
EV5 CPU Chip
Internal Specification

The EV5 CPU Chip is a high-performance, single-chip implementation of the Alpha Architecture.

Revision/Update Information: This is Revision 0.0 of this specification.

Product Manager: John Fortune, RICKS::FORTUNE
Engineering Manager: Paul Rubinfeld, ROCK::RUBINFELD

DIGITAL RESTRICTED DISTRIBUTION

This information shall not be disclosed to persons other than DIGITAL employees or generally distributed within
DIGITAL. Distribution is restricted to persons authorized and designated by the originating organization. This
document shall not be transmitted electronically, copied unless authorized by the originating organization, or left
unattended. When not in use, this document shall be stored in a locked storage area. These restrictions are
enforced until this document is reclassified by the originating organization.

This is copy number

Semiconductor Engineering Group
Digital Equipment Corporation, Hudson, Massachusetts

February 1992

The drawings and specifications in this document are the property of Digital Equipment Corporation and
shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of
items without written permission.

The information in this document may be changed without notice and is not a commitment by Digital
Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this document.

This specification does not describe any program or product that is currently available from Digital
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification
in any program or product. Digital Equipment Corporation makes no commitment that this document
accurately describes any product it might ever make.

Copyright ©1992 by Digital Equipment Corporation
All Rights Reserved

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VAXstation
DECnet ULTRIX-32 VMS
DECUS UNIBUS VT
MicroVAX VAX
Micro VMS VAXBI ldl i lgl i It lal 11 ™ PDP VAX.cluster

Contents

'CHAPTER 1 THE IBOX

1.1

1.2

OVERVIEW

FUNCTIONAL DESCRIPTION
1.2.1
1.2.2

1.2.3
1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

I Cache
Instruction Fetch
1.2.2.1 Instruction Fetch Flow • 1-7
1.2.2.2 Prefetch Addressing • 1-12
1.2.2.3 I-Cache Hit logic • 1-12
1.2.2.4 Refill Buffer Hit logic • 1-13
ITB
Branch History Table
1.2.4.1 HUP logic • 1-22
I-Stream Flow Prediction
1.2.5.1 Branch Predictor • 1-25
1.2.5.2 Target Calculation • 1-26
1.2.5.3 Return Prediction Stack• 1-28
PC
1.2.6.1 Fetch PC • 1-31
1.2.6.2 Execution PC • 1-34
1.2.6.2.1 BR_AlT_PC • 1-34
1.2.6.2.2 JSR_HW_REl_PC • 1-34
1.2.6.2.3 PC Mispredict • 1-34
Instruction Buffer(IB)
1.2. 7.1 HW_REI - stall pref etch • 1-38
Instruction Slotting
1.2.8.1 Special Slotting Rules: • 1-40
Instruction Issue
1.2.9.1 Interface with the Slot Stage • 1-48
1.2.9.2 Instruction Interface with the E,F,M Boxes • 1-48
1.2.9.3 Dirty Checks • 1-50
1.2.9.3.1 DEST-SOURCE Checks • 1-50
1.2.9.3.2 DEST-DEST Checks· 1-50
1.2.9.3.3 Current Issue Conflicts • 1-51
1.2.9.4 Resource Availability Checks • 1-51
1.2.9.4.1 IMUL_BUSY • 1-51
1.2.9.4.2 IMUL_DONE_SOON • 1-52
1.2.9.4.3 FDIV_BUSY • 1-52
1.2.9.4.4 FDIV _DONE_SOON • 1-52
1.2.9.4.5 STORE_STAlL • 1-52
1.2.9.4.6 FllL_STALl • 1-52
1.2.9.4.7 DRAINT_Stall • 1-53
1.2.9.4.8 MB_STALL • 1-53
1.2.9.4.9 MB_MB_STAlL • 1-53
1.2.9.5 Instruction Stall • 1-53
1.2.9.6 Serialization • 1-54
1.2.9.7 Bypasses • 1-54
1.2.9.7.1 EBOX Bypasses• 1-54
1.2.9.7.2 FBOX Bypasses • 1-56
1 .2. 9.8 Register File Writes • 1-57

DIGITAL RESTRICTED DISTRIBUTION

1-1

1-1

1-5
1-5
1-5

1-18
1-22

1-25

1-11

1-17

1-40

1-48

iii

Contents

1.2.10

'iv

1.2.9.9
1.2.9.9.1
1.2.9.9.2
1.2.9.9.3
1.2.9.9.4
1.2.9.9.5
1.2.9.9.6
1.2.9.10
1.2.9.11
1.2.9.12
1.2.9.13
1.2.9.13.1
1.2.9.13.2
1.2.9.13.3
1.2.9.14
1.2.9.14.1
1.2.9.14.2
1.2.9.14.3
1.2.9.14.4
1.2.9.14.5
1.2.9.15
1.2.9.15.1
1.2.9.15.2
1.2.9.16
1.2.9.17
1.2.9.18
1.2.9.18.1
1.2.9.18.2
1.2.9.18.3

LOADs and STOREs • 1-58
Additional LOAD Checks • 1-58
Floating Loads • 1-58
Floating Stores • 1-59
LOAD HITs • 1-59
LOAD Fills • 1-59
EBOX LO MUX • 1-60

EBOX IMUL MUX • 1-60
Conditional Move • 1--60
Memory Barriers • 1-60
DRAINT • 1-62

Setting the DRAINT_FLAG • 1-62
Clearing the DRAINT_FLAG • 1-63
DRAINT latency • 1-63

Illegal/Reserved Opcodes• 1-64
Opcodes Reserved to Digital • 1-64
PAL Instruction in "native" mode • 1-64
Priviledged CALL_PAls • 1-64
Illegal CAL_PAL functions• 1-64
Floating Point • 1-65

Aborting Instructions • 1-65
TRAPs, REPLAYs, and INTERRUPTS• 1-65
ERROR aborts• 1-66

Special Stuff • 1-66
LOAD MISS-AND-USE Replay• 1-66
PAL Shadow Support • 1--68

EBOX Register File Control • 1--68
Dirty Checks for the PAL_SHADOW registers• 1-68
Switching betweeen PAL_SHADOW and NORMAL
banks• 1-68

IBOX IPR's and PAL_ TEMP registers
1.2.10.1 ITB_TAG • 1-69
1.2.10.2 ITB_PTE • 1-70
1.2.10.3 Address Space Number, ITB_ASN • 1-70
1.2.10.4 ITB_PTE_TEMP • 1-71
1.2.10.5 lstream TB Invalidate All Process, ITB_IAP • 1-71
1.2.10.6 !Stream TB Invalidate All, ITB_IA • 1-71
1.2.10.7 ITB_IS • 1-72
1.2.10.8 Formatted Faulting VA register, IFAULT_VA_FORM • 1-72
1.2.10.9 Virtual Page Table Base register, IVPTBR • 1-72
1.2. 10.1 O lcache Parity Error Status register, ICPERR_STAT • 1-73
1.2.10.11 ICache Flush Control register, IC_FLUSH_CTL • 1-73
1.2.10.12 Exception Address register, EXC_ADDR • 1-74
1.2.10.13 Exception Summary register, EXC_SUM • 1-74
1.2. 10.14 Exception Mask Register, EXC _MASK • 1-75
1.2.10.15 PAL Base Register, PAL_BASE • 1-75
1.2.10.16 Processor Status, PS • 1-76
1.2. 10.17 lbox Control/Status Register, ICSR • 1-76
1.2.10.18 Interrupt Priority Level Register, IPL • 1-77
1.2. 10.19 Interrupt Id Register, INTID • 1-77
1.2.10.20 Aynchronous System Trap Request Register, ASTRA • 1-78
1.2.10.21 Aynchronous System Trap Enable Register, ASTER• 1-78
1.2.10.22 Software Interrupt Request Register. SIRR • 1-79
1.2.10.23 HW Interrupt Clear register, HWINT_CLR • 1-79

1-69

DIGITAL RESTRICTED ·01STR1BtmON

1.3

1.4

1.5

1.6

1.7

1.8

CHAPTER 2

2.1

2.2

2.3

1.2.11

1.2.10.24 Interrupt Summary register, ISR • 1-80
1.2.10.25 Serial line transmit, SL_XMIT • 1-81
1.2.10.26 Serial line receive, SL_RCV • 1-81
Traps and Interrupts
1.2.11.1 Trap Prioritization and cross-products • 1-83
1.2. 11.1.1 Asynchronous traps • 1-84
1.2. 11.2 Aborting lbox pipe stages on traps • 1-85
1.2. 11.3 Aborting Mbox pipe stages on traps • 1-85
1.2.11.4 Generating Restart addresses • 1-85
1.2. 11.5 INTERRUPTS • 1-86
1.2. 11.5.1 Interrupt Generation Logic • 1-86
1.2.11.6 ERRORS • 1-89

RESET AND INITIALIZATION

ERROR HANDLING AND RECORDING

TEST ASPECTS

PERFORMANCE MONITORING FEATURES

ISSUES

REVISION HISTORY

THE EBOX

OVERVIEW-BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

Register File
Bypass Logic
Adder
Logic Unit
Shifter
Byte Zapper
Multiplier
Branch Condition Logic

INSTRUCTION FLOWS
2.3.1 Compare (CMPEQ, CMPLT, CMPLE)
2.3.2 Compare Unsigned (CMPULT, CMPULE)
2.3.3 Compare Byte (CMPBGE)
2.3.4 Logical Functions (AND, BIS, XOR, BIC, ORNOT, EQV)

Contents

1-81

1-89

1-89

1-89

1-89

1-89

1-89

2-1

2-1

2-5
2-5
2-5
2-5
2-8
2-9
2-9
2-9

2-10

2-10
2-10
2-11
2-12
2-12

2.3.5 Conditional Move (CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBC, CMOVLBS)

2.3.6 Add Longword (ADDL)
2.3.7 Scaled Add Longword (S4ADDL, SSADDL)
2.3.8 Add Quadword (ADDQ)
2.3.9 Scaled Add Quadword (S4ADDQ, S8ADDQ)
2.3.1 O Subtract Longword (SUBL)
2.3.11 Scaled Subtract Longword (S4SUBL, 58SUBL)
2.3.12 Subtract Quadword (SUBQ)
2.3.13 Scaled Subtract Quadword (S4SUBQ, 58SUBQ)
2.3.14 Multiply Longword (MULL)

2-13
2-13
2-14
2-14
2-14
2-14
2-15
2-15
2-15
2-16

DIG1TJ\LiRESTRICTED DISTRIBUTION v

Contents

2.4

2.5

2.6

2.7

CHAPTER 3

3.1

3.2

3.3

vi

2.3.15
2.3.16
2.3.17
2.3.18

2.3.19
2.3.20

2.3.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.32
2.3.33
2.3.34
2.3.35
2.3.36
2.3.37
2.3.38

Multiply Quadword (MULQ)
Multiply Unsigned Quadword High (UMULH)
Shift (SLL, SAL, SRA)
Extract Byte (EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH,
EXTQH)
Insert Byte (INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH)
Mask Byte (MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH,
MSKQH)
Zap Byte (ZAP, ZAPNOT)
Load Address (LOA, LDAH)
Load (LDL, LDQ)
Load Unaligned (LDQ_ U)
Load Locked (LDL_L, LDQ_L)
Store Conditional (STL_C, STQ_C)
Store (STL, STQ)
Store Unaligned (STQ_ U)
Hardware Load (HW _LD)
Hardware Store (HW _ST)
Hardware Move From Processor Register (HW_MFPR)
Hardware Move To Processor Register (HW_MTPR)
Conditional Branch (BEQ, BNE, BLT, BLE, BGT, BGE, BLBC, BLBS)
Unconditional Branch (BR, BSR)
Jump (JMP, JSR, RET, JSR_ COROUTINE)
Fetch (FETCH, FETCH_M)
Read Cycle Counter I VAX Compatibility (RPCC, RC, RS)
Other Instructions

EBOXINTERFACES
2.4.1 lbox Interface
2.4.2 Mbox Interface

EXCEPTIONS, TRAPS, & STALLS

RESET AND INITIALIZATION

REVISION HISTORY

THE FBOX

OVERVIEW-BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

FBOX INTERFACE
3.3.1 Interface Overview

3.3.1.1 External Interlace • 3-3
3.3.1.1.1 Floating Point Instruction Issue • 3-3
3.3.1.1.2 Floating Point Instruction Retirement • 3-3
3.3.1.1.3 Floating Point LOAD/STORE Issue and Retirement • 3-4
3.3. 1.1.4 Operand Bypasses • 3-5
3.3.1.1.5 Floating Point Branch Evaluation • 3-5
3.3.1.1.6 Conditional Move Evaluation • 3-5
3.3. 1.1. 7 Pipeline Stalls • 3-5
3.3.1.1 .8 Pipeline Aborts • 3-6

2-16
2-16
2-17

2-17
2-18

2-20
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25
2-25
2-26
2-26
2-26
2-27
2-27
2-28
2-28
2-28
2-28

2-29
2-29
2-33

2-34

2-34

2-35

3-1

3-1

3-1

3-1
3-3

DIGITAL RESTRICTED DISTRIBUTION

3.4

3.5

3.6

3.7

3.8

3.9

3.10

CHAPTER 4

4.1

3.3.1.1.9 Exceptions • 3-6
3.3.1.2 Internal Interface • 3-6
3.3.1.2.1 Stage 1 Interface • 3-6
3.3.1.2.2 Stage 3 Interface • 3-8

3.3.2 Interface Instruction Flows

FBOX MULTIPLIER PIPE
3.4.1 INTRODUCTION
3.4.2 Multiply Pipe Overview

3.4.2.1 Interface • 3-14
3.4.2.2 MUL data path • 3-14
3.4.2.3 Nomenclature • 3-15

3.4.3 INSTRUCTION FLOWS
3.4.3.1 Floating Point Multiply • 3-15

3.4.4 Mui Pipe Stage 1
3.4.5 Mui Pipe Stage 2
3.4.6 Mui Pipe Stage 3
3.4.7 Copy Sign

3.4.7.1 Copy Sign - STAGE 1 • 3-21
3.4.7.2 Copy Sign - STAGE 2 • 3-21
3.4.7.3 Copy Sign - STAGE 3 • 3-23

3.4.8 Rounding

RESET AND INITIALIZATION

ERROR HANDLING AND RECORDING

TEST ASPECTS

PERFORMANCE MONITORING FEATURES

ISSUES

REVISION HISTORY

THE MBOX

FUNCTIONAL DESCRIPTION
4.1.1

4.1.2

Instruction Descriptions
4.1.1.1
4.1.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.1.5
4.1.1.6
4.1.1.7
4.1.1.8
4.1.1.9
4.1.1.10
4.1.1.11
4.1.1.12
4.1.1.13
4.1.1.14

LDx - (LDL, LDQ, LDF, LDG, LOS, LDT) • 4-4
Dcache Fills • 4-5

LDQ_U • 4-7
STx - (STL, STQ, STF, STG, STS, SIT) • 4-7
STQ_U • 4-8
MB• 4-8
WMB • 4-9
RPCC • 4-9
LDx_L - (LDL_L , LDQ_L) • 4-9
STx_C - (STL_C, STQ_C) • 4-10
HW_MFPR • 4-11
HW_MTPR • 4-11
FETCHx - (FETCH , FETCH_M) • 4-11
HW_LD • 4-11
HW_ST • 4-13

Memory Management
4.1.2.1 Data Translation Buffer • 4-14

DIGITAL RESTRICTED DISTRIBUTION

Contents

3-8

3-13
3-13
3-13

3-15

3-18
3-18
3-21
3-21

3-23

3-24

3-24

3-24

3-25

3-25

3-25

4-1

4-1
4-3

4-14

vii

Contents

4.1.3 Traps 4-16
4.1.3.0.1 Memory Management Traps• 4-18
4.1.3.0.2 Miss Address File Full and Conflict Traps • 4-19
4.1.3.0.3 Dcache Parity Errors • 4-19
4.1.3.0.4 Traps from the IBOX • 4-19
4.1.3.0.5 CBOX fill errors • 4-20
4.1.3.0.6 Multiple Traps • 4-21

4.1.4 Processor Cycle Counter 4-23
4~1.5 Big Endian Support 4-24
4.1.6 Interface requirements with FBOX, EBOX, IBOX for Dstream Instruction

Execution 4-24
4.1.6.1 Instruction Opcode • 4-24
4.1.6.2 Restarting the IBOX After MB, lDx_l and STx_C

Instructions • 4-25
4.1.6.3 Virtual Address from EBOX • 4-25
4.1.6.4 LD bus• 4-25
4.1.6.5 ST Bus Sources and Destinations • 4-26
4.1.6.6 Register Numbers and Controls to FBOX and IBOX for

Dstream Fills and lDs • 4-26
4.1.7 Dcache Hit and Load Miss Conditions 4-27
4.1.8 Dcache lnterf ace 4-28

4.1.8.1 Dcache LDs • 4-30
4.1.8.2 Dcache STs • 4-30
4.1.8.3 Dcache Fills• 4-31
4.1.8.4 Dcache Invalidates • 4-32
4.1.8.5 Parity Generation and Checking • 4-32
4.1.8.6 Operation Modes for the Dcaches • 4-33
4.1.8.6.1 Dcache Force Bad Parity and Disable Parity • 4-33
4.1.8.6.2 Dcache Enable and Force Hit Modes • 4-33
4.1.8.6.3 Dcache Flush • 4-34
4.1.8.7 Reading/writing Dcache Tags for Testability • 4-34

4.1.9 Miss Address File 4-34
4.1.9.1 Overview • 4-34
4.1.9.2 Basic Timing • 4-35
4.1.9.3 CBOX Interface • 4-36
4.1.9.3.1 Command/Address Issue Interface• 4-36
4.1.9.3.2 Write Buffer Interface • 4-38
4.1.9.3.3 Return Status • 4-38
4.1.9.3.4 Invalidates - CBOX Guarantee • 4-39
4.1.9.4 lcache lnterf ace • 4-40
4.1.9.5 Loading the MAF • 4-40
4.1.9.5.1 Dcache Read Misses • 4-41
4.1.9.5.2 Dstream Writes WMB, FETCHx • 4-44
4.1.9.5.3 Memory Barriers (MB) • 4-46
4.1.9.5.4 Write Memory Barriers (WMB) • 4-4 7
4.1.9.5.5 lcache Read Misses • 4-4 7
4.1.9.6 MAF Issue to Scache • 4-47
4.1.9.6.1 Reissuing WB addresses • 4-48
4.1.9.6.2 Replaying an Address• 4-49
4.1.9.7 Retiring MAF entries • 4-49
4.1.9.8 Loads from 10 SPACE • 4-50
4.1.9.9 Mbox Unavailable Traps • 4-50
4.1.9.10 MAF Boundary Conditions • 4-50
4.1.9.10.1 Dread Merge Cutoff Point • 4-51

vm DIGITAL RESTRICTED DISTRIBU;:IfON

4.2

4.3

4.4

4.5

4.6

4.7

4.1.10
4.1.9.10.2 WB Merge Cutoff Point• 4-51
Mbox and Dcache IPR's
4.1.10.1
4.1.10.2
4.1.10.3
4.1.10.4
4.1.10.5
4.1.10.6
4.1.10.7
4.1.10.8
4.1.10.9
4.1.10.10
4.1.10.11
4.1.10.12
4.1.10.13
4.1.10.14
4.1.10.15
4.1.10.16
4.1.10.17
4.1.10.18
4.1.10.19
4.1.10.20
4.1.10.21
4.1.10.22
4.1.10.23

DTB_ASN, Dstream TB Address Space Number • 4-51
OTB_ CM, Dstream TB Current Mode • 4-51
OTB_ TAG, Dstream TB TAG • 4-52
Dstream TB PTE, DTB_PTE • 4-52
DTB_PTE_TEMP • 4-53
MM_STAT, Dstream MM Fault Status Register • 4-54
VA, Faulting Virtual Address• 4-55
VA_FORM, Formatted Virtual Address• 4-55
MVPTBR, Mbox Virtual Page Table Base Register• 4-56
DC _PERR_ STAT, Dcache Parity Error Status • 4-56
Dstream TB Invalidate All Process, DTBIAP • 4-57
Dstream TB Invalidate All, DTBIA • 4-57
DTBIS, Dstream TB Invalidate Single • 4-57
MCSR, Mbox Control Register • 4-58
DC_MODE, Dcache Mode Register• 4-59
MAF _MODE, MAF Mode Register • 4-60
DC _FLUSH, Dcache Flush Register • 4-62
ALT_MODE, Alternate mode• 4-62
CC, Cycle Counter• 4-62
CC_CTL, Cycle Counter Control • 4-63
DC_TEST_CTL, Dcache Test TAG Control Register• 4-64
DC_TEST_TAG, Dcache Test TAG Register• 4-64
DC_TEST_TAG_TEMP, Dcache Test TAG Temp
Register • 4-65

RESET AND INITIALIZATION

ERROR HANDLING AND RECORDING

TEST ASPECTS

PERFORMANCE MONITORING FEATURES

ISSUES

REVISION HISTORY

CHAPTER 5 THE CBOX

5.1

5.2

OVERVIEW & BLOCK DIAGRAMS

FUNCTIONAL DESCRIPTION
5.2.1 Scache Arbiter Unit

5.2.1.1 Mbox Requests • 5-4
5.2.1.1.1 Requests from Mbox • 5-6
5.2. 1. 1. 1. 1 load requests • 5-6
5.2. 1. 1. 1.2 load locked requests • 5-6
5.2.1.1.1.3 Store requests• 5-7
5.2. 1. 1. 1.4 Store Conditionals • 5-7
5.2.1.1.1.5 Fetch, FetchM and MB• 5-7
5.2. 1.1.1.6 Commands to BIU • 5-8
5.2.1.1.2 Invalidates to DCache • 5-9
5.2.1.1.3 Retries and Merging of Mbox requests • 5-9
5.2. 1.1.4 Read/Write Ordering from Mbox • 5-11
5.2.1.2 TROLLing of Scache Access Requests • 5-12

DIGITAL RESTRICTED DISTRIBUTION

Contents

4-51

4-66

4-67

4-67

4-67

4-68

4-68

5-1

5-1

5-3
5-3

ix

Contents

5.2.1.3 BIU requests • 5-13
5.2.1.3.1 BIU request Prioritization at SAU • 5-13
5.2.1.4 SCache Set Allocation • 5-14
5.2.1.4.1 Bcache Index Match • 5-15
5.2.1.4.2 Fills from Scache to l/OCache • 5-16

5.2.2 Write Buffer Unit 5-21
5.2.2.1 Write Buffer Data Store: WBD • 5-21
5.2.2.2 Storing Data in write buffer • 5-21
5.2.2.3 Issue of Writes • 5-22
5.2.2.4 Write Buff er Completion Control:WCC • 5-23
5.2.2.5 Write Reissue Queue and Control : WRQ,WRC • 5-25
5.2.2.5.1 Stopping Writes • 5-26
5.2.2.5.2 Stopping Reads • 5-27
5.2.2.6 Write flows • 5-28
5.2.2.6.1 Private & Dirty • 5-28
5.2.2.6.2 Private & Clean • 5-28
5.2.2.6.3 Shared & Clean • 5-29
5.2.2.6.4 Shared & Dirty • 5-31
5.2.2.6.5 Write misses/Invalid • 5-31
5.2.2.6.6 1/0 writes & non-cacheable writes • 5-32
5.2.2.7 General considerations for writes • 5-33
5.2.2.8 STx_C • 5-33

5.2.3 Bus Interface Unit 5-35
5.2.3.1 BIU Functions • 5-35
5.2.3.2 Lock Register • 5-36
5.2.3.3 Scache Requests • 5-36
5.2.3.3.1 Loading the BAF and VAF • 5-36
5.2.3.3.2 Loading the BAF and VAF • 5-38
5.2.3.3.3 Victims • 5-39
5.2.3.4 System Probe Address Requests • 5-42
5.2.3.5 System Data Requests • 5-47
5.2.3.5.1 BIU Sequencer • 5-48
5.2.3.5.2 Bcache Data Cycle Timer • 5-51
5.2.3.5.3 Bcache Data Valid • 5-51
5.2.3.6 Data Datapath:ECC generation/check • 5-51
5.2.3.6.1 Outgoing Data section • 5-52
5.2.3.6.2 Data buffer section • 5-52
5.2.3.6.3 Incoming Data section & Error Signals • 5-52
5.2.3.7 IPR's • 5-55
5.2.3.7.1 SC_STAT • 5-56
5.2.3.7.2 SC_ADDR • 5-56
5.2.3.7.3 SC_ CTL • 5-56
5.2.3.7.4 FILL_SYNDROME • 5-56
5.2.3.7.5 El_STAT • 5-56
5.2.3.7.6 El_ADDR • 5-56
5.2.3.7.7 BC_TAG_ADDR • 5-57
5.2.3.7.8 BC_CTL • 5-57
5.2.3.7.9 BC_CONFIG • 5-57
5.2.3.7.10 LOCK• 5-57

5.3 RESET AND INITIALIZATION 5-57

5.4 ERROR HANDLING AND RECORDING 5-57

5.5 TEST ASPECTS 5-57

-X DIGITAL RESTRICTED DISTRIBUTION

5.6

5.7

5.8

PERFORMANCE MONITORING FEATURES

ISSUES

REVISION HISTORY

CHAPTER 6 THE CACHES

6.1

6.2

6.3

6.4

OVERVIEW

ICACHE AND REFILL BUFFER FUNCTIONAL DESCRIPTION
6.2.1 lcache Details

6.2.1.1 lcache SROM Interface • 6-6
6.2.2 Branch History Table
6.2.3 lcache and Refill Buffer Initialization and Test
6.2.4 lcache & Refill Buffer Transactions

6.2.5
6.2.6
6.2.7

6.2.4.1 lcache & Refill Buff er Fill Operations • 6-8
6.2.4.1.1 Writing the lcache and Branch History Table with the

SROM • 6-9
6.2.4.2 lcache & Refill Buffer Read Operations • 6-9
6.2.4.3 Branch History Table Reads and Writes • 6-1 O
lcache Test Operations
lcache States Resulting in UNPREDICTABLE operation
lcache Redundancy Logic

DCACHE FUNCTIONAL DESCRIPTION
6.3.1 Dcache Initialization and Test
6.3.2 Dcache Transactions

6.3.2.1 Dcache Load Operation • 6-17
6.3.2.2 Dcache Store Operation • 6-17
6.3.2.3 Dcache Fill Operation • 6-19
6.3.2.4 Dcache Invalidate Operation • 6-20
6.3.2.5 Dcache Test Operations • 6-20

6.3.3 Dcache Redundancy Logic

SCACHE FUNCTIONAL DESCRIPTION
6.4.1 SCache Tag Array

6.4.1.1 Block Size • 6-23
6.4.1.2 Physical Organization • 6-23
6.4.1.3 Force Hit/Force Miss Conditions • 6-25
6.4.1.4 Status Bits • 6-25
6.4.1.5 Aborting an SCache Reference • 6-27
6.4.1.6 Parity Checking • 6-27

6.4.2 SC&che Data Array
6.4.3 Pipeline
6.4.4 Transactions

6.4.5
6.4.6
6.4.7

6.4.4.1 SC _READ • 6-30
6.4.4.2 SC_WRITE • 6-31
6.4.4.3 SC _INVAL • 6-31
6.4.4.4 SC _READ _DIRTY • 6-32
6.4.4.5 SC_FILL • 6-32
6.4.4.6 SC_SET_SHARED • 6-33
SCache Redundancy Logic
Cbox Interface
lbox Interface

DIGITAL RESTRICTED DISTRIBUTION

Contents

6-1

6-1

6-3
6-5

6-6
6-7
6-7

6-11
6-11
6-12

6-12
6-15
6-16

6-21

6-21
6-23

6-27
6-29
6-30

6-33
6-34
6-35

xi

Contents

6.5 RESET AND INITIALIZATION 6-35

6.6 ERROR HANDLING AND RECORDING 6-35

6.7 TEST ASPECTS 6-35
6.7.1 BIST 6-35
6.7.2 IPR access 6-35
6.7.3 Scan Chains 6-35

6.8 PERFORMANCE MONITORING FEATURES 6-42

6.9 ISSUES 6-42
6.9.1 I Cache 6-42
6.9.2 Dcache 6-43
6.9.3 SCache 6-43

6.10 REVISION HISTORY 6-43

CHAPTER 7 THE CLOCKS 7-1

7.1 OVERVIEW-BLOCK DIAGRAM 7-1

7.2 FUNCTIONAL DESCRIPTION 7-3

7.3 RESET AND INITIALIZATION 7-3

7.4 ERROR HANDLING AND RECORDING 7-3

7.5 TEST ASPECTS 7-3

7.6 PERFORMANCE MONITORING FEATURES 7-3

7.7 ISSUES 7-3

7.8 REVISION HISTORY 7-3

CHAPTER 8 TEST INTERNALS 8-1

8.1 OVERVIEW 8-1

8.2 THE TESTABILITY STRATEGY 8-1

8.3 TEST PORT 8-1

8.4 PARALLEL DEBUG PORT 8-2

8.5 SROM PORT 8-3

8.6 IEEE 1149.1 (JTAG) PORT 8-3
8.6.1 Instruction Register 8-4

8.7 MISCELLANEOUS TEST PINS 8-5
8.7.1 DISABLE_OUT_L 8-5

8.8 CACHE BIST 8-5

8.9 INTERNAL SCAN REGISTERS 8-5

8.10 INTERNAL LFSRS 8-6

8.11 MISCELLANEOUS TESTABILITY FEATURES 8-6

xii DIGITAL RESTRICTED DISTRIBUTION

Contents

8.12 ISSUES 8-6

8.13 REVISION HISTORY 8-6

CHAPTER 9 THE INTERCONNECT 9-1

9.1 EVSCIP.H - THE ONLY GLOBAL INTERCONNECT .H ALE 9-1

9.2 REVISION HISTORY 9-23

FIGURES

1-1 Simple Block Diagram 1-2

1-2 Waterfall 1-3

1-3 Fetch Index Mux Selects for Trap, Exception, Replay(4A,6A) 1-9

1-4 IC_lndex and RFB_lndex on IC_Miss and RFB_Hit 1-9

1-5 lbox requests to MBOX 1-10

1-6 Signal Protocall for Fills 1-11

1-7 IFB Fills with RFB Hits 1-11

1-8 ICache Index Mux 1-14

1-9 Fetch/Prefetch Logic 1-15

1-10 IBOX FETCHER SEQUENCER 1-16

1-11 IBOX HIT Logic 1-17

1-12 Super page 1-18

1-13 ITB Block 1-21

1-14 Branch History Logic 1-24

1-15 Branch Predictor Logic 1-27

1-16 Return Stack Operation 1-29

1-17 Return Prediction Stack 1-30

1-18 Fetch PC 1-33

1-19 Execution PC 1-36

1-20 IB Slot Logic 1-39

1-21 Instruction Slotting 1-42

1-22 Instruction Issue-Block Diagram 1-49

1-23 LOAD MISS-AND-USE Replay Timing 1-67

1-24 lstream TB Tag, ITB _TAG 1-70

1-25 lstream TB PTE Write Format, ITB_PTE 1-70

1-26 lstream TB PTE Read Format, ITB _PTE 1-70

1-27 Address Space Number Read/Write Format, ITB_ASN 1-71

1-28 lstream TB PTE Temp Read Format, ITB_PTE_TEMP 1-71

1-29 ITB_IS 1-72

1-30 IFAULT_VA_FORM in non NT mode 1-72

1-31 IFAULT_VA_FORM in NT mode 1-72

1-32 IVPTBR in non NT mode 1-73

1-33 IVPTBR in NT mode 1-73

1-34 ICPERR_STAT Read format 1-73

DIGITAL RESTRICTED DISTRIBUTION xiii

Contents

1-35 EXC_ADDR Read/Write format 1-74

1-36 Exception Summary register Read Format, EXC _SUM 1-74

1-37 Exception Mask register Read Format, EXC_MASK 1-75

1-38 PAL_BASE 1-76

1-39 Processor Status, PS 1-76

1-40 lbox Control/Status Register ICSR 1-76

1-41 Interrupt Priority Level Register, IPL 1-77

1-42 Interrupt Id Register, INTID 1-78

1-43 Asynchronous System Trap Request Register, ASTRR 1-78

1-44 Asynchronous System Trap Enable Register, ASTER format 1-78

1-45 Software Interrupt Request Register, SIRR write format 1-79

1-46 Hardware Interrupt Clear Register, HWINT_CLR 1-79

1-47 Interrupt Summary Register, ISR read format 1-80

1-48 Serial line transmit Register, SL_XMIT 1-81

1-49 Serial line receive Register, SL_RCV 1-81

1-50 PAL_ ENTRY 1-85

1-51 IBOX TNTERRUPT LOGIC 1-88

2-1 Ebox Block Diagram 2-4

2-2 Summary of Adder Control 2-7

2-3 Conditional Move Conditions 2-13

2-4 Branch Conditions 2-27

3-1 Fbox Interface Block Diagram 3-2

3-2 ADD Pipe Fraction Datapath Alignment/Format 3-7

3-3 STAGE 1 INPUT BYPASS/FORMAT/RESOURCE TABLE 3-9

3-4 Register File Data Format 3-14

3-5 Muttipy Pipe Block Diagram 3-16

3-6 STAGE 1 3-19

3-7 STAGE 2 3-20

3-8 STAGE 3 3-22

4-1 Mbox 4-2

4-2 MBOX Pipe 4-3

4-3 HW _LD instruction 4-12

4-4 HW_ ST Instruction 4-13

4-5 DTB Bit Fields 4-15

4-6 MAF Timing Definition 4-36

4-7 Pending Queue Bit Fields 4-40

4-8 Dread Address Datapath 4-42

4-9 Dread Register Formatting Bits 4-42

4-10 Dread Control Bits 4-43

4-11 WB PA Datapath 4-45

4-12 WB Control Bits 4-45

4-13 IREF PA Datapath 4-47

4-14 DTB_ASN 4-51

xiv DIGITAL RESTRICTED DISTRIBUTION

Contents

4-15 DTB_CM 4-52

4-16 OTB_ TAG, Dstream TB Tag 4-52

4-17 DTB_PTE, Dstream TB PTE 4-53
4-18 DTB_PTE_TEMP 4-54
4-19 MM_STAT, Dstream MM Fault Register 4-54

4-20 VA, Faulting VA Register 4-55
4-21 VA_FORM, Formatted VA Register for NT_Mode:O 4-55

4-22 VA_FORM, Formatted VA Register, NT_Mode:1 4-56

4-23 MVPTBR 4-56
4-24 DC_PERR_STAT, Dcache Parity Error Status 4-57

4-25 DTBIS 4-58
4-26 MCSR, Mbox Control Register 4-58
4-27 DC_MODE, Dcache Mode Register 4-59

4-28 MAF _MODE, MAF Mode Register 4-61
4-29 ALT_MODE 4-62
4-30 CC, Cycle Counter Register 4-63
4-31 CC_ CTL, Cycle Counter Control Register 4-63

4-32 DC_TEST_CTL, Dcache Test TAG Control Register 4-64

4-33 DC_TEST_TAG, Dcache Test TAG Register 4-65
4-34 DC_TEST_TAG_TEMP, Dcache Test TAG Temp Register 4-66
5-1 CBOX Block Diagram 5-2
5-2 SAU Pipe Stages 5-3

5-3 SC _BUSY and Mbox Command Issue 5-4

5-4 Possible FIRST_FILL/LAST_FILL sequences from Cbox to Mbox 5-5
5-5 Invalidate Timing 5-9

5-6 Mbox Retry on Miss 5-11
5-7 Retry on BIU resources full 5-11
5-8 Set Allocation Algorithm 5-14
5-9 Bcache index match 5-15
5-10 I/DREAD hits in the SCache 5-16
5-11 DREAD fills from external memory (Non-error mode) 5-16
5-12 IREAD fills from external memory 5-16
5-13 SC&che Arbitration under fills 5-17

5-14 scache Dstream (non-error mode) Fill Flow (3 cycle sysclock) 5-17

5-15 SCache Dstream (non-error mode) Fill Flow (4 cycle sysclock) 5-17
5-16 SCache Dstream (non-error mode) Fill Flow (5 cycle sysclock) 5-18
5-17 SCache Dstream (Error mode) Fill Flow (5 cycle sysclock) 5-18

5-18 SCache lstream (non-error mode) Fill Flow (5 cycle sysclock) 5-19

5-19 Scache Read Hits Under Fills (3 cycle sysclock) 5-19
5-20 Scache Write Hits Under Fills (3 cycle sysclock) 5-20

5-21 Write Buffer Data Store 5-21

5-22 Write Flow 5-23

5-23 Write buffer data write timing diagram 5-23

DIGITAL RESTRICTED DISTRIBUTION xv

Contents

5-24 Write buffer data issue timing diagram 5-24

5-25 Write hit private/dirty 5-28
5-26 Write hit private/clean 5-29
5-27 Write broadcast 5-30

5-28 Write miss 5-32
5-29 EV5 System Interface 5-35
5-30 BAF full timing 5-37

5-31 Victim data flow 5-41
5-32 Data collection of first subblock in VAF 5-42

5-33 Data collection of second subblock in VAF 5-42
5-34 Timing for System Probe Address Logic 5-44

5-35 BSQ Bypass Flow 5-50

5-36 BSQ No Data Flow 5-50
5-37 BSQ Data Flow 5-50
5-38 BSQ System Flow 5-51
5-39 Outgoing Data flow 5-52
5-40 Incoming data flow 5-55

6-1 Cache Positions in EV5 Pipeline 6-2
6-2 Instruction Data flow through Refill Buffer and lcache 6-4

6-3 Logical lcache Organization 6-5

6-4 lcache Address Breakdown 6-6
6-5 Branch History Table Datapath 6-11

6-6 Dcache-0 and Dcache-1 6-13
6-7 Logical Dcache Organization 6-14
6-8 Dcache Address Breakdown 6-15
6-9 Dcache Index Muxlng for Data and Tag Arrays 6-15

6-10 scache 6-22

6-11 SC&che Tag Physical Organization 6-24
6-12 SC&che Tag Address Breakdown 6-24
6-13 SCache Physical Organization, Lower Quadword (Right Half of SCache} 6-28
6-14 SCache Physical Organization, Upper Quadword (Left Half of SCache} 6-29
6-15 SCache Data Address Breakdown 6-29

7-1 Ebox 7-2
8-1 IEEE 1149.1 Serial Port (the Basic CTI} 8-4

TABLES
1-1 Instruction Fetch Logic Signal Interface 1-5

1-2 Granularity Hint Bit Mapping 1-19

1-3 MISCELLANEOUS IB BITS 1-37

1-4 EBOX Bypass MUX control Signals 1-55

1-5 FBOX Bypass MUX control Signals 1-56

1-6 Instructions Setting the MB_FLAG 1-61

xvi DIGITAL RESTRICTED DISTRIBUTION

1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
2-1
2-2
2-3
2-4

2-5
2--6
2-7
2-8
2-9
2-10
2-11
3-1

3-2
3-3

3-4
3-5
3--6
3-7
3-8
3-9
3-10
3-11
3-12
3-13

4-1

4-2

4-3

4-4

4-5

4--6

MBOX Instructions stalling while MB_FLAG is set

Description of GHD bits In ITB_PTE_TEMP read format

ICPERR_STAT Field Descriptions

EXC _SUM Field Descriptions

ICSR Field Descriptions

SIRR Field Descriptions

HWINT _ CLR Field Descriptions

ISR read format Field Descriptions

IBOX TRAPS, ENTRY POINTS and INTERRUPT

Trap Prioritization

PA~ENTRY

Interrupt Priority Level Effect

Revision History

Instruction Matrix

Compare

Compare

Logical Functions

Shifter Inputs

Shifter Inputs for the Extract Byte Instructions

Byte Zapper Operation for the Extract Byte Instructions

Shifter Inputs for the Insert Byte Instructions
Byte Zapper Operation for the Insert Byte Instructions

Byte Zapper Operation for the Mask Byte Instructions

Revision History

Floating Point Pipe Instruction Execution

Exponent constants muxed onto Stage 1 Input Exponent Operand A

ADD pipe: ADDx/CPYSx/CMPx/CVTx/FCMOVxx/FBXX/MX_FPCR/SUBx

ADD pipe: DIVx

MULTIPLY pipe: MULx/CPYS

STORE port: STx

RF Load ports: LDx (LOADs and Fills)

FBOX Interface Signal List

Booth Algorithm

Chop Rounding

Normal Rounding

Rounding to Infinity

Revision History

Instructions Handled by the MBOX

HW _LD Format

HW _ST Format

Granularity Hint Bit Mapping

Traps Detected by the MBOX

Trap Signals to IBOX (One pipe shown)

DIGITAL RESTRICTED DISTRIBUTION

Contents

1--61
1-71
1-73
1-75
1-76
1-79
1-79
1-80

1-82
1-84

1-86

1-87
1-89
2-2

2-11
2-11
2-12
2-17
2-17
2-18
2-18
2-19
2-20
2-35
3-3

3-8

3-10
3-10
3-10
3-11

3-11

3-12
3-17

3-23
3-23

3-24
3-25
4-4

4-12

4-13

4-14

4-16

4-18

xvii

Contents

4-7 Table of Multiple Trap Effects 4-22

4-8 DC Hit Conditions, (prioritized) 4-27

4-9 Dcache Commands 4-29

4-10 Dcache Command Encodings 4-30

4-11 Commands From MBOX MAF to CBOX Arbiter 4-37

4-12 CBOX Return Status 4-39

4-13 Pending Queue Bit Fields 4-41

4-14 Dread Physical Address Datapath bits 4-42

4-15 Dread Register Formatting Bits 4-42

4-16 Dread Control Bits 4-43

4-17 Dread Merge and Allocate Conditions 4-44

4-18 WB PA Datapath 4-45

4-19 WB Control Bits 4-46

4-20 WB Merge and Allocate Conditions 4-46

4-21 IREF PA Datapath 4-47

4-22 MAF Issue Priority 4-48

4-23 Mbox Unavailable Traps 4-50

4-24 DTB_ CM Mode Bits 4-52

4-25 MM_STAT Field Descriptions 4-54

4-26 VA_FORM Field Descriptions 4-56

4-27 DC_PERR_STAT Field Descriptions 4-57

4-28 MCSR Field Descriptions 4-58

4-29 DC_MODE Field Descriptions 4-59

4-30 MAF _MODE Field Descriptions 4-61

4-31 ALT Mode 4-62

4-32 CC_ CTL Field Descriptions 4-63

4-33 DC_ TEST_ CTL Field Descriptions 4-64

4-34 DC_ TEST_ TAG Field Descriptions 4-65

4-35 DC_ TEST_ TAG_ TEMP Field Descriptions 4-66

4-36 Revision History 4-68

5-1 Commands from Mbox 5-4

5-2 Encoded Cbox Return Status to Mbox (7a and 8a signals) 5-5

5-3 Cbox Special Signals to Mbox 5--6
5-4 Mbox Commands and Scache Arbiter Actions 5-8
5-5 Mbox Retry Conditions 5-10

5-6 Mbox Read/Write Ordering 5-12

5-7 Commands from BIU for scache access 5-13

5-8 Wr Decode 5-22

5-9 Writes with Permission grant 5-32

5-10 STx_C cases: Cacheable References 5-34

5-11 STx_ C cases: Non-Cacheable References 5-34

5-12 Loading of BAF and VAF 5-37

5-13 System Probe Commands and Related Actions if Address match 5-47

xviii DIGITAL RESTRICTED DISTRIBUTION

Contents

5-14 Behavior of CBOX of errors in shadow of other errors 5-04

5-15 Revision History 5-07

6-1 lcache Tag 6-6

6-2 lcache and Refill Buffer Control Signals 6-7
6-3 Dcache Tag Command and Transactions 6-16

6-4 Dcache Data Command and Transactions 6-17

6-5 Dcache STORE Silo, Example of 3 back-to-back STOREs at one Dcache 6-18

6-6 CBOX initiated Dcache Invalidates 6-20

6-7 SCache Tag 6-23
6-8 BCache Index Match 6-25

6-9 Tag Modifications 6-25
6-10 Final Status Values 6-26
6-11 SCache Pipeline 6-30

6-12 SCache Transactions: SC _READ 6-30
6-13 SCache Transactions: SC_ WRITE 6-31

6-14 SCache Transactions: SC_INVAL 6-32

6-15 SCache Transactions: SC_READ_DIRTY 6-32

6-16 SCache Transactions: SC _FILL 6-33

6-17 SCache Transactions: SC_ TAG_ UPDATE 6-33

6-18 SCache Commands from Cbox 6-34
6-19 Tag Status Driven to Cbox 6-34
6-20 Revision History 6-43

7-1 Revision History 7-3

8-1 Evs Test Pins 8-2
8-2 Parallel Debug Port Operating Modes 8-2

8-3 Instruction Register 8-5

8-4 Internal Scan Register Organization 8-5
8-5 Internal LFSR Organization 8-6

8-6 Revision History 8-6

9-1 Revision History 9-23

DIGITAL RESTRICTED DISTRIBUTION xix

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 1

Thelbox

1.1 Overview

The basic IBOX operation is as follows.

In stage S-1 the I_IDX%IC_INDEX_H<l2:2> is generated and provided to the !Cache. The carry of
the incrementer is passed to the SO PC<42:13> adder.

In stage SO the virtual !Cache reads 4 instructions and sends them to the IB. Also in SO the pc
adder calculates the PC of the fetched instruction block and sends it to the PC silo which has
analogous control with the IB. At the end of SO the I Cache hit starts, checking the TAG just read
with the PC just calculated.

In S 1, the IB selects one of the 2 Instruction buffers and forwards the data to the Slot logic
if possible. The IB receives I_IIlT%IC_lllT_lA_H, calculates I_IBS'foIB_STALL_lB_H and informs the
fetch logic. In parallel the Branch taken adders calculate the 4 possible branch path indexes,
picking the correct one at the end of Sl to send to the ICache. The ITB checks all !Cache fetches
for access and generates !Cache Miss PAs for the Scache. The Slot logic starts in the second half
of S 1. It calculates the mux selects to send each instruction to the correct Pipe.

In S2, the Slot logic drives the instructions to the correct pipes. If some instructions don't slot a
stall is generated to the IB stage, and the remaining instructions will try again in the next cycle.
At the end of S2 the register numbers are predecoded for register reads and dirty checks.

In S3, the dirty logic for the register file checks for conflicts between the current set of instruction
and in previously issued instructions. Instruction Valid is forwarded to the appropriate pipes for
issued instructions, S3_Freeze is sent to earlier stages of the IBOX pipe if some instruction failed
to issue. Also in S3 the alternate PC for predicted branch is calculated (ie the path the branch
predictor didn't take).

In S4, the PC miss predict compare is done.

In S5, the mispredicted PC is loaded into the fetch index to restart the pipe.

In S6 the only IBOX action is to pipe state.

In S7, the trap logic prioritizes trap conditions and generates the trap vector. The Exception PC
is loaded.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-1: Simple Block Diagram

S-1

I FETCH REFILL
Fl LL BUFFER
DATA

INSTRUCT

PRE DECODE

IC FETCH INDEX

TRAP
PAL
ENTRY
POINT
LOGIC

1-2 Thelbox

so

FILL BYPASS

ICACHE
8K

32BB
41W

INDEX CARRY

S1

ITB

64 ENTR

S2

SLOT LOGIC

IREF PA

S3

---- FADD
.---- FMUL

EO
E1

S4 SS

DIRTY ISSUE VALID

LOGIC

EBOX PC

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-2: Waterfall

So S1

T FETCH [1cAcHEI 1e

u
V BRANC

w
x
y

11CACHE

H TAKEN TARGET

S2

SLOT

le

ICACHE

S3

ISSUE
REG RD

SLOT

IB

ICACHE

84 SS S6 S7

ALU DC tre HIT REG 'NR

ISSUE ALU DC tre HIT REG RD

SLOT ISSUE ALU DC REG RD

le SLOT ISSUE
ALU REG RO

ICACHE le SLOT ISSUE
REG RD

ICACHE IB SLOT

z
0

PC/BRANCH MISPREDICT TARGET I CACHE IB

I CACHE

TB TRAP ENTRY POINT

REG 'NR

tre HIT REG WR

DC ire HIT REG WR

ALU DC tre HIT REG WR

ISSUE
ALU DC tre HIT REG WR REG RD

SLOT ISSUE ALU DC B HIT REG WR
REG RD

IB SLOT ISSUE ALU DC jre HIT REG WRl REG RD

ICACHE IB SLOT ISSUE ALU DC tre HIT l REG~ REG RD

This water fall shows the location of the IBOX stages in the pipe. The fetch stream changes at 3
different times. The waterfall shows the cycles the fetch stream would be restarted if the named
event happened in instruction T.

1. 82: branch predicted taken
2. 86: Branch or PC miss predict, ITB miss/ ACV (this is the 85 trap)
3. 88: DTB Trap or any other error. (this is the 87 trap)

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The EV5 lbox contains the following functionality :

• An BK byte direct mapped, 32 byte block, virtual !Cache with 4 32 byte refill buffers for
streaming prefetch. The !Cache reads 4 instructions per cycle.

• The !Cache Fetch logic including -

• Fetch adder

• Refill buffer adder

• Prefetch adder
• Refill buffer tags (4)

• A 64 entry, fully associative, full hint bit support, 7 bit ASN, ITB.

• A 2K*2 bit Branch History Table and the History Update logic.

• The Flow Prediction logic including -

• Branch Predictor
• Target Calculation logic

• Return Prediction Stack

• All the PC logic including -
• Fetch PC logic

• PC silo

• Execution PC logic
• An 8 instruction IB that holds 2 sets of 4 instruction !Cache fetches.

• The Instruction Slot logic which includes -

• functional unit slotting.
• The Instruction issue logic which includes -

• The register scoreboard:
• A 1 bit shift register per pipe per register.

• The DCache miss bit, 1 bit per register.

• The Bypass control for the EBOX and FBOX and the register file write control.

• The register serialization checks.
• The MB/STC/RC flag

• IP Rs

• lbox Control

• ITB Control

• PAL Temps

• Pal Entry point logic

1--4 Thelbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2 Functional Description

1.2.1 ICache

1.2.2 Instruction Fetch

The Instruction Fetch block is responsible for providing cache indexes, hit signals, prefetch ad
dresses and fill data. The goal of the fetch logic is to provide a continuous supply of instructions
to the Instruction Buffer (IB) pipe. Whenever the IB has an available set of instruction buffers
the fetch logic attempts to provide the predicted instruction stream. If it is later determined that
the stream was mispredicted the fetch logic receives the correct calculated branch target from
the I_ WPC section and resumes fetching from the !Cache. If any other I-stream flow change is
encountered, (exception, trap, interrupt, re-play, etc.) the fetch logic is provided the target index
and fetching resumes from the !Cache.

The fetch logic controls a four entry direct mapped Refill Buffer which is used to assist in stream
ing fetches which miss in the !Cache. Data which is prefetched is held in the refill buffer until
requested by the IB or overwritten by a new I-stream. The Refill Buffer consists of four 32 byte
blocks and four associated tag entries. The 128 bytes are accessed as eight octaword buffers, with
two sub-blocks per Refill Buffer Tag entry.

The instruction fetch logic deals primarily with with !Cache indexes (i.e. PC<12:2>. There are
three separate indexes which make up the instruction fetch logic; the !Cache index (ic_index),
the refill buffer index (rfb_index), and the prefetch index (pf_index). See Figure 1-9.

The instruction fetch logic is controlled by two sequencers; a fetch sequencer and a pre-fetch
sequencer. The fetch sequencer is primarily responsible for the sequencing pertaining to calcu
lating the ic_index and rfb_index, hitting in the ICache and refill buffer, I-stream flow changes,
and recieving fill data. The pre-fetcher is primarily responsible for the sequencing pertaining to
requesting data when accesses miss in both the ICache and refill buffer , pre-fetching I-stream
data, and calculating the pf_index.

The instruction fetch logic is also responsible for reporting the tag compare information and
generating !Cache hit and Refill Buffer hit signals. The instruction fetch logic maintains the
Refill Buffer Tag Store. The instruction fetch logic is responsible for providing the valid bits to
the !Cache. The fetch logic provides the two valid bits associated with each !Cache Tag write.
The !Cache is responsible for clearing the valid bits.

Table 1-1: Instruction Fetch Logic Signal Interface

Signal

Fetcher and ICache Signals

1%J_IC_INDEX_ZB_H<12:4>

1%J_IC_INDEX_ZB_L<12:4>

1%.J_VALID_ZB_H<l:O>

1%.J_IC_CMD_A_H

Description/Notes

!Cache Read/Write Index.

!Cache Read/Write Index.

!Cache Valid bits.

Asserion indicates Write, de-assertion indicates read.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-1 (Cont.): Instruction Fetch Logic Signal Interface

Signal Description/Notes

Fetcher and ICache Signals

1%.J_BYPASS_IC_A_H

1%J_RFB_RD_IDX_1B_H<6:4>

1%J_RFB_WR_IDX_A_H<2:0>

1%.J_RFB_WR_A_H

Fetcher and l_IBS Signals

l_IBS%IB_STALL_1B_H

l_IDX%1C_DATA_ VALID_1A_H

l_IDX'1'oCURRENT_IDX_lA_H<3:2>

l_IDX%CURRENT_IDX_1A_H<0>

J%1_ISTR_DATA_OB_H<127:0>

Asserion indicates J%1_ISTR_DATA_OB_H is coming from the Refill Buffer,
De-asserion indicates that a1_1STR_DATA_OB_H is coming from the I Cache.

Refill Buffer Data Read Index.

Refill Buffer Data Write Index, valid one cyle before the write.

Refill Buffer Data Write Enable, valid one cyle before the write.

Assertion of this signal forces the Instruction Fetcher to stall the fetch
ing of instructions.

Assertion indicates that the data on J%1C_DATA_OB_H is valid.

The longword address of the instruction fetch.

Assertion indicates that the instructions fetched are PAL instructions.

This is the istream data which is sent to the IB.

Fetcher, I_ WPC, and I_TRP Signals

I_TRP%SEL_EXCEPTION_PC_A_H

I_TRP%SEL_S6_REPLAY_A_JI

I_WPC%REPLAY_IDX_4A_H<12=4,0>

I_TRP%REPLAY_POS_4A_H<l:O>

I_TRP%EXCEPTION_PC_A_H<12:0>

I_WPC%BR_PC_MPRED_IDX_5A_H<12:0>

I_WPC%REPLAY_IDX_6A_H<12=4>

I_TRP%REPLAY_POS_6A_H<l:O>

I_TRP1tSEL_EXC_EREPLAY_A_JI

l_TRP%SEL_BR_LREPLAY_A_H

I_TRP%TRAP _POSTED_A_H

1-6 Thelbox

Assertion indicates select 1_TRP%EXCEPTION_PC_A_H<12:0>; de-assertion in
dicates select I_ WPC%1lEPLAY_IDX_4A_H<12:4,0>, l_TRP%REPLAY_POS_ 4A_H<l:O>.

Assertion indicates that I_WPC%REPLAY_IDX_6A_H<12:4,0> and I_TRP%REPLAY_
POS_GA_H<l:O> should be selected. De-assertion indicates that 1_WPC%BR_
PC_MPRED_mx_sA_H<12:0> should be selected.

4A replay index.

4A replay position.

Exception pc.

Branch, PC Mispredict index.

7A replay index.

7A replay position.

Assertion indicates that the 1_TRP%SEL_EXCEPr10N_PC_A_H signal is valid
and the next fetch index should be either 1_TRP%EXCEPI'ION_PC_A_H<12:0>
or 1_WPC%REPLAY_mx_4A_H<12:4,0>, 1_TRP%REPLAY_POS_4A_H<1:0>. It must not
be asserted if I_TRP%SEL_BR_LREPLAY_A_H is asserted.

Assertion indicates that the I_TRP%SEL_s&_REPLAY_A_H signal is valid and
the next fetch index should be either 1_WPC%REPLAY_mx_GA_H<12:4,0>, 1_

TRP%REPLAY_POS_6A_H<l:O> or I_WPC%BR_PC_MPRED_IDX_5A_H<l2:0>.lt must not
be asserted if I_TRP%SEL_EXC_EREPLAY_A_H is asserted.

Assertion indicates that a trap has occurred. It must be asserted if ei
ther I_TR.P%SEL_EXC_EREPLAY_A_H or I_TRP%SEL_BR_LREPLAY_A_H are asserted.

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-1 (Cont.): Instruction Fetch Logic Signal Interface

Signal

Fetcher and I_FPR Signals

I_FPR%FLOW _CHANGE_1A_H

I_FPR%PREDICTED_IDX_1A_H<12:2>

Fetcher and MBOX Signals

1%M_m.EF _IDX_1B_H<6:5>

1%M_m.EF _REQ_2B_H

1%M_m.EF _ADDR_2A_H<39:4>

Fetcher and CBOX Signals

C%I_IFB_DATA_ VALID_8B_H

C%I_IFB_JNDEx_8B_H<2:0>

C%I_IFB_LAST_FILL_8B_H

S%I_IFB_DATA_9B_H<127:0>

1.2.2.1 Instruction Fetch Flow

llescription/.N'otes

Assertion indicates that 1_FPR%PREDICTED_mx_1A_H<12:2> should be se
lected as the next fetch index. Must be conditioned with !Cache Hit
or Refill Buffer Hit.

Predicted index (Branch Taken, CALL_PAL, or Stack).

Index for the 1 of 4 MAF entries.

Assertion indicates that the MBOX should begin a ffiEF arbitration
using I%M_IREF _ADDR_2A_H<39:4> as the physical address.

Physical address for !REF access.

Assertion indicates that the S%I_IFB_DATA_9B_H<127:0> will be valid in the
following cycle.

Indicates which one of 8 possible octawords is being returned on the
S%I_IFB_DATl\._9B_H<127:0>.

Assertion indicates that this fill is the last of the two octawords asso
ciated with the C%I_IFB_INDEX....8B_H<2:0>.

SCache Fill data.

The instruction fetching begins with the longword (4 bytes) index (IC/td_IC_INDEX_ZB_H<12:2>) re
quired for !Cache accesses. The 1%J_IC_INDEX_ZB_H is set-up to the OA rising edge of K%CLOCK.
The the "next" ic_index can be sourced from 1 of 7 places from the Instruction Fetch section's
(l_IDX) perspective. These sources are:
• I_FPR%PREDICTED_IDX_lA_H<12:0> - Predicted Index.
• I_IDX_FIC%INC_INDEX_ZA_H<12:0> - Incremented Index.
• I_IDX_FIC%REC_INDEX_OA_H<12:0> - Recirculated Index.
• I_IDX_FIC%FILL_INDEX_lA_H<12:0> - Fill Index.

• I_WPC%REPLAY_IDX_4A_H<12:0> - 4A Replay Index.
• I_TRP%EXCEPTION_PC_A_H<12:0> - Exception Index.
• I_WPC%BR_PC_MPRED_IDX_5A_H<12:0> - 5A Branch, PC Mispredict Index.
• I_WPC%REPLAY_IDK_6A_H<12:0> - 6A Replay Index.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The priority of selection of the "next" index is as follows:

• The Exception, 4A, 5A, and 6A Indexes have the highest priority in the selection of a "next"
index. These indexes are selected by the assertion/de-assertion ofI_TRP%SEL....EXCEPTION_PC_
A_H, I_TRP%SEL_EXC_EREPLAY....A_H, I_TRP%SEL_S6_REPLAY_A_H, I_TRP%SEL_BR_LREPLAY_A_H,
and I_TRP%TRAP _POSTED_A_H. The trap logic ensures that only one of these indexes can be
selected each cycle. ·

• I_IBS%IB_STALL_A_H will force the ic_index to recirculate while asserted.

• I_FPR%FLOW _CHANGE_1A_H conditioned with I_IDX%ISTR_DATA_ VALID_lA_H and NOT(I_IDX%FETCH_
BUBBLE) will cause selection of the predicted index.

• If none of the above conditions exist then the "next" index is selected by the sequencer to
either increment, recirculate, or return to the index which missed and wait for the fill.

The refill buffer index and the prefetch index are in sync with the ic_index when the ICache
accesses hit in the !Cache or when the I-stream flow is re-directed.

See Figure 1-8 and Figure 1-9 for the muxing heirarchy for the instruction fetch index.

When fetching contiguous !Cache blocks which hit in the cache, the I"t'oJ_IC_INDEX_ZB_H is in
cremented in 16 byte steps each cycle. (I.E. bit 4 is incremented) The l"t'oJ_IC_INDEX_ZB_H is
incremented on aligned octaword boundaries. (I.E. bits (3:2) are always zero when the index is
sourced from the incrementer.)

When the Flow Prediction logic (l_FPR) encounters a valid I-stream flow change instruction, I_
FPR%FLOW _CHANGE_lA_H is asserted. This will force the mux for l"t'oJ_IC_INDEX__zB_H to select I_
FPR%PREDICTED_IDX_tA_H as the next index. The sequencer will assert IJDX%FETCH_BUBBLE to
indicate to the other sections that a bubble is present. The rfb_index and pf_index are re-sync'ed
with the ic_index and fetching continues by looking into the !Cache first.

When I_IBS%IB_STALL_lB_H asserts the l"t'oJ_IC_INDEX_ZB_H must be held. This is accomplished
by re-circulating the previous index. The ICache is responsible for holding the data to be stalled.
If the index that is stalled is index(N), the Icache will be holding data(N-1).

When the Trap logic (I_TRP) encounters a I-stream flow change the selection of the next index is
determined by I_TRP%SEL_EXCEPTION_PC_A_H, l_TRP%SEL_PC_'7A_H, and I_TRP"t'oSEL_PC_5A_H as
described in the table below. The sequencer will assert I_IDX%FETCH_BUBBLE to indicate to the
other sections that a bubble is present.

1-8 Thelbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-3: Fetch Index Mux Selects for Trap, Exception, Replay(4A,6A)

I sel_exc_ereplay I sel_br_lreplay I sel_exception I sel_s6_replay I I next index

0 0 x x 11 determined by fetch seq. I ** NOTE
sel exc
sel br :
guarentE
to be m1

trap poi
be assel
of the <
are assE

1 0 0 x I I i_wpc%replay_idx_4a_h

0 1 x I I i_trp%exception_pc_a_h

0 x 0 I I i_wpc%replay_idx_4a_h

0 x 1 I I i_wpc%replay_idx_6a_h

When there is an !Cache miss the I%J_IC_INDEX_ZB_H is returned to the index which missed. The
index is then held until the !Cache is filled from the refill buffer. The fill may come in the next
cycle if the data is presently in the refill buffer or it will arrive sometime later depending on
where in the memeory system the data presently resides. When the !Cache and IB are filled the
I'foJ_IC_INDEX_ZB_H can be incremented.

When there is an !Cache miss, then the refill buffer hit signal is checked. If it indicates a refill
buffer hit, the data is provided by the refill buffer and written to the I Cache and IB in the following
cycle. While accesses hit in the refill buffer data can be sent to the !Cache and IB in consecutive
cycles. While hitting in the refill buffer the 1%J_IC_INDEX_ZB_H and 1%J_RFB_RD_IDX_tB_H are no
longer in sync. The 1%J_RFB_RD_IDX_tB_H is ahead of the 1%J_IC_INDEX_ZB_H inorder to continue
streaming data to the !Cache and IB. After hitting in the refill buffer, the fetcher continues to
fetch instructions from the refill buffer until the access misses in the refill buffer.

Figure 1-4: IC_lndex and RFB_lndex on IC_Miss and RFB_Hit

I ic_index I o I 1 I 2 I 1 I 2 I 3 I 4 I

I rfb_index I o I 1 I 2 I 3 I 4 I

ic_hit I I O I X I D I D I

rfb_hit I I D I 1 I 2 I 3 I 4 I

I istr_data I I O I D I 1 I 2 I 3 I 4 I

** Note **
X - Miss
D - Don't Care

Once the fetcher misses in the refill buffer after missing in the !cache or when there is a miss in
both the !Cache and the refill buffer, the pre-fetcher attempts to make a request to the MBOX
to get the data from either the SCache, BCache, or memory sub-system. Conditions which would
prevent a request from being sent are if the number of outstanding requests is greater than 2, or
if the refill buffer entry you wish to use is pending or if you are in the shadow of a predicted pc
while in PALmode. If either of these conditions are true the request will not be sent until they
are no longer true. The ic_index and the rfb_index of the block that missed is held while the
request is being serviced.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The interface with the MBOX pertaining to the requesting of fill data consists of 3 signals/busses:
l%M_mEF _IDX_tB_H<6:5>, I%M_mEF _REQ_2B_H,1%M_mEF _ADDR_2A_H<39:4>. At the time which the
IBOX sends l%M_m.EF _mx_1B_H<6:5> it is not known whether or not the access hits in the IBOX
Translation Buffer (ITB). Therefore the protocall is that the IBOX sends 1%M_IREF _IDX_1B_H<6:5>
indicating a request to 1 of the 4 Miss Address File (MAF) entries in the MBOX. After it is
determined whether you hit in the ITB in stage 2A, the IBOX will conditionally send 1%M_m.EF _
REQ._2B_H in stage 2B if the access hit in the ITB. The physical address (1%M_IREF _ADDR_2A_
H<39:4> is read from the ITB in stage 2A. If the access is not to virtual address space than there
will be no translation of the address and the 1%M_mEF _REQ_2B_H will be sent without regard to
the ITB.

Figure 1-5: lbox requests to MBOX

A I B A B I A B
I I

==I X=l_idx_I X=I== X= i%m iref idx lb h
- - - -

I I
i%m_iref _req_2b_h --'----_/-,-- -\ <--- If hit in ITB.

- _I __ - - __ I_ - --
i%m_iref_addr_2a_h _X_I ___ X_l_addr_l_X __ _

The pre-fetcher will then send requests to pre-fetch the next blocks of instructions. The pre
fetcher can have a maximum of 3 requests outstanding at any time. this is due to the fact that
the refill buffer is direct mapped and the pre-fetcher can not attempt to pre-fetch a block for a
refill buffer entry which has been requested but has not yet been returned. Therefore the pre
fetcher monitors the ic_index and ensures that the pf_index does not step on the entries which
the fetcher is waiting for.

One cycle before the fill data is driven to the !Cache on S%I_IFB_DATA_9B_H<127:0>, the CBOX
sends C%I_IFB_DATA_VALID_8A_H indicating that valid fill data will coming. Along with C%I_IFB_
DATA_VALID_sB_H the CBOX sends a 3 bit fill index (C%I_IFB_INDEX_sB_H<2:0>) to indicate which
of a possible 8 octawords is being sent and C%I_IFB_LAST_FILL_8B_H to indicate if this fill is the
last of the two octawords associated with the C%I_IFB_INDEX_8B_H<2:0>. This valid signal is used
to provide the write strobe to the Refill Buffer Data Latches as well as set the valid bit for the
refill buffer entry. All fills are written into the refill buffer. If the fill is the octaword which was
requested (the demand fetch data) the fill data is written thru the refill buffer and directly into
the !Cache and IB in parallel. At any point which the data that is being filled is not the demand
fetch data, the fill data is written only into the Refill Buffer. The !Cache index and Refill Buffer
Index are both incremented after the demand fetch data is returned. If the incremented index
hits in the Refill Buffer the data is sent to the IB in the next cycle. If the index does not hit in
either the !Cache or the Refill Buffer, the fetcher recirculates the demand index until the next
octaword of fill data is returned.

1-10 Thelbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-6: Signal Protocall for Fiiis

I BB I 9A I 9B I lOA I 1 OB I
I _l ___ I_ I I I

c%i ifb data valid 8b h I_/ I I _l ___ l ___ I
- - - --1 I I I I I

c%i_ifb_index_8b_h I X=l_idx_I X=l===l===I
I I I I I

c%i_ifb_last_fill_8b_h I_/- ---1-\ I I I I I _l ___ l ___ I

I=== ===I Xl_data_I XI s%i ifb data 9b h - - - -

Figure 1-7: IFB Fills with RFB Hits

I x I Y I z I O I 1 I 2 I 3 I
IA BIA BIA BIA BIA BIA BIA Bl

I ic_index I .21 .01 .11 .21 .31

I rfb_index I • O I . O I . 1 I • 2 I • 3 I

ic_hit I x . I x . I x • I x . I x . I x . I x .

rfb_hit I x . I x . I x . I O . I 1 . I 2 . I 3 .

I ifb_valid I 1 • I o • I 2 • I 3 .

I rfb_valid I I o • I 1 • I 2 • I 3 •

I ifb_data I • 1 I • o I • 2 I • 3 I

I istr_data I • o I . 1 I . 2 I • 3 I

** Note **
X - Miss
D - Don't Care

In order to try to prevent prefetching data which is already in the ICache, an effort will be made
to to look in the ICache while waiting for return data to see if there is a hit. If there is a hit,
prefetching will stop, the indexes will be re-sync'ed and accesses will be made to the ICache.
Outstanding prefetches are required to complete and will be written into the refill buffer. If there
is not a hit in the ICache prefetching will continue. The only time that the fetcher will be looking
at I Cache hit is when the sequencer is fetching out of the I Cache or when the fetcher is waiting
for data to be returned.

When a condition which alters the fl.ow of contiguous block accesses occurs each of the indexes are
re-sync'ed to the target index and fetching begins by looking into the ICache first. Outstanding
requests will complete and will be written into the refill buffer.

When the prefetcher is stalled due to the fact that there are 3 outstanding fill requests, the
next request can not be made until both octawords associated with a previous request have been
returned.

ICache fills and their associated tags are not dependent upon parity checks. The parity informa
tion is stored and a trap is taken later in the pipe.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.2.2 Prefetch Addressing

The Prefetch Index (pf_index) is calculated in SlB. This is a stage later than the icache fetch
and refill buffer indexes. The pf_index stays in sync with the ic_index until there is an ICache
miss. If there is an ICache miss and a refill buffer hit, the pf_index remains in sync with the
rfb_index. At the point which there is a refill buffer miss after an ICache miss, the pf_index
begins to increment independently. The pf_index increments in 32 byte steps while in prefetch
mode. (I.E. increment bit 5)

The prefetcher is the source for requests to the MBOX. Accesses which miss in both the ICache
and refill buffer are requested to be filled from either the SCache, BCache, or memory sub-system.
The MBOX permits no more than 3 outstanding requests at a time. The pf_index is held once
the maximum number of outstanding requests have been sent. Once both octawords of a request
have been returned, another request can be made and the pf_index is incremented. Requests
can not be made for indexes corresponding to refill buffer entries which are pending due to a
previous request. The prefetcher must wait for all 32 bytes cooresponding to the pending entry
to be returned before the new request can be made.

The pf_index I_IDX%mEF _IDX_1B_H<12:4> is merged with the upper bits of the translated PC (I_
ITB%PA_1B_H<42:13>) to form the full physical address to be sent to the MBOX for memory requests.
(1%IREF _ADDR_2A_H<42:4>)

The pf_index is re-sync'ed with the ic_index on a change of the instruction flow.

The prefetcher does not prefetch across page boundaries.

1.2.2.3 I-Cache Hit Logic

The I Cache tags and refill buffer tags are looked up and compared to the PC in parallel. If there
is an ICache hit, the ICache index is incremented and fetching continues. The !Cache tags are
available late in SOB. In the remaining SOB phase the bit-by-bit XOR is calculated, comparing the
!Cache tag to the PC. The ASN and ASM for the entry are contained in the tag, and is compared
to the ASN of the process. In early S lA, the results of all the individual compares is determined,
the ASN compare being conditioned by the ASM bit of the entry not being set. Late in SlA the
signal 1_mT%IC_mT_1A_H is valid. The ic_hit signal can be forced deasserted or asserted either
thru IPR control or as necessary during normal operation.

In order to more accurately store the valid bits for each block, if the tag of an access matches but
the valid bit is not set, the tow valid bits of the entry are copied into the refill buffer tag so that
when the data, tag, and valid bits are written into the !Cache the valid bit cooresponding to the
"other" half of the block will be preserved.

During the interval where the instruction fetcher is waiting for data to be returned, the ICache
Tag is checked and if the index hits, prefetching is suspended.

1-12 Thelbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.2.4 Refill Buffer Hit Logic

The Refill Buffer Tags are available late in SOB. In the remaining SOB phase the bit-by-bit XOR
is calculated, comparing the Refill Buffer Tag to the PC. The ASN and ASM for the entry are
contained in the tag, and is compared to the ASN of the process. In early SlA, the results of all
the individual compares is determined, the ASN compare being conditioned by the ASM bit of the
entry not being set. Late in SlA the signal I_mT%RFB_lllT_lA_H is valid. The rfb_hit signal can
be forced deasserted or asserted either thru IPR control or as necessary during normal operation.

The Refill Buffer Tag is written in the S2A following a refill buffer miss which requires a request
to be made for a fill from the MBOX. The refill buffer tag section contains two valid bits associated
with each of the four tag entries. In the case of an ICache miss where the !Cache tag matches
but is invalid the valid bits are copied from the ICache and are set as each of the two 16 byte
blocks are returned. In the case where the ICache tag does not match, both valid bits are cleared
and are then set as each of the two 16 byte blocks are returned.

The Refill Buffer Hit logic is used to identify indexes which were previously requested but have
not yet been returned. Short forward branches in blocks which miss in the cache are an example
of this. In these cases, I_HIT%RFB_TAG_MAT_1A_H is asserted and a second request is not made.

Each of the four refill buffer entries has a pending bit associated with it. The pending bit is set
when the request is sent to the MBOX. The pending bit cleared when all 32 bytes associated with
the particular refill buffer entry have been returned. No new requests can be made for an index
which is mapped to a refill buffer entry which is pending.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-13

...t.
I

...t.
~

....
~
CD
c;:
2

c
ffi
i!
r-
:n
m
CJ)
.....
l:J

Q
m
c
c
~
:!!
m
c:
~
0
z

I

1JfllRIJWllR!!OICT!DJD)L1AJtodtlb

UOICJ!CWNCJNDflt...1A.Jic1t.t. I\ l-·~
IJOXJIGWU!'QIR,JHDSJM_H<lt4> IJDJC,,.MXJIWeT_IDX,,N1c1t•

~~··~ ·~-
LIDX..,.fmW!T_ll!LJNC_.jl IJDJUQUl'MifAP .JOX..AJtCI~

UBftlUT~jl
~UDIUl"""'"'-"'"-"'•.A.H

~UDJCJl"""'"'..JE..__111.A)t
l_IDKJID'!Rf_EL_RSll_M_H 1 L -- IJDIUl-.r_ll!LJILL.Att l_IDX...f~HJC_M_H

IJfl'IWC..ilrl'-~ .-cl" ~

l.JVPCMEITARTJOJLll\Jtdto.

LwPC'MePlAY_JOX_1',.Hc1l4P,, v-,_,,..,...PIAY)'O_ll\.H41> ./

l_TAPMiEICCEllT'ON.JC>Jtdto.

l_TRPMa_fXCl!PmH_PC.A..H

l..1Pfl"WLDW_CHANOll!!_UJ't

IJOXW'!'ICH,.,H.EJI-' ..1 ~ UDJCJDOC"Ul!lJIAOJDX..A.Jt l_lUIWUfAu...AJt 1-,,.,...,
IJDX'IUC_DAV._VAUD_\U _L :b j

0 NOTE .. l~ I~
1_TRf11MEL.}C..,li\JtANOl_TAPMELJ'C_M,,.H <="" :;. I ~ IJDlll.JOOi'MS..J'!TJmO.Jt
AAEMUl\IALLVEKCumve.

lr LTAPUeL...PC_M..H

LTIV"Mll!l..PC_M_M l

UDX_AICMINCUNOl!IC,.1.\..Hc111b

·-~--.Jt
UtlljlDMAl'8.JIOD!_IV """"' 1_
IJffWU'l_HIT_,A_H

L- --ljl'AUCJ«T_1'1t J -..!!-

IJOX_FICWfAITJ'CQ.,ll.)t ~ _r7I
~ 1~ LU»tJm'JINUEL...PfC_M_H '---'

UDIC_FIDW'erett_IC_M,Jt r -R.. t-.
l_IDX..IC'l"Wf'l....PAT_vAUO_,\Jt ::;;:: J
l_IOIC~.)IAT.A..H """'
l'Mo.l_IUTALL..AJi

"T1

~ ta'
c
ill n

IDX_MUX

ZB I OA I OB I 1A

...t.

~ ~
~

&>
....
'C

(') Er :r

I') Qi]~ B l.JOX_WCXVJUJDX.Jll)tc1t6 A IJDIUIXllVIUJDlt.IA..H<I~ IJOX.J1UOIWC_IDK.A.,H<I,.

A
v(u

CD ! :;
Q.
CD = >C

a: ~ c (!)
>C ()

u
~· ~·

Si
i
Et.
0 p

r
l'lJ
0 = p
.P

a~

~~

~~~-D-d1 ~ ~· 
B A UDX.J•IUl'lliAECIAJDXA..Hc12ob 

~~-~ 
1 .. 1DJCJODCWFll_ll!LJET>Jt 

L~-""JHO.A.H 

~ 
] 
"'"" = = ~ 

l_IDX.JUQ(VPl!IJli!l.....J'!C!R.AJt 

.-.. 
TlluU11112':94:11111111 



c 
(5 

~ r-
:a 
m 
t.n 
-I :a 
Q 
m c 
c 
(i5 
..... :a a; 
c: 
-I 
6 z 

';J 
CD 

a= 
0 
>C 

• I • c.n 

UOWVIG_CDUTJA.fl 

OA OB 1A 

UDX'IWC_WDEX.11:2:11 

UDX'IWO_INDEXc12:L 

UOXVIC_CCUT lA_H 

IJDX'IWC_INlEX.1 l'la 

1Cjj!T_1A_H 

LIOX"r.PF_INDEX.114:11 

l_IO>fMICOUT_B_H 

l_WPCVPC_OB_H-42'13:. 

l_FPCVPC_0Bc42'1b 

'"" ~· 
c 

18 2A ; 
• 
~ 

'"" s 
n :::r -FElCHSECUENCER 
,, 
; .... s 

PRE-l'ETCH SEQUENCER 
t:,!!j n :::r 
~ r-

0 
~ cc 

c;· 
~ 
~ .... 
'tS 

a 
•-RF~DATo\J~c117:b l 

: g 
Si a .... 
j 
f 
~. 
f/j .... = 

TutMar1010·Q'JU1llt2 = e 
PtWREF _flA..IA.,.H4U> j:> 

IT.I 
~ 

j 
""" = rs 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-10: IBOX FETCHER SEQUENCER 

---
Tue Mar 10 20:55:28 1992 

RFELSEL_INC 

1-16 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



c 
5 
i! 
r-
::0 
m 
tn 
-I 
::0 

~ 
m c 
c 
Ci5 
-I 
::0 a; 
c: 
-I 
6 
z 

.... 
:I' 
CD 

a= 
0 
>C .. 
.!,. 
..... 

l_HIT 

OA OB 

l_IPFl%FORCE_IC_MIS8Jl_H 

l_IPFl'HoFORCE_IC_HIT _B_H 
'--. l_HIT_ICH%FORCE_IC_HIT_B_H 

l_FPR%TAGM_lll_H ~ 

J%1_1C PA_lllji 

J%1_1C_VAL_DB_H 

J%1_1C_A&M_DB_H 

J%1_1CflNJlj-k8:0,. I 
~ l_IPFl%ASN_B_Hc8:0. 

J%1_1C_ASN_B_Hc8:D> 

~ l_FPC%FPC_DBc42:13> XOR 

J%1_1C_TAG_DB_Hc42:13> 

l_WPC%FPC_DB_Hc42:13> 

J%1_1C_PA_B_H 

~ l_FPC%FPC_OBcD> 

J%1_1C_ASN_Bj-k8:D> 

====G-
J%1_1C_PAJl_H I 
===-B-

l_IDX%RFB. INDEXc12:7> J%1_1C_VAL_OB_H 

l_IBS'IC.IB_STALL_A_H 

J%11CPABH 

l_F;eo:FP~-~D> G I 
l_FPC%FPC_DBc42:13> 

UDX%RFB_INDEX_2B_Hc6:!1> I dlli> 

I IDX%1AEF _INDEX_ 1B_Hc12:!1> J I dlli> I I I 
l_IDX%FIFB_INDEX.c12:7> 

I IPF1%ASM A H A B I 'rn•-~•-~ru_o, 
I IPR%ASN_A_Hc8:D> 

L__ 
RFBTAG l_IP_N_B_Hcl:lb 

4fNTRlf8 l_HIT _llllT%ASN_B_Hcl:D> 

1_HIT_llllT%ASM_B_H 

(l_Hrr_RBT) 
1_WPC%FPC_1B_Hc42:13> ~ 

l_IPR%FORCE_RFB_MISS_B_H 
l_IPR%FOR.CE_RFS_HIT_S. H 

l_HIT'IC.Fll.L_DATA_VALID 

l_HIT'!loFILL_NDEX 

l_HIT'IC.LAST _FILL 

1A 

ICHIT 

LOGIC 

(l_HIT) 

ASNOK 
(l_Hll) 

RFBHIT 

LOGIC 

(l_HIT) 

RFBSTATUS 

VALID 

IBITI 

ICTAG 
PARITYCHK 

A 

A 

IC_HIT_1A_H 

ASN_OK_1A_Ji 

RFB_Hrr_1A H 

RFB_MAT_ 1A_H 

I HIT'IC.R.FB VALID 

l_HIT'IC.RFB_PENDING 

Thu Mar 12 21 :38:52 1892 

"T1 ca· 
c 
; .. 
I .. .... .. 
m e 
::c 
=i 
b 

~ cc 
n 

~ 

~ 
~ ..... 
'C 

S4 
~ g 
e. 
gi 
8 
$ a ..... 
j 
~ 
~. 
(I) ..... 
Q 
~ 

= 9 
~ 
=-' 

j 
'""" CD 

~ 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.3 ITB 

The Ibox contains a 64 entry fully associative translation buffer (ITB). The ITB contains in
struction stream address translations and protection information for the referenced pages. The 
ITB supports the granularity hint option to map, under software control, either 1, 8, 64, or 512 
physically/virtually contiguous 8 Kbyte pages with a single ITB entry, as defined by the ALPHA 
SRM. The ITB is maintained by PALcode, and the ITB can be updated only while in PALmode. 
PALcode is responsible for ensuring that a particular virtual address is never mapped to more 
than one ITB entry. The ITB is accessed using a not-last-used (NLU) algorithm, when written 
and when under IPR access control. The PC is not translated and protection is not checked while 
in PALmode. 

The ITB supports the translation extention referred to as a super page. The mappings for su
perpages provide virtual to physical address translation for two specific regions of the virtual 
address space. The first superpage mapping is defined by the virtual address (PC) bits [42:41] = 
10 (BIN). In this mode, the virtual address bits [39:2] are directly mapped to the physical address 
bits [39:2]. The second superpage mapping is defined by the virtual address (PC) bits [42:30] = 
lFFE (HEX). In this mode, the physical address bits [39:31] = 0 and the virtual address bits 
[30:2] are directly mapped to the physical address bits [30:2]. Superpage translation is allowed 
only in kernel mode. If a superpage translation is attempted while not in kernel mode, an access 
violation fault will occur. This is accomplished by forcing the KRE bit to "1" and forcing the URE, 
SRE, and ERE bits to "O" on a superpage translation. Supaer page translation is performed only 
if the super page enable bit (SPE) is set in the ICSR IPR. See Section 1.2.10.17. 

Figure 1-12: Superpage 

Superpage Address Space Mapping 
----------------VutualAddressSpace 

42:40>:000 

VA<42:41~1~(1Hn) 
PA<39:2> = VA<39:2> 

VA<42:40>=100 

VA<42:30> = 1 FFEJ_hexj_ 

PA<39:31> = O 
L PA<30:2> = VA<30:2> 

' 

VA<42:40>=110 VA<42:40>=111 

All 64 enties of the ITB supprot each of the four page size options defined by the granularity hint 
(GH) bits, whioch are logically contained in the PTE. The two GH bits are decoded at the time 
when the PTE is written. The decoded GH bits are then used in the writting of the TAG portion 
of the entry to selectively determine the size of the entries page and therfore define which bits 
of the virtual address are compared for translation and which bits of the address are translated. 
The GH bits anable the comparision and translation of bits [21:13] of the virtual address. 

1-18 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-2: Granularity Hint Bit Mapping 

GH<l> GH<0> Page Size Physical Address of Page Address within Page 

0 0 SK bytes PA<39:13> PA<12:0> 

0 1 64K bytes PA<39:16> PA<15:0> 

1 0 512K bytes PA<39:19> PA<18:0> 

1 1 4096Kbytes PA<39:22> PA<21:0> 

The ITB supports a seven bit Address Space Number (ASN) and single bit Address Space Match 
(ASM) for address comparisons. The ASN of the tag entry is compared to the ASN of the current 
process only if the ASM bit of the entry is not set. If the ASM bit of the entry is set, the ITB 
entry will match all ASN's. The comparision of the process ASN and the ASN of the entries is 
logically performed one cycle before the address comparision. This is done to reduce the load on 
the address match wire. The ASM of the entry is stored with the TAG portion of the entry, while 
the ASM is logically stored as part of the Pl'E. 

There is one valid bit associated with each ITB entry and is determined by the associated MTPR 
instructions. (TBIAP,TBIA, TBIS,TBISI) 

The ITB supports writes to the architectually defined TBIAP register by means of PALcode. 
PALcode should perform a MTPR to the ITB_IASM IPR. This write will have the effect of inval
idating all ITB entries which the ASM bit of the Pl'E is not set. 

The ITB supports writes to the architectually defined TBIA register by means of PALcode. 
PALcode should perform a MTPR to the ITB_ZAP IPR. This write will have the effect of in
validating all ITB entries, and resetting the NLU pointer to its initial state. 

The ITB supports writes to the architectually defined TBIS register by means of PALcode. 
PALcode should perform a MTPR to the ITB_IS IPR. PALcode must ensure that the VA to be 
invalidated is present on E%PC_3B_H<63:0>. 

The ITB supports writes to the architectually defined TBISI register by means of PALcode. 
PALcode should perform a MTPR to the ITB_IS IPR. PALcode must ensure that the VA to be 
invalidated is present on E%PC_3B_H<63:0>. 

When in non-PALmode, the ITB is looked up every cycle in stage 1 of the pipe. The ITB reference 
is performed on I_WPC%FPC_oB_H<42:13> (the virtual PC in non-PALmode), which must be set-up 
to the 1A edge of CLK. During the 1A phase the virtual address of the reference is compared 
to all the cached virtual addresses. If the Page Table Entry (Pl'E) associated with the virtual 
address is in the ITB, then the Page Frame Number (PFN) of the Pl'E is driven out of the ITB in 
lB on I_ITB%PA_lB_H<42:13>. The lower bits of the address (PC), I_IDX%mEF _IDX_lB_H<12:4>, are 
not translated and are merged with the translated address to make up the full physical address. 
The physical address is latched in 1A and driven to the MBOX as 1%1REF _ADDR_2A_H<42:4>. The 
protection bits for the page associated with the Pl'E are checked with the process privileges 
during stage 2 and produce l_ITB%ACC_VI0_2A_H. I_ITB%ITB_mT_2A_H is determined during stage 
2 as well. 

Address translation is not performed if the address is physical. This is determined by bit [O] of 
the address; if set, the address is physical (I.E. PAL-mode) and no translation is performed. Bits 
[ 42:40] are not used. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-19 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The ITB supports diagnostic reads and writes of the Pl'E portion of the ITB entries only in 
PALmode. The entry read or written is determined by the NLU pointer. 

1-20 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-13: ITB Block 

ll ! 
~ 

I ; 
, 

H-NS'W"'Utdil 

<-~ ~ 

i 
g 
a 
c 

~ 
r---, 

s 
=· Iii c Ii 

1~ 
e 
II! 

c;:i,:L~""V.l~-DV'J.'UU .. flll.il ~ 3" "41PH"W°""'"' uS 
~ 

IE. 

1""lm-Od:,•:Jii:f::fl ~ i 
H-a:i-Od::f"loO.:t:::n ....___,_ 

t-
2 

~ •-' a 
2 ~· 

~ ~ i 
1:, 

;; ! ~ ~ 
2 I 

~ 
; I 2 =· =· 
~ 
2 2 

~ ::0 ::0 ::0 
0 J., ,.----l---m H-V'"HDJ.1M~1.LD""lllli 

!::: H"""1d-.-1.1:n11.n 

- I 
~ 

; lfV"3Jol11V!...,.l.LlfllJ.f) 

Ii! H"'lf"8B1.,.,1!:flUfl 

~ ::2: ~ : .. .... .....,._,.1!1""1111-1 

< §; lir IOl-.W--1.l!l"ll.lll g 
a: !i " e ,y,.,,.-......,.l.l!l"l!.11-1 § 
Cl ~ i II!~ HYmN-.....,..1i:flu.n ~ 

~ IV-N~~1.1.:f"lun 

() 1.f"ifS1WW.""3'1ew9Krll.1.L:f'3.1.n 

~ 
H-e-'3Jd---N3'1.U:>""B.J.if ~ 

2 (.) i J 

9 ~ 2 ~ 
•-' ") I m ; i ~ 

m ~ ! 2 
!::: ~. it ::i 

5 ~ g i J., 

;· 
::> 

I--

.---
g 

§ 
li 

H""'BL""3:H>rlaJd-.iJrt ~ H'"'n-o"'-O::N"U.ov"°8JJ-I 
H"lll""'31::13'1aJda.in i tta1.~Jcflun 

H"l11.~.kf"e1n 
'-----

.----

cis:~-ViYQ""\ila~-SJr1 
CO:D>t-f"Sf"Od'S.3 

c1-~-Y.1Yl'Ji:IM~J.d'll:U.d-S.U-I ~ 

ccna,iarfl1C3.J.d'l.3.hflun 
~ f:l 
!sit. 

•u.fW"H-SL-3.tdl.aJd"l:l.lCI ii iii!! C5W"'cllEl.Cm1_3JdMW_I 

ul 
qi:z1.>H""'ElnnslGoNC :ld11af)Co-1 c111AtW:-W-::Bl:n.I 

'-----

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-21 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.4 Branch History Table 

Conditional Branches can alter the normal sequential fl.ow of program execution. In EV-5, when 
the instructions fetched include Conditional Branches, the condition determining the outcome of 
these branches is not known until atleast 84. Rather than waiting till 84 to determine the outcome 
of the branch and then resuming the i-stream fetch, EV-5 predicts the outcome of the branch. 
If the branch is predicted flow-through, it continues fetching instructions from the sequential 
stream. If the branch is predicted taken, it takes a cycle of penalty to determine the branch 
target and then starts fetching instructions from the target address. 

The branch prediction scheme employed by EV-5 is based on maintaining a 2Kx2 bit Branch 
History Table (BHT). 

The Branch History Table is accessed using the fetch index 1%J_BHT_IDX_ZB_H<12:4>. When the i
stream fetcher of the IBOX is fetching a subblock of 4 instructions from the I Cache, corresponding 
8-bit branch history J%I_BR_msT_oB_H<7:0> is fetched from the BHT and supplied to the IBOX 
directly. However, if the fetcher is fetching the instructions from the refill buffer, the index 
supplied to the BHT 1%J_BHT_IDX_ZB_H is a stage ahead relative to the index supplied to the Refill 
Buff er. Hence, to align the fetched history with the fetched instructions, the history fetched from 
the BHT is siloed for one stage and then supplied to the IBOX. History bits driven to the ibox 
are zeroed if the BHT is disabled or the IBOX fetcher is in PAL mode. 

Of the 2 bits per instruction, bit<l> of the history is used as a prediction hint by the Branch 
Predictor logic. Ifbit<l> is set, the conditional branch is predicted TAKEN and ifbit<l> is clear, 
it is predicted NOT TAKEN. Bit<O> of the history is used to determine the new value of bit<l> 
when the history is updated. 

The 8-bit branch history J%I_BR_mST_oB_H<7:0> fetched from the BHT is siloed by the IBOX. As 
the instructions flow in the pipe, associated branch history tracks their flow. The siloed history 
is later used for history updates as explained below. When a conditional branch is issued to 
the EBOX(or FBOX), the branch logic inside the EBOX(or FBOX) checks the branch condition 
and determines whether it is taken or not. Based on taken/not_taken feedback from the EBOX(or 
FBOX), branch history for this conditional branch gets updated and the updated history is written 
back into BHT. These Updates to the BHT are controlled by History UPdate logic (HUP). 

1.2.4.1 HUP Logic 

In 84 the EBOX(or FBOX) examines the branch condition and determines branch outcome. The 
new branch history corresponding to this instruction is calculated according to 2-bit Counter 
scheme: 

case (branch_taken): 

if (branch_history<l:O> != Ox3) new_branch_history<l:O> = branch_history<l:O> + 1; 

case (branch_not_taken): 

if (branch_history<l:O> != OxO) new_branch_history<l:O> = branch_history<l:O> - 1; 

The BHT supports updates only on a subblock basis, i.e. 8 bits at a time. Hence, the 2-bit 
new _branch_history is merged with 6-bit siloed history for the other 3 instructions in the same 
subblock. The resulting 8-bit branch history lo/cJ_BHT_NEW_5B_H<7:0> is written into the Branch 
History Table in 86. 

1-22 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The BHT supports one fetch operation and one update operation every cycle. If the update is 
occuring to the same location as the one being fetched, i.e. the update index I%J_HUP _IDX_5B_H 
and the fetch index 1%.J_BHT_IDX_ZB_H match and 1%J_HUP _EN_5B_H is active, the updated history 
1%J_BHT_NEW_5B_H<7:0> is bypassed to the IBOX as the fetched history J%I_BR_lllST_oB_H<7:0>. 

History updates are not performed in the PAL mode. However, to allow the initialization of BHT 
during the testing, history updates are performed if BHT is disabled. Note that the BHT is not 
initialized on ICache fills. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-23 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-14: Branch History Logic 

::? '#. ,. 
.... 

<( a.. <-i 
a: ::::> v 

" 
I :c 

I I 
<( - ~ 

0 
..... 

~ 
::c 
m 

(.) 0 

0 
..... 

_J 

m 
a.. 
:::> 
I 

1-24 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.5 I-Stream Flow Prediction 

Control instructions in the i-stream can alter the sequential fetch path that the i-stream fetcher 
assumes as the default. EV-5 includes Flow Prediction logic to decode such control flow instruc
tions in the i-stream, predict whether they would change the flow or not and if they are predicted 
to change the flow, generate the target address from which the fetch should resume. 

The Flow. Prediction logic can be divided into 3 subsections: 

1. Branch Predictor Logic, which decodes the i-stream, detects the change of flow and controls 
the target calculations. 

2. Target Calculation Logic, which determines the branch target address. 

3. Return Prediction Stack, which stores subroutine return addresses. 

1.2.5.1 Branch Predictor 

Branch Predictor logic serves three functions: 

1. To detect the change in i-stream flow as a result of branches, jumps, subroutine calls and 
returns. 

2. To control the return prediction stack as result of detected subroutine calls and returns. 
3. To control the calculation of target address from which i-stream fetch should be restarted. 

In Sl the IB gets a subblock containing upto 4 instructions from the ICache or the Refill Buffer. 
In the same stage, the Branch Predictor gets associated predecode, displacement and branch 
history information. In addition, Branch Predictor also gets current index I_IDX%CURRENT_IDX_ 
oB_H< 12:2> so that it can determine which of the 4 instructions being loaded into the IB are 
indeed in the i-stream and therefore, valid. 

Starting sequentially from the first valid instruction, the Branch Predictor looks for uncondi
tional flow-change instructions (CALL_PAL, HW _REI, JMP/JS&'RET/JSR_COROUTINE (Opcode 
lA), BR, BSR) or conditional flow change instructions (Bxx: Integer conditional Branches, 
FB:xx:Floating conditional Branches) whose branch history information flags 'Predict Taken'. If 
any such instruction is detected in the fetched subblock, it signals a flow change from the se
quential stream. The instructions sequentially after this instruction are not in the i-stream and 
are therefore, invalid. 

If the instruction that caused the flow change is CALL_PAL, BSR, JSR or JSR_COROUTINE, 
it generates a stack PUSH operation, pushing the return address (PC + 1) onto the Return 
Prediction Stack. 

If that instruction is a HW_REI, RET or JSR_COROUTINE, it generates a stack POP operation, 
popping the return address out of the Return Prediction Stack. 

Branch Predictor generates all the necessary control signals for calculating the correct target 
address. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-25 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.5.2 Target Calculation 

The target address TPC<42:0> from which the fetch should resume is determined according to 
the type of the instruction causing the i-stream flow change. The following algorithm describes 
in detail how the target address is determined. In the implementation, the index part of the 
target address (TPC<12:0>), called I_FPR%PREDICTED_IDX_lA_B<12:0> is calculated in Sl-A and 
is jammed into the !Cache Index Mux in Sl-B to restart the fetch in the next cycle. In this cycle, 
which is SO of the target, the remaining part of the target address (TPC<42: 13>) is calculated 
and is called I_WPC_FPC%FPC_OB_B<42:13>. 

switch (Instruction_type) 

case CALL PAL: 

TPC<O> = l; 
TPC<S:l> = O; 
TPC<ll:6> = INSTR<S:O>; 

TPC<l2> = INSTR<7>; 
TPC<l3> = l; 

/* Set the PAL mode bit */ 

/* This encoding allows 64 CALL PAL functions, each with 
a code region size of 64 bytes */ 

/* Previleged instruction encoding */ 

TPC<42:14> = PAL_BASE_IPR<42:14> /* Since CALL_PAL instr uses PAL_BASE_IPR at the fetch 
end, there should appropriate number of NOPs between 
MTPR to PAL_BASE_IPR and next CALL_PAL */ 

case RET, JSR_COROUTINE: 

TPC<l2:0> = TOP OF STACK<l2:0> /* POP the return prediction stack */ 
TPC<42:13> = IC_TAG<42:13> /* Predict that !Cache Tag = Upper bits of the target PC. 

PC comparison is done in SS to verify this */ 

case JMP, JSR: 

TPC<O> = Current PC<O> /* keep the same mode */ 
TPC<l> = O; 

/* Use Displacement Hints */ 
TPC<l2:2> = Current PC<l2:2> + (INSTR<lO:O> << 2) + l; 
TPC<42:13> = IC_TAG<42:13> /* !Cache Tag =Upper PC */ 

case BSR, BR, Bxx, FBxx: 

TPC<O> = Current PC<O> /* keep the same mode */ 
TPC<l> = O; 
TPC<l2:2> =Current PC<42:2> + (SEXT(INSTR<20:0>) << 2) + l; 

Note: 1) PC<O> = PAL mode. 
2) PC<l> = O. 
3) Current_PC<42:0> = PC of the instruction causing the flow change. 

As shown in the EV-5 waterfall chart, a change of i-stream flow leads to one bubble in the fetch 
sequencing. This bubble gets pressed out in the IB stage or the SLOT stage if there is SLOT or 
ISSUE stall for at least one cycle. 

The block diagram of the Branch Predictor along with some details of the target calculations is 
given below. 

1-26 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



c 
C5 
~ r-
::D m 
~ 
::D 

Q 
m 
c 
c 
~ 
::D a; 
c: 
-t 
6 z 

-t ::r 
CD 

ET 
0 
>C 

..... 

.b ..... 

l_IBC%1B_FULL B H C >~ 

Jo/oPREENCODE_OB_H< 15:0>c-+-l -----i 

Jo/oBR_H IST _OB_H<7,5,3, 1>c::> I I 

< 2 o:o> I < 111 Jo/olC_DATA_OB_H<116:96,84:64,52:32,20:0> / __ _ 

3:2> n 

,, 
c· 
c 
; 

!BPR 
~ 

BLO 
BRANCH_PREDICTOR 

VALID<3:0> 

TARGET _CALCULATIONS 

l_BPR%BR_TAKEN_1AtH m 
---~c::::> ; 
I BPRo/oTAG~_UPC_ A~ 

I BPRo/oCALL PAL 1A H ::r 
- c:> - "tJ .. 
l_BPR%STAC&POP _1r-i ~ 
I BPRo/oSTAC~PUSH_ A_il ~ 
I BPRo/oSTACK PUSH 1Dg:..1A_H<3:2> ~ 

0- ·- d 

~ 
""" "C:S 

l_BPRo/o TPC_MUX_SELI 1 

l_BP ~o/oFLO~CH NG_ 1 A_H<3 :0> 

I 
....--~~~~~~~~~~~~-+-~~~~~-+-~~--+~--.rl.l 

A 
~ 
C\I 

v 
:x: 

I 
< 

I 
x e 

I 
0 

~~ 
D.. 

A 

11 CD 

C\I 

In 

g 
Si a ..... g 

Ll_BP Ro/o T 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.5.3 Return Prediction Stack 

EV-5 includes a Return Prediction Stack to predict the return address on a return from subroutine. 
The EV-5 Return Prediction Stack is 12 entries deep and has pointer-repair logic to maintain its 
correctness in the presence of exceptions (Figure 1-17). The EV-5 implementation of the stack 
provides the index bits (PC<12:2>) and the PAL-mode bit (PC<O>). 

Alpha archiecture provides four instructions to make a subroutine call: BSR, JSR, JSR_ 
COROUTINE and CALL_PAL. Return from a subroutine is made through the instructions RET, 
JSR_ COROUTINE or HW _REI. The return location is the PC of the instruction after the calling 
instruction. 

When an exception occurs, EV-5 makes a call to a PAL subroutine requesting the service of a 
priviledged exception handler. The return from this PAL service routine is made through a HW _ 
REI instruction.The return location is the PC of the instruction that caused the exception. 

The Branch Predictor detects subroutine call and return instructions in the i-stream in SL On 
detection of a subroutine call instruction, the Branch Predictor generates a stack PUSH operation 
and pushes longword-incremented PC<12:0> onto the stack. In the implementation, the stack 
pointer is updated in S 1, but the return address is written to the stack in S2. On detection of 
a return, branch predictor generates a stack POP operation and captures the current top of the 
stack as the return address. 

Note that the above Branch Predictor-intiated stack operations are actually speculative. The 
instructions prior to the one generating a PUSH or POP can be mispredicted, replayed or trapped. 
If an instruction is mispredicted (or replayed or trapped), all the PUSHes and POPs that occured 
after the mispredicted instruction have to be undone. EV-5 Return Prediction Stack has the 
pointer-repair logic for this purpose. 

The pointer-repair logic includes two additional stack pointers, called the 5B pointer and the 7B 
pointer to 'repair' the stack after an S5 exception and an S7 exception respectively. 5B stack 
pointer is updated when an instruction reaches S5 successfully. Hence, the 5B pointer represents 
the correct state that the stack should be restored to if an S5 exception occurs. Similary, the 
7B stack pointer is updated when an instruction reaches S7 successfully. Hence, 7B pointer 
represents the correct state that the stack should be restored to if an S7 exception occurs. 

On an S5 exception, therefore, the 5B pointer is copied back to lB pointer and that constitutes 
the 5B stack repair. Similarly, on an S7 exception, the 7B pointer is copied back to lB and 5B 
pointers and that constitutes the 7B stack repair. 

Certain exceptions (ITB miss exception in 5B, any PAL service routine exception in 7B) require 
that a return address be also pushed on to the prediction stack. If so, the pointers are updated 
to reflect the new PUSH at the time of the stack repair, but the return address is written to the 
top of the stack in the next cycle. 

The stack pointers are implemented to form circular ring. Hence, the stack wrapps up on overflow 
or underflow. 

The waterfall chart shown below illustrates the operation of the Return Prediction Stack for a 
simple case of JSR followed by a RET(Figure 1-16). 

1-28 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-16: Return Stack Operation 

JSR 

so 

I 
x I 

Sl 

1 • 2 

RET 

S2 S3 S4 SS S6 

• 3 4 . 6 7 • 8 

I 
I 5 . 

1. Branch Predictor detects JSR and generates a PUSH. 
2. Stack Pointer 18 advances to new top of the stack. 
3. Return Address is written at new top of the stack. 

S7 

• 9 

4. The pushed return address appears at the top of the stack. 
5. Branch Predictor detects RET and generates a POP. 
6. The return address appearing at the top of the stack is popped. 
7. JSR is issued. 
8. Stack Pointer SB advances to respond to the issued JSR. 
9. Stack Pointer 78 advances to respond to the successfully completed JSR. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-29 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-17: Return Prediction Stack 

REPAIRABLE 

::i:: ::c ::c 
I I I 

< < < 
C\I ..... ....... 

::c ::c I I I 
I I ::c x x c 

<( < I c ~ w 
0 ....... <( - ..... 

I I > I I en I- I-a. 0 I z z 0 
0 a. ..... a. 
..... I w w I ...J a: a: I a. :::> a. 
~ < <( a: a: < ..... a: LL 

:::> :::> a: 
en I- 0 0 I-

A 

B 

STACK CELLS 

1-30 Thelbox 

STACK 
FPR 0/o 

::i:: ::c 
I I ::i:: ::c 

::c < <( I I ::c 
I IO ...... < <( I 

<( I I ..... ,... <( 
....... c c I I ,... 

I w w c ::c I 
::c I- :::> w Cl) a. 
Cl) en Cl) :::> :::> 0 
:::> 0 ~ en a. a. 
a. a. ~ I I 

I I I ~ ~ 
a. a. ::c I 0 0 
<( < Cl) a. <( < a: a: :::> 0 ..... ..... 
..... I- a. a. en Cl) 

STACK CONTROL 

1B 

p 
T 
R 

58 

p 
T 
R 

7B 

p 
T 
R 

POINTER LOGIC 

::c 
I 

<( ,... 
I 

c 
...J 

< 
> z 

I 
::c 
0 ..... 
w 
LL 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.6 PC 

EV-5 PC logic keeps track of the PC of the instructions moving in the pipeline. 

The PC logic functionality can be divided into two sub-sections: The FPC (Fetch PC), which 
calculates the PC when the instructions are fetched from the !Cache or the Refill Buffer, and 
the EPC (Execution PC) which calculates the PC when the instructions are executed. EPC also 
compares the PC it calculated with a siloed version of the the PC that the FPC calculated and 
signals a PC_MISPREDICT trap if they do not match. 

1.2.6.1 Fetch PC 

Fetch PC sub-section generates the PC associated with each subblock of instructions being sup
plied to the IB. This PC, called FPC<42:0> is calculated in a pipelined fashion in two stages: SZ 
and SO. 

In the stage SZ, the index part of the PC (FPC<12:0>) called 1%J_IC_INDEX_ZB_H<> is calculated 
so that the ICache fetch can be done in SO. In the stage Sl when the !Cache fetch is in progress, 
the tag part of the PC (FPC<42:13>) called I_WPC_FPC%FPC_oB_H<42:13> is calculated. As a 
result, when the fetched instructions enter the IB stage S 1, the associated PC (FPC<42:0>) is 
available for tag comparison (I_WPC%FPC_FOR_TAG_OB_H<42:13>, ITB look-up (I_WPC_FPC%FPC_ 
FOR_ITB_oB_H<42:13> or PC-silo (I_WPC_FPC%FPC_oB_H<42:13>. 

The calculation of FPC is based on the the type of event occuring in a particular cycle. These 
details are given in the algorithm described below. 

/* FPC Calculation */ 

switch(Event_Type) { 

case (7A trap or replay) : /* Trap or replay is selected based on instr-order */ 

FPC<42:0> = TRAP_PC<42:0>; /* trap PC is the PAL entry point of trap handler */ 
FPC<42:0> = REPLAY_PC_7A<42:0>; /* replay PC is the PC of the instr to be replayed */ 

case (SA Bxx mispredict, load-use replay or JSR/HW_REI PC mispredict): 

FPC<42:0> = BR_ALT_PC<42:0>; /* Correct Target PC calculated by the EPC on 
Conditional Branch Mispredict from E/FBOX */ 

FPC<42:0> = REPLAY_PC_SA<42:0>; /* PC of the load-use instruction to be replayed */ 

FPC<42:0> = JSR_HW_REI_PC<42:0>; /* PC from EBOX (JSR), or PC from Exception Address 
Register (HW_REI) on PC mispredict */ 

case (ICache miss): 

FPC<42:0> = Current_PC<42:0>; /* Freeze the PC of the instruction missing in the ICache * 

case (I-stream Flow Change): 

default: 

FPC<42:0> = TPC<42:0>; /* Target PC predicted by the branch predictor. TPC 
is speculative and hence, it is later subjected 
to branch mispredict and PC mispredict checks */ 

FPC<42:4> = Current_PC<42:4> + l; /* Next sequential subblock of 4 instructions */ 
FPC<3:2> = O; 
FPC<l:O> = Current_PC<l:O>; /* preserve the PAL mode bit */ 

Note: 1. JMP/JSR/RET/JSR COROUTINE instructions have the same opcode(lA). 
The discussion above refers to all of them by the single keyword "JSR". 

2. Events with higher priority are listed earlier. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-31 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The calculated FPC is siloed upto 87 in the PC datapath. The siloed FPC is used for various 
purposes such as calculating BR_ALT_PC or REPLAY_PC_XA, loading EXC_ADDR_REG, supply 
index for history updates, etc. 

Note that the FPC<42:0> calculated in the event of I-stream flow change is actually speculative. 
As explained in the Section 1.2.5, TPC<42:0> is calculated based on the prediction of conditional 
branch outcome, Return Prediction Stack or !Cache tag. Since the prediction can be wrong, the 
TPC can be wrong and hence the FPC can be wrong. 

In the case of a conditional branch, FPC<42:0> is the predicted target from which the I-stream 
fetch continues. When that conditional branch is issued, the EBOX(FBOX) branch logic deter
mines the branch outcome and compares it with the predicted outcome. A Mranch Mispredict 
trap is signaled in 5A if the prediction turns out to be wrong. The fetch is restarted from BR_ 
ALT_PC<42:0>. 

In the case of a JSR or a HW_REI, FPC<42:13> is predicted to be the !Cache Tag<42:13>. If the 
prediction turns out to be wrong, or there is an ASN mismatch, PC mispredict logic signals a PC 
mispredict trap in 5A and the fetch is restarted from JSR_HW_REI_PC<42:0>. 

1-32 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



w 

(.) 
a... 
u. 

Figure 1-18: Fetch PC 

EV5 

H OBI 3lll::IM 

w 
....J 
0 
> 
0 

z 
Q 
t
c( 
....J 
::::> 
0 
....J 
c( 

0 

0 
D.. 

a: 
w 
D.. 
D.. 
::::::> 

::r: 
I 

c( 
..-

I 
>-a: 
a: 
c( 
0 

I 
a: 
w 
0 
0 
c( 
0 
~ 
a: 
Q. 
ID 

I -

::r: 
I 

c( 
..-

I 
>-
a: 
a: 
c( 
0 

I 
a: 
0 
~ 

* ::r: 
0 
u. 

I -

'°r----+-<:::1 H-OBl-GV3 l::I 
L..;::...'..~s----t-c:J H- ~Bl-GV3 l::I 

A 
(') 

.. 
N 
N 
v 

::r: 
I 

c( 
..-

I 
Q. 

~ 
0 

* a: 
Q. 
ID 

I -

ID 
0 

A 
(') 

N 
~ 
v 

0 
Q. 

I-
z 
w 
a: 
a: 
::::::> 
0 

I 

H ~Bl 3lll::IM 

H 

< 
0 

0 
Q. 

I -w 
a: 

I 
;: 
::r: 

I 
a: 
CJ) , 
a: 
0 

0 
Q. 

I (')(')(')(') 

>-
c( c..ic..ic..ic..i ....I 
Q. ..,.~..,.~ 

w vvvv 
a: :::c::r:::r:::r: 

I I I 
<<<< 
IOIOI'--

0 I l IO 
oooa. Q. 

w a.a.a. 
I w.._\,...~ >-

....I >-....1<a: 
a: ....Jc(....11-
c( a: P-
w c(U:lU 

w wina: 
I-
0 
z 

DIGITAL RESTRICTED DISTRIBUTION 

- -VO avo1 ~d M3N 

H -V-13S - ~d -M3N 

::r: :::c 
I I 

c( ~ I ..... 
I :::! I-

l c( 

:I: w 
I a: 

0 I-
C/l 

* Ill ..., 
a: ..,. 
:::c 
(.) 
u.. 

The lbox 1-33 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.6.2 Execution PC 

EPC generates BR_ALT_PC<42:0>, receives JSR_HW _REl_PC<42:0> and performs PC mispre
dict calculation. 

1.2.6.2.1 BR_ALT_PC 

Every time a control instruction is issued, an associated BR_ALT_PC is generated in S4. BR_ALT_ 
PC has two meanings depending on the type of the control instruction. If the control instruction 
is a conditional branch predicted Not Tak.en, BR_ALT_PC is the PC of the conditional branch 
target. Otherwise, it is the PC of the instruction after the associated control instruction. 

BR_ALT_PC generation logic examines the pipes FA and El in S3. It identifies the type of control 
instruction and uses siloed branch history to calculate the BR_ALT _PC: 

if (FBxx/Bxx, predicted Not Taken) 
BR_ALT_PC<42:0> = PC of the branch + displacement + 4; 

else 
BR_ALT_PC<42:0> = PC of the control instruction + 4; 

BR_ALT_PC is an all-in-one address for multiple tasks. If the control instruction is a conditional 
branch and the EBOX or FBOX signals a Branch Mispredict, BR_ALT_PC is the address from 
which the i-stream fetch is to be restarted. If it is a JSR (Opcode lA), BR_ALT_PC is the PC to 
be supplied to the EBOX. Finally, if it is a CALL_PAL, BR_ALT_PC is the address to be latched 
into the Exception Address Register. 

1.2.6.2.2 JSR_HW_REl_PC 

A JSR instruction (Opcode lA) causes the i-stream to jump to an address pointed to by an integer 
register. When a JSR instruction is slotted, this address appears on the EBOX bus E%PC_3B_ 
H<63:0>. HW_REI is similar, except that the address is stored in the IBOX Exception Address 
Register and it appears on the IBOX bus I_IPR%EXC_ADDR_REG_B_H<63:0>. The Issue Decode 
Logic inside the PC section decodes the type of the control instruction slotted in S3 and selects 
one of the above two PCs as the JSR_HW _REI_PC. Since a JSR instruction does not affect the 
existing PAL mode setting, E%PC_3B_H<l:0> are ignored and instead I_WPC_SIL%FPC_3B_H<1:0> is 
used to form J8R_HW _REI_PC<1:0>. E%PC_3B_H<63:43> are checked for correct sign extension. 
If there is a sign-extension error, the error is siloed till 87 and then reported as an i-stream 
Access Violation Fault. 

1.2.6.2.3 PC Mispredict 

The JSR_HW _REI_PC is the right PC where the i-stream should jump to. When a JSR or HW _ 
REI is issued, the Issue Decode Logic posts a PC Comparison in 84-A to compare the right PC 
with the PC predicted by the Fetch PC logic. 

The PC predicted by the Fetch PC logic is available in the PC silo. However, this PC can currently 
be in S3 or in S2 depending on whether the i-stream flow-change bubble is pressed or not. The PC 
Mispredict logic relies on the 'Target' bit supplied by the IB to determine where the PC is. If the 
Target bit is TRUE at the time the JSR or HW _REI is issued, PC is already in S3 and hence the 
comparison can be done right in the same cycle in phase B. However, if the target bit is FALSE, 
PC is yet to come in 83. The PC comparison is then postponed till next cycle. In any case, if a 
trap is posted in a cycle the PC comparison is to be done, the PC comparison is cancelled. 

1-34 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The address comparison takes place in phase B. Bits <42:2> are compared. If there is an address 
mismatch, a PC mispredict trap I_WPC%PC_MISPREDICT_sA_H is signaled. Note that this address 
mismatch could be because of the following three reasons: 

1. JSR hint bits (INSTR<lO:O> were wrong. 
2. Return Prediction Stack was corrupted. 
3. The address was not in the ICache and hence, the assumption of FPC<42:13> = IC_ 

Tag<42:13> was wrong. 

In addition to the address mismatch, a PC mispredict trap is also signaled if any of the following 
conditions was TRUE: 

1. Target bit was FALSE when the PC comparison was done. 
2. ASN_HIT was FALSE. 
3. For a HW _REI PC comparison, PAL mode bit ( <0>) did not match. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-35 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-19: Execution PC 

1-36 Thelbox 

* :E 0 
<( a.. 
a: w 
(!) I 
<( 0 

a.. 
o~ _, 
~ 
0 
0 
_J 

Cl 

0 
Q. 
w 

1 
" .. _, 

"' 
~: 
~ 

0 
ll. 

~: 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.7 Instruction Buffer{IB) 

The IB stage consists of two four-entry instruction buffers. The two buffers form a circular FIFO 
queue. The IB control logic maintains a set of read/write pointers which control the operation of 
the IB. The IB is written in SlA of the pipe, whenever the output of the ICACHE or the Refill 
Buffer is valid. The IB is not written during the bubble cycle caused by any one of the following 
flow-change instructions: 

• Conditonal branch predicted taken. 
• Unconditional branch, JMP, CALLPAL or HW _REI. 

If the slot stage is finished with the last set of instructions it was operating on, the IB supplies 
it with a set of four new instructions in SlB. The IB stage can fill up if the slot stage does not 
accept instructions from the IB, at the rate at which the ICACHE/RFB delivers them. The IB 
then asserts a backpressure signal 1%J_m_STALL_A_H to the cache/fetcher indicating that it cannot 
accept any further data. The signal 1%J_IB_STALL_A_H is asserted in S2A whenever the IB clocks 
in valid data in SlA, causing both buffers to go full and if the slot stage is not done with the 
last set of four instructions that it was operating on. As an optimization l%J_IB_STALL_A_H is 
deasserted in S2A if a flow-change instruction was latched by the IB in SlA. This can possibly 
supress some bubbles in the branch-taken path. 

The IB stage maintains a valid bit for all 8 instructions in the 2 buffers. Whenever an istream 
reference is not octaword aligned (as in the case of a branch to the middle of an octaword), these 
valid bits can be used to selectively invalidate some instructions from a group of four. 

The IB stage also has a flow-change bit for all 8 instructions. The branch prediction logic detects 
the presence of a flow change instruction in the set of four instructions presented to the IB. This 
information is stored along with the instruction in the IB and is used by the SLOT stage to 
invalidate all instructions following a flow change instruction. 

The IB control logic controls the movement of addresses along the PC pipe. This ensures that the 
PC and the instruction move in lock-step. In addition to the PC, the IB control also controls the 
movement of other miscellaneous information associated with an instruction. Table 1-3 contains 
a list of all miscellaneous bits that are piped along with the instruction. 

Table 1-3: MISCELLANEOUS IB BITS 

Name 

ASNOK 

JSR_ TARGET 

PAL_MODE 

IACCVIO 

ITBMISS 

Width 

1 

1 

1 

1 

1 

Description 

On JMP/HW _REI instructions indicates a predicted ASN field match 

Instr stream is the target of a JSR 

PAL Mode 

!Stream ACCVIO 

ITBMiss - trap later 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-37 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.7.1 HW_REI - stall prefetch 

The hardware supports a special encoding of the HW _REI instruction which inhibits prefetching. 
Whenever this special HW_REI instruction is clocked into the IB in SlA, the IB control logic 
asserts I%J_IB_STALL....A_H in 82A. The stall signal remains asserted until 3 cycles after the HW _ 
REI is issued i.e. when the HW _REI instruction is about to enter 86 of the execution pipeline. 
This special instruction has been devised in order to synchronize lbox changes (such as ITB writes 
which take place in 86) with the HW _REI. Using the the special HW _REI instruction after an 
MTPR ITB_TAG or MTPR ITB_Pl'E will ensure that instructions following the HW _REI, do not 
access the ITB until after the ITB write is complete. 

1-38 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 
'~ 

~ ' ~ ) 

Figure 1-20 I ~ S ~t L!Ogic 

L 

111 II1 l 

l 

DIGITAL RESTRICTED DISTRIBUTION 

l 

I . 
; I 

l 
i 

I I ; 

L 

tu 

) 

J 

] 

The lbox 1-39 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.8 Instruction Slotting 

The SLOT stage of the IBOX pipeline receives a set of four instructions and valid bits from the 
IB stage in S lB. The function of the SLOT stage is to route each instruction to the appropriate 
integer/floating point execution unit required by the instruction. The slotting process begins 
with the first valid instruction and is carried out "in-order" with respect to the actual instruction 
ordering. In the event that the appropriate execution unit is not available for an instruction (i.e. 
an earlier instruction has already been slotted to that pipe), the slotting process stops and no 
attempt is made to slot instructions that follow in that cycle. Figure 1-21 

The SLOT stage logic is assisted by five pre-decode bits calculated for each instruction during 
the ICACHE fill operation. These predecodes identify, among other things, the pipe(s) that a 
particular instruction requires for execution. 

The SLOT stage routes all 32 bits of the instruction to the appropriate pipe in S2A. In addition 
it also sends a two bit encoding for each instruction that indicates the position of the instruction 
within the block of 4 instructions. The first of the 4 instructions is tagged as 00#2, the second as 
01#2, etc. This encoding is used by the Issue stage to prevent out of order issue of instructions. 

The SLOT stage also generates a valid bit for each of the four execution slots. The Issue stage 
receives the valid bits in S2B and disables the instruction-issue for the non-valid pipes. 

Instructions that are not slotted in a cycle are retried in the following cycle. This process continues 
until all valid instructions in the SLOT stage have been slotted and have advanced to the issue 
stage. Until this happens the SLOT stage does not accept any further instructions from the IB 
stage. 

1.2.8.1 Special Slotting Rules: 

Instructions can belong to any of the following categorties: 

• Requires Integer Pipe EO (Class EO) 
• Requires Integer Pipe El (Class El) 
• Requires any one of the Integer Pipes EO/El (Class EE) 
• Requires the Floating Add Pipe FA (Class FA) 
• Requires the Floating Mul Pipe FM (Class FM) 
• Requires any one of the Floating Pipes FA/FM (Class FE) 
• Requires NO execution slots- instruction is a UNOP (Class UNOP) 

The slotting of an EE class instruction is dependent on whether a particular instruction sequence 
is detected in the group of four instructions to be slotted. If the instruction sequence EE..EE or 
EE..El is detected, an attempt is always made to first slot the EE class instruction to pipe EO. 
If pipe EO is unavailable, the instruction is then slotted to pipe E 1. If the sequences EE. .EE or 
EE..El are not present, an attempt is first made to slot the EE class instruction to pipe El. IF 
pipe El is unavailable, the instruction is then slotted to pipe EO. 

If an instruction is capable of being issued to either the FA or FM pipes, an attempt is always to 
made to first slot it to pipe FA. 

1-40 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

In addition to execution unit conflicts, any one of the following situations can defer or stop in
struction slotting. 

1. Slotting stops when a flow-change instruction is encountered. All instructions that follow the 
flow-change instruction are killed. The instructions which belong to this category are: 
• Predicted taken Floating/Integer Conditonal branches. 
• Unconditional Floating/Integer branches, JSR, JSR_ COROUTINE, JMP, RET, CALLPAL 

orHW_REI. 
2. Slotting is deferred when a second branch-class instruction is encountered (i.e any Branch, 

JSR, JSR_ COROUTINE, JMP, RET, CALLPAL or HWREI). The slotting of the second branch
class instruction and all following instructions is deferred to the next cycle. Splitting of 
branch-class instructions is required in order to avoid having to track multiple alternate PCs 
in the event of misprediction and also simplifies some other control. 

3. Slotting is deferred when a Load-class instruction (i.e Floating or Integer Load) is encountered 
following a Store-class (i.e Floating or integer Store, Opcode = Ox18 and LDX_L). Slotting of 
the Load-class instruction and all instructions that follow is deferred to the next cycle. This 
is done because issuing Loads and Stores simultaneously causes Dcache resource conflicts. 

4. Slotting is deferred when a Store-class instruction (i.e Floating or Integer Store, Opcode = 
Ox18 and LDX_L) is encountered following a Load-class (i.e Floating or integer Load). 

5. Slotting is deferred when the slot stage detects instructions sequences of the type I-F-I-I or 
F-I-I-I, where F refers to a floating instruction and I refers to an integer instruction. The 
slotting of the second integer instruction (i.e the third instruction) is deferred to the next 
cycle. This facilitates the compiler use of EV 4 padding rules for EV5. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-41 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-21: Instruction Slotting 

EV5 Opcodes, What they do, where they go .... 

Notes: 

Ope. -->Opcode (bits 31:26) 
Instr. (s)/Mnemonic --> Contains the Mnemonics associated with each field... Also contains function field decodes when 

appropriate 
Primary Exec. Boxes --> boxes that "operate" on the instruction 
Pre-Decodes --> 4 bit predecode value stored in the !CACHE with the instruction. 
Prod. --> Register results produced 
Cons. 
Bubbles 

-->.Register results consumed 
--> Number of pipe bubbles inserted until the "Prod." register is available. 

A 0 indicates that the result is available to the next cycle. A "none" indicates that 
no destination register is locked and therefore this instruction will not block nrultiple 
issue due to conflicts in the current issue cycle. 

+---------------------------------------------------------------------------------------------------------------------------------+ 
I Ope. I Instr. (s) IExec. I Pred. I Issue I Prod. I Cons. I Bubbles I Comment 
I I /Mnemonic I Boxes I Value I Pipes I I I I 

00 CAL_PAL !BOX 1010 El none IBOX stalls further issuing until all the pipes have 
have drained and all loads have gotten past the trap 
point. The !BOX then looks up the dispatch address 
in a table and then alters the flow to that address. 

The EBOX pipe basically treat this as a NOP ... 
****Moved to PIPE El only***** 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 01-071 reserved I !BOX I 0001? I EO I Reserved Instruction Fault on Issue, slot maps to EO 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 08 I LDA I EBOX I 0011 I EO or El Ra Rb I Ra = Rb + disp (Not really a LOAD!! -- totally EBOX) 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 09 I LDAH I EBOX I 0011 I EO or El Ra Rb I Ra= Rb+ (disp*65535) (Not really a LOAD!! -- totally I 

I EBOX) I I I I I I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I OA reserved I !BOX I 0001? I EO I Reserved Instruction Fault on Issue, slot maps to EO 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I OB I LDQ_U I EBOX, I 0010 I EO or El Ra I Rb I 2 hit I Unaligned integer load... The EBOX treats this like a 
I I I MBOX I I I I I normal load. Alignment Trap not generated .. 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
IOC-OEI reserved I IBOX I 0001?1 EO I Reserved Instruction Fault on Issue, slot maps to EO 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I OF I STQ_ U I EBOX, I 0000 I EO I Ra, Rb I none I Unaligned integer store... The EBOX treats this like a I 
I I I MBOX I I I I I normal store. Alignment Trap not generated. I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

10 Iarith 
(binary func) I 

(xxxOxx) I 
AD Di I 
SnADDi I 
SU Bi I 
SnSUBi I 

I 
(xxxlxx) I 

CMPxx I 
CMPUxx I 
CMPBGE I 

EBOX 0011 

EO or El Re 

EO or El Re 

Ra,Rb 

Ra,Rb 

Integer Adds/Subs including scaled ... 
either pipe, 1 cycle latency on Re 

Integer Compares 
***Now in either E pipe but still has 2 cycle 

latency**** 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
11 !logs EBOX 0011 

(binary func) t 
(xxxOxx) I EO or El Re Ra, Rb Integer Logicals 

AND I 1 cycle latency, either Pipe 
BIS I 
XOR I BIS R31,R31,R31 will be the preferred method of 
BIC I creating integer NOPs in EV5 ! ! ! 
ORNOT I 
EQV I 

I 
(xxxlxx) I EO or El Re Ra,Rb Integer CMOVs, two cycle latency, either pipe 

CMOVxx I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

Figure 1-21 Cont'd on next page 

1-42 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-21 (Cont.): lnstrudion Slotting 

+---------------------------------------------------------------------------------------------------------------------------------+ 
I Ope. I Instr. (s) !Exec. I Pred. I Issue !Prod. I Cons. !Bubbles! Comnent 
I I /Mnemonic I Boxes I Value! Pipes I I I I 

----------------------------------------------------------------------------------------------------------------------------------+ 
12 Ishft EBOX 0001 EO Re Ra, Rb Integer Shifts ***MOVED to PIPE EO**** 

SLL 
SRL 

SRA 

EXTxx 
INSxx 
MSKxx 
ZAPNOT 
ZAP 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
13 IMUL EBOX OODl EO Re Ra,Rb MULL Integer Multiplies 

MULi 7 Latency based upon function field... No !BOX issues I 
UMULH UMULH around latency since IMUL bit controls... I 

IMULQ 9 ****MOVED to PIPE EO**** I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 14 reserved I !BOX I 0001? I EO I Reserved Instruction Fault on Issue, slot maps to EO 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

15 VAX_FP FBOX 
(binary func) I 

(xxxxxxxxxOO) I 0110 FA Fe Fa,Fb Add/Subs/Compares /Converts •.•• 
(xxxxxxxxxOl) I SRM requires that Fa be F31 on Converts 
(xxxxxxxxlxx) I 

ADDF I 
ADDG I 
SUBF I 
SUBG I 
CMPGxx I 
CVTGxx I 
CVTDG I 
CVTQF I 

I 
(xxxxxxxOOlO) I 0101 FM Fe Fa,Fb Floating Multiplies 

MULF I 
MULG I 

I 
(xxxxxxxOOll) I 0110 FA Fe Fa,Fb n? Floating Divides, latency depends upon the data type 

DIVF I in the function field. The IBOX doesn't care since 
DIVG I all divides set the DIVIDE bit dirty. 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
16 IEEE_FP 

(binary func) I 
(xxxxxxxxxOO) I 
(xxxxxxxxxOl) I 
(xxxxxxxxlxx) I 

ADDS I 
ADDT I 
SUBS I 
SUBT I 
CMPTxx I 
CVTQS I 
CVTQT I 
CVTTx I 

I 
(xxxxxxx0010) I 

MULS I 
HULT I 

I 
(xxxxxxxOOll) I 

DIVS I 
DIVT I 

I 

FBOX 

0110 

0101 

0110 

FA Fe Fa,Fb 

FM Fe Fa,Fb 

FA Fe Fa,Fb n? 

Adds/Subs/Compares/Converts 

SRM requires that Fa be F31 on Converts •.• 

??Do we understand rounding to +/- infinity?? 

Floating Multiplies 

Floating Divides ••• The latency depends upon the data 
specified in the function field. The IBOX doesn• t 
care what the acutal latency is since they all set 
the divide bit. 

+-----+---------------+-------+------+-----------+------+-------+------ +---------------------------------------------------------+ 

Figure 1-21 Cont'd on next page 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-43 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-21 (Cont.): Instruction Slotting 

+---------------------------------------------------------------------------------------------------------------------------------+ 
I Ope.I Instr.(s) )Exec. I Pred.I Issue )Prod. I Cons. IBubblesl Comment 
I I /Mnemonic I Boxes I Va 1 ue I Pipes I I I I 
----------------------------------------------------------------------------------------------------------------------------------+ 

17 I DI_FP I FBOX Datatype Independent Floating Point Ops 
I (hex tune.) I 
(all excpt. 020) 

CPYSN 
CPYSE 
FCMOVxx 
MT_FPCR 
MF_FPCR 
CVTQL/x 
CVTLQ 

(020) 
CPYS 

0110 FA 

0111 FM or FA 

Fe Fa,Fb 

Fe Fa,Fb 

Floating CMOV, Mx_FPCR, Int-Int Converts, CPYS negate, 
CPYS &.exponent. To simplify decoding, the MT_FPCR 
has a latency of 5 even though it has no register 
destination. In addition, an MF_FPCR will stall on 
Fa, Fb dirty even though it doesn't actually read the 
reqs... This is acceptable since the SRM requires 
DRAINTs around the Mx_FPCR instructions. 
the SRM requires that Fa is F31 on the Converts .•• 

Copy Sign. Using CPYS F31,F31,F31 results in a floating! 
point NOP. Therefore, the CPYS opcode will be slotted! 
to either available pipe to effect the NOP case. As I 
a result of the NOP decision, real CPYS will be done I 
in the first available pipe, FA or FM. I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
18 MISC. 0001 I Goofy Miscellaneous Instructions .•. Most can be treated 

(hex funct.) I as either EBOX Nops or special cases of LOADS (see 

Draint IBOX EO 
(0000) 

MB IBOX, EO 
(4000) MBOX 
(4400) 
(4800) 
(4C00) 

FETCHx MBOX, EO 
(8000) EBOX 
(AOOO) 

RPCC (COOO) MBOX, EO Ra 
RC (EOOO) EBOX 
RS (FOOO) 

Rb 

I FETCHx below) .•. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I x 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I none 
I 
I 
I 
I 2 
I 
I 
I 
I 
I 

Issue??? Do we need to decode all 16 bits of the 
function field... Could we simply check the top 
4-8 bits as in EV4????? 

Issue??? The current plan is dirty check these like 
special cases of LOADs for the Rb source. The Ra 
dest will not set the load/miss bit unless the inst. 
is RPCC,RC, or RS. Having the unused register src/ 
dest. fields set to R31 will avoid unnecessary dirty 
check stalls in the IBOX. 

Stops issue until all 4 pipes have drained. 
Outstanding Loads DO NOT have to complete 
Slotting routes this to pipe EO which can either NOP 
it or do the FETCHx routine. 

Stops issue of MBOX instructions until the MBOX clears 
a flop in the IBOX. Slotting routes this to pipe 
EO which can either NOP or do the FETCHx routine. 

??Issue?? A 2nd MB while the first is still pending 
should stall issue??. This allows for DVT software 
to co!!pletely freeze the machine. When the first MB 
finishes and clears the flop, the 2nd will be 

executed and will reset the flop until the MBOX 
clears it a 2nd time 

The Ebox sends (Rb + 0) to the MBOX which then fetches 
the page. The EBOX treats this like a load except 
for zeroing the displacment field in the addition. 

IBOX will lock the Ra destination as if these were LOADs I 
An inplied MB will occur upon issue. The MBOX will I 
clear the MB flag to reenable MBOX instructions and I 
will assert DC_HIT or a proper FILL sequence to load I 
and unlock Ra. The IBOX will allow these two clears I 
to occur on different cycles if necessary. I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

Figure 1-21 Cont'd on next page 

1-44 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figur9_1=~-1 __ {~ntJ; __ Jrr~Jrl)_~JJ.Q!t~!Qtt~~Jl----------------------------------------------------------------------------+ 
I Ope I Instr. fs) !Exeg I Pred. I Issue !Prod. I Cons !Bubbles! CO!!!!!ent 
I I /Mnemonic I Boxes I Value! Pipes I I I 

----------------------------------------------------------------------------------------------------------------------------------+ 
19 HW_MFPR MBOX, 0011 Ra 

MBOX, CBOX, EBOX EO 2 hit If the IPR is in the M or C Boxes, this looks like a 
Scache IPRs IBOX load to the I and E boxes. The MBOX will either 

IBOX IPRs, 
PAL_TEMPS 

El 

return the data 2 cycles later at HIT time or will 
assert a MISS and a "FILL" when the data is available. I 

If the IPR is in the IBOX, the data is provided on the 
I'llPC_BUS which the EBOX muxes inplace of the Logic 
box results in S4. The data is therefore bypass able 
to the next cycle as if it was a logic box result. 
A few IBOX IPRs might not able to be read in 1 cycle. 
Any of these registers would use a spacial IPR TEMP 
IPR register as an intermediate step in a two -;tep 
read operation 

NOTE: It is up to PAL code to insure that the proper 
slot is used depending upon the source box. i.e. if 
an IBOX IPR or PAL tenp is being read, PAL code MUST 
pad the instruction block with a leading integer NOP 
or an unrelated integer op to use the EO pipe. Like
wise if the IPR is in the MBOX, PAL code must insure 
that the MFPR is the first integer instruction in the 
block so that it gets the EO pipe. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

NOTE; It is possible (in fact it is a feature) to dual 
issue MFPRs as long as the destinations are not 
identical and one is in the !BOX while the other is in I 
the MBOX, CBOX, or Scache. I 

+-----+-------------- +-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
lA JSR EBOX, 1001 El Ra Rb The IBOX provides the old PC in 3B over the I'llPC bus. 

IBOX This can then be bypassed to the next cycle. The EBOX I 
provides the Rb value (the target PC) in 3B over the I 
E'llPC BUS. In theory, dirty logic could allow a 1 I 
late;cy on the Ra dest, however, I need to check to I 
see if this is even a needed case. I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
lB HW_LD EBOX, 0010 EO or El Ra Rb 2 hit To the IBOX and the EBOX this looks almost like a normal I 

HBOX load. The only difference is that the displacement I 
field is only 12 bits wide. I 

I 
NOTE: PAL Code will be restricted from dual issuing I 

HW LO with the Locked option and any other MBOX inst. I 
In-addition, the HW_LD_L must be routed by EO by I 
explicit code padding. I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I le I reserved I IBOX I 0001?1 EO I Reserved Instruction Fault on Issue .. slot maps to EO/El?I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

lD HW_MTPR EBOX, I OOll 
MBOX, CBOX, !BOX, I 

Scache IPRs MBOX I 

I 
IBOX IPRs, I 

PAL_TEMPs I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ra 
EO 

El 

For MBOX IPRs, the EBOX pipe will provide the data on 
the E'llVA bus in 4B and over the E'llST_DATA_BUS. 

For IBOX IPRs, the EBOX pipe will provide the data on 
the E'llPC bus in 3B. 

NOTE: It is possible (in fact it is a feature) to be 
able to to dual issue an MTPRs. one must be in the 
IBOX and the other must be in the MBOX,CBOX, or Scachel 

NOTE: It is up to PAL code to insure that the proper 
slot is used depending upon the source box. i.e. if 
an IBOX IPR or PAL tenp is being written, PAL code 
MUST pad the instruction block with a leading integer 
NOP or an unrelated integer op to use the EO pipe. 
Likewise if the IPR is in the MBOX, PAL code must 

I 
I 
I 
I 
I 
I 
I 

insure that the MFPR is the first integer instruction I 
in the block so that it gets the EO pipe. I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

Figure 1-21 Cont'd on next page 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-45 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Flgu rA-'1=-""'1--trnnt:-):---111stri!tlnn-stotttntr'----------------------------------------------------------------------------+ 
T opc.ifnsir.rsr•• !Exec. i \Ir~. j' ssue H'H;h. I Cons. IBubblesl Conment I 

I /Mnemonic I Boxes I Value I Pipes 
----------------------------------------------------------------------------------------------------------------------------------+ 

lE HW_REI !BOX El none The EBOX NOPs this •••• 
"normal" 1100 The "normal" .HW _REI uses the 1100 predecode 

"special" 1110 The "special" HW_REI uses the 1110 predecode 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

lF HW_ST EBOX, 0000 EO Ra, Rb This looks almost like a normal STORE to the EBOX pipe 
MBOX except that the displacenent field is only 12 bits 

wide. 

NOTE: The MBOX must clear the MB flop to resune MBOX 
instruction issuing when the _c option is used. 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
120-231 Floating LDs EBOX, 0010 EO or El Fa Rb 2 hit The EBOX calculates the address the same way as if this 
I I LDF MBOX, was an Integer Load. The HBOX determines that this 
I I LOG FBOX is a floating load and routes the data appropriately. 
I I LOS 
I I LDT 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
124-271 Float. Stores EBOX, 0100 EO Fa,Rb The FBOX sends the Fa register to the MBOX on it's STORE! 
I I STF MBOX, bus while the EO pipe calculates the address in the I 
I I STG FBOX sane manner as for integer stores. I 
I I STS I 

I STT I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
128-291 Int. Loads EBOX, 0010 EO or El Ra Rb 2 hit The EBOX calculates the address and sends the E%VA bus 
I I LDL MBOX to the MBOX in 4B. Dirty logic will lock the dest. 
I I LDQ for two cycles until HIT time. At that point, a 
I I LOAD-MISS-REPLAY may occur if the data is bypassed 

I but found to MISS. Misses will lock the register 
I until the MBOX indicates a FILL has occurred to that 
I particular destination. 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 2A-2B I Load Locked EBOX, 0000 EO Similar to normal Integer Loads but will inhibit dual 
I I LDL_L MBOX I issue of MBOX instructions and will only slot to the I 
I I LDQ_L I ED pipe.... I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 2C-2D I Int. Stores I EBOX, I 0000 I EO Ra,Rb The EBOX calculates the address and sends it to the MBOX I 
I I STL I MBOX I I on the E%VA bus in 4B. The data is sent on the I 
I I STQ I I I E%ST_DATA bus in 4A/4B. I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 2E-2FI Store Cond. EBOX, 0000 EO Ra Ra,Rb 2 hit* I Similar to normal stores except that MBOX instructions 
I I STL_C MBOX I will be inhibited by an implicit MB. The MBOX will 
I STQ_C I clear the MB flop when it is ready to resume accepting I 
I I instructions.. The destination register Ra will be I 
I I be locked by the dirty logic until a FILL occurs to I 
I I the appropriate register. DC_HIT should NOT assert at I 
I I HIT tine on these instructions. I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
I 30 I BR I EBOX, I 1101 I El I Ra I 0 I The !BOX sends the PC in 3B over the !%PC bus. 
I I I !BOX I I I I I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
131-331 Float. Branch. I FBOX, 1111 FA Fa The FBOX sends BR_SUCC and BR_MISPRED in SA. 
I I FBEQ I IBOX 
I I FBLT I 
I I FBLE I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 

34 I BSR I EBOX, I 1011 I El Ra I I The IBOX sends the PC in 3B over the !%PC bus 
I I IBOX I I I I 

+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
i3S-371 Float. Branch. I FBOX, 1111 FA Fa The FBOX sends BR_SUCC and BR_MISPRED in SA. 
I I FBNE I !BOX 
I I FBGE I 
I I FBGT I 
+-----+---------------+-------+------+-----------+------+-------+-------+---------------------------------------------------------+ 
138-3FI Int.Cond.Br. I !BOX, I 1000 I El Ra I The EBOx sends BR_SUCC and BR_MISPRED in SA. 
I I I EBOX I I I 
+-----+---------------+--------------+-----------+------+-------+-------+---------------------------------------------------------+ 

Figure 1-21 Cont'd on next page 

1-46 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figur~1:-:n~:ccant.); __ Jnsttu.ction_s1ottlog_ ___________________________________________________________________________ _ 
Date Who 

13-Nov-91 rpp 

14-Nov-91 rpp 

25-Nov-91 rpp 

09-Dec-91 rpp 

13-Dec-91 rpp 

l 7-Dec-91 rpp/vr 

03-Mar-92 rpp 

What 

Created the table 

Changes from !BOX meetinq 13-Nov 
a. Converts are required by SRM to have Fa as F31 which sinplifies the decoding of the 

floating point operates 
b. clarify dirty checks on OPC 18 instructions 
c. Add Homayoon• s request that a 2ns MB causes a conplete pipeline stall until the first 

MB finishes 
d. Change Hii_MFPR pipes from "EO and El" to "EO or El" 

Change Hii LD pipes from "EO and El" to "EO or El" 
f. Change Hii:::REI pipes from "EO and El" to "El only" 
g. Change HW ST pipes from "EO and El" to "EO only" 
h. Fix mistake on Flt. Store. pipes "EO and FA" to "EO and FM" 
i. Fix mistake on Flt. Branch latency, should be 0 bubbles 
j. Fix mistake on Int. Cond. Branch latency, should be 0 bubbles. 

Clarified HW_MFPR operation for both !Box and Mbox instructions. Added timing for !BOX IPRs 
and PAL_TEMPs 

Updates from !BOX/Arch meeting of 09-DEC. Changes are: 
a. CAL_PAL moved from "EO and El" to "EO" 
b. reserved opcodes moved from "EO or El" to "EO". 

STQ_U moved from "El" to "EO", this was a mistake in the 25-Nov rev .... 
d. add pipe EO to the CMPxx instructions. 
e. move shifts from "El" to "EO" 
f. move IMULs from "El" to "EO" 
g. change CPYS to go to either pipe as the new floating NOP. 
h. add a comment defining BIS R31,R31,R31 as the integer NOP. 
i. changed all misc. instructions (opcode 18> to pipe "EO" from pipe "El", also 

changed several of the comnent fields 
j. changed HW_MFPRs from the MBOX to "EO" from "EO or El". All non-IBOX IPRs will 

return their data on the EO pipe if the return data at hit time. Added a 
comnent about dual issuing HW_MFPRs. 

k. changed HW MTPRs to the following: IBOX and PAL TEMP are now in "El". MBOX 
etc. are-in "E0". Added a note about support for dual issuing MTPRs 

1. added a comment on Load_Locked. Can we issue this to either pipe. 

Converted into DECWRITE to get Postscript for the DOCUMENT Spec 

Added Predecode values and corrected some of the Comments .... 

Updates for the 2nd !BOX review 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-47 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9 Instruction Issue 

The "slotted" instructions are presented to the Issue Stage in S2B where register conflict (also 
known as Dirty) checks are performed in 83. In addition, final resource availability and serializa
tion of the instructions are performed prior to releasing the instructions to the various execution 
units. 

The Issue Stage's primary output is the signal 1%Z_STALL_3B which is used to freeze the EBOX 
and FBOX register file addresses, opcodes, and the earlier stages of the IBOX. The Issue stage 
is also responsible for signaling the appropriate data bypasses to the EBOX and the FBOX and 
for driving addresses for reading and writing both the EBOX and FBOX register files. 

A block diagram of the Issue Stage is given in Figure 1-22 which is included in the large pull 
outs. 

1.2.9.1 Interface with the Slot Stage 

The Slot stage sends the instructions to the Issue stage over the I_IBS%FM_INST_2A<3l:O>, I_IBS%FA_ 
INST_2A<31:0>, I_IBS%EO_INST_2A<31:0>, I_IBS%El_INST_2A<31:0> lines. 

In addition, the slot stage indicates the relative logical ordering of the four instructions on the 
I_IBS%EO_POS_2A<l:O>, I_IBS%El_POS_2A<l:O>, I_IBS%FA_POS_2A<l:O>, I_IBS%FM_POS_2A<l:O> lines. 
The value 00#2 indicates the first instruction of the block of four while 11 #2 indicates the fourth 
instruction. 

A valid signal (I_IBS%EO_VALID_2A, I_IBS%El_VALID_2A, I_IBS%FA_VALID_2A, I_IBS%FM_VALID_2A) is 
also sent from the slotting stage for each instruction to indicate which of the slots contain valid 
instructions. 

Finally the Slot stage sends a pair of signals (I_IBS%EO_DEST_RC_2A and I_IBS%El_DEST_RC_2A) 
which indicate whether the A field (<25:21>) or the C field (<4:0>) should be used as the destina
tion register for the corresponding integer instructions. Only instructions with opcodes between 
10#16 and 17#16 will use the C field. Since all floating instructions use the C field as the 
destination register, the slotting stage does not have to calculate a mux control for them. 

1.2.9.2 Instruction Interface with the E,F,M Boxes 

The Issue stage sends the instruction context information to the E,F,M Boxes. It contains 2B 
latches and buffer/repeaters which output the integer instruction buses as l%Z_Eo_INST_2B<31:0> 
and 1%Z_El_INST_2B<31:0> to the EBOX and MBOX. The RA and RB fields of both integer in
structions are sent directly to the EBOX register file in phase 2A prior to the 2B latch to ease 
a critical path. The buses l%E_.R.Ao_ADDR_2A_H<4:0>, 1%E_RBO,ADDR_2A_H<4:0>, 1%E_RA1_ADDR_2A_ 
H<4:0>, and 1%E_RB1....ADDR_2A_H<4:0> contain the register file address information. 

The instruction context information for the FBOX instructions is latched into 2B and conditionally 
into 3A when 1%Z_STALL_3B is not asserted. This data is then buffered and sent to the FBOX 
as I%F _FA_INST_3A_H<31:0> and l%F _FM_INST_3A_H<3l:O>. In addition, the EO instruction data is 
latched and send to the FBOX as l%F _ST_INST_3A_H<3l:O> so that the FBOX can process the data 
for floating stores. 

1-48 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-22: Instruction Issue-Block Diagram 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-49 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.3 Diny Checks 

The Dirty Checks are used prevent the issue of an instruction until it can complete without 
encountering any data dependencies. Each of the 31 integer registers and each of the 31 floating 
point registers is allocated a bit in the appropriate Dirty Logic Datapath. 

The two Dirty Logic Datapaths mimic the flow of the execution datapaths for pipe length and 
bypassabilities. Additional stages are present in each datapath to account for IMUL and FDIV 
destinations, for LOADs that have missed in the D-Cache, and to support the PAL_SHADOW 
registers. As instructions are issued, the associated destination registers are decoded and latched 
into the appropriate bit of the datapaths. These destination bits are SILOed down the dirty logic 
datapaths to indicate that data bound for the corresponding register is present in the execution 
unit(s) at the corresponding point. 

During S3, the four current instructions are checked for conflicts against those instructions that 
are currently executing in the four execution unit pipelines, against any Loads that have not 
completed, and against each other. 

1.2.9.3.1 DEST-SOURCE Checks 

A DEST-SOURCE check is done for each of the two possible source operands of each of the up 
to four slotted instructions during S3 of the IBOX pipe. These checks are performed by decoding 
the source register numbers for the current instructions and checking to see if a corresponding 
destination bit has been set in any of the pipeline stages, the IMUIJFDIV units, or for a LOAD 
that has missed in the D-Cache. 

The source register numbers for integer instructions are not checked against operate destination 
register numbers currently in 85 or beyond of the two EBOX pipelines since all integer operate 
results are bypassable by the end of the S5 stage. Matches between integer source registers and 
integer destination registers in the S4 stage are qualified by the type of instruction executing in 
S4. Most integer instructions are bypassable by the end of 84 however some (like shifts) are not 
available until S5 (see Figure 1-21 for a list of instructions and their respective latencies). 

All of the 8 source registers are checked against any LOADs that are currently executing in S4 
or S5 since LOAD data is not available until S6. In addition, the source registers are checked 
against any load that has advanced into S7 and missed in the D-Cache. Instructions with source 
registers that attempt to use data from a LOAD instruction that is in S6 will be issued and will 
either complete successfully if the LOAD hits in the D-Cache or will generate a LDU-REPLAY 
as detailed in Section 1.2.9.17 if the LOAD misses. 

If a match is found on any of these checks, the instruction with the matching source register is 
stalled. This stall is termed a DEST-SOURCE stall. 

1.2.9.3.2 DEST-DEST Checks 

In addition to the DEST-SOURCE checks detailed above, some DEST-DEST checks are performed. 
These checks are used to preserve the correct ordering of the eventual write operations into the 
register file. The only checks that need to be performed are for units/instructions that can write 
the register file out-of order, such as IMUL, FDIY, integer loads that could miss in the D-Cache, 
and all Floating Loads (since LDFs write the FBOX register file two cycles earlier than floating 
operates). If any of the following tests fail, the failing instruction cannot issue. The created stall 
condition is termed a DEST-DEST stall. 

1-50 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1. If either the EO or El instruction's destination register is the same as IMUL unit's destination 
register, the EO or El instruction is stalled. 

2. If either the FA of FM instruction's destination register is the same as FDIV unit's destination 
register, the FA or FM instruction is stalled. 

3. If either the EO or El instruction is a floating LOAD with a destination register that matches 
the FDIV destination register, the EO or El instruction is stalled. 

4. If either the EO or E 1 instruction is a floating LOAD with a destination register that matches 
the 84 or 85 destination registers in either the FA or FM pipes, the EO or El instruction is 
stalled. 

5. If any of the instructions have a destination register that is the same as the destination 
register of any Load that has missed in the D-Cache, the instruction is stalled until a FILL 
occurs returning the register data. 

6. If any of the instructions have a destination register that is the same as the destination 
register of any Load instruction that is currently executing in 84 or 85, the the matching 
instruction is stalled until the conflicting Load reaches 86 at which point the instruction will 
be issued. The instruction will either complete successfully if the conflicting Load hits in the 
D-Cache or a LDU-Reply will occur (see Section 1.2.9.17). 

1.2.9.3.3 Current Issue Conflicts 

The destination and both source registers of each of the four current instructions are checked 
against the destination registers of the other three currently slotted instructions to determine if 
any conflicts exist in the block. If a match occurs between a sourceldestination and the destination 
of another instruction which logically proceeds it (as determined by the I_IBS%EO_POS_2A<l:O>, etc. 
lines), the logically latter instruction is stalled. The created stall is termed a Current-Issue stall. 

1.2.9.4 Resource Availability Checks 

The Issue stage performs a series of checks to insure that the proper execution resources are 
available prior to releasing an instruction for execution. The results of the following checks are 
ORed together for each of the four slotted instructions to generate a RESOURCE_STALL signal 
for each instruction. 

1.2.9.4.1 IMUL_BUSY 

When an integer multiply is issued, the destination register number is stored in a register in 
the integer dirty datapath. Subsequent IMUL instructions will check to see that this register is 
empty prior to issuing. A stall occurs on an IMUL instruction if the multiplier is busy with a 
previous instruction. It is possible to overlap the final cycle of one multiply with the first cycle 
of the next multiply if there are no register dependencies. The Issue stage will clear the IMUL_ 
DEST register one cycle prior to the actual end of the first multiply operation to support this 
feature. The EBOX will send the signal E%I_MUL_DONE_SOON_2A to indicate that the multiplier 
will produce 85 results in 3 cycles. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-51 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.4.2 IMUL_DONE_SOON 

The result of an integer multiply is muxed into the EO EBOX pipeline at the S5 stage. There 
must not be a valid instruction in 85 of the EO pipe when the multiply result becomes available 
or a data collision will occur. The Issue logic will stall the EO pipe for one cycle to allow the 
multiply results to mux into the normal flow. The signal E%I_MUL_DONE_SOON_2A causes this 
stall. The EBOX will signal the MUL_DONE_SOON indication in 2A, in the next cycle (3A), the 
EO instruction will be unconditionally stalled to introduce the necessary bubble. 

1.2.9.4.3 FDIV _BUSY 

A FDIV _BUSY stall occurs when a floating divide is scheduled to execute prior to the comple
tion of a previous floating divide. This stall is similar to the IMUL_BUSY stall described in 
Section 1.2.9.4.1. The FBOX will send the signal F%I_FDW_DONE_SOON_2A to clear the FDIV_ 
DEST register in the floating dirty datapath. As with the IMUL unit, it is possible to overlap the 
final cycle of a previous divide with the first cycle of the next divide in the absence of register 
dependencies. 

1.2.9.4.4 FDIV _DONE_SOON 

The Floating Divider results are multiplexed into the Floating Add pipe in place of the normal 
FA results. A bubble is required in the FADD pipe to avoid a data collision. The signal F%I_FDIV _ 

DONE_SOON_2A will cause a stall to occur on the FA slotted instruction in the next cycle. This 
stall is similar to the IMUL_DONE_SOON stall described in Section 1.2.9.4.2. 

1.2.9.4.5 STORE_STALL 

The Store SILO in the MBOX requires that Store(s) cannot be followed by Load instructions 
in the second subsequent cycle. The Issue logic in the IBOX will set a bit in a two cycle shift 
register whenever a STORE is issued. If the low order bit of this register is set, any LOAD type 
instruction will be stalled. 

1.2.9.4.6 FILL_STALL 

Fill data returning from the MBOX to the EBOX register file is multiplexed into the appropriate 
EBOX datapaths in place of operate results at the S6 stage. If an operate instruction is present 
in S6 when a fill occurs, a data collision would result. To avoid this collision, the CBOX will send 
a request to the IBOX Issue stage indicating that a FILL operation MIGHT occur. The IBOX 
will stall both the EO and El pipes inorder to insert the necessary bubbles when this signal C%1_ 

ALLOCATE_CYCLE_2B is asserted. LOADs that HIT in the DCache will not require any additional 
pipe bubbles, since the pipe is already reserved for the MBOX data by the instruction itself. 

Fills for Floating Loads will not require these bubbles since the FBOX register file contains two 
write ports dedicated to LOAD data. In the event that the MBOX has a conflict between a floating 
fill and a floating LOAD hit in the DCache that want to use the same Load bus, the second LOAD 
will be "FORCED_MISS"ed and the earlier LOAD's Fill data will be returned. 

1-52 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.4.7 DRAINT_Stall 

A number of conditions, including issuing the DRAINT or CALL_PAL instructions, or entering 
PAI.Mode due to a TRAP will cause a DRAINT operation. When a DRAINT occurs, the DRAINT_ 
FLAG is set in the Issue stage of the IBOX. All issuing is stalled while this bit is set. All previously 
issued instructions must complete to the S7 trap point prior to resuming issuing. In addition, the 
IMUL and FDIV units must finish any current operation before the DRAINT_FLAG is cleared. 
Conditions causing the DRAINT_FLAG to be set and the requirements for clearing it are listed 
in Section 1.2.9.13. 

1.2.9.4.8 MB_STALL 

A number of conditions, including issuing the MB instruction, will set the MB_FLAG in the Issue 
stage of the IBOX. When this flag is set, any slotted instruction that requires the MBOX will 
be stalled. Instructions requiring the MBOX are listed in Figure 1-21. Conditions causing the 
MB_FLAG to set and reset are listed in Section 1.2.9.12. 

1.2.9.4.9 MB_MB_STALL 

If a second MB instruction occurs while the MB_FLAG is set, all four instructions are uncondi
tionally stalled. This allows an easy method for software (i.e. DVT code) to freeze the machine. 
Unfreezing the machine occurs when the first MB is cleared. Since clearing the MB can be accom
plished from the pins, this allows for hardware to synchronize stopping and starting instruction 
issue. When the first MB is cleared, the second MB instruction will issue and will set the MB_ 
FLAG allowing any subsequent non-MBOX instructions to issue. A second clear of the MB_FLAG 
must occur to remove the second of the MB instructions to allow MBOX instructions to issue. 

1.2.9.5 Instruction Stall 

Each of the four slotted instructions has four possible stall conditions associated with it: a DEST
SOURCE stall, a DEST-DEST stall, a Current-Issue stall, and a Resource stall. These four lines 
are ORed together for each instruction to create a single stall indication for each of the four 
instructions. If a valid instruction has not been slotted (as determined by the l_IBS%EO_ VALID_2A 

etc. lines), the corresponding stall condition is not asserted. 

If any of the four instructions signals that a STALL is necessary, the 1%Z_STALL_3B signal is 
raised and sent to the earlier stages of the IBOX and to the other boxes. The Issue stage will 
have latched the opcodes and other information sent from the slot stage into a set of conditional 
holding latches. If a stall occurs, these latches will not update but will hold the instruction context 
for all four of the current instructions. Local valid bits will be cleared for those instructions that 
have been issued (as indicated by the l%Z_ISSUE_Eo_4A, etc. lines). In the next cycle, the Issue 
stage will attempt to issue the remaining rm-issued instructions. The Dirty Logic will assert 1%Z_ 

STALL_3B for as many cycles as necessary to resolve all the conflicts and successfully issue each 
instruction in the block. Each of the four l%Z_ISSUE_XX_4A lines will only assert for a single cycle 
in each block. The cycle when 1%Z_ISSUE_XX_4A asserts, is the cycle that a particular instruction 
was actually released to the pipe. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-53 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.6 Serialization 

Assuming that one or more of the instructions was stalled, a serialization step is necessary to 
block the issue of all instructions that logically followed the stalling instruction even if there are 
no register or resource conflicts on those following instruction(s). This is necessary to preserve 
write ordering of the result data. This step is performed during 3B with the result of creating 
four lines (1%Z_ISSUE_E0_4A, l%Z_ISSUE_E1_4A, 1%F_ISSUE_FA_4A, l%F_ISSUE_FM_4A). These signals 
indicate to the IBOX, EBOX, FBOX, and MBOX which of the four instructions are able to issue. 
These signals will be latched and will travel down the the dirty logic datapaths as valid bits to 
qualify future stall and bypass calculations. The signal 1%Z_ISSUE_E0_4A is also sent to the FBOX 
as l%F _ST_ISSUE_4A to indicate that a floating store has been issued in the EO pipe. 

1.2.9.7 Bypasses 

In addition to coordinating the release of instructions to the various execution units, the Issue 
stage is responsible for steering the correct data in the execution pipelines through a number 
of built in bypasses. The IBOX Issue stage detects that a destination register matches one (or 
more) of the source registers using the same datapaths used for the dirty checks. Bypasses are 
signaled to the EBOX/FBOX regardless of the state of the l%Z_ISSUE_XX_4A and 1%Z_STALL_3B 
lines. If a stall is occurring, the source register numbers used in the bypass calculations will be 
recirculated and the correct bypasses will be updated and signaled in the subsequent cycles until 
the instruction requiring the bypass is actually able to execute. 

1.2.9.7.1 EBOX Bypasses 

In the two EBOX pipes, each stage's (S4-S7) destination data is bypassable back to replace any of 
the four operand registers (EOA, EOB, ElA, ElB). In addition, the 84 stage of each pipe has two 
possible destination registers, the adder output or the logic box output. (RPP-Is this still true?, 
does the dirty logic need to pick the LU or ADDer or will the EBOX figure this out for itself??) 
There are 2 pipes* (4 + 1 stages)* 4 source registers= 40 different bypass possibilities. 

For the case of two cycle EBOX instructions like SHIFI's, an 84 bypass may be asserted, but the 
DEST-SOURCE checks will stall without issuing the following instruction since the data is not 
actually available from the shifter until S5. Likewise IMUL results are not bypassable until they 
reach the 85 stage which occurs three cycles following the E%MUL_DONE_SOON_2A signal. 

It is possible that a particular register destination might exist in more than one stage of the pipe 
simultaneously. This can be caused, for example, by issuing two instructions that write the same 
register in back to back cycles. In this case, if the same register was then used as a source in a 
following cycle, two different bypasses would be indicated. The bypass signals will be prioritized 
prior to sending them to the EBOX such that the bypass from the logically latest instruction 
will be used as the source register for the issuing instruction. Since the Current-Issue checks 
(Section 1.2.9.3.3) will prevent the same destination register from appearing in both pipes in the 
same cycle at the same stage, it is always possible to select the latest instruction to use as the 
bypass source. If an instruction uses a literal value rather than a register file location as the B 
source, the issue stage will detect this and signal the EBOX that the literal field should be used 
instead of the register file or bypasses. Table 1-4 contains a list of the EBOX bypasses and their 
relative priorities. 

1-54 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-4: EBOX Bypass MUX control Signals 

Bypass 

EOA Source Bypasses 

1%E_BYP _EOS4_EOA_3B 

l%E_BYP _E1S4_EOA_3B 

1%E_BYP JOS5_EOA_3B 

1%E_BYP _E185_EOA_3B 

1%E_BYP_EOS8_EOA_3B 

1%E_BYP _E186_EOA_3B 

1%E_BYP _EOW _EOA_SB 

1%E_BYP _E1W _EOA_SB 

1%E_USE_EOA....3B 

EOB Source Bypasses 

1%E_USE_EO_LIT_3B 

1%E_BYP _EOS4_EOB_3B 

1%E_JJYP _E1S4_EOB_3B 

1%E_BYP_EOS5_EOB_3B 

1%E_BYP_E185_EOB_3B 

1%E_BYP _EOS6_EOB_3B 

1%E_BYP _E1S6_EOB_3B 

1%E_BYP _EOW _EOB_3B 

1%E_BYP _E1W _EOB_3B 

1%E_USE_EOB_3B 

ElA Source Bypasses 

l%E_BYP _EOS4_E1A_3B 

1%E_BYP _ElS4_ElA..._3B 

1%E_BYP _EOS5_E1A_3B 

1%E_BYP _ElS5_ElA_3B 

1%E_BYP _EOS6_E1A_3B 

l%E_BYP _ElS6_ElA_3B 

1%E_BYP _EOW _E1A_3B 

1%E_BYP _ElW _ElA_3B 

l%E_USE_E1A_3B 

ElB Source Bypasses 

Priority 

1 

1 

2 

2 

3 

3 

4 

4 

5 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

1 

1 

2 

2 

3 

3 

4 

4 

5 

DIGITAL RESTRICTED DISTRIBUTION 

Description 

Use the EO Pipe's S4 result 

Use the El Pipe's S4 result 

Use the EO Pipe's S5 result 

Use the El Pipe's S5 result 

Use the EO Pipe's S6 result 

Use the El Pipe's S6 result 

Use the EO Pipe's S7 result 

Usethe El Pipe's S7 result 

Use the Register File Contents 

Use the Literal Field 

Use the EO Pipe's S4 result 

Use the El Pipe's S4 result 

Use the EO Pipe's S5 result 

Use the El Pipe's S5 result 

Use the EO Pipe's S6 result 

Use the El Pipe's S6 result 

Use the EO Pipe's S7 result 

Usethe El Pipe's S7 result 

Use the Register File Contents 

Use the EO Pipe's S4 result 

Use the El Pipe's S4 result 

Use the EO Pipe's S5 result 

Use the El Pipe's S5 result 

Use the EO Pipe's S6 result 

Use the El Pipe's S6 result 

Use the EO Pipe's S7 result 

Usethe El Pipe's S7 result 

Use the Register File Contents 

The lbox 1-55 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-4 (Cont.): EBOX Bypass MUX control Signals 

Bypass 

1%E_USE_El_LIT_3B 

1%E_BYP _EOS4_ElB_3B 

1%E_BYP _ElS4_ElB_3B 

1%E_BYP _EOS5.:..ElB_3B 

1%E_BYP _ElS5_ElB_3B 

1%E_BYP _EOS8_ElB_3B 

1%E_BYP _ElS6_ElB_3B 

1%E_BYP _EOW _ElB_3B 

1%E_BYP _ElW _ElB_3B 

1%E_USE_E1B_3B 

1.2.9.7.2 FBOX Bypasses 

Priority 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

Description 

Use the Literal Field 

Use the EO Pipe's 84 result 

Use the El Pipe's 84 result 

Use the EO Pipe's 85 result 

Use the El Pipe's 85 result 

Use the EO Pipe's 86 result 

Use the El Pipe's 86 result 

Use the EO Pipe's 87 result 

Usethe El Pipe's S7 result 

Use the Register File Contents 

The FBOX bypasses are somewhat simpler since FBOX results are only bypassable at the register 
file write stage. In the FBOX, the FA result can be bypassed back as any one of the four source 
registers or as data for the store port. The FM result can be bypassed back similarly. In addition, 
the two Load buses can be bypassed to any of the four source registers or the store port. Therefore 
we have 4 destination registers* 5 source registers = 20 bypasses. 

The Current-Issue checks (Section 1.2.9.3.3) will prevent the FA and FM pipes' destination regis
ter numbers from matching so that only a single bypass· can be asserted for each of the 4 source 
registers slotted to the FBOX pipes due to the execution pipes. The DEST-DEST checks (num
ber 4 in Section 1.2.9.3.2) will prevent either of the LOAD bus destination registers in 7A from 
matching either the FA or FM output destination register numbers currently in 9A. Therefore 
no priority encoding of bypass signals to the FBOX is necessary. Table 1-5 contains a list of the 
FBOX bypasses. 

Table 1-5: FBOX Bypass MUX control Signals 

Bypass 

FAA Source Bypasses 

1%F _FA_FAA_SB 

1%F _FM_FAA_3B 

l%F _LDO_FAA_3B 

1%F _LDl_FAA_3B 

FAB Source Bypasses 

1%F YA_FAB_3B 

1-56 The lbox 

Description 

Use the Adder results 

Use the Multiplier results 

Use the data on Load Port 0 

Use the data on Load Port 1 

Use the Adder results 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-5 (Cont.): FBOX Bypass MUX control Signals 

Bypass 

1%F _FM_FAB_3B 

1%F _LDO_FAB_3B 

IV _LDl_FAB_SB 

FMA Source Bypasses 

1%F _FA_FMA_SB 

1%F _FM_FMA_3B 

1%F _LDO_FMA..._3B 

1%F _LDl_FMA,_SB 

FMB Source Bypasses 

1%F _FA_FMB_3B 

1%F _FM_FMB_SB 

1%F _LDO_FMB_3B 

1%F _LD1_FMB_3B 

STORE Port Bypasses 

1%F _FA_ST_3B 

1%F _FM_ST_3B 

1%F _LDO_ST_3B 

IV _LD1_ST_3B 

1.2.9.8 Register File Writes 

Description 

Use the Multiplier results 

Use the data on Load Port 0 

Use the data on Load Port 1 

Use the Adder results 

Use the Multiplier results 

Use the data on Load Port 0 

Use the data on Load Port 1 

Use the Adder results 

Use the Multiplier results 

Use the data on Load Port 0 

Use the data on Load Port 1 

Use the Adder results 

Use the Multiplier results 

Use the data on Load Port 0 

Use the data on Load Port 1 

The IBOX Issue stage provides both the EBOX and FBOX register files with write addresses and 
write strobes. The destination register numbers are piped in the two dirty datapaths and the 
accompanying valid bits are used to create the address and strobes respectively. 

Destination register numbers for operates or loads entering 86 of the integer dirty datapath are 
encoded and sent to the EBOX register file over the 1%E_Wo_ADDR_6A<4:0> and 1%E_Wt_ADDR_ 

6A<4:0> lines. The corresponding valid bits are buffered and sent as I%E_Wo_EN_7A and I%E_W1_ 

EN_7A. If the valid bit(s) have been cleared by either not having issued an instruction in that 
cycle or by a pipe abort condition, no write strobe is issued and therefore the register file is not 
updated. Also, the write strobe is not issued if the instruction writing the register file was a 
LOAD that missed in the D-Cache. 

Destination register numbers entering SS of the :floating dirty datapath are encoded and sent 
to the FBOX register file over the 1%F _FA_ADDR_8A<4:0> and l%F _FM_ADDR_8A<4:0> lines. The 
corresponding valid bits are buffered and sent as 1%F_WE_FA_9A and 1%F_WE_FM_9A. As with the 
EBOX registers, if the valid bit(s) have been cleared, the register is not updated. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-57 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The FBOX register file also has two separate write ports for Load data. The Issue stage will send 
register addresses for these two ports over the 1%F _LDO_ADDR_6A<4:0> and 1%F _LD1_ADDR_6A<4:0> 

lines. These are 6A signals to support the 7B write from the MBOX. For floating Loads that 
HIT in the DCache, the address is provided by the IBOX Issue logic by decoding the instruction. 
For FILLs, the MBOX will provide the register destination number to the Issue stage in 5A (see 
Section 1.2.9.9). This destination number will be siloed, muxed inplace of the IBOX generated 
address, and sent to the FBOX in 6A The write strobes are 1%F_WE_LD0_7A and l'YoF_WE_LDl_ 

7A. These strobes are created by examining the M%I_DC_mT_Eo_6A, M%I_DC_lllT_E1_6A, M%I_FILL_ 
VALID0_5B, and M%1...FILL_VALID1_5B lines as appropriate to the pipe and hitlmiss status of the 
instruction. 

1.2.9.9 LOADS and STORES 

LOAD and STORE instructions require some additional effort and special casing due to their un
certain latency (LOADs), special pipe requirements (floating LOADs, and STOREs), and because 
of MBOX requirements. 

1.2.9.9.1 Additional LOAD Checks 

The destination register of a load instruction will be locked against all reads/writes for two cycles 
(S4 and S5). This means that any following instruction will not be allowed to issue if it uses the 
Load's destination register as either a source or a destination. 

If an issuing (S3) instruction references the destination register of a load that is entering S6 as 
either it's destination or one of its two sources, the Load is assumed to hit in the D-Cache and 
the appropriate bypasses and issue lines are asserted. If it turns out that the Load misses in the 
D-Cache, an LDU-Replay occurs, see Section 1.2.9.17. 

When a load misses in the D-Cache, the destination register is added to a list of outstanding 
load misses held in the dirty datapaths. Any register locked by this list will cause stalls when 
an issuing instruction attempts to reference the register as either a source or a destination. 

1.2.9.9.2 Floating Loads 

Floating Loads present a special problem since they are integer instructions that return results 
to the floating register file. Therefore, for floating loads, the dirty logic must check the base 
address (an integer register) using the DEST-SOURCE checks of the integer dirty pipe (this is 
the same as for integer LOADs). However, the destination register (a floating register) must 
be checked using the DEST-DEST checks of the floating dirty pipe. The current issue checks 
that must be performed are a hybrid of the integer and floating current issue checks. The base 
address register (Rb) must not conflict with the other integer instruction's destination, if it does, 
the Current Issue check will stall the floating load if it logically follows the conflicting integer 
instruction. The floating load's destination register (Fa) must not conflict with either of the 
floating execute instruction's destination registers. The logically latest of the floating load or the 
conflicting floating operate will be stalled by the Current Issue checks to maintain register file 
write ordering (see Section 1.2.9.3.3). If the floating load's destination register conflicts with one 
of the floating operate's sources, and the floating load logically preceeds the operate, then the 
floating operate is stalled. Therefore a condition resulting in a stall of a Floating LOAD could be 
generated in either the integer or floating dirty datapath and the floating load (while technically 
an integer instruction by issue pipe) can eause stalls of floating point instructions. 

1-58 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.9.3 Floating Stores 

Like Floating LOADs, Floating STOREs are integer instructions that use the floating register file. 
The base address register of a floating store (Rb) is checked using the integer dirty datapath for 
DEST-SOURCE and Current Issue conflicts similar to the Floating Load case described above. 
The store data register (Fa) is checked using the floating dirty datapath for DEST-SOURCE 
conflicts and Current Issue conflicts. Since the Fa register is a source rather than a destination, 
the floating store cannot cause other instructions to stall (in either datapath). However, conditions 
in either the integer or the floating point dirty datapaths, can lead to stalls of the floating store. 

1.2.9.9.4 LOAD HITS 

Register file destination numbers for LOADs that HIT will be encoded from the destinations being 
piped along in the dirty datapaths. These encoded values will be sent to the register files in 6A as 
described in Section 1.2.9.8 prior to learning of their hit status. The Hit signal(s) (M%I_DC_HIT_ 

E0_6A and M%I_DC_IDT_E1_6A) will arrive at the Issue logic in late 6A and will be used to qualify 
the write strobes sent in 7 A. The "EO" hit line will indicate that data is returning to either the 
EO integer pipe over the M%E_LD_DATA0_6A_B<3l:O> bus or to the floating register file's LDO write 
port over the "O" (rpp-fill in the name of the bus when I know what it is) bus. The "El" hit line 
operates in a similar manner for the El integer pipe (M%E_LD_DATA1_6A_B<31:0>) and the LDl 
port of the floating register file. The IBOX issue logic will determine which register file (E or F) 
is to be written in each case by examining siloed bits associated with each pipe which indicate 
whether the current S6 instruction is a LOAD and whether it is an integer or a floating point. 

1.2.9.9.5 LOAD Fills 

When a load misses in the D-Cache, the absence of the HIT signal(s) will prevent a write strobe 
from being issued to the appropriate register file. Instead the register destination number will 
be added to the list of LOAD _MISSes in the appropriate dirty logic datapath. This list is used in 
the DEST-SOURCE and DEST-DEST checking as described in Section 1.2.9.3. When FILL data 
is returned from the MBOX, the appropriate register is removed from the list. 

The register addresses for returning fill data are provided by the MBOX in 4B over the M%I_FILL_ 

RNUM0_4B<6:0> and M%I_FILL_RNUM1_4B<6:0> lines. The "O" bus is used for addresses correspond
ing to data being returned to either the EO EBOX pipe (over M%E_LD_DATA0_6A<31:0> or to the 
LDO port of the floating register file (rpp-fill in name). The "1" bus likewise corresponds to the 
El EBOX pipe and the LDl port of the floating register file. Unlike with HITs where the MBOX 
must return the data using the same pipe in which the instruction was issued ("O" or "1"), FILL 
data may be returned to either of the two E/F box pipes/ports. Fill data is marked valid by the 
FBOX by the assertion of the lines M%I_FILL_VALID0_5B and M%1_FILL_VAL1Dt_5B. 

The IBOX Issue stage will determine whether the fill data is bound for the E or F box by examining 
bit 5 of the MBOX supplied register address. This bit will be a "l" for an FBOX fill or a "O" for an 
EBOX fill. Bit 6 of the rnum is the "Pal_Shadow" bit. It is a "l" for fill addresses corresponding 
to a PAL_SHADOW register rather than a normal EBOX register. Bit 6 is ignored, if Bit 5 is set, 
corresponding to an FBOX fill. 

When a valid fill is sent from the MBOX (i.e. a valid register destination and "fill_ valid" are 
present), the IBOX will multiplex the MBOX specified register destination address into the ap
propriate dirty logic datapath and then drive out the correct register address in the same manner 
as done for D-Cache Hits. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-59 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.9.6 EBOX LO MUX 

LOAD data is multiplexed into the normal EBOX result SILO at the S6 stage. The IBOX Issue 
stage signals the EBOX whether it should SILO it's S5 results into S6 or accept MBOX data. 
This is accomplished by the two lines 1%E_USE_LD0_6A and 1%E_USE_LD1_6A. Since these are 6A 
signals, it is not known whether the MBOX data multiplexed will be valid. The EBOX register 
file will not be updated in 87 if MBOX FILL data was not valid or not a HIT. The Issue stage 
will assert the appropriate "use_ldx" line when an integer LOAD advances into S6. It will assert 
both lines in response to the CBOX allocate cycle command (C%I_ALLOC_CYCLE_2B). 

1.2.9.10 EBOX IMUL MUX 

The EBOX integer multiplier indicates that it has :finished it's operation and has data available by 
asserting the E%I_MULL_DONE_SOON_2A line. As mentioned in Section 1.2.9.4.2, the EO instruction 
is stalled for a cycle, to allow this instruction to merge into the EO pipe at the 85 stage three cycles 
later. However, if a FILL_STALL (Section 1.2.9.4.6) is signaled by the CBOX (C%I_ALLOCATE_ 

CYCLE_2B) at the same time, the FILL_STALL has priority. Therefore the IMUL unit cannot mux 
it's results into the EO pipe. The final stage of the IMUL unit contains a static latch will hold the 
data until the next IMUL :finishes. Therefore this data is available for multiplexing into the EO 
pipe at any point until the next IMUL is issued and completes. The IBOX Issue stage will select 
the IMUL result by asserting the 1%E_SEL_MUL_5B signal in the first cycle that the FILL_STALL 
does not occur. In this cycle, the EO pipe will be reserved by the IMUL_DONE_SOON stall so 
that a data collision does not occur. 

The floating divider does not present a similar problem since FILLs are returned to the FBOX 
register file via separate dedicated write ports. 

(rpp- Is there a potential problem here if the CBOX allocates N cycles in a row???) 

1.2.9.11 Conditional Move 

The integer and floating point CMOV instructions are jointly performed by the Issue stage of the 
IBOX and the E/FBoxes. The Issue stage issues the instruction and signals the appropriate box 
with the 1%Z_ISSUE...:XX_4A lines. The E/FBoxes, assume that the CMOV will be successful and 
copy the Rb data to the destination. At the same time the "conditional" test on Ra is carried out. 
The sucess of this test is indicated to the IBOX Issue stage using the lines E%1_KILL_CMOV0_4B, 

E%I_KILL_CMOV1_4B, and F%I_KILL_CM_5A_H. If one of these signals asserts, it indicates that the 
conditional test failed. The Issue stage will clear the appropriate valid bit associated with the 
instruction thus "killing" it. If the test is sucessful, the instruction is allowed to proceed down 
the pipeline (being bypassed if necessary) and eventually written into the register file. 

1.2.9.12 Memory Barriers 

Issuing any of the following instructions will set the MB_FLAG in the Issue stage which will 
prevent further issuing of MBOX instructions: 

1-60 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-6: Instructions Setting the MB_FLAG 

Opcode(hex) 

18.4xxx 

2E 

2F 

18.Cxxx 

18.Exxx 

18.Fxxx 

lF. 

Mnenomic 

MB 

STL_C 

STQ_C 

RPCC 

RC 

RS 

HW_ST 

Description 

Memory Barrier 

Store Long Conditional 

Store Quad Conditional 

Read Process Cycle Counter 

READ and CLEAR 

READ and SET 

Hardware Store, only sets the MB_FLAG if the "_C'' option is present 

The MB flag will remain set until the MBOX clears it via the M%I_MB_CLEAR_2B signal. (rpp
Does this still come solely from the MBOX?? or does the CBOX ack MBs while the MBOX acks 
the rest?) 

**Need to work out what happens during the various pipe abort conditions -rpp** 

While the MB_FLAG is set, all MBOX associated instructions are stalled at the Issue stage. 
Since EV5 does not issue instructions out-of-order, this first stalled MBOX instruction will stall 
all further instruction issue until the MB_FLAG is cleared by the MBOX. The following table 
lists instructions that will be stalled while the MB_FLAG is set. 

Table 1-7: MBOX Instructions stalling while MB_FLAG is set 

Opcode 

OB 
OF 
18.4xxx 

18.Sxxx 

18.Axxx 

18.Cxxx 

18.Exxx 

18.Fxxx 

19 

1B 

lD 

lF 

20 

21 

22 

23 

Mnemonic 

LDQ_U 

STQ_U 

MB 

FETCH 

FETCHM 

RPCC 

RC 

RS 

HW_MFPR 

HW_LD 

HW_MTPR 

HW_ST 

LDF 

LDG 

LDS 

LDT 

Description 

Load Quad Unaligned 

Store Quad Unaligned 

Memory Barrier-2nd MB stalls the machine see Section 1.2.9.3 

Fetch Instruction 

Fetch with Modify Intent 

Read Process Cycle Counter 

Read and Clear 

Read and Set 

Hardware Move from Processor Register -{rpp-Should this stall under 
MB for both I,M boxes, just for the MBOX, or for neither?) 

Hardware Load 

Hardware Move to Processor Register--(rpp see note on HW _MFPR) 

Hardware Store 

LoadF 

LoadG 

Loads 

LoadT 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-61 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-7 (Cont.): MBOX Instructions stalling while MB_FLAG is set 

Opcode Mnemonic Description 

24 STF Store F 

25 STG Store G 

26 STS Store S 

27 ST'r Store T 

28 LDL Load Long 

29 LDQ Load Quad 

2A LDL_L Load Long Locked 

2B LDQ_L Load Quad Locked 

2C STL Store Long 

2D STQ Store Quad 

2E STL_C Store Long Conditional 

2F STQ_C Store Quad Conditional 

1.2.9.13 DRAINT 

The Issue stage contains a one bit DRAINT_FLAG which is used to indicate that a DRAINT 
operation (explicit or implicit) is occuring. No instructions are issued while the DRAINT_FLAG 
is set. 

1.2.9.13.1 Setting the DRAINT_FLAG 

The DRAINT_FLAG is explicitly set by issuing the DRAINT instruction. It is also set (implicitly) 
by the issue of a CALL_PAL instruction or by the dispatch of a TRAP to the appropriate PALCode 
routine. The DRAINT_FLAG is set when the DRAINT or CALL_PAL is actually issued. This 
implies that it is not set until the instruction is next in line to issue. Therefore if a prior instruction 
in the issue block causes a STALL, the DRAINT_FLAG is not set in that cycle. DRAINTs and 
CALL_PALs may multiple issue with other instructions however by definition they will be the last 
instruction in the multiple issue block. When a DRAINT is issued, subsequent (and therefore) 
unissued instructions in the 83 Issue block will be stalled immediately (CALL_PALs will be the 
last valid instruction slotted in an issue block since they change the PC). Neither DRAINT or 
CALL_PAL instructions will set any valid bits in the dirty logic pipelines when they issue, the 
only effect as far as the issue stage is concerned is the setting of the DRAINT_FLAG. When 
a TRAP is posted, the change from "native" mode to PALMode as indicated by bit 0 of the PC 
(RPP-get the signal name from NITAL), an implicit DRAINT is executed. All instruction issuing 
is stalled in that cycle. 

1-62 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.13.2 Clearing the DRAINT_FLAG 

Each cycle, the valid bits in both the floating and integer dirty datapaths are examined. The 
presence of a valid bit indicates that a valid instruction is executing in one of the pipelines. 
The presence of any set valid bit corresponding to stages 4-7 of either of the EBOX pipes or to 
stages 4-9 of either of the FBOX pipes means that the DRAINT operation has not completed. 
(NOTE: The valid bits for instructions that logically follow a TRAP are cleared when the TRAP is 
posted-see Section 1.2.9.15.1). In addition, if a valid instruction is executing in either the Integer 
Multiplier or the Floating Divider, the DRAINT operation is not complete. The DRAINT _FLAG 
is cleared at the end of the cycle following the cycle when all of the valid bits in the two dirty 
logic pipelines, the IMUL, and the FDIV, become clear. This means that any TRAPS associated 
with the executing instructions have reached their reporting points and the TRAP logic in the 
IBOX has had a cycle to take the appropriate response if a TRAP has occurred. 

1.2.9.13.3 DRAINT Latency 

Instruction issuing is resumed at the beginning of the cycle following the cycle in which the 
DRAINT_FLAG is cleared. There is an explicit SET overrides RESET logic for the DRAINT_ 
FLAG such that a minimum DRAINT operation appears to require two cycles. In the first cycle, 
the DRAINT (or CALL_PAL) instruction is issued and the DRAINT_FLAG is set. This corre
sponds to the initial cycle that a TRAP is posted. In the second cycle, if all the valid bits are 
clear, the DRAINT_FLAG is cleared. However, this does not occur until late in the cycle at which 
point a STALL decision for that cycle has already been made. Therefore instruction issuing 
resumes at the beginning of the third cycle. 

Typically the minimum DRAINT operation does not occur. The pipeline must have been fully 
drained prior to issuing the DRAINT (or CALL_PAL) to achieve the minimum latency. For well 
scheduled integer code (without IMULs), the typical latency of a DRAINT is 5 or 6 cycles. This 
corresponds to the following: 

0. Dual Issue of an integer operate and the DRAINT. 
1. S4 of the Integer Operate 
2. S5 of the Integer Operate 
3. S6 of the Integer Operate 
4. S7 of the Integer Operate (Overflow is reported to the TRAP logic) 
5. The DRAINT_FLAG is cleared late in the cycle 
6. Issuing resumes. 

The latency is reduced to 5 cycles, if the DRAINT does not dual issue with an integer operate. 

Typical DRAINT latency on floating point code is two cycles longer (i.e. 7 or 8 cycles) since the 
floating pipe is two cycles longer than the integer pipes. 

**What do we do about error conditions,aborts, etc???-rpp** 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-63 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.14 Illegal/Reserved Opcodes 

(RPP- It is currently a little unclear how much of this is detected by the issue stage and how 
much by the Slot stage. This description provides the details of having the Issue Stage do all 
the detecting/reporting of illegal opcodes. The final implementation may have some/all of the 
decoding done in the slot stage with the issue stage simply providing the issue timing for the 
appropriate signals to the TRAP logic). 

The Issue Stage of the IBOX detects and reports several kinds of illegal/reserved opcodes to the 
TRAP logic. The Issue Stage reports on these conditions at the same time that the offending 
instruction issues. This helps preserve the "exactness" of the potential exceptions generated by 
these conditions. The TRAP logic must abort the instruction (and any subsequent instructions 
(Section 1.2.9.15.1) by generating the appropriate TRAP. The following conditions are detected 
and reported. 

1.2.9.14.1 Opcodes Reserved to Digital 

These opcodes (01-07, OA, OC-OE, 14, and lC) are routed by the Slot stage to Pipe EO. The 
Issue Stage will assert the signal I_ISS%0PCDEC_4A to the TRAP logic when one of these opcodes 
"issues". In addition, the relative position of this instruction within the current block of four will 
be indicated by the IJSS%EO_POS_4A<l:O> lines. 

1.2.9.14.2 PAL Instruction in "native" mode 

The PAL opcodes (19, lB, lD, lE, lF) are detected by the instruction decoder in the Issue stage. 
When one of these opcodes reaches the issue stage and does not encounter any stalls, the instruc
tion issues and the appropriate registers are marked dirty. If the machine is operating in 11native" 
mode when the instruction issues as indicated by bit 0 of the S3 PC (rpp-check with Nital for the 
correct signal) instead of PALMode, the signals IJSS%0PCPAL_Eo_4A and/or I_ISS%0PCPAL_Et_4A 
are asserted to the TRAP logic. The instruction will issue during the 3B/4A phase, so the TRAP 
logic must signal a valid TRAP back to the Issue stage in order to clear the valid bits associated 
with this instruction and to free up the dirty registers. The position of the OPCPAL instruction 
within the current block can be determined by examining the I_ISSCkEO_POS_4A<l:O> and I_ISS%El_ 
POS_4A<l:O> lines. 

1.2.9.14.3 Priviledged CALL_PALs 

When a CALL_PAL with a priviledged function field is issued, the Issue stage signals the TRAP 
logic using the I_ISS%PRIV _PAL_4A<l:O> line. The position of this instruction may be determined 
by examining the I_ISS%El_POS_4A<l:O> lines. Since a CALL_PAL does not dirty any registers, no 
registers are dirty locked by the issuing of this instruction. The Issue stage will indicate that a 
priviledged CALL_PAL has been executed regardless of the current mode of the machine. The 
TRAP logic will determine if a TRAP is required (i.e. not in KERNAL mode). 

1.2.9.14.4 Illegal CAL_PAL functions 

When a CALL_PAl with a function field outside of the legal range (0-3F and 80-BF are the legal 
range), is issued, the Issue stage signals the TRAP logic with the IJSS%BAD_PAL_4A line. The 
position of this instruction may be determined by the I_ISS%El_POS_4A<l:O> lines. 

1-64 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.14.5 Floating Point 

(rpp-I need to check on this... Does the issue stage need to do anything?) 

1.2.9.15 Aboning Instructions 

1.2.9.15.1 TRAPS, REPLAYS, and INTERRUPTS 

When an instruction is issued, the 1%ISSUE_XX_4A lines are latched and travel down the appro
priate dirty logic pipeline as valid bits. (Section 1.2.9.6). The TRAP logic will send the signals I_ 
TRP%ABORT_S2_THRU_S7_B_H or I_TRP%ABORT_S2_THRU_S5_B_H when an interrupt, error, replay, 
or trap occurs. These signals will be used to clear the siloed valid bits in the dirty datapaths. In 
addition, issuing is suspended for two cycles. This allows time for the earlier stages of the IBOX 
to cycle to the correct state without releasing any additional instructions into the execution units. 

The actual valid bits cleared depends upon which of the TRAP signals is indicated and upon the 
position information sent from the TRAP logic sent over the (rpp-get the name from Vidya) lines. 
For S7 traps, (indicated by the I_TRP%ABORT_S2_THRU_S7_B_H signal), all valid bits in stages 3-6 
are cleared. In addition, valid bits for instructions in 87 that follow the TRAPping instruction 
cleared. For S5 traps, ( I_TRP%ABORT_S2_THRU_S5_B_H) only the valid bits in 83, S4, and for 85 
instructions following the TRAPping instruction are cleared. 

Since the register file writes in the EBOX (FBOX) use an S7 (S9) version of these siloed valid bits 
as the write strobe, EBOX and FBOX operates for the aborted instructions are effectively killed 
when the valid bits are cleared. The FBOX also uses the write strobe(s) to update the FPCSR 
register with the exception status. If the write strobe doesn't occur, the instruction is assumed to 
have been aborted by a previous exception and the register is not updated. Since some TRAPS 
are reported in S7, the EBOX register file write strobes cannot be aborted in time. Therefore 
the MBOX (the source of the S7 traps) will send a pair of register file write aborts to the EBOX 
register file to abort the S7 instructions. 

Instructions executing in the integer Multiplier (and the floating Divider) require a special abort 
sequence. When an instruction is issued to either of these units, it sets a timer in the Issue stage. 
The timer is used to determine the state of the inprogress instruction relative to the trapping 
event. If the instruction in one of these two units logically follows the faulting instruction in 
execution order, the unit must be aborted. This state is detected by the issue logic and an 
abort signal is sent (I%E_ABORT_IMUL, 1%F _ABORT_FDIV) to the appropriate box. In addition, the 
IMUL_DEST (or FDIV _DEST) register in the dirty logic is cleared to free up the unit for future 
instructions. These abort signals may be sent in any of the first four cycles of the IMUUFDIV 
instruction's execution. 

The Trap logic in the IBOX will be responsible for driving the appropriate signals to the MBOX 
to abort any issued MBOX instructions. The valid bits for any instructions following the faulting 
instruction will have been cleared in the Issue stage so that no data is expected to be returned 
to the register file(s) for these instructions. LOADs that have missed in the D-Cache must have 
logically preceeded any trapping instruction and therefore will be allowed to complete when the 
data is returned by the MBOX. The list of outstanding misses will not be cleared until the fill 
data returns, therefore PALCode may experience some unanticpated stalls if the code attempts 
to use a register that is still locked from prior loads. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-65 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.15.2 ERROR abons 

Certain conditions, like RESET, expiration of the S3_STALL_TIMEOUT counter, and (others 
TBD-rpp) will cause all of the valid bits in the Issue logic to be cleared These conditions will also 
cause the oustanding miss register list to be cleared and aborts to be sent to the IMUL and FDIV 
units. 

1.2.9.16 Special Stuff 

**RPP-This section will be a collection of all the other hoops that the Issue stage jumps through 
that don't fit into the other sections**. 

1.2.9.17 LOAD MISS-AND-USE Replay 

This section is waiting some clarification of the latest set of changes prior to being included. 

The DCache HIT signals from the MBOX (M%I_DC_mT_E0_6A and M%1_Dc_mT_Et_6A do not arrive 
in the Issue logic early enough for the IBOX to signal the correct stall or bypass if a current issuing 
S3 instruction has a data dependency on one of the LOADs currently in 6A. To avoid adding an 
additional cycle oflatency to the LOAD-HIT path, special LDU_REPLAY logic has been built into 
the integer dirty datapath. In the case described, where an issuing instruction a source register 
that matches the destination of a LOAD currently is S6, the LOAD is assumed to HIT and the 
instruction is issued. If the guess was correct, everything proceeds as normal. If the guess proves 
incorrect, an LDU _REPLAY is asserted. The signal I_ISS%LDU_REPLAY_3B is asserted to the EPC 
and TRAP sections of the IBOX. In addition, the position in the block of 4 of the instruction that 
was incorrectly issued is sent on the lines I_ISS'YoLDU_OFFSET_4A<l:O>. An LDU_REPLAY also 
occurs if one of the issuing instructions has a DEST-DEST conflict with the LOAD that missed 
in the DCache. 

The TRAP logic will abort the Issue stage pipe at the S5 TRAP time assuming that no higher 
priority TRAP occurs. This will cause the incorrectly issued instruction and all instructions issued 
in it's shadow to be aborted. 

The EPC section will create the PC of the incorrectly issued instruction by appending together 
the PC of the issue block and the offset. This PC will be sent to the IDX section which will start 
a new I CACHE access at the point of the incorrectly issued instruction. 

The incorrectly issued instruction will arrive back at the issue point 5 cycles later just as the 
data is being returned from the SCache (if the SCache data was a Hit). If the SCache MISSes, 
the instruction is stalled until the data arrives. Figure 1-23 shows a timing diagram for the 
LDU_REPIAY path. 

1-66 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



~ = '.-4 

I ..c 
~ 
~ 
Q 

= e 
•1"'4 
I'll .$: 

~ 
g 

•1"'4 

i 
~ 
~ 
~ 
"; C) 

c 

j E 
i= 
~ .& a. 
Cl> 

~ a: 
w 

~ tJ) 
::> 

0 I c 

~ 
z 
<C 

I 
tJ) 
en 
i 
c 
<C 
0 
..J 

~ 
')' ,.. 
! 
::I 
C) 

u: 

2 10 11 12 

I c I B ' SL ' Is • AL ' DC ' TB ; WR i SCH i SCD l DC I S6 I WR 

-:- ~~-t~~~t~~~t,~:t-~ "ti[-_t~~~-Lf ~L:t~~ t·.~ 
i IC i 18 ; SL i IS i i ; i i i i ; : ; ; ; ; : ~ ; ; ; . . . . . . . . . . . 
----·---·---~---·----~-------·---·---~---·----' ! f ! ! ! I ; i 

t .. '..~ ... i .. ~. ~ .... i .. ~.~ .. -i "'1 

'~" .. ~ ... ~.~ ..... i .... ~j~ -l- ..... -· l ·- ...... ·~ "'.. ..j ......... '" 
INSTRUCTIONS FOLLOWING THE ADD .... ; IC ; I B ; SL i IS i AL ; ; ; ; 

i.,.,.,.,,,.t•"'"'"' i••"•••• "i'"'"""'"'"{"''" "}""'' .. '"'j''''""'"'t"'''"' '~''"'" "''" 
i IC i IB i SL i1s i l i i 
i i I I I I ! I 
"" ......... !' ... IH •• '!' ... HI ... ''! ...... ,. .. ~ ... HI 111 IHr• 111 IH HI!" ... UI • !' •. '" ... 11 

LO R0,0( R1) 

ADD RO,R1 ,R2 

0 

ADD RO,R1,R2 

0 

0 ; I 
i i i 
I i i 

r I f t 
-i ........ ·-!·· ......... ? .. '" ..... i- ........ . 

i IC ; lsi i i i i 
: .. rR;;·fre:J ·t .. ; ·~ ... ·i ··~~·· .. J ... ;~ .... ~ ..... ~ ~. 

ID X :. .......... l ....... "' .i .......... J "''" ..... i ... "' '" .. . 
ADD RO,R1,R2 

i l l l 
L---t---f---~----

; i ; 
! ! ! 

LOAD M IS S -AN D- USE REPLAY TI M I NG t... ..•• + ........ i ........... .. 
ASSUMES 5 CYCLE SC LATENCY ! .......... ~ ...... "'" 

ADD STALLED DUE TO DEST-SOURCE 
CONFLICT WITH THE LOAD 

ADD STILL STALLED 

ADD ISSUED, LOAD DATA BYPASSED 
DC HIT INDICATES A MISS IN LATE 6A 
LOU REPLAY ASSERTS IN 6 B 
ADD-ABORTED IN 8B 

INSTRUCTIONS FOLLOWING THE ADD ISSUED 
ABORTED IN 8B •• AL STAGE 

INSTRUCTIONS ISSUED 
ABORTED IN 8B • • I SS STAGE 

INSTRUCTIONS KILLED AT SL STAGE 

INSTRUCTIONS KILLED AT I B STAGE 

CYCLE 7 • • TRAP PRIORITIZATION AND INDEX GENERATION 
CYCLE 8 IC LOOKUP OF ·Aoo· 

CYCLE 11 •• SCDATA BYPASSED FROM S6 STAGE OF EBOX 

If ,.. 
>C 
0 :e 
CD 

f: 

z 
0 
j:: 
::::> 
m 

~ 
CJ) 

Ci 
c 
w 
b a: .... en w 
a: 
..J 

~ a 
Ci 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.9.18 PAL Shadow Suppon 

The EBOX has an additional 8 "PAL_SHADOW' registers that can be enabled in PAL mode to 
replace registers 8-15 of the normal EBOX register file. Mapping of the PAL_SHADOW bank is 
enabled when the machine is in PALMode and the ICSR<SDE> bit is set. PALMode is determined 
by examining bit 0 of the 3A PC (rpp-check with Nital for the correct version). 

1.2.9.18.1 EBOX Register File Control 

The EBOX register file selects the PAL_SHADOW bank registers for reads by examining the 
1%E_RD_PAL_SBADOW _2A_H line which is created by ANDing the PALMode and SDE bits together. 
If this signal is active, all four source operands will be read from the PAL_SHADOW bank if they 
are in the PAL_SHADOWs range, otherwise they will be read from the normal EBOX registers. 

The Issue Stage will silo the l%E_RD_PAL_SHAOOW _2A_H bit down the dirty logic datapath with 
the valid and position bits. The siloed version of this signal is used to select the PAL_SHADOW 
bank for register file writes. Two signals are generated in S6 to control the bank selection for 
register file writes, 1%E_Wo_PAL_SBADOW_6A and I%E_WI_PAL_SHADOW_6A. These signals select 
the PAL_SHADOW bank for the WO and Wl write ports respectively. If one of these signals is 
active, and the register address falls in the PAL_SHADOW range, the PAL_SHADOW register is 
updated when the write ·strobe (1%E_Wo_EN_7A, etc.) is generated. If the register falls outside the 
PAL_SHADOW bank, then the normal EBOX register is updated regardless of the state of the 
1%E_WX_PAL_SBADOW _6A lines. 

1.2.9.18.2 Diny Checks for the PAL_SHADOW registers 

The Issue Stage peforms the normal dirty and bypass checks (see Section 1.2.9.3) on instructions 
issued while the PAL_SHADOW bank is enabled. The Issue stage doesn't separate a reference to a 
PAL_SHADOW register from that to the corresponding normal register. Stalls and Bypasses may 
be asserted if, for example, one instruction references Shadow R8 and another references "normal" 
RB. This implies that all writes to PAL_SHADOW registers must complete before switching to 
the "normal'' bank and that all writes to "normal" registers must complete prior to switching to 
the PAL_SHADOW bank. The only exception to this rule is for LOADs that miss in the DCache. 
The PAL_SHADOW bit that is siloed with the instruction is used in setting the bits in the DCache 
Miss register of the integer dirty datapath. In addition, the MBOX reads the signal l%M_PAL_ 

SBADOW _EN_2A and stores this bit in the Miss Address File. The MBOX will return this bit as 
bit 6 of the register address when the fill data returns. Therefore, it is possible to determine 
the correct register address (PAL_SHADOW or normal) for the EBOX register file. The PAL_ 
SHADOW bit of the write addresses sent to the EBOX register file (I%E_WX_PAL_SHADOW_6A) are 
set to match the MBOX provided bit 6 for FILLs. 

1.2.9.18.3 Switching betweeen PAL_SHADOW and NORMAL banks 

There are two ways that the PAL_SHADOW bank can be enabled. The first case is switching 
from "native" mode to PALMode by either issuing a CALL_PAL instruction or by the posting 
of a TRAP. Switching from "native" mode to PALMode requires that an implicit DRAINT be 
performed, therefore the pipeline is drained of any operate instructions that have destinations to 
the "normal'' registers. At the point that issuing resumes, the PAL_SHADOW bank is enabled 
and no outstanding writes (due to operates) exist for the "normal" registers that lie in the PAL_ 
SHADOW address range. 

1-68 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The second way to enable the PAL_SHADOW bank is to set the ICSR<SDE> bit while in 
PALMode. In this case, up to 5 cycles of operates (83-87) may be in the pipeline with desti
nations that should be to "normal" registers. These operates could cause incorrect data to be 
bypassed to subsequent instructions that reference PAL_SHADOW registers with corresponding 
register numbers. Therefore, PALCode must ensure that 5 cycles are allowed between an operate 
instruction that will write a "normal'' register in range R8-R15 and an instruction that will use 
the PAL_8HADOW version of this register as a source operand. 

There are also two ways that the PAL_8HADOW bank can be disabled. The first is to switch from 
PALMode back to "native" mode. As in the case outlined in the previous paragraph, operates in 
the two EBOX pipes with PAL_SHADOW destinations could cause incorrect bypasses to source 
registers that are actually in the "normal'' bank. Since PALCode has no control over the appli
cation instructions following an HW _REI (switch back to "native" mode), PALCode must avoid 
writing a PAL_SHADOW register in any of the 5 cycles prior to and including the cycle when a 
HW _REI issues that switches back to "native" mode. This restriction can also be met by issuing 
a DRAINT just before the HW_REI. 

The second way of disabling the PAL_8H.ADOW bank is to clear the ICSR<8DE> bit. This case 
the exact analog of the case where the bit is set. Therefore PALCode must not reference a register 
in the range R8-R15 within 5 cycles of a write to the corresponding PAL_8HADOW register. 

1.2.10 IBOX IPR's and PAL_ TEMP registers 
-

The PC bus is used for data movement to and from the IPR's/PAL_TEMP registers. 

An IPR/PAL_TEMP is read in 83 and sent to the EBOX on the IBOX PC bus where it is muxed 
in with the output of the logic box at the end of the El pipe. This makes the data bypassable in 
a cycle. 

To write an IPR/PAL_TEMP, the data is read from the EBOX gpr in 83 and sent over the EBOX 
PC bus in 84. The actual write of the IPR/PAL_TEMP register takes place in 85. There is no 
siloing of write data to wait out trap shadows. The Ibox will stop writes to the IPR once a trap 
happens. Given that the latest traps happen in 86 and that IPR writes happen in 85, 86 traps 
cannot block IPR writes. Only Mbox instructions can trap in 86, which therefore implies that 
any HW _MTPR that dual issues with and is after an Mbox instruction, will not be aborted if the 
Mbox instruction is aborted. Floating branch mispredicts which trap in 85 also do not abort IPR 
writes. are posted in 87. 

NOTE 

Unless explicitly stated, IPRS are not cleared or set by hardware on chip or on timeout 
reset. 

1.2.10.1 ITB_TAG 

The ITB_TAG register is a write only register. This register is written by hardware on an 
ITBMIS8/IACCVIO, with the tag field of the faulting VA To ensure the integrity of the ITB, 
the TAG and PrE fields of an ITB entry are updated simultaneously by a write to the ITB_P'fE 
register. This write causes the contents of the ITB_TAG register to be written into the tag field 
of the ITB location, which is determined by a NLU algorithm. The P'fE field is obtained from 
the MTPR ITB_P'fE instruction. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-69 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-24: lstream TB Tag, ITB_TAG 

63 43 42 13 12 00 
+---------------------+----------------------------------------+----------------+ 
I IGN I VA[42 •• 13] I IGN I 
+---------------------+----------------------------------------+----------------+ 

1.2.10.2 ITB _PTE 

The ITB_PTE register is a read/write register. A write to this register, writes both the PTE and 
TAG fields of an ITB location determined by a not-last-used algorithm. The TAG and PTE fields 
are updated simultaneously to insure the integrity of the ITB. A write to the ITB_PTE register 
increments the NLU pointer, which allows for writing the entire set of ITB PTE and TAG entries. 
The TAG field of the ITB location is determined by the contents of the ITB_TAG register. The 
PTE field is available in the MTPR ITB_PTE instruction. Writes to this register use the memory 
format bits as described in the Open VMS memory management chapter of the Alpha SRM. 

Note: The NLU pointer is bumped in trap shadows. 

Figure 1-25: lstream TB PTE Write Format, ITB_PTE 

63 59 58 32 31 12 11 10 09 08 07 06 05 04 03 00 
+---------+----------------------+--------------+--+--+--+--+--+-----+--+-------+ 
I IU IS IE IK II I IA I I 
I IGN PFN[39 •• 13] IGN IR IR IR IR IG I GH IS I IGN I 
I IE IE IE IE IN I IM I I 
+---------+----------------------+--------------+--+--+--+--+--+-----+--+-------+ 

A read of the ITB_PTE requires two instructions. A read of the ITB_PTE register, returns the 
PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and updates the NLU pointer 
according to the not-last-used algorithm. A zero value is returned to the integer register file. A 
second read of the ITB_PrE_TEMP register returns the PTE the the general purpose integer 
register file. 

Note: The NLU pointer is bumped in trap shadows. 

Figure 1-26: lstream TB PTE Read Format, ITB_PTE 

63 59 58 32 31 30 29 28 22 21 20 19 18 13 12 0 
+---------+----------------------+--------+----------+--+--+--+--+----+--+------+ 
I I GHD I I U I s I E I K I I A I I 
I RAZ PFN[39 •. 13] I <2:0> I RAZ IR IR IR IR IRAZ IS I RAZ I 
I I I IE IE IE IE I IM I I 
+---------+----------------------+--------+----------+--+--+--+--+----+--+------+ 

1.2.10.3 Address Space Number, ITB _ASN 

The ITB_ASN register is a read/write register which contains the Address space number (ASN) of 
the current process. 

1-70 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-27: Address Space Number Read/Write Format, ITB_ASN 

63 11 10 04 03 00 

+---------------------------------------------------------+-------------+-------+ 
I RAZ/IGN I ASN<6:0> IRAZ/IGNI 

+---------------------------------------------------------+-------------+-------+ 

1.2.10.4 ITB_PTE_TEMP 

The ITB_PrE_TEMP register is a read-only holding register for ITB_PrE read data. A read of the 
ITB_PrE register returns data to this register. A second read of the ITB_PrE_TEMP register 
returns data to the integer general purpose register file. 

Figure 1-28: lstream TB PTE Temp Read Format, ITB_PTE_TEMP 

63 59 58 32 31 30 29 28 22 21 20 19 18 13 12 0 

+---------+----------------------+--------+----------+--+--+--+--+----+--+------+ 
I I GHD I I U I S I E I K I I A I I 
I RAZ PFN[39 •• 13] I <2:0> I RAZ IR IR IR IR IRAZ IS I RAZ I 
I I I IE IE IE IE I IM I I 

+---------+----------------------+--------+----------+--+--+--+--+----+--+------+ 

Table 1-8: Description of GHD bits in ITB_PTE_TEMP read format 

Name Extent Type Description 

31 RO Is set if GH(granularity hint) equals 11. GHD 

GHD 

GHD 

30 RO Is set if GH(granularity hint) equals 10 or 11. 

29 RO Is set if GH(granularity hint) equals 01, 10 or 11. 

1.2.10.5 lstream TB Invalidate All Process, ITB_IAP 

This is a write-only register. Any write to this register invalidates all ITB entries, whose ASM 
bit equals zero. 

1.2.10.6 IStream TB Invalidate All, ITB_IA 

This is a write-only register. Any write to this register invalidates all ITB entries, and resets the 
ITB NLU pointer to its initial state. RESET Palcode must execute an MTPR ITB_IA instruction 
in order to initialize the NLU pointer. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-71 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.10.7 ITB_IS 

This is a write-only register. Writing a virtual address to this IPR invalidates the ITB entry that 
meets any one of the following criteria: 

• An ITB entry whose VA field matches ITB_IS<42:13> and whose ASN field matches ITB_ 
ASN<10:4>. 

• An ITB entry whose VA field matches ITB_IS<42:13> and whose ASM bit is set. 

Figure 1-29: ITB_IS 

63 43 42 13 12 00 
+-----------------------------+----------------------------------+--------------+ 
I IGN VA[42:13] I IGN 
+-----------------------------+--~-------------------------------+--------------+ 

1.2.10.8 Formatted Faulting VA register, IFAULT_VA_FORM 

This is a read-only register which contains the formatted faulting virtual address on an ITBMiss/IACCVIO. 
The formatted faulting address generated depends on whether NT super page mapping is enabled 
through the SPE <0> bit of the ICSR. 

Figure 1-30: IFAULT_VA_FORM in non NT mode 

63 33 32 03 02 00 

+-------------------------------------+------------------------------------+----+ 
I VPTB[63:33] I VA[42:13] IRAZ I 
+-------------------------------------+------------------------------------+----+ 

Figure 1-31: IFAULT_VA_FORM in NT mode 

63 30 29 22 21 03 02 00 

+--------------------------------------------+------------+-----------------+----+ 
I VPTB[63:30] I RAZ I VA[31:13] IRAZ I 
+--------------------------------------------+------------+-----------------+----+ 

1.2.10.9 Vinual Page Table Base register, IVPTBR 

This is a read-write register. 

1-72 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-32: IVPTBR In non NT mode 

63 33 32 30 29 00 

+------------------------------------+-------+----------------------------------+ 
I VPTB[63:33] I IGN I RAZ/IGN I 
+------------------------------------+-------+----------------------------------+ 

Bits <32:30> are undefined on a read of this register in non NT mode. 

Figure 1-33: IVPTBR in NT mode 

63 30 29 00 
+--------------------------------------------+----------------------------------+ 
I VPTB[63:30] I RAZ/IGN I 
+--------------------------------------------+----------------------------------+ 

1.2.10.10 lcache Parity Error Status register, ICPERR_STAT 

This is read/write register that contains information about an Icache Parity error. The error status 
bits may be cleared by writing a 1 to the appropriate bits. 

Figure 1-34: ICPERR_STAT Read format 

63 13 12 11 00 
+---------------------------------------------------+---+---+---+---------------+ 

I T I T I D I 
RAZ/IGN I M I P I P I RAZ/IGN 

I R I E I E I 
+---------------------------------------------------+---+---+---+---------------+ 

Table 1-9: ICPERR_STAT Field Descriptions 

Name Extent Type Description 

DPE 11 WlC Data parity error. 

TPE 12 WlC Tag parity error. 

TMR 13 WlC Timeout reset error. 

1.2.10.11 ICache Flush Control register, IC_FLUSH_CTL 

This is a write-only register. Writing any value to this register flushes the entire Icache. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-73 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.10.12 Exception Address register, EXC_ADDR 

The EXC_ADDR register is a read-write register used to restart the machine after exceptions or 
interrupts. The HW _REI instruction causes a return to the instruction pointed to by the EXC_ 
ADDR register. This register can be written both by hardware and software. Hardware writes 
happen as a result of exceptions/interrupts and CALLPAL instructions. Hardware writes which 
occur as a result of exceptions/interrupts take precedence over all other writes. 

In case of an exception/interrupt, hardware writes a PC to this register in 86 of the execution 
pipeline. In case of precise exceptions, this is the PC of the instruction that caused the exception. 
In case of imprecise exceptions/interrupts, this is the PC of the next instruction that would have 
issued if the exception/interrupt was not reported. 

In case of a CALLPAL instruction, the PC of the instruction after the CALLPAL is written to 
EXC_ADDR in S5. Software writes of the register through the HW _MTPR instruction also take 
place in 85. At a given time only a CALLPAL or HW_MTPR instruction will attempt to write 
EXC_ADDR as both these instructions are slotted to the El pipe. 

BIT <0> of this register is used to indicate PAL mode. On a HW _REI the mode of the machine 
is determined by BIT <0> of the EXC_ADDR register. 

Figure 1-35: EXC_ADDR Read/Write format 

63 02 01 00 
+-----------------------------------------------------------------------+----+---+ 
I IR/I I P I 
I PC[63:2] IA/GI A I 
I IZ/N I L I 
+-----------------------------------------------------------------------+----+---+ 

1.2.10.13 Exception Summary register, EXC_SUM 

The exception summary register records the different arithmetic traps that have occurred since the 
last time EXC_SUM was written. Any write to this register clears bits <16:10>. 

Figure 1-36: Exception Summary register Read Format, EXC_SUM 

63 16 15 14 13 12 11 10 09 00 
+------------------------------------------------+--+--+--+--+--+--+--+---------+ 
I IIIIIUIFIDIIISI I 
I RAZ /I GN I O I N I N I O I Z I N I W I Rl\.Z/ I GN I 
I IV IE IF IV IE IV IC I I 
+------------------------------------------------+--+--+--+--+--+--+--+---------+ 

1-74 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-10: EXC_SUM Field Descriptions 

Name Extent Type 

swc 10 WA 

INV 11 WA 
DZE 12 WA 
FOV 13 WA 
UNF 14 WA 
INE 15 WA 
IOV 16 WA 

Description 

Indicates Software completion possible. This bit is set after 
a floating point instruction containing the IS modifier com
pletes with an arithmetic trap and all previous floating point 
instructions that trapped since the last MTPR EXC_SUM also 
contained the IS modifier. The SWC bit is cleared whenever 
a floating point instruction without the IS modifier completed 
with an arithmetic trap. The bit remains cleared regardless 
of additional arithmetic traps until the register is written via 
an MTPR instruction. The bit is always cleared upon any 
MTPR write to the EXC_SUM register. 

Indicates invalid operation. 

Indicates divide by zero. 

Indicates floating point overflow. 

Indicates floating point underflow. 

Indicates floating inexact error. 

Indicates Fbox convert to integer overflow or Integer Arithmetic 
Overflow. 

1.2.10.14 Exception Mask Register, EXC_MASK 

The exception mask register records the destinations of instructions that have caused an arithmetic 
trap, since the last time EXC_MASK was cleared. The destination is recorded as a single bit mask in 
the 64 bit IPR representing FO-F31 and I0-131. A write to EXC_SUM clears the EXC_MASK register. 

Figure 1-37: Exception Mask register Read Format, EXC_MASK 

63 32 31 00 
+-----------------------------------+------------------------------------------+ 
IF31 F30 F29..... Fl FOII31 I30 I29 ..•.... Il IOI 
+-----------------------------------+------------------------------------------+ 

1.2.10.15 PAL Base Register, PAL_BASE 

The PAL_BASE register is a read/write register which contains the base address for PALcode. 
The register is cleared by hardware on reset. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-75 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-38: PAL_BASE 

63 40 39 14 13 00 
+----------------------------+--------------------------------+----------------+ 
I RAZ/IGN I PAL_BASE[39:14) I RAZ/IGN I 
+----------------------------+--------------------------------+----------------+ 

1.2.10.16 Processor Status, PS 

The processor_status register is a read/write register containing the current mode bits of the 
architecturally defined PS. 

Figure 1-39: Processor Status, PS 

63 04 03 02 00 
+-----------------------------------------------------------+---+---+-----------+ 

I c I c I I 
RAZ/IGN I M I M I RAZ/IGN I 

I 1 I O I I 
+-----------------------------------------------------------+---+---+-----------+ 

1.2.10.17 lbox Control/Status Register, ICSR 

This is a read-write register which contains lbox related control and status information. 

Figure 1-40: lbox Control/Status Register ICSR 

63 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 00 
+----------+--+--+--+--+--+--+--+--+----+--+-----+--+--+--+--+-----------------+ 

IT IISID IF IF IF \S ICRIR/I IS I SPE IH IF IT IT I I 
IS IT IB IB IB IM IL ID \A/G ID I [1:0] IW IP IM IM I RAZ/IGN I 
IT I A IS ID IT IS IE IE I ZIN IE I IE IE ID IM I I 

+----------+--+--+--+--+--+--+--+--+----+--+-----+--+--+--+--+-----------------+ 

Table 1-11: 

Name 

TMM 

TMD 
FPE 

HWE 

1-76 Thelbox 

ICSR Field Descriptions 

Extent Type 

24 R\V,O 

25 RW,O 

26 R\V,O 

27 R\V,O 

Description 

If set, the timeout counter counts 5K cycles before asserting 
timeout reset. If clear, the timeout counter counts 1 billion 
cycles before asserting timeout reset. 

If set, disables the timeout countei·. 

If set floating point instructions may be issued. When clear 
floating point instructions cause FEN exceptions. 

If set, allows PALRES instructions to be issued in kernel 
mode. 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-11 (Cont.): ICSR Field Descriptions 

Name Extent Type Description 

SPE 29:28 RW,O If SPE<l> is set, it enables super page mapping ofistream vir-
tual addresses VA<39:13> directly to physical address PA<39:13> 
if VA<42:41> = 10. Virtual address bit VA<40> is ignored in 
this translation. Access is allowed only in kernel mode. 

SPE<O> when set, enables super page mapping of istream 
virtual addresses VA<42:30>=1FFE (Hex) directly to physical 
address PA<39:30>= O(Hex). VA<30:13> is mapped directly 
to PA<30:13>. Access is allowed only in kernel mode. 

SDE 30 RW,O If set, enables PAL shadow registers. 

CRDE 32 RW,O If set, enables correctable error interrupts. 

SLE 33 RW,O If set, enables serial line interrupts. 

FMS 34 RW,O If set, forces miss on Icache references. 

FBT 35 RW,O If set, forces bad Icache tag parity. 

FBD 36 RW,O If set, forces bad Icache data parity. 

DBS 37 RW,I This bit controls the selection of the multiplexer for the debug 
port. If set the debug port sees bits <11:4> of the siloed PC. 
If cleared, the packet from the MBOX is selected. 

ISTA 38 RO Reading this bit indicates !CACHE BIST status. If set, 
!CACHE BIST was successful. 

TST 39 RW,O Writing a 1 to this bit causes the TEST_STATUS_H pin of the 
chip to be asserted. 

1.2.10.18 Interrupt Priority Level Register, IPL 

This is a read/write register containing the value of the architecturally specified IPL register. 
Whenever hardware detects an interrupt whose target IPL level is greater than the value in 
IPL<4:0>, an interrupt is taken. 

Figure 1--41: Interrupt Priority Level Register, IPL 

63 04 00 
+---------------------------------------------------------------+--------------+ 
I I 
I RAZ/IGN I IPL<4: 0> 
I I 
+---------------------------------------------------------------+--------------+ 

1.2.10.19 Interrupt Id Register, INTID 

This is a read only register. It is written by hardware with the target IPL of the highest priority 
pending interrupt. The hardware recognizes an interrupt if this IPL is greater than the IPL 
given by IPL<4:0>. Interrupt service routines may use the value of this register to determine 
the cause of the interrupt. PAL code, for the interrupt service, must ensure that the IPL level 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-77 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

in INTID is greater than the IPL level specified by the IPL register. This restriction is required 
because a level sensitive hardware interrupt may disappear before the interrupt service routine 
is entered (passive release). 

The contents of INTID are not correct on a HALT interrupt, as this particular interrupt does not 
have a target IPL at which it can be masked. When a HALT interrupt occurs INTID indicates 
the next highest priority pending interrupt. PAL code for interrupt service must check the ISR 
to determine if a HALT interrupt has occured. 

Figure 1-42: Interrupt Id Register, INTID 

63 04 00 
+---------------------------------------------------------------+--------------+ 
I I I 
I RAZ/IGN I INTID<4: 0> I 
I I I 
+---------------------------------------------------------------+--------------+ 

1.2.10.20 Aynchronous System Trap Request Register, ASTRA 

The Asynchronous System Trap Request Register is a read/write register which contains bits to 
request AST interrupts in each of the four processor modes(USEK). In order to generate an AST 
interrupt, the corresponding enable bit in the ASTER must be set and the current processor mode 
given in PS<4:3> should be equal or higher than the mode associated with the AST request. 

Figure 1-43: Asynchronous System Trap Request Register, ASTRA 

63 03 02 01 00 
+------------------------------------------------------------------+--+--+--+--+ 
I IU IS IE IK I 
I RAZ/IGN IA IA IA IA I 
I IR IR IR IR I 
+------------------------------------------------------------------+--+--+--+--+ 

1.2.10.21 Aynchronous System Trap Enable Register, ASTER 

The Asynchronous System Trap Enable Register is a read/write register which contains bits to enable 
corresponding AST interrupt requests. 

Figure 1-44: Asynchronous System Trap Enable Register, ASTER format 

63 03 02 01 00 
+------------------------------------------------------------------+--+--+--+--+ 
I IU Is IE IK I 
I RAZ/IGN IA IA IA IA I 
I IE IE IE IE I 
+------------------------------------------------------------------+--+--+--+--+ 

1-78 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.10.22 Software Interrupt Request Register. SIRR 

The Software Interrupt Request Register is a read/write register used to control software interrupt 
requests. A software request for a particular IPL may be requested by setting the appropriate bit in 
SIRR<15:1>. 

Figure 1-45: Software Interrupt Request Register, SIRR write fonnat 

63 18 04 03 00 

+---------------------------------------------+--------------------+-----------+ 
IGN SIRR<lS:l> IGN 

+---------------------------------------------+--------------------+-----------+ 

Table 1-12: SIRR Field Descriptions 

Name Extent Type Description 

SIRR 18:4 RW Request software interrupts. 

1.2.10.23 HW Interrupt Clear register, HWINT _ CLR 

This is a write-only register, used to clear edge-sensitive hardware interrupt requests. 

Figure 1-46: Hardware Interrupt Clear Register, HWINT_CLR 

63 33 32 29 28 27 00 

+----------------------+--+--+-------+--+--+--+--------------------------------+ 
I IS ICRI IPCIPCIPCI I 
I IL ID I 12 11 10 I I 
I IC IC I IC IC IC I I 
+----------------------+--+--+-------+--+--+--+--------------------------------+ 

Table 1-13: HWINT _ CLR Field Descriptions 

Name Extent Type Description 

PCOC 27 WlC Clears perf counter 0 interrupt requests. 

PCIC 28 WlC Clears perf counter 1 interrupt requests. 

PC2C 29 WlC Clears perf counter 2 interrupt requests. 

CRDC 32 WlC Clears correctable read data interrupt requests. 

SLC 33 WlC Clears serial line interrupt requests. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-79 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.10.24 Interrupt Summary register, ISR 

The Interrupt Summary register is a read only register which contains information about all pending 
hardware/software/AST interrupt requests. 

Figure 1-47: Interrupt Summary Register, ISR read format 

63 34 33 32 31 30 29 28 27 2624 23 22 21 20 19 18 04 03 00 
+----+--+--+--+--+--+--+--+--+----+--+--+--+--+--+------------------+----------+ 
I IH IS IC IM IP IP IP IP I II II II II IA I I Us EK I 
IRAZ IL IL IR IC IF IC IC IC I RAZl2 12 12 12 IT I SIRR<lS:l> IASTRR<3:0>f 
I I T I I I D I K I L I 2 11 I 0 I I 3 I 2 11 I O I R I I AND I 
I I I I I I I I I I I I I I I I IASTER<3:0>1 
+----+--+--+--+--+--+--+--+--+----+--+--+--+--+--+------------------+----------+ 

Table 1-14: ISR read format Field Descriptions 

Name Extent Type Description 

ASTRR[3:0] 3:0 RO AST requests 3 through 0 (USEK) at IPL 2. 

SIRR[15:1] 18:4 RO,O Software interrupt requests 15 through 1 corresponding to 
IPL 15 through 1. 

ATR 19 RO Is set if any AST request and corresponding enable bit is set 
and if the processor mode is equal to or higher than the AST 
request mode. 

I20 20 RO External hardware interrupt at IPL 20. 

I21 21 RO External hardware interrupt at IPL 21. 

I22 22 RO External hardware interrupt at IPL 22. 

123 23 RO External hardware interrupt at IPL 23. 

PCO 27 RO External hardware interrupt - Performance counter 0 (IPL 
29). 

PCl 28 RO External hardware interrupt - Performance counter 1 (IPL 
29). 

PC2 29 RO External hardware interrupt - Performance counter 2 (IPL 
29). 

PFL 30 RO External Hardware interrupt - Powerfail (IPL 30). 

MCK 31 RO External Hardware interrupt - system machine check (IPL 
31). 

CRD 32 RO Correct.able ECC errors (IPL 31). 

SLI 33 RO Serial line interrupt. 

HLT 34 RO External Hardware interrupt - halt . 

1-80 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.10.25 Serial llne transmit, SL_XMIT 

The serial line transmit register is a write-only register used to transmit bit-serial data off chip 
under the control of a software timing loop. The value of the TMT bit is transmitted off chip on 
the SROM_CLK_H pin. In normal operation mode (not in debug-mode), the SROM_CLK_H pin is 
overloaded and serves both the serial line transmission and the !cache serial ROM interface. 

Figure 1-48: Serial line transmit Register, SL_XMIT 

63 08 07 06 00 
+-------------------------------------------------------+--+-------------------+ 
I IT I 
I IM I 
I IT I 
+-------------------------------------------------------+--+-------------------+ 

1.2.10.26 Serial line receive, SL_RCV 

The serial line receive register is a read-only register used to receive bit-serial data under the control 
of a software timing loop. The RCV bit in the SL_RCV register is functionally connected to the 
SROM_DAT_H pin. A serial line interrupt is requested whenever a transition is detected on the 
SROM_DAT_H pin and the SLE bit in the ICSR is set. During normal operations (not in test-mode), 
the SROM_DAT_H pin is overloaded and serves both the serial line reception and the !Cache serial 
ROM interface. 

Figure 1-49: Serial line receive Register, SL_RCV 

63 07 06 05 00 
+----------------------------------------------------------+--+----------------+ 
I IR I I 
I IC I I 
I IV I I 
+----------------------------------------------------------+--+----------------+ 

1.2.11 Traps and Interrupts 

For the purpose of this discussion,traps are events that cause a change in control flow other than 
those caused by explicit transfer of control instructions in the istream. Traps are caused when 
an instruction (and instructions that follow) are not allowed to complete because of one of the 
following reasons: 

• Replay Traps: An instruction that has passed the issue stage (and therefore cannot be stalled 
anymore) encounters a resource conflict and must be retried. The traps belonging to this 
category are MBOX_UNAVAIL and LD_USE_REPLAY and CORR_ECC_REPLAY. 

• The istream was incorrectly predicted and must therefore be corrected. - BR/PC Mispredicts. 
• Exceptions: An instruction encounters an exception condition which needs to be serviced. 

The exception is precise if the instruction causing the exception, and all instructions that 
follow are aborted before the exception is serviced. The exception is imprecise if the trapping 
instruction is allowed to complete, but some later instruction and all instructions that follow 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-81 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

it are aborted cleanly. From the point of view of the implementation the imprecise exception 
in effect looks like a precise exception tied to a later instruction in the istream. Once the 
exception is serviced control returns to the istream with the exception causing instruction. 

• Interrupts - An interrupt has been detected, and must be serviced before control may return to 
the interrupted istream. This is achieved by associating the interrupt with some instruction 
in the istream and causing that instruction to trap. 

For a detailed description of exceptions and interrupts refer to Chapter 9 of the ALPHA SRM. 

Whenever a trap is detected in EV5 the following actions take place: 

• All instructions in the shadow of the trap are aborted. The trap shadow consists of all 
instructions including and after the trapping instruction (or some later instruction, as in the 
case of imprecise exceptions) that have entered some stage of the execution pipeline. 

• A new Icache fetch address is generated and supplied to the fetcher. In case of replay traps 
this is the address of the trapping instruction and in case of istream mispredicts it is the 
corrected istream address. In the case of exceptions/interrupts this is a PAL entry point 
associated with the exception/interrupt. 
If the event is an exception/interrupt the following additional steps are taken. 

• An address is written to the EXC_ADDR register in 86 and is also pushed on the prediction 
stack for use by following HW _REI instructions. In case of precise exceptions this is the 
address of the trapping instruction. In case of imprecise exceptions this is the address of some 
instruction in the istream that follows the trapping instruction or in the case of interrupts 
some instruction in the istream which has been chosen as the cutoff point. The requirement 
is that all instructions before this address must complete and no instruction at or after this 
location must be allowed to complete. 

• When the fetcher receives a restart address because of an exception/interrupt, the PAL mode 
bit, which is the LSB of the PC, is set to indicate that a PAL flow is now beeing executed. 
The PAL mode bit is then piped along with the rest of the PC. 

• The trap logic makes a request to the issue stage for a TRAPB. This ensures that the issue 
stage will drain out all previous exceptions before allowing execution to continue. 

The following is a table of all events that cause traps in EV5. 

Table 1-15: IBOX TRAPS, ENTRY POINTS and INTERRUPT 

Name 

RESET 

MCHK 

ARI TH 
INTERRUPT 

I TB MISS 

IACCVIO 

OPCDEC 

1-82 Thelbox 

Description 

Reset 

Uncorrectable hardware error 

Arithmetic Exception 

Hardware, Software or AST interrupts. 

!stream Translation buffer miss 

!stream Access violation, also includes sign_check error on PC 

Illegal Opcode includes: 

- Opcodes: 01-07, OA, OC-OE, 14, lC 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-15 (Cont.): IBOX TRAPS, ENTRY POINTS and INTERRUPT 

Name 

FEN 

DTBMISS_SGL 

DTBMISS_DBL 

DUN ALIGN 

DFAULT 

MBOX_UNAVAIL 

CORR ECC REPLAY 

BRMISPRED 

PCMISPRED 

LD USE REPLAY 

Description 

- privileged CALLPAL instr in non-kernel mode. 

- CALLPAL instr outside the range 0-3F or 80-BF 

- PALRES instr attempted in native mode (non-PAL) and HWE bit in ICSR or kernel 
mode not set. 

Floating Point Operation attempted with: 

- FP Instructions(LD, ST and Operates) disabled through FPE bit in ICSR 

- FP IEEE operation with datatype other than S, T or Q 

DTBMiss - Dstream Translation Buffer Miss. 

DTBMiss - DTBMiss in ITBMiss or DTBMISS_SGL flow. 

Dstream unaligned VA 

Dstream access violation or BAD VA 

Includes MAF full, WB conflict and WB full 

A dstream correctable ECC error was detected. 

Branch Target Mispredict 

PC Mispredict on target of JMP class instr. 

Attempt to use load data which missed in Dcache. 

1.2.11.1 Trap Prioritization and cross-products 

The traps in EV5 belong to one of the following categories based on the time of posting. 

• 84 traps - Trap detected when the instruction that caused the trap is in 84 of the execution 
pipeline. 

• 85 traps - Trap detected when the instruction that caused the trap is in 85 of the execution 
pipeline. 

• 86 traps - Trap detected when the instruction that caused the trap is in 86 of the execution 
pipeline. 

• Asynchronous events (ASYNC) - The instruction that caused the trap is no longer in stages 
80-86 of the execution pipeline or, as in the case of interrupts the trap causing event is not tied 
to any particular instruction in the pipeline. This class includes, amongst others, imprecise 
exceptions and interrupts. 

When multiple trap signals are asserted simultaneously the trap signal associated with the earlier 
instruction takes precedence. ASYNC traps therefore take precedence over both 86, 85 and 84 
traps asserted at the same time. A single instruction may generate multiple traps. Table 1-16 
defines the prioritization used to determine the highest priority trap in such an event. 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-83 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.11.1.1 Asynchronous traps 

ASYNC traps are synchronized with the execution pipeline by piggybacking them on some in
struction currently in the execution pipeline. The ASYNC trap is brought into the execution 
pipeline in 85. An attempt is made to post the ASYNC trap by tying it to the first *valid* in
struction in the S5 stage. The attempt to post the trap is successful if the following conditions 
are met: 

• The first instruction in the 85 stage is not in the shadow of an "non'."exception" trap. 
• The first instruction in the 85 stage is not the target of a mispredicted JSR. 

If all of the above conditions are met the attempt to post the ASYNC trap is successful. If not, 
the trap is deferred, until the conditions are satisfied. If the trap attempt is successful, the EXC_ 
ADDR register is loaded in 86 and the return address is pushed on the stack at the same time. 
The fetcher is restarted at the PAL entry point associated with the ASYNC event. If the attempt 
to post the ASYNC trap succeeded in the shadow of an exception, the EXC_ADDR register and 
the stack already contain the right address. The fetcher is restarted but EXC_ADDR is not loaded 
and no-address is pushed on the stack. 

Table 1-16: Trap Prioritization 

Name Trap Time Category Priority Restart Address 

RESET Async Exception 1 PAL offset: 0000 

MCHK Async Exception 2 PAL offset: 0080 

ARI TH Async Imprecise Exception 3 PAL offset: 0100 

INTERRUPT Async Interrupt 4 PAL offset: 0580 

CORR_ECC_REPLA~ync Replay 5 Replay first valid instr in 86. 

OPCDEC 85 Precise Exception 6 PAL offset: 0280 

FEN 85 Precise Exception 6 PAL offset: 0200 

DTBMI8S_SGL 86 Precise Exception 7 PAL offset: 0480 

DTBMI8S_DBL 86 Precise Exception 7 PAL offset: 0500 

DUN ALIGN 86 Precise Exception 8 PAL offset: 0300 

DFAULT 86 Precise Exception 9 PAL offset: 0380 

MBOX_UNAVAIL 86 Replay 10 Replay trapping instr. 

ITBMISS 84 Precise Exception 11 PAL offset: 0400 

IACCVIO 84 Precise Exception 12 PAL offset: 0180 

BRMISPRED 85 !stream mispr. 13 Correct Br target 

PCMISPRED 84 !stream mispr. 13 Correct Jmp Target 

LD USE REPLAY 84 Replay 13 Replay trapping instr 

1-84 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.11.2 Aboning lbox pipe stages on traps 

Whenever a trap is detected all instructions in the trap shadow are aborted by the following 
mechanism. 

• The trap logic asserts I_TRP%TRAP _POSTED _A_H which causes pipe stages S0-83 to be 
flushed. 

• The trap logic aborts register file writes in the shadow by asserting the signals I_TRP%.ABORT_ 
E0_6A_H, I_TRP%ABORT_El_6A_H, l_TRP%ABORT_LD0_6A_H, I_TRP'ftiABORT_LD1_6A_H, I_TRP%ABOR1 
FA_6A,_H, l_TRP%ABORT_FM_6A_H through the shadow. 

• Writes to lbox IPR's are aborted by asserting the signal I_TRP%ABORT_IPR_WRITE_5A_H 
through the shadow. 

1.2.11.3 Aboning Mbox pipe stages on traps 

At the IBOX end all precise traps except those generated by the MBOX are known by the end of 
85A, The ASYNC traps are brought into 85 and are therefore also known by the end of 85A. Based 
on the trap information two kill signals 1%M_KILL_E0_5B_H and 1%M_KILL_E1_5B_H are generated 
towards the end of 85B, which tell the MBOX if one or both the pipes are to be aborted. 

1.2.11.4 Generating Restan addresses 

A restart address is generated based on the highest priority trap signal. There are four categories 
of trap restart addresses. 

• Branch/PC Mispredict: Restart address is I_WPC%BR_PC_MPRED_IDX_5A_H. 

• 84 replays(LD _ USE_REPLAY): Restart address is I_ WPC%REPLAY_IDX_6A_H. 

• 86 Replay trap(MBOX UNAVAIL): Restart address is I_WPC%REPLAY_IDX_4A_H. 

• Exceptions/interrupts: Restart address is I_TRP%EXCEPTION_PC_A_H. 

If one or more exception/interrupt signals are asserted, a PAL entry point I_TRP%EXCEPTION_PC_ 
A_H is generated based on the highest priority exception/interrupt asserted. 

The PAL entry point is a 40 bit physical address formed as shown. 

Figure 1-50: PAL_ENTRY 

39 14 13 0 

+--------------------------~--------+--------------+ 
I Base I Offset I 
+-----------------------------------+--------------+ 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-85 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-17: PAL_ENTRY 

Name 

Base 

Offset 

Extent Description 

39:14 From Pal_Base Regist.er 

13:0 PAL Entry Offset 

The 14 bit PAL entry offset associated with the various exceptions is listed in Table 1-16. The 
trap vectors are assigned at fixed intervals of 128 bytes. 

The trap logic generates control signals which determines which one of the four restart addresses 
is to be used. 

1.2.11.5 INTERRUPTS 

The EV5 chip supports three sources of interrupts: hardware, software and asynchronous system 
traps (AST). There are 7 level sensitive hardware interrupts sourced by pins, 2 edge sensitive 
hardware interrupts for performance counters sourced by pins, 15 software interrupts sourced 
by an internal IPR (SIRR) and 4 AST interrupts (one for each processor mode) sourced by a 
second internal IPR (ASTRR). Associated with each interrupt source is a target interrupt priority 
level(IPL). An interrupt is masked when its target IPL is less than the value specified by the 
IPL IPR. Additional masking capability is provided for the AST interrupts. The AST interrupts 
can be masked by clearing the corresponding enable bits of the ASTER IPR. Also AST interrupt 
requests need to be qualified with the current processor mode. An AST interrupt request is made 
only when the mode (USEK) associated with the request is equal to or lower than the current 
processor mode. 

1.2.11.5.1 Interrupt Generation Logic 

The interrupt generation logic priority encodes the interrupt requests from all possible interrupt 
sources, and selects the highest priority pending interrupt. The highest priority pending interrupt 
is the interrupt request with the highest target IPL value. This value is latched in the INTID 
IPR. A comparator determines whether the value of the highest pending interrupt is greater than 
the value stored in the IPL IPR. If so, an interrupt request is made to the trap logic if the machine 
is not currently executing PAL. All interrupt requests are masked in PALmode. The trap logic 
prioritizes the different trap/interrupt sources and eventually a PAL entry point for the interrupt 
service routine is taken. A level sensitive hardware interrupt may deassert before the PAL entry 
point for the interrupt request is taken. This is termed a passive release. PALcode for interrupt 
service must therefore check to see if the value in the INTID IPR is greater than the value stored 
in the IPL IPR. The INTID IPR is continuously updated and can therefore be used to determine 
if a passive release ocurred. PALcode may also use the INTID IPR to determine the nature of the 
interrupt i.e. software, hardware, AST. The following table lists the different interrupt sources 
and their target IPL values. 

1-86 Thelbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 1-18: Interrupt Priority Level Effect 

Interrupt Source Target IPL (decimal) 

Halt Masked only by executing in 
PAL mode 

System machine check interrupt and internally detected correctable error 31 
interupt. 

Power fail interrupt 30 

Performance counters 29 

External interrupt 23(1/0 interrupt at IPL 23) 23 

External interrupt 22(110 interrupt at IPL 22; interprocessor interrupt; 22 
timer interrupt) 

External interrupt 21(110 interrupt at IPL 21) 21 

External interrupt 20(1/0 interrupt at IPL 20) 20 

Software Interrupt Request 15 15 

Software Interrupt Request 14 14 

Software Interrupt Request 13 13 

Software Interrupt Request 12 12 

Software Interrupt Request 11 11 

Software Interrupt Request 10 10 

Software Interrupt Request 9 9 

Software Interrupt Request 8 8 

Software Interrupt Request 7 7 

Software Interrupt Request 6 6 

Software Interrupt Request 5 5 

Software Interrupt Request 4 4 

Software Interrupt Request 3 3 

Software Interrupt Request 2 2 

AST pending (for current or more privileged mode) 2 

Software Interrupt Request 1 1 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-87 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 1-51: IBOX TNTERRUPT LOGIC 

/\ 
0 /\ 
•• C') 

/\ C') •• 

0 v v 
.. J: v 

":I!. C? I J: 0 
V al I I-J: ,m 

I a: I z 
all w cn 
a: I- a.. 
a: en *-
I- c:r: a: w 
en*- a.. ...J 
c:r: a: -
o _I 

m 
c:r: 0 

a: =I 
z ~ w 0 - ...J /\ 

I I- 0 
CJ) .. 
c:r: v 

v 
I 

I 
al 

" I 
...J .. a.. 

IO 

v C\I *-
I a: 

I C') a.. 
al I 

I v -
a: 
a: IO J: -en I 
-.:.!? <O c:r: 
0 I a: 0 
a.. "' w 

a: 
co a: I w I-
0) Cl z 

0 
0 0 

a: z w <( 0 
/\ I-

>- 0 <( 
/\ 

C\I I- .. a: 
0 v <( 

(") a: v 0... 

v (") 0 Cl :a: 
0 I v a: I (.) 

I 
I\ al 

a.. I-
z 

/\ v a:I IO 
IO V a: 

"v::r:_ 
/\ <eJ: IJ: 

·· 1m o 0 
ex> al I~ 0 v v 1a:a: C\I v J:a:a:a.. I 
I~ I-I C\I 

<( 
I 

I <;>:. C\I c:r: 
a: *-a: C\I I 
a: a: a. (") 

Cl 

J: ~ :1 
C\I I 

~ 0...(.) 
I-
z 

a.. ~ 0.1.J......J -.:.!? 0 

I-
~ :Eo~ z 

~ J:...Jt-

...J 
a.. 

1-88 The lbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

1.2.11.6 ERRORS 

This section is *******TBD******** 

1.3 Reset and Initialization 

1.4 Error Handling and Recording 

1.5 Test Aspects 

1.6 Performance Monitoring Features 

1.7 Issues 

1.8 Revision History 

Table 1-19: Revision History 

Who When Description of change 

jbk 12/10/91 cold start 

npp 12/30/91 pc,stack,branch portions added 

vr 1/07/91 IB/slot/IPR/traps sections added 

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-89 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Chapter 2 

The Ebox 

2.1 Overview-Block Diagram 

The EV5 Ebox is the execution unit which performs the integer arithmetic, logical, and byte
manipulation instructions of the Alpha instruction set. It also partially executes memory 
(LOAD/STORE) and instruction flow control instructions. 

The EV5 Ebox is leveraged from the EV 4 design as much as possible, but it is mostly a new design. 
An additional pipe has been added, and most of the functional units will be redesigned. The EV 4 
Z-bit logic has been removed, reducing much complexity in the branch logic and at the output of 
the execution units. Other changes include: the multiplier retires 8 bits per cycle, the Ebox is 
now responsible for virtual address generation in load/store instructions, 8 PAL shadow registers 
have been added to the register file, the register file does not have any write ports dedicated to 
the Mbox for load and fill data, and the register file does not have a read port dedicated to store 
instructions. 

The Ebox consists of a 40 entry register file and two instruction execution pipelines. The pipelines 
EO and El are four stages long, semi-symmetrical, fully bypassable, and they operate in parallel. 
This permits two instructions to be issued to the Ebox each cycle. Instructions may also be 
issued to the Ebox in parallel with instructions issued to the Fbox.1 To reduce the latency of each 
instruction to the time required for its execution, a bypass path exists from the output of each 
stage in each pipe to each input of both pipes. There is no direct path, however, between the 
Ebox and the Fbox. Both pipes contain the hardware required to execute most instructions. The 
exceptions are shift, byte-manipulation, store, and multiply instructions, which must be issued 
to pipe EO; and the instruction flow control instructions, which must be issued to pipe El. Some 
MxPR instructions are also restricted based on the location of the register: MxPR instructions 
involving registers in the lbox are only executed in pipe El, and MTPR instructions to registers 
in the Mbox are only executed in pipe EO. 

A table of the instructions handled by each pipe is shown in Table 2-1. 

1 See the Ibox spec for detailed information on instruction issuing. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-1 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 2-1: Instruction Matrix 

Instruction PipeEO Pipe El 

STx YES NO 
LDx YES YES 
STx_C YES NO 
LDx_L YES NO 
JMP NO YES 
JSRx NO YES 
RET NO YES 
BRx NO YES 
ADDx YES YES 
SUBx YES YES 
CMPx YES YES 
CMPBGE YES YES 
S4ADDx YES YES 
S4SUBx YES YES 
SSADDx YES YES 
S8SUBx YES YES 
AND YES YES 
BIS YES YES 
BIC YES YES 
XOR YES YES 
ORN OT YES YES 
EQV YES YES 
CMOVx YES YES 
SLL YES NO 
SRx YES NO 
EXTx YES NO 
INSx YES NO 
MSK:x YES NO 
ZAPx YES NO 
MULx YES NO 
UMULH YES NO 
FETCH:x YES NO 
RPCC YES NO 
Rx YES NO 
CALL_PAL NO YES 
DRAINT YES NO 

2-2 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 2-1 (Cont.): Instruction Matrix 

Instruction Pipe EO Pipe El 

MB YES NO 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-3 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 2-1: Ebox Block Diagram 

REGISTER U +a ENTRIES 
2 WRITE Poms 

FILE 4 READ PORTS 
WRITE IN 8 
READ IN A 

i ~ t-
i t--

! 

..-.-
~ 

_d I 
I 

_ill 
lill Jill 

i.... -<I; !.:". 
t:: ~ 
! 

~~ [ 

=- 1lJ i.... 
I::: ¢ [ 

€ c? 

I 
l ..._____.. 

c 
:.. r 
i 
l 

l ! EO 
! 

! C110Y 
LD 
ADOILOG LJ 
aT 
MXPR 

-<:i 

~ 

Eeo x ¥ 
¢ 
-<:i 

Tue 0 ct 29 09:55:20 1991 

2-4 The Ebox 

:::I 
.l 

4 
I 

3A 

I 
I 3B 

~ ..-.-

-" -"' v 

=rt JI 

ill .1' ~ lill llW v 
'--t----" 

1 _1' 

l v , 

~t ~ I 
¢ 

BRANCH 

LO~ -
€ ! 

4A 

4B 

i 

I 
: 
i 

i 
~ E1 I 

CMOY I LD 
NJDll.OG 
lllUL ·~ i ... ZAPPER 

I BYTE 
IRIJllP ! 
lllPR 

I CAL.PAL 

SA 

4? 

¢ 

8 
~ 

'j: 
4f 

I 
I 

L_____.l 

SB 

6A 

6B 

7A 
7B 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.2 Functional Description 

2.2.1 Register File 

The Ebox register file contains the 32 integer registers (ROO thru R31), as described in the Alpha 
SYSTEM REFERENCE MANUAL, and 8 implementation specific PAL shadow registers (SR08 
thru SR15). Each register is 64 bits wide and has 4 read ports and 2 write ports. 

Three signals control whether the PAL shadow registers are addressed or not, 1 read and 2 PAL 
shadow address signals. The read PAL control signal selects between reading from reading R08-
R15 or SR08-SR15. Because there can be loads pending, there are separate write PAL signals, 
one for each write port. The PAL shadow address signals operate in the same way the normal 
address signals do - all control is left to the lbox. 

2.2.2 Bypass Logic 

The Ebox bypass logic is controlled by the Ibox. Each Ebox pipe can bypass data being written 
into the register file or any of the intermediate pipe stage results onto the A or B operand of 
either pipe. The bypass scheme is shown in the block diagram in Figure 2-1. 

The results of most operations are available for bypassing in 4B. The exceptions are shift & byte 
operations, CMOVx, CMPBGE, and CMPx, which are valid in 5B, and multiplies, which take 
many cycles. 

2.2.3 Adder 

Each Ebox pipe contains an adder. Each adder performs the operate instructions ADDx, SUBx, 
and generates memory instruction addresses for the Mbox. It should be noted that memory 
instruction addresses do not need to be bypassed because the address, with the exceptions of 
LDA and LDAH, is not the result of the operation. 

The adder accepts three operands: AX and BX from the bypass logic, and a sign extended dis
placement DISP. From these two inputs are selected for the adder. The A input can be AX, AX 
shifted left two bits, AX shifted left three bits, or the sign extended DISP. The B input can be· BX 
or the one's complement of BX. In addition, there is a carry-in to the adder. See Figure 2-2 for 
details about adder inputs for various instructions. 

The adder produces two outputs: the main datapath result of the add operation and an eight bit 
byte carry-out field (BYTE_COUT). The main datapath result is always the 64 bit sum A + B + CIN, 
or a 32 sign extended version of A<31:0> + B<3l:O> + CIN. 

BYTE_COUT is a vector containing the carry-outs from byte operations in the adder. For x = 1 
to 7, BYTE_COUT<X> is the carry-out of A<SX + 7: SX> + B<8X + 7: 8X> + 1. BYTE_COUT<O> is the 
carry-out of A<O> + B<O> + CIN. BYTE_COUT is only used for the byte compare operation. 

The adder produces a carry-out of the quadword add and the true sign of the quadword operation, 
QW _SIGN. QW _SIGN is only used for the signed compare operations, and the carry-out is only used 
for the unsigned compare operations. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-5 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The adder asserts a quadword overflow signal if the 64 bit operation A + B + CIN produces a 
result that does not fit in 64 bits, and it asserts a longword overflow signal if the 32 bit operation 
A<3l:O> + B<31:0> + CIN produces a result that does not fit in 32 bits. These overflow signals do not 
indicate an integer overflow exception by themselves. They must first be combined with opcode 
information and integer overflow enable. 

2-6 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 2-2: Summary of Adder Control 

NU = not used 
IG = ignored 

!Opcode I Scale Mux I Bin I Cin I Byte Cout I 63 Cout I 31 Ovf I 63 Ovf I LW sext I Result I 
+----------------------------------------------------- ----------------------------------------------+ 
ILDA, SEXT disp<lS:O> I B I 0 NU NU I IG IG no USED I 
ILDAH SEXT I I I I 
I (disp<l5:0><<16) I B I 0 NU NU I IG IG no USED I 
I I I I I 
ILDL, I I I I 
ILDQ SEXT disp<lS:O> I B I 0 NU NU IG IG no USED I 
I I 
ILDQ_U SEXT disp<lS:O> I B 0 NU NU IG IG no USED 
I I 
ILDL L, I 
ILDQ=L SEXT disp<lS:O> I B 0 NU NU IG IG no USED 
I I 
ISTL C, I 
I STQ=C SEXT disp<lS:O> I B 0 NU NU IG IG no USED 
I I 
ISTL, I 
ISTQ SEXT disp<lS:O> I B 0 NU NU IG IG no USED 
I I 
I STQ_U SEXT disp<lS:O> I B 0 NU NU IG IG no USED 
I I 
IBxx nothing ••• I 
I I I 
!BR, I I 
IBSR nothing •.• I I 
I I I 
IJMP, I I 
IMSR, I I 
IRET, I I 
I JSR_CO •• nothing •.. I I 
I I I 
IADDL SHIFT 0 I B I 0 NU NU VALID IG yes USED 
I I I 
I S4ADDL SHIFT 2 I B I 0 NU NU IG IG yes USED 
ISSADDL SHIFT 3 I B I 0 NU NU IG IG yes USED 
I I I 
IADDQ SHIFT 0 I B I 0 NU NU IG VALID no USED 
I I I 
I S4ADDQ SHIFT 2 I B I 0 NU NU IG IG no USED 
I SSADDQ SHIFT 3 I B I 0 NU NU IG IG no USED 
I I I 
ICMPEQ SHIFT 0 I B I 1 NU NU IG IG no USED 
ICMPLT SHIFT 0 I B I 1 NU NU IG USED no USED 
ICMPLE SHIFT 0 I B I 1 NU NU IG USED no USED 
I I I 
ICMPULT SHIFT 0 I !B I 1 NU USED IG IG no USED 
ICMPULE SHIFT 0 I !B I 1 NU USED IG IG no USED 
I I I 
!MULL, I I 
IMULQ, I I 
IUMULH nothing ••• I I 
I I I 
+----------------------------------------------------------------------------------------------------+ 

Figure 2-2 Cont'd on next page 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-7 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 2-2 (Cont.): Summary of Adder Control 

!Opcode I Scale Mux I Bin I Cin I Byte Cout I 63 Cout I 31 Ovf I 63 Ovf I LW sext I Result I 
+----------------------------------------------------------------------------------------------------+ 
ISUBL SHIFT 0 !B I 1 NU NU VALID IG yes USED 
I I 
IS4SUBL SHIFT 2 !B I 1 NU NU IG IG yes USED 
IS8SUBL SHIFT 3 !B I 1 NU NU IG IG yes USED 
I I 
ISUBQ SHIFT 0 !B I 1 NU NU IG VALID no USED 
I I 
IS4SUBQ SHIFT 2 !B I 1 NU NU IG IG no USED 
ISBSUBQ SHIFT 3 !B I 1 NU NU IG IG no USED 
I I 
IAND, 
IBIS, 
IXOR, 
IBIC, 
IORNOT, 
IEQV nothing •.. 
I 
ICMOVxx nothing ... 
I 
ISLL, 
ISRL nothing •.. 
I 
ISRA nothing ... 
I 
ICMPBGE SHIFT 0 
I 
IEXTxx nothing •.• 
I 
I INSxx nothing •.. 
I 
IMSKxx nothing ... 
I 
IZAPx nothing •.. 
I 
I FETCH, 
ITBIS disp = 0 
I 
IHW LD, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

!B I 1 USED NU IG IG no IG 
I 
I 

B 0 NU NU IG IG no USED 

IHW=ST SEXT disp<ll:O> 8 0 NU NU IG IG no USED 
+----------------------------------------------------------------------------------------------------+ 

2.2.4 Logic Unit 

Each Ebox pipe contains a logic unit. Each logic unit implements all the integer logical functions 
(See Table 2-4), the ability to pass A, the ability to pass B, a zero detector, and logic to examine 
bits <63> and <0> of A. 

The main section of the logic unit contains the functionality for the logical functions and the 
ability to pass A The output of this section passes through the zero detector, which is used to 
detect an A operand of zero. The zero detector is also used on the result of A XOR B to determine 
equivalence between the two operands. B cannot be passed through the zero detector. B can be 
passed through the logic unit while a zero detect is being performed on A. 

The logic unit is used for all integer logical instructions, all integer compare instructions, all 
unsigned integer compare instructions, and all conditional move instructions. The logic unit 
must also be used to perform a shift of zero on A; this impacts the shift, extract byte, and insert 
byte instructions. 

2-8 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.2.5 Shifter 

The shifter is located in pipe EO and is a right shifter only. The input to the shifter is a 128 
bit vector that is constructed from the outputs of two datapath input muxes. It is composed of 
various combinations of operand A, sign extensions of A<63>, and 0. For the specific combinations 
used for each shift related instruction see Table 2-5, Table 2-6, and Table 2-8. 

The amount of the right shift is determined from bits <5:0> of operand B and the intended 
direction of the shift. See the aforementioned tables for the right shift amounts used for each 
instruction. 

The major limitation of the shifter is that it can not perform a shift of zero. When operand A 
must be shifted by zero, the logic unit is used to pass A in lieu of a shift. 

The shifter consumes enough time so that shift instructions cannot complete in one cycle. All 
instructions which use the shifter have a latency of two cycles. 

All shift instructions use the shifter, as well as all extract byte and insert byte instructions. The 
extract and insert byte instructions are only partially executed in the shifter. 

2.2.6 Byte Zapper 

There is a byte zapper in pipe EO of the Ebox. This unit is used during all compare, unsigned 
compare, compare byte, shift, extract byte, insert byte, mask byte, and zap byte instructions. It 
simply masks different fields of a result passed from another execution unit in the Ebox; forcing 
all masked bits to zero. Generally, the mask resolution is at the byte level, except that bits <7:1> 
can also be masked for the compare instructions. 

All the instructions which use the zapper have a latency of two cycles, and the zapper operates 
in the second of these two. Therefore, it does not receive its operands from the bypass logic as 
all the other execution units in the Ebox do. 

For a compare operation, the zapper passes the result of the compare in bit <0>; all other bits are 
forced to zero. The result of a compare byte operation are passed in bits <7:0> with the other bits 
masked. The zapper does nothing on a shift operation, passing all bits. See Table 2-7, Table 2-9, 
Table 2-10, and Section 2.3.21 for zapper operation details for the extract, insert, mask, and zap 
byte instructions respectively. 

Pipe El contains a less complex byte zapper that is only used for the various compare instructions. 

The zappers are in the normal path of data flow in each pipe. For all instructions other than 
those mentioned the zappers will pass data untouched. 

2.2. 7 Multiplier 

The Ebox multiplier performs all of the integer multiply operations. MULL operations have a 
latency of 8 cycles and MULQ & UMULH take 13 cycles to complete. The multiplier array retires 
8 bits per cycle. The other latency cycles are accounted for in the following way: two cycles are 
used at the front end to allow the booth decoder to get started and to do the first array calculation 
based on the LSB of the multiplier; at the backend, in the case of MULL, two cycles are used to 
do a final addition of the carry & sum bits and calculate overflow, whereas MULQ and UMULH 
take an extra addition cycle for a total of three backend cycles. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-9 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The multiplier result is can be inserted into the EO pipe in 5B. The lbox controls which cycle this 
occurs. Overflow is reported to the lbox in the following 6A 

2.2.8 Branch Condition Logic 

The branch logic is used to execute the conditional branch instructions. It receives operand A as 
data and the condition type and the branch prediction information as control. This unit contains 
logic to examine bits <63> and <0> of A, and it contains a zero detector which operates on A. This 
is different from the EV 4 implementation in that there is no Z-bit that arrives with the operand. 
Therefore, a zero detector is necessary. 

The branch logic determines whether the branch condition is met, and whether the branch pre
diction is correct. For details about conditional branch, see Section 2.3.33. 

2.3 Instruction Flows 

This section discusses the execution of instructions in the Ebox pipelines. The execution flows 
for most Ebox instructions require only one cycle and actively use only one stage of the pipeline. 
Whenever this is not the case, the number of cycles needed to execute the instruction will be 
given. 

The possible operands for an instruction include RA, RB, #B (literal), and DISP. RA and RB· are 
the contents of integer register 'a' and 'b' respectively. The value for RA and/or RB may come 
from the register file or from one of the multiple bypass paths in the Ebox. The displacement 
operand (DISP) usually refers to the displacement field of the memory format instruction; that is, 
bits <15:0> of the instruction longword. The exception is in the case of HW_LDIHW_ST and is 
discussed in context. A literal (#B) can be used in place of RB for operate instructions. It comes 
from bits <20: 13> of the instruction longword. 

The lbox controls the selection of RA and RB. The lbox also controls the destination register for 
each instruction and provides the register file write enable. 

Unless indicated otherwise, the result of each instruction flows down the pipe until it is written 
into the register file in cycle 7. 

2.3.1 Compare (CMPEQ, CMPLT, CMPLE) 

These instructions are executed in the adder, logic unit, and byte zapper of either pipe. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit performs a bit-wise XOR of A and B. A zero detect is then performed on the result 
of the XOR. If the result of the XOR is zero, then LOGIC_Z is set to indicate that A is equal to B. 

RA is selected as the A input to the adder, and the one's complement of RB is selected as the B 
input. The carry-in is set. The adder computes A+ B + CIN. The true sign of the result, QW_SIGN, 
is calculated (QW_SIGN = A<63> XOR B<63> XOR carry-out of the add). 

2-10 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The result of the compare is determined from the outputs of the logic unit and the adder. See 
Table 2-2. 

Table 2-2: Compare 

LOGIC_Z QW_SIGN CMPEQ CMPLT CMPLE 

0 0 0 0 0 

0 1 0 1 1 

1 0 1 0 1 

This result is passed to the byte zapper. The byte zapper forces bits <63: 1> to zero and passes 
the result of the compare in bit <0>. 

The final result is the output of the byte zapper. 

The latency of these compare instructions is two cycles. 

No exceptions are possible for these instructions. 

2.3.2 Compare Unsigned (CMPULT, CMPULE) 

These instructions are executed in the adder, logic unit, and byte zapper of either pipe. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit performs a bit-wise XOR of A and B. A zero detect is then performed on the result 
of the XOR. If the result of the XOR is zero, then LOGIC_Z is set to indicate that A is equal to B. 

RA is selected as the A input to the adder, and the one's complement of RB is selected as the B 
input. The carry-in is set. The adder computes A + B + CIN and produces a carry-out, COUT. 

The result of the compare is determined from the outputs of the logic unit and the adder. See 
Table 2-3. 

Table 2-3: Compare 

LOGIC_Z 

0 

0 

1 

Cout 

0 

1 

1 

CMPULT 

0 

1 

0 

CMPULE 

0 

1 

1 

This result is passed to the byte zapper. The byte zapper forces bits <63:1> to zero and passes 
the result of the compare in bit <0>. 

The final result is the output of the byte zapper. 

The latency of these compare instructions is two cycles. 

No exceptions are possible for these instructions. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-11 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.3 Compare Byte (CMPBGE) 

This instruction is executed in the adder and byte zapper of either pipe. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

RA is selected as the A input to the adder, and the one's complement of RB is selected as the B 
input. A carry-in to each byte is set. The adder adds each byte of A to the complement of each 
byte of Band to a carry-in to that byte for all eight bytes. A carry-out is generated for each byte, 
and these are passed to the byte zapper. 

The byte zapper forces bits <63:8> to zero and passes the byte carry-outs on bits <7:0>. 

The final result is the output of the byte zapper. 

The latency of this instruction is two cycles. 

No exceptions are possible for these instructions. 

2.3.4 Logical Functions (AND, BIS, XOR, BIC, ORNOT, EQV) 

These instructions are executed in the logic unit of either pipe. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit performs the appropriate logical operation on A and B in a bitwise fashion. The 
operations for each opcode are given in the Alpha SRM and repeated here for convenience in 
Table 2-4. 

Table 2-4: Logical Functions 

Opcode Function 

AND AANDB 

BIS AORB 

XOR AXORB 

BIC AAND(NOTB) 

ORN OT AOR(NOTB) 

EQV AXOR(NOTB) 

If the instruction is issued to pipe El, the result of the logic unit must be muxed with the 1%PC_4B 
bus before dropping into the normal pipe flow. 

No exceptions are possible for these instructions. 

2-12 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.5 Conditional Move (CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT, 
CMOVGE,CMOVLB~CMOVLB~ 

These instructions are executed in the logic unit of either pipe. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes B to its output. This is the result that may be written to the destination 
register and flows down the pipe normally. The logic unit also tests the A value to determine 
whether B will be written. Bits A<63> and A<O> are examined, and a zero detect (LOGIC_Z set if A 
= O) is performed on A. With this information, it determines whether the move condition is true. 
This logic is summarized in Figure 2-3. 

Figure 2-3: Conditional Move Conditions 

LOGIC_Z A<63> A<O> I CMOVEQ CMOVNE CMOVLT CMOVLE CMOVGT CMOVGE CMOVLBC CMOVLBS 
-------------------+----------------------------------------------------------

0 0 0 0 1 0 0 1 1 1 0 
0 0 1 0 1 0 0 1 1 0 1 
0 1 0 0 1 1 1 0 0 1 0 
0 1 1 0 1 1 1 0 0 0 1 
1 0 0 1 0 0 1 0 1 1 0 

If the condition is false, the appropriate E"loKILL_CMOVX signal for the pipe is asserted. This 
indicates to the Ibox that the value of B should not be written to the destination register, and 
that it should also not be bypassed back into the Ebox pipe. Because of this hand-shaking with 
the Ibox, these instructions have a latency of two cycles. 

No exceptions are possible for these instructions. 

2.3.6 Add Longword (ADDL) 

This instruction is executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

BA is selected as the A input to the adder. RB or #Bis selected as the B input, and the carry-in is 
cleared. 

The adder adds A<3l:O>, B<3l:O>, and CIN. The result is sign extended from bit <31>, that is, bits 
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B 
are ignored. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant sum does not fit in bits <31:0> of the sum. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-13 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.7 Scaled Add Longword (S4ADDL, SSADDL) 

These instructions are executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

For S4ADDL, RA, shifted left by two, is selected as the A input to the adder. For SSADDL, RA is 
shifted left by three. RB or #B is selected as the B input, and the carry-in is cleared. No checks 
are performed to determine whether any significant bits of RA are lost during the shifting. 

The adder adds A<3l:O>, B<3l:O>, and CIN. The result is sign extended from bit <31>, that is, bits 
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B 
are ignored. 

No exceptions are possible for these instructions. 

2.3.8 Add Quadword (ADDQ) 

This instruction is executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

RA is selected as the A input to the adder. RB or #B is selected as the B input, and the carry-in is 
cleared. 

The adder adds A<63:0>, B<63:0>, and CIN to produce the result. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant sum does not fit in bits <63:0> of the sum. 

2.3.9 Scaled Add Quadword (S4ADDQ, SSADDQ) 

This instruction is executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

For S4ADDQ, RA, shifted left by two, is selected as the A input to the adder. For SSADDQ, RA is 
shifted left by three. RB or #Bis selected as the B input, and the carry-in is cleared. No checks 
are performed to determine whether any significant bits of RA are lost during the shifting. 

The adder adds A<63:0>, B<63:0>, and CIN to produce the result. 

No exceptions are possible for these instructions. 

2.3.10 Subtract Longword (SUBL) 

This instruction is executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

RA is selected as the A input to the adder. The one's complement of RB or #B is selected as the B 
input, and the carry-in is set. 

2-14 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The adder adds A<31:0>, B<3l:O>, and CIN. The result is sign extended from bit <31>, that is, bits 
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B 
are ignored. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant difference does not fit in bits <31:0> of the difference. 

2.3.11 Scaled Subtract Longword (S4SUBL, SSSUBL) 

These instructions are executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or IB, as indicated in the 
instruction. 

For S4SUBL, RA, shifted left by two, is selected as the A input to the adder. For SSSUBL, RA is 
shifted left by three. The one's complement of RB or #Bis selected as the B input, and the carry-in 
is set. No checks are performed to determine whether any significant bits of RA are lost during 
the shifting. 

The adder adds A<3l:O>, B<3l:O>, and CIN. The result is sign extended from bit <31>, that is, bits 
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B 
are ignored. 

No exceptions are possible for these instructions. 

2.3.12 Subtract Quadword (SUBQ) 

This instruction is executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

RA is selected as the A input to the adder. The one's complement of RB or #B is selected as the B 
input, and the carry-in is set. 

The adder adds A<63:0>, B<63:0>, and CIN to produce the result. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant difference does not fit in bits <63:0> of the difference. 

2.3.13 Scaled Subtract Quadword (S4SUBQ, SSSUBQ) 

These instructions are executed in the adder of either pipe. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

For S4SUBQ, RA, shifted left by two, is selected as the A input to the adder. For SSSUBQ, RA is 
shifted left by three. The one's complement of RB or #B is selected as the B input, and the carry-in 
is set. No checks are performed to determine whether any significant bits of RA are lost during 
the shifting. 

The adder adds A<63:0>, B<63:0>, and CIN to produce the result. 

No exceptions are possible for these instructions. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-15 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.14 Multiply Longword (MULL) 

This instruction is executed in the multiplier, and it must be issued to pipe EO. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The multiplier produces a sign extended 32 bit product of A and B. At *TBD* cycles before the 
multiply is complete, the Ebox asserts E%MUL_DONE_SOON_B. Then, once the product has been 
completed, the multiplier stores it until another multiply instruction is issued or until 1%MUL_ 
ABORT is asserted. The lbox asserts 1%SEL_MUL_5B_B to mux the product into the EO pipe, from 
which it can be bypassed from cycle 5 onward. 

The minimum latency for MULL is 8 cycles. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant product does not fit in bits <31:0> of the sum. 

2.3.15 Multiply Quadword (MULQ) 

This instruction is executed in the multiplier, and it must be issued to pipe EO. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The multiplier produces a 64 bit product of A and B. At *TBD* cycles before the multiply is 
complete, the Ebox asserts E%MUL_DONE_SOON_B. Then, once the product has been completed, 
the multiplier stores it until another multiply instruction is issued or until 1%MUL_ABORT is 
asserted. The lbox asserts 1%SEL_MUL_5B_H to mux the product into the EO pipe, from which it 
can be bypassed from cycle 5 on ward. 

The minimum latency for MULQ is 13 cycles. 

The Ebox can generate integer overflow on this instruction. This exception is produced when 
integer overflow is enabled and the resultant product does not fit in bits <64:0> of the sum. 

2.3.16 Multiply Unsigned Quadword High (UMULH) 

This instruction is executed in the multiplier, and it must be issued to pipe EO. 

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The multiplier produces the high order 64 bits of the 128 bit product of A and B multiplied as 
unsigned numbers. At *TBD* cycles before the multiply is complete, the Ebox asserts E%MUL_ 
DONE_SOON_H. Then, once the product has been completed, the multiplier stores it until another 
multiply instruction is issued or until 1%MUL_ABORT is asserted. The Ibox asserts I'foSEL_MUL_ 
5B_B to mux the product into the EO pipe, from which it can be bypassed from cycle 5 onward. 

The minimum latency for UMULH is 13 cycles. 

No exceptions are generated for this instruction. 

2-16 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.17 Shift {SLL, SRL, SRA) 

These instructions are executed in the shifter and in the logic unit of pipe EO. They may only be 
issued to pipe EO. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes A to its output. 

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed 
from the outputs of two datapath input muxes. The correct right shift amount is determined from 
bits <5:0> of RB and the direction of the shift. A summary of the shifter input logic is given in 
Table 2-5. 

Table 2-5: Shifter Inputs 

Opcode lnput<127:64> lnput<63:0> Right Shift Amount 

SLL A 0 NOT(B<5:0>) + 1 

SRL 0 A B<5:0> 

SRA SEXT(A<63>) A B<5:0> 

The result is the output of the shifter, with one exception. If the shift amount is zero, the result 
is the output of the logic unit. This is due to the inability of the shifter to perform a shift of zero. 
The output of the shifter passes through the byte zapper, which does nothing to modify it. 

The latency of these shift instructions is two cycles. 

No exceptions are possible for these instructions. 

2.3.18 Extract Byte {EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH, EXTQH) 

These instructions are executed in the shifter and in the logic unit and byte zapper of pipe EO. 
They may only be issued to pipe EO. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes A to its output. 

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed 
from the outputs of two datapath input muxes. The correct right shift amount is determined from 
bits <2:0> of RB and the direction of the shift. A summary of the shifter input logic is given in 
Table 2-6. 

Table 2-6: Shifter Inputs for the Extract Byte Instructions 

Opcode 

EXTxL 

EXTxH 

lnput<127:64> lnput<63:0> 

0 

A 

A 

0 

DIGITAL RESTRICTED DISTRIBUTION 

Right Shift Amount 

B<2:0> & 000#2 

B<2:0> & 000#2 

The Ebox 2-17 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The shift result is the output of the shifter, with one exception. If the shift amount is zero, the 
shift result is the output of the logic unit. This is due to the inability of the shifter to perform a 
shift of zero. 

The output of the shifter passes through the byte zapper, which forces certain bytes of the output 
to zero. A summary of the byte zapper operation for the extract byte instructions is given in 
Table 2-7 

Table 2-7: Byte Zapper Operation for the Extract Byte Instructions 

Opcode 

EXTBL 
EXTWL/EXTWH 
EXTLUEXTLH 
EXTQL!EXTQH 

Bits Cleared 

<63:8> 

<63:16> 

<63:32> 

none 

Bits Passed 

<7:0> 

<15:0> 

<31:0> 

<63:0> 

The final result is the output of the byte zapper. 

The latency of these extract instructions is two cycles. 

No exceptions are possible for these instructions. 

2.3.19 Insert Byte (INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH) 

These instructions are executed in the shifter and in the logic unit and byte zapper of pipe EO. 
They may only be issued to pipe EO. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes A to its output. 

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed 
from the outputs of two datapath input muxes. The correct right shift amount is determined from 
bits <2:0> of RB and the direction of the shift. A summary of the shifter input logic is given in 
Table 2-8. 

Table 2-8: Shifter Inputs for the lnsen Byte Instructions 

Opcode 

INSxL 

INSxH 

lnput<l27:64> lnput<63:0> Right Shift Amount 

A 

0 

0 

A 

NOT(B<2:0> & 000#2) + 1 

NOT(B<2:0> & 000#2) + 1 

The shift result is the output of the shifter, with one exception. If the shift amount is zero, the 
shift result is the output of the logic unit. This is due to the inability of the shifter to perform a 
shift of zero. 

2-18 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The output of the shifter passes through the byte zapper, which forces certain bytes of the output 
to zero. A summary of the byte zapper operation for the insert byte instructions is given in 
Table 2-9 

Table 2-9: Byte Zapper Operation for the lnsen Byte Instructions 

Opcode B<2:0> Bits Cleared Bits Passed 

INSBL 0 <63:8> <7:0> 

INSBL 1 <63:16, 7:0> <15:8> 

INSBL 2 <63:24,15:0> <23:16> 

INSBL 3 <63:32,23:0> <31:24> 

INSBL 4 <63:40,31:0> <39:32> 

INSBL 5 <63:48,39:0> <47:40> 

INSBL 6 <63:56,47:0> <55:48> 

INSBL 7 <55:0> <63:56> 

INSWL 0 <63:16> <15:0> 

INSWL 1 <63:24,7:0> <23:8> 

INSWL 2 <63:32>,15:0 <31:16> 

INSWL 3 <63:40,23:0> <39:24> 

INSWL 4 <63:48,31:0> <47:32> 

INSWL 5 <63:56,39:0> <55:40> 

INSWL 6 <47:0> <63:48> 

INSWL 7 <55:0> <63:56> 

INSWH 0-6 <63:0> none 

INSWH 7 <63:8> <7:0> 

INSLL 0 <63:32> <31:0> 

INSLL 1 <63:40, 7:0> <39:8> 

INSLL 2 <63:48,15:0> <47:16> 

INSLL 3 <63:56,23:0> <55:24> 

INSLL 4 <31:0> <63:32> 

INSLL 5 <39:0> <63:40> 

INSLL 6 <47:0> <63:48> 

INSLL 7 <55:0> <63:56> 

INSLH 0-4 <63:0> <none> 

INSLH 5 <63:8> <7:0> 

INSLH 6 <63:16> <15:0> 

INSLH 7 <63:24> <23:0> 

INSQL 0 <none> <63:0> 

INSQL 1 <7:0> <63:8> 

INSQL 2 <15:0> <63:16> 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-19 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 2-9 (Cont.): Byte Zapper Operation for the lnsen Byte Instructions 

Opcode B<2:0> Bits Cleared 

INSQL 3 <23:0> 

INSQL 4 <31:0> 

INSQL 5 <39:0> 

INSQL 6 <47:0> 

INSQL 7 <55:0> 

INSQH 0 <63:0> 

INSQH 1 <63:8> 

INSQH 2 <63:16> 

INSQH 3 <63:24> 

INSQH 4 <63:32> 

INSQH 5 <63:40> 

INSQH 6 <63:48> 

INSQH 7 <63:56> 

The final result is the output of the byte zapper. 

The latency of these insert instructions is two cycles. 

No exceptions are possible for these instructions. 

Bits Passed 

<63:24> 

<63:32> 

<63:40> 

<63:48> 

<63:56> 

<none> 

<7:0> 

<15:0> 

<23:0> 

<31:0> 

<39:0> 

<47:0> 

<55:0> 

2.3.20 Mask Byte (MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH) 

These instructions are executed in the logic unit and byte zapper of pipe EO. They may only be 
issued to pipe EO. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes A to its output. 

The output of the logic unit passes through the byte zapper, which forces certain bytes of the 
output to zero. A summary of the byte zapper operation for the mask byte instructions is given 
in Table 2-10 

Table 2-10: Byte Zapper Operation for the Mask Byte Instructions 

Opcode B<2:0> Bits Cleared Bits Passed 

MSKBL 0 <63:8> <7:0> 

MSKBL 1 <63:16,7:0> <15:8> 

MSKBL 2 <63:24,15:0> <23:16> 

MSKBL 3 <63:32,23:0> <31:24> 

MSKBL 4 <63:40,31:0> <39:32> 

2-20 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 2-10 (Cont.): Byte zapper Operation for the Mask Byte Instructions 

Opcode B<2:0> Bits Cleared Bits Passed 

MSKBL 5 <63:48,39:0> <47:40> 

MSKBL 6 <63:56,47:0> <55:48> 

MSKBL 7 <55:0> <63:56> 

MSKWL 0 <63:16> <15:0> 

MSKWL 1 <63:24, 7:0> <23:8> 

MSKWL 2 <63:32>,15:0 <31:16> 

MSKWL 3 <63:40,23:0> <39:24> 

MSKWL 4 <63:48,31:0> <47:32> 

MSKWL 5 <63:56,39:0> <55:40> 

MSKWL 6 <47:0> <63:48> 

MSKWL 7 <55:0> <63:56> 

MS KWH 0-6 <63:0> none 

MS KWH 7 <63:8> <7:0> 

MSKLL 0 <63:32> <31:0> 

MSKLL 1 <63:40,7:0> <39:8> 

MSKLL 2 <63:48,15:0> <47:16> 

MSKLL 3 <63:56,23:0> <55:24> 

MSKLL 4 <31:0> <63:32> 

MSKLL 5 <39:0> <63:40> 

MSKLL 6 <47:0> <63:48> 

MSKLL 7 <55:0> <63:56> 

MSKLH 0-4 <63:0> <none> 

MSKLH 5 <63:8> <7:0> 

MSKLH 6 <63:16> <15:0> 

MSKLH 7 <63:24> <23:0> 

MSKQL 0 <none> <63:0> 

MSKQL 1 <7:0> <63:8> 

MSKQL 2 <15:0> <63:16> 

MSKQL 3 <23:0> <63:24> 

MSKQL 4 <31:0> <63:32> 

MSKQL 5 <39:0> <63:40> 

MSKQL 6 <47:0> <63:48> 

MSKQL 7 <55:0> <63:56> 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-21 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 2-10 (Cont.): Byte zapper Operation for the Mask Byte Instructions 

Opcode B<2:0> Bits Cleared 

MSKQH 0 <63:0> 

MSKQH 1 <63:8> 

MSKQH 2 <63:16> 

MSKQH 3 <63:24> 

MSKQH 4 <63:32> 

MSKQH 5 <63:40> 

MSKQH 6 <63:48> 

MSKQH 7 <63:56> 

The final result is the output of the byte zapper. 

The latency of these mask instructions is two cycles. 

No exceptions are possible for these instructions. 

2.3.21 Zap Byte {ZAP, ZAPNOT) 

Bits Passed 

<none> 

<7:0> 

<15:0> 

<23:0> 

<31:0> 

<39:0> 

<47:0> 

<55:0> 

These instructions are executed in the logic unit and byte zapper of pipe EO. They may only be 
issued to pipe EO. 

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the 
instruction. 

The logic unit passes A to its output. 

The output of the logic unit passes through the byte zapper, which forces certain bytes of the 
output to zero. The mask used in the byte zapper is provided directly by the B operand for the 
zap instructions. For ZAP, the mask is B<7:0>. For each bit <x> that is set in B, bits <Bx + 7 : 
BX> of the logic unit output are cleared. The other bits are passed. 

For ZAPNOT, the mask is NOT B<7:0>. For each bit <x> that is set in B, bits <Bx + 7 : Bx> of the 
logic unit output are passed. The other bits are cleared. 

The final result is the output of the byte zapper. 

The latency of these zap instructions is two cycles. 

No exceptions are possible for these instructions. 

2.3.22 Load Address (LDA, LDAH) 

These instructions are executed in the adder of either pipe. 

The bypass mux_A is not used. RB is selected by the bypass mux_B. 

The A input to the adder is the sign extended displacement. This sign extension is a direct sign 
extension of DISP for LDA, and a sign extension of (DISP shifted left by 16) for LDAH. RB is 
selected as the B input to the adder, and the carry-in to the adder is cleared. 

2-22 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The result is A+ B + CIN, and is available after one cycle. No exceptions are possible for these 
instructions. 

2.3.23 Load (LDL, LDQ) 

The Ebox only partially executes these instructions. The virtual address for the load is generated 
in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the Cbox. The 
Ebox portion of these instructions are executed in the adder of either pipe. 

The bypass mux_A is not used. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A+ B + CIN, which is available on one of the E%VAX_4B buses after one 
cycle. 

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed 
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which 
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this. 
In the case of LDL, the data is sign extended in the Mbox. If the data is returned late (such as 
the result of a Dcache miss), the Mbox must ensure that a bubble exists in the instruction flow 
of the appropriate pipe when data is returned. 

The Ebox does not generate any of the possible exceptions for these instructions. 

2.3.24 Load Unaligned (LDQ_ U) 

The Ebox only partially executes this instruction. The virtual address for the load is partially 
generated in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the 
Cbox. The Ebox portion of this instruction is executed in the adder of either pipe. 

The bypass mux_A is not used. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A + B + CIN, with bits <2:0> of the sum cleared. The Ebox does not clear 
bits <2:0> of the sum; the Mbox is expected to ignore these bits. The sum is available on one of 
the E%VAX_4B buses after one cycle. 

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed 
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which 
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this. 
If the data is returned late (such as the result of a Dcache miss), the Mbox must ensure that a 
bubble exists in the instruction flow of the appropriate pipe when data is returned. 

The Ebox does not generate any of the possible exceptions for this instruction. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-23 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.25 Load Locked (LDL_L, LDQ_L) 

The Ebox only computes the virtual address for these instructions. This is done in the adder of 
pipe EO only. 

The bypass mux_A is not used. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A+ B + CIN, which is available on the E%VA0_4B bus after one cycle. 

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed 
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which 
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this. 
In the case of LDL_L, the data is sign extended in the Mbox. If the data is returned on M%LD_ 
DATA1_6A, or if the data is returned late (such as the result of a Dcache miss), the Mbox must 
ensure that a bubble exists in the instruction flow of the appropriate pipe. 

The Ebox does not generate any of the possible exceptions for these instructions. 

The Ebox does not contain nor control the locked_physical_address register or the lock_flag. 

2.3.26 Store Conditional (STL_C, STQ_C) 

The Ebox only partially executes these instructions, and is responsible for generating the virtual 
address. The Ebox also provides the data to be stored and receives the lock_flag. 

These instructions are executed in the adder, and can only be issued to pipe EO. 

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A+ B + CIN, which is available on E%VA0_4B. The data to be stored, RA, is 
available on E%ST_DATA_3B (4A?). In the case of STL_C, 64 bits of data are delivered on E%ST_ 
DATA_aB; the Mbox must extract the lower longword to be stored in memory. 

The Ebox does not generate any of the possible exceptions for these instructions. 

The Ebox does not contain nor control the locked_physical_address register or the lock_flag. 

The lock_flag must be delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed 
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which 
the data will be inserted, but if pipe El is chosen there must be an appropriate bubble in the 
pipe. The lock flag is written to the register BA. The Ibox keeps track of the destination register 
numbers. 

2.3.27 Store (STL, STQ) 

The Ebox only partially executes these instructions, and is responsible for generating the virtual 
address and delivering the data to be stored. 

These instructions are executed in the adder, and can only be issued to pipe EO. 

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B. 

2-24 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A + B + CIN, which is available on E%VA0_4B. The data to be stored, RA, 
is available on E%ST_DATA_3B (4A?). In the case of STL, 64 bits of data are delivered on E%ST_ 
DATA_3B; the Mbox must extract the lower longword to be stored in memory. 

The Ebox does not generate any of the possible exceptions for these instructions. 

2.3.28 Store Unaligned (STQ_ U) 

The Ebox only partially executes this instruction, and is responsible for generating the virtual 
address and delivering the data to be stored. 

This instruction is executed in the adder, and can only be issued to pipe EO. 

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input, 
and the carry-in is cleared. 

The virtual address is A + B + CIN, with bits <2:0> of the sum cleared. The Ebox does not clear 
bits <2:0> of the sum; the Mbox is expected to ignore these bits. The sum is available on one 
of the E%VAX_4B buses after one cycle. The data to be stored, RA, is available on E%ST_DATA_3B 
(4A?). 

The Ebox does not generate any of the possible exceptions for this instruction. 

2.3.29 Hardware Load (HW_LD) 

The Ebox only partially executes this instruction. The virtual address for the load is generated 
in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the Cbox. The 
Ebox portion of this instructions is executed in the adder of either pipe. 

The bypass mux_A is not used. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. This sign extension is done 
from DISP<ll>, unlike most memory format instructions. RB is selected as the B input, and the 
carry-in is cleared. 

The virtual address is A+ B + CIN, which is available on one of the E%VAX_4B buses after one 
cycle. The Ebox does not zero any of the low order bits in the virtual address. 

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed 
into the appropriate Ebox pipe in cycle 6. The l\tlbox is responsible for picking the pipe into which 
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this. 
If the QW bit of the instruction is cleared, the data is sign extended in the Mbox. 

The Ebox does not generate any exceptions for this instructions. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-25 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.30 Hardware Store (HW_ST) 

The Ebox only partially executes this instruction, and is responsible for generating the virtual 
address and delivering the data to be stored. 

This instruction is executed in the adder, and can only be issued to pipe EO. 

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B. 

The sign extension of DISP is selected as the A input to the adder. This sign extension is done 
from DISP<ll>, unlike most memory format instructions. RB is selected as the B input, and the 
carry-in is cleared. 

The virtual address is A + B + CIN, which is available on E%VA0_4B. The Ebox does not zero any of 
the low order bits in the virtual address. The data to be stored, RA, is available on E%ST_DATA_3B 
(4A?). If the QW bit of the instruction is cleared, 64 bits of data are still delivered on E%ST_DATA_ 
3B; the Mbox must extract the lower longword to be stored in memory. 

The Ebox does not generate any exceptions for this instruction. 

2.3.31 Hardware Move From Processor Register (HW_MFPR) 

The Ebox only partially executes these instructions. The Ebox primarily just receives and stores 
the data. 

If the IPR is located in the Mbox or Cbox, the instruction is issued to pipe EO. If the IPR is 
located in the Ibox, the instruction is issued to pipe El. 

The bypass muxes and execution units of the Ebox are not used. 

If the IPR is located in the Mbox or Cbox, the data is delivered to the Ebox on one of the M%LD_ 
DATAX_6A buses, and is muxed into the appropriate Ebox pipe in cycle 6. The Mbox is responsible 
for picking the pipe into which the data will be inserted, and it also controls the mux in the Ebox 
pipe which accomplishes this. If the data can not be delivered by cycle 6, it is returned later, 
much like a fill. 

If the IPR is located in the Ibox, the data is delivered to the Ebox on the 1%PC_ 4B bus. The Ebox 
must mux this data with the output of the logic unit in pipe El. If the data cannot be delivered 
to the Ebox on time, the Ibox must re-issue the instruction when data is available. 

The Ebox does not generate any exceptions for these instructions. 

2.3.32 Hardware Move To Processor Register (HW_MTPR) 

The Ebox only partially executes these instructions. The Ebox delivers the data to either the Ibox 
or the Mbox. 

This instruction is executed in the adder. If the IPR is located in the Mbox or Cbox, the instruction 
is issued to pipe EO. If the IPR is located in the Ibox, the instruction is issued to pipe El. The 
execution of these instructions is much like that for the FETCH instruction. 

Bypass mux_A is not used. RB is selected by the bypass mux_B. 

The displacement is forced to zero and then is selected as the A input to the adder. RB is selected 
as the B input, and the carry-in is cleared. 

2-26 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The adder performs A+ B + CIN, which is equal to RB. In this way the adder passes RB to one of 
the E%VAX_4B buses. 

If the IPR is located in the Mbox or Cbox, the data is available on E%VA0_4B and E%ST_DATA_3B 
( 4B?) during the appropriate cycles. If the IPR is located in the lbox, the data is available on 
E%PC_3B. 

The Ebox does not generate any exceptions for these instructions. 

2.3.33 Conditional Branch (BEQ, BNE, BLT, BLE, BGT, BGE, BLBC, BLBS) 

The Ebox only partially executes these instructions. The Ebox tests the condition; the Ibox is 
responsible for generating the virtual address and updating the PC. 

These instuctions are executed in the branch logic, and can only be issued to pipe El. 

RA is selected by the bypass mux_A. Bypass mux_B is not used. 

The branch logic examines bits <63> and <0> of A, and performs a zero detect (BR_ZBIT set if A 
= O) on A With this information, it determines whether the branch condition is true. This logic 
is summarized in Figure 2-4. 

Figure 2-4: Branch Conditions 

BR_ZBIT A<63> A<O> I BEQ BNE BLT BLE BGT BGE BLBC BLBS 
-------------------+----------------------------------

0 0 0 0 1 0 0 1 1 1 0 
0 0 1 0 1 0 0 1 1 0 1 
0 1 0 0 1 1 1 0 0 1 0 
0 1 1 0 1 1 1 0 0 0 1 
1 0 0 1 0 0 1 0 1 1 0 

The Ebox asserts E%BR_TAKEN_5A if the branch condition is true. If the branch condition does 
not match with l%BR_PREDICT_ 4A, the Ebox asserts E%BR_MISPREDICT_5A. 

These instuctions can not produce an exception. 

2.3.34 Unconditional Branch (BR, BSA) 

The Ebox only partially executes these instructions. The Ebox stores the old PC. 

These instructions do not require any of the Ebox execution units. They must be issued to pipe 
El. 

Neither bypass mux_A nor bypass mux_B is used. 

The Ebox receives the value of the old PC on 1%PC_4B. The Ebox is responsible for muxing this 
into the El pipe with the output of the El logic unit. 

These instuctions can not produce an exception. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-27 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.3.35 Jump (JMP, JSR, RET, JSR_COROUTINE) 

The Ebox only partially executes these instructions. The Ebox provides the new PC, and stores 
the old one. 

These instructions do not require any of the Ebox execution units. They must be issued to pipe 
El. 

Bypass mux_A is not used. RB is selected by the bypass mux_B. 

The Ebox provides the value of the new PC on E%PC_3B. The lower two bits of the value on E%PC_ 
3B should not be used by the lbox. The Ebox receives the value of the old PC on 1%PC_4B. The 
Ebox is responsible for muxing this into the El pipe with the output of the El logic unit. 

These instuctions can not produce an exception. 

2.3.36 Fetch (FETCH, FETCH_M) 

The Ebox only partially executes these instructions. Their execution is performed in the adder, 
and they are issued to pipe EO. 

Bypass mux_A is not used. RB is selected by the bypass mux_B. 

The displacement is forced to zero and then is selected as the A input to the adder. RB is selected 
as the B input, and the carry-in is cleared. 

The adder performs A + B + CIN, which is equal to RB. In this way the adder passes RB to one of 
the E%VAX_4B buses. 

These instructions can not produce an exception. 

2.3.37 Read Cycle Counter I VAX Compatibility (RPCC, RC, RS) 

The Ebox only partially executes these instructions. These are treated much like loads, except 
that the Ebox does not need to generate a virtual address. These instructions are assumed to be 
issued to pipe EO only. 

Neither bypass mux is used, and no Ebox execution unit is used. 

The result of the instruction is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is 
muxed into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into 
which the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes 
this. If the data is returned on M%LD_DATA1_6A, the Mbox must ensure that a bubble exists in 
the instruction flow of the pipe El. 

These instructions can not produce an exception. 

2.3.38 Other Instructions 

The Ebox treats all other instructions, including CAL_PAL, DRAINT, MB, HW _REI and all float
ing instructions, as NOPs. 

2-28 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.4 Ebox Interfaces 

2.4.1 lbox Interface 

The Ibox issues instructions to the Ebox, and sends the necessary opcode and data information. 
that the Ebox does not already have. 

The lbox is responsible for the control of data flow in the Ebox. This means that the Ibox must 
determine whether the up-to-date copy of a register is in the register file or in one of the stages 
of one of the Ebox pipes. The lbox owns the bypass mux controls to the extent that it dictates 
whether an operand comes from the register file or a pipe stage. If the source is a pipe stage, 
and if that stage has more than one source, the Ebox must choose the correct source for that pipe 
stage. 

The lbox also controls the Ebox register file. The lbox indicates when the output of an Ebox 
pipe should be written to a register, and which register should be written. The register file read 
addresses are also supplied by the lbox. 

The lbox and Ebox collaborate on certain instructions; Section 2.3 gives details about these 
instructions, but they are briefly discussed here for convenience. During conditional branch 
instructions, the Ebox determines the success or failure of the branch and the correctness of the 
branch prediction. The Ebox stores the old value of the PC for other branch and jump instructions, 
and it supplies the new PC for jump instructions. 

The Ibox can directly abort a multiply operation, and it must reset the multiplier during system 
initialization (by asserting abort). The Ibox controls when the output of the Ebox multiplier is 
muxed into stage 5 of the EO datapath. 

The Ebox indicates success or failure for conditional move instructions. The Ibox acts on this 
information to determine whether to kill the move by not bypassing its result or writing the 
result to the register file. 

The Ebox sends data to the lbox during HW _MTPR instructions to an lbox IPR, and receives 
data from the lbox during HW _MFPR instructions to an lbox IPR. 

The Ebox reports integer overflow to the lbox. 

The following signals are driven by the Ebox to the lbox. 

• E%MUL_DONE_SOON_H 

This signal informs the lbox that the Ebox multiplier result will be available for bypassing 
in *TBD* cycles. 

• Eo/oMUL_BUSY_H 

This signal informs the Ibox that a multiply instruction has been received by Ebox and its 
result is being calculated. 

• E%1NT_OVF0_6A_H 

This signal informs the lbox that an integer overflow has occured in the adder in pipe EO. 
• E%1NT_OVF1_6A_H 

This signal informs the lbox that an integer overflow has occured in the adder in pipe El. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-29 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• E%KILL_CMOVO_H 

This signal informs the lbox that a conditional move instruction issued to pipe EO has failed 
its condition evaluation and no register file write should occur. 

• E%KILL_CMOVl_H 

This signal informs the lbox that a conditional move instruction issued to pipe El has failed 
its condition evaluation and no register file write should occur. 

• E%BR_TAKEN_5A_H 

This signal informs the lbox that a conditinal branch instruction has been successfully eval
uated and that the branch can occur. 

• E%BR_MISPREDICT_5A_H 

This signal informs the lbox that the evaluation of a conditional branch instruction has been 
mis-predicted. 

• E%PC_3B_H<63:0> 

This 64 bit bus carries new PC values and MTPR data from the Ebox to the lbox. 

The following signals are driven by the lbox to the Ebox. 

• 1%BYP _RAO_AO_L 

This signal selects register file RAO read port data onto E_BYP%A0_3B<63:0>. 

• 1%BYP _S40_AO_L 

This signal bypasses the result from stage 4 of pipe EO onto E_BYP%AO_SB<63:0>. 

• 1%BYP _S4l_AO_L 

This signal bypasses the result from stage 4 of pipe El onto E_BYP%AO_SB<63:0>. 

• 1%BYP _S50_AO_L 

This signal bypasses the result from stage 5 of pipe EO onto E_BYP%A0_3B<63:0>. 

• 1%BYP _S5l_AO_L 

This signal bypasses the result from stage 5 of pipe El onto E_BYPo/flA.0_3B<63:0>. 

• 1%BYP _S60_AO_L 

This signal bypasses the result from stage 6 of pipe EO onto E_BYP%AO_SB<63:0>. 

• 1%BYP _S61_.AO_L 

This signal bypasses the result from stage 6 of pipe El onto E_BYP%A0_3B<63:0>. 

• 1%BYP _ wo_Ao_L 

This signal bypasses the result from stage 7 of pipe EO onto E_BYP%AO_SB<63:0>. 

• l%BYP _ Wl_AO_L 

This signal bypasses the result from stage 7 of pipe El onto E_BYP%AO_SB<63:0>. 

• 1%BYP _RAl_Al_L 

This signal selects register file RAl read port data onto E_BYPo/flA.1_3B<63:0>. 

• 1%BYP _S40_.Al_L 

This signal bypasses the result from stage 4 of pipe EO onto E_BYP%Al_3B<63:0>. 

• l%BYP _S4l_Al_L 

This signal bypasses the result from stage 4 of pipe El onto E_BYP%Al_3B<63:0>. 

• 1%BYP _S50_Al_L 

This signal bypasses the result from stage 5 of pipe EO onto E_BYP%Al_3B<63:0>. 

• 1%BYP _S51_Al_L 

This signal bypasses the result from stage 5 of pipe El onto E_BYP%Al_3B<63:0>. 

2-30 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• 1%BYP _S60_Al_L 
This signal bypasses the result from stage 6 of pipe EO onto E_BYP%A.1_3B<63:0>. 

• 1%BYP _S61_Al_L 
This signal bypasses the result from stage 6 of pipe El onto E_BYP%Al_3B<63:0>. 

• 1%BYP _Wo_Al_L 
This signal bypasses the result from stage 7 of pipe EO onto E_BYP%A.1_3B<63:0>. 

• 1%BYP _ Wl_Al_L 

This signal bypasses the result from stage 7 of pipe El onto E_BYP%Al_3B<63:0>. 

• 1%BYP_PC_Al_L 
This signal selects the lbox PC bus onto E_BYP%A1_3B<63:0>. 

• 1%BYP _RBO_BO_L 
This signal selects register file RBO read port data onto E_BYP%B0_3B<63:0>. 

• 1%BYP _S40_BO_L 

This signal bypasses the result from stage 4 of pipe EO onto E_BYP%B0_3B<63:0>. 

• l%BYP _S41_BO_L 

This signal bypasses the result from stage 4 of pipe El onto E_BYP%B0_3B<63:0>. 

• 1%BYP _sso_BO_L 

This signal bypasses the result from stage 5 of pipe EO onto E_BYP%B0_3B<63:0>. 

• 1%BYP _S51_BO_L 

This signal bypasses the result from stage 5 of pipe El onto E_BYP%B0_3B<63:0>. 

• 1%BYP _S60_BO_L 

This signal bypasses the result from stage 6 of pipe EO onto E_BYP%B0_3B<63:0>. 

• 1%BYP _S61_BO_L 

This signal bypasses the result from stage 6 of pipe El onto E_BYP%B0_3B<63:0>. 

• 1%BYP _ WO_BO_L 

This signal bypasses the result from stage 7 of pipe EO onto E_BYP%B0_3B<63:0>. 

• 1%BYP_Wl_BO_L 
This signal bypasses the result from stage 7 of pipe El onto E_BYP%B0_3B<63:0>. 

• 1%BYP _LIT_BO_L 
This signal selects the pipe EO literal onto E_BYP%B0_3B<63:0>. 

• 1%BYP _RBl_Bl_L 
This signal selects register file RBl read port data onto E_BYP%Bl_3B<63:0>. 

• 1%BYP _S40_Bl_L 

This signal bypasses the result from stage 4 of pipe EO onto E_BYP%Bl_3B<63:0>. 

• l%BYP _S41_Bl_L 
This signal bypasses the result from stage 4 of pipe El onto E_BYP%BI_3B<63:0>. 

• 1%BYP _S50_Bl_L 

This signal bypasses the result from stage 5 of pipe EO onto E_BYP%BI_3B<63:0>. 

• 1%BYP _S5l_Bl_L 

This signal bypasses the result from stage 5 of pipe El onto E_BYP%BI_3B<63:0>. 

• 1%BYP _S60_Bl_L 

This signal bypasses the result from stage 6 of pipe EO onto E_BYP%BI_3B<63:0>. 

• l%BYP _S6l_Bl_L 

This signal bypasses the result from stage 6 of pipe El onto E_BYP%BI_3B<63:0>. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-31 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• l%BYP _ wo_Bl_L 

This signal bypasses the result from stage 7 of pipe EO onto E_BYP%Bl_3B<63:0>. 

• 1%BYP _ Wl_Bl_L 

This signal bypasses the result from stage 7 of pipe E 1 onto E_BYP%B1_3B<63:0>. 

• 1%BYP _LIT_Bl_L 
This signal selects the pipe El literal onto E_BYP%Bl_3B<63:0>. 

• 1%FREEZE_EBOX_3B_H 
In the register file, this signal determines whether newly decoded or previously decoded 
registers are read (applies to all registers reads for that cycle). 

• l%UT0_3B_H<7:0> 

• 1%LIT1_3B_H<7:0> 

• l%1NSTRO_EBOX_2B_H<26:0> 

This 27 bit bus contains the opcode, function, literal, and displacement information for the 
EO pipe instruction. 

• 1%1NSTR1_EBOX_2B_H<26:0> 
This 27 bit bus contains the opcode, function, literal, and displacement information for the 
El pipe instruction. 

• 1%1SSUEO_EBOX_4A_H 
This signal informs the Ebox that a valid instruction has been issued to pipe EO. 

• 1%1SSUE1_EBOX_ 4A_H 
This signal informs the Ebox that a valid instruction has been issued to pipe El. 

• 1%MUL_.ABORT_H 
This signal tells the Ebox to abort a previously issued multiply instruction. 

• l%BR_PREDICT_4A_H 

This signal informs the Ebox what the result of a conditional branch was predicted to be by 
the lbox. 

• 1%PC_4B_H<63:0> 
This 64 bit bus carries the old PC value and MFPR data from the lbox to the Ebox. 

• 1%EWO_ADDR_6A_H<4:0> 
These signals are the EO pipe register file write port address. 

• 1%EW1_ADDR_6A_H<4:0> 
These signals are the El pipe register file write port address. 

• 1%ERAO_ADDR_2A_H<4:0> 

These signals are the RAO register file read port address. 
• l%ERAl_ADDR_2A_H<4:0> 

These signals are the RAl register file read port address. 
• l%ERBO_..ADDR_2A_H<4:0> 

These signals are the RBO register file read port address. 
• l%ERBl_ADDR_2A_H<4:0> 

These signals are the RB 1 register file read port address. 
• l%ERD_PAL_SHADOW _ADDR_2A_H 

This signal determines whether registers R08-Rl5 or shadow registers SR08-SR15 are ac
cessed. This applies to all register file read ports: RAO, RAl, RBO, RBl. 

2-32 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• 1%WO_EN_7A_H 
This signal is the EO pipe register file write enable. 

• 1%Wl_EN_7A_H 
This signal is the El pipe register file write enable. 

• 1%EWO_PAL_SHADOW _ADDR_6A_H 
This signal determines whether registers R08-R15 or shadow registers SR08-SR15 are written 
from WO. 

• 1%EW1_PAL_SHADOW _ADDR_6A_H 
This signal determines whether registers R08-R15 or shadow registers SR08-SR15 are written 
from Wl. 

2.4.2 Mbox Interface 

The Ebox/Mbox interface is mostly one of data transmission. The Ebox sends data to the Mbox 
on E%ST_DATA_3B<63:0> during store, store conditional, HW_ST, and HW_MTPR instructions 
to Mbox IPRs. The Ebox sends addresses to the Mbox on the E%VAX_4B<63:0> buses during 
store, store conditional, load, load locked, HW _LD, HW _ST, HW _MxPR operations to Mbox IPRs, 
and FETCH instructions. The Ebox receives data on the M%LD_DATAX_6A<63:0> buses during 
load, load locked, store conditional, HW_LD, HW_MFPR operations to Mbox IPRs, read from 
process cycle counter, and the VAX compatibility instructions. See Section 2.3 for details on these 
instructions. 

Any time that the Mbox sends data to the Ebox on one of the M%LD_DATAX_6A<63:0> buses, it 
is the responsibility of the Mbox/Ibox to ensure that there is a bubble in the data flow of the 
appropriate Ebox pipe. The Mbox controls the muxes which bring the data into the pipes. 

The following signals are driven by the Ebox to the Mbox 

• E%ST_DATA_3B_H<63:0> 
This 64 bit bus carries store and MTPR data from the Ebox to the Mbox. 

• E%VA0_4B_H<63:0> 
This 64 bit bus carries memory instruction virtual addresses and MTPR data from the Ebox 
to the Mbox. It is the buffered output of the EO adder. 

• E%VA1_4B_H<63:0> 
This 64 bit bus carries memory instruction virtual addresses and MTPR data from the Ebox 
to the Mbox. It is the buffered output of the El adder. 

The following signals are driven by the Mbox to the Ebox. 

• M%BYP _LDO_S60_L 
This signal inserts load data into stage 6 of pipe EO. 

• M%BYP _LD1_S61_L 
This signal inserts load data into stage 6 of pipe El. 

• M%LD_DATA0_6A_H<63:0> 
This 64 bit bus carries returning fill data from the Mbox to pipe EO. 

• M%LD_DATA1_6A_H<63:0> 
This 64 bit bus carries returning fill or MFPR data from the Mbox to pipe El. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-33 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.5 Exceptions, Traps, & Stalls 

If integer overflow is enabled, the Ebox generates that exception ifthe result of an ADDL, SUBL, 
or MULL instruction does not fit in 32 bits, or if the result of an ADDQ, SUBQ, or MULQ 
instruction does not fit in 64 bits. The instruction must have been issued in order to result in 
overflow. The Ebox does not generate any other exceptions, nor does it generate overflow for any 
other instructions. The Ebox reports overflow to the Ibox and returns a truncated 32 bit result 
for longword operations or a truncated 64 bit result for quadword operations. 

The Ebox does not initiate any traps. 

The Ebox is stalled at cycle 3 when l%FREEZE_EBOX_3B is asserted. It cannot be stalled at any 
other point in either pipe. The output of the multiplier, however, is static and can be read until 
a new multiply instruction is issued or I%MUL....ABORT is asserted. 

2.6 Reset and Initialization 

The sequencer which controls the multiplier must be reset during initialization. This is accom
plished by asserting l%MUL....ABORT. 

2-34 The Ebox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

2.7 Revision History 

Table 2-11: Revision History 

Who 

Dan Dever 

Harry Fair 

When Description of change 

23-JAN-1992 Added a description of instruction flows, an adder control 
chart, and the overview/introduction. Added to the descrip
tions of the adder, shifter, byte zapper, and the branch logic, 
and added narative to the interface section. 

06-NOV-1991 CREATED. 

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-35 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Chapter 3 

The Fbox 

3.1 Overview-Block Diagram 

FIGURE>(Ebox) 
FIGURE ATTRIBUTES>(KEEP\WIDE) 
FIGURE=FILE>(POSTSCRIPT\ebox_blk.ps\43) 
END FIGURE> 

3.2 Functional Description 

3.3 FBOX Interface 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-1 



5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Fbox Interface Block Diagram 

4A 48 

3-2 The Fbox 

UULTl'LY !WIT MERFACE 

REGISTER FILE 

ARRAY 

ARB_H MB_L ARA_H ARA...L STA_H STAJ,. 

! 
i 
;;:• 

lOADOUNIT 

REG. 
FILE 
DECODE 

1%F LOO ADDR 5A<4:11> 

1%F WE LOO 6A 

1%F LD1 ADDR 5A<4:11> 

1%F WE LD1 6A 

l"lC.F FA INST 3A 

1"4F FA ISSUE 'IA 

l"lC.F FM INST 3A 

l"lC.F FM ISSUE 'IA 

l"lC.F ST INST 3A 

DOCIPOSr_ALE F_tNT_BIJ(.JJGllilP8 

D0CtRCTATICN D 

DOCSWIDTH 6 D 

00CSX...DFFSE.TQ 

oacn_OffSET o 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.3.1 Interface Overview 

3.3.1.1 External Interface 

3.3.1.1.1 Floating Point Instruction Issue 

The FBOX contains two pipelined functional units: an ADD pipe and a MULTPLY pipe. Each 
pipe may be issued one floating point ALPHA instruction per cycle from the IBOX. In addition to 
these functional units, the Fbox floating point register file contains 2 load ports and 1 store port. 
These ports allow up to 2 floating point loads and 1 floating point store to access the register 
file each cycle. Table 3-1 lists the instructions which may be issued to each pipe. Floating point 
load/store instructions are issued to the EBOX at a maximum of two loads or one store per cycle, 
joining the FBOX pipe for formatting and floating point register file reads and writes. Floating 
Point loads and stores are described in detail in Section 3.3.1.1.3. 

Table 3-1: Floating Point Pipe Instruction Execution 

ADD Pipe ADD pipe (contd) Multiply Pipe Load Port Store Port 

ADDx FBx CPYS LDT STr 

CMPx FCMOVxx MULx LOS STS 

CPYSx MF_FPCR LOG STG 

CVTx MT_FPCR LDF STF 

DIVx SUBx 

Instruction issue to the FBOX is initiated in cycle 3A by the IBOX placing source register ad
dresses and opcode information on bus l%F_FA_INST_3A for an ADD pipe issue, bus 1%F_FM_INST_ 
3A for a MULTIPLY pipe issue, and bus 1%F _ST_INST_3A for floating store issues. Instruction 
issue is completed in cycle 4A by the IBOX asserting I%F _ISSUE_FA_4A for ADD pipe issues and 
1%F_ISSUE_FM_4A for MULTIPLY pipe issues. No issue signal is required at the Fbox for floating 
stores. 

3.3.1.1.2 Floating Point Instruction Retirement 

Floating point instruction results are retired from both pipes in cycle BB, at a maximum rate of 
one instruction per cycle per pipe. Instruction retirement involves writing results into the register 
file, recording any exceptions which occurred during instruction execution in the Floating Point 
Control Register (FPCR), and conditionally signalling exceptions to the IBOX. 

Instructions are retired from the pipes in cycle SB by sending register file write addresses and 
asserting the appropriate write enables. The IBOX places the destination register addresses 
on bus 1%F _FA_ADDR_7A<4:0> for ADD pipe retirement and on bus 1%F _FM_ADDR_7A<4:0> for 
MULTIPLY pipe retirement. The appropriate register file write enable must also be asserted: 
l%F_WE_FM_sA for MULTIPLY pipe and 1%F_WE_FA_8A for ADD pipe retirement. 

The floating point divider is located in Stage 1 of the Fbox ADD pipe. The divider is non
pipelined, and requires a variable, data-dependent number of cycles to complete. Retirement 
of floating divide instructions is initiated by the FBOX asserting F%I_DIV _DONE_SOON_tB seven 
cycles before the divide instruction is complete (ready to be retired). The IBOX detects this 
condition and prevents issue to the ADD pipe in that pipe slot. This allows the divider result to 
rejoin the ADD pipe without conflict. Six cycles after assertion of !?%DIV _DONE_SOON_lB, the IBOX 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-3 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

drives the siloed destination register number on 1%F _FA_ADDR_7A, followed by the RF write enable 
on I%F_WE_FA_8A. The divider fraction result rejoins the ADD pipe from the quotient register at 
the Fbox stage 3 input during cycle 7 A. The fraction and exponent pass thru stage 3 and are 
written to the FBOX register file in cycle SB. The signalling and recording of all divide-related 
exceptions are held until the divide instruction is retired in cycle SB of the Fbox ADD pipe. 

See Section 3.3.1.1.S for details on abort handling in the FBOX. 

3.3.1.1.3 Floating Point LOAD/STORE Issue and Retirement 

Floating Point load (LDx) and store (STx) instructions are primarily executed by the EBOX. Their 
only interaction with the FBOX is during data formatting and FBOX register file reads and writes 
needed to complete the instruction. 

Register file reads for floating point store instructions are accomplished using a dedicated register 
file port. The IBOX initiates a STx register file read in the FBOX by placing the source register 
address and opcode information on bus l%F _ST_INST_3A 

Store data is then recoded from register file format to memory format and EVEN longword parity 
is generated for the memory format data. Opcode information driven from the IBOX is· used to 
generate control signals for the store bus data formatter. Memory format data and longword 
parity are driven to the DCACHE in cycle 6A on B%D_WR_DATA_6A<63:0> and B%D_WR_LW_PAR_ 
6A<1:0>. For floating point stores of longword-length data (STF, STS), the longword store data 
and its corresponding parity bit are duplicated on the upper and lower halves of B%D_WR_DATA_ 
6A<63:0> and B%D_WR_LW_PAR_6A<1:0>. The DCACHE then selects the appropriate longword 
based on store address bit 2. Store data and parity must be valid at the DCACHE input at the 
beginning of cycle 6B. 

B%D_WR_DATA_6A<63:0> is a global tristate bus having two drivers: the MBOX and the FBOX. 
The DCACHE is the only receiver. The MBOX is the default bus driver and controls access to 
the bus: the FBOX is enabled to drive data in cycle 6A when the signal M%F_FBOX_DRV_ENA_5A 
was asserted in the previous cycle. 

DCACHE load and fill data is sent to the FBOX on two 64 bit buses: D%Z_DATA_0_5A<63:0> and 
D%Z_DATA_1_5A<63:0>. Format information for the data is driven to the FBOX from the MBOX 
on M%F_LD_FORMAT0_4B<2:0> for load bus 0 and M%F_LD_FORMAT1_4B<2:0> for load bus 1. Bit 2 
of each bus indicates VAX/NOT IEEE format, bit 1 indicates LW/NOT QW length datatype, and 
bit 0 indicates UPPER/NOT LOWER LONGWORD position for longword-length datatypes. The 
data is recoded from memory format to register file format in the FBOX during cycles 5B and 
6A. The formatted data is driven to the FBOX register file during cycle 6A and is written during 
cycle 6B. 

Register file writes for load instructions are controlled by the IBOX for both loads (DCACHE 
hits) and fills (DCACHE misses). During a load/fill, the IBOX places destination register file 
addresses on 1%F _LDO_ADDR_5A<4:0> for load bus 0 and on 1%F _LD1_ADDR_5A<4:0> for load bus 1. 
The load/fill sequence is completed by asserting 1%F_WE_LD0_6A and l%F_WE_LD1_6A for loads on 
busses 0 and 1, respectively. 

3-4 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.3.1.1.4 Operand Bypasses 

To reduce pipeline latency by one cycle between data-dependent instructions, the FBOX pro
vides for the bypassing of instruction results around the register file back into the FBOX pipe. 
Scoreboarding and scheduling of bypasses is performed completely by the IBOX. The FBOX sim
ply muxes potential operand sources into each pipeline using control signals 1%F _BYP _FXX_FXX_aB 
provided by the IBOX. Results from load bus 0, load bus 1, the ADD pipe, or the MULTIPLY pipe 
may be bypassed from the register file write stage (6B for loads/fills and SB for operates) into the 
first stage (cycle 4B) of any floating point instruction. 

3.3.1.1.5 Floating Point Branch Evaluation 

The FBOX evaluates the outcome of floating point branch instructions (FBxx) as well as the 
validity of the corresponding IBOX branch prediction. The IBOX sends the predicted branch 
outcome to the FBOX via 1%Z_BR_PREDICT_4A. The FBOX evaluates the actual branch outcome 
and signals the IBOX via F%I_BR_MISPREDICT_5A and F%I_BR_TAKEN_5A. F%I_BR_MISPREDICT_5A 

is asserted if the IBOX branch prediction was incorrect, and F%I_BR_TAKEN_5A is asserted if the 
branch condition evaluates as TRUE. The FBOX conditions the assertion of these signals with 
the issue signal, preventing spurious branch mispredict indications. The mispredict and taken 
signals are valid at the IBOX early in cycle 5A 

When the floating branch instruction slot reaches cycle SA of the FBOX ADD pipe, it is possible 
for the IBOX to send a register file write enable (implementation-dependent). The FBOX does 
not require this write enable here (floating point branches do not take exceptions) but can handle 
it with certain constraints. See Section 3.3.1.1.S for details. 

3.3.1.1.6 Conditional Move Evaluation 

The FBOX evaluates the outcome of each conditional move instruction (FCMOVxx) and signals 
the IBOX with the result. The IBOX uses this result to conditionally disable write enables 
during retirement of the instruction. The FBOX asserts F%I_KILL_CM_5A to signal the IBOX that 
the move should not be retired (i.e. register write should be KILLed). The FBOX conditions 
F%I_KILL_CM_5A with the ADD pipe issue signal so the IBOX receives it only when an FCMOVxx 
instruction has actually been issued. 

3.3.1.1.7 Pipeline Stalls 

As described in Section 3.3.1.1.1, the IBOX issues instructions to the FBOX by sending source 
register addresses and opcode information in cycle 3A When a valid instruction has been sent 
to the FBOX in cycle 3A and it has issued properly, the IBOX asserts 1%F _FA_ISSUE_4A or l%F _ 
FM_ISSUE_4A for issues to the ADD and MUL pipes, respectively. Pipeline stall conditions are 
handled by the IBOX inhibiting the assertion of 1%F _FA_ISSUE_4A and 1%F _FM_ISSUE_4A. Thus, 
stall conditions in the CPU are transparent to the FBOX. 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-5 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.3.1.1.8 Pipeline Abons 

Many conditions may arise in which it is necessary to abort instructions in either FBOX pipe. This 
includes aborts of the floating point divider in the ADD pipe, whose latency is not deterministic 
and is much longer than the ADD pipe or the MULTIPLY pipe. In general, aborts can be caused 
by exception and non-exception conditions. 

Non-exception aborts do not require the pipeline to be drained of all outstanding instructions 
before restarting the pipeline at a redirected address. Examples of non-exception abort conditions 
are branch mispredictions, subroutine call/return mispredictions, and cache misses. Data cache 
misses do not produce abort conditions but can cause pipeline stalls. Non-exception aborts are 
completely transparent to the FBOX. 

Aborts caused by exceptions require the pipeline to be drained of all outstanding instructions 
before restarting the pipeline at a redirected address. The IBOX accomplishes aborts in both 
FBOX pipelines by disabling write enables during retirement of instructions which are being 
"drained". Absence of the write enable prevents any results from being written and any related 
exceptions from being recorded in the FPCR and sent to the IBOX. Thus, write enables function 
as a late abort mechanism for the FBOX. In addition, assertion of the signal 1->F _FDIV _ABORT 

forces any instruction in the FBOX divider to be immediately aborted and the divider reset. 

Certain instructions issued to the FBOX produce no Stage 3 result and do not signal exceptions. 
This class includes floating branches (FBXX) and divide instructions (DIVXX, as opposed to divide 
bubbles). Although these instructions do not require write enable to be asserted when they reach 
ADD pipe cycle BA, it may be convenient for the IBOX to do so for implementation purposes. 

For this class of instructions, the IBOX may assert 1%F_WE_FA_8A when the instruction reaches 
FBOX Stage 3 (SA), provided the register file address specified is F31. The FBOX internally 
detects this class of instructions and inhibits both FPCR writes and exception signals to the 
IBOX, regardless of whether the write enable is asserted. 

3.3.1.1.9 Exceptions 

Exception signals from the ADD and MULTIPLY pipes are logically OR'ed and written into 
the FPCR when either 1%F_WE_FM_8A or 1%F_WE_FA_8A are asserted. Exception signals from 
both pipes are driven to the IBOX for use in updating the Exception Summary Register. ADD 
and MULTIPLY pipe exceptions are signalled only when 1%F_WE_FA_8A and 1%F_WE_FM_8A are 
asserted, respectively. The exception signals and their associated conditions are described in 
Table 3-8. 

3.3.1.2 Internal Interface 

3.3.1.2.1 Stage 1 Interface 

Stage 1 of the ADD and MULTIPLY pipes each receive two operand busses from the FBOX 
interface section. The operand bus sources are selected by the interface bypass mux. 

3--6 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-2: ADD Pipe Fraction Datapath Alignment/Format 

bit numbers: 166665555555555444444444433333333332222222222111111111100000000001 
i3210987654321098765432109876543210987654321098765432109876543210IRG 
I I 

FP names: !AAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBI 
110000000000000000000011111111112222222222333333333344444444445551 
109876543210012345678901234567890123456789012345678901234567890121RG 

boundary bits: I I 
F: IOOOOOOOOOOOH LRGOOOOOOOOOOOOOOOOOOOOOOOOOOOI 

I I 
S: iOOOOOOOOOOOH LRGOOOOOOOOOOOOOOOOOOOOOOOOOOOI 

I I 
G: I OOOOOOOOOOOH LI RG 

I I 
T: I OOOOOOOOOOOH LI RG 

I I 
D: IOOOOOOOOH LIRG 

I I 
integer LW: IS LRGOOOOOOOOOOOOOOOOOOOOOOOOOOOI 

I I 
integer QW: IS LIRG 

H=HIDDEN BIT; L=LSB; R=RND; G=GUARD; S=SIGN 

The ADD pipe receives the A operand on F_IN'r'/oADD_OP.A..4B<64:0> and the B operand on F_ 
INT%ADD_OP _B_4B<64:0>. Operand A has been recoded in the interface to the ADD pipe fraction 
datapath operand format depicted in Figure 3-2. Operand B has been partially formatted and 
receives additional formatting in Stage 1 to get to its final fraction datapath format. For floating 
point datatypes (F,S,G,T,D), these busses represent the fraction portion, and the exponent is 
driven to stage 1 via F _INT%ADD_EXP _A_4B<l0:0> and F _INT%ADD_EXP _B_4B<l0:0>. For longword 
and quadword datatypes, the A and B operands are contained completely on F _INT%ADD_OP _A_ 
4B<64:0> and F _INT%ADD_OP _B_4B<64:0>. The stage 1 normalization-shift-detect and trailing
zero sections use these busses directly. 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-7 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-2: Exponent constants muxed onto Stage 1 Input Exponent Operand A 

Instruction Constant Value (hexadecimal) 

IEEE CVT float-float IEEE Bias 3FF 

VAX CVT float-float VAX Bias 400 

IEEE CVT float-quad IEEE Bias + 52 (decimal) 433 

VAX CVT float-quad VAX Bias + 53 (decimal) 435 

To allow the stage 1 exponent adder to begin in cycle 5A, special exponent bypass logic muxes 
several exponent constants onto the F_INT%ADD_EXP_A_4B<l0:0> bus. As described in Table 3-2, 
these constants are used during CVT floating-floating IEEE and VAX, and CVT floating-quadword 
IEEE and VAX instructions. Due to implementation constraints, portions of these constants can 
"leak" onto the exponent field of the data in the fraction datapath during these instructions. The 
fraction data that gets modified in these cases is always 0, because the Alpha SRM requires that 
operand A be F31 for CVT instructions. During these CVTs the normalization-shift-detect logic 
is not using the operands. Therefore the Stage 1 output mux must select 0 for these cases rather 
than the original A operand, thus making the stage 1 exponent bypass details transparent to the 
remainder of the pipe. Figure 3-3 shows the conditions occurring in the interface and ADD Pipe 
Stage 1 for these cases. 

The MULTIPLY pipe receives its A operand on F _INT%MUL_OP _A_4B<64:0> and the B operand on 
F _INT%MUL_OP _B_4B<64:0>. The format of these operands matches the floating point register file 
format. 

3.3.1.2.2 Stage 3 Interface 

Stage 3 of the ADD and MULTIPLY pipes supply result data to the register file and bypasses in 
register file format. The ADD pipe result bus is F _;\S3%FWR_SA<64:0> and the MULTIPLY pipe 
result bus is F _MS3%FWR_8A<64:0>. 

3.3.2 Interface Instruction Flows 

3--8 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-3: STAGE 1 INPUT BYPASS/FORMAT/RESOURCE TABLE 

MINI-FORMAT I Sl I Sl I EXP I EXP 
LXD TRZ IN IN BYP BYP FRACTION I Fl I F2 I FMT I FMT 

OPERATION I Y/N I YIN I OP A I OP B I OP A I OP B I OP A I OP B I OUT I OUT I OP A I OP B I COMMENTS 
----------1-----1----- ------1------1------ ------1-------1-------1-----1-----1------1------1-----------------
EFF ADD N y * BYP BYP FP FP IAFIBFIAFIBFI EXP I EXP 

I I I I 
EFF SUB y y BYP BYP FP FP I AF I BF I F S I * F EXP I EXP valid for ediff , 

I I I 
CMP* N N * BYP BYP FP FP I 0 I 0 EXP I EXP 

I I I 
CVT IEEE N y F31 x BYP x FP I 0 I BF OX3FF I EXP 

FP-FP I I I 
I I I 

CVT VAX N y F31 x BYP x FP I 0 I BF OX400 I EXP 
FP-FP I I I 

I I I 
CVTDG N y F31 x BYP x QW I o I BF OX400 ID-EXP 

I I I 
CVTQF y y F31 BYP BYP QW QW I 0 IFSIBFI x I x 

VAX I I I I 
I I I I 

CVTQF y y F31 BYP BYP QW QW I 0 IFSIBFI x I x 
IEEE I I I I 

I I I I 
CVTFQ N y F31 x BYP x FP I 0 I BF IOX435 IEXP 

VAX I I I I 
I I I I 

CVTFQ N y F31 * x BYP x FP I 0 I BF IOX433 IEXP 
IEEE I I I I I 

I I I I I 
CVTLQ N N F31 * x BYP I X QW I 0 I BF I x I x 

I I I I I 
CVTQL N y F31 x BYP I x QW I 0 I BF I x I x 

I I I I I 
CPYS* N N BYP I FP FP I 0 I BF I EXP I EXP 

I I I I I 
FCMOV* N N BYP I FP FP I 0 I BF I EXP I EXP 

I I I I I 
MT FPCR N N BYP I FP FP I 0 I BF I EXP I EXP 

I I I I I 

QW ASS ALL FRACTION BITS UNMODIFIED INTO LXD/TRZ/FIS. 
FIS WILL FORMAT FRACTION PROPERLY FOR REST OF PIPE. 

FP bit B52 = !Z; ZERO EXPONENT FIELD OF FRACTION (FSGT types only) 

EXP EXTRACT EXPONENT FIELD OF FRACTION DP 

D-EXP EXTRACT EXPONENT FIELD OF FRACTION; ZERO UNUSED FRACTION BITS 

Al STAGE 1 ADDER 1 

A2 STAGE 1 ADDER 2 

AF OPERAND A FRACTION 

BF OPERAND B FRACTION 

FS FRACTION SUM 

LXD NORMALIZATION-SHIFT-DETECT LOGIC 

TRZ TRAILING-ZERO-DETECT LOGIC 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-9 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-3: ADD pipe: ADDx/CPYSx/CMPx/CVTx/FCMOVxx/FBXX/MX_FPCR/SUBx 

Cycle 

3A 

3B 

4A 

4B 

5A 

5A-SB 
7A 

7B 

SA 
SB 

Description 

Instruction opcode and RF source addresses sent from IBOX on 1v _FA_INST_sA 

RF source address decode 

RF source operand read; Issue signal from IBOX on I%F _Fi\_JssuE_4A 

RF sense amp; operand bypass; Pipe formatting 

F%I_BRN_TAKEN_5A and F%BRN_MISPREDICT_5A to IBOX for FB:xx; F%KILL_CM_5A to IBOX for 
FCMOV:xx 

------- Sl - S3 --------

RF destination address from IBOX on I%F _FA_ADDR_7A 

RF decode 

Write enable from IBOX on I%F _WE_FA_SA 

RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in 
absence of RF write enable 

Table 3-4: ADD pipe: DIVx 

Cycle 

3A 

3B 

4A 

4B 

5A 

lB 
4A 

5B 
7A 

7B 

SA 
SB 

Description 

Instruction opcode and RF source addresses sent from IBOX on I%F _FA_INST_SA 

RF source address decode 

RF source operand read 

RF sense amp; Operand bypass; Pipe formatting 

Operands driven to Divider in Stage 1 

---Divider runs for variable period ------

--( I->F _FDIV_ABORT can be asserted at any time) ----

"Divider done soon" signal sent to lbox on F%I......DIV_noNE_sooN_lB 

No issue signal to ADD pipe from IBOX this cycle (DIV bubble) 

Exponent, controls re-enter ADD pipe S2 from Divider Hold Latch (DHL) 

RF destination address from IBOX on I'*>F _FA_ADDR_7A 

RF decode; Quotient register result enters Stage 3 

Write enable from IBOX on 1v_WE_FA_SA 

RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in 
absence of RF write enable 

Table 3-5: MULTIPLY pipe: MULx/CPYS 

Cycle Description 

3A Instruction opcode and RF source addresses sent from IBOX on I'*>F _FM_INm>_3A 

3-10 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-5 (Cont.): MULTIPLY pipe: MULx/CPYS 

Cycle 

3B 

4A 

4B 

5A-8B 

7A 

7B 

SA 

BB 

Description 

RF source address decode 

RF source operand read 

RF sense amp; Operand bypass; Issue signal from mox on l%F _FM_ISSUE_4A 

------- Sl - 83--------

RF destination address from mox on IV _:p'M_ADDR_'1A 

RF decode 

Write enable from mox on I'IJF_WE_FM_8A 

RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in 
absence of RF write enable 

Table 3-6: STORE port: STX 

Cycle 

3A 

3B 

4A 

4B 

5A 

5B 

6A 

Description 

Instruction opcode and RF source addresses sent from mox on IV _ST_INST_3A 

RF source address decode 

RF source operand read 

RF sense amp; Operand bypass 

Drive data to store logic; Begin formatting and parity generation; Store bus enable 
from MBOX on M%F _FBox_nav_ENA_5A 

Finish store data formatting and parity generation 

Formatted data and parity driven to DCACHE on B%D_WR_DATA_&A<63:0> and B'ID_WR_ 

LW _PAR_&A<l :0> 

Table 3-7: RF Load ports: LDx (LOADS and FILLS) 

Cycle 

4B 

5A 

5B 

6A 

6B 

Description 

RF dest. address driven from mox on IV _LDX_ADDR_SA<>; Format info. from MBOX on 
MV _LD_FORMATX_4B 

Load data driven from DCACHE on DraZ_DATA_X_M<>; Decode RF dest. address and 
format info 

Format data into floating point RF format 

Complete exponent expansion/zero detect and drive to FBOX RF; WEs from IBOX on 
IV _WE_LDX_&A 

RF write; Operand bypass; Absence of WE constitutes late abort 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-11 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-8: FBOX Interface Signal List 

Signal 

From FBOX: 

F%I_BRN_TAKEN_5A 

F%I_BR_MISPREDICT_5A 

F%I_DIV_DONE_SOON_1B 

F%I_KILL_CM_5A 

B%D_WR_DATA_6A<63:0> 

B%D_WR_LW_PAR_6A<1:0> 

F%1Jl'OV _FA_8B 

F%I_IOV_FA_8B 

F%I_FUN_FA_8B 

F%I_INE_FA_8B 

F%I_FDZ_FA_8B 

F%I_INV _FA_8B 

F%I_SWC_FA_8B 

F%I_FOV_FM_8B 

F%I_FUN_FM_8B 

F%I_INE_FM_8B 

F%I_INV _FM_8B 

F%I_SWC_FM_8B 

'lb FBOX: 

D%Z_DATA_0_5A<63:0> 

D%Z_DATA_l_5A<63:0> 

1%F _JIYP _FM_FMA_3B 

l%F _BYP _FA_FMA_SB 

1%F _BYP _FLDO_FMA_3B 

1%F _BYP _FLDl_FMA_3B 

1%F_BYP_FM_FMB_3B 

1%F _BYP _FA_F.MB_3B 

l%F _BYP _FLDO_FMB_3B 

1%F _BYP _FLD1_FMB_3B 

I%F _JIYP _FM_FAA_3B 

I%F _JIYP _FA_FAA_3B 

1%F _BYP _LDO_FAA_3B 

l%F _BYP _LD1_FAA_3B 

1%F _BYP _FM_FAB_3B 

1%F _BYP _FA_FAB_3B 

3-12 The Fbox 

Description 

Floating branch (FBx) condition evaluated TRUE 

mox mispredicted branch condition result 

Divide result ready in seven cycles 

Conditional move (FCMOVxx) condition evaluated FALSE 

FBOX store data bus 

Fbox store data bus LW parity 

Floating Overflow -ADD pipe 

Integer Overflow -ADD pipe 

Floating Underflow - ADD pipe 

Floating Inexact Result - ADD pipe 

Floating Divide by Zero - ADD pipe 

Invalid Operation - ADD pipe 

Software Completion -ADD pipe 

Floating Overflow - MULTIPLY pipe 

Floating Underflow - MULTIPLY pipe 

Floating Inexact Result - MULTIPLY pipe 

Invalid Operation - MULTIPLY pipe 

Software Completion - MULTIPLY pipe 

load data bus 0 from DCACHE 

load data bus 1 from DCACHE 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

Bypass controls 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-8 (Cont.): FBOX Interface Signal List 

Signal 

l%F _BYP _LDO_FAB_3B 

IV _BYP _LDl_FAB_3B 

1%F _FDIV _ABORT 

IV _J.JJO_ADDR_5A<4:0> 

IV _LD1_ADDR_5A<4:0> 

IV _WE_LDO_&A 

1%F _WE_LDl_&A 

1%F_WE_FA_8A 

1%F _WE_FM_8A 

M%F _LD_FORMAT0_4B<2:0> 

M%F _LD_FORMAT1_4B<2:0> 

1%F _FA_INST_3A 

1%F _FM_INST_3A 

1%F _ST_INST_3A 

1%F _FA_ISSUE_4A 

IV _FM_ISSUE_4A 

1%Z_BR_PREDICT_4A 

3.4 FBOX Multiplier Pipe 

3.4.1 INTRODUCTION 

Description 

Bypass controls 

Bypass controls 

Abort FBOX divide 

FBOX load bus 0 register address 

FBOX load bus 1 register address 

FBOX load bus 0 write enable 

FBOX load bus 1 write enable 

FBOX ADD pipe write enable 

FBOX MULTIPLY pipe write enable 

FBOX load bus 0 format information 

FBOX load bus 1 format information 

ADD pipe instruction - multiple bits 

MULTIPLY pipe instruction - multiple bits 

STORE port instruction - multiple bits 

IBOX issue valid to ADD pipe 

IBOX issue valid to MULTIPLY pipe 

mox predicted conditional branch taken 

In this section an overview of the FBOX Multiplier Pipe is presented. The multiplier pipe consists 
of a three stage pipelined execution unit. 

The primary goal of this section is to demonstrate how various instructions can be executed using 
the three stage pipelined microarchitecture. A general overview and block diagram of each stage 
is given, followed by a description of the sequence of operations the FBOX performs to execute 
the floating point multiply instruction. 

The appendices contain a description of the algorithms used to implement parallel rounding with 
addition, trailing 0 detection on the input operands, and a summary of the multiply pipe exception 
handling. 

3.4.2 Multiply Pipe Overview 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-13 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.4.2.1 Interface 

The register file contains 32 floating-point registers each 65 bits wide. The additional bit in 
each register is assigned to the Z bit. The bypass mux at the output of the register file selects 
the two operands from the register file, formatted load data, or the result (WR) sent from the 
pipeline. Depending on the datatype, the selected operand is formatted into the appropriate 
fraction, exponent, and sign fields of the pipelined stages. 

The result of the floating-point operation is formatted to register file format in stage 3 of the 
pipeline and sent to the interface on the WR bus. This data is written to a register (WR latch) to 
enable reading the result in the same cycle as the register file write. 

The floating point register file has 65 bits designated as RF<64:0>. The msb, RF<64>, is a z-bit 
that is set when the RF<62:0> field is all zeros. The z-bit does not cover the sign bit, RF<63>. 
The register file data format is shown in Figure 3-4. 

Figure 3-4: Register File Data Format 

F/S datatype 
6 6 6 
4 3 2 

5 5 
2 1 

2 2 
9 8 0 

+-+-+---------------+-------------------------+---------------------+ 
IZISI Exponent I Fraction zero I 
+-+-+---------------+-------------------------+---------------------+ 
G/T datatype 

6 6 6 
4 3 2 

5 5 
2 1 0 

+-+-+---------------+-----------------------------------------------+ 
IZISI Exponent I Fraction I 
+-+-+---------------+-----------------------------------------------+ 
Note the hidden bit is not stored for floating point operands. 

3.4.2.2 MUL data path 

The bits in the MUL fraction data path are numbered as follows: 

Weight: 4 2 1 .5 .25 
Bits: A2 Al AO • BO Bl •.••.••• B55 

I I HIDDEN BIT FOR FLOATING POINT NUMBERS 
\ BINARY POINT 

BITS<A2:Al> are only significant during the multiply operation. 

The exponent data path, E<12:0> is 13 bits wide, with E<12> representing the exponent sign bit. 
The pipeline also maintains a sign (N) and a zero (Z) bit for each operand. 

Register file data is formatted onto the fraction and exponent datapaths depending on the 
datatype as follows: 

3-14 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

+-------------------------------+ 
IBIT F/S/G/T 
+-------------------------------+ 
IAO 0 
IBO NOT RF<64> 
IBl:B52 RF<Sl:O> 
IB53:B56 0 
IE<l2:11> 0 
IE<lO:O> RF<62:52> 
+-------------------------------+ 
The sign and z-bits are taken directly from RF<64:63>. 

3.4.2.3 Nomenclature 

E Exponent field. 

F Fraction field, including the hidden bit. 

LXD Vector of one out of 64 bits, MSB bit set indicates zero 
left shift, LSB set indicates left shift of 63. 

ELXD Encoded LXD in 13 bits; only the least significant 6 bits 
to encode 0 to 63 are generated in FDP, other bits are 
forced to zero in EDP. 

AIN,BIN 

<r> 

STKY 

Inputs to the FRACTION adders. 

The round bit is a function of the floating point operation. 

Logical OR of all bits shifted out of destination datapath 
width. 

3.4.3 INSTRUCTION FLOWS 

Following is an analysis of the pipeline flow. This analysis demonstrates what is done in each 
stage of the pipeline with emphasis on fraction and exponent computation. See Figure 3-5 for a 
block diagram of the multiplier pipe. 

3.4.3.1 Floating Point Multiply 

The multiplier array in stage 2 utilizes a radix-8 modified Booth algorithm, recoding three bits 
of the multiplier at a time. The computation is performed on two threads in parallel and the 
results are combined at the output of the array. 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-15 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-5: Multlpy Pipe Block Diagram 

/ 
2x 1x 

'11 '11 

l Generale3x 

3x 1x 

'Ill_ 

rl Mipprseleclor 

-t/-0,1,2,4 }2 -2 
+4 l4 

_jt _..'S 

H Mrws 1 &2 seleaors 

p_odd 
~-odd 

b_even 
It-even 

s s s s 
'Ill_ 'Ill_ 

H Mrw1 J 
i 'Ill_ 

H Mrw2 

odd_ljlp evenjpp 
3X 1x 

-c+s C+S 

IL .:ill_ _jt i _jr 

Marray c:0:6> 
CSA's Wllh seleclons 

Reooder 
7 

odd 8'190 

3 'Ill_ 

[ Hall Adder J 
1~c 1~ 

Round 

1----

3-16 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 3-9: Booth Algorithm 

Mi+2 Mi+l Mi Mi-1 Operation MRECODE 

+01234 

0 0 0 0 +OxMcand 010000 

0 0 1 0 +1 x Mcand 001000 

0 1 0 0 +2xMcand 000100 

0 1 1 0 +3 xMcand 000010 

1 0 0 0 -4 x Mcand 100001 

1 0 1 0 -3 x Mcand 100010 

1 1 0 0 -2 x Mcand 100100 

1 1 1 0 -1 x Mcand 101000 

0 0 0 1 +1 x Mcand 001000 

0 0 1 1 +2xMcand 000100 

0 1 0 1 +3 x Mcand 000010 

0 1 1 1 +4xMcand 000001 

1 0 0 1 -3 x Mcand 100010 

1 0 1 1 -2 x Mcand 100100 

1 1 0 1 -1 x Mcand 101000 

1 1 1 1 -0 x Mcand 110000 

Precomputation of three times the multiplicand and partial recode of the multiplier is performed 
in stage 1. The stage 1 recoder retires 12 bits of the muliplier and sets up the initial partial 
products for the first double row in the multiplier array. The trailing zero detection used in the 
sticky bit calculation for IEEE rounding is also performed in stage 1 by detecting the trailing 1 
position. 

The multiplier array is composed of double rows of carry sum adders that perform the addition 
of weighted multiplicands in parallel on odd and even threads of the array. The result of each 
computation is represented in sum and carry form. The product is obtained by using two addi
tional carry sum adders to reduce the vector pairs to a single pair of sum and carry vectors. In 
order to facilitate parallel rounding in stage 3, the sum and carry vectors are passed through a 
half adder to generate a sum and carry vector pair with a place created for injecting the round 
bit. 

The sticky bit calculation is done with a trailing zeros summing circuit. The sum of the number 
of trailing zeros in the multiplier and multplicand is compared with a fixed value (depending on 
data type) to determine the sticky bit. If the total number of trailing zeros in the muliplier and 
multiplicand span the sticky bit range of the product then the sticky bit is set to zero. 

The carry out from the lower half of the stage 2 double precision multiply is added to the sum 
and carry vectors to generate a single precision result in stage 3. 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-17 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.4.4 Mui Pipe Stage 1 

The first stage of the pipeline consists of fraction, exponent, and control sections as shown in Fig. 
Figure 3-6. 

The fraction datapath consists of a 56b adder, trailing zero detect circuits for both the multiplier 
and multiplicand operands, and a set of MIPPR muxes for driving the initial partial products to 
row 1 (even and odd) of the multiply array. The operands do not require formatting since the 
MUL Pipe does not execute any conversions to or from integer format and are loaded directly from 
the output of the MUL Pipe bypasses. The recoder is located adjacent to the fraction datapath 
and is distributed throughout the first two stages of the MUL pipeline. The 56 bit fraction adder 
is used to precompute 3X the multiplicand. TR_PLIER and TR_CAND vectors which set a bit 
a the first trailing 1 are calculated. The sum of the trailing zeros in the product eTR_SUM is 
determined by adding eTR_PLIER and eTR_CAND (6 bit encodes of the position of the trailing 
one in the multiplier and the multiplicand). The eTR_PLIER and eTR_CAND values also serve 
to determine if the fraction sections of the operands are zero. This information is used to detect 
a dirty zero input for a multiply. The MIPPR muxes use the recoded multiplier data to set up 
several initial partial products for the multiplier array during multiply operations. The exponent 
datapath contains a 13-bit adder, and an output mux. The exponent sum is driven to Mul Stage 
2 for multiplies, and the multiplicand exponent is output for CPYS. Note the stage 1 exponent 
result includes (2 * Bias). This is corrected in stage 2. 

3.4.5 Mui Pipe Stage 2 

A block diagram of stage 2 is shown in the Fig. Figure 3-7. 

The fraction datapath of Mul Pipe stage 2 consists of a multiplier array. The multiplier consists 
of 8 double rows of multiplicand selectors and CSAs organized as odd and even threads. The 
multiplier recoder in stage 2 uses the multiplier from stage 1 to perform Booth recoding. Each of 
the two threads produces the product in two halves in sum and carry form. These are combined 
using two additional CSAs to produce a pair of sum and carry vectors (FS, FC). The two operand 
buses that carry lx the multiplicand and the 3x the multiplicand through the datapath are used 
to set up the input addends for the CS.Ns. In addition, a half adder to enable parallel rounding 
is included at the output of the multiplier array. The Mul Sticky bit is determined by comparing 
eTR_SUM to a constant which is determined by the data type of the multiplication (52 for T/G, 
81 for F/S). The exponent datapath consists of a 13-bit adder which subtracts the bias from the 
exponent sum calculated in Mul stage 1, and an output mux to provide the original exponent of 
the multiplicand operand for CPYS. 

3-18 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-6: STAGE 1 

EV5 FBOX MULTIPLIER PIPE STAGE 1 BLOCK DIAGRAM 

S1 

TRANSPOSE 
IP• .. APt_aa_LcH:I.., BUS 

--TITUdVt_NOXJIUL_••J'fllAC. 
,._,..,..,._ .. ox_uua._•1..1MC 

LAST_MODIFIEO=Fri D•c I 18.28 157 lll'J 

i MU LT IP LIER ;.,eu ..... ._..1UL..t.111Uo1ot...---4-.J.---+-

i RECODER 

: : 
j 
: : 
i 
! 

I 
i 
i L_ .... __ --_..J.'i WlliU-!L..IL------

KCU_ ... .}4 

DIGITAL RESTRICTED DISTRIBUTION 

1 ... .,. ........ ,_ ... _Md•:t:oo 

The Fbox 3-19 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-7: STAGE 2 

,,_ .... ___ ............._. --............. .-.................-... _,. 
11-V.-i'TW~-••TS"'._.. ... 

....,.....,.._,. ••• Tl ..... ... ............. -.......... ~ ....... ,. -[- -· J ··-·----·IT .......... ~ _.l 

·~ 
~ -;...-ut-

MULTIPLIER BLOCK DIAGRAM ~ I---" ~ 

l t-.--_-r.J._--.-------t~ ........ --:-.......... 

l i 1-·- l DEFLT_INS:::::E=???n 

3-20 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.4.6 Mui Pipe Stage 3 

As the final stage of the pipeline, stage 3 computes the final result including the various round
ings, calculates the z-bit result, detects exceptions and formats the result back to the register file 
format. Fig. Figure 3-8 shows the block diagram of stage 3 of the pipeline. 

The fraction datapath of MUL PIPE stage 3 contains, an input selector, a 56 bit double adder, 
and an output mux. The input selector chooses the operands from the multiplier(FS, FC) or zero 
and the multiplicand for CPYS. The 56-bit double adder produces results either of the form A+B 
and A+B+l for VAX rounding and IEEE round to nearest, or of the form A+B and A+B+2 for 
IEEE round to infinity. The final output mux chooses the results from the two adder results 
and performs a 1 bit normalization. The mux control is generated using the MSBs of the adders 
(MSB logic), and detection of fraction equal to exactly 1/2 in the higher order adder. The exponent 
datapath contains a 13-bit adder which is used to compute the Er-1 corresponding to the potential 
fraction outputs, floating overflow and underflow detection logic and an output selector. The 
control section of the MUL Pipe stage 3, performs exception detection, final sign computation, 
and Z bit calculation. The fraction, exponent, and sign (are already in register file format) are 
driven to the Floating Register file and bypasses. 

3.4.7 Copy Sign 

There are three instructions in this group, only CPSY is implemented in the multiply pipe in 
order to allow the compiler to generate a multiply pipe NOP. Instruction requires copying of the 
sign and exponent fields. The fraction field is unchanged. Exception checking is disabled for the 
copy sign instruction. 

For CPYS (copy sign), the sign bit of register Fa is concatenated with the exponent and fraction 
bits from register Fb. The result is stored in register Fe. 

3.4.7.1 Copy Sign - STAGE 1 

The appropriate data is passed to stage 2 in both the fraction and exponent datapaths. 

1%Fl = 0 
1%F2 = FB 

1%El = EA 

The sign and z-bits associated with the input operands are piped to the next stage. 

3.4.7.2 Copy Sign - STAGE 2 

The operands are passed directly to stage 3. 

2%Fl = 1%Fl 
2%F2 = 1%F2 
2%E = 1%E 

The sign and z-bits from the previous stage are piped to the next stage as well. 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-21 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 3-8: STAGE 3 

Fl .. HAC_aB_HclS.e.,. 

raFAO .. AOD_1_7B_HclS:b 

FRHAS_l8_HcH::lb 

FIFAO..ADD_t_7B_Hcl9.I> 

FSCML.~EL_AD01_1B_H 
Fac ........ aE~ADD1_1a_H ____ _ 

F1CM..""IEL_PASS_7B_H 

FIC.._'51EL_SHL_78_H 

1---- FsCML .. FORCE ... FUF. Fl. QT 

FrloFWR_eAceS:I:. 

EV5 MULTIPLIER 

3-22 The Fbox 

FOCRH"'f8f:8H:f.A1_7A_H 

=a:!St-hr' 

Ft'lliFOP _FUNC_aB_Hc7:0:. 

Fl .. RIN_6B_H 

FKBZ_&B_H 

Fn.AZ_IB_H 

Fn•FZ_eB_H 

fl'l.BN_IB_H 

Fl .. EN_aB_H 

Fn.EAl_ae_H 

F3ClftRND_YODE_7Ac1:0:. 

OP _FUNC_7A_Lc7:0::. 

FRACTION STAGE 3 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.4.7.3 Copy Sign - STAGE 3 

Stage 3 passes the stage 2 fraction and exponent outputs to the result. The sign bit is passed 
from stage 2. 

F = 2%F2 
E = 2%E 
N = 2%BN 

Since the z-bit calculation does not include the sign bit, the z-bit resulting from the CPYS in
struction is equal to the z-bit associated with the Fb register operand; 

3.4.8 Rounding 

Table 3-10: Chop Rounding 

Addi Add2 Cin Output Shift Actual Addi= Add2= 

<BO> <BO> <r> select Value A+B+ A+B+ 

0 x 0 Addl L A+B 0 1 

0 0 1 Add2 L A+B+l 0 1 

0 1 1 Add2 no A+B+l 0 1 

1 x 0 Addl no A+B 0 1 

1 x 1 Add2 no A+B+l 0 1 

note: 1) Cin<r> is used to select Addl or Add2 

Table 3-11: Normal Rounding 

Sand 
Addi Add2 Cin c Sore Output Shift Actual Addi= Add2= 

<BO> <BO> <g> <g> <g> select Value A+B+ A+B+ 

0 x 0 x x Addl L A+B+M M M+l 

0 0 1 0 0 Add2 L A+B+l M M+l 

0 0 1 0 1 Addl L A+B+l M M+l 

0 0 1 1 x Add2 L A+B+2 M M+l 

0 1 1 0 1 Addl L A+B+l M M+l 

0 1 1 x 0 Add2 no A+B+l M M+l 

0 1 1 1 x Add2 no A+B+2 M M+l 

1 x 0 0 1 Addl no A+B+l M M+l 

1 x x x 0 Add2 no A+B+l M M+l 

1 x x 1 x Add2 no A+B+2 M M+l 

1 x 1 x x Add2 no A+B+M+l M M+l 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-23 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

note: 1) M = S<g> + C<g> 
2) Addl and Add2 add all bits down to and including <r> 
3) additional logic will detect if the first 1 is at the <r> or <g> 

position and if so may conditionally force the LSB of the rounded 
result to zero if in IEEE rounding mode 

Table 3-12: Rounding to Infinity 

Addi Add2 STKY Cin Addi Output Shift Force Actual Addl= Add2= 

<BO> <BO> bit <r> <r> select <LSB> Value A+B+ A+B+ 

0 0 0 0 1 Addl L no A+B STKY 2+STKY 

0 x 0 0 0 Addl L no A+B STKY 2+STKY 

0 x 0 1 0 Addl L 1 A+B+l STKY 2+STKY 

0 x 0 1 1 Add2 L 0 A+B+l STKY 2+STKY 

0 1 0 0 1 Add2 no no A+B+2 STKY 2+STKY 

0 x 1 0 x Addl L no A+B+l STKY 2+STKY 

0 0 1 1 0 Addl L 1 A+B+2 STKY 2+STKY 

0 0 1 1 1 Add2 L 0 A+B+2 STKY 2+STKY 

0 1 1 1 0 Addl L 1 A+B+2 STKY 2+STKY 

0 1 1 1 1 Add2 no no A+B+3 STKY 2+STKY 

1 x 0 0 0 Addl no no A+B STKY 2+STKY 

1 x 0 0 1 Add2 no no A+B+l STKY 2+STKY 

1 x 0 1 0 Addl no no A+B+l STKY 2+STKY 

1 x 0 1 1 Add2 no no A+B+2 STKY 2+STKY 

1 x 1 0 0 Addl no no A+B+2 STKY 2+STKY 

1 x 1 0 1 Add2 no no A+B+2 STKY 2+STKY 

1 x 1 1 x Add2 no no A+B+3 STKY 2+STKY 

note: 1) STKY = 0 if all of the bits to the right of <r> are zero 
2) Addl and Add2 add all bits down to and including <r> 

3.5 Reset and Initialization 

3.6 Error Handling and Recording 

3.7 Test Aspects 

3-24 The Fbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3.8 Performance Monitoring Features 

3.9 Issues 

3.1 O Revision History 

Table 3-13: Revision History 

Who When Description of change 

your name date description 

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-25 



Chapter 1 

The Mbox 

1.1 Functional Description 

The primary function of the Mbox is to process loads and stores issued by the IBOX by performing 
the following operations: 

• Lookup the virtual to physical address translation in the Data Translation Buffer (DTB), 
• Calculate Dcache hit or miss, 

• Format and return Dcache hit data to the EBOX on loads, 
• Queue up and merge loads that miss in the Dcache or Icache for issuing to the Scache, 
• Format and return Dcache fill data to the EBOX register file, 
• Control return of Dcache hit and fill data to the FBOX register file, 

• Control stores to the Dcache, 
• Queue up and merge stores in a write buffer for issuing to the Scache, 
• Ensure strict ordering between reads and writes to the same address, 
• Detect and report Dstream faults and Dcache parity errors. 

The virtual addresses are calculated by the EBOX in either pipeO, pipel, or both. LD's may 
come down either pipe, but ST's are only processed by pipeO. A ST and a LD will not be issued 
simultaneously. 

The major sections of the Mbox include a dual-ported 64-entry Data Translation Buffer (DTB), 
fault and trap logic for each pipe, interface logic to support the control of a dual-ported 8-K 
Dcache (implemented as two SK-byte single-ported Dcaches - one per pipe), and a Miss Address 
File (MAF), which holds addresses for outstanding Dcache read misses, Icache read misses and 
prefetches, and Dstream writes waiting to be processed by the CBOX. In addition, the MBOX has 
various control and status IPRs, the Processor Cycle Counter (PCC), and an instruction decode 
section which controls the rest of the MBOX. 

The MBOX begins action in Stage 4 of the EV5 pipe. During this stage, the Dcache does a tag 
lookup for LDs and STs and a data lookup on LDs. Meanwhile, the virtual to physical address 
translation is being performed by the DTB. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-1 



Figure 1-1: Mbox 

I 

J 
E%VA0_4B, 
E%VA1_4B 

OTB 
64 ENTRY 

DUAL PORTED 

l 
B_MISS 

l>TED,PTE1 

~~ _'lo~ 

TRAPS 

~ 

TRAP SIGNA S TO IBOX 

0 

J Jr I 
E%ST OATA_4A F ILL_FjARITY 

F%ST_OATA_4A FILL DATA 
INV_AOOR 

~ _W_ 

FORMAT J 
64 BIT 

I 

PARITY _ERR 

DCACHE 
SK BYTE 

DUAL PORTED 

~tTAD,DATA~iL ~i:GD,TAG1 

[ 
FORMATl COMPAREl 
64 BIT J 

M%LO_OATAO GA, 
M%LO_DATA1_ A 

M%WB_ST_BUS ~::gg-~1';1°• 
I () I -

J ( 
l%1REF ADOR, 
l%1REF IOX 

C%ARB_CMD 

N 
OCACHE LO MISS \ 

MAF 

"--W-Rl..-TE-B-rU-FF_E_R _v 
I 

C4'>T TD&D 

M f>C_IDX 

M%C_MAF _ADDR 

I I 

During Stage 5, LD data is formatted and driven to the EBOX (the FBOX handles floating 
point formatting) while the Dcache tag and the physical address from the DTB are compared to 
determine whether the address hit or missed in the Dcache. Also in Stage 5, memory management 
faults and parity errors are calculated. The MAF uses the physical address to determine if an 
incoming instruction merges with an existing MAF entry. It also does read-write conflict checking 
between the new address and addresses already in the MAF. Meanwhile, the MAF arbitrates 
between all outstanding memory references and the new reference to determine which shall be 
issued next to the CBOX for processing. 

In stage 6, the MAF is updated based on the hit, merge and conflict results. For LDs that hit in 
the Dcache, the data is bypassed into the next instruction and also written into the register file. 
No entry is made in the Miss Address File. For LDs that missed in the Dcache, the reference 
either makes a new DREAD entry in the MAF, or is merged with an existing MAF entry. If the 
MAF has no memory references already waiting to be issued to the Cbox for an Scache lookup, 
then the new reference may be issued to the Cbox for a Stage 6 Scache tag lookup. For STs that 

1-2 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



hit in the Dcache, the data is written to the Dcache in Stage 6. Regardless of whether the ST hit 
or missed in the Dcache, the ST address is placed in the Write Buffer (WB) section of the MAF, 
either as a new entry or merged with an existing entry. The ST data is sent to the CBOX along 
with an MAF index for entry into the CBOX data write buffer. 

Figure 1-2 shows how the MBOX fits into the overall pipe. 

Figure 1-2: MBOX Pipe 

Load Hit: 

so Sl S2 S3 I S4 I SS S6 I S7 SB S9 SlO Sll 
Other boxesl IC IB SLOT ISS IADD I USE/RGF I 

I I I WRI 
DTB I I PA LKUP/HIT I 

I I I TRAPI I 
DC TAG I I READ I I 
DC DATA I I READ I FMTI I 
MAF I I I MERGE? I 

I I IMAF ARB I I 

Load Miss (MAF empty, Scache hit}: 

so Sl S2 S3 S4 I SS S6 S7 SB S9 SlO I Sll 

Sl2 

I Sl2 I 
Other boxesl IC IB SLOT ISS IADD I SC ARB I SC TAG I SC HIT I SC DATO/ SC DATl/ IUSEO/RGFIUSEl/RGFI 

I I I I I I RFBOI RFBll WROI WRll 
DTB I I PA LKUP/HIT I I I I I I 

I I I TRAPI I I I I I 
DC TAG I I READ I I I I WRITEO I WRITEl 
DC DATA I I READ I I I I WRITEO I WRITEl 

I I I I I I I FMTOI FMTl I 
MAF I I I MERGE? WR I FIL RQO /FIL RQl I I RETIRE I 

I I IARB BYPI I I RDO I RDl I I I 

Store (MAF empty, Scache hit}: 

so Sl S2 S3 S4 SS I S6 S7 S8 I S9 SlO Sll Sl2 
Other boxes! IC IB SLOT ISS IADD I SC ARB I SC TAG I SC HIT /SC WRITEO/SC WRITEl 
DTB I I PA LKUP/HIT I I I I I I 

I I TRAPI I I I I I 
DC TAG I I READ I I I I I I 
DC DATA I I I I WRITE I I I I I 
MAF I I I MERGE? WR I I I I I I 

I I I I IARB RD I I I WR DONE I RETIRE 
<---ALL DC FILLS BLOCKED---> 

1.1.1 Instruction Descriptions 

Table 1-1, Instructions Handled by the MBOX, contains the list of instructions the MBOX needs 
to handle and on which pipe they may be issued. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-3 

I 
I 
I 
I 
I 
I 
I 



Table 1-1: Instructions Handled by the MBOX 

Instruction Name 

LDx - (LDL, LDQ, LDF, LDG, LDS, LDT) 

LDQ_U 

LDx_L - (LDL_L , LDQ_L) 

STx - (STL, STQ, STF, STG, STS, STT) 

STx_ C - (STL_ C , STQ_C) 

STQ_U 

FETCHx - (FETCH , FETCH_M) 

MB 

WMB 
RPCC 

HW_LD 

HW_ST 

HW_MTPR 

HW_MFPR 

1.1.1.1 LDx • (LDL, LDQ, LDF, LOG, LOS, LDT) 

PipeO 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

Pipe 1 

x 
x 

x 

The MBOX will accept up to two LDx instructions per cycle. These instructions may be issued in 
either pipeO or pipe 1. A STx may not be issued in the same cycle as a LDx. When two loads occur 
in the same cycle, the load in pipeO will always be considered "earlier" than pipel. A load cannot 
issue in the same cycle as a HW _MxPR instruction. These rules are important with regards to 
traps and read ordering. 

When the MBOX receives the load address it is checked for the proper quadword or longword 
alignment, as appropriate. An ALIGN_ERR trap is generated if the address is not aligned prop
erly. 

The Dcache reads the tag and data arrays for each pipe in stage 4, using the index from VAO 

and VAl. In stage 5 the Dcache returns data to the FBOX and MBOX on the DATAO and DATAl 
busses, and the tag to the MBOX on TAGO and TAGl. The FBOX will format the data according to 
floating point type for floating point instructions. The MBOX will provide format controls to the 
FBOX. The MBOX will perform longword shifting and sign extension for integer loads and drive 
the formatted integer data to the EBOX on the LD_DATAO and LD_DATAl busses. Also in stage 5, 
the Dcache tag is compared against the physical address of the instruction (read from the Data 
Translation Buffer, or DTB) to determine whether the load hit in the Dcache. nc_mT_EX must be 
asserted to the IBOX on a Dcache hit and deasserted on a miss. If the load hit, the actual write 
to the FBOX and EBOX register files will occur in stage 6. 

The physical address of an incoming load is compared against every location in the Miss Address 
File (MAF), and on a Dcache miss the load is either merged with an existing request or allocated 
a new entry. The MAF will merge entries that are in the same 32 byte block but to different 
quadwords. Loads to the same quadword will trap (discussed later). The MAF will not merge 
floating point and integer requests. The MAF will also not merge longword load requests with 

1-4 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



quadword load requests, nor longword load requests to odd addresses with longword load requests 
to even addresses. These restrictions were put in place to ease the implementation of the MAF. 

There are 6 entries in the MAF. When there are 5 entries already allocated in the MAF, any 
new load in pipel will be forced to trap by asserting MBOX_UNAVAIL to the IBOX. A load in pipeO 
will be allowed to allocate a new entry. If there are 6 entries already allocated in the MAF, then 
any new load will be trapped. Therefore, once a sixth entry has been allocated, no loads may be 
processed by the Mbox until an entry is retired from the MAF. 

The addresses of all incoming loads are compared against all addresses in the MAF. If there is 
an exact match (to the exact longword/quadword), then the incoming load will be forced to trap, 
regardless of whether it would have hit or missed in the Dcache. This is to guarantee precise 
ordering of reads from the same address (as required by litmus test #1 in the ALPHA SRM). This 
trap is called the LD-MAF Conflict trap, and is discussed in Section 1.1.3. 

If the index of an incoming load matches the index of a store in the immediately preceding cycle, 
and the store hit in the Dcache, then the load will be forced to trap. If the load would have hit in 
the Dcache, then the store will have updated the Dcache location by the time the load is issued 
the second time around. If the load would have missed, then it will miss again the second time 
around and will then be processed by the MAF. This trap is referred to as the Ld-ST Silo trap. 

All load miss addresses are checked against every entry in the Write Buffer portion of the MAF, 
or WB. If a conflict is detected, the load instruction that conflicts will be stored in the MAF along 
with conflict bits indicating which entry(ies) in the WB caused the conflict. The WB will be forced 
to flush - that is, issue to the CBOX all outstanding writes up to and including the conflicting 
entry. When the conflicting WB entry is retired by the Cbox, the corresponding conflict bit(s) in the 
Dread portion of the MAF will be cleared. An entry in the MAF with any conflict bits set will be 
blocked from issuing to the Cbox until all conflict bits for that entry are clear. The corresponding 
Write Buffer entry will be set to NOMERGE to keep subsequent writes from passing the read. 

Load requests will arbitrate with Ireads, writes and BIU requests for the Scache (see Table 1-22, 
MAF Issue Priority). If there are no outstanding requests pending, the MAF is bypassed. PipeO 
is the primary bypass of the MAF. Pipel may bypass the MAF if there is not a load in pipeO. 

1.1.1.1.1 Dcache FILLS 

When the load is passed to the CBOX, the index into the MAF is also sent. The fill data is 
returned with this index, an octaword address bit, and whether this is the first or second part of 
the fill. The index and octaword address are used to read out the register destination numbers, 
formatting information, status bits, and physical address out of the MAF. The register destination 
numbers are sent to the IBOX to use for register file fills. The physical address is sent to the 
Dcache on DC_ADDR<38:4> along with the FILL command. The octaword address and first/second 
fill information are used to determine which octaword valid bits should be set and these valid bits 
are driven to the Dcache along with a NOFILL indicator for each pipe. The Dcache is written the 
cycle after the fill data shows up on the fill bus (RFB) from the CBOX. The Dcache will drive the 
fill data on the DATAO and DATA! busses to the FBOX and MBOX. For integer fills, the MBOX 
will perform a longword shift and sign extend and drive the formatted data to the EBOX on the 
LD_DATAO and LD_DATAl busses. For floating point fills, the FBOX will do the formatting under 
MBOX control. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-5 



For a fill destined for the EBOX register file, the CBOX will notify the IBOX (and MBOX) to insert 
idle bubbles in the EBOX pipe to ensure slots for the fill to write the Dcache and the register 
file. For each octaword of fill data, the IBOX will insert one "no-op" bubble to ensure the EBOX 
register file write port is free, followed by one "no-MBOX" bubble to ensure the Dcache is free. 

For fills destined to the FBOX, the MBOX will detect any loads or stores that want to use the 
Dcache or register file at the same time. If an incoming load coincides with either the cycle when 
the fill is writing the register file or the cycle when the fill is writing the Dcache, then it will 
be forced to miss and the fill will complete normally. If either the tag lookup, hit, or data write 
cycles of a store coincides with the cycle when the fill is writing the Dcache, then the fill will not 
be written to the Dcache but the data will still be forwarded and written to the register file. 

Every FILL writes identical data to both BK banks of the Dcache. 

If an ECC error is detected on fill data from the Bcache or the external memory system, the CBOX 
will assert M_RFB_ECC_ERR to the MBOX. The MAF locks the register number and formatter 
control in a special holding register called the ECC error register and flushes the Dcache. When 
the ECC error occurs on the first part of a fill, the MAF sets the NOFILL bit for that DREAD 
entry to block the second half of the fill from writing the Dcache. For correctable ECC errors, the 
CBOX returns the corrected fill data with an ECC_FILL return status. The register number and 
formatter control are read from the ECC error register and the corrected fill data is forwarded 
and written to the register file. The Dcache is not written with the corrected data. Refer to 
Section 1.1.3.0.5 for a further description of ECC errors and the ECC_FILL operation. 

LD's from "non-cacheable" memory (PA<39> = 1), will be forced to miss the Dcache and will be 
loaded into the MAF with the NOFILL bit set. On the returning fill, the NO FILL bit will be read 
from the MAF and force a bypass of the Dcache. Load merging for IO space addresses is done 
the same as load merging for non-IO space addresses. After an IO space read is issued to the 
CBOX, the CBOX will send the MBOX a FILL request at the time normally reserved for fills due 
to Scache hits. The MAF will read out the register numbers, formatting information, quadword 
request bits, and physical address in anticipation of the fill. The fill will be aborted (since 1/0 
addresses will miss in the Scache), but the quadword request bits will be sent to the CBOX. The 
CBOX will forward these bits to the pins when sending out the IO read request to the system to 
identify the requested quadwords within the block. Once the FILL request is received from the 
CBOX, the MAF will disallow further merging to that entry. The actual fill will be completed 
later when the data is returned from the system. 

IMPLEMENTATION NOTE 

Bit 39 of the address is not part of the Dcache tag. Only data with PA<39> = 0 may 
reside in the Dcache. Therefore, the condition, PA<39> = 1, will force a Dcache miss 
and set the fill to NOFILL. 
If MCSR<DC_FHIT> is set, all loads will be forced to hit in the Dcache, regardless of 
the value of PA<39>. 
The CBOX will notify the IBOX to insert to insert idle bubbles in the pipeline when 
the initial FILL request is asserted to activate the quadword request bits. 

EV5 provides minimal support for a "big endian" mode. When this mode is enabled, bit 2 of the 
address is inverted for all longword loads (LDL, LDS, LDF). 

1-6 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.1.2 LDQ_U 

The LDQ_ U instruction is handled in the same manner as the LDQ instruction except that 
alignment traps are disabled. Note that address bits <2:0> are not actually cleared, but are 
ignored. 

1.1.1.3 STx - (STL, STQ, STF, STG, STS, SIT) 

The MBOX will accept at most one STx instruction per cycle. The STx can be either a floating 
point or integer type store. The addresses for both types of stores will be processed by EBOX 
pipeO. The actual store data will come from the FBOX on floating point stores and from EBOX 
pipeO on integer stores. Data will be driven to the Dcache on the WR_DATA bus by either the 
FBOX or MBOX as appropriate. The Dcache will forward this data on to the CBOX write data 
buffer. Parity is calculated on the data by the FBOX on floating point stores and by the MBOX 
on integer stores. 

The Dcache tag lookup for the store will occur in Stage 4. nc_mT is calculated in Stage 5, and 
the data is stored in the Dcache in Stage 6 if DC_HIT is true. 

nc_mT is calculated using the tag from the Dcache bank associated with pipeO. If DC_HIT is 
true, then both banks are written with the ST data. Otherwise, neither bank is written. 

In the 2nd cycle following the issue of the store, the IBOX will not issue any LDs to the Dcache. 
In the cycle immediately following a store, the Ibox may issue a LD, (as long as there were not 2 
consecutive stores). The address of this load is checked against the address of the preceding store. 
If there is an exact index match (down to the longword level), and the store hit in the Dcache, 
then the load will be trapped. Otherwise, the data will be read from the Dcache as normal. The 
trapped load will then be replayed by the IBOX, this time presumably hitting in the Dcache, since 
the store will have had time to complete. If a store is present in Stages 4, 5, or 6, any FILLs 
coming in from the CBOX (at stage 5) will not fill the Dcache. 

Stores are checked for quadword or longword alignment, as appropriate. Improper alignment 
will cause an ALIGN_ERR trap. 

Regardless of whether the store hits or misses in the Dcache, the write is entered into the Write 
Buffer (WB) section of the MAF, where it is queued up for issuing to the Scache and eventually 
the system. Subsequent stores may merge with a previous store in the WB if they are in the 
same 32 byte block. Entries in the WB will eventually be flushed to the Scache interface. The 
WB will send entries to the Scache when a 2nd entry is made to the WB, when a load conflicts 
with a WB entry, or every 64 cycles (when the 6-bit WB counter overflows). In the conflict case, 
the MAF will set a conflict bit and flush the WB until the conflict is resolved. The FETCHx, 
STx_C, MB and WMB instructions also inititate a flush of the write buffer. 

When the store conflicts with a LD-miss entry already in the MAF, a conflict bit will be set in the 
WB entry corresponding to each MAF index that conflicts. As fills retire entries from the MAF, 
the corresponding conflict bits will be cleared in the WB entries. A WB entry will not be issued 
as long as any conflict bit is set in that entry. Conflict checking is not performed against Istream 
addresses. 

All store addresses are checked against every entry in the WB. If the ST matches a WB entry but 
for some reason can not merge with the previous store, the new store instruction will be allocated 
an entry in the WB. A conflict bit is set in the WB entry to indicate the address of the newly 
allocated store conflicts with the address of a previous store. The conflicting store instruction 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-7 



will not be allowed to issue until all previous stores have been retired. This ensures ordering of 
store/store operations is maintained in the system. 

IMPLEMENTATION NOTE 

The ST/ST conflict is implemented as a virtual WMB instruction by the Mbox. (The 
WMB bit is used to order ST/ST conflicts in the WB). 

Once a write is issued to the Scache, the CBOX takes over that entry. No further merging is 
allowed to the WB entry after it is issued. The entry remains in the WB until the actual write is 
complete for conflict checking purposes. After the CBOX has written the entry into the Scache, 
the CBOX will return the index of the WB entry with a WR_DONE command. The MBOX will 
retire the entry from the WB and clear the corresponding conflict bits in the DREAD file. The 
CBOX has the means for requesting the MBOX to reissue a store after it was initially issued by 
the MBOX and accepted by the CBOX. 

A store to "non-cacheable" memory space (PA<39>=1) will always miss the Dcache, unless the 
MCSR<DC_FHIT> mode bit is set. Otherwise, writes to "non-cacheable" memory space are 
treated the same as "cacheable" memory space by the MBOX. The CBOX handles any other 
differences in EV5 behavior for the two spaces. 

EV5 provides minimal support for a "big endian" mode. When this mode is enabled, bit 2 of the 
address is inverted for all longword stores (STL, STS, STF). 

When there have been 6 entries allocated in the WB, a new store will be forced to trap by asserting 
MBOX_UNAVAIL to the IBOX. 

1.1.1.4 STQ_U 

The STQ_U instruction is handled in the same manner as the STQ instruction except that align
ment traps are disabled. It will only be issued to EBOX pipeO. Note that address bits <2:0> are 
not actually cleared, but are ignored. 

1.1.1.5 MB 

When the IBOX detects a memory barrier (MB), it stops issuing any MBOX instructions until 
the MBOX tells it to restart. The IBOX will issue the MB in pipeO and will not issue any other 
MBOX instructions in the same cycle. 

When the MBOX detects the MB instruction, it will flush all WB requests to the Cbox and allow 
all DRD requests to issue to the CBOX. The MBOX will wait until all DREAD and WB entries 
have been retired before issuing the MB command to the CBOX. This is to ensure proper ordering 
between the outstanding fills and writes with respect to new loads and stores issued once the MB 
finishes and restarts the IBOX. Note that the MB instruction does not affect IREADs, so there 
may be outstanding IREADs in the system. 

The MBOX will receive acknowledgment from the CBOX (MB_DONE return status) and send 
the MB_CLEAR signal to the IBOX to restart instruction issue. 

1-8 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.1.6 WMB 

The IBOX will issue a WMB in pipeO. A store will never be issued in the same cycle with a WMB. 

Unlike the normal MB, the WMB does not stop the IBOX from issuing further instructions. Its 
purpose is to ensure that all writes issued before the WMB finish before any writes issued after 
the WMB. Writes issued after the WMB may not merge with writes issued before. 

When a WMB is received by the MBOX, the MAF sets all existing WB entries to be non-mergeable, 
so subsequent writes will make new entries. Since the Cbox cannot guarantee that it will complete 
all writes in the order they were issued to the CBOX, the MAF will stall the issuing of all writes 
received after the WMB until all previous writes have been retired from the WB. 

The WMB command will not be issued to the CBOX or the pin interface. 

1.1.1.7 RPCC 

The RPCC instruction will return the value in the Processor Cycle Counter register on the LD_ 
DATAO bus with the same timing as a LD instruction that hit in the Dcache. The IBOX will only 
issue the RPCC instruction down EBOX pipeO. 

The signal nc_mT_Eo must be asserted to the IBOX to emulate a Dcache hit. 

Refer to Section 1.1.4, Processor Cycle Counter, for more details on the Processor Cycle Counter. 

1.1.1.8 LDx_L • (LDL_L , LDQ_L) 

When the IBOX detects a LDx_L instruction, it stops issuing any MBOX instructions until the 
MBOX tells it to restart. The IBOX will issue the LDx_L in pipeO and will not issue any other 
MBOX instructions in the same cycle. 

LDx_L instructions are forced to miss in the Dcache. (Dc_mT_Eo to the IBOX must be cleared). 

LDx_L commands will always allocate a new MAF entry regardless of whether it could have 
merged with previous entries. This is to prevent it from merging with an entry that has already 
been issued with the DREAD command instead of the LDx_L command. In order to prevent 
subsequent LDx instructions from matching multiple entries in the DREAD file, merging to the 
LDx_L entry is not allowed. The LDx_L instruction will cause the top entry of the write buffer 
to arbitrate at low priority. If there is one entry pending in the WB when the LDx_L is executed, 
this feature improves the performance of the LDx_USTx_ C sequence by clearing the WB in 
preparation for the expected STx_ C instruction. 

When the LDx_L command is issued to the CBOX, the CBOX will take care of locking the asso
ciated address and setting the lock flag. The MBOX will send the MB_CLEAR instruction to the 
IBOX to restart instruction issue after the LDx_L has been issued and accepted by the CBOX 
(the command is past the RETRY point). The CBOX will return the LDx_L data to the MBOX 
like an ordinary FILL. 

All the same conflict checking and traps that apply to normal LDx's apply to the LDx_L as well. 

EV5 provides minimal support for a "big endian" mode. When this mode is enabled, bit 2 of the 
address is inverted for all LDL_L instructions. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-9 



NOTE 

There is another version of the LDx_L instruction implemented by the HW _LD in
struction (HW_LD_L). This can be LW, QW, virtual or physical and can be issued down 
either pipeO or pipel. PALcode will guarantee the HW _LD_L can not be dual-issued 
with any other MBOX instruction. (The IBOX does not support simultaneous issue of 
"MB-Class" instructions). 

1.1.1.9 STx_C - (STL_C, STQ_C) 

A STx_C instruction will only be issued by the IBOX on EBOX pipeO. The IBOX will stop issuing 
further MBOX commands until it is told to restart by the MBOX The Dcache interface will 
process the STx_C instruction like a normal store. Fills that coincide with the previous, current 
and following cycle of the STx_C will be blocked from writing the dcache. 

STx_ C addresses are stored in the WB section of the MAF. The address will always be allocated 
a new entry and no merging will be allowed to that entry. STx_C will set the FLUSH bit to force 
the WB to empty. 

The STx_C register number is stored in a special latch in the control section of the Miss Address 
File, so that when notification of the STx_C passing or failing arrives from the CBOX, the appro
priate register may be written with the status of the STx_C. 

Just like a normal store, the STx_C address will be checked against the MAF for conflicts and 
store the appropriate conflict bits in the WB to ensure all prior Dstream read and write requests 
to the same block are processed by the CBOX first. 

The STx_C is issued to the CBOX using the STx_C command so that the CBOX will condition 
the write with the lock bit value. When the STx_C completes, the CBOX will send back the value 
of the lock bit on a dedicated wire along with the STx_C_DONE command. The result bit will 
be returned to the EBOX register file by driving it onto the LD_DATAO bus in the MBOX, and 
the register number will be sent to the IBOX. The CBOX will assert the RFB_DATA_VALID signal 
on a STx_C_DONE so that the FILL_VALID signal will be asserted by the MBOX when it sends 
the register number to the IBOX. The MBOX will restart the IBOX at this time by asserting 
MB_CLEAR. The CBOX will notify the IBOX (and MBOX) to insert an idle bubble in the EBOX 
pipe to ensure there is a slot to write the register file with the STx_C result. 

EV5 provides minimal support for a "big endian" mode. When this mode is enabled, bit 2 of the 
address is inverted for all STL_C instructions. 

The lock bit is required to be cleared by PALcode on certain exceptions. This may be accomplished 
by issuing a HW_ST with the PHYS and COND bits set. (The HW_ST_C is to a bit bucket 
address). This is guaranteed to clear the lock bit since any previous LDx_L instructions will be 
issued to the CBOX ahead of the HW_ST_C. 

NOTE 

There is another version of the STx_C instruction implemented by the HW_ST instruc
tion. This can be LW, QW, virtual or physical and can only be issued down pipeO. 

1-10 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.1.10 HW_MFPR 

IPR reads from MBOX registers will have timing similar to a load hit. Data is returned to the 
EBOX register file on the LD_DATAo bus and nc_mT_Eo is asserted to the IBOX. 

1.1.1.11 HW_MTPR 

An IPR write to an MBOX register will be treated like a store except it will not be entered into 
the WB and will not modify the Dcache (unless the destination is a Dcache IPR). As long as the 
Ra and Rb fields of the HW _MTPR are the same, IPR write data will be driven from the EBOX 
to the MBOX on both the ST_DATA and the VAO buses. 

IMPLEMENTATION NOTE 

For implementation reasons, the write data for the MBOX IPRs is taken from the VAO 
bus. The ST_DATA is ignored by the MBOX on HW _MTPR instructions. 

1.1.1.12 FETCHx - (FETCH, FETCH_M) 

The IBOX will issue a FETCHx instruction in pipeO. FETCHx instructions will be loaded into 
the WB and will be issued to the CBOX with the FETCH or FETCH_M command. A FETCHx 
instruction will inititate a flush of the write buffer at high priority. Merges will not be allowed 
to FETCHx entries. The FETCHx will be removed from the WB only after receiving a FETCH_ 
DONE command from the CBOX. No data is returned to the MBOX on a FETCHx. 

TB_Misses and ACC_ VIO's are generated like a LDx for the FETCH and like a STx for the 
FETCH_M. BAD_ VA traps will be generated, but alignment checks will be disabled. 

NOTE 

A side effect of putting the FETCHx instructions in the write buffer is that normal 
conflict checking will be performed between the incoming FETCH and the MAF and 
also between incoming loads and the FETCH in the write buffer. This will have the 
consequence of ordering FETCH and LD instructions, except in the case of a LD and 
FETCH issued in the same cycle. In this case, no conflict checking is performed. 

1.1.1.13 HW_LD 

The HW_LD is an implementation-specific instruction that is used to implement some load varia
tions not accounted for in the Alpha SRM. It is an unaligned load, which means that the alignment 
trap is disabled. 

The following diagram shows the instruction decode for the HW _LD instruction. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-11 



Figure 1-3: HW_LD instruction 

3 
1 

2 2 
6 5 

2 2 
1 0 

1 1 1 1 1 1 1 0 
6 5 4 3 2 1 0 9 

0 
0 

+----------+--------+--------+-+-+-+-+-+-+-----------------+ 
I I IPIAIWIQIVILI 
I I IHILIRIUIPIOI 
I OPCODE I RA RB \Y\TITIA\T\CI DISP 
I I ISi ICIDIEIKI 
I I 1· I IKI I I I 
+----------+--------+--------+-+-+-+-+-+-+-----------------+ 

I ·' 

The HW _LD instruction takes on different behavior depending on which bits in the instruction 
are set. These bits and their effect on behavior are described below. 

Table 1-2: HW_LD Format 

Field 

PHYS 

ALT 

WRTCK 

QUAD 

VPTE 

LOCK 

Load Behavioral Description 

0 - The address from the Ebox is virtual. 

1 - The address from the Ebox is physical. The DTB is bypassed and memory 
management access checks are inhibited. 

0 - Memory management checks use PS current mode bits. 

1 - Memory management checks use ALT_MODE IPR. 

0 - Memory management checks FOR and read access violations. 

1 - Memory management checks FOR, FOW, read and write access violations. 

0 - Length is longword. 

1 - Length is quadword. 

1 - Flags a virtual PTE fetch. Used by trap logic to distinguish single TBmiss from 
double TBmiss. Memory management checks are done against KMODE. 

1 - Load_lock version of HW_LD. Will be issued on PipeO only, as ensured by 
PALcode. 

The HW_LD instruction is treated just like a normal LDx (LOCK=O) or LDx_L (LOCK=l), except 
for the address translation and access checks as specified in the decode of the opcode. PALcode 
can not dual-issue a HW _LD _L instruction with any other MBOX instruction. 

The QUAD bit distinguishes between longword and quadword versions of this instruction. 

Memory management traps are generated according to the setting of the PHYS, ALT,WRTCHK, 
and VPTE bits. If the PHYS bit is set, then all memory management traps are disabled and 
the DTB is bypassed. If the ALT bit is set, then the read and write access checks are performed 
against the Current Mode bits from the ALT_MODE register rather than those from the Processor 
Status. If WRTCK is set, then write access checks are performed in addition to the read access 
checks. If VPTE is set, access checks are done against KMODE rather than using the Processor 
Status mode. If a DTB_MISS is detected on a HW _LD with the VPTE bit set, then the signal 
IN_TB_FLOW will be asserted to the IBOX along with the normal trap indicators. 

1-12 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.1.14 HW_ST 

The HW _ST is an implementation-specific instruction that implements some store variations not 
accounted for in the SRM. It is an unaligned store, which means the alignment trap is disabled. 

The following diagram shows the instruction decode for the HW _ST instruction. 

Figure 1-4: HW_ST instruction 

3 
1 

2 2 
6 5 

2 2 
1 0 

1 1 1 1 1 1 1 0 
6 5 4 3 2 1 0 9 

0 
0 

+----------+--------+--------+-+-+-+-+-+-+-----------------+ 
I I I IP IAI IQI ICI 
I I I IHILI IUI IOI 
I OPCODE I RA I RB IYITI IAI INI DISP 
I I I Is I I ID I IDI 
I I I I I I I I I I 
+----------+--------+--------+-+-+-+-+-+-+-----------------+ 

The HW _ST instruction takes on different behavior depending on which bits in the instruction 
are set. These bits and their effect on behavior are described below. 

Table 1-3: HW_ST Format 

HW_STField 

PHYS 

ALT 

QUAD 

COND 

Store Behavioral Description 

0 - The address from the Ebox is virtual. 

1 - The address from the Ebox is physical. The DTB is bypassed. and memory 
management access checks are inhibited. 

0 - Memory management checks use PS current mode bits. 

1 - Memory management checks use ALT_MODE IPR. 

0 - Length is longword. 

1 - Length is quadword. 

1 - Store_conditional version of HW _ST. In this case, Ra will be written with the 
value of LOCK_FLAG. 

HW _ST addresses are stored in the WB section of the MAF. The address can be physical or virtual 
depending on the PHYS bit of the opcode. All HW _ST's, except the version with the COND bit 
set, will be handled like any other STx, except for the address translation and access checks. If 
the COND bit is set, the HW_ST will treated as a STx_C. 

The QUAD bit distinguishes between longword and quadword versions of this instruction. 

If the PHYS bit is set then the address received from the EBOX is physical, so the DTB is 
bypassed and memory management traps are disabled. If the ALT bit is set, the trap logic will 
use the bits from the ALT_MODE register instead of the PS Current Mode when doing read/write 
access checks. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-13 



1.1.2 Memory Management 

1.1.2.1 Data Translation Buffer 

EV5 contains a 64-entry fully associative dual ported translation buffer. The DTB caches re
cently used data stream page table entries for 8Kbyte pages. Two addresses can be translated 
simultaneously for loads and one address for stores. In addition, each of the entries supports all 
four granularity hint options, i.e. 1, 8, 64, or 512 pages as described in section 6.5 of the ALPHA 
SRM V4.0. The operating system via PALcode is responsible for insuring that translation buffer 
entries, including super page regions, do not map overlapping virtual address regions at the same 
time. 

In addition, EV5 provides an extension referred to as the super page, which can be enabled via 
bits in the MCSR register. Super page mappings provide virtual to physical address translation 
for two regions of the virtual address space. The first mode (SPO) maps a 30-bit region of the total 
physical address space to a single corresponding region of virtual space defined by VA<42:30> = 
lFFE(Hex). In this mode, ifVA<42:30> = lFFE(Hex), then PA<39:30> is forced to 0 and VA<29: 13> 
is copied to PA<29:13>. The second mode (SPl) enables superpage mapping when the virtual 
address bits <42:41> = 2. The entire physical address space is mapped multiple times over to 
one quadrant of the virtual address space defined by VA<42:41> = 2. Address translation in this 
mode is done by copying VA<39:13> to PA<39:13>. No DTB miss traps are generated during a 
superpage translation. 

Super page translation is only allowed in kernel mode. The translation will fault if the super 
page translation is attempted while not in kernel mode. This is accomplished by forcing all the 
protection bits except the KRE and KWE bits to "O" when the super page translation is attempted. 
The KRE and KWE bits are forced to "l". The DTB is bypassed during a superpage translation. 

For load and store instructions, the effective 43 bit virtual address is presented to the DTB, one 
address for each pipe. If the PTE's of the supplied virtual addresses are cached in the DTB, 
the PFN and protection bits for the page associated with that address are used by the MBOX to 
complete the address translation and access checks. If either of the addresses misses in the DTB, 
then a trap to PALcode is generated. PALcode is responsible for filling the DTB. 

Each of the 64 DTB entries can support all 4 granularity hint bit (GH) page size options. At 
the time when the PTE is written to the DTB, the GH bits are decoded and used to disable 
the compare on a subset of Virtual Address bits <21:13>. The number of address bits disabled 
corresponds to the size of the page indicated by the GH bits. The GH bits themselves are stored 
in the DTB array. When a load or store instruction is presented to the DTB, only those address 
bits that are enabled by the GH bits of each entry are compared with the Virtual Address of 
the instruction. If a match occurs on these bits, then the corresponding PFN and Protection bits 
are read out of the DTB. A subset of the tranlated physical address, bits <21:13>, are replaced 
with the corresponding bits of the Virtual Address according to the page size specified by the 
granularity hint bits. 

Table 1-4: Granularity Hint Bit Mapping 

GH<l> GH<O> Page Size Physical Address of Page Address within Page 

0 0 BK bytes PA<39:13> PA<12:0> 

0 1 64K bytes PA<39:16> PA<15:0> 

1-14 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



--.& \• 

Physical Datapath 
0 0 1 3 3 3 
0 9 0 6 7 9 

+------+-----+-+-+-+ 
I I I I 
I PROT I PFN I GH I 
I I I I 
+-- ---+-----+-+-+-+ 

Granularity Hint Bit Mapping 

0 1 1 
0 2 3 

..,.1...,.7 111ical Address of Page Address within Page 

19> PA<18:0> 

22> PA<21:0> 

is that have the PHYS bit set, the DTB is bypassed altogether. 
;s (VA) lines is the actual physical address and is transferred 
; (PA) lines. No DTB miss or memory management traps are 

NOTE 

instructions take precedence over superpage translation. 
to PA<39:13> on a HW_LD/ST instruction even in SPO mode. 

Number (ASN) bits. When a tag is loaded into the DTB on a TB 
t to a field in the same entry. The tag for a DTB entry may only 

1 if the ASN bits in the DTB match the current ASN. Each DTB 
ich, when set, forces the ASN stored in the DTB to always match 

.t is a part of the PI'E written to the DTB on a TB fill. 

are physically arranged in the DTB datapaths as follows: 

Virtual Datapath 
2 2 4 4 5 5 5 5 5 5 5 
1 2 2 3 1234567 

6 
3 

+----+-------+-------+-------+---+-+-+-+------+ 
I I I IVIAI I I 
IINT I VAL I VA I VAH I IAISI I ASN I 
I 1<13:21>1<22:42>1<13:21>1 ILIMI I I 
+----+-------+-------+-------+---+-+-+-+------+ 

I I I I 
I I I I +--->Address Space Number (6:0) 
I I I +-------> ASN latch 
I I +---------> Address Space Match (l=force match on all ASNs) 
I +----------> Valid (1 = DTB entry is valid) 
+--------------> Match Latch for clearing Valid (DTBIS) 

+---------------------> Virtual Address Tag (21:13) 
I +----------------------------> Virtual Address Tag (42:22) 
+------------------------------------>Virtual Address Tag (21:13) (Copy for large page ma 

+-------------------------------------------> Tag-PTE interface logic 

+---------------------------------------------------> Decoded Granularity Hint Bits 
+---------------------------------------------------------> Physical Address Mapping (39:13) 

+----------------------------------------------------------------> PTE Protection Bits 

The translation buffer uses a not_last_used replacement algorithm. This is implemented via a 
round-robin pointer which is initialized to the 1st DTB entry on RESET or a DTBIA. This pointer 
is bumped to the next entry whenever PAL code finishes a DTB fill for an entry, or when a DTB 
hit is detected for the entry currently being pointed to. The pointer always points to the next 
entry to be filled upon detection of a DTB_MISS. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-15 



NOTE 

For load/store operations, the pointer bump is done before the lbox trap point. When 
the normal conditions for bumping the pointer are met, this has the effect of bumping 
the NLU pointer on a trapping virtual address instruction or on a virtual address 
instruction in the cycle following a trapping instruction. 

The DTB is filled and maintained by PALcode. The chapter on PALcode in the external spec 
details the DTB miss flows. The DTB is filled via the HW _MTPR instruction to the DTB_TAG 
and DTB_PTE IPRs. The virtual address bus for pipeO is used to carry the data read from the 
EBOX register specified in the Ra field of the HW _MTPR instruction, to the DTB. A HW _MTPR 
to the DTB_Pl'E is first executed, which loads the PrE into a temporary register. When a HW _ 
MTPR to the DTB_TAG is executed, the data from the temporary PTE register is loaded into the 
PTE side of the DTB array at the same time as the tag is written. The valid bit for this entry 
·will be set by hardware at this time. The HW_MTPR to the DTB_TAG will cause the pointer to 
be bumped. 

There are 3 types of invalidates for the DTB. They are DTB-Invalidate-All (DTBIA), DTB
lnvalidate-All-Process (DTBIAP) and DTB-Invalidate-Single (DTBIS). Each of these commands is 
issued via the HW _MTPR instruction; each has its own IPR encoding. When DTBIA is detected 
(HW _MTPR DTBIA), all the valid bits in the DTB are cleared. When DTBIAP is detected (HW _ 
MTPR DTBIAP), any entry whose ASM bit is clear will have its valid bit cleared. When DTBIS 
is detected (HW _MTPR DTBIS), the EBOX will drive the contents of the register addressed in 
the Rb field of the instruction onto the pipeO VA lines. If any entry in the DTB matches the value 
on the VA lines, then that entry's valid bit is cleared. The DTBIS invalidate occurs in Stage 
5A of the HW _MTPR instruction. The DTBIAP and DTBIA invalidates occur in Stage 7 A of the 
HW _MTPR instruction. Because the DTBIS is executed prior to the IBOX trap point, a special 
IBOX kill signal, KILL_DTBIS, is used to abort the HW _MTPR DTBIS. The DTBIS will be aborted 
when the IBOX detects a PC mispredict or an ITB Miss trap, or when the HW _MTPR is issued 
during user mode. 

The valid bits in the DTB array are not cleared by hardware on RESET. PALcode will clear the 
DTB using the HW _MTPR_DTBIA instruction. 

1.1.3 Traps 

The following traps will be detected by the MBOX. 

NOTE 

These are not the actual trap entry points recognized by PALcode. For a complete de
scription of EV5 traps, PAL entry points and priorities, please see <REFERENCE>(ev5_ 
IBOX_trap_section \full). 

Table 1-5: Traps Detected by the MBOX 

Trap Name 

FOR 

FOW 

1-16 The Mbox 

Trap Descriptions 

Fault on Read: LD or FETCH from an address whose PTE has the FOR bit set. 

Fault on Write: ST, FETCH_M, or LDQ/AW to/from an address whose PTE has the 
FOW bit set 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-5 (Cont.): Traps Detected by the MBOX 

Trap Name 

ACCVIO 

BAD_ VA 

ALIGN_ERR 

DTB Miss Single 

DTB Miss Double 

MAF Full 

WB Full 

LD-MAF Conflict 

LD-ST Silo Conflict 

Dcache Parity Error 

Trap Descriptions 

Access Violation: An access occurred to an address whose protection bits were set 
up in such a way as to forbid that access. 

Bad Virtual Address: Bits <63:43> of the Virtual Address are not a sign-extension 
of bit <42>. 

Bits <2:0> of the address of a quadword LD or ST are not all 0, or bits <1:0> of a 
longword LD or ST are not all 0. 

The VA of a Dstream access does not have a valid translation in the DTB and the 
instruction occurred outside the TB miss PALcode flow. 

The VA of a Dstream access does not have a valid translation in the DTB and the 
instruction was in a TB miss PALcode flow. This trap will only occur on the HW _LD 
instruction with the VPTE bit set. 

The Dstream read portion of the Miss Address File is full. 

The Write Buffer section of the Miss Address File is full. 

The physical address of a LD instruction already has an outstanding LD miss in 
the Dread section of the Miss Address File. The fill must complete before the new 
LD can be processed. This is to guarantee exact ordering for reads from the same 
address - (litmus test #1). 

The Dcache index of a load matches that of a store that hit in the immediately 
preceding cycle. 

The Dcache detected a parity error on either the tag or data read out of the Dcache 
on a Dcache reference. 

All traps generated by the MBOX, IBOX, or FBOX, except the Dcache Parity Error, must inhibit 
the MBOX from updating any state. This includes, but is not limited to: writing the MAF in 
cycle 6A, writing the Dcache in cycle 6B on stores and issuing commands to the CBOX in cycle 
6A. Any instruction in the same stage of the pipe as the trapping instruction must be aborted if it 
is later in time. If it is earlier in time, then it must be allowed to complete. The imprecise traps 
(certain FBOX traps, CBOX Fill errors, Dcache parity errors) will be resolved by the IBOX and 
will appear to the MBOX as IBOX traps. Any trap on an instruction in Stage 6 of the pipeline 
must abort any instructions (that are later in time) in Stages 3 through 6 of the pipe. Since the 
MBOX pipe begins at Stage 4, this will require aborting Stage 4 for 2 cycles. 

Table 1-6 shows the traps detected by the MBOX and the resulting signals sent to the IBOX. 
The actions taken by the IBOX when one or more of these signals is asserted is described in 
<REFERENCE>(ev5_IBOX_trap_section \full). 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-17 



Table 1-6: Trap Signals to IBOX (One pipe shown) 

Traps detected 
byMBOX CYCLE dmm._err align_ err in_tb_flow dtb_miss MBOX_unavail perr 

FOR2 5b 1 0 

FOW2 5b 1 0 

ACCVI02 5b 1 0 

BAD_VA1•2 5b 1 0 

ALIGN_ERR 5b 1 1 

DTB Miss Single 5b 1 0 1 

DTB Miss Double 5b 1 1 1 

MAF Full 5b 1 

WB Full 5b 1 

LD-MAF Conflict 5b 1 

LD-ST Silo Conflict 5b 1 

Dcache Parity Error 6a 1 

1A BAD_ VA trap will disable dtb_miss signal to the IBOX. 
2FOR, FOW, ACCVIO, and BAD_ VA are recognized at the IBOX when align_err and dtb_miss are deasserted and dmm_ 
err is asserted. The FOR, FOW, and ACCVIO bits in the MM_STAT register will only be set if there was a DTB hit. The 
ACCVIO bit will also be set by BAD_ VA. 

- means signal is unaffected by this trap condition. 

1.1.3.0.1 Memory Management Traps 

The Dstream Memory Management traps include FOR, FOW, ACCVIO, BAD_ VA, ALIGN_ERR, 
and DTB Miss traps. These are briefly described in Table 1-5. When any one of these traps is 
detected, the IBOX is notified by the DMM_ERR signal. A group of encoded signals is sent to the 
IBOX at the same time so the IBOX may generate the appropriate trap vector. These signals are 
specified in Table 1-6. There is an identical set of signals for each of the 2 issue pipes. 

For the HW _LD and HW _ST instructions with the PHYS bit set, the DTB is bypassed and memory 
management traps are not generated (although MBOX_UNAVAIL and Dcache Parity Error traps 
may be). 

When DMM_ERR has been asserted, the following MBOX IPRs are loaded and locked: 

• 

• 

MM_STAT - This register is loaded with the opcode and Ra field of the trapping instruction . 
It also stores the nature of the fault (FOR, FOW, ACCVIO, BAD_ VA, DTB_MISS). 
VA - The complete Virtual Address (bits <63:0>) of the faulting memory reference is loaded 
into the VA register. 
VA_FORM - The VA_FORM is not actually a register that is loaded and locked. Instead, 
when a HW _MFPR VA_FORM is issued, it returns shifted and truncated bits of the Virtual 
Address from the VA register along with bits from the MVPTBR register. 

These registers may also be loaded and locked when a Dcache parity error is detected as discussed 
in Section 1.1.3.0.3. 

1-18 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



These registers are all unlocked when the VA register is read by PALcode. Their contents will 
remain unchanged until another Memory Management trap or Dcache parity error is detected. 

1.1.3.0.2 Miss Address File Full and Conflict Traps 

The Miss Address File generates an MBOX_UNAVAIL trap when either the write buffer or the 
Dstream read portion of the MAF is full, or when the LD-MAF Conflict or LD-ST Silo Conflict 
conditions are detected. There is one MBOX_UNAVAIL signal per pipe, and it signals to the IBOX 
that the instruction being trapped needs to be replayed. These types of traps do not trap to 
PALcode. The IBOX loads the PC of the trapping instruction and restarts issuing immediately. 

The MBOX_UNAVAIL trap is a precise trap and must inhibit the MBOX from updating any state. 
The same considerations apply as are mentioned in Section 1.1.3 .0.1, Memory Management Traps. 
No IPR registers are loaded or locked as a result of this trap. 

The sources of the MBOX_UNAVAIL trap are talked about in more detail in Section 1.1.9.9, Mbox 
Unavailable Traps. 

1.1.3.0.3 Dcache Parity Errors 

Parity will be checked on the data read from the Dcache on LDs and on the tag read from the 
Dcache on both LDs and STs. Parity will not be checked on either data or tag if the data sub-block 
valid bits are not set. If either data sub-block valid bit is set, then tag parity will be checked. 
Dcache parity checking will be enabled unless the DC_PERR_DIS bit in the DC_MODE register is 
set. 

When a Dcache Parity error is detected, PERR is asserted to the IBOX. The following registers are 
loaded and locked: MM_STAT, VA, VA_FORM and DC_PERR_STAT. DC_PERR_STAT contains 
information as to which of the Dcache banks produced the error, whether the faulting instruction 
wrote the register file, and whether a second error occurred after the register was locked. If any 
of the error bits is set, then the register is locked. 

MM_STAT, VA, VA_FORM are all unlocked by reading the VA register. DC_PERR_STAT is un
locked and cleared by writing a "1" to the lock bit. 

NOTE 

If Machine Checks are disabled for some reason, a Dcache parity error will still load 
and lock these registers, even though the machine check will never be recognized. 

The pipes are not aborted when a parity error is detected. Instead, the IBOX will detect the 
parity error as a Machine Check and will assert the IBOX trap signal(s) at a later time. This is 
to ensure that the instructions aborted match up to the exception PC reported to PALcode. 

1.1.3.0.4 Traps from the I BOX 

The IBOX will send 2 signals to the MBOX indicating which pipe(s) to abort on any trap origi
nating from the IBOX (included also are all EBOX and FBOX imprecise traps, interrupts, CBOX 
fill errors, etc. ) These signals are KILL_Eo and KILL_El. Each signal will abort the instruction 
in the current stage of the pipe specified by the signal name and all instructions already issued 
in both pipes back through Stage 3. When the IBOX aborts a particular instruction, the MBOX 
must ensure that any MBOX-generated traps for that instruction or following instructions will 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-19 



not result in the locking of the VA and MM_STAT registers. The trap signals themselves, except 
the Dcache parity error, will be ignored by the IBOX while in the trap shadow. 

NOTE 

It is possible for KILL_Eo to be asserted, but not KILL_El. This means that the instruc
tion in pipel is logically earlier than the instruction in pipeO. When this condition 
occurs, the instruction in pipeO is aborted. The instruction in pipel is not aborted 
unless there is an MBOX generated trap in pipel. All following stages must still be 
aborted. 
If there is an IBOX trap in pipeO and the instruction in pipeO is logically ahead of the 
instruction in pipel, then the IBOX is guaranteed to assert the KILL_El signal. 

The same actions are inhibited on IBOX traps as mentioned in Section 1.1.3.0.1, Memory 
Management Traps. No IPR registers are loaded or locked as a result of this trap. 

1.1.3.0.5 CBOX fill errors 

When the CBOX detects an ECC error on a Dcache fill, it will assert the signal M_RFB_ECC_ERR. 
The MBOX will load the register number and format control into a special ECC_FILL holding 
register. This register will be locked against further updates until the CBOX returns corrected 
data. (A second ECC error can not occur before the corrected data is returned). When the 
corrected data is returned on an ECC_FILL from the CBOX, the fill data is not written to the 
Dcache. The IBOX register number and the E/FBOX format control are read from the ECC_FILL 
register and the fill data is forwarded to the integer/floating register file. 

The Dcache is flushed in the cycle following the assertion of M_RFB_ECC_ERR. The flush takes 
effect 2 cycles after the Dcache write of the fill in error. Due to restrictions placed on the timing 
of ST/FILL and LD/FILL operations, a load or store will never access the bad Dcache data in the 
cycle before the Dcache is flushed. 

Because both sub-block data valid bits are set when the second half of a fill is written to the 
Dcache, care must be taken to maintain coherence in the Dcache. The MAF will set the NOFILL 
bit if the ECC error happens on a FIRST_FILL. This prevents the second half of the fill from 
being written to the Dcache after the first half is flushed. 

NOTE 

There is potential for the first half of a fill from the Scache to be written to the Dcache 
in the cycle following the fill with the ECC error (llB). The first half of the fill will be 
flushed from the Dcache in 12A. The second half of the fill will be written to the Dcache 
in 12B, and both sub-block data valid bits will be set. Since the Dcache flush operation 
clears valid bits but does not affect the Dcache data, Dcache coherence is maintained 
as long as the two parts of the fill operation happen in back-to-back cycles. 

No aborting of the pipes will be done when the ECC error is first signaled to the MBOX. Instead, 
the IBOX will detect it as a Machine Check and will assert the IBOX trap signal(s) at a later 
time. This is to ensure that the instructions aborted match up to the exception PC reported to 
PALcode. 

1-20 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.3.0.6 Multiple Traps 

If multiple traps are detected in the same cycle, then multiple trap signals may be asserted to 
the IBOX in that same cycle. However, special actions must be taken in regards to aborting the 
pipes and loading and locking the VA and MM_STAT registers depending on which traps were 
asserted by which pipe. 

Dcache parity error traps take precedence over any other traps that occur in the same cycle (either 
pipe). For all but the Dcache parity error trap, if traps occur on both pipes in the same cycle, the 
trap that is associated with the logically earlier of the two instructions takes precedence over the 
other. Within a given instruction, the precedence of traps is this: 

1. Dcache Parity Error 

2. IBOX 

3. Memory Management 
4. MBOX_UNAVAIL 

Within a given cycle, the actions taken for aborting pipes and loading and locking registers are as 
follows: 

• Dcache parity errors by themselves do not abort any pipes. If there is a Dcache parity error, 
then the VA, MM_STAT, VA_FORM and DC_PERR_STAT registers will be loaded and locked 
by the pipe generating the Dcache parity error even if the instruction in the other pipe is 
logically ahead of the instruction with the Dcache parity error. 

• An IBOX trap will abort the instruction in the pipe that generated the trap. If one of the 
instructions IBOX traps and that instruction is logically the earlier of the two instructions, 
then the IBOX will abort both pipes by asserting KILL_Eo and KILL_El. IBOX traps do not 
load and lock any registers in the MBOX. An IBOX trap will abort any attempt to load and 
lock the VA, VA_FORM and MM_STAT registers by any MBOX generated traps that happen 
in the IBOX trap shadow. 

• If there is not an IBOX trap in pipeO, then MBOX generated traps in pipeO take precedence 
over any traps in pipe 1. The instructions in both pipes are aborted and the MM_STAT, VA 
and VA_FORM are loaded and locked with information from pipeO. If two loads occur in the 
same cycle, the instruction in pipeO is guaranteed to be logically ahead of the instruction in 
pipel. If the instruction in pipel is a non-MBOX instruction that is logically ahead of the 
instruction in pipeO, then the abort of pipe 1 has no effect. 

• MBOX traps in pipe 1 take precedence over IBOX traps in pipeO unless KILL_Pl is asserted. 
This is because the IBOX will abort the instruction in pipel if it is logically after the in
struction in pipeO and the instruction in pipeO IBOX traps. If there is an IBOX trap in 
pipeO and KILL_Pl is not asserted, and there is an MBOX generated trap in pipel, then both 
pipes are aborted and the MM_STAT, VA and VA_FORM registers are loaded and locked with 
information from pipe 1. 

• If there is a trap from any source in pipel and there are no traps in pipeO then the instruction 
in pipeO is allowed to complete and the instruction in pipel is aborted. The MM_STAT, VA and 
VA_FORM are loaded and locked with information from pipel. Note the instruction in pipeO 
may be logically ahead of the instruction in pipel. If pipel has an IBOX trap, then KILL_Eo 
will be asserted by the IBOX and pipeO will be aborted. If the instruction in pipe 1 MBOX 
traps and the instruction in pipeO is a non-MBOX instruction, then allowing pipeO to complete 
is innocuous since the instruction can not modify any MBOX state. If the instruction in pipe 1 
MBOX traps and the instruction in pipeO is an MBOX instruction then the pipeO instruction 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-21 



is guaranteed to be logically ahead of the pipel instruction, and the pipeO instruction should 
be allowed to complete. 

• Memory management traps take precedence over MBOX_UNAVAIL traps. The VA, VA and 
VA_FORM are loaded and locked with information from the trapping pipe when the memory 
management trap takes precedence. 

• MBOX_UNAVAIL traps do not load and lock any registers. 

Summary of priority of loading and locking the VNMM_STATNA_FORM registers: 

1. Dcache parity error pipeO 
2. Dcache parity error pipel 
3. IBOX trap pipeO, pipeO is logically ahead of pipe 1 
4. IBOX trap pipel, pipel logically ahead of pipeO 
5. MBOX MM trap pipeO 
6. MBOX unavailable trap pipeO 
7. IBOX trap pipel, pipeO logically ahead of pipel 
8. MBOX MM trap pipel 
9. MBOX unavailable trap pipel 

Note that the VA,VA_FORM and MM_STAT registers are not loaded or locked when an IBOX or 
MBOX_UNAVAIL trap has precedence. Attempts to load and lock the registers by lower priority 
traps are aborted. 

Table 1-7: Table of Multiple Trap Effects 

PERRO PERRI IO MMO M_UNAVLO 11 MMl M_UNAVLl Action 

0 0 0 0 0 0 0 0 VA, MM_STAT unlocked; noabort 

0 0 x 0 0 0 0 1 VA, MM_STAT unlocked; abort 

0 0 x 0 0 0 1 x VA, MM_STAT loaded and locked 
from pipe 1; abort 

0 0 x 0 0 1 x x VA, MM_STAT unlocked; abort 

0 0 0 0 1 x x x VA, MM_STAT unlocked; abort 

0 0 0 1 x x x x VA, MM_STAT loaded and locked 
from pipeO; abort 

0 0 1 x x 0 0 0 VA, MM_STAT unlocked; abort 

0 1 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipel; noabc 

1 0 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipeO; noabc 

• Ix-ALL non-MBOX traps in PIPEx 
• MMx-Dstream MM faults and DTB_Miss in PIPEx 
• M_UNAVLx-MAF full and conflict traps in PIPEx 
• PERRx-Dcache parity error in PIPEx 
• abort-abort all instructions following an instruction that traps due to IBOX, MM, or MBOX_UNAVAIL traps 

1-22 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



Table 1-7 (Cont.): Table of Multiple Trap Effects 

PERRO PERRI IO MMO M_UNAVLO 11 MMl M_UNAVLI Action 

1 1 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipeO; set 
SEO; noabort 

0 1 x x x x x x VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipel; abort 
if other trap 

1 0 x x x x x x VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipeO; abort 
if other trap 

1 1 x x x x x x VA, MM_STAT, DC_PERR_STAT 
loaded and locked from pipeO; set 
SEO; abort if other trap 

• Ix-ALL non-MBOX traps in PIPEx 
• MMx-Dstream MM faults and DTB_Miss in PIPEx 
• M_UNAVLx-MAF full and conflict traps in PIPEx 
• PERRx-Dcache parity error in PIPEx 
• abort-abort all instructions following an instruction that traps due to IBOX, MM, or MBOX_UNAVAIL traps 

Here are the simplified equations for loading and locking the VAIVA_FORM/MM_STAT registers 
and selecting VAO/vAt: 

• LD_LK = (MMO && !IO) I I (MMI && !11 && !M_UNAVLO) I I PERRO I I PERRI 

• SEL_VAO =PERRO I I (MMO && !PERRI) 

1.1.4 Processor Cycle Counter 

The Processor Cycle Counter is a 32-bit counter which is written via the CC and CC_CTL IPR 
registers and read via the RPCC instruction. RPCC returns a 64 bit value. The lower 32 bits are 
the cycle counter and the upper 32 bits are an offset which may be written to by writing the CC 
IPR. The CC_CTL IPR is used to write the lower 32 bits and to enable or disable the counter. 
The counter is disabled on chip reset. 

Implementation Note: The counter is partitioned into two parts - a 4-bit part and a 28-bit part. 
The carry input to the 4-bit part is tied to the counter's enable signal and this portion increments 
every cycle. The 28-bit incrementer is only updated whenever the carry out of the lower 4-bit 
incrementer is active. This gives the 28-bit incrementer 16 cycles to work. 

The upper 32 bits form a simple register which is written via MTPR to CC and read via RPCC, 
but never incremented. 

The SRM specifies that there must be a mode where 0 is always returned when the PCC is 
read. This is accomplished by writing all O's to CC and all O's to CC_CTL. This has the effect of 
initializing the counter to 0 and turning it off, so subsequent RPCCs will return a value of 0. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-23 



1.1.5 Big Endian Support 

EV5 will provide minimal support for big endian systems (EV5 is "little endian"). When the big 
endian mode bit in the MCSR register is set, address bit <2> will be inverted for all longword 
Dstream accesses. 

"Big endian" refers to the addressing of longwords within a quadword. EV5 is "little endian" 
and addresses the low order longword of a quadword with a lower address than the high order 
longword. In "big endian" systems, this is the opposite (the low order longword has a higher 
address than the high order longword). 

For longword accesses, EV5 will perform a rotate and sign extend based on address bit 2. 
Therefore, when in big endian mode, an inversion of bit 2 of the address is necessary for all 
longword Dstream references. This inversion happens upon entering the MBOX - the formatting 
logic in the Dcache interface and the MAF PA control both need the big endian version of bit 2. 
The virtual address stored in the VA register will not reflect this inversion. 

1.1.6 Interface requirements with FBOX, EBOX, IBOX for Dstream Instruction 
Execution 

The Icache interface is discussed in Section 1.1.9.4, Icache Interface. 

1.1.6.1 Instruction Opcode 

For each EBOX pipe, the IBOX will send a subset of the 32-bit instruction on EO_INST<31:0> 
and Et_INST<31:0>. The MBOX will use these to decode the type of instruction, the destination 
register number for LDs, the IPR number for HW _MxPRs, and the instruction type for HW _LDs 
and HW_STs. 

Eo_INST<31:0> and Et_INST<31:0> will arrive in Stage 2 of the pipe and will be decoded, piped 
along, and aborted, as needed, by the MBOX. The IBOX will also send a stage 3 stall signal 
(STALL), which will be used to stall the stage 3 opcode latches for both pipes. 

The IBOX also sends the signal PAL_SHADOW _EN which indicates that the destination register 
on integer loads is really a PAL shadow register. This information is stored in the MAF with 
the register number and returned to the IBOX on fills. This signal is a stage 3 signal which is 
already stalled appropriately by the IBOX. 

The instruction in pipeO is valid if the signal EO_ISSUE is asserted, and the instruction in pipel 
is valid if the signal Et_ISSUE is asserted. EX_ISSUE are asserted in stage 4. Since this is too late 
for the MBOX to setup the Dcache commands and address based on an "issued" instruction, the 
IBOX will also send a signal that will give the hint that the instruction in pipeO is not "junk" 
(such as for an Icache or ITB miss). This signal, Eo_ VALID, is asserted in stage 2. The Eo_ VALID 
signal is stalled using the stage 3 STALL signal, and is cleared after Eo_ISSUE is asserted while 
the pipeline is still stalled. The MBOX does this to reduce the chance of blocking fills on a "false" 
store (this is the case where the store has issued and its valid bit is stalled). 

NOTE 

If a store is stalled and has not issued yet, incoming fills to the Dcache will be blocked 
by the stalled store. 

1-24 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



For integer fills (including STx_C_DONE), the CBOX sends the IBOX notification to allocate a 
bubble in the EBOX pipe by asserting ALLOC_CYCLE in stage 2. The IBOX uses this signal to 
disable the EX_ISSUE signals, which are too late for the MBOX to know that there is an idle 
bubble in the pipe. The MBOX will need to use ALLOC_CYCLE directly in order to setup the 
Dcache properly for a fill (in the case when a fill is coming in and it looks like there is a store in 
the EBOX pipe). 

1.1.6.2 Restarting the IBOX After MB, LDx_L and STx_C Instructions 

The IBOX will stop issuing MBOX instructions whenever it encounters an MB, STx_C, a HW _ST 
with the COND bit set, a LDx_L, or a HW _LD with the LOCK bit set. For the MB, STx_C and 
HW_ST_C cases, the CBOX will notify the MBOX upon completion of the command via RETURN_ 
STATUS<3:0> and the MBOX will then restart the IBOX by asserting MB_CLEAR. For the LDx_L 
and HW _LD _L instructions, the MBOX will restart the IBOX after the CBOX accepts the load 
locked command. 

1.1.6.3 Virtual Address from EBOX 

For each EBOX pipe, the EBOX will send a clocked 64-bit virtual address from the output of the 
Stage 4 adder, VA0<63:0> and VA1<63:0>. There are both active high and active low versions of 
each of these busses. The addresses on VAO and VAl will be valid for all LDx (including LDx_L 
and HW_LD), ST (including STx_C and HW_ST), FETCHx and HW_MTPR TBIS instructions. 
The MBOX uses these signals primarily for address translation and the bad VA check. They are 
also piped and saved in the VA register on traps. 

The EBOX has a special "fast" index adder which will send the index bits of the virtual address 
directly to the Dcache. 

On HW _MTPR instructions the data on the VAo bus will be a copy of the data on the ST_DATA 
bus. (The Ra/Rb field of the HW _MTPR instruction must be the same). The VA0<63:0> is used 
on HW _MTPR instructions to load the Mbox/Dcache IPR registers. 

1.1.6.4 LO bus 

The MBOX drives two 64-bit busses into the EBOX, LD_DATA0<63:0> and LD_DATA1<63:0>, one for 
EBOX pipeO and the other for pipel. These busses are muxed together with other EBOX sources 
and written into the register file. They can also be bypassed directly into the current EBOX 
operation. The MBOX will return data on one or both of these busses for several operations 
(LDx, HW_LD, STx_C, HW_ST with the COND bit set, RPCC, HW_MFPR, and fills). During 
these operations, unused bits will be driven with "O'' values, such as in the STx_C instruction 
which only returns one bit of data. The MBOX will also drive a "O" value on the LD_DATAO bus 
for any HW _MFPR from a write-only MBOX IPR or from an unassigned IPR in the range MBOX 
IPR addresses, 2xx(hex). This is done to support the EV5 verification effort. 

The Dcache also returns data to the MBOX on two busses, DATA0<63:0> and DATA1<63:0>. During 
LD and HW_LD instructions, DATA0<63:0> and DATA1<63:0> will contain the data read from 
the Dcache arrays. For fill operations, these busses will carry the contiguous octaword of data 
supplied by the CBOX, with the lower quadword on DATA0<63:0> and the upper quadword on 
DATA1<63:0>. For both load and fill operations, the MBOX will drive properly formatted ver
sions of the DATA0<63:0> and DATA1<63:0> busses onto the LD_DATA0<63:0> and LD_DATA1<63:0> 
busses, respectively. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-25 



There are 3 possible formats for integer LD and fill operations: quadword, longword from the 
upper longword of a quadword, and longword from the lower longword of a quadword. No for
matting is necessary in the quadword case. For a longword load from the upper longword, the 
upper longword is shifted into the lower longword position and the MSB of the longword is sign
extended across the upper longword of the new quadword. For a longword load from the lower 
longword, no shifting is necessary, but the upper longword of the new quadword is replaced with 
a sign-extension of the MSB of the lower longword. 

On floating point LDs and FILLs, the Dcache will send the data directly to the FBOX on 
DATA0<63:0> and DATA1<63:0>. The FBOX will perform floating point data formatting under 
MBOX control. 

1.1.6.5 ST Bus Sources and Destinations 

The EBOX sends the MBOX a 64-bit store bus, ST_DATA<63:0>, for integer STx, HW _ST, STx_ 
C and HW _MTPR instructions. The store bus data is ignored by the MBOX on a HW _MTPR 
instruction; the IPR write data is taken from the VAO bus instead. 

For store instructions, the MBOX will pass the data along to the Dcache for quadword integer 
STxs and will copy the lower longword of data onto the upper longword for longword integer oper
ations. Longword parity is calculated on this "formatted" data. The MBOX drives the formatted 
data and the two longword parity bits to the Dcache on WR_DATA<63:0> and WR_LW_PARITY<l:O>, 
which are tristate busses that also carry floating point store data and parity from the FBOX to 
the Dcache. All floating point formatting and parity generation is done by the FBOX, but MBOX 
will control the tri-state WR_DATA bus drivers for both integer and floating point stores. For 
longword stores, the Dcache will select which longword to write into the Dcache based on bit 2 
of the address. The Dcache will forward the store data and parity on to the CBOX write data 
buffer on separate busses. 

1.1.6.6 Register Numbers and Controls to FBOX and IBOX for Dstream FILLS and LDs 

For Dstream FILL data coming from the CBOX, the MBOX sends the destination register num
bers and valid bits to the IBOX. The IBOX controls both the integer and floating point register 
file writes. There are 2 sets of register numbers and valid bits, one for each quadword of the 
octaword of data being returned from the CBOX. These bits are read from the MAF when a 
Dstream FILL request comes in from the CBOX. FILL_RNUM0<6:0> and FILL_RNUM1<6:0> con
tain the 5-bit register number, whether it is a floating point or integer register, and whether 
it is a PAL shadow register (integer only). These signals go to the IBOX and are qualified by 
the signals FILL_ VALIDO and FILL_ VALID! to select which pipe(s) contain data to be written to 
the register file. The signal FILL_COMING is issued at the same time as the register numbers to 
indicate that there is a potential fill. This allows the IBOX to setup the FBOX register number 
muxes appropriately. FILL_COMING is needed on floating point fills, but not integer fills, because 
the CBOX will allocate bubbles in the EBOX pipe for integer fills, but not for floating point fills. 
Therefore, a load could be issued at the same time as a floating point fill, requiring the load to 
be force missed, and the fill register numbers to be selected for writing the floating point register 
file. Separate FILL_COMING signals for the 2 FBOX ports are not necessary since a FILL reserves 
both ports regardless of whether data is being written to both ports of the register file (a Dcache 
resource requirement). 

1-26 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



For floating point LDs and FILLs, the MBOX sends formatting information to the FBOX to 
control the floating point formatters on the input to the FBOX register file. These signals are 
LD_FORMAT0<2:0> and LD_FORMAT1<2:0>, one for each pipe. These specify IEEE or VAX Floating 
Point format, whether it was a longword or quadword operation, and bit <2> of the address for 
selecting which longword within a quadword. 

1.1. 7 Dcache Hit and Load Miss Conditions 

For LD and HW _LD commands, the IBOX needs to know whether the LD hit or missed the Dcache 
for the purposes of scheduling bypasses, freeing up "dirty" registers, and controlling register file 
writes. To determine if the LD hit or missed, the PFN read out of the DTB is compared with the 
tag read out of the Dcache. If there is a match, and the data is valid in the Dcache, then the hit 
signal is generated. This information is determined on a per pipe basis and is sent to the IBOX 
on DC_lllT_Eo and nc_mT_El. 

This is true for the "normal" case. However, there are cases when the LD may be "forced" to hit 
or miss regardless of the results of the tag match, such as in reads from 1/0 space, or for the 
LDx_L instruction. In addition, the same signal is used by the IBOX for other instructions to 
accomplish the same objective. For instance, the HW _MFPR and RPCC instructions "look" like 
a LD to the IBOX, so the MBOX must force the DC Hit signal active when returning data for 
these. The cases are listed in Table 1-8. This same signal is used by the MAF for loading Dcache 
LD misses, and by the Dcache on stores to enable the update of the data array. 

Table 1-8: DC Hit Conditions, (prioritized) 

Condition Action 

RPCC HIT 

HW _MFPR from any MBOX or DCACHE IPR (2xx,hex) HIT 

LDx_L or HW _LD with LOCK bit set MISS 

HW _ST, STx, STx_ C, LDx or HW _LD, AND NOT MCSR<DC_ENA> MISS 

LD or HW_LD simultaneous with a DC FILL1 MISS 

HW _ST, HW _LD with LOCK bit not set, STx, STx_C or LDx, AND HIT 
MCSR<DC_FHIT> AND MCSR<DC_ENA> 

HW_ST, STx, STx_C, LDx or HW_LD, AND PA<39> =I MISS 

HW _ST, STx, STx_C, LDx or HW _LD, AND tag nomatch OR data MISS 
not valid 

HW_ST, HW_LD with LOCK bit not set,STx, STx_C or LDx, AND HIT 
tag match AND data valid 

1This will only occur on floating point fills. 

The ST_VALID signal indicates to the Dcache the need to update its data array for a store. The 
Dcache command interface will be setup for a write, but the actual write will be qualified by 
ST_ VALID. ST_ VALID is asserted if the Dcache hit conditions in Table 1-8 are true and the store 
does not trap. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-27 



1.1.8 Dcache Interface 

The Dcache is organized as 2 separate 8KB arrays, one for pipeO and one for pipel (see 
<REFERENCE>(Dcache \full)). Each array has a separate tag store associated with it. The 
tag and data arrays for each pipe are accessed through separate word line decoders. This allows 
different accesses to be happening to the tag and data arrays in any given cycle (necessary for 
STs). 

The MBOX is responsible for controlling the operation of the Dcache each cycle. Requests for 
access to the Dcache can come from either the LD/ST pipes or the CBOX (on Dstream fills). The 
Dcache interface is responsible for deciding which request is granted to the Dcache, driving the 
proper commands and status, and processing the results of the Dcache operation. 

Every cycle the MBOX initiates a Dcache access by driving a TAG_CMD and DATA_CMD to both 
Dcaches. Only one set of commands are needed for both pipes since both Dcaches will always 
be performing the same basic operation (Fill, LD, ST). The table below shows the 2 commands 
sent and the operation done for all combinations of Dcache requests/cycle. The priority order for 
Dcache access is 1) STORES, 2) FILLS, 3) LOADS. Any ST in the silo during a given cycle will 
cause any FILL to bypass (not write) the Dcache. The IBOX guarantees that no LDs will be 
issued in the 2nd cycle after a ST. Also, a LD in the same and/or next cycle as an incoming FILL 
will be forced to miss. The LD is never sent to the Dcache in this case. This will only happen 
on floating point fills. On integer fills, there will never be another instruction requiring Dcache 
resources (LD or ST) since the CBOX will notify the IBOX to insert idle cycles into the EBOX 
pipes whenever an integer fill is coming. If the index of a LD matches exactly the index of a ST 
in the immediately preceding cycle, and the store hit in the Dcache, then the LD will be trapped. 

The following table shows the Commands and Index select controls that will be driven to the 
Dcache. All command information will be sent to the Dcache in the B phase of the cycle before 
the actual DC operation takes place. It is the responsibility of the MBOX to properly prioritize 
and align the ST/FILULD operations for the DC. 

Assumptions for Stores: 

1. The tag lookup for Store operations takes place in 4B/5A of the store instruction. 
2. DC hit will be calculated for the store operation in 5B of the store. 
3. If the Store hits, then the data array will be updated in 6B/7 A of the store. 
4. The Dcache processes the STx_C as a normal ST instruction. The CBOX will always invalidate 

the DC at the index of a STx_C that fails, and the Ibox will not issue any MBOX instructions 
after the STx_C until the operation is complete. 

Assumptions for Fills: 

1. Fill requests are aligned to cycle 2B at the MBOX. 
2. MAF is read in 3B of the re-aligned fill cycle. 

3. The Fill data is on the RFB in re-aligned cycle 4B/5A. 
4. Fill data is formatted by the MBOX in 5B for use in the EBOX at 6A. 
5. The actual Dcache write of Fill data is in 5B/6A. Only FIRST _FILL and LAST _FILL data are 

written to the Dcache. 
6. ECC_FILLs are not written to the Dcache, but are forwarded to the integer/floating register 

files through the Dcache NOP command. 

1-28 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



Assumptions for Loads: 

1. The Dcache tag and data arrays are both read in 4B/5A. 
2. Dcache hit is calculated in 5B. 

3. The load data is formatted and returned to the EBOX in 5B for use in 6A. 

Table 1-9: Dcache Commands 

tag_idx_ data_ d%z_data wr_data 
Operation tag_cmd sel cmd dat_idx_sel src src Comment 

NOP NOP NOP RFB\11 Must select RFB to d%z_data 

FILL1 ,12 FILL MBOX FILL MBOX RFB2,12 RFB7 Conditional Dcache write in 
5B/6A3 

LD RD EBOX RD EBOX DC4 Dcache tag/data read in 4B 
/5A 

ST49 RD EBOX ()8 ()8 RFB5 Dcache tag read in 4B/5A 

ST610 ( )8 ()8 WR MBOX RFB5 ST_DATA Conditional Dcache write in 
6B/7A6 

IPR_RD RD MBOX RD MBOX DC4 IPR read of Dcache tag ar-
ray and data parity 

IPR_ WR WR MBOX NOP Conditional tag write for Dcache 
test, see DC_TEST_CTL reg-
ister 

1 Fill data is returned to the Mbox in the cycle before the actual DC write operation. A DC data command of "NOP" will be 
used to steer the Fill data on the RFB to the MBOX in the proper cycle. 
2During the write operation of a fill the d%z_data bus source must be the RFB in anticipation of a following fill (ie, back-to-back 
fills) needing to steer data to the Mbox. 

3The DC write operation for fills is conditioned with RFB_DATA_ VALID from the Cbox. 

4 The only time the d%z_data needs to be sourced from the Dcache is when the data_cmd is RD. 
5 During Store operations it is still necessary to return any coincident fill data to the Mbox. 
6 The DC write operation for stores is conditioned with ST_ VALID. 

7 The RFB is piped by the DC for one cycle before being written into the Dcache. 
8 It is possible for several piped stores to be executing simultaneously in the DC. When this happens, the tag for a new store 
instruction can be read coincidentally with the data write for a previous store. Valid data commands during these cycles are 
NOP and WR, valid tag commands are NOP and RD. 
9ST4 - Store in stage 4 of the pipe (1st store silo stage). 

10ST6 - Store in stage 6 of the pipe (3rd store silo stage). 

11 To save power, the d%z_data bus is not updated unless there is valid fill request from the CBOX. The MBOX will send the 
dcache a separate signal to indicate whether to update the bus on a NOP or FILL command. 
12Includes FIRST_FILL and LAST_FILL but not ECC_FILL. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-29 



Table 1-10: Dcache Command Encodings 

Command 

TAG_CMD: 

NOP (RD) 

RD 

FILL 

WR 

DATA_CMD: 

NOP (RD) 

RD 

Encoding 

00 

01 

10 

11 

00 

01 

FILL 10 

WR 11 

1.1.8.1 Dcache LDs 

MUXSelect 

TAG_IDX_SEL: 

EBOX 
MBOX 

DAT_IDX_SEL: 

EBOX 
MBOX 

Encoding 

0 

1 

0 

1 

The MBOX initiates a LD operation by sending TAG_CMD<l:O> =RD and DATA_CMD<l:O> =RD. 
The EBOX sends the indices for the loads directly to the Dcache on VA0<12:3> and VA1<12:3> from 
a special "fast" adder. The MBOX notifies the Dcache to select the EBOX source as the address 
via the TAG_IDX_SEL and DAT_IDX_SEL signals. The tag, valid, and parity bits are returned for 
each pipe to the MBOX to be used for DC_HIT and parity error checking. These signals are: 
TAG0<38:13>, TAG1<38:13>, VALIDO<l:O>, VALIDl<l:O>, TAG_PARO, and TAG_PARl. A quadword 
of data for each LD is sent to the MBOX and FBOX on DATA0<63:0> and DATA1<63:0>. For 
integer LDs, the MBOX formats the data and forwards it to the EBOX on LD_DATA0<63:0> and 
LD_DATA1<63:0>. For floating point LDs, the FBOX handles all formatting. Longword parity for 
each quadword is sent by the Dcache to the MBOX on DATA_PARO<l:O> and DATA_PARl<l:O>. For 
all LDs, the MBOX will check for data and tag parity errors. 

A load that arrives at the Dcache at the same time as a fill will be forced to miss. 

1.1.8.2 Dcache STs 

Dcache STs are a 3 cycle operation. The MBOX begins a ST sequence by sending TAG_CMD<l:O> 
= RD and TAG_IDX_SEL = EBOX. During the first cycle, the Dcache reads the tag, valid and 
parity bits and returns them to the MBOX. DC_HIT and tag parity error checking is done in 
the next cycle. For the 3rd cycle, the MBOX sends DATA_CMD = ST, DAT_IDX_SEL = MBOX (to 
select DC_ADDR<12:3> as the data index), and a siloed version of VAO on DC_ADDR<12:3> and 
ST_ADR<2>to the Dcache. If there was a DC_HIT on pipeO and no traps were detected, then 
the MBOX will assert ST_ VALID. Each bank writes the data simultaneously in the 3rd cycle if 
ST_ VALID is asserted. The MBOX will also send WR_TYPE to indicate whether the operation is a 
quadword or longword write. 

1-30 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



Data and data parity are sent to the Dcache on the WR_DATA<63:0> and WR_LW_PARITY<l:O> 
buses. The FBOX drives these busses on floating point STs while the MBOX drives them on 
integer STs. For longword stores, the lower longword of data will be duplicated on both the 
upper and lower longwords of the data bus. (The Dcache will use bit ST_ADR<2> and WR_TYPE 
to determine which longword(s) to write). 

During the 3 cycles where there is a ST in the silo, all FILLs will be blocked from accessing the 
Dcache. The Dcache will bypass any FILLs that arrive during these 3 cycles by defaulting the 
Dcache read muxes to the RFB<127:0>. The IBOX guarantees that no LDs will be issued in the 
2nd cycle following a ST. However, LDs may be issued in the cycle immediately following a ST. 
The address for this LD will be compared with the address of the preceding store. If there is an 
exact match between address bits <12:3>, they access the same longword, and the store hit in the 
Dcache, then the LD will be trapped. If there is not a match, then the LD will read the Dcache 
as normal. 

For STx_C instructions, the data will be written to the Dcache as for a normal ST instruction. If 
the STx_C fails, the CBOX will invalidate the Dcache block via the INVAL port to the Dcache. 
Since the IBOX will not issue any more MBOX instructions until after the STx_C is complete, 
there is no danger of a subsequent LD hitting on the updated data of a failing STx_C. 

The MBOX will invert the data parity bits that are sent to the Dcache on a store when the FORCE_ 
BAD_PAR is set. The MBOX will send the mode bit signal, FORCE_BAD_PAR, to the Dcache, so 
that the Dcache can restore data parity at the input to the CBOX Write Data Buffer. This mode 
bit may be found in the DC_MODE register and is for test/diagnostic purposes. 

1.1.8.3 Dcache FILLS 

The MBOX receives Dcache fill requests from the CBOX on RETURN_STATUS<2:0> for each octa
word of fill data on the RFB<127 :0>. The tag and index are supplied to the Dcache by the MAF 
on the DC_ADDR<38:3> bus. The data and data parity are supplied to the Dcache by the CBOX 
on RFB<127:0> and FILL_PAR<3:0>, respectively. When a FIRST_FILL or LAST_FILL request is 
received, the Dcache interface drives DATA_CMD =Fill, TAG_CMD = Fill, TAG_IDX_SEL = MBOX 
and DAT_IDX_SEL = MBOX along with the tag parity (TAG_PAR) and the valid bits (VALID<l:O>) 
to be written to the array. For the first fill operation to a Dcache block, the MBOX will assert 
only one of the valid bits, the other valid bit will be deasserted. Which valid bit to assert is based 
on OW_VALID received from the CBOX. OW_VALID is effectively address bit <4> for the fill data. 
During the last fill (second) operation to a Dcache block, the MBOX will assert both of the valid 
bits. Both valid bits are always written at the same time. ow_VALID is muxed onto DC_ADDR<4> 
to select the appropriate octaword in the Dcache data array to write. If, for some reason, the 
first octaword did not get written to the Dcache, or was written to the Dcache with an ECC error, 
then the second octaword will be set to NOFILL to ensure the valid bits are correct. 

The data will only be written if 

1. DATA_CMD<l:O> = FILL, 
2. NOFILL is deasserted and 
3. RFB_DATA_ VALID (driven by the CBOX) is asserted. 

Corrected ECC data fills (ECC_FILLs) are not written to the Dcache. 

There are separate NOFILL signals for each pipe for testability reasons. In normal operations, 
they have identical values and are set and cleared in the MAF based on certain error and conflict 
conditions (see Table 1-16, Dread Control Bits). 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-31 



On Fills, all addresses and commands to the Dcache are identical for the 2 different Dcache 
banks. The octaword of fill data, the tag, tag parity, and valid bits are all written in the Dcache 
simultaneously, regardless of whether it is the first fill or second fill. Fill data for a first, last 
or ECC fill is forwarded to the MBOX/FBOX on the DATA0<63:0> and DATA1<63:0> busses. Fill 
data is always returned to the MBOX/FBOX, even if a ST is accessing the Dcache during that 
cycle (Fill bypass). Fills will take precedence over any LDs that arrive at the Dcache at the same 
time. The LD will be blocked and forced to miss. 

NOTE 

It is assumed that the CBOX will guarantee that no fills containing "old" data will be 
sent to the MBOX/Dcache after an invalidate for the same address has been sent to 
the Dcache. 

1.1.8.4 Dcache Invalidates 

The Dcache may be invalidated (valid bits cleared for a block or group of blocks) in one of the 
following ways: 

1. The CBOX directly sends an invalidate command and index to the Dcache. The Dcache will 
clear all the valid bits for 2 Dcache blocks (1 Scache block). 

2. PALcode can issue a HW _MTPR to the DC_FLUSH IPR. The Mbox will assert DC_FLUSH and 
the Dcache will clear all the valid bits in the array. It is assumed that PALcode will flush the 
Dcache in this way after reset. 

3. PALcode may use the DC_TEST_TAG and DC_TEST_CTL IPRs to write to the tag and valid 
bit fields in the Dcache arrays. 

4. When the CBOX signals an ECC error, the MBOX will assert DC_FLUSH and the Dcache will 
clear all the valid bits in the array. 

The MBOX will not assert DC_FLUSH to the Dcache under reset. 

1.1.8.5 Parity Generation and Checking 

The MBOX will do even longword parity generation on the integer store bus on its way to the 
Dcache and write buffer. The FBOX will generate even longword parity on the floating point 
store bus. The data parity bits generated are a tristate bus driven by the FBOX on floating point 
stores and by the MBOX on integer stores. The MBOX generates even parity on the tag address 
on its way to the Dcache on fills. Data parity is generated by the Cbox on fills. 

On all loads from the Dcache (both integer and floating point), the MBOX will do even longword 
parity checking on the data and even parity checking on the tag address bits, and generate 
appropriate parity errors if the data valid bits are set. The data valid bits themselves are not 
covered by parity. On stores, only tag parity is checked if the data valid bits are set. 

Parity checking will be disabled during IPR accesses of the Dcache or if the Dcache data valid 
bits are not set. The DC_PERR_DIS bit in the DC_MODE IPR can be used to disable Dcache parity 
errors when the Scache is being tested, or when the Dcache is disabled or is in force hit mode. 

1-32 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



If a parity error is detected, the information for the instruction causing the error is saved in the 
IPR registers: VA, MM_STAT, and DC_PERR_STAT. The instruction is not aborted (note: store 
data will still be written to the Dcache, load data to the register file). The IBOX will recognize it 
as a machine check and abort the instruction stream at a later time. This is discussed in more 
detail in Section 1.1.3.0.3, Dcache Parity Errors. 

1.1.8.6 Operation Modes for the Dcaches 

1.1.8.6.1 Dcache Force Bad Parity and Disable Parity 

The DC_MODE register contains control bits for forcing bad parity to be written to the Dcache and 
for disabling Dcache parity errors. These modes are used for testability and diagnostic purposes. 

When the DC_BAD_PARITY bit in the DC_MODE register is set, the Mbox will invert the data 
parity bits that are written to the Dcache on a store. The MBOX will assert FORCE_BAD_PAR to 
the Dcache, causing the data parity bits written to the CBOX write data buffer to be restored to 
the value calculated by the data parity generators. The value of the data parity bits sent to the 
Dcache on fills will be unaffected by the setting of the DC_BAD_PARITY bit. 

The DC_PERR_DIS signal specifies whether Dcache parity error checking is enabled. When this 
bit is set the Dcache interface will disable Dcache parity error reporting. 

1.1.8.6.2 Dcache Enable and Force Hit Modes 

The DC_MODE register contains control bits for enabling the Dcaches, for disabling Dcache 
parity errors, and for putting the Dcache into a FORCE HIT mode for testability and diagnostic 
purposes. These modes are implemented via the normal MBOX/Dcache command interface, and 
so are transparent to the Dcache itself. 

The DC_ENA bit in the DC_MODE IPR is cleared on reset and, when clear, forces all LDs to miss 
the Dcache and all STs and FILLs to not write the Dcache. 

The DC_FmT bit in the DC_MODE register specifies Dcache Force Hit mode. When DC_FmT is 
set, then all STs will write to the Dcache regardless of the outcome of DC_IDT. A LD issued in 
pipel will have the effect of forcing DC_IDTl active and data will be read and used from the pipel 
Dcache, regardless of the actual outcome of the DC_IIlT calculation. This same scenario works 
with the pipeO Dcache. The DC_ENA bit takes precedence over DC_FmT. 

The tag, tag parity, and valid bits will remain unaffected by stores during DC_FIDT mode. (This 
is true for non-DC_FmT mode as well). 

NOTES 

The DC_mT and DC_BAD_PARITY bits are used exclusively for diagnostics and test. 

Outstanding Dstream fills may return and write the Dcache, even in force hit mode. 
Also, floating point fills arriving at the same time as a LD will write to the Dcache, 
forcing the LD to miss, even though in force hit mode. A memory barrier inserted before 
code that tests the Dcaches will ensure all outstanding fills have been completed before 
the start of the test code. Disabling the Dcache will force loads to miss, causing fill 
requests to be generated to the CBOX. 
A LD in the cycle following a ST to the same index while in force hit mode will result 
in a replay trap. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-33 



A LD(ST) from(to) a "non-cacheable" memory address (PA<39>=1) while the DC_ 
MODE<DC_FHIT> bit is set, will result in the data being read from(written to) the 
Dcache. 

1.1.8.6.3 Dcache Flush 

A write to the DC_FLUSH IPR will cause the MBOX to assert DC_FLUSH to the Dcache. The 
Dcache will flush (clear) all the valid bits in both Dcaches regardless of the settings of DC_ENA 
and DC_FIIlT. 

1.1.8.7 Reading/writing Dcache Tags for Testability 

There are three IPRs for the support of reading and writing the Dcache tags for testability. These 
are DC_TEST_CTL, DC_TEST_TAG, and DC_TEST_TAG_TEMP. 

The DC_TEST_CTL register contains the row and bank in the Dcache that will be affected by 
reading/writing the DC_TEST_TAG register. 

A write to the DC_TEST_TAG register will cause the MBOX to take the data from VA0<63:0> 
from the EBOX, and drive it onto DC_ADDR<38:13>, TAG_PAR, and VALID<l:O> to the Dcache. At 
the same time, the contents of the DC_TEST_CTL register will be driven onto DC_ADDR<12:5>, 
NOFILLO, and NOFILLI. When the HW_MTPR DC_TEST_TAG instruction is decoded, the TAG_ 
CMD will be set to WR, TAG_IDX_SEL will be set to select the MBOX address, and the DATA_CMD 
will be set to NOP. This will enable the Dcache to write only the tag array. (See Table 1-9). 

When a HW _MFPR DC_TEST_TAG instruction is decoded, the contents of the DC_TEST_CTL 
register will be driven onto DC_ADDR<l2:3>, TAG_CMD and DATA_CMD are set to RD, and TAG_IDX_ 
SEL and DAT_IDX_SEL will be set to select the MBOX address. The Dcache will read out the tag, 
tag parity, valid and longword data parity bits onto TAG0<38:13>, TAG1<38:13>, TAG_PARO, TAG_ 
PARl, VALIDO<l:O>, VALIDl<l:O>, DATA_PARO<l:O>, and DATA_PARl<l:O>, respectively. Note that 
4 HW _MFPR's are required to read all of the data parity bits associated with a block of dcache 
data. The MBOX will latch the tag, tag parity, valid and data parity bits from one of the banks 
into a temporary register (according to the bank select bits in the DC_TEST_CTL register). A 
subsequent HW_MFPR from DC_TEST_TAG_TEMP will enable this temporary register to drive 
onto the LD_DATAO bus to the EBOX. 

NOTE 

The Dcache data parity bits may only be written to the Dcache via a store or a fill. 
There is no IPR access for writing, only reading. 

1.1.9 Miss Address File 

1.1.9.1 Overview 

The Miss Address File (MAF) has 3 basic functions: 

1. Store all address and instruction data for memory references which will eventually be issued 
to the Scache. These include LD misses, all STs, LDx_L, STx_C, FETCHx, MB, WMB, and 
IREF requests. 

1-34 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



2. Issue addresses to the Scache and BIU. This includes logic to guarantee proper ordering of 
LD's and ST's and prioritizing of Scache requests originating in the MBOX, including MB 
sequencing and IREF requests. 

3. Supply addresses and instruction data to the Dcache, IBOX and formatters for incoming fills 
from the BIU/Scache. 

The MAF is divided into 3 sections: 

1. DREAD - handles all HW _LD and LDx misses, and all LDx_L's. 
2. WB - handles all HW_ST, STx, STx_C, WMB, and FETCHx. 

3. IREF - handles all IBOX prefetch queue requests. 

1.1.9.2 Basic Timing 

The MAF is the convergence zone between the end of the normal EV5 LD/ST pipes through DC_ 
HIT, the Icache prefetch queue requests, the beginning of the address sequencing for the Scache, 
and the return of FILL data to the Dcache. Figure 1-6 shows how each of these timings lines up 
to the MAF timing. Throughout the text, the following timing assumptions will be used. 

1. Incoming LD/ST - referenced to the EBOX pipes (Register file write cycle 6). 
2. Incoming IREF Requests - referenced to Icache cycle 0. 

3. Addresses to the Scache - referenced to Scache Tag cycle 6. 
4. Return Status (Fills) - referenced to Register file write cycle 6. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-35 



Figure 1-6: MAF Timing Definition 

DCACHE MISS BYPASS 

3 4 5 6 7 8 9 10 11 

IS~UE ALU i SCDATA 
~ FMT USE ~GFW 

DCEILL ; 

LOAD CYCLES 2 3 4 5 6 

IREF REQUESTS 

0 2 3 4 5 6 7 8 

+HEI I f3 MA~ V.. M~ RD s+ SC11T SC+TA I Fr 
SCACHE CYCLES 6 7 8 9 10 

ST CASE SCACHE HIT PRIVATE DIRTY 

3 4 5 6 7 8 9 10 11 

IS~UE ALU; MA ARB; ; sew ITE SC RITE 

SCACHE CYCLES 6 7 8 9 

1.1.9.3 CBOX Interface 

The MAF in general has three communication links with the CBOX. (1) It supplies addresses 
for memory references to the Scache. (2) It interfaces with the data portion of the WB for any 
instructions stored in the WB and (3) the CBOX informs it when data is returning or operations 
initiated by the MAF are completing. 

1.1.9.3.1 Command/Address Issue Interface 

For issuing memory references to the Scache/CBOX, the MAF sends a command (MAF_CMD<3:0>) 
informing the CBOX what operation is being done, the address (MAF _ADDR<39:4> ), the MAF 
entry of this address (MAF _INDEX<4:0>) which is used as an ID for the operation, and the type of 
reference being issued to the CBOX (MAF_TYPE: integer=O/floating=l). 

When the MAF receives a Dread down one of the pipes, there is a 2 cycle window when it may 
be bypassed to the CBOX before the results of the merge or the Dcache hit logic are known. 
Arbitration proceeds during this time as if the Dread will ultimately want to be issued to the 
CBOX. If the Dread wins the arb in the first cycle, but merges with an existing entry or hits in 
the Dcache, then the command to the CBOX is aborted via the MAF _ABORT signal. If the Dread 
wins the arb only in the second cycle, but merges with an existing entry or hits in the Dcache, 
it will be effectively aborted by issuing a NOP command to the CBOX. Once this 2 cycle window 
has passed, if the Dread was not bypassed, didn't merge and missed the Dcache, it is loaded in to 
the pending queue and begins normal arbitration. Once in the pending queue, Dreads are not 
aborted. 

1-36 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



For a pair of loads issued to the MBOX by the IBOX in a given cycle, pipeO has the higher priority 
for bypassing to the CBOX. Pipel will automatically begin arbing the next cycle assuming that 
the pipeO bypass will be aborted. If the load in pipeO is aborted due to a hit or merging, then the 
load in pipel proceeds to issue in the next cycle. This too is before the merge result is known, so 
it may be aborted by issuing a NOP command on MAF_CMD<3:0>. Meanwhile, 2 new loads may 
have come down the pipe. The new load in pipeO will not have immediately been bypassed to the 
CBOX because the pipel load from the previous cycle speculatively won the arb. However, the 
new pipeO load will be setup to issue in the next cycle, again assuming the previous cycle's pipel 
load will be aborted. As before, this is before the results of the merge are known, so it, too, may 
be NOP'd. 

The CBOX indicates backpressure by two mechanisms. 1) If the Scache is busy the CBOX requests 
the MAF to hold off sending addresses by asserting a busy signal (SC_BUSY) 2 cycles before the 
CBOX needs the Scache. This signal must be asserted for each cycle that the Scache is busy. 
Any 2 consecutive cycles where SC_BUSY is not asserted will potentially be used by the MAF. 2) 
The CBOX indicates that the BIU cannot accept an address just issued by the MAF by asserting 
RETRY 2 cycles after the address is sent to the Scache. The MAF will place the rejected command 
in a replay queue. The command and the Scache address may be issued again to the CBOX 2 
cycles later if the CBOX is not busy and there is nothing already pending in the replay queue. 
(Four cycles is the quickest turnaround time between command issue and reissue). The replay 
queue will always arb if any entry is valid in the queue. 

For IO space reads (PA<39> = 1), if the command is not retried, then the CBOX will give the MBOX 
an indication that a fill is coming along with the index of the command. This fill command will 
always come at the same time as if the read had hit in the Scache. The fill will be marked invalid 
by the CBOX (using signal RFB_DATA_VALID), but the MAF will use the fill notification to read 
the quadword request bits out of that IO space read entry in the MAF, stop further merging to 
that entry, and send the quadword request information to the CBOX on DRD_MASK<3:0>. This 
takes place in cycle 8. DRD_MASK<3:0> will be sent whenever a fill request is generated by the 
CBOX, but it is only meaningful on IO space reads. 

Table 1-11: Commands From MBOX MAF to CBOX Arbiter 

Commands MAF _CMD<3:0> Description 

NOP 0000 No operation 

0001 Reserved 

0010 Reserved 

0011 Reserved 

DREAD 0100 DREAD Request 

LDx_L 0101 Load Memory Data into Integer Register Locked 

IRE AD 0110 IREF Request 

0111 Reserved 

FETCH 1000 Prefetch Data 

FETCH_M 1001 Prefetch Data, Modify Intent 

MB 1010 Memory Barrier 

1011 Reserved 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-37 



Table 1-11 (Cont.): Commands From MBOX MAF to CBOX Arbiter 

Commands MAF _CMD<3:0> Description 

WR32 1100 32B Write Request 

STx_C 1101 Store Conditional 

1110 Reserved 

1111 Reserved 

1.1.9.3.2 Write Buffer Interface 

When a ST is presented to the MAF, the MAF informs the write data buffer in the CBOX whether 
the ST was LW (WR_TYPE=l) or QW (WR_TYPE=O), the LW address of the ST (WR_LW...ADDR<4:2>), 
and which entry to write the data to in the WB data store (WR_ENABLE<5:0>). The write data 
and longword parity (WR_DATA<63:0> and WR_LW_PARITY<l:O>) are sent to the Dcache where 
they are latched and forwarded on to the CBOX write data buffer on WB_DATA<63:0> and WB_ 

LW_PARITY<l:O>. 

The data portion of the WB can ask the MAF to reissue write addresses by asserting WR_NOW 
and sending the MAF index of the entry on WR_MAF _INDEX<4:0>. If the CBOX is doing a 64B 
write operation, it will ask the MAF to reissue the same address twice, once with WR_64B_REQ 
deasserted, and once with WR_64B_REQ asserted. When WR_64B_REQ is asserted, the MBOX will 
invert MAF _ADDR<5> when reissuing the address. This second transaction is used to read the 
other 32B block from the Scache to form a complete 64B block to be written to the system. 

1.1.9.3.3 Return Status 

Upon completion of a requested operation the CBOX sends the MAF the index (RETURN_ 
INDEX<4:0>) and the status (RETURN_STATUS<2:0>) which describes the operation being com
pleted. This allows the MAF to clear entries from the file and forward necessary controls to the 
Dcache and register files for DREAD fills. Fills also require the OW_VALID (l=upper, O=lower) 
to indicate whether the lower or upper octaword of the block is being filled. On all fills, the 
CBOX indicates that there is valid data on RFB<127:0> with RFB_DATA_VALID. The Mbox uses 
RFB_DATA_ VALID to verify that a Fill is actually valid (Fills from the Scache and/or the Bcache 
may be speculative) and complete the fill of the Dcache and register files. (The CBOX also asserts 
RFB_DATA_VALID on a STx_C_DONE so that the MBOX will assert the FILL_VALID signal to the 
IBOX along with the STx_C register number). SCACHE_mT is sent to the MBOX and used to 
disable merging when a load hits in the Scache. If the load did not hit, then merging is allowed 
to continue until the first fill from the Bcache is signalled (this is speculative). 

If an ECC error is detected on fill data destined for the Dcache, the CBOX will assert the signal M_ 
RFB_ECC_ERR. This signal is too late to hold off the register file write or the Dcache fill operations. 
On the second half of a fill the MAF DREAD entry will be cleared before the ECC error is known. 
The ECC_ERR signal is used by the MAF to conditionally lock the ECC error register that holds 
the register number and format control associated with the most recently returned fill data. (If 
there is no ecc error, the holding register will be overwritten on the next fill request from the 
CBOX). The MBOX will flush the dcache and the MAF will set the NOFILL bit for that DREAD 
entry of the error occured on the first half of a fill. When an ECC error is correctable in hardware, 
the CBOX will return the corrected fill data a minimum of three cycles later along with an ECC_ 

1-38 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



FILL return status. The ECC error register supplies the IBOX register number and the formatter 
control on an ECC_FILL. A read from the ECC error register unlocks the register for updates. 

NOTES 

The MAF needs to see a LAST_FILL in order to retire an entry from the DREAD 
file. The CBOX guarantees that a fill operation will complete even when a hard error 
(Scache parity error or uncorrectable ecc error) occurs. This means the MBOX will 
see the LAST_FILL request for all DREAD entries, even though the fill data may be 
garbage. This ensures the MAF is left in a predictable state. 
The CBOX guarantees that the MBOX will not see multiple ECC errors. When the 
ECC holding register is loaded and locked, the MBOX will not see another ecc error 
until after the corrected fill data has been returned on an ECC_FILL. 

LAST _FILLs from the CBOX are always non-speculative and are used by the MBOX to retire 
the MAF entry. If the CBOX generates a LAST_FILL request before an ECC error is detected on 
a FIRST_FILL, the CBOX will send a correction signal, BOGUS_LF, to indicate the LAST_FILL 
request was not valid. The MBOX will use this signal to abort any operations that may affect 
state as a result of the erroneous LAST_FILL request. 

Table 1-12: CBOX Return Status 

Status RETURN_STATUS<2:0> Description 

NOP 000 No Operation 

FIRST_FILL 001 This is the 1st Dcache fill cycle of 2 

LAST_FILL 010 This is the last Dcache fill cycle of 2 

WR_DONE 011 Write Operation Done 

FETCH_DONE 100 FETCH_x Operation Done 

MB_DONE 101 Memory Barrier Operation Done 

ECC_FILL 110 This is corrected ECC fill data 

STXC_DONE 111 The Result of the STx_C Operation is Returning 

1.1.9.3.4 Invalidates - CBOX Guarantee 

The MBOX is unaware of invalidates to the Dcache. The CBOX sends these to the Dcache directly. 
The MBOX and Dcache depend on the CBOX to guarantee that there will never be a 1ST_FILL
INVAL-2nd_FILL sequence on the same address, nor any INVAL-FILL sequence on the same 
address where the FILL represents "older" data than any updates from the system causing the 
INVAL, or where the FILL would cause the Dcache to load valid data for an address that has 
been removed from the Scache due to the INVAL. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-39 



1.1.9.4 lcache Interface 

The MAF interfaces with the IBOX prefetch queue to either demand fetch 32B blocks of instruc
tions on Icache misses or prefetch blocks of instructions during prefetch sequences. The Icache 
requests an IREF by sending the physical address (IREF _ADDR<39:4>) and prefetch queue in
dex (IREF_IDX<l:O>) to the MAF. The MAF will load the address at the location specified by the 
prefetch index in 3A. When the MAF receives the IREF_REQ signal from the Icache, the entry is 
validated and normal arbitration for the Scache begins. Once the MAF receives a valid request, 
the operation will complete (ie. no aborting is done). 

When the IREF is issued to the CBOX, the entry is retired by the MAF. The default (precharged) 
state for the QW request bits is sent to the CBOX on !stream IO space reads as DRD_MASK<3:0> 
= (F)HEX. The CBOX controls the filling of the Icache directly. 

1.1.9.5 Loading the MAF 

The MAF has 3 separate sources of addresses to be stored for issue to the Scache. All DREAD 
addresses are received on both pipes 0 and 1, at most 2 per cycle. All WB addresses are received 
on pipe 0 only, at most 1 per cycle. Dreads and writes may not occur in the same cycle. All IREF 
addresses are received on a dedicated IREF address bus, at most 1 per cycle. All DREAD and 
WB requests are loaded into the MAF during 6A. All IREF requests are loaded during 3A. 

The DREAD and WB sections can either merge the incoming address with previous requests or 
allocate a new entry for the address. These sections each have FREE LIST fifos and PENDING 
queues. The FREE list points to the next MAF entry to be allocated for each type of reference. 
When an address is loaded, the MAF index is shifted off the FREE list and onto the PENDING 
queue for issuing. When the memory reference is complete and the entry deallocated, the MAF 
index is loaded back onto the respective FREE LIST to be reallocated to another address. IREF 
references receive the index directly from the prefetch queue, so no FREE LIST is needed in the 
IREF section. 

Each entry in the free list will be initialized on reset to a unique index and all pending queue 
entries will be invalidated. 

The following shows the bit fields of the pending queues for each section of the MAF. 

Figure 1-7: Pending Queue Bit Fields 

+-------+---------------+----------+-------+------------+ 
DREAD I valid I conflict<S:O> I cmd I float I index<2:0> I 

+-------+---------------+----------+-------+------------+ 

+-------+-------+---------------+----------+------------+ 
WB I WMS I valid I conflict<S:O> I cmd<l:O> I index<2:0> I 

+-------+-------+---------------+----------+------------+ 

+-------+------------+ 
IREF I valid I index<l:O> I 

+-------+------------+ 

1-40 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



Table 1-13: Pending Queue Bit Fields 

Field Name 

VALID 

INDEX<4:0> 

CMD<3:0> 

FLOAT 

WMB 

DREAD Conflict<5:0> 

WB Conflict<5:0> 

Description 

Pending queue entry is valid 

Entry in the MAF corresponding to pending entry 

Command to be issued to CBOX 

1 = Floating Point DREAD, 0 = Integer DREAD 

Marks insertion of a WMB or a ST/ST conflict. All previous stores finish before 
subsequent stores can be issued 

The WB entries that this DREAD entry has a conflict with. All conflicts must be 
cleared before an entry can be issued. 
clear<5:0> = WB_DONE<5:0>, where WB_DONE = WR_DONE I FETCH_DONE 
I I STx_C_DONE 
set<5:0> = DREAD_ALLOCATE && WB_MATCH<5:0> 

The DREAD entries that this WB entry has a conflict with. All conflicts must be 
cleared before an entry can be issued. 
clear<5:0> = LAST_FILL<5:0> && !BOGUS_LF 
set<5:0> = WB_ALLOCATE && DREAD_MATCH<5:0> 

1.1.9.5.1 Dcache Read Misses 

The DREAD section holds addresses for LD misses and LDx_L's. It consists of 6 entries of 32B 
block physical addresses. Each entry also has 4 slots which represent 1 of 4 quadwords within the 
32B block. When a LD miss requests a certain quadword, the block address is written into the 
entry and the requested quadword slot is loaded with the register number and format information 
for this request. When the LD data is returned, the physical address is read out of the MAF and 
driven to the Dcache interface for FILLS. The register number and format information will be 
returned to the IBOX and floating pointlinteger formatters. Dcache write enables are derived at 
the Dcache interface from the NOFILL status bit and the OW_ VALID control. 

If a subsequent LD miss requests the same 32B block but a different quadword within the block, 
the address and pipe data can be merged into the same DREAD entry with register number and 
format information loaded into its respective quadword slot. Otherwise, it is allocated a new 
entry. 

All DREAD merging is done on physical addresses. No merging is allowed between floating 
and integer requests (this is because integer fills allocate bubbles in the pipe and floating point 
fills do not). Also, quadword load requests are not merged with longword load requests, and 
longword requests to even address are not merged with longword requests to odd addresses (this 
was done as a simplification of the merge logic implementation). LDx_L requests are always 
allocated a new entry in the MAF (to ensure the LDx_L request is issued to the CBOX with the 
LDx_L command), and merging to the LDx_L entry is not allowed (this prevents subsequent LDx 
requests from matching multiple entries in the DREAD file). If merging needs to be disabled for 
a given entry in general, the NOMERGE bit is set for that entry. (See Table 1-16.) 

If an incoming load address matches that of an address already in the MAF (down to the longword 
level), then the incoming load is forced to trap. This is the LD-MAF Conflict Trap and occurs 
whether or not the load would have hit in the Dcache. This is to ensure that loads to the exact 
same address do not finish out of order (Litmus test #1 in the ALPHA SRM). 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-41 



The MAF also detects ST/LD conflicts by comparing incoming LD PA's (Physical Address) with 
the PA of previous writes in the WB. If a match is detected then a new entry is made in the MAF 
for that load and the new entry in the pending queue is made with the conflict bits corresponding 
to the conflicting WB indices set. No entry in the DREAD pending queue may be issued until 
all the conflict bits are cleared. All WB entries up to and including the conflicting write will be 
flushed to the CBOX interface at an elevated priority. When a conflicting write is retired, all 
conflict bits in the DREAD pending queue corresponding to that WB index will be cleared. 

Figure 1-8: Dread Address Datapath 

+----------------------------------+-------+ 
I PA<39:4> I Valid I 
+----------------------------------+-------+ 

Table 1-14: Dread Physical Address Datapath bits 

Field Name 

PA<39:4> 

Valid 

Description 

Physical Address of 32B Block 
Loaded on DREAD_ALLOCATE. 

This address is a valid entry. 
set = DREAD_ALLOCATE 
clear = (LAST_FILL && !BOGUS_LF) I I RESET 

Figure 1-9: Dread Register Formatting Bits 

+------+--------------+--------------+--------------+--------------+ 
IValidOI QwO_reg<6:0> I Qw0_fmt<2:0> I Qwl_reg<6:0> I Qwl_fmt<2:0> I 
+------+--------------+--------------+--------------+--------------+ 
+------+--------------+--------------+--------------+--------------+ 
IValidll Qw2_reg<6:0> I Qw2_fmt<2:0> I Qw3_reg<6:0> I Qw3_fmt<2:0> I 
+------+--------------+--------------+--------------+--------------+ 

Table 1-15: Dread Register Formatting Bits 

Field Name 

Qwx_reg<6:0> 

Qwx_fmt<2:0> 

1-42 The Mbox 

Description 

QWx <6>-pal shadow, <5>-(l=floating,O=integer),<4:0>-register number 

QWx format: <2> - (l=vax_fp,O=ieee), <1> - (l=LW,O=QW), <0> - (l=upper,O=lower LW) 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-15 (Cont.): Dread Register Formatting Bits 

Field Name 

Validx 

Description 

This is a valid entry. 
set= (DREAD_ALLOCATE I I DREAD_MERGE) && (decode<4:3>) 
clear = (LAST_FILL && !BOGUS_LF) I I RESET 

NOTE - The register number and format control for the last entry cleared are locked 
in a special register when an ECC error is detected on a LAST_FILL. The ECC register 
supplies the register number and format control when the corrected data is returned from 
the CBOX. 

Figure 1-10: Dread Control Bits 

+----------------------------------+---------+ 
/ Nofill / Type<3:0> I Qw_req<3:0> I Nomerge I 
+----------------------------------+---------+ 

Table 1-16: Dread Control Bits 

Field Name 

Nofill 

Type<3:0> 

Qw _req<3:0> 

Nomerge 

Description 

Don't fill this entry into the Dcache. 
clear= (LAST_FILL && !BOGUS_LF) I I RESET 
set = (STx I I STx_C I I FETCHx) && DREAD_MATCH && !TRAP I I 

FIRST_FILL && FILL_BLOCKED (from DC interface) && RFB_DATA_ VALID I 
DREAD_ALLOCATE && PA<39>=1 I I 
FIRST_FILL && ECC_ERR 

<3> =Quadword 
<2> = Longword Even 
<1> = Longword Odd 
<0> = Floating Point 
Loaded on DREAD_ALLOCATE. 

Quadwords requested within this block. 
Loaded on (DREAD_ALLOCATE I I DREAD_MERGE) && decoded PA<4:3> 

Disable merging to this entry. 
clear = (LAST_FILL && !BOGUS_LF) I I RESET 
set= (STx I I STx_C I I FETCHx) && (DRD_MATCH I I MCSR<MAF_NMERGE>) 

&& !TRAP I I 
LDx_L && !TRAP I I 
FIRST_FILL && SC_HIT && Scache operation I I 
FIRST_FILL && !Scache operation I I 
FIRST_FILL && IO_SPACE 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-43 



Table 1-17: Dread Merge and Allocate Conditions 

MAF Action Description 

DREAD_MERGE entry_ VALID 
&& entry TYPE same as incoming LD (Fii, LWE/LWO/QW) 
&&PA_MATCH 
&& !NOMERGE && !MCSR<MAF _NMERGE> 
&& DC_MISS 
&& Valid LD instruction && !LDx_L 
&& LD doesn't TRAP (MAF Full, LD-ST Silo Trap, LD-MAF Conflict Trap, DMM_ERR, 
IBOX Trap) 

DREAD_ALLOCATE (LD && DC_MISS && CANT_MERGE I I LDx_L ) 
&& LD doesn't TRAP 

1.1.9.5.2 Dstream Writes WMB, FETCHx 

The Write Buffer (WB) section of the MAF stores addresses and commands for all ST, STx_C, 
WMB, and FETCHx instructions. The data portion of the write buffer is in the CBOX. The WB 
section of the MAF consists of 6 entries of 32B block PAs. When a ST PA is presented to the 
MAF, it will be compared with all other P.Ns in the WB section. If it matches an address already 
stored in the WB, it will be merged with that entry. Otherwise, it will be allocated a new entry. 
Merging can be disabled to any entry by setting the NOMERGE bit. Unlike the DREAD section, 
ST's can overwrite previous ST's which have not yet been issued to the Scache. Therefore, no 
quadword slot data needs to be stored or checked for quadword conflicts. 

When any ST is presented to the MAF, the MAF index in which the ST was loaded will be sent 
to the WB data section in the CBOX along with the LW address and an indication as to whether 
the opcode was a longword or quadword store. LW valid bits are kept by the CBOX for each entry 
of the WB. 

LD/ST conflicts are detected by comparing all incoming ST's with previous LD's in the Dread sec
tion. A ST to the same 32B block as an outstanding LD will set the CONFLICT bit corresponding 
to the Dread entry with the same PA. The NOFILL bit is also set for the outstanding LD entry 
to ensure the Dcache does not end up with "stale" data. (If the previous LD was forced to miss, 
the ST may hit in the Dcache). If multiple Dread entries match the store, then multiple conflict 
bits will be set for the store's entry in the WB. A WB entry with conflict bits set will be blocked 
from issuing until the conflicting LD has completed. When the fill for a LD completes, it clears 
any conflict bits related to it in the WB. 

ST/ST conflicts are detected by comparing all incoming ST's with previous WB entries. A ST that 
has the same 32B block address as a previous WB entry but cannot merge with the previous store 
will set the WMB bit associated with the entry allocated in the WB. The store will not be issued 
until all previous WB entries have completed. 

The MAF does not do anything special for stores to "non-cacheable" memory. These are handled 
by the CBOX. 

Each WB entry also has a FLUSH bit to indicate a HI-Priority arbitration for the entry to the 
MAF arbiter. Setting and clearing the FLUSH bit are shown in Table 1-19. 

1-44 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



FETCHx instructions are allocated a new entry in the WB and are loaded with the NOMERGE 
bit set to disable subsequent WB entries from merging with it. A FETCHx will set the FLUSH 
bit to force the WB to empty. 

The WMB instruction will set the WMB bit in the next available entry in the pending queue. 
This keeps any subsequent WB entries from issuing until all previous WB requests have been 
retired. It will also set the FLUSH and NOMERGE bits on all valid entries. 

The STx_C instruction is allocated a new entry in the WB and is loaded with the NOMERGE bit 
set to disable subsequent WB entries from merging with it. A STx_C will cause the WB to flush 
all non-issued entries to the CBOX. 

The WB will begin normal low-priority arbitration whenever a second entry is made to the buffer. 
The top entry of the WB arbitrates at low priority every 64 cycles or when a LDx_L instruction 
is executed. These events do not affect the state of the WB FLUSH bits. 

Figure 1-11: WB PA Datapath 

+----------------------------------+-------+ 
I PA<39:4> I Valid I 
+----------------------------------+-------+ 

Table 1-18: WB PA Datapath 

Field Name 

PA<39:4> 

Description 

Physical address of 32B block. 
Loaded on WB_ALLOCATE. 

Valid 

NOTE - PA<4:2> are sent directly to the CBOX WB as the LW address of the ST. 

This address is a valid entry. 
clear = WB_DONE I I RESET 
set = WB_ALLOCATE 

Figure 1-12: WB Control Bits 

+-------+--------+---------+ 
I Flush I Issued I Nomerge I 
+-------+--------+---------+ 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-45 



Table 1-19: WB Control Bits 

Field Name 

Flush 

Issued 

Nomerge 

Description 

A LD matched this WB entry. This entry should be issued to the CBOX at high 
priority. 
clear = entry is issued I I RESET 
set = !ISSUED && !TRAP && 

((LD I I LDx_L) && WB_PA_MATCH && DC_MISS I I 
STx_C I I 
FETCHx I I 
VALID && (MB I I WMB )) 

NOTE: MCSR<WB_FLUSH> doesn't set the flush bits explicitly. 
It only forces a high priority request (overriding the state of the 
stored flush bits). When cleared, all requests return to using stored state. 

The WB entry has been issued to the CBOX, but not completed. 
clear = WB_DONE I I RESET 
set = entry is issued 

Disable merging to this entry. 
clear = WB_DONE I I RESET 
set = ((STx_C I I FETCHx I I 

(MB I I WMB) && VALID I I 
WB_ALLOCATE && MCSR<WB_NMERGE> I I 
(LD I I LDx_L) && WB_PA_MATCH && DC_MISS ) 
&& !TRAP) I I 
entry has won the ARB (WB_GNT) 

NOTE - WB_DONE = WR_DONE I I FETCH_DONE I STxC_DONE 

Table 1-20: we Merge and Allocate Conditions 

MAF Action 

WB_MERGE 

WB_ALLOCATE 
&& !TRAP) 

Description 

ST && (!STx_C && !WMB && !FETCHx) 
&& entry_ VALID 
&& PA_match 
&& !NOMERGE && !MCSR<WB_NOMERGE> 
&& !TRAP 

((ST && CANT_MERGE) I I STx_C I I FETCHx) 

1.1.9.5.3 Memory Barriers (MB) 

On Memory Barriers (MB), the MB command will not be issued to the CBOX until all DREADs 
in the MAF have filled, and all WB entries in the MAF have been retired (this is detected when 
both free lists are "full"). The Memory Barrier sets the FLUSH bit for all valid entries in the 
WB. When MB_DONE is received from the CBOX on RETURN_STATUS, the MBOX will assert 
MB_CLEAR to restart the IBOX. 

1-46 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.9.5.4 Write Memory Barriers (WMB) 

On Write Memory Barriers (WMB), all writes issued before the WMB must finish before any 
writes issued after the WMB. The WMB does not get allocated an entry in the WB since it 
does not get issued to the CBOX. On a WMB instruction, the MAF sets the WMB bit in the 
next available entry in the WB pending queue and disables merging to all valid WB entries. 
This prevents subsequent WB entries from being issued until all previous WB entries have been 
retired. The WMB instruction sets the FLUSH bits for all valid entries in the WB. 

1.1.9 .5.5 lcache Read Misses 

The IREF section holds P.Ns for all IBOX prefetch queue requests. It consists of 4 entries of 
32B block P.Ns. When the IBOX prefetch queue requests a new block, it will supply the PA 
and prefetch queue index to the MAF. The PA will be loaded into the IREF section at the entry 
specified by the index (direct mapped to the Icache prefetch queue). 

Figure 1-13: IREF PA Datapath 

+----------------------------------+ 
I PA<39:4> I 
+----------------------------------+ 

Table 1-21: IREF PA Datapath 

Field Name 

PA<39:4> 

Description 

Physical address of 32B block with OW order. 
Load on IREF_REQ. 

1.1.9.6 MAF Issue to Scache 

Whenever memory requests (DREAD, WB or IREF) are allocated a new entry in the MAF (i.e. not 
merged), the corresponding MAF index is loaded into a FIFO pending queue. Separate pending 
queues exist for each type of request because they have different arbitration criteria. Entries 
logged in the DREAD pending queue immediately begin arbitrating for Scache cycles and may 
bypass directly to the Scache. An entry logged in the WB pending queue waits for either 2 
entries to be pending, a 64 cycle counter to overflow, a LDx_L instruction, or WB flush condition 
before it arbitrates for the Scache. Entries logged in the IREF pending queue immediately begin 
arbitrating. 

Incoming loads may be bypassed directly to the Scache if there are no other pending MAF requests 
of any kind. If there is a load in pipeO, it will be issued to the Scache before it is known whether 
it hit in the Dcache or merged with a previous MAF entry. If either of these conditions turn out to 
be true, then the issued command is aborted and a load in pipel may be issued the following cycle 
if there are no other pending requests. This command is speculative also, and may be aborted if 
it merged with a previous MAF entry (in this case by issuing a NOP to the CBOX). If there were 
no LD in pipel of the previous cycle, then a new load from the current cycle may be bypassed 
instead. If there are no loads in pipeO, then pipel will be issued to the CBOX in the bypass cycle. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-47 



All MAF pending requests compete with requests from the BIU for free SC tag cycles. The priority 
levels are (from highest to lowest): 

Table 1-22: MAF Issue Priority 

Name 

SC_BUSY 

WB_REISSUE 

REPLAY 

WB_HI 

DREAD_PEND 

MB 

IREF_PEND 

WB_LO 

PREVIOUS BYPASS 

BYPASS 

Description 

BIU is using the SCtag this cycle. 

Reissue a previous WB address (WR_Now cmd from the CBOX). 

Previously issued address was not accepted by the BIU. It must be 
replayed. 

Elevated WB request whenever any flush bits in WB are set 

DREAD requests basic arb. 

Memory Barrier issue request 

IREF requests basic arb. 

WB requests basic arb. 

No other pending requests. A load from a previous cycle has not yet 
been loaded into the MAF, but may be issued straight to the Scache. 

No other pending requests. Load misses can be issued straight to the 
Scache in parallel with loading into the MAF. 

Once a given request wins the arb for the Scache, the index is used to read the address out of the 
MAF to be driven to the Scache/BIU. If no other requests are pending in the MAF, LD addresses 
can be bypassed to the Scache in parallel with loading the MAF. The MAF index is shifted out of 
the pending queue and shipped as an ID for the address. The index is stored in a REPLAY queue 
and kept until the address has passed the point where it can be rejected by the BIU. Once an 
address is issued from any pending queue, that queue is incremented to start arbitrating at the 
next pending request (if any are pending). This process is independent for each pending queue 
(DREAD, WB, IREF). The MAF will only issue addresses when SC_BUSY has been deasserted 
for 2 consecutive cycles. This guarantees a minimum number of free cycles for the MAF request 
to complete in the Scache Tag store. 

1.1.9.6.1 Reissuing WB addresses 

The MAF has the capability of reissuing WB addresses which needed to get system permission 
before actually writing the data to the Scache. The data portion of the WB (in the CBOX) returns 
the MAF index, the WR_NOW command, and a bit indicating whether to issue the original 32B 
address or the other 32B address in the 64B block. The index is used to read the entry out of 
the WB section and reissue it to the Scache. If WR_64B_REQ is asserted, then MAF _ADDR<5> is 
inverted when the write is reissued. 

When the WR_NOW command is received by the MBOX, the command is latched in the wb_reissue 
latch. The command waits there until it wins arbitration for issue to the CBOX (the CBOX may 
be busy). Once the command is issued, the latch is cleared. 

1-48 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.9.6.2 Replaying an Address 

The MAF has the capability of replaying addresses which have been issued to but not accepted 
by the CBOX. This is the mechanism the CBOX uses to back pressure the Mbox when it detects 
certain address or resource conflicts. When an address is issued to the Scache, the MAF index 
of that address is latched for 2 cycles. If the CBOX rejects the address by asserting RETRY, the 
CBOX packet (MAF command, type, and index) is placed into the replay pending queue. Once 
loaded, the replay queue will arb at high priority. Upon winning the arb, the replay index is used 
to read the address back out of the MAF. Replays have higher priority than DREAD, WB and 
IREF requests, but lower priority than any CBOX request. There can be up to 2 replays in the 
queue at any time. 

Commands that are issued to the CBOX have already been checked for LD/LD, ST/ST LD/ST and 
ST/LD conflicts with previous MAF entries. For this reason, there is no need to maintain ordering 
of commands in the replay queue. With the exception of WB_REISSUE commands, addresses 
that are retried by the CBOX are placed into the bottom of the replay queue. This has the effect 
of round-robin issue from the replay queue when multiple retries occur. 

The WB_REISSUE command is never placed in the replay queue. After the WB_REISSUE 
command is issued to the CBOX, it is piped along for a couple of cycles until it hits the "retry" 
point. If, at this time, the CBOX decides to "retry" it, then the WB_REISSUE command is 
re-latched into the wb_reissue latch instead of the replay queue. 

NOTE 

It is possible that a second MAF command will already have been issued to the CBOX 
when RETRY is asserted for the first command. The MAF will not automatically abort 
a command that is in the shadow of the retry; the CBOX is responsible for accepting 
or retrying each MAF command on its own. 

1.1.9.7 Retiring MAF entries 

The final stage in the life of a MAF entry is retiring the entry. For LD's, this occurs when the 
data has been returned to the Ebox/Fbox and the block filled into the Dcache (if the fill wasn't 
blocked for some reason). For ST's, the CBOX informs the MAF that the write has completed. 
Once the given operation has completed, the entry in the MAF is cleared and the MAF index for 
the entry is loaded into the corresponding FREE list to be reallocated later. For IREF's, the entry 
is retired upon issuing to the CBOX. 

For Dcache fills, the CBOX returns the MAF index which was sent with the address when it 
was issued. The MAF reads the address, register number and format information out of the 
DREAD portion of the MAF. The address is driven to the Dcache interface, the register number 
to the IBOX and the format control to the respective formatter (E or F). This register number and 
format information is also piped along to the ECC error register, where it is loaded and locked if 
there is an ECC error associated with the fill from the CBOX. The MAF receives an MAF index 
for each octaword returned by the Scache/BIU and follows the same basic procedure for each. 
When the last octaword is sent to the MBOX, the CBOX also informs the MAF that this is the 
last fill. This allows the MAF to clear the entry and place the index back on the free list. 

For ECC fills, the CBOX returns corrected data for the fill associated with the previous M_RFB_ 
ECC_ERR. When the MAF receives the ECC_FILL return status, the register number and format 
information are read out of the ECC fill register to be sent to the IBOX and formatter along with 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-49 



the corrected data. The ECC fill register is unlocked on read. The Dcache is not filled with the 
corrected ECC_FILL data. 

For the WB, the BIU simply sends the MAF index and informs the MAF that the write corre
sponding to that entry has completed. The MAF clears the entry and places the index in the WB 
free list. 

For IREF's, the CBOX controls the Icache fills directly. The MAF clears the entry when it is 
issued to the CBOX. 

1.1.9.8 Loads from 10 SPACE 

IO space addresses will be handled like any other addresses in the MAF. They will be allowed to 
merge and issue as described above. When the entry is made to the MAF, the NOFILL bit is set 
if PA<39> is set (indicating IO space). The NOFILL bit will be read out of the MAF on fills and 
will disable the writing of the Dcache. 

When an IO space DREAD is issued to the CBOX, merging may continue to that entry until 
approximately 2 cycles later, when the CBOX returns a FIRST _FILL command and the index 
of the issued command. The fill request will be aborted by the Scache miss, but the MAF uses 
the FIRST_FILL command to read out the quadword valid bits and send them to the CBOX as 
DRD_MASK<3:0>. These bits are sent out to the system as a quadword mask, indicating which 
quadwords in IO space were actually requested by the CPU. The NOMERGE bit for that entry 
is set at this time as well. For !stream IO loads the quadword mask is set to all ones. 

1.1.9.9 Mbox Unavailable Traps 

Trap conditions caused by the MAF are calculated during 5B based on available entries, DC_HIT 
and PA conflict results. All traps will be reported on the instruction causing the trap. If pipel 
causes the trap, pipeO will continue and pipel will abort; if pipeO causes the trap, both pipeO and 
pipel will be aborted. 

Table 1-23: Mbox Unavailable Traps 

Trap Condition Description 

DREAD FULL Any Load && DREAD_FREE_LIST_EMPTY I I 
Any Load in Pipel && DREAD_FREE_LIST_ONE_LEFT. 

WB FULL (Any Store I I FETCH I I WMB) && WB_FREE_LIST_EMPTY 

LD-MAF CONFLICT Any Load && DREAD_PA_MATCH && same quadword or longword 
TRAP 

LD-ST SILO TRAP Any Load && Index match immediately preceding Store && ST hit in Dcache 

1.1.9.10 MAF Boundary Conditions 

1-50 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



1.1.9.10.1 Dread Merge Cutoff Point 

Incoming LD's may merge to existing LD MAF entries until one of the following conditions are 
encountered. 

• FIRST_FILL and Scache lookup and Scache hit 

• FIRST_FILL and IO space 

• FIRST_FILL and not Scache lookup for existing entry 

• Incoming Store to same address sets NOMERGE bit. 

In the worst case, for a load that bypasses the MAF and hits in the Scache, there are 2 cycles in 
addition to the current cycle in which subsequently issued loads may merge to the original load. 

LDx_L instructions will always allocate a new DREAD entry; the MAF will disable merging to 
LDx_L entries. 

1.1.9.10.2 WB Merge Cutoff Point 

Merging to the WB is constrained by how fast the data portion of the WB can supply the data to 
the Scache. For this reason merging is only allowed to entries that have not won the arb for the 
Scache. Merging is stopped during the cycle the WB wins the arb. Note, merging is cutoff before 
it is known whether the write is actually issued to the Scache. 

1.1.1 O Mbox and Dcache IPR's 

NOTE 

Traps are factored into MBOX IPR write operations unless noted otherwise. 

Unless explicitly stated, IPRs are not cleared or set by hardware on chip or on timeout 
reset. 

1.1.10.1 DTB_ASN, Dstream TB Address Space Number 

The DTB_ASN register is a write-only register which, when not in PALmode, must be written 
with an exact duplicate of the ITB_ASN register's ASN field. 

Figure 1-14: DTB_ASN 

6 
3 

5 5 
7 6 

0 
0 

+-----------+--------------------------------------+ 
I ASN <6:0> I IGN 
+------+----+--------------------------------------+ 

1.1.10.2 DTB_CM, Dstream TB Current Mode 

The DTB_CM register is a write-only register which, when not in PALmode, must be written with 
an exact duplicate of the lbox Processor Status (JPS) register's CM field. These bits indicate the 
Current Mode of the machine. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-51 



Figure 1-15: DTB_CM 

6 
3 

0 0 0 0 0 
5 4 3 2 0 

+------------------------------------------------+-+-+-----+ 
ICICI I 

IGN !MIMI IGN I 
1110 I I 

+------------------------------------------------+-+-+-----+ 

Table 1-24: DTB_CM Mode Bits 

CM<l> CM<O> Current Mode 

0 0 Kernel Mode 

0 1 Executive Mode 

1 0 Supervisor Mode 

1 1 User Mode 

1.1.10.3 DTB_TAG, Dstream TB TAG 

The DTB_TAG register is a write-only register which writes the DTB tag and the contents of 
the DTB_PI'E register to the DTB. To insure the integrity of the DTBs, the DTB's PTE array 
is updated simultaneously from the internal DTB_PTE register when the DTB_TAG register is 
written. The entry to be written is chosen at the time of the DTB_TAG write operation by a 
not-last-used algorithm implemented in hardware. A write to the DTB_TAG register increments 
the TB entry pointer of the DTB which allows writing the entire set ofDTB PTE and TAG entries. 
The TB entry pointer is initialized to entry zero and the TB valid bits are cleared on chip reset 
but not on timeout reset. 

Figure 1-16: DTB_TAG, Dstream TB Tag 

3 
4 4 
3 2 

1 1 
3 2 

0 
0 

+--------------+--------------------------+----------------+ 
I IGN I VA<42 .. 13> I IGN I 
+--------------+--------------------------+----------------+ 

1.1.10.4 Dstream TB PTE, DTB_PTE 

The DTB_PTE register is a read/write register representing the 64-entry DTB page table entries. 
The entry to be written is chosen by a not-last-used algorithm implemented in hardware. Writes 
to the DTB_PTE use the memory format bit positions as described in the Alpha SRM with the 
exception that some fields are ignored. In particular the PFN valid bit is not stored in the DTB. 

1-52 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



To ensure the integrity of the DTB, the PTE is actually written to a temporary register and not 
transferred to the DTB until the DTB_TAG register is written. As a result, writing the DTB_ 
PTE and then reading without an intervening DTB_TAG write will not return the data previously 
written to the DTB_PrE register. 

Reads of the DTB_PI'E require two instructions. First, a read from the DTB_Pl'E sends the PTE 
data to the DTB_P'rE_TEMP register. A zero value is returned to the integer register file on 
a DTB_PTE read. A second instruction reading from the DTB_PTE_TEMP register returns the 
PTE entry to the register file. Reading the DTB_Pl'E register increments the TB entry pointer 
of the DTB which allows reading the entire set of DTB PTE entries. 

Figure 1-17: DTB_PTE, Dstream TB PTE 

63 59 58 32 31 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
+-----+---------------+---------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I IGN I PFN<39: 13> I IGN 
+-----+--------- -----+---------+- +--+--+--+- +--+--+--+--+--+--+--+--+--+--+--+ 

I I I 
I I +---> ignore 
I I +------> FOR 
I +---------> FOW 
+------------> ignore 

+---------------> ASM 
+--------------------> GH<l:O> 

+------------------------> ignore 
+---------------------------> KRE 

+------------------------------> ERE 
+---------------------------------> SRE 

+------------------------------------> URE 
+---------------------------------------> KWE 

+------------------------------------------> EWE 
+---------------------------------------------> SWE 

+------------------------------------------------> UWE 
+------------------------------------------------------------------> PFN<39:13> 

Note: The fields of the Page Table Entry are described in the ALPHA SRM. 

1.1.10.5 DTB_PTE_TEMP 

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE read data. Reads of 
the DTB_Pl'E require two instructions to return the PTE data to the register file. The first reads 
the DTB_Pl'E register to the DTB_PI'E_TEMP register and returns zero to the register file. The 
second returns the DTB_PTE_TEMP register to the integer register file. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-53 



Figure 1-18: DTB_PTE_TEMP 

63 39 13 12 10 09 08107 06 05 04103 02 01 00 
+----------------+----------------+------+--+--+--+--+--+--+--+--+--+--+ 

RAZ I PFN<39: 13> I RAZ I I I I I I I I I I I 
+----------------+------ ---------+------+--+--+--+--+--+--+--+--+--+--+ 

I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I +------------> FOR 
I I I I I I I +---------------> FOW 
I I I I I I +------------------> KRE 
I I I I I +---------------------> ERE 
I I I I +------------------------> SRE 
I I I +---------------------------> URE 
I I +------------------------------> KWE 
I +---------------------------------> EWE 
I +------------------------------------> SWE 
+---------------------------------------> UWE 

+----------------------------------------------------------> PFN<39 •. 13> 

1.1.10.6 MM_STAT, Dstream MM Fault Status Register 

When D-stream faults or Dcache parity errors occur the information about the fault is latched 
and saved in the MM_STAT register. The VA, VA_FORM and MM_STAT registers are locked 
against further updates until software reads the VA register. MM_STAT bits are only modified 
by hardware when the register is not locked and a memory management error, DTB miss, or 
Dcache parity error occurs. The MM_STAT is not unlocked or cleared on reset. 

Figure 1-19: MM_STAT, Dstream MM Fault Register 

63 17 16 11 10 06 05 04103 02 01 00 
+--------------------------------------------+--------------------+-----------+--+--+--+--+--+--+ 
I RAZ I I I I I I I I 
+--------------------------------------------+--------------------+-----------+--+--+--+--+--+--+ 

I I I I I 
I I I I +-->WR 
I I I +----->ACV 
I I +-------->FOR 
I +----------->FOW 
+-------------->OTB MI~ 

+----------------->BAD VA 
+------------------------>RA 

+----------------------------------------->OPCODE 

Table 1-25: MM_STAT Field Descriptions 

Name 

WR 

ACV 

FOR 

FOW 

DTB_MISS 

1-54 The Mbox 

Extent 

0 

1 

2 

3 

4 

Type 

RO 
RO 
RO 
RO 
RO 

Description 

Set if reference which caused error was a write. 

Set if reference caused an access violation. Includes bad VA. 

Set if reference was a read and the PTE's FOR bit was set. 

Set if reference was a write and the PTE's FOW bit was set. 

Set if reference resulted in a DTB miss. 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-25 (Cont.): MM_STAT Field Descriptions 

Name Extent Type Description 

BAD_ VA 5 RO Set if reference had a bad virtual address. 

RA 10:6 RO Ra field of the faulting instruction. 

OPCODE 16:11 RO Opcode field of the faulting instruction. 

1.1.10.1 VA, Faulting Vinual Address 

When D-stream faults, DTB misses, or Dcache parity errors occur the effective virtual address 
associated with the fault, miss, or error is latched in the read-only VA register. The VA, VA_ 
FORM, and MM_STAT registers are locked against further updates until software reads the VA 
register. The VA IPR is not unlocked on reset. 

Figure 1-20: VA, Faulting VA Register 

3 
0 
0 

+------------------------------------------------------+ 
Virtual address 

+------------------------------------------------------+ 

1.1.10.a VA_FORM, Formatted Vinual Address 

VA_FORM contains the virtual page table entry address calculated as a function of the faulting 
VA and the Virtual Page Table Base (VA and MVPTBR registers). This is done as a performance 
enhancement to the Dstream TBmiss PALflow. The VA is formatted as a 32-bit PTE when the 
NT_Mode bit, MCSR<SPO>, is set. VA_FORM is a read-only IPR, and is locked on any D-stream 
fault, DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers are locked 
against further updates until software reads the VA register. The VA_FORM IPR is not unlocked 
on reset. Figure 1-21 describes VA_FORM when MCSR<SPO> is clear. Figure 1-22 describes 
VA_FORM when MCSR<SPO> is set. 

Figure 1-21: VA_FORM, Formatted VA Register for NT _Mode=O 

6 
3 

3 3 
3 2 

0 0 
3 2 

0 
0 

+----------------------------+------------------+------+ 
I VPTB<63:33> VA<42:13> 0 I 
+----------------------------+------------------+------+ 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-55 



Figure 1-22: VA_FORM, Formatted VA Register, NT_Mode:1 

6 
3 

3 2 2 2 
0 9 2 1 

0 0 
3 2 

0 
0 

+------------------------------+-----+----------+------+ 
I VPTB<63:30> I 0 I VA<31:13>1 0 I 
+------------------------------+-----+----------+------+ 

Table 1-26: VA_FORM Field Descriptions 

Name 

VA<42:13> 

VPTB 

VA<31:13> 

VPTB 

Extent 

32:03 

63:33 

21:03 

63:30 

Type 

RO 

RO 

RO 

RO 

Description 

Subset of the original faulting Virtual Address,NT_Mode=O. 

Virtual Page Table Base address as stored in MVPTBR,NT_ 
Mode=O. 

Subset of the original faulting Virtual Address,NT_Mode=l. 

Virtual Page Table Base address as stored in MVPTBR,NT_ 
Mode=l. 

1.1.10.9 MVPTBR, Mbox Vinual Page Table Base Register 

MVPTBR contains the virtual address of the base of the page table structure. It is stored in the 
Mbox to be used in calculating the VA_FORM IPR for the Dstream TBmiss PAL flow. Unlike the 
VA register, the MVPTBR is not locked against further updates when a Dstream fault, DTB Miss 
or Dcache parity error occurs. The MVPTBR is a write-only IPR that looks like this: 

Figure 1-23: MVPTBR 

6 
3 

3 2 
0 9 

0 
0 

+----------------------------------+-------------------+ 
I VPTB<63: 30> I IGN I 
+----------------------------------+-------------------+ 

1.1.10.10 DC_PERR_STAT, Dcache Parity Error Status 

When a Dcache parity error occurs, the error status is latched and saved in the DC_PERR_STAT 
register. The VA, VA_FORM and MM_STAT registers are locked against further updates until 
software reads the VA register. If a Dcache parity error is detected while the Dcache parity error 
status register is unlocked, the error status is loaded into DC_PERR_STAT<5:2>. The LOCK bit 
is set and the register is locked against further updates (except for the SEO bit) until software 
writes a "one" to clear the LOCK bit. The SEO bit is set when a Dcache parity error occurs while 
the Dcache parity error status register is locked. Once the SEO bit is set it is locked against 
further updates until the software writes a "one" to DC_PERR_STAT<O> to unlock and clear the 
bit. Note the SEO bit does not get set when Dcache parity errors are detected on both pipes 
within the same cycle. For this particular situation, the pipeO/pipel Dcache parity error status 

1-56 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



bits will indicate the existence of a second parity error. The DC_PERR_STAT is not unlocked or 
cleared on reset. 

Figure 1-24: DC_PERR_STAT, Dcache Parity Error Status 

63 06 05 04 03 02 01 00 

+-----------------------------------------------------------------------------+--+--+--+--+--+--+ 
I RAZ I I I I I I I 
+-----------------------------------------------------------------------------+--+--+--+--+--+--+ 

I I I I I I 
I I I I I +-->SEO 
I I I I +----->LOCK 
I I I +-------->DPO 
I I +----------->DP 1 
I +-------------->TPO 
+----------------->TPl 

Table 1-27: DC_PERR_STAT Field Descriptions 

Name Extent Type Description 

SEO 0 WlC Set if second Dcache parity error occurred in a cycle after the 
register was locked. The SEO bit will not be set as a result 
of a second parity error that occurs within the same cycle as 
the first. 

LOCK 1 WlC Set if parity error detected in Dcache. Bits <5:2> are locked 
against further updates when this bit is set. Bits <5:2> are 
cleared when the LOCK bit is cleared. 

DPO 2 RO Set on data parity error in Dcache bank 0. 

DPl 3 RO Set on data parity error in Dcache bankl. 

TPO 4 RO Set on tag parity error in Dcache bank 0. 

TPl 5 RO Set on tag parity error in Dcache bank 1. 

1.1.10.11 Dstream TB Invalidate All Process, DTBIAP 

This is a write-only register. Any write to this register invalidates all DTB entries in which the 
ASM bit is equal to zero. 

1.1.10.12 Dstream TB Invalidate All, DTBIA 

This is a write-only register. Any write to this register invalidates all 64 DTB entries, and resets 
the DTB NLU pointer to its initial state. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-57 



1.1.10.13 DTBIS, Dstream TB Invalidate Single 

This is a write-only register. Writing a virtual address to this IPR invalidates the DTB entry 
that meets any one of the following criteria: 

• A DTB entry whose VA field matches DTBIS<42:13> and whose ASN field matches DTB_ 
ASN<63:57>. 

• A DTB entry whose VA field matches DTBIS<42:13> and whose ASM bit is set. 

Figure 1-25: DTBIS 

6 
3 

4 4 
3 2 

1 1 
3 2 

0 
0 

+------------------------+------------+------------------+ 
IGN I VA<42:13> I IGN 

+------------------------+------------+------------------+ 

NOTE 

The DTBIS is written before the normal IBOX trap point. The DTB invalidate single 
operation will be aborted by the IBOX only for the following trap conditions: ITB miss, 
PC mispredict, or when the HW _MTPR DTBIS is executed in user mode. 

1.1.10.14 MCSR, Mbox Control Register 

The MCSR register is a read/write register that controls features and records status in the Mbox. 
This register is cleared on chip reset but not on timeout reset. 

Figure 1-26: MCSR, Mbox Control Register 

63 6 5 4 3 2 1 0 
+------------------------------------+--+--+--+--+--+--+ 

RAZ 
+------------------------------------+--+--+--+--+--+--+ 

I I I I 
I I I I 
I I I +------> M BIG ENDIAN 
I I +-----------> SP<l:O> 
I I +---------------> DBG TEST SEL<O> 
I +------------------> E BIG ENDIAN 
+---------------------> DBG TEST SEL<l> 

Table 1-28: MCSR Field Descriptions 

Name 

M_BIG_ENDIAN 

1-58 The Mbox 

Extent Type Description 

0 RW,O Mbox Big Endian mode enable. When set, bit 2 of the physical 
address is inverted for all longword Dstream references. 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-28 (Cont.): MCSR Field Descriptions 

Name Extent Type Description 

SP<l:O> 2:1 RW,O Super page mode enables. SP<l> enables superpage map-
ping when VA<42:41> = 2. In this mode, virtual addresses 
VA<39:13> are mapped directly to physical addresses PA<39:13>. 
Virtual address bit VA<40> is ignored in this translation. 
SP<O> enables one-to-one super page mapping of D-stream 
virtual addresses with VA<42:30> = lFFE(Hex). In this mode, 
virtual addresses VA<29:13> are mapped directly to physical 
addresses PA<29:13>, with bits <39:30> of physical address 
set to 0. SP<O> is the NT_Mode bit that is used to control 
VA formatting on a read from the VA_FORM IPR. Superpage 
access is only allowed in kernel mode. 

DBG_TEST_SEL<O> 3 RW,O Debug 'Thst Select. The DBG_TEST_SEL<l:O> bits are used 
to control the Mbox/Cbox DECchip 21164-AA parallel test 
port mux selection. When DBG_TEST_SEL<l:O> = (00), the 
Cbox DBG_DATA<7:0> is selected. When DBG_TEST_SEL<l:O> 
= (01), the Mbox DCI debug packet is selected. When DBG_ 
TEST_SEL<l:O> = (10), the Mbox MAF_OUT debug packet 
is selected. When DBG_TEST_SEL<l:O> = (11), the debug 
packet selection is dynamically controlled by the state of the 
RFB_DATA_ VALID signal from the Cbox. (Need a refer-
ence to the Mbox test packet signal description.) These 
bits are used for diagnostic and test purposes only. 

E_BIG_ENDIAN 4 RW,O Ebox Big Endian mode enable. This bit is sent to the Ebox to 
enable Big Endian support for the EXTxx, MSKxx and INSxx 
byte instructions. This bit causes the shift amount to be in-
verted (ones-complemented) prior to the shifter operation. 

DBG_TEST_SEL<l> 5 RW,O Mbox debug packet select. See DBG_TEST_SEL<O>. 

1.1.10.15 DC_MODE, Dcache Mode Register 

The DC_MODE register is a read/write register that controls diagnostic and test modes in the 
Dcache. This register is cleared on chip reset but not on timeout reset. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-59 



Figure 1-27: DC_MODE, Dcache Mode Register 

63 5 4 3 2 1 0 
+------------------------------------------+--+--+--+--+ 

RAZ I I I I I I 
+------------------------------------------+--+--+--+--+ 

I I I I I 
I I I I I 
I I I I +------> DC ENA 
I I I +---------> DC FHIT 
I I +------------> DC BAD PARITY 
I +---------------> DC PERR DISABLE 
+------------------> DC DOA 

Table 1-29: DC_MODE Field Descriptions 

Name 

DC_ENA 

DC_FHIT 

DC_BAD_PARITY 

DC_PERR_DISABLE 

DC_DOA 

1-60 The Mbox 

Extent Type Description 

0 RW,O 

1 RW,O 

2 RW,O 

3 RW,O 

4 RO 

Software Dcache enable. Unless the Dcache has been dis
abled in hardware (DC_DOA is set), the DC_ENA bit enables 
the Dcache. (The Dcache is enabled if DC_ENA=l AND DC_ 
DOA=O). When clear, the Dcache command will not be up
dated by ST's or FILLs, and all LD's will be forced to miss in 
the Dcache. 

Dcache force hit. When set, this bit forces all D-stream refer
ences to hit in the Dcache. 

When set, this bit inverts the data parity inputs to the Dcache 
on integer stores. This will have the effect of putting bad data 
parity into the Dcache on integer stores that hit in the Dcache. 
This bit will have no effect on the tag parity written to the 
Dcache during fills or the data parity written to the CBOX 
Write Data Buffer on integer stores. Note: Floating point 
stores should NOT be issued when this bit is set because it 
may result in bad parity being written to the CBOX Write 
Data Buffer. 

When set, this bit disables Dcache parity error reporting. 
When clear, this bit enables all Dcache tag and data par
ity errors. Parity error reporting is enabled during all other 
Dcache test modes unless this bit is explicitly set. 

Hardware Dcache Disable. When set, the Dcache is faulty and 
has been disabled under hardware control (a programmable 
/readable fuse resides in the MBOX). All D-stream references 
will be forced to miss in the Dcache, and outstanding fills 
will be blocked from filling the Dcache. When DC_DOA is 
clear, the Dcache can be enabled under software control (DC_ 
ENA=l). Note the DC_MODE register must be written under 
software control at least once before the state of the DC_DOA 
fuse is readable. 

DIGITAL RESTRICTED DISTRIBUTION 



NOTE 

The DC_MODE bits are only used for diagnostics and test. For normal operation, they 
will only be supported in the following configuration: 

DC_ENA= 1 
DC_FHIT = 0 
DC_BAD_PARITY = 0 
DC_PERR_DISABLE = 0 

1.1.10.16 MAF _MODE, MAF Mode Register 

The MAF _MODE register is a read/write register that controls diagnostic and test modes in the 
Mbox Miss Address File. This register is cleared on chip reset. Bit<5> is also cleared on timeout 
reset. 

Figure 1-28: MAF _MODE, MAF Mode Register 

63 8 7 6 5 4 3 2 1 0 
+------------------------------+--+--+--+--+--+--+--+--+ 
I RAZ I I 
+------------------------------+--+--+--+--+--+--+--+--+ 

I 
I 
I I +------> DREAD_NOMERGE 
I +---------> WB FLUSH ALWAYS 
I +------------> WB NOMERGE 
I +---------------> MAF NO BYPASS 
I +------------------> WB CNT DISABLE 
I +---------------------> MAF ARB DISABLE 
+------------------------> DREAD PENDING (READ ONLY) 

+---------------------------> WB_PENDING (READ ONLY} 

Table 1-30: MAF _MODE Field Descriptions 

Name 

DREAD_NOMERGE 

WB_FLUSH_ALWAYS 

WB_NOMERGE 

Extent Type Description 

0 

1 

2 

RW,O 

RW,O 

RW,O 

Miss Address File DREAD Merge Disable. When set, this bit 
disables all merging in the DREAD portion of the miss ad
dress file. Any load that is issued when DREAD_NOMERGE 
is set will be forced to allocate a new entry. Subsequent merg
ing to that entry is not allowed (even if DREAD_NOMERGE 
is cleared). 

When set, this bit forces the write buffer to flush whenever 
there is a valid WB entry. 

When set, this bit disables all merging in the write buffer. 
Any store that is issued when WB_NOMERGE is set will be 
forced to allocate a new entry. Subsequent merging to that 
entry is not allowed (even ifWB_NOMERGE is cleared.) 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-61 



Table 1-30 (Cont.): MAF _MODE Field Descriptions 

Name 

MAF _NO_BYPASS 

WB_CNT_DISABLE 

MAF _ARB_DISABLE 

DREAD_PENDING 

WB_PENDING 

Extent Type Description 

3 

4 

5 

6 

7 

R\V,O When set, this bit disables Dread bypass requests in the MAF 
arbiter. All Dread requests will be loaded into the MAF pend
ing queue before arbitration takes place. 

RW,O When set, this bit disables the 64-cycle WB counter in the 
MAF arbiter. The top entry of the WB will arb at low priority 
only when a LDx_L is issued or a second WB entry is made. 

RW,O When set, this bit disables all Dread and WB requests in the 
MAF arbiter. WB_Reissue, Replay, Iref and MB requests are 
not blocked from arbitrating for the Scache. This bit is cleared 
on both timeout and chip reset. 

R,O This bit indicates the status of the MAF Dread file. When set, 
there are one or more outstanding Dread requests in the MAF 
file. When clear, there are no outstanding Dread requests. 

R,O This bit indicates the status of the MAF WB file. When set, 
there are one or more outstanding WB requests in the MAF 
file. When clear, there are no outstanding WB requests. 

NOTE 

Bits <5:0> of the MAF _MODE register are only used for diagnostics and test. For 
normal operation, they are supported in the following configuration: 

DREAD_NOMERGE = 0 
WB_FLUSH_ALWAYS = 0 
WB_NOMERGE = 0 
MAF _NO_BYPASS = 0 
DREAD_ WB_ARB_DISABLE=O 
WB_ CNT _DISABLE=O 

1.1.10.17 DC_FLUSH, Dcache Flush Register 

A write to this register clears all the valid bits in both banks of the Dcache. 

1.1.10.18 ALT _MODE, Alternate mode 

ALT_MODE is a write-only IPR. The AM field specifies the alternate processor mode used by 
HW _LD and HW _ST instructions. 

1-62 The Mbox DIGITAL RESTRICTED DISTRIBUTION 



Figure 1-29: ALT_MODE 

6 
3 

0 00 0 
5 43 2 

0 
0 

+----------------------------------------------+--+--------+ 
I IGN IAMI IGN I 
+----------------------------------------------+--+--------+ 

Table 1-31 : ALT Mode 

ALT_MODE<4:3> Mode 

0 0 Kernel 

0 1 Executive 

1 0 Supervisor 

1 1 lJser 

1.1.10.19 CC, Cycle Counter 

DECchip 21164-AA supports a cycle counter as described in the Alpha SRM. The low half of the 
counter, when enabled, increments once each CPU cycle. The upper half of the CC register is the 
counter offset. CC<63:32> is written on a HW_MTPR to the CC IPR; bits <31:0> are unchanged. 
CC_CTL<32> is used to enable or disable the cycle counter. The lower half of the cycle counter 
is written on a HW_MTPR to the CC_CTL IPR. 

The CC register is read by the RPCC instruction as defined in the Alpha SRM (The RPCC 
instruction returns a 64-bit value). The cycle counter is enabled to increment only 3 cycles after 
the MTPR CC_CTL (with CC_CTL<32> set) is issued. This means that an RPCC instruction 
issued 4 cycles after an MTPR CC_CTL that enables the counter will read a value that is 1 
greater than the initial count. The cycle counter is disabled on chip reset. 

The write-only CC Register looks like this: 

Figure 1-30: CC, Cycle Counter Register 

63 32 31 0 

+---------------------------+--------------------------+ 
I cc, offset I IGN I 
+---------------------------+--------------------------+ 

1.1.10.20 CC_CTL, Cycle Counter Control 

The CC_CTL register is a write-only register that is used to write the low 32 bits of the cycle 
counter and to enable or disable the counter. Bits CC<31:4> are written with the value cc_ 
CTL<31:4> on a HW_MTPR to the CC_CTL register. Bits CC<3:0> are written with zero; bits 
CC<63:32> are not changed. If cc_CTL<32> is set then the counter is enabled, otherwise the 
counter is disabled. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-63 



Figure 1-31: CC_CTL, Cycle Counter Control Register 

63 33 32 31 4 3 0 

+------------------------+--+--------------------+-----+ 
IGN I IGN I 

+------------------------+--+--------------------+-----+ 
I I 
I I 
I +------------------> Count<31:4> 
+---------------------------------> CC ENA 

Table 1-32: CC_CTL Field Descriptions 

Name 

Count<31:4> 

CC_ENA 

Extent Type Description 

31:4 WO 

32 WO 

Cycle count. This value is loaded into bits <31:4> of the CC 
register. 

Cycle Counter enable. When set, this bit enables the CC reg
ister to begin incrementing 3 cycles later. An RPCC issued 4 
cycles after CC_CTL<32> is written will see the initial count 
incremented by 1. 

1.1.10.21 DC_TEST_CTL, Dcache Test TAG Control Register 

The DC_TEST_CTL register is a read/write IPR used exclusively for test and diagnostics. 

An address written to this register will be used to index into the Dcache array when reading or 
writing the DC_TEST_TAG register. See Section 1.1.10.22 for a description of how this register 
is used. 

Figure 1-32: DC_TEST_CTL, Dcache Test TAG Control Register 

63 13 12 03 02 01 00 
+----------------------------------------------------+-----------------------------+--+--+--+ 

RAZ I 
+----------------------------------------------------+-----------------------------+--+--+--+ 

1-64 The Mbox 

I I 
I +--> BANKO 

I +-----> BANK! 
+--------> IGN/RAZ 

+-----------------------------> INDEX<12:'. 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-33: DC_TEST_CTL Field Descriptions 

Name 

BANKO 

BANKl 

INDEX 

Extent Type 

0 RW 

1 RW 

12:3 RW 

Description 

Dcache Banko enable. When set, reads from DC_TEST_TAG 
will return the tag from Dcache bankO and writes to DC_ 
TEST_TAG will write to Dcache bankO. When clear, reads 
from DC_TEST_TAG will return the tag from Dcache bankl. 

Dcache Bankl enable. When set, writes to DC_TEST_TAG 
will write to Dcache bankl. This bit has no effect on reads. 

Dcache tag index. This field is used on reads/writes from 
Ito the DC_TEST_TAG register to index into the Dcache tag 
array. 

1.1.10.22 DC_TEST_TAG, Dcache Test TAG Register 

The DC_TEST_TAG register is a read/write IPR used exclusively for test and diagnostics. 

When DC_TEST_TAG is read, the value in the DC_TEST_CTL register is used to index into the 
Dcache and the value in the tag, tag parity, valid and data parity bits for that index are read out 
of the Dcache and loaded into the DC_TEST_TAG_TEMP IPR register. A zero value is returned 
to the integer register file. If BANKO is set, the read is from Dcache bankO. Otherwise it is from 
Dcache bankl. 

When DC_TEST_TAG is written, the value written to DC_TEST_TAG is written to the Dcache 
index referenced by the value in the DC_TEST_CTL register. The tag, tag parity, and valid bits 
are affected by this write. Data parity bits are not affected by this write (use DC_MODE<llC_ 
BAD_PARITY> and force hit modes). If BANKO is set, the write is to Dcache bankO. If BANKl is 
set, the write is to Dcache bankl. If both are set, the write will occur to both banks. 

Figure 1-33: DC_TEST_TAG, Dcache Test TAG Register 

63 39 38 13 12 11 03 02 01 00 
+--------------------+-------------------------------+--+--+------------------------+--+-----+ 

IGN I I IGN I IGN I 
+--------------------+-------------------------------+--+--+------------------------+--+-----+ 

I I I I 
I I I +--------> TAG PARITY 
I I +------------------------------------> OWO_VALID 
I +---------------------------------------> OWl VALID 
+---------------------------------------------------------> TAG<38:13> 

Table 1-34: DC_TEST_TAG Field Descriptions 

Name Extent Type 

TAG_PARITY 2 WO 

DIGITAL RESTRICTED DISTRIBUTION 

Description 

Tag Parity. This bit refers to the Dcache tag parity bit which 
covers tag bits 38 through 13 (valid bits not covered). 

The Mbox 1-65 



Table 1-34 (Cont.): DC_ TEST_ TAG Field Descriptions 

Name 

OWO_VALID 

OWl_VALID 

TAG 

Extent Type Description 

11 WO 

12 WO 

38:13 WO 

Octaword valid bit 0. This bit refers to the Dcache valid bit 
for the low order octaword within a Dcache 32B block. 

Octaword valid bit 1. This bit refers to the Dcache valid bit 
for the high order octaword within a Dcache 32B block. 

Tag<38: 13>. This refers to the tag field in the Dcache array. 
(Note: Bit 39 is not stored in the array) 

1.1.10.23 DC_ TEST_ TAG_ TEMP, Dcache Test TAG Temp Register 

The DC_TEST_TAG_TEMP register is a read-only IPR used exclusively for test and diagnostics. 

Reading the Dcache tag array requires a 2 step process. First, a read from DC_TEST_TAG reads 
the tag array and data parity bits and loads them into the DC_TEST_TAG_TEMP register. An 
undefined value is returned to the integer register file. A second read of the DC_TEST_TAG_ 
TEMP register will return the Dcache test data to the register file. 

Figure 1-34: DC_TEST_TAG_TEMP, Dcache Test TAG Temp Register 

63 39 38 13 12 11 07 06 05 04 03 02 01 00 
+--------------------+-------------------------------+--+--+-----------+--+--+--+--+--+-----+ 
I RAZ I I I I RAZ I I I I I I RAZ I 
+--------------------+-------------------------------+--+--+-----------+--+--+--+--+--+-----+ 

+--------> TAG PARIT~ 

+-----------> DATA PARO< 
+--------------> DATA PARO< 

+-----------------> DATA PARl< 
+--------------------> DATA PARl< 

+------------------------------------> owo VALID 
+---------------------------------------> OWl VALID 

+---------------------------------------------------------> TAG<38:13: 

Table 1-35: DC_TEST_TAG_TEMP Field Descriptions 

Name Extent Type 

TAG_PARITY 2 RO 

3 RO 

DATA_PARO<l> 4 RO 

1-66 The Mbox 

Description 

Tag Parity. This bit refers to the Dcache tag parity bit which 
covers tag bits 38 through 13 (valid bits not covered). 

Data Parity. This bit refers to the BankO Dcache data parity 
bit which covers the lower longword of data indexed by de_ 
test_ctkINDEX>. 

Data Parity. This bit refers to the BankO Dcache data parity 
bit which covers the upper longword of data indexed by DC_ 
TEST_CTL<INDEX>. 

DIGITAL RESTRICTED DISTRIBUTION 



Table 1-35 (Cont.): DC_TEST_TAG_TEMP Field Descriptions 

Name Ex.tent Type Description 

5 RO Data Parity. This bit refers to the Bankl Dcache data parity 
bit which covers the lower longword of data indexed by DC_ 
TEST_CTL<INDEX>. 

DATA_PARl<l> 6 RO Data Parity. This bit refers to the Bankl Dcache data parity 
bit which covers the upper longword of data indexed by DC_ 
TEST_CTL<INDEX>. 

OWO_VALID 11 RO Octaword valid bit 0. This bit refers to the Dcache valid bit 
for the low order octaword within a Dcache 32B block. 

OWl_VALID 12 RO Octaword valid bit 1. This bit refers to the Dcache valid bit 
for the high order octaword within a Dcache 32B block. 

TAG 38:13 RO Tag<38:13>. This refers to the tag field in the Dcache array. 
(Note: Bit 39 is not stored in the array) 

1.2 Reset and Initialization 

The MCSR, DC_MODE and MAF_MODE IPRs are cleared on chip reset; all other IPRs must be 
reset by PALcode. 

On both chip and timeout reset, the MAF operating state will be reset. This includes clearing all 
status bits in the MAF file, clearing all pending queues, setting the free list indices, clearing the 
WB counter and MB request flip-flops, clearing the replay and wb_reissue valid bits, and clearing 
the valid bits in the register number array. 

The cycle counter IPR, CC, is disabled on chip reset. 

The DTB pointer will be initialized to point to the bottom entry and the DTB valid bits will be 
cleared on chip reset but not on timeout reset. The valid bits in the Dcache will not be cleared 
on either reset. 

Palcode is expected to read the VA register to unlock the VA, VA_FORM and MM_STAT registers, 
and to write to the DC_PERR_STAT register to unlock and clear the status bits. (DC_PERR_ 
STAT<SEO> is unlocked and cleared under separate control from the remaining status bits). 

1.3 Error Handling and Recording 

The MM_STAT, VA, and VA_FORM registers record the status of an instruction causing a memory 
management fault or Dcache parity error. These registers are locked against further updates until 
PALcode reads the VA register. 

The DC_PERR_STAT register records the tag and data parity status for the instruction causing 
a Dcache parity error. The DC_PERR_STAT register is locked against further updates (except 
for the SEO bit) until software writes a "1" to the LOCK bit. A WlC on the LOCK bit will unlock 
and clear the tag and data parity status bits. The DC_PERR_STAT<SEO> bit is set if a Dcache 
parity error occurs when the DC_PERR_STAT<LOCK> bit is set. The SEO bit is locked against 
further updates until software writes a "1" to unlock and clear the bit. 

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-f;7 



The Dcache is flushed when an ECC error occurs on a :fill. The register number and format 
information for the associated DREAD entry are loaded into the MAF ECC error register and the 
register is locked against further updates. The MAF sets the NOFILL bit when the ECC error 
occurs on the :first half of a fill. When the CBOX returns the corrected data, it is forwarded to the 
EBOX/FBOX register file but is not written to the Dcache. The MAF inititates a read of the ECC 
error register to supply the register number and format control on an ECC_FILL and unlocks 
the ECC error register for future updates. 

1.4 Test Aspects 

The Mbox is equipped with the standard LFSR chains used for chip testability and the parallel 
port used for debug. Detailed information on the specification of these can be found in the EV5 
external spec. 

1.5 Performance Monitoring Features 

The performance monitoring hardware is located in the Ibox. The normal Mbox trap and Dcache 
hit signals will be used to count DC misses, DTB misses, memory management errors, Dcache 
parity errors, and replay (MAF _UNAVAIL) traps. The Mbox is sending special signals to the 
Ibox to indicate whether a load in pipeO or pipel got allocated a new entry in the MAF (used in 
conjunction with traps and DC_HIT to count load merging). The Mbox also sends signals that 
indicate the WB_FULL or MAF _FULL condition has occured for stores in pipeO and loads in 
pipeO or pipel. 

1.6 Revision History 

Table 1-36: Revision History 

Who 

J .Meyer, L.N oack, 

B.Benschneider 

J.Meyer 

J.Meyer 

S.Britton 

S.Britton 

S.Britton 

B.Benschneider 

1-68 The Mbox 

When 

13-Dec-91 

02-Mar-92 

21-May-92 

20-November-92 

17-February-93 

01-April-93 

27-January-94 

Description of change 

Initial spec. 

Updates after 2nd Mbox review. 

Updates for new Mbox timing. 

Updates for architecture and implementation changes. 

Updates for architecture and implementation changes. 

Updates for Mbox IPRs 

Update to Passl implementation 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Chapter 5 

The Cbox 

5.1 Overview & Block Diagrams 

The EV5 CBOX is responsible for providing data to/from the Scache and the System data stores. 
The CBOX consists of three major sections: the SCache Arbiter Unit (SAU), the Write Buffer 
Data Unit (WBU) and the Bus Interface Unit (BIU). The SAU prioritizes access requests from 
the MBOX and the BIU to the Scache. WBU provides the storage for write data and is responsible 
for the successful completion of store requests. The BIU controls the interface to the EV5 pin 
bus. The block diagram of the CBOX is shown in Figure 5-1. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-1 



~ 
-t ::r 
CD 

&l 
0 
>C 

c 
C) 

~ r-
::a m 
~ ::a 
~ m 
c 
c 
~ 
3! 
m 
c: 
::t 
0 z 

SBA 

CBOX BLOCK DIAGRAM .,, 
u-...c_MAF _ADDR_IB_HcH·oz:.. c ... o_INYAL_ADOR"C~D~l'l.\}i.tcuo_IB_Hc1 , •• 

- C,.M_RETRY _8TALL_ll 

H PILL. PILL .. UPDAtl. •M ...... 

c ... M..RFB_DATA_VALID_, oB_H 
PAD_lN .. OATA_Mc117:00ao 

C...MJICJIUBY _IA M,.C_MAF _CMD_7Ac3 D> 

tFi c 
; 

~ I . -.. --r- , . seAc.n r I I I I I 1, 

C<l.S_AOOR_18_Mc1•:ab 

.---. ~ lses I I I I I I t:r' I I n , , I I I m ... I 'T' I "'0 

S7A 
SCACHE TAG 

c .. a_CMD_7A_Hd"b 

878 

88A 

a ... c_TAG_IA_Hdl:1 b, ~------+Hr-w---\-r-t-

888 

89A 

SIS 

S10A 

S10B 

878 

>< 
m 
8 
::I" 
c 
i» ca sum 
3 

888 

SIA 

898 

S10A 

S10S 

s11A I I I I I 9:' I I oexeAUiiH I I I ?l; I o~e_i I ls11A 
8118 S11B 

~-+~~--~--~-~~--~~--~---~~--~~~~·· . I 

S12A flJil.\~j 
812A 

(SOB) 

8128 8128 

81SA 81SA 

ADDRESS DATAPATH CONTROL LOGIC DATA DATAPATH -LAST_MOOIFIED·Fri Mu 10 11 :11:41 1111 

~ 
{",l 

~ 
~ 
~· 

~ 

I 
f 
Si a .... 
0 
p 

r .... 
(IJ 
~· 

8 
~ 
~ 

i 
"""' = {S 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2 Functional Description 

5.2.1 Scache Arbiter Unit 

The Scache Arbiter Unit (SAU) arbitrates access to the SCache. Primary sources of requests for 
the SCache access are the Mbox and the Bus Interface Unit (BIU). Arbitration requests from 
the BIU have higher priority over the requests from the Mbox. In the idle mode, the Mbox has 
access to SCache if no BIU requests are pending. The Cbox asserts an early SCache busy signal 
(SC_BUSY) to the Mbox if the BIU needs access to the SCache. 

Figure Figure 5-2 shows the general flow of the SCache Arbiter Unit (SAU) pipe stages. Requests 
arrive from the BIU Address File (BAF), the Victim Address File (V AF) and the System Probe 
Arbiter (SPA) in 3b. These requests are presented to the arbiter in 4a, Arbiter runs in 4a-4b 
and generates the SC_BUSY signal to Mbox if a valid BIU request for SCache is found. A grant 
signal is sent to the BIU controller that requested access. The address register is read out in 
5b and driven to SCache Tags in 6a. This address is also latched into the TROLL register input 
latch in 6b. TROLL results are driven in 7a. The SCache ships all block tag status bits to the 
CBox in 7a. The hit signal arrives in 7b at the Cbox from the SCache. Based on these signals 
the SAU generates appropriate merge, retry, set number, victim and lbox allocate cycle signals. 

Figure 5-2: SAU Pipe Stages 

4a 4b Sa Sb 6a 6b 7a 7b Ba Bb 9a 9b lOa lOb 
1----.----1----.----1~---.----1----.----1----.----1----.----1----.----1 

! rfb data 
!retry @ mbox -

IWRITE BAF 
lcmd to biu 

lbaf_inp_latch (next change at 9b) 

4a 4b Sa Sb 6a 6b 7a 7b Ba 8b 9a 9b lOa lOb 
1----.----1----.----1----.----1----.----1----.----1----.----1----.----1 

lscache hit from scache 
ltag status from scache 
!troll results 

I troll compare 
Jtroll inp latch (next change at 9a) 
laddr@ scache 

4a 4b Sa Sb 6a 6b 7a 7b Ba 8b 9a 9b lOa lOb 
1----.----1----.----1----.----1----.----1----.----1----.----1----.----1 

I drive addr to scache 
IREAD BAF 

lsc source-sel (biu or mbox) 
lbiu_req_granted (= rd_enable) 

Jsc busy @ mbox 
lpriorTtize biu reqs 

lbiu_reqs@sau - Tnext_biu_req_from_same_source 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-3 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.1.1 Mbox Requests 

Requests from the Mbox are primarily DCache or !Cache Load Misses and Stores. Each Mbox 
request is accompanied by a miss address file index physical address and a command. Physical 
address bits and the command are driven to both the SAU and the SCache by the Mbox. Mbox 
miss address file index information is sent directly to the SAU. 

The Mbox is guaranteed access to SCache Tags in cycles s6b and s7b ONLY if it sees the SC_ 
BUSY signal de-asserted during both cycles s4b and s5b. In the idle mode, Mbox must drive a 
NOP command if it has no valid Scache requests pending. See Figure 5-3. 

Figure 5-3: SC_BUSY and Mbox Command Issue 

4b Sa Sb 6a 
1--------1--------1--------1--------

sc_busy ___ 1-----------------\ __ _ 
cmd=NOP 

sc_busy 1-----------------\ _____ _ 
cmd=NOP 

sc_busy _________ .1--------
cmd=valid 

Table 5-1: Commands from Mbox 

Command 

NOP 

DREAD 

IRE AD 

LDX_L 

FETCH 
FETCH_M 
MB 

WR 

STX_C 

5-4 The Cbox 

Description 

No Operation 

DrefRead 

lrefRead 

Load Locked from Memory 

Fetch from Memory 

Fetch from Memory with Modify Intent 

Memory Barrier 

Write to Scache 

Store Conditional to Memory 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-2: Encoded Cbox Return Status to Mbox (7a and ea signals) 

Command Description 

No Operation NOP 

FIRST_FILL 

LAST_FILL 

WR_DONE 

First Octaword of the I/D Cache fill cycle 

Last (second) Octaword of the l/D Cache fill cycle 

Write Operation Done 

STXC_DONE Store Conditional Done Successfully 

FETCH_DONE Fetch Done 

MB_DONE Memory Barrier Done 

Figure 5-4: Pos.«>ible FIRST _FILL/LAST _FILL sequences from Cbox to Mbox 

1. FA FB LB LA 

2. FA FB - LA FB is speculative (if B is Scmiss) 

3. FAe FB LB ECCA LA 

4. FAe FB LB LA EFA LA ! Possible sequence from Cbox 

I Mbox can not handle this LAST FILL 
! Cbox will send this in a 3cycle Bcache config 

5. FA FB LB LAe ECCA 

6. FA FB LA LB 

Key: 
A = Scmiss and Bchit 
B = Schit 
FA = FIRST_FILL 
LA = LAST_FILL 

LB 

FAe = FIRST_FILL has ecc error 
LAe = LAST_FILL has ecc error 
EFA = ECC Corrected FIRST_FILL 
ELA = ECC Corrected LAST_FILL 

Wil 1 not occur 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-5 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-3: Cbox Special Signals to Mbox 

Signal1 Description 

SC_BUSY Cbox is accessing the Scache 4a signal 

RETRY 

RETURN_INDEX 

FILL_OW 

WRITE_NOW 

WR_MAF _INDEX 

WRITE_32B_REQ 

Mbox request denied. Mbox must retry. Sa signal 

Mbox MAF index of the returning fill data. 7a and Sa signal 

Which OW is this fill. bit 4 of the address 

High priority write for broadcast data 

Mbox MAF index for writes 

Distinguish between 32B and 64B write request 

1See global signal list for actual signal names and widths 

5.2.1.1.1 Requests from Mbox 

5.2.1.1.1.1 Load requests 

All reads are looked up in the Scache for a hit or miss. On a SCache hit the requested 32B 
are sent in two consecutive cycles (s9b, slOb) on the Read Fat Bus (RFB). The Mbox MAF index 
and return status is driven back to the Mbox in s7b before each 16B data transfer. The lbox 
Allocate Cycle information is dispatched two cycles before each RFB cycle. Both lbox bubble 
information and the FIRST_FILL return status are speculative for the first OW fill to Dcache 
and non-speculative for second OW fill. 

On a SCache miss, the address is forwarded to the BIU for a lookup in the external memory 
system. Mbox reads are merged at the 64B level at the BIU when in the 64B mode of operation. 
Only accesses to different 32B within the same 64B are merged. All other requests are re-tried if 
it can not be merged or if BIU resources are not available. No merging is done in the 32B mode 
of operation. 

IO space reads are treated as SCache misses and are forwarded to the BIU. If the address maps 
to an IO space reserved for EV5 then it is treated as a read to the Cbox IPR's. 

Loads to IPR space are processed by SAU. These addresses do not get loaded in the BAF register. 
Requested IPR data is returned in the upper Quadword of the lower Octaword of a 32B block 
which is sent to the Mbox in the first of two RFB cycles. RFB data valid is driven ONLY for the 
first Octaword of the fill. Appropriate allocate cycle signal is also driven for the first Octaword 
returned. 

Speculative allocate cycle signal is asserted by Cbox for integer Dreads and reads to Cbox IPR 
space. Allocate cycle for the second Octaword of the fill from Scache is non-speculative. 

5.2.1.1.1.2 Load Locked requests 

If a LDxL request hits in the SCache, the Lock flag is set and the requested 32B are returned to 
the Mbox. A Lock command is also sent to the BIU. On a SCache miss, the command is forwarded 
to the BIU which does a lookup in the Bcache. The Lock flag is set only when the fill returns 
from external memory. 

5-6 Thf! Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

On a BCache hit, the Lock flag is set and the data is returned to both the Mbox and the SCache. 
On a BCache miss the request is further forwarded to the SI. 

LDxL to IO space are treated as misses in the SCache and the request is forwarded to the BIU. 
The address is loaded into the BAF register. 

LDxL to IPR space is not permitted. 

5.2.1.1.1.3 Store requests 

Stores requests are looked up in the SCache to determine the state of the block. Stores are 
accepted to a private/dirty block. Stores to a private/clean block require permission from the SI. 
These requests are re-tried if BIU Address File (BAF) resources are full. Upon receipt of the 
required permission from the SI, these stores are re-initiated by the Cbox. Cbox provides write 
permission to the SCache to mark the block as dirty. 

Stores to shared blocks require permission from the SI. These requests are re-tried if either the 
BAF or the VAF resources are unavailable. Upon receipt of permission from the SI, these writes 
are re-initiated by the Cbox by requesting Mbox to reissue the command. Cbox provides write 
permission to the SCache. 

Store to IO space are forwarded to the SI. The SAU dispatches WRITE_DONE (WD) return status 
to the Mbox in Sa for all IO writes. Allocate cycle is sent to the Ibox along with the STXC_DONE 
return status ONLY for STX_C commands to non-IPR IO space. 

STXC to IPR space is NOT permitted. 

5.2.1.1.1.4 Store Conditionals 

A STxC to a private/dirty block in SCache succeeds if the Lock flag is found set and the Lock 
register matches the store address. Cbox returns a STXC_DONE status to the Mbox. If the Lock 
flag is found cleared, a STXC_FAIL status is returned. The RFB data valid signal is also driven 
to the Mbox to help load the register file with the status of the lock flag. 

A STxC to an IO space is treated as an SCache miss and forwarded to the system. The lock flag 
is cleared. The BIU completes the transaction. 

STX_ C to IPR space is not permitted. 

The Cbox sends an invalidate to the DCache when it receives a STxC from the Mbox in all 
instances except when the STXC hits a private and dirty block in the Scache and the the Lock 
flag is found set. The Cbox also provides appropriate one cycle allocate information to the lbox 
on completion of a StxC. STxC data is dropped if it is not to 1/0 space and the STxC fails. 

Allocate_cycle signal, RFB data valid, return index and the return status bits are driven back to 
the Mbox when the second Octaword is written to the Scache. 

5.2.1.1.1.5 Fetch, FetchM and MB 

These commands do not access the SCache and are forwarded directly to the BIU. A MB_DONE, 
FETCH_DONE return status is dispatched back to the Mbox upon receipt of the command from 
Mbox in cycle Sa. Mbox will ensure appropriate instruction ordering arow1d MB. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-7 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

~{ll 
I )d ,"~l _.. l 

,AJ:._.1, ~·., ~-

5.2.1.1.1.6 Commands to BIU 
') 

The Scache receives commands from the Mbot, the Bcache Sequencer (BSQ), the VAF controller 
and the SPA controller. The SAU forwards tl Mbox commands and the SH UPDATE and SC 
INVAL to the BIU. These get loaded in to B register. Mbox commands that are re-tried by the 
SAU are not loaded in to the BAF. 

Table 5-4: Mbox Commands and Scache Arbiter Actions 

FromMbox 'lb Scache Type mt Status Action To BIU/BSQ 

I/DREAD READ hit NOP 

READ miss READ 
READ IO READ 
READ EV5_IO NOP 

LDxL READ hit set(L) LOCK 

READ miss LDXL,LOCK 

READ IO LDXL,LOCK 

WRITE WRITE hit priv/dirty set(M,D) NOP 

WRITE hit priv/clean WRITE 

WRITE hit shared WRITE 

WRITE miss WRITE 

WRITE IO WRITE 

WRITE IPR NOP 

WRITE permission 2 priv/clean set(M,D) NOP 

WRITE permission shared clr(D,M) Error. Will not 
occur. 

STxC WRITE Lock=l hit priv/dirty set(M) CLR_LOCK 
STxCDONE 

WRITE Lock=l hit priv/clean WDTY 

WRITE Lock=l hit shared WBDCST_LOCK 

WRITE miss WRITE_LOCK 

WRITE IO WRITE_LOCK 

WRITE permission priv/clean set(M) NOP 
Lock=l STxCDONE 

WRITE permission shared clr(D,M) NOP 
Lock=l STxC pass 

WRITE permission priv/clean STxC fail NOP 
Lock=O 

WRITE permission shared STxC fail NOP 
Lock=O 

FETCH NOP FETCH_DONE FETCH 

2 permission to write a block in the scache if its shared or its clean 

5-8 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-4 (Cont.): Mbox Commands and Scache Arbiter Actions 

From Mbox To Scache Type 

FE TC HM 

MB 

NOP 

NOP 

5.2.1.1.2 Invalidates to DC8che 

Hit Status Action 

FETCH_DONE 

MB_DONE 

To BIUJBSQ 

FE TC HM 

MB 

In general, the Cbox invalidates a DCache block whenever that block is displaced from the SCache. 
A DCache block is also invalidated on all STxC commands from the Mbox except one which hits 
a private dirty block in the Scache and the Lock flag is found set. 

On an Update command from the system, the Cbox sends an invalidate to the Scache and DCache. 

DCache invalidates are also sent by the Cbox on a FLUSH command from the system. 

Invalidate command and index bits to the DCache will follow the same timings as a fill cycle from 
the Cbox. This helps avoid potential fill-inval-fill sequences to the same block. 

Invalidates are sent to the Dcache on both WRITE misses and IREAD misses in the Scache. 

Figure 5-5: Invalidate Timing 

6b 7b 8b 9b lOb 

----'----'---- ----'----' tag tag rsc rfb de 

lsc_hit 
linval cmd 
I inva()ndex 

5.2.1.1.3 Retries and Merging of Mbox requests 

Mbox requests that result in misses in the SCache are re-tried, merged with already pending 
misses or queued at the BIU for a fill from the external memory. In general, BIU requests have 
higher priority over Mbox requests and will cause a retry of the Mbox request until the BIU 
request is completed. BIU accesses can occur at any time and are indicated by asserting the 
SC_BUSY signal. Mbox should not issue any commands to Cbox if it sees SC_BUSY asserted. 
See Figure 5-3. 

The MBOX has to replay instructions if they are blocked by the TROLL registers (which contain 
DCache indices of outstanding requests to the external system) or if certain BIU resources are 
not available. A RETRY signal is asserted in s8a to the Mbox. See ~,igure 5-6. If BIU address 
and data resources. are full, all Mbox requests that result in non-mergeable SCache misses are 
re-tried. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-9 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

A maximum of 2 non-mergeable Mbox requests that miss in the SCache can be queued in the 
Cbox for external memory access. Additional Mbox requests that result in SCache misses can 
be accepted if it merges with any of the previous misses. Only accesses to the same 64B and 
different 32B block are merged. Accesses to the same 64B and same 32B block of a pending miss 
are re-tried to avoid double pumping of the same octaword to two different Mbox MAF indices. 
Merging is stopped as soon as the fill to that address starts. 

Stores that miss in the SCache are re-tried if BAF resources are full. Stores to a private/clean 
block in SCache that need permission from the System Interface (SI) are re-tried if BAF resources 
are full. Stores to a shared block in the SCache are re-tried if BAF or VAF resources are full. A 
WR command is always merged to the existing WR address in the BAF if it is to a private/clean 
or shared block awaiting permission from the SI. 

Instructions from the Mbox in the shadow of a retry are accepted by the Cbox. These may be re
tried if any of the retry conditions are true. However if the Mbox command issued is a re-issued 
WRITE (initiated by the WBU), all Mbox instructions in the shadow of this write will be aborted 
if the reissued write is re-tried by the Cbox. 

Instructions from the Mbox are re-tried if the WBU asserts STOP_ WRITE or STOP _READ signals 
to the SAU. 

Table 5-5: Mbox Retry Conditions 

Request 

Read 

Write 

5-10 The Cbox 

Action 

Retry 

Retry 

Retry 

Retry 

Merge 

Retry 

OK 
Retry 

Merge 

Retry 

OK 
Retry 

Retry 

Retry 

Condition 

(sc_miss) && !(victim) && (baf_full) 

(sc_miss) && (victim) && (vaf_full + baf_full) 

(sc_miss) && ( troll_match) && (fill in progress) 

(sc_miss) && (troll match) && !(fill in progress) && (same 64B) && 
(same 32B) 

(sc_miss) && ( troll_match) && !(fill in progress) && (same 64B) && 
(diff 32B) 

(sc_hit) && (troll match) 

(sc_hit) && !(troll match) 

(troll_match) && (input_cmd = = wr) && (diff WB entry) 

(troll_match) && (input_cmd == wr) && (same WB entry) 

(sc_miss) && (victim) && (vaf_full + baf_full) && ((!64B mode) or (64B 
mode && !populate)) 

(sc_hit) && (priv/dirty) 

(sc_hit) && (priv/clean) & (baf_full) 

(sc_hit) && (shared) & (baf_full + vaf_full) ((!64B mode) or (64B mode 
&& !populate)) 

(IO mode) && (vaf_full) 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-6: Mbox Retry on Miss 

s6 s7 s8 s9 

lcmdl lcmd2=NOP 
lsc_missl 

IRETRYl (to Mbox) 
IABORT_CMD2 IF CMDl="REISSUED_WRITE" 

Cbox issues ABORT_CMD2 to the SCache. 

Figure 5-7: Retry on BIU resources full 

(1) 

(2} 

7 8 9 10 

lcmdl lcmd2 lcmd3 lcmd4 
I sc_missl I sc_miss2 I sc_miss3 I sc_miss4 

I load I load 
IBAF_FULL 

IRETRY3 (to Mbox} 

Cbox sends RETRY3 to Mbox for cmd3 if it cannot be merged. Mbox 
retries CMD3. 

7 8 9 10 

I cmdl I cmd2 I cmd3 I cmd4 I cmdS 
I sc_missl I sc_miss2 I sc_miss3 I sc_miss4 

!load !merge !load 
IBAF_FULL 

I RETRY 

Cbox sends Retry to Mbox for cmd4 if it can not be merged. 

11 

5.2.1.1.4 Read/Write Ordering from Mbox 

Read/Write conflicts are resolved at the Mbox. Read-Read conflicts to same 32B block are resolved 
at the Cbox by issuing a retry to Mbox. Following table lists some actions under SCache miss 
conditions. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-11 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-6: Mbox Read/Write Ordering 

Request 

Read then Read 

Read then Write 

Write then Read 

Conditions 

'lb same 32B and 
same 64B 

'lb diff 32B and 
same 64B 

'lb same 32B and 
same 64B 

'lb diff 32B and 
same 64B 

'lb same 32B and 
same 64B 

Action @ Mbox 
(Why) Action@ Cbox on sc_miss 

Could Issue Ow/qw, Retry second Read 
nomerge) 

Could Issue (only Process normally. Merge if possible 
check 32B) 

Will not issue Write Flag error if issued 
(Id/st conflict) 

Will issue (only checkFlag error if issued 
32B) 

Will not issue (st/Id No action 
conflict) 

'lb diff 32B and Could Issue (only No action 
same 64B check 32B) 

Write then Write 'lb same 32B and Merged at Mbox Process Normally 
same 64B (Mbox issues only 

one command) 

Not merged (stop Retry second if first not done. Process in order 
merge on issue) 

'lb diff 32B and Issue (merge only Process Normally 
same 64B within 32B) 

Not merged Retry first if first not done. Process in order. 

5.2.1.2 TROLLing of Scache Access Requests 

The Scache arbiter trolls load and store accesses to DCache indices that are already in the 
read/write miss pending or write permission pending state. All incoming requests are compared 
against physical address bits < 12:5> in the BIU Address File (BAF) and the System Bcache 
Register (SBR). 

SCache load misses are forwarded to the BIU for look-up in the Bcache. Bits <12:6> of the 
physical address are entered into the TROLL register. The miss address file index for the loads, 
obtained from the Mbox, is sent to the BIU. The BIU returns this index information back to the 
Mbox when the fill arrives. 

In the fastest Bcache implementation, fill data (one octaword at a time) arrives at a rate of 12ns 
or 3 EV5 clock cycles. The tag and status bits of the filling block are written into the SCache with 
every octaword of fill data. This leaves the 64B block in the SCache in a partially valid state until 
the fill is complete. To avoid read/write accesses to the partially valid block between octaword fills, 
such accesses are filtered by the TROLL register and a retry is sent to the requester. The SCache 
is indexed using bits <14:5> of the physical address. However the TROLL compare is done on a 
smaller field of bits <12:5> equivalent to the DCache index in order to prevent interleaved fills 
into the same DCache index. This is explained below. 

5-12 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip lntemal Specification, Revision 0.0, February 1992 

I' {~), ,',,,;•) ;:'"\; 

Let us assume that the TROLL compare is performed on the SCache index. If there is a LD 
miss in the DCache and in the SCache, the associated SCache index is loaded into the TROLL 
register. Before the fill for this LD completes, another ~:Q._n;ij~_s .. t2.tb~".SaIJ.le :DCache index (phy_ 
address<12:5>) as the previous LD is issued to tli_e.Sdiche. This LD maynot be"'"prevented from 
accessing the SCache if it has a different SCache index (phy_address<14:5>) and may hit in the 
SCache. This data is returned to the DCache and register file. If the fill data for the first LD 
miss arrives at the same time, we would have a situation where the DCache block is filled with 
data from two different blocks. To avoid this, the TROLL compare is performed on the DCache 
index. To ease implementation when addresses hit the BAF in 64B or 32B modes, trolling is done 
on bits <14:6>. 

A write request from the Mbox to a private-clean or shared block in the SCache needs permission 
from the System Interface unit. The DCache index of this write request is also entered in the 
TROLL register so that subsequent reads and writes to the same index are blocked until after 
the permission for the first write has been granted by the system. 

5.2.1.3 BIU requests 

BIU requests have highest priority for SCache access. For the data movement commands (Fills 
or Updates), BIU alerts the Scache arbiter in s4a of the pipe for the corresponding RFB cycle in 
9b. This helps the Arbiter to assert the SC_BUSY signal to the Mbox to free up the SCache and 
the other buses in time for the BIU requests. 

Table 5-7: Commands from BIU for SCache access 

Command Description 

NOP No Operation 

FILL_TAG Fills from memory. Update Tag and Status in Scache 

FILL_TAG_STATUS Fills from memory. Update only Tag Status 

FILL_NOP Reserve an RFB slot for fills to Dcache 

SH_UPDATE Set/Clear Shared bit in Scache 

INVAL Invalidate block if present in Scache 

RD_DIRTY Read Dirty or Flush from System 

READ_VICT Read Victim 

5.2.1.3.1 BIU request Prioritization at SAU 

BIU provides 3 request lines to the SAU in s4a. The SAU prioritizes these requests and arbitrates 
for the SCache. A grant signal is sent to the request that won the arbitration. SC_BUSY is 
appropriately asserted in s5 and s6 to hold off SCache tag accesses from the Mbox. The grant 
signal also enables the address read from the appropriate address register of the request source 
(BAF, VAF or the SPA). This address is latched and driven to the SCache tags in s6b by the SAU. 

VAF and SPA grants are aborted if the requests are followed by a FILL in the next cycle. 

1. Request from BAF (Fills and Fill updates from Memory) 
2. Request from VAF (Victim Reads) 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-13 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

3. Request from SPA (System Probe Requests) 

Requests for fills originate from the BCache Sequencer (BSQ) and BAF controllers. Addresses to 
SCache lookup are driven from the BAF or the SBR register. For updates from the system, the fill 
address is stored in the System BCache Register (SBR). Addresses for fills from the BCache are 
stored in the BAF registers. The grant signal from SAU is used to read the appropriate address 
from these registers. 

Requests for victim reads are sent from the VAF controller. Addresses for the victim reads are· 
stored in the VAF register. The SAU provides the appropriate set number to the SCache and 
forces a hit. The SCache drives out the tags and data which are accumulated in the VAF and 
Victim Data Buffer by the VAF controller. 

System probe requests are initiated by the SPA (System Probe Arbiter) controller. The SAU 
provides appropriate SCache block status bits and the SCache hit information to the SPA. 
Information on VAF address hits are forwarded to SPA by the VAF controller. 

5.2.1.4 SCache Set Allocation 

The SCache is a 96KB, 3-way set associative, write-back on-chip secondary cache. The tag, index 
and block bits of the physical address are as follows. 

39 15 14 6 5 0 

+--------------------------------------------+ 
I sc_tags I sc_index I blocks I 

+--------------------------------------------+ 
25bits 9bits 6bits 

The SCache Tag Store sends the following block status signal to the Set Allocation Section. 

• Block Valid Bit from all sets 
• Block Dirty Bit from all sets 
• Block Shared Bit from all sets 
• Bcache Index Match from all sets 
• Tag parity from all sets 
• Hit signal from all sets 
• 2 Sub-block Modified Bits 
• 25 bits of Tag from the set that was hit 

A modified round robin scheme is used for set allocation on an SCache Miss. 

Figure 5-8: Set Allocation AlgorHhm 

if (bcache index match) { 
set allocated = bcache index matched set. 

} 

else { 
set allocated = round-robin 

5-14 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.1.4.1 Bcache Index Match 

The SCache is a 3-way set associative 96KB cache and the Bcache is a direct mapped cache. If 
a miss occurs in the SCache, the Bcache is read . This read may miss in the Bcache and the 
Bcache miss may produce a victim. (i.e. the evicted block is dirty and has to be written out to 
main memory) Because the SCache is a write back cache, a "dirtier" version of this victim may 
be in any of the 3 sets in the SCache. The SCache copy of the victim is most up to date and it is 
this copy of the block that we should write to memory, not the Bcache copy. 

We can prevent this from happening by doing some extra work when we read the SCache. Since 
we know the size of the Bcache, we can create a "Bcache victim might be old" signal by comparing 
the part of the Bcache index that overlaps with the SCache tag. If there is a match we know that 
one of the three blocks in the SCache maps to the block in the Bcache that we are going to read 
to fix the SCache miss. Further more, since we know that this is the block that we will read from 
the Bcache and it's not the block the SCache wants, we know the Bcache will miss. (If there was 
a Bcache index match, and it hit in the Bcache, it would mean that the tag portion also matched. 
This would imply that it would have hit in the SCache to begin with. We are hence guaranteed a 
miss in the Bcache.) Thus, if there is an extended Bcache index match and the block is dirty, the 
thing to do is to force the block in the SCache into the Bcache and then do the read. The Bcache 
extended index matching is shown in Figure 5-9 

Figure 5-9: Bcache Index match 

SCache tag and index sections of the physical address 

138 114 615 0 

+----------------+-----------+--------------+ 
TAG I SC INDEX I BLOCK OFFSET I 

+----------------+-----------+--------------+ 
Bcache tag and index sections of the physical address 
(shown for a 4MB Bcache) 

138 22121 615 0 

+--------+-------------------+--------------+ 
TAG I INDEX I BLOCK OFFSET I 

+--------+-------------------+--------------+ +++++++ 
I 
+- overlapping part of the Bcache index and SCache tag 

to perform extended Bcache index compare on. 

Thus, if the Bcache index matched set is dirty, then a victim read must be scheduled for the set, 
BEFORE any off-chip transaction for the miss can be dispatched. The BIU initiates this Read 
Victim transaction by driving the SCache index bits and victim set number to the SCache tag 
store through the SCache Arbiter. One victim read is mandatory to clear the dirty bit in the 
SCache. The SCache tag store drives the two INT32 Modified bits during this first victim read. 

Since a miss in the SCache, on an extended Bcache index match, is guaranteed to miss in the 
Bcache, the fill data returned will overwrite the indexed location in the Bcache and in the SCache. 
Therefore, even if the data is not dirty in the SCache, it has to be invalidated to "make room" for 
the fill data. Thus the Set Allocation Logic checks for a Bcache index match in any one of the 3 
sets. If there is a match, that set is allocated for refills. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-15 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Mode bits will be required to perform the Bcache index compare on the appropriate range of bits 
for different Bcache sizes. 

5.2.1.4.2 Fiiis from Scache to l/Dcache 

Figure 5-10: I/DREAD hits in the SC8che 

6 7 8 9 10 

lalloc_cycle IRFB 
!first fill IIFB 
lmaf _index 

lsc_hit 

Figure 5-11: DREAD fills from external memory (Non-error mode) 

----' '---- ---- ----7 8 
lfirst_fill IRFB 
lalloc cycle 

- ldata@pins 

Figure 5-12: IREAD fills from external memory 

I I I I I I I I I I -8- --9- 10 --u- -- -- -- ---- ----
4 5 6 7 8 9 

I fill tag 
lsc_busy 

ldata@pins x x 
1--ECC---------l==============WFB IWSC IIFB 

=== holding latch 

5-16 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-13: SC&che Arbitration under fills 

__ 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_ 
5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

dat@pins •••••••••••••••• x--------x--------x--------x .............. . 
Dl D2 D3 D4 

IRFBl IRFB2 IRFB3 IRFB4 

fill FN FT FT FT FT 

sc_busy 1---\ __ 1---\ __ 1---\ __ 1---\ __ 1---\ sc_busy_4a 

Figure 5-14: SC&che Dstream (non-error mode) Fill Flow (3 cycle sysclock) 

2 3 5 6 7 8 9 10 11 12 13 

bsq FN FTl 
Dl D2 03 D4 

d@pins 
ecc 

x-----------------x-----------------x-----------------x 

RFB 

jecc-----------1>>>>>>>>>>>>>> 
IWFBl 

IRFBFl IRFB2 

key: WSCl = Dl gets written into Scache 
RFBl = Dl gets sent to Dcache 
FTl = fill request from BSQ to write Dl into Scache 
FN = fill request from BSQ to free up RFB2 slot 
>>>> = Holding latch 

!WSCl 

IRFB3 

Figure 5-15: SCache Dstream (non-error mode) Fill Flow (4 cycle sysclock) 

2 3 5 6 7 8 9 10 11 12 13 

bsq FTl FT 
Dl D2 D3 

d@pins 
ecc 

x-----------------------x-----------------------x-----

RFB 

lecc-----------1>> 
IWFBl 

IRFBFl 

key: WSCl = Dl gets written into Scache 
RFBl = Dl gets sent to Dcache 

IWSCl 

FTl = fill request from BSQ to write DJ into Scache 
>>>> = Holding latch 

DIGITAL RESTRICTED DISTRIBUTION 

I RFB2 

The Cbox 5-17 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-16: scache Dstream (non-error mode) Fiii Flow (5 cycle sysclock) 

1 2 3 4 5 

bsq FTl 
01 

6 7 8 

FT 

9 

D2 

10 11 
I 

12 

d@pins 
ecc 

x-----------------------------x-----------------------

RFB 

lecc-----------1>>>>>>>> 
IWFBl 

IRFBFl 

key: WSCl = Dl gets written into Scache 
RFBl = Dl gets sent to Dcache 
FTl = fill request from BSQ to write Dl into Scache 

IWSCl 
IRFB2 

Figure 5-17: SC8che Dstream (Error mode) Fill Flow (5 cycle sysclock) 

1 2 3 

bsq FTl 

4 5 6 7 8 

FT 
Dl 02 

9 10 11 
I 

12 

d@pins 
ecc 

x-----------------------------x-----------------------
1 ecc----------- I>>>>>>>> 

IWFBl 

RFB IRFBFl 

key: WSCl = Dl gets written into Scache 
RFBl = Dl gets sent to Dcache (Gets driven twice!) 
FTl = fill request from BSQ to write Dl into Scache 

5-18 The Cbox 

IWSCl 
IRFBl (corrected data) 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-18: SC8che lstream (non-error mode) Fiii Flow (5 cycle sysclock) 

1 2 3 4 5 6 7 8 9 10 11 12 

bsq FTl FT 
Dl D2 

d@pins 
ecc 

x-----------------------------x-----------------------

RFB 

(ecc--~--------1>>>>>>>> 

IWFBl 

key: WSCl = Dl gets written into Scache 
RFBl = Dl gets sent to Dcache 
FTl = fill request from BSQ to write Dl into Scache 

IWSCl 
I IFBl 

Figure 5-19: Scache Read Hits Under Fills (3 cycle sysclock) 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 
d@pins 1-----1-----1-----1-----1-----x-----1-----1-----x-----1-----1-----x-----1-----1-----

bsq 
scbusy 
tag 

rsc 
rfb 

rfb 
wsc 
wfb 

FN 
busy 

FN 
busy 

tagF tagR 

FTl 
busy 

tagF tagR 

rscr rscr 
rfbr rfbr 

RFBFl 

ecc ecc---------1 

RFBF2 

WFBFl 

data datl dat2 dat3 

RFBF3 
WSCFl 

d@pins 1-----1-----1-----1-----1-----x-----1-----1-----x-----1-----1-----x-----1-----1-----
-s -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

key: 
tag tag access 

rsc read SCache data bus 
rfb fat bus to DCache 
ifb fat bus to icache 
wsc write SCache bus 
wfb write fat bus 

bsq biu Sequencer arbitration request 
sau scache arbiter unit 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-19 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-20: Scache Write Hits Under Fiiis (3 cycle sysclock) 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 
d@pins 1-----1-----1-----1-----1-----x-----1-----1-----X-:----1-----1-----x-----1-----1-----

bsq 
scbusy 
tag 

wsc 
wfb 

rfb 
wsc 
wfb 

FN 
busy 

FN 
busy 

tagF tagW 

FTl 
busy 

tagF tagW 

wscw wscw 
wfbw wfbw wfbw wfbw 

RFBFl RFBF2 

ecc ecc---------1 
WFBFl 

data datl dat2 dat3 

wfbw wfbw 

RFBF3 
WSCFl 

d@pins 1-----1-----1-----1-----1-----x-----1-----1-----x-----1-----1-----x-----1-----1-----
-s -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

key: 
tag tag access 

rsc read SCache data bus 
rfb fat bus to DCache 
ifb fat bus to icache 
wsc write scache bus 
wfb write fat bus 

bsq biu Sequencer arbitration request 
sau scache arbiter unit 

5-20 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.2 Write Buffer Unit 

The Write Buffer Unit (WBU) contains 6 entries, each of 32B blocks. The Write Buffer Data Store 
(WBD) is in the CBOX and the write address file (WAF) is in the MBOX. Stores are allocated a 
new entry in the WBU unless they can merge to an existing entry. The WAF is responsible for 
merging stores into the write buffer and the issue of the writes to the CBOX. The write buffer 
completion control (WCC) in the CBOX is responsible for the completion of the writes. The Write 
reissue control (WRC) is responsible for the reissue of writes by the MBOX. Every write transaction 
issued to the CBOX is a 32B write. If EV5 is in 64B mode, writes to the system are performed by 
first populating the 64B block by performing a second "wr_for_populate". 

5.2.2.1 Write Buffer Data Store: WBD 

Each entry in the WBD is organized as 2 rows of octawords (16B) for a total height of 12 rows 
as seen in Figure 5-21. The store data is valid from the EBOX/FBOX in cycle 6 and the data is 
piped to be written into the WBD in cycle 7. The delay is required in order to allow the WAF to 
perform merge/conflict calculation on the incoming store addresses and for TRAP calculation. It 
is assumed that the longword parity bits are provided along with the store data by the MBOX. 
LW valid bits for each octaword and octaword modified bits for each entry are also stored in the 
WBD. 

Figure 5-21 : Write Buffer Data Store 

Ent.O OWO 
OWl 

Ent.1 OWO 
OWl 

Ent.2 OWO 
OWl 

Ent.3 OWO 
OWl 

Ent.4 OWO 
OWl 

Ent.5 OWO 
OWl 

127/63 96/32* 95/31 64/0 par lw mod 
+----------------------------+---------+----------------------------+----+---+-----+ 
1----------------------------1 1----------------------------1----1---1-----1 
+----------------------------+ D 
1----------------------------1 E 
+----------------------------+ c 
1----------------------------1 0 
+----------------------------+ D 
1----------------------------1 E 
+----------------------------+ R 
1----------------------------1 
+----------------------------+ 
1----------------------------1 

+----------------------------+----+---+-----+ 
1----------------------------1----1---1-----1 
+----------------------------+----+---+-----+ 
1----------------------------1----1---1-----1 
+----------------------------+----+---+-----+ 
1----------------------------1----1---1-----1 
+----------------------------+----+---+-----+ 
1----------------------------1----1---1-----1 
+----------------------------+----+---+-----+ 
1----------------------------1----1---1-----1 

+----------------------------+---------+----------------------------+----+---+-----+ 
* In the layout, bit <127>/<63> thro <96>/<32> are mirrored so that <127>/<63> 

sits closer to the center. 

5.2.2.2 Storing Data in write buffer 

When a STx is received by the MBOX, they write the DCache (if the block is present) and load 
the appropriate entry in the WAF. Data is written into the WBD in cycle 7a. Physical address bits 
M%C_ WR_LW _ADDR_5B_H<4:2> are sent to the MBOX in 5b along with the signal M%C_WR_TYPE_ 

5B_H (O=QW or l=LW). The address and type are decoded as shown in Table 5-8. Write enables 
are sent in 6a to enable the write in 7a. Data being written cannot be bypassed and issued to the 
CBOX. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-21 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-8: Wr Decode 

wr_lw _addr<4:2> wr_type::O (qw) wr_type=l Ow) 

000 

001 

010 

011 

100 

101 

110 

111 

wr <63:0> 

wr <63:0> 

wr <127:64> 

wr <127:64> 

wr <191:128> 

wr <191:128> 

wr <255:192> 

wr <255:192> 

wr <31:0> 

wr <63:32> 

wr <95:64> 

wr <127:96> 

wr <159:128> 

wr <191:160> 

wr <223:192> 

wr <255:224> 

5.2.2.3 Issue of Writes 

The MBOX will determine when to issue a write to the CBOX. (For further detail please see the 
MBOX chapter of the spec.) When the WAF issues a write it stops merging to that entry. The 
MBOX sends the signals M%C_MAF _INDEX_5B_H<4:0>, (<4> is asserted for WB indices with <2:0> 
indicating which entry), M«roC_MAF_CMD_5B_H<3:0> and address in 5b/6a. It is assumed that the 
MBOX asserts the maf_cmd wires only in the first cycle of the 2 cycle write. The WBD is read in 
6b and in 7b and driven onto the WFB (fat bus) in 7B/8A and in 8b/9a. The lower 168 is ALWAYS 
read out in 6b followed by the upper 16B,regardless of which half of the 328 of data has valid 
longwords written 

Bad LW parity for the WB data can be forced by asserting the appropriate bit in the SC_CTL ipr. 
If a write completes successfully and updates data in the SCache, the MBOX is sent a "wr_done" 
or "stxc_done" return status in Ba accompanied by the maf_index of the write. The lw_valid bits 
and the ow _modified bits of the corresponding entry in the WBD are cleared in 9a. Data and 
parity are not cleared.It is assumed that WBD will not get write enables for writes that have 
already been issued by the MBOX. (ie. we will get a case where we are clearing an entry while 
we are writing into it) 

NOTE 

M%C_MAF _ABORT_6A_H will never be asserted for writes since writes are never bypassed 
by the MBOX. 

5-22 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The basic write transaction is shown in Figure 5-22 and the data write and data issue timing dia
grams are shown in Figure 5-23 and Figure 5-24. 

Figure 5-22: Write Flow 

6 7 8 9 10 11 12 13 
-- __ I __ -- -- -- -- --

ARB WR 
TAG 
RSC 
RFB 
wsc 
WFB 

RD WR 

OWl OW2 
OWl OW2 

Figure 5-23: WrHe buffer data write timing diagram 

Sb 6a 6b 7a 7b Sa 
-- __ 1 __ 1 __ 1 __ 1 __ 

lwr enable<S:O> valid @ WBD (which entry to write) 
!update longword valid bit store 
!update INT16 dirty bits 
lpe=forrn write in ?a 
IWAF finishes conflict checks 
lstr data<63:0> & parity from MBOX 
I finish decode 

lpredischarge word lines 
IWAF finishes PA cam for merge test 
jwr_addr<4:2> @ WBD (to decode which longword/quadword to write) 
!wr_type<> @ WBD (STQ, STL) 

5.2.2.4 Write Buffer Completion Control:WCC 

The Write buffer Completion Control (WCC) is responsible for determining whether a write can 
successfully complete. Writes can successfully complete if they satisfy the conditions shown below: 

• Cacheable References 
• hits the SCache with private/dirty status 

• 
• 

hits the SCache with private/clean status and p~~~~~~,~~--.~~, .~~~~·~!!~,, .. ~i~-~t 
hits the SCache with shared status and has a shared permission grant 

• the SCache is operating on force hit mode 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-23 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-24: Write buffer data Issue timing diagram 

Sa Sb 6a 6b 7a 7b Sa Sb 9a 
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 

!clear lw valid bit and ow mod bits of that entry 
lwr done,stxc done sent to MBOX -
!drive upper OW of data onto wb bus (then onto WFB in Sa) 
!drive longword valid bits for upper ow to data store 

!drive lower OW of data onto wb bus (then onto WFB in Sa) 
!drive longword valid bits for lower OW to data store 
!drive 32B valid bits/permission grant to tag store via SAU 
lif STx c, send abort signal to tag store if lock=O 

!evaluate bit lines 
!receive maf_cmd 

lmaf index at WBD, start decode 
·1 address drive to sc Tag 
lprecharge bit lines
lpredischarge word lines 
IWAF address read out 

• Non-Cacheable References 
• the BIU has enough resources (one BAF & one VAF entry) to store the data 

If any of the above conditions are satisfied, "wr _done" is returned as status to the MBOX. If any of 
the above conditions are not satisfied, the write is loaded into a reissue queue and reissued later to 
the MBOX. This is discussed in Section 5.2.2.5. 

STx_C's can successfully complete if they satisfy the conditions shown below: 

• Cacheable References 
• lock is clear & hits the SCache regardless of status (fails) 
• lock is set & hits the SCache with private dirty status (succeeds) 
• lock is set & hits the SCache with private/clean status and permission to set the dirty bit 

(succeeds) 
• lock is set & hits the SCache with shared status and has a shared permission grant 

(succeeds) 
• lock is clear but system CACK'd a shared write. (succeeds) 

• Non-Cacheable References 
• Ignores local lock flag. Completes after systems has CACK'd/CFAIL'd the STx_C. 

If any of the above conditions are not satisfied, the STx_C is loaded into the reissue queue and 
reissued later to the MBOX. A more detailed table of the STx_C flow is shown in Table 5-10 and 
Table 5-11. 

NOTE 

STx_ C should not be issued under force hit mode. 

5-24 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.2.5 Write Reissue Queue and Control : WRQ, WRC 

Writes from the MBOX are stored in a reissue queue if they do not complete successfully. There are 2 
reissue queues, one for 32B/64B mode (called the write queue) and another used specifically for 64B 
mode (called the read queue). The write queue is a 2 deep linear queue that holds: 

• cacheable writes that miss in the SCache 
• writes that hit private/clean data which requires system permission to set the dirty bit 
• STx_C's that hit private/clean data with the lock flag set 
• writes that hit shared data which has to be broadcast on the bus before it can be written into 

the SCache 
• STx_ C's that hit shared data with the lock flag set 
• STx_C's to 1/0 space which ignore local lock flag and have to get acknowledged from the 

system before proceeding. 

Each entry in the reissue queue consists of a valid bit (set when it is loaded), a reissue bit(set when 
the write is ready to reissue) and a permission bit(set when the write has permission to update 
the SCache). It also holds other information such as the maf_index, shared,dirty,cmd and address 
bit<39>. Requests are sent to the system by the BIU to process the writes in the reissue queue 
(SET_DIRTY,WRITE_BLOCK, WRITE_BLOCK_LOCK & READ_MISS_MODIFY). The reissue bit for 
an entry is set when the following conditions are satisfied: 

• For misses, when the fill completes , the BIU asserts c_BAF%FILL_DONE_4A_H along with c_ 
BAF'f~C_MAF _IDX_6A_H which sets the reissue bit for that entry. 

• When an CACKis received, for private/clean writes ,shared writes and STx_C to 1/0 space, the 
BIU will assert C_BIU%ACK_9A_H along with C_BAF%SC_MAF _IDX_6A_H which sets the reissue 
bit and permission bit for that entry. 

• When a CFAIL is received, for shared writes, and STx_ C to 1/0 space, the BIU asserts c_ 
BIU%NOACK_9A_H along with C_BAF%SC_MAF _IDX_6A_H which sets the reissue bit for that en
try. 

• If a pending write got invalidated, the BIU asserts c_BIU%WR_INVAL_9A_H along with c_ 
BAF'f~C_MAF _mx_6A_H which sets the reissue bit for that entry. 

If the entry that got acknowledged (reissue bit set) is at the top of the reissue queue, the write buffer 
reissues the write to the MBOX by asserting C%M_WR_NOW _4A_H and C%M_ WR_MAF _INDEX_4A_B<2:0>. 
Once this signal is asserted, in the best case, the MBOX reissues the write in the very next cycle 
(cycle 5). In the worst case, if they had already arbed for an instruction in cycle 4, then the reissued 
write will issue only in cycle 6. Since the write queue is a linear queue, writes are reissued to the 
MBOX in the original order that they were issued. Only one reissue can be performed at a time. If 
a write has been reissued to the MBOX, the next reissue will not be sent until the first one does not 
get retried. Reissued writes take highest priority in the MBOX to ensure forward progress of writes. 
Writes are not guaranteed to complete in the order that they were originally issued by the MBOX. 

In 64B mode ONLY, writes that hit shared data are loaded into the read queue in order to 
accumulate the second half of the 64B data to broadcast onto the bus. This write will be reissued 
to the MBOX , along with a request to send the the address of the other half of the 64B block to 
the SCache by asserting the C%M_WR_64B_REQ_4A_H signal. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-25 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The write and read queues are loaded in cycle 9 for a tag cycle access in cycle 6. This implies 
that any acknowledgment from the BIU must not arrive earlier than cycle 10. Entries in the 
read queue take higher priority over those in the write queue. When a write is reissued to the 
MBOX, (either from the read queue or from the write queue), the maf_index and other pertinent 
information are loaded into a reissue_register. If an entry in this register is valid, no other write 
can reissue until this register is cleared. The register is cleared in SB when the reissued write is 
issued by the MBOX and is not retried. 

NOTE 

• Reissued STx_C's are issued by the MBOX as a WR cmd. The reissue logic keeps 
track of the STx_C's and asserts C_WBU%STXC_CMD_6B_H to indicate that the in
struction that is being issued is a STx_C and not a write command. 

• STx_C is NOT allowed to a CBOX IPR. 

5.2.2.5.1 Stopping Writes 

To prevent a "deadlock" situation from arising, the CBOX will retry all new writes from the 
MBOX when it gets into a situation when it cannot reissue a write even though it may be ready 
to reissue. This situation will arise when 
• entries in the write reissue queue are acknowledged out of order 
• There is a pending reissue when another reissue queue entry has been acknowledged. 

In other words , the situations where this can occur are 

• when we have 2 valid entries in the write reissue queue, both missing in the SCache. If the 
first one misses in the Bcache and the second one hits in the Bcache, the second entry in the 
reissue queue is ready to reissue before the first one. The second entry cannot issue until the 
first entry has its fill completed from memory. 

• Whenever a fill completes/ACK arrives just as we are are issuing a write to populate a shared 
write in 64B mode. The write cannot issue until the write_for _populate completes. 

Whenever we get into the situations described above, all subsequent (new) writes from the MBOX 
will be retried until the "stop_ write" scenario is resolved. Both the scenarios are likely to happen 
very infrequently and its impact to chip performance is expected to be negligible. The stop_ write 
scenario resolves the deadlock situation described below: 

Currently, in the CBOX , writes that miss in the SCache are loaded into the WB reissue queue 
and into the BIU Address File (BAF). The BAF entry acts as the "troll" register and retrys any 
subsequent SCache access that has the same Dcache index to prevent interleaved accesses to the 
same cache location. Take for example that a STR, STR A, missed in the SCache and is loaded 
into the BAF. Another STR , STR B, to the same SCache index as STR A, gets retried until the 
fill for STR A completes. 

In order to facilitate streaming writes on the pins, the BAF entry is cleared a few cycles after the 
fill actually completes. For the most part, the clearing of the BAF entry is synchronized with the 
reissue of STR A, (for which the fill completed) by the MBOX. In certain situations,as explained 
above the clearing of the BAF may occur before STR A can be reissued to the MBOX. As a result, 
the BAF entry is cleared prematurely in these cases and TROLLing on STR N.s index is stopped. 

5-26 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

STR B, to the same SCache index as STR A, could then sneak in before the original write is 
reissued by the MBOX. 

A deadlock situation can arise if STR A and STR B have the same Bcache index and both miss in 
the SCache. If STR A and STR B have the same Bcache index and the Bcache is direct mapped, 
STR A and STR B cannot simultaneously exist in the SCache. So in the above example, if STR 
B sneaks in before STR A is reissued , STR B would miss in the SCache and evict STR A from 
the SCache. The reissued STR A, meanwhile is continuously being retried since it trolls on the 
STR B BAF entry. Eventually when the fill for STR B completes, the BAF entry is cleared and 
STR A proceeds. STR A misses in the SCache and evicts STR B from the SCache. The process 
continues infinitely with both the STR's swapping each other out indefinitely. 

Part of the deadlock problem arises from the implementation of the reissue queue in the CBOX as 
a linear queue where writes are reissued to the MBOX only in the order that they were originally 
received. Considering the fact that the above cases occur infrequently, changing the reissue queue 
structure from a linear queue structure where only the top of the queue can reissue, to a structure 
where any entry can reissue may not be a big win. In fact changing the queue structure does 
not solve all cases, unless the MBOX redesigns their logic to accept multiple reissues. Making 
the reissue queue non-linear also complicates,the write buffer reissue control. The safest solution 
would be to clear the BAF entry only when the reissued write actually completes. However , this 
solution has a big impact when we are streaming writes off chip. Bus bandwidth would drop from 
4.26GB/sec (64B mode) to 3.55GB/sec. In 32B mode, the bandwidth would drop from 3.55GB to 
3.0lGB/sec. Hence this solution was abandoned and the stop_write widget was introduced. 

5.2.2.5.2 Stopping Reads 

Whenever an CACK is received from the system for either a shared write or a SET DIRTY, and 
the write cannot immediately reissue (because of a pending reissue), MBOX reads are stopped. 
This is done in order to prevent the block ,for which an CACK was rceived from the system , from 
being swapped out of the SCache until the block status has been updated. 
To prevent a deadlock situation from occurring, we also stop stop reads whenever any reissued 
writes which possibly hits shared data is followed by another write which is ready to issue (for 
which a fill completed) and needs a BAF entry. The deadlock is shown below 

• Reissue WR 1 : hits shared : allocate BAF entry, wait for wr for populate 
• MBOX read miss : allocate other BAF entry 

• Reissue WR 2 : misses or hits shared or p/c => needs BAF entry , but none available, retries 
• BAF unload ptr, still waiting for wr_for populate before servicing shared write. It cannot 

serice the read_miss since it services requests in order 
• => Deadlock : BAF waits for write for populate which cant issue until Reissue WR 2 completes 

which cant until a BAF entry clears which cant until the Shared write is serviced which cant 
until BAF receives write for populate etc. 

The deadlock was fixed by detecting if there is a pending reissue to a block that originally missed 
followed by another write, ready to issue, that originally missed or got invalidated. If such a case 
occurs, then MBOX reads will be retried. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-27 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.2.6 Write flows 

Data in the SCache can exist in one of four possible states 

• private/clean 

• private/dirty 

• shared/clean 

• shared/dirty 

• invalid 

5.2.2.6.1 Private & Dlny 

Writes can proceed without system intervention only if the write is to a block that is in the private 
and dirty state. This is depicted in Figure 5-25. 

Figure 5-25: Write hit private/dirty 

CYCLE 5 6 7 8 9 10 11 
I a b I a b I a b I a b I a b I a b I a b I 

CMD WR 
TAG RD I WR I 
WFB I owo I OWl I 
wsc I owo I OWl I 
RSC 
RFB 

I hit 
I wr_done to MBOX 

5.2.2.6.2 Private & Clean 

If the block is private/clean, before the SCache and Bcache tag status can be changed to pri
vate/dirty, the duplicate tag store in the System Interface (81) must be updated. So the write 
is loaded into the "write" reissue queue and a SET_DIRTY request is sent to the SI to request 
permission to write this block. The SI processes the request by setting the dirty bit, for the 
block, in its duplicate tag store and CACK's the request. (On a uniprocessor system, EV5 works 
in auto-ACK mode where an external CACK will not be required) On receipt of the CACK, the 
WRC reissues the write at high priority by asserting the C%M_WR_NOW_4A_H signal along with the 
C%M_WR_JWAF_INDEX_4A_H<2:0>. The write is then re-issued but this time the WRC asserts the 
signal C%S_WR_DmTY_PERM_6B_H to the SCache tag store,which sets the dirty bit and proceeds 
with the write. The flow is depicted in Figure 5-26. 

5-28 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-26: Write hit private/clean 

CYCLE 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 13 

CMD 
TAG 
WFB 
wsc 

I 
WR 

!RD I WR I 
I OWl I 

I 
OW21 
OWl I OW2 I 

I send SET_DIRTY to SI 
(load wr reissue q 

I addr loaded in BAF 
I Wl hit & p/c, write aborted 

I 
WR 

!RD I WR I 
I owl I OW2 I 

I OWl I OW2 I 

lwr done to MBOX 
I hit & p/c & perm 

I update tag to p/d 
I BAF entry cleared 

I wr_now issued to MBOX 
I CACK @WRC 

I CACK @ BIU 
I receive CACK at pins 

In the boundary case, EV5 could receive a SET_SHARED(INVALIDATE,FLUSH) to the same 
block, before the BIU has had a chance to issue the SET_DIRTY cmd. The shared bit of the 
block would then be set in the SCache tag store. The BIU will NOT issue the SET_DIRTY 
command. It will service the SET_SHARED(INVALIDATE,FLUSH) request and then assert c_ 
BIU->WR_INVAL_9A_H along with C_BAF%SC_MAF _IDX_6A_H to the WRC. The write is then reissued 
which will hit shared data (miss)in the SCache and the shared write (write miss) flow will be 
initiated. If EV5 had just issued the SET_DIRTY command as it received the SET_SHARED 
(INVALIDATE,FLUSH), it is assumed that the SI will ignore the SET_DIRTY, since it was to the 
same block that the SET_SHARED was sent for. The BIU will service the request and proceed 
as described above. 

The other boundary case is when EV5 receives a READ_DIRTY request to a block that has just 
been CACK'd for a SET_DIRTY request. The READ_DIRTY could sneak in and set the shared bit 
of the block before the write has been re-issued with permission to set the dirty bit. This would 
cause incoherency in the tag stores. To prevent this from happening, every time EV5 receives an 
CACK, it will not process further system requests until the dirty bit has been set. Therefore on 
an CACK, the signal C_WBU%STOP_SPA_4A_H is asserted to stop servicing system requests until 
the reissued write sets the dirty bit. If the reissued write can not go out immediately, MBOX 
requests are then retried by asserting C_WBU%STOP_WRITES_6B_H and C_WBU%STOP_READS_6B_ 

Hto ensure that the block for which the CACK arrived does not get evicted from the SCache until 
the dirty bit is set. 

.! 
5.2.2.6.3 Shared & Clean 

Shared writes or "broadcasts" onto the bus require ~fully populated block. 'Therefore, in 32B 
mode, if the block is shared, the 32B block is first populated by reading the SCache and merging 
it with the written longwords from the write buffer. (the SCache is not written at this stage) ECC 
is then generated on the merged data and loaded into the BIU system buffer. The write is also 
loaded into the "write" reissue queue. Then a WRITE_BLOCK request is sent to the SI, along 
with the two octawords of data. The Bcache is written with the data as it is passed to the SI. 
When an ACK is received, the WRC reissues the write. The C%S_WR_SHARED_PERM_GB_H signal 
is asserted to the SCache which then updates the SCache tag and data stores. The state of the 
block transitions to private/clean since the WRITE_BLOCK invalidates every other copy of the 
block in the system. 

-.z 
DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-29 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

If EV5 is operating in 64B mode, the first 32B is populated as explained above and the data loaded 
into the BIU data buffer. The write is also loaded into both the read reissue queue and write 
reissue queue. The entry in the read reissue queue issues to the MBOXasap. The C%M_WR_NOW_ 

4A_H signal is asserted to the MBOX along with a C%M_WR_64B_REQ_4A_H signal since the reissue 
is coming from the read queue. This forces the MBOX to flip bit<5> of the address to access the 
other 32B half of the 64B block. Typically it will take about 6 cycles from when we see the first 
write from the MBOX to when the MBOX will send the second write to populate the 64B block. 
The second write is referred to as the "write_for_populate" The data for this half is read out from 
the SCache and is loaded into the BIU data buffer. Having accumulated all the data, the BIU 
then processes the transaction to the SI as explained for the 32B flow. On receipt of the CACK, 
the WRC reissues the write and the SCache is updated. The broadcast transaction for 64B mode 
is shown. is shown in Figure 5-27 

Figure 5-27: Write broadcast 

a} Sending out data 

CYCLE 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
I 

CMD WR WRP* 
TAG IRD I WR I IRD I WR I 
WFB I OWll OW21 I OWll OW21 
wsc I OWl I OW2 I I OWll OW21 
RFB I OWll OW2 I I OW31 OW4 

!load data buffer OW2 
!load data buffer OWl 

lwr now for populate from read q 
jmerge-OWl ,gen ecc 

!load wr reissue & rd q 
I addr loaded in BAF 

I Wl hit shared, write aborted 

!earliest OWl @pins 
!load data buffer OW4 

!load data buffer OW3 

Note: The data and ECC is driven from BIU data buffer onto the pins only after both 328 of data have bee 

b) on CACK 

CYCLE 

CMD 
TAG 
WFB 
wsc 
RFB 

2 3 4 5 6 
I 

WR 

7 

IRD I 

8 9 10 11 

WR I 
I OWll OW21 

I OWl I OW21 
I OWl I OW2 I 

lwr done to MBOX 
I hit & shared perm 
I update tag to p/c 

I BAF entry cleared 
I wr_now issued to MBOX from write q 

I CACK @WRC 
I CACK @ BIU 

I receive CACK at pins 

5-30 The Cbox 

12 

DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The boundary cases are similar to the private/clean case, If EV5 receives an INVALIDATE(FLUSH) 
to the same block, before the BIU has had a chance to issue the WRITE_BLOCK cmd, the BIU 
services the INVALIDATE and then asserts C_BIU%WR_INVAL_9A_H signal along with C_BAF%SC_ 
MAF _IDX_GA_H to the WRC. The write is then reissued which will miss the SCache and the write 
miss flow will be initiated. In 64B mode, the INVALIDATE could occur between the original write 
and the write_for_populate. In this case, the BIU will not service the INVALIDATE until the wr_ 
for_populate has gone through. After it has, it will service the INVALIDATE and then ,like 
described above,assert C_BID%WR_INVAL_9A_H (Previously the INVALIDATE would be serviced 
first and then the write_for_populate will miss in the SCache and be ignored, since it is not a 
"real" write) 

Again, to prevent incoherency in the system, every time EV5 receives an CACK, it will not process 
further system requests until the SCache has been updated and the state of the tag store changed 
to private/clean. The signal C_ WBU%STOP _SPA_4A_H is asserted until the reissued write updates 
the tag store. If the reissued write can not go out immediately, MBOX requests are then retried 
by asserting C_WBU%STOP_WRITES_6B_H and C_WBU%STOP_READS_6B_H. This is done to ensure 
that the block for which the CACK arrived does not get evicted from the SCache. 

As can be seen in Figure 5-27, in 32B mode, the earliest EV5 can provide data & ecc at the pins 
for a tag access beginning in cycle 6, is at cycle 13. In 64B mode, the earliest EV5 can provide 
data & ecc at the pins is cycle 19. 

5.2.2.6.4 Shared & Dirty 

For a shared dirty block, the transaction is identical to the shared/clean case except that the dirty 
bit is also cleared. It is assumed that the SI will clear the dirty bit in the backmap on receipt of 
the WRITE_BLOCK request from EV5. 

5.2.2.6.5 Write misses/Invalid 

If the write misses in the SCache or the write hits an invalid block in the SCache, the write miss 
flow is initiated. The block is fetched from the Bcache if it is present there, else it is fetched from 
memory if it is not present in the Bcache using the READ_MISS_MODIFY command. The write 
is loaded into the "write" reissue queue Once the fill completes into the SCache, the BIU asserts 
the C_BAF%FILL_DONE_4A_H signal and the WRC reissues the write at high priority by asserting 
the C%M_WR_NOW_4A_H signal along with the C%M_WR_MAF_INDEX_4A_H<2:0>. The write is then 
re-issued and depending on the status of the fill data, the appropriate flow is initiated. The write 
miss flow is depicted in Figure 5-28. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-31 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-28: Write miss 

CYCLE 6 7 8 9 10 11 1 2 

WR 
!RD I WR I 

3 4 5 
I 

WR 

6 7 8 9 10 

IRD I WR I 
CMD 
TAG 
WFB 
wsc 

I OWll OW2 I •••• SCache filled •••• I OWl I OW2 I 
I PWl I OW2 I 

I access Bcache 
I load wr reissue q 

I addr loaded in BAF 
I WR miss 

5.2.2.6.6 1/0 writes & non-cacheable writes 

I OWl I OW2 I 

I hit ••• etc. 

I BAF entry cleared 
I wr now issued to MBOX 

I fill_done-@ WRC 

1/0 writes and non-cacheable writes are writes to addresses with bit<39> of the address set. The 
SCache is not written and data is driven from the write fat bus directly into the BIU system 
buffer. The longword valid bits are provided to the BIU to indicate which longwords are valid 
in each octaword. (for longword granularity in 1/0 space). Regardless of which mode EV5 is in, 
1/0 writes are always only 32B writes. Table 5-9 shows the cases when writes succeed for all 
combinations of permission grants/tag status. 

Table 5-9: Writes with Permission grant 

c%s_"Wr_shared_per111._6b_ 
h c'Yos_dirty _perm_6b_h shared bit dirty bit write SCache 

0 0 0 0 No 

0 1 Yes 

1 0 No 

1 1 No 

0 1 0 0->1 Yes 

0 1 Yes 

1 0 No, rd SC 

1 1 No, rd SC 

1 0 0 0 Yes 

0 1->0 Yes 

1->0 0 Yes 

1->0 1->0 Yes 

1 1 ERROR 

5-32 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.2.7 General considerations for writes 

• Up to two write requests can be queued up at the BIU but only one request can be pending at 
any time at the BIU to the system. Only after the first permission request (WRITE_BLOCK, 
WRITE_BLOCK_LOCK,SET_DIRTY) to the system is CACK.'d will the second entry issue its 
request to the Bcache/system. The only exception is if the first request is a READ _MISS_ 
MODIFY cmd to the SI to fetch data from memory. In this case, the second entry can still 
access the Bcache underneath the first fill request. 

• In general, write hits on DCache index matches are not allowed to be issued, and are replayed 
by the MBOX until the TROLL entry has been cleared. (If they were allowed, then we could 
have a situation where we get write hits to a set that has been allocated for a fill. If the write 
requires system permission, the fill data could return before write permission was granted 
thus changing the status of the tag.) The only exception to this rule is if the DCache index 
match is to the same Write buffer entry. This is to allow the second half of a 64B write to 
pass and to be merged at the BAF. 

• Write buffer should not get write enables for MB's, WMB's and FETCH's that are store in the 
write buffer. 

• It is assumed that if a reissued write gets retried, no further MBOX loads and stores will be 
serviced until the reissued write is allo-\•ved to pass. 

• In general, if an instruction gets retried, the instruction in its shadow is treated indepedently. 
However, if the retried instruction is a reissued write, then the shadow is aborted and un
conditionally retried. This is to ensure that no instructions in the shadow can access/displace 
the same block that the reissued write accesses. 

• Write misses are not merged in the BIU. 

• Writes are aborted on 
• failed STx_C instructions 
• troll matches except for write_for_populate 
• whenever the stop_ write scenario occurs. 

5.2.2.8 STx_C 

STx_C are not merged with any existing entry in the WBU and are allocated separate entries in the 
WBU by the WAF. The WBU is flushed when it receives·a STx_C. The lock flag is loaded on a fill with 
the logical AND of the local lock flag and the system lock register. When a write is issued the WRC 
checks the lock flag before issuing the data. If the lock flag is clear, an abort signal is sent to the 
SCache. If the lock flag is set, the success of the STx_C is dependent on the V,S,D tag status bits and 
the permission grant signals. The SAU is sent a C_ WBU%STXC_DONE_8A_H signal which then returns 
STx_C_DONE as as return status to the MBOX. The lock flag is then cleared. A signal C%M_STXC_ 
FAIL_7A_H is returned along with the status, to the MBOX to be written into the appropriate register 
file location. Invalidates to the locked address that arrive at EV5 clear the lock flag. As shown in 
tables Table 5-10 and Table 5-11, the following cases are possible. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-33 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-10: STx_C cases: cacheable References 

lock flag lock flag 
on first on re-

tag status issue action issue action 

private/dirty 1 Proceed with write. STx_C * 
succeeds,clear lock flag 

0 The write into the SCache is * 
aborted. STx_ C fails 

private/clean 0 STx_C fails * 
1 Send SET_DIRTY to SI. 1 Reissue STX_C. STx_C succeeds,clear 

OnCACK lock flag. 

0 The write into the SCache is aborted. 
STx_C fails 

on CFAIL * SET_DIRTYs should not be CFAIL'd 

shared 0 STx_C fails * 
1 Send Accumulate and send data out 

WRITE_BLOCK to SI 

on CACK * Reissue STX_ C. Local lock flag ignored 
since system accepted data. The STx_ C 
succeeds. Clear lock flag 

on CFAIL * Should not occur. If it occurs,Reissue 
STX_C. STx_C fails. clear lock flag 

miss/invalid * Fetch Data from memory and restart 
STX_C. Ignore local lock flag on the 
miss 

Table 5-11: STx_C cases: Non-Cacheable References 

lock flag lock flag 
on first onreis-

tag status issue action sue action 

* Send Accumulate and send data out 
WRITE_BLOCK_LOCK to SI 

on CACK * Reissue STX_C. STx_C succeeds. Clear 
lock flag 

on CFAIL * Reissue STX_C. STx_C fails 

5-34 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.3 Bus Interface Unit 

The cache system is made up of the Scache, the Scache victim buffers, and the Bcache. The 
Bcache is optional. The BIU will support only non-pipelined Beaches of various sizes and access 
speeds. Some address support is provided for Bcache victims, but a Bcache victim buffer is not 
directly support by the BIU. The block size of Scache and Bcache can be either 32 bytes or 64 
bytes, which is controlled by a mode bit located in the SC_CTL IPR register. 

The BIU will service read miss, write miss, shared write, interlock, and victim requests from 
the Scache. It will manage the state of the cache system for the System, allowing the system to 
invalidate, flush, and read blocks in the cache system. 

Fi e 5-29 shows a simple picture of the system as seen by the BIU. .---------...... 
EV5 MD H<3:0> SYSTEM 

MEMORY 

VALID 

SHARED 

H 

ILL ID H 

Fl 

DA K H 

5.2.3.1 BIU Functions 

The BIU is made up of five parts and their control. Each is tightly integrated into the Scache. 

The Lock Register and its control is used to maintain the state of the lock flag. 

The System Probe Address Register (SPR) holds the probe address and command from the system. 
The SPR interacts with the Scache to perform the Scache Probe, and then interacts with the 
Bcache, provided one exists in the system. 

The BIU miss Address File (BAF) holds the state and address for two requests from the CPU. The 
BIU Sequencer (BSQ) will access the Bcache and/or the system to satisfy these requests. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-35 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The Victim Address File (VAF) holds Scache victim addresses and state. It interacts with the 
Scache to remove the victims in a timely manner, with the WBU to buffer write data, and with 
the BSQ to write the victim data into the Bcache or System. 

5.2.3.2 Lock Register 

The lock register is loaded with the Scache address each time a LDx_L command is issued in the 
.Scache. The lock flag is also set. 

Each cycle the address in the lock register is compared to the system addresses that arrive. If 
an INVALIDATE or FLUSH is received to the cache block that is locked, the lock bit is cleared. 

PAL code clears the lock flag by initiating a STx_C to the address in the lock register. 

These signals are required for this function: 

• Scache address 
• lock flag 

5.2.3.3 Scache Requests 

This section outlines the interface between the Scache and the bus interface. 

5.2.3.3.1 Loading the BAF and VAF 

The address going into the Scache is compared to the addresses that are already in the BAF. 
If the cache system is in 64 byte mode, the address is the same 64B block, but a different 32B 
within that block, the command, the type (integer or floating), and the stream type (I or D) are 
the same, then the requests merge. Only read misses can merge. Merges can only occur until 
the first octaword of fill data arrives for that BAF entry. 

If the request is a miss and it merges, the second MAF _idx location is validated and loaded into 
the existing BAF entry. 

If the request is a miss and does not merge, a new BAF location is allocated and written with the 
command, address, set allocation, and MAF _idx. The command loaded into the BAF is a function 
of the Scache command and the status from the Scache tags. Table 5-12 for the full story. 

5-36 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-12: Loading of BAF and VAF 

Command Hit Shared Dirty Modified BAFCommand VAFcommand 

READ HIT * * * NOP NOP 

READ MISS * * no READ NOP 

READ MISS * yes yes READ VICTIM 

WRITE HIT no no no TAG UPDATE NOP 

WRITE HIT no yes no NOP NOP 

WRITE HIT yes no no WRITE BRDCST WRITE_DATA 

WRITE HIT yes yes no WRITE BRDCST WRITE_DATA 

WRITE MISS * * no READ_FOR_ WRITE NOP 

WRITE MISS * * yes READ_FOR_WRITE VICTIM 

LDx_L HIT * * * LOCK NOP 

LDx_L MISS * * no READ_LOCK NOP 

LDx_L MISS * * yes READ_LOCK VICTIM 

STx_C HIT no no no TAG UPDATE NOP 

STx_C HIT no yes no NOP NOP 

STx_C HIT yes no no STx_C BRDCST WRITE_DATA 

STx_C HIT yes yes no STx_C BRDCST WRITE_DATA 

STx_C MISS * * no READ _FOR_ WRITE NOP 

STx_C MISS * yes yes READ_FOR_WRITE VICTIM 

FETCH * * * * FETCH NOP 

FETCH_M * * * * FETCH_M NOP 

MB * * * * MB NOP 

If the miss caused an Scache victim to be created, the VAF will be loaded with the Scache index, 
the set number of the victim, and the modify bits for that block. At least one modify bit must be 
set for a victim to be created. Note that the block must be dirty to have modify bits set. Having 
modify bits set in a clean block is an error condition. 

If the allocation of the BAF fills the BAF, the SAU must be informed. The SAU will use this 
information to prevent the overflow of the BAF. The baf_full timing is shown in Figure 5-30. 

Figure 5-30: BAF full timing 

7 B 9 

_l_I_ 

!address that fills the BAF 
lvalid bit set 

lbaf_full set 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-37 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Some commands do not access the Scache, but are passed through to the BIU. FETCH, FETCH_ 
M, and MB will allocate a new BAF entry every time. 

A BAF entry is cleared after a fill is completed, a FETCH, FETCH_M, or MB is completed, or a 
shared or IO write is completed. The BAF entry is cleared 5 cycles after a fill for a write miss 
completes to allow time for the WBU to reissue the write. The valid bit for the entry is cleared 
the cycle after the clear condition occurs. 

If a FLUSH, INVALIDATE, or SET_SHARED hit on an entry in the BAF, the entry is a write 
command, and a VAF entry is allocated for it (shared or IO write), then the BAF _inval bit will 
be set for that BAF entry. When all the data for the write is collected, the entry will be shown 
to the BSQ. If the BAF _inval bit is set, the BSQ will forward the correct MAF _idx to the WBU 
with a fail notification. The WBU will then reissue the write if necessary. 

5.2.3.3.2 Loading the BAF and VAF 

The following bits of information must be stored in the BAF file for each entry: 

• Address<39:4> 
• BAF CMD<3:0> 
• SC_SET<l:O> 
• Victim Hit or Bcache Index Match 
• MAFl_ Valid 
• MAF1_idx<4:0> 
• MAF2_ Valid 
• MAF2_idx<4:0> 
• ARB 
• Bcache miss 
• Stop merging 
• BAF_inval 

The following list of functions will be performed on the BAF entries: 

• Write Address, CMD, SC_SET, VicJBIM, MAFl_valid, MAFl_idx, 
• SetARB 
• Set BC_MISS 
• Set BAF _inval 
• Set Stop merging 
• Set MAF2_ valid, Write MAF2_idx 
• TROLL( cam on Address<12:5>), in 32-byte mode 
• TROLL( cam on Address<12:6>), in 64-byte mode 
• HIT( cam on Address<39:6>) 
• MERGE( cam on Address<39:6>, XOR Address<5>) 

~ TheCbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.3.3.3 Victims 

Victims are only generated by dirty and modified blocks which are deallocated from the Scache. 

The Victim Address File (VAF) performs actions when it detects any of the following conditions: 

1. Victim generated from a miss 
2. WRITE BROADCAST command from the WBU 
3. WRITE BROADCAST LOCK command from the WBU 
4. WRITE FULL BLOCK command from the WBU 
5. READ DIRTY which hits in the VAF 
6. SC_INVALIDATE which hits in the VAF on a victim 

The following is a brief description of the actions taken by the V AF for each condition. 

• Victim generated from a miss 
When a victim is produced, the VAF is loaded with the index, set number, and status bits 
(modify, shared, and dirty) of the Scache victim. The SAU generates a victim request on 
behalf of the VAF and arbs for the Scache. The VAF sends a request to the SAU for a second 
Scache access for the victim. When the SAU grants the VAF access to the Scache, the VAF 
sends the index, set number, and subblock for the victim to the Scache. The SAU sends 
FORCE_HIT to the Scache for this access. The Scache returns the data for that subblock 
and the tag for the block. The VAF sets the corresponding data valid bit for the block. In the 
meantime, the second Scache access request for the victim is arbing in the SAU. (Note that 
the tag is stored in the VAF only as the first subblock returns from the Scache. A fill to the 
block may change the tag before the victim is completely read out of the Scache). The second 
data valid bit for the victim is set when the data arrives in the BDP (Biu DataPath). Once 
both data entries are collected the VAF sends a request to the BSQ to read the victim out of 
the chip. 

• WRITE BROADCAST, WRITE BROADCAST LOCK, and WRITE FULL BLOCK commands 
from the WBU 
These commands are treated in the same way by the VAF. After the permission grant arrives 
back from the system, the WBU signals the Mbox to start the write transaction. The VAF 
captures the address and data arriving from the Scache and sets the WB bit for that entry. 
When the data for the specific type of write is collected, the VAF signals the Biu Sequencer 
(BSQ) to begin the process of reading the data off chip. Data arriving from the Scache is not 
wrapped for these commands (ie the INT16 corresponding to the octaword 0 arrives first from 
the Scache, then the INT16 corresponding to to octaword 1, etc ) For more information about 
these commands see Section 5.2.2.6.3 and <REFERENCE>(wr_full_blk). 

• READ DIRTY which hits in the VAF 
When the address of a READ DIRTY command hits in the VAF, the shared bit is set for the 
entry. When the BSQ sends the data off chip, the Entry_ Valid bit for that entry is cleared. 

• SC_INVALIDATE which hits in the VAF 
When the address of an Scache invalidate command hits in the VAF on a victim, the Entry_ 
Valid bit for that entry is cleared if it is not currently bejng sent to the pins by the BSQ. An 
INVALIDATE to should not occur to the address of one of these WRITES after EV5 has been 
ACKED for them. This case should be checked with an assertion checker in the behavioral 
model. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-39 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The subblock entry (bit A<5>) is generated using the fill order to the Scache block when a victim 
is read out. The data arrives from the Scache in the same order in which it will be filled. While 
the VAF is processing one of the three WRITE commands listed above, the subblock entry (bit 
A<5>) starts at 0 for the first victim read and is a 1 for the second victim read. 

The commands SET_SHARED and CLR_SHARED should not hit in the VAF due to the operations 
which must precede them. SET_SHARED should only be sent to clean blocks which, by definition, 
won't be in the VAF. A CLR_SHARED to a block is processed after a WRITE BROADCAST to 
that block. The VAF would invalidate its entry after the WRITE BROADCAST thus the CLR_ 
SHARED would not hit in the VAF. 

Quadword ECC is generated for the data entries in the VAF as they arrive from the Scache. 

The VAF is required to accumulate the entire block from the Scache. It is also required to send 
the entire block out to the system on any of the following cases: 

• A Bcache is NOT present. 
• The operation is a WRITE BROADCAST, WRITE BROADCAST LOCK, or WRITE FULL 

BLOCK 
• All four modify bits are set for the Victim entry. 

However, if only one modify bit is set for the block and none of the other conditions listed above 
are met, then the VAF can write out only the octawords that have modify bits set. This reduces 
the bus traffic on the pins. 

The VAF can only process 1 victim at a time. So any instruction which is issued by the Mbox 
which requires VAF resources (10 write, shared write, or victim) will be retried until the victim is 
processed. IO writes or shared writes can be processed by the VAF as quickly as they are issued. 
The VAF processes an entry by collecting all the data required for the entry based on type of entry 
and the CBOX SC_BLK_SIZE ipr bit. Victims always collect 64b of data regardless of the value 
of the Scache block size. IO writes always are 32b regardless of the assertion of the Scache block 
size. Once all the required data for a victim is collected, the VAF sends a request to the BSQ to 
send the victim data to the pins. When processing a WRITE_BROADCAST of WRITE_BLK, the 
VAF informs the BAF once all the data is collected for the entry and then the BAF issues the 
request to the BSQ to service the WRITE_BROADCAST or WRITE_BLK 

The following bits of information must be stored in the VAF file for each entry: 

• Address<39:15> 
• Address< 14:6> 
• SC_SET<l:O> 
• Modify<l:O> 
• Data Valid<l:O> 
• Entry Valid 
• Shared 
• Dirty 
• WB 

The following list of functions will be performed on the VAF entries: 

• Write Address<14:6>, SC_SET, Modify, Set Entry_ Valid, Clear Data Valid 

5-40 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• Set Data Valid 
• Write Address<39:15> 
• VICTIM_HIT( Cam on Address<39:6>) 
• Clear Entry Valid, WB 
• Write Address<39:6>, SC_SET, Modify, Set Entry_ Valid, WB, Clear Data Valid 

• Set Shared bit 
• Write Dirty (possibly could be optimized away) 

The timing for a sample victim flow is shown in Figure 5-31. This sample hits in the Bcache. 
The Bcache access is 4 cpu cycles. 'l\vo octawords of the victim are read in the first Scache access. 
The third and fourth octawords of data are read in the second Scache access. 

Figure 5-31 : Victim data flow 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
_1 __ 1_1 __ 1 __ 1_1 __ 1_1_1 __ 1_1_1_1 __ 1_ 

!miss which creates victim 
!victim generation 
llst victim request 

Ifill nop Ifill nop llst ow Scache fill 12nd ow Scache fill .•• 
!2nd victim request 
llst victim grant 

I set entry valid 
!set data valid 0 

12nd vaf grant 
I load vaf status 
llst ow of victim llst ow arrives at BDP 

!2nd ow of victim 12nd ow arrives at BDP 
!load vaf status 
13rd ~w of victim !3rd ow arrives at BDP 

14th ow of victim 14th ow arrives at BDP 
!set data valid 1 

The loading of the first subblock of data in the VAF for a shared or IO write is shown in 
Figure 5-32. The WB bit signifies that this entry is a write transaction rather than a victim. 
Longword valid bits are used to select between the WFB (asserted) or the RFB (deasserted) for the 
data arriving to the BDP for the write. 

The timing for a populate write in 64b mode is shown in Figure 5-33. The populate write has all 
its longword valid bits deasserted, thus it is read entirely from the Scache via the RFB. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-41 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-32: Data collection of first subblock in VAF 

7 8 9 10 11 12 13 14 15 
_l_l_l_l_l_l_l_I_ 

!load baf status 
lload-vaf-status 

I set entry valid 
!set WB bit 

llst ow of data@ BDP 
!2nd ow of data @ BDP 

!set data valid 0 

Figure 5-33: Data collection of second subblock In VAF 

6 7 8 9 10 11 12 13 14 
_1_1_1_1_1_1_1_1 

lwr_for_populate 
1 load_baf_status 

llst ow of data@ BDP 
!2nd ow of data @ BDP 
!set data valid 1 

5.2.3.4 System Probe Address Requests 

EV5 receives system probe commands and addresses on dedicated bidirectional pins from the 
system interface. Cache block address<39:04> and the four-bit system probe command are latched 
on separate buses in one system clock cycle following the assertion of Addr_Bus_Req_H. 

The following commands can be received at any time from the system. These commands require 
the Scache to be probed and possibly modified. For systems with a Bcache, access to that cache 
may also be necessary to complete the transaction. 

• INVALIDATE 
• SETSHARED 
• READ 
• READ DIRTY 
• FLUSH 

Once a valid address and command are received from the system, indicated by the assertion of 
Addr_Bus_Req_H, the address is written to the System Probe Register (SPR) in the Cbox Address 
Data Path (ADP), and the command is fed into the System Probe Arbiter (SPA), which processes 
all system requests. In general, the command will be completed by a two step procedure. 

1. Arbitration to access the Scache 
Access to the Scache is requested from the Scache Arbiter Unit (SAU). 
Once access is granted by the SAU, the Scache is probed and/or 
updated as required by the probe command. If there is a fill or 
victim operation pending, there will be some delay in completing the 
Scache access. 

2. Arbitration to access the Bcache 

5-42 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

If a Bcache is present in the system, arbitration is requested from 
the BIU Sequencer (BSQ) for access to modify the Bcache. The BSQ 
then notifies the SPA once the Bcache access is complete, or has 
started in the case of probe command requiring data transmission. 
Only then is the command acknowledged by EV5, and the SPA can 
process the next probe command. 

Once the system asserts Addr_Bus_Req_h to transmit probe commands, it is allowed to send two 
probe commands without waiting for for a response from EV5. Then the system must wait for 
a response before dispatching another probe command, and if Addr_Bus_Req_h is left asserted 
to process a packet of commands, the system must transmit a NOP as a command until it re
ceives a response, when it can dispatch the next command. Otherwise, Addr_Bus_Req_h must 
be deasserted until a response for a previous command is received. 

This is necessary to prevent the System Probe Arbiter (SPA) from processing the same command 
multiple times, since the probe command is held by a latch in the pad ring as long as Addr_Bus_ 
Req_h is asserted. 

If a parity error occurs as a result of either a bad probe command or address, the SPA begins 
processing the command in the normal manner, in order to get access to the Scache and Address 
Data Path (ADP) from the Scache Arbiter Unit (SAU). This is the only means writing the system 
probe address to the proper Cbox IPR in the ADP, i.e. EI_ADDR. Once the SAU has granted 
access, the SPA terminates the command and transmits NOACK as a system response. 

In processing system probe commands that require transmission of a cache block from the Scache, 
such as a READ or READ _DIRTY, the data is unloaded from Scache and stored in the sys_data 
buffer of the data datapath explained below. The SPA sends signals to both the Victim Address 
File (VAF) control and the BIU Sequencer (BSQ) to facilitate the transfer of data to the system. 

• c_biu_spa%ld_sys_bdb_6b_h : notifies VAF control that data is arriving to be loaded in sys_ 
data buffer. 

• c_biu_spa%spa_lookup_a_h : a strobe signal that notifies VAF control a probe command is in 
progress that will use one of the three data buffer entries in the data datapath. 

• C_BIU_SPA%SYS_BDB_ENTRY_8B_H<1:0> : two-bit field indicates to VAF control which data 
buffer entry to use for the probe command. 

• c_biu_spa%sdb_ vld_8b_h : notifies BSQ whether to use a data buffer entry or Bcache for 
probe command; 1-data buffer, 0-Bcache. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-43 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-34: Timing for System Probe Address Logic 

1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1 
3b 4a 4b Sa Sb 6a 6b 7a 7b Sa Bb 9a 9b lOa lOb lla llb 

spa_req _!-------\ __________________ _ 

spa_gnt ______ !-------\ _____________ _ 

sau address _______ !-------\ __________ _ 

SC, BAF, VAF_hit ________ !-------\ _______ _ 

!-------\ ld_sys_bdb 

spa_lookup 

sdb vld 

------- -----------
______________ !--------------------

______________ !-------------------------

Below is a brief description of the procedure followed by the System Probe Arbiter (SPA), for each 
system probe command issued to EV5. For more details about the interaction of the SPA with the 
Scache Arbiter Unit, see <REFERENCE>(biu_cmds). 

• INVALIDATE 
For INVALIDATE, SPA requests access to the Scache by sending an SC_INVAL command 
and asserting Spa_Req_3b_h to the SAU. Regardless of the result of address compares in the 
BIU miss Address File (BAF) and Victim Address File (VAF), or whether the command hits or 
misses in the Scache, once the SAU grants access to the Scache by assertingSpa_Granted_5b_ 
h, the probe command is sent to the BSQ to update the Bcache, providing a Bcache is present. 
Otherwise the SPA returns to the idle state, ready to process the next probe command. When 
the SPA is finished with the probe command, EV5 responds by sending ACK/Shared/Scache if 
no Bcache is present, or sending ACK/Shared/Bcache if there is one. 
If there is a victim pending in the VAF, or a shared write pending in both the BAF and 
VAF, these entries will be invalidated; the victim will be cleared from the cache system, and 
the shared write will be restarted. If there is a fill pending to the Scache from Bcache that 
matches the cache block being invalidated by the system, the BAF entry will be invalidated. 

• SETSHARE 
For SET SHARE, SPA requests access to the Scache to perform a SC_SET_SHARED com
mand. Regardless of the result of address compares in the BAF and VAF, or whether the 
command hits or misses in the Scache, once the SAU grants access to Scache, the probe com
mand is sent to the BSQ to update the Bcache, providing a Bcache is present. Otherwise the 
SPA returns to the idle state, ready to process the next probe command. When processing of 
the SET SHARE command is complete, EV5 responds with ACK/Share/Scache if no Bcache is 
present, or sending ACK/Shared/Bcache if there is one. 

• READ 
For a READ, SPA requests access to the Scache for an SC_READ command. If the EV5 is in 
32-byte mode only one SC_READ is requested, but in 64-byte mode two scache accesses are 
requested. The resulting value driven on the read fat bus (RFB) is loaded into the sys_data 
buffer by the VAF controller on assertion of ld_sys_bdb_6b_h by SPA. 

5-44 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Next the SPA checks the results of address compares in the ADP and tag compares in the 
Scache. This is done after the first Scache access in 32-byte mode, and after the second access 
in 64-byte mode. If the probe command hits in the Scache (Sc_hit), and there is not a fill 
or victim pending, the SPA generates the following signals: Spa_Lookup_a_h is asserted for 
the rest of the transaction, Sys_Bdp_Entry_Sb_h<l:O> is written with the entry number of 
the sys_data buffer (Ox2), sdb_vld_Sb_h is also asserted for the rest of the transaction, and 
the probe command is sent to the BSQ. When the BSQ processes the command, the cache 
block in the sys_data buffer is transmitted from the EV5, a signal is returned to SPA, c_biu_ 
bsq%spa_bc_dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is 
transmitted. 
If there is a hit in the address compare with a Victim Address File (VAF) entry, but not with 
any BIU miss Address File (BAF) entries, this means a pending victim matches the cache 
block the system intends to read. In this case, Sys_Bdp_Entry_Sb_h<l:O> is written with the 
entry number of the matching VAF entry, either (OxO) or (Oxl), and either the vicO or vicl data 
buffer entries is used both to process a victim and the system read. The ACK/Shared/Scache 
response is sent to the system. 
If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. The probe 
command is sent to the BIU Sequencer (BSQ) without asserting sdb_vld_Sb_h, providing 
a Bcache is present in the system. The BSQ then looks in Bcache to complete the probe 
command. If the cache block is found in Bcache an ACK/Shared/Bcache is sent, otherwise 
NOACK is dispatched. 
If the cache block is not found in Scache, the probe command is sent to the BSQ to complete, 
provided a Bcache is present, and an ACK/Shared/Bcache is sent. If a Bcache is not present 
in the system, NOACK is sent as a response and SPA returns to the idle state in order to 
process the next command. 

• READ_DIRTY 
For a READ_DIRTY, SPA requests access to the Scache for an SC_READ_DIRTY command, 
one access in 32-byte mode and two Scache accesses in 64-byte mode. The resulting value 
driven on the read fat bus (RFB) is loaded into the sys_data buffer by the VAF controller on 
assertion ofld_sys_bdb_6b_h by SPA. 
Next the SPA checks the address compares in the ADP and tag compares in the Scache, 
this being done after the first Scache access in 32-byte mode, and after the second access 
in 64-byte mode. If an Sc_hit results and the cache block is dirty, and there is not a fill 
or victim pending, the SPA drives the following: Spa_Lookup_a_h is asserted for the rest 
of the transaction, Sys_Bdp_Entry_Sb_h<l:O> is written with the entry number of the sys_ 
data buffer (Ox2), sdb_vld_Sb_h is also asserted for the rest of the transaction, and the probe 
command is sent to the BSQ. When the BSQ processes the command, the cache block in the 
sys_data buffer is transmitted from the EV5, a signal is returned to SPA, c_biu_bsq%spa_bc_ 
dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is transmitted. 
If there is a hit in VAF but not the BAF~ meaning a pending victim that matches the READ_ 
DIRTY cache block, Sys_Bdp_Entry_Sb_h<l:O> is written with the entry number of the match
ing VAF entry, and either the vicO or vicl data buffer entries is used both to process a victim 
and the READ_DIRTY probe command. The ACK/Shared/Scache response is sent to the 
system. 
If there is a victim pending in the VAF, the VAF controller is responsible for setting the share 
status bit for that entry. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-45 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. The probe 
command is sent to the BIU Sequencer (BSQ) without asserting sdb_ vld_Sb_h, providing a 
Bcache is present in the system. The BSQ then reads the data out of the Bcache to complete 
the READ_DIRTY command. Since this probe command should always be found in the EV5 
cache system, an ACK/Shared/Bcache is sent. 
If the cache block is not found in Scache, the probe command is sent to the BSQ to complete, 
provided a Bcache is present, and an ACK/Shared/Bcache is sent. If a Bcache is not present 
in the system, NOACK is sent as a response and SPA returns to the idle state in order to 
process the next command. 

• FLUSH 
For FLUSH, SPA requests access to the Scache for an SC_READ command, one access in 
32-byte mode and two Scache accesses in 64-byte mode, in order to accumulate a victim in 
the sys_data buffer before invalidating the cache block. 
Next the SPA checks the address compares in the ADP and tag compares in the Scache, 
this being done after the first Scache access in 32-byte mode, and after the second access 
in 64-byte mode. If an Sc_hit results and the cache block is dirty, and there is not a fill 
or victim pending, the SPA drives the following: Spa_Lookup_a_h is asserted for the rest 
of the transaction, Sys_Bdp_Entry _8b_h<1:0> is written with the entry number of the sys_ 
data buffer (Ox2), sdb_vld_Sb_h is also asserted for the rest of the transaction, and the probe 
command is sent to the BSQ. 
As the BSQ processes the command, however, the SPA requests access of the Scache for an 
SC_INVAL command, to flush the cache block from the scache. The BSQ transmits the cache 
block in the sys_data buffer from the EV5, and sends a signal back to SPA, c_biu_bsq%spa_bc_ 
dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is transmitted. 
If there is a hit in VAF but not the BAF, meaning a pending victim that matches the cache 
block to be flushed, Sys_Bdp_Entry_Sb_h<l:O> is written with the entry number of the match
ing VAF entry, and either the vicO or vicl data buffer entries is used both to process a victim 
and the FLUSH probe command. The SPA requests access to Scache for an SC_INVAL 
command, and an ACK/Shared/Scache response is sent to the system. 
If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. In this 
case the SPA requests access to Scache for an SC_READ in order to recirculate the FLUSH 
probe command to allow the fill to complete. This has the side effect of reloading the sys_data 
buffer entry in the data datapath. 
Address compares in the Scache, BAF, and VAF indicate a pending write to the sytem waiting 
for permission to start. The SPA will attempt to process the FLUSH command, but its request 
to the Scache Arbiter Unit (SAU) will be disabled in this instance by a signal from the Write 
Buffer Unit (WBU), c_wbu%stop_spa_4a_h. The SPA request should be disabled until the 
pending write completes its Scache access, and then allowed through. 
If the cache block is not found in Scache, the probe command is sent to the BSQ to complete, 
provided a Bcache is present, and an ACK/Shared/Bcache is sent. If a Bcache is not present 
in the system, NOACK is sent as a response and SPA returns to the idle state in order to 
process the next command. 

~ TheCbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 5-13: System Probe Commands and Related Actions if Address match 

Command Where Present Action 

INVALIDATE Scache Maybe clear valid bit on Sc_Hit 

BAF Maybe clear valid bit on entry 

VAF Maybe clear valid bit on entry 

Bcache Maybe clear valid bit on Bc_Hit 

SET SHARE Scache Maybe set share bit on Sc_Hit 

BAF Maybe No action taken 

VAF Maybe set share bit on entry 

Bcache Yes set share bit 

READ Scache Maybe load sys_data buffer and use if Sc_Hit 

BAF Maybe if fill, Read done from Bcache, else NOACK 

VAF Maybe vaf entry used for victim and read 

Bcache Maybe Read from Bcache if Bc_Hit, elde NOACK 

READDffiTY Scache Maybe Do Rd_Drty if Sc_Hit and Dirty 

BAF Maybe if fill, Rd_Drty from Bcache, else NOACK 

VAF Maybe vaf entry used for victim and Rd_Drty 

Bcache Yes Rd_Drty from Bcache if not Sc_Hit 

FLUSH Scache Maybe If Sc_Hit & Drty, do Read, else invalidate 

BAF Maybe if fill, wait then invalidate 

VAF Maybe vaf used for victim & flush, then invalidate 

Bcache Maybe deallocate block if dirty, then invalidate 

if write_broadcast, wbu will disable 

5.2.3.5 System Data Requests 

These commands are used by the system to move data in and out of the EV5 cache system. 

• SEND BRDCST DATA 

• SEND DIRTY DATA 

• READ VICTIM DATA 

• TAG WRITE 

• FILLO 

• FILLl 

• FILLO SHARED 

• FILLl SHARED 

• FILLO NO CHECK 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-47 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• FILLl NO CHECK 

The SEND BRDCST DATA command will select the address and data of the next write broadcast 
that is to take place. 

The SEND DIRTY DATA and TAG WRITE commands will use the address in the System Probe 
Register and the data in the system data buffer if data is required. 

READ VICTIM DATA will use the address and data in the next victim buffer to be written to 
memory. 

The FILLn commands will use the address in the nth BAF register. 

5.2.3.5.1 BIU Sequencer 

The BIU sequencer (BSQ) creates the runs the EV5 command and selects the address that is 
used to control the Bcache and request service from the System. It also produces read addresses 
for the data buffers. 

Inputs to BSQ include: 

• Sysclock-2 
• Last EV5 CMD 
• next BAF request 
• next VAF request 
• System Bcache Request 
• NO_EV5_ACCESS 
• VICTIM_BUFFERS_FULL 
• NEXT_EV5_REQUEST 
• SYSTEM_DATA_CMD 
• Bcache Hit 
• Configuration Data 

Outputs from BSQ include: 

• New BAF state 
• New VAF state 
• New EV5 CMD 
• Data Buffer Read Address 
• Clear System Bcache Request 

The rough ARB priority for BSQ is this 

1. System Data request 
2. System Bcache request 
3. BAF request 
4. VAF request 

The VAF will have priority over the BAF if the next request from the BAF has victim hit/Bcache 
index match asserted. 

5-48 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

These commands will be used by the BIU to service all requests from the Scache and System. 
Refer to the EV5 Functional Specification for a full description of these commands. 

• READ 
• WRITE INT32 
• READ MISS 
• READ MISS MOD 
• VICTIM 
• DATA FROM BCACHE 
• MEMORY BARRIER 
• FETCH 
• FETCH_M 
• TAG UPDATE DIRTY 
• TAGCHANGE 
• WRITEDATA 
• WRITEBACK 
• WRITE BROADCAST 
• WRITE BROADCAST LOCK 

There are four basic sequences in the BSQ; CPU read bypass, CPU read, CPU write, and system 
cycle. They are outlined below. 

An Scache tag access starts in 87 of the pipe. If the access results in a miss that requires a read, 
of Bcache or memory, BSQ will attempt to drive the command and address off chip at the rising 
edge of SlO. The miss signal arrives from the Scache during S8a. If a fill is required and there 
is no Bcache Index Match, the command can be bypassed. BSQ will have started at SSa and not 
finish until the end of SSb. It will assert bypass possible if the command could be driven at 810. 
This will only be true if there was nothing else to do and the needed clock edge will be there at 
810. If the bypass is possible, BSQ will select the bypass address and send it to the pins. During 
89a we will decide on the command to send and drive it to the pins. If there is no clock at S 10, 
a second cycle of bypass is possible at 811. The miss will be written into the BAF at S9A and be 
read by the normal BSQ arbitration during S9B. This would result in a read starting in 812 or 
later. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-49 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 5-35: BSQ Bypass Flow 

CPU Read Bypass: 

S7 s8 s9 slO 
1---------1---------1---------1---------1 
ISC tag 

ISC hit 
IBSQ I 

I Bypass? 
IAddr sel 

ICmd to pins 
IAddr to pins 

ISysclock edge 

If there are reads to do in the BAF, the command will be read from the BAF during a B phase. 
The next cycle the BSQ will evaluate to produce the needed command. This will be driven along 
with the address to the pins. 

Figure 5-36: BSQ No Data Flow 

NO DATA 

1---------1---------1---------1---------1 
IBAF read 

IBSQ I 
I bypass? 

lcmd to pins 
Ito pins->I 

ISysclock edge 

If the BAF or the VAF contains a command that requires data to be sent to the pins, this flow 
will be used. The command will be read in the B phase of the first cycle. During the second cycle 
BSQ will produce the read address for the data buffer and send it out. During the third cycle the 
command will be created and the address read out. During the four cycle the command, address, 
and data will be driven to the pins. 

Figure 5-37: BSQ Data Flow 

Write 

1---------1---------1---------1---------1 
IBAF read 

IBSQ I BSQ 
lcmd to pins 

ldata read address 
ldata read 

!data to pins 
I Bypass? 

I addr to pins 
ISysclock edge 

When a system data command is received we have one Sysclock to respond. The minimum 
Sysclock rate is 3 CPU cycles. In order to respond in time, most of the normal BSQ control must 
be bypassed. The data read address must be computed in the B phase of the first cycle. The 
data read will start in the B phase of the second cycle, allowing for one cycle to drive the address 
across the bottom of the chip. During the second cycle BSQ will produce the correct command. 

5-50 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The address is read during the second cycle from the BAF. During the third cycle the command, 
address, and data are driven to the pins. 

Figure 5-38: BSQ System Flow 

System 

1---------1---------1---------1---------1 
IBAF read 

IBSQ 
lcmd to pins 

Jaddr read 
laddr to pins 

!data read address 
!data read 

ISysclock edge 

!data to pins 
laddr to pins 

ISysclock edge 

5.2.3.5.2 Bcache Data Cycle Timer 

This control will time each Bcache read or write cycle. BSQ will start the timer at the beginning 
of each read or write. The timer will assert a done signal to BSQ at the end of each cycle. 

5.2.3.5.3 Bcache Data Valid 

This control will most likely be a timing chain that will provide a data valid signal at the end of 
each Bcache read. The first data valid of each read or write sequence will also be used to trigger 
the Bcache tag check. 

5.2.3.6 Data Datapath :ECC generation/check 

The CBOX provides parity bits for data, tag and status bits in the SCache. If EV5 is operating in 
ECC mode, Quadword ECC is provided for all off-chip data transactions and parity for all off-chip 
address transactions. Otherwise byte parity is generated on all data. The mode is determined 
by a bit in the BC_CONFIG IPR sitting in the address datapath. 

Store data is written 2 octawords per transaction into the SCache in 2 consecutive cycles. 

The data datapath consists of 3 sections. 

• The outgoing data section which generates ECC on outgoing data 
• The data buffer section 
• The incoming data section which checks ECC on incoming data 
• The IPR section 

Physically the data datapath is split up into two halves, each half for each quadword of data, sitting 
on opposite sides of the chip. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-51 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.3.6.1 Outgoing Data section 

For shared writes, valid longwords from the write buffer are merged in the BIU data datapath 
with the remaining longwords from the SCache coming from the RFB in 9b. If EV5 is operating in 
ECC (byte parity) mode, ECC (byte parity) is then generated and the data, LW valid bits along 
with the ECC (byte parity) are written into the BIU data buffer in 12a. The longword valid bits 
are driven onto the data valid pins through a mux which selects between these longword valid 
bits and QW valid bits (for reads from 1/0 space). 

For 1/0 writes, all data is taken directly from the write buffer. No merging is done. 

For victims, write for populates and system reads, all data entering the data datapath comes 
directly from the SCache (RFB). All lw _valid bits are set for victims. The timing diagram for the 
ECC generation for a shared write is shown in Figure 5-39. 

Figure 5-39: Outgoing Data flow 

7 8 9 10 11 12 13 14 
I I I I I I I 

WFB -, OWllOWI- - - - -
RFB I owl I OW2 I 

lmux to merge lw's OWl 
IECC gen on merged OWl begins 

I bypass OWl/ECC/lw valids to pin if idle 
!load data buffer OWl 

lload data buffer OW2 

5.2.3.6.2 Data buffer section 

There are three data buffers sitting in the data datapath. Two for victims, shared writes and 
1/0 writes, namely vicO and vie 1 and one to hold system data requests, namely sys_ data. Each 
data buffer is capable of holding up to 64B of data along with ECC and longword valid bits for 
each quadword of data. The data buffer is written in cycle 12a for a write/victim read tag access 
beginning in cycle 6. The data buffer is read in cycle llb to get data at the pins in cycle 13. 

5.2.3.6.3 Incoming Data section & Error Signals 

This section checks incoming data from the pins for ECC errors, corrects them if possible and 
returns the raw data to the DCache and returns the corrected data to the DCache and ICache. 

Fill data is valid at the pins at the beginning of cycle 8 and is driven to the data datapath to be 
driven directly to the Dcache in 9b via the RFB. Longword parity is generated for the fill data 
and also driven to the DCache. (The data datapaths have a 3:1 mux that drives either fill data, 
corrected fill data or IPR data onto the RFB) 

IfEV5 is operating in ECC mode, the syndrome is first calculated for each of the 64 bits of fill data. 
If the syndrome is non-zero, that implies that an error occurred and C_BDP%RAW _ECC_ERR_10B_ 
H<l:O> is asserted(one bit for each quadword). The syndrome is then decoded to correct the data 
if possible . If it is a single bit error, it is a correctable error and C_BDP%CORR_ERR_t1A_H<1:0> 
is asserted. 

5-52 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

NOTE 

c_BDP%CORR_ERR_nA_H<1:0> should be examined only if the corresponding bit in c_ 
BDP%RAW _ECCJRR_lOB_H<l:0> is asserted. 

The data datapaths also have a longword parity checker to check the parity of data read from 
the SCache. This parity checker is used for BOTH arrowheads and Dreads. To summarize, the 
internal CBOX errors: 

• C_BDP%RAW_ECC_ERR_10BJI<l:O>: one bit for ECC error for each quadword of valid fill data 
for both I & D streams. Not asserted if the FILL_NOCHECKpin is asserted for that octaword 
of fill data. 

• C_BDP'roCORR_ERR_llA_H<l:O>: Correctable error on each quadword of fill data for both I & 
D stream. Not qualified. Should be examined only when CJDP%RAW_ECC_ERR._10B_H<l:O> 
is asserted. 

• C_BDP%RFB_PAR_ERR_toB_H<3:0> : RFB LW parity error on SCache read hits and shared 
writes without permission, for which the Scache is read. To be examined twice for each 
SCache access for both octawords on the RFB. 

• S%C_TAG_PERR_7B_H<2:0> : tag parity error, asserted for each set in the Scache for Scache 
reads and writes (even if it misses) 

The local signals are used to generate the global signals shown below: 

• C%M_RFB_ECC_ERR_toB_H: This signal is asserted only on Stream ECC errors. 
• C%I_HARD_:ERR_TRAP _llB_ll: Uncorrectable ECC error (I or D stream) OR Scache fill parity 

(Data or Tag)error if Scache hit OR BCache tag parity error. EV5 goes into machine check. 
Asserted in llb and 12b for data parity errors on both octawords from Scache. 

• C%I_CORR_ERR_TRAP _UBJI: Correctable ECC error on Stream fills only. This signal is a flip 
flop that is set when a correctable error occurs and is cleared only when the corrected data 
is written back into the register file. 

• C%I_CORR_ERR_1NTR_UB_H: Correctable ECC error (both 1/D streams) 

The data is corrected and written into a silo in lla to be written into the SCache and some later 
time. If the error is double bit or more, the data is not corrected. 

On an ECC error, the CBOX enters error mode. In· error mode, data is no longer driven directly 
to the Dcache from the pins but data is always corrected (if possible), written into the Scache 
and then returned to the DCache. This is so that corrected data can always be returned to the 
DCache/register file once an error occurs. Therefore on the first ECC error, the DCache and 
register file get the same data returned twice. First the raw data and then again in corrected 
form. After this, all data is returned via the SCache. The CBOX leaves error mode only after the 
BIU's address file is emptied. 

In byte parity mode, the byte parity of the incoming data is generated and compared against the 
byte parity at the check pins. If there is a difference, the error is flagged as an uncorrectable ECC 
error and the CBOX enters error mode. The following points should be noted about the CBOX 
error mode: 

• C%M_RFB_ECC_ERR_lOB_H will be asserted on any ECC error. CBOX will enter error mode. 
Any further ECC errors while the CBOX is in error mode will NOT cause this signal to be 
asserted since data is being returned via the correctable path. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-53 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

• C%I_CORR_ERR_TRAP _llB_H will be set on the first Stream correctable error received. This 
puts CBOX into error mode. If another correctable error occurs while this signal is set, this 
signal will not change (ie.it will remain set). This signal is de-asserted when the corrected 
data for the first error is written in to the register file It does NOT have to remain set until the 
corrected data for the second error is returned, because the CBOX had already entered error 
mode on the first error, and in this mode only corrected data , not raw fill data is returned to 
the register files. C%I_CORR_ERR_INTR_llB_H will be asserted twice however for each of the 
correctable errors. 

• It is possible for hard errors to occur while C%I_CORR_ERR_TRAP _UB_H is set. (hard errors in 
the shadow of correctable errors). 

• For Scache accesses, it is possible for both octawords of the 32B block being read to have parity 
errors. If so, the data read in 9b onto the RFB will have C%I_HARD_ERR_UB_H asserted in 
cycle llb and the data read in lOb onto the RFB will have C%I_HARD_.ERR_llB_H asserted in 
cycle 12b. 

• If a hard error occurs, C'?'d_HARD_ERR_llB_H is asserted. This forces CBOX to enter error 
mode. Currently CBOX will do the following. 
• On the first hard error, flag C%I_HARD_ERR_llB_H (corresponds to raw fill data on the 

RFB in 9b) and enter error mode. · 
• load error information into IPR's and lock them. 
• On subsequent hard error, set second error bit. Do not flag C%1_BARD_ERR_uB_H at this 

time (although this is easier for the CBOX) 
• Later, assert I_HARD_ERR_llB_H in cycle llb when the fill data for the second error is 

being returned to the register files via the Scache in 9b 

A summary of CBOX behavior with respect to the error signals while one error is pending is 
shown in Table 5-14 

Table 5-14: Behavior of CBOX of errors In shadow of other errors 

First error Second 

corr 

corr 

corr 

hard 

hard 

hard 

corr 

hard 

corr 

hard 

0%I_CORR_ 

ERR_INTR_ 

~M_RFB_ECC_ERR_lOB_H ~I_CORR_ERR_TRAP _llB_H C'IOl_HARD_ERR_TRAP _llB_H llBJI 

0 

1 (if Stream) 

0 

0 

1 (if Stream) 

0 

0 

0 

SET (if Stream) 

0 

0 

No change. De-asserted 0 

0 

1 

1 
when first corrected data 
is returned. 

No change. De-asserted assert only when the SCache 0 
when first corrected data is updated 
is returned. 

0 

0 

0 

1 

0 

0 

1 

assert only when the Scache 0 
is updated 

The timing diagram for the data flow on fills is shown in Figure 5-40 

5-54 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

The ECC code is defined in the EV5 CPU Chip Functional Specification. It provides single bit 
error detect & correct, double bit error detect, quad-bit nibble error detect and all ones and all 
zeros failure detect. 

Figure 5-40: Incoming data flow 

7 8 9 10 11 12 13 14 
_1_1_1_1_1_1_1_ 

5.2.3.7 IPR's 

I reg file write 
ldata@DCache

ldata on RFB 
ldata@pins 

ldata@cbox 
lstart_syndrorne_gen 

lraw_ecc_error 
lcorr error 
!correct data, load silo 

!earliest corrected data onto WFB to SCache 

There are 10 IPR locations in the CBOX, namely : 

• SC_CTL ( Phy. Addr:FFFFFOOOAS) 
• SC_STAT (Phy. Addr:FFFFFOOOES) 
• SC_ADDR ( Phy. Addr:FFFFF00188) 
• BC_CTL ( Phy. Addr:FFFFF00128) 
• BC_CONFIG ( Phy. Addr:FFFFFOOlCS) 
• BC_TAG_ADDR ( Phy. Addr:FFFFF00108) 
• EI_STAT (Phy. Addr:FFFFF00168) 
• El_ADDR ( Phy. Addr:FFFFF00148) 
• FILL_SYN ( Phy. Addr:FFFFF00068) 
• LOCK ( Phy. Addr:FFFFFOOlES) 

Of these IPR's the SC_CTL, SC_STAT and FILL_SYN IPR's sit in the upper quadword section of the 
data datapath. The remaining IPR's sit in the Address datapath. Apart from SC_CTL, BC_CTL and 
BC_CONFIG IPR's, all IPR's are readable. IPR's are driven onto the upper quadword of the RFB in 
9b for a MBOX command issued in cycle 5. Some details about the IPR's are described below. For a 
more detailed discussion on the IPR's, please refer to the external functional specification. 

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-55 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.3.7.1 SC_STAT 

The SC_STAT IPR is written in cycle 13A if a parity error occurred on the access. This is because 
the worst case data parity error for the second OW, is available only in early 12a. It is locked in 
13A on a parity error for any Scache Read or shared write. Writes to SC_STAT clear the IPR but 
do not unlock it. Only reads to SC_ADDR can unlock this IPR. Unlocking is also done in cycle 13. 
In order to obtain the status of an SCache read, a restriction placed is that any read to SC_STAT 
must be at least 5 cycles after the last SCache read. Similarly, any read to SC_ADDR must be 
at least 5 cycles after the last SCache access. 

5.2.3.7.2 SC_ADDR 

The SC_ADDR IPR is written in cycle 12A following every Scache access. It is locked from further 
writes if a tag or data parity error for an Scache access will cause SC_STAT to be written. Reading 
SC_ADDR will unlock the IPR and allow writes to occur. 

5.2.3.7.3 SC_ CTL 

SC_CTL is written in cycle Sb from the first OW (lower 16B of 32B address) from the WB. It is 
written in cycle Sb and latched in 9a and driven to the SCache/CBOX/BIU. It can also be read. 

5.2.3.7.4 FILL_SYNDROME 

The syndrome of the fill data is is currently written (on ECC error)into this IPR in 12a corre
sponding to raw fill data on RFB in 9b. This is because ECC error for both qw's is valid only in mid 
lla. If an ECC error is uncorrectable , this IPR is locked in cycle 12a. Correctable ECC errors 
do not lock this IPR. This IPR is unlocked by reads to El_ADDR. Reads to FILL_SYNDROME 
can be made only after all fill data has been loaded into the SCache. 

5.2.3.7.5 El_STAT 

The EI_STAT IPR is written in cycle 13A and locked for any of the following errors: 

• ECC or byte parity error on fill data from Bcache or Memory 
• Tag parity error on fill from Bcache 
• Tag Status (Valid, Shared, Dirty) parity error on fill from Bcache 
• Address and Command parity error on System Probe Command 

Writes to EI_STAT clear the IPR but do not unlock it. Only reads to EI_ADDR can unlock this IPR. 
Unlocking is also done in cycle 13. 

5.2.3.7.6 El_ADDR 

The EI_ADDR IPR is written in cycle 12A following every Scache access. It is locked from further 
writes if an ECC or parity error for a Fill or System Probe Command will cause EI_STAT to be 
written. Reading EI_ADDR will unlock the IPR and allow writes to occur. 

5-56 The Cbox DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

5.2.3.7.7 BC_TAG_ADDR 

The BC_TAG_ADDR IPR is written in cycle 9A following every Bcache access, with the exception 
of BC_HIT. It is locked from further writes if a Bcache tag or tag status parity error will cause 
EI_STAT to be written. Since BC_HIT cannot be computed as fast as the incoming tag and status 
bits, it is written and locked one cycle after the other bits in the IPR. Reading EI_ADDR will 
unlock the IPR and allow writes to occur. 

5.2.3.7.8 BC_CTL 

BC_CTL is written in cycle Sa with the first OW (lower 16B of 32B address) from the WB. It is 
latched in cycle Sa driven to the Bcache/CBOX/BIU. This IPR is write only. 

5.2.3.7.9 BC_ CONFIG 

BC_CONFIG is written in cycle Sa with the first OW (lower 16B of 32B address) from the WB. 
It is latched in cycle Sa driven to the Bcache/CBOX/BIU. This IPR is write only. 

5.2.3.7.10 LOCK 

The LOCK register file entry can also be read as an IPR location in the address data path. It is 
read in the same manner as any other Cbox IPR. 

5.3 Reset and Initialization 

5.4 Error Handling and Recording 

5.5 Test .Aspects 

5.6 Performance Monitoring Features 

5.7 Issues 

5.8 Revision History 

Table 5-15: Revision History 

Who 

Chandra Somanathan 

Sribalan Santhanam 

Cbox team 

When 

12-08-1991 

12-15-1991 

2-20-1991 

DIGITAL RESTRICTED DISTRIBUTION 

Description of change 

Cbox Arbiter, Set Allocation, 'fransaction Flows 

adding wbuffer,iprs and block diagram 

lots more stuff added especially to BIU 

The Cbox 5-57 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Chapter 6 

The Caches 

6.1 Overview 

The EV5 on-chip memory is structured into two levels. The first level consists of separate instruc
tion and data caches; the second level is a unified instruction and data cache. The instruction 
cache (ICache) is an 8 KByte direct-mapped virtual cache, accessed from the Ibox. The data 
cache (DCache) is a 16 Kbyte direct-mapped write-through physical cache, accessed from the 
Mbox. The second-level cache (SCache) is a 96 Kbyte, 3-way set associative, write-back, physical 
cache, accessed from the Cbox. 

The I Cache resides in SO of the EV5 pipeline. The DCache resides in S4B/S5A The SCache resides 
in S6B through SUA of the pipeline. 

DIGITAL RESTRICTED DISTRIBUTION The caches 6-1 



en 
rb 
-t ::r 
CD 

&> n ::r 
CD 
en 

c 
C5 
~ r-
::a m 
tn 
~ :a 
~ m c 
c 
Ci) 
~ 
::!;! 
m 
c: 
::I 
0 z 

EV5 
!CACHE HIT, 
DCACHE HIT: 

DCACHE MISS, 
SCACHE HIT: 

DCACHE MISS, 
SCACHE M I SS : 

!CACHE MISS, 
SCACHE HIT: 

!CACHE MISS, 
SCACHE MISS: 

PIPE 
so S1 S2 

ICACHE IB SLOT 

so S1 52 

I CACHE IB SLOT 

so 51 S2 

I CACHE IB SLOT 

so S1 S2 

ICACHE IC MISS I IC REO 

so S1 S2 

S3 S4 SS 

ISSUE ALU DCACHE 1 :~~ 

53 54 SS 

S6 

RGF 
WRITE 

S6 57 SS 59 510 S6 

ISSUE ALU DCACHE I SC ARB I SC TAG SC HIT I SC DATA I FATBUS FMT 
BYP 

RGF 
WRITE 

S3 S4 S5 S6 S7 SS 

ISSUE ALU DCACHE I SC ARB I SC TAG I SC MISS !PINS 

S6 S7 

MAF I SC ARB I SC TAG 

S6 S7 

SS S9 

SC HIT I SC DATA I IFB 

SS 

PRE 
DECODE 

+- DCACHE+ 

SS S6 

I FMT RGF I o o o PINS FATBUS BYP WRITE 

SO/S1 

ICACHE 
IB 

S6 S7 

+- DCACHE+ 

SS S9 

ICACHE IC MISS 11 C REO I MAF I SC ARB I SC TAG I SC MISS IPINS 000 SC ARB I SC TAG I SC HIT SC DATA I IFBI o:~~llE 

SO/S 1 

ICACHE 
IB 

.,, 
Ci c 
i 
er .. 
~ ::r 
CD .,, 
s :::;: 
s· 
:I 
tn 
S" 
m 
< c.n .,, 
i 
S" 
CD 

tlj 

~ 
~ 

~ 
~ .... 
~ 

~ 
i e 
!. 
00 
~ 
tD ; 
a 
lol• 
Q 
p 

r .... 
fn 
lol• 

8 
~ 
l':j 

j 
ti-l 

= = ~ 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

6.2 ICache and Refill Buffer Functional Description 

IBOX instruction data is stored in the !cache and the Refill Buffer (RFB) (see Figure 6-2). 
Instructions are processed in the IBOX from the Instruction Buffer (IB); data is loaded into 
the IB from two sources: 

• From the Refill Buffer during FILLs or during a Read when (I_mT%RFB_HIT_lA_H AND NOT 
I_m'l'%IC_HIT_lA._H). 

• From the !cache on I_lllT%IC_HIT_1A_H. 

The IBOX sends the control signals that determine the data flows to the Icache and Refill Buffer; 
these flows are detailed in Section 6.2.4. 

The !cache is an 8Kbyte, direct-mapped, virtual address cache that holds 256 32-byte blocks of 
instruction stream data. The !cache has a one cycle access and a one cycle repetition rate for 
both FILLs and READs. A cache block is filled in two octaword FILL transactions, and READs 
to the cache read an octaword of data (four instructions). 

The Refill Buffer is an 8-entry prefetch buffer holding 8 octawords of instruction data in the same 
format as the !cache, see Section 1.2.2, Instruction Fetch. The data portion of the buffer is in the 
!cache datapath while tags and control are in the IBOX. The IBOX directs the filling of the Refill 
Buffer by sending the FILL enable, I%J_RFB_ WRITE_.A_H, and the FILL index, I%J_RFB_ WR_IDX_ 
A_H<2:0>. The IBOX directs the reading of the Refill Buffer via I%J_RFB_RD_IDX_B_H<(6:4)>. Data 
is written into the Buffer with conditional A-latches and read using a mux. 

Both the Refill Buffer and the Icache hold predecoded data bits, 5 bits per instruction. A cycle 
is allocated to decode these bits from the FILL data on S%J_IFB_DATA_9B_H<127:0>; the advance 
decoding and storing of this data saves time in the slotting logic and the branch logic when the 
actual instruction is read and processed, see Section 1.2.8, Instruction Slotting. 

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-3 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 6-2: Instruction Data Flow through Refill Buffer and lcache 

<» 

IRD BUS<127:0> + Parity? 

Predecode logic (first part) & 
start Parity Generation? 

<» B Latch 

II) 

_..._I Predecode Io g i c (2nd part) & ] 0 .... L finish Parity Generation? II) 

II) 128 
I16 .... 'll 

~ A Latch: DATA<127:0>, PREDECODE<15:0>, PARITV<O> C\I 

0 
RFB_BVPASS G> 

0 n G> 
::> 
I- B Latch: DATA<127:0>, P~ED ECODE<15:0>, PARITY<O> I 
0 
w I u. .'1t ~ 0 
0 Ref i II Buffer: DATA<127: I<». PREDECODE<15:0>, PARITY<O> L...RFB_WRITE 
::ii ~ 

I Cond. A Late h: RFB-7 Cond. A Late h: RFB-3 < AFB_WR_I DX<2:0 
I-
(/) < RFB_RD IDX<2> 
"' Cond. A La I eh: RFB-6 Cond. A Late h: RFB-2 ..J 

~ Cond. A Late h: RFB-5 Cond. A Latch: RFB-1 ..J 
ID 

I Cond. A Latch: RFB-4 Cond. A Latch: RFB-0 ~ 
I _i. _i. w 

J: 

" 7 " / ( RFB_RD_I DX<1 :O 
0 4:1 Mux, choose AFB 4: 1 Mux, choose AFB 
< 
0 I 1 • w -'ill. ..J 
I-

" 3: 1 Mux, choose AFB or Bypass / ~ 

f ~ 
B Latch: DATA<127:0>, PRED ECODE<15:0>, PARITV<O> 

~ 
Fi II DataJ>_ath Fi II Datapath 

I CACHE VI rt u al, Di re ct Map, Tag: Branch 

Ill Ill 8KB, 256 blocks VAc42: 13> History 
Stage OA/OB ASM Table .... 3: ASNc6:0> 

Q) 0 PA 

High Side Data 
"'Oa> > .... Low Side Data <63 :0> ~: lrii~; 1 : 0 ~ 2 bits < 127 :64> (;c -.... co per LW 3::i Oco 

1redecode(64) + Parity(4) + Data(51~ Predecode(64) + Parlly(4) + Data(512) 168 E64 bits;, 
~ ~ E ;, ... --, 

Read Datapath Read Datapath Fill/Rd Rd/Wr DP 
Conditional A Latch Conditional A Latch A Latch? A Latch? 

M4_Bypass I 't + 't ! 'v Tl 0 m 

\. 7 
,, 

I JI :JI 

2: 1 Mux, choose IC Bypass 0 -I I I or I ::c ::c 
>< )> 

iii iii I >< G> 
I 'o ,-1 -I 

-*- Lt_ i f m z 'o 
IB-1 

1A..ii l£!11Ch 1A I..! IJch 18-0 ~ I m OI 
N f ~ I 

Lt_ ... IC_~ ji\TA_OB_H<127:0> 
~ ::; '.,. f 

m .... 
I 

~ Lt_ Lt_ '¥ PREDECODE_OB_Hc15:0> ~ f 
32 bi I DP 32 bi I DP .... 

0 

> 

> 

6-4 The Caches DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

6.2.1 lcache Details 

The logical organization of the Icache is shown below: 

Figure 6-3: Logical lcache Organization 

<------------- left bank -------------------> <---~---------- right bank ---------------> 

+---------------------------+------------+----+----+----+------------+-------------------------+ 
67R: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+ WL +----+------------+-------------------------+ 
66R: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+----+----+------------+-------------------------+ 
6SR: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+ WL +----+------------+-------------------------+ 
64R: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+----+----+------------+-------------------------+ 
63: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+ WL +----+------------+-------------------------+ 
62: I Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+----+----+------------+-------------------------+ 

+---------------------------+------------+----+----+----+------------+-------------------------+ 
1: Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+ WL +----+------------+-------------------------+ 
O: I Data <127:64> for 4 blks I Predecodes I DP I I DP I Predecodes I Data <63:0> for 4 blks I 

+---------------------------+------------+----+----+----+------------+-------------------------+ 
Note: Rows 64/65 and 66/67 are redundant row pairs. See Section 6.2.7. 

where: Data (1024 bits} = 4 blocks of data in order by bit, i.e.: Blk 3, Octaword 1, bit<l27>; 
Blk 2, OW 1, bit<l27>; .•• Blk 1, OW O, bit<O>; Blk O, OW O, bit<O> 

Predecodes (160} = Data decoded ahead of cache, 5 bits per longword = 40 per block. 
DP (16} = Even parity. Per octaword: 1 bit for data, 1 bit for predecodes. 
WL = Wordline Decoders/Drivers (row pairs} in center of cache. 

BRANCH HISTORY TABLE ICACHE TAGS 

+-----+--------------------+-----+ +----+------------------------------+ 
63: I wWL I BHT <7:0> I 4 blks I rWL I 63: I WL I Tag Array<41:0> for 4 blks 

+-----+--------------------+-----+ +----+------------------------------+ 

+-----+--------------------+-----+ +----+------------------------------+ 
O: I wWL I BHT <7:0> I 4 blks I rWL I O: I WL I Tag Array<41:0> for 4 blks I 

+-----+--------------------+-----+ +----+------------------------------+ 
BHT (64} = Branch History Table: 2 bits per longword = 16 per block. See Section 6.2.2. 
wWL = Write Wordline Decoders/Drivers --> BHT has dual port ram cell. 
rWL = Read Wordline Decoders/Drivers 
Tag (168} = tag and valid bits, 42 bits per block. See Table 6-1 below. 
WL = tag Wordline Decoders/Drivers 

As can be seen from the diagram, the Icache is organized into 64 direct mapped indexes, where 
each index consists of four blocks. The breakdown of the Virtual address bits for Icache decoding 
is shown below: 

DIGITAL RESTRICTED DISTRIBUTION The caches 6-5 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 6-4: lcache Address Breakdown 

42 41 40 14 13112 11110 09 08 07 06 051041 03 02 01 00 
+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 30-bit Tag address I blk I index address IOWI I 
+--+--+--+ ••• +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

where: tag address = Virtual address bits loaded into or compared with Tag. 
blk index address = indicates which block of 4 within an Icache row. 
row index address = addresses 1 of 64 rows. 
OW address 
bits <3:0> 

= indicates which Octaword of the block, 0 or 1. 
= addressing within the octaword, not used by the Icache. 

The 42-bit Icache tag field holds the tag and the following information: 

Table 6-1: lcache Tag 

Name Extent Description 

Tag 41:12 30 bit tag, Virtual Address <42:13> 

ASM 11 Address Space Map 

ASN 10:4 Address Space Number <6:0> 

PA 3 Indicates lcache address is a Physical Address 

Valid 2:1 Valid bits, 2 per block = 1 per octaword 

Parity 0 Even tag parity for VA<42:13>, ASM, ASN<6:0>, PA 

The ASM and ASN bits allow implementation of process tags; see the ALPHA SRM for more 
information. The Physical Address bit specifies that the Tag is physical, not virtual; it prevents 
address translation by the ITB. There are 2 valid bits per block because a FILL to the Icache 
occurs as two separate octaword FILL transactions. 

6.2.1.1 lcache SROM Interface 

The lcache supports a Serial ROM interface for diagnostics to allow the Icache (data, tags, Branch 
History Table) to be written and read in a serial fashion from the pins. An IBOX counter sequences 
the index during serial reads and writes. See Section 6.2.4.1.1. 

6.2.2 Branch History Table 

The Branch History Table (BHT) is physically separate from the Icache, but its timing and design 
are very similar to the Icache, so it is part of the Icache block. The control for updating the 
Branch History Table is in the IBOX, see Section 1.2.4, Branch History Table. Each longword 
of data has 2 branch history bits to implement a 2-bit branch prediction scheme. These bits are 
not initialized on FILLs, but the SROM interface may be used to initialize the table in a serial 
fashion. If the table is not fully loaded using the SROM, the first time a location is read, these 
bits are UNPREDICTABLE. The Branch History Table is read with tha Icache data in stage 0 
and updated in stage 6 once the branch results are known. Like the Icache, Branch History reads 
and updates correspond to four instructions, i.e. 8 bits at a time. 

6-6 The Caches DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

When the Instruction Buffer is loaded from the Refill Buffer instead of the Icache, the IBOX 
accesses the Branch History Table using the Refill Buffer address instead of the Icache address. 
This is handled in the IBOX using a 2:1 mux to set the BHT index, J_BHT_IDX_ZB_H<l2:4>. There 
is a good chance that the prediction bits delivered on a Refill Buffer access are correct, being 
left from the last time that particular branch instruction was stored in the Icache. This is true 
because: 

• The BHT is not initialized on FILLs, and 
• Instructions are swapped in and out of the Icache, and 
• Not all instructions are branches. 

These factors combined give the effect of a BHT that holds history bits for more branches than 
are actually stored at any one time in the Icache. 

6.2.3 lcache and Refill Buffer Initialization and Test 

All valid bits are cleared usingI'ftJJ_FLUSH_A_Hfrom the IC_FLUSH_CTL IPR, see Section 1.2.10.11. 
There are no external invalidates for the Icache. 

On reset, after the BiST logic completes, all valid bits should be cleared using 1%J_FLUSH_A_H or 
another signal which has the· same effect. 

It is planned that the full Icache will be flushed using I%JJ'LUSH_A_H if data with a parity error 
or uncorrectable ECC data has been written into the Icache. For a description of ECC and parity 
error handling, see the Error Handling Chapter in the EV5 CPU Chip/Functional Specification. 

The IBOX is responsible for initializing and maintaining the valid bits for the Refill Buffer, see 
Section 1.2.2, Instruction Fetch. 

Bad parity may be forced for both the Icache tag and data parity by writing bits in the ICSR 
IPR, see Section 1.2.10.17, lbox Control/Status Register, ICSR. The IBOX handles asserting bad 
parity for tags; if the IBOX asserts I"f'olJ_FORCE_BAD_DP _A_H, the parity destined for the lcache 
will be inverted ahead of the Refill Buffer. 

6.2.4 lcache & Refill Buffer Transactions 

The IBOX and CBOX send the control signals necessary for reading and writing the !cache, the 
Refill Buffer, and the Branch History Table. Several read/write scenarios exist depending on the 
control signals in Table 6-2; the basic flows will be outlined in this section. 

Table 6-2: lcache and Refill Buffer control Signals 

Control Signal 

lcache Control: 

1%J_IC_CMD_A_H: 

0 READ 
1 FILL 

Source Operation/Notes 

mox Indicates lcache transaction 

Read the !cache data, tags, and the BHT 

Fill the lcache data and tags 

DIGITAL RESTRICTED DISTRIBUTION The caches 6-7 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Table 6-2 (Cont.): lcache and Refill Buffer Control Signals 

Control Signal Source Operation/Notes 

Icache Control: 

Io/oJ_IB_STALL_A_H 

Refill Buffer Control: 

I%J_RFB_RD_IDX_B_H<6:4> 

Io/oJ_RFB_ WRITE_A_H 

Io/oJ _RFB_ WR_IDX_A_H<2:0> 

IBOX 

IBOX 

IBOX 

IBOX 

Control for the Instruction Buffer fill mux: 

Io/oJ_BYPASS_IC_B_H: 

0 

1 

Branch History Table Control: 

lo/oJ_IC_CMD_A_H = 0 

1%J_HUP _EN_5B_H 

1%J_BHT_SILO_SEL_B_H: 

0 

1 

IBOX 

IBOX 

IBOX 

mox 

6.2.4.1 lcache & Refill Buffer Fill Operations 

Hold data at output of RFB and Icache data/tags/BHT 

RFB Data Index; read this RFB data entry 

Refill Buffer write enable 

If RFB_ WRITE_A_H asserted, write this entry 

Instruction Buffer fill mux 

IB is loaded with data from the Icache 

IB is loaded with data from the Refill Buffer 

Read the BHT 

Write the BHT with updated prediction bits 

Delay BHT history by 1 cycle for RFB reads 

Send IBOX history bits just read from BHT 

Send IBOX history bits piped for one cycle 

FILL data with longword parity is always received from the Scache on S%J_IFB_DATA_9B_H<127:0> 
and So/al_IFB_PARITY_9B_H<3:0>; FILLs from off-chip are written through the Scache to drive the 
data and parity. The FILL data is piped into an NB-latch pair and then into the appropriate 
Refill Buffer Entry, see Figure 6-2. A Refill Buffer entry is written when I'YoJ_RFB_WRI'rE_A_H is 
received from the IBOX; this signal has been conditioned with C%I_IFB_DATA_ VALID_9A_H in the 
IBOX. This allows a cycle to calculate the Predecoded bits and their parity which become part of 
the data datapath. 

Two types of FILLs exist, those returning requested data (Demand FILLs) and those returning 
the other octaword of the requested block, (non-Demand FILLs). For non-Demand FILLs, the 
data is only written into the Refill Buffer; meanwhile the lBOX can be probing/reading the !cache 
and the Refill Buffer and writing the IB (see Section 6.2.4.2). 

For Demand FILLs, the FILL data is written into both the Icache and the Instruction Buffer in 
Stage OA; this is the cycle after the Refill Buffer is written. To allow the parallel write of the 
Icache and the IB, the 2:1 Mux ahead of the IB is set to choose Refill Buffer Data: I'YoJ_BYPASS_ 
IC_B_H = 1. 

6-8 The Caches DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

If the Instruction Buffer is full, the FILL data is held in the B-latch that follows the Refill Buffer 
until the IB is ready to receive data. This is accomplished by preventing loads of the B-latch 
when I%J_m_STALL_A_B is asserted. 

The Icache is also written from the Refill Buffer on reads which miss in the Icache and hit in 
the Refill Buffer. Since this is initiated by a read transaction, it is described in Section 6.2.4.2. 
The SROM interface may also be used to write the Icache and the Branch History Table, see 
Section 6.2.4.1.1. 

The Icache tag field is written whenever the data is written; the IBOX provides the tag address, 
tag parity, both valid bits, and other qualifiers. Since FILLs occur as two separate octaword 
transactions, the IBOX determines the valid bits using the octaword address and information 
from the CBOX as to which FILL this is (first or second). 

The Refill Buffer tags are maintained in the IBOX; they are also written on FILLs, see 
Section 1.2.2, Instruction Fetch. 

S%J_IFB_DATA_9B_H<l27:0> is driven to the Refill Buffer and the Icache before parity checking and 
ECC error correction are complete. Once the CBOX detects that bad data was written, there will 
be a machine check. The full error sequence has not been defined, but it is expected that the full 
Icache will be flushed using 1%J_FLUSH_A_B. Handling of bad data in the Refill Buffer is TBD by 
the IBOX. For a description of ECC and parity error handling, see the Error Handling Chapter 
in the EV5 CPU Chip/Functional Specification. 

6.2.4.1.1 Writing the lcache and Branch History Table with the SROM 

The SROM is another source of Icache and Branch History data and tags. Two types of SROM 
data may be loaded: shifted serial data or serial data that is being held and recirculated at the 
inputs to the Icache and BHT. The IBOX controls the SROM operation; when in SROM mode, 
one of the two types of SROM inputs will load the cache tag, data, and the Branch History Table, 
over-riding the FILL datapath described in Section 6.2.4.1. 

6.2.4.2 lcache & Refill Buffer Read Operations 

Reads of the !cache are initiated when I'foJ_IC_CMD..A_H is a READ. The Refill Buffer is always 
being read via the muxes at its output. If the requested data is in either the Icache or the Refill 
Buffer, the IB will be written and validated, otherwise a fill request will be issued by the IBOX. 
The basic read flow is outlined below, see also Section 1.2.2, Instruction Fetch. 

On a "new" Read, assume the Icache will hit: 

xA: I%J_IC_CMD_A_H is a READ 
xB: !cache index received from IBOX (critical path). 

I%J_BYPASS_IC_B_H = 0 to choose data from Icache latch. 
OA: Icache index decode, wordline drive, and ram cell read. 

Refill Buffer tag read in the IBOX. 
OB: Icache data, tag, and branch prediction bits read and latched at output of Icache 

and Branch History Table. 
lA: If I%J_m_STALL_A_H is low then IB-0 or IB-1 is written with the Icache data. 

Ifl%J_m_STALL_A_H is high then the data is held at the output of the Icache until the IB 
is not full. 

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-9 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Refill Buffer data read (one cycle behind the Icache). 
In the IBOX, I_HIT%RFB_mT_lA_H and I_lllT%IC_BIT_1A_H calculated. 

lB: Refill Buffer data captured in B-latch. 
I_llIT%RFB_IIlT_lA_H and I_llIT%IC_HIT_1A_H available: 

a. On Icache hit: IB has correct data. Proceed with next transaction, if a read, assume the 
Icache will hit again, i.e. keep I%J_BYPASS_JC_B_H = 0. 

b. On Icache miss and Refill Buffer hit: 
IB has incorrect data, invalidate IB entry. 
Move I%J_BYPASS_IC_B_H to 1 to choose the IC bypass. 
2A: Overwrite the IB with the Refill Buffer data. 

Write the Icache with the Refill Buffer data and tag. 
Proceed with the next transaction. If a read, assume the Refill Buffer will hit, i.e. 
keep I%J_BYPASS_IC_B_H = 1. Icache hit will no longer be checked; reads will be 
taken from the Refill Buffer (IB and Icache are written in lA) until a Refill Buffer 
miss occurs and the IBOX requests a FILL. Once the FILL has been requested, a 
"new" read sequence may be initiated and data will once again be loaded from the 
Icache assuming Icache hit, i.e. 1%J_BYPASS_IC_B_H is changed to a 0. When the fill 
data comes back, it is processed according to the FILL flows in Section 6.2.4.1. 

c. On Icache miss and Refill Buffer miss: IBOX requests a FILL; subsequent reads are "new" 
reads and will assume Icache hit. 

During reads, the IBOX checks the parity read from the Icache data and tag. Parity checking is 
done in stages 1 and 2. On parity error, the IBOX traps in stage 7. 

6.2.4.3 Branch History Table Reads and Writes 

The BHT is read during Icache and Refill Buffer reads. Like the Icache data and tag, reads are 
initiated in phase A and complete in phase B. The IBOX provides the index, I%J_BHT_IDX_ZB_ 
H<l2:4>, which corresponds to an Icache or Refill Buffer index, see Section 6.2.2, and the BHT 
returns 8 history bits to the IBOX. A piped version of the BHT data read in the previous cycle 
is available for reads of the BHT that correspond to a new Refill Buffer access. (As noted in 
Section 6.2.4.2, Refill Buffer data is available one cycle after !cache data on Icache miss and RFB 
hit.) The IBOX asserts I%J_BHT_SILO_SEL_B_H when they want the piped data instead of the new 
data, see Figure 6-5. 

The Branch History Table is not written on FILLs. Once the IBOX finishes the processing of a 
branch, it recalculates the prediction bits. In stage 5B, the 8 new prediction bits, their index, 
and the write enable, Io/J_HUP _EN_SB_H, are sent to the Branch History 'l'able. In 6B, the Branch 
History Table entry is written. 

The read and write ports of the Branch History Table are separate. Thus during a write, a read 
may be occurring. If a read and write access the same index; two cases are possible. 

• Case 1: A read initiated in phase A follows a write in the previous cycle; the read will get 
the newly written data. 

• Case 2: A read initiated in phase A coincides with a pending write for the following B; the 
read will get the new "pending" data, not the data currently stored in the BHT. 

6-10 The Caches DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

A Case 1 read is handled with the normal sequencing of BHT reads and writes, i.e. the RAM 
cells will be written by the time the read starts. Case 2 is satisfied by providing a BHT Bypass 
using a mux at the BHT output; the new write data is sent back to the IBO:X. Figure 6-5 shows 
the Branch History read path with the bypass mux and the mux to choose the delayed data on 
Refill Buffer reads. 

Figure 6-5: Branch History Table Datapath 

New History 

6 A-Latch <11%J_BHT_NEW_5B_Hc7:0> 

BHT '----..-------1 6 B- Latch 

OB-Latch 

BHT _DATA_OB_Hc7:0> BHT _NEW_6B_Hc7:0> 

BHT_DELAYED_H<7:0> 

2: 1 MUX O 

Write Index 

Address <11%J HUP_IDX_5B_Hc12:4> 
MATCH_H 

c 1------=---1 Compare Read Index 

------~<11%J_BHT_IDX_B_Hc12:4> 

Silo Select <I l'lC.J BHT SILO SEL_B_H 

.-_ TITLE=CACHE_BHT_MUX 

LAST_MOOIFIED=fri Feb 14 15:29:56 1992 
J %1_BR_H IST _ OB_H< 7:0> 

6.2.5 lcache Test Operations 

Built-in-Self Test (BiST) will be incorporated into the Icache. BiST will provide read and write 
access (with test patterns) to the Icache data and tag arrays. The SROM interface may also be 
used to facilitate reads and writes of Icache data, tags, and branch history data. 

Note that BiST will probably run while the chip is in reset. This requires certain IBOX/lcache 
functions to be operable during reset. BiST should clear all the Icache valid bits at the end of 
the BiST testing. 

6.2.6 lcache States Resulting in UNPREDICTABLE operation 

• Reading a Branch History Table entry before that entry has been updated or initialized using 
the SROM will give UNPREDICTABLE history bits. 

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-11 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

6.2. 7 lcache Redundancy Logic 

To increase yield of the Icache array, two extra row pairs are included in the Icache data array. 
These rows will be programmable, but the specific programming scheme has not been determined. 
There will be no column redundancy in the Icache data array. 

There is no redundancy in the Branch History Table or in the Icache Tag Array. 

6.3 DCache Functional Description 

The Dcache is a direct-mapped, write through, physical address cache ofD-stream data. It has a 
one cycle access and a one cycle repetition rate for both reads and writes. The Dcache is comprised 
of two 8KByte caches, Dcache-0 and Dcache-1; each holds 256 32-byte blocks of data. The two 
caches allow two read accesses at a time, or a single STORE or FILL access (FILL data may also 
be returned to the EBOX and FBOX without writing the Dcache, see Section 6.3.2.3). They may 
be thought of as a single SK cache which is dual-ported for reads (allows two concurrent LOADs) 
and single-ported for FILLs or STOREs with the two caches being exact copies of each other. A 
cache block is filled in two octaword FILL transactions; LOADs to the cache access a quadword of 
data; STOREs may write a longword or quadword of data. Even longword parity is maintained 
for the data (8 bits per block), and one bit of even tag parity is maintained for tag bits <38:13> 
(valid bits are not covered). 

The Dcache is maintained as a subset of the Scache. When the Scache replaces a block, an 
invalidate is sent to the Dcache. The invalidate is done based upon address bits <12:6>. These 
invalidates correspond to one Scache block (64 bytes) and clear two 32-byte Dcache blocks. 

A diagram of the Dcache is shown in Figure 6-6. 

6-12 The Caches DIGITAL RESTRICTED DISTRIBUTION 



EV5 CPU Chip Internal Specification, Revision 0.0, February 1992 

Figure 6-6: Dcache-0 and Dcache-1 

NOTE: No SILO or Write-Miss-Invalidate specifics included. 

L 

Waiting for decision on which one to Implement. 

STORE Datapath 

DCACHE-0 
Stage SA/SB 

Parity (16) + Dajta (S12) 

d_wr_dala_sxx_hc63:0> I parity 
b_dala1_s5b_hc63:0> I parity 
b_dalaO_s5b_h< 63:0> I par ii y 

STORE Datapath 

-, 

CD 
C 10 IO 

- CD~ 
~ > 0 

0-:: CD 
3: 0 CD 

-

-

L 

' 

Physic~ I 
DI re ct Map 
SKB 
256 blo cks 

Par it~ ( 1 6) + Da ta (S12 
~ , 

L2:1 Mux~ 
LOAD & FILL Da apaths _1--..,. LOAD & F LL Datapatfls L2 =:rMu~~ 
AIB latch: FBO~ Fill Bypl_ss A/B Late h FBOX F 111 By_ijlss 

LOAD & FILL DPs L_;.= 1 1ux~ 

A/B Latch: FBOX Fill B..u_~ss AIB Latch. FBOX Fi 11 B_ipass 

DCACHE-1 
CD 

Stage SA/SB 

High Side Data <63:3tz> 

c 10 IO 

:0 CD ~ 
.... > Low Side Data <31 :01> 

Tag: 
PA<39:13> 
Valid<1 :0> 
Parily 

( 
120 

) 

Tag DP 

Tag DP 

Tag: 
PA<39:13> 
Valid<1 :0> 
Parily 

, Parity (16) + Data (S12) IL 
;~: 

~~~-P_a_r_i_ty"-t-~(1~6~)~+~D_a_tpi--~(S~1_2~)"1----~ ( 120 ) 
_j/

STORE Datapath STORE Datapath

SB Latch: Pi~e data for WB SB Latch: P~e data or WB

llll_dala_~ b_h<127:96>
lill_dala_4b_h < 95: 64>

~ 32 .. 32 , 32 .,.. ..,..
B Latch to hold FILL Data <127:0> + Parit_y

.. 32

lill_dal a_~b_h< 63 :3 2>
llll_dala_4b_h<31 :0>

• 32 ... 32

'"' .,..

c_wr _dala_s5b_h<63:32>
c_ wr _dala_s5b_hc31 :0>
c_wr_lw_parily_s5b_h<1 :0>

'~
WRITE BUFFER (In CBOX)

6 648 entries '"' 12 DC blks .. 48 ON rows

128 1128

Read FAT BUS<127:0> + Parit_i

Write FAT BUS<127:0> + Parity

.1111!!111!L TITLE=CACHE_DC_BLK LAST_MODIFIED=Thu Dec 26 13:18:40 1991

o-
CD ::::J
n<
0 Ill
Cl.-
CD-

a.
Ill -CD

c
CD ::::s
n<
0 Ill
Cl.-
CD a:

Ill

;;

DIGITAL RESTRICTED DISTRIBUTION The caches 6-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

In the diagram below, the logical organization of each Dcache is shown.

Figure 6-7: Logical Dcache Organization

<----------- left bank -----------> <-- Dcache Tags --> <--------- right bank ------->
+--+----------------------------+-----+ +-----+--------------------------+--+

67R: IDPI Data <32:63> for 4 blocks I I I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+ dWL I I dWL !--------------------------+--+

66R: IDPI Data <32:63> for 4 blocks I I I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+-----+ +-----+--------------------------+--+

65R: IDPI Data <32:63> for 4 blocks I I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+ dWL I I dWL !--------------------------+--+

64R: IDPI Data <32:63> for 4 blocks I I I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+-----+-------+-------+-----+-----+--------------------------+--+

63: IDPI Data <32:63> for 4 blocks I I Inval I Tag I tWL I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+ dWL !-------+-------+-----+ dWL !--------------------------+--+

62: IDPI Data <32:63> for 4 blocks I I Inval I Tag I tWL I I Data <31:0> for 4 blocks IDPI
+--+----------------------------+-----+-------+-------+-----+-----+--------------------------+--+

+--+----------------------------+-----+-------+-------+-----+-----+--------------------------+--+
1: IDPI Data <32:63> for 4 blocks I I Inval I Tag I tWL I I Data <31:0> for 4 blocks IDPI

+--+----------------------------+ dWL !-------+-------+-----+ dWL !--------------------------+--+
0: I DP I Data <32: 63> for 4 blocks I I Inval I Tag I tWL I I Data <31: O> for 4 blocks I DP I

+--+----------------------------+-----+-------+-------+-----+-----+--------------------------+--+
Bit order Left bank is increasing: Bit order Right bank is decreasing:
(far left) 32, 33, 34, ••• 61, 62, 63 (center) (center) 31, 30, 29, ••• 2, 1, 0 (far right)

Note: Rows 64/65 and 66/67 are redundant row pairs. See Section 6.3.3.

= Data parity, one bit per longword. Even parity. where: DP (32)
dWL
Tag (116)

=Data Wordline Drivers (row pairs), left and right, 1 set for each bank.
=tag and valid bits, 29 bits per block: Tag (26), Parity (1), Valid (2).

tWL
In val

Note Tag Address bits may be in reverse order to match MBOX datapath.
= Tag Wordline Drivers (needed for STORE silo)
= Invalidate decoder and logic for tag array.

Data (1024 bits) = 4 blocks of data in order by bit: (Note Quadword organization}

+-------------------+ +-------------------+ +-------------------+ +---------
1 Quadword 3 I I Quadword 1 I I Quadword 2 I I QW 0
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+ +----+----+
I Blk3 I Blk2 I Blkl I BlkO I I Blk3 I Blk2 I Bl kl I BlkO I I Blk3 I Blk2 I Blkl I BlkO I I Blk3 I Blk2 I
IQW-31QW-31QW-31QW-31 IQW-llQW-llQW-llQW-11 IQW-2JQW-21QW-21QW-21 IQW-OIQW-01
I 32 I 32 I 32 I 32 I I 32 I 32 I 32 I 32 I I 32 I 32 I 32 I 32 I I 32 I 32 I
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+ +----+----+

----------+
QWO I

+----+----+
IBlkllBlkOI
IQW-OIQW-01
I o I o I
+----+----+

As can be seen from the diagram, each Dcache is organized into 64 direct mapped indexes, where
each index consists of four Dcache blocks (or two Scache/Bcache blocks). The breakdown of the
Physical address bits for Dcache decoding is show below:

6-14 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-8: Dcache Address Breakdown

38 37 36 14 13112 11 10 09 08 07106 05104 03 02 01 00
+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I 26-bit Tag address I index address I blk I QW ILWI
+--+--+--+ ••• +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where: tag address = Physical address bits loaded into or compared with Tag.
row index address = addresses 1 of 64 rows:

- Index<12:8> decodes one of 32 M3 wordlines (row pairs}
- Index<?> drives 1 of 2 Ml wordlines from the M3 wordline.

blk index address = indicates which block of 4 within an Dcache row.
QW address = indicates which Quadword of the block.
LW address = indicates which Longword within the QW, used for longword STOREs.
bits <1:0> = addressing within the longword, not used by the Dcache.

Data in the Dcache is accessed using an address from the MBOX, M%D_DC_ADDR_XA_B, or one
of the EBOX Virtual Addresses (VA) depending on the type of operation. The MBOX sends the
control signals, M%D_TAG_IDX_SEL_3B_B and M%D_DAT_IDX_SEL_3B_B, telling the Dcache tag array
and Dcache data array which address to pick. The address muxing is illustrated in Figure 6-9.

Figure 6-9: Dcache Index Muxlng for Data and Tag Arrays

e%d_va0_ 4a_h< 12:3>

m %d_da t_idx_se 1_3 b h

idx

EBOX VA busses:

Da ta-1
2: 1 Mux

idx

MBOX A d d res s :

e%d_va1_4a h<12:3>

m %d_tag_idx_sel_3b_

m%d de addr xa h< 2:3>

Mux

tagO_idx

Tag-1
2: 1 Mux

tag1_idx

..1UW!!Wi.. TITLE=CACHE_DC_IDX LAST_MODIFIED=Tue May 12 15:58:33 1992

6.3.1 Dcache Initialization and Test

All valid bits in a Dcache are clear when M%D_DC_FLUSB_.A_B is asserted via the DC_FLUSH
IPR, see Section 4.1.10, Mbox and Dcache IPR's. Thus on powerup, M%D_DC_.FLUSH....A_B should
be asserted in order to clear the valid bits.

There are enable and force_hit signals for the Dcache; these are described in Section 4.1.8.6.2.

The Dcache tags are written by FILL operations. They may also be written and read using IPR
access, see Section 4.1.10, Mbox and Dcache IPR's.

DIGITAL RESTRICTED DISTRIBUTION The caches 6-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Bad parity may be written for both the Dcache tag and data parity, see Section 4.1.8.2. Bad
parity is written to the Dcache tags using the IPR tag access. Bad parity may be written to
the Dcache data parity bits on STOREs; if the MBOX asserts M%D_FORCE_BAD_PAR_5B_H, the
longword parity bits will be inverted as they are written to the Dcaches. This does not affect the
parity sent to the Write Buffer; it will still b~ correct.

6.3.2 Dcache Transactions

The MBOX sends the Dcache a Tag Command, Data Command, Tag Index Select, and Data Index
Select every cycle. The two separate command busses help to facilitate the Write-Silo used for
STOREs, Section 6.3.2.2.

The MBOX also sends the Dcache M%D_UPDATE_DCOUT_3B_H which the Dcache uses on non
READ commands to decide whether to update the data busses, D%Z_DATA0_5A_H<63:0> and D%Z_
DATA1_5A_H<63:0>. This is a power-savings feature, which prevents the large data busses from
changing value when they are not needed, see Section 6.3.2.3.

The following Tables show the results of each tag and data transaction based upon the commands
and index selects received. For LOADs and FILLs, the Data and Tag Command are the same;
for STOREs which occur as a three cycle operation, the commands may be different.

Table 6-3: Dcache Tag Command and Transactions

Transaction: Address Select: MBOX Tag Bus:

TAG_CMD_3B_H TAG_IDX_SEL_3B Action D%M_TAG_5A

0 0 NOP1 Default (DON'T CARE) NOP -> Default2

0 1 Read EBOXVA LOAD -> LOADTag

0 1 Read EBOXVA STORE -> STORE Tag

0 1 Read MBOX (IPR) IPR RD -> Read Tag

0 1 Read MBOX (BiST) BiSTRD -> Read Tag

1 0 FILL MBOX (Fill) FILL -> FILL Tag

1 1 Writ.e MBOX (IPR) IPR WR -> DC_TEST_TAG

1 1 Writ.e MBOX (Bi ST) BiSTWR -> BiST patt.ern

1NOP may default to Read or may be used to save power.
2Tag Bus depends upon what TAG_IDX_SEL_3B the MBOX sends and/or any power-saving logic.
3Write with FILL data if (RFB_DATA_ VALID_9A * "NOFILL_5A)

Write

Tag?

No

No

No

No

No

w/ FILL2

w/ IPR data3

w/ BiST data

6-16 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-4: Dcache Data Command and Transactions

Transaction: Address Select: MBOX DC Tag Data Bus:

DATA_CMD_3B_H DAT_IDX...SEL_3B Action Action1 D%ZJ)ATA_GA

0 0 NOP Don't Care Note2 Read -> RFB Data3

0 1 Read EBOXVA LOAD Read -> Dcache Data

0 1 Read MBOX (Bi ST) BiSTRD BiSTRD -> Dcache Data

1 0 FILL MBOX (FILL) FILL FILL -> RFB Data3

1 0 FILL MBOX (Bi ST) BiSTWR BiSTWR -> RFB Data3

1 1 Write MBOX (Silo) Note2 Read -> RFB Data3

1 Data and Tag commands are independent. This column indicates what the tag action would be.

2Possible MBOX actions: NOP, STORE, FILL bypass

Write

Dcache?

No

No

No

w/ FILL4

w/ BiST patte

w/ Silo6

3RFB data is driven if M%D_UPDATE_DCOUT_3B_H=l, otherwise "old" data remains on the bus, see Section 6.3.2.3.
feature as it prevents the data bus from switching when it is unnecessary.
4Write with FILL data if (RFB_DATA_ VALID_9A * "NOFILL_5A)
5Unconditional write, BiST over-rides RFB_DATA_ VALID_9A and NOFILL_5A
6Write with Silo data if (D_ST_ VALID_6A)

6.3.2.1 Dcache Load Operation

A read of the Dcache occurs whenever the MBOX sends a Read command requested by the EBOX
and/or FBOX, to the Dcaches in stage 3B of the pipe, and sets the index selects to choose the
EBOX Virtual Address. Late in 4A, the EBOX will send the Virtual address outputs from the
EBOX fast adders to each Dcache for the data requested in Pipe-0 and the data requested in
Pipe-1. (Note, if a LOAD is requested for one pipe only, the other pipe will be driven (by default)
with the data corresponding to its index.)

In stage 4B, the data and tag decoders at each Dcache decode the indices and drive their wordlines
enabling the data and tag ram cells to be read. The sense-amps are fired in 5A and a quadword
of data with its parity is driven into each data pipe from a 5A latch. D%Z_DATA0_5A_H<63:0> is
driven from Dcache-0 into Pipe-0 and D%Z_DATAU>A_H<63:0> is driven from Dcache-1 into Pipe-1.
With the same timing, D%M_TAG0_5A_H<38:13>, Do/oM_TAG1_5A....H<38:13>, tag parity, and valid bits
are read from the tag array and driven to the MBOX Dcache Hit logic which is calculated in 5B.

6.3.2.2 Dcache Store Operation

STOREs occur as a three cycle operation using a Write Silo, see Section 4.1.8.2, Dcache STs:

• Stage 4: Read the tag from Dcache-0 that corresponds to the index on EBOX VA-0.
• Stage 5: The MBOX calculates Dcache hit for Dcache-0.
• Stage 6: If the STORE hit in the cache, both Dcache data arrays are written with the STORE

data.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

To allow back-to-back STOREs, the Dcaches' tag arrays are accessed separately from· the data
arrays (each cache has a tag index decoder and a data index decoder). This allows for reading of
the tag index for the hit calculation while data from the previous STORE is being written into
the Dcache, see Table 6-5.

Here's the full STORE sequence by cycle:

3B: MBOX sends a READ command to the Dcache tags.
MBOX sets M%D_TAG_IDX_SEL_3B_H=0 to choose EBOX VA-0.

4A: EBOX sends STORE index on VA-0 to Dcache Tag-0.

4B: Dcache tag read.
5A: D%M_TAG0_5A_H<38:13> with parity is driven to the MBOX Dcache hit logic.
5B: MBOX calculates Dcache hit for Dcache-0 only.

MBOX sends a write command to Dcache data arrays in preparation for a
possible data write in stage 6.
MBOX sets M%D_DAT_IDX_SEL_3B_H=l to choose MBOX silo'd index.

6A: MBOX sends the piped STORE index to both Dcache data decoders.
STORE data with parity from the EBOX or FBOX is sent to the Dcaches.

MBOX enables/disables the data STORE by sending M%D_ST_VALID_6A_H
based on the results of M%DC_mT_E0_5B_H and IBOX traps.

Dcache-1 buffers the STORE data and forwards it with parity to the CBOX Write Buffer
on Do/tie_WB_DATA_6A_H<63:0> and D%C_WB_LW_PARITY_6A_H<l:O>.

6B: If M%D_ST_ VALID_6A_H is high then the STORE data is written into both Dcaches.

Table 6-5 shows an example of three back-to-back STOREs. Note that in this example, the second
STORE misses in the Dcache and the data is not written.

Table 6-5: Dcache STORE Siio, Example of 3 back-to-back STOREs at one Dcache

Tag Command: Read Read Read x
Tag Index: Store-1 (EBOX) Store-2 (EBOX) Store-3 (EBOX) x
Data Command: x NOP Write Write

Data Index: x x Store-1 (MBOX) Store-2 (MBOX)

D_ST_VALID: x x 1 (hit) 0 (miss)

Tag-1: DC Lookup DC Hit

Data-1: @EBOX/FBOX @ EBOXJFBOX Write DC

Tag-2: DC Lookup DC Miss

Data-2: @ EBOXJFBOX @EBOX/FBOX No Write

Tag-3: DC Lookup DC Hit

Data-3: @EBOXJFBOX @EBOX/FBOX

6-18 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

STOREs may write a longword or quadword of data. The Dcache will write a quadword of data
when M%D_WR_TYPE_5B_H = 1; otherwise a longword of data is written using M%D_ST_ADR_5B_

H<2> to indicate which longword within the quadword to write. The upper longword within a
quadword is in the left bank of each Dcache; the lower longword is in the right bank.

This Write Silo places restrictions on other commands. For instance, FILLs which arrive during
the 3-cycle STORE sequence will be bypassed over the cache and written to the register files only.
See Section 4.1.8.2 for other command restrictions during the processing of a STORE.

6.3.2.3 Dcache Fiii Operation

FILL data is received from the CBOX on B%Z_RFB_9B_H<127:0>, the parity arrives a phase later
on C%D_FILL_PAR_10A_H<3:0>. FILL data is driven to the FBOX and MBOX/EBOX as soon as
it arrives at the Dcache. The fill-bypass mux in the Dcache Data LOAD/FILL Datapath, see
Figure 6-6, muxes B%Z_RFB_9B_H<127:0> with the Dcache read data, latches it, and drives it onto
the data bus (if M%D_UPDATE_DCOUT_3B_H is asserted, see below). The FILL data is returned
during Stage 5A without waiting for the Dcache write. (Note, timing is normalized such that
9B/10A in the Scache/CBOX pipe is equivalent to cycle 4B/5A in the Dcache LOAD pipe). Both
data busses are driven with the FILL data even if this is not the requested data. Furthermore,
the upper quadword is always driven on Pipe-1 and the lower quadword on Pipe-0:

D%Z_DATA1_5A_H<63:0> = Pipe-1 Data Bus, driven with Fill data <127:64>
D%Z_DATA0_5A_H<63:0> = Pipe-0 Data Bus, driven with Fill data <63:0>.

The FILL parity is not driven to the FBOX, EBOX and MBOX

The actual write of the Dcache with the FILL data occurs in 5B after the data has already been
returned to the FBOX, EBOX and MBOX. B%Z_RFB_9B_H<127:0> is piped at the Dcache and the
MBOX sends the tag, tag parity, and two valid bits, in stage 5A for the 5B write.

For the FILL to write either Dcache, its NOFILL bit must be inactive and the CBOX must
indicate that the FILL data is valid with C%Z_RFB_DATA_ VALID_9A_H. Since FILLs occur as two
separate octaword transactions, the MBOX determines the valid bits using the octaword address
and information from the CBOX as to which FILL this is (first or second). Both valid bits are
updated on every FILL.

If the above conditions are met, the data and tag are written into the Dcache in stage 5B.

There are restrictions around FILLs occurring with other operations, i.e. LOADs, STOREs. These
are detailed in the MBOX specification. Some conflict cases are handled by returning the FILL
data to the FBOX, EBOX, and MBOX, and not writing the FILL data into the Dcache. For
instance, a FILL can occur with a STORE as long as the FILL data does not write the cache-the
fill-bypass mux passes the FILL data onto the data busses, and the STORE data is written into
the Dcaches.

The fill-bypass mux is used to pass the RFB data onto the data busses. The data busses may be
driven with the RFB data anytime except during Dcache Data Read (i.e. LOAD) operations, but
to save power, the data busses, D%Z_DATA0_5A_H<63:0> and D%Z_DATA1_5A_H<63:0>, are not always
updated. If one of the following is true, the data busses will be driven with new data:

1. The Dcache Data command is a READ (drive data busses with Dcache data).
2. M%D_UPDATE_DCOUT_H is a 1 (drive data busses with RFB data).

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Otherwise, the data busses will driven with old data (no switching of large devices and loads
saves power).

Data from the CBOX is filled in the Dcache(s) before the ECC checking or Scache parity checking
has completed. ECC or parity errors discovered on data that has been written to the Dcache
are reported by the CBOX and will cause a machine check. The error flow has not been fully
determined, but it is likely that the parity error or ECC error will cause the full Dcache to be
flushed via the DC_FLUSH IPR. For a description of ECC and parity error handling, see the
Error Handling Chapter in the EV5 CPU Chip/Functional Specification.

6.3.2.4 Dcache Invalidate Operation

The types of Dcache invalidates that use the Dcache invalidate port addressed by the CBOX
are shown in Table 6-6. All invalidates are based on an index only and clear four valid bits
corresponding to a 64-byte Scache block (2 Dcache blocks). For increased performance, invalidates
~-'!..Y.~.J_h~J! .. Q~y~jn:t;J~x decQQ.~r_JID.d_ QCCPr. dµring tJi~ pre_charge_J?.J!;;t._~~ .. Qf _~h~ _!?~~~h~; this means
they do not consume a cycle and can happen asynchronous to other Dcache operations.

The invalidate command and invalidate address are received from the CBOX in stage 9A: C%D_
INVAL_CMD_9A_H and C%D_INVAL_ADDR_9A_H<12:6>. The invalidate will occur at the Dcache one
cycle later in Stage lOA.

Table 6-6: CBOX initiated Dcache Invalidates

'fype Index Bits Octawords Cleared Notes

CBOXScache

AnySTxC

<12:6>

<12:6>

4

4

1 Must clear Scache/Bcache block size to keep Dcache subset of Scache.

Clears 64 bytes.1

Don't wait for STxC Pass/Fail

In addition to the CBOX initiated invalidates, individual Dcache entries may be invalidated by
using IPR access to the Dcache tags to clear the valid bit(s) (however, at this point there are no
plans for using this mechanism). See the Dcache tag IPRs in Section 4.1.10, Mbox and Dcache
IPR's. For a description of ECC and parity error handling, see the Error Handling Chapter in
the EV5 CPU Chip/Functional Specification.

As mentioned in Section 6.3.1, the full Dcache may also be invalidated by a write to the DC_
FLUSH IPR.

6.3.2.5 Dcache Test Operations

Referring to Table 6-3, the Dcache tag array is accessible via IPR reads and writes processed by
the MBOX. If BiST is implemented for the Dcache, the Dcache tags will also be readable and
writable using the BiST logic; the BiST tag operation works by using existing MBOX-Dcache
signals and busses.

There is no IPR access to the Dcache data arrays. If BiST is implemented for the Dcache, the
data arrays may be written using the FILL path as indicated in Table 6-4. In order for the
write to occur, a signal indicating that BiST is running will be needed to over-ride the values of
C%Z_RFB_DATA_VALID_9A_H, M%D_NOFILL0_5A_H, and M%D_NOFILL0_5A_H. During BiST, the data
arrays may be read using the normal data read path.

6-20 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.3.3 Dcache Redundancy Logic

To increase yield of the Dcache array, two extra row pairs are included in the Dcache data array.
These rows will be programmable, but the specific programming scheme has not been determined.
There will be no column redundancy in the Dcache data array.

There is no redundancy in the Dcache Tag Array.

6.4 SCache Functional Description

The second-level cache, or SCache, is a 96 KByte cache. It is 3-way set associative and physically
addressed. Accesses to the SCache are controlled by the SCache Arbiter, which is part of the
Cbox.

The SCache consists of a tag array and a data array. It operates in a pipelined manner.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-10: SC8che

INDEX I
COMMAND I

TAG
ARRAY

TAG
MODIFY

HIT

TAG

i
I
I

I
I

I
I
I

I
I

ii·

OUTPUT I
PATH I

I
6~~PUTS I
AVAILABLE I
DATA
ARRAY

DATA
INPUT
PATH

DATA
OUTPUT
PATH I

I

i

I
DATA I
OUTPUTS !
AVAILABLE I

S6B/S7A

STATUS

6-22 The Caches

S7 B/S8A

HIT TAG PARITY
ERROR

S88/S9A

I
I
I

I
I RFB I IFB

S9B/S10A S10B

PARITY _ERROR PARITY_ERROR

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.1 SCache Tag Array

The SCache Tag Array actually consists of three small arrays, one for each set. Each small array
contains 512 tags. Each tag is made up of the upper bits of the physical address, plus some status
bits which are used by the Cbox.

Table 6-7: SC&che Tag

Name Extent Description

Tag<38:15> 34:11

Valid<l:O> 10:9

Shared<l:O> 8:7

Dirty<l:O> 6:5

Modified<3:0> 4:1

Parity 0

Physical Address

Valid bits for each 32 bytes of dat.a

Block is in Shared state: it is also present in another CPU's SCache or
BCache. One Shared bit per 32B.

Block is in Dirty state: this CPU's copy of this block is more up-to-date
than the copy in main memory. One Dirty bit per 32B.

Block is modified. One Modified bit per octaword.

Even parity over the Tag portion only

Note that status bits are maintained for each 32 bytes of data. This is done to support a block
size of 32 bytes, in addition to the native block size of 64 bytes.

6.4.1.1 Block Size

The SCache's native block size is 64 bytes. A 32 byte block size is also supported, with separate
tag status bits for each 32 byte block. However, there is only one tag for each 64 byte block. This
tag is shared for two 32 byte blocks: the two 32B blocks must have identical values for physical
address bits <38:15>. In the best case, where all blocks have adjacent addresses, the SCache can
hold twice as many different blocks in 32B mode as in 64B mode. In the worst case, it holds the
same number of blocks in either mode, and therefore half as much actual data in the 32B mode.
In general, tag operations look at only the status bits for the addressed 32B. During 64B mode,
the Cbox must keep identical both of the Valid, Shared, and Dirty bits for each half of the block.

6.4.1.2 Physical Organization

The physical organization of one tag subarray is described below. The array is made up of 64
rows, plus two redundant rows. Each row contains 8 tags. The eight tags are interleaved on a
bit-by-bit basis, i.e. the 'P' field described in Figure 6-11 actually consists of eight 'P' bits, one
for each tag in that row.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-23

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-11: SCache Tag Physical Organization

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+
65R: I P I M<l:O> I S<O> I D<O> I V<O> I Tag<38:27> I WL I Tag<26:15> I V<l> I D<l> I S<l> I M<3:2> I

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+
64R: I P I M<l:O> I S<O> I D<O> I V<O> I Tag<38:27> I WL I Tag<26:15> I V<l> I D<l> I S<l> I M<3:2> I

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+
63: I P I M<l:O> I S<O> I D<O> I V<O> I Tag<38:27> I WL I Tag<26:15> I V<l> I D<l> I S<l> I M<3:2> I

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+
O: I P I M<l:O> I S<O> I D<O> I V<O> I Tag<38:27> I WL I Tag<26:15> I V<l> I D<l> I S<l> I M<3:2> I

+---+--------+------+------+------+------------+----+------------+------+------+------+--------+
WL = Wordline Decoders/Drivers in center of cache.

Note: Rows 64 and 65 are redundant. See Section 6.4.5.

The following diagram shows how the 40-bit physical address is broken down and used within
the SCache Tag Array.

Figure 6-12: SC8che Tag Address Breakdown

39138 37 17 16 15114 13 12111 10 09 08 07 06105 04 03 02 01 00
+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I IO I 24-bit Tag address I block I row I I

+--+--+--+ ... +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where: I/O

tag address
block index
row index
bits <5:0>

= Indicates whether block is cacheable (=0)
= Physical address bits
= Indicates which block of 8 within a row
= Addresses 1 of 64 rows
= Addressing within the block, not used by the Scache tags

Each reference to the SCache begins with parallel lookups of all three SCache Tag sections. The
SCache Tag Array is looked up in EV5 pipeline stages S6B/S7A Each tag section calculates SET_
HIT, and drives its SET_HIT signal to its SCache data banks. The SET_HIT signals are also
driven to the Cbox. Any modifications to the tag are written back into the array in S7B/S8A

SET_HIT is asserted if the tag read out of the array matches the input tag driven by the Cbox,
and the valid bit for the 32B being addressed is set. The SCache tag section also derives a TAG_
MATCH signal for each set, which is asserted if the two tags match, and EITHER valid bit is
set. TAG..;..MATCH is used by the Cbox when in 32B mode, to assist in determining which set to
select for a FILL.

In addition to SET_HIT, each tag section calculates BCACHE_INDEX_MATCH. These signals
are used by the SCache Allocation logic (see <REFERENCE>(cbox_??)). They indicate when a
miss in the SCache will also cause a miss in the BCache (board-level cache). BCACHE_INDEX_
MATCH is simply a hit calculation over fewer tag bits. The number of bits compared depends on
the BCache size; if there is no BCache, BCACHE_INDEX_MATCH is not calculated. Either of
the two valid bits must be set in order to assert BCACHE_INDEX_MATCH.

6-24 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-8: BC&che Index Match

BCache Size (Megabytes)

1

4

8

16

32

64

Tag Bits Compared

Physical Address <38:20>

Physical Address <38:22>

Physical Address <38:23>

Physical Address <38:24>

Physical Address <38:25>

Physical Address <38:26>

6.4.1.3 Force HH/Force Miss Conditions

There are several transactions for which the Cbox can force the SET_HITs using a set selection
signal. (For more detail on the transactions, see Section 6.4.4). Force hit is also used in testing
the SCache.

There is also a force miss mechanism. References to non-cacheable regions of memory must not be
stored in the SCache. These blocks all have bit<39> of their physical address equal to 1. Rather
than store PA<39> in the SCache tags (since it must always be 'O' for cacheable references), the
condition of PA<39> equal to 1 is detected and used to force a miss in the SCache.

6.4.1.4 Status Bits

Each tag includes several status bits, described above. These may be modified in S7B/S8A,
depending on the command driven by the Cbox. Note that all modifications are done only to the
status bits corresponding to the 32B being addressed.

Table 6-9: Tag Modifications

'lransaction

SC_READ

SC_ WRITE

Modifies

none

M

D

SC_INVAL V

SC_READ_DIRTY S

SC_FILL all

SC_SET_SHARED S

Hit Condition Explanation

No modifications done on a read.

SET_HIT .[PRIVATE.DffiTY +WR_ Modified bits are set based on
PERMISSION] which longwords will be writ

ten in the SCache.

SET_HIT . S_ WR_PERMISSION

SET_HIT. [PRIVATE.DffiTY + P _
WR_PERMISSION]

SET_HIT

SET_HIT

SET_HIT1

SET_HIT

Dirty is cleared on every write
to Shared data

Dirty is set on every write to
Private data

Both valid bits cleared

Shared bit set

Cbox writes new tag entry

Shared bit set

1Note that SET_HITs may be forced by the SCache Arbiter.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-25

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Some status bits are set to fixed values based on the transaction. The following table lists
the final value for each portion of the SCache tag at the completion of each transaction type.
Modifications are only done to the status bits for the status bits corresponding to the 32B being
addressed, unless otherwise noted.

Table 6-10: Final Status Values

Status Value Transaction1 Note

TAG _2 SC_READ

SC_ WRITE

SC_INVAL

SC_READ_DIRTY

val3 SC_FILL

SC_SET_SHARED

v SC_READ

SC_ WRITE

0 SC_INVAL Both valid bits cleared

SC_READ_DIRTY

val SC_FILL

SC_SET_SHARED

s SC_READ

SC_WRITE Private data

0 SC_ WRITE Shared data

SC_INVAL

1 SC_READ_DIRTY

val SC_lt'Il.1L

1 SC_SET_SHARED

D SC_READ

1 SC_ WRITE Private data

0 SC_ WRITE Shared data

SC_INVAL

SC_READ_DIRTY

val SC_FILL

SC_SET_SHARED

1The transaction is successful: SET_HIT is detected/forced; SC_ WRITE performs the write.
2 - indicates no change was made

3"val" is the value driven from the Cbox

6-26 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-10 (Cont.): Flnal Status Values

Status Value 'lransaction1 Note

M SC_READ

MOR val SC_ WRITE Private data

0 SC_ WRITE Shared data

SC_INVAL

SC_READ_DIRTY

val SC_FILL

SC_SET_SHARED

p SC_READ

SC_ WRITE

SC_INVAL

SC_READ_DIRTY

val SC_FILL

SC_SET_SHARED

1The transaction is successful: SET_HIT is detected/forced; SC_ WRITE performs the write.

6.4.1.5 Aborting an SC8che Reference

Only the SC_ WRITE command can be aborted. This can be accomplished in either of two ways:
the command can be changed to NOP if there is time to do so, or the abort signal can be asserted.
The abort signal is sent in 87 A On an abort no tag modifications are done, and no data array
modifications are done.

6.4.1.6 Parity Checking

The SCache tag array also has parity checking logic, which operates over the Tag portion only.
Each of the three tag arrays has its own parity checking logic; parity is checked and errors are
reported for every access to a valid block (either valid bit set), regardless of hit or miss. See the
external spec for details of parity error handling.

6.4.2 SCache Data Array

The SCache is a 96KB, 3-way set associative, physically addressed, write-back cache. It is a
unified instruction and data cache. Misses in the !Cache and DCache generate accesses into the
SCache; misses in the SCache generate accesses off-chip. Transactions generated by the sytem
are also processed in the SCache.

The data within the SCache is protected with even longword parity; writes to the SCache can be
done to the granularity of a longword.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-27

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The SCache data array resides in pipeline stages S8B/S9A and S9B/S10A Most transactions are
done on a 32-byte basis, since that is the block size for the ICache and DCache. These 32-byte
transactions are handled as two 16-byte operations. The octaword requested (determined by
decoding the address originating in the Mbox, lbox, or Cbox) is read or written in S8B/S9A; the
other half the 32-byte block is processed in S9B/S10A

The SCache has two major internal buses: the Read SCache bus (RSC), used for readingdata from
the SCache data array, and the Write SCache bus (WSC), used for writing data into the SCache
data array. These internal buses connect to external read and write buses: the RFB, WFB, and
IFB. The SET_HIT signals generated in the SCache Tag Array are used to select which set will
drive onto/be written from the RSC/WSC.

The Mbox and Cbox access the SCache from the Read Fatbus (RFB) and Write Fatbus (WFB),
which are separate 128-bit buses. The RFB is used to read data from the SCache; the WFB is
used to write data into the SCache. The lbox accesses the SCache from the ICache Fill Bus (IFB);
this bus is used for reading from the SCache.

Control signals from the Cbox are used to enable the SCache to drive onto the RFB and IFB,
and to enable the SCache to receive data from the WFB. All of these buses have multiple drivers
and/or receivers.

The Cbox checks parity on every read of the SCache data array. See the external spec for details
of parity error handling.

The SCache is physically made up of twenty-four 4KB banks. There are 64 rows, plus two
redundant rows, in each bank. Each row contains 8 quadwords of data, plus longword parity for
those 8 quadwords. To access an entire octaword, two of the 24 banks are looked up, producing one
quadword from each of the two banks. The physical organization of one SCache bank is described
below. Note that all fields are actually interleaved, as in the tag arrays, i.e. the Data<63> field
is actually made up of eight bits: Data<63> for each of the 8 quadwords stored in this row.

Figure 6-13: SCache Physical Organization, Lower Quadword (Right Half of SCache)

+---+------+-------------+----+-------------+------+---+
65R: I R I P<O> I Data<0:31> I WL I Data<32:63> I P<l> I R I

+---+------+-------------+----+-------------+------+---+
64R: I R I P<O> I Data<0:31> I WL I Data<32:63> I P<l> I R I

+---+------+-------------+----+-------------+------+---+
63: I R I P<O> I Data<0:31> I WL l Data<32:63> I P<l> I R I

+---+------+-------------+----+-------------+------+---+

+---+------+-------------+----+-------------+------+---+
O: I R I P<O> I Data<0:31> I WL I Data<32:63> I P<l> I R I

+---+------+-------------+----+------------··+------+---+
where: R = redundant bitslice (8 columns}

P<l> = longword parity bit for LWl, Data<63:32>
P<O> = longword parity bit for LWO, Data<31:0>
WL = wordline decoders/drivers

Note: Rows 64 and 65 are redundant. See Section 6.4.5.

6-28 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The previous diagram shows storage of the lower half of an octaword. The upper half is stored
in another 4KB bank, as shown in the following diagram.

Figure 6-14: SC8che Physical Organization, Upper Quadword (Left Half of SC8che)

+---+------+--------------+----+-------------+------+---+
65R: I R I P<3> I Data<127:96> I WL I Data<95:64> I P<2> I R I

+---+------+--------------+----+-------------+------+---+
64R: I R I P<3> I Data<127:96> I WL I Data<95:64> I P<2> I R I

+---+------+--------------+----+-------------+------+---+
63: I R I P<3> I Data<127:96> I WL I Data<95:64> I P<2> I R I

+---+------+--------------+----+-------------+------+---+

+---+------+--------------+----+-------------+------+---+
0: I R I P<3> I Data<127: 96> I WL I Data<95: 64> I P<2> I R I

+---+------+--------------+----+-------------+------+---+

where: P<3>
P<2>

= longword parity bit for LW3, Data<127:96>
= longword parity bit for LW2, Data<95:64>

The following diagram shows how the 40-bit physical address is broken down and used within
the SCache Data Array.

Figure 6-15: SC8che Data Address Breakdown

39 38
+--+--+
I
+--+--+

16 15114 13112 11 10 09 08 07106105 04103 02 01 00
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

lbank I row lbll OW I
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where: bits <39:15>
bank index
row index
bl index
OW index
bits <6:4>
bits <3:0>

6.4.3 Pipeline

= Tag portion, not used by the SCache Data Array
= Selects two of eight 4KB banks
= Addresses l of 64 rows
= Addresses l of 2 blocks
= Addresses 1 of 4 octawords within a block
= Addresses 1 of 8 columns
= Addressing within an octaword, not used

The SCache is a 4-stage pipeline. Most transactions have a 4-cycle latency: if the tag lookup is
done in S6B/S7A, the first octaword of data is output on the bus in S9B/S10A In general, a new
transaction can be started every two cycles. The general SCache flow for a single operation is:

DIGITAL RESTRICTED DISTRIBUTION The caches 6-29

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-11: SC8che Pipeline

Stage

S6B/S7A

S7B/S8A

S8B/S9A

S9B/S10A

SlOB/SllA

Tag Operations

Tag Lookup

Hit Calculation

Tag Modification

[Next Tag Lookup]

6.4.4 Transactions

Data Operations

Index driven to data arrays

Index decoding

Hit driven to data arrays

WRITE data driven to data arrays (1st octaword)

Data read/written (1st octaword)

WRITE data driven to data arrays (2nd octaword)

Data read/written (2nd octaword)

READ data available (1st octaword)

READ data available (2nd octaword)

The SCache handles six transaction types: SC_READ, SC_ WRITE, SC_INVAL, SC_READ_
DIRTY, SC_FILL, and SC_SET_SHARED. Read commands are initiated by the Mbox and
lbox; Write commands are initiated by the l\1box; Read Dirty, Fill, Inval, and Set_Shared
are initiated by the the system. For more details on interactions between transactions, see
<REFERENCE>(cbox_sc_arb).

6.4.4.1 SC_READ

The SCache reads 32 bytes at a time, in two 16-byte transactions. The octaword requested is
read first, followed by the other half of the 32-byte block. If there is no SET_HIT detected in the
SCache tags, no read is done. For a regular read, SET_HIT is not forced.

This transaction is also used to copy a victim from the SCache into the Cbox. A victim is a block
which has been deallocated, but has been modified so it must be written back. In this case, the
SCache Arbiter will send the SCache a tag array index plus a set selection signal in order to
choose which block is to be removed (SET_HIT will be forced).

An SC_ WRITE command which fails becomes an SC_READ command.

No tag status bits are modified for this operation.

Table 6-12: SCache Transactions: SC_READ

Tag

Data

RFB,IFB

WFB

I OWx: octaword x

S6B/S7A S7B/S8A

U>okup

S8B/S9A

Read OW11

S9B/SlOA

ReadOW2

OWl

SlOB/SllA

OW2

6-30 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.4.2 SC_WRITE

The SCache writes 32 bytes at a time, in two 16-byte transactions. The octaword requested is
written first, followed by the other half of the block. Longword enables are driven to the SCache
with each octaword, indicating which longwords are to be written (zero to four enables asserted).

If there is no SET_HIT detected, no write is done. If a SET_HIT is detected, but the status is
Private and Not Dirty, no write is done. The Cbox must obtain permission from the system to
change the tag status to Dirty before the write can be done. If a SET_HIT is detected, but the
status is Shared, no write is done until the Cbox obtains permission from the system.

A write succeeds if:

1. The block status is Private and Dirty.
2. The block status is Private and Clean, and the Cbox asserts a "Set Dirty" permission signal.
3. The block status is Shared, and the Cbox asserts a "Shared Write" permission signal.

Any write which fails is turned into an SC_READ command by the SCache Tag section.

On a write, any longword which is not written (based on the longword enables) is read. This
assists the Cbox in accumulating a block which will require an off-chip broadcast.

The SCache tags modify the Shared, Dirty, and Modified status bits only on a successful Write.
Shared, Dirty and Modified are cleared on every write to a Shared block. On a write to a Private
block, Dirty is set and the new values for the Modified bits are created by OR'ing the previous
Modified status bits with the input Modified bits, which are generated from the longword write
masks.

Table 6-13: SC8che Transactions: SC_WRITE

Tag

Data

RFB,IFB

WFB

S6B/S'7A

Lookup

tunwritten longwords.

6.4.4.3 SC_INVAL

S'7B/S8A

Modify S,M,D

OWl

S8B/S9A

Write OWl

OW2

S9B/SlOA

Write OW2

ow11

SlOB/SUA

ow21

This transaction is used to invalidate a block in the SCache. The only action performed by this
transaction is that of clearing both Valid bits corresponding to a 64B block, regardless of actual
block size.

This transaction never accesses the SCache data array.

DIGITAL RESTRICTED DISTRIBUTION The caches 6-31

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-14: SCache Transactions: SC_INVAL

Tag

Data

RFB,IFB

WFB

S6B/S7A

Lookup

6.4.4.4 SC_READ_DIRTY

S7B/S8A

ModifYV

S8B/S9A S9B/SlOA SlOB/SllA

This transaction is used to perform a read that was initiated from off-chip. The status of the block
must be changed to Shared. Note that only the Shared bit for the 32 bytes addressed is modified,
regardless of actual block size. In 64B mode, the Cbox must eventually do an SC_READ_DIRTY
to both halves of the block in order maintain the Shared bit correctly.

SC_READ_DIRTY behaves like a normal Read, in that it operates on a 32-byte piece of data. It
returns the requested octaword first, then the other octaword in the 32-byte datum. Two SC_
READ_DIRTY commands are required to read an entire 64B block.

Table 6-15: SC8che Transactions: SC_READ_DIRTY

Tag

Data

RFB,IFB

WFB

6.4.4.5 SC_FILL

S6B/S7A

Lookup

S7B/SSA S8B/S9A

ModifY S

ReadOWl

S9B/SlOA

Read0W2

OWl

SlOB/SllA

OW2

Data requested due to a miss in the SCache is written to the SCache using the SC_FILL command.
Since this transaction handles data received from the system, the data is handled one octaword
at a time. The SCache arbiter prevents CPU access to a block being filled, so no accesses can be
done to a partially filled block.

A new tag entry is written on an SC_FILL. The SCache set allocation logic decides which location
is to be written. Like the SC_INVAL command, block selection is done by sending the SCache
a tag array index and a set selection signal. Four SC_FILL commands are required to write an
entire 64B block.

SC_FILL is the only transaction which writes the SCache Tag array in S6B/S7A.

6-32 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-16: SCache Transactions: SC_FILL

Tag

Data

RFB,IFB

WFB

S6B/S7A

Write New Tag

6.4.4.6 SC_SET_SHARED

S7B/S8A

OWl

S8B/S9A S9B/SlOA SlOB/SUA

Write OWl

This command is used to set the Shared status bit based on commands generated by the system.
The tag array is probed, to see if the SCache contains a particular block; on a SET_HIT, the
Shared bit is set. This SCache command is used to implement the system command Set_Shared
(changing a private block to a shared block).

This transaction never accesses the SCache data array.

Table 6-17: SCsche Transactions: SC_TAG_UPDATE

Tag

Data

RFB,IFB

WFB

S6B/S7A

Lookup

S7B/S8A

Modify S

6.4.5 SCache Redundancy Logic

S8B/S9A S9B/SlOA SlOB/SllA

The SCache tag array is implemented as 3 banks of approximately 2KB each. Each bank has
two extra rows, which are enabled by fuses. The exact fuse usage is TBD.

The SCache data array is implemented as 24 banks of 4KB each. Each bank has two extra rows;
each extra row can replace any failing row within the 4KB bank. The extra rows are enabled
by fuses: mapping of the extra row to a faulty row is done by programming the failing row's
address into the fuses associated with the extra row. Every address driven into the cache bank
is compared to the addresses encoded in the mapping fuses; if a match is detected, the extra row
is looked up rather than the failing row.

Each 4KB bank also has two sets of 8 redundant columns, one set on each side of the word line
drivers. The set of 8 columns can be mapped to any bitslice within its half-bank (any one of 33
other bitslices: 32 data plus one parity). Column· redundancy fuses are shared between two 4KB
banks, so that one repair can be done within any given half-bank; the same repair will be done
in the half-bank immediately below.

The SCache data array can also be disabled a set at a time. If a bank cannot be repaired, its
set can be disabled. The SCache will continue to function properly; performance may be reduced.
Only one good set is required for correct operation of the SCache.

DIGITAL RESTRICTED DISTRIBUTION The caches 6-33

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.6 Cbox Interface

The SCache Arbiter in the Cbox controls the SCache by sending the SCache tag array a com
mand, and with some commands, new data values. Set selection signals are also sent with some
commands in order to force SET_HIT. The command and set selection encodings are described
below.

Table 6-18: SCache Commands from Cbox

Encoding Command Force mt
000 NOP nt
001 SC_READ ##3

010 SC_INVAL 11

011 SC_ WRITE 11

100 SC_SET_SHARED 11

101 SC_READ_DIRTY 11

110 Not Used 11

111 SC_FILL ##

1 No set is caused to "force hit".
3For a normal read, Force Hit= 11; for a victim read, Force Hit=##.

On every tag lookup, status information is driven to the Cbox. The information, and the stage in
which it is driven, are listed in the table below.

Table 6-19: Tag Status Driven to Cbox

S7A S7B

V[2:0]<1:0>1

8[2:0]<1:0>

D[2:0]<1:0>

M[2:0]<3:0>

SET_HIT[2:0]

BCACHE_INDEX_MATCH[2:0]

TAG_MATCH[2:0]

Tag2
Parity Error[2:0]

1(2:0] indicates this status is driven from all 3 sets
2 this status is driven from only the set which detected SET _HIT

6-34 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4. 7 I box Interface

The lbox interface with the SCache is via the !Cache Fill Bus (IFB). For a reference which hits
in the SCache, data is driven on the IFB from the RSC. If a reference misses in the SCache, the
request is sent off-chip. Fill data returns to the lbox through the SCache, on the WSC. This fill
data is already ECC-corrected. Data from non-cacheable regions of memory are sent through the
SCache, but are not written into the SCache.

Fill data to the lbox must be piped one cycle within the SCache in order to mimic the timing of
an SCache hit and prevent collisions on the IFB. This piping is done in the SCache data array,
at the lbox interface.

The SCache uses the longword write signals sent by the Cbox in order to determine whether data
to be driven on the IFB is appearing on the RSC or WSC.

6.5 Reset and Initialization

See the External Spec.

6.6 Error Handling and Recording

See the External Spec.

6.7 Test Aspects

The !Cache incorporates built-in self-test (BiST). The DCache and SCache are tested via IPRs.

Bad parity may be written to the Dcache tags and data, see Section 6.3.1.

6.7.1 BiST

See the External Spec for a description of BiST in the !Cache.

6. 7.2 IPR access

The DCache and SCache are accessible for testing via IPRs. Using these access paths, all bits
can be tested as desired. These IPRs may also be used in error handling.

6.7.3 Scan Chains

A scan chain is located at the output of the SCache, at its interface to the IFB. There are actually
two segments of the scan chain, one over each half of the SCache data array. The signals in order
of appearance are:

DIGITAL RESTRICTED DISTRIBUTION The caches 6-35

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<0> KIFB_PAR_H<O> LW Parity for Data<31:0>

<1> KIFB_H<O> Data.<0>

<2> KIFB_H<l> Data<l>

<3> KIFB_H<2> . Data.<2>

<4> 8%IFB_H<S> Data<3>

<5> KIFB_H<4> Data.<4>

<6> KIFB_H<lb Data.<5>

<7> S%1FB_H<6> Data.<6>

<8> S%1FB_H<7> Data.<7>

<9> 8%IFB_H<8> Data.<8>

<10> S%1FB_H<9> Data.<9>

<11> 8%IFB_H<l O> Data.<10>

<12> KIFB_H<ll> Data<ll>

<13> S%IFB_H<12> Data.<12>

<14> KIFB_H<l3> Data.<13>

<15> KIFB_H<14> Data.<14>

<16> KIFB_H<15> Data.<15>

<17> KIFB_H<l&> Data.<16>

<18> KIFB_H<l '1> Data.<17>

<19> 8%IFB_H<18> Data.<18>

<20> KIFB_H<19> Data.<19>

<21> 8%IFB_H<20> Data.<20>

<22> KIFB_H<21> Data.<21>

<23> 8%IFB_H<22> Data.<22>

<24> 8%IFB_H<23> Data.<23>

<25> KIFB_H<24> Data.<24>

<26> KIFB_H<25> Data.<25>

<27> KIFB_H<28> Data.<26>

<28> KIFB_H<27> Data.<27>

<29> KIFB_H<28> Data.<28>

<30> KIFB_H<29> Data.<29>

<31> 8%IFB_H<30> Data.<30>

<32> 8%IFB_H<31> Data.<31>

<33> S_DIR_CI'L%LSEL_ WSC_H LW write enable for Data.<31:0>

<34> S_DCR%ADDK_7A_L<l4> Address driven to SCache

<35> S_DCR%ADDK_7A_L<13>

6-36 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<36> S_DCR'lu\DDR_7A_L<12>

<37> S_DCWMDDR_7A_L<ll>

<38> S_DCR'lu\DDR_7A_L<IO>

<39> S_DCR'lu\DDR_7A_L<9>

<40> S_DCR'lu\DDR_7A_L<8>

<41> S_DCR'lu\DDR_7A_L<7>

<42> S_DCR'lu\DDR_7A_L<8>

<43> S_DCR'lu\DDR_7A_L<I>

<44> S_DCR'lu\DDR_7A_L<4>

<45> S_DCR%111T_H<2> SET_HIT signal, set 2

<46> S_DCR%111T_H<I> SET_HIT signal, set 1

<47> S_DCR%11l.T_H<O> SET_HIT signal, set 0

<48> S_DIR_CTIIHlSEL_WSC_H LW write enable for Data<63:32>

<49> KIFB_B<Sb Data<32>

<50> KIFB_B<33> Data<33>

<51> KIFB_H<U> Data<34>

<52> KIFB_B<35> Data<35>

<53> KIFB_B<38> Data<36>

<54> KIFB_H<3'7> Data<37>

<55> KIFB_H<38> Data<38>

<56> KIFB_B<39> Data<39>

<57> KIFB_B<40> Data<40>

<58> KIFB_B<41> Data<41>

<59> KIFB_B<4b Data<42>

<60> KIFB_H<48> Data<43>

<61> KIFB_B<44> Data<44>

<62> KIFB_B<45> Data<45>

<63> KIFB_B<48> Data<46>

<64> KIFB_B<4'7> Data<47>

<65> KIFB_B<48> Data<48>

<66> KIFB_B<49> Data<49>

<67> KIFB_H<SO> Data<50>

<68> KIFB_H<Sl> Data<51>

<69> KIFB_B<Sb Data<52>

<70> KIFB_H<53> Data<53>

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-37

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<71> 8'*'1FB_H<54> Data<54>

<72> 8'*'1FB_H<55> Data<55>

<73> 8'*'1FB_H<58> Data<56>

<74> 8'*'IFB_H<57> Data<57>

<75> KIFB_H<58> Data<58>

<76> KIFB_H<59> Data<59>

<77> KIFB_H<60> Data<60>

<78> KIFB_H<61> Data<61>

<79> 8'*'IFB_H<62> Data<62>

<80> S'*'1F'B_H<63> Data<63>

<81> S%IFB_PAR_H<l> LW Parity for Data<63:32>

6-38 The Caches DIGITAL RESTRICTED DISTRIBUTION

EVfi CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Left Half of SCache:

<0> KIFB_.PAR_Hd> LW Parity for Data<95:64>

<1> 8'*'1F'B_H<64> Data.<64>

<2> 8'*'1F'B_H<65> Data.<65>

<3> KIFB_H<66> Data.<66>

<4> KIFB_H<6'1> Data.<67>

<5> KIFB_H<68> Data.<68>

<6> KIFB_H<89> Data.<69>

<7> 8'*'1F'B.....H<70> Data.<70>

<8> 8'*'1F'B_H<71> Data<71>

<9> KIF'B_H<72> Data<72>

<10> 8'*'1F'B_H<73> Data<73>

<11> KIFB_H<74> Data<74>

<12> KIF'B_H<75> Data<75>

<13> KIF'B_H<76> Data<76>

<14> KIFB_H<7'1> Data<77>

<15> KIF'B_H<78> Data<78>

<16> KIFB_H<79> Data<79>

<17> KIFB_H<80> Data<80>

<18> KIF'B_H<81> Data<81>

<19> KIF'B_H<82> Data<82>

<20> KIFB_H<83> Data<83>

<21> KIF'B_H<84> Data<84>

DIGITAL RESTRICTED DISTRIBUTION The caches 6-39

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Left Half of SCache:

<22>

<23>

<24>

<25>

<26>

<27>

<28>

<29>

<30>

<31>

<32>

<33>

<34>

KIFB_H<85>

KIFB_H<88>

KIFB_H<87>

S'1oIFB_H<88>

S'1oIFB_H<89>

KIFB_H<90>

KIFB_H<91>

KIFB_H<92>

KIFB_H<9S>

S%1FB_H<94>

S%IFB_H<95>

S_DIL_C'rl.%LSEL_WSC_H

S_DCL%ADDR_7A_L<14>

<35> S_DCL%ADDR_7A_L<13>

Dat.a<85>

Dat.a<86>

Dat.a<87>

Dat.a<88>

Dat.a<89>

Dat.a<90>

Dat.a<91>

Dat.a<92>

Dat.a<93>

Dat.a<94>

Dat.a<95>

LW write enable for Dat.a<95:64>

Address driven t.o SCache

6-40 The Caches DIGITAL RESTRICTED DISTRIBUTION

Position

<36>

<37>

<38>

<39>

<40>

<41>

<42>

<43>

<44>

<45>

<46>

<47>

<48>

<49>

<50>

<51>

<52>

<53>

<54>

<55>

<56>

<57>

EVS CPU Chip Internal Specification, Revision 0.0, February 1992

Description Comment

Scan Chain for Left Half of SCache:

S_DCLMDDR_7A_L<l2>

S.J>CLMDDR_7A_L<ll>

S_DCLMDDR_7A_L<IO>

S.J>CLMDDR_7A_L<9>

S.J>CLMDDR_7A_L<8>

S_DCI..MDDR_7A_L<'1>

S_DCLMDDR_7A,_L<6:>

S_J)CLMDDR_7A_L<I>

S.J>CLMDDR_7A_L<4>

S_DCL%HIT_H<2>

S_DCL%HIT_H<l>

S_DCIAHIT_H<O>

S_DIL_Cl'L'HlSBL_ WSC_H

~_H<98>

~_H<97>

KIFB_H<98>

~_H<99>

~_H<IOO>

~-H<lOI>

~_H<l02>

KIFB_H<103>

~-H<lM>

SET_HIT signal, set 2

SET_HIT signal, set 1

SET_HIT signal, set 0

LW write enable for Data<127:96>

Data<96>

Data<97>

Data<98>

Data<99>

Data<100>

Data<lOl>

Data<102>

Data<103>

Data<104>

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-41

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Left Half of SCache:

<58> S'HFB_H<l05> Dat.a<105>

<59> S'HFB_H<l06> Dat.a<106>

<60> KIFB_H<10'7> Dat.a<107>

<61> S%1FB_H<108> Dat.a<108>

<62> S'HFB_H<109> Dat.a<109>

<63> S'HFB_H<llO> Dat.a<llO>

<64> KIFB_H<lll> Dat.a<lll>

<65> KIFB_H<112> Dat.a<112>

<66> KIFB_H<l13> Dat.a<113>

<67> KIFB_H<114> Dat.a<114>

<68> KIFB_H<l15> Dat.a<115>

<69> KIFB_H<ll&> Dat.a<116>

<70> KIFB_H<ll '1> Dat.a<117>

<71> KIFB_H<l18> Dat.a<118>

<72> KIFB_H<l19> Dat.a<119>

<73> KIFB_H<l20> Dat.a<120>

<74> KIFB_H<121> Dat.a<121>

<75> KIFB_H<l22> Dat.a<122>

<76> KIFB_H<l23> Dat.a<123>

<77> KIFB_H<124> Dat.a<124>

<78> KIFB_H<l25> Dat.a<125>

<79> S'HFB_H<l26> Dat.a<126>

<80> KIFB_H<l2'1> Dat.a<127>

<81> KIFB_PAR_H<3> LW Parity for Data<127:96>

6.8 Performance Monitoring Features

These are TBD. They are likely to include tracking of cache hit rates for various transactions. See
the lbox, Cbox, and Mbox chapters for details.

6.9 Issues

6.9.1 ICache

1. Does loading from the SROM take place while RESET is asserted?
2. Handling of data with parity error or ECC error that gets written into the Icache and/or Refill

Buffer. I am assuming that this error flow will be described in the Error Handling Chapter
of the EV5 CPU Chip/Functional Specification.

6-42 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.9.2 DCache

1. Handling of data with ECC error that gets written into the Dcache. I am assuming that this
error flow will be described in the Error Handling Chapter of the EV5 CPU Chip/Functional
Specification.

6.9.3 SCache

1. Currently parity is only computed over the address portion of the tag. Should separate parity
be computed over the status bits?

2. How are the modified blocks removed during powerfail?
3. Define IPRs.

6.1 O Revision History

Table 6-20: Revision History

Who

Elizabeth M. Cooper

M. Delaney

M. Delaney

M. Delaney

M. Delaney

M. Delaney

Elizabeth M. Cooper

Elizabeth M. Cooper

M. Delaney

M. Delaney

M. Delaney

M. Delaney

M. Delaney

Elizabeth M. Cooper

When

2-Dec-1991

17-Dec-1991

7-Jan-1992

10-Jan-1992

13-Jan-1992

20-Jan-1992

22-Jan-1992

3-Feb-1992

13-Feb-1992

21-Feb-1992

9-Mar-1992

16-Mar-1992

12-May-1992

26-June-1992

DIGITAL RESTRICTED DISTRIBUTION

Description of change

Overview, SCache particulars

Adding to Icache/Dcache sections

First pass of Icache & Dcache sections done

Changed Dcache indexing 12:11 -> 6:5 etc.

Icache section corrections per Mike Smith

Changed Dcache over to write silo

Icache: updated for fills coming through Scache

Scache updates

Scache command updates

Icache and Dcache updates

Minor Dcache updates-Forcing bad parity

Icache updates: Forcing bad parity; updated RFB
logic/timing

Dcache updates: FILL bypass timing change, DC tag
in middle

Icache & Dcache updates: new DC timing, no split
DC

SCache updates

The Caches 6-43

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 7

The Clocks

7 .1 Overview-Block Diagram

DIGITAL RESTRICTED DISTRIBUTION The Clocks 7-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 7-1: Ebox

).B.Q..L,

REGISTER :1 -~~Ee:~:·
FILE 4 REAO PORTS

WRITE IN 8
READ IN A

R

I
~ r--
~

t---

l
t::

I

I
I

J
u

rtH l m
A_

E
""..

~~ [
EBDX

CONTROL ~ • I[' ~
::::::

~ -~

i '----

!---

r
I t Eo

~
.. .,,,
lD
AODILCG
IT
HPR

4

I~

Eeox ~
-- t Tue Oct 29 09:55:20 1991

7-2 The Clocks

f--
~

I
J

11

ml ::rm
1Iill

'---!----

J

3: I

~t!ij E ... _H
LO~

~ 4

E1 !W
CMDV

·P LO
ADDIL.OQ
IMUL
IHF ZAPPER
BYTE
ISRl.JMP
MIPR
CALPAL

4

I

4

1

.MBQX,
i
I
!
!
I
i

I
I
I
I
(

I -" ...

I -i> ~ I

I
-" I ...

I
I

I
I
I
I

I
I

I
I
I
I
!

L--1

3A

30

4A

40

5A

50

6A

60

7A
78

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

7.2 Functional Description

7.3 Reset and Initialization

7.4 Error Handling and Recording

7.5 Test Aspects

7.6 Performance Monitoring Features

7.7 Issues

7.8 Revision History

Table 7-1 : Revision History

Who When Description of change

your name date description

DIGITAL RESTRICTED DISTRIBUTION The Clocks 7-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 8

Test Internals

8.1 Overview

This chapter describes the EV5 CPU chip's testability features and the test port.

8.2 The Testability Strategy

The EV5 CPU chip's testability strategy addresses the broad issue of providing cost-effective and
thorough testing during many life cycle testing phases. The strategy specifically implements test
features to support

• chip debug
• high fault coverage test at wafer probe and packaged chip test
• support for effective chip burn-in test
• support for efficient embedded RAM testing for laser repair and go/nogo testing.
• support module manufacturing test via IEEE 1149.1 boundary scan architecture
• support for system test via a variety of architectural features.

The strategy uses a combination of a variety of testability techniques and approaches that are best
suited to address the specific functional elements in the chip. The cost-effective implementation
is realized by the appropriate consideration of the global issues, by unifying the test objectives,
by sharing test resources and by exploiting features inherent in the chip. The strategy also relies
on leveraging off the design verification patterns in developing production test patterns to meet
the fault coverage goals.

The EV5 Testability Micro-Architecture consists of the Test Port and Testability Features. The
Test Port implements a comprehensive test access strategy, permiting an efficient access during
debug and manufacturing test.

8.3 Test Port

Test Port on EV5 supports a parallel debug port, a serial ROM port, and an IEEE 1149.1 port and
a number of miscelleneous test functions through a set of shared test port pins. The test port
consists of 13 dedicated test pins. These pins have dual defintions. For normal chip operations,
including test operations, the test_mode_l pin is connected to ground. All test pins have their
normal definitions and functions. When test_mode_l is asserted high, the test port becomes an

DIGITAL RESTRICTED DISTRIBUTION Test Internals 8-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

11-bit wide parallel debug port. This mode is used exclusively for chip/system debugging in chip
alone or a prototype system environments ...

. Table 8-1 summerizes the test pins and their functions.

Table 8-1: EV5 Test Pins

Pin Name Pin 'fype Normal Function Shared Function

TEST_MODE_H I, Pull-down Selects debug port defintion

TDI_H I, Pull-up IEEE 1149.1 Serial Data Input pp_data_h<O>

TDO_H 0, 'Iii-state, IEEE P1149.1 Serial Data Output pp_data_h<l>

TMS_JI I, Pull-up IEEE 1149.1 Test Mode Select pp_data_h<2>

TCK_JI I, pull-down IEEE 1149.1 Test Clock pp_data_h<3>

TRST_L I, pull-up IEEE 1149.1 Test Reset pp_data_h<4>

TEST_STATUS_H 0 Test status/hand shake for BiST pp_data_h<5>

DISABLE_OUT_l I, pull-up Disables all output drivers pp_data_h<6>

SROM_DISABLE_H I Serial ROM disable pp_data_h<7>

SROM_CLK_H 0 Serial ROM clocklrx data pp_data_h<8>

SROM_DATA_H I Serial ROM data/Rx data pp_data_h<9>

SROM_OE_L 0 Serial ROM output enable

spare test pin tbd pp_data_h<lO>

NOTE

_ _ _ May.bc-1he...TEST MODE:pin should .be_renamed.DEBUG MODE_pin.. _ --------------~-- __ _

8.4 Parallel Debug Port

This port allows the critical chip nodes to be monitored in parallel. The port consists of 11 output
pins and is activated by asserting a high on TEST_MODE...ll pin.

Signals to be observed on parallel port are selecetd by a tbd-bit Debug Port Control register. This
register is written by an IPR access. As a back-up, the register may also be set up via the JTAG
port. Table 8-2 lists the Parallel Port's configurations.

Table 8-2: Parallel Debug Pon Operating Modes

Debug Control Register Data Pins

DBG_REG(2:0) Port Mode PP _DATA_H<lO:O> Signals Observed

111

110

8-2 Test Internals

Observe xBOX (Default) PP _DATA_H(lO:i)

PP _DATA_H(i-1:0)
Observe yBox PP _DATA_H(lO:i)

PP _DATA_H(i-1:0)

internal signal xbox signals

more internal x box signals
tbd

tbd

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Restrictions of parallel debug test pon

1. The parallel debug port and the normal test ports are mutually exclusive. That is, neither
JTAG nor SROM port could be accessed while the test port is configured as the parallel debug
port.

2. The parallel debug port must be activated only after normal power-up and initialiazation of
the EV5 chip.

3. When parallel debug port is activated, all inputs corrseponding to normal test input pins are
fed with their default values.

4. The test_mode_h pin allows to switch back and forth between the normal test port and the
parallel debug port.

5. Parallel debug port is designed to support chip/system debugging in chip alone or
a prototype system environments only. Some small logic may be required to ensure that
there is no interference with other chips connected to the test port.

8.5 SROM Port

The 3-pin SROM port decription

8.6 IEEE 1149.1 (JTAG) Port

The Serial Test Port is a 4-pin test access interface based on IEEE 1149.1 standard. In EV5 this
port is used for accessing the internal scan registers, the die identificationr egister, the cache self
test results and tbd the boundary scan register. The port supports EXTEST, SAMPLE and BYPASS

and a number of tbd instructions.

The block diagram of the port logic· together with the boundary scan register is shown in
Figure 8-1. It consists of the four-wire Test Access Port (TAP), a TAP controller, an instruction
register (IR) and a bypass register (BPR).

The five pins in test access port are TDI_H, TDO_H, TMS_H, TCK_H, and TRST_l. These pins
conform to all requirements of the standard.

The TAP Controller is a state machine which interprets IEEE 1149.1 protocols received on TMS
line and generates appropriate clocks and control signals for the testability features under its
jurisdiction.

The Instruction Register resides on a scan path. Its contents are interpreted as test instructions
and are used to select the testability modes and features.

The Bypass Register is a 1-bit shift register which provides a single-bit serial connection through
the port (chip) when no other test path is selected.

DIGITAL RESTRICTED DISTRIBUTION Test Internals 8-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 8-1: IEEE 1149.1 Serial Port (the Basic CTI)

8.6.1 Instruction Register

The JTAG Instruction Register on EV5 CPU consists of tbd bits. These bits are interpreted as per
Table 8-3 to select and control the operation of EV5 test features. During Capture-IR state, the
shift register stage of IR is loaded with data '01'. This automatic load feature is useful for testing
the integrety of the JTAG scan chain on module.

8-4 Test Internals DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 8-3: Instruction Register

ffi< tbd:O > Test Register Selected Test Instruction/ Operation

tbd tbd tbd

More JTAG port description

8.7 Miscellaneous Test Pins

8.7.1 DISABLE_OUT_L

EV5 CPU chip has a dedicated pin disable_out_l. When asserted low, the CPU chip tri-states
output drivers on all output-only and bidirection pins, except those listed below. When asserted,
the pin also forces internally a reset to the EV5 chip.

The only exceptions are the TDO_H pin and the clock output pins which are not tristated by
the disable_out_l pin. Not tristating clock output pins was approved by the stage-1 module test
engineers on NVAX.

Leaving out the TDO_H pin allows the JTAG circuits to operate while chip tristate is in effect.
This affords additonal flexibility for the module manufacturing test. For example, during the
interconnection test, the EV5 outputs may be allowed to drive only during the Capture-DR state
and kept in tristate in all other states. This can eliminates the effect of shifting patterns, as well
as drastically reduces the duration of time for which the drivers may see an interconnect short
fault.

The single pin tristate functionality is used only during testing.

8.8 Cache BiST

8.9 Internal Scan Registers

Table 8-4: Internal Scan Register Organization

Scan Chain Name: xyz

Size: b bits

Access Chain Number: ••••

Bit# Signal name

0 tbd

31 tbd

DIGITAL RESTRICTED DISTRIBUTION

Remarks

tbd

tbd

tbd

Test Internals 8-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

8.1 O Internal LFSRs

Table 8-5: Internal LFSR Organization

LFSR Name: xyz

Size: b bits

>left>Feedback polynomial: ••••

Access Chain Number: ••••

Bit # Signal name

0 tbd

31 tbd

LFSR Name: xyz

Size: b bits

>left>Feedback polynomial: ••••

Access Chain Number: .•••

Bit # Signal name

0 tbd

31 tbd

Remarks

tbd

tbd

tbd

Remarks

tbd

tbd

tbd

8.11 Miscellaneous Testability Features

8.12 Issues

1. Should EV5 support SROM disable like EV 4 does?

8.13 Revision History

Table 8--6: Revision History

Who When Description of change

Dilip Bhavsar 2/13/92 Working draft

8--6 Test Internals DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 9

The Interconnect

9.1 EV5CIP.H - the only global interconnect .H file

/*
**
** ev5chip.h
**
** Copyright (c) 1991 by Digital Equipment Corporation, .Maynard, Mass. The
** information in this software is subject to change without notice and should
** not be construed as a commitment by DEC.
**
** @(t} Description
** @(f} ev5chip.h: EVS Behavior model EVSCHIP header file
**
*/

#define REV_EVSCHIP_H 152

/*
** Revision History:
**
** Rev Who Date Description of Change
** ---
** 152 rmf 17-jun-1993 add p->ternp sense
** 151 rmf 07-jun-1993 add signals-needed for t pad.c
** 150 wa 18-may-1993 taking out p->ref elk in-1
** 149 wa 17-may-1993 adding clk_mode_h-pins -
** took out evS addr h pin definitions, not pins
** 148 rmf 14-may-1993 -change i->t sl xmit b h from bit 31 to a 1 bit signal
** 147 dkb 12-may-1993 Rename t->1 bst bistdone b h to *bist running b 1
** 146 wa ll-may-1993 taking out p->vref h, p->cont 1, p->tristate 1 and
** p->ecl out h - - -
** 145 npp 10-may-1993 c->i_perf_mon_in_a_h added
** 144 rom 06-may-1993 adding C->S WFB * 78 H (for moving latch into SCache)
** 143 dkb 03-may-1993 Add OBSA Observe scan macro for use in LFSR lsb.
** Removed redundant/unused t->* bist signals.
** 142 vr 27-apr-1993 Add signal i->j flush b h, Raj will remove i->j flush a h later.
** 141 cs 21-apr-1993 c->s rfb drive Sb h - - - - -
** 140 rwc 15-apr-1993 fix Cbox-global signal declarations for Judge
** 139 jem 15-apr-1993 add c->m_wr_64b signal to eventually replace c->m_wr_64B (CHANGO doesn't handle c<
** deleted m->i perr Sb h
** 138 pjb 06-apr-l993 - remove fill done early, make addr res h a 3 bit field
** 137 wa 05-apr-1993 putting in conditional definition-of "t" to be "tt"
** as a work-around to Verilog link conflict
** 136 dkb 01-apr-1993 Add OBLA/V OBLB/V macros. Add t->j* a * signals.
** 135 cs 14-mar-1993 new s SC encodings - -
** 134 rrnf 12-mar-1993 add scache LFSR signals; keep old OBL sigs for now
** 133 rmf 08-mar-1993 change LFSR ct! sigs from A to B, but keep A sigs in model for now
** 132 rpp 07-Mar-93 Moving m->i fill validf 4b h to 4a (old version won't be deleted until
** the MBOX updates their code, also adding the-new write strobes

for the LDx ports on the FBOX register file from the !BOX
** 131 cs 07-mar-1993 c->m return index is now <2:0>
** 130 vr 25-Feb-1993 Change cbox=>ibox error interface signals and adding e->i_mul_ovf_8a_h.
** 129 dkb 23-feb-1993 change t->i sigs to register t->i

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

** 128 rrnf 17-feb-1993 add multiple ibox reset signals
** 127 rmf 16-feb-1993 add global testability signals
** 126 dkb 16-feb-1993 Correct repair signals from tbox to j box
** 125 rom 15-feb-1993 change two cbox signals from SIGNAL to REGISTER
** 124 npp 9-feb-1993 change ld merge to ld alloc
** 123 rmf 3-feb-1993 add support for x srom-and x ster
** 122 npp 3-feb-1993 add performance counter signals
** 121 pjb l-feb-1993 move wrt blk and wrt blk lock back to 6 and 7, add read modify lock at E and F
** 120 dkb 28-jan-1993 t->z jtg-si to xxx a-h changed to si to xxx b h
** 119
** 118
** 117
** 116
** 115
** 114
** 113
** 112
** 111
** 111

pjb 25-jan-1993 add k->sysclock in-five a h - - - -

**

rmf 13-jan-1993 observability scan chain-signals
jem. 13-jan-1993 Fixing IBOX output declarations for Judge
jem ll-jan-1993 add m->i perr 6a h (m->i perr Sb h will be deleted at a future time)
pjb 8-jan-1993 write block write block lock encoding changed to 14, lS
rrnf 04-jan-1993 change i->t dbg data a h, remove p drv->port mode drv ctl
cs
dkb

jem
rmf

04-jan-1993 s set hit Sb h - - - - - - -
28-dec-1992 add jtag global sigbals

21-dec-1992 add m->e big endian 7a h, change m->i fill coming 4a h from sig to reg
17-dec-1992 change p=>tristate 1 to a sig; eventually get rid-of; add i->*_treset_b_l signals

change width of test port drive enables
** 110 pjb 07-dec-1992 add c->i force time out b h
** 109 rmf 03-dec-1992 add IBOX-ICSR test status-signals, remove t_pad functionality from c_pad
** 108 pjb 30-nov-1992 add READ DIRTY INVAL to the system interface
** 107 rmf 30-nov-1992 update tbox signals

106 cs 22-nov-1992 cleanup obsolete c->i sigs
** 105 cs 12-nov-1992 c->s_fill_tag_cmd and s fill status are now 1 bit wide

104 cs 04-nov-1992 c->m bogus lf Ba h
103 dkb 02-nov-1992 Added several-TBOX i/f globals in *t, *i. Also s set hit 6a h

** 102 ded 20-oct-1992 Added ebox reset signals and test interface structure, changed timing on integer overflow
101 san 8-0ct-1992 Added c->s flush b h
100 vr 7-0ct-1992 Added signal i->m kill dtbis 4a h
99 mjs 9-sep-1992 change i->j bypass ic b h to-i->j bypass ic a h.
98 vr 24-aug-1992 Replaced m->i in tb flow eO Sa h with m->i In-tb flow Sa h

** 97 smb 19-aug-1992 Removed redundant mbox interface signals for global routing
** 97 mkg 19-aug-1992 Removed WMB constant
** 96 ded 10-aug-1992 Added low asserted versions of the e->m vaX elk 4b signals for GUIDEWIRE.

9S san 6-aug-1992 changed B C RFB SC ORV constant to 4 for SCache drive
** 94 mjs S-aug-1992 Fix missing"end"-comment found with guidewire
** 93 rpp 20-jul-1992 Making Judge fixes
** 92 san 17-jul-1992 changed c->m wr maf index from S bits to 3 bits
** 91 tb 13-jul-1992 add two pins-to-p->tag data for lMB Bcache
** 90 bbf 8-jul-1992 Add m->i perr Sb h for-Vidya
** 89 bbf 7-jul-1992 Add drive control states for tri-state pins (p_drv)
** 88 ded 7-jul-1992 Fix Ebox judge warnings
** 87 vr 6-jul-1992 adding interrupt pins from cbox->ibox
** 86 cs 6-jul-1992 slide cbox->ibox timings to 8b. ifb data to 9b. c->z alloc cycle 2a.
** 85 sm 2-jul-1992 swapped the decodings of M c DREAD-, M c LDX L , M=._c_IREF -
** 84 pjb 2-jul-1992 judge fixes to the pad signals ~ - -
** 83 ded l-jul-1992 Removed old versions of Mbox load data buses.
** 82 rpp 29-jun-1992 Fixing Judge Declarations

81 san 28-jun-1992 changert SIGNAL/REGISTER declarations for JUDGE
** 80 rwc 28-jun-1992 add i->c clr lock flg a h for clearing lock flag from PAL code
** 79 rwb 21-jun-1992 added m->f fbox drv ena-Sa h, used to control source of b->d wr data6a h
** 78 mkg 17-jun-1992 changed dmiii err-from signal to register
** 77 san 04-jun-1992 changed B C RFB constants for ADP and BOP drives
** 76 bjb 03-jun-1992 update cbox~nterface from signal->register
** 75 bjb 28-may-1992 add c->m sc hit 7b h and change bit field of m->c wr lw addr Sb h
** 74 rnkg 28-may-1992 add e->m-vaO elk 4b h and e->m val elk 4b h - - - - -
** 73 ded 27-may-1992 Add intr-flag signals for RS/RC instructions
** 72 ded 26-may-1992 Delete-obsolete ebox signals
** 71 mkg 26-may-1992 Add new constant, I WMS
** 70 md 25-may-1992 Added m->d update dcout 3b h. Used for power savings.

69 ded 22-may-1992 Change timing of mul done-soon to Oa
** 68 md 19-may-1992 Added m->d st adr Sb h<2> (for LW STOREs), removed m->d_dc_addr_xa_h<2>

67 rpp lS-may-1992 Deleting obsolete-I/E/F interface signals
66 cs 15-may-1992 cbox/dcache interface

** 65 mkg 13-may-1992 add i->m ex valid 2b h and i->m pal shadow en 3a h
** 64 ded 13-may-1992 ebox updated for new-bypass timing - - -

63 md 12-may-1992 Added e->d vao 4a h<l2:3>, e->d val 4a h<l2:3>, fast adder outputs
** 62 vr 12·-may-1992 updated timing-on-kill signals from-ibex to mbox for traps.
** 61 md ll-may-1992 mbox/dcache interface updated for new DC timing
** 60 cs 08-may-1992 cbox/dcache interface, maf index to/from mbox

59 bbf OS-may-1992 add definitions of evS/system commands, evS responses
** 58 vr 04-may-1992 update mbox->ibox trap timings
** 57 tcf 04-may-1992 update load timing to fbox

9-2 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

-> *d

** 56
** 55

54
** 53
** 52

51
** 50

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

cs 01-may-1992
sch 30-apr-1992
cs 29-apr-1992
pjb 28-apr-1992
cs 23-apr-1992
rpp 10-apr-1992
tcf 09-apr-1992

c->s, m->c signals
add RFB tristate control
cbox->{mbox,scache} interface update
Update external interface signals.
New Cbox interface timings to/from Mbox, Scache, !box, Dcache
Updated timing on Fill lines between the MBOX and !BOX
changed timing of fbox pipe RF write addresses

** 49 BAS 07-apr-1992
** 48 mjs 07-apr-1992
** 47 pjb 07-APR-1992
** 46 tcf 07-APR-1992
** 45 BAS 02-APR-1992

changed timing of fbox write strobes
problems with some signal declarations found by running occam.

new chip interface pinout
temporarily fix floating exception signal timing
changed timing of FBOX add pipe exception signals according to new design

Changing register file timings to match the new design ** 44
** 43
** 42
** 41
** 40
** 39
** 38
** 37
** 36
** 35

rpp
RPP
BAS

ded
mjs
mjs
mjs

30-Mar-1992
27-Mar-1992
27-mar-1992

17-mar-1992
16-mar-1992
12-mar-1992
12-mar-1992

rpp 12-mar-1992
vr 12-mar-1992
ded 12-mar-1992

Updating a number of !BOX outputs from SIGNAL to REGISTER
add fbox add pipe exception signals

Change timing on e->i rnul done soon from 2a to la
change i->j rfb rd ldx a h to i->j rfb rd idx b h
Fix the fix-for-m Iref-req 2b h to-m iref-req-2a h.
changed/added signals for IBOX/MBOX/CBOX/SCACHE interface.
Fixing syntax error on SIGNAL (sys fill end h, l);
Delete j->i ic data Ob h - - -

34 md 9-mar-1992
Change definition of e=>i rnul done soon 2a h to REGISTER
Updated !cache and Dcache-interface signals

33 cs 9-mar-1992 move cbox->mbox retry,index,status to 9a. move cbox->dcache invals to lOa.
Added FBOX div done soon signal 32 jdh 4-mar-1992

31 ded 2-mar-1992 changed kill cmov and br signals to REGISTER
added pin definitions ** 30 dha 27-feb-1992

** 29 cs 24-feb-1992
28 jdh 21-feb-1992

** 27 tcf 19-feb-1992

changed SIGNALW back to BUSW macro (ref: t28 below fixed)
changed BUSW macro to SIGNAL macro [ultrix errors]
changed dcache store data bus and parity to

b->d_wr*; added driver IDs for Fbox and Ebox;
** removed old store bus name m->d wr*
** 27 tcf 16-feb-1992 added fbox global signals

26 cs 14-feb-1992 mbox->cbox commands, cbox->mbox return status
** 25 npp 14-feb-1992 Predecodes added
** 24 mkg 14-feb-1992 Add mbox signal to abort ebox register writes
**
**

and update other mbox signals. Also add three
new ibox trap related signals sent to the mbox.

Remove bit<39> from dcache tag.
23 md

** 22 mjs
** 21 ded
** 20 cs
** 19 emc
** 18 cs
** 17 rp
** 16 jm
** 15 rp

wa

14-feb-1992 Updated !cache and Dcache global signals
13-feb-1992 change i->ic index xb h to i->j ic index zb h.
13-feb-1992 Add the Ebox-signals - - - - -

12-feb-1992 wipe out s from pipe stage specifications
12-feb-1992 fix scache signals
11-feb-1992 fixed cbox signal names
ll-feb-1992 Fixed some problems with the !BOX outputs
07-feb-1992 Changed fill signals from Mbox to Fbox/Ibox
06-feb-1992 Adding !box Issue stage outputs
06-feb-1992 Fixing declaration of tag ** 14

** 13
** 12

rpp 02-feb-1992 Adding some useful constants for instruction decoding
wa 21-jan-1992 Changing to single clock

** 11 md 20-jan-1992 Update Dcache/MBOX, Dcache/CBOX interfaces for write silo, removed duplicate Scacl
** 10 emc 17-jan-1992 Added/corrected scache interface
** 09 wa 13-jan-1992 Renamed clocks

08
** 07
** 06
**
** 05
** 04

** 03
**

**

**
02

** 01
** 00
**
*/

jm 9-jan-1992 Changed bitfield widths on Mbox signals, removed d and s from dcache/mbox names
jm 9-jan-1992 Changed Ibox-Mbox trap signal names and timing. Changed Dcache parity signal tim:
md 9-jan-1992 Added mux control signals for !CACHE datapath. Changed CBOX to DC invalidate add:

pb
md

23-dec-1991
20-dec-1991

d inval addr s8b h, from full address to index address <12:5>
Added the pin bus signals p->
Added !CACHE interface signals to !box, !cache. Changed *sc --> *s, *ic--> *j, *d1

jm 14-dec-1991 Mbox interface signals to/from Dcache, !box, Fbox, Ebox.
added rn->c maf type 6b h to cbox-mbox interface
moved m->c-wr data s5b-h and parity from mbox to dcache

changed c->I iref index-s9a h to a 2 bit field instead of 1.
added c->i alloc-cycle-s2b-h to cbox interface
added c->d-fill data valid-s4b h, d inval cmd s8b h, d inval addr s8b h to cbox

cs 27-nov=l991- Cbox interface signals to/from Mbox,-Scache & !box.
wa 25-oct-1991 added two clock pins, moved all pins to ev5sim.h
cs 20-jun-1991 original

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/*
** Hook to load this header file only once.
*/

Hfndef
#define

/*

CCS EVSCHIP H LOADED
CCS-EVSCHIP-H-LOADED

- - -

** Hook to allocate storage only once for variables declared in chip.h
*/

Hf defined (VMS)
fif defined(CCS EVSCHIP ALLOCATE STORAGE)
#define DECLARE-globaldef
#else
#define DECLARE globalref
#end if
#else
fif defined(CCS EVSCHIP ALLOCATE STORAGE)
#define DECLARE- - -
ielse
#define DECLARE extern
fend if
fend if

DECL_REV(rev_ev5chip_h, "evS chip header", REV_EVSCHIP_H);

/*
EVS commands to the system

*/
idefine EVS_CMD NOP
idef ine EVS CMD LOCK
idefine EVS-CMD-FETCH
#define EVS CMD FETCH M
#define EVS-CMD MB
idefine EVS-CMD SET DIRTY
#define EVS CMD WRITE BLOCK
#define EVS-CMD-WRITE-BLOCK LOCK
#define EVS-CMD-READ MISSO -

- - -idef ine EVS CMD READ MISSl
idefine EVS-CMD-READ-MISS MODO - - - -
idef ine EVS CMD READ MISS MODl
#define EVS-CMD-BCACHE VICTIM
#define EVS-CMD-READ MS MOD LKO
idefine EVS=CMD READ=MS=MOD=LKl

/*
** System commands to EVS
*I
#define SYS_CMD _NOP
idefine SYS CMD FLUSH
#define SYS CMO INVALIDATE
#define SYS CMD SET SHARED
#define SYS CMD _READ
I define SYS_CMD_READ_DIRTY
idef ine SYS CMD READ DIRTY INV -

I*
** EVS responses to system commands
*/

0
1
2
3
4
5
6
7
8
9
10
11
12
14
15

0
1
2
3
4
5
7

idefine EVS RES NOP 0
idefine EVS-RES-NOACK 1
fdefine EVS=RES ACK_SCACHE 2
fdefine EVS_RES_ACK_BCACHE 3

9-4 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I*
** Tri-state pin driver
*/
fdefine
fdefine
fdefine
fdef ine
fdefine

/*
**

P ORV SRC SYS
P DRV_SRC_EVS
P_DRV_SRC BC
P ORV SRC SROM
P DRV_SRC_STER

IDs

1
2
4
8
16

** Global chipwide (inter-box) constants.
**
*I

/* Clock Inter-box Constants */

/* ------------------------ */

/* Ibox Inter-box Constants */

/* ------------------------ */
/** ALPHA OPCODES **'
/*
/*****

bits 31:26 of all instruction formats
*/

#define I CALL PAL OxOO /* Call_Pal */
/* opcodes 01-07 are RESDEC */

#define I LDA OxOB /* LDA */
#define I-LDAH Ox09 /* LDAH */

/* opcode 10 is RESDEC */
#define I LDQ U OxOb /* LDQ U */

/* opcodes-Oc-Oe are RESDEC */
#define I STQ U OxOf /* STQ U */

*/

#define I-IARITH OxlO /* ADDi,SnAddi,SUBi,CMPxx,CMPUxx.CMPBGE */
#define I-ILOG Oxll /* AND,BIS,XOR,BIC,ORNOT,EQV,CMOVx */
#define I==ISHFT Oxl2 /* SLL,SRL,SRA,EXTxx,INSxx,MSKxx,ZAP,ZAPNOT */
#define I IMUL Oxl3 /* MULi,UMULH */

/* opcode 14 is RESDEC */
fdefine I VAX FP OxlS /* ADDF,ADDG,SUBF,SUBG,CMPGxx,CVTGxx,CVTDG,CVTQF,MULF,MULG,DIVF,DIVG */
fdefine I-IEEE FP Oxl6 /* ADDS,ADDT,SUBS,SUBT,CMPTxx,CVTQS,CVTQT,CVTTx,MULS,MULT,DIVS,DIVT */
fdefine I-DI FP Oxl7 /* CPYS,CPYSN,CPYSE,FCMOVxx,MT FPCR,MF FPCR,CVTQL,CVTLQ */
fdefine I-MISC OxlB /* TRAPB,MB,FETCHx,RPCC,RC,RS - *l
fdefine I-HW MFPR Oxl9 /* HW MFPR */
fdefine I-JSR Oxla /* JSR - */
fdefine I-HW LD Oxlb /* HW LD */

/* opcode-le is RESDEC - */
fdefine I HW MTPR Oxld /* HW MTPR */
fdefine I-HW-REI Oxle /* HW REI */
fdefine I HW=ST Oxlf /* HW_ST */
fdefine I LDF Ox20 /* LDF */
fdefine I-LOG Ox21 /* LOG */
fdefine I LDS Ox22 /* LOS */
fdefine I LDT Ox23 /* LDT */
fdefine I STF Ox24 /* STF */
fdefine I STG Ox25 /* STG */
fdefine I STS Ox26 /* STS */
fdefine I STT Ox27 /* STT */
fdefine I_LDL Ox28 /* LDL */
fdefine I_LDQ Ox29 /* LDQ */
fdefine I_LDL_L Ox2a /* LDL_L */
fdefine I LDQ L Ox2b /* LDQ L */
fdefine I_STL Ox2c /* STL */
fdefine I_STQ Ox2d /* STQ */
fdefine I STL C Ox2e /* STL C *I
fdefine I-STQ-C Ox2f /* STQ-C
fdefine I-BR -Ox30 /* BR -
fdefine I FBEQ Ox31 /* FBEQ
fdefine I_FBLT Ox32 /* FBGE
fdefine I FBLE Ox33 /* FBGT
fdef ine I BSR Ox34 /* BSR
fdefine I_FBNE Ox35 /* FBNE
fdefine I FBGE Ox36 /* FBGE
fdefine I FBGT Ox37 /* FBGT
fdef ine I BLBC Ox38 /* BLBC

*/

DIGITAL RESTRICTED DISTRIBUTION

*/

*/
*I
*/
*/

*I
*/
*/

*/

The Interconnect 9-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

fdefine I_BEQ
fdefine I BLT
fdefine I BLE
fdefine I BLBS
fdefine I_BNE
fdefine I BGE
fdefine I_BGT

Ox39 /* BEQ
Ox3a /* BLT
Ox3b /* BLE
Ox3c /* BLBS
Ox3d /* BNE
Ox3e /* BGE

Ox3f /* BGT

*/
*/

*I
*/
*/
*I

*I
/******************************** end of Alpha Opcodes ***•

/***************************** MISC {OPC18) Instruction Function Fields **•
/**** Bits 15:0 of the Memory Format MISC Instructions ****/
/*** I'm only specifying the top 4 bits (all others MBZ ****/
/**** is this legal with the SRM??? ****/
#define I DRAINT OxO /* DRAINT */

I* 1-~are not used */
fdefine I MB Ox4 /* MB */

/* 6-~are not used */
#define I_FETCH Ox8 /* FETCH */

/* 9 is not used */
fdefine I FETCHM Oxa /* FETCHM

/*!:) is not used
fdefine I RPCC Oxc /* RPCC

/* d is not used */

*/

*/
*/

*/

*I

#define I RC Oxe /* RC
fdefine I-RS Oxf /* RS
/****************************** end of the MISC Function Codes ***

/************************************ Instruction Formats **
/**** ****/
#define I OPC H Oxlf /* bit position of the top of the opcode field for all formats */
#define I_OPC_L Oxla /* bit position of the bottom of the opcode field for all formats */

idefine I_RA_H
#define I_RA_L

#define I_RB_H
#define I RB L

fdef ine I RC H
idefine I-RC-L

Ox19 /* bit position of the top of the Ra field, for all applicable formats
OxlS /* bit position of the bottom of the Ra field, for all applicable formats

Ox14 /* bit position of the top of the Rb field, for all applicable formats
OxlO /* bit position of the top of the Rb field, for all applicable formats

Ox04 /* bit position of the top of the Re field, for all applicable formats
OxOO /* bit position of the top of the Re field, for all applicable formats

*/

*/
*I

*I
*I

fdefine I_MEM_DSP_H OxOf /* bit position of the top of the displacement field for memory format
fdefine I_MEM_DSP_L OxOO /* bit position of the bottom of the displacement field for memory format

*I

*I
*I

fdefine I_BRA_DSP_H Ox14 /* bit position of the top of the displacement field for branch format */
fdefine I_BRA_DSP_L OxOf /* bit position of the bottom of the displacment field for branch format */

fdefine I_LIT_H Oxl4 /* bit position of the top of the literal field for operate format */
fdefine I_LIT_L OxOd /* bit position of the bottom of the literal field for operate format */

fdefine I_LIT_BIT OxOc /* bit determining whether to use the literal or B field in operate format */

fdefine I OP FCN H
fdefine I_OP_FCN_L

OxOb /* bit position of the top of the function field for operate format */
OxOS /* bit position of the bottom of the function field for operate format */

fdefine I_FOP FCN H OxOf /* bit position of the top of the function field for floating operate format */
fdefine I_FOP_FCN_L OxOS /* bit position of the bottom of the function field for floating operate format */

fdefine I_PAL_H Ox19 /* bit position of the top of the PAL function field in the pal format */
fdefine I PAL L OxOO /* bit position of the top of the PAL function field in the pal format */
/**** ****/
/*************************************** end of Instruction Formats ***

/***
/**** ****/
/**** Some other useful bit fields for the IBOX decoding ****/
fdefine LATENCY Ox07 /* Position of the bit defining the latency for opcode 11. If this bit is set,
* we have a CMOV which has 2 cycle latency rather than 1 */

#define I FMUL Ox02 /* Value of the bottom 4 bits of the functioin field for FMULs */

fdefine I FDIV Ox03 /* Value of the bottom 4 bits of the function field for FDIVs */

fdefine I CPYS Ox020 /* Value of the 15 bit function field for CPYS */
/*** end of useful bit fields ***'

/*********************************** 5 bit Instruction Predecodes ***'

9-6 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

#define I SP HW REI TYPE OxOO
#define I s(::TYPE OxOl
#define I HW REI RET TYPE Ox02
#define I -JMP TYPE Ox03
#define I CALL_PAL_TYPE Ox04
#define I _BSR_TYPE Ox OS
#define I JSR COR TYPE Ox06 -
#define I _JSR_TYPE Ox07
#define I _I_COND BR TYPE Ox OB /* Actually it is Ox OB and Ox09 */
#define I _F_COND_BR_TYPE OxlB I* Actually it is OxlB and Ox19 *I

/************************************** end of Predecodes **

/* Cbox Inter-box Constants */

/* ------------------------ */

/* Cbox read fat bus driver ID */
#define 8 C RFB BDP DRV 1 /* constant when BDP is driving its IPR's or FILL data onto RFB */
#define B C=RFB=ADP=DRV 2 /* constant when ADP is driving its IPR's onto RFB */

/* return status to Mbox */

#define c M NOP OxOO /* nop */
#define c _M_FIRST_FILL OxOl /* first fill */
#define c _M_LAST_FILL Ox02 /* last fill *I
#define c _M_WR_DONE Ox03 /* write done */
#define C M FETCH DONE Ox04 /* fetch */
#define C M=MB_DONE Ox OS I* memory barrier done *I
#define c _M_ECC_FILL Ox06 /* corrected ecc fill
#define C_M_STX_C_DONE Ox07

/* Ebox Inter-box Constants */
/* ------------------------ */

/* EBOX store bus driver ID */
#define B_DC_STR_EBOX 2

/* Fbox Inter-box Constants */
/* ------------------------ */

/* FBOX store bus driver ID */
#define B_OC_STR_FBOX 1

/* Mbox Inter-box Constants *I
I* ------------------------ *I

I* mbox commands to cbox */

/*

#define M_C_NOP OxOO /* nop */

#define M C DREAD Ox04 I* dref
#define M C LOX L OxOS /* load -- -#define M C !READ Ox06 /* iref

store conditional */

read */
locked from memory *I
read */

#define M_C_FETCH Ox08 /* fetch from memory */

*I

#define M C FETCH M Ox09 /* fetch with modify intent from memory */
#define M C=MB OxOa /* memory barrier */

#define M_C_WR OxOc /* write 328 block */
#define M C STX_C OxOd /* store conditional to memory */

/* Dcache Inter-box Constants */

/* Scache Inter-box Constants */
/* -------------------------- */

/* Scache read fat bus driver ID */
#define B_C_RFB_SC_DRV 4

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I* Scache commands */
fdefine s_sc_NOP OxOO
fdefine S SC READ OxOl
fdefine S SC FILL Ox02 /* unused */
fdefine S SC WRITE Ox03
fdefine S_SC_INVAL Ox04
fdefine S_SC_SET_SHARED Ox06
fdefine S_SC_READ_DIRTY OxOS
tdefine S_SC_TEST_WRITE Ox07

tit 0
/* Scache commands OLD SCHEME */
tdefine S SC NOP OxOO
tdefine S-SC=READ OxOl
tdefine s SC INVAL Ox02 -
fdefine s SC WRITE Ox03
tdefine S-SC-SET SHARED Ox04
fdefine s s(~READ_DIRTY OxOS
tdefine s _SC_TEST_WRITE Ox06
tdef ine s _SC_FILL Ox07
fendif

/* Observability LFSR MACROS
*==============================
**

The following 4 LFSR Macros may be used for modelling LFSRs implemented with
the OBLA* and OBLB* cells from the EVS structure Library.

The first two Macros OBLA and OBLAV model OBLA cells used for capturing
B signals. OBLA represents a signle bit of LFSR and can be used when

** LFSR is stiched to capture random scattered isolated signals. OBLAV may
be used when capturing groups of signals (buses etc).

**
** The OBLB and OBLBV are similar macros used for modelling
** OBLB* cells that observe _A signals.
**
** See examples in t_lfs.c to see how to connect these macros.
*I

/*
** macro:
** OBSA Represents a single Observability Scan Register bit
** Parameters:
** obs b h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si=h-SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR

PREVIOUS LFSR.
lat a h A LATCH. REGISTER DECLARATION IN .H FILE.

** lat=b=h =B LATCH. REGISTER DECLARATION IN .H FILE.
**
** Note: pi_b_h, lat_a_h, lat b h are multi bit declarations in .h file
*I

tdefine OBSA(obs_b_h, pi_b_h, si_h, lat_a_h, lat b h)\
{\

\

if (k->clock)\
{\

if (obs b h)\
lat_a_h pi_b_h ;\

else\
lat a h

}\ - -
si h ;\

if (!k->clock) \
lat b h lat a h ;\

9-8 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I*
** macro:
** OBLA Represents a single bit of LFSR
** Parameters:
** obs b h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED. OR FEEDBACK
** si-h-SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
** PREVIOUS LFSR.
** lat a h A LATCH. REGISTER DECLARATION IN .H FILE.
** lat=b=h =B LATCH. REGISTER DECLARATION IN .H FILE.
*I
#define OBLA(obs_b_h, pi_b_h, si_h, lat_a_h, lat_b_h)\
{\
\

if (k->clock) \
{\

if (obs b h)\
lat ah" pi b h "

else\
lat a h

}\ - -
si_h ;\

\
if

lat_b_h
}

/*
** macro:

!k->clock)\
lat a h ; \

si h ;\ -

** OBLB Represents multiple bits of LFSRs
** Parameters:
** obs a h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi ah PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si-h-SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
** PREVIOUS LFSR.
** lat a h A LATCH. REGISTER DECLARATION IN .H FILE.

lat=b=h =B LATCH. REGISTER DECLARATION IN .H FILE.
** Note: OBLB* cells should not receive the feedback.
*I
#define OBLB(obs ah, pi_a_h, si_h, lat_a_h, lat_b_h)\
{\ - -

if (k->clock)\
lat a h = si_h ;\

\ - -
if (!k->clock)\
{\

if (obs ah)\
lat_b_h pi_a_h " lat_a_h ;\

else\

/*

lat b h
}\ - -

** macro:

lat_a_h ;\

** OBLAV Represents multiple bits of LFSRs
** Parameters:
** obs b h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si=h-SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
** PREVIOUS LFSR.
** lat a h A LATCH. REGISTER DECLARATION IN .H FILE.
** lat_b_h -B LATCH. REGISTER DECLARATION IN .H FILE.
** hbit HIGH BIT

lbit LOW BIT

Note: pi_b_h, lat_a_h, lat b h are multi bit declarations in .h file
*I

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

fdefine OBLAV(obs b h, pi_b_h, si_h, lat_a_h, lat_b_h, hbit, lbit)\
{\ - -

if (hbit > lbit)\
{\

if (k->clock)\
{\

if (obs b h)\
{\ - -

if (lbit == 0)\
INSV (lat_a_h, hbit, lbit, pi_b_h " ((EXTV(lat_b_h, hbit-1, lbit) « 1) I (si_h & 0))); \

else\
INSV(lat_a_h, hbit, lbit, pi_b_h" EXTV(lat_b_h, hbit - 1, lbit - l));\

}\
else\
{\

if (lbit == 0)\
INSV(lat_a_h, hbit, lbit, ((EXTV(lat_b_h, hbit - 1, lbit) « 1) I (si h & 1))) ;\

else\
INSV(lat_a_h, hbit, lbit, EXTV(lat_b_h, hbit-1, lbit - l));\

}\
}\
if (!k->clock)\

INSV(lat b h, hbit, lbit, EXTV(lat_a_h, hbit, lbit));\
}\ - -

else if (hbit == lbit)\
{\

if (k->clock)\
{ \

if (obs b h) \
{\ - -

if (lbit == 0)\
INS(lat_a_h, hbit, pi_b_h ;\

else\
INS(lat_a_h, hbit, pi_b_h " EXT(lat_b_h, hbit - 1)) ;\

}\
else\
{\

if (lbit == 0)\
INS(lat ah, hbit, si_h) ;\

else\ - -
INS(lat ah, hbit, EXT(lat_b_h, hbit - 1)) ;\

}\ - -
}\
if (!k->clock)\

INS(lat b h, hbit, EXT(lat_a_h, hbit));\
}\ - -

/* INSV(lat_a_h, hbit, lbit, pi_b_h " ((EXTV(lat_b_h, hbit-1, lbit) « 1) I (si_h & 1))) ;\ *I

9-10 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I*
** macro:
** OBLBV Represents multiple bits of LFSRs
** Parameters:
** obs a h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi ah PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si=h-SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
** PREVIOUS LFSR.
** lat a h A LATCH. REGISTER DECLARATION IN .H FILE.
** lat_b_h -B LATCH. REGISTER DECLARATION IN .H FILE.
** hbit HIGH BIT
** lbit LOW BIT
**
** Note: pi a h, lat a h, lat b h are multi bit declarations in .h file
** OBLB* cells-should not-receive the feedback.
**
*/
fdefine OBLBV(obs_a_h, pi_a_h, si_h, lat_a_h, lat_b_h, hbit, lbit)\
{\

if (hbit > lbit)\
{\

if (k->clock)\
{\

if (lbit == 0)\
INSV(lat a h, hbit, lbit, ((EXTV(lat_b_h, hbit - 1, lbit) « 1) I (si_h & 1))) ;\

else\ - -

\

\

\

INSV(lat a h, hbit, lbit, EXTV(lat_b_h, hbit - 1, lbit - 1));\
}\ - -

if (!k->clock)\
{\

if (obs a h)\
INSV(lat b-h; hbit, !bit, pi_a_h A EXTV(lat_a_h, hbit, !bit));\

else\ - -
INSV(lat_b_h, hbit, lbit, EXTV(lat_a_h, hbit, !bit));\

}\
}\

else if (hbit
{\

if (k->clock)\
{\

if (lbit 0) \

lbit) \

INS(lat ah, hbit, si h) ;\
else\- -

INS(lat ah, hbit, EXT(lat_b_h, hbit - 1)) ;\
}\ - -

if (!k->clock)\
{\

if (obs a h)\
INS(lat b h,-hbit, pi_a_h A EXT(lat_a_h, hbit)) ;\

else\- -
INS(lat b h, hbit, EXT(lat_a_h, hbit));\

}\ - -
}\

/* End of observability LFSR MAcros */

/*
**
** Global chipwide (inter-box) signals
**
*/

/* Clock Interface Signals */

DECLARE struct k {
CLOCK (clock, 1, 50); /* clock */
SIGNAL (reset_a_h, 1); /*EVENTUALLY REMOVE THIS SIGNAL!!!!! */

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL (sys elk outl h, 1);
SIGNAL (sys-clk-out2-h, 1);
SIGNAL (sysclk ratio-h, 4);
REGISTER (sysclk-in five ah, 1, 0);
REGISTER (sysclk-in-two ah, 1, 0);
REGISTER (sysclk-in-one-a-h, 1, 0);
REGISTER (c_slip=req_a_h,-1, 0);

SIGNAL (t sys reset a 1, 1);
REGISTER (t de ok h~ l, 0);
SIGNAL (z_pad_tristate_h, ll;

} *k;

/* Test Box Signals
**------------------------------
*/

/* conditionally redefine "t" to "tt" to solve Verilog link conflict */

fifdef EXT_USE
#define t tt
tend if

DECLARE struct t {
/* title: Test Box Signals */
SIGNAL(e reset 1, l}; /*EVENTUALLY REMOVE THIS SIGNAL !!!!! */
SIGNAL(e=treset_l, l}; /*EVENTUALLY REMOVE THIS SIGNAL!!!!! */

/* all reset signals asynch assert and synch deassert */
SIGNAL(i reset b l, l);
SIGNAL(i-iss reset b 1,1);
SIGNAL(i-idx-reset-b-1,1);
SIGNAL(e-reset b l~l);
SIGNAL(rn-reset_b_l,l);
SIGNAL(c-reset-b-1,1);
SIGNAL(f=reset=b=l,l};

SIGNAL(c pad reset b 1,1);
SIGNAL(c=pad=tristat;_l,l);

I* EVENTUALLY REMOVE THIS SIGNAL !!! ! !
/* ibox gets two reset signals *I
I* ibox gets two reset signals */

I* ebox reset *I
/* rnbox reset */
/* cbox reset */
I* fbox reset *I

/* reset the pads */
/* tristate the pads */

*/

REGISTER(j_clr_tag_a_h,1,0); /* clear !cache tag durign reset; this signal will probably not be needed */

/* title: Dispatch to Generic Test Features */
REGISTER(z obl on a h,1,0); /*GET RID OF THIS REAL SOON!!! */
REGISTER(z=cbl=on=a=h,1,0); /*GET RID OF THIS REAL SOON !! ! */
REGISTER(s obs capture a h,1,0); /*GET RID OF THIS REAL SOON!!! */
REGISTER(z-obl-on b h,l,0}; /* turn on observability LFSRs */
REGISTER(z-cbl-on-b-h,1,0); /* turn on controllability LFSRs; this signal may not get used anywhere */
REGISTER(s-obs-capture b h,1,0); /*GET RID OF THIS REAL SOON !! ! */
REGISTER(s-1 ob! on b h,l,O}; /*turn on lscache LFSRs */
REGISTER(s-r-obl-on-b-h,1,0); /*turn on rscache LFSRs */
REGISTER(i-sl rev a-h~l,O); /*receive serial data */
REGISTER(i=icfail=a=h,1,0); /* copy of t_bst->icfail_b_h */

/* title: Signals to BHT Array */
SIGNAL(j_bht_new_Sb_h, 8}; /* T_BST_FSD outputs to BHT Array*/

/* title: Data Array */
REGISTERW(j dat in a h,
REGISTER(j dat In dcd a h,
REGISTER(j=dat=in=par=a=h,

/* title: Tag Array */
REGISTER(j fpc par 2a h,
REGISTER(j-valld 2a h~
REGISTER(j-pa 2a-h,
REGISTER(j-asn a-h,
REGISTER(j-asrn-a-h,
REGISTERW(}_fpc_2a_h,

128, W4, 0);
20, 0);
2, 0);

1,0); /* Tag Parity bit, input to !CACHE Tag*/
2,0); /* (1:0) Tag Valid bits, in to !CACHE Tag */
1,0); /* Phy Addr bit, input to ICACHE Tag*/
7,0); /* (6:0) ASN bits, input to !CACHE Tag */
1,0); /* ASM bit, input to !CACHE Tag*/

43, W2, 0); /* 30 bits exactly*/

/* title: Other signals to !Cache */
SIGNAL(j bst bistdone b h, 1); /* Bist done sig to clear TAG Valids */
/* Delete above once j tag.c is changed */
SIGNAL(j_bst_bist_runnlng_b_l, 1); /* Indicates bist is running. */

9-12 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL(j bst wr za h, l); /*write command for BiSt/SROM */
SIGNAL(j-bst-do-program b 1, 2); /* Program enable from FRC to IC */
SIGNAL(j=:bs<:~red_init_b=:1; 1); /* Init redundancy. Disbales spares. Enables regular rows. */

/* title: Signals to the IBox index dp */
SIGNAL(i bst repair index ah, 13); /*Repair index. Use only 10:6 */
SIGNAL(i-bst-nextaddress b h, l); /*Increment address */
REGISTER(i_bst_test_ctl_b_h, 2, 0); /*Test Control to idx counter*/

/* title: Other Signals */
SIGNAL(z bst ictest b h, l); /* IC test mode. Controls muxes etc */
SIGNAL(z=bst=bist_init_b_h, l); /* Init signal from BiSt State m/c UNUSED. DELETE! */

/* title: JTAG Signals */
SIGNAL(z jtg bsr capture b h, l); /* capture sig to BSR */
CLOCK(z }tg bsr update b-h; 50, 100); /*Update sig to BSR */
SIGNAL(z jtg bsr drv plns b h, l); /*Output mux control to pads*/
CLOCK(z }tg bsr elk ah, 0,-50); /* Slave clock for bsr */
CLOCK(z-jtg-bsr-clk-b-h, 50,100); /*Master clock for BSR */
SIGNAL(z_jtg_si=to_bsr_b_h, l); /*Ser in to 1st BSR Cell. NOT A GLOBAL*/

REGISTER (k_bsr_so_pm_h, 2, 0); /* si to kbox BSR; only use bit 1 */

} *t;

DECLARE struct p {

/* title: External interface */

/* Clocks */
REGISTER (elk in h, 1, 0);
REGISTER (clk-in-1, 1, 0);
SIGNAL (cpu elk out h, l);
SIGNAL (sys-clk-outl h, 1);
SIGNAL (sys-clk-outl-1, 1);
SIGNAL (sys-clk-out2-h, l);
SIGNAL (sys-clk-out2-l, 1);
REGISTER (ref elk in-h, 1, 0);
REGISTER (sys-reset 1, 1, 0);
SIGNAL (clk_mode_h,-2); /*functionality not currently modeled*/

/* System Interface */
BUSW (addr h, 40, W2);
BUS (cmd h; 4);
BUS (addr cmd par h, 1);
REGISTER (victim pending h, 1, 0);
REGISTER (addr bus req h; 1, O);
REGISTER (cack-h, l, O};
REGISTER (cfail h, 1, 0);
REGISTER (addr res h, 3, 0);
REGISTER (int4-valld h, 4, 0);
REGISTER (scache set-h, 2, 0);
REGISTER (fill h; 1,-0);
REGISTER (fill-id h, 1, 0);
REGISTER (dack-h,-1, 0);
REGISTER (fill-error h, 1, 0);
REGISTER (fill-nocheck h, 1, 0);
REGISTER (system lock flag h, 1, 0);
REGISTER (idle_bc_h, 1, 0)~
REGISTER (data_bus_req_h, 1, 0);

/* Bcache Interface */
REGISTER (index h, 26, O);
BUSW (data h, 12a, W4);
BUS (data check h, 16);
BUS (tag_data_h; 19);
BUS (tag_data_par_h, 1);
BUS (tag valid h, l);
BUS (tag-shared h, 1);
BUS (tag=dirty_h, l};
BUS (tag ctl par h, l);
REGISTER-(tag ram oe h, 1, 0);
REGISTER (tag-ram-we-h, 1, 0);
REGISTER (data ram oe h, 1, 0);
REGISTER (data=:ram=:we=:h, 1, 0);

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* Misc stuff */
REGISTER (irq h, 4, O);
REGISTER (sys-mch chk irq h, 1, 0);
REGISTER (pwr-fail irq h,-1, 0);
REGISTER (mch-hlt lrq h, 1, 0);
REGISTER (dc_ok_h; 1,-0);

/* test port */
REGISTER(port mode h,2,0); /*selects NORMAL, MANUFACTURING, or DEBUG*/
REGISTER(srom-present 1,1,0); /* SROM used to load ICache */
REGISTER(srom-data h,l,0); /* SROM data, or serial receive*/
REGISTER(srom-clk h,1,0); /* SROM clock, or serial transmit */
REGISTER(srom-oe l,1,0); /*enable either SROM or serial terminal*/
REGISTER(tdi h,1;0); /* JTAG data input*/
REGISTER(tdo-h,1,0); /* JTAG data output */
REGISTER(tms-h,1,0); /* JTAG mode select*/
REGISTER(tck-h,1,0); /* JTAG clock */
REGISTER(trst_l,1,0); /* JTAG reset*/
REGISTER(test sta h,2,0); /* information on test status*/

REGISTER(temp_sense,l,o);

/* performance counter */

SIGNAL(perf_mon_h, l); /*external performance counter input*/

l *p;

DECLARE struct p_drv {

/* title: External interface tri-state control variables*/
VARIABLE(addr drv ctl, 32);
VARIABLE(cmd drv ctl, 32);
VARIABLE(addr cmd par drv ctl, 32);
VARIABLE(data-drv-ctl; 32);
VARIABLE(data=check_drv_ctl, 32);
VARIABLE(tag data drv ctl, 32);
VARIABLE(tag-data-par-drv ctl, 32);
VARIABLE(tag-valid drv ctl, 32);
VARIABLE(tag-shared drv ctl, 32);
VARIABLE(tag-dirty drv ctl, 32);
VARIABLE(tag=ctl_par_drv_ctl, 32);

/* test port drive enables */
/* VARIABLE(port mode drv ctl,32); */ /* no longer an output */
VARIABLE(srorn present-drv-ctl,32);
VARIABLE(srom-data drv ctl,32);
VARIABLE(srom-clk drv ctl,32);
VARIABLE(srom-oe drv ctl,32);
VARIABLE(tdi drv-ctl;32);
VARIABLE(tdo-drv-ctl,32);
VARIABLE(trns-drv-ctl,32);
VARIABLE(tck-drv-ctl,32);
VARIABLE(trst drv ctl,32);
VARIABLE(test-sta-drv ctl,32);

} *p_drv; - - -

/* Ibox Interface Signals */
DECLARE struct i {

/* title: Signals to E and MBOXes */

REGISTER(z eO inst 2b h ,32,0); /* Integer/MBOX Pipe Instructions */
REGISTER(z-el-inst-2b-h ,32,0); /* includes OPC,Src R#s,LIT,DISP etc. fields */
REGISTER(z-eO-issue 4a h ,1,0); /* Instruction Issue Lines */
REGISTER(z=el=issue=4a=h ,1,0);
SIGNAL(z_stall_3b_h ,l); /* Freeze Line */

I* title: Signals to the EBOX */

9-14 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL(e raO addr 2a h ,5}; /*
SIGNAL(e=ral=addr=2a=h ,5}; /*
SIGNAL(e rbO addr 2a h ,5}; /*
SIGNAL(e-rbl-addr-2a-h ,5}; /*
REGISTER(e use eOa 3b h ,1,0};
REGISTER(e-use-e0b-3b-h ,1,0};
REGISTER(e-use-ela-3b-h ,1,0};

Register file address for read port RAO */
Register file address for read port RAl */
Register file address for read port RBO */
Register file address for read port RBl */
/* use RF as the src operand -- are these needed? */

REGISTER(e-use-elb-3b-h ,1,0};
REGISTER(e-use-eOllt 3b h ,1,0}; /*Use the LIT field instead of RB
REGISTER(e-use-ellit-3b-h ,1,0}; /* are these needed?? *I
REGISTER(e-byp-e0s4 e0a-3b h ,1,0}; /* EBOX RF bypasses
REGISTER(e=byp=e0s4=e0b=3b=h ,1,0};
REGISTER(e byp e0s4 ela 3b h ,1,0};
REGISTER(e-byp-e0s4-elb-3b-h ,1,0};
REGISTER(e-byp-els4-e0a-3b-h ,1,0};
REGISTER(e=byp=els4=e0b=3b=h ,1,0};
REGISTER(e byp els4 ela 3b h ,l,O};
REGISTER(e-byp-els4-elb-3b-h ,1,0};
REGISTER(e-byp-e0s5-e0a-3b-h ,1,0};
REGISTER(e-byp-eOsS-eOb-3b-h ,1,0};
REGISTER(e=byp=eOsS=ela=3b=h ,1,0};
REGISTER(e byp eOsS elb 3b h ,1,0};
REGISTER(e-byp-elsS-eOa-3b-h ,1,0);
REGISTER(e-byp-elsS-eOb-3b-h ,1,0};
REGISTER(e-byp-els5-ela-3b-h ,1,0};
REGISTER(e-byp-elsS-elb-3b-h ,1,0);
REGISTER(e-byp-eOw eOa Jb h ,1,0);
REGISTER(e-byp-e0w-e0b-3b-h ,1,0};
REGISTER(e-byp-e0w-ela-3b-h ,1,0};
REGISTER(e-byp-e0w-elb-3b-h ,1,0);
REGISTER(e-byp-elw-e0a-3b-h ,1,0);
REGISTER(e-byp-elw-e0b-3b-h ,1,0);
REGISTER(e-byp-elw-ela-3b-h ,1,0};
REGISTER(e-byp-elw-elb-3b-h ,1,0);

*I

*/

REGISTER(e-duaI cmp 3b-h ;1,0); /* Special dual issue widget. Tells the EBOX that we might */
REGISTER(e-dual-log-3b-h ,1,0); /* dual issue a CMP-BR or CMP-CMOV and that they should be

ready-to use-their special widget. Note that if we don't
actually wiggle both EO and El issue lines in the next phase
then we didn't actually do the dual issue due to some stall
condition */

REGISTERW(e pc 4a h ,64,W2,0}; /* PC bus to the Ebox pipe El */
REGISTER(e use-ldO Sa h ,1,0); /*Select the LOAD port rather than the datapath for S6 results*/
REGISTER(e-use-ldl-Sa-h ,1,0);
REGISTER(e-mul-abort h ,1,0); /* Abort the multiplier */
REGISTER(e=sel=mul_4b_h ,1,0); /* Select the Multiplier result rather than the shifter */
SIGNAL(e wO addr Sa h ,5); /*Register Write Addresses */
SIGNAL(e-wl-addr-Sa-h ,5);
SIGNAL(e-wO-en 6a h- ,l); /*Write Enables
SIGNAL(e-wl-en-6a-h ,l);

*/

SIGNAL(e-rd-pal shadow 2a h ,l}; /*Use PAL SHADOW regs for read
REGISTER(e wO pal shadow Sa h ,1,0}; /* Use PAL SHADOW for WO write
REGISTER(e-wl-pal-shadow-5a-h ,l,O};

*/
*/

REGISTER(e-intr flag 3a h ,l,O}; /*The intr flag for RS/RC instructions (must be valid a mux delay ahead o1
SIGNAL(e_use_intr_flag_Ja_h ,l); /* Selects the intr_flag over the literal(must be valid a mux delay ahead c

I* title: Signals to E and FBOXes */
SIGNAL(z_br_predict_4a_h ,l); /* Predict that the branch is taken */

/* title: Signals to FBOX */

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER(f fa inst 3a h ,32,0); /*FA instruction -- all 32 bits
The-schematic/layout implementation will not require bits 4:0
they are included in the model in order to retain the correct

* bit numbering. */
REGISTER(f fm inst 3a h ,32,0); /*FM Instruction -- all 32 bits

-The schematic/layout implementation will only require bits
* 30,27:26,25:11. The rest are included in the model in

order to retain the correct bit numbering */
REGISTER(f st inst 3a h ,32,0); /* EO Instruction after an S3 latch routed to the FBOX

-The schematic/layout implementatation will not require all
32 bits. They are included in the model in order to retain
the correct bit numbering */

REGISTER(f fa issue 4a h ,1,0); /* Issue Lines - timing may change, rpp
REGISTER(f-frn-issue-4a-h ,1,0);
REGISTER(f-st-issue-4a-h ,1,0);

*/

REGISTER(f-byp frn frna 3b h ,1,0); /* FBOX RF Bypass Lines -- timing may change, rpp */
REGISTER(f-byp-fm-frnb-3b-h ,1,0);
REGISTER(f-byp-fm-faa-3b-h ,1,0);
REGISTER(f-byp-fm-fab-3b-h ,1,0);
REGISTER(f-byp-fm-st Jb h ,1,0);
REGISTER(f=byp=fa=fma_3b_h ,1,0);
REGISTER(f byp fa fmb 3b h ,1,0);
REGISTER(f-byp-fa-faa-3b-h ,1,0);
REGISTER(f-byp-fa-fab-3b-h ,1,0);
REGISTER(f-byp-fa-st 3b h ,1,0);
REGISTER(f-byp-ldO fma 3b h ,1,0);
REGISTER(f-byp-ld0-fmb-3b-h ,1,0);
REGISTER(f-byp-ld0-faa-3b-h ,1,0);
REGISTER(f-byp-ld0-fab-3b-h ,1,0);
REGISTER(f-byp-ldO-st 3b h ,1,0);
REGISTER(f=byp=ldl=fma_3b_h ,1,0);
REGISTER(f byp ldl fmb 3b h ,1,0);
REGISTER(f-byp-ldl-faa-3b-h ,1,0);
REGISTER(f-byp-ldl-fab-3b-h ,1,0);
REGISTER(f-byp-ldl-st Jb h ,1,0);
REGISTER(f=fdiv_abort=h -,1,0); /*Abort the Floating Point Divider */
SIGNAL(f ldO addr Sa h ,5); /* Floating Register File, Load port addresses */
SIGNAL(f-ldl-addr-Sa-h ,5);
SIGNAL(f-we ldO 6a h- ,1); /*LOAD port write enables, delete these when the FBOX updates
SIGNAL(f-we-ldl-6a-h ,1);

*/

SIGNAL(f-fill we ldO 6a h
SIGNAL(f-fill-we-ldl-6a-h
SIGNAL(f-hit we ldO Ga h
SIGNAL(f-hit-we-ldl-6a-h
SIGNAL(f-fa addr 7a-h -,5); /*
SIGNAL(f-frn-addr-7a-h ,5);

,1};
,l);

'1);
, 1);

/* New Load port write enables for FILLS only, not qualified with aborts */

/* New Load port write enables for HITs only, qulaified with MBOX aborts */

operate write port addresses

REGISTER(f we fa-8a-h ,1,0); /* oeprate write port enables
REGISTER(f=we=fm=Sa=h ,1,0);

/* title: Signals to Mbox */

*/

*/

SIGNAL (m_pal_shadow_en_3a_h,l);
* register address

/* PAL SHADOW Mode bit, MBOX will store in MAF with the
*/

REGISTER(m eO valid 2b h,1,0);
REGISTER(m=el=valid=2b=h,l,O);

/* indicates a valid instruction has been slotted */
I* indicates a valid instruction has been slotted */

REGISTER(rn kill eO Sb h, 1,0); /* pipeO ibox/ebox/fbox traps */
REGISTER(m-kill-el-Sb-h, 1,0); /* pipel ibox/ebox/fbox traps*/
SIGNAL (m_kill_dtbls_4a_h, l); /* pipeO kill for dtbis only*/

SIGNAL (m imaf req lb h, l); /*load iref PA into MAF */
SIGNAL (m-iref-idx-lb-h, 2); /* iref prefetch queue index~/
SIGNALW(m-iref-addr 2a h, 40,W2); /* (39:4) iref Physical Address*/
SIGNAL (m=iref=req_2a_h, l}; /* iref PA is real, MAF can begin arbing */

I* title: Signals to !CACHE & Refill Buffer & BHT */

9-16 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER(j ic index zb h,
SIGNAL (j Tc Index zb I,
SIGNAL (j-asm b h,- l); /*
SIGNAL (j-asn-b-h, 7); /*
SIGNAL (j-pa lb-h, l); /*
SIGNAL (j-valid-lb h,
SIGNALW (j fpc lb h,
SIGNAL (j_fpc_par=lb_h,

13,0); /* (12:0) --> ICACHE only uses (12:4): Index (Block, index (row), octawc
13); /* (12:0) --> ICACHE only uses (12:4): _L version of above*/

ASM bit, input to ICACHE Tag */
(6:0) ASN bits, input to !CACHE Tag */
Physical Address bit, input to !CACHE Tag */

2); /* (1:0) Tag Valid bits, input to ICACHE Tag*/
43,W2); /* (42:0) -->!CACHE only uses 30 bits (42:13). Fill Tag, input to ICACHE'

l); /*Tag Parity bit, input to ICACHE Tag*/

/** OLD SIGNAL TO BE DELETED */
SIGNAL (j flush ah, l); /*Clear all IC valid bits. Flush occurs during B-phase */
/** END OLD SIGNAL TO BE DELETED */
SIGNAL (j_flush_b_h, l); /*Clear all IC valid bits. Flush occurs during next B-phase */

SIGNAL (j ic cmd ah, l); /*command to Icache: READ (=O), FILL (=l) */
SIGNAL (j-force bad dp ah, l); /* Force bad data parity on data going into the Refill Buffer and Icache */
REGISTER(} ib stall-ah,- 1,0); /* IB STALL, Sense Amp disable, mux control */
SIGNAL (j_bypass_ic=a=h, l); /*Bypass Icache: IB gets FILL data or RFB data*/

SIGNAL (j rfb rd idx b h,
REGISTER(} rfb wr idx a h,
REGISTER(j=rfb=wrlte_a_h,

13); /* (12:0) RFB Read Index, RFB only uses (6:4), Icache latches in A, use~

3,0); /* (2:0) Refill Buffer Write Index, arrives one cycle ahead of write*/
1,0); /* Refill Buffer Write Enable, arrives one cycle ahead of write */

SIGNAL (j_bht_new_Sb_h, 8); /* (7:0) Branch History Bits to update */
SIGNAL (j bht idx zb h, 13); /* (12:0) --> ICACHE uses 9 bits (12:4), Index for BHT read */
SIGNAL (j-bht -idx -zb-1, 13); I* (12: 0) --> !CACHE uses 9 bits (12: 4), L of above */
SIGNAL (j -hup-idx-Sb-h, 13); I* (12:0) --> !CACHE uses 9 bits (12: 4) 1 Index for BHT update */
SIGNAL (j =hup:en_5b_h, 1) ; I* BHT update enable */
SIGNAL (j_bht

- silo_sel_b_h, 1); /* Use BHT output delayed by one cycle, for use on RFB reads */

/* title: Signals to Cbox */
SIGNAL (c_clr_lock_flg_a_h, 1); /* Signal to clear lock flag when necessary from PAL CODE *)

/* title: Signals to Tbox */
SIGNAL(t tst index za h, 13); /* Test Indexes. Use 12:4 */
REGISTER(t lastaddress ah, 1,0); /*Test IDX counter overflow*/
REGISTER(t-obl sob h,l,0); /*serial out of observability LFSR chain*/
REGISTER(t-sl Xmit b h,1,0); /*transmit serial data*/
REGISTER(t-icsr sle b h,1,0); /* SEL bit (31) of ICSR */
REGISTER(t-icsr-sta-b-h,1,0); /*!CSR can turn on test sta<l> */
REGISTER(t=dbg_data=a=h,8,0); /*parallel observabillty */

/* title: Timeout Reset signals */
SIGNAL(rn treset b 1,1);
SIGNAL(c-treset-b-1,1);
SIGNAL(e=treset=b=l,l);
SIGNAL(f_treset_b_l,l);

} *i;

I* Ebox Interface Signals */
DECLARE struct e {

/* title: Signals to !box */
REGISTER (i mul done soon Oa h,1,0); /*Multiplier will deliver data soon */
REGISTER (i-kill cmovO 4b-h,- 1,0); /*Do not write or bypass result of CMOV issued to EO */
SIGNAL (i-kill-cmovl-4b-h, l); /*Do not write or bypass result of CMOV issued to El*/
SIGNAL (i-br taken Sa h; 1); /*Branch condition is satisfied*/
REGISTER (i-br-mispredict Sa h,1,0); /* Branch was rnispredicted */
REGISTER (i-int ovfO 6b h; - 1,0); /*overflow from pipe EO */
REGISTER (i-int-ovfl-6b-h, 1,0); /* Overflow from pipe El */
REGISTER (i-mul-ovf Sa h, 1,0); /*overflow from the multiplier*/
SIGNALW (i-pc 4ac h, - 64,W2); /*PC bus to Ibox */
REGISTER(i_obl=so_b_h,1,0); /*serial out of observability LFSR chain*/

SIGNALW (i_pc_3b_h, 64,W2); /*DELETE ME*/

/* title: Signals to Mbox */
SIGNALW (m vaO 4bc h, 64,W2); /* PipeO Virtual Address (also data for mtpr tbis */

SIGNALW (m_val_4bc_h; 64,W2); /* Pipel Virtual Address */

/* These low asserted versions are not used in the model. They are here for GUIDEWIRE purposes only. */
SIGNALW (m vaO 4bc 1,

SIGNALW (m_val_4bc_1;
64, W2);

64,W2);

REGISTERW(m_st_data_4a_h, 64,W2,0); /*Integer store and MTPR data*/

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* title: Signals to Dcache */
REGISTER(d_va0_4a_h, 13,0); /* (12:3) PipeO Virtual Address from fast adder output */

REGISTER(d_val_4a_h, 13,0); /* (12:3) Pipel Virtual Address from fast adder output */
} *e;

I* Fbox Interface Signals */
DECLARE struct f {

/* branch taken */
0); /*branch mispredict */
/* KILL conditional move */

0); /*Divide done soon */

REGISTER(i br taken Sa h, 1,0);
REGISTER(i-br-mispredict Sa h, 1,
REGISTER(i-kill cm Sa h,-1,-0);
REGISTER(div done soon lb h, 1,
REGISTER(i fdz fa-Sb h; l; 0)
REGISTER(i-fov-fa-Sb-h, 1, 0)
REGISTER(i-fun-fa-Sb-h, 1, 0)
REGISTER(i-ine-fa-Sb-h, 1, 0)
REGISTER(i-inv-fa-Sb-h, 1, 0)
REGISTER(i-iov-fa-Sb-h, 1, 0)
REGISTER(i=swc=fa=Sb=h, 1, 0)

REGISTER(i_fov_fm_8b_h, 1, 0)
REGISTER(i fun fm Sb h, 1, 0)
REGISTER(i-ine-fm-Sb-h, 1, 0)
REGISTER(i-inv-fm-Sb-h, 1, 0)
REGISTER(i=swc=fm=Sb=h, 1, 0)

I* divide by zero */
/* floating add pipe over flow */
/* floating add pipe under flow */
/* floating add pipe inexact */
/* floating add pipe invalid operand */
/* floating add pipe int overflow */
/* floating add pipe software completion */

/* floating mul pipe over flow */
/* floating rnul pipe under flow */
/* floating rnul pipe inexact */
/* floating rnul pipe invalid operand */
/* floating mul pipe software completion */

REGISTER(c_obl_so_b_h,1,0); /* serial out of observability LFSR chain */

} *f;

/* Mbox Interface Signals */
DECLARE struct rn {

/* title: Signals to Ebox */

/***/
BUSW(e ld dataO Sbc_h, 64,W2}; I* PipeO data returened to Ebox register file for: - LO, fill, MFPR, RPCC, STxC */
BUSW(e ld dataO Sbc 1, 64,W2); /* PipeO data returened to Ebox register file for:

- LO, fill, MFPR, RPCC, STxC */
BUSW(e_ld_datal Sbc h, 64,W2}; /* Pipel data returened to Ebox register file for:

LO, fill *f
BUSW(e - ld_datal Sbc 1, 64,W2); /* Pipel data returened to Ebox register file for:

LO, fill *f
SIGNAL (e_big_endian_7a_h, 1) ; I* E_BIG_ENDIAN mode bit from MCSR register */

REGISTER(e_obl - so_b_h,1,0); /* serial out of observability LFSR chain */

/***/

/* title: Signals to Cbox */

REGISTERW (c_maf_addr_Sb_h, 40,W2,0); /* {39:2} physical address. Valid end-6a at Cbox. */
SIGNAL {c maf cmd Sb h, 4}; /*commands to Cbox. Valid end-6a at Cbox. */
SIGNAL {c-rnaf-index Sb h, 5); /* 1 of 16 rnaf entries. Valid rnid-6a at Cbox */
SIGNAL (c-rnaf-type Sb h, l); /* integer/floating. Valid end-6a at Cbox. */
REGISTER (c wr type Sb h, 1, 0}; /* LW or QW writes. Valid mid-6a at Cbox. */
REGISTER (c=wr=lw_addr=5b_h, 5, 0); /* {4:2) LW to write in WB.Valid mid-6a at Cbox. */

SIGNAL {c maf abort 6a h, l); /* abort cmd. Valid mid-6b at Cbox. */
REGISTER (c wr enable 6a h, 6, 0); /* 1 of 6 WB entries. Valid end-6b at Cbox. */
REGISTER (c=drd_mask_Sb_h, 4, 0); /* qw masks for i/o reads. Valid end-9a at Cbox */

/* title: Signals to Ibox */

SIGNAL (i de hit eO Sb h,
SIGNAL (i de hit el Sb h,
SIGNAL {i=mb=clear_2b_h,

9-18 The Interconnect

l}; /* pipeO de hit */
1); /* pipel de hit*/

l); /* RS, RC, MB; STxC done, o.k. to restart */

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER (i dmrn err eO Sb h, 1, 0); /* pipeO Mbox trap (summary of all MM traps) */
REGISTER (i-dmrn-err-el-Sb-h, 1, 0); /* pipel Mbox trap (summary of all MM traps) */
SIGNAL (i_align=err=eO=Sa=h, l); /* pipeO VA alignment error */
SIGNAL (i align err el Sa h, l); /* pipel VA alignment error */
SIGNAL (i-in tb-flow Sa h; l); /* pipeO trap happened while in a TB flow*/
SIGNAL (i-dtb miss eO Sa h, l); /* pipeO dtb miss */
SIGNAL (i-dtb-miss-el-Sa-h, l); /* pipel dtb miss */
I* These two signals to be deleted later */
SIGNAL (i mbox unavail eO Sb h, l); /* pipeO - wb conflict, wb full,
SIGNAL (i-mbox-unavail-el-Sb-h, l); /* pipel - wb conflict, wb full,
SIGNAL (i-mbox-unavail-e0-6ac h,l); /* pipeO - wb conflict, wb full,
SIGNAL (i-mbox-unavail-el-6ac-h,l); /* pipel - wb conflict, wb full,
REGISTER(l_perr_6a_h, - - - 1,0); /* Dcache tag or data parity

maf full trap */
maf full trap */
maf full trap,
maf full trap,
error */

SIGNAL (i_fill_rnum0_4a_h, 7); /* pipeO register for fill data NEW TIMING
<6>-pal shadow, <S>-(I=O,F=l),

<4:0>-register number
Fbox ignores bit 6 */

SIGNAL (i_fill_rnuml 4a h, 7); /* pipel register for fill data NEW TIMING
<6>-pal shadow, <S>-(I=O,F=l),

<4:0>-register number
Fbox ignores bit 6 */

SIGNAL (i fill validO 4b h, l); /*fill data coming on pipeO NEW TIMING */
SIGNAL (i=fill=validl=4b=h, l); /* fill data coming on pipel NEW TIMING*/

dmm
dmm

err *I
.err */

SIGNAL (i fill validO 4a h, l); /*fill data coming on PipeO, new functionality, is that the MBOX
will send in 4A~ and the IBOX will qualify with the CBOX RFB DATA VALID
signal -- MBOX to remove the 4B signals when the change is implemented */

SIGNAL (i_fill_validl_4a_h, l); /*ditto for pipel */

REGISTER (i_fill_coming_4a_h, 1, 0); /* Fbox fill is coming, but may not be valid NEW TIMING*/

REGISTER(i ld alloc eO 6b 1, 1, 0); /*to performance counter to indicate that missed LD in EO got allocatE
REGISTER(i-ld-alloc-el-6b-l, 1, 0); /*to performance counter to indicate that missed LD in El got allocatE
REGISTER(i-wbmaf full eO 6a h, 1, 0); /*to performance counter to indicate that ST has WB full or LD has!
REGISTER((~maf_full_el_6a_h; 1, 0); /* to performance counter to indicate that LD in El has MAF full */

REGISTER(i_dbg_data_a_h,8,0);

/* title: Signals to Fbox */

/* parallel observability */

SIGNAL (f ld formatO 4b h, 3); /*Format info for Fbox pipeO fills and loads.
- - <2> ~ vax_fp/ieee, <l> = LW/QW,

<0> = lower/upper LW */
SIGNAL (f_ld_formatl 4b h, 3); /*Format info for Fbox pipel fills and loads.

<2> ~ vax_fp/ieee, <l> LW/QW,
<O> = lower/upper LW */

SIGNAL(f fbox_drv_ena_Sa_h, 1) ; /* asserted at Sa ==> fbox drives b->d_wr_data_6a_h at 6a */

/* title: Signals to Dcache */

SIGNALW(d_dc_addr_xa_h, 39, W2); /* (38:3): (38:13) fill tag to be stored in Dcache tags,
(12:8) = address for wordline decode, (7) =Ml ~

(6:3) = column muxing
Timing is early A (reads, fills, stores occur

SIGNAL (d tag idx sel 3b h, l); /*Address source for DC Tags for 4B operation: O=EBOX VA, l=MBOX d de addi
SIGNAL (d-dat-idx-sel-3b-h, l); /*Address source for DC Data for 4B operation: O=EBOX VA, l=MBOX d-dc-addi
SIGNAL (d-noflllO-Sa h, -1); /* nofill DcacheO, from the MAF, we have one for each cache for testability on:
SIGNAL (d=nofilll=Sa=h, l); /* nofill Dcachel, used for FILL in Sb, */
SIGNAL (d update dcout 3b h, l); /*For power savings, don't update Z DATAx SA H if this is 0 and crnd is no1
SIGNAL (d=tag_cmd_3b_h; 2); /* (1:0) command to DC tag for 4b operation: nop=OO, read=Ol, fill=lO, write=:
SIGNAL (d data cmd 3b h, 2); /* (1:0) command to DC data for 4b operation: nop=OO, read=Ol, fill=lO, write=:
SIGNAL (d-st adr Sb h, 3); /* (2) Address bit 2, used for LW Stores, comes early to be used with wr type SI
SIGNAL (d-wr-type Sb h, l); /* LW or QW Store: O=LW, l=QW, used with d st adr Sb h(2) for STORE in 6b */-
SIGNAL (d-tag par-Sa-h, l); /*fill tag parity to be stored in Dcache tags-in-SB*/
SIGNAL (d-valid Sa h; 2); /*fill tag valid bits to be stored in Dcache tags in SB*/
SIGNAL (d-st valid-6a h, l); /*store data is valid for the Dcache for STORE in 6B */
SIGNAL (d-dc-flush-a h, l); /* Dcache flush, if 1, clear all DC valid bits in B-phase */
SIGNAL (d=force_bad_par_Sb_h, l); /*Force bad parity on data parity into the Dcache data array, for STORE

} *m;

DECLARE struct c {

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* title: Signals to Mbox */

SIGNAL (m sc busy 4a h, l); /* No scache access. Valid end-4b at Mbox */
SIGNAL (m-retry 8~ h~ l); /*Retry. Valid mid-Sb at Mbox */

SIGNAL (m sc hit 7b h, l); /* sc hit in one of the 3 banks*/
SIGNAL (m_return=index_7a_h, 3); /*only <2:0> needed. 1 of 16 maf entries. Valid end-7b at Mbox cs 3-

7-93 *I
SIGNAL (m_return_status_7a_h, 3); /* Return status. Valid end-7b at Mbox. */

SIGNAL (m_wr_now_4a_h, l); /* Cbox initiated Writes. Valid mid-4b at Mbox */
SIGNAL (m wr maf index 4a h, 3); /*only <2:0> needed. 1 of 16 maf entries. Valid end-4b at Mbox */

SIGNAL (m-wr 64B req 4a h, l); /*to be deleted*/
SIGNAL (m=wr=64b=req=4a=h, l); /* 648 mode Write. Val~d end-4b at Mbox */

SIGNAL (m_stxc_fail_7a_h, l); /* StxC failed. Valid end-7b at Mbox */

SIGNAL (z rfb data valid 9a h, l); /* rfb. Valid end-9b at Mbox and Dcache */
SIGNAL (m-rfb-ecc err lOb h; l); /* ecc error. Valid end-lla at Mbox */
SIGNAL (m-ow valid 7a-h, l); /*ow valid (bit4) for fills. Valid end 7b */
SIGNAL (m-bogus lf-Ba-h, l); /*bogus last fill. sysclock=3 and ff has error*/

- - - - /* valid end Ba @ mbox. may spill into Bb */
SIGNAL (z_alloc_cycle_2a_h, l); /* integer fill bubble. Valid early-2b at Mbox */

REGISTER(m_obl_so_b_h,1,0); /* serial out of observability LFSR chain*/
REGISTER(m_dbg_data_a_h,8,0); /*parallel observability*/

/* title: Signals to Scache */

/* to SCache tag array */
SIGNAL (s bcache size a h,
REGISTER (s_set_cnable_a_h,
REGISTER (s 32b mode a. h,
REGISTER (s=flush_b_h,l,O);

3); /* 8cache size. Valid end-a at Scache */
3,0); /* Set enables. Valid end-a at Scache */

1,0); /* 32b mode. Valid end-a at Scache */
/* flush all the valid bits in the Scache */

SIGNALW (s addr 6a h, 40,
REGISTER (s_cmd_6b_h,3,0);

W2); /* 39:3 physical address. Valid end-6a at Scache. */
/* Command. Valid end-6b at Scache */

SIGNAL
SIGNAL
SIGNAL

(s_fill_tag_cmd_Sb_h, l); /*Fill (on scmiss) command. Valid end-Sb at Scache */
(s fill status cmd Sb h,l); /* Fill (32b mode, tag match, not valid) command.
(s_set_hit_Sb_h, - 2); /*Pick 1 of 3 sets. valid end Sb*/

Deleted once move to Sb is done [cs} */ /* To be
REGISTER
REGISTER

(s fill tag cmd 6a h, 1,0); /* Fill (on scmiss) command. Valid end-6a at Scache */
(s-fill-status cmd-6a h,1,0); /*Fill (32b mode, tag match, not valid) command.

- - - - - Valid end-6a at Scache */
REGISTER (s set hit 6a h,2,0); /*Pick 1 of 3 sets. Valid end-6a at Scache */
SIGNAL (s_abort=7a_h, -1); /*Abort Scache operation. Valid end-7a at Scache */

SIGNAL
SIGNAL

(s wr shared perm 6b h, l); /*Valid end-7a at Scache */
(s=wr=dirty_perm_Gb_h, l); /*Valid end-7a at Scache */

/* status signals: 6a for fills, 7a for writes */
SIGNAL (stag v 6a h, l); /*Valid bit. Valid mid-6b at Scache */
SIGNAL (s=tag=s=6a=h, l); /*Shared bit. Valid mid-6b at Scache */
SIGNAL (stag d 6a h, l); /*Dirty bit. Valid mid-6b at Scache */
SIGNAL (s=tag~=6a=h, 2); /*Modified (168) bit. Valid mid-6b at Scache */
REGISTER (stag parity_6a_h, 1,0); /*address parity. Valid mid-6b at Scache. */

/* to SCache data array */
SIGNAL (s lw write 7a h, 4}; /* 4
REGISTER (s wfb parity 7b h,4,0);
REGISTERW(s-wfb-7b h,12B,W4,0};
REGISTER (s-wfb-parity Sa h,4,0);
REGISTERW(s=wfb=8a_h,128,W4,0);

LW's per OW. Valid mend-7b at Scache. */
/* 4 LW parity bits */

/* Write Fatbus */
/* (to be removed) 4 LW parity bits */

/* (to be removed) Write Fatbus */

REGISTER (s ifb drive 9a h,1,0); /* Iread fill bus select */
SIGNAL (s rfb drive 9a h~ l); /*Dread fill bus select */
SIGNAL (s=rfb=drive=Bb=h, l); /*Dread fill bus select */

/* title: Signals to Ibox */

I* **** NEW TIMINGS ******* 6-jul-1992 */

SIGNAL (i_ifb_index_Bb_h, 3); /* 1 of 8 iref rfb index*/
SIGNAL (i ifb data valid 8b h, 1}; /* ifb data valid, one cycle before data*/
SIGNAL (i=ifb=last fill_Bb_h, 1); /* ifb data is last of the 2 OW from the fill. */

9-20 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EVfi CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL (i corr err trap llb h, l); /* Correctable error. Dstream. flop */
REGISTER (i_corr_err_intr_llb_h,1,0); /*Correctable error. D and I streams*/
SIGNAL (i err abt lla h, l); /* Ecc error D stream, RFB/Scache/Bcache tag/statu parity error*/

REGISTER (l iecc hrd err llb h,1,0); /*Uncorrectable ecc error on istream, fill error, sys cmd ei
/* To be deleted *f - - - -

SIGNAL (i_hard_err_llb_h, l); /*Uncorrectable ecc error on istream, fill error, sys cmd er

SIGNAL (i_perf_mon_in_a_h, l); /* Input to IBOX perf monitor logic, a cycle wide
SIGNAL (i _irq_a_h, 4); I* synchronised interrupt request pins */
SIGNAL (i_sys_mchk_irq_a_h, l); /* system machine check interrupt pin */
SIGNAL (i_pwr_fail_irq_a_h, l); /* powerfail interrupt request pin */
SIGNAL (i_mch_hlt - irq_a_h, l); I* machine halt interrupt request pin *I

SIGNAL (i_force_time_out_b_h, l); /* force a time out if the system reqests one */

REGISTER (i prncl in ah, 1, 0);
REGISTER (i=pmc2=in=a=h, 1, 0);

/* title: Signals to Dcache */

/* input to performance counter 1 */
I* input to performance counter 2 *I

REGISTER (d inval cmd 9a h, 1, 0); /*invalidate command */
REGISTER (d-inval-addr 9a h, 13, 0); /* 12:6 inval address */
REGISTER (d-fill par lOa h, 4, 0); /*DC Fill parity, 4 LW parity bits,

source is A-latch in CBOX */

REGISTER (k slip ok ah, 1, 0); /*wave pipelined bcache access in progress */
REGISTER (t=bsr_so_addr_h, 5, O); /* si to tbox BSR; only use bit 4 */

} *c;

/* Scache Interface Signals */
DECLARE struct s {

/* title: Signals to Cbox */

/* signals from tag section */
SIGNAL (c tag vO 7a h[3], l);
SIGNAL (c-tag-d0-7a-h[3], l);
SIGNAL (c-tag-s0-7a-h[3], 1);
SIGNAL (c=tag=m0=7a=h[3], 2);

SIGNAL (c tag vl 7a h[3], l);
SIGNAL (c-tag-dl-7a-h[3], 1);
SIGNAL (c-tag-sl-7a-h[3], 1);
SIGNAL (c=tag=ml=7a=h[3], 2);

/* Valid bits. Valid early-7b at Cbox */
I* Dirty bits. Valid early-7b at Cbox */
/* Shared bits. Valid early-7b at Cbox */
I* Modified (OW). Valid early-7b at Cbox */

/*Valid bits. Valid early-7b at Cbox */
/* Dirty bits. Valid early-7b at Cbox */
I* Shared bits. Valid early-7b at Cbox */
I* Modified (OW). Valid early-7b at Cbox */

SIGNAL (c tag parity 7a h[3], l); /*tag parity bits. Valid mid-7b at Cbox */

PULSE */

SIGNAL (c=tag=bc_index_match_7a_h[3), l); /* Bcache idx match. Valid mid-7b at Cbox */

SIGNAL (chit 7a h[3), l); /*Hit signal. Valid mid-7b at Cbox */
SIGNAL (c=tag=match_7a_h[3], l); /*Match signal. Valid mid-7b at Cbox */

SIGNALW (c tag 7b h, 40,W2);
SIGNAL (c_tag_perr_7b_h[3), 1);

/* title: Signals to ICache */

/* tag bits 39:15. Valid end-7b at Cbox */
/* tag parity error. Valid end-7b at Cbox */

/***** NEW TIMING **** 6-jul-1992 */
SIGNALW (j ifb data 9b h, 128, W4); /* !Cache fill bus */
SIGNAL (j-ifb=parity_9b_h, 4); /* 4 LW parity bits*/

/****** TO BE DELETED ********* cs 6-jul-1992 */
/* title: Signals to ICache */
SIGNALW (j ifb data lOa h, 128, W4); /*!Cache fill bus*/
SIGNAL (j-ifb-parity lOa h, 4); /* 4 LW parity bits*/
/*****************************/

/* title: Signals to TBOX */
REGISTER(t 1 obs sob h,1,0); /*GET RID OF THIS REAL SOON!!! */
REGISTER(t-r-obs-so-b-h,1,0); /*GET RID OF THIS REAL SOON!!! */
REGISTER(t-1-obl-so-b-h,l,O); /*serial out of lscache LFSR chain*/
REGISTER(t=r=obl=so=b=h,1,0); /*serial out of rscache LFSR chain*/

l *s;

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I* Buses */
DECLARE struct b {

BUSW (z_rfb_9b_h, 128, W4); /* rfb data bus, sources are Scache and CBOX,
destination CBOX and Dcache */

BUS (c_rfb_parity_9b_h, 4); /* 4 LW parity bits, sources are Scache and CBOX,
destination CBOX */

VARIABLE(c rfb state, 32); /* state variable for driving rfb from (scache or CBOX)*/
VARIABLE(c-rfb-parity state, 32); /* state variable for driving rfb parity from (scache or CBOX)

To-be deleted-later, rfb_parity is not tristated [san,hale] */

BUSW (d wr data 6a h, 64, W2); /* Dcache tristate store data from FBOX/EBOX for 68 STORE */
BUS ((~wr:)w_parity_6a_h, 2); /* Dcache tristate store lw parity from FBOX/EBOX for 6B STORE */

VARIABLE(d_wr_data_state,

VARIABLE(d_wr_lw_parity_state, 32);

} *b;

I* Dcache Interface Signals */
DECLARE struct d {

I* title: Signals to Cbox */

32); /* dcache store bus data driver state
(FBOX or EBOX) *I

/* dcache store bus parity driver state
(FBOX or EBOX) */

SIGNALW(c wb data 6a h, 64, W2); /* 64 bits of store data to Cbox WB. */
SIGNAL (c=wb=lw_parity_6a_h, 2); /* 2 parity bits per Quadword of store data*/

/* title: Signals to Mbox */

SIGNALW (m tagO Sa h, 39, W2); /* (38:13) tagO for hit logic*/
SIGNALW (m-tagl-Sa -h, 39, W2); /* (38: 13) tagl for hit logic*/
SIGNAL (m_°tag_paro= Sa h, 1); /* pipeO tag parity */
SIGNAL (m_tag_parl_Sa=h, 1); /* pipel tag parity */
SIGNAL (m validO Sa h, 2); /* (1 :0) pipeO valid bits for block */
SIGNAL (m-validl-Sa-h, 2); /* (1:0) pipel valid bits for block */
SIGNAL (m-data parO-Sa h, 2); /* pipeO data parity */
SIGNAL (m=data=parl=Sa=h, 2); /* pipel data parity */

/* title: Signals to Mbox and Fbox */

I* NEW TIMING */
SIGNALW(z_dataO_Sa_h,
SIGNALW(z_datal_Sa_h,

64,W2); /* (63:0) pipeO load data bus to rnbox and fbox */
64,W2); /* (63:0) pipel load data bus to rnbox and fbox */

} *d;

/* !cache Interface Signals */
DECLARE struct j {

/* title: Signals to Ibox */

SIGNAL (i ic asm Ob h, l); /* ASM bit read from !CACHE Tag*/
SIGNAL (i-ic-asn-Ob-h, 7); /* (6:0) ASN bits read from !CACHE Tag */
SIGNAL (i-ic-val-Ob-h, 2); /* Block Valid bits read from ICACHE Tag */
SIGNAL (i-ic-pa Ob h, 1); /*Physical Address bit read from !CACHE Tag*/
SIGNAL (i-tag par Ob h, l); /* ICACHE tag parity read from !CACHE Tag*/
SIGNALW (l ic-tag-Ob-h, 43,W2); /* (42:0) -->!CACHE only sends 30 bits (42:13). Tag read from !CACHE*/
SIGNAL (i le asm Ob 1, 1); /* ASM bit read from !CACHE Tag*/
SIGNAL (i-ic-asn-Ob-1, 7); /* (6:0) ASN bits read from !CACHE Tag */
SIGNAL (i-ic-val-Ob-1, 2); /* Block Valid bits read from !CACHE Tag */
SIGNAL (i-ic-pa Ob l, 1); /*Physical Address bit read from !CACHE Tag*/
SIGNAL (i-tag par Ob 1, l); /* !CACHE tag parity read from !CACHE Tag*/
SIGNALW (l_ic=tag=Ob=l, 43,W2); /* (42:0) --> !CACHE only sends 30 bits (42:13). Tag read from !CACHE */

SIGNALW(i istr data Ob h, 128,W4); /* (127:0) data bus, IB input from !cache or Refill Buffer */
SIGNAL (i-predecode-Ob-h, 20); /* (19:0) Predecodes from IC/Refill Buffer*/
SIGNAL (i=data_par_Ob_h, 2); /* (1:0) data parity, predecode parity*/

SIGNAL (i_br_hist_Ob_h, 8); /* (7:0) Branch History Bits read from BHT */

SIGNAL (i_ic_srom_out_xx_h, l); /*Serial SROM output from !CACHE (probably@ BHT end)
NOTE: This may go to CBOX directly */

SIGNAL (j_bht_idx_zb_h, 13); /* Index copy. For BiSt/FRC logic*/
} *j;

9-22 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

I*
** Function prototypes for functions defined in EVSCHIP.C
*/

void evSchip init(); /*calls box level init routines*/
void evSchip=rnain(); /* calls box level main routines */

/* trailer *I
tundef DECLARE
#endif

9.2 Revision History

Table 9-1 : Revision History

Who When

your name dat.e

DIGITAL RESTRICTED DISTRIBUTION

Description of change

description

The Interconnect 9-23

