON AT 16:17:28 EDT MONDAY 10/07/85
CUVMA CMS 3.1 8409 01/25/85
. <CR> Type another CR.

(Various messages are displayed.)

R;

. <CR> And another.

CMS

.kermit Run the Kermit program.

Kermit CMS Version 2.01
Enter ¢ for a list of valid commands

KERMIT-CMS>. server Put it in server mode.
Entering server mode.

“]c <NOCR> Escape back to the PC.
(Back at PC.)

Kermit-MS>

(Files may be transferred in the usual manner.)

Kermit-MS>bye Shut down the server.

The five special SET commands shown above are often available bundled together
into a single command, like DO IBM, or SET IBM ON. Most PC Kermit programs have
such an IBM “macro” command, or provide the separate commands that compose it,
although the syntax may vary. The special SET commands are as follows:

* SET LOCAL-ECHO ON
Sometimes available as SET DUPLEX HALF or SET ECHO LOCAL. You need this
command for line-mode terminal emulation; without it, the characters that you type
will not echo on your screen.

+ SET PARITY MARK
PC Kermit programs usually do not use parity. But you need a SET PARITY command
in order to communicate with IBM hosts. The actual parity could be something other
than “mark.” If MARK doesn’t work, try EVEN, ODD, or SPACE (in that order).

* SET FLOW NONE
Use this command only for line-mode connections, if your PC Kermit supplies it. If
your PC Kermit does not supply this command, then the feature that it turns off prob-
ably was not present anyway.

39 THE BASICS

Table 2-1. Typical Settings for IBM Mainframe Communication

Line Mode Protocol Emulator
(3705) (Series/1)
Terminal Emulation Parity Mark Parity Even
Flow None Flow XON/XOFF
Local Echo Remote Echo
File Transfer Parity Mark Parity Even
Handshake XON Handshake None
Flow None Flow XON/XOFF
Timer On Timer On

SET HANDSHAKE XON

Your PC should provide a command like this in order for you to transfer files with an
IBM mainframe over a line-mode connection. If your PC lacks this command, try SET
RECEIVE END 17 or SET RECEIVE END 21; if these commands are present, they might
accomplish the same effect.

SET TIMER ON

PCs usually have their timers turned off, on the assumption that the mainframe Kermit
will provide the timeouts. But IBM mainframes cannot time out. If your PC doesn’t
have this command, you will have to watch the file transfer display and type a carriage
return on the PC’s keyboard if the transfer appears to be stuck.

Table 2-1 summarizes the settings required for terminal emulation and file transfer for
communicating with an IBM mainframe, in line mode and through a Series/1-type
protocol converter. The particular value of the parity setting may vary from site to site,
and possibly among different devices within the same site. The flow setting should be
XON/XOFF only if your PC supports this style of flow control. See the data commu-
nications primer (starting on page 70) for an explanation of parity and flow control, and
see “Common Problems and How to Fix Them’’ (page 172} for some additional hints.

PC to PC 1t is possible to use Kermit to transfer files between two microcomputers,
both in local mode.!! You must start by connecting the two PCs. If they are nearby,

11. Some microcomputers can be commanded to behave like mainframes (according to our definition)
by assigning their consoles to their communication ports (the MS-DOS CTTY command is an example).
This effectively puts them in remote mode, and it's equivalent to the PC-to-host case we have already
covered, except that you might have to issue a command like SET DISPLAY OFF to the remote PC to
suppress its file transfer display.

40 THE BASICS

you can use a null modem cable, in which case, you can skip ahead to step 4 in the
following list. Otherwise, you'll have to establish a dialup connection. For this you will
need two compatible modems, one in originate mode (the normal mode for a PC’s
modem), the other in answer mode. Not all modems have an answer mode, so before
you proceed make sure that one of the two modems has this option. The procedure is
as follows:

1. User B puts her modem in answer mode, runs Kermit, sets the serial port speed to
(say) 1200, and gives the CONNECT command.

2. User A makes sure his modem is in originate mode, runs Kermit, sets the port speed
to match user B’s, and dials user B’s number, and gives the CONNECT command (if
the modem has a dialer, then CONNECT comes before dialing).

3. User B’s modem should answer the phone automatically, and both carrier lights
should come on. If not, check the modems, cables, switches, and so on.

4. At this point, the two PCs should be connected. To test the connection, user A and
user B can send messages to each other—whatever user A types should appear on user
B’s screen and vice versa. Users A and B can use this property of the connection to
coordinate their activities.!?

5. When the connection is tested successfully, both users should escape back to their
respective Kermit command levels.

6. The user who wants to receive a file should type RECEIVE.
7. The user who wants to send a file should type SEND filespec.

Repeat as needed. Since not all PC Kermits are capable of timing out, it is important
that the RECEIVE command be issued before the SEND, to avoid a deadlock. Alterna-
tively, one or both of the PCs may be given the SET TIMER ON command to activate
an otherwise dormant timeout mechanism, if that command is available.

If one of the PC Kermit programs supports server operation, the remote operator
need not be present. For instance, if you have an MS-DOS machine at your office, you
can put your office modem in answer mode when you go home, and leave Kermit
running on the PC in server mode. When you get home, you can dial up your office PC
and you will be connected to a Kermit server, with which you can transfer files repeat-
edly, as long as its disk space holds out.

12. User A will see only the characters that User B types, and vice versa, unless the SET LOCAL-ECHO
ON, SET DUPLEX HALF, or equivalent command is given. Even then, the display may appear somewhat
odd, because—depending on the actual Kermit versions involved—the linefeed that host computers usu-
ally supply after you type carriage return may be missing. If that happens, you can type a linefeed (or
Control-)) after each carriage return.

41 THE BASICS

Host to Host Some mainframe Kermits are capable of initiating a connection. This
will be true if the host Kermit has SET LINE and CONNECT commands, and if the
host system has a dialout modem or a dedicated connection to another system.

Host-to-host connections work just like PC-to-host connections except that before
you give the CONNECT command, you must give the SET LINE command so that the
local host Kermit program knows it must use the indicated device rather than the job’s
console terminal. By doing this, you put the host Kermit program, which normally runs
in remote mode, into local mode. This arrangement is illustrated in Figure 2-10; notice
how your commands and the Kermit program’s responses go over the console terminal
line, while the Kermit packets are transmitted on a separate terminal line specified by
the SET LINE command.

In the following example, UNIX Kermit uses an autodialer to call up a DECsystem-
10. Note the SET LINE, SET MODEM, and SET BAUD commands that are necessary
(in this case, at least) when telling the Kermit program to use a line other than the one

Figure 2-10. Host-to-Host Kermit Operation

42 THE BASICS

it normally expects to use. The SET LINE command specifies the terminal device to be

used for connecting to the remote system, and the SET MODEM and SET BAUD com-
- mands provide information about how to use the specified device. These commands are

described in detail in “Kermit Command Reference,” Chapter 5, starting on page 116.

% This is the UNIX prompt.
% kermit Run UNIX Kermit.
C—Kermit Version 4C(057)

Type ? for help

- C-Kermit>set modem hayes Specify type of modem.
C—Kermit>set line /dev/ttyi8 Specify communication line.
C-Kermit>set baud 1200 Specify baud rate.
C-Kermit>dial 765-4321 Tell the modem to place a call.
(Call completed) When the call is complete,
C-Kermit>connect connect to the remote system.
(Connecting to host, type *\C to return)
<CR>

Stevens T/S 7.01A(10) 20:20:04 TTY4l system 1282
Connected to Node DN87S1(101) Line # 57

Please LOGIN or ATTACH

.log 10,35 Log in to the remote system.
JOB 51 Stevens T/S 7.01A(10) TTY4l

Password: password

20:20 26-May-84 Sat

.r kermit Run Kermit.
TOPS-10 Kermit version 2(106)

Kermit-10>server Enter server mode.

Kermit server running on the DEC-10 host. Please type your escape sequence
to return to your local machine. Shut down the server by typing the Kermit
BYE command on your local machine.

"\C Escape back to UNIX Kermit.

(Connection closed, back at C-Kermit)

C—Kermit>get switch.ini Request file from server.

43 THE BASICS

“A for status report, *F to cancel file,
B to cancel batch.

SWITCH.INI...... 2. 9% [0K]

C—Kermit>bye Shut down the server.
C-Kermit>gxit Exit from the local Kermit.
%

Note the display that occurs during the file transfer. When mainframe Kermit programs
are used in local mode, the display is typically serial (one character after another} rather
than full-screen. In this case, dots appear when packets are successfully transmitted,
and percent signs appear when an error-correcting retransmission occurs.

If you are seated at a PC during this operation, using Kermit for terminal emulation,
you are actually controlling three Kermit programs at once. This can lead to some
confusion. For instance, after CONNECTing from the local host to the remote host,
you might accidentally type the “wrong” escape sequence, and find yourself back at the
PC instead of the local host (and if you're not paying attention, you might even find
yourself transferring files between the remote host and the PC, through the local host).
If the local host and the PC Kermit programs both have the same escape sequence (you
can use SET ESCAPE to change this), then you will have to type the escape character
twice before typing the C, in order to escape back to the local host. Typing it once
before the C gets you back to the PC.

Use of Kermit over Public Networks Kermit may be used over public networks like
Telenet, Tymnet, UNINET, and Datapac. A public network is a commercial service
that provides its subscribers access to distant computers with a local phone call, in areas
where the service is available. To use the public network, you dial a special-purpose
computer called a PAD (Packet Assembler/Disassembler) in your area, just as you would
dial any other computer. In a brief dialog with the PAD, you identify yourself for billing
purposes, establish any required communication settings, and then request to be con-
nected to the desired host computer. The result is equivalent to dialing the host com-
puter directly, except that you pay for a local, rather than long-distance, phone call; you
are billed for your use of the network; and you have to cope with certain features of
the network.

The PAD provides an error-free connection between itself and the selected host, no
matter how far away, but your telephone connection to the PAD is not normally pro-
tected from noise or interference, so you will need a file transfer program like Kermit
to provide the necessary error detection and correction. But using Kermit over a public
network may require some special measures:

1. The PAD has an escape sequence which you can type if you need to return to the
PAD from your connection to the remote host, just as Kermit provides an escape se-
quence to get you back to the local Kermit program from terminal emulation. If the

44 THE BASICS

PAD’s escape sequence is composed of printable characters, then you must do whatever
you can to disable it, or change it to a nonprintable character sequence. Any sequence
of printable characters can occur in a Kermit packet, and if the PAD’s escape sequence
happens to appear, the connection will be broken.

2. Use SET commands to adapt both Kermit programs to the network’s communication
environment. Many networks require you to SET PARITY MARK (or ODD or EVEN].
Others may require you to reduce Kermit’s packet size using SET SEND (or RECEIVE)
PACKET-LENGTH 60 (the normal length is 80 or 90). You might also have to increase
the timeout interval using SET SEND (or RECEIVE} TIMEOUT 20 (or some other num-
ber bigger than the usual 5 or 10) in order to account for the delays of the network.

There are also numerous settings that can be established at the Kermit or PAD level to
improve performance and cut down on network fees. These will be discussed in later
sections, after we have filled in some technical background.

The End of the Easy Part

I hope the material presented so far is enough to get you started with Kermit, at least
when used in conjunction with the documentation that accompanies your particular
Kermit program. Most of the common arrangements have been covered in cookbook
fashion. If you can follow the examples and achieve useful results, then you need read
no further. Otherwise (you're still reading?), you will need to do a little detective work.
For this, you need some background in computers, file organization, and data commu-
nication. If you don’t feel you have sufficient background, read the primers immediately
following. They should provide all you need. After the primers comes a complete Kermit
command reference, which includes descriptions of the many commands that control
Kermit’s behavior in the areas covered by the primers. Then comes a chapter called
“Common Problems and How to Fix Them,”” in which your knowledge of computers,
file organization, data communication, and Kermit commands can be combined to over-
come the many obstacles that can confront you when you attempt to connect two
possibly unlike systems over a possibly hostile medium.

The second half of the book attempts to answer the question, “How can I get a
Kermit program running on my computer?”’ There are two possibilities. In the first case,
a Kermit program has already been written for your computer. Your problem is reduced
to getting a copy of it that you can run. This can be as simple as copying a friend’s disk,
or as difficult as writing a ‘‘bootstrap’’ program (a sample bootstrap program is provided).
In the second case, no Kermit program exists for your computer. For the stout of heart,
directions are given for writing a new Kermit program, beginning with suggestions for
program organization and “‘user interface,’” and winding up with the detailed protocol
specification, complete with programming examples.

N

-

\ N\
N

N\ N
S\\\«\\s AN\

45 THE BASICS

The remainder of the book is taken up by a comparison of Kermit with other pro-
tocols, a glossary, appendixes {including a compact Kermit command summary), a bib-
liography, and an index. The appendixes, the table of contents, the glossary, and the
index are there to help you find what you need. Please use them.

PART TWDO

Primers

3

Computers and Files

This part of the book presents some basic concepts of computing, files, and data com-
munication. These sections are self-contained, and you can skip them if you already
have the necessary background; they contain no particular reference to Kermit. Some
sweeping statements are made that may not be completely true in all cases; in the
interest of brevity a great many but-if’s and except-for-when’s are omitted.

Hardware and Software

Computers are made out of hardware—metal, silicon, rubber, paint, etc. An important
part of the hardware is called the memory , or more precisely, the internal memory (to
distinguish it from external memories like magnetic disk or tape). The internal memory
is also referred to variously as short-term memory, volatile memory, and core! memory.
The computer must bring information into its internal memory before it can manip-
ulate it.

Another part of the hardware is the instruction decoder. Every computer has a fixed
repertoire of instructions it can execute. A computer instruction is usually a very simple
operation like “‘copy the contents of location 123 to location 234" or ““add the contents
of location 345 to the contents of location 1’/ or “‘if location 456 contains a zero, then
go to location 567 and execute the instruction stored there.”

A program is a sequence of machine instructions which, when loaded into the com-
puter’s internal memory, can be executed by the computer. Software is another word
for program {or programs). The thing that makes computers so useful is that the same
piece of hardware can execute a potentially unlimited amount and variety of software.
Unlike, say, a chain saw, a computing machine can totally change its demeanor, its
very essence and purpose, in a fraction of a second, simply by executing another pro-
gram.

A program is written in a programming language. There are two kinds of program-
ming languages: assembly languages and high-level languages. In an assembly language
each statement corresponds to one machine instruction. Assembly language programs
are translated into machine instructions by relatively simple programs called assem-
blers. Unlike an assembly language, a high-level language can express complex oper-
ations in a single statement. High-level languages are translated into machine instructions
by very complicated programs called compilers.

1. A holdover from the days when memories were made out of little magnetic rings called cores.

byle

1]o]1]o[o]1]o]
Uz~

Here’s an example of a single statement in the C language [19] {a high-level language):
for (i = j = 0; i < 10; i++) j += i;

This means ‘‘set the variables i and j to zero, and then for every value of i less than 10,
add the value of i to j.”” In other words, add up all the integers (whole numbers) from 0
to 9. The C compiler translates this statement into machine instructions, like those
represented by the following assembly language statements (for a hypothetical assembler):

Instruction Commentary
CLR I Clear location I, i.e., set its contents to zero.
CLR J Clear location J.

A: MOV T, I Copy 1 into T (note the label A).
SUB T, 10 Subtract 10 from T.
BZ T, B If the result is zero, go to location B.
ADD J, I Add the contents of I to the contents of J.
INC I Increment I (i.e., add 1 to the contents of I).
JMP A Go back to A.

B: ... At location B,] contains the desired sum.

This should suggest the level at which most computers operate. Assembly languages
like this one use alphabetic symbols to represent machine instructions and locations.
Normally, the C compiler would directly produce the numbers that these symbols
represent. Note that control passes from one instruction to the next unless an instruc-
tion explicitly transfers control elsewhere, either conditionally (like BZ) or uncondi-
tionally (like JMP).

How Computers Represent Data

Computer data is composed of binary (base 2) numbers, sequences of 0’s and 1’s. One
binary digit is called a bit (abbreviated b). Computers use the binary system because
bits can be made out of little switches that are either off (0) or on (1). If you've ever
seen the wheels and gears inside an old mechanical decimal calculator, you can appre-
ciate the simplicity of the binary system?.

A computer’s memory is broken up into discrete chunks of various sizes. The big
chunks may be called pages or segments. A smaller chunk (usually 16 or 32 bits) is
called a word (abbreviated W). A smaller chunk still {usually 8 bits} is called a byte
(abbreviated B). Computers refer to memory locations by their addresses, which are just
numbers ranging from zero up to some maximum number. The number of addresses a

2. Appendix E, “Binary, Octal, and Hexadecimal Numbers,” explains the binary system in some detail,
plus some alternative notations for expressing binary numbers.

50 PRIMERS

computer can have is called its address space. An address specifies the location of either
a byte or a word, depending on the design (“architecture”) of the computer. Computers
have built-in instructions to operate on either bytes or words, or both.

All data is represented in the computer as words or bytes filled with 0’s and 1’s. A
particular sequence of bits has no intrinsic meaning or value. The same bit string could
be a legitimate machine instruction, an address, a whole number, a “floating-point
number,”’ a string of characters, or some other kind of code. The interpretation depends
upon the hardware or software that is using it—for instance, the bit string
(0100000101000010 might represent the ASCII characters AB to a text editor, or the
decimal number 16706 to a program that is performing calculations, or a machine in-
struction to the computer’s instruction decoder.

In most computers a word is used to hold instructions, numbers, or addresses. The
word size in bits is usually a power of two (see Appendix E if you don’t know what this
means). The most common word sizes are 16 and 32 bits, but other sizes, including 4,
8, 12, 18, 24, 36, 48, 64, 72, and 128 (or larger), may be encountered. The word size
determines the precision with which numeric calculations may be performed, the mag-
nitude of numbers that may be represented, and the address space of the machine. Bytes,
on the other hand, are used to hold characters. The most common byte size is 8, but
sizes of 5, 6, 7, 9, and 12 (or more) may also be found. Most machines have a fixed byte
size, but some have instructions for manipulating variable-length bytes.

Machines may address either bytes or words. Byte-addressed machines are concerned
that numbers and addresses begin on “word boundaries”—usually addresses that are
multiples of 2 or 4. Word-addressed machines, on the other hand, must provide special
instructions for manipulation of individual bytes that are packed within a word.

Operating Systems

One program that every computer has is an operating system. The operating system
(OS] is there even when your application program is running. The OS provides such
services as managing files and getting data from and sending data to external devices
{the computer jargon is input/output, or I/0); it saves you from having to know about
the details of the machinery or the format of the disk. On timesharing systems, where
many people use the same computer simultaneously, the operating system also provides
each person with the illusion of a dedicated, exclusive machine.

The operating system runs your programs for you. When you type run foo, the
operating system finds the program called foo, loads it into memory, and starts the
program by pointing the instruction decoder at the program’s first instruction. After
that, the operating system stands back and watches your program execute, and provides
assistance whenever your program calls upon it.

On some systems, particularly microcomputers, your program shares the operating
system’s address space—your program can read information directly from the operating

51 COMPUTERS AND FILES

system and in some cases even alter it. On other systems, the operating system has its
own address space, and your program can communicate with it only through special
“system calls.”

By definition, a program is restricted to its own address space. An address space in
execution is called a process. A timesharing system can have many processes active at
once; the operating system protects them from each other and schedules their access
to resources they must share. Each user has a job (or session} which may consist of one
or more processes, depending on the OS. A job is created when the user logs in and
persists {under normal conditions) until the user logs out.

There is an important distinction between the operating system and a user program.
The operating system is able to service the input/output devices for which it is respon-
sible in “real time,” as the data arrives. Your program cannot do this because it might
not even be running when its requested input comes in; the operating system may have
scheduled some other program to run. Therefore the operating system keeps the data
that you have requested in a “‘buffer”” until your program is ready to read it.

The Console Terminal

Whether you are a user of a timesharing system or of a single-user microcomputer, you
have some primary means of communicating with the system. This is called your “con-
sole.”” It consists of a primary input device, usually a keyboard, and a primary output
device, usually a screen.

On a microcomputer, the console is definitely special. It’s an integral part of the
machine, its “face.” It does not (with few exceptions) attach to the micro as if it were
a terminal, over a communication line. It is alwavs available for use, even when other
communication devices are active. Auxiliary input devices such as mice, trackballs,
light pens, joy sticks, and touch screens may be associated with a micro’s console.

A timesharing system does not have a single console, but rather one for each user.
Your timesharing console is your only communication channel to your job, and it usu-
ally is connected to the computer over a communication line, as a terminal. It’s where
you log in, issue commands, read the results of your commands, and log out.

The operating system treats the console differently from other devices, because the
device that it must communicate with in this case is controlled by a person, and people
have more complicated needs than most input/output devices. The system allows the
console user to type certain characters to interrupt an operation in progress. It might
pause after each screenful of output until the user types a go-ahead signal for the next.
It might transmit messages to the console screen. It might echo keyboard input on the
screen, and it might use certain input characters to allow users to correct typing mis-
takes in their commands. Certain characters might be translated to others upon input

3. The terminal with which the system operator controls a timesharing system may also be called its
console. We are not using the word in that sense.

52 PRIMERS

or output. Long lines might be split so as not to run off the edge of the screen. Most
operating systems also take into account the type of terminal that is being used, and
issue terminal-specific formatting commands to facilitate command line editing: line
erase, character erase, screen clear, and so on. Some combination of these services is
provided by all timesharing systems for the job console terminal, and usually none of
them will be found on a bare terminal device, through which data can normally pass
transparently in both directions.

Most timesharing operating systems assume that a job’s console is a terminal, not
a PC. This is a very important distinction. A terminal transmits characters only as fast
as a person can type them [ten characters per second at most), but a computer can
display vast amounts of data at the console in response to a very short request. For this
reason, the operating system may be designed for a 10-to-1 or 100-to-1 ratio of console
output to input. When the console is actually another computer, this design assumption
can easily be violated, resulting in poor performance, loss of data, or worse.

The timesharing console is designed for interaction with a human, and not for direct
communication with another computer. When machine-to-machine communication
{such as file transfer) must take place through a console device, the console’s normal
services and characteristics must be disabled. When the operating system does not allow
the console to be turned into a “raw” device, then the two machines must find a way
to circumvent its special services.

Disks, Diskettes, Formats

We have discussed how data is represented in the computer’s short-term internal memory.
When data must be stored for longer periods, it is kept on a magnetic medium called a
disk. Information stays on a disk after the computer is turned off, whereas the internal
memory is erased. A disk is a rotating platter (or stack of platters) on which bits are
stored and retrieved magnetically, by a read-write head (one for each recording surface)
similar to the arm of a record player, except that the disk head can jump back and forth
across the surface randomly, whereas the tone arm of a record player is stuck in a single
continuous groove. For this reason, a disk is called a random-access device, and may be
contrasted to a reel of magnetic tape, which is a serial storage medium.

Disks are of two major types: floppy and hard. On a microcomputer, a hard disk is
a permanent part of the system, capable of storing 5, 10, or more megabytes. A floppy
disk {or diskette) is a removable, single-platter, inexpensive, compact medium capable
of storing between 100 kilobytes and 1 megabyte (or thereabouts—the numbers keep
increasing). Mainframe disks have capacities of 100MB or more, often in free-standing
cabinets occupying their own floor space.

Each platter of the disk is divided up into slices, like the slices of a pie, called sectors.
The sector boundaries are intersected by concentric circular tracks. A typical diskette
has 40-100 tracks and 10-32 sectors on one or both sides, and mainframe disks have

Aeress To Read
Wte Head

SectoT
Imdicalo’

53 COMPUTERS AND FILES

many more tracks on each of multiple recording surfaces. The part of a track that lies
between two sector boundaries is called a block. A disk block contains a fixed number
of bytes, usually a power of two, between 128 and 8192.

Just as a computer’s memory locations are identified by addresses, so are locations
on the disk. A disk address is formed from an encoding that specifies the platter, sector,
and track of the desired block. A block is the minimum amount of data that can be
read from or written to a disk in a single operation. Disk addresses are ““coarser’’ than
memory addresses because they need to address more data in the same number of bits.

The speed with which data can be transferred between disk and internal memory is
called the disk’s transfer rate, or bandwidth. Floppy disk transfer rates are usually in
the range of 5K-25K bytes per second. Hard disk bandwidth is typically in the 250K—5000K
range. For any particular read or write operation, the disk head must first move to the
correct track and sector, and this ‘“seek time’’ is often the bottleneck in disk data
transfer.

The exact technique used to record information on disk varies with the manufacturer
and type of disk. In fact, it is safe to state as a general rule that no system will be able
to read a disk written on a different manufacturer’s system. More often than not, the
same will be true even for different models produced by the same manufacturer. There
are no commonly accepted standards (except for 8-inch floppy disks, which are now
falling into relative disuse).

Directories, Files

The millions of bits that the computer stores on a disk must be organized in some way
so that desired information can be recalled when needed or discarded to make room for
new data. For this reason, every computer that has a disk also has a file system. A file
system consists of zero or more files and a directory where file names can be looked up
and the corresponding locations determined. The directory is a special file whose start-
ing location is known, so the computer can always find it. Figure 3-1 shows a simplified
disk layout. Address O contains the “home block,” which in turn contains the starting
addresses of the storage allocation table and the directory. Each directory entry occupies
one disk block, and consists {in this example) of a filename, the starting disk address
of the file, and the file’s length. The zero stored at disk address 102 indicates the end
of the directory. The example is simplified because the directory and the files are con-
tiguous. In practice, a file’s disk blocks are usually scattered all over the place and
linked together with “pointers,”” or located through a “file index block.”

Some file systems permit the existence of more than one directory. In this case, the
disk’s top-level directory will contain a list of directories, rather than files, and these
directories in turn will list the files. This mechanism allows more than one person to
share a disk without sacrificing privacy or security. It can be repeated to potentially any
level, depending upon the system, with files and directories mixed together in each

54 PRIMERS

Disk Address Contents

0 10 100 (Home block)

10 10000000001111. .. (Storage allocation table)
100 FO0.BAR 743 15860 (Directory entries)
101 FO0.BAZ 1072 7255
102 0
743 This is some data from the file FO0O0.BAR,
744 which goes on and on...
1071 ...ti1i11 the end.
1072 This is the first line of the file F00.BAZ,
1073 which goes also goes on and on...

Figure 3-1. Simple Disk Organization

directory. A system with only a top-level directory is called a flat file system (Figure 3-2)
and a system with more than one level is a hierarchical file system (Figure 3-3). These
figures are schematic illustrations; in reality, the information is organized more along
the lines of Figure 3-1.

A system with multiple single-level directories is a special, but common, case. The
major purpose of this arrangment is to allow files to be grouped together according to
owner or purpose. When multiple directories exist, files of the same name may reside
in one or more directories simultaneously, and directories can have the same names as
files in other directories. This is illustrated in Figure 3-3.

A computer may have more than one disk active simultaneously. Each disk can have
its own file system. To identify a file uniquely, it may therefore be necessary to specify
the disk unit, one or more levels of directory, and finally the filename.

A new disk starts out blank. Before it can be used, it must be formatted, either by
the manufacturer or by the user, with a program that comes with the system. Part of
the formatting process is the creation of a storage allocation table—a list of disk ad-
dresses that are free for use.* Certain disk addresses are preassigned by the operating
system for the beginning of the (top-level) directory. When you create a file on the disk,
the operating system looks in the storage allocation table for free addresses, creates a

4. In practice, the storage allocation table is more likely to be a “’bit vector,” in which bit number n is 0
if disk address n is free, and 1 if it is in use.

55 COMPUTERS AND FILES

DAnecB Uy
Name of File |
Name of File 2

| Howe 5 Fle 5|
[Wawe of File 4 ——

| ot of Filo

Magﬁw

(ol P2 |
WM“’

Figure 3-2. A Flat File System

Figure 3-3. A Hierarchical File System

56 PRIMERS

directory entry for the file, and then stores the contents of the file (and the directory
entry itself) on the disk in those free locations, afterward marking each address involved
in the process as “used” in the storage allocation table. When you delete a file, the
directory and data locations are removed and marked as ““free” in the storage allocation
table. The format of the directory entries, the data entries, and the storage allocation
table are all managed by the operating system, so you don’t need to be concerned with
the details. You merely issue the appropriate file management commands.

Although disk formats need not concern the user of a particular computer, the fact
that formats are different and incompatible among different computer systems does
become a concern as soon as there is a requirement to move a file from one system to
another: you cannot simply take a diskette from, say, an IBM PC and plug it into the
disk drive of, say, an Apple 1I, and expect to be able to access the files.

Naming Conventions for Files

It is very common for files to have two-part names, in which the first part is made up
arbitrarily by the file’s creator, and the second part specifies the type of file it is, ac-
cording to some convention (which need not be observed). The two parts are separated
by a delimiter, usually a period. There is usually a length restriction on each part, often
six or eight characters for the first part, and three for the second. The second part is
called the file type. On a particular system, a file type of FOR might mean the file is a
FORTRAN program, C might designate a C program, TXT might be some kind of text,
EXE an executable program image.

Many systems require that filenames be composed only of letters and numbers. Some
systems allow letters only, or if numbers are allowed, then the first character of the
name must be a letter. Most systems, but not all (UNIX is a well-known exception),
observe no distinction between uppet- and lowercase letters in filenames.

A file is (usually) fully specified by the device it’s on, the directory it’s in, and its
name. Most systems, however, support the notions of “current disk”” and “current di-
rectory.” When you omit these fields from a file specification, they “default” to the
current device and directory.

The syntax for file specifications varies considerably among systems, but there are
several widespread conventions. A device name terminates in a colon, a directory name
is enclosed in brackets, a dot separates the file name from the file type. For instance,
the VAX/VMS file specification

DSKA : [KERMIT]FOO.BAR

would mean the file named FOO.BAR in the directory KERMIT on the device DSKA.
Another common notation separates the fields with slashes, as in these UNIX file
specifications:

57 COMPUTERS AND FILES

/dev/dska/kermit/foo.bar
/dev/dska/kermit/new/foo.bar

Note that there is no distinction between device and directory in UNIX file specifica-
tions, and that the “path’’ through a directory tree is denoted by simply stringing the
directory names together, separated by slashes.

Some systems mix the previous styles, and may also use different kinds of brackets
or slashes:

A:\KERMIT\NEW\F0O .BAR (MS-DOS)
DSKA: <KERMIT.NEW>F00.BAR (DECSYSTEM-20)

Notice the different methods used to specify the subdirectory NEW of the KERMIT
directory.

There are systems whose file specifications differ radically from this general model
(see Table 3-4). The exact format of the file specification, the restrictions on the length
and contents of each field, and the conventions used for delimiting the fields become a
matter of great concern when files must be transferred between unlike systems. The
difficulties are greatest when files are moved from a system with very flexible naming
conventions to a system with very restrictive ones.

File Organization
The most common arrangement of data within a file is sequential, with one byte fol-
lowing another and no apparent gaps. A random access file, on the other hand, may (or
may not) have gaps of any size. Two common types of random access file are the relative
file, in which records may be accessed by record number, and the indexed or “hashed”
file, in which records are accessed via key or some other classification method. Se-
quential files may also have internal keys or record numbers. The important criterion
is whether the file can be reproduced by copying only its contents; only sequential files
have this property. Random access files are meaningful only in combination with ad-
ditional information external to the data, such as a list of addresses or keys. Sometimes
this information actually is in the file, but in a device- or system-dependent form.
Sequential files themselves vary in format. Text files typically consist of one or more
lines, or “records.” Different systems represent record boundaries in different ways. One
common way is to include control characters at the end of each line, typically carriage
return (CR), linefeed (LF), or both (CRLF). This is called stream format. There is also a
fixed format, in which all records must be the same length (like 80 bytes); any shorter
record is padded out with a sequence of blanks or other innocuous characters, and any
longer record is truncated or ““wrapped.” And there is a variable format, in which each
record is preceded by a length field. Another style has ““carriage control”’—the first byte

.

58 PRIMERS

of each record tells the printing format of the record: whether it starts a new page, a
new line, overstrikes the previous line, skips a line, etc. This format is mainly for use
with printers, but is also found in files created by FORTRAN programs.

In general, only sequential files can be transferred between unlike systems, because
nonsequential files usually have system or device dependencies built into their repre-
sentations. For text files to be useful after transfer to an unlike system, it is often
necessary to convert them to the prevailing format for the target system—stream, fixed,
variable, etc.

File Management

Most operating systems provide you with a set of commands for managing files. Al-
though the syntax will vary, and some commands may be lacking on some systems,
the following list should give you an idea of the common operations:

CREATE
Create the specified file. If this command exists, it probably invokes a text editor. If it
doesn’t, you probably have to invoke an editor explicitly to create the file.

DELETE

Remove the file from the directory. Operating systems differ in their approach to file
deletion. The most common method is to remove the file’s directory entry, and mark
the file’s blocks as free in the storage allocation table. A variation on this method also
scrubs the blocks clean, lest the data fall into the wrong hands—a desirable precaution
on shared file systems. A less common method retains the file, but sets the “deleted”
attribute, allowing the file to be “undeleted” at a later time. Common synonyms for
DELETE include REMOVE and ERASE, and various abbreviations of these words.?

DIRECTORY

List the names of the specified files, or all files in the current device or directory,
possibly along with some of their attributes. This lets you find out what files are in a
directory, or on a disk. Some systems provide many options to aid in file management—
pattern matching on the file names, selection by date, size, or other criteria. A common
synonym is LIST.

TYPE

Display the contents of the specified file on the screen. This command is useful for
reading text files; binary files generally spew forth as squiggly characters and blotches,
with the cursor jumping all over the screen and the beep sounding insistently.

S. For instance, UNIX uses “rm” for REMOVE. While this may seem cryptic, it is an improvement over
what the command was called in early UNIX versions: “dsw,” an abbreviation of the Russian word
for goodbye.

59 COMPUTERS AND FILES

» COPY
Make a second copy of the specified file, under the specified new name, or to the
specified device. The original file is undisturbed. This command can be used to create
a new file by copying from the console terminal to that file, providing the system gives
you a way to signal an “end of file” at the console.

« APPEND
Add one file to the end of another file. This operation is called concatenation, or simply
catenation.®

* RENAME
Change the name of the specified file to the new name specified. This is generally done
by changing the directory entry, leaving the contents of the file undisturbed. On some
systems, this technique can be used to “move’’ a file to another directory.

+CWD
Change Working Directory, i.e., change the default directory and/or device for file spec-
ifications to that specified. This command provides the illusion of moving about the
file system, hopping from one directory to another. Synonyms include CD, CHDIR,
CONNECT, and sometimes simply a disk name.

In hierarchical file systems, there are also commands for creating and deleting subdi-
rectories. And in shared file systems, there are commands to control how others may
access your files; typically you may grant or refuse any combination of read, write,
append, directory listing, and execute access separately to yourself, your group, and the
general public. Write permission usually implies delete permission.

Encoding of Text

Text, like any other kind of data, is stored in the computer’s memory and on disk as
binary numbers, sequences of 0’s and 1’s. The computer screen or printer displays the
character equivalent of a binary number according to some convention. The most widely
accepted convention is ASCII, the American Standard Code for Information Interchange
(5], listed in detail in Appendix D.

The ASCII alphabet is a 7-bit code consisting of 27 = 128 characters, numbered 0
through 127. The first 32 (numbered O through 31) plus the last one (number 127) are
the control characters. Among the control characters are the format effectors carriage
return (CR, or Control-M), linefeed (LF, Control-J}, horizontal tab (HT, Control-I), and

6. The UNIX command is “cat.” UNIX has no TYPE command, so cat is used instead, with the desired
file catenated to the terminal.

60 PRIMERS

formfeed (FF, Control-L), which are commonly found in text files. The remaining control
characters are used for device control or other purposes, and are not usually found in
text files.

The 95 characters in the range 32 through 126 comprise the graphic, or printable,
set. These are the characters that actually cause ink to appear on paper: the upper- and
lowercase alphabet, the decimal digits, punctuation marks, and other symbols. The
space character is also considered a graphic character. Table 3-1 shows the ASCII al-
phabet as it is employed in the U.S. and Canada (Appendix D provides much more

Table 3-1. The ASCII Alphabet

0 "@ NUL 32 SP 64 @ 96 !
1 "A SOH 33 | 65 A 97 a
2 "B STX 34 “ 66 B 98 b
3 "C ETX 35 # 67 C 99 ¢
4 "D EOT 36 $ 68 D 100 d
5 "E ENQ 37 % 69 E 101 e
6 "F ACK 38 & 70 F 102 f
7 G BEL 39 71 G 103 ¢
8 "H BS 40 | 72 H 104 h
9 M HT <41) 73 1 105 i
10] LF 42 74] 106 j
11 "K VT 43 + 75 K 107 k
12 AL FF 44 76 L 108 1
13 "M CR 45 - 77 M 109 m
14 "N SO 46 . 78 N 110 n
15 "0 SI 47 / 79 O 111 o
16 "P DLE 48 0 80 P 112 p
17 ~Q DCl 49 1 81 Q 113 q
18 "R DC2 50 2 82 R 114 r
19 ~S DC3 51 3 83 S 115 s
20 T DC4 52 4 84 T 116 t
21 "U NAK 53 5 85 U 117 u
22 "V SYN 54 6 86 V 118 v
23 "W ETB 55 7 87 W 119 w
24 "X CAN 56 8 88 X 120 x
25 Y EM 57 9 89 Y 121 vy
26 Z SUB 58 90 Z 122 z
27 | ESC 59 91 | 123 {
28 N\ FS 60 < 92 124 |
29 N GS 61 = 93 | 125 }
30 ™ RS 62 > 94 N 126 ~
31 ~_US 63 ? 95 __ 127 RUB

61 "COMPUTERS AND FILES ~

detail). Other countries make certain substitutions: in England, the # symbol is replaced
by the £. In Scandinavia, some of the more esoteric graphics, like /}", are replaced by
special alphabetic symbols, like “@".

Note the distinction between the characters that represent the decimal digits and
the numeric values of the decimal digits themselves. The character O (zero) is stored
within a computer byte as the number 48 (binary 0110000, whereas the number zero
is stored as binary zero (0000000}, which corresponds to the ASCII character NUL. The
numeric coding of each character turns out to be quite important, since it determines
the “collating sequence’’—the ‘‘alphabetic” ordering you get when the computer sorts
ASCII text. As you might expect, the letters are numbered consecutively, but since the
uppercase letters precede the lowercase, “B”” comes before “a’ in the ASCII collating
sequence.

Also observe the patterns in the table. The uppercase letters line up with the low-
ercase ones (they are offset by 32 = 2°); the control characters line up with their print-
able equivalents (the offset is 64 = 2°). These patterns allow certain common conversions
to be made arithmetically. ASCII characters are generated by ASCII terminals, which
have typewriterlike keyboards. Control characters are produced by holding down a spe-
cial key marked Control and pressing the corresponding letter, A for Control-A, B for
Control-B, and so on. This method of generating control characters has resulted in a
strong association between ASCII character number 1 and Control-A, character number
2 and Control-B, and so on. However, these characters are more properly designated by
their formal names, SOH (Start of Header), STX (Start of Text), etc., which are given in
Appendix D.

Although manufacturers of most popular computers use ASCII encoding for text
both internally and when communicating with external devices, there is a major ex-
ception (and it is major}—IBM. IBM favors its own EBCDIC (Extended Binary Coded
Decimal Interchange Code) encoding, an 8-bit 256-character code, on its mainframes
and minicomputers, but it has adopted ASCII on its PC family. Several other mainframe
manufacturers also employ the EBCDIC code, selected portions’ of which are shown in
Table 3-2, taken from the IBM System/370 Reference Summary [29].

Note the differences from ASCIL The nonprintables are not listed as control char-
acters because EBCDIC terminals do not have Control keys. Most EBCDIC characters
have different numeric values from their ASCII equivalents, although a few coincide
(SOH, ETX). There are “holes” in the alphabet, most noticeably between the letters I
and J, and R and S, in both the lower- and uppercase sets. The EBCDIC lowercase letters
precede the uppercase letters, which is the reverse of the ASCII arrangement. The col-
lating sequences of EBCDIC and ASCII are very different.

The fact that there are two principal competing codes might lead you to expect a
widely adopted standard for translating between them. But that would be too easy. Many

7. Why don't | just show the whole thing? OK, ! confess . . . I'm writing this book using ASCIl computers,
with no way to enter those EBCDIC printable characters that ASCll doesn’t have, like cent-sign, not-sign,
corner brackets, etc. This is just the kind of problem that this section is meant to illustrate.

62 PRIMERS

Table 3-2. Selected Portions of the EBCDIC Alphabet

0 NUL 75 . 110 > 145 j 200 H 240 O
1 SOH 76 < 111 ? 146 k 201 1 241 1
2 STX 77 | I 147 1 202 242 2
3 ETX 78 + : : : : : :
T 79 123 # 152 q 209 J 249 9
Do 80 & 124 @ 153 r 210 K

26 UBS : 125 7 : : : :

27 Cul : 126 = 162 s 217 R

28 IFS 90 ! 127 " 163 t I

29 1GS 91 § 128 164 u T

30 IRS 92 * 129 a I 226 S

Do 93) 130 b 169 z 227 T

M 94 ; 131 ¢ : : : :

37 LF : : : : : 233 Z

38 ETB : 136 h 193 A F

39 ESC 107 , 137 i 194 B

- 108 % 138 195 C

computer people no doubt owe their livelihoods to the fact that there is not, and they
spend a good deal of their time devising their own custom translations. In fairness, it
must be said that much of the confusion dates from the days when both alphabets were
in a state of development [23], and that many of today’s dubious translations were
“correct” at the time they were originally made. But the problem runs deeper still.

Translation from one character set to another is done through a translation table—
“translate table” for short—which is simply a list of numbers. The number at position
n in the table is the translation of character number n in one set into the other set. For
instance, the number at position 71 in the ASCII-to-EBCDIC table is 199—71 is the
ASCII value for the letter G and 199 is the EBCDIC value for that letter (Table 3-3).
When an ASCII value of 71 arrives at an EBCDIC system {say, from an ASCII terminal),
the translation is done immediately by replacing it with the seventy-first element from
this list.

Each translate table should have an inverse; if an EBCDIC-based system is receiving
characters from an ASCII device, it probably will also want to send characters back to
that device. Thus it will also need an EBCDIC-to-ASCII table. This should simply be
the inverse of the ASCII-to-EBCDIC table.

But what about the fact that there are twice as many EBCDIC characters as 7-bit
ASCII? The maker of the EBCDIC-to-ASCII table has some hard choices: some ASCII
~ characters will have multiple EBCDIC equivalents. What happens when an EBCDIC
file that has been translated to ASCII needs to be translated back to EBCDIC? Will it
be the same as the original? Probably not, because any distinction between those EBCDIC

63 COMPUTERS AND FILES

Table 3-3. Parts of an ASCII-to-EBCDIC Translate Table
ASCII EBCDIC ASCII EBCDIC ASCII EBCDIC ASCII EBCDIC

0 0 32 64 70 198 91 173
1 1 33 90 71 199 92 224
2 2 34 127 72 200 93 189
3 3 35 123 73 201 94 95
4 55 36 91 74 209 95 109
5 45 37 108 75 210 96 121
6 46 38 80 76 211 97 129
7 47 39 125 77 212 98 130

characters that had to be mapped to a single ASCII character will have been lost. Since
EBCDIC has more characters than ASCI], it is not possible to have an invertible trans-
lation from EBCDIC to ASCIL

But if you only care about ASCII files, your problem is reduced to picking out 128
unique values from the EBCDIC set to correspond to the 128 ASCII values. Translations
from ASCII to EBCDIC and back can be invertible given a properly designed table. Such
a table is furnished in the IBM System/370 Reference Card, and in Appendix D, and
this is about as close as we can come to a standard in this area.

Before leaving the topic of character sets, I should also mention that there is a recent
trend to create 8-bit sets based on ASCIL. The lower half of the set is standard ASCI],
and the upper half contains special characters. There is very little agreement as to what
these special characters should be, although several standards have been proposed. The
intention is usually to provide a selection of characters with diacritic marks (umlauts,
accents, etc.) for use in Europe, or alternative alphabets like Greek, Hebrew, or Cyrillic.
Users of IBM or DEC microcomputers will be familiar with these special characters, as
they often appear on the screen by accident.

Versions of Files

In most file systems, there can be only one copy of a file with a particular name in a
particular disk or directory. If you create another file with the same name in the same
place— for instance, by editing the original file and then saving it—the original file is
obliterated. Some file systems, however, allow multiple copies (called versions or gen-
erations} of the same file to coexist. The first and original copy is version 1, the next
copy is version 2, and so forth. Such systems generally remove the oldest version au-
tomatically when you create a new one, or else provide you with the ability to remove
old versions explicitly.

64 PRIMERS

When file versions may coexist, file transfer becomes a less hazardous affair. File
name conflicts do not arise, and treasured files are not accidentally blotted out. When
the file system does not provide this feature, file transfer programs must take pains to
handle name collisions by inventing unique names for new files to prevent the undesired
destruction of old ones.

End of File

A particularly important attribute of a file is its length. Unfortunately, not all file
systems record a file’s length in the file’s directory entry. Among those that do, some
may do so precisely, indicating the exact number of characters or bytes in the file, while
others record only the number of blocks.

Systems that record the length imprecisely usually have no way to determine the
exact end of a file; the best they can do is guess that it is somewhere in the last disk
block, or define it to be at the end of the last disk block.?

Programs that run on such systems may adopt a convention for marking the end of
the data by including a special character {such as ASCII Control-Z) at the appropriate
place within the file. Of course, such a convention precludes use of the special character
itself as a data character, and it depends on all application software to observe it when
creating or reading files.

Other File Attributes

Now we know about a file’s specification {device, directory, name}, organization (se-
quential, random), type (text, binary), encoding (ASCII, EBCDIC]), version, and length.
These are a file’s most important attributes. But a file can have other attributes, too,
depending upon the particular file system. These are typically recorded in the file’s
directory entry.

Some of the nicer attributes are externally recorded tidbits having no bearing on how
the contents of the file are interpreted: date and time of creation, name or account of
creator, protection code, etc. The more insidious attributes specify the “access method”
for the file— how to interpret it: fixed versus stream, keyed versus relative, and possibly
even that the file is really a directory or a program to be executed. If a file whose
interpretation depends upon such externally recorded attributes is transferred to an
unlike system and then brought back, it may have been rendered useless through loss
of these attributes, even though the data itself remains intact.

8. If this sentence were a file on such a system, it might look like this when you
type it at your terminal:xs~%_nna<xxlxknamx/''''

65 COMPUTERS AND FILES

Characteristics of Selected Systems

Table 3-4 lists a selection of micros and mainframes according to some of the charac-
teristics we’ve been discussing. It’s only a small table, and it can’t be considered very
accurate because many of the listed parameters change from one release of the operating
system to the next, or from one model of the machine to another. The word and byte
sizes are given in bits.

The column “Filespec Format” shows the notation used to fully specify a file in the
normal case (network node names and other esoterica excluded); DEV means a device
name, DIR means a directory name (in a hierarchical file system, DIR ... means an
arbitrary path through the directory tree). If the directory field is specifed by a numeric
project and programmer number, that is shown as “p,pn.” Digits refer to the maximum
length of the file name and type fields, respectively, and “.v" or /;v"’ on the end of the
filespec shows the format for specifying file version or generation numbers when these
are allowed. An entry like DEV: [DIR.DIR. .]9.3; v would indicate a file specification
that begins with a device name that terminates in a colon, followed by a directory name

Table 3-4. Characteristics of Selected File Systems

Text
Word Byte Text Text

System/OS Size Size Filespec Format Code EOR EOF
CP/M-80 8 8 DEV:8.3 ASCII7 CRLF block
Intel MDS/ISIS 8 8 DEV:6.3 ASCI17 CRLF Dbyte
MS-DOS 16 8 DEV:\DIR\DIR...\8.3 ASCI8 CRLF byte
UCSD p-System 16 8 DEV:15 ASCI17 CR byte
Apple Macintosh 32 8 (free) ASCII8 CR byte
0S-9 — 8 dev/dir/dir.../29 ASCII7 CR byte
UNIX — 8 dev/dir/dir.../14 ASCII7 LF byte
Hewlett-Packard 1000 16 8 6: :DEV ASCII7 CRLF word
Prime/Primos 16, 8 <DEV>DIR>DIR>...>32 ASCIl7— LF word
DEC PDP-11/RT-11 32 8 DEV:6.3 ASCI7 CRLF block
DEC PDP-11/RSTS/E 16 8 DEV: [p,pn]6.3 ASCI17 CRLF byte
DEC PDP-11/RSX-11 16 8 DEV:[p,pn]9.3;v ASCI7 RCW byte
DEC VAX/VMS 16 8 DEV: [DIR.DIR...139.39;v ASCII7 RCW byte
DECsystem-10 32 7 DEV:6.3[p,pn] ASCII7 CRLF byte
DECSYSTEM-20 36 7 DEV:<DIR.DIR...>39.39.v ASCI7 CRLF byte
IBM VM/CMS 36 8 8 8 DISK EBCDIC FV RCW
IBM MVS/TSO 32 8 44 EBCDIC FEV RCW
Sperry 1100/0S 1100 36 9 DIR*12.12/v ASCIl7,8 RCW RCW
Honeywell DPS8/MULTICS 36 9 dir>dir>...>32 ASCII8 LF bit
Honeywell DPS8/GCOS 36 9 user/dir/dir.../12 ASCII8 RCW RCW
CDC Cyber 170/NOS 64 6,12 7 SIXBIT RCW RCW

66 PRIMERS

in square brackets, in which multiple directory levels are separated by periods, followed
by the filename, with a maximum of nine characters in the name and three in the type,
and a dot separating the name and type, followed by a version number.

In the Text Code column, ASCII7 means 7-bit ASCII, ASCII8 means “extended ASCII,”
and SIXBIT is a 6-bit code including only half of 7-bit ASCIL. ASCII7 — is “‘negative”’
ASCII, in which the high-order bit of each 8-bit byte is set to 1. In most other cases,
where an n-bit ASCII character is stored in an m-bit byte (and m is greater than n), the
high-order bits are set to zero.

“Text EOR” and “EOQF” show the convention for marking the end of a record (line)
in a text file and the end of the text file itself, respectively; CR means Carriage Return,
LF means Linefeed, RCW means that a Record Control Word describes each record. F,V
means there’s a selection of fixed and variable records in which the variable records are
described by RCWs. In the EOF column, byte means an accurate byte count is kept in
the directory, block means the length of the file is known only in blocks, word means
the length is known only to the nearest word, RCW means a special record control
word indicates the end of the file.

» CP/M-80 files are stream format, stored in 128-byte blocks, and the length is recorded
as the number of blocks. The end of a text file occurs, by convention, at the first Control-Z
character in the file. A binary file’s length is a whole number of blocks, as recorded in
the directory. Lines of text are separated by carriage-return—linefeed sequences {CRLFs).

» The MS-DOS file system started out as a copy of the CP/M file system, but with the
file creation date and file length to the exact byte recorded in the directory entry. Version
2 of MS-DOS added a fully hierarchical directory structure, like that of UNIX, but with
backslashes rather than slashes as separators. MS-DOS files are simple streams of bytes.
Lines of text are separated by CRLFs. Many CP/M applications were carried forward to
MS-DOS, and brought the Control-Z convention along with them.

» The UCSD p-System is a Pascal-oriented operating system that runs on a variety of
microcomputers. It has a 2-level file system, consisting of volumes and subvolumes.
File names may or may not include a file type; if they do, certain types are treated
specially by the operating system, such as those ending in .TEXT. Lines of text are
separated by bare carriage returns. Files are stored in contiguous blocks, and must there-
fore have space preallocated for them at creation. Text files may be stored with space
compression, using ASCII 16 (DLE) as the compression lead-in character. Every text file
has an empty leading “page”’ (2 blocks) for storing environment information. The special
treatment of files based on a 4-letter type (when many common systems restrict the
file type to 3 letters), and the foreknowledge of a file’s size required before the file can
be created, pose special problems for file transfer.

» The word size of the Apple Macintosh is either 16 or 32 bits, depending on whether
you think the Motorola 68000 is a 16- or a 32-bit microprocessor. The original Apple
Macintosh had a flat file system over which “folders” could be superimposed to lend
an illusion of structure. The second release of the Macintosh file system is truly hier-

67 COMPUTERS AND FILES 77~

archical. Macintosh file names can be arbitrary text strings, like ““This is the name of
my file.” Macintosh files each have two pieces, a data fork and a resource fork, which
makes file transfer a tricky affair. Text is recorded in extended (8-bit) ASCII to allow
addition of special characters to the basic ASCII set; lines of text are separated by bare
CRs.

» The UNIX operating system runs on many different machines of varying word size.
Unlike most other systems, UNIX distinguishes between upper- and lowercase letters
in filenames. There is no formal notion of file type, and any number of dots may appear
at any position in the filename (nevertheless, certain conventions are observed). Berke-
ley UNIX allows files to have very long names. The file system is fully hierarchical,
with subdirectories stored as ordinary files within their superior directories. Files are
simple streams of bytes, with the length known exactly. Text lines are terminated by
a “‘newline’”” character, which is almost always LF.

* OS-9 is a derivative of UNIX that runs on a variety of microcomputers. Its text files are
just like UNIX’s, except the line terminator is CR instead of LF.

» The Hewlett-Packard 1000 minicomputer comes with a flat file system having no di-
rectory structure (a limited hierarchical file system is available as an option; it works
by building a file system inside a regular HP-1000 file). The HP-1000 has 16-bit words,
with ASCII characters stored 2 per word. A file’s length is known to the nearest word.

» The Prime 50 series computers have a fully hierarchical file system modelled after that
of Honeywell MULTICS. Text is recorded in “negative ASCIL " with lines separated by
LF, or LF NUL (the NUL is added when the line has an odd number of characters); the
file’s length is always an even number of bytes. Text files are stored with blank compres-
sion (and with trailing blanks removed), and they may contain special codes for print
formatting. These codes, and the compression lead-in, are distinguished from textual
data by having their high-order bit set to 0 rather than 1.

* DEC’s RSX and VMS operating systems provide a vast array of file types, organizations,
and attributes via FILES-11 and RMS. File type and record delimitation depend upon
the file’s recorded attributes. The usual style on FILES-11 and RMS is variable records
(with length fields), padded to an even length, with carriage control implied via directory
attributes. RT-11 does not use FILES-11; it has simple stream files with CRLF separating
lines of text, but records the file length only to the nearest block; the final block of a
file is padded to the end with NUL characters (when a file has real zero bytes as data
at the end, the end of the data cannot be distinguished from the padding). RT-11 files
are contiguous, requiring that disk space be preallocated for new files.

* The DECSYSTEM-20, and its close relative the DECsystem-10, have an unusual word
length: 36, not a power of 2. These machines have special instructions to manipulate
bytes of any size from 1 to 36. Text files are normally packed as five 7-bit bytes into a
single 36-bit word, with 1 bit left over. Some text files have line sequence numbers,
which occupy a full word; such files have each line padded out with nulls to a word
boundary. Native binary files occupy the full 36-bit word, whereas foreign binary files

68 PRIMERS

are usually stored in the four leftmost 8-bit bytes, with 4 bits left over. On the
DEC-20, a file’s byte size is recorded in the directory entry; on the DEC-10 it is not.
The DEC-10 has [p,pn] style directories, whereas the DEC-20 allows named subdirec-
tories to any level, so long as the total number of characters in the directory specifi-
cation, including the dots that separate each level, does not exceed 39.

The Honeywell DPS series with GCOS has a fully hierarchical file system similar to
that of UNIX, but the files are record-oriented rather than simple streams, with a record
control word preceding each record to indicate its length, and a special RCW to mark
the end of file. These machines have a 36-bit word, but unlike the DEC-10 and DEC-
20, divide them up into four 9-bit bytes for the purposes of storing characters.

An IBM VM/CMS disk has a flat file system, but a user is allowed to create many
“yirtual disks,” each with its own file system. The file specification consists of the file
name, the file type, and the disk name (called the ““file mode”), separated by spaces. It
is rare to find a file system that allows spaces within a file specification, as these can
cause no end of ambiguity within commands, especially when these file specifications
must be typed on foreign systems. CMS knows the number of blocks in the file, but
leaves it up to the access method appropriate to the file’s format to determine the actual
end. Text files are encoded in EBCDIC rather than ASCII. The MVS operating system
has a similar file structure, but file specifications contain no disk name, and may be up
to 44 characters long, but a period is required at least every 8 characters. Like the
HP-1000, MVS supports environments in which file systems are created inside single
files. In the MVS case, these are called “partitioned datasets.”

The CDC Cyber with NOS has a flat file system; file names are seven characters long,
period—no file type, no device specification, no version number. Text is stored in many
different ways, including at least three different 6-bit character sets (no lowercase let-
ters), and some variations on 7-bit ASCII, with text packed within words in various
different ways. To add to the confusion, some sites have also devised their own custom
character sets. A line of text is normally terminated by a machine word that has at least
12 zero bits right justified. End of file is indicated by a machine word filled with zeros.

The diversity exhibited by these few systems is only the tip of the iceberg. During
the 1960s and ’70s, the trend was for every computer to have a unique operating system.
In the 1980s, manufacturers have swung in the other direction, adopting one of the
popular “portable’” operating systems like UNIX or MS-DOS, but many of the “pro-
prietary” operating systems will continue to thrive alongside them. Each file system
poses its own set of problems when its data needs to be shared with an unlike system.
In the foregoing list, there are consistent incompatibilities in the following areas:

* Character set
* Delimitation of text lines

* End of file detection

69 COMPUTERS AND FILES

» Compression or formatting codes within files

* Filename format and length

» Difference between text and binary files

* Difference between native and foreign binary files

* Requirement to preallocate
Every combination of two unlike systems can pose a unique set of problems. But it is
impractical to expect that every system should have specific knowledge of the pecu-

liarities of every other system with which it expects to exchange data. This is the
paradox that a file transfer protocol must confront.

4

Data Communication

Our discussion so far has presented a simplified model of a computer and its file system,
as shown in Figure 4-1. We now complicate this model by adding a window, or “port,”
to the outside world, as in Figure 4-2. Reality is still a bit more complex, since the
console itself may be a port. But wherever the port is, let’s see how it works.

Data communication takes place when signals are transmitted over some medium.
The medium most commonly used is ordinary copper wire, but others may be used too:
coaxial cable, optical fiber, and even empty space. As long as these media can mimic
the behavior of copper wire well enough that the communicating devices can’t tell the
difference, the “‘traditional”” practices discussed here still apply.

Several binary codes have been used over the years for transmitting characters over
communication lines, including variable-length Morse code, 5-bit Baudot code [25] (vari-
ants of which are still used to transmit telegrams and telexes), 7-bit ASCII code [5], and
8-bit EBCDIC code [23]. With the usual prominent exception, almost all contemporary
computer and terminal manufacturers use 7-bit ASCII encoding for character transmis-
sion regardless of the preferred internal encoding.

Besides the medium and the character encoding, there are several other parameters
that may characterize the common data communication arrangements. Oddly enough,
some of the most important parameters don’t have widely accepted names, even though
their values do. These include the serial-or-parallel parameter, the synchronous-or-asyn-
chronous parameter, and the full-or-half-duplex parameter. The values of these param-
eters can occur in any combination, although some combinations make more sense
than others.

Serial Transmission

There are two ways to transmit the bits that make up a character: all at once (in parallel)
or not all at once (in series). Parallel transmission assigns each bit of a character to its
own wire (Figure 4-3). Because of timing problems and the extra expense for additional
wires, both of which increase with distance, parallel transmission is generally used only
for very short distances, like that between a microcomputer and its printer.

Serial transmission sends each bit of a character over a single wire, one after the
other, in a series (Figure 4-4). Serial bits are distributed over time, whereas parallel bits
are distributed by position. A character transmitted in parallel is like a picture, which
you can see all at once; in series, it’s more like speech, in which words arrive one after
the other. Although serial transmission is slower than parallel, it is the predominant
mode of communication between computers today.

Imeliuilion
Decodet

M%*DM

Consote

Figure 4-1. A Computer

Imapuction
Pecodo/t

I .
P PriT- Dtk
n_”j“@

Cowtole

Figure 4-2. A Computer That Can‘ Communicate

:

|

EW Wined

Figure 4-3. Parallel Transmission

72 PRIMERS

12 Loy
i
75 A I31E] o]
— Skt Regidlor.
T TT 1]
5[4]zl2]1]o]

Deslumalion

Figure 4-4. Serial Transmission

Asynchronous Transmission

When the bits in a character arrive all at once, in parallel, there is little confusion about
where one character ends and the next begins. But when they arrive in series, we need
an unambiguous way to delimit them. Two methods are used: clocking, associated with
synchronous transmission, and framing, associated with asynchronous transmission.
Clocked synchronous transmission is the faster of the two, but it is also more expensive;
it requires special equipment to provide the timing signals that keep receiver and trans-
mitter synchronized.

Asynchronous transmission is much more common. It is designed for use between
humans and machines, rather than between machines and machines. The distinction
is that a person can cause a character to be transmitted from a terminal at any (unpre-
dictable) time by pressing a key, whereas two computers communicating synchronously
will know exactly when to expect characters because they share a common clock pulse.

You can visualize the difference between synchronous and asynchronous serial com-
munication like this: suppose you want to get a drink of water from a hose, but the
person controlling the spigot is out of sight and likes to turn it on and off a lot. In the
synchronous case, your friend calls to you when the water is about to go on and off,
but in the asynchronous case you have figure it out for yourself. Synchronous com-
munication requires a separate, ‘‘out-of-band”’ communication channel for control in-
formation. If the hose is very long, you won’t be able to hear your friend and you’ll have
to find some (asynchronous) way of getting a drink without being squirted in the face
(like buffering the hose in a pail, but let’s not get ahead of ourselves).

Data transmission, whether serial or parallel, synchronous or asynchronous, is ac-
complished by applying agreed-upon voltages to the communication line for agreed-

73 DATA COMMUNICATION

upon intervals. In RS-232, the standard for asynchronous data transmission [9], a “high”’
voltage (+3 volts or higher) represents a binary zero, and a “low’” voltage (-3 volts or
lower)! represents a binary 1. In data communication jargon, a zero is a ‘‘space’” and a
one is a “‘mark.” The application of positive and negative voltages—called bipolar sig-
nalling because the two values have opposite polarity—allows legitimate signalling ele-
ments to be distinguished from line power interruptions, unlike the unipolar technique
(signal versus no signal) originally used in telegraphy.

The restriction of legitimate signals on a transmission medium to a small number
of discrete voltage ranges (in this case two of them) is called digital communication.
This is in contrast to common voice or video transmission, in which signals may vary
continously over a wide spectrum. Digital transmission reduces the probability that
illegitimate signals will be taken as legitimate ones.

N

\\W%Wﬂ\('f/ %\\

Baud Rate

Digital transmission can occur over a wide range of speeds, depending upon the char-
acteristics of the devices and the communication medium involved. A short wire be-
tween two computers can convey data reliably at relatively high speeds, whereas a noisy
cross-country telephone connection can do so only at much lower speeds. Data com-
munication speed is measured by the number of significant voltage transitions that can
occur per second. This is called the signalling rate, or “baud rate,” and in the case of
binary digital transmission it is equivalent to the number of bits per second, because
there are only two significant voltage states.

To allow devices to exchange data at the highest rate appropriate to the prevailing
conditions, a selection of speeds must be provided. In an attempt to ward off chaos,
various standards organizations have made lists of acceptable baud rates [2, 30, 11]. The
standards all say that baud rates should be multiples, halves, or quarters of 600, plus a
few others (on which the standards tend to disagree). The common baud rates are 110,
150, 300, 600, 1200, 2400, 4800, and 9600. 110 and 150 baud are for Teletypes; 300 and
1200 are in common use over telephone lines; 2400 and above are used mainly with
direct connections (2400-baud telephone connections are also becoming practical). Higher
speeds like 19200 and 38400 are also beginning to appear for direct connections; slower
speeds like 50 and 75 baud are used for international cable traffic. I once read that power
utility companies even use their power transmission lines to carry power-grid switching
information at very low speeds, like 12.5 baud.

The baud rate can generally be characterized as ten times the number of characters
per second (cps), for instance, 1200 baud is 120 cps. Table 4-1 shows how long it takes
to transmit selected amounts of data from 1K {1024) bytes to 1024K (a megabyte) at
various baud rates, assuming the data flows continuously (which hardly ever happens).

1. RS-232 specifies an upper limit of 25V on the magnitude of these signals. In practice, they rarely
exceed 15V.

74 PRIMERS

Table 4-1. Transmission Times for Selected Baud Rates

Baud:

KBytes 110 300 1200 2400 4800 9600 19200

1 1.7m 34.1s 8.5s 4.3s 2.1s 1.1s 0.5s

2 3.4m 1.Im 17.1s 8.5s 4.3s 2.1s 1.1s

4 6.8m 2.3m 34.1s 17.1s 8.5s 4.3s 2.1s

8 13.7m 4.6m 1.Im 34.1s 17.1s 8.5s 4.3s

16 27.3m 9.1m 2.3m 1.Im 34.1s 17.1s 8.5s

32 54.6m 18.2m 4.6m 2.3m 1.lm 34.1s 17.1s

64 1.8h 36.4m 9.lm 4.6m 2.3m 1.1m 34.1s
128 3.6h 1.2h 18.2m 9.1m 4.6m 2.3m 1.Im
256 7.3h 2.4h 36.4m 18.2m 9.lm 4.6m 2.3m
512 14.6h 4.9h 1.2h 36.4m 18.2m 9.1m 4.6m
1024 29.1h 9.7h 2.4h 1.2h 36.4m 18.2m 9.1m

(s = second, m = minute, h = hour)

You are sometimes asked to specify input and output baud rates separately. Some
years ago, “split-speed” communications enjoyed a brief vogue, predicated on the (no
longer valid) assumption that traffic from the terminal to the computer would be light
compared to that in the other direction (because computers can spew out data faster
than people can type). A typical split-speed arrangement was 75 baud input and 1200
baud output, from the point of view of the dialup user. While some environments may
still require or encourage split-speed communications, the general rule today is equal
rights for input and output.

The UART

In the early days, it was rarely possible to connect compuiting equipment from two
different manufacturers. There was little regard for standards (when they existed at all};
and wide variations of interpretation even when attempts were made to follow the early
standards. By 1969, the RS-232 standard had matured to its present level (RS-232-C},
and it wasn’t long before manufacturers began to mass-produce a device to implement
this standard. Today, thanks to this device, called a Universal Asynchronous Receiver/
Transmitter (UART, pronounced “you-art”’), we can take RS-232 connections for granted.
Computer makers who once recoiled at the thought of allowing a competitor’s equip-
ment to communicate with their own have now come to accept the idea, and they
routinely equip their products with standardized UARTS.

The UART allows a wide variety of terminals to communicate uniformly with a
wide variety of computers, and computers themselves to exchange data over asynchro-
nous serial connections. The UART is represented schematically in Figure 4-4 as the
contraption at either end of the wire. Recall that characters are stored in the computer
within bytes, and a byte is a row of 7 or 8 bits which the computer treats as a single

75 DATA COMMUNICATION

Dala bile ’\“7
oy o 1 0 0o 0O o 1 1 o©
~12y
P A I R
e e
WWMWMWL/\ 1 /\ |/\ | A I, | | _4_/\ | /\ l AWMWMMWWWMWM
9 T 6 3
pﬂw
1o Clock 1 Clock Pulde 1% Clock
Tlae Pt Bt T Pulaot
o Bit Tine vt Bl Tame Fon 6 Time

Figure 4-5. Asynchronous Serial Transmission of the Letter C

unit (in parallel). The UART’s task is to convert a byte in the computer’s memory to a
series of voltages on the communication line, and vice versa. Conceptually, this is a
simple task. To transmit a byte, the UART simply feeds the bits (in voltage form) to
the line, one at a time, in the prescribed order (exactly which order was once the subject
of some debate [3]).

But how does the UART on the receiving end know where one character ends and
the next begins? The transmitting UART observes a “framing” convention, which works
like this: whenever no data is flowing, the UART applies a steady negative voltage
{a mark condition) to the line. The mark looks just like a binary 1. To signal the
beginning of a character, the UART raises the voltage to the space condition for one bit
time. As soon as the receiving UART sees this 1-to-0 transition, it samples the line
voltage eight more times to assemble a byte, which it makes available to the computer
for copying. When the transmitter has finished sending the character, it goes back to
its idle state by applying the mark condition to the line for at least one bit time.

Figure 4-5 shows how the ASCII letter C (67 decimal, 01000011 binary) would be
transmitted by the UART. Note that the least significant {low-order) bits go first.2 The

2. Pictures like this one are intrinsically confusing. In the example shown, time is backward. But if the
mirror image were shown, then the data would look backward.

76 PRIMERS

space at the beginning of the character is called the start bit and the mark at the end
is called the stop bit. Ten bit times are required to transmit 8 bits of data. This consti-
tutes a 20 percent overhead, and it is part of the price we pay for the convenience and
economy of asynchronous transmission. The times given in Table 4-1 include this over-
head. A

At this point, it’s worth mentioning that communications equipment or programs
often require you to specify the number of stop bits. This question is an artifact of
earlier times when clunky mechanical printing contraptions {like ASR33 Teletypes)
needed some time to settle down after printing a character. Today’s equipment should
be able to make do with one stop bit at any baud rate, although it is still customary to
use two stop bits at 110 baud.?

Now let’s look at the UART’s operation in a little more detail. Before any commu-
nication can take place, the two UARTSs must be set to the same baud rate, which is
the inverse of the bit time (for instance, 1200 baud means a bit time of 1/1200 =
0.000833 second). When the UART’s input line is in the idle state, the receiver samples
the input line at a rate many times faster than the bit rate, typically 16 times faster, or
once per 0.000052 second at 1200 baud. This furious activity is necessary because the
UART does not know when the character will start to arrive. This is why the trans-
mission is said to be asynchronous; the process is somewhat akin to staring constantly
into a hose to see when the water will arrive.

As soon as the UART receiver detects the 1-to-0 transition (at bit time O in Figure
4-5}, it continues “furious sampling” for half a bit time (until bit time 0.5) and then
slows its clock down to tick exactly once per bit time, so that the line is sampled as
closely as possible to the “middle” of each data bit. At the same time, a counter is set
to the number of data bits expected {usually 8). Then for each clock tick, the line is
sampled, the sampled voltage is converted into a bit and inserted into a shift register
{in which the earlier bits are moved over one position to make room), and the counter
is decremented (decreased by 1}. The process continues until the counter reaches zero.
At that point (bit time 9.5 in the figure) the UART checks to make sure the line is in
mark state. If not, it informs the computer that a framing error has occurred. Otherwise
it copies the character from the shift register to a holding register (to make room for
new arrivals), and indicates to the computer that a character has been received suc-
cessfully. At this point the computer may copy the character from the UART’s holding
register into its own memory. If the character has not been removed by the time the
UART is ready to copy the next character into the holding register, the UART signals
an overrun condition to indicate that data was lost.

The UART has two channels for communicating with the computer: one for data
and one for control information. The control channel, consisting of status and error bits

3. Of course, at such a low baud rate, the last thing you want to do is add extra transmission overhead.
If you have to communicate at 110 baud for some reason, try it first with 1 stop bit, and switch to 2 only
if necessary.

77 DATA COMMUNICATION ~——

Table 4-2. Typical UART Parameters

1 +5V Power 21 Reset All
2 —12V Power 22 Transmitter Buffer Empty
3 Ground 23 Data Strobe
4 Received Data Enable 24 End of Character
5-12 Received Data 1-8 25 Serial Data Qutput
13 Receive Parity Error 26-33 Parallel Data Input 1-8
14 Framing Error 34 Control Strobe
15 Overrun 35 No Parity
16 Status Word Enable 36 Two Stop Bits
17 Receiver Clock 37-38 Bits Per Character (5, 6, 7,
18 Resets 19 39 Even Parity Select
19 Received Data Available 40 Transmitter Clock

20 Serial Data Input

(“flags’), provides an out-of-band method for communicating information about the
data. Table 4-2 shows the parameters associated with each of the 40 UART signals.

Now you can see why the asynchronous serial communication medium is said to
be character-oriented. The computer itself is shielded from the serial nature of the
transmission by the UART. It sees the UART, and therefore the communication line,
strictly as a character-at-a-time input/output device. This is a paradoxical situation,
because the wire itself is a purely serial path, subject to perturbations that take no
account of the character orientation of the devices on either end.

Noise and the Telephone System

Serial data communication is often called ““telecommunication’” because so much of it
occurs over telephone lines. Telephone lines have some special characteristics that will
be discussed later, but one worth mentioning now is that they can be very noisy.

Your own experience with ordinary telephone calls should give you an idea of what
can go wrong with a phone connection. The signal may be weak. There may be hissing
sounds or pops. Someone else’s conversation may be superimposed on yours. The signal
might disappear altogether for short intervals. There may be annoying delays in voice
transmission. Your words might echo back to you some seconds after you speak them.

These problems have many causes, not least among them that some parts of the
telephone network are nearly a century old. A vast array of potentially noisy junctions
and switching equipment establishes and maintains telephone circuits. And telephone
lines, like all communication lines, are subject to interference from other nearby elec-
trical energy sources— power cables, motors, alarms, even other transmission cables—
as well as loose connections, frayed insulation, and so on.

.

.

78 PRIMERS

The noise that occurs during a phone conversation usually does not prevent the
desired information from being exchanged—people can talk louder, talk slowet, or repeat
themselves. Digital data does not fare as well in these circumstances. The meaning of
human speech distorted by static can often be inferred from context, but digital data,
once corrupted, is hard to reconstruct. Techniques have been developed to detect trans-
mission errors in digital data, but most of them presuppose that errors involve only
individual bits. Unfortunately, the kinds of noise that affect a communication line tend
to occur in bursts that wipe out many bits in a row.

The telephone system has elaborate noise reduction mechanisms built into it, but
they cannot be depended upon entirely. If more demands are placed on the phone system
than it can handle, if furious switching or dialing activity mangles data beyond recog-
nition, if devices malfunction or electrical interference occurs, there’s little the system
itself can do to correct the signals.

The BREAK Signal

If the serial asynchronous communication line were capable only of transmitting prop-
erly framed characters, certain desirable operations would not be possible. Here are two
examples:

Automatic baud rate adjustment—If your device is running at one baud rate, and the
device on the other end of the connection at another rate, neither device will be able
to decode the other’s transmissions. It is sometimes necessary to ‘“wake up” the remote
device to this fact and have it adjust its baud rate.

Escape from transparency—If some intermediate device connects your system to a re-
mote computer, you would probably want it to pass all characters through transparently,
just as if your system were connected directly. But then how would you get the device’s
attention when you need to communicate directly with it, for instance, to ask it to
connect you to a different system?

One technique that can be used in both situations is the intentional generation of a
framing error. This can be done by putting the communication line into the space
condition for more than a whole character time. Such a condition is called a BREAK
signal.* Since the baud rate at the receiving end may not be known, a BREAK must last
longer than the longest possible character time. The lowest baud rate in common use
is 50 baud (for international telecommunication), which gives a bit time of 0.02 seconds
(20 milliseconds) and a character time of 0.2 seconds (200 milliseconds) at 10 bits per
character. It is therefore commonly agreed that a BREAK signal should last slightly
longer than one 50-baud character time, or 275-300 milliseconds, so it can never be
confused with valid character data at any baud rate.

An interesting property of the BREAK signal is that if the receiving computer elects
toignore the UART’s error indication, the data is received as an ASCIINUL. The BREAK

4. BREAK is customarily spelled in all uppercase; don’t ask me why.

79 DATA COMMUNICATION

key has become a common shortcut for entering a NUL from the terminal—easier than,
say, typing Control-Atsign. What’s even more interesting is that the data comes through
as a NUL at any baud rate.

Generation of a framing error is a cheap way to achieve an out-of-band signal. When
a device that is expecting valid data gets an error instead, it can trigger special action.
A computer that is initially connecting to a device whose baud rate is unknown can
switch, under program control, to another baud rate if framing errors occur. A com-
munication device whose normal mission is to pass along all character data transpar-
ently can ““wake up” when it detects a framing error and find out what the user wants.

Such handy uses of the BREAK signal have prompted most asynchronous terminal
manufacturers to include a BREAK key on the keyboard. The prevalence of the BREAK
key has in turn prompted software designers to take advantage of it by including the
BREAK signal among valid inputs expected from the user. For instance, a text editor
might require a BREAK signal to switch from text collection to command mode. This
sort of thing could be expected to work in the days when a terminal was a terminal,
and was connected directly to a computer. But today’s terminals are more likely to be
microcomputers that might not be programmed to generate BREAK signals, and the
connection is just as likely to be through some intermediate device that may not pass
BREAK through transparently. Since so many applications and devices expect to have
access to the BREAK signal, it is important to understand this problem, even when it
can’t readily be solved.

Connectors and Pin Assignments

Let’s recapitulate our discussion of cables and connectors. A data communication cable
has a D-connector on each end; D-connectors, like ordinary power plugs and sockets,
come in two genders—male and female. As a general rule, computers and terminals
have male connectors and modems have female ones. The most common connector
used for asynchronous serial communication is called the DB-25 connector, shown in
Figure 4-6. Each pin is associated with a particular signal by the Electronic Industries
Association (EIA) Standard RS-232-C [9].

The RS-232-C standard describes how Data Terminal Equipment (DTE) and Data
Communications Equipment (DCE} may be connected. A DTE is a terminal or a com-
puter. A DCE is a modem, multiplexer, or similar piece of communication equipment
(explained later). Most descriptions of signals assume that a DTE is connected to a DCE,
but in practice it is just as common to have two DTEs connected directly to each other.
Technical literature generally specifies that a signal is “from DCE” or “to DCE” (or,
conversely, to DTE or from DTE). We've shown this directionality in the figures simply
as (IN) and (OUT), respectively.

80 PRIMERS

Of the twenty-five RS-232 signals, ten are commonly used in asynchronous data
communication:

Protective Ground, or Frame Ground (FG, Pin 1)
This circuit is to protect the human operator from electrical shock. It is bonded to the
equipment frame or to the ground pin of the power connector.

Transmitted Data (TD, Pin 2)

This is the circuit for sending out data from the DTE. It is interesting to note that by
definition a DCE receives data on its TD circuit. The DTE’s transmitter keeps this
circuit in the mark state when no data is being transmitted.

Received Data (RD, Pin 3)

This is the circuit used by the DTE for receiving data from the DCE. Thus the DCE
transmits on its RD circuit. This circuit is also in the mark state when no data is being
transmitted.

Request to Send (RTS, Pin 4)
When On (set to 1), this circuit announces the intention of the DTE to transmit data
over its TD circuit.

Clear to Send (CTS, Pin 5)
When On, announces the DCE’s readiness to receive data from the DTE on the TD
circuit. When Off, indicates that the DTE should not transmit.

Data Set Ready (DSR, Pin 6)
Indication from the local DCE (e.g., a modem) that it is connected to the DTE in data
transmission mode, and not in voice or test mode.

Signal Ground (SG, Pin 7)

This circuit provides the common electrical reference against which the voltages of the
other signals are measured. Also called Common Return. The DTE and the DCE should
have the same ground connection at the power plug. Common ground reference is
required for bipolar signalling.

Carrier Detect (CD, Pin 8)

Indication to the DTE from the local DCE that it is receiving a carrier signal from the
remote DCE (the local modem tells the terminal that it has a data connection to the
remote modem). Also called Received Line Signal Detector (RLSD) or Data Carrier
Detect (DCD). Transition from Off to On indicates establishment of connection (call
answered by modem); transition from On to Off indicates loss of connection (hangup).

Data Terminal Ready (DTR, Pin 20)
Indication from the terminal or computer (DTE) that it is operational and ready to
communicate with the DCE. Used in conjunction with DSR and RI to control dialing
or other communications equipment.

81 DATA COMMUNICATION

* Ring Indicator (RI, Pin 22)
Indication from the DCE (presumably an autoanswer modem) that a ringing (calling)
signal is being received from the telephone.

The remaining RS-232 circuits are used for synchronous communications, testing, or
other purposes. Figure 4-6 shows the pin assignments for a male DB-25 connector as it
appears from the outside, from the point of view of the DTE (computer or terminal).
OUT means the signal goes out from the DTE to the DCE; IN means the reverse. The
female connector’s pin assignments form the mirror image of those shown in the figure.

Although RS-232-C specifies the pin assignments for the 25-pin connector, the phys-
ical configuration of the connector has been left to the manufacturers. The DB-25 con-
figuration shown in Figure 4-6 has achieved the widest acceptance. The shape, size, and
distance between the pins, the exact shape and size of the shell, the location and size
of the mounting holes, have all achieved an amazing degree of uniformity in the absence
of a formal standard. Nevertheless, you will encounter the occasional pair of DB-25
connectors that will not mate, usually because of differences in the hood, or the place-
ment of the screws.

The 9-pin connector is gaining in popularity because of its adoption by IBM on its
PC/AT and by Apple on the Macintosh as a means for saving precious mounting space.

oMy TP (STD)- ﬁ ¥ Tolesling Gromd (76)
ﬂmmmclock (m)-z,\/ Ko O OUT- Tmuimil Pata (70)

day 3|| IN - Receive Dala (Rp)
SW CKIE ES/?COJ —%N 1o 24 0UT- RGUHL T Seud, (K15)
Macss Lo ol g - Clowr o Sead (75

R s(s/efg ow Wo Ol IN-Dald Ser }?64»{%(95/6
X -3 (5¢)
g%W il Dik-ojflmo 0l Py Gar g T

Mlnmmcsq) %’ ?22 09 IN ~7p5idive DC 726t Voliage

oAls Tutn. S 5o ©MZI W'?;MZM 5
zxmmmc&ck—%? so O % Cotmass c)5/9 D)
(MASSW) | PPAEY) B W D (SRL
w IN 5,&(;14/4/;% C75 (sC75)
@)

(= Gromnds o miCuped,.)

Figure 4-6. DB-25 Pin Assignments

82 PRIMERS

Its configuration is specified in RS-449 [12]. The two manufacturers use the nine pins
in entirely different ways, but in both cases the choice reflects a tacit recognition that
25-signal RS-232 in all its glory is not required for ordinary asynchronous data com-
munication. IBM assigns selected RS-232 circuits to the nine pins on the PC/AT’s port,
as shown in Figure 4-7. Apple, however, uses its 9-pin connector to implement the
newer EIA RS-422 standard [10], which specifies a way for data to go faster over greater
distances than RS-232-C by employing balanced pairs of receive and transmit signals.
The Macintosh serial port (female, shown in Figure 4-8) may also be used for RS-232-
C communication with appropriate wiring, as shown in Figure 4-17 on page 107.

St nsind (56)- ¥ |[50
Datn ool o

it Dala, (79)- 0T |1 20
)1

_Riug Induator (RT)
fz_c&ﬁ%m 7261/4& c73)
ou7- Keguet 25 Snd (RT5)
IN—D@%*W (PSK)

Ck=Ground,)

Figure 4-7. IBM PC/AT 9-Pin RS-232-C Serial Port Pin Assignments

~ _ ouT — Tandmil, it~
Recewe Dl N our — Tramamil D, +
Recespe Dalp™ 4 X - Gromd,
Hamdohake (unt Sud) ~IN % _Tov
712y ~IN

¥ ~Gwumd

(K =Ground, Fruar o7 it used)

Figure 4-8. Macintosh 9-Pin RS-422 Serial Port Pin Assignments

83 DATA COMMUNICATION ~~—— 77

Duplex and Echo

Our discussion of UARTS failed to mention one of their best features: they can receive
and transmit at the same time. But this is not to say that all computers that employ
UARTS can take full advantage of this capability. When two connected systems do so,
the connection is said to be full-duplex. Full-duplex transmission requires two wires
for data—one to receive, one to send.

For a variety of reasons, it is sometimes necessary for two DTEs to agree that only
one can transmit at a time. This kind of communication is called half-duplex, meaning
that traffic can go two ways (duplex), but only one way at a time (half). Another mode,
called simplex, means traffic can only go one way, period.

When a terminal and a computer are connected in full-duplex, it is customary for
the computer to “echo” the characters it receives from the terminal. This means that
every character that arrives at the computer’s receiver is processed and then copied
(perhaps with alterations) to its transmitter. The terminal, meanwhile, copies every
character that is typed on the keyboard to its own transmitter, and copies every char-
acter that arrives at its receiver to the screen. This arrangement is illustrated in Figure
4-9, and it differs from half-duplex operation in which the terminal, rather than the
host, echoes what is typed on the keyboard.

You might wonder why communication would ever need to be half-duplex if (as is
usually the case) there are wires for both receiving and transmitting. One reason is
simply that certain manufacturers feel it promotes more efficient use of their computers,
since the terminal relieves the host of the burden of echoing, and it simplifies the
console device driver software. Another reason is conservation of signalling bandwidth,
which we’ll get into when we discuss modems on page 90.

Full-duplex operation has two prominent advantages: it allows the user to monitor
the quality of the connection, and it allows the host to control what appears on the
user’s screen. To give a concrete example, suppose you're trying to log in to a full-duplex
system, and you type your username as ABC; if it appears on your screen as AXW then
you can infer that the line is noisy. Assuming, however, that the line is clean, the host
can ask you to type your secret access password, and then refrain from echoing it so
that the inquisitive person looking over your shoulder cannot discover it.

These characteristics of full-duplex communication also allow another desirable fea-
ture: typeahead. This lets you send characters to the computer before it has asked you
for them. For instance, you can type three commands in a row, even though the com-
puter might not have finished executing the first command by the time you have fin-
ished typing the third. And since the computer can control the echoing of characters,
it can arrange the output so that your commands and their responses all come out in
the correct sequence on your screen. While any full-duplex system has the potential to
provide this service, not all of them do.

On both full- and half-duplex systems, it often happens that you wish to interrupt
some long display of output from the computer. Since full-duplex systems allow you to
transmit to them at the same time they are transmitting to you, they normally provide

84 PRIMERS

TERMINAL COMPYUTER

VART Commumicalion Line UART
Reocoinr |y (Two Dati Wired,) Tl
Thansmidlve Reteiner

B Ke%bow{/ Softoonre

Figure 4-9. Full-Duplex Communication

RDeWHEN CAN | TRANSMIT 2<XON S~ TD
TD—<¢ XONYWON TIMSNART NAC UOY~»RD

Figure 4-10. Half-Duplex Communication with In-Band Handshaking

special interruption characters for this purpose. Half-duplex systems, on the other hand,
are not prepared to receive input while they are performing output. The typical method
for interruption in this situation is the BREAK signal; detection of the resulting framing
error is interpreted by the computer as an interruption command.

Handshake

Full-duplex transmission also has a more subtle advantage. No coordination is necessary
between the two devices as to which currently has permission to transmit. A half-duplex
connection, on the other hand, has to manage this problem. The method employed is
called handshaking, and it is indeed a matter of etiquette. Only one device talks at a
time, and when it is finished, it grants permission to the other side to talk.

There are two ways to do handshaking, in the data itself or with out-of-band RS-232
signals. The out-of-band method requires extra wires for circuits like Request to Send
(RTS) and Clear to Send (CTS). In this protocol, transmission may occur only when the
receiver’s CTS signal is On.

85 DATA COMMUNICATION ~—~

The in-band handshaking method is less foolproof than RTS/CTS, but it’s cheaper
because fewer wires are required. In this case, the transmitter of a message concludes
it with a specially designated character, such as ASCII DC1 (usually called XON), as
shown in Figure 4-10. The receiver is not supposed to transmit unless the last character
it has received is an XON.

In-band handshaking is more sensitive to noise than is the RTS/CTS method. Since
RTS and CTS are steady signals with their own wires, they have a certain robust quality.
A serial in-band handshake character stricken by noise, however, will leave the intended
recipient waiting forever for its turn to transmit. The apparent advantage in simplicity
of the in-band method is offset by measures that must be taken to recover from dead-
locks. And it should be noted that the handshake character itself is no longer available
for transmission as an ordinary data character. A connection that uses in-band control
information is not wholly transparent. It is said to be opaque to those characters that
are used for control purposes.

Flow Control

Half-duplex handshaking is a method of flow control. That is, it’s a way to control the
flow of data in one direction or another. However, it is a very rudimentary form. When
one side gets the go-ahead to transmit, it sends data with absolutely no assurance that
the receiver will have a place to put it. And in data communication, Having A Place
To Put It is among the paramount virtues. But how can one computer really know that
another is truly prepared to receive an abundance of data?

The “brute-force’” approach to this problem [and the one used in the half-duplex
environment) is for the receiver to allocate very big places to put arriving data. These
places are called buffers. Buffers are like soft cushions that keep mutually antagonistic
things from bumping against each other; in this case, the buffer isolates the stringent
“real-time”’ requirements of the UART from the casual attitude of the user program,
just as a bucket would allow our thirsty friend from page 72 to get a drink without
risking a squirt in the face.®

Remember that the UART must be relieved of each character before the next one
comes in, or else its holding register will overrun. Since user programs are usually not
in a position to service the UART'’s demands promptly, every operating system provides,
at a very low level transparent to the user and even to the programmer, a ““device driver”
for the UART, which takes care of all this. The driver copies data from the UART, in
real time, into a buffer from which the user program removes characters at its leisure,
making room for more characters to enter. This arrangement is called a FIFO—First In
First Out—Tlist, or a queue.

5. But don't think that the bucket solves all our friend’s problems. There's still the question of how to
prevent the bucket from overflowing, and what to do with the water coming out the hose when drinking
from the bucket.

86 PRIMERS

To help you appreciate what device drivers do for you, here’s a short program frag-
ment in C that implements a kind of do-it-yourself half-duplex handshaking:

1) tty = fopen("“/dev/tty02",%rw"); /¥ Open the device */
2) while (1) | /* Forever, do... */
3} while ((c = getc(tty)) != XON) putc(c,stdout); /* Read characters */
4) while ((c = getc(stdin)) != XON)} putc(c,tty); /* Send characters */
5) putc(c,stdout); /* Send handshake */
6)

Statement (1) opens a communication line, tty02, for reading and writing; a file pointer,
tty, is associated with the communication line. This means that any input or output
to the line will go through the appropriate device driver. Statements (2) and (6) indicate
that statements {3) through (5) are to be repeated endlessly. Statement (3) is a loop that
gets characters (getc) from the communication line (tty) and copies them (putc) to
the screen (stdout) until an XON character is encountered; the XON is not copied to
the screen. Invoking getc with the tty file pointer automatically brings the commu-
nication-line device driver into play, which handles the details of UART control—
timing, status bits, error indications—and manages an internal buffer that your program
never sees. Your program has only to “get the next character,” which it can expect with
some confidence to be there. Statement (4) allows you to type a reply at the console
(stdin); each character you type is sent out the communication line until you type an
XON (Control-Q). Again, the communication-line device driver takes care of the timing,
buffering, and UART control. Statement (5) sends the XON that grants the other system
permission to take its turn.

We’ve said that the half-duplex solution to the buffering problem is simply to ded-
icate large portions of the computer’s memory to buffers. This is done in hope that
more than a buffer’s worth of data will never be sent all at once. If this should happen,
the computer would lose the extra data. But if the receiver had some way of telling the
sender to stop, while the transmission was in progress, then the loss could be avoided.
The ability to do this is called full-duplex flow control.

Did you ever take the top off your toilet tank and watch what happens when you
flush? Your toilet provides an excellent example of full-duplex flow control. The tank
is like a queue: water exits from the bottom when you flush, and enters from the top
to refill the tank. The flow into the tank is controlled by a float that monitors the water
level. When the water gets high enough, the float shuts a valve to turn off the water.
When the toilet flushes, the float goes down and opens the valve to let in more water.

Just as half-duplex handshaking comes in two forms, so does full-duplex flow control.
One form employs the out-of-band RTS/CTS signals, with the same advantages and
drawbacks of the half-duplex case: more transparent and foolproof, but less cheap and
less widely available. The more common method uses special characters imbedded in
the data stream; one example is called “XON/XOFE.” It works like this: when the
communication-line device driver notices that its input buffer has reached some measure
of fullness (that is, before it is completely full), it transmits an XOFF character, like

87 DATA COMMUNICATION

RECEIVER SENDER

Dallds Bk | pmr,

- Xg/ig —_
I g Dawriet Oplpud,
Bugt” P o/ xore__, Bugfr
T X%J UARTS
; Commimicalion
Dala Lot ’ ’

Data

(Y
%W

Figure 4-11. Full-Duplex Flow Control

when the float shuts the valve. When the other system sees the XOFF, it stops trans-
mitting.® Eventually, the application on the receiving side removes enough characters
from the buffer to bring it beneath a certain threshold; this is like flushing the toilet.
The device driver notices that there is room in the buffer again and sends an XON
character to resume the transmission, like when the tank float drops and opens the
valve. The XON and XOFF functions are generally assigned to the ASCII characters
DC1 (Control-Q) and DC3 {Control-S), respectively.

The effect of an XOFF can ripple back through multiple layers of hardware and
software. Even in the case where only two computers are involved, the XOFF causes
the device driver on the sending side to stop transmitting. However, the user application
may still be writing characters to its output buffer. If the XOFF condition is not cleared
before the sender’s output buffer fills up, the sender application will be blocked (pre-
vented from executing) until the receiver starts to accept data again. Figure 4-11 shows
the software aspects of full-duplex flow control schematically, for data flowing in only

6. Atoilet is a self-contained mechanism, whereas the two computers are independent. The toilet valve's
response to the float is immediate, but a computer must plan for some delay before its message gets
across and the other computer responds.

88 PRIMERS

one direction. Of course, data can flow in both directions in a full-duplex channel, so
in reality both sides have input and output buffers and may be doing XON/XOFF to
each other simultaneously.

The receiver’s XOFF and XON thresholds must be carefully chosen. The XOFF point
should occur early enough to allow the XOFF to reach the other end and be processed
before the receiver’s buffer fills, but late enough so as not to waste buffer space. The
XON should be sent late enough to ensure that adequate buffer space has been freed,
but not so late as to degrade transmission performance by making the transmitter wait
unnecessarily. And the XOFF and XON thresholds must not be so close together that
inordinate amounts of time will be spent transmitting and processing these flow control
signals themselves.

The drawbacks of XON/XOFF are similar to those of half-duplex XON handshaking,
but compounded. If an XOFF is corrupted or lost, the transmitter will continue to send
even though the receiver is running out of buffer space. But note the difference: the
receiver will just send another XOFF when the next character arrives, so no harm will
be done as long as the XOFF threshold is set appropriately. But if an XON is lost, a
deadlock could ensue. Deadlocks are also possible in the rare situation in which both
sides XOFF each other simultaneously, and when an XOFF is spontaneously generated
on the communication line by noise. Overruns can occur if an XON is generated by
noise, but only during an XOFF condition. The advantages of XON/XOFF however, are
apparent. Large amounts of system storage need not be dedicated to buffers, applications
can be character-oriented rather than line-oriented, transmissions can be smooth rather
than jerky, and typeahead is possible.

Before we leave the topic of flow control, two more in-band schemes should be
mentioned. One is called ENQ/ACK. In this protocol, which can work on either full-
or half-duplex channels, the transmitter requests permission to transmit by sending an
ENQ character (ASCII Control-E). The receiver responds with an ACK (Control-F) char-
acter if it believes it has (or after it has allocated) adequate buffer space. This method
suffers the same drawback as half-duplex handshake: there is no assurance that the
buffer is big enough to accommodate the data to be transmitted. The other is called
ETX/ACK, and is typically used when data traffic is one-way, as between computers
and printers. Transmitted data is terminated by an ETX character; the receiver replies
with an ACK character as soon as the ETX character has been removed from its input
buffer, indicating its readiness to receive the next transmission.

The primary proponent of half-duplex communication and XON handshake is IBM
(in its System/370-series mainframes); XON/XOFF is championed by DEC and many
other manufacturers; ENQ/ACK is favored by Hewlett-Packard; ETX/ACK survives on
Diablo printers. There are also computers that provide no flow control at the system
level, and leave it to user-level software to manage the problem. Flow control will only
work if both computers involved have been told to do it, and to do it the same way. If
one computer is doing XON/XOFF and the other ENQ/ACK, then each will see the
other’s flow control signals as ordinary data characters. On the other hand, when in-
band flow control is occurring successfully, the XON and XOFF (or ENQ and ACK)
characters will not be available for use as data.

89 DATA COMMUNICATION

Parity

Parity is used for detecting errors in binary information. The creator of a binary quantity
determines whether the number of 1-bits in it is even or odd, and appends an additional
0-bit or 1-bit to achieve the desired parity. Any entity reading the data may perform the
same calculation to see if the recorded parity bit agrees with the one calculated. When
there is disagreement, it is certain that the data (or the parity bit) has been corrupted.
In data communication, parity is applied to characters; our concern is with how it is
applied to 7-bit ASCII characters.

Recall that ASCII characters have 7 bits, numbered from 0 to 6, with O being the
least significant bit (LSB) and 6 the most (MSB). Recall too that most bytes are 8 bits
long, and most asynchronous serial transmission includes 8 bits between the start and
stop bits. The “eighth” bit (really bit number 7) is the one that is used for parity.

There are five kinds of parity: even, odd, mark, space, and none. Of these, only even
and odd are true parity; the others reflect the remaining possible conditions or uses of
the eighth bit. But in common usage, when you are asked to select the desired parity,
you will usually be given five choices rather than two.

Even parity means that there is to be an even number of 1-bits in the character,
including the parity bit. Thus the even parity bit is 1 if there is an odd number of
1-bits in the 7-bit ASCII value, and O otherwise. Odd parity is just the opposite; it
ensures that the overall number of 1-bits in the character is odd (Figure 4-12). Mark
parity always sets the parity bit to 1, and space parity always sets it to zero. No parity
means that the eighth bit is left alone.

Parity generation and checking are not required features of a communication link.
In fact, they are the exception rather than the rule. When parity is not being “done,”
the link is said to have no parity. Note the difference between no parity and space
parity; when parity is “none,” the high-order bit may be used to transmit actual com-
puter data as it is stored in 8-bit bytes within the computer. Space parity sets the high
bit to zero, wiping out the data bit from that position.

BL:7 ¢ 5 43 2 1 0

+ [Tolo]o[i[o
C ﬂﬂEﬂEﬂJ 1

sy it

Figure 4-12. The ASCII Letters B and C with Odd Parity

90 PRIMERS

Is parity useful? In theory, it allows the receiver of transmitted characters to deter-
mine whether the characters are good or bad. But even in theory, odd and even parity
can only catch errors that affect an odd number of bits in a character, which means
they will not catch double-bit, 4-bit, or even 6-bit errors. For instance, if the binary
sequence 11010101 (ASCII letter U with odd parity) were received as 11101010 (ASCII
letter j), the sequence would appear entirely valid to the receiver, even though 6 of the
8 bits had been flipped by noise. And of course, space or mark parity can’t catch any
errors in the 7 data bits; these can be used only to detect when the parity bit itself has
been toggled. (Flip and toggle mean to change the value of a bit from O to 1 or vice
versa.)

Parity was really designed for use in computer memories, where failures are likely
to be discrete, affecting only one bit per word or byte. In this setting, a single-bit error
is far more likely than a double-bit error, and errors of 3 or more bits are hardly worth
worrying about (by the time the memory degenerates this far, the computer is useless
anyway). What makes parity particularly useful in memories is the fact that “advanced”’
forms of it, involving extra parity bits, can be used no* only to detect errors but also to
correct them ““on the fly”’ [13]. But character parity is entirely inappropriate to serial
data communication, where lengthy error bursts are the rule, and single-bit errors are
curiosities.

Parity serves little useful purpose in data communications. Some terminals check
parity: if an incoming character has a parity error, the terminal displays a special kind
of blotch on the screen to let the human operator know there is noise on the line. But
what can the person, or the terminal, do about it? Nothing. Even though parity genera-
tion and checking are built into UARTSs (Table 4-2), there is no provision for error
correction. And since telecommunication noise tends to span character boundaries,
corruption is just as likely to be caught by framing anyway.

Despite all the factors weighing against it, many manufacturers of computers and
communication equipment as well as providers of data communication services are
great believers in parity, and insist that you use it if you want to communicate with,
or through, their products. Ironically, one of the most commonly required parities is
mark, which provides next to nothing in the way of error detection. The use of parity
prevents us from transmitting 8-bit data conveniently and efficiently. It constricts the
medium an additional 10 percent (remember, the start and stop bits already took away
20 percent). The price is paid on every single character, with little tangible return.

Modems

Just as you use your telephone to call another person, you can also use it to call a
computer if you have a modem—a Modulator/Demodulator. The modem works by
translating the digital output of your computer’s UART into the same kind of analog
waveforms that you would generate by speaking, which can be carried over the phone

91 DATA COMMUNICATION 7~

wires as “audible’” tones in the normal voice frequency range. Modems are necessary
because serial digital data cannot survive the filtering and amplifying functions that are
applied along an analog telephone circuit.

Phone calls are full-duplex in nature. Both parties can speak and listen at the same
time because each phone has a separate transmit and receive circuit. Therefore, it is
easy to see how modems can be used to establish a full-duplex data connection. In fact,
if digital/analog conversion were all that modems did, we wouldn’t need to discuss
them, because they would just be invisible boxes on the communication line. But there
is a lot more to telephones than voice transmission. They also dial, ring, hang up, and
emit dial tones and busy signals. And there’s also a lot more to modems than turning
bits into sounds.

The modem that is local to your terminal or PC is called an originate modem, and
the one on the computer is called an answer modem. For two modems to communicate,
the caller must be in originate mode, and the callee must be in answer mode. This is
because each modem transmits on one frequency and receives on another in order to
share the same wire.

In addition, both modems must observe the same modulation/demodulation tech-
nique (frequency shift keying, etc.) and the particular frequencies or amplitudes used.
Table 4-3 lists the popular methods. The Bell {now AT&T) standards predominate in
North America, and the CCITT recommendations predominate in Europe. As you can
see from the table, some modems are able to load one baud with more than one bit’s
worth of information. This is because their signals assume more than two values, unlike
digital bipolar signals, and this is why “baud” is not always a synonym for “bits per

Table 4-3. Popular Dialup Modem Protocols

Modem Type Data Rate Modulation Baud Rate Duplex
Bell 103 110,300 FSK 300 Full/FDM
Bell 201 2400 DPSK 1200 Half

Bell 202 1200 FSK 300 Half

Bell 212 1200 DPSK 600 Full/FDM
Bell 2224 2400 QAM 600 Full/FDM
CCITT V.21 200-300 FSK 200 Full/FDM
CCITT V.22bis 2400 QAM 600 Full/FDM
CCITT V.26ter 2400 DPSK 1200 Full/ECT
VA 3400 1200 DPSK 600 Full/FDM

DPM = Differential phase modulation = FDM = Frequency division multiplexing
DPSK = Differential phase shift keying FSK = Frequency shift keying
ECT = Echo cancellation technique QAM = Quadrature amplitude modulation

92 PRIMERS

second.” The half-duplex modems are able to achieve their speeds by transmitting in
one direction at a time, using the entire bandwidth of the connection (except for a tiny
reverse channel used for line-turnaround handshaking).

You needn’t be concerned with the particulars of modulation technique or frequency
assignment, but you should be aware that the two modems must match in these respects
{the VA 3400 and Bell 212 entries look the same in the table, but are still incompatible).
Most modems of recent vintage attempt to support two, three, or more of the protocols
listed in the table, often by automatically recognizing the behavior of the modem on
the other end of the connection. These techniques are fraught with pitfalls, especially
when the connection crosses an international boundary.

Figure 4-13 shows a modem connection between a terminal (or a PC) and a computer.
Your terminal and modem tell each other they are “on line’” via the DTR and DSR
signals, respectively. Your modem will not operate unless it sees the DTR signal, and
your terminal might not be willing to communicate with the modem unless it receives
the DSR signal. When the call is placed, the remote modem will notice that the phone
is ringing, and it will send the RI (Ring Indicate) signal to the computer. If the computer
is up, it will respond by bringing up DTR on its end, and then the remote modem will
answer the phone and produce a carrier tone on the phone line.

When your local modem detects the carrier tone, it turns on its CD {Carrier Detect)
signal, which tells your terminal that the data connection is made, and sends its own
carrier signal back to the remote modem. At this point, you can log in and conduct a
session with the computer. When the remote computer wishes to terminate the session
(e.g., because you logged out), it can turn off DTR, which tells its modem to stop
transmitting the carrier tone, which tells your local modem to turn off CD, which tells
your PC that the connection is broken. ,

If you turn off your terminal, your local modem will notice that DTR has gone Off
and will stop transmitting carrier; the remote modem will turn off CD so that the
remote computer can dispose of your job and condition the modem for receiving another
call. If your terminal is really a PC, your communication software can use this trick to
“hang up” the phone.

Just as a connection between two DTEs can be full- or half-duplex, so can the DTE/
DCE connection. While most modems allow full-duplex operation through a technique
like frequency division multiplexing, some, like Bell 201 modems, require the entire
bandwidth of the phone circuit in order to communicate at their rated speed. Even those
modems that are capable of full-duplex operation may have a switch to put them in
half-duplex mode. When a modem is half-duplex, it requires the exchange of additional
signals with the DTE. When the DTE wants to transmit, it must raise RTS {turn it On).
If the modem senses that the communication line is not in use, then it raises CTS and
puts itself into transmit mode. The DTE is then free to transmit. When transmission
is done, the DTE lowers RTS, and the modem puts itself in receive mode. Sometimes
a similar sort of ritual is done on full-duplex connections. It all depends on the particular
modems, computers, and software.

93 DATA COMMUNICATION

by ek
Phones
Line (DTE)
715
1P [
RD

anluﬂn

(pcf)

Figure 4-13. A Data Connection with Modems

94 PRIMERS

Internal and External Modems

Now that we have an idea of how modems work, let’s talk about some considerations
in selecting and using them.

An internal modem is one that plugs directly into a “slot” in the “backplane” or
“motherboard” of your microcomputer. Internal modems come as standard or optional
equipment from the manufacturers of certain microcomputers, or they can be purchased
for certain popular microcomputers (like the Apple II or the IBM PC) from independent
sources. An internal modem connects directly to your telephone via an RJ-type modular
phone jack.

An external modem is one that is connected to your computer’s serial port with an
RS-232 connector. It may connect to the phone with a phone jack, or it may have an
acoustic coupler—a pair of rubber cups for your phone receiver’s earpiece and mouth-
piece.

Each type has its advantages and drawbacks. The primary advantage of an internal
modem is price. It’s cheaper than an external modem because it does not require the
packaging or power supply, or a separate RS-232 port. Also, it doesn’t take up any desk
space, but then neither do external modems that fit under the phone. Its drawbacks,
however, are worth considering:

1. It takes up a valuable slot in the PC.

2. It can be used only on the type of PC it’s designed for.

3. It is not easily moved from one computer to another.

4. It probably requires special software to control it.

The last point is particularly important, and we’ll be returning to it later.

Feature for feature, an external modem is more expensive than an internal modem,
and it may (or may not} occupy valuable space on your desk. But it has the following
advantages:

1. It does not take up a slot in your PC.

2. It can be used with any PC that has a serial port.
3. It is easily portable.

4. It is transparent to most software.

5. When the software and the modem do not agree about RS-232 modem signals, the
cable can be rewired to compensate.

The point about transparency applies at the basic input/output level. If it’s a ““smart”
modem, it may still need special software to exercise its “intelligence.” But this is true
of internal modems too. A final point worth noting about external modems is that some
of them come equipped with an array of status lights and perhaps a speaker. These allow

95 DATA COMMUNICATION

you to monitor the progress of your connection conveniently. Typically, there will be
at least a carrier light. Many also have receive and transmit data lights, and other lights
that show answer/originate mode, high/low speed, even DTR and DSR. The speaker
allows you to hear the dial tone, ring, busy signal, carrier, and the modulated data.

Smart versus Dumb Modems

Until recently, all modems were ““dumb”’; they did only modulation and demodulation,
and took care of the modem signals. And really, this is all a modem needs to do. The
data is transmitted, and the modem signals provide the out-of-band control information
that allows computers and phones to cooperate with a minimum of manual interven-
tion. The one place where a person had to step in was in the initial establishment of
the connection—the dialing, and the switching of the modem to data mode.

Many modern modems are designed to automate these chores. They include not only
the required communication circuitry, but also a little computer that is capable of
carrying on a dialog with its user through the terminal or PC. The most common method
used is the one developed by Hayes for its Smartmodem series [14|. The Hayes modem
has a command language built into it, which allows you to dial a number, redial the
number, set various parameters, and so on, simply by sending it commands in the form
of ASCII characters. It responds to dialing commands with result codes that tell you
whether the operation was completed successfully. For instance, to dial the number
765-4321, you would issue the command “ATD7654321" (followed by a carriage return).
The modem places the call, and then returns a code like 1 (connected), 3 (no carrier),
6 (no dial tone), 7 (busy), or 8 (no answer). It may also return the words themselves,
depending on some switch or mode settings. Most manufacturers of smart modems use
the Hayes command language, but some do not. The language is actually quite complex;
the manual is more than 40 pages long. Therefore, there is usually a program that
mediates between the user and the modem, presenting the user with command menus
and interpreting the result codes. If you have a PC, you can use such a program (or write
one yourself). If you have a terminal, you must deal with the modem’s command lan-
guage and result codes yourself.

The problem with smart modems is that data destined for the remote computer
must pass through the same channel that is used for commands to the modem. What
happens when the data stream contains a sequence of characters that happens to cor-
respond with a valid modem command? The answer to this question varies from modem
to modem, but in general it depends upon what “mode” the modem is in, command or
connect. Some modems are always listening for commands, no matter what. Others
have ways (manual or automatic) to be put into transparent mode. The Hayes, for
instance, enters transparent mode automatically when remote carrier is detected, but
then it provides an ““escape” mechanism to get back into command mode—three plus
signs in a row (+++), with at least a full second of “silence’’ before and after.

None of this would concern us if we only intended to be interactive terminal users
of the remote computer. If we happened to put the modem into command mode by
mistake, we’d notice right away. But when a file is being transferred through the modem

96 PRIMERS

under program control, watch out! My favorite story about this concerns a professor
who had enjoyed great success with a certain file transfer program (Kermit, in fact) until
he tried to use it on a certain longish file. Every time he tried to send the file, the
transfer would fail in the same place. Eventually, he gave up and found some other way
to transfer it. Some weeks later, he was astonished to find that his phone bill included
charges for several calls to Tasmania. It turned out, of course, that he was using an
autodial modem that did not have a transparent mode—or at least, not a very good
one—and his file contained just the right sequence of characters to instruct the modem
to place the call. He has since changed modems.

Digital Phone Service

AT&T and other carriers are gradually converting the telephone system from analog to
digital signalling. At some time in the future, it may be possible to make dialup data
connections without modems, perhaps at speeds up to 56 kilobaud. This is possible
even now within organizations that have their own digital phone systems. But note
that most current terminals, PCs, and mainframes cannot handle speeds beyond 9600
or 19200 baud—their UARTS simply don’t go that fast. Most likely, a new generation
of chips based on RS-422 will begin to take over. Let’s hope these will be “upward
compatible’”” from the current equipment, so that mpst software will continue to work.
It will be interesting to see how software performs that was designed under the as-
sumption that input/output speed was the limiting factor.

[1
WELCGME
TASMANIA

Other Communication Equipment

Besides modems, there are myriad devices that can situate themselves between your
terminal or PC and a remote computer. Some of them are completely transparent and
need not concern you at all, for instance, microwave or fiber optic equipment that might
be used to extend the local terminal network.

Other communication devices—multiplexers, port contention units, network ter-
minal servers, front ends—might not be wholly transparent. They can pose the same
kind of problems that smart modems do, and they might also cause trouble of a more
subtle nature.

The most common problem is opacity, in which some piece of equipment, some-
where along the communication path, has two modes of operation—transparent and
conversational. It flips from transparent to conversational mode when it sees a certain
“sacred character.” In some cases, it will allow one copy of the sacred character to pass
through if it gets two in a row. This means that any software that wishes to transmit
that character must know to double it. Since there may be many such devices, with
many different sacred characters, a general solution to the problem is not easily found.

Speaking of sacred characters, it is interesting to note that if you have two boxes in
the path, each having the same sacred character, then you must transmit four in order
to get one through to the remote host. Why? The first box swallows one of each pair,

97 DATA COMMUNICATION

passing on the remaining two to the second box, which swallows one and passes the
last survivor on to the host. What if there are three boxes? Then you must transmit six,
right? Wrong—eight (figure it out). In fact, to transmit one copy of a sacred character
through n such boxes, you have to send 27 copies of the character—that’s 1024 copies
for only ten boxes!

But opacity can get even worse; we should be grateful to those boxes that allow us
to get sacred characters through them at all, no matter how many times they make us
type them. We should say that these boxes are semi-opaque, because there are also fully
opaque boxes that do not let certain characters or sequences through them at all. These
special sequences might be understood by the box as commands, for instance, to turn
echoing off and on, to switch to another system. The only way to send data through
such boxes is to make sure the data does not contain any of these sequences.

Boxes of varying degrees of opacity sometimes allow themselves to be put into
“transparent mode’’ by means of a command in the data stream. This is the preferred
way to transmit arbitrary data through them. But once in transparent mode, a box will
no longer be able to respond to commands in the data stream, and there will often be
no way to restore its previous level of opacity.

And there may be a few more surprises:

Communication boxes often want to do their own flow control. XON/XOFF seemed
simple (?) when only two directly connected computers were involved. Imagine what
can happen when an intermediate box also wants to do flow control. Or when your
computer doesn’t want to, but the box does—for instance, when your computer wants
to send the XOFF character as data to the remote computer, through the box.

Some communication boxes {particularly those called statistical multiplexers) try to
squeeze extra “‘thoughput” out of the communication line by allocating a bigger chunk
of bandwidth in one direction than the other, assuming a low ratio of terminal typein
to computer typeout. This is fine until someone connects a PC and tries to transfer a
file to the computer.

Boxes, like multiplexers, terminal servers, line drivers, and so forth, might also find it
amusing to play with modem signals—particularly RTS, CTS, DTR, and DSR—and your
terminal or PC may not be set up to handle them in the required way. Fortunately, you
can often outsmart such boxes by fiddling with the wires in your end of the cable (see
page 102).

Another common problem with communication boxes is parity. Communication front
ends, multiplexers, and public network access nodes may impose parity on the com-
munication line. In some cases, they demand that the communicating devices only
transmit characters with the desired parity; in others they surreptitiously apply the
parity themselves and deliver the data to the intended recipient in its new form.

98 PRIMERS

Public Data Networks

Public data networks (PDNs) like Telenet and Tymnet are subscription services that
allow you to establish dialup data connections to distant computers with only a local
phone call to the nearest access point, called a node or PAD (Packet Assembler/Disas-
sembler). PDNs have their own “backbone’” communications subnetwork, a finite re-
source consisting of trunk lines and satellite links, which all their subscribers share.
Some subscribers (hosts) are providers of services and others are users. The network can
have a very complicated topology (layout), with each PAD typically connected to at
least two other PADs, making for many different paths through the network from one
PAD to another.

The PAD breaks your data up into packets, much like Kcrmit packets, sending each
one in the general direction of the PAD that serves the host you have selected. Inter-
mediate PADs forward your packets along whatever route seems best at the moment.
Each packet may travel a different route, and packets may arrive at their destination
out of order. The destination PAD checks incoming packets for errors, requests retrans-
mission if necessary, shuffles the good packets back into the right order, decodes them,
and feeds a reliable stream of data to the host computer. Messages from the host to
your PAD receive the same treatment.

The responsiveness of a packet-switched network depends on the distance a packet
must travel, the number of routing switches it must make, and the load on each of the
devices through which your packets must travel. It is possible for long delays to occur.
When timing is critical, these delays must be accounted for.

The two PADs work together very much like two Kermit programs, but with added
complications from the need to route packets through a complex network, while han-
dling multiple simultaneous sessions, and serving as intermediate routing nodes for
other PADs. The set of interconnected PADs, and the hosts they connect, is called a
packet switched network (PSN). The detailed operation of most public PSNs conforms
to CCITT Recommendation X.25 {32]. Such networks include Telenet, Tymnet, Uninet,
Datapac, Transpac, and Cisipac.

Your local PAD is a kind of timesharing computer. You dial it up as you would any
ordinary timesharing system, and the connection between your PC and the PAD can
have the same problems as any dialup connection—noise, gaps in transmission, buffer
overflows, etc.” After identifying yourself (if required), you request the PAD to connect
you to the desired host. The connection is more or less transparent except for an escape
character or sequence that allows you to get back to the PAD. The escape sequence for
Telenet is <CR>@<CR>; for Tymnet, a single Control-P.

7. Some networks have attempted to remedy the situation by moving a good chunk of the X.25 protocol
to the PC itself. Most notable among these efforts is Tymnet's X.PC effort, whose intention is to provide
multiple reliable data streams between the PC and one or more hosts on the network. At this writing,
these efforts are still in their early stages.

99 DATA COMMUNICATION

Because PCs and terminals can have different styles of communication, the PAD
allows you to change selected parameters to suit your needs. These parameters are
defined in CCITT Recommendation X.3 [31], and a command language for setting and
querying them is given in CCITT Recommendation X.28 [33].

When you establish your connection to the host, the host’s PAD automatically sets
certain parameters in your local PAD. For instance, if the host is half-duplex, it might
request that your PAD echo the characters you type in. You may use local PAD com-
mands to inspect and override these settings and defaults. The normal syntax is

PAR? p,p,p, ...
to inspect settings, and
SET? p:v,p:v,p:v,...

to change them, where p is a parameter number and v is a parameter value.

Twelve parameters are covered by X.3. They are shown in Table 4-4. Six additional
parameters are not covered by X.3, but are widely accepted. Parameter 13 controls
linefeed insertion after carriage return (0 = no linefeed insertion, 1-7 specify various
insertion options). Parameter 14 selects the amount of padding to be inserted after a
linefeed (07 pad characters). Parameter 15 controls whether the PAD is to provide local
line editing (0 means no, 1 means yes), and 16~18 specify the ASCII values of the
characters to be used for editing, when selected: the character delete character, the buffer
delete character, and the line redisplay character, respectively.

In addition to the standard parameters, most PDNs provide a selection of private
parameters. In a SET? or PAR? command, a list of private parameters is introduced by
a parameter with a special number, like 0. For instance, in the command

SET? 5:1,12:1,0:33,39:0

39 is a Telenet private parameter. You will have to consult your PAD manual for a list
of private parameters, since these are different for each network.

Parameters 1-15 give you some of the tools you need to configure a PAD for file
transfer; Table 4-5 shows the preferred settings for these parameters. Parameter 1 is set
to disable the PAD’s recognition of its escape sequence in case it occurs as data within
a packet. If you know that it cannot occur as data within a packet {for instance, <CR>®<CR>
will never occur within a Kermit packet), then you should not change Parameter 1,
because once you disable the escape mechanism, the only way to get the PAD’s atten-
tion again is to hang up and redial. Parameter 3 is set to make a file transfer packet
coincide with a network packet. This maximizes throughput, and it minimizes expense
on networks where billing is per packet. You will probably want to change this param-
eter back to its original value if you return to use the host interactively.

100 PRIMERS

Table 4-4. X.3 PAD Parameters

Parameter Valid
Reference Parameter Parameter
Number Function Values What It Does
1 Escape from data transfer state 0 Escape not possible
Escape possible
2 Echo control 0 PAD will not echo
1 PAD will echo
3 Data forwarding characters 0 None
1 A-7,6 a—z 0-9
2 CR (others omitted)
4 Data forwarding timeout 0 None
1-255 n/20 seconds
5 Flow control by PAD 0 None
1 XON/XOQFF
6 Suppression of PAD service signals 0 Suppression on
1 Suppression off
7 Action on BREAK 0 No action
1 Send interrupt packet
(others omitted)
8 Suppression of data delivery to terminal 0 Data delivered
1 Data discarded
9 Padding after CR 0 No padding except on
PAD generated FEs
1-7 1-7 character times
10 Line folding 0 No line folding
1-255 Line folding after
1-255 characters
11 Terminal speed (read-only) 0-18 Code for baud rate
(list omitted)
12 Flow control by terminal Flow control off

Flow control on

101 DATA COMMUNICATION

Table 4-5. Preferred X.3 Parameters for File Transfer

Parameter
Reference Parameter Preferred
Number Function Value Reason
1 Escape sequence 0 = Disabled The escape sequence
might occur in the data.
Echo 0 = Off Packets shouldn’t echo.
Data forwarding characters = CR CR is a typical packet
terminator.
4 Data forwarding timeout 0 = None Let the file transfer
programs do this.
Flow control by PAD Oorl Depends on your PC.
Suppress PAD service signals 0 = Suppress Messages would
interfere with packets.
7 Action on BREAK (n/a) Applies to interactive
terminal mode only.
Suppress data 0 = Don't (Used with 7.)
Pad after CR 0 = Don't Let file transfer
programs control this.
10 Line folding 0 = Don't Interferes with packets.
11 Terminal speed (n/a)
12 Flow control by terminal Oorl Depends on PC.
13 Linefeed insertion 0 = Don’t Only slows things down.
14 Linefeed padding 0 = None Only slows things down.
15 Line editing 0 = Disabled To prevent alteration

of packets.

While the settings in Table 4-5 may be necessary for file transfer to occur, they are
probably not sufficient. The file transfer programs themselves will have to cope with
several problems not covered by the X.3 parameters:

+ Buffer Overruns: The PAD may have a small input buffer, perhaps smaller than the
length of a file transfer packet. If this is the case, you will experience problems with
file transfers from the PC to the remote host. If your PC is capable of XON/XOFF flow
control, then this should be used, and selected at the PAD via parameters 5 and 12,
provided the flow control characters XON (Control-Q) and XOFF (Control-S) do not
occur as characters within the packets {they are not used in Kermit packets). If XON/
XOFF can’t be used, the file transfer program will have to send shorter packets.

102 PRIMERS

* Delays: Network delays may strain the file transfer program’s assumptions about how
long it should wait for a packet. The timeout interval may have to be increased. In any
case, the use of a stop-and-wait file transfer protocol over a network with built-in delays
will result in very poor performance. Performance can be improved by using longer
packets, or by using a sliding window technique.

* Parity: There is no X.3 parameter that lets you control parity. This is a serious problem
because many PDNs (Telenet, for example) use parity by default, and provide no way—
not even a private parameter—for the user to disable it. Some networks, however, allow
the host to disable parity. The host-to-PAD interface is defined by CCITT recommen-
dation X.29 [34], and it is entirely different from the X.28 user-to-PAD command lan-
guage. When the host has not disabled parity for you, communication of 8-bit data
becomes problematical. In particular, a file transfer protocol (like Kermit) must do some-
thing special to get 8-bit data through the 7-bit channel that is provided.

Kermit has commands and features for coping with these problems. These are presented
in Chapter 5, “Kermit Command Reference.”

Cables and Connectors Revisited

In data communication, the most severe problems sometimes have the easiest solutions.
And what data communication problem could be more severe than total failure to
communicate? The solution is often as simple as reinserting a plug that wiggled loose,
or changing a baud rate. When these quick remedies fail, the trouble is often in the
cable and connector wiring. This section covers diagnosis and treatment of wiring prob-
lems.

Remember that a straight-through, no-nonsense cable is used to connect a DTE
(computer or terminal) to a DCE (modem or multiplexer). If you are using such a straight-
through cable to connect a computer to a modem, but you're getting no results, then
your cable probably does not have enough wires. Cables for asynchronous DTE-DCE
communication should have 10 wires, connecting each of the following pins from one
connector to the other: 1, 2, 3, 4, 5, 6, 7, 8, 20, and 22. You can test the continuity of
each of these wires in your cable, using a little tester made from a flashlight bulb, a
battery, and a couple of pieces of wire, stuck together with tape or gum (or solder, if
you're a technical type). If your cable is correct, then you probably have a hardware
problem with your PC or modem, or a software problem (see “Common Problems and
How To Fix Them,” page 172).

If you try to use a straight-through modem cable to connect a DTE to another DTE,
or a DCE to a DCE, you'll find right away that no data gets through. This is because
each side is transmitting to the other’s transmitter, and the receivers aren’t receiving
anything. The solution, you may recall, is a null modem cable. But there’s more to
making a null modem cable than just swapping the transmit and receive leads. Other

103 DATA COMMUNICATION

signals must be accounted for too, in ways that vary depending on the particular systems
involved: there is no standard null modem cable. Building your own from an existing
cable is sometimes necessary.

Before you start taking connectors apart, you should try to lay your hands on a
“breakout box.” This handy device lets you experiment with connector signals quite
painlessly by moving little jumper cables around between pins that correspond to the
various RS-232 signals. They also have lights to show when current is flowing on each
of the 25 circuits, and switches to break or complete each circuit. You can buy a break-
out box from a computer supply house for about $100. Supply houses also carry other
useful items:

* “Gender menders’’ are two-faced connectors that allow you to change the gender of a
connector. A male-male model changes a female connector to a male, and vice versa.

* Modem eliminators are two-faced connectors that let you to convert a straight-through
cable to a null modem cable (or vice versa). They come in any combination of genders,
and can also be used in conjunction with gender menders.

* Loopback connectors allow you to use Kermit or other communication software to test
whether data is actually getting out the serial port, by echoing it right back to you.
They can be inserted at any place along the communication path where you would put
an RS-232 connector.

* Line monitors allow you to actually watch two-way traffic on the communication line
in character form on a display screen. These tend to be quite expensive, but their cost
is easily justified in any organization where data communication is important.

If you don’t want to tinker with breakout boxes or the insides of connectors, you can
g0 to your local computer store and explain your problem. But don’t buy anything unless
they agree to let you return it.

Here is your bag of tricks for making a null modem cable. Only trial and error will
determine the right combination. Consult Figure 4-14 for terminology and orientation.
Begin by removing the hood from your connector (Figure 4-15). Observe which signals
are connected. Some connectors have tiny pin numbers embossed near each hole, or at
the corners. If yours lacks these labels, then orient your connector according to the
figure. The connector pictured is a male. A female has its holes in the opposite order.

Pin 1 (Protective Ground) is connected straight through in all cases, and so is pin 7
(Signal Ground). The two devices on either end of the data cable should always have a
common electrical ground. All pin numbers refer to the RS-232-C 25-pin connector
assignments (explained on page 80), but a couple of examples are given afterward for 9-
pin connectors. No more than ten wires should ever be necessary. It is assumed that
you already have two connectors of the right shape and gender.

1. Exchange Receive and Transmit. It will always be necessary to swap TD (pin 2} and
RD (pin 3} in one connector {not both).

104 PRIMERS

Figure 4-14. DB-25 Connector Exterior Figure 4-15. DB-25 Connector Interior

2. Exchange CTS and RTS. If the two computers raise RTS (pin 4) when they wish to
transmit data, and wait for CTS (pin 5) from the modem before actually transmitting it
(this scheme allows half-duplex modems to turn the line around), you can cross-connect
their RTS and CTS signals to enable full-duplex transmission as in Model A (the “of-
ficial” null modem} in Figure 4-16.

3. Jumper RTS to CTS. If the local system uses RTS/CTS and the remote system doesn’t,
you can have the local automatically grant itself permission to send by simply feeding
its own RTS output signal into its CTS input. This is done with a “jumper” within the
local connector—a short wire connecting the two pins directly (a section of paper clip
sometimes suffices).’ This technique is commonly called a fakeout, and it may be used
in the local connector whenever you're sure the remote system doesn’t care about RTS/
CTS handshaking.

4. Connect Jumpered Local DSR,CD to Remote DTR. If the local communication soft-
ware believes it’s talking to a modem, it might require the modem to be on line (DSR,
pin 6 and detecting carrier (CD, pin 8). If you trust the remote system to keep its DTR
(pin 20) signal up as long as the system itself is up, you should feed the remote system’s

8. Use of the paper clip is illustrated in the margin. The paper clip is about the same thickness as an
RS-232 connector pin, and generally provides sufficient conductivity. But watch out —it's not insulated,
and care must be taken not to cause undesired shorts. Don’t close your connector with a paper clip
inside; make a proper connection with insulated wire.

105 DATA COMMUNICATION

MOPEL A

FG 1 f
T 2 2
Rp .
R7% 4 y
574 5:>C 5
D5R 6 o
56 7 7
chH 8 8
DIR 20 2o
RI 22 22
MODEL

/ 1
P
3 2
4 4
5 3
17 o
7 ﬂl - 7
g 8
20 o)
224) ?2

ce ze.

MopEL D

1 1

2 2
—

D -

% &
N
8§ EB
2o 20
2e e

Figure 4-16. Typical DB-25 Null Modems

106 PRIMERS

DTR signal into both DSR and CD on the local connector. This provides the required
modem simulation and also allows the local computer to detect when the remote one
is turned off or crashes. The same technique applies at the other end (just switch “local”’
and “remote” in the preceding sentences).

5. Connect Jumpered Local DSR,CD,CTS to Remote DTR. If Trick 4 doesn’t work,
then maybe you also need Clear to Send (pin 5) to be on.

6. Jumper Local DSR, CD, and DTR. Similar to Trick 4, and perhaps more popular.
Keeps the connection open even if remote DTR drops. Use this trick if you don’t trust
the other system’s DTR, or if you don’t have enough wires in your cable. This technigue
is used in Model D in the figure—the quintessential fakeout cable.

7. Connect Local DTR to Remote RI. This will be necessary if the remote system wants
to be called up before it will talk to you. It might also prove necessary to jumper the
remote’s Ring Indicator {pin 22) to its Data Set Ready (pin 6}, if you don’t already have
that turned on some other way.

Figure 4-16 shows several sample null modem configurations, types that are com-
monly carried by computer supply houses. Model A is a “real” null modem, for use
between two systems that fully honor DTE/DCE signalling conventions. Models B and
C are variations on Model A, in which each computer still signals the other in some
way, using DTR or RTS {or both). Model D is the other extreme, in which all modem
signals are faked by jumpers within the local connector, and only real data is transmitted
between the two computers. These examples are all symmetrical, but that need not
always be the case. The system on one end may require certain signals which the other
system can do without.

By the way, you can take one of the connectors from Model D and turn it into a
Ioopback connector by jumpering pin 2 to pin 3, and pin 1 to pin 7.

Figure 4-17 shows a sample null modem cable for the Macintosh, with a 9-pin con-
nector on the Mac side and a DB-25 on the other, possibly suitable for connecting to a
PC'’s serial port (no guarantees!).

Figure 4-18 shows a sample modem (not null modem) cable for the PC/AT, which
uses a 9-pin D-connector on its RS-232 port. This example illustrates not only the pin
assignments but also how simple things are when you connect a DTE to a DCE the
way you're ‘““supposed to.” Conversion to a null modem is left as an exercise for the
reader.

One final word of caution: don’t assume you can connect lots of cables together and
come up with a working connection, even though each cable may work independently.
This situation commonly arises when an ad hoc connection between two PCs is sud-
denly required. A cable of the required length with the appropriate connectors on each
end can rarely be found. The typical approach is to round up a pile of shorter cables,
most of them unmarked as to their internal connections, and form a long ““data exten-
sion cord.” This never works the first time, usually because an even number (possibly

107 DATA COMMUNICATION

& mac

9-fn

2 R—

7 s6
RD+8

—— & DSK
CT5 7 = 2 IR
L 8 C¢b
Tp-5 — , 3R>
RP-9 4— z 10
4 RT3
5 C75

Figure 4-17. A Sample Macintosh Null Modem

ch 1

Rp 2 -

D %

PIR 4

G 5

DSk g - @ DSR
RT5 7 > 4 I
c15 8 5 ¢T15
RI 9 < z K1

Figure 4-18. A Sample PC/AT Modem Cable

108 PRIMERS

0) of null modem cables has been included, each cancelling the effect of the other.
Adding or removing one null modem cable might be all that’s required to get the data
flowing. If not, then the cable is probably not carrying the required modem signals (DTR,
DSR, etc.) through from one end to the other, perhaps because some of the cables have
fewer wires than others. In that case, the appropriate fakeouts are required in the con-
nectors at each end.

The IBM World

The International Business Machines Corporation deserves its own special section in
our data communication primer because IBM is the leading manufacturer of mainframes
and of PCs, because IBM “sets its own standards,” and because IBM mainframe com-
munication causes more problems and raises more questions among Kermit users than
any other area touched by Kermit.

While most computer systems are full-duplex, IBM mainframes are half-duplex; most
computers use ASCII, IBM prefers EBCDIC; most user-host interaction is character-at-
time, IBM terminals are block mode; most terminal-host cabling is RS-232, IBM prefers
coaxial cable. The list goes on. For many years, IBM equipment was designed to be used
solely with other IBM equipment.

IBM has a variety of product lines, from large System/370 and XA mainframes,
through several lines of minicomputers, office systems, and word processors, to the IBM
PC family. IBM also manufactures a wide range of communication equipment, from
modems to front ends to networks. The IBM PC family represents a radical departure
from IBM’s traditional philosophy. These are “open’’ systems whose architecture en-
courages interconnection with other manufacturers’ equipment. Communication is
asynchronous, serial, full-duplex, and ASCIIL There is nothing special about these ma-
chines, at least from the standpoint of data communication, so we need dwell on them
no further.

The other IBM product lines are a different story. Each has its quirks; this section
discusses the big 370-series mainframes. Other IBM products—the System/34, /36, /38,
Displaywriter, etc.—present completely different communication environments that
are just as complicated but, of course, totally different from the one described here, and
probably also from each other.

The IBM 370 series of computers is the direct descendant of its 1960s-vintage 360
series. The 370s once had “names” like 370/148, 370/168, but some years ago the
370/model naming scheme was abandoned in favor of four-digit numbers for the newer
models, like 3031, 3033, 4341, 4361, 3081, 8083. These models are still 370s inside,
with the same instruction set and basic architecture. In general, any program that runs
on any 370-series machine will run on any other (with the exception that programs
using “extended addressing” will not run on machines that don’t support it).

109 DATA COMMUNICATION

Over the years, a number of operating systems have appeared for the 370. First, there
is the successor to OS/360—MVS (Multiple Virtual Storage). Like OS/360, it is a “‘batch”
system, not a timesharing system. However, it allows a selection of conversational
subsystems to be run as batch jobs. These have names like TSO (Time Sharing Option)
and CICS (Customer Information Control System). Another 370 operating system is
called DOS/VSE, but it has fallen into relative disuse as a primary operating system.
Several universities have developed their own operating systems for 370s, including
MUSIC {McGill University System for Interactive Computing), MTS (Michigan Time-
sharing System), and GUTS {Gothenburg University Timesharing System, actually an
MVS subsystem).

The other major 370 operating system is called VM/370 (Virtual Machine/370). Un-
like MVS, VM is a timesharing system; the user’s normal access is through an inter-
active program such as CMS (Conversational Monitor System). VM provides each user
with the image of a dedicated machine, with an operator console, dedicated disk and
tape drives, and so on. The image is so complete that the user can even run other
operating systems, such as MVS, DOS/VSE, or OS/VSI, as “guests’” under VM.

IBM prefers to configure its mainframes with its own EBCDIC 3270-series block-
mode full-screen terminals, which transfer entire screens of data at a time rather than
single characters, with provisions for transmitting only selected fields from the screen,
e.g., those that changed since the last transmission. Up to 32 of these block-mode
terminals are connected by coaxial cable to model 3274 ““cluster controllers,” which in
turn connect to the mainframe either directly or through a communications front end.
This arrangement is shown in Figure 4-19. Many IBM mainframe applications are in-
herently full-screen and will only work in conjunction with 3270-series terminals.

Despite IBM’s preference for 3270-style communication, users of IBM mainframes
have a legitimate need to access the mainframes with their existing ASCII asynchronous
equipment—terminals and computers (some of them of IBM manufacture). Two major
approaches have evolved: front ends and protocol converters.

The 3705 Front End

The IBM communication front end that provides asynchronous communication is the
3705 (a newer model is called the 3725, and 3705 equivalents are available from other
manufacturers). It is really intended less as a front end for asynchronous ASCII terminals
than as a connection point for remote 3274 cluster controllers, remote job entry (RJE)
stations, unit record equipment (card readers and line printers), and so forth. The 3705
provides half-duplex line-at-a-time ASCII service, but does not permit the use of full-
screen applications. Thus IBM mainframe application programs must include explicit
support for either line-mode 3705 communication, full-screen 3270 operation, or both.
Line-mode 3705 communication is sometimes called TTY mode, or TWX mode, because
it was originally intended for use with Teletype machines (TTY is an abbreviation of
Teletype, and TWX stands for Teletypewriter Exchange).

The IBM mainframe operating system includes a device driver (or, in IBM parlance,
an access method) for 3705-attached asynchronous ASCII devices. Its functions include
device control, buffer management, and ASCII/EBCDIC translation. We've already dis-

110 PRIMERS

Dot Conmere
* o7 Loaned ne

Figure 4-19. IBM Mainframe Communication Environment

111 DATA COMMUNICATION

cussed the problems of ASCII/EBCDIC translation, but let’s review them briefly. There
is no formal standard ASCII/EBCDIC translation. The closest we have is the table given
in the System/370 Reference Summary [29]. For purposes of file transfer, any translation
between the two must be “invertible,” but because there are twice as many characters
in EBCDIC as in ASCII there can be no invertible translation from EBCDIC to ASCII
and back. The IBM table, however, is invertible from the ASCII standpoint. Unfortu-
nately, many (perhaps most) IBM mainframe sites alter their system’s “standard”’ trans-
late table, which at least destroys any assumptions that file transfer software might
make about it, and at worst results in an ambiguous {noninvertible) table.

In MVS, the access methods for TTYs are TCAM (Telecommunications Access Method)
and VTAM (Virtual Telecommunications Access Method, which also handles SNA—
IBM Systems Network Architecture—'network virtual terminals”’). VM handles the
console specially with an internal console driver that is similar in function to TCAM,
but it allows external TTY devices to be controlled directly by user-selected software
(e.g., by VTAM running in MVS under VM). The VM TTY console driver has a peculiar
quirk: it provides no facility to time out a read request already in progress. This makes
it difficult to write programs that provide unattended file transfer.

We've said that the 3705’s asynchronous terminal service is record-oriented. This
means that it provides the mainframe with input from the terminal only when one of
a predetermined set of terminator characters is encountered in the input stream. The
common terminators are Control-M (carriage return, CR), Control-D {(EOT), Control-E
(ENQ), Control-F (ACK), Control-Q {DC1 or XON}, and Control-S (DC3 or XOFF). The
table of terminators is kept within the 3705 in 8-bit format, where it cannot be (easily)
altered. Perversely, the 8-bit terminator values include a parity bit, typically mark, odd,
or even. This means that if the terminating carriage return of an incoming line does
not have the right parity, the front end won't recognize the terminator, and it won’t
pass the line on to the mainframe. In this case, parity is not being used to detect errors;
it is purely an obstruction.

We've also said that IBM line-mode TTY service is half-duplex. This is because an
IBM mainframe can have only one command |read or write) active on a device at a given
time. Before a user application issues a read request to TCAM or VM, it allocates a
buffer that it believes will be big enough to hold the largest possible input, then it
transmits the handshake character to indicate it is ready to read, and then it issues a
read request to the 3705, indicating the location of the buffer. This request completes
only when a terminator is recognized by the 3705. Upon completion, the mainframe
may issue a write request or another read request. If the TTY device transmits while a
write operation is in progress, or at any time when a read request is not active, the data
will be discarded by the 3705. (The only exception occurs when the TTY sends a BREAK
signal to interrupt the write.)

As a consequence of all this the system cannot echo characters as it receives them.
Thus it becomes the responsibility of the local device to provide any desired echoing.
Typeahead cannot be accommodated, nor can any other kind of bidirectional data trans-

112 PRIMERS

fer. Now you should understand why the following communication parameters must
be used when communicating through IBM mainframes through 3705 and equivalent
front ends:

* Parity (usually mark, odd, or even)

* Half-duplex with XON (or equivalent) handshake
* Local echo

* No full-duplex flow control

» Timeouts, when necessary, must be done by the TTY device

Protocol Converters

The other way to connect asynchronous ASCII devices to IBM mainframes is to disguise
them as 3270s. This approach has many advantages, not least among them that it allows
ASCII terminals access to the full-screen applications that would otherwise be denied.
The deception is accomplished by means of a ““protocol converter,” situated somewhere
between the ASCII device and the user application on the IBM mainframe.

In its most common form (a box external to both systems) the protocol converter
takes the IBM channel cable in one side and an RS-232 connector in the other. It trans-
lates between ASCII and EBCDIC, and it translates the mainframe’s 3270 screen-for-
matting directives into ASCII screen control sequences appropriate to the ASCII terminal
or PC, and it translates the ASCII terminal’s function key codes into 3270 PF-key codes.
There is no particular reason why the link between the protocol converter and the ASCII
device need be half-duplex, and in many cases it is indeed full-duplex, complete with
XON/XOFF flow control and typeahead.

Some protocol converters attempt to optimize throughput by transmitting to the
ASCII device only those characters or fields that have changed since last time. For
example, suppose the screen has the word KERMIT in the upper left corner, and the
IBM system wishes to overwrite it with the word GARMENT. The protocol converter
might ““home the cursor,” write the letters GA, then issue a command to position the
cursor two spaces forward, and then write the letters ENT. The computer believes it
has transmitted the word GARMENT but the device receives GA<xxx>ENT, where
<xxx> is the cursor command. The result on your screen will be correct, but if you
were trying to capture the transmitted information into a file, you’d have a rude surprise
in store.

If all protocol converters behaved the same way, it would be possible to write (very
complicated) communication programs that accounted for this behavior. But, of course,
each manufacturer’s product is different, and probably each version of a single manu-
facturer’s product behaves differently from the other versions. In any case, there is not
necessarily a way for a program on either the mainframe or an ASCII PC to determine
what, if any, protocol converter is being used and what its characteristics are.

113 DATA COMMUNICATION =~

The protocol converter is an extreme example of an opaque box. You can hope to
transfer files through it only if you have the ability to turn off all of its format conversion
functions. Some protocol converters allow you to do this, and some don’t. Those that
do no doubt do so in different ways. The prospects for file transfer are therefore bleak,
but not hopeless.

The most widely understood protocol converter (at least by Kermit programmers) is
the IBM Series/] minicomputer running the Yale ASCII Communications System.
Equivalent IBM products have names like 7171 and 4994. These systems provide a
relatively straightforward way for a program to take them into and out of transparent
mode so that files may be transferred through them with little difficulty, except for the
usual complications with buffering, flow control, parity, format conversion, etc., which
are not insurmountable.

Data Communication Parameters of Selected Systems

Table 4-6 lists some data communication aspects of selected systems. Communication
is based on RS-232-C and DB-25 connectors, with speeds ranging from 50 to 9600 baud,
unless otherwise indicated. The information in the table is gathered from sundry sources,
and should not be considered definitive, especially since some of these characteristics
can change as new models, front ends, or operating system releases appear, and also
because local changes are often made. The primary intention of the table is to convey
a feeling for the variety that must be accounted for when we want data communication
to occur. An asterisk (*) in the Flow Control column means that flow control is not
necessarily supplied by the system but may be provided by communication software.

Table 4-6. Communication Characteristics of Selected Systems

Flow Required
System Duplex Control Parity Remarks
Apple Macintosh Full * None 9-pin RS-422, speeds to 56Kb
DEC-20/TOPS-20 Full XON/XOFF None Small input buffer
DEC VAX, PDP-11 Full XON/XOFF None
Honeywell DPS8/GCOS Half XON None “@" sacred
HP-1000 RTE-6/VM Full ENQ/ACK None
HP-3000 MPE Half XON None
IBM PC/AT Full * None 9-pin RS-232, speeds to 38Kb
IBM 370 VM/CMS/3705 Half XON Mark EBCDIC, big input buffer
IBM 370 VM/CMS/7171 Full XON/XOFF Even ASCII, small input buffer
Prime/Primos Full XON/XOFF Mark 2" sacred
Sperry 1100/0S 1100 Full XON/XOFF 0Odd Prefers block-mode polled i/0

*Depends on communication program

PART THREE

5

Kermit Command Reference

From this point on, it is assumed that the computing and data communication terms
covered previously can be used without elaboration. If you run across words you don’t
understand, consult the Index to find references to more detailed discussions.

The Kermit commands are grouped and described according to function—terminal
emulation, file transfer, parameter setting, and so on—in the approximate order in which
you need to know about them. An alphabetical command summary can be found in
Appendix B.

Please remember that Kermit programs are written by volunteers who did not nec-
essarily include every command listed here, and that some systems have special features
or requirements resulting in additional system-dependent commands. The command
descriptions given in this chapter are as general and complete as possible, but you should
consult the documentation for your particular version of Kermit to find out if there are
differences.

“This is an optional feature of the Kermit protocol, not supported in all Kermit
programs.” That’s a phrase you will see repeated throughout this chapter. Why are so
many features optional? Why aren’t all Kermit programs the same? It’s mainly because
a program that includes all the features of the protocol is more than most volunteers
have the inclination or time to tackle. Only the very basic sending and receiving oper-
ations are mandatory,! and the rest is optional. The protocol is designed to let any two
Kermit programs tell each other what features they have, so that the most rudimentary
implementation can still communicate with the most advanced, and the oldest with
the latest. And then there are the myriad settings, options, and frills that are outside of
the protocol, but which make a Kermit program more pleasant to use, or more adaptable
to unusual settings. These are included or omitted at the discretion of the programmer.

Terminology and Syntax Review

Before proceeding, let’s briefly review our terminology and notation. In most connec-
tions between two Kermit programs, one program is remote and the other is local. The
remote Kermit is usually running on a mainframe, which you have connected to through
a PC or other computer, which is local. When a Kermit program is remote, all file

1. And there may be exceptions even in these fundamental areas. One person, who wrote a Kermit
program for an exceptionally cantankerous machine, elected to omit the SEND command because “the
[name omitted] is so user-hostile, no one has developed software on it worth sending.”

transfer is done over the job’s controlling terminal line, its console, the same line on
which you logged in, and to which you type interactive commands. What the remote
system believes to be your terminal is really another computer, usually your local
microcomputer, running its own copy of Kermit. During file transfer, the remote system
is cut off from your keyboard and screen.

When a Kermit program is local, file transfer is done over an external device, other
than the console, such as a microcomputer’s serial communication port or an assigned
terminal line on a mainframe. The local Kermit is connected in some way (like a dialout
mechanism) to another computer. A local Kermit is in control of the screen; a remote
Kermit has no direct access to it. Since the local Kermit can control the screen, the
keyboard, and the port separately, it can update the screen during file transfer with
status information, watch for interrupt signals from the keyboard, and transfer packets
on the communications port, all at the same time. If the remote Kermit tried to do this,
the status information would get mixed up with the packets, slowing down the file
transfer and possibly interfering with it.

Figure 5-1. Local and Remote Kermit Programs

118 USER GUIDE

Microcomputer Kermit programs run in local mode unless instructed otherwise.
Mainframe Kermits run in remote mode unless some special command places them in
local mode. Some commands make sense only for remote Kermits, others only for local,
but most can be used with either. Local and remote operation of Kermit is shown
schematically in Figure 5-1.

The Command Dialog

Most Kermit programs communicate with you through interactive keyword-style com-
mand dialog. The program issues a prompt to indicate that it is waiting for you to type
a command. The prompt is usually of the form

Kermit—xx>

where xx indicates the version of Kermit: Kermit-MS> for MS-DOS Kermit,
Kermit-11> for PDP-11 Kermit, and so on.

In response to the program’s prompt you may type a keyword, like SEND or RECEIVE,
possibly followed by additional keywords or operands, each of which is called a field.
Ideally, and usually also in practice, you should be able to abbreviate keywords to any
length that makes them distinguishable from any other keyword valid for that field,
and you should be able to type a question mark at any time to get information about
what'’s expected or valid for the current or next field. This style of interaction is called
menu on demand. An additional feature, sometimes included, is called completion or
recognition, and is usually invoked by typing the Escape key (written here as <ESC>).
If the portion of the current keyword or file name typed so far is enough to identify it
uniquely, the rest is filled in automatically; otherwise a beep is sounded to let you know
that more characters are required. The combination of abbreviation, menu on demand,
and completion allows both novice and experienced people to use the program without
penalizing one group to favor the other.

The following example illustrates how ? and <ESC> work. You type set and then
a question mark to find out what the SET options are. Then you continue the command
at the point where the question mark was typed, adding a d and another question mark
to see what SET options start with d. Then you add a u to select duplex (the only SET
option that starts with du) followed by <ESC> to complete the current field, then another
question mark to see what the possibilities are for the next field, and so forth. The
command is terminated and entered by a carriage return. Before carriage return is typed,
however, the command can be edited or erased using Backspace or other command
editing keys provided by your system. Finally, the same command is entered again with
a minimum of keystrokes, each field abbreviated to its shortest unique length. In the
example, the parts you type are printed in green; all the rest is system typeout:

Kermit—xx>set ? one of the following:

debugging delay duplex escape
file handshake IBM line
parity receive send

Kermit—xx>set d? one of the following:
debugging delay duplex

Kermit—xx>set du<iESC>plex ? one of the following:
full half

Kermit—xx>set duplex h<ESC>alf
Kermit—-xx>set du h

Liberal use of the ? feature will let you rapidly learn any differences between your
Kermit program’s command set and the one described here.

In practice, many Kermit programs conform fully to this model (which happens to
be based on the DECSYSTEM-20 command interpreter), but there are also many that
do not. Of those, some are entirely menu-driven, others respond only to UNIX-style
command line arguments, and still others are partial implementations of the DEC-20
style—for instance, abbreviations of keywords might not be allowed, or help is not given
when ? is typed.

Commands generally do not take effect until you “enter’”” them by typing carriage
return. Most Kermit programs allow you to edit your commands before you type the
terminating carriage return, in order to correct typing mistakes. The method varies from
system to system. The most common editing functions are character deletion {usually
accomplished by typing the Backspace or Delete key) and line deletion (often by typing
Control-U). ,

Consult your particular Kermit program’s documentation for details about help menus,
keyword abbreviation, completion, and editing. Now let’s review and expand our syntax
notation.

anything A parameter. The symbol shown this way is replaced by an operand of
the specified type (number, filename, etc.).

[anything] A field enclosed in square brackets is optional. If omitted, the field de-
faults to an appropriate value. You don’t type the brackets.

{x,y,2} A list of alternatives is enclosed in curly braces; you type one of the
alternatives.
number A number entered in prevailing notation, usually decimal. Some Kermit

programs expect you to type numbers in octal or hexadecimal. These
alternative notations are explained in Appendix E.

character A single character. Some Kermit programs allow the character to be typed
literally; others require you to type its numeric ASCII value in decimal,
octal, or hexadecimal. These values are included in the ASCII table in
Appendix D.

120 USER GUIDE

filespec A file specification, i.e., the name of a file, possibly including a search
path, device or directory name, or other qualifying information, and pos-
sibly containing “wildcard” or pattern-matching characters to denote a
group of files.

"X Control characters are written using uparrow notation, except for those
that already have more common names, like CR ("M} and LF ("J}. Control
characters are produced by holding down the key marked CTRL {or Con-
trol} and typing the appropriate character, e.g., x.

<CR> Carriage Return. Included when the carriage return that is normally im-
plied by the end of a line is not clear.

<NOCR> Don’t type a carriage return, even though the end of the line implies that
you should.
<ESC> Type the Escape key.

Commands are shown in uppercase, but most Kermit programs let you enter them in
any combination of upper- and lowercase. Here are some examples of command syntax
descriptions.

« EXIT
Type exit, followed by a carriage return.

» SEND filename
Type send, followed by a space, followed by the name of an actual file, followed by a
carriage return.

* DIRECTORY [filespec]
Type directory, a space, and then either a carriage return or a file specification fol-
lowed by a carriage return.

* DEFINE name [value [,value [, ... 1]]
Type define, a space, and then a name that you make up, then a list of zero or more
values separated by commas, followed by a carriage return.

« SET FILE {DISPLAY, WARNING} [{ON, OFF}]
Type set file, then a space, then either display or warning, and then either a
carriage return or on or off followed by a carriage return.

Invoking Kermit Programs

Every system has its own way of letting users run programs and every Kermit program
has its own peculiarities, so it would be silly to try to give general directions for running
Kermit programs. But I'll try anyway.

121 "KERMIT COMMAND REFERENCE

First, let’s ignore the workstation-based menu-driven Kermit versions, like those on
the Apple Macintosh or DEC Pro-350. Menus are supposed to explain themselves. The
remaining Kermit implementations tend to fall into two categories: interactive and
command line. When an interactive program is invoked, it issues a prompt and you give
it a command. The process repeats until you issue a command, like EXIT, that tells it
to stop executing. This is the model used throughout this book. The command line
model is much more rigid; all the operands (commands, options, arguments, data) for
the program are included on the same command line that invokes the program. You
have to know what they are in advance and type them all correctly. The set of programs
that makes up the UNIX environment provides the best-known example of this style
of program invocation. For instance, UNIX Kermit can be invoked with a command
like:

kermit -1 /dev/ttyi4 -b 1200 —cntp m -r —a foo

which means something like “Using line ttyi4 at 1200 baud, half-duplex with hand-
shake and mark parity, connect to the remote system, then receive a file, storing it
under the name foo, and then connect back when done.”

UNIX Kermit allows both command line and interactive operation, but it uses dif-
ferent syntax for each. Many other Kermit programs allow only one style or the other,
but some allow both, usually with consistent syntax. The normal convention for com-
mand line invocation is for the program to terminate and disappear after processing of
the given operands is complete. When the program is invoked without operands on the
command line, it will either begin interactive dialog or else it might print a help message
to the effect that command line operands are required, perhaps indicating what they
might be.

Those Kermit programs which allow both interactive and command line operation
usually extend the convention slightly. When command line operands do not specify
any action, like CONNECT or SEND, the program enters dialog mode anyway. If you
typed

kermit set line R7

you probably did not intend for the program to disappear before you could use it to
communicate with the system at the other end of line 27.

Many Kermit programs are set up to process an initialization file upon startup. The
“init file” may contain any valid Kermit commands. If you find that you always use
certain options, then you can save yourself a lot of repetitive typing by collecting them
together into the init file. For instance, if you have a PC on your desk at the office with
a direct line-mode connection to an IBM mainframe, your init file might look like this:

122 USER GUIDE

set speed 9600
set parity mark
set duplex half
set flow none

set handshake xon
set timer on
connect

The init file must have a certain name, and be in a certain place, so that your Kermit
program can find it. Usually the name is something like KERMIT. INI and the place is
in your home directory or the current disk and/or directory. Consult the documentation
of your particular Kermit program for details about invocation and initialization files.

Terminal Emulation Commands

Before you can transfer files with Kermit, you must be able to communicate with the
remote system at least enough to get the remote Kermit program running, which means
that you must establish a terminal session there. Kermit provides the CONNECT com-
mand for this purpose, plus several related commands.

The CONNECT Command
Syntax: CONNECT [line]

For use in local mode only. Establishes a terminal connection to the system at the other
end of the specified or currently selected communication line. On a microcomputer
this is normally the serial port. On a mainframe you will have to specify a terminal
line number or other identifier, either in the CONNECT command itself, or in a prior
SET LINE command. A SET PORT command will be necessary on a microcomputer to
select an alternative serial port, like COM2 instead of COM1.

The terminal connection established by the CONNECT command is exactly what
you would get with an ordinary terminal. It is “unguarded.” No error-correcting protocol
takes place. All microcomputer versions of Kermit should have a CONNECT command,
and in most cases a particular type of terminal, such as a DEC VT52 or VT100, or a
Heath/Zenith 19, will be emulated. Mainframe Kermits may or may not have a CON-
NECT command. If you want to connect two mainframes with Kermit, the one that is
to initiate the connection must have a CONNECT command. Mainframe Kermits that
have CONNECT commands generally do not emulate any particular kind of terminal.
They assume that you are already using a real terminal or a terminal emulator as your
console to the system.

123 KERMIT COMMAND REFERENCE ~— ~

Before issuing the CONNECT command, you may have to use the SET command
(page 148) to make any necessary adjustments to the default or current communication
settings, including SPEED (or BAUD), DUPLEX (or ECHO), PARITY, FLOW-
CONTROL, and HANDSHAKE. Most Kermit programs use full-duplex, no-parity com-
munications by default, but check the documentation of your particular program for
details.

When you issue the CONNECT command, the Kermit program will print a brief
message telling you how to get back. Be sure you remember it!

Kermit—xx>connect
(Connecting to remote host, type "“]C to get back)

(Terminal session with host conducted here.)

~1C<NOCR>
(Back at local Kermit.)
Kermit—xx>

During terininal emulation, every character you type (except one) is sent immedi-
ately out the communication port (with any selected parity tacked on to it}, and every
character that arrives at the port is displayed on your screen {usually with the parity
bit stripped). In half-duplex connections, keyboard characters are also echoed immedi-
ately to the screen. When a particular terminal is being emulated, selected control
sequences among the incoming characters are interpreted to produce the indicated ef-
fects, like clearing the screen, positioning the cursor, or making characters blink.

Some Kermit programs have a LOG command to allow the terminal session (every-
thing that appears on your screen) to be recorded in a disk file called the session log.
This provides “raw’’ (unguarded) capture of information (like interactive dialogs) that
cannot ordinarily be transferred with Kermit, or of files from remote systems that do
not have Kermit programs. Some postprocessing with a text editor is usually necessary.
See ““Raw Download and Upload,” page 169.

The one keyboard character that is not sent immediately out the port is called the
escape character. Its purpose is to get the attention of the Kermit program again. The
escape character—not to be confused with ASCII ESC—is usually a control character
that you would not otherwise have reason to type, typically *] (Control-Rightbracket),
"\ (Control-Backslash), or ** (Control-Uparrow or -Circumflex). Most Kermit programs
allow you to change it using the SET ESCAPE command.

When you type the escape character, Kermit treats the next character you type as a
command. The combination of the escape character and the subsequent single-character
command is called the escape sequence. Your Kermit program may furnish any or all
of the following escape commands:

124 USER GUIDE

Close the connection and return to the local Kermit.

Show the status of the connection.

Send a BREAK signal.

(Zero} Send a NUL (0) character.

{(Or H) Drop the line, hang up the modem.

“Push” to the local system command processor without breaking the connection.
Quit logging session transcript.

Resume logging session transcript.

M "W O v U O W »n Q

Record the current screen in a file.

=0

List the available escape commands.
Note that

The “C” command will always be available.
Letters may be typed in either upper- or lowercase.

To transmit the escape character itself, type it twice in a row.

It is possible to use Kermit to connect to a remote system, on which you invoke Kermit
to connect to an even more remote system. The process can be repeated indefinitely,
but escaping back through the same path without skipping any intermediate systems
could present problems. The recommended method is to make sure each system’s Ker-
mit uses a different escape character. If the escape characters are the same, remember
that you can transmit one copy of your local escape character by typing it twice, so you
can escape back from the doubly remote host to the remote host by typing *]*]C if
your escape character is *].
Here’s an example showing use of the CONNECT command:

Kermit-xx>set baud 9600 Specify the speed.

Kermit-xx>set parity odd Specify parity, if any.
Kermit—-xx>set duplex half And other nonstandard parameters.
Kermit—-xx>connect Connect to the remote system.

(Connecting to host, type *\C to return)
(Carry on your dialog here.)
“\C<NOCR> Type the escape sequence when done.

(Back at PC)
Kermit—-xx>

.

125 KERMIT COMMAND REFERENCE

The DIAL Command
Syntax: DIAL number

If your connection to the remote system is to be made with an autodial modem, you
may use Kermit’s DIAL command to place the call, if your Kermit program has a DIAL
command, and if it is designed to control the type of modem that you have. As of this
writing, DIAL commands are pretty scarce among Kermit programs. For each type of
modem they intend to support, they need detailed knowledge of the modem’s command
and control structure. And when that involves RS-232 signals like DTR, DSR, RTS,
CTS, R], and CD, then detailed knowledge of the system’s serial driver (or serial inter-
face itself) is also required, and the interaction between the modem’s behavior and the
system’s behavior becomes a major source of complication. Even if the programmer
figures it out for a particular machine/modem combination, it might all change with
some new release of system software, or be totally different on some otherwise com-
patible system.

Anyway, if your Kermit program has a DIAL command that works with the kind of
modem that you have, you may use it subject to any restrictions or peculiarities listed
in the documentation for your Kermit program or for your modem. Beyond that, there
are still a few things to watch out for:

The communication settings for communicating with your modem might not be the
same as those for communicating with the system it is to dial.

If your Kermit program supports more than one kind of modem, then you will have to
give a SET MODEM command before dialing, to let the program know which kind of
modem it’s dealing with.

If you are using a mainframe, or if your modem is connected to other than the normal
port on your micro, you must give the appropriate SET LINE or SET PORT command
first.

Once you issue the DIAL command, you may have to wait as long as a minute to
allow dialing to take place. If you have lights or a speaker on your modem, you can use
them to monitor the progress of the call.

If the connection cannot be completed, Kermit will print a message to that effect,
usually indicating the reason—line busy, no answer, etc. If the connection is completed,
you can issue a CONNECT command to use it. The Kermit program will attempt to
monitor the connection and will notify you if carrier should drop, provided the modem
and its connection to the computer are set up to allow this.

Some Kermit programs provide SET DIAL and SET PHONE commands to let you
adapt the DIAL command to a previously unknown type of modem, to select pulse or
tone dialing, and possibly to enter phone numbers into a directory.

Here’s an example of the DIAL command:

126 USER GUIDE

Kermit—-xx>set modem hayes Specify modem type.
Kermit—-xx>set port 2 Specify which port to use.
Kermit-xx>set baud 1200 Specify the speed.

Kermit-xx>set parity odd Specify other parameters.
Kermit-xx>dial 7654321 Dial the number, wait for response.
(Call completed.)

Kermit—-xx>connect Connect to the remote system.

(Connecting to host, type “\C to return)

The HANGUP Command

This command, when available, explicitly hangs up the telephone connection initiated
by the most recent DIAL command, usually by dropping DTR on the port, or sending
a “long BREAK.” In most cases, such connections are broken automatically when you
log out from a remote system. Use the HANGUP command on those occasions when
the automatic mechanism doesn’t work, for instance, when the remote system crashes
but the front end or port selector you have dialed does not drop DTR. If your Kermit
program lacks a hangup command, you can escape back to the modem’s command level
(+++ on the Hayes, with a second’s pause before and after) and then type the modem-
specific hangup command (on the Hayes it’s ATHO).

How to Dial without a DIAL Command

If you have a modem with a built-in dialer, but your Kermit program lacks a DIAL
command, you can control your modem directly by issuing the CONNECT command
and then typing modem-specific commands to your modem.

Each autodial modem works in its own way. We'll discuss the Hayes Smartmodem,
because it’s the most common, and in general is typical of most other modems even if
they differ in detail. If you do not have a Hayes or Hayes-compatible modem, consult
your modem manual for the details of its command language.

Let’s assume the Hayes modem is displaying result codes as words and is echoing
your typein when it’s in command state (these are the factory settings). Let’s also assume
the modem is set up correctly to work with your phone and your PC. Consult the Hayes
manual for details about the settings.

To place a call with the modem, first issue any appropriate SET commands (SET
LINE, SET SPEED, SET PARITY, etc.}, and then issue a CONNECT command. At this
point you will be communicating directly with the modem’s command interpreter. If
you type AT {uppercase) followed by carriage return, you should see the response OK.
This indicates the modem is ready to accept commands. To dial the number, just type
“ATD"” followed immediately by the phone number (just as you would dial it), followed
by carriage return. Here’s an example:

127 KERMIT COMMAND REFERENCE

Kermit—-xx>set baud 1200 Specify the speed.

Kermit-xx>set parity even Specify any nonstandard parameters.
Kermit—xx>connect Connect to the remote system.
(Connecting to host, type “\C to return)

AT

OK

ATD7654321

CONNECT

(At this point, you can communicate with the remote system.)

If the call is completed successfully—the party answers with a carrier tone —then the
word CONNECT will appear on your screen, as shown. Otherwise, you will see NO CAR-
RIER, NO ANSWER, BUSY, or some similar message.

If the connection is successful, the Hayes modem will automatically leave command
state, raise the RS-232 CD (Carrier Detect) signal, and enter communication mode, in
which it will remain until either carrier drops, or you type the modem’s escape sequence
(+++ with a pause before and after). In either case, the mocem will return to AT com-
mand state.

If carrier drops, the Kermit program probably won’t notice. If it doesn’t have a DIAL
command, it probably also lacks any other intelligence about modems and their signals.
In particular, the program might not raise the PC’s DTR signal or keep it up consistently.
Since most originate modems will not operate in the absence of a DTR signal, you may
have to set a DTR-override switch on the modem (on the Hayes, it’s switch number 1),
or feed some other signal that is known to be on into the modem’s DTR input (for
instance, by installing a jumper between DSR and DTR in the RS-232 connector that
plugs into the modem).

Commands for Transferring Files

The basic commands for transferring files are SEND, RECEIVE, and GET. These com-
mands will be described in detail starting on page 135, but first let’s discuss, in some-
what more detail than before, how these commands work.

The mechanics of file transfer depend upon whether the remote Kermit is in server
mode. If it is, you may issue repeated SEND and GET commands to it from your local
Kermit program. Otherwise, you must issue a SEND or RECEIVE command to the
remote Kermit and then escape back to the local Kermit and issue the complementary
RECEIVE or SEND command for each file or file group to be transferred.

Transferring a file from a (local) microcomputer to a (remote) mainframe is called
uploading. File transfer in the opposite direction is called downloading. This terminol-
ogy is in common use and is not particular to Kermit. When the remote Kermit is in

128 USER GUIDE

server mode, downloading is initiated from the local Kermit with a GET command and
uploading with a SEND command. When server operation is not being used, download-
ing is done like this:

1. CONNECT to the remote system and run Kermit.
2. Give the SEND command to the remote Kermit.
3. Escape back to the local Kermit.

4. Give the RECEIVE command.
Uploading goes like this:

1. CONNECT to the remote system and run Kermit.

2. Give the RECEIVE command to the remote Kermit.
3. Escape back to the local Kermit.
4

. Give the SEND command.

When a file transfer starts, your local Kermit program will display the progress on
the screen, usually indicating the name of the current file, the number of packets sent
so far, the number of retransmissions, and so forth. When the transfer is complete, the
program will sound a beep, and the status of the operation will be indicated by a message
like OK, Complete, Interrupted, or Failed. At that point you should find yourself at
either system or Kermit command level, depending upon how you invoked the local
Kermit program.

Text Files versus Binary Files

We’ve touched on this topic before, but it bears repetition. Most Kermit programs are
initially set up to transfer text files, and they take pains to do any conversion necessary
to make these files useful on the target system. If you want to transfer binary files, you
have to give explicit commands to the sending and receiving programs to skip this
conversion. A binary file is usually of no use on a system different from the one it was
created on. The most common reason for transferring binary files between unlike sys-
tems is for archiving or sharing. For instance, a university might keep a library of public-
domain microcomputer software archived on a central timesharing system.

When downloading binary, executable programs, be sure you have put both Kermit
programs in the correct mode for transferring binary files (described under the SET FILE
command, page 151). But even if you have done this, there is always the possibility that
a program was uploaded incorrectly in the first place, or that there is something else
wrong with it.

WARNING: Before running a downloaded program for the first time, take every possible
precaution to protect your system and other files from damage.

129 KERMIT COMMAND REFERENCE

Download these files to disks that don’t contain any other important files, and remove
all other disks. Turn off or disconnect printers and other peripheral equipment.

If the program has been stored or transferred incorrectly, then your computer could
find itself executing totally random instructions, resulting in a crash of your machine
or erasure of your disks, or worse. Some systems protect themselves against this sort
of hazard by verifying that a file is in correct executable program format before attempt-
ing to run it, but many other systems (usually microcomputers) do not.

Filenames

Every file sent by Kermit is preceded by a packet containing the file’s name. This is
called a file header, and it allows the receiving Kermit program to store incoming files
under their correct names automatically. The filename is stripped of device, directory,
path, generation, or attribute fields before transmission. In other words, just the name
and type are included, usually separated by a period, with letters all uppercase. This is
Kermit’s “canonic form’ for filenames. The sending system converts the name to this
form if necessary, and the receiving system does any necessary translation to local
format, for instance, by truncating excessive characters from the name or type fields,
translating illegal characters to X’s, converting alphabetic case, or changing the punc-
tuation that separates file name and type. If the name corresponds to the name of an
existing file, the receiving Kermit will normally overwrite the old file.

There are ways to alter the normal behavior—supplying an alternative name to send
the file with, supplying an alternative name to store it under upon arrival, using a SET
FILE NAMES command to enable or disable conversion of the filename to canonic form,
or using a SET FILE WARNING command to enable or disable the automatic renaming
of arriving files to unique names in order to prevent destruction of previously existing
files of the same name. These techniques are given in the descriptions of the SEND,
RECEIVE, and GET commands (starting on page 135) and of the SET FILE command
(page 151) later in this chapter.

Packet Encoding

During transmission, text files are converted to ASCII stream format, with a carriage
return and a linefeed (this character pair is commonly called a CRLF) at the end of each
line. This is Kermit’s canonic form for text files. The receiving Kermit expects arriving
text files to be represented this way, and it converts the arriving text stream into normal
text format for its system. If the way the system stores text files is the same as Kermit’s
canonic form, then there need be no distinction between text and binary files on that
system (this is true, for instance, of MS-DQS). Binary files are sent exactly as they are
stored, byte for byte.

All file data, text and binary, is encoded for transmission to prevent interference
from communications equipment and console drivers. Each control character within
the data is translated to a two-character printable sequence consisting of a control prefix,
normally the # character, followed by the printable ASCII character mnemonically clos-
est to the control character—Control-A becomes #A, Control-B becomes #B, etc. The

130 USER GUIDE

CRLF line terminator comes out looking like #M#J. The control prefix is applied re-
gardless of parity or the setting of the high-order (eighth) bit. If the eighth bit is used
for data (i.e., parity is NONE, see SET PARITY) then its value is preserved in the prefixed
character. .

If communication line parity is being used (i.e., not NONE), the protocol allows a
special encoding for binary files, called “eighth-bit prefixing,’” that permits 8-bit data
to pass through a 7-bit communication channel. This is an optional Kermit feature, and
not all Kermit programs have it. If either Kermit does not agree to use this feature,
8-bit binary files cannot be sent correctly through a 7-bit channel—the high-order bit
of each byte will be lost (in which case preprocessing is recommended; see below). The
eighth-bit prefix is usually &; the 8-bit byte 11000001 (ASCII letter A with its high-
order bit set to 1) would be transmitted as &A. If the low order 7 bits are in the control
range, the control prefix is also applied: 10000001 comes out as &#A.

The sending Kermit will also ask the other Kermit whether it can handle a special
prefix encoding for repeated characters. If it can, then files with long strings of repeated
characters will be transmitted very efficiently. Columnar data, highly indented text,
and binary files are the chief beneficiaries of this trick. The normal repeat-count prefix
is ~ (tilde), and it is followed immediately by a character whose ASCII value is 32 greater
than the repeat count. For instance, 29 A’s in a row would be represented as ~=A. Repeat
counts can be applied to characters that already have other prefixes. For instance ~"&#A
represents 62 Control-A characters in a row, each with its high-order bit set to 1.

Finally, the control prefix is used to quote itself and any other prefix character that
appears in the data: ##, #&, #~. The eighth-bit and repeat-count prefix characters are
not quoted if these options have not been successfully negotiated or if they happen to
appear as a repeat count.

Here is an example of encoded 7-bit ASCII data:

First line#M#JL~%ong Line ##2#M#JLast Line#M#J

which translates to:

First line
L0000000000000000000000000000000Ng Line #2
Last Line

Preprocessing

Sometimes it is not sufficient to transfer only the contents of a file. On some systems
certain kinds of files are not useful unless additional information accompanies them.
In those situations, it may be necessary to preprocess the file for transmission and
postprocess it after. In other situations, pre- and postprocessing may be used to simplify
an otherwise tedious process or to speed up transmission. Here are some examples:

131 KERMIT COMMAND REFERENCE ~—

For some reason, 8-bit binary files can’t be transferred over the available communication
path. The easiest workaround is to “hexify”’ the binary file before sending it, and ‘‘de-
hexify”’ it upon receipt. This can be done outside of Kermit, using a pair of simple
programs that convert between 8-bit binary bytes and pairs of hexadecimal digits
(00000000, = 00y, ..., 11111111, = FF,; see Appendix E}.2 Fancier methods can be
used to encode more efficiently, but to ensure the widest possible transportability the
encoding should be restricted to the ASCII printable characters, perhaps just the digits
and uppercase letters.

Some popular application (like a spreadsheet or database) is available on two computers,
but the data file format differs. Such applications will almost always have an “export”’
or conversion utility to put the file into transportable format.

A very long file must be transferred, and a very effective compression program is avail-
able outside of Kermit. It may be considerably faster to compress, transfer, and decom-
press than to transfer the original file. Of course, symmetrical compression and
decompression programs must be available on either end.

A file of complex record structure or with externally recorded attributes must be trans-
ferred between two systems of the same type, but Kermit does not have any way to
preserve the structure or attributes during transmission. Examples include Macintosh
applications and VAX/VMS RMS files. Many systems provide a utility to convert such
difficult files, together with their directory entries and other external information, into
ordinary sequential streams of bytes that may be transmitted by Kermit, for reconstruc-
tion by a complementary program upon receipt. Macintosh BinHex is one such utility.

A complex hierarchical structure of directories and files is to be transferred between
two like systems, and the files themselves may be of mixed type (text and binary) and
of arbitrary complexity (record structure, attributes, etc.). Most systems have a utility
for backing up disk directories onto “savesets’” on magnetic tape, and some may allow
this utility to write the saveset to a disk file rather than to a tape drive. In this case,
you can use Kermit to transfer the saveset (a single file) and then use the backup utility
on the target system to restore the files from the saveset. Examples include the UNIX
“tar” program and the VAX/VMS BACKUP program.

Settings

Kermit programs allow you great flexibility in changing file and communication param-
eters by using the SET command, which is described in detail starting on page 148.
Before attempting to transfer any files, be sure that you have issued all necessary SET
commands first. In particular, before attempting to transfer binary files be sure to issue

2. This simple hex file format should not be confused with Intel hex format, which includes checksums
and additional information.

132 USER GUIDE

the SET FILE TYPE BINARY (or equivalent) command to both Kermit programs.® Sim-
ilarly, before attempting to transfer files over a communication channel that requires
parity, you must issue the appropriate SET PARITY commands. Before attempting to
communicate with an IBM mainframe, you will probably have to use SET commands
to adjust parity, duplex, echo, timeout, flow control, and handshake. XON/XOFF or
similar flow control may be used during file transfer, if available.

The Kermit protocol allows the sender to transmit information about a file in a
special Attributes packet, including whether the file is text or binary. Unfortunately (as
of this writing), very few Kermit programs support this optional packet type. As a general
rule, therefore, it is not possible to mix text and binary files in the same file group
without preprocessing.

Interruption of File Transfer

Once a file transfer is in progress, you should be able to interrupt it by typing one of
the following control characters on your keyboard:

“X Cancel the current file, discarding any portion of it transferred so far, and proceed
to the next one, if any.

*Z Cancel the current file and all subsequent files, and return to command level.

“E Cause an intentional fatal protocol error. Equivalent to *Z, but will work in situ-
ations where *Z will not. Transmits an Error packet to the remote Kermit.

“C Emergency Exit. Equivalent to “E, but makes no attempt to notify the remote
Kermit, which may be left in an indeterminate state {most likely timing out re-
peatedly, retransmitting its last packet every few seconds until its retry limit is
exhausted). Use this only as a last resort, or if you have reason to believe there is
no Kermit program at the other end (e.g., because you forgot to start it).

CR Retransmit the last packet. Useful on connections that don’t time out automati-
cally (see page 133).

“A Print a status report on the transfer in progress, without actually interrupting it;
useful with Kermit programs whose file transfer display is not continuously up-

dated.

Not all local Kermits provide all of these interruption commands, and those that do
might assign them to different characters (or mouse buttons, etc.). Consult your system-
dependent Kermit documentation for details.

3. The rare exception occurs when a system stores text files in exactly the format to which Kermit would
convert them for transmission, in which case no conversion is done, and there is no need for a SET FILE

TYPE BINARY command. One such system is MS-DOS.

133 KERMIT COMMAND REFERENCE

The first two interruption commands ("X and *Z) call upon an optional feature of
the Kermit protocol not necessarily supported by the remote Kermit program, even
when it is by the local one. This poses little problem when sending files, since the local
Kermit is in control. When receiving files, the worst that can happen is that these
interruption commands will be ignored by the remote Kermit. In that case, “E or *C
can be used instead if they’re available.

The local Kermit program should inform you of the interruption options that are
available each time you start a file transfer. For instance, UNIX Kermit might give a
message like

CTRL-F to cancel file, CTRL-R to resend current packet
CTRL-B to cancel batch, CTRL-A for status report

It uses different interruption commands because the normal ones are already assigned
by the system to other uses.

Timeouts

When two Kermit programs are sending packets to each other, there is always the
possibility that a packet will be lost in transit or damaged badly enough to prevent its
recognition as a packet. After Kermit A has transmitted a packet, it waits for a reply
from Kermit B. If Kermit A’s packet is lost, then both Kermit A and Kermit B will be
waiting for a packet. This situation is called a deadlock, and a mechanism is required
to break it. The mechanism is called a timeout. The Kermit program sets a timer (like
the alarm on a clock) before issuing an input request to the serial port. If the input
request is not satisfied within the timeout interval, the alarm goes off and the program
takes some action to break the deadlock, usually retransmission of its last packet.

Sometimes the alarm goes off prematurely because the timeout interval is shorter
than the amount of time required for a packet to arrive. Timers are usually set for
operation on point-to-point, uncongested connections. However, when the connection
is over a packet network, delays caused by congestion, routing, or satellite transmission
may exceed the normal timeout interval. Similarly, when one or both of the systems
involved is a timesharing system, it is always possible that the demands placed upon
it will make it so slow that it can’t transmit its packets within the allotted time. Most
Kermit programs include SET commands that allow you to increase the timeout inter-
val, but this can have the side effect of increasing the time to detect packets that really
have been lost.

Ideally, the timeout interval should be set to

Packet-length x 10
Baud-rate

+ process + delay + slop

134 USER GUIDE

where Packet-length is the number of characters in the packet, including any padding
and terminator characters, process is the number of seconds required to process a packet,
delay is the transmission delay in seconds, and slop is the number of seconds you're
willing to wait for the packet after it’s due. The process time can vary with system load
and other factors (the amount of compression/decompression being done, whether or
not disk buffers are being dumped), and delay can vary with the load on the network
and other factors (e.g., the route taken by each packet). Most Kermit programs don’t
take these factors into account automatically, but you should consider them when
adjusting timers.

Most Kermit programs are capable of timing out, and it is sufficient for only one
partner of a pair to have a timer in order for a file transfer operation to proceed unat-
tended—without human intervention. Nevertheless, it is sometimes necessary to trans-
fer files between two Kermits, neither of which has a timer. This is what the “CR
interruption”’ is for: it causes the program to do what it would have done had it timed
out, namely retransmit its most recent packet. As usual, consult the program-specific
documentation for any Kermit you intend to use to determine whether it can time out,
and what manner of manual intervention is provided for.

Performance

The basic, “classic’” Kermit protocol is of the stop-and-wait variety. Each packet requires
a reply, and the next packet won'’t be sent until the reply arrives, or the sender times
out waiting for it. Furthermore, a regular Kermit packet is relatively short—96 char-
acters long at most. These characteristics of the Kermit protocol have allowed it to
thrive in hostile environments, but the price is unnecessarily high when the environ-
ment is friendlier. Under the best conditions, basic Kermit transfers files at 50-80 per-
cent of the baud rate. On connections with built-in delays, such as public networks or
satellite links, throughput decreases dramatically.

Two extensions to the Kermit protocol allow improved performance, provided the
two Kermit programs support them. The first extension increases the maximum packet
length. It should be used only when the connection is relatively noise-free, since re-
transmission incurs a very high overhead when packets are long. Long packets are also
the only way to boost performance in half-duplex connections. In practice, it doesn’t
make sense to have packets much longer than about 1000 characters—the benefits from
packets longer than that are offset by the cost of retransmission.

The second extension, for use only on full-duplex connections, is the sliding window
extension. This technique allows continuous transmission of packets, providing the
receiver can reply within a certain interval called the window size (which is the max-
imum number of packets that may be unacknowledged at a given time). Retransmission,
when necessary, is not costly, so this method is appropriate to noisy connections.

The file transfer commands SEND, RECEIVE, and GET are now described.

135 KERMIT COMMAND REFERENCE

The SEND Command
Syntax: SEND filespecl [filespec2]

The SEND command causes the file or group of files specified by filespecI to be sent
to the other system. The command can be issued from either a remote or a local Kermit
program. There are two forms of the SEND command, depending on whether filespecl
specifies a single file or a file group. The most common method for specifying a group
of files is by including ““wildcard” characters in the file specification. For instance, if
FOO.FOR is a single file, a FORTRAN program named FOO, then *.FOR might be a
group of FORTRAN programs. Most systems allow some kind of wildcard notation,
usually one symbol, like *, to match any string of characters, and another, like ? or %,
to match any single character. Some also provide notation for matching any of a group
of characters or strings, or any letter within a given range. The important point is that
a single file specification is used to select multiple files.

Sending a File Group If filespecl contains wildcard characters, then all matching files
will be sent, in directory-listing order, each under its own name. If a file can’t be opened
for read access, it will be skipped. Some Kermit programs allow the initial file in a
wildcard group to be specified with the optional filespec2. This allows a previously
interrupted wildcard transfer to continue from where it left off, or it can be used to skip
some files that would be transmitted first. Examples:

send *.txt Send all files of type .-TXT.
send *.txt file3.txt Same, but starting with FILE3.TXT.

Check the specific documentation for your Kermit program to see if the second form
is allowed and if it behaves as described here. If it is not provided, you might be able
to achieve the same effect using SET FILE SUPERSEDE.

Sending a Single File 1f filespec1 does not contain any wildcard characters, then the
single file it specifies will be sent under its own name. Optionally, filespec2 may be
used to specify a different name under which to send it; filespec2 is not parsed or
validated locally in any way.

send foo.txt Send the file FOO.TXT.
send foo.txt fred.txt Send FOO.TXT as FRED.TXT.

Optional Syntax: An alternative to the second form might be provided on some systems,
particularly those that allow spaces in filenames, to remove any ambiguity between
filespecl and filespec2. If you are sending a single file, you may type the SEND command

136 USER GUIDE

without a filespec. In that case, Kermit programs that support this option will prompt
you for the local filespec on the subsequent line, and the name to send it under on the
line after that:

Kermit—-xx>send<CR>
Local Source File: profile exec
Remote Destination File: profile.xec

If the program does not support the optional syntax, it will give you an error message
like ““Not confirmed,” which means that it did not see a carriage return where it ex-
pected one, namely after a file specification.

SEND Remote Operation When you SEND from the remote system, you are down-
loading a file, typically from a mainframe to your microcomputer, with the remote
Kermit not in server mode.

After issuing the SEND command to the remote Kermit program, you have to escape
back to the local Kermit program and issue a RECEIVE command. After a few seconds,
the file transfer should start. You will see the progress displayed on your screen.

A remote Kermit program will wait a length of time, usually from 5 to 30 seconds
(see SET DELAY), after you have given it the SEND command until it actually starts
to transmit packets. When the delay period expires, the first packet will be transmitted.
It might look something like this:

AA, Spt @—#Y1~

If the packet is not answered within the remote Kermit’s timeout interval (normally
about 5 seconds), it will retransmit the same packet. If you have not escaped back to
your local Kermit quickly enough, you will see this packet on your screen. Don’t worry:
as long as you escape back and give the RECEIVE command within about a minute or
two, the protocol will work. If you take more than

Delay + (retry-limit x timeout-interval)

seconds to escape back and give the RECEIVE command, then the remote Kermit will
give up and return to command level. In that case, you should just issue the SEND
command again.

SEND Local Operation In this case, you are uploading a file from your local system
{usually a PC) to a remote system {usually a mainframe). You should already have started
the Kermit program on the remote system, issued either a RECEIVE or a SERVER
command, and then escaped back to the local Kermit. As soon as you issue the SEND
command, the transfer should start with no delay.

137 " KERMIT COMMAND REFERENCE

If you notice a file being sent that you do not really want to send, you may cancel
the operation by typing either Control-X or Control-Z. If your local Kermit supports
these options, they will work even if the remote Kermit does not support them, except
that a remnant of the current file might be left behind on the remote system.

The RECEIVE Command
Syntax: RECEIVE |filespec]

The RECEIVE command tells a Kermit program to wait for the arrival of a file or file
group sent by a SEND command from the other system. You may include the optional
filespec field as the name under which to store the incoming file; otherwise, the name
is taken from the incoming file header. If multiple files are received when the optional
filespec is given, only the first one will be renamed; the others will be stored under the
names they were sent with.

If an incoming file does not arrive in its entirety, the receiving Kermit program will
normally discard it, and it will not appear in your directory. You may change this
behavior by using the command SET INCOMPLETE KEEP, which will cause as much
of the file as has arrived to be saved in your directory.

RECEIVE Remote Operation When the remote Kermit program is given the RECEIVE
command, you are uploading files to it. After you have given the RECEIVE command,
you should escape back to your local Kermit and give the SEND command. The same
cautions about timing apply as for the remote SEND command, except that in this case
you may see a NAK packet on your screen:

“A# N3

Just escape back and give the SEND command within a minute or two so that the retry
limit is not exceeded. If it is, you can still CONNECT back to the remote system and
reissue the RECEIVE command.

RECEIVE Local Operation When you give a RECEIVE command to your local Kermit,
you are downloading files to it. You must already have issued a SEND command to the
remote Kermit and escaped back to the local Kermit. See the foregoing description of
the remote SEND command.

PLEASE NOTE: You cannot use the RECEIVE command to request files from a Kermit
server. You must use the GET command for that. RECEIVE is passive, GET is active.*

4. Some very early Kermit programs may still survive in which RECEIVE was passive and RECEIVE filespec
did what GET does.

138 USER GUIDE

As files arrive, their names will be shown on your screen, along with a continuous
display of the packet traffic. If your local Kermit program supports file interruption
commands like *X and *Z, you may issue them, but with no guarantee that the remote
sender will honor them. If it doesn’t, the files will continue to arrive. You can either
let them come and then delete them afterward, or else you can try interruping the entire
transfer by typing “E or "C (in that order}. Again, recall that methods for entering these
interruption commands may vary; consult your particular program documentation.

The GET Command
Syntax: GET [remote-filespec]

The GET command requests a remote Kermit server to send the file or file group speci-
fied by remote-filespec. Note the distinction between the RECEIVE and GET com-
mands: RECEIVE instructs the program to wait passively for files to arrive, whereas
GET actively sends a request to a server.

The GET command can be used only when Kermit is local, with a Kermit server
active on the other end of the line. This means that you must have CONNECTed to
the other system, logged in, run Kermit there, issued the SERVER command, and es-
caped back to the local Kermit. GET is equivalent to a SEND/escape-back/RECEIVE
sequence, except that afterward the remote Kermit remains in server mode rather than
returning to command level.

The remote filespec is any string that can be a legal file specification for the remote
system. It is not parsed or validated locally. It may denote a single file or a file group
in the remote system’s own file naming syntax.

As files arrive, their names will be displayed on your screen, together with a contin-
uous indication of the packet traffic. As with the RECEIVE command, you may type
Control-X to request that the current incoming file be canceled, or Control-Z to request
that the entire incoming batch be canceled, with no guarantee that these requests will
be honored. If you type Control-E, you will terminate the file transfer, but the server
will remain in server mode.

Optional Syntax: If you are requesting a single file, you may type the GET command
without a filespec. In that case, Kermit programs that support this optional multiline
syntax will prompt you for the remote filespec on the subsequent line, and the name
to store it under when it arrives on the line after that:

Kermit—xx>get<CR>
Remote Source File: aux text
Local Destination File: al auxfile bl

If the program does not support the optional syntax, it will give you an error message
like “Not confirmed.” The reason for the multiline syntax is that the remote filespec

139 KERMIT COMMAND REFERENCE

might contain characters that could confuse the local Kermit’s command interpreter,
like the spaces in the example above. If the syntax were

get aux text al auxfile bl

how would the local Kermit program know which goes with what?

Commands for Server Operation

To alleviate the tedium of repetitive escaping and connecting back and forth, the Kermit
protocol provides a way for the local Kermit to relay commands in packets to a remote
Kermit specially set up for this purpose as a “Kermit server.” Server operation is an
optional feature of the Kermit protocol. Not all remote Kermit programs are capable of
acting as servers, and not all local Kermits are capable of sending the command packets
required to control Kermit servers.

The SERVER Command

The SERVER command instructs Kermit to cease taking commands from the keyboard
and to receive all further instructions in the form of Kermit packets from other Kermit
programs. Your local Kermit program must have commands for communicating with
remote servers, including at least GET and SEND, plus either FINISH or BYE. If your
local Kermit does not have a BYE or FINISH command, then it does not have the full
ability to communicate with a Kermit server and you should not put the remote Kermit
program into server mode. If you do, you might not be able to get it out again—most
Kermit servers ignore whatever you type at them, and won’t even echo it. If you find
yourself stuck in this situation, try typing a FINISH packet:

“A$ GF4

That’s a Control-A, followed by a dollar sign, one space, then GF4, and a carriage return.

Any nonstandard parameters should be selected with SET commands before putting
Kermit in server mode. For instance, if you plan to transfer binary files, you will have
to SET FILE TYPE BINARY. If you later decide to transfer text files, you’ll have to
FINISH server operation, connect back, and SET FILE TYPE TEXT before starting any
transfers, unless both the local Kermit and the remote server support either Attribute
packets or the REMOTE KERMIT or REMOTE SET command. :

After issuing the SERVER command, escape back to your local Kermit program and
issue SEND, GET, REMOTE, BYE, or FINISH commands from there. If you don’t escape
back fast enough, you may see a NAK packet on your screen:

“A# N3

140 USER GUIDE

Don't worry; the server is in no hurry to receive commands; it will not time out. In
fact, you may leave the server running on the remote end for hours at a time without
communicating with it. The periodic NAKs are issued by the server for the benefit of
local Kermits that don’t time out, to cover the case when a command packet is trans-
mitted, but lost. Many Kermit server programs provide an option (SET SERVER
TIMEOUT) for turning off these NAKs in case they cause trouble.

During a session with a server, you may use the interruption commands *X, *Z, and
“E as described, but they return the server to server command wait rather than to Kermit
or system command level, so that you can issue further commands to the server from
your local Kermit program.

When you have finished with the remote server, you should issue a BYE or FINISH
command from the local Kermit to shut it down. This will cause the server to complete
any pending actions, to close any open logs, and generally to clean up after itself.

The BYE Command

The BYE command is issued from the local Kermit program in order to shut down a
remote Kermit server and request that it log out its job. If the BYE command succeeds,
there is no need to CONNECT back to the remote system and clean up. The job will
be gone, and any dialup connection should have been dropped. If the server responds
with a message like “Unknown Kermit server command’’ or “Error—Can’t log out,”
you'll have to use the FINISH command instead, CONNECT back, clean up, and log
out yourself.

The FINISH Command

The FINISH command is issued from the local Kermit program to shut down a remote
Kermit server without having it log itself out. This allows you to CONNECT back to
your remote job, where you may find yourself either at Kermit or system command
level, depending on the program.

The REMOTE Command

A local Kermit program may provide a REMOTE command for requesting special func-
tions of a remote Kermit server. If the server does not understand the command or offer
the requested service (all of these commands and services are optional features of the
Kermit server), it will reply with a message like “Unknown Kermit server command.”
If it does understand, it will send the results (if any) back to be displayed on your screen.
The REMOTE commands follow.

REMOTE CLOSE function
Deactivate remote logging of the specified function and close the associated log file {see
REMOTE LOG].

141 KERMIT COMMAND REFERENCE

*« REMOTE COPY filespecl filespec2
Request that the file specified by filespecl be copied to filespec2 on the remote system.
The optional multiline syntax may also be allowed.

* REMOTE CWD |directory]|

Change working directory. Set or change the default device and/or directory specifica-
tion for remote file references. If no directory name is provided, the server will change
to the job’s default directory. Otherwise, you will be prompted for a password, and the
server will attempt to change to the specified directory. If access is not granted, the
server will provide a message to that effect. Details of operation vary. Some systems
(like UNIX) allow directory changing without a password; others require one. On some
systems (like the DEC-20) the CWD operation grants owner access to the accessed
directory; on others (like UNIX] it doesn't.

* REMOTE DELETE filespec
Delete the specified file or files. The names of the files that are deleted may or may not
be displayed on your screen. Again, details vary. On some systems, file deletion is
irrevocable; on others deleted files may be resurrected.

*« REMOTE DIRECTORY [filespec]
The names of the files that match the given file specification will be displayed on your
screen, possibly along with additional information about file sizes, dates, or other at-
tributes in the remote system’s syntax. If no file specification is given, all files from
the current directory will be listed.

* REMOTE HELP
A list of available server functions is displayed.

* REMOTE HOST [command]
The given command is passed to the server’s host command processor, and the resulting
output is displayed on your screen. This command, when available, serves as an “escape
clause” allowing remote execution of other commands not explicitly provided for.

* REMOTE KERMIT [command)|
The given command, which is expressed in the server Kermit’s own command syntax,
is passed to the server for execution. This is useful for changing settings, logging, and
other functions for which explicit REMOTE commands are not available.

* REMOTE LOG function [filespec]
Activates remote logging of the specified function, such as DEBUGGING, TRANS-
ACTIONS, or PACKETS, to the specified remote file. If the filespec is omitted, use the
remote Kermit program’s default name for the specified log. See the LOG command,
page 146, for details.

+ REMOTE PRINT filespec [options]
Prints the specified remote file on the remote system’s printer, using the specified
options, which are expressed in the syntax of the remote system’s printing commands.

142 USER GUIDE

« REMOTE PROGRAM [command)]
The command is sent to the program started by most recent REMOTE RUN program,
and the program’s response is displayed on the screen. If no command is given, a newline
character is sent.

* REMOTE RENAME filespecl filespec2
Changes the name of, or moves, the remote file filespecl to filespec2.

+* REMOTE RUN program-name [command-line]
The remote Kermit is asked to run the indicated program with the indicated command
line. The program’s terminal output is sent back to your screen. Not all systems provide
the mechanisms required to support this command.

+* REMOTE SET options
A remote version of the SET command.

* REMOTE SHOW |options)]
Requests the remote server to display the selected SET parameters, or all of them if
none are specified.

* REMOTE SPACE [directory]
Requests information about disk usage in the current or specified remote directory—
quota, current storage, or amount of remaining free space—to be displayed on your
screen.

* REMOTE SUBMIT filespec [options]
Submits the specified remote file for batch or background processing on the remote
system, with options specified in the remote system’s syntax.

* REMOTE TYPE filespec
Displays the contents of the specified file(s} on your screen.

* REMOTE WHO [name]
Asks the remote system to send you a list of who is logged in, or requests information
about the named user.

Again, remember that any particular Kermit server program is not guaranteed to have
all, or any, of these commands. It’s also possible that some commands might be available
that aren’t listed here. The REMOTE commands that occur most commonly are CWD,
DELETE, DIRECTORY, HELP, and TYPE. Any REMOTE command that results in the
display of a lot of information on your screen can be canceled with the X, *Z, or “E
commands, if available.

Commands for Local File Management

Even though your system provides its own commands for file management, it may be
inconvenient for you to exit from the Kermit program, issue file management com-
mands, and continue or restart the Kermit program. For this reason, many Kermit pro-

143" KERMIT COMMAND REFERENCE

grams provide built-in commands for local file management. The LOCAL commands
are mostly the same as the equivalent REMOTE commands, except that they lack the
REMOTE prefix (in some implementations, a LOCAL prefix may be allowed or re-
quired). Check the documentation for your particular program to find out what local
file commands are available and whether their syntax differs from that given here.

» COPY filespecl filespec?
Local filespec1 is copied to local filespec2.

* CWD [directory]
Changes your working directory to the specified device and/or directory.

* DELETE filespec
Deletes the specified file or files.

« DIRECTORY |filespec]
Provides a directory listing of the specified files.

« HOST command
Requests the local host operating system to execute the given command. Often available
in some other syntax customary for the particular system, like ! for UNIX.

 PRINT filespec |options)
Prints the specified local file(s) on a local printer with the specified options expressed
in the local print facility’s own syntax.

* PROGRAM [command]
Gives the command to the program selected in the most recent RUN command. This
allows an “‘inferior”’ program or process to be kept around and invoked from time to
time without incurring the overhead of loading and starting it each time. Available
only, but not necessarily, if there is also a RUN command.

*« RENAME filespecl filespec2
Changes the name of filespecl to filespec2.

* RUN [filespec [command]]

Runs the indicated program with the supplied command. The RUN command can be
available only on systems that allow one program to run another, and its behavior can
vary from system to system. For instance, the program might disappear after completion,
or it might remain available for further use via the PROGRAM command. When a
command is not specified, the program may be started interactively, depending on the
nature of the program and the host operating system. If no filespec is given, the program
will be restarted or continued, if that is possible.

+ SPACE
Displays local disk quota, usage, and/or free space.

* SUBMIT filespec [options]
Submits the specified file for batch (background) execution, with the specified options.

144 USER GUIDE

* TYPE filespec
Displays the specified file{s) on the screen.

* WHO [name]
Lists the users logged into the local system, or the named user.

There may also be an additional local command that allows you to get at functions not
otherwise provided:

+ PUSH
Invokes the local system command interpreter in such a way that it can return to
Kermit, with all Kermit’s previous environment and settings intact. Kermit should tell
you what command gets you back to Kermit, like EXIT or POP.

Some Kermit programs may provide commands for these or other functions in the
syntax of their own system, when this would cause no confusion. For instance, CP/M
Kermit may use ERA in place of (LOCAL) DELETE, UNIX Kermit might use ! instead
of PUSH or {LOCAL)} HOST.

_ _ __
Bureaucratic Commands

Like most other programs, Kermit needs commands to terminate its execution, provide
help, keep records, and so forth.

The HELP Command
Syntax: HELP [topic]

Typing HELP alone prints a brief summary of the available commands and possibly
instructions for obtaining more detailed help on particular topics. Most Kermit imple-
mentations also allow the use of ? within a command to produce a short help message.
For instance, help ? might list the topics for which help is available.

The EXIT Command

The EXIT command tells the Kermit program to do any necessary cleaning up (like
closing log files) and then to terminate. Some systems allow the same program image
to be restarted or continued; others do not. Consult your Kermit program documenta-
tion.

145 KERMIT COMMAND REFERENCE

The TAKE Command
Syntax: TAKE filespec

This command instructs Kermit to take further commands from the specified file and
to execute them until the end of the file is reached. The file may contain any valid
Kermit commands, including other TAKE commands, and it should contain only Kermit
commands or other notation that is legal at Kermit command level (for instance, some
Kermit programs allow comment lines to be preceded by a special symbol, like semi-
colon). In theory, you could include the CONNECT command in a TAKE command
file, but since you cannot include text after the CONNECT command to be transmitted
to the remote system, including the escape sequence, there would be no practical reason
to do so. A separate mechanism, called a login script, must be used if you want to carry
on a “canned”’ dialog with the remote system from a command file (see page 164).

Command files provide a way to group related commands together so that they can
be executed conveniently (the DEFINE command provides another way). For instance,
if you put the following commands into a file called IBM,

set parity mark
set flow none

set handshake xon
set duplex half
set timer on
connect

then you could execute them all at once simply by typing take ibm. Some aspects of
command file execution can be controlled using the SET TAKE command.

The ECHO Command
Syntax: ECHO string

The specified string is printed on the screen. Useful for monitoring TAKE command
file execution. Special characters may be included in the string by prefixing their nu-
meric ASCII values with a backslash (\}.

The COMMENT Command
Syntax: COMMENT |[string]
Has no effect at all. Used for putting comments in TAKE files. Some Kermit programs

may substitute the system’s customary comment character, like semicolon (;) or ex-
clamation mark (!), for the keyword COMMENT.

146 USER GUIDE

The RUN Command

Syntax: RUN [program |arguments]|

The RUN command provides another “escape clause” from Kermit. It runs the specified
program with the arguments (operands, commands) provided. The RUN command al-
lows you to write programs to supplement Kermit’s functions. For instance, if your
Kermit lacks a DIAL command, you can write your own program to do the dialing,
Then from within Kermit you can issue a command like

run dial 7654321

The RUN command is an optional Kermit feature; its presence depends not only on
whether the programmer felt like including it, but also on the capabilities of the un-
derlying system. Some systems provide no mechanism for one program to invoke an-
other. Others may allow it, but provide no way of passing arguments.

The QUIT Command
Syntax: QUIT

QUIT is a synonym for EXIT.

The STATISTICS Command

Gives statistics about the most recent file transfer. For instance, here’s what was re-
ported by UNIX Kermit after receiving a 5K binary file at 9600 baud from a PC, using
repeat-count compression:

Total File Characters : 5792
Communication Line In . 1813
Communication Line Out : 173
Elapsed Time : 6 sec
Effective Baud Rate : 9653
Efficiency : 101%

Admittedly, the performance shown here is somewhat better than typical.

The LOG Command
Syntax: LOG {DEBUG, PACKETS, SESSION, TRANSACTIONS) [filespec]

Record the specified information in the specified log file.

147 "KERMIT COMMAND REFERENCE

« LOG TRANSACTIONS
Directs Kermit to log transactions, such as files successfully sent or received or files
that could not be successfully sent or received. A transaction log can be used to record
the progress of a long, unattended multifile transfer. Here's a typical transaction log:

Transaction Begins Saturday, 8 Feb 1986 12:18:14
Sending FIND.EXE as FIND.EXE at 12:18:19
File type binary
End of file OK
File characters . 5796
Communication line in : 134
Communication line out : 1777
Sending GAME.EXE as GAME.EXE at 12:18:20
**% X Interrupt, Discarded xxx
Skipping GAMES.DIR at 12:18:22
Reason: Can't send directory file
Sending KERMIT.EXE as KERMIT.EXE at 12:18:24
File type binary
End of file OK
File characters 1 43754
Communication line in : 2956
Communication line out : 44725
Transaction Ends 12:19:54

Files: 2

Total file characters 1 49550
Communication line in : 3090
Communication line out 1 46502
Elapsed time (seconds) ;94
Effective baud rate : 5314

« LOG SESSION

Creates a transcript of a CONNECT session on the specified device (e.g., printer) or disk
file. The log is closed when connection is closed. In some implementations, logging can
be ‘“toggled”” by typing the CONNECT escape character followed by Q (Quit logging)
or R (Resume logging) or similar single-character commands. Session logging is useful
for recording dialog with an interactive system and for ““capturing” from systems that
don’t have Kermit. No guarantee can be made that the file will contain a correct and
complete transcript, since no error checking takes place. See “Raw Download and Upload,”
page 169.

* LOG DEBUGGING
Records internal state and variable information in the specified file. When reporting
Kermit program or protocol bugs, you should accompany the report with a debugging
log for the failing transfer.

148 USER GUIDE

LOG PACKETS

Record all the communication line packet traffic in the specified file. Also handy for
tracking down protocol problems, and helpful when submitted along with problem
reports.

Logging of any kind will slow down file transfers to some degree. Log files can be closed
with the CLOSE command, as in CLOSE DEBUG, CLOSE SESSION, etc.

The SET Command

Syntax: SET parameter [parameter| [value]

The SET command establishes or modifies communication, file, or other parameters.
When a file transfer operation begins, the two Kermits automatically exchange special
initialization messages, in which each program provides the other with certain infor-
mation about itself. This information includes the maximum packet size it wants to
receive, the timeout interval it wants the other Kermit to use, the number and type of
padding characters it needs, the control character it needs to terminate each packet {if
any), the block check type, and the desired control, eighth-bit, and compression prefixes.
Each Kermit program has its own preset default values for these parameters, and nor-
mally you need not concern yourself with them. You can examine their values with
the SHOW command. The SET command is provided to allow you to change them in
order to adapt to unusual conditions. Some SET options are also provided for areas not
directly involved in protocol negotiations. The commonly used SET commands are now
described in alphabetical order.

SET BAUD
Syntax: SET BAUD number or SET SPEED number

Set or change the baud rate on the currently selected communications device. The way
of specifying the baud rate varies from system to system. In most cases, the actual
decimal number (such as 1200 or 9600) is typed. Systems that do not provide this
command generally expect that the speed of the line has already been set appropriately
outside of Kermit. Common values are 300, 1200, 2400, 4800, 9600. If the SET BAUD
or SET SPEED command is not available, then you will have to use a system command
or utility to accomplish this function before running Kermit.

SET BLOCK-CHECK
Syntax: SET BLOCK-CHECK {1, 2, 3]

Kermit normally uses a one-character block check, or “checksum,’”” on each packet. The
sender of the packet computes the block check based on the other characters in the

~<lim,
S
T
W, .
o \\“\\\\\\\‘w =4
b2 DA
N 5
i
o 4 b
S5 . /
e,
7

149 KERMIT COMMAND REFERENCE

packet, and the receiver recomputes it the same way. If these quantities agree, the packet
is accepted and transmission proceeds. If they disagree, the packet is rejected and re-
transmission is requested.

However, the block check is not a foolproof method of error detection. The normal
single-character Kermit block check is only a 6-bit quantity (the low-order 8 bits of the
arithmetic sum folded upon itself). With only 6 bits of accuracy, the chances are one in
26—that is, 1/64—that an error can occur which will not be detected in the checksum,
assuming that all errors are equally likely. The likelihood of errors slipping through is
even greater with binary files, since all carries out of the eighth bit are discarded.

You can decrease the probability that an error can slip through, at the expense of
transmission efficiency, by using the SET BLOCK-CHECK command to select more
rigorous block check methods. Note that all three methods will detect any single-bit
errot, or any error in an odd number of bits. The options are:

1. The normal single-character 6-bit checksum.

2. A two-character, 12-bit checksum. Reduces the probability of an error going unde-
tected to 1/4096, but adds an extra character to each packet.

3. A three-character, 16-bit cyclic redundancy check (CRC), CCITT format. In addition
to errors in any odd number of bits, this method detects double-bit errors, all error
bursts of length 16 or less, and more than 99.99 percent of all possible longer bursts.
Adds two extra characters to each packet [24].

The single-character checksum has proved quite adequate in practice, much more ef-
fective than straightforward analysis would indicate, since all errors are not equally
likely, and a simple checksum is well suited to catching the kinds of errors that are
typical of telecommunication lines. The other methods should be requested when the
connection is very noisy or when sending binary files.

The two- and three-character block checks are not available in all versions of Kermit;
if the other Kermit is not capable of performing the higher-precision block checks, the
transfer will automatically use the standard single-character method.

SET DEBUGGING
Syntax: SET DEBUGGING {ON, OFF}

Selects or disables recording of debugging information, either on your terminal or in a
file. Some Kermit programs may use other commands to control debugging, like LOG
DEBUG, or simply DEBUG, or they may have other options for SET DEBUGGING to
specify what is being recorded—packets, state transitions, internal program information,
and so on.

150 USER GUIDE

SET DEFAULT
Syntax: SET DEFAULT device

Some microcomputer Kermit programs use this command to switch disks, in the same
way disks are switched from system command level by typing their names (as in
CP/M or MS-DOS).

SET DELAY
Syntax: SET DELAY number

Specifies how many seconds to wait before sending the first packet after a SEND com-
mand. Use when remote and sending files back to your local Kermit. The delay gives
you time to escape back and issue a RECEIVE command before the packets start to
arrive. The normal delay is 5 seconds. Use this command to change the normal delay,
for instance to give yourself time to move the communication cable from one PC to
another before the packets start to arrive. In local mode or server mode, Kermit does
not delay before sending the first packet.

SET DESTINATION
Syntax: SET DESTINATION device

Specifies an alternative device for arriving files, e.g., a different disk than the current
one, a printer, a tape, the screen.

SET DISPLAY
Syntax: SET DISPLAY (ON, OFF, ...}

This command controls the file transfer display that normally occurs only in local mode.
Use OFF to allow a file transfer to proceed in the background while doing other work
in the foreground, on those systems that allow such a thing. FILE DISPLAY OFF might
also be used to prevent the display from interfering with packet characters when using
a microcomputer’s normally local-mode Kermit with the console redirected to the serial
port (e.g., by the MS-DOS CTTY command). There may also be other display options
like GRAPHIC or TEXT, RANDOM or SERIAL, VERBOSE or TERSE, to select the style
of display.

SET DUPLEX

Syntax: SET DUPLEX (FULL, HALF]

Specifies whether the connection to the other system is full- or half-duplex. Half-duplex
usually implies local echo and handshake; full-duplex usually implies remote echo and

151 KERMIT COMMAND REFERENCE

XON/XOFF flow control. You might find some or all of these parameters tied together
in a particular Kermit program. The SET DUPLEX command may be available as SET
ECHO or SET LOCAL-ECHO. Most Kermit programs are initially configured for full-
duplex operation. Half-duplex is necessary when connecting to IBM mainframes.

SET ECHO
Syntax: SET ECHO (LOCAL, REMOTE)

Specifies who does the echoing during CONNECT, the local or the remote system. See
SET DUPLEX.

SET EOF
Syntax: SET EOF option

EOF is the common abbreviation for end-of-file. The SET EOF command specifies the
method to be used for detecting the end of an outbound file or for marking the end of
an inbound file. For instance, some MS-DOS applications require text files to have a
Control-Z at the end, while others will ignore one if it’s there, and still others will treat
the Control-Z as a data character. Binary files, which contain arbitrary bit patterns, may
contain Control-Zs at any point. On such a system, the SET EOF command would
enable and disable the Control-Z convention. Consult your particular Kermit program’s
documentation for applicability and syntax. This function might also be lumped with
the SET FILE options.

SET ESCAPE
Syntax: SET ESCAPE character

Specifies or changes the character to use in order to get the attention of the local Kermit
program during terminal emulation. This would normally be a character you don’t
expect to be using on the remote system, a control character like *\, *], **, or "_
Most versions of Kermit use one of these by default. See the description of CONNECT,

page 122, for an explanation of the escape character.

SET FILE

Syntax: SET FILE parameter value

Establishes file-related parameters. Depending on the characteristics of the system, it
may be necessary to tell Kermit how to fetch an outbound file from the disk, or how

152 USER GUIDE

to store an incoming file. The actual parameters you can specify in this command will
vary from system to system, and you should consult the documentation for your par-
ticular version of Kermit. Here are some typical ones:

* SET FILE BYTE number
Specifies the byte size for file /O on systems with bytes of different lengths. Also useful
on systems with fixed byte size when only a certain number of bits is to be extracted
from or stored in each byte; for example, it might be desirable to send the output of
certain word processors in 7-bit bytes because they use the eighth bit to indicate some
special effect like italics or boldface that can’t be used on the target system.

« SET FILE FORMAT value [value]
For use on systems with a variety of file formats (stream, record, etc.) for specifying
parameters like fixed versus variable, block size, record length, carriage control, etc.
The syntax will tend to reflect the terminology of the host system.

* SET FILE NAMES {CONVERTED, LITERAL}
Normally CONVERTED, which means that outbound filenames have device, directory,
generation, attribute, and other information stripped, with only the file name and type
remaining, with lowercase letters raised to upper, “‘strange’’ characters changed to X’s
or deleted, a period separating the file name and type, and additional periods deleted.
LITERAL means that none of these conversions are done, and is intended for use be-
tween like systems. For inbound files, LITERAL means to attempt to store the file
exactly as indicated by the name (this requires that any device or directory path must
exist and be write-accessible) and CONVERTED means to do whatever conversions
upon the name are needed to put it into legal and conventional format for storing in
the current area. CONVERTED option may be called NORMAL in some Kermit ver-
sions, and NAMES might be called NAMING.

« SET FILE SUPERSEDE {ON, OFF}
Rejects any incoming file that has the same name as an existing file. Useful for restarting
wildcard groups after a failure. Normally OFF.

* SET FILE TYPE {BINARY, TEXT}
Normally TEXT, meaning that the file is to be converted to or from canonical form,
that is, ASCII stream with carriage-return/linefeed sequences (CRLFs} at the end of each
line. BINARY means no conversions are done upon the file data.

+ SET FILE WARNING {ON, OFF}
Normally OFF, which means that incoming files will silently overwrite existing files
of the same name. When ON, Kermit will check if an arriving file would overwrite an
existing file. If so, it will construct a new unique name for the arriving file and warn
you that it did so to allow you to find the file once it has arrived.

CAUTION: If the arrival of a file is cancelled, and a file of the same name previously
existed, and the file warning feature is not enabled, then the previous copy of the file
may be destroyed.

153 KERMIT COMMAND REFERENCE

Some systems may lack one or more of these file settings, name them differently, or
supply additional ones like record length, block size (record-oriented systems), or allo-
cation method.

SET FLOW-CONTROL
Syntax: SET FLOW-CONTROL (NONE, ENQ/ACK, ETX/ACK, XON/XOFF, ...)

Specifies the system-level flow-control method for both terminal emulation and packet
protocol. System-level flow control is not necessary to the Kermit protocol, but it can
be beneficial when the same method is available on both systems. The most common
type of flow control on full-duplex systems is XON/XOFF. The options for the Kermit
SET FLOW command are usually restricted to the system’s normal method (e.g., XON/
XOFF, ENQ/ACK), and NONE {which is used to disable this feature). NONE should be
selected if the Kermit program on the other end does not support the same kind of flow
control.

When a system does in-band flow control, it is usually opaque to the characters used
for this. They are swallowed by the system or the front end and are not passed to the
application program as data. SET FLOW NONE allows these characters to pass through
transparently, at the risk of buffer overflows. Use SET FLOW NONE on half-duplex
connections, where you should SET HANDSHAKE instead.

SET HANDSHAKE
Syntax: SET HANDSHAKE option

For file transfer with half-duplex systems. This lets you inform the Kermit program of
the line turnaround character transmitted by a half-duplex host to indicate it has ended
its transmission and is granting you permission to transmit. When a handshake is set,
Kermit will not send a packet until the half-duplex host has sent the specified character
{or a timeout has occurred). Usually has no effect on terminal emulation. The options
may include XOFF, CR, LF, ESC, and NONE. Some Kermit programs may require the
option to be specified by typing the character literally or entering its numeric ASCII
value. If you use this command to enable handshaking, you should also SET FLOW
NONE.

SET IBM
Syntax: {SET, DO} IBM [{ON, OFF}]

Many Kermit programs provide this command as a quick way to set all the parameters
required for communication with an IBM mainframe in line mode, typically PARITY

154 USER GUIDE

MARK, HANDSHAKE XON, FLOW NONE, DUPLEX HALF, TIMER ON. If your Ker-
mit program has this command, but it sets one of the parameters wrong for your IBM
system, you can issue the correcting command after the SET IBM command, e.g.,

set ibm on
set parity even

“IBM’ may be either a “hardwired’’ command in your Kermit program, or a (perhaps
predefined) macro.

SET INCOMPLETE
Syntax: SET INCOMPLETE (KEEP, DISCARD)

Specifies what to do when a file transfer fails before it is completed. The options are
DISCARD {the default) and KEEP. If you choose KEEP, then if a transfer fails to complete
successfully, you will be able to keep the incomplete part that was received. Make sure,
when using this command, that you don’t mistake an incomplete file for a complete
one.

SET INPUT
Syntax: SET INPUT {CASE, DEFAULT-TIMEOUT, TIMEOUT-ACTION} value

Controls the behavior of the INPUT command (see the sections on Login Scripts and
Raw Download and Upload, beginning on page 169). SET INPUT CASE {IGNORE, OB-
SERVE} tells what to do about alphabetic case in search strings. DEFAULT-TIMEOUT
tells how long to wait for some specified string to appear in the input before timing
out, if the INPUT command itself does not include a specific interval. TIMEQUT-
ACTION tells whether to PROCEED with the script or to QUIT from it when a timeout
occurs. See the section on Login Scripts for details.

SET KEY
Syntax: SET KEY (SCAN number, Fn} value

This command allows key remapping or keystroke macros to be defined on microcom-
puters. For instance, if your micro’s keyboard has the Escape key in the ‘“wrong place,”
you can use this command to “move’’ it. Or you can assign a commonly typed sequence
of characters to a single rarely used key. The exact syntax varies from system to system,
but in general you can select function keys (like F1, F2), or any key at all by scan code
(which you can obtain from your micro’s technical manual or by using the SHOW KEY

155 KERMIT COMMAND REFERENCE

command). The value associated with a key can be any character string, including a
single character. To include a character in the value string that could otherwise not be
typed at Kermit command level, you can substitue its ASCII value {usually in octal
notation), preceded by a backslash (\). Here’s an example:

Kermit—-xx>show key
Press a key: ‘!

Scan Code: 96

Definition:
Kermit—-xx>set key scan 96
Definition string: \33
Kermit—-xx>show key
Press a key: !

Scan Code: 96

Definition: \33
Kermit-—-xx>

See your particular Kermit documentation for details.

SET LINE
Syntax: SET LINE [terminal-designator]

Specifies the terminal line to use for file transfer or CONNECT, to which all subsequent
communication-related SET commands will apply (e.g., SET BAUD, PARITY, DUPLEX).
The SET LINE command is found on mainframe Kermits, which normally run in remote
mode using their own controlling terminal for file transfer. Specifying a separate line
puts the program in local mode. If the terminal designator is omitted, the program
reverts to remote mode.

SET MODEM
Syntax: SET MODEM modem-type

Specifies the type of modem to be used for the DIAL command, when more than one
type might be supported by the Kermit program, so that it will know how to control
the dialer. Example: SET MODEM HAYES. To specify that no modem is in use (nor-
mally the default condition) use SET MODEM NONE (or possibly SET MODEM
DIRECT).

156 USER GUIDE

SET PARITY
Syntax: SET PARITY {EVEN, ODD, MARK, SPACE, NONE}

Allows a Kermit program to accommodate to a system or transmission medium that
uses or requires parity. If you fail to use this command under these conditions, then
file transfer cannot take place, because the packets might not get through at all, or if
they do, the block check will be wrong.

Kermit programs that run on mainframes that require parity (like IBM or Prime) are
already set up for parity operation and need not be given a SET PARITY command.
Kermit programs that intend to communicate with such mainframes, however, must
be told about parity.

Two Kermit programs that are running on systems that don’t normally use or require
parity, but which are connected over a channel that does (for example, a public network
like Telenet) will both need to be given SET PARITY commands.

Both Kermit programs should be set to the same parity. The specified parity is used
both for terminal connection and file transfer. During terminal emulation, incoming
characters will have their parity bits stripped before display. The choices for SET
PARITY are:

NONE (The default) Eight data bits and no parity bit.
MARK Seven data bits with the parity bit set to one.
SPACE Seven data bits with the parity bit set to zero.
EVEN Seven data bits with the parity bit set to make the overall parity even.

ODD Seven data bits with the parity bit set to make the overall parity odd.

NONE means no parity processing is done, and the eighth bit of each character is
available for data when transmitting binary files. When set to other than NONE, 8-bit
binary files can be transferred only if both Kermit programs agree to use the optional
eighth-bit prefixing technique. Those Kermit programs which support this technique
will automatically bid to use it when parity is set to other than NONE.

SET PORT
Syntax: SET PORT port-designator

Specifies the communication port for file transfer or CONNECT. This command is
found on microcomputer Kermits that run in local mode. SET PORT does not change
the remote/local status but simply selects a different port for local operation on systems
that have more than one communication port. Some microcomputer Kermit programs
that have this command allow settings like parity and duplex to be assigned on a per-
port basis, so that you can switch among multiple connections conveniently.

157 KERMIT COMMAND REFERENCE

SET PROMPT
Syntax: SET PROMPT string

This command allows you to change the program’s prompt. This is particularly useful
if you are using Kermit to transfer files between two systems of the same kind, in which
case you can change the prompts of the Kermit programs involved to include appropriate
distinguishing information. :

SET RECEIVE
Syntax: SET RECEIVE parameter value

Establishes parameters to request or expect for incoming packets, as follows:

+ SET RECEIVE END-OF-PACKET character
{or EOL or END-OF-LINE|. Asks the other Kermit to terminate its packets with the
specified character, carriage return {ASCII 13} by default.

« SET RECEIVE PACKET-LENGTH number
Maximum length packet for the other Kermit to send, between 10 and 94 (decimal) in
standard, classic Kermit. The maximum length may be as high as 9024 if the long packet
extension is available and 857,374 with “extra long’’ packets.

* SET RECEIVE PAD-CHARACTER character ‘
Requests the specified padding character be appended to incoming packets (see SET
SEND PAD-CHARACTER, below].

+ SET RECEIVE PADDING number
The desired number of copies of the requested padding character.

« SET RECEIVE PAUSE number
How many seconds to pause before acknowledging a packet. Setting this to a nonzero
value will slow down the rate at which data packets arrive, which may be necessary
for systems that have sensitive front ends and cannot accept input at a high rate.

» SET RECEIVE START-OF-PACKET control-character
Instructs Kermit to look for the specified control character to mark the beginning of
incoming packets. Normally SOH (Control-A, ASCII 1} (see SET SEND START-OF-
PACKET, below).

« SET RECEIVE TIMEOUT number
Sets the value of the timeout field to be sent to the other Kermit, which tells it how
many seconds to wait for a packet before sending a NAK or retransmitting. A value of
zero tells it not to time out, to wait forever for each packet.

158 USER GUIDE

SET RETRY
Syntax: SET RETRY [{INITIAL, PACKETS)] number

Set the maximum number of retries allowed for:

« INITIAL
How many times to try establishing the initial protocol connection before giving up,
normally something like 15.

* PACKETS
How many times to try sending a particular packet before giving up, normally 5. If a
line is very noisy, you might want to increase this number.

SET SEND

Syntax: SET SEND parameter value

Specifies parameters to use when sending packets. These may be in effect only for the
initial packet sent, since the other Kermit may override them during the protocol pa-
rameter exchange {unless noted below).

* SET SEND END-OF-PACKET character
(or EOL, or END-OF-LINE). Specifies the ASCII character to be used as a line terminator
for outbound packets, if one is required by the other system, carriage return by default.
You will have to use this command in order to get the first packet through to the rare
system that requires a line terminator other than carriage return.

* SET SEND PACKET-LENGTH number

Specifies the maximum packet length to send, between 10 and 94 in unextended Kermit
programs, or up to 9024 or 857,374 when the long-packet extensions are available.
Shorter packet lengths can be useful on noisy lines, or with systems or front ends or
networks that have small buffers. The shorter the packet, the higher the per-packet
overhead, but the lower the chance of a packet being corrupted by noise, and the less
time to retransmit corrupted packets. Lengthening the packets increases the throughput
on clean lines. This command overrides the value requested by the other Kermit during
protocol initiation, so don’t use it to make packets longer than the other Kermit can
accommodate. If you request a number larger than 94, but the other Kermit can’t do
long packets, then a smaller number will be used automatically. Kermit programs al-
ways use unextended packets unless explicitly directed to the contrary.

+ SET SEND PAD-CHARACTER character
Designates a character to send before each packet. Normally, none is sent. Qutbound
padding is sometimes necessary for communicating with slow half-duplex systems that
provide no other means of line turnaround control. It can also be used to send special
characters to communication equipment that needs to be put in transparent or no-echo
mode, when this can be accomplished by feeding it a certain control character.

159 KERMIT COMMAND REFERENCE

+ SET SEND PADDING n
Tells how many copies of the pad character to send, normally O (zero). It is rarely
necessary to issue SET SEND PAD-CHARACTER and PADDING commands, since the
other Kermit will request any required padding in its Send-Init packet.

« SET SEND PAUSE number
How many seconds to pause before sending each data packet. Setting this to a nonzero
value may allow a slow or heavily loaded system enough time to consolidate itself
before the next packet arrives. Normally, no per-packet pausing is done. Some Kermit
programs allow the number to include a fractional part, as in SET SEND PAUSE 0.5.
The PAUSE parameter is not part of the Send-Init parameter exchange.

* SET SEND START-OF-PACKET character

The start-of-packet character is the only control character used “bare’” in a Kermit
packet. It is Control-A by default. If a bare Control-A causes problems for your com-
munication hardware or software, you can use this command to select a different control
character to mark the start of a packet. You must also issue the corresponding command
(SET RECEIVE START-OF-PACKET) to the Kermit on the other system (providing it
has such a command). This technique also allows the protocol to survive communica-
tion front ends that echo all the characters they receive, when the Kermit program itself
is not smart enough to discard the echoed packet {some are, some aren’t). The start-of-
packet character is not a Send-Init parameter (how could it be?).

« SET . SEND TIMEOUT number
How many seconds to wait for a packet from the other Kermit before sending a NAK
or retransmitting. A value of zero means ““don’t time out; wait forever.” This overrides
any Send-Init timeout parameter provided by the other Kermit. It is often necessary to
increase the timeout interval when using communication media (like public networks)
with built-in delays. The benefit is in fewer timeouts; the cost is in longer time to
recover from lost packets.

SET SERVER

Syntax: SET SERVER parameter [value]

Sets server-related parameters in preparation for putting the program into server mode:

« SET SERVER TIMEOUT [numbez]
Set the server command loop NAK interval to the given number of seconds. Normally,
a Kermit server will send a NAK every 30 seconds or so while waiting for commands
in order to break the deadlock that would occur if the local Kermit’s command packet
were lost and the local Kermit is not doing timeouts. These NAKs are triggered by a
timer that is separate from its normal packet timer (which you can set from your local
Kermit via SET RECEIVE TIMEOUT), and they are not part of protocol negotiation. If
you do not interact with the Kermit server for a very long period of time, your system

160 USER GUIDE

might become clogged by all these NAKs, possibly XOFFing the server. If this happens,
you can tell the server to send the NAKs less frequently or not at all. Use SET SERVER
TIMEOUT 0 to disable the NAKs altogether.

SET SPEED

Syntax: SET SPEED number

Sets the speed (baud rate) of the currently selected port or line. Sometimes available as
SET BAUD.

SET TAKE
Syntax: SET TAKE (ECHO, ERROR}

This command controls the behavior of the TAKE command. SET TAKE ECHO {ON,
OFF} tells whether the contents of a command file should be displayed on the screen
during execution. SET TAKE ERROR {PROCEED, QUIT} tells whether the Kermit pro-
gram should continue to execute a command file after an error has occurred.

SET TERMINAL
Syntax: SET TERMINAL {type, parameter value}

For microcomputer Kermit programs that include built-in emulation for more than one
type of terminal, use this command to select which emulator to use, e.g., H19, VT52,
VT100, VT102, NONE. Also used to select terminal specific features like autowrap,
color, etc.

SET TIMER
Syntax: SET TIMER {ON, OFF)

Turns the timer ON or OFF in the Kermit program to which this command is issued.
If ON, SET SEND/RECEIVE TIMEOUT commands are processed as described above,
and the timing parameters from the Send-Init negotiation are honored. If OFF, timeouts
will not be done, no matter what commands you have issued, or what the other Kermit
requests. Microcomputers usually have their timers OFF on the assumption that most
file transfer is done with mainframes that are capable of providing more intelligent
timeouts. It is sufficient for only one Kermit program to have a timer active. If both
have timers going, there could be unnecessary collisions.

161 KERMIT COMMAND REFERENCE

SET TRANSLATION
Syntax: SET TRANSLATION ‘“stringl" ‘“string2"

This command provides a mechanism for coping with opaque communication equip-
ment. It has nothing to do with the Kermit protocol, in the sense that no coordination
between the two Kermit programs is involved. SET TRANSLATION simply specifies
that after a packet is already fully formed, the specified transformation is to be done
upon it before it is transmitted. The objective is for the packet to arrive at its destination
exactly as it was formed before the transformation was applied. Therefore, only those
transformations are useful which accomplish this objective. Example:

SET TRANSLATION “@" “@@"

would allow @ to get through a box that uses @ as an escape character, but passes one
copy of it through if it receives two in a row.

The string arguments may contain any characters, but each should be enclosed in
double quotes so that the two strings can be distinguished. Unusual characters, or
double quotes themselves, may be quoted by preceding their numeric ASCII values with
backslash. Translation occurs only during packet operations, not during terminal con-
nection {you can use SET KEY for that).

SET WINDOW
Syntax; SET WINDOW [number]

Enables Kermit’s full-duplex sliding window protocol extension for increased through-
put, especially when communicating over a full-duplex channel with built-in delays,
like a public network. This feature allows continuous sending and receiving of packets,
so that the sender need not wait for the receiver’s ACK before sending the next packet.
The window size specifies how many ACKs may remain outstanding at a time, between
0 (zero, the normal value) and 31. Experiment to determine the best value for a given
connection and Kermit program. Usually a number somewhere between 4 and 16 is
sufficient to achieve continuous transmission. If the other Kermit does not “do win-
dows” (most as yet do not), then a window size of 0 will be used automatically.

Performance may also be improved by increasing the packet size, provided both
Kermits support the long-packet protocol extension and the connection is relatively
clean. Long packets and sliding windows may be used together, but there’s no reason
why they should be. When using sliding windows, the packet length should kept be
relatively short (80-90 characters) to reduce retransmission overhead.

162 USER GUIDE

The DEFINE Command
Syntax: DEFINE macroname [phrase, [phrase, |. .]|

The DEFINE command lets you set up a “macro” to allow convenient association of
one or more commands or SET parameters with a single keyword of your choice. The
phrases in the syntax specification are either Kermit commands, as you would type
them at command level, or SET options, separated by commas. Some Kermit programs
allow any Kermit command to be included in a macro definition, while others allow
only SET options (anything you would type after SET).

If you use Kermit to communicate with several different kinds of systems, you may
set up a macro for each, for instance:®

COMMENT Settings for IBM mainframe with 3705 front end:
DEFINE IBM3705 SET PARITY MARK, SET DUPLEX HALF, SET HANDSHAKE XON, -
SET FLOW NONE, SET TIMER ON

COMMENT Settings for IBM mainframe with 7171 protocol emulator:
DEFINE IBM7171 SET PARITY EVEN, SET DUPLEX FULL, SET HANDSHAKE NONE, -
SET FLOW XON/XOFF, SET TIMER ON, SET SEND PACKET-LENGTH 60

COMMENT Settings for VAX with UNIX or VMS:
DEFINE VAX SET PARITY NONE, SET DUPLEX FULL, SET HANDSHAKE NONE, -
SET FLOW XON/XOFF, SET TIMER OFF

COMMENT Settings for GTE Telenet
DEFINE TELENET SET PARITY MARK, SET TIMER ON, SET RECEIVE TIMEOUT 20, -
SET WINDOW 16

(When the Kermit program allows only SET options in macro definitions, the commands
would be DEFINE IBM PARITY MARK, DUPLEX HALF, HANDSHAKE XON, etc.). You
may then type SET (or DO, depending on the syntax your program provides) IBM, SET
VAX, and so forth, to set all the desired parameters with a single command.

Another handy use for macros is to allow rapid adaptation to different conditions of
line noise:

DEFINE CLEAN BLOCK 1, REC PACKET 94, RETRY PACKET 5

DEFINE NOISY BLOCK 2, REC PACKET 60, RETRY PACKET 10
DEFINE AWFUL BLOCK 3, REC PACKET 40, RETRY PACKET 20

(or DEFINE CLEAN SET BLOCK 1, etc.).

5. These definitions are examples only. Most Kermit programs do not allow command continuation as
shown; these long commands had to be split between lines so they would fit on the page. Also, particular
settings may vary from site to site.

163 KERMIT COMMAND REFERENCE

As noted, those Kermit implementations which provide a macro facility may differ
in the ways they expect the macro to be invoked:

1. By name—just use its name as a command, e.g.,, AWFUL.
2. The DO command, e.g., DO AWFUL
3. As an option in a SET command, e.g.,, SET AWFUL

As usual, consult the documentation for your particular program for details.

In general, Kermit programs do not provide a way to “undo” the effect of a macro,
but you can always define another macro to restore things the way they were before,
like the CLEAN macro shown in the previous example. You may also redefine an
existing macro in the same manner as you defined it (just issue another DEFINE com-
mand using the same name), and you can undefine an existing macro by typing an
empty DEFINE command for it, for instance:

DEFINE AWFUL

Macro definitions take up space in memory, so you cannot have an unlimited number
of them. You can list all your macros and their definitions with the SHOW MACROS
command, which should also show you how much space remains for additional defi-
nitions. Macros are most conveniently defined in a TAKE command file {such as your
Kermit initialization file, which is TAKEn automatically each time you run the pro-
gram), so that you need type their definitions only once.

The SHOW Command
Syntax: SHOW [option|
The SHOW command displays the values of the SET parameters. If a particular option

is not requested, a complete display will be provided. Here is the output of UNIX
Kermit’s SHOW command:

Communications Parameters:
Line: /dev/acu, speed: 1200, mode: local, modem-dialer: hayes
Parity: none, duplex: full, flow: xon/xoff, handshake: none

Protocol Parameters: Send Receive
Timeout: 10 7
Padding: 0 0
Pad Character: 0 0
Packet Start: 1 1
Packet End: 13 13

Packet Length: 90 90

164 USER GUIDE

Block Check Type: 1, Delay: 5

File parameters:

File Names: converted Debugging Log: none
File Type: text Packet Log: none
File Warning: off Session Log: none
File Display: on Transaction Log: none

Incomplete File Disposition: discard, Init file: .kermrc

Some Kermit programs provide a SHOW command for every SET command, e.g.,, SHOW
SEND TIMEOUT. Others group related parameters together for convenient display, e.g.,
SHOW PACKET, SHOW COMMUNICATION. SHOW VERSION displays information
about the Kermit program version.

SHOW KEY is for use in conjunction with SET KEY on microcomputer Kermit
programs that provide key redefinition. In response to SHOW KEY, the program asks
you to press a key. When you press it, the program tells you the scan code (for use in
conjunction with SET KEY SCAN) as well as any redefinitions currently in effect.

SHOW MACROS is used to display currently defined command macros, along with
any relevant information about their consumption of memory. See DEFINE.

Login Scripts

A handy feature to have in any communication program is a ‘login script’’ interpreter.
Login scripts are used to automate frequently performed interactions with remote com-
puters. They can relieve you of the tedium of repetitive or complicated tasks, and they
can allow routine interactions with remote computers to occur unattended, perhaps late
at night when phone rates are low and timesharing systems are fast.

The special INPUT, OUTPUT, CLEAR, and PAUSE commands may be combined
with other Kermit commands in a TAKE command file to provide the ability to initially
connect and log in to a remote system, initiate file transfers in either direction, log out,
and disconnect.

Each of the special commands honors all the current communication settings—
speed, parity, duplex, flow control, etc.—and is usually coordinated with session and
transaction logging to allow transcripts to record the progress of unattended operations.

The CLEAR Command
Syntax: CLEAR

Clears the input and output buffers of the currently selected line and attempts to break
any flow control (XOFF) deadlock.

165 KERMIT COMMAND REFERENCE

The PAUSE Command
Syntax: PAUSE [number]

Pauses the specified number of seconds before executing the next command. The default
interval is 1 second.

The INPUT Command
Syntax: INPUT |interval] [string]

Looks for the given string for the specified number of seconds on the currently selected
communication line. If no interval is specified, then the default interval is used, which
may be specified by SET INPUT DEFAULT-TIMEOUT, and which is normally 5 sec-
onds. Specifying an interval of 0 means ‘“no timeout; wait forever for the specified
string.”

Characters coming in from the line will be scanned for the search string, and when
a match is found, the command will terminate successfully. If the string is not found
within the given interval, the command will terminate unsuccessfully. While the IN-
PUT command is active, all incoming characters will appear on your screen.

The search string may contain any printable characters. Control or other special
characters that you could not normally type as part of a command may be included by
preceding their numeric ASCII values with a backslash, for instance foo\15 is “foo”
followed by a carriage return (octal numbers will be used in all the following examples).

While scanning, alphabetic case is ignored (a = A) unless you have SET INPUT
CASE OBSERVE. If no search string is given, then the INPUT command will simply
display all incoming characters on your screen until it times out or is interrupted.

If the INPUT command finds the specified string within the allotted amount of time,
it terminates immediately without an error message, and the next command is executed.
If the INPUT command fails to find the requested string, it will ““fail.” Failure is sig-
nificant only if the command was issued from a TAKE command file, and INPUT
TIMEOUT-ACTION is SET to QUIT. When a timeout occurs under these conditions,
the command file is immediately terminated and control is returned to the invoking
level, either the Kermit program prompt or a superior command file. If INPUT
TIMEOUT-ACTION is SET to PROCEED, then the next command (if any) will be
executed from the current command file.

The OUTPUT Command
Syntax: OUTPUT [string]

The given string is sent out the currently selected communication line. The string is
in the same form as the INPUT string. Control or special characters may be included
by prefacing their numeric ASCII values with backslash characters. Note that any ter-
minating carriage return must be included explicitly, e.g., as \15. The string will also
be echoed at your terminal.

166 USER GUIDE

The SCRIPT Command
Syntax: SCRIPT [string]

The SCRIPT command provides an escape clause to allow for system- or implementa-
tion-dependent script formats, such as the UNIX UUCP “expect-send” format. Nor-
mally, a Kermit program will not have a SCRIPT command if it has the INPUT and
OUTPUT commands.

How to Use Login Scripts

Scripts can be used to automate the task of connecting and logging in. For instance,
suppose you are using a DECSYSTEM-20 that is connected to a VAX UNIX system
through a hardwired line on TTY line 13. To send a file to the VAX, you must connect
to the VAX through the line, log in, run UNIX Kermit, escape back to the DEC-20, and
issue the appropriate file transfer commands, then connect back to the VAX and log
out. This may all be automated by means of the following set of commands stored in
a DEC-20 file invoked by the Kermit TAKE command:

set line 13
output \15

input login:

out myuserid\15
in Password:

out mypassword\15
in 20 %

out kermit -r\15
send foo.bar

out \4

input

The first line points DEC-20 Kermit (Kermit-20) at the communication line. The next
line sends a carriage return, which makes UNIX issue a login: prompt; the following
INPUT command waits for this prompt to appear. When it does, Kermit-20 outputs
myuserid followed by a carriage return. UNIX then prompts for a password; after the
prompt appears, Kermit-20 supplies the password. Then Kermit-20 waits up to 20 sec-
onds for the UNIX shell’s 4 prompt. This allows time for various system messages
to be displayed. When the shell prompt appears, Kermit-20 sends the command
kermit —r, which tells UNIX Kermit to receive a file. Then a SEND command is given
to Kermit-20. After the file is successfully transferred, Kermit-20 sends a logout com-
mand (\4, Control-D) to UNIX. The final INPUT command causes Kermit-20 to display
any typeout (in this case the UNIX system’s logout message) that occurs up to the
default timeout interval.

The INPUT command is very important, because it ensures synchronization. One
might expect to be able to simply send all the characters out the communication line
at once, and let the remote host’s typeahead and buffering facilities take care of the

167 KERMIT COMMAND REFERENCE

synchronization. In rare or simple cases, this might work, but it assumes that (a) the
remote host allows typeahead, (b) the remote host’s typeahead buffers are big enough
to accommodate all the characters, and (c) the remote host never clears pending type-
ahead. These conditions rarely hold. For instance, UNIX clears its input buffer after
issuing the Password: prompt; any typeahead will be lost. Interactive users as well as
login script facilities must wait for the prompt before entering the password. This is
the function of the INPUT command. On half-duplex systems, this function is critical.
These systems cannot accept any input in advance of a prompt; there is no typeahead.

The Kermit script facility is not a programming language. There are no conditional
execution of commands, no branching, no labels. Nevertheless, the SET INPUT com-
mand provides a degree of control. If the UNIX system were “down’’ in the sample
script, Kermit-20 would still proceed merrily through the entire script, sending its out-
put into the void and waiting the entire timeout interval on each INPUT command,
and then attempt to send a file to a Kermit that wasn’t there. It could take several
minutes of timing out to terminate the script. This could be avoided by including the
command

SET INPUT TIMEOUT-ACTION QUIT

at the top of the script. When the login: prompt failed to appear within the timeout
interval, the rest of the script would be cancelled.

Nested command file capability combined with input timeout action selection can
be used to provide a kind of “if-then-else’” feature. Suppose you want to log in auto-
matically to a system that sometimes asks you a question immediately after you log
in. You don’t want to always include the answer (say, “no’’), because if you type the
string “no’” at normal system command level, it performs some undesirable function.
You can handle the situation by writing a script that invokes another script. In this
example, the system’s prompt is % and the question’s prompt ends in ?.

set input timeout quit
output \15

input login:

out myuserid\15

in 10 Password:

out mypassword\15

take question.cmd

in %

echo Logged in OK.

Here, after logging in successfully, the Kermit command file QUESTION. CMD is invoked
from within the preceding command file. QUESTION. CMD looks like this:

input \77
output no\l5

168 USER GUIDE

If the question mark appears (indicated here as \'77 because a literal question mark
would only produce a help message), Kermit-20 will answer “no.” If not, a timeout will
occur, and the current command file will be terminated without outputting the “no,”
returning control to the command file that invoked it.

The Kermit script facility allows complicated tasks to be performed routinely, since
any Kermit commands can be included in a command file. For instance, suppose at your
site all systems are reached through a port contention unit, which prompts you for a
system and then connects you to it. That system may itself be another front end, which
prompts you for yet another system. Each of these systems may have different charac-
teristics as to duplex, parity, and so forth:

set parity none

set duplex full

set flow none

input Which system?
pause

output vm\1l5

input Select A or B
pause

output B\15

set duplex half

set parity mark

set handshake xon
output \15

input .\21

output login myuserid\1l5
input .\21

output mypassword

In this fragment, we talk full-duplex no parity to the port switcher, select the “vm"
front end, then select the “B” system, then switch to mark parity, half-duplex, XON
handshaking for system B. Then we log in to the half-duplex B system, which always
issues a prompt of ““. " (dot) followed by an XON (*Q, ASCII 21 octal) when it is ready
for input. Note the use of the PAUSE command, to give these often slow switching
devices time to prepare themselves for input; the fact that they have issued a prompt
is not always indication enough.

Perhaps the most common use for login scripts is the control of autodialers. Here’s
a simple script for dialing the number 765-4321 on a Hayes modem:

set input timeout quit
pause 1

output +++

pause 1

output AT\15

169 KERMIT COMMAND REFERENCE

input OK

output ATD7654321\15
input CONNECT
connect

If the entire script succeeds, you will find yourself connected to the remote system. If
any INPUT command fails, you’ll find yourself back at local Kermit command level.

The Kermit script facility could be extended into a full-fledged programming lan-
guage, complete with variables, labels, IF statements, loops, pattern matching, and so
forth, but it hasn’t happened yet.

Raw Download and Upload
Raw download is the term commonly used to describe the capture of a remote file on
the local system without any kind of error detection or correction. This is how you
obtain files from remote systems that do not have Kermit (or any other file transfer
protocol that you also have), but this method entails the risk of loss or corruption of
data.

Many Kermit programs provide raw downloading via the LOG SESSION command
during CONNECT to a remote system {the session log is described on page 147). To
use session logging to capture a file, do the following:

1. Run your local Kermit program.

2. Perform any required SET commands to condition Kermit for communication with
the remote system. You may need SET PARITY, SET DUPLEX, SET FLOW, SET HAND-
SHAKE, etc., depending on the characteristics of the remote system and the commu-
nication medium.

3. CONNECT to the remote system and log in.

4. Set your terminal type on the remote system to as dumb a terminal as possible, and
one that requires no padding, so that terminal control sequences and padding characters
do not get mixed up in your file.

5. Condition your job on the remote system not to pause at the end of a screenful of
text, and give whatever commands may be necessary to achieve a clean terminal list-
ing—for instance, disable messages from the system or other users.

6. Type the appropriate command to have the desired file displayed at the terminal,
but without the terminating carriage return. On most systems, the command would
be TYPE; on UNIX it’s “cat.”

7. Escape back to Kermit on the local system and give the LOG SESSION command.

170 USER GUIDE

8. CONNECT back to the remote system and type a carriage return. The file will be
displayed on your screen and recorded in the session log file.

9. Escape back to Kermit on the local system and give the CLOSE SESSION command.

You will probably find some editing necessary to remove extraneous prompts, messages,
padding characters, or terminal escape sequences, or to fill in lost or garbled characters.

Raw upload means sending a file from the local system to a remote one, again
without error detection or correction. Some Kermit programs provide a TRANSMIT
command for this purpose.

The TRANSMIT Command
Syntax: TRANSMIT filespec {prompt]

The TRANSMIT command (which may be used in local mode only) sends the specified
text file a line at a time, “raw”’ (as is, without using Kermit protocol), to the remote
system, waiting for the specified prompt for each line. Only a single file may be sent
with the TRANSMIT command; wildcards are not allowed in the filespec. The file
should be a text file, not a binary file. Since protocol is not being used, no assurance
can be given that the file will arrive at the destination correctly or completely.

The prompt is any string, for instance the prompt of a line editor in text insertion
mode. The prompt string may include special characters by preceding their numeric
ASCII values with a backslash, e.g., in octal, \12 for linefeed, \21 for XON (*Q). The
syntax of the prompt string is the same as for the object string of the INPUT command.

If a prompt string is supplied, alphabetic case will be ignored in searching for it
unless you SET INPUT CASE OBSERVE. If a prompt string is not supplied, then linefeed
will be used by default unless you have performed a SET HANDSHAKE command, in
which case the current handshake character will be used. If you really want to send the
entire file without waiting for any prompts, specify a prompt of \0 (ASCII zero, NUL)
(this is not advised).

The file will be sent using the current settings for duplex, parity, and flow control.
There are no timeouts on input, as there are with the INPUT command. Most TRANS-
MIT commands wait forever for the prompt to appear, and in that case a deadlock will
occur if the prompt is garbled in transmission. If you observe that the transfer is stuck,
there are three things you can do:

1. Type a carriage return to transmit the next line.
2. Type a Control-P to retransmit the previous line.
3. Type a Control-C to cancel the TRANSMIT command and get back to Kermit com-

mand level.

(Syntax may vary.)

171 KERMIT COMMAND REFERENCE

TRANSMIT should be used as follows. CONNECT to the remote system, log in,
and start up some kind of process on the remote system to store input from the terminal
into a file. On a DEC-20 (that doesn’t have Kermit), you could do

or you could start a line editor like EDIT or Otto and put it into text insertion mode.
On a UNIX system, you could

cat /dev/tty > foo.bar

or you could run “ed”” and give it the “a” command. After you have made the remote
system ready to collect text, escape back to the local Kermit and then issue the TRANS-
MIT command.

The TRANSMIT command will send the first line of the file immediately. Then it
will wait for a prompt from the remote system before sending the next line. When
performing a copy operation from the terminal to a file, the prompt will probably be a
linefeed, \12, which is the default prompt. Most full-duplex systems expect you to type
a line of text terminated by a carriage return. They echo the characters you type and
then output a linefeed. Half-duplex systems, on the other hand, use some kind of line
turnaround handshake character, like XON (Control-Q), to let you know when they are
ready for the next line of input. Line editors like Wylbur or Otto may prompt you with
a line number followed by a tab; in that case your prompt character would be \11. In
any case, to assure synchronization, it is your responsibility to set up the target system
to accept line-at-a-time textual input and to determine what the system’s prompt will
be when it is ready for the next line.

Each line is sent with a terminating carriage return, just as it would be if you were
typing at the terminal. Linefeeds are not sent, since these are supplied by the receiving
system if it needs them. The TRANSMIT command continues to send all the lines of
the file in this manner until it reaches the end, or until you interrupt the operation by
typing Control-C.

If you cannot make the TRANSMIT command work automatically, for instance
because the remote system’s prompt changes for each line, you may TRANSMIT man-
ually by specifying a prompt string that will not appear and then typing a carriage return
at your keyboard for each line you want to send.

If the TRANSMIT command completes successfully, then you must connect back
to the remote system and type whatever command it needs in order to save or close
the file there.

6

Common Problems and How to Fix Them

Connecting two computers can be a tricky business, and many things can go wrong.
Before you can transfer files at all, you must first establish terminal communication—
a feat in itself. But successful terminal connection does not necessarily mean that file
transfer will also work. And even when file transfer appears to be working, the appear-
ance can be deceptive.

If you are using a public X.25 network like Telenet or Datapac, be sure to read the
discussion of public data networks starting on page 98. Table 4-4 shows the commu-
nication parameters that you can set on the PAD, and you probably will have to set
some of these before file transfer can work. Sample settings for file transfer are shown
in Table 4-5. You may also have to set certain Kermit parameters as well, including
parity, packet length, timeout, and retry threshold.

Basic Connection Problems

If you have a version of Kermit on your microcomputer, but the CONNECT command
doesn’t work at all:

» Make sure all the required physical connections have been made and have not wiggled
loose, and that all the devices involved are turned on.

+ If you have more than one port on your micro, make sure you are using the right one
(SET PORT, SET LINE).

* Make sure that all communication devices (ports, modems, etc.} are configured for the
same baud rate.

» For a direct connection between two computers, you must use a null modem cable.
Make sure the systems are configured correctly for the desired kind of communication
(e.g., the remote system’s terminal port is enabled for logins, the speed is set right). If
all that seems OK, then your systems are probably refusing to communicate because
some of the RS-232 modem signals (DTR, DSR, RTS, CTS, and RI) are not behaving
appropriately. Try a different kind of null modem cable, or find a breakout box and start
fiddling with the signals until the connection works, then fix up the cable accordingly.
See the section in the data communication primer on null modem cables, page 102.

ol
‘,“\\\\\\\
\§\

il

l
i

i \\U\&\W\% /

174 USER GUIDE

« If you are using a modem, make sure it’s compatible with the one you have dialed (e.g.,
both are Bell-103, or Bell-212, or whatever), and that carrier is present (usually indicated
by a light on the modem). If you still can’t communicate, there may be a problem with
the RS-232 signals between your port and your modem. First, make sure you are using
a straight-through cable with pins 1-8, 20, and 22 connected. If not, get one and see if
it fixes the problem. If not, then you can try setting configuration switches on the
modem (e.g., for answer/originate mode, full/half-duplex, or whether the modem re-
quires DTR from the PC, or whether RTS/CTS is to be used, etc.); see your modem
manual. Failing that, you can supply the missing signals or disable the offending ones
by fooling with the wires in your connector {for instance, if DTR is misbehaving on
your PC, jumper DSR to DTR in the connector on the modem’s end of the cable).

« If you are attempting to use an internal modem which takes the place of an RS-232
serial port, you may not be able to use Kermit unless (a) the modem perfectly mimics
the characteristics and behavior of the serial port it replaces from the program’s point
of view, or (b) the program is written with explicit knowledge of the particular internal
modem in question. In general, internal modems are not recommended for use with
Kermit because most Kermit programs do not have the required explicit knowledge
built in, and many of these modems do not mimic the regular serial port. And you can’t
fake the RS-232 signals as you can in a real De-connector.

+ If you are using a “smart’”’ modem that you normally use with a proprietary program,
you should not expect Kermit to have the same built-in knowledge of the modem’s
functionality. In particular, you might have to type explicit setup and dialing commands
to it after you give the Kermit CONNECT command. The modem might not echo these
commands, so even if you're typing them correctly you may think “nothing is happen-
ing.”” Consult the manual that came with your modem.

iy

///4

If you've come this far, you should be seeing results on your screen when you CON-
NECT. But what results?

» Total Garbage on Screen. Probable cause: wrong baud rate. Adjust the baud rates of the
appropriate devices. Use Kermit’s SET BAUD {or SET SPEED} command if necessary,
or else a system command or utility.

« Partial Garbage on Screen. Probable causes: noisy connection, parity set wrong, or your
terminal type is set wrong on the remote system. If it’s noise, try to make a new
connection. If it’s parity, use Kermit’s SET PARITY command. If it’s the terminal type,
use the appropriate command on the remote system to let it know what kind of terminal
your PC Kermit is emulating (if any).

+ Missing Characters on Screen. Probable causes: unused or mismatched flow control or
handshake (use Kermit’s SET FLOW or SET HANDSHAKE to fix this); wrong parity—
on some systems the port device driver will discard arriving characters that have “bad”
parity (use SET PARITY to fix).

175 COMMON PROBLEMS AND HOW TO FIX THEM

No Echoing. You don't see the characters you type, only the computer’s output. Cause:
your PC is doing full-duplex communication and the remote system is doing half-
duplex. Cure: SET DUPLEX HALF, SET ECHO LOCAL, or equivalent command to the
local Kermit.

Double Echoing. Every character you type comes out double. Cause: your PC is doing
half-duplex communication and the remote system is doing full. Cure: SET DUPLEX
FULL, SET ECHO REMOTE, or equivalent local Kermit command.

.

.

File Transfer Problems

Now terminal emulation works, but you can’t transfer files. First, let’s consider the
case when not even the first packet makes it across.

Missing Kermit. Are you sure you’ve started up the remote Kermit program and given
it the desired command?

Modem Signals. After escaping back from the remote system, communication stops.
Perhaps your PC Kermit program turned off the DTR signal for some reason. Set your
modem switches to ignore DTR, or install a jumper to make the modem think DTR is
on.

IBM Mainframes. If you’re trying to communicate with an IBM mainframe through a
full-screen terminal protocol converter, make sure it’s the kind supported by Kermit. If
not, try to find a line-mode TTY connection. If you're using a supported protocol con-
verter or you have a line-mode connection, but file transfer still doesn’t work, read on.

Parity. If you do not inform the Kermit program that parity is being done, then Kermit’s
checksum or CRC calculations will be wrong, and packets will be rejected. Cure: SET
PARITY to agree with what the remote system or the communication path uses or
requires. May be necessary on both ends.

Flow Control. If your connection is to a full-duplex system, both systems must use the
same kind of flow control (XON/XOFF, ENQ/ACK, etc.). If there is not a flow-control
option that both systems share then SET FLOW NONE, on both ends if necessary.

Handshake. If your connection is to a half-duplex system, you’ll almost certainly have
to turn off any kind of full-duplex flow control, and enable the appropriate kind of line
turnaround handshaking. Use SET FLOW NONE and SET HANDSHAKE XON (or what-
ever) for this. Note: IBM protocol converters are full-duplex front ends for half-duplex
systems. The PC Kermit communicates with them in full-duplex, usually with XON/
XOFF and no handshake.

Packet Terminator. Most Kermit programs use carriage return to terminate their pack-
ets. A few systems might require other characters, like linefeed or ETX. If you are tryi