
d i'g i t:a a
Date: 12 April, 1996
From: Daniel Leibholz
Dept: Digital Semiconductor
MS: la02-3/J3
DTN: 225-6141
Enet: ad::leibholz

Topic: EV6 Chip Specification, Rev 2.0

Enclosed you will find the second revision of the EV6 specification.

This version includes a major rewrite of the external interface, substantial changes to the PAL/IPR
sections, as well as inclusion of PAL coding restrictions and some electrical and packaging information.

As the EV6 design proceeds, we are filling in the details of the following topics:

• Electrical and packaging information
• Reset and initialization
• Test and debug features
• PLL Operation
• Error handling

We will send further documentation on these areas (plus errata/changes to rev. 2.0) when available.

Please note that the EV6 specification is Digital Confidential. Refer all requests for copies to Sue Jacquart
(ad::jacquart/DTN 225-4967).

Please refer questions regarding the spec to the following individuals:

EV6 Microarchitecture/PALcode/IPR issues: Dan Leibholz
EV6 System Interface/Electrical issues: Rick Hetherington (ad::hetherington, DTN 225-4571)

. --- -

EV 6 Specification
Rev 2.0

April 10, 1996

Digital Company Confidential

- \ ~,t-'. -!-'-"" ____ ,_. -

The drawings and specifications in this document are the property of Digital Equipment Corporation and
shall not be reproduced, copied or used in whole or in part as the basis for the manufacture or sale of items
without written permission.

The information in this document may be changed without notice and is not a commitment by Digital
Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this
document

This specification does not describe any program or product that is currently available from Digital
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification
in any program or product. Digital Equipment Corporation makes no commitment that this document
accurately describes any product it might ever make.

Digital Confidential

Copyright© 1995, 1996 by Digital Equipment Corporation
All Rights Reserved

Printed in U.S.A.

Do Not Copy

1. EV6 AND THE ALPHA ARCHITECTURE

1.1 Alpha Architectural Extensions

1.2 Implementation-Specific Features

1.3 Instruction Set Features Defined as Optional

1.4 Arithmetic Exceptions

2. INTERNAL ARCHITECTURE

2.1 Chip Organization
2.1.1 Ebox
2.1.2 Fbox
2.1.3 lbox
2.1.4 On-chip Caches
2.1.5 Mbox
2.1.6 Cbox

2.2 Pipeline Organization
2.2.1 Stage 0 - Instruction Fetch
2.2.2 Stage 1 - Instruction Slot
2.2.3 Smge 2 - Map
2.2.4 Stage 3 - Issue
2.2.5 Stage 4 - Register Read
2.2.6 Stage 5 - Execute
2.2. 7 Stage 6 - Dcache Access
2.2.8 Instruction Retire
2.2.9 Retire of Operates into R3 l/F3 l
2.2.10 Pipeline Aborts

2.3 Memory And 1/0 Acce~es
2.3.1 Memory Space Load Instructions
2.3.2 IO Space Load Instructions
2.3.3 Memory Space Store Instructions
2.3.4 IO Space Store Instructions

2.4 Replay Traps
2.4 .1 Mbox Order Traps
2.4.2 Other Mbox Replay Traps

2.5 Software-Directed Prefetching and Loads into R31 & F31
2.5.1 Normal Prefetch: LDL, LDF, LOG, LDB, LOW
2.5 .2 Prefetch with Modify Intent: LDS
2.5.3 Prefetch, Evict Next: LDQ
2.5.4 Prefetch, No Reuse: LDT

Digital Confidential Do Not Copy

7

7

7

8

8

9

9
9

10
11
13
14
15

16
16
16
l7
17
17
17
17
17
18
18

19
19
19
20
20

21
21
22

22
22
22
22
22

1

2.6 Special Cases 22
2.6.1 Load Hit Speculation 23
2.6.2 Floating Point Stores 24
2.6.3 CMOV 24

2. 7 Instruction Issue Rules 25
2. 7 .1 Instruction Class Definitions 25
2.7.2 Ebox Slotting 25
2.7.3 Instruction Latencies 28

3.EXTERNALINTERFACE 29

3.1 Address Spaces 29
3 .1.1 1/0 Ordering and Merge Rules 31

3.2 Cache Organization and Coherence 31
3.2.1 Cache Block States 31
3.2.2 Cache Block State Transitions 32
3.2.3 System Knowledge of Bcache Contents 33
3.2.4 Dcache States & the Dcache Duplicate Tags 33
3.2.5 Memory Barrier (MB/WMB{fBfill flow) 33
3.2.6 Load/Locked and Store/Conditional 35

3.3 System Port 38
3.3.1 System Port Pins 38
3.3.2 EV6 to System Address/Command Format 38 ·
3.3.3 SysAdd Commands Generated by EV6 39
3.3.4 Probe Response Transfers 41
3.3.5 SysAck & System Port Flow Control 41
3.3.6 SysReadValid and Speculative Reads 41
3.3.7 SysAdd Commands Generated by the System 42
3.3.8 Two Cycle Command~ For Data Transfers 44
3.3.9 Data Movement In and Out ofEV6 45
3.3.10 Data ECC 50
3.3.11 Ordering of System Port Transactions 51
3.3.12 System Port Clocking 53

3.4 Bcache Port 66
3.4.1 Bcache Port Pins 66
3.4.2 Pin Descriptions 66
3.4.3 Bcache Banking 67
3.4.4 Bcache Transactions 67
3.4.5 Bcache Clocking 67

3.5 Interrupts 70

3.6 Pin List 70

4. PRIVILEGED ARCHITECTURE LIBRARY CODE 72

4.1 Use of Alpha Implementation-Specific Opcodes 72
4.1.l HW _LD Instruction 73

Digital Confidential Do Not Copy 2

4.1.2 HW _ST Insttuction
4.1.3 HW_RETinstruction
4.1.4 HW _MFPR and HW _MTPR Instructions

4.2 Internal Processor Register Access Mechanisms
4.2.1 IPR Scoreboard Bits
4.2.2 Hardware Structure of Explicitly Written IPRs
4.2.3 Hardware Sttucture of Implicitly Written IPRs
4.2.4 IPR Access Ordering
4.2.5 IPRs and HW _RET Stalls

4.3 PAL Shadow Registers

4.4 PALcode Emulation of FPCR
4 .4 .1 Status Flags
4.4.2~-~
4.4.3 MT_FPCR

4.5 PALcode Entry Points
4.5.1 CALL_PAL entry
4.5.2 PALcode Exception Entry Points

4.6 TB Fill Flows
4.6.1 DTB Fill
4.6.2 ITB Fill

5. INTERNAL PROCESSOR REGISTERS

5.1 Ebox IPRs
5.1.1 cc
5.1.2 CC_CTL
5.1.3 VA
5.1.4 VA_FORM
5.1.5 VA_CTL

5.2 Ibox IPRs
5 .2.1 IT'B _TAG
5.2.2 ITB_PTE
5.2.3 ITB_IAP
5.2.4 ITB_IA
5.2.5 ITB_IS
5.2.6 EXC_ADDR
5.2.7 IV A_FORM
5.2.8 IER_CM
5.2.9 SIRR
5.2.lOISUM
5.2.11 HW _INT_CLR
5.2.12 EXC_SUM
5.2.13 PAL_BASE
5.2.14 I_CTL
5.2.15 I_STAT
5.2.16 IC_FLUSH
5.2.17 CLR_MAP

Digital Confidential Do Not Copy

73
75
75

77
77
78
78
79
79

80

80
80
80
80

80
81
81

82
82
83

84

86
86
86
87
88
89

90
90
90
91
91
91
91
91
92
93
94
95
96
97
98

101
101
101

3

Apru 1U, .l!'J!'JO

5.2.18 SLEEP
5.2.20 lbox Process Context IPR {PCTX)
5.2.21 PCTR_CTL

S.3 Mbox IPRs
5.3.1 DTB_TAGO & DTB_TAGl
5.3.2 DTG_PTEO & DTB_PTEl
5.3.3 DTB_ALTMODE
5.3.4 DTB_IAP
5.3.5 DTB_IA
5.3.6 DTB_ISO & DTB_ISl
5.3.7 DTB_ASNO & DTB_ASNl
5.3.8 MM_STAT
5.3.9M_CTL
5.3.10 DC_CTL
5.3.11 DC_STAT

5.4 Cbox CSRs and IPRs
5.4.1 CBOX CSR Description
5.4.2 CBOX IPR Description

6. IEEE FLOATING POINT CONFORMANCE

6.1 Floating Point Control Register (FPCR)

7. ERROR DETECTION AND HANDLING

7.1 Icacbe Data or Tag Parity Error

7 .2 Dcache Tag Parity Error

7.3 Dcache Data Correctable ECC Error
7.3.1 Load Instruction
7.3.2 Store Instruction (Less than Quadword Length)
7.3.3 Victim Reads

7 .4 Dcache Triplicate Tag Parity Error

7.5 Bcache Tag Parity Error

7.6 Bcache Data Correctable ECC Error
7 .6.1 lcache Fill from Bcache
7 .6.2 Dcache Fill from Bcache
7 .6.3 Victim Read

7.7 Bcache Data Uncorrectable ECC Error

7.8 Memory Data Correctable ECC Error
7 .8.1 lcache Fill from Memory
7 .8.2 Dcache Fill from Memory

7.9 Memory Data Uncorrectable ECC Error

Digital Confidential Do Not Copy

101
102
104

105
105
106
106
107
107
108
108
109
110
111
112

112
113
116

117

120

122

122

122

122
122
123
123

123

123

124
124
124
124

124

125
125
125

125

4

7.10 System Port Read Errors

8. INITIALIZATION AND TEST

9. ELECTRICAL DATA

9.1 Electrical Characteristics

9.2 DC Characteristics
9.2.1 Power Supply
9 .2.2 Input Signal Pins
9.2.3 Driven Signals From EV6

9.3 AC Characteristics
9 .3 .1 Clocking Scheme
9 .3 .2 Input Clocks
9.3.3
9.3.4 1.3.3Analog PLL
9 .3 .5 Timing

9.4 Power Supply Considerations
9 .4.1 Deeoupling
9.4.2 Power Supply Sequencing

10. PACKAGING INFORMATION

10.1 Introduction

10.2 Package Information

10.3 EV6 Pinout

11. APPENDIX 1: RESET AND SLEEP MODE

12. APPENDIX 2: PAL CODING RESTRICTIONS

12.1 Restriction: Reset Sequence Required by Retirator and Mapper

12.2 Restriction: No Multiple Writers to IPRs in Same Scoreboard Group

12.3 Restriction: (removed)

12.4 Restriction: No Writers and Readers to IPRs in Same Scoreboard Group

12.5 Restriction: PAL shadow enables

125

126

127

127

127
127

- 127
127

128
128
128
129
129
129

131
131
131

132· ..

132

132

133

143

144

144

145

145

145

145

12.6 Guideline: Avoid Consecutive read-modify-write-read-modify-write sequences to IPRs in the
Same Scoreboard Group 145

12.7 Restriction: Replay trap and interrupt code sequence and STF/ITOF 146

Digital Confidential Do Not Copy 5

·-· ----~-~~
,,._ \ V "-"A44t" ...,,.t" - -._..'-J,,_ , -•'-

12.8 Restriction (removed) 147

12.9 Restriction: PALmode I-Stream addre~ ranges 147

12.10 Restriction: Duplicate IPR mode bits 147

12.11 Guideline: Ibox IPR update synchronization 147

12.12 Restriction: HW _ MFPR EXC _ ADDR/IV A_ FORM/EXC _SUM Usage 147

12.13 Restriction: DTB FILL flow collision 147

12.14 Restriction: HW RET 147

12.15 Restriction: (REMOVED) 147

12.16 Restriction: JSR-BAD VA 147

12.17 Restriction: MTPR to DTB _ TAGO/DTB _ PTEO/DTB _TAG 1/DTB _ PTEl 148

12.18 Restriction: No FP OPERA TES or FP CONDITIONAL BRANCHES in same fetch block as
MTPR 148

12.19 Restriction: HW _ RET/STALL after updating the FPCR via MT_ FPCR in PALmode · 148

12.20 Guideline: I_ CTL SBE Stream Buffer Enable 148

12.21 Restriction: HW_RET/STALL after MT ASNO/ASNl 148

12.22 Restriction: HW _RET/STALL after MT ISO/ISl 148

12.23 Restriction: HW _ST IP/CONDITIONAL does not "clear" the lock flag 149

12.24 Restriction: HW_RET/STALL after MT ITB_IA, ITB_IAP, IC_FLUSH 149

12.25 Restriction: MT ITB _IA after Reset 149

12.26 Guideline: Conditional branches in PALcode 149

12.27 Restriction: Reset of 'Force-Fail Lock Flag' State in PALcode 150

Digital Confidential Do Not Copy 6

1. EV& and the Alpha Architecture
This section describes the ways in which EV6 architecturally differs from prior Alpha implementations.
These architectural differences fall into four classes:

1. Extensions to the Alpha Architecture, such as new instructions.
2. Architectural features which the Alpha SRM defines as implementation-specific, such as the size of

the virtual or physical address space.
3. Instruction set features which the Alpha SRM defines as optional.
4. Arithmetic exceptions

Alpha SRM version 6.0 and appendix Z of that document are included by reference.

1. 1 Alpha Architectural Extensions
EV6 includes the following instruction set extensions to the Alpha Architecture:

• Floating point square root for both VAX and IEEE formats
• Population Count - counts the number of ones in an integer register: CI'POP
• Leading and trailing zero count: CTI.:Z, CTIZ
• Cache Control Operations:

:::) Evict Data Cache Block: ECB
:::) Write Hint: WH64

• Integer to floating and floating to integer register transfers: ITOFS, ITOFF, JTOFT, FTOIS & FTOIT
• Graphics & MultiMedia instructions:

:::) Pixel Error: PERR
:::) Min and Max instructions: MINUB8, MINSB8, MINUW4, MINSW4, MAXUB8, MAXSB8,

MAXUW4, MAXSW4
:::) Pack and Unpack instructions: PKLB, PKWB, UNPKBL, UNPKBW

• Software-directed prefetch instructions: WLIIDF/WGIWBIIDW!WS/IDQ/IDT into R31 IF31
• Version and architecture extension instructions: AMASK/IMPLVER
• Power-saving feature/instruction: CAIL _PAL WI'INI

1.2 Implementation-Specific Features
• 8 KB page size
• 48-bit virtual address, with IPR-controlled 43-bit mode
• 44-bit physical address with MSB indicating IO space when set
• Loads into R31 and F31 are executed to completion, and memory access violations, alignment faults

and fault-on-read errors generated by these instructions are reported by hardware. P ALcode is
expected to dismiss these exceptions as required by Alpha SRM ECO 95. See section 2.5 for more
details on software prefetching with loads into R31F31.

• Integer operate instructions into R31 are dismissed; no arithmetic exceptions are reported.
• Floating point operate instructions into F31 are dismissed; no arithmetic exceptions are reported.
• Load-locked/Store Conditional semantics are, except for the waiver described below, compliant with

ALPHA SRM ECO 102:
• There must be no intervening memory operation between the LDx_L and STx_ C; the

presence of a memory operation (LDx,STx) will cause the STx_C to always fail. One
exception (for which EV6 requires a waiver): if the memory operation is a WH64, the
STx_ C might succeed even in the presence of a store from another processor to the lock
range.

Digital Confidential Do Not Copy 7

.n.j!H.l J.V, i77\J

• The physical address of STx_C must specify a location within the naturally aligned 16-byte
block in physical memory accessed by the preceding LDx_L instruction (in processor issue
sequence) from the same processor. Otherwise it is unpredictable whether the lock flag will
be cleared by a store from another processor within the lock range.

1.3 Instruction Set Features Defined as Optional
This section describes instruction set features which the Alpha SRM defines as optional, and from which
EV6 differs in comparison with prior implementations.

• FETCH and FETCH_ Mare not implemented
• IEEE floating point support

=> NaN' s and infinities are generated and propagated in hardware
=> rounding to plus and minus infinity is supported in hardware (this is also true of EV5, but

notofEV4)

1.4 Arithmetic Exceptions
In EV6 arithmetic exceptions are precise and reported as synchronous traps, and the TRAPB and EXCB
instructions are processed as NOPs. This behavior is architecturally compliant, but means that the
software completion rules as currently defined in the Alpha SRM are conservative relative to EV6. These
rules could simply state that floating operates are not allowed to overwrite their own operands and should
have their /S qualifier set.

Digital Confidential Do Not Copy 8

2. Internal Architecture
EV6 is the third-generation implementation of Digital' s Alpha RISC architecture. It is a superscalar CPU
which performs register renaming, speculative execution and dynamic scheduling in hardware. It contains
four integer execution units, two of which can perform memory address calculations for load and store
instructions. It also contains dedicated execution units for floating point add, multiply, divide and square
root The on-chip instruction cache is a 64 K byte, two-way set associative virtual cache with 64-byte
blocks. The on-chip data cache is a 64K byte, two-way set associative, virtually indexed, physically
tagged, write-back cache with 64-byte blocks.

The external interface consists of two ports - a Bcache port and a System port. The Bcache port is
conttolled entirely by the processor, and is used to interface to a module-level secondary cache which may
be built from a range of standard synchronous SRAMs. The System port interfaces to the rest of the
system. The processor contains two external data busses, one 16-bytes wide and the other 8-bytes wide.
The 16-byte bus is used to support the Bcache port and the 8-byte bus is used to support the System port

The chip will initially be fabricated in Digital's 0.35um CMOS-6 process. The speed disttibution will
center at an internal operating frequency of 550 MHz, though the final bin points are TBD. At 500 MHz,
power dissipation is estimated to be 60 watts at 2.0 volts.

2. 1 Chip Organization
EV 6 consists of the following internal sections:

• Integer execution unit (Ebox)
• Floating point execution unit (Fbox)
• Instruction fetch, issue and retire unit (Ibox)
• Memory reference unit (Mbox)
• External cache and system interface unit (Cbox)
• Instruction cache (Icache)
• Data cache (Dcache)

2.1.1 Ebox
The Ebox is a four-wide integer execution unit which is implemented as two functional unit "clusters" -
labeled 0 and 1. Each cluster contains a copy of an 80-entty physical register file and two "subclusters",
named upper (U) and lower (L). Most instructions have one-cycle latency for consumers which execute
within the same cluster. There is a one cycle delay associated with producing a value in one cluster and
consuming the value in the other cluster. Tne instruction issue queue minimizes· the performance effect of
this cross-cluster delay.

Digital Confidential Do Not Copy 9

------~·------·-·---·-~-----------·-... ... I:' _.,,.., _,,, _. - \ -.~ -·~-i;,-

wr
wr

uo U1

Reg Reg

LO L1

wr
wr

Ld/StData

eff.VA eff. VA

The Ebox contains the following resources:

• Four 64-bit adders, all of which are used to calculate results for integer ADD instructions .. The
adders in subclusters LO and L 1 are used to generate the effective virtual address for load and store
instructions.

• Four logic units
• Two barrel shifters and associated byte logic - UO and Ul
• two sets of conditional branch logic - UO and Ul
• two copies of an 80-entry register file
• one fully pipelined multiplier, with 7-cycle latency for all integer multiply operations - Ul
• one fully pipelined unit with 3-cycle latency. This unit executes the following instructions:

~ POPC, LOC, TOC
~ PERR, MINxxx, MAXxxx, UNPKxx, P.Kxx

The 80 Ebox register file entries contain storage for the values of the 31 Alpha integer registers (the value
of R31 is not stored), the values of 8 PAL shadow registers, and 41 results written by instructions that
have not yet retired. Ignoring cross-cluster delay, the two copies of the Ebox register files contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports. The four read ports
are used to source operands to each of the two subclusters within a cluster. Two write ports are used to
write results generated within the cluster; two write ports are used to write results generated by the other
cluster; and two write ports are used to write results from load instructions.

2.1.2 Fbox
The Fbox is a two-wide floating point execution unit which executes both VAX and IEEE floating point
instructions. It support IEEE S_floating and T_floating data types and all rounding modes. It also
supports VAX F _floating and G _floating data types, and provides limited support for D _floating format
It contains the following resources:

• a 72-entry physical register file
• a fully pipelined multiplier with four cycle latency
• a fully pipelined adder with four cycle latency
• a nonpipelined divide unit associated with the adder pipeline
• a nonpipelined square root unit associated with the adder pipeline

Digital Confidential Do Not Copy 10

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating point registers
other than F3 l, and 41 values written by instructions that are not yet retired. The Fbox register file
contains six reads ports and four write ports. Four read ports are used to source operands to the add and
multiply pipelines, and two read ports are used to source data for store instructions. Two write ports are
used to write results generated by the add and multiply pipelines, and two write ports are used to write
results from floating point load instructions.

2.1.3 Ibox
The lbox consists of the following subsections:

• Virtual PC logic
• Instruction-stream translation buffer (ITB)
• Instruction fetch logic
• Register rename maps
• Integer and floating point issue queues
• Exception and interrupt logic
• Retire logic

2.1.3.1 Virtual PC Logic
The Virtual PC logic maintains the virtual program counter values for instructions that are in flight.
There can be up to 80 instructions in 20 successive fetch slots in-flight between the mappers and the end
of the pipeline, hence the VPC logic contains a 20-deep table to store these fetched VPCs.

2.1.3.2 Instruction Translation Buffer (ITB)
The !box includes a 128-entry, fully associative translation buffer used to store recently used I-stream
address translations and page protection information. Each of the entries in the ITB can map 1, 8, 64 or
512 contiguous 8K byte pages. The allocation scheme is round-robin. The ITB supports an 8-bit ASN and
contains an ASM bit The lcache is virlual, hence the ITB is only accessed for I-stream references which
miss the lcache. The lcache contains the access-check information so a fetch address translation is only
made if the address missed in the !cache.

2.1.3.3 Instruction Fetch Logic
The instruction fetcher reads up to four naturally aligned instructions per cycle from the instruction cache.
It us~ both branch prediction ar.d line prediction to maximize efficiency. It also contains a· subroutine
return prediction stack and an !cache stream controller. The stream controller generates fetch requests for
additional icache lines and stores the istrcam data in the icache. There is no separate buffer to hold
stream requests.

2.1.3.4 Register Rename Maps
The prefetcher forwards instructions to the integer and floating point register rename maps. The rename
maps perform two functions. First, they serve to eliminate register WAR and WA W dependencies while
preserving true RAW data dependencies, in order to allow instructions to be dynamically rescheduled.
Second, they provide a means of speculatively executing instructions before the control flow previous to
those instructions is resolved. Note that both exceptions and branch mispredicts represent deviations from
the control flow predicted by the prefetcher.
The map logic translates each instruction's operand register specifiers from the "virtual" register numbers
in the instruction to the "physical" register numbers which hold the corresponding architecturally correct
values. The map logic also renames each instruction's destination register specifier from the virtual

Digital Confidential Do Not Copy 11

number in the instruction to a physical register number chosen from a list of free physical registers, and
updates the register maps. The map logic can process four instructions per cycle.

The map logic does not return the physical register which holds the old value of an instruction's virtual
destination register to the free list until the instruction retires, which means that the control flow up to
that instruction has been resolved. If a branch mispredict or exception occurs, the map logic backs the
contents of both maps up to the state associated with the instruction which ttiggered the condition, and the
prefetcher restarts at the appropriate PC.

At most 20 valid fetch slots containing up to 80 instructions can be in flight between the register maps
and the end of the machine's pipeline, where the control flow is finally resolved. The map logic is capable
of backing the contents of the maps up to the state associated with any of these 80 instructions in a single
cycle.

2.1.3.5 lnstroction Issue Queues
The register rename logic places instructions into one of issue queues, from which they are later issued to
functional units for execution.

2.1.3.5.1 Integer Queue (IQ)
The integer queue (IQ) is associated with the Ebox, is 20-deep, and issues instructions of the following
types at a maximum rate of four operations per cycle:

• integer operates
• integer conditional branches
• unconditional branches - both displacement and memory format
• integer and floating point loads and stores
• PAL-reserved instructions: HW _MTPR, HW _MFPR, HW _LD, HW _ST, HW _RET
• ITOFx, FI'Olx

Each queue entry physically produces four requests signals - one for each of the Ebox subclusters. A
queue entry asserts a request when it contains an instruction that can be executed by the subcluster, if the
instruction's operand register values are available within the subcluster. There are two arbiters - one for
the upper subclusters and one for the lower subclusters. Each arbiter picks two of the possible 20
requesters for service each cycle. A given instruction only requests upper subclusters or lower subclusters,
but since many instructions can only be executed in one type or another this is not too constraining. For
example, loads and stores can only go to lower subclusters, and shifts can only go to upper subclusters.
Instructions which can execute in either upper or lower subclusters, such as adds and logic operations, are
statically assigned before being placed in the IQ. ·

The IQ arbiters pick between simultaneous requesters of a subcluster based on age - older instructions are
given priority over newer instructions.

If a given instruction requests both lower subclusters and no older instruction requests a lower subcluster,
then the arbiter assigns subcluster LO to the instruction. If a given instruction requests both upper
subclusters and no older instruction requests an upper subcluster, then the arbiter assigns subcluster Ul to
the instruction. This asymmetry between the upper and lower subcluster arbiters is a circuit
implementation optimization.

2.1.3.5.2 Floating Point Queue (FQ)
The floating point queue is associated with the Fbox, is 15-deep, and issues the following instruction
types:

• floating point operates
• floating point conditional branches

Digital Confidential Do Not Copy 12

I : floating point stores
floating point register to integer register transfers (ftoi)

Each queue entry physically produces three request wires - one for the add pipe, one for the mul pipe, and
one for stores. There are three arbiters, one for each of the add, mul and store pipes. The add and mul
arbiters pick one requester per cycle, and each of two store pipe arbiters picks one requester per cycle.

The FQ arbiters pick between simultaneous requesters of a pipe based on age - older instructions are given
priority over new instructions. Floating stores and FfOI instructions in even-numbered queue entries
arbitrate for one store port and floating stores and FfOI instructions in odd-numbered queue entries
arbitrate for a second store port.

Floating stores and FfOI instructions are enqueued in both the integer and floating queues. They wait in
the floating queue until their operand register values are available. They subsequently request service to
the store arbiter. Upon issue from the floating queue, they signal the corresponding entry in the integer
queue to request service. Upon issue from the integer queue, the operation is completed.

2.1.3.6 Exception and lnte"upt Logic
There are two types of exceptions: faults and synchronous traps. Arithmetic exceptions are precise and
reported as synchronous traps.

There are four sources of interrupts:

• Level sensitive hardware interrupts sourced by the irq_ h<5:0> pins.
• Edge sensitive hardware interrupts generated by the serial line receive pin, performance· counter

overflows, and hardware corrected read errors.
• Software interrupts sourced by the software interrupt request (SIRR) register.
• Asynchronous system traps (ASTs).

Interrupt sources can be individually masked. In addition, AST interrupts are qualified by the current
processor mode.

2.1.3.7 Retire Logic
The lbox fetches instructions in program order, executes them out of order, and retires them in order. The
retire logic maintains the correct architectural state of the machine by retiring an instruction only if all
previous instructions have executed without generating exceptions or branch mispredicts. In effect,
tearing an insuuction commits the machine to any changes the instrnction may have made to software
visible state, of which there are three classes:

•
•

I •

The integer and floating point registers
Memory
Internal processor registers (including controVstatus registers and translation buffers).

The retire logic can sustain a maximum retire rate of eight instructions per cycle, and can retire up to as
many as eleven instruction in a single cycle.

2.1.4 On-chip Caches
EV6 contains two on-chip primary caches implemented with fully static, six transistor CMOS structures.

2.1.4.1 Instruction Cache
The instruction cache (lcache) is a 64K byte, virtual cache. Set prediction is used to approximate the
performance of a two-set cache without slowing the cache access time. Each Icache block contains:

Digital Confidential Do Not Copy 13

~pru 1v, 1::1":10

• 16 Alpha instructions (64 bytes)
• Virtual tag bits <47:15>
• An 8-bit address space number (ASN) field
• A 1-bit address space match (ASM) bit
• A 1-bit P Al.code bit to indicate physical addressing
• A valid bit
• Data and tag parity protection
• Four access-check bits: K, E, S, U
• Additional predecoded information to assist with instruction processing and fetch control

2.1.4.2 Data Cache
The data cache (Dcache) is a 64K byte, two-way set associative, virtually indexed, physically tagged,
write-~ack, ~ad/write allocate each~ with 64-byte blocks. Each ~ycle the ~aclt.e can perform:

• two quadword (or shorter) reads to arbitrary addresses, or
• two quadword writes to the same aligned octaword, or
• two non-overlapping less-than-quadword writes to the same aligned quadword, or
• one sequential read and write of the same aligned octaword

Each Dcache block contains:

• 64 data bytes and associated quadword ECC
• Physical tags bits <42:13>
• Valid, dirty, shared, .and modified bits
• A tag parity bit calculated across the tag, dirty, shared and modified bits
• A bit to control round-robin set allocation (one bit per two cache blocks)

The dcache contains two sets, each with 512 rows containing 64-byte blocks per row (i.e. 32K bytes of
data per set). EV6 requires 2 additional bits of virtual address beyond the bits which specify an 8K byte
page in order to specify a dcache row index. Conceptually, a given virtual address might be found in 4
distinct places in the dcache, depending on the virtual-to-physical translation for those two bits. EV6
prevents this aliasing by keeping only one of the four possible translated addresses in the cache at any
particular time.

2.1.S Mbox
The Mbox is responsible for controlling the Dcache and for ensuring architecturally correct behavior of
load and store instructions. It contains the following structures:

• Load queue (LQ)
• Store queue (SQ)
• Miss address file (MAF)
• D-stream translation buffer (DTB)

2.1.5.1 Load Queue (LQ)
The load queue (LQ) is essentially a reorder buffer for load instructions. It contains 32 entries and
maintains the state associated with load instructions which have been issued to the Mbox but which have
not delivered their results to the CPU and been retired. The Mbox assigns loads to load queue slots based
on the order in which they were fetched from the lcache and places them into the load queue after they are
issued by the IQ. The load queue serves to help ensure correct Alpha memory reference behavior.

Digital Confidential Do Not Copy 14

2.1.5.2 Store Queue (SQ)
The store queue (SQ) is essentially a reorder buffer and graduation unit for store instructions. It contains
32 entties and maintains the state associated with store instructions which have been issued to the Mbox
but which have not both been retired and written to the Dcache. The Mbox assigns stores to store queue
slots based on the order in which they were fetched from the Icache and places them into the store queue
after they are issued by the IQ. The store queue holds data associated with stores issued from the IQ until
they are retired, at which point the store can be allowed to update the Dcache. The store queue also serves
to help ensure correct Alpha memory reference behavior.

2.1.5.3 Miss Address File (MAF)
The miss address file (MAF) holds physical addresses associated with pending lcache and Dcache fill
requests and pending IO space reads. It contains eight entries.

2.1.5.4 D-stream Translation Buffer (DTB)
The Mbox includes a 128-entry, fully associative translation buffer used to store recently used D-stream
address translations and page protection information. Each of the entties in the DTB can map 1, 8, 64 or
512 contiguous SK byte pages. The allocation scheme is round-robin. The DTB supports an 8-bit ASN
and contains an ASM bit.

2.1.6 Cbox
The CBOX controls the Bcache and System ports. It contains the following structures:

• Victim Address File (V AF)
• Victim Data File (VDF)
• IO Write Buffer (IOWB)
• Probe Queue (PQ)
• Duplicate Dcache Tags (DT AGS)

2.1.6.1 Victim Address File (V AF) and Victim Data File (VDF)
The V AF and VDF together form an 8-entry victim buffer used for holding:
• Dcache blocks to be written to the Bcache
• I-stream ~che blocksfro!Il memory to be written to the Bcache
• Bcache blocks to be written to memory
• Cache blocks sent to the system in response to probe commands

2.1.6.2 IO Write Buffer (IOWB)
The IOWB consists of four 64-byte entries and associated address and control used for buffering IO write
data between the store queue and the System port

2.1.6.3 Probe Queue (PQ)
The probe queue (PQ) is an eight-deep queue which holds pending System port cache probe commands
and addresses.

2.1.6.4 Duplicate Dcache Tag(DTAG)Array
The DT AG array holds a duplicate copy of the Dcache tags and is used by the Cbox when processing
Dcache fills, !cache fills and System port probes. See section 3 for more details.

Digital Confidential Do Not Copy 15

-·--- ------·--·---···- . ···-·······---·""··-··· -----~

"'-'' V '-"&AJ.,ts U_iJ""'""""•...,.•""""4"""U&""' .J..~~ Ii: -.\,..'

2.2 Pipeline Organization
The machine's basic pipeline is shown below:

-1

I
c
A
c
H
E

F

0

s
1

M

2

I
N
T

F
L
T

Q

3

I
N
T

a

M Q
A
p

2.2.1 Stage 0 - Instruction Fetch

R

4
E

5
D

6

MEMO

MEM1

FADD

B
7 8 9

I FO I F1 I F2 I F3 I

In the fetch stage of the pipe, up to four aligned instructions are fetched from the Icachc. The branch
prediction tables are also accessed in this cycle. The branch tables produce a prediction for one branch or
memory format JSR instruction per cycle, hence the prefetcher is limited to fetching through one branch
per cycle. If there is more than one branch within the fetch line, and the branch predictor predicts that the
first branch will not be taken, it w~ll predict through subsequent branches at the rate of one per cy~le, until
it predicts a taken branch or predicts through the last branch in the fetch line. ·

The Icache array also contains a line prediction field, the contents of which are applied to the !cache in
the next cycle. The purpose of the line predictor is to remove the pipeline bubble which would otherwise
be created when the branch predictor predicts a branch to be taken. In effect, the line predictor attempts to
predict the Icache line which the branch predictor will generate. On fills, the line predictor value at each
fetch line is initialized with the index of the next sequential fetch line, and later retrained by the branch
predictor if necessary.

2.2.2 Stage 1- Instruction Slot
In the slot stage the branch predictor compares the next !cache index that it generates to the index that
was generated by the line predictor. If there's a mismatch the branch predictor wins - the instructions
fetched during that cycle are aborted, and the index predicted by the branch predictor is applied to the
Icache the next cycle. Line mispredicts result in one pipeline bubble.

There is one case where the line predictor takes precedence over the branch predictor - memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted) memory format call

Digital Confidential Do Not Copy 16

or jump target, then its contents take precedence over the target hint field associated with these
instructions. This allows dynamic calls or jumps to be correctly predicted.

The instruction fetcher produces the full VPC during the fetch stage of the pipe. The Icache produces the
tags for both sets 0 and 1 each time it's accessed, which enables the fetcher to differentiate set mispredicts
from true lcache misses. If the access was a set mispredict the fetcher aborts the last two fetched slots and
re-fetches the slot in the next cycle. It also retrains the appropriate set prediction bits.

The instruction data is transferred from the icache to the integer and floating point register map hardware
during this stage. In addition the integer instructions begin to pass through the slot logic, which
determines whether they will use upper or lower eboxes.

2.2.3 Stage 2 - Map
Instructions are sent from the lcache to the integer and floating point register maps during the. slot stage,
and register renaming is performed during the map stage. Also, each instruction is.assigned a unique 8-bit
number, called an inum, which is used to identify the instruction and its program order with respect to
other instructions during the time that it is in flight. Instructions are considered to be in flight between the
time they are mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating point queues by the
end of the map stage.

2.2.4 Stage 3 - Issue
Instructions are selected for execution by the IQ and FQ during the issue stage of the pipe~ In general,
instructions are deleted from the IQ or FQ two cycles after they issue - i.e. if an instruction issues in cycle
N, it remains in the queue but does not request service in cycle N+ l,.and is gone in cycle N+2.

2.2.5 Stage 4 - Register Read
Instructions which are issued from the queues read their operands from the register files and receive
bypass data

2.2.6 Stage 5 - Execute
The Ebox and Fbox pipelines begin execution in this pipe stage.

2.2. 7 Stage 6 - Dcache Acce8s
Memory reference instructions access the Dcache and data translation buffers in this pipe stage. In
general, loads access both the tag and data arrays in pipe stage 6, while stores only access the tag array.
Store data is written into the store queue where it is held until the store instruction retires.

Most integer operate instructions write their register results in this cycle.

2.2.8 Instruction Retire
A given instruction retires when it has been executed to completion, and all previous instructions have
been retired. The execution pipe stage in which a given instruction becomes eligible to be retired depends
upon the type of instruction. The following table gives the minimum retire latencies (assuming that all
previous instructions have been retired) for various classes of instructions:

Instruction Class Retire Stage Comments

INT Conditional Branch 7

Digital Confidential Do Not Copy 17

INT Multiply
INT Operate
Memory
FPAdd
FPMul
FPDIV/SQRT

FP Conditional Branch
BSR/JSR

7/13
7
10
11
11
ll+L*

11
10

(13 for MUIJV)

Add latency of instruction see section 2. 7 .3. Latency is 11 if
hardware detects that no exception is possible (see section
2.2.8.1)
Branch mispredict is reported in stage 7
JSR mis~ct is re,P2Sted in S!!ge 8

2.2.8.1 FP Divide/Square Root Early Retire
The FP divider and square root unit can detect that, for many combinations of source operand values, no
exception can be generated. Instructions with these operands can retire before the result is generated.
When detected, they retire with the same latency as FP Add. Early retire is not possible for the following
instruction/operand/architecture state conditions:
• Instruction is not a DIV or SQRT
• SQRT source operand is negative
• Divide operand exponent_a is 0
• Either operand is NaN or INF
• Divide operand exponent_b is 0
• Trcipping mode is /I. (inexact)
• INE status bit is 0
Early retire is also not P<>ssible for divides.if the resulting exponent has any of the following.
characteristics (define EXP as the result exponent):
• DIVT ,DIVG: EXP >= Ox3ff or EXP<= Ox2
• DIVS,DIVF: EXP>= Ox7f or EXP <= Ox382

2.2.9 Retire of Operates into R31/F31
Many instructions which have R31 or F31 as their destination are retired immediately upon decode (stage
3). These instructions do not produce a result and are 'squashed' from the pipeline as well -- they do not
occuPX a slot in the issue gueues and do not occupy a functional unit.

.... ~~~~~~~~ .. !.Y.P.~ N!?.~
INT A, INTL, INTM, All with R31 as destination
INTS
FL TI, FL TL, FL TV All with F3 l as destination. MT _FPCR is not included because it has no

LDQ_U
MISC
FLTS

destination -- it is never squashed
All with R31 as destination
TRAPB and EXCB are always squashed. Others are never squashed.
All (SQRT, ITOF) with F31 as destination

2.2.10 Pipeline Aborts
The following table lists the timing associated with each common source of pipeline abort The abort
penalty as given is measured from the cycle after the fetch stage of the instruction which triggers the abort
to the fetch stage of the new target, ignoring any lbox pipeline stalls or queuing delay which the triggering
instruction might experience.

Abort Condition

Branch mispredict

Digital Confidential

Penalty
(c~cles)

7

Comments

integer or floating conditional branch mispredict

Do Not Copy 18

Abort Condition

JSR mispredict
Mbox order trap
Other Mbox replay traps
OTB miss
ITB miss
Integer arithmetic trap
FP arithmetic trap

Penalty
(cycles)
8
14
13
13
7
12
13+L

2.3 Memory And 110 Accesses

Comments

memory format JSR or HW _RET
load-load order, store-load order

Add latency of instruction. See section 2. 7 .3 2. 7 .3for
instruction latencies.

This section provides a brief overview of EV6 processing of memory and IO references.

The IQ may issue any combination of loads and stores to the Mbox at the rate of two per cycle. The two
lower Ebox subclusters, LO and Ll, generate the 48-bit effective virtual address for these instructions.

In the discussions which follow, an instruction is said to be newer than another instruction if it follows
that instruction in program order and is said to be older if it precedes that instruction in program order.

2.3.1 Memory Space Load Instructions
The Mbox begins execution of a load instruction by translating its virtual. address to a physical address
using the OTB and by accessing the Dcache. The Dcache is virtually indexed, allowing these two
operations to be done in parallel. The Mbox puts information about the load, including its physical
address, destination register and data format, into the load queue.

If the requested physical location is found in the Dcache (a hit) the data is formatted and written into the
appropriate integer or floating register. If the location is not in the Dcache (a miss) then the physical
address is placed in the miss address file (MAF) for processing by the Cbox. The MAF performs a
merging function in which a new miss address is compared to miss addresses already held in the MAF. If
the new miss address is to the same Dcachc block as a miss address already held in the MAF, then the
new miss address is discarded.

When Dcache fill data is returned to the Dcache by the Cbox, the Mbox satisfies the requesting loads in
· the load qL!~ue.

2.3.2 IO Space Load Instructions
Since IO space reads may have side effects, they can't be done speculatively. Hence, when the Mbox
receives an IO space read it first places it in the load queue, where it is held until it retires. The Mbox
replays retired IO space reads from the load queue to the MAF in program order at a rate of one per CPU
cycle. 5.3.9

The MAF handles IO reads differently from memory reads, since for IO space reads the system requires
an indication as to which bytes were actually accessed by the CPU. Each MAF entry contains 8 mask bits
and a 2-bit length field to hold this information, and may thus hold:

•
•
•

a single byte or word IO read (byte and word length IO reads are not merged), or
up to eight longword IO reads within an aligned 32-byte region, or
up to eight quadword IO reads within an aligned 64-byte region, or
a single memory space read for an aligned 64-byte Dcache block

Digital Confidential Do Not Copy 19

EV6 maintains IO reference ordering as follows (assume address X and address Y are different):

First Instruction In Pair Second Instruction In Pair Reference Order
LD-IO to address X LD-IO to address X maintained
LD-IO to address X LD-IO to address Y maintained
ST-IO to address X ST-IO to address X maintained
ST-IO to address X ST-IO to address Y maintained
LD-IO to address X ST-IO to address X maintained
LD-IO to address X ST-IO to address Y not maintained
ST-IO to address X LD-IO to address X maintained
ST-IO to address X LD-IO to address Y not maintained

When the Mbox allocates a new MAF entry to an IO read, it attempts to merge other IO reads into the_
same entry until one of the following conditions occur, at which point the-entry ~~Y be serviced by the
Cbox. · - -

• an IO read which doesn't merge with the entry is replayed from the load queue
• Four cycles go by without an IO read merging with the entry
• an IO read which matches the entry but touches a mask bit which is already set is replayed from the

load queue
• an IO write matches the entry

The Cbox sends I() read reqll:~~ off-chip_ in the order in which they were received from the Mh<?x.

2.3.3 Memory Space Store Instructions
The Mbox begins execution of a store instruction by translating its virtual address to a physical address
using the DTB and by probing the Dcache. The Mbox puts information about the store, including its
physical address, its data and the results of the Dcache probe, into the store queue.

If the Mbox does not find the addressed location in the Dcache then it places the address into the MAF for
processing by the Cbox. If the Mbox finds the addressed location in a Dcache block which isn't dirty, then
it places a ChangoToDirty request into the MAF.

A given store instruction may write the Dcache when it is retired and when the Dcache block containing
its address is dirty in the Dcache. Store queue entries which meet these two conditions may be placed into
the writeable state, and are done so in program order at a maximum ·rate of two entries per cycle. The
Mbox transfers writable store queue entries from the store queue to the Dcache·in program order at a
maximum rate of two stores per cycle. Dcache lines associated with writable store queue entries are locked
down by the Mbox - System port probe commands cannot evict these blocks until their associated writable
store queue entries have been transferred into the Dcache. This restriction assists in store-conditional and
Dcache ECC processing.

Stores in the store queue which have not been transferred to the Dcache may source data to
newer load instructions. The Mbox compares the virtual Dcache index bits of incoming loads to queued
stores, and sources the data from the store queue, bypassing the Dcache, when necessary.

2.3.4 IO Space Store Instructions
The Mbox begins processing IO space stores just like memory space stores - by translating the virtual
address and placing state associated with the store into the store queue.

The Mbox replays retired IO space stores from the store queue to the IOWB in program order at a rate of
one per CPU cycle. Each IOWB entry may contain:

Digital Confidential Do Not Copy 20

• a single byte or word IO write (byte and word length IO writes are not merged), or
• up to eight longword IO writes within an aligned 32-byte region, or
• up to eight quadword IO writes within an aligned 64-byte region

When the Mbox allocates a new IOWB entry to an IO write, it attempts to merge other IO writes into the
same entry until one of the following conditions occur, at which point the entry may be serviced by the
Cbox.

•
I •

an IO write which doesn't merge with the entry is replayed from the store queue
Four cycles go by without an IO write merging with the entry

• an IO write which matches the entry but touches a mask bit which is already set is replayed from the
store queue

• an IO read matches this entry
• a WMB instruction is replayed from the store queue

The Mbox never allows queued IO space stores to source data to subsequent loads. The Cbox sends IO
space write requests off-chip in the order they were received from the Mbox.

2.4 Replay Traps
There are some situations in which a load or store instruction can not be executed due to a condition
which is detected after that instruction issues from the IQ or FQ. The instruction is therefore aborted
(along with all newer instructions) and restarted from the fetch stage of the pipeline. This mechanism is
called a replay trap.

2.4.1 Mbox Order Traps
Load and store instructions may be issued from the IQ in a different order than they were fetched from the .. "
Icache, while architecturally, D-stream memory accesses to the same physical bytes must be completed in '..
order. Generally, the Mbox manages the memory reference stream by it~elf to achieve architecturally
correct behavior, but there are two cases in which replay traps are used to manage the memory stream.

The Mbox ensures that loads which reference the same physical byte(s) ultimately issue in order via the
load-load order trap. The Mbox compares the address of each newly issued load to that of all loads in the
load queue. If it finds a newer load instruction in the load queue then it invokes a load-load order trap on
the newer instruction. This is a replay trap which aborts the target of the trap and all newer instructions
from the machine and refetches instructions starting at the target of the trap.

The Mbox ensures that a load ultimately issues after an older store which writes some portion of the its
memory operand via the store-load order trap. The Mbox compares the address of each newly issued
store to that of all loads in the load queue. If it finds a newer load instruction in the load queue then it
invokes a store-load order trap on the load instruction. This is a replay trap, just like the load-load order
trap. The lbox contains extra hardware to reduce the frequency of this trap. There is a one-bit by 1024-
entry PC-indexed table in the lbox called the stWait table. At Icache fetch time this table is accessed
along with the Icache. The table produces one bit for each instruction accessed from the Icache. When a
load instruction gets a store-load order replay trap its associated bit in the stWait table is set during the
cycle that the load is re-fetched. Hence the trapping load's stWait bit will be set the next time it's fetched.
The IQ will not issue load instructions whose stWait bit is set while there are older unissued stores in the
queue. A load instruction whose stWait bit is set can issue the cycle immediately after the last older store
issues from the queue. All the bits in the stWait table are unconditionally cleared every 16384 cycles.

Digital Confidential Do Not Copy 21

2.4.2 Other Mbox Replay Traps
The Mbox also uses replay traps to flow control the load queue and store queue, and to ensure that is there
are never multiple outstanding misses to different physical addresses which map to the same Dcache or
Bcache line. Unlike the order traps, however, these replay traps are invoked on the incoming instruction
which triggered the condition.

2.5 Software-Directed Pretetching and Loads into R31 & F31
This section describes how EV6 processes the various forms of load into R31/F31.

First, EV6 requires PALcode assistance to conform to ECO 95 - loads into R31/F31 may generate
exceptions - these exceptions must be dismissed by P ALcode.

2.5.1 Normal Prefetch: LDL, LDF, LDG, LDB, LDW
EV6 pr~sses-these insttiictions as "normal" cache line prefetches ~- if-th~'ioad hit8. the r>cache, -the
instruction is dismissed, otherwise the addressed cache block is allocated into the Dcache.

2.5.2 Prefetch with Modify Intent: LDS
EV 6 processes a LDQ into F31 as a prefetch with modify intent If the load hits a dirty, modified DCache
block the instruction is dismissed. Otherwise, the addressed cache block is allocated into the Dcache for
write access - its dirty and modified bits are set

2.5.3 Prefe.ch, Evict Next: LJ;>Q
EV6 processes this like a "normal" prefetch, with one exception. If the load misses the Dcache, the
addressed cache block is allocated into the Dcache, but the Dcache set allocation pointer is left pointing to
this block. The next miss to the same Dcache line will evict the block. One example where this
instruction might be used is when software is reading an array which is known to fit in the off-chip
secondary cache, but will not fit in the on-chip Dcache. The use of the instruc.tion in this case will ensure
that hardware provides the desired prefetch function without displacing useful cache blocks stored the
other set of the Dcache.

2.5.4 Pref etch, No Reuse: LDT
This instruction will indicate to EV6 that the addressed cache block will be accessed once and not
accessed again for_ a long time. This instruction might be used when sweeping through the contents of an
array which is kriown to be largerthan the secondary cache, for example, and will inform EV6 to perform
a cache line prefetch without displacing otherwise useful cache blocks.

EV6 will respond to this instruction as follows. If the load hit the Dcachc the instruction is dismissed.
Otherwise the addressed cache block is fetched from the Bcache or memory, depending upon the result of
the Bcache tag probe, and transmitted across EV6's internal data busses. This external reference will not
result in a fill of either the Dcache or the Bcache, however. Any loads to the same cache block and which
issue after the prefetch issues but before the block is transmitted across the internal busses will be satisfied
when the prefetched block is transmitted across the internal data busses. Loads to this cache block which
issue after the block is transmitted will miss the Dcache and result in another external read, either to
memory or the BCache.

2.6 Special Cases
This section describes the mechanisms by which EV6 processes "irregular" instructions in the Alpha
instruction set, or cases in which EV6 processes instructions in a non-intuitive way.

Digital Confidential Do Not Copy 22

2.6.1 Load Hit Speculation
The latency of integer loads which hit in the Dcache is three cycles. Here is the pipeline timing:

Hit

cycle# 1 2 3 4 & 6 7 8

ILD a R E D B

instr1 a R

instr2 a

There are two cycles in which the IQ may speculatively issue instructions which consume load data before
Dcache hit information is known. Any instructions which issue from the IQ within this two cycle
"speculative window" are kept in the IQ with their requests inhibited until the load's hit condition is
known, even if they are not dependent on the load. If the load hits then these instructions are removed
from the queue. If the load misses then the execution of these instructions is aborted and the instructions
are allowed to request service again. For example, in the above diagram, instrl and instr2 are issued
within the speculative window of the load. If the load hits then both instructions will be deleted from the
queue by the start of cycle 7 - one cycle later than normal for instrl and at the nonnal time for instr2. If
the load misses then both instructions are aborted from the execution pipelines and may request service
again in cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an integer load which missed
the Dcache, even if they are not dependent on the load. However, if software knows misses are likely, it
can still benefit from scheduling the instruction stream for Dcache miss latency. EV6 includes a saturating:
counter which is incremented by load misses and decremented by load hits. When the upper bit of the
counter is set the integer load latency is increased to five cycles, and the speculative window is removed.
The counter is 5 bits wide, and increments by two on a miss and by one on a hit.

Since loads into R3 l do not produce a result, they do not (,'feate a "speculative window" when they execute
and therefore never waste IQ-issue cycles if they miss.

Floating loads which hit in the Dcache have a latency of four cycles. Here is the pipeline timing:

Hit

cycle# 1 I 2 3 4 & 6
1

7
1

8

FLO a R E D B

instr1 a R

instr2 a

For floating loads the speculative window is only one cycle wide, and FQ-issued instructions which issue
within the speculative window of a missing floating load are only aborted if they depend on the load. For
example, in the above diagram instrl is issued in the speculative window of the load. If it is not a
consumer of the data returned by the load then it is removed from the queue at its normal time - just at the
start of cycle 7. If it is dependent on the load data and the load hit it is removed from the queue one cycle
later - at the start of cycle 8, while if the load missed then it is aborted from the Fbox pipeline and may
request service again in cycle 7.

Digital Confidential Do Not Copy 23

2.6.2 Floating Point Stores
Floating point store instructions are cloned and loaded into both the IQ and the FQ from the mapper.
Each IQ entry contains a control bit called fpWait, which when set prevents that entry from asserting its
requests. This bit is initially set for each floating store which enters the IQ unless it was the target of a
replay trap. The instruction's FQ clone issues when its Ra register is about to become clean, resulting in
its IQ clone's fpWait bit being cleared and allowing the IQ clone to issue and be executed by the Mbox.
This mechanism ensures that floating stores are always issued to the Mbox along with their associated
data without requiring the floating register dirty bits to be available within the IQ.

2.6.3 CMOV
For EV6, the Alpha CMOV instruction has three operands, and thus presents a special case. The required
operation is to move either the value in register Rb or the value from the old physical destination register
into the new destination register~ based on the value in Ra. Since neither the mapper nor the Ebox and
Fbox data paths are otherwise required to handle three operand instructions, the CMOV instruction is
decomposed by the lbox pipeline into two, two-operand instructions.

cmov Ra,Rb -> Re

cmovl Ra,oldRc -> newRcl
cmov2 newRcl, Rb -> newRc2

The first instruction, cmov 1, tests the value of Ra and records the result of this test in a 65th bit of its
destination register, newRcl. It also copies the value of the old physical destination register, oldRc; to ,,
newRcl. The second instruction, cmov2, then copies either the value in newRcl or the value in Rb into a
second physical destination register, newRc2, based on the CMOV "predicate" bit stored in newRcl. In
summary, the original CMOV instruction is decomposed into two dependent instructions which each
consume a physical register from the free list

In order to further simplify this operation the two component instructions of a CMOV instruction are
driven through the mappers in successive cycles. Hence, if a given fetch line contains N CMOV
instructions, it takes N+l cycles to run that fetch line through the mappers. For example, the following
fetch line:

add cmovx sub cmovy

results in the following three map cycles:

addcmovxl
cmovx2 sub cmovy 1
cmovy2

Integer CMOVs are executed as two distinct one-cycle latency operations by the Ebox.

Floating CMOV s are executed as two distinct four-cycle latency operations by the Fbox add pipeline.

Digital Confidential Do Not Copy 24

2.7 Instruction Issue Rules
This section defines instruction classes, the functional unit pipelines to which they are issued, and their
associated latencies.

2. 7 .1 Instruction Cl~ Definitions
The table below defines instruction classes as they apply to the issue rules, and for each class specifies
which of the functional unit pipelines execute those instructions.

Class Name
ild
fld
ist
fst
Ida
mem misc
rpcc
rx
mxpr

ibr
jsr
iadd
ilog
is hf
cmov
imul

Pipeline
LO,Ll
LO,Ll
LO,Ll
FSTO,FSTl,LO,Ll
LO,Ll,UO,Ul
L1
L1
L1
LO, L1 (depends on
IPR)
UO, U1
LO
LO, UO, L1, U1
LO, UO, Ll, Ul
uo, U1
LO, UO, Ll, Ul
Ul

Instruction List
all integer loads
all floating loads
all integer stores
all floating stores
LDA,LDAH
WH64,ECB,WMB
RPCC
RS,RC
HW _MTPR,HW _MFPR

integer conditional branches
BR, BSR, JMP, CALL, RET, COR, HW_RET, CALL_PAL
opcode 1016. except CMPBGE
AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE
opcode 1216
integer CMOV - either clone
integer multiplies

imisc
tbr

uo
FA

LOC, TOC, POPC, PERR, Mll"\lxxx, MAXxxx, PKxx,UNPKxx
floating conditional branches

fadd FA

fmul FM
fcmovl FA
fcmov2 FA
f div FA
fsqrt FA
nop none
ftoi LO,Ll
itof LO,Ll
mx'"fe£r FM

2.7.2 Ebox Slotting

all floating operates except multiply, divide, square root and
conditional move
floating multiply
floating CMOV - first half
floating CMOV - second half
floating divide
floating square root
TRAP, EXCB, UNOP -LDQ_U R31, O(Rx)
FTOIS,FfOIT
ITOFS, ITOFF, ITOFf
move from floatinB Eoint control reBister

Instructions which issue from the IQ and could execute in either upper or lower Ebox subclusters are
slotted to one pair or the other during the map stage of the pipeline, based on the instruction mix in the
fetch line. These slotting rules are defined in the table below. In the type column, "U" means the
instruction only executes in an upper subcluster, "L" means the instruction only executes in a lower
subcluster, and "E" means the instruction could execute in either an upper or lower subcluster. The

Digital Confidential Do Not Copy 25

numbers 3;1.,1 and 0 identify each insttuction 's location in the fetch line by the value of bits <3:2> of its
PC.

Digital Confidential Do Not Copy 26

Instruction Type Slotting Instruction Type Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EBEL ULUL LLLU LLLU
EEEU ULLU LLUE LLUU
EBLE ULLU LLUL LLUL
BELL UULL LLUU LLUU
EELU ULLU LUBE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
BLEE ULUL LULL LULL
ELEL ULUL LULU LULU
ELEU ULLU LUUE LUUL
ELLE ULLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU ULLU UEEE ULUL
ELUE ULUL UEEL ULUL
ELUL ULUL UEEU ULLU
ELUU LLUU UELE ULLU
EUEE LULU UELL UULL
EUEL LUUL UELU. ULLU
EUEU LULU UEUE ULUL
EULE LULU UEUL TJLUL
EULL UULL UEUU ULUU
EULU LULU ULEE ULUL
EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL
LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL ULUU ULUU
LELU LULU UUEE ~U.LL
LEUE LULJL UUEL UULL
LEUL LUUL UUEU UULU
LEUU LLUU UULE UULL
LLEE LLUU UULL UULL
LLEL LLUL UULU UULU
LLEU LLUU UUUE UUUL
LLLE LLLU UUUL UUUL

uuuu uuuu

Digital Confidential Do Not Copy 27

rt!J.lU .l.V, .l/::JV

2. 7 .3 Instruction Latencies
After an instruction is placed in the IQ or FQ, its issue point is detennined by the availability of its
register operands, functional unit(s), and relationship to other instructions in the queue. There are register
producer-consumer dependencies and dynamic functional unit availability dependencies which affect
instruction issue. The mapper removes register producer-producer dependencies.

The latency to produce a register result is generally fixed. The exception is for loads which miss the
Dcache .

.... ~~~ 4-~~~~.Y. ~Q.~~-~~-~ .. .
ild 3 Dcache hit

13+ Dcache miss, latency with 6-cycle Bcache. Add additional bcache loop
latency if bcache is slower than 6 cycles.

fld 4 Dcache hit
8+ Dcache miss, latency with 0-cycle Bcache. Add Bcache loop latency.

ist doesn't produce register value
fst doesn't produce register value
rpcc I possible I cycle cross cluster delay
rx
mxpr

icbr
ubr
jsr
iadd
ilog
is hf
cmovl
cmov2
imul
imisc
fcbr
fadd

fmul

fcmovl
fcmov2

I
I or 3

3
3
I
I
I
1
I
7
3

4
6

4
6

HW _lVtFPR. Ebox IPRs: I. lbox & Mbox IPRs: 3. HW _M1PR doesn't
produce a register value.
conditional branch; doesn't produce register value
unconditional branch

possible I-cycle Ebox cross-cluster delay
possible I-cycle Ebox cross-cluster delay
possible I-cycle Ebox cross-cluster delay
only consumer is cmov2. possible 1-cycle Ebox cross-cluster delay
possible 1-cycle Ebox cross-cluster delay
possible I-cycle Ebox cross-cluster delay
possible 1-cycle Ebox cross-cluster delay
doesn't produce register value
consumer other than fst or ftoi
consumer fst or ftoi. measured from fadd issuing from FQ to fst or ftoi
issuing from IQ
consumer other than fst or ftoi
consumer fst or ftoi. measured from fmul issuing from FQ to fst or ftoi
issuing from IQ
only consumer is fcmov2
consumer other than fst

4
4
6 consumer fst or ftoi. measured from fcmov2 issuing from FQ to fst or ftoi

issuing from IQ
f div

fsqrt

ftoi

I2
10
15
I3
I6
14
32
30
3

Digital Confidential

single precision - latency to consumer of result value
single precision - latency to using divider again
double precision - latency to consumer of result value
double precision - latency to using divider again
single precision - latency to consumer of result value
single precision - latency to using unit again
double precision - latency to consumer of result value
double precision - latency to using unit again

Do Not Copy 28

... ~.~ ~~£Y. £.Q~~!!~ .. -
I itor 4

nop doesn't produce register value

3. External Interface
The external interface consists of two ports - a Bcache port and a System port. The Bcache port is
controlled entirely by the processor, and is used to interface to a module-level secondary cache which may
be built from a range of standard synchronous SRAMs. The System port interfaces to the rest of the
System. The processor contains two external data busses, one 16-bytes wide for the Bcache and the other
8-bytes wide for the System.

Duplicaie
Tag

(optional)

l

C-Chip

-· g
c

i
--"

Data
Slice

1,2,4,8

3.1 Address Spaces

J-----.. SysAddln L<14:0>
1---........ SysAddlnOk_L

1---........ SysFillValid L
J----M-.. SysDatalnVilid L
J---~- SysDataOutVallc!_L

... r----1 SysAdd0ut_L<14:0>
r SysAddOutClk_L

BcT~Data ..
BcTag9~ .___ __ Tag

Ram BcTa_gV{R 1----
BcTagClkln -ie----.1

'--·--~---'
BcAdd<23:4> -----~

BcClkOut 1-----~-~
..,'°' __ ..,~ SysData_L<63:0>

BcData<127:0> ..._ _ __..
BcDataOE 1----~

1---- SysDatalnlli_L BcDataWR -.;!
--...-----1 SysDataOutClk L BcBurst ...__ ___ ~

- BcDataClkln ._i.. __ _..,.

EV6

Data
Ram

EV6 supports a 44-bit physical address space which is divided equally between Memory space and IO
space. Memory space resides in the lower half of the physical address space (PA<43> clear) and IO space
resides in the upper half of physical address space (PA<43> set). EV6 recognizes these spaces internally.

EV6-generated external references to Memory space are always of a fixed 64-byte size, though the internal
access granularity is byte, word, longword or quadword. All EV 6-generated external references to
Memory or I/0 space are physical addresses that are either successfully translated from a virtual address

or produced by PAL code. On rare occasions, speculative execution may cause a reference to non-existent
memory. Systems must range check all addresses and report those events to EV6. See section 6.3.8.

EV6 does not cache IO space data, however it merges both reads and writes and supplies a mask to
indicate the bytes which are actually accessed. EV6 merges IO space L W and QW Loads and Stores into
Reads or Writes of up to 32 or 64 bytes respectively. Systems may limit I/0 QW writes to 32 bytes

Digital Confidential Do Not Copy 29

maximum by setting the TI.ASER_STIO_MODE bit in the CBOX csr. Byte and word operations to l/O
space are never merged in EV6. All LDB,LDW,STB and STW insttuctions (PA<43>set) generate an
unique interface command. Finally, references of differing sizes are not merged.

Digital Confidential Do Not Copy 30

3.1.1 1/0 Ordering and Merge Rules
EV6 will adhere to the following rules.of order when executing LD and ST instructions to 1/0

1. Consecutive Loads from l/O space happen in the order specified by the programmer.

2. Consecutive Stores to 1/0 space happen in the order specified by the programmer.

3. Loads followed by stores to the same address (within the same 64 byte block) happen in the order
specified by the programmer.

4. Stores followed by Loads to the same address (within the same 64 byte block) happen in the order
specified by the prognunmer.

5. Loads followed by Stores (and vice versa) to different addresses (bits <43:6> not equal) may be
UNORDERED and software can not depend on one occurring first

The following matrix illustrates 1/0 merging rules in EV6. The intersection of two consecutive l/O
operations contains the rule observed by EV6. Reads and writes will merge in ascending order only
(obeys default ordering of aPCI device). Finally, merging can be terminated with a timer set to TBD
CPU cycles. Collapsing (multiple 1/0 writes to the same location) does not occur in EV6 .

... ~.Y'!E.&.Q~ ~Q~QW.Q@ QY.@W.Q.@.
BYTE/WORD No Merge No merge No Merge
LONGWORD No Merge Merge up to 32 Bytes No Metge
QUADWORD No merie No merie Mer~e Up to 64 Bl'.tes

A CBOX IPR mode bit that effect merging to 1/0 space is 1LASER_STIO_MODE. When asserted will
limit stores to 1/0 space to 32 bytes.

3.2 Cache Organization and Coherence
The EV6 cache hierarchy has the following attributes:

• I-stream data from both IO and Memory space may be cached in the !cache. Icache coherence is not
maintained by hardware - it must be maintained by software using the IMB instruction.

• D-stream Memory space data may be cached in the Bcache and Dcache. EV6 ensures that the Dcache
contents are a subset of the Bcache. This allows Memory requests from other agents in the System to
be filtered using only a duplicate copy ~f the Bcache tags; external duplicate Dcache tags are not
required.

• In Systems which use a Bcache, a Bcache duplicate tag store may be used to filter requests, but this is
not required.

• System hardware is required to cooperate with EV6 to ensure coherence of the Bcache and Dcache.

3.2.1 Cache Block States
EV6 supports the following cache block states:

State Name
Invalid
Clean
Clean/Shared
Dirty

Dinx/Shared

Description

This processor holds a copy of the block, but no other agent in the System holds a copy.
This processor and at least one other agent in the System may hold a copy of the block.
This processor may write to the block and must write it to Memory after it's evicted from
the cache. No other agent in the System holds a copy of the block.
The dirtX block max be shared - this processor must write it back to Memo!X when it's

Digital Confidential · Do Not Copy . 31

evicted. The block max not be written bx this processor.

3.2.2 Cache Block State Transitions
Cache block state transitions may be triggered by EV6-generated commands to the System or by System
generated commands to EV6. The latter are called probes. The diagram below shows the cache state
transitions which are triggered by EV6's actions.

EV6 issues two types of reads to Memory space: RdBlk and RdBlkMod. EV6 will mark a cache block
from a RdBlk command sent to the System either CLEAN or CLEAN/SHARED or even DIRTY
depending on the response from the System during the cache fill. Systems can not transition a CLEAN
block to DIRTY or DIRTY/SHARED with a probe command.

EV6 will send a ChangeToDirty command to the System against a block not in the DIRTY state when it
wants to write that block. There are two types of ChangeToDirty commands which EV6 may use based on
the initial state of the cache block: CleanToDirty and SharedToDirty. Having two flavors of
ChangeToDirty relieves Systems with a duplicate tag and address CAM from having to do a read-modify
write of the tag store in response to the ChangeToDirty command. Also, Systems need not generate a
System bus invalidate in response to a CleanToDirty command.

EV6 will send an InvalToDirty command to the System in response to the execution of a WCBH
instruction (when enabled with INV ALTODIRTY _ENABLE csr) which does not hit on a Bcache block (
if the block is valid, it defaults to the ChangeTodirty command rules). This will cause the block to
transition to the DIRTY state, and other agents in the System should invalidate their copies of the block.
There is no data movement associated with this command. A success response can be from Systems by
using the ChangeToDirty Success command encoding in SysDc<4:0>. See section 1.3.8 for details on
data transfer commands that include responses to ChangeToDirty type commands.

EV6 will send a WrVictimBlk command to the System when evicting a dirty or dirty/shared cache block,
and may also be configured to send a Clean VictimBlk to the System when evicting a clean or shared
block.

The System sends probe commands to EV6 both to invoke data movement from EV6 to the System, and to
change cache block states. Systems with duplicate tags can directly specify the cache block state transition
which should occur, while Systems without duplicate tags specify a "transition type" which is combined
with the results of the probe to determine the final state transition.

Digital Confidential Do Not Copy 32

3.2.3 System Knowledge of Bcache Contents
EV6 will support Systems both with and without specialized hardware apparatus that track the state of
the Bcache, and will take different actions on this basis. There are two principal differences related to the
cache coherence protocol.

Systems with duplicate Bcache tags or Memory resident directory maps only send probes to EV6 for
cache blocks that are relevant (Bcache hit). These Systems know the final state of the cache
block and can specify it. Ending status is not conditioned by the probe lookup in EV6. In
contrast, Systems that do not have knowledge of internal Bcache status do not know the result of
the probe in advance, so both data movement and cache block state transitions are conditioned by
the results of the probe.

Systems with duplicate Bcache tags or Memory resident directory maps will require CleanToDirty
commands sent to the System port by EV6 to keep the external status tracking hardware up-to
date. This is not necessary in non-duplicate tag Systems. SharedToDirty commands to Shared
blocks in either type of System must result in bus invalidates, and thus always appear on the
System port.

3.2.4 Dcacbe States & the Dcache Duplicate Tags
Each Dcache block contains an extra state bit beyond those required to support the cache protocol. The
modified bit, when set, indicates that the associated block should be written to the Bcache when it's
evicted from the Dcache. The modified bit is set in two cases:

1. When a block is filled into the Dcache from Memory its modified bit is set, ensuring that it also gets
filled into the Bcache.

2. When the processor writes to a dirty Dcache block the modified bit is set, indicating it should be
written to the Bcache when evicted.

The DT AG array holds a physically indexed duplicate copy of the Dcache tags. Since the Dcache contains
64KB and is virtually indexed, a given physical address could reside in any one of eight places in the
cache. The Cbox uses the DTAGS for the following situations.

1. When the Mbox requests a Dcache fill, the Cbox uses the DT AGS to see if the Dcache already
contains the requested physical address in another virtually indexed Dcache line. If so, the Cbox
invalidates that cache line after first writing the data back to the Bcache if it was in the modified
state. The Cbox also checks to see if the Dcache contains an address different from the requested
address but which maps to the same Bcache line. If so, the Dcache line is evicted in order to keep the

I
Dcache a subset of the Bcache .

. 2. When the Ibox requests an !cache fill, the Cbox uses the DT AGS to ~~e if the Dcache contains the
requested physical address in the modifed state. If so, the Cbox forces the line to be written back to
the Bcache before servicing the !cache fill request. The Cbox also checks to see if the Dcache contains
an address different from the requested address but which maps to the same Bcache line. In this case
the I-stream request will miss the Bcache, and the Cbox will service the request by launching a
noncached fetch to the System port and will not put the I-stream block into the Bcache. This
mechanism allows EV6 to use a cache resident "lock flag" for LDx_L/STx_C instructions.

3. The Cbox uses the DT AGS to determine whether probe addresses are held in the Dcache.

3.2.5 Memory Barrier (MB/WMBffBtill flow)
There is a mode bit called SYS_MB in the CBOX Control CSR which controls whether MB instructions
produce external System port transactions. EV6 will need to generate System port MB transactions in
Systems which allow READ and ChangeToDirty responses to reach EV6 ahead of system probes (out of
order with respect to the order that transactions reached the System's serialization point). An external
system MB command is required in systems which do not compare incoming addresses as well as allow
refills to be seen by EV6 out of order with respect to the order that commands reached the system
serialization point.

Digital Confidential· Do Not Copy 33

--·~·~·"-·"'--····~--'"-~-----·~-........ -~-
~p.i.U . .i.V, J.:1 :1U V \,...j.U.jJ lrrJj.1~.U..,._....,""~V&..1., .&.'\..~ 'f -•"-'

A counter exists in the CBOX that contains the number of pending uncommited transactions. The counter
will increment for the following commands:

• RdBlk, RdBlkMod, RdBlkl,

• valid RdBlkSpec, validRdBlkModSpec, valid RdBlkSpecl,

• RdBlkVic, RdBlkModVic, RdBlkVicl

• CleanToDirty, SharedToDirty, STChangeToDirty, InvalToDirty

• FetchBlk, valid FetchBlkSpec, Evict, RdByte, Rd.Lw, RdQw

The counter is decremented with the C (commit) bit in the Probe and SysDc commands described in
Section 3.3.7. Systems can send the C bit in the SysDc fill-response to the commands which increment
the counter or on the last probe seen by that command when it reached the system serialization point.

When an MB instruction is fetched, it stalls in the map stage of the pipeline. This also stalls all
instructions after the MB until:

I. If SYS_MB is clear the EV6 CBOX waits for the integer issue queue to empty and performs the
following actions: Sends all pending miss address file (MAF) and WRIO entries to the system

port
• Monitors a 4-bit counter of outstanding committed events. When the counter decrements

from one to zero, CBOX marks the youngest probe queue entry
• Waits until the miss address file contains no more dstream references, the store queue, load

queue and 1/0 write buffers are empty
When all above have occurred and a probe response has been sent to die system for the marked probe
queue entry, instruction execution continues with the instruction after the MB.

2. If SYS_MB is set, the EV6 CBOX performs the following actions:Sends all pending MAF entries to
the system port,

• Sends the MB command to the System port,
• Waits until the J\.IB command is acknowledged andmarks the youngest entry in the probe

queue
• Waits until the miss address file contains no more dstream references, the store queue, load

queue and l/0 write buffers are empty
When all above have occurred and a probe response has been sent to the system for the marked probe
queue entry, instruction execution continues with the instruction after the MB. Write Memory Barriers
(WMB's) are issued into the MBOX store-queue, wait until they are retired and become writeable, and
when the writeable pointer reaches the WMB, the MBOX freezes the writeable pointer and informs the
CBOX. The CBOX closes the write buffer and responds based on SYS_MB.If SYS~MB is clear the EV6 ·

CBOX performs the following actions:Marks the youngest entry in the probe queue

When a probe response has been sent to the system for the marked probe queue entry, the MBOX
unfreezes and advances the writeable pointer.

If SYS_MB is set the EV6 CBOX performs the following actions:Sends the MB command to the System
port,

• Waits until the MB command is acknowledged and marks the youngest entry in the probe
queue

When a probe response has been sent to the system for the marked probe queue entry, the MBOX
unfreezes and advances the writeable pointer.Loads to a virtual page table entry (HW _LDNPTE) are
processed by EV6 so as to avoid litmus test problems associated with the ordering of memory accesses
from another processor against load of a page table entry and the subsequent virtual-mode load from this
processor. Consider the follow_i_n_& ____________ _

... ~L .. ~l

Digital Confidential Do Not Copy 34

WrDalai
MB
WrP'f&

LD/STI>alai
<TBMiss>
LD-PTE
<wrTB>
LD/ST (restart>

Pj must get the updated Datai if it got the updated ~. Also consider the related

... ~L .. ~i.
Wr Datai I-stream read Dalai
MB <TBMis~

Wr~ LD-PTE
<wrTB>
I-stream read
(restart) - will miss
the Icache

In this case the Data could be cached in the Bcache; Pj should fetch Datai if it is using PTEj. EV6
processes dstream loads to the page table entry by injecting, in hardware, some memory barrier processing
between the access of the page table entry and any subsequent load or store. This is accomplished by the
following mechanism:Integer queue issues a HW _LD/VP'IE

• Integer queue issues a HW _MTPR DTB _P'I'EO which is data-dependent on the
HW _LD/VPTE and is required in order to fill the DTB 's. The HW _MTPR, -when enqueued,
set IPR scoreboard bits <4> and <0>.

• On issue of HW _MTPR DTB_PTEO, !BOX signals CBOX that a HW _LDNPTE ha~ been
processed and causes CBOX to begin "MB" processing. IBOX prevents issue of any
subsequent memory operations by not clearing the IPR scoreboard bit <0> (one of the
scoreboard bits associated with the HW _MTPR DTB_PTEO).

• When "MB" processing is complete (one of the above sequences, depending on SYS_MB),
CBOX signals IBOX to clear IPR scoreboard bit <0>.

EV6 processes TB niss fills to the page table entry via a similar mechanism:Integer queue issues a
HW_LDNPTE

• Integer queue issues a HW _MTPR ITB _P'I'E which is data-dependent on the HW _LDNPTE
and is required in order to fill the ITB. The HW _MTPR, when enqueued, set IPR scoreboard
hits <4>:. ar.d <0>. .

• On issue of HW _MTPR ITB _PTE, IBOX signals CBOX that a HW _LDNPTE has been
processed and causes CBOX to begin "MB,, processing. The .MBOX stalls off any IBOX
fetching from the time that the HW _LD/VPTE finishes until the probe queue is drained.

• When "MB" processing is complete (one of the above sequences, depending on SYS_MB),
CBOX signals !BOX to clear IPR scoreboard bit <0>. In addition, the MBOX signals the
IBOX to begin fetching.

3.2.6 Load/Locked and Store/Conditional
EV 6 doesn't contain a dedicated lock register, nor are System components required to do so. When a
LDx_L instruction executes, data is accessed from the D or Bcache. If there is a cache miss, data is
accessed from memory with a RdBlk command .. When the store-conditional executes, it is allowed to
succeed if its associated cache line is still present in the Dcache and can be made writeable, otherwise it
fails. This works since if another agent in the System wrote to the cache line between the load-lock and
the store conditional then the cache line would have been invalidated. There are a host of further
complications however.

Digital Confidential· Do Not Copy 35

- -·-·-··-·-. -·--- ~" , - . -"
.n.._p1.u .lV, .l77V

Problem
Solution

Problem
Solution

Problem

Solution

Problem

Solution

Problem
Solution

Problem

Solution

Problem
Solution

Digital Confidential

A load-lock and its matching store-conditional must issue in program order.
The stWait logic in the IQ is used to ensure that a store conditional always issues
after an older load-lock. The stWait logic treats load-locks like stores, and store
conditionals are always loaded into the IQ with their associated stWait bit set

I-stream references can't evict the locked cache line.
If an !cache fill request misses the Bcache but maps to the same Bcache line as an
address which is held in the Dcache, then the I-stream request is sent to the System
port as a non-cached fetch, and the I-stream line is not allocated into the Bcache.

Loads or stores that are older than the load-lock but issue after it can't evict the
locked cache line.
The Mbox recognizes this case and invokes a replay trap on the incoming load or
store, which also aborts the load-lock. These instructions issue in program order the
next time dowri the pipe.

If the instruction fetcher predicts that a branch between a load-lock and a store
conditional will be taken, and the branch is not taken, then a load or store executed
on this mispredicted path can't evict the locked cache line.
There is a bit in the instruction fetcher which is set on a load-lock and cleared on
any other Memory reference instruction. When this bit is set the branch predictor
forces all branches to be predicted as fall through.

Loads or stores which are newer than the store-conditional can't evict the locked line
The lbox ensures that a store-conditional issues before any newer load or store by
placing the store-conditional into the IQ and stalling all subsequentinstructions in
the map stage of the pipe until the IQ is empty. This allows the Mbox to prevent
newer loads and stores from evicting the cache line associated with the store
conditional.

If two store-conditionals execute without an intervening load-lock, the second store
conditional must always fail. (Store conditionals to I/0 will ALWAYS succeed)
The register map logic contains a bit which is set by load-locks and cleared by store
conditionals. If the bit is cleared when a store conditional instruction is mapped,
then the store-conditional is forced to fail. The mapper updates the value of the bit as
appropriate when pipeline aborts occur.

There must be no live-lock conditions in multiprocessor Systeins.
If a store conditional misses the Dcache then no System port transaction is launched,
and the store conditional fails.

If the store conditional hits a block which isn't dirty, then a ChangeToDirty is
launched only after the store conditional instruction retires and all older store queue
entries are in the writable state . This ensures that once the ChangeToDirty is
launched on behalf of the store-conditional that the store conditional will be executed
to completion if the ChangeToDirty passes.

If the ChangeToDirty passes, the store-conditional enters the writable state, and the
Mbox locks down the Dcache line and does not release it until the store-conditional' s
data is transferred into the Dcache.

If the Cbox launches a CleanToDirty command for the locked block to the System
port and another agent reads the block before the CleanToDirty hits the serialization

DoNotCopy 36

Digital Confidential

point in the System, then the System will cause the Cl~ToDirty to fail.
In this case EV6 will launch a SharedToDirty command to the System against the
locked block. This ensures that other agents do not cause the store-conditional to fail
just by reading the locked block.

Do Not Copy 37

3.3 System Port
The System port is EV6's connection to either a local Memory/IO controller or a shared multiprocessor
system controller. The System port consists of two uni-directional address and command bosses
(SysAddln<14:0>, SysAddOut<14:0>), a bi-directional data bus (SysData<63:0>, SysCheck<7:0>),
single-ended uni-directional clocks, and a few control pins. All SysAdd and SysData signals are driven
from EV6 with low assertion levels. Systems must receive and drive low asserted signals.

3.3.1 System Port Pins

Pin Name type Coun Description
t ..

SysAddln<14:0> _L I
SysFillV alid_L I
SysAddlnClk_L I
SysAdd0ut<14:0> _L 0
SysAddOutClk_L 0

SysData<63:0> _L B
SysCheck<7:0> _L B
SysDatainClk_L I

15
1
2

15
2

64
8
8

time-muxed Command/ Address/ID/ Ack System to EV6 bus
validation for fill given in previous SysDC command
single-ended forwarded clock from System for above signals
time-muxed Command/Address/ID/Mask EV6 to System Bus
single-ended forwarded clock output for above signals

data bus for Memory and IO data
QW ECC check bits for SysData
8 System generated clocks for clock forwarded SysData in

SysDataOutClk_L 0
SysDataln V alid_L I
SysDataOutValid_L I

8
1
1

8 EV6 generated clocks for clock forwarded SysData out
Marks a valid data cycle for data transfers to EV6 when asserted
Marks a valid data cycle for data transfers from EV6 when
asserted

3.3.1.1 Legend: I= input, 0 = output, B= Bi-directional

3.3.2 EV 6 to System Address/Command Format
Command, Address, ID and Mask are sent in four consecutive cycles. EV6 can be configured to send two
different combinations of PA bits in the four cycle command, the goal being to give the System the PA
bits that let it do Memory bank select and RAS address drive as fast as possible. The ID is 'the'miss
address file (MAF), victim buffer or IO write buffer number associated with the command. The mask
indicates the accessed bytes, longwords or quadwords for an IO space reference. Commands with Victims
are sent as an atomic pair of standard format commands, if the CBOX IPR bc_rdvictim is set.

3.3.2.1 Bank Interleave On Cache Block Boundary

S_y_sAddOut< 14:2> S_ysAddOut<l> S_y_sAddOut<O>
Cycle 1 Ml T Command<4:0> T PA<34:28> PA<36> PA<38>
C_ycle 2 PA<'27:22>, PA<12:6> PA<35> PA<37>
Cycle 3 M2 I Mask<7:0> I CH I ID<2:0> PA<40> PA<42>
C_y_cle4 RVI PA<21:13>, PA<5:3> PA<39> PA<41>

Digital Confidential Do Not Copy 38

3.3.2.2 Page Mode Hit

S_ysAddOut<l4:2> SysAddOut<l> s_ysAddOut<O>
C_ycle 1 Ml l Command<4:0> J PA<31:25> PA<32> PA<33>
Cycle2 PA<24:12> PA<ll> PA<34>
Cycle 3 M2 1 Mask<7:0> J CH 1 ID<2:0> PA<35> PA<37>
C_ycle4 RV l PA<34:32>, PA<l 1:3> PA<36> PA<38>

I Field definitions are:

I SysAddOut Field -Definition · · ·
........................... ~ .. .

Ml reports a miss to the System for the oldest probe when =l. Has no meaning when= 0.

Command<4:0> the five bit command field

SysAddOut<l:O> is only required for Systems with greater than 32 Gbyte (up to a maximum of 8
Terabyte) memories. This will allow cost focused systems to use a 13 bit
command/address field.

M2 reports a miss to the System for the oldest probe when= 1,additionally it is asserted
for Invalidates or set shared commands that have no data movement. M2 has no
meaning when= 0. Assertion of both Ml and M2 will not occur. (Reporting probe
results is timing critical so when a result is known, EV6 will take the earliest
opportunity to send a M signal to the system. M bit assertion can occur either in a, -

valid command or a NZNOP)

ID<2:0> the MAF, VDB, or Write I/0 buffer id number associated with the command

RV validates this command, in (optional) speculative read mode RV= 1 validates the
command and RV=O is a NOP. RV is a 1 for all non-speculative commands.

Mask<7:0> the byte, LW or QW mask field for corresponding UO commands

CH cache hit bit that is asserted along with M2 when probes with no data movement hit
in the D or B cache. A probe with no data movement can be an Invalidate or a
ReaditDirty that hits on a valid but clean or shared block. _________ . ____ _.. ____ _... ______________________ ._.. ______________________________ _

3.3.3 SysAdd Commands Generated by EV6

Command Command Function
<4:0> ...

Nop 00000 EV6 drives this on idle cycles
ProbeResponse 00001 Returns probe status and Victim Buffer number holding the

NZNOP
VDBFlushRequest

Digital Confidential

00010
00011

requested cache block.
Non_zero NOP, helps parse command packet
Victim Data Buffer Flush Request. EV6 sends this command to the
System when an internally generated reference hits a Bcache victim

Do Not Copy 39

Command

MB

RdBlk
RdBlkMod
RdBlkI
FetchBlk

RdBlkSpec
RdBlkModSpec
RdBlkSpecI
FetchBlkSpec

RdBlkVic
RdBlkModVic
RdBlkVicI

WrVictimBlk.
Clean VictimBlk.

Evict

Rd.Bytes
RdLWs
RdQWs
WrBytes
WrLWs
WrQ_Ws

CleanToDirty

SharedToDirty

STCChangeToDirty

InvalToDirty

- - ·- _ t"' - ... - _ __ ,_ , ..._ __

Command Function
<4:0>

00111

10000
10001
10010
10011

10100
10101
10110
10111

11000
11001
11010

00100
00101

00110

01000
01001
01010
01100
01101
01110

11100

11101

11110

11111

or Probe in the VDB. The System should flush VDB entries
associated with all probes and WrVictimBlks which occurred before
this command.
Indicates a MB was issued, optional when SYS_MB is set

Memory Read
Memory Read, modify intent
Memory Read for I-stream, optional
Memory Uncached Rd.Blk

Memory Read speculative, optional
Memory Read, speculative, modify intent,optional
Memory Read for I-stream, optional
Memory Uncached Rd.Blk., speculative

Memory Read with a victim- optional
Memory Read, modify intent, victim - optional
Memory Read for I-stream with a victim - optional

Writeback of Dirty Block
Address of a Clean Victim, optional mode used in directory
Systems
Duplicate Tag Invalidate, optional

IO Read, Byte mask
IO Read, LW mask
IO Read, QW mask
IO Write, Byte mask
IO Write, L W mask
IO Write, QW mask

Sets a block dirty that was previously Clean, optional for duplicate
Tags
Sets a block dirty that was previously Shared, optional for MP
Systems
Sets a block dirty that was previously Clean or Shared for a STx_C,
optional for MP Systems
Acts like a RdBlk.Mod without the fill cycles, optional for MP
Systems InvalToDirty has a victim - optional

Systems can optionally enable RdBlkVic and RdBlkModVic commands. In this mode the RdBlkxVic
command cycles are always followed immediately by the WrVictimBlk commands. Also, when
Clean VictimBlk commands are enabled they immeditaely follow RdBlkVic and RdBlkModVic
commands. Speculative Rds in Rd.Blk victim mode will not create victims, this is useful for TurboLaser
and TurboLaser follow-ons.

Digital Confidential Do Not Copy 40

3.3.4 Probe Response Transfers
EV6 responds to System probes that did not miss with a four cycle transfer on the SysAddOut bus. The
fonnat of the probe response is shown below:

S_ysAddOut<14:2> SysAddOut<l> S_ysAddOut<O>
Cycle 1 0 l 00001 I Status<l:O> I DM vs VDB x x

<2:0>
Cycle 2 0 MS MAF x x

<2:0>
C_ycle 3 0 l x x x
C_ycle4 x x x

1 ... ~~!?.~.~~~~.!~.~~.~ ~~~P.~iQ.i:! .. .
Command<4:0> Identifies transfer as probe response
DM Indicates that data movement should occur (copy of Probe valid bit)
VS Write Victim Sent bit
VDB<2:0> VDB (Victim Data Buffer) entry containing the requested cache block.

this field is valid when either the DM bit or the VS bit = 1
MS MAF address sent
MAF<2:0> MAF entry which matched against the probe address
Status<l:O> Result of probe:

00 HitClean
01 HitShared
10 HitDirty
11 HitSharedDirty

The System retrieves data from EV6 for probes that requested a cache block by using the SysDC wires.
Probes which respond with Ml or M2 set will never be reported to the System in a Probe Response
command.

3.3.5 SysAck & System Port Flow Control
Flow control of EV6-generated System port commands is done via the "A" bit, which is driven by the
System, and a counter-internai to EV6.· EV6 increments its "command outstanding" counter every time it
sends a command to the System. It increments this counter by two for RdBJkVic commands. EV6
decrements the counter by one each time the System asserts "A" (SysAddln<l4> cycle 4 of the probe
command or cycle 2 of the SysDc command). EV6 stops sending new commands when the counter hits
the maximum count specified by the sysbus_ack_limit field in the CBOX IPR. EV6 will not send a
RdBlkxVic command if the counter is equal to one less than the maximum outstanding count. There is no
mechanism for the System to reject a command that has been sent. ProbeResponse, VDBFlushReq, NOP,
NZNOP and a RdBlkx.Spec with a clear RV bit will not increment the "command outstanding" counter
and will therefore not require an "ACK" from the system. Systems must provide adequate resources for ·
responses to all probes sent to EV6. Additionally, there is a CBOX IPR that when set will not increment
the outstanding command counter for RdBlkVic, RdBlkModVic and RdBlkVicl command. This is the
"rdvic _ack_inhibit" bit.

3.3.6 SysReadValid and Speculative Reads
Systems can configure EV6 to send Memory space RdBJkSpec and RdBJkModSpec commands before EV6
has detennined that the read has missed the Bcache. SysAddOut<14> of the fourth command address

Digital Confidential· Do Not Copy 41

cycle contains the RV bit for that transaction. When configured for speculative reads, RV=O indicates a
NOP for that command and RV=l validates that command. Systems not opting for speculative reads will
always have RV=l. A Rd.BlkSpec or Rd.BlkModSpec with a clear RV bit will not increment the
outst.anding command counter and therefore systems must not send an ACK to EV6 for these commands.

3.3. 7 SysAdd Commands Generated by the System
The commands driven by the System to EV6 are generically called probes and data movement commands.
There are two formats for the SysAddln bus that specify probes and data movement. Probes are always 4
cycle commands that also contain a field to include a valid SysDc command. The format of the four cycle
command is shown below. Note that SysAddln<l:O> are optional and are used for Memory designs
greater than. 32 Gbytes. The position of the address bits matches the selected format of the SysAddOut
bus. The example below shows the bank interleave format

SysAddin<14:2> SysAddin<l> S_ysAddln<O>
Cycle 1 1 l Probe<4:0> l PA<34:28> PA<36> PA<38>
Cycle2 PA<27:22>, PA<12:6> PA<35> PA<37>
Cycle3 0 I S_ysDc<4:0> I RVB l RPB l A l ID<3:0> PA<40> PA<42>
Cycle4 c l PA<21:13>, PA<5:3> PA<39> PA<41>

SysAddlil Field Description J

Probe<4:0>
. SysDc<4:0>
RVB
RPB
A
ID<3:0>

C(COMMIT)

Probe Type and Next Tag State (See table below)
Controls data movement in out ofEV6, See section 3.3.7 for details
Clears Victim Buffer or WRIO buffer valid bit specified in ID<3:0>
Clears Probe Buffer valid bit specified in ID<2:0>
Command Ack bit that decrements EV6 command outstanding counter
Identifies VDB number or WRIO buffer number, <3> is asserted for
WRIOonly
Commit bit that decrements the uncommitted event counter used for
Memory Barrier acknowledge.

The command field of a probe has 2 fields - the first sets the data movement, the second determines the
next cache block state;

Probe<4:3>
00
01
10
11

Probe<2:0>
()()()

001
010
011

Data Movement Function
Nop
Read if Hit, supply data to system if block is valid
Read if Dirty, supply data to system if block is valid/dirty
Read Anxwax,suJ!PlX data to sl:stem at index of probe

Next Tag State
Nop
Clean
Clean/Shared
Transition3:
Clean->Clean/Shared,
Dirty->lnvalid
Dirty/Shared->Clean/Shared

Digital Confidential Do Not Cop· 42

100
101
110

111

Dirty/Shared
Invalid
Transitionl:
Clean->Clean/Shared,
Dirty-> Dirty/Shared
Transition2:
Clean->Clean/Shared,
D!!:!Y.->Clean/S hared

Next Tag State notes:

Transitionl is useful in non-duplicate tag Systems that do not update Memory on RdBlk hits to a dirty
block.

Transition2 is useful in non-duplicate tag Systems that update Memory on RdBlk hits to a dirty block.
Transition3 is useful in non-duplicate tag Systems that want to give writeable status to the reader and do

not know if the block is clean or dirty.

EV6 holds pending probe commands in a 8 entry deep probe queue. The System must keep track of how
many probes were sent and not overrun EV6's queue. Probes are removed from the internal probe queue
when the probe response is sent

Digital Confidential Do Not Copy 43

........ _

3.3.8 Two Cycle Commands For Data Transfers
As mentioned above, there are two fonnats for the SysAddin bus. The second fonnat is a two cycle
transfer for data movement commands. The SysDC command field contained within a two cycle fonnat
control movement of data in and out of EV6, success/failure for ChangeToDirty and MB commands, and
error conditions. The data transfers must begin in the first SysData cycle which occurs 9 CPU cycles after
the start of the SysAdd cycle in which the ID command was received. The pattern of data is controlled by
the SysDatalnValid and SysDataOutValid signals. These signals valid each cycle of data transfer and are
used to put gaps in the data pattern. The timing is described in Section 3.3.9.1. The fonnat of the two
cycle SysAddln transfer is shown below:

SysAddln<14:2> SysAddln<l> SysAddln<O>
C_ycle 1 0 J S_ysDc<4:0> l RVB J RPB J A J 1D<3:0> x x
Cycle 2 c] x x x

SysDC Command SysDc Description

... :-::~;9.?.:
Nop 00000 Nop, SysData ignored by EV6
ReadDataError 00001 Data returned for Reads, System Drives SysData bus, I/O or Em

ChangeToDirtySuccess 00100

ChangeToDirtyFail 00101
MB Done 00110
ReleaseBuffer 00111
ReadData (System Wrap) lOOxx

ReadDataDirty lOlxx

ReadDataShared(System llOxx
Wrap)
ReadDataShared/Dirty lllxx

WriteData OlOxx

NXM
· no data, SysData ignored byEV6, also used for InvalToDirty · · ·
response
no data~ SysData ignored by EV6, also used for Evict response
Memory barrier completed
Command to alert EV6 that RVB, RPB and the ID field are valid.
Data Returned for Reads, System Drives SysData. Systems define
wrap order using SysDc<l:O> See section 3.3.9.6 on Data
Wrapping.
Data Returned for Readx and Readx.Mods, Ending Tag Status is
Dirty, as above - System defines wrap order.
Data Returned for Reads, System Drives Data, Tag marked Shared.
Systems define wrap order using SysDc<l:O>.
Data returned for ReadBlk, Ending Tag status is Shared/Dirty,

-as above - System defines, wrap order
Data sent for EV6 Writes or System Probe. EV6 drives SysData
bus. Lower two bits of the command specify the quadword address
around which EV6 should wrap the data.

There are 8 victim buffers in EV6. These victim buffers are used for both victims (fills that are replacing
dirty cache blocks) and for System probes that require data movement. The Clean Victim command
(optional) will also assign a victim data buffer. Each buffer will have two valid bits that denote the buffer
is valid for a Victim or valid for a Probe or valid for both Victim and Probe. Probe commands that address
match a V AF entry with an asserted Probe valid bit (P) will stall the EV6 probe queue. No probe
responses will be returned until the P bit is clear. RVB(Release Victim Buffer), when asserted, will
clear the Victim valid bit on the Victim Data Buffer (VDB) specified in the ID field. RVB bit will also
clear the WRIO buffer when systems move data on I/O writes. RPB(Release Probe Buffer), when asserted ,
will clear the Probe valid bit on the Victim Data Buffer (VDB) specified in the ID field. Read data
commands and victim write command use I.Ds 0-7 while Ids 8-11 are used to address the 4 IO write
buffers.

Digital Confidential Do Not Copy 44

"A" in the first cycle is command acknowledge used to decrement the EV6 "command outstanding"
counter, but is not necessarily related to the current SysDc command.

Probe commands can have a combined SysDc command along with MBDone. In that event, the probe is
considered ahead of the SysDc command. In particular, ifthe SysDc command allows EV6 to retire an
instruction before an MB, or allows EV6 to retire an MB itself (SysDc is MBDone), that MB will not
complete until the probe is executed.

Systems must assert appropriate SysDc command for correct ending Tag status. Systems may elect to
return a dirty block of data to a RdBlk command. Systems that return a clean block in response to a
RdBlkMod may cause a livelock; it is, therefore, not recommended. Finally, Systems may not cause a
STx_ C failure on any other processor in the system when returning a dirty block in response to a RdBlk.

3.3.9 Data Movement In and Out of EV 6
There are two modes of operation that pertain to data movement in and out ofEV6. These modes are
selected with the CBOX csr called FAST_MODE_DISABLE. Fast data mode allows movement
of data from EV6 to bypass protocol and achieve lowest possible latency for probes data, write victims
and 1/0 writes. Rules and conditions for each mode is as follows:

3.3.9.1 Fast Data Mode
EV6 is the default driver of the bi-directional SysData bus. As EV6 is processing WrVictim, Probe
Response and WRIO commands to the system, data relative to this command is made available at the ·
clock forwarded pin bus. SysDc commands that turn the SysData bus around may interrupt the successful
completion of the 'fast' transfer. Systems are responsible to detect and replay all interrupted 'fast'
transfers. There are no gaps in a 'fast' transfer and no wrapping (the first cycle contains QWO addressed
by 5:3 = 000#2).

Finally, systems must release victim buffers, probe buffers and WRIO buffers by sending a SysDc
command with the appropriate RVB/RPB bit for both successful 'fast' transfers and for transfers that have
been replayed. Fast transfers have two components, (1) the SysAddOut command with the probe
response, WrVictim, or Wr(I/0) and (2) data. The command precedes data by, at least, one Framing
Clock. The matrix below shows the number of Framing Clocks between SysAddOut and SysData for all
System clock ratios (clock forwarded bit times) and Framing clock multiples.

CLOCK FORWARD BIT TIME S stem Clock Ratio
Bit Time/Framin Clock 1.5 2.0 2.5 3.0 3.5 4.0

1 4 3 2 2 2 2
2 2 2 2 2 2 1
4 1 1 1 1 1

The timing diagram below show a simple example of a 'fast' transfer. This is an example of a system
clock ratio of 1.5 and 4 bit times/Framing clock.

Sys De

SysData .___~, ._____, ,.___J ...__.J '---..J_ _J____,. ~---J

Frame Clk __J \.._ ___ __,/ \._ ___ _,/ '---~'
FWDCLK

Digital Confidential· Do Not Copy 45

Movement of Data into EV6 involves careful timing to turnaround the SysData bus that is being driven by
EV6. EV6 will respond to the SysDc command that always precedes the movement of data into EV6.
Both the SysDc command and the first cycle of data are sent on System Framing clock boundaries(rising
or falling edges). The total minimum number of Framing clocks between SysDc and data can be
calculated as follows:
1. The fixed minimum delay in EV6 between the receipt of SysDc and the capture of the first piece of

data is 9 processor cycles. So, Fixed Delay (FD) = (EV6 Cycle Time * 9).
2. Settle Time is the electrical bus settle time requirement that depends upon the maximum distance

between EV6 and the furthest data chip. It is the round trip delay on the bi-directional data bus and
can be calculated as : Settle Time (S1j =(2*max distance(in)) * 200 psec/in.

3. Clock skew between the EV6 Framing clock and the System Framing clock is a factor in the
turnaround time. Total Skew (Tskew) = EV6 skew(4.0 nsec) +System skew(?).

4. To calculate the total number of Framing clocks between SysDc and data, take the sum of the three
delay components above and divide that by the period of the Framing clock. and round up to the next
half or whole Framing clock.. The Equation is as follows-

#Framing Clocks = (FD +ST+ TSkew)/Framing Clock period
Example: CPU Cycle time= 2 nsec

Framing Clock = 12 nsec
Max Distance = 10 inches
Total Skew = 4.5 nsec

#Framing Clocks= ((2.0 nsec *9) + (20 inches*200 psec.in) + (4.5 nsec) I 12 nsec
#Framing Clocks= (18 nsec + 4.0 nsec + 4.5 nsec) I 12 nsec = 26.5nsec /12 nsec
#Framing Clocks = 2.2 rounded up to either 2.5 or 3.

The following timing diagram illustrates data movement into EV6 using the results of the sample
calculation ·shown above. The bottom trace in the diagram illustrates the EV6'internal clock with text
indicating the 9 fixed processor cycles preceded by 6 delay (w) cycles. Systems use the wait cycles to
~elay the perception of SysDc so that the first piece of data arrives in time to be sampled by EV6. There is
a 4 bit CBOX IPR called sysdc_delay that is used to fine tune the interface timing in the manner shown
below. The delay does not effect SysData bandwidth.

Frame Clock _J \ /1 \ / 2 \ I \~ __ __,

SysAddln
~S sDc off rise of Frame Clock

EV6 Rev 0

EV6 Clock l_f\f\

If a fast transfer is interrupted and fails to complete, the system must use the conventional protocol by
sending EV6 a SysDc command ofWriteData to removed the desired data buffer. The following section
will describe the timing events for transferring data from EV6 to the system.

3.3.9.2 Fast Data Disable Mode
The system controls all data movement to and from EV6. Movement of data into and out of EV6 is
preceded by a SysDc command. EV6 drivers are enabled only for the dunltion of an 8 cycle transfer of
data from EV6 to the system. Systems must insure there is no overlap of enabled drivers and that there is

Digital Confidential Do Not Copy
I

46

adequate settle time on the SysData bus. As described above, systems must insure there is proper settle
time when ttansitioning the SysData bus from write to read and from read to write. Settle time is
measured from the point where EV6 sends the last quadword of data to the point when the system begins
to ttansfer its first quadword (and vice versa). Settle time is an electrical constraint that can be calculated
by multiplying the round trip distance of the furthest data chip from EV6 (in inches) times 200 psec/inch.

The diagram below shows the transferof data into EV6 on an idle SysData bus.

\.___ __ ~12 '---

SysData

....._--.... -...... ~· .. }Data Delay Datao Receiver ..-1 -------------------x ======= ======= :=R _______ >@iEK:

When in Fast Data Disable mode, systems move data from EV6 with a WriteData SysDc command. This
is used for removing data from a probe buffer, a victim buffer of a WRIO buffer. There is a fixed timing
relationship from the point where EV6 receives the SysDc command until it drives the first QW on the
SysData bus. Seven_ cycles after receiving the SysDc, EV6 looks for the rising eqge of the next Framing
clock. The example below shows the SysDc sent from the system on the rising edge of the first Framing
clock with EV6 driving data two framing clocks later. This delay is fixed and uninterruptable much like
reading a ram. Note there is some skew between the EV6 Frame clock and the System Frame clock.

3.3.9.4 SysDataln/OutValid
There are two signals that are sourced by the system that control the rate of data delivery to and from
EV6. These signals are associated with the address/cmd and have data bus timing attributes. Each signal
represents a 64 bit quantity of data. For a complete ttansfer of data, EV6 must see the Data Valid signals
asserted for 8 data cycles. There can be any number of leading zero (deasserted cycles) and any pattern of
gaps between valid cycles. Once the 8th cycle of an asserted Data Valid signal is perceived by EV6, the
transfer is considered complete. Minimal latency is achieved when the SysDataln/OutVhlid signal is
asserted in the same cycle as the SysDc command. Both SysDataln/OutValid are 'don't cares' when not
accompanied by a SysDc command. Systems may elect to drive and receive data at the lowest latency and
highest bandwidth by asserting both SysDataln/OutValid continuously.

EV6 expects to clock a valid data word on the 9th CPU clock after clocking the associated SysData Validln
signal. Systems must ensure that data does not arrive too early. The following diagram illustrates a
system transfer of a block of data into EV6.

Frame Clock

SysAddln

SysDatalnValid

Sys Data
~~-~--~---~--J>-==~

Digital Confidential Do Not Copy 47

The timing relationship is slightly different for transfers out of EV6. EV6 will drive the first piece of
data on the rise of the 'Framing' clock 7 CPU cycles after perceiving the first SysDataValidOut signal.
From that point forward, every cycle of deasserted Data ValidOut will cause a one cycle gap in the data
transfer.

SysDc commands that do not move data into EV6 but modify cache tag state must allow a 2 data cycle
window in the data bus by asserting the SysData V alidln signal for 2 clock forwarded cycles. These
commands are success acknowledge for ChangeToDirty and InvalToDirty commands. Systems that elect
to tie this signal high (always asserted) must allow for a two cycle gap in the SysData bus when doing
these commands.

Systems that elect to control the rate at which EV6 delivers data to the system, must set the
add_frame_select register to 0. This means that all transmissions from EV6 to the system (address and
data, will ignore framing clock edges and will commence on the earliest SysAddClkOut or
SysDataClkOut

3.3.9.5 SysFilWalid

SysFillValid, when asserted validates the current memory and 1/0 data transfer into EV6. Systems may
elect to tie this pin to a logical I to always assert valid fills or use it dynamically to enable or cancel fills
as they progress. The net effect of this signal is to allow MP systems some additional time to attain probe
results. EV6 will sample the value of SysFillValid at DI time (the point at which EV6 samples the second
data cycle). If SysFillValid is asserted at DI time, the fill will continue uninterrupted. If it is
unasserted, EV6 will cancel the fiUbut maintain the valid MAF entry until a successful fill occurs. The
timing diagram below illustrates SysFillValid.

------•!Transport Delay on Address
Cmd Receiver --~XJX JfJl

SysFillValid
~~~~~~~~~~~~~~~~~~-

Sys Data -DO 01 02 03 D4 
~~~~~~~~~~~~~~~--l"-==---~~=-=---'''-==--'~-==-~·--=--'-'.-.-1 

3.3.9.6 DataWrapping
All data movement between EV6 and the system is one size only and that is 64 bytes or 8 complete cycles
on the data bus. EV6 will generate memory read and write addresses that point to the desired octaword.
All 64 bytes of memory data are valid . This applies to memory reads, memory writes and system probe
reads.

1/0 read and write addresses on the S ysAddOut bus will point to the desired Byte, Word, Longword or
Quadword , with a combination of address bits 5:3 and the mask field <7:0>. That combination is defined
as follows:

Command Significant Address Bits MaskT~ Rules
bits 5:3 will contain the exact PA bits of

RdQWsand SysAdd0ut<5:3> QW the first LDQ or STQ to the block. The
WrQ.Ws Mask bits point to the valid Qws merged

in ascendin_g_ order
bits <5:3> will contain the exact PA bits of

RdLWsand SysAdd0ut<5:3> LW the first LDL or STL to the block. The
WrLWs Mask bits_p_oint to the valid Lws me~ed in

Digital Confidential Do Not Copy 48

ascendin_g_ order within one hexword.)
LDByte/Word bits <5:3> will contain the exact PA bits of

and SysAdd0ut<5:3> BY1E the LDByte/Word or STByte/Word.
STByte/Word One byte mask for byte operation and two

for word. No me~in__g_.

The order in which data is given to EV6 (in the case of a memory or 1/0 fill) or moved from EV6 (write
victims or probe reads) is determined by the system. Systems can choose to reflect back the same low
order address bits and the corresponding octaword or any other starting point within the block.

SysDc commands for ReadData, ReadDataShared and WriteData require that systems define the position
of the 1st QW by inserting the appropriate SysAdd0ut<5:3> into bits <1:0> of the command field. The
recommended starting point is the quadword pointed to by EV6, however, some systems may find it more
beneficial to begin the transfer elsewhere. The key point is that EV6 must always be told what the starting
point is and the wrap order for all subsequent quadwords is always interleaved. The following table will . I define the method for systems to specify wrap and deliver daw.:

Source/Dest S_ysDc<4:2> SysDc<l:O> Size Rules
Memory 100 (ReadData) SysAdd0ut<5:4> Block (64 Bytes) See Note 1

Memory lOl(ReadDataI>irty) SysAdd0ut<5:4> Block (64 Bytes) See Note 1

Memory 11 O(ReadDataShared) SysAdd0ut<5:4> -Block (64 .Bytes) See Note, I

Memory 111 (Read DataShared/ SysAdd0ut<5:4> Block (64 Bytes) See Note 1
Dirt_y}_

Memory OlO(WriteData) SysAdd0ut<5:4> Block (64 Bytes) See Note 1

1/0 100 (ReadData) SysAddOut<5:4> QW (8 -64Bytes) See Note 1

1/0 100 (ReadData) SysAdd0ut<4:3> LW(4-32Bytes) See Note 2

1/0 100 (ReadData) SysAddOut<4:3> Byte/Word See Note 2

1/0 OlO(WriteData) SysAdd0ut<5:4> QW (8 -64Bytes) See Note 1

1/0 0 lO(WriteData) SysAdd0ut<5:4> LW(4-32Bytes) See Note 1

1/0 0 lO(WritcData) SysAdd0ut<5:4> Byte/Word See Note 1
-.l

NOTE 1 Transfers to and from EV6 are 8 data cycles for 8 total Qws. The starting point is defined by the
system. The preferred starting point is the one pointed to by SysAddOut <5:4>. Systems can insert the bits

<5:4> into bit <1:0> of the SysDc command. The wrap order is 'interl~ved' as defined by the table
below.

PA Bits <5:3> of Transferred QW
lstQW ()()() 010 100 110
2ndQW 001 011 101 111
3ntQW 010 000 110 100
4thQW 011 001 111 101
5thQW 100 110 000 010
6thQW 101 111 001 011
7thQW 110 100 010 000
8thQW 111 101 011 001

Digital Confidential Do Not Copy 49

- ,_ -- ... -r -r- -. _.,. _____ ~, - _.,. -··

Note 2 Longword and Byte/Word reads differ from all other transfers. Systems unload only 4 Qws of
data into 8 data cycles by sending each QW twice. The first QW returned is determined by
SysAddOut bits <4:3>. Systems again may elect to choose their own starting point for the
ttansfer and insert that value into SysDc<l:O>. The wrap order for "double pumped" transfers is
interleaved as defined by the table below.

PA Bits <5:3> of Transferred QW
lstQW xOO xOl xlO xll
2ndQW xOO xOl xlO xll
3roQW xOl xOO xll xlO
4thQW xOl xOO xll xlO
5thQW xlO xll xOO xOl
6thQW xlO xll xOO xOl
7thQW xll xlO xOl xOO
8thQW xll xlO xOl xOO

3.3.10 Data ECC

EV6 supports a QW error correction code for the System Data bus. ECC is generated by the CPU for all
Memory write transactions (WrVictimBlk) emitted from EV6 and for all probe data. ECC is also checked
for every Memory read for single bit correction and double bit error detection. Bcache data is checked for
fills to the Dcache and for all Bcache to system transfers (victims and probes).

I/O write data will not have a valid ECC (the ECC bits must be ignored by the System) and similarly, no
checking is done on 1/0 read data.

If the System indicates that Memory data should not be checked via mode setting in ECC_DISABLE in
the MBOX CSR, then no checking or correcting is performed. ·

3.3.10.1 ECC CODE. · ..

11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 cccc cccc

0123 4567 8901 2345 6789 0123 4567 8901 2345 7689 0123 4567 8901 2345 6789 0123 0123 4567

3.3.10.1.1 CBO 011101001101001001110100110100101000101100101101
1 000 1 011 001 0 11 01 1 000 0000
CB 1 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 0100 0000

CB2 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 0010 0000

CB3 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 0001 0000

CB4 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0000 1000
CBS 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0100

CB6 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 0000 0010

Digital Confidential Do Not Copy 50

CB7 1111 1111 0000 0000 0000 0000 1111 1111 0000 0000 1111 1111 1111 1111 0000 0000 0000 0001

3.3.11 Ordering of System Port Transactions
This section details transaction ordering issues as they relate to the System port. There are two classes of
ordering considerations:

EV6 commands and System probes
System probes and SysDC transfers

3.3.11.1 EV6 Commands and System Probes
The issue to be addressed involves EV6-generated commands and System port probes which reference the
same cache block. First, a few points:

• EV6 comma').ds reflect all probe responses sent and probe responses reflect all EV6 commands sent
• V AF (Victim Address File) and VDB (Victim Data Buffer) entries.each have independent valid bits .

for both a Victim and a Probe.
• Probe results indicate a hit on a V AF/YOB and whether or not the address has been sent. Systems can

decide whether to move the buffer once or twice.
• Probe responses are issued in the order that they were received, however, there is no requirement for

the system to retain order when issuing release buffer commands.
• Probe invalidates that match a valid V AF for which the address has been sent, will clear the V AF so

that subsequent probes to this same cache block will NOT report a Hit VDB condition. The RVB is
still required to rel~e the VDB.~

The following table lists all interactions between pending internal EV6 commands and probe commands,
and shows EV6's response in each case.

EV6
Command
RdBlk
RdBlkMod
FetchBlk
In val To Dirty
WrVictimBlk

. Clea.qToDirty

SharedToDirty

• Notes:

Probe: Next-State Command
Invalid Clean Clean/ Dirty/ Nop Transl Trans2

Table 1 Table 1
RdBlkMod.
/fail STx_C
RdBlkMod Table 2
/fail STx_C

Shared Shared

Table 1
Table 2

Table 1 Table 1 Table 1
Tablc2

Table 1
Table 2

• RdBlkVic and RdBlkModVic do not appear in the above table. If the interaction is between the probe
and victim then it's the same as WrVictimBlk.

• Probes that invalidate locked blocks will not result in a RdBlkMod command. EV6 must fail the
STx_C as defined in the Alpha SRM.

• All reads (RdBlk,RdBlkMod,Fetch, InvalToDirty) have no interaction as EV6 does not yet own the
block.

Legend for Table 1 and Table 2 is as follows:

DM = data movement (0 := probe does not need data, 1 := Systems requires data)
Nsl =Next State Invalid (0 :=next state NOP or shared etc., l:=Next State is Invalid)
AS = Address has been sent to the system

Digital Confidential Do Not Copy 51

~ --·----- ··-··--
- • -t' r- ------ -- - ·-1 - ~- --

NOP = no buffer for probe
Status<l:O> = EV6 response on Probe (OO=HitClean,Ol=Hit/Shared, lO=HitDiny ,11 =Dirty/Shared)

Type = Type of Hit (MAF = MAF hit and Address sent, VDB= VDB hit and Address sent)
sendV = send victim to System as usual
killV =block is no longer considered a victim by EV6
RVB =release the Victim Valid bit on the VDB
RPB =release the Probe Valid bit on the VDB
moveV =move Victim data from EV6 to the System
moveP =move Probe data from EV6 to the System
suppress victim =don't moveV or (write victim to Memory and guarentee System DMA write is last)

cam = Content address Memory ... a queue of addresses that are bit-for-bit compared with new entries

Table 1 : Probes that interact with WrVictimBlk
DM Nsl AS Status-~ -Type EV6 Action System Action

<l:O>
0 0 0 NOP NOP SendV ;waitRVB moveV, RVB
0 0 1 ;waitRVB moveV, RVB
0 1 0 NOP NOP KillV NOP
0 1 1 ;waitRVB RVB, suppress victim (VDB#cam)
1 0 0 HitDirty NOP SetP,SendV ;wait RPB,RVB moveV/P, RPB, RVB
1 0 1 HitDirty VDB SetP ;wait RPB,RVB moveV/P, RPB, RVB
1 1 0 HitDirty NOP killV, SetP ;wait RPB moveP, RPB
1 1 1 HitDirty VDB SetP, ;wait RPB,RVB moveP,RPB, RVB,suppress :victim

Table 1 Notes:

1) Vafstate: SendV, Vvalid, Pvalid
2) move VIP depends on Systems, blocks could be moved once or twice
3) Systems with address cams may clear both bits at the same time.

System Notes:

1) Tagless Uniprocessor -using P and V independently requires no address cams, the System can either
compare VDB#s or observe the rule that Memory is written with the WrVictimBlk first followed by
the DMA write.

2) Tagless MP - address cams are needed to fail SharedToDirty commands
3) ·Tagged MP· ~

If ChangeToDirty commands are failed by probing duplicate tag, no address cams are needed.

If the VDB is not released until the Victim address is on the Bus, no address cams are needed for

new probes versus victims.

Table 2 illustrates action taken by System and EV6 when a probe interacts with a ChangeToDirty
command. A ChangeToDirty (XtoD) can be either a CleanToDirty (CtoD) or a

SharedToDirty (StoD).

Table 2 : Probes that interact with ChangeToDirty
Nsl AS Status Type EV6 Action System Action

<1:0>
0 0 NOP NOP Send StoD if Next state= S
0 1 NOP MAF If CtoD, System can succeed or fail
1 0 NOP NOP FailXtoD
1 1 NOP MAF Fail XtoD

Digital Confidential Do Not Copy 52

I
I

I

I

Table 3 illustrates the actions taken when a probe has a conflict with a pending fill.

PFAS = Probe is first to arrive at serialization point
PFf6 = Probe is sent first to EV6

PFAS PFf 6
Table 3: Probes that interact with ~ndin& Memo!! refills

ACTIONS
send probe after fill
tagged System option, read probes that hit in the MAF wait for fill to complete
NIA

0
0
1
1

0
1
0
1 Normal case, S;ystem waits for probe re~nse and then send SxsDC fill command.

Note: Probe commands that coJitain a SysDc fill to the same address, are considered unordered with
repsect to the action they take on the cache. The Fill may occur before the probe or the probe may occur
before the fill.

3.3.12 System Port Clocking

This chapter will define all aspects of clocking the EV6 processor. It will define the rules for input clock
frequency, initialization and reset rules, system port clocking rules, and finally rules for entering and
exiting low power.

3.3.12.1 Input Oscillator
EV6 has a nominal internal "CPU" clock rate of 500 MHz. It is produced as the result of a phase locked
loop circuit with a frequency multiplying VCO generating 800 Mhz to 1.2Ghz that is divided by 2
(nominally) and distributed throughout EV6 (GCLK). Systems provide an input frequency or
CLKIN_H/L that is used by the PLL for phase alignment. CLKIN __ H/L can range from 80 to 200 Mhz ..
Systems will input a differential sinusoidal signal preferrably from a PLL that is also the source of the
clock for the system interface logic. The electrical, jitter and pha~e alignment specification for
CLKIN_H/L are described in the PLL section of the Electrical data chapter.

There are three divisor circuits in the PLL loop. The X and Z divisor shown in the diagram below are
controlled by an internal clock controller that steps up the frequency of the chip during power on/reset and
also steps the frequency down and up f<:>r sleep mode. The Y divisor is set during reset by copying the
values on IRQ<2:0> into a clock IPR. The Y divisor is never modified: Systems use the table below to
select the appropriate Y divisor to establish the desired EV6 frequency. For example, if a system supplies
a 100 Mhz CLK_IN and wants to run EV6 at 500 Mhz, it must establish a Y divisor of 5.

EV6 CYCLE TIME Y DIVISOR VALUE
NSEC GCLKFRE_Q_ 3 4 5 6 7 8

2.5 400 133.33 100 80 na na na
2.4 416.66 138.889 104.167 83.333 na na na
2.3 434.8 144.928 108.696 86.956 na na na
2.2 454.54 151.15 113.636 90.91 na na na
2.1 476.19 158.73 119.048 95.238 na na na
2.0 500 166.67 125 100 83.333 na na
1.9 526.31 175.439 131.579 105.263 87.719 na na
1.8 555.555 185.185 138.889 Ill.Ill 92.593 na na
1.7 588.24 196.078 147.059 117.647 98.04 84.034 na

1.666 600 200 150 120 100 85.72 na

Digital Confidential Do Not Copy 53

h.pIU .iV, J.::1::10

1.5 666.667 na 166.667 133.333 111.11 95.238 83.3

Note that the lowest frequency applied to the input of the PLL in nonnal operating mode is 80 MHz.

3.3.12.2 System Clock or Framing CLock

Systems are expected to run at an integer divisor of the oscillator input clock. EV6 requires a skew
controlled copy of the system clock as a reference or a Framing Clock. This clock is a single-ended 50%
duty cycle clock. This clock is captured by EV6 at the deassertion of reset. The captured framing clock
will track the internal Gclk. EV6 uses this clock to detennine the start of the system clock cycle for both
clock forwarded transfers. Addititionally, EV6 uses the Framing clock to do a synchronous reset of the
Clock Forwarding circuit. Systems must chose generate a Framing clock .with a period that can insure
proper synchronous' transfer of the clock -forward resel The following block diagram illustrates a
representative clock distribution scheme for EV6 systems. - ·

Digital Confidential Do Not Copy 54

1 :1

SO MHz
to

200MHz

SYSTEM
PLL

Frame_ Clk

EV6_Clk_H/ ..,.__..___ ___ --1

:R0<2:0>
IPR

Clk Forward
Setu IPR

ASIC

---~-?

SysDatalnClkH/

Pll_Bypass

SysDataOutClkH/L

EV6 IPR --
IPR '---..------'

BcDataClklnH/L BcDataClkOutH/L

Digital Confidential Do Not Copy 55

---·---·--·-----·-·---- -- ~-·-n.v:a .u. .1.v, .a.;;,:;,v

3.3.12.3 Clock Forwarding Definition

Clock forwarding is a well known communication technique that allows for transfers at higher speed than
traditional synchronous point-to-point communication would allow. EV6 has very high address and data
bandwidth requirements coupled with limited signal pins. Clock forwarding is the method that can
overcome the limited pin availability and yet provide high bandwidth. Previous Alpha processors
communicated to interface designs via a skew controlled synchronous clock. EV6 will send and receive
data and address/cmd to/from systems accompanied by a single ended clock. There is one single ended
clock for the address out (including SysFillValid and Data Valid ln\Out) and one single ended clock for
the address in. Further, each byte of the data bus has a single ended clock for EV6 to System transfers
and for System to EV6 transfers.

On the receiving end of the clock forwarded path, circuitry is sensitive to the forwarded clock such that it
is used to strobe the flop of the data that it accompanies. Additionally the receive circuit has a counter
that enables· the receive flop and this counter is incremented by the received clock. What follows is a
simple circuit illustrating a receive circuit for a single bit.

FORWARD DATA IN
D a

FORW ARD CLOCK IN
c

EN

~
D

a
1--- c

J EN
1---j

L....---1 RECEIVE
COUNTER

D
t---<

~
a

I-- c
EN

v1 v

D a
,_____ c

EN

GCLK c a i---
t--~~~~~~~~~ -

RECEIVE
MUX

COUNTER
IPR Preset<1 :O~ D

CLOCK FORWARD CLOCK OUT
IPR ----1 GENERATOR

1.5,2,2.5,3, 3.5, 4

Clk Fwd Rese~ s

Digital Confidential Do Not Copy

TARGET

D
a t---

c

GCLK

56

A simplified example of a sending circuit is shown below.

DATAO-----iD
Q1--~~~~~~-

D
DATA 1 --r---1

c

CLOCK

a

GCLK

IPR CLOCK SEL
(1.5, 2, 2.5, 3,

3.5, 4)

GENERATOR FORWARD CLOCK

3.3.12.4 Glossary of Terms

0

FORWARD
DATA OUT

FORWARD
CLOCK OUT

There are a number of terms that will be used repeatedly in this specification and require defining.

BIT TIME - Specified in Nsec and pertains to the total time that a signal conveys a single valid piece of
information. Since all data and command is associated with a clock and the receivers latch on both
the rise and fall of the clock. Bit times are defined as a multiple of the EV6 clocks. Systems must
produce a Bit time identical to EV6.

FORWARD CLOCK - A single ended signal that is aligned with its associated fields. Sourced and
aligned by the sender with a period that is 2 times the bit time. Forwarded clocks must be 50-50 duty
cycle clocks whose rising and falling edges are aligped with the changing ed11:e of the data.

FRAMING CLOCK - The framing clock defines the start of a transmission either froni the system to EV6
or from EV6 to the system. The Framing clock is a power-of-2 integer multiple of the EV6 CPU
clock. and is usually the system clock. The Framing clock and the input oscillator can have the same
frequency. The add_frame_select IPR sets that ratio of bit times to Framing clock. The Frame clock
could have a period that is 4 times the bit time with a add_frame_select of 2X. Transfers begin on the
rising and falling edge of the Frame clock. This is useful for systems that have system clocks with a
period to small to perform the synchronous reset of the clock forward logic.

SYSTEM CLOCK - The primary skew controlled clock used throughout the interface components to
clock transfer between ASICS, main memory and 1/0 bridges.

GCLK - Global clock within EV6, the 2 nsec globally distributed clock with EV6
INTERFACE RESET - A synchronously received reset signal that is used to preset and start the clock

forwarding circuitry. During this reset, all forwarded clocks are stopped and the presettable count
values are applied to the counters, than some number of cycles later the clocks are enabled and are
free running.

RECEIVE COUNTER- Counter used to enable the receive flops. It is clocked by the incoming forwarded
clock and reset by the Interface Reset

Digital Confidential Do Not Copy 57

-~·- ·-···--· .. ·~~···-~--- ··- .. ··-·-·----
Jl,.,,,J 41 ""',........ t",~ __ , .. ~ _, ...

RECEIVE MUX COUNTER- The Receive Mux counter is preset to a selectable starting point and
incremented by the locally generated Forward Clock.

OU1PUT MUX COUNTER - Counter used to select the output mux that drives address and data. It is
reset with the Interface Reset and incremented by a copy of the locally generated forwarded clock.

CORRELA TED SKEW - Uncertainty conttibutors that are track commonly . Examples of correlated
skew might be a signal sourced from the same chip and sent to the same destination chip. The total
system clock skew is correlated among this group of signals. Intra-die process variations are also
correlated.

UNCORRELATED SKEW - The mismatch between the delay of the forwarded clock and the forwarded
data. There arc a number of contributors in the uncorrelated category whose total magnitude is a
limit to the minimum bit time. Uncorrelated skew is what forces the forwarded clock out of
alignment with respect to the data.

TAR GET CLOCK - Skew controlled clock which receives the output of the RECEIVE MUX .
CLOCK OFFSET - or ClkOffset is the delay intentionally added to the forwarded clock to meet the setup

and hold requirements at the Receive Flop ··

3.3.12.5 Clock Forwarding Bit times

EV6 will derive its forwarded clock from the internal CPU otherwise known as GCLK. Systems can
choose from one of six GCLK multiples for the forwarded clock. Those value are 1.5, 2, 2.5, 3,3.5 and 4.

. .
Systems must match their send and receive circuits with the BIT TIMES that it selects for EV6. If EV6
is setup to drive data at a 3 nsec BIT TIME, then the system must send and receive at the same 3 nsec
rate. Below is a table that show· the bit times for all possible clock multiples and the standard six GCLK
frequencies.

EV6FORWARD
CLOCK
MULTIPLIER
VALUE

EV6 Internal Operating Frequency

450MHz 500MHz 550MHz (>()()MHz 700MHz

1.5 3.3 nsec 3 nsec 2.75 nsec 2.5 nsec 2.14 nsec

2 4.4 nsec 4nsec 4.63 nsec 3.33_nsec 2.84 nsec·

2.5 5.5 nsec 5nsec 4.545 nsec 4.16 nsec 3.5 nsec

3 6.6 nsec 6nsec 5.454 nsec 5 nsec 4.26 nsec

3.5 7.7 nsec 7nsec 6.363 nsec 5.833 nsec 4.97 nsec

4.0 8.8 nsec 8nsec 7.272 nsec 6.667 nsec 5.68 nsec

Below is a timing diagram showing an example of the timing relationship of the three clocks (Framing
clock, forwarding clock and GCLK) and the data and address bus. The frequency of the clock matches
that of the data. Receive circuits must be designed to latch on both the rise and fall of the forwarded
clock. Note that it does not illustrate correct protocol.

Digital Confidential Do Not Copy 58

1
10000ps

I I 1
15000ps

I I

Framing Clock -----
Forward Clock

CPU Clock

Command/Addr .__I ____ X s_yscmd x PA<XXX> x PA<XXX> x PA<XXX> X.._ ___ ~7

Data Bus ._I ____ x=:_oo ______ x===-01,____X~_,0==2==-x==o_3_==-x_--=D4"-'--_ ::J

3.3.12.6 Principles Of Operation

A single-ended clock accompanies at most 16 signals from a sender targeted at a receiver. All delay
contributors that effect the propagation of the clock and the signal it represents are matched as closely as
possible. The output stage and the drivers are closely matched to align the rise/fall of the single-ended
clock with the front edge of the data signal. Systems must do a likewise matched circuit design for their
sending circuits.

3.3.12.6.1 Number of RECEIVE FLOPS required
Receiving circuits for the system designs have one variable and that is the number of receive flops along
with the associated size of the receive clock enable counter. The absolute minimum number of receive
flops (N) is the Target Clock Period/ BIT TIME and this would assume that there is no skew, no setup
and no hold. The minimum number of receive flops (N) can be determined by the following equation:

N = (Target Clock Period+ (Max _delay - Min_delay) + TSkew + Tsetup + Thold) I BIT TIME

ex. Target Clock Period (System clock) = 12 nsec

Max_Delay(total worst case delay from sender to Target flop)= 9 nsec
Min_Delay(total best case delay from sender to Target flop)= 5 nsec
TSkew (Total clock uncertainty between GCLK and System Clock = 5 nsec
Tsetup (setup time of the Target flop) = 100 psec
Th old (hold time of the Target flop) = 500 psec
BIT TIME = 3 nsec

N = (12 + (9-5) + 5 + .1 + .5) I 3 = 21.6/3 = 7.2 rounded up to the next integer= 8 receive flops.

Digital Confidential Do Not Copy 59

--~ t v .._.. k' ..,;~-- __, , -··-

3.3.12.6.2 Maximum allowable skew and max to min delay difference.

EV6 will have 4 receive flops for both the SysAddln bus and the SysDataln bus. This number of receive
flops combined with lhe bit time will determine the maximum allowable difference between the
Min_Delay and the Max_Delay plus the total clock skew. The equation is as follows:
4 * BIT TIME > (EV6 CYCLE TIME +(Max_delay-Min_delay) + TSkew + Tsetup+ Thold)
BIT TIME = 3nsec
EV6 Cycle Time = 2
Max_delay = 9
Min_delay = 5
TSkew=4
Tsetup = .100
Thold=O
4 * 3 > (2 +(9-5) + 4 + .1) 12 > 10.1 nsec

3.3.12.6.3 Receive Mux Counter Preset value

Another system selectable value is the preset value on the receive mux counter. The receive mux counter
is incremented by a copy of the local Forward Clock so that it has a frequency equal to the bit rate and is
skew aligned with GCLK. Since the counter must select a receive flop at the earliest point in its valid
window, it is really determined by the maximum delay from the source clock within the senders ASIC to
the output of the receive flop. The MAX_DELA Y between the sender and receiver can be greater than
the turnover of the receive mux counter. In fact, it can many times greater than the time taken to
complete one cycle of the receive mux counter as long as all of the other requirements are met. The
preset delay in nanoseconds is :

MAX_DELAY (nsec) mod (Bit Time * 4) = Preset Delay(nsec)

Then the preset value which is loaded into the counter during clock forward reset is the two's compliment
of: PRESET DELAY (nsec) I BIT TIME (nsec)
Systems will have differing delays between the SysAddln/Out buses and the SysDatabus. Since EV6 has 4
receive flops for address and data, a wide valid window is created. This wide window can absorb delay
differences due to placement up to 2 nsec or about 13 inches. Therefore, when systems calculate the
receive mux counter preset value they should use the max delay of all the data and address busses.

3.3.12.6.4 Minimum Bit TimeThe minimum bit time or the period of the forwarded data and clock
(recall ·that the clock switches at the· same rate as the data) is vital in arriving at the maximum supportable
bandwidth of the interface. The limits are local, meaning within the specific set of signals and the
associated clock. For EV6, minimum bit time is established by examining the min max differences
across a group of signals that have a common source and destination. For example, the SysAddOut bus is
accompanied by a forwarded clock and collectively they are targeted at one destination. The following
diagram illustrates the contributors that minimize the Bit time.

Digital Confidential Do Not Copy 60

-f_F_w_:w_cd_'~-~-:-~_F_:_:_:_:::et
SOURCE CLOCK

FwdDataPeriod =-I ----+---+--

SOURCE DATA

CLOCK AT DESTINATION

PATA AT DESTINATION

FwdDestSetup ~

From the diagram: one can derive the following equations: '··.·

a) Min_BitRate = FwdClkPeriod

b) Min_BitRate = UncorrelatedSkew + FwdDestSetup + FwdDestHold

c) UncorrelatedSkew = (FwdDataMax - FwdDataMin) + (FwdClkMax - FwdClkMin) +
(FwdClkOffsetMax - FwdClkOffsetMin)

There are a number of contributors to Uncorrelated skew. They are as follows:

• Delay variations dependent on previous history of data transitions on an individual bit line.
• Simultaneous switching of outputs causing clock and data pad cells to experience delay that depend

on the switching patterns of nearby neighbors.
• Crosstalk between signal lines couple into adjacent signal netS causes signals to move up and-down

from their crosstalk-free positions.
• Differences between the desired length of the clock lines and the data lines on both the module and

package
• Differences in impedance along path of clock and data lines.
• Differences in the propagation velocity of clock and data due etch runs on different signal layers.
• Differences in propagation delays of clock and data due to different cell types used in the two paths on

both the source and target chip.
• Differences in termination techniques between the clock and data.
• Differences in loading of the clock and data networks at either the source or target chips.
• Differences in clocking times of different cells due to RC delays.
• Intra-die process variations

To determine how much one must delay the Forward clock relative to the forwarded data (FwdClkOffset),
use the following equations:

Digital Confidential Do Not Copy 61

d) FwdClkOflset > (FwdDataMax + FwdDestSetup - FwdCllcMin)

e)FwdClkO/fset < (FwdDataMin + FwdDataPerlod - FwdClkMax - FwdDestHold)

3.3.12.7 Power Down Mode
EV6 is designed to operate in computer systems that meet all the criteria specified in the EPA Energy
Star worksheet. EV6 can automatically enter a low-power or "sleep" mode that enables the system to be
30 watts or less. EV6 will automatically "wake up" upon resumption of system activity and return to the
same situation that existed prior to entering sleep mode.

1. EV6 will enter sleep mode by way of CALL_P AL WTINT. The following sequence of events will
occur during the execution of this instruction.

2. EV6 writes a value into the TBD CSR external to the system which is the number of interval timer
interrupts that the system ignores until threshold ..

3. EV6 interval caches are swept. Clean block are invalidated(Evict commands are issued on systems
with Duplicate Tag stores) and dirty caches blocks are written back to main memory.

4. EV6 then saves all architectural and readable state that would be needed upon returning to the wake
state.

5. EV6 sets an IDLE in the interface that alerts the system that he interface is inactive. The system will
'ACK' this command when all outstanding probes have been serviced. The system will send no more
probes until the IDLE bit is clear.

6. The routine now writes to an internal IPR that sets the divisor on the PLL output so that the GCLK ·
now runs at less than I/10th the nominal clock rate.

7. Upon receiving either an interval timer interrupt or a device interrupt (if enabled), EV6 will do a
limited chip reset. That is, reset all but the configuration registers.

8. When nominal clock rate is achieved, EV6 receives a ClockFwdReset to reset its own clock forward
circuitry as well as the systems.

9. EV6 will then read the external interval timer threshold register to determine the type of interrupt and
to update the memory resident time-of-year clock. EV6 will also clear the IDLE bit in the system.

10. EV6 will now restore the processor state and return to normal operation.

Digital Confidential Do Not Copy 62

3.3.12.8 PLL Bypass

EV6 testing requirements include the ability to bypass the internal PLL. An input pin known as
PLLBypass, when asserted will apply the CLKIN_H/L frequency directly to the internal GCLK
distribution. For nominal 500 MHz operation a 500 MHz sinusoidal differential signal must be applied
to the CLKIN_H/L pins.

Additionally, EV6 can be operated in a system with PLLBypass asserted. Systems providing a frequency
directly to EV6 in bypass mode will either provide an external PLL that performs that phase alignment to
EV6CLK_H/L. An alternative would be to absorb the delay from CLKIN to EV6CLK as skew. The max
delay from CLKIN to EV6CLK is TBD.

3.3.12.9 INITIALIZATION

This section will describe those features of the EV6 clock forwarding interface that are programmable.

1. Address and Data bus bit time :
A 3 bit field in the CBOX IPR that defines the forwarding clock period of the SysData bus and the
SysAddin/Out Bus as a multiple of the EV6 GCLK. The table shows the clock multiple which is
selected and the associated bit times for each of the 6 possible settings. The IPR is called
sysclk_ratio.

Sysclk_rati0<2:0> . Multiple Bit Time
EV6@2nsec

001 1.5 3nsec
010 2.0 4nsec
011 2.5 5nsec
100 3.0 6nsec
101 3.5 7nsec
110 4.0 8nsec

2) Address and Data Receive Mux Counter Preset
A fieid that is the preset value of the receive mux counter after deassertion of the synchronous clock ... ·
forward reset The preset value is chosen by careful analysis of the Max_delay of the forwarded clock and
the earliest possible point to select the appropriate receive flop. The CBOX IPR is called
sys_rcv _cnt_preset< 1 :0>. .

sys_rcv _cnt_preset< 1 :O>

Digital Confidential

()()

01
10
11

Counter Preset
00
01
10
11

Do Not Copy 63

Apru 1v, 1!1:10

3) Y Divisor value select field
A three bit field used to select one of 8 Y divisor values in the PLL return loop. The Y divisor divides
down the distributed GClk from the nominal 500 Mhz to match the CLKIN_H/L frequency. The Y
divisor value is set during reset by copying the static held levels on IRQ<2:0> into a clock control register.

IRQ<2:0>

4) Framing Clock Offset

()()()

001
010
011
100
101

Y divisor value
3
4
5
6
7
8

A 2 bit field that changes the position of the framing clock relative to the framing clock seen at the input
pins. It allows systems to adjust the start of EV6 generated commands and data so that it is guaranteed to
be valid at the earliest system clock edge. This will help in reducing latency. Each bit equals one forward
clock period of adjustment earlier than the nominal frame clock. This.CBOX IPR is called
fram_clk_offset<l:O>." · · · · ·

... ~~=~~~ ~!f.~~~~.!:.Q~ !! .. EQ~~~-.9~.~.f~~~--···
00 0 (nominal)
01 1
10 2
11 3

3_.3.12.10 Clock Forward Reset
Systems are requif~ to generate ... Clock Forward Reset (ClkFwdReset_H). This signai must occur no .
earlier than TDB cycles after the deassertion of reset_L and TBD cycles after the interval timer interrupt
is sent to wake up a powered down EV6. ClkFwdReset is a synchronous signal and is clocked into a
register
in EV6 with the captured copy of Framing Clock. Systems must insure that the with +/-2.0 nsec of skew
and set up time of ***psec, EV6 can safely capture the ac;sertion of ClkFwdReset

There is a one (framing clock) cycle of internal distribution delay on ClkFwdReset so that on the second
rising egde of ClkFwdReset, it is applied to the target circuit. The forwarded clocks are disabled both
at the system and within EV6. The receive counter is set to 0 and the sys_rcv _mux_cnt_preset<l :0> is
applied to the Unload counter in EV6. ClkFwdReset should assert for a minimum of 3 framing clock
cycles. The synchronous deassertion of ClkFwdReset will start the forwarded clocks. Clocks remain
on and free running.

Digital Confidential Do Not Copy 64

The diagram below shows the application of ClkFwdR.eset Note that it is asserted for only two framing
clock periods and the minimum is three.

Digital Confidential Do Not Copy 65

. --·------·-----·-·
rtp.i.u .a.v, J.77u .I.::. l' v ~U.liJ .; .t!""".l..l.l,.,.~Uvu, ..:, ~ v

3.4 Bcache Port
EV6 supports a second level cache from 1 to 16 MB in size, with 64-byte blocks. A 128-bit bus is used for
data transfers between EV6 and the Bcache. The Bcache is fully synchronous, and the SRAMs must
contains either one, two or three internal registers. All Bcache control and address pins are clocked
synchronously on Bcache cycle boundaries. The Bcache clock rate can vary from 1.5 to 4 CPU clock
cycles, in half cycle increments.

3.4.1 Bcache Port Pins

Pin Name TyPe Count

BcAddress<23:4> _H 0
"• ..

20 Bcache Index

BcDataOE<l:O> _H 0 1 Bcache data output enable
BcBurst_H 0 1 Bcache burst enable for burst mode

SRAM's
BcDataWR_H 0 1 Bcache data write enable
BcData<127:0> _H B 128 Bcachedata
BcCheck<15:0> B 16 ECC check bits for BcData
BcDataCl.kln<7:0> _H I 8 optional Bcache data input clocks
BcDataClkln<7:0> _L I 8 optional Bcache data input clocks
BcDataClk0ut<3:0> _H 0 4 Bcache data clock outputs
BcDataCl.kOut<3:0> _L 0 . '4 Bcache data clock outputs

BcTag<42:20> _H B 23
BcTagValid_H B 1
BcTagDirty _H B 1
BcTagShared_H B 1
BcTagParity _H B 1
BcTagClkOut_H/L 0 2
BcTagClkln_H/L I 2 optional BcTag input clocks
BcTagOE_H 0 1 tag ram output enable
BcTagWR_H 0 1 tag ram write enable

3.4.2 Pin Descriptions

3.4.2.1 BcAddress
BcAddress is a high drive output and supplies the index for the Bcache. EV6 supports the following
Bcache sizes: 0,1MB,2MB,4MB,8MB, and 16MB.

3.4.2.2 BcClkOut
BcClkOut<3:0> are differential copies of the Bcache clock. BcClkOut may be configured such that its
rising edge lags BcAddress by 0 to 2 CPU clock cycles. The BcClkOut is free-running and is derived
from the internal GCLK. It's period is a multiple of the GCLK and is fixed for all operations.

EV6 supports only Synchronous SRAMS. Those Synchronous SRAMs can be from 3 different families.
The first is a BurstRam with conventional Reg/Reg output and that is one piece of data for every rise of

Digital Confidential Do Not Copy 66

the clock. The second type is a non-burst REG/REG Late.Write architecture. And finally, the third type is
a BurstRam Reg/Reg Late Write with clock forwarded output with data on the rise and fall of the clock.

3.4.2.3 BcBurst
BcBurst is asserted on the first cycle of a read or write when BC_BURST is set in the **IPR. Tag stores
are not bursted and can be accessed under a burst of the data BurstRam.

3.4.2.4 BcDataClkln & BcTagClkln
The BcDataClkln and BcTagClkln pins are to be used with high speed DDRs that provide a clock out
with the data output pins to optimize Bcache read bandwidth. EV6 will internally sync the data to the its
CPU with clock forward receive circuitry similar to the System interface. For non DDR devices systems
will connect the .

3.4.3 Bcache Banking
Bcache banking is possible by the decode of the most significant addreSs bit. Switching between cache
banks may require Rd-Rd bubbles as well as the usual Rd-Wr bubbles; this will be programmed via the
BC_RR_BUB field of the **IPR.

3.4.4 Bcache Transactions
The Bcache supports 4 transactions:

Data Read
Data Write
TagRead
Tag Write

Data reads are always accompanied by tag reads in the first cycle of the data react. Similarly data writes
include a tag write in the first cycle so the Bcache tag state can reflect any changes made to the block
while it was in the Dcache. Tag reads and writes are used individually as the result of System PROBE
commands. Tag reads will also be performed during a 4 cycle burst of the Data SRAMS. This allows

system probes access to the Bcache Tag store without interrupting that private access by the processor.

EV6 supports late write SRAMs - write data can be delayed from the address by 0 to 4 Bcache clocks.

3.4.5 Bcache Clocking

BcClkOut is used to synchronously clock address, control and data into and out of the Bcache SRAMs.
BcClkOut and BcClkln are free running clocks and they are derived from the internal processor clock The
period and position of the edges of the clock is determined by setting appropriate fields in the CBOX IPS.

The period of the Bcache clock is established by setting the bcclk_ratio CBOX IPR. The ratio is a multiple
of the processor clock and can range from 1.5 to 4 .0 in .5 increments. This setting essentially defines the
period of the data bit In single data mode, the clock rntio established the period of the Bcache clock and
in dual data mode the bclk_ratio defines one phase of the bcclk_ratio. Dual data SRAMs provide data on
the rise and fall of a clock that accompanies the data back to EV6. Systems must enable dual data mode
by asserting the bc_ddr_enable in the CBOX IPR.

The position of the clock relative to address and write data can be controlled down to a processor clock
phase by setting the appropriate value in the 3 following registers:

Digital Confidential Do Not Copy 67

Apru HJ, 1~~0

I. BC_LATE_ WRITE_NUM delays write data relative to the address by one bccache clock period for
each binary value in the register from 0 to 7 Bcache clocks. This is useful for late write SRAMs.

2. BC_CPU_LATE_ WRITE_NUM delays write data relative to address by one CPU clock period for
each binary value set in the register from 0 to 3 CPU cycles. The rising clock edge moves with write
data.

3. BC_PHASE_LA1E_ WRITE_NUM delays the rising edge of the Bcache clock by 0-2 CPU clock
phases. For a 2 nsec CPU clock, this allows for 1 nsec granularity setting clock the position of the
clock.

Digital Confidential Do Not Copy 68

3.4.5.1 Dual Data SRAM Read

1
15ns

I I 1
20ns

I I 1
25ns

I I

Addr@SRAM :X

BCClk@Sram

ADDA 0 x ________ -.JX.._ ______ _.X.._ _____ _

L----~ICLK TO OUT DATA
Data@SRAM -------------4H DO X# D1 X i::::i{.._D_2---.XiHD3 }--

l.t3inEtch
DataBus@Ev6 --------------1(:::::{ Do x,..)::t,,._. =-0-1 -----·x:::::{ 02

::choClk@EV6

The timing diagram above show a read from a bursting dual data SRAM that forwards data on the rising
and falling edges of an echo clock. The echo clock is a reflected copy of the SRAM input clock provided
by EV6. It is properly aligned with the data output so that it meets setup and hold requirements of the
receive circuitry in EV6. The SRAM does a burst of 4 in interleaved burst order. Control signals not
shown initiate the burst, control read and write and the direction of the output drivers.

3.4.5.1 Standard SRAM Read

1
12sns 150ns

Addr@SRAM =x AO)(=:ALJ'(A2 X A3 X.__ __ X..___ _ __,X BO X 81 X 82 >C8D

3cClk@SRAM ~ ~

Dara:::~ ~~ ~N% xtoA3
Write Data to Sram

H (DBO x 081 rn[]

The timing diagram above illustrates a late write SRAM that is non-bursting in single data mode. The
ram provides one piece of data for every rise of the BcClk. For reads, the address is clocked into the part
in cycle 'n' and the data appears at the pins on clock 'n + 1 '. Each piece of data requires a new address.
The diagram shows the transition to a write, beginning with address BO and the fall of the RD/WR#
control signal. Data relative to BO address is clocked into the part on the next rising edge of the BcClk.
Note that there are two bubbles in the address when transitioning from a read to a write. There are no
bubbles when going from a write to a read.

Digital Confidential Do Not Copy 69

-----"-•··--------- ------ -·-- ---
h})l.U J.V, 1:1:1U

3.5 Interrupts
The System may request interrupts via the irq_h<5:0> pins. These six interrupt sources are identical: they
may be asynchronous, are level sensitive and can be individually masked via the EIE field of the IER IPR.
The way these signals are used and their relative priority is completely general, and left to the System
designer.

3.6 Pin List
Name TyPe Count
SysAddln<14:0> _L I 15
SysAddlnClk_L I 1
SysFillV alid_L I 1
SysAddOut<14:0> _L 0 15
SysAddOutClk_L 0 1

SysData<63:0> _L B 64
SysCheck<7:0> _L B 8
SysDatalnClk<7:0> _L I 8
SysDataOutClk<7:0> _L 0 8
SysDatalnValid_L I 1
S ysDataOut V alid_L I 1

TOTAL 123

BcAddress<23:4> _H 0 20
BcDataOE_L 0 1
BcLoad_L 0 1
BcDataWR_L 0 1

BcData<127:0> _H B 128
BcCheck<15:0> _H B 16
BcDatalnClk<7:0> _H I 8
BcDatalnClk<7:0> _L I 8
BcData0utClk<3:0> _H · 0 4
BcData0utClk<3:0> _L 0 4

BcTag<42:20> _H B 23
BcTagValid_H B 1
BcTagDirty _H B 1
BcTagShared_H B 1
BcTagParity _H B 1
BcTagOE_L 0 1
BcTagWR_L 0 1
BcTaglnClk_H/L I 2
BcTagOutClk_H/L 0 2

TOTAL 224

IRQ<5:0>_H I 6

RESET_L I 1

Digital Confidential Do Not Copy 70

1···~~~~ii·······························!~············9?.~!1·-···-·-
SromClk_H 0 1
SromEn_L 0 1
TestModeSelect_H I 1
TestClk_H I 1
TestReset_L I 1
TestDataln_H I 1
TestDataOut_H 0 1
TestStatus_H 0 1

Clkln_H I 1
Clkln_L I 1
FrameClk_H I 1
PllBypass_H I 1
ClkFwdReset_H I 1
EV6CLK_H 0 1
EV6CLK_L 0 1
PLLVDD I 1

I DCQk_H I 1
VRefficache I 1
VRefSys I 1

TOTAL 27
GRAND TOTAL 374

Digital Confidential Do Not Copy 71

4. Privileged Architecture Library Code
This chapter describes the EV6 PAL.code environment

4.1 Use of Alpha Implementation-Specific Opcodes
The Alpha architecture reserves five opcode points for implementation-specific P ALcode use. The table
below lists these opcodes and their use in EV6.

EV6 Mnemonic
HW_LD
HW_ST
HW_RET
HW_MFPR
HW MlPR

1B
IF
IE
I9
ID

Function
D-stream load instruction
D-strearn store instruction
Return from PAL.code routine
Reads the value of an IPR into a integer GPR
Writes the value of an integer GPR into an IPR

These instructions generally produce an OPCDEC exception if executed while the processor is not in
P ALmode, however, if I_ CTL<HWE> is set these instructions can be also be executed in kernel mode.
Software which uses these instructions must adhere to the PALcode restrictions listed in this chapter.

Digital Confidential Do Not Copy 72

4.1.1 HW LD Instruction

P ALcode uses the HW _LD instruction to access memory outside the realm of normal Alpha memory
management and to do special forms of D-stream loads. Data alignment traps are disabled for the HW _LD
instruction.

31 26 25 21 20 1615 131211 0

I

Opcode Ra Rb Disp

Len
.__ _________________ ~ Type

... !:~~~~ Y.~.~~ ~~~P.!!Q~
Opcode
Ra
Rb
Type

Len

Disp

1B16

CXXh

OOh

OIC>i

The Opcode value: 1B16
Destination register number
Base register for memory address
Physical

The effective address for the HW _LD is physical
Physical/Lock

The effective address for the HW _LD is physical. Load lock
version of HW _LD.

Virtual/VPTE
Flags a virtual PIE fetch (LD_ VPTE). Used by trap logic to
distinguish single TB miss from double TB miss. Kernel
mode access checks are performed

100i Virtual
The effective address for the HW _LD is virtual.

lOh Virtual/WrChk
The effective address for the HW _LD is virtual. Access
checks for FOR, FOW, read and write protection.

110i Virtual/Alt
The effective address for the h""W _i..D is virtual. Access
checks use DTB_ALT_MODE IPR

11 h Virtual/WrChk/Alt

0
1

The effective address for the HW _LD is virtual. Access
checks for FOR, FOW, read and write protection. Access
checks use DTB_AL T _MODE IPR

Access length is longword
Access length is quadword
Holds a 12-bit signed bite displacement

4.1.2 HW ST Instruction
P ALcode uses the HW _ST instruction to access memory outside the realm of normal Alpha memory
management and to do special forms of D-stream store instructions. Data alignment traps are inhibited for
HW _ST instructions.

Digital Confidential Do Not Copy 73

31 26 25 21 20

I I I I I I I I I I I I

Opcode Ra Rb

Field Value
Opcode 1F16
Ra
Rb
Type OOCh

OOh

OlOi

1102

all others
Len 0

1
Dis_E

Digital Confidential

1615 131211 0

I I I I I I I I I I I I I I

Disp

Len
'--~~~~~~~-.~ Type

Descri~tion
The Opcode value: lF16
Write data register number
Base register for memory address
Physical

The effective address for the HW _ST is physical
Physica1/Cond

The effective address for the HW _ST is physical. Store
conditional version of HW _ST. The lock flag is returned in
Ra Refer to PAL restrictions for correct use of this
function.

Virtual
The effective address for the HW _ST is virtual.

Virtual/ Alt
The effective address for the HW _ST is virtual. Access
checks use DTB_ALT_MODE IPR

Unused
Access length is longword
Access length is quadword
Holds a 12-bit si~ed bx_te diselacement

Do Not Copy 74

4.1.3 HW RET Instruction
The HW _RET instruction is used to return instruction flow to a specified PC. The Rb field of the
HW _RET instruction specifies an integer GPR which holds the new value of the PC. Bit <0> of this
register provides the new value of PALmode after the HW _RET instruction is executed. Bits <15: 14> of
the instruction contain the stack action. Normally the HW _RET succeeds a CALL_P AL instruction or
trap handler, which pushed its PC onto the prediction stack. In this mode, the IDNT should be set to '10'
to pop the PC and generate a predicted target address for the HW _RET. In certain circumstances, the
HW _RET is used in the middle of a PAL flow to cause a group of instructions to retire. In these cases, if
the HW _RET does not have a corresponding instruction which pushed a PC onto the stack, the filNT field
should be set to '00' to keep the stack from being modified. In the rare circumstance that the HW _RET
might be used like a JSR or JSR_ COROUTINE, the stack can be managed by setting the HINT bits
accordingly.

31 26 25

I I I I I

Opcode

Field
Opcode
Ra
Rb

Hint

Stall

I I I

Ra

21 20

I I

Value

00
01
10
11

I I

Rb
I

16 15 1413 12 0

I I I I I I I I I I I I I

MBZ

STALL

~---------111 HINT

Description
The Opcode value: 1E16

Register number. Should be R31.
Target PC of HW _RET. Bit<O> of the register's contents determines
the new value of P ALmode.
HW _JMP: PC is not pushed onto prediction stack; no predicted target
HW _JSR: PC is pushed onto prediction stack; no predicted target
HW _RET: prediction is popped off stack and used as target
HW _COROUTINE: prediction is popped and used as target. PC is
pushed onto stack
If set, the fetcher is stalled until the HW _RET is retired or aborted.
EV6 will force a mispredict, kill instructions which were fetched
beyond the HW _RET, refetch the target of the HW ~RET and stall ·
until the HW _RET is retired or aborted. Note that if instructions
beyond the HW _RET have issued out-of-order they will be killed and
refetched.

4.1.4 HW _ MFPR and HW _ MTPR Instructions
The HW _MFPR and HW _MTPR instructions are used to access internal processor registers. The
HW _MFPR instruction reads the value from the specified IPR into the integer register specified by the Ra
field of the instruction. The HW _MTPR instruction writes the value from the integer GPR specified by the
Rb field of the instruction into the specified IPR. ·

Digital Confidential Do Not Copy 75

31 2625

I I I I I

Opcode

Field
Opcode

Ra
Rb
INDEX
SCBDMASK

I I I

Ra

Digital Confidential

21 20

I I I I

Rb

Value

...... ~"' _l"' -~-- _ _......._. , "' -·--

18 15 8 7 0

I I I I I I I I I I I I I I I

INDEX SCBDMASK

Description
The Opcode value for HW _MFPR: 1916

The Opcode value for HW _MTPR: 1016
Destination register for HW _MFPR. Should be R31 for HW _MTPR.
Source register for HW _MTPR. Should be R31 for HW _MFPR.
IPR index.
Specifies which IPR scoreboard bits in the IQ are to be applied to this
instruction. A set mask bit indicates that the corresponding IPR
scoreboard bit should be amlied to this instruction.

Do Not Copy 76

4.2 Internal Processor Register Access Mechanisms
Since the EV6 Ibox reorders instructions and executes instructions speculatively, extra hardware is
required to provide software with the correct view of architecturally defined state. The Alpha architecture
defines two classes of state - general-purpose registers and memory. Register renaming is used to provide
architecturally correct register file behavior, while the Ibox and Mbox each have hardware dedicated to
invisibly providing correct memory behavior to the programmer. Since the internal processor registers are
implementation-specific state not defined by the Alpha architecture, access mechanisms for these registers
may be defined which impose restrictions and limitations on the software which uses them. This section
describes the hardware and software access mechanisms which are used for EV6' s IPRs.

With respect to a particular IPR, each instruction type can be classified by how it affects and is affected by
the value held by that IPR. Explicit readers are HW _MFPR instructions which explicitly read the value
of the IPR. Implicit readers are instructions whose behavior is affected by the value of the IPR. For
example, each load instruction is an implicit reader of the DTB. Explicit writers are HW _MTPR
instructions which explicitly write a value into the IPR. Implicit writers are instructions which may write
a value into the IPR as a side effect of execution. For example, a load instruction which generates an
access violation is an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In EV6, only
instructions which generate an exception will act as implicit IPR writers. Only certain IPRs, such as write
one-to-clear bits are both implicitly and explicitly written. The read-write semantics of these IPRs is
controlled by software.

4.2. l IPR Scoreboard Bits
In previous Alpha implementations, IPR registers were not scoreboarded in hardware, and software was
required to schedule H W _MTPR and HW _MFPR instructions for each machine's pipeline organization in
order to ensure correct behavior. This software scheduling task is more difficult in EV6 since the Ibox
performs dynamic scheduling. Hence eight extra scoreboard bits are used within the IQ to help maintain
correct IPR access order. The HW _MTPR and HW _:MFPR instruction formats contain an eight-bit field
which is used as an IPR scoreboard bit mask to specify which of the eight IPR scoreboard bits are to be
applied to the instruction.

For HW _MTPR, if any of the unmasked scoreboard bits are set when the instruction is about to enter the
IQ, then the instruction (and those behind it) is stalled outside the IQ until all the unmasked scoreboard
bits are clear and the queue does not contain any implicit or explicit readers which were dependent on
tliose hits when they entered the queue. When all the unmasked scoreboard bit~ are clear and the _queue
does not contain any of those readers, the instruction enters the IQ, and the unmasked scoreboard bits are
set.

HW _MFPR instructions are stalled in the IQ until all their unmasked IPR scoreboard bits are clear.

Scoreboard bits <3:0> and <7:4> behave differently in regard to their effect on other instructions when
set, and in regard to how they are cleared.

If any of scoreboard bits <3:0> are set when a load or store instruction enters the IQ, then that load or
store will not issue from the IQ until those scoreboard bits are clear.

Scoreboard bits <3:0> are cleared when the HW _MTPR instructions which set them issue (or are aborted).
Bits <7:4> are cleared when the HW _MTPR instructions which set them retire (or are aborted).

Bits <3:0> are used for the DTB_TAG and DTB_PTE register pairs within the DTB fill flows. These bits
can be used to order writes to the OTB with respect to loads and stores. See sections 4.6.1and5.3.1. The
assignment of IPRs to scoreboard bits is given in the next chapter.

Digital Confidential Do Not Copy 77

Bit <0> is used in both OTB and ITB fill flows to trigger, in hardware, a light-weight memory barrier
(TB-MB) to be inserted between a ld_ vpte and the corresponding virtual-mode load which TB-missed.

4.2.2 Hardware Structure of Explicitly Written IPRs
IPRs which are written by software are physically implemented as two registers. When the HW _M'IPR
instruction which writes the IPR executes it writes its value to the first register. When the HW _M'IPR
instruction retires the contents of the first register are written into the second register. Instructions which
either implicitly or explicitly read the value of the IPR do so from the second register. Read-after-write
and write-after-write dependencies are managed using the IPR scoreboard bits. Write-after-read conflicts
are avoided: the second register is not written until the writer retires, the writer won't retire before the
previous reader retir~s, and the reader retires after it has read its value from the second register.

Some groups of IPRs are built using a single shared "first" register. To prevent write-after-write conflicts,
IPRs which share a "first" register also share scoreboard bits.

4.2.3 Hardware Structure of Implicitly Written IPRs
Implicitly written IPRs are physically built using only a single level of register, however the IPR has two
hardware states associated with it:
1. Default State: The contents of the register may be written when an instruction generates an exception.

If an exception occurs, write a new value into the IPR and go to state 2.
2. Locked State: The contents of the register may only be overwritten by an excepting instruction which

is older than the instruction associated with the contents of the IPR. If such an exception occurs,
overwrite the value of the IPR. When the triggering instruction, or instruction which is older than the
triggering instruction, is killed by the lbox, go to state 1.

Digital Confidential Do Not Copy 78

4.2.4 IPR Access Ordering
IPR access mechanisms must allow values to be passed through each IPR from a producer to its intended
consumers. The table below exhaustively list all the pair-wise instruction fetch orderings between
instructions of the four IPR access types, specifies whether access order must be maintained, and if so, the
mechanisms used to ensure correct ordering.

First Instruction
Second Instr. Im_p_licit Reader lm_p_licit Writer Ex_p_licit Reader Ex_p_licit Writer
Implicit Reader Reads can be No IPRs in this Reads can be Scoreboard bits

reordered class reordered stall issue of
reader until writer
retires, or
HW_RET/STALL
is used to stall
reader

Implicit Writer No IPRs in this The hardware IPR-specific No IPRs in this
class structure of PALcode class

implicitly written restrictions are
IPRs handles this required for this
case. case. For

example, reads
_might be.required
to be placed in
certain locations in
a PAL flow.

Explicit Reader Reads can be If the reader is in Reads can be Scoreboard bits
reordered thePALcode reordered stall issue of

routine invoked by reader until writer
the exception is retired.
associated with the
writer, then
ordering is
guaranteed.

Explicit Writer Reader reads Write-one-to-clear Reader reads Scoreboard bits
second latch. bits, or second latch. stall second writer
Writer can't write· performance Writer can't write in "inap stage until
second latch until counter special second latch until first writer retires.
it retires. case. For it retires

example,
perfonnance
counter increments
are typically not
score boarded
against reads.

4.2.5 IPRs and HW RET Stalls
In some cases, correct ordering of an explicit write to an IPR followed by and implicit read of the IPR is
guaranteed using the IPR scoreboard bits. However, if the instruction which implicitly reads the IPR does
so before the issue stage of the pipeline then this method does not work. For example, modification of the
ITB affects instructions before the issue stage of the pipeline. For this case P Al.code must contain a

Digital Confidential Do Not Copy 79

.-..... • v ._ r' _.t" ___ __ ..._ , _...__

HW _RET instruction with its stall bit set before any instruction which implicitly reads the IPR(s) in
question. This prevents instructions which are newer than the HW _RET from being successfully fetched,
issued, and retired until after the HW _RET instruction is retired (or aborted).

4.3 PAL Shadow Registers
EV6 contains extra virtual integer registers which are available to P ALcode for use as scratch space and
storage for commonly used values. These registers are made available under the control the SDE<l:O>
field of the I_ CTI.. IPR.

Any PALcode which supports CALL_PAL instructions must leave one of SDE<l:O> set when the
processor is native mode, since hardware writes a shadow PAL register with the return address of
CALL_PAL instructions. See section 4.5.1.

4.4 PALcode Emulation of FPCR
The FPCR register contains two classes of bits, status and control, which are accessed via the MT _FPCR
and MF _FPCR instructions. The register is physically implemented like an explicitly written IPR. It may
be written with a value from the floating point register file via the MT_FPCR instruction. Architecturally
compliant FPCR behavior requires P ALcode assistance. There are three behaviors of the FPCR register
which must be considered:
1. Correct operation of the status bits, which must be set when a floating point instruction encounters an

exceptional condition, independent of whether a trap for the condition is enabled.
2. Correct values when read via the MF _FPCR instruction.
3. Correct behavior whe~ written via the MT_FPCR instruction.

4.4.1 Status Flags
The FPCR status bits in EV6 are set with PALcode assistance. Floating point exceptions for which the
associated FPCR status bit is clear, or for which the associated trap is enabled, result in a hardware trap to
the ARITH PALcode routine. The EXC_SUM register contains infonnation to allow this routine to update
the FPCR appropriately, and to decide whether to report the exception to the operating system.

4.4.2 MF FPCR
The MF _FPCR is issued from the floating point queue and executed by the Fbox. No P ALcode assistance
is required.

4.4.3 MT FPCR
The MT_:FPCR instruction is issued from the floating point queue. This-instruction is implemented as im
explicit IPR write: the value is written into the "first" latch, and when the instruction retires the value is
written into the "second" latch. There is no IPR scoreboarding mechanism in the floating point queue,
however, so PALcode assistance is required to ensure that subsequent readers of the FPCR get the updated
value.

Subsequent to writing the "first latch," the MT_FPCR instruction invokes a synchronous trap to the
MT _FPCR P ALcode entry point. The P ALcode can simply return using a HW _RET instruction with its
ST ALL bit set. This sequence ensures that the MT _FPCR instruction will be correctly ordered with
respect to subsequent readers of the FPCR.

4.5 PALcode Entry Points
P ALcode is invoked at specific entry points, of which there are two classes: CALL_P AL and exceptions.

Digital Confidential Do Not Copy 80

4.5.1 CALL_PAL entry
CALL_P AL entry points are used whenever the lbox encounters a CALL_P AL instruction in the
instruction stream. In order to speed the processing of CALL_P AL instructions, they do not invoke
pipeline aborts, but are processed as normal jumps to the offset from the contents of the P AL_BASE
register which is specified by the CALL_PAL's function field. The IBOX fetches a CALL_PAL
instruction, bubbles one cycle, and then fetches the instructions at the CALL_P AL entry point. For
convenience of implementation, returns from CALL_P AL are aided by a linkage register (much like
JSR's). A PAL shadow register is used as the linkage register- the lbox loads it with the PC of the
instruction after the CALL_P AL instruction. Bit <0> of the linkage register is set if the CALL_P AL was
executed while the processor was in PAL mode. If I_CTL<NT_MODE> is clear then PAL shadow R27 is
the linkage register, otherwise PAL shadow R23 is used. The lbox also pushes the value of the return PC
onto the return prediction stack. CALL_P AL instructions start at the following offsets:

• Privileged CALL_P AL instructions start at offset 200016
• Nonprivileged CALL_P AL instructions start at offset 300016

Each CALL_P AL instruction includes a function field which is used to calculate the PC of the its
associated P ALcode entry point. The P ALcode OPCDEC flow will be invoked if the CALL_P AL function
field is:

• in the range of 4016 to 7F16 inclusive, or
• greater than BF 16, or
• Between 0016 and 3F 16, inclusive, and PS<CUR_MODE> is not equal to kernel

If none of the above conditions are met, then the P ALcode entry point PC is as follows:

I :
PC<64:15> = PAL_BASE<63:15>
PC<14> = 0

• PC<13> = 1
• PC<12> = CALL_PAL function field <7>
• PC<l 1:6> = CALL_PAL function field <5:0>
• PC<5:1>=0
• PC<O> = 1 (PALmode)

4.5.2 PALcode Exception Entry Points
When hardware encounter3 an exceptioi: the !box jumps to a PALcode entry point at a PC determined by
the type of exception, and writes the PC of the instruction which triggered the exception into the
EXC_ADDR register and onto the top of the return prediction stack.

The table below shows the P ALcode exception entry points and their offset from the P AL_BASE IPR The
entry points are listed in decreasing order of priority .

... g~!!.Y. .. ~~~ I.Y.P.<?. 9-!f.~~-~~-{> ~~~~P.~~~---···
DTBM_DOUBLE_3 Fault 100 D-stream TB miss on virtual page table entry

fetch. Use three-level flow
DTBM_DOUBLE_ 4 Fault 180 D-stream TB miss on virtual page table entry

fetch. Use four-level flow.
FEN Fault 200 Floating point disabled
UN ALIGN Fault 280 D-stream unaligned reference
DTBM_SINGLE Fault 300 D-stream TB miss
DFAULT Fault 380 D-stream fault or virtual address sign check

error

Digital Confidential Do Not Copy 81

... ;!!!!Y..~~~ I~·················-··········Qf.f.~~1~ - .. ~~~!!.. .. ----·--···············-·-····-····-···-·······-·······
OPCDEC Fault 400 Illegal opcode or function field:

• opcode l, 2, 3, 4, 5, 6 or 7
• opcode 1916, lB16, 1D16, lE16 or 1F16 ,

not PAL mode or not I_~<HWE>
• extended precision IEEE fonnat
• unimplemented function field of opcodes

IACV Fault

MCHK Interrupt
ITB_MISS Fault
ARITH Synch. Trap
INTERRUPT Interrupt
MT_FPCR Synch. Trap

RESET/WAKEUP Interrupt

4.6 TB Fill Flows

480

500
580
600
680
700

780

1416or 1C16
I-stream access violation or virtual address
sign check error
Machine Check
I-stream TB miss
Arithmetic exception or update to FPCR
Interrupts: hardware, software and AST
Invoked when a MT_FPCR instruction is
issued.
Chip reset or wakeup from sleep mode

This section shows the expected PALcode flows for DTB miss and ITB miss. Familiarity with EV6's IPRs
is assumed. See chapter 5.

4.6.1 DTB Fill
The single .. miss DTB tlow is shown below:

Instruction Ebox subduster Issue Cyde

mf r27,exc_addr OL
mf ra,va_form,+<7:4> 1 L

mf r9,mm_stat
mf r11,exc_sum

ld_vpte r8,(r8)
srl r25, #PHYS, r10

bibs r10,1_to_1_map
mf r10,va,+<7:4>

......
blbc r8,invalid_pte
mt r10,dtb_tag0

mt r10,dtb_tag1
mt ra,dtb_pteo

(mt r8,dtb_pte1
~ hw_ret (r27)

LD or ST (restart)

Here are some notes with respect to this flow:
• r8, r9, rlO, & r27 are PAL shadows.

Ol
Ol

1l
xU

xU
1l

xU
Ol

1l
Ol

1l
Ol

2
3

2
2

3
3

5
4

4
5

5
6

7 (14 with TB-MB)

• The arcs show issue order dependencies that are not related to register data.
• IPR scoreboard bits <3:0> are used to order the restarted load or store with respect to the DTB writes.
• MM_ST AT and VA will not be overwritten if the LD _ VPTE instruction misses the DTB - there is no

issue order constraint here.
• The code is written to prevent a later execution of the DTB fill from issuing ahead of a previous

execution and corrupting the previous write to the TB registers. This is accomplished by placing code

Digital Confidential Do Not Copy 82

dependencies on scoreboard bits <7:4> in the path of the successive writers. This keeps the
successive writers from issuing ahead of the retiring of the previous writers.

• The issue of MTPR DTB_PTEO triggers, in hardware, a light-weight memory barrier (TB-MB) which
enforces read-ordering of stores from another processor (I) to this processor's (J) page table and this
processor's virtual memory area such that if this processor sees the write to the PTE from (I) it will
see the new data.:

Processor I
WrData
'MB
WrPTE

Processor J
LD/ST
<tb misS>
LD-PTE, write TB
LD/ST

• The conditional branch is placed in the code so that all of the MTPR's issue and retire or none of
them issue and retire. This allows the TB fill hardware lo update the TB whenever it sees the retiring
of PTEI and to ignore writes to TAGO{fAGl/PTEO/PTEl in the interim between the issuing of those
wriles and a retire of PTEI.

4.6.2 ITB Fill
The ITB miss flow is shown below:

Instruction Ebox subcluster Issue Cycle

mf r8,iva_form OL
mf r27 ,exc addr OL
ld_vpte r8,(r8)- xL
Ida r9,0xOfff xU

and r8,r9,r9 xx
srl r25,#PHYS,r1 O xU
bibs r10,1_1D_1 xU
srl r8,#19,r10 xU

sll r10 #PTE_PFN,r10 xU
and r8,#foe_bit,r11 xL
blbc r8,invalid_pte xU
bne r11,foe_pte xU

bis r9,r10,r10
mt r27,itb_tag fr mt r10,i1b_ple

\ ~ hw_ret/slall (127)-

~ (islream restart)

Here are some notes with respect to this flow:

xL
OL
OL
OL

• The ITB is only accessed on !cache misses
I • r8, r9, rlO, rl 1 & r27 are PAL shadows.

x
4
2

7
x
x
7

8
8
x
x

9
6
10
5

;get PTE
; create mask for prot

; get prot bits

; put PFN in place
; get FOE bit

; PTE in ITB format

; hw_retlstall

• The arcs show issue order dependencies that are not related to register data .
I • The HW _RET instruction should have its ST ALL bit set to ensure that the restarted I-stream does not

read the ITB until the ITB is written.

Digital Confidential Do Not Copy 83

i'\pru 1v, 1!f:::to

5. Internal Processor Registers
This chapter describes EV6's internal processor registers (IPRs).

IPR Mnemonic Index2 Score- Access MT/MF Latency
board Type Issued forMFPR
Bit fromEbox

Pipe:
EboxIPRs
cc 1100 0000 5 RW IL
CC_CTL 1100 0001 5 w lL
VA 1100 0010 4,5,6,& 7 R lL 1
VA_FORM 1100 0011 4,5,6, & 7 R IL 1
VA_CTI.. 1100 0100 5 w IL

IboxIPRs
ITB_TAG 0000 0000 6 w OL
ITB_PfE 0000 0001 4&0 w OL
ITB_IAP 0000 0010 4 w OL
ITB_IA 0000 0011 4 w OL
ITB_IS 0000 0100 4&6 w OL
EXC_ADDR 0000 0110 R OL 3
IVA_FORM 0000 0111 R OL 3
CM 0000 lOxl 4 RW OL 3
IER 0000 lOlx 4 RW OL 3
SIRR 0000 1100 4 RW OL 3
ISUM 0000 1101 R OL 3
HW_INT_CLR 0000 1110 4 w OL
EXC_SUM 0000 1111 R OL 3
PAL_BASE 0001 0000 4 RW OL 3
I_CTI.. OOOI 0001 4 RW OL 3
IC_FLUSH OOOI OOil 4 w OL
PCTR_CTI.. 0001 0100 4 RW OL 3
CLR_MAP OOOI 0101 4,5,6 & 7 w OL
SLEEP OOOI Oill 4,5,6 & 7 w OL
I_ST~T 0001 0110 RW OL 3
ASN Olxx xxXi- 4 RW OL· ·3
ASTER Olxx xxlx 4 RW OL 3
ASTRR Olxx xlxx 4 RW OL 3
PPCE Olxx lxxx 4 RW OL 3
FPE OlxI xxxx 4 RW OL 3

MboxIPRs
DTB_TAGO 0010 0000 2&6 w OL
DTB_TAGl 1010 0000 1&5 w IL
DTB_P1EO 0010 0001 0&4 w OL
DTB_PTEI 1010 0001 3&7 w IL
DTB_IAP 1010 0010 7 w IL
DTB_IA lOIO OOil 7 w IL
DTB_ISO 0010 0100 6 w OL
DTB_ISI 1010 OIOO 7 w IL
DTB_ASNO 0010 0101 4 w OL
DTB_ASNl 1010 0101 7 w lL

Digital Confidential Do Not Copy 84

IPR Mnemonic lndex2 Score- Acceg MT/MF Latency
board Type mued forMFPR
Bit fromEbox

Pipe:
DTB_ALT_MODE 0010 0110 6 w OL
MM_STAT 0010 0111 R OL 3
M_CTL 0010 1000 6 w OL
DC_CTI.. 0010 1001 6 w OL
DC_STAT 0010 1010 6 RW OL 3

CboxIPRs
DATA 0010 1011 6 RW OL 3
SHIFf _CON1ROL 0010 1100 6 w OL
TBoxIPRs
SL_XMIT w
SL_RCV R 3

Digital Confidential Do Not Copy 85

.tt.pru 1v, .i.::1:70

5.1 Ebox IPRs

5.1.1 cc
The cycle counter register (CC) is a read/write register. The lower half of CC is a counter which, when
enabled via CC_CfL<32>, increments once each CPU cycle. The upper half of the register is simply 32
bits of register storage which may be used as a counter offset as described in the Alpha SRM. A
HW _MTPR to the CC register writes the upper half of the register and leaves the lower half unchanged.
The RPCC instruction returns the full 64-bit value of the register.

31 0

I I I I I I I I

COUNTER

63 32

OFFSET

5.1.2 CC CTL
The cycle counter control register (CC_CTI..) is a write only register through which the lower half of the
CC register may be written and its associated counter enabled and disabled.

31 4 3 0

I I I I I I I I I I I

COUNTER IGN

63 33 32

IGN

L+ CC_ENA

Name TyPe Description
Counter<31 :4> w This is the field through which CC<31:4> may be written. Writes to

CC_CTL result in CC<3:0> being cleared.
CC_ENA w

Digital Confidential

Counter enable. When set, this bit allows the cycle counter to
increment.

Do Not Copy 86

5.1.3 VA
VA is a read-only register. When a D-stteam TB miss or fault occurs the associated effective virtual
address is written into the VA register. VA is not written when a LD _ VPrE gets a DTB miss or D-fault.

31 0

I I I I I I I I I I I I I I I

Virtual Address

63 32

I I I I I I I t I I I I I I I

Virtual Address

Digital Confidential Do Not Copy 87

----------------~~~~ ----------~-------,.----------- ..
.n._lJ.U.l .I.Vt :l.-;/:7V

5.1.4 VA FORM
V A_FORM is a mid-only register containing the virtual page table entry address derived from the
faulting virtual address stored in the VA register, and from the virtual page table base and associated
control bits stored in the VA_CTL register.

31

I I I

VA<41 :13>

63

I I

VPTB<63:33>

31

I I I I I I I f I I

VA<41 :13>

4342

VPTB<63:43>

31 30 29 22 21

RAZ VA<31:13>

63

VPTB<63:32>

38 37

3 2 0

I I

RAZ

32

I I I

VA_48 == 0
VA_FORM_32 == 0

4 VA<42>

3 2 0

RAZ

32

VA_48==1
VA_FORM_32 == 0

.._ _ _.. VA<47:42>

'-------+• SEXT(VA<47>)

3 2 0

I I

RAZ

32

VPTB<31 :30>

VA~48==0
VA_FORM_32 == 1

Digital Confidential Do Not Copy 88

5.1.5 VA CTL
VA_CTL is a write-only register which controls the way in which the faulting virtual address stored in the
VA register is formatted when read via the VA_FORM register. It also contains control bits which effect
the behavior of the memory pipe virtual address sign extension checkers, and the behavior of the Ebox
extract, insert and mask instructions.

31 30

63

Name
B_ENDIAN

VA_48

VA_FORM_32

VPTB<63:30>

Digital Confidential

3 2 1 0

32

I I I I I I I I I I

VPTB<63:32>

TYJ?tl
W,O

W,O

W,O

w

Description
Big Endian Mode. When set
• the shift amount (Rbv<2:0>) is inverted for EXTxx, INSxx and

MSKxx instructions
• the lower bits of the physical address for D-stream accesses are

inverted based upon the length of the reference:
~ Byte: invert bits <2:0>
~ Word: invert bits <2: 1>
~ Longword: inverts bit <2>

This bit controls the format applied to effective virtual addresses by
the V A_FORM register and the memory pipe virtual address sign
extension checkers. When VA_ 48 is clear, 43-bit virtual address
format is used, and when VA_ 48 is set, 48-bit virtual address format
is used. The effect of VA_ 48 on the V A_FORM register is described
above.

When VA_ 48 is set the sign extension checkers generate an ACV if:
va<63:0> != SEXT(va<47:0>)

When VA_ 48 is clear and the sign extension checkers generate an
ACVif:

va<63:0> != SEXT(va<42:0>)
This bit is used to control address formatting on a read of the
V A_FORM register. See the section on the V A_FORM register for
details.
Virtual Page Table Base. See the V A_FORM register section for
details.

Do Not Copy 89

------------------·-- --
fi}Jlil ..Lv, i;/;JV

5.2 /box IPRs
This section describes the IPRs which control Ibox functions.

5.2.1 ITB TAG
ITB_TAG is a write-only register through which the ITB tag array is written. A write to ITB_TAG
actually writes a register outside the ITB array. When a write to the ITB_PTE register is retired, the
contents of both the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB
entry that is written is determined by a round-robin mechanism; the mechanism writes to entry #0 as the
first entry after chip reset.

31 13 12 0

I I I I I I I I I I I I I I I

VA<31 :13> IGN

63 48 47 32

I I I I I I I I I I

IGN VA<47:32>

5.2.2 ITB PfE
ITB_PTE is a write-only register through which the ITB PTE array is written. A write to the ITB_PTE
array, when retired, results in both the ITB_TAG and ITB_PTE arrays being written. The specific entry
that is written is chosen by the round-robin mechanism described above.

31

I I I I I I I I I I I I I I

PFN<31 :13>

63

IGN

Digital Confidential

I I I

13 12 11 10 9 8 7 6 5 4 3 0

I

4443

I I I I

IGN

1 11~----: ~;1 :0>
_ " KRE
---~~~~~~• ERE

SAE

~
32

I I t I I I I I I I I

PFN<43:32>

Do Not Copy 90

5.2.3 ITB_IAP
ITB_IAP is a pseudo register which, when written to, invalidates all ITB entries and Icache blocks whose
ASM bit is clear. The Icache flush will not occur until after the retire of the next encountered
HW _RET/stall.

5.2.4 ITB IA
ITB_IA is a pseudo register which, when written to, invalidates all ITB entries and invalidates the entire
!cache. The !cache flush will not occur until after the retire of the next encountered HW _RET /stall.

5.2.5 ITB IS
I-stream Translation Buffer Invalidate Single (ITB_IS) is a write-only register. Writing a virtual page
number to this register invalidates any ITB entry which meets one of the following criteria:
• the ITB entry's virtual page number matches ITB_IS<47:13> (or fewer bits if granularity hint bits are

set in the ITB entry) and its ASN field matches the address space number supplied in the process
context IPR: PCTX<46:39>.

• the ITB entry's virtual page number matches ITB_IS<47:13> and its ASM bit is set
Note that since the lcache is virtually indexed and tagged, it is normally not necessary to flush the icache
when paging. Therefore a write to ITB _IS will not flush the icache.

5.2.6 EXC ADDR
The Exception Address (EXC_ADDR) register is a read-only register that is updated by hardware when it
encounters an exception or interrupt. If the exception was a fault, EXC_ADDR contains the PC of the
instruction which triggered the fault. If the exception was a synchronous trap, EXC_ADDR contains the
PC of the instruction after that which triggered the trap. For an interrupt, EXC_ADDR contains the PC of
the next instruction which would have executed if the interrupt had not occurred.

EXC _ADDR <O> is set if the associated exception occurred in PAL mode.

31 2 1 0

PC<31:2>

63

I I I I I I I I I I

PC<63:32>

5.2.7 IV A FORM
IV A_FORM is a read-only register containing the virtual page table entry address derived from the
faulting virtual address stored in the EXC_ADDR register, and from the virtual page table base, VA_ 48
and V A_FORM_32 bits stored in the I_ CTL register. The IV A_FORM bit format is identical to
VA_FORM. See section 5.1.4

Digital Confidential Do Not Copy 91

fipru J.U, J.)l.::tO

5.2.8 IER _CM
IER_ CM is a register which contains the interrupt enable (all active fields of the register except
CM<l:O>) and current processor mode (CM<l:O>) bit fields. These two bit fields may be written either
individually or together with a single HW _MTPR instruction. When bits <7:2> of the IPR index field of a
HW _MTPR instruction contain the value OOOOI(h, this register is selected. Bits <1:0> of the IPR index
indicate which bit fields are to be written: bit< 1> corresponds to the IER field, bit<O> corresponds to the
processor mode field. A HW _MFPR of this register returns the values in both fields.

31 3029 28 14 13 12 5 4 3 2 1 0

11 : I : : : : : : : : : : : : : : 11 : : : : : : : I : I : : I

I
I

I
11 .__ _L+_: ~~~

~-----------• ASTEN ..__ _____________ _______.. SIEN<15:1 >
..__ ____________________ __... PCEN<1 :0>

CREN

63 39 38 33 32

IGN

L. SLEN
.____ __ " EIEN<5:0>

.... ~~~ !~ ~~!!P.~.~~---···
CM<l:O> RW Current Mode:

A STEN RW

SIEN<15:1> RW
PCEN<l:O> RW
CREN RW
SLEN RW
EIEN<5:0> RW

Digital Confidential

00 Kernel
01 Executive
10 Supervisor
11 lJser

AST Interrupt Enable. When set enables those AST interrupt requests
which are also enabled by the value in ASTER.
Software Interrupt Enables
Performance Counter Interrupt Enables
Corrected Read Error Interrupt Enable
Serial Line Interrupt Enable
External Interrupt Enable

Do Not Copy 92

5.2.9 SIRR
The Software Interrupt Request Register (SIRR) is a read/write register containing bits to request software
interrupts. In order to generate a particular software interrupt, its corresponding bits in SIRR and
IER<SIER> must both be set

31 29 28 14 13 0

I I I I I I I I I I I I I I I I

IGN/RAZ

63 32

I I I I I I I I I I I I I I

IGN/RAZ

Name Type Description
SIR RW Software interrupt requests

Digital Confidential Do Not Copy

SIR<15:1>
IGN/RAZ

93

-··· ~-·. ·~~----~~--·-----------

~ l' V '-"~'•i' ""'.t'"'"-.,,.t..&&-.,.-.. vA.•t .&"'-.._.., -·-

5.2.10 ISUM
The Interrupt Summary (ISUM) register is a read-only register that records all pending hardware,
software and AST interrupt requests.

31 30 29 28 14 13 11 10 9 8 5 4 3 2 0

11 : I : : : : : : : : : : : : : : I ; : 111 : : : 111 : : I

63

Name
ASTx

Sl<15:1>
PC<l:O>
CR
SL
El<5:0>

Type
R

R
R

"-R
R
R

Digital Confidential

IGN

Description

I~
RAZ
ASTK
ASTE
RAZ
ASTS
ASTU
RAZ
Sk15:1>
PC<1:0>
CR

39 38 3332

L. SL
,___ __ .,. .. Ek5:0>

AST Interrupts. For each processor mode, records whether an associated
AST interrupt is pending. This include the mode's ASTER ~d ASTRR
bits, and whether the processor mode value held in the CM register is
greater than or equal to the value for the mode.
Software Interrupts
Performance Counter Interrupts
Corrected Read Error Interrupts
Serial Line Interrupt
External Interrupts

Do Not Copy 94

5.2.11 HW _INT_ CLR
HW _INT_ CLR is a write-only register used to clear edge-sensitive interrupt requests

31 30 2928

63

Name
PC<l:O>
CR
SL

TYJ?t?
WlC
WlC
WlC

Digital Confidential

I I I I

IGN

I I I I

IGN

Description

0

PC<1:0>
CR

L+ SL

Clears perfonnance counter interrupt requests
Clears corrected read error interrupt request
Clears serial line interrupt request

Do Not Copy 95

5.2.12 EXC_SUM
The Exception Summary (EXC_SUM) register is a read-only register which records information about
instructions which triggered traps. The register is updated at trap delivery time; its contents are only valid
if it is read (via a HW _lVIFPR) in the first fetch block of the exception handler. There are three types of
traps for which this register captures related information:
• Arithmetic traps: the instruction generated an exceptional condition which should be reported to the

operating system, and/or the FPCR status bit associated with this condition is clear and should be set
by PALcode. Additionally, the REG field contains the register number of the destination specifier for
the instruction which triggered the trap.

• I-stream ACV: The BAD_IVA bit of this register indicates whether the offending I-stream virtual
address is latched into the EXC_ADDR or VA register.

• D-stream Exceptions: The REG field contains the register number of either the source specifier (for .
stores) or the destination specifier (for loads) of the instruction which triggered the trap.

31 14 13 12 876543210

I : : : : ~~~0(1~~: : : : : 11 : : : : 11111111

63

I I I I I I I I I I I I I I

IGN

ill§
swc
INV
DZE
FOV
UNF
INE
IOV
INT
REG
BAD_IVA

48 47 46 45 44 4342 41 32

I I I I I I I I I I

RSVD/IGN

I
.I

I.___ I __ ___.: ~~
. -~ " SET-UNF

"SEnNE .__ _________ _.., SET]OV

.... ~~~ I~ ~~~P.~~-~
SWC R Indicates software completion possible. This bit is set if the instruction

INV
DZE
FOV
UNF
INE
IOV

INT

REG

R
R
R
R
R
R

R

R

Digital Confidential

which triggered the trap contained the /S modifier.
Indicates invalid operation trap
Indicates divide by zero trap
Indicates floating point overflow trap
Indicates floating point underflow ttap
Indicates floating point inexact error trap
Indicates Fbox convert to integer overflow or Ebox integer overflow
trap
Set to indicate Ebox integer overflow trap, clear to indicate Fbox trap
condition
Destination register of load or operate which triggered the trap OR
source register of store which triggered the trap. These bits may contain

Do Not Copy 96

BAD_IVA

RSVD/IGN
SET_INV
SET_DZE
SET_OVF
SET_UNF
SET_INE
SET IOV

R

R,O
R
R
R
R
R
R

5.2.13 PAL BASE

the Re field of an operate instruction or the Ra field of a load or store
instruction. The value is unpre.dictable if the ttap was triggered by an
ITB miss, interrupt, OPCDEC, or other non load/st/operate.
Bad 1-stteam VA. This bit should be used by the IACV P ALcode
routine to detennine whether the offending I-stream virtual address is
latched in the EXC_ADDR register or the VA register. If BAD _IV A is
clear, then EXC_ADDR contains the address, if BAD _IV A is set then
VA contains the address.
Reserved for hardware use.
P ALcode should set FPCR<INV>
PALcode should set FPCR<DZE>
P ALcode should set FPCR<OVF>
P ALcode should set FPCR<UNF>
P ALcode should set FPCR<INE>
PALcode should set FPCR<IOV>

P AL_BASE is a read/write register which contains the base physical address for P ALcode. Its contents are
cleared by chip reset

31 15 14 0

I I I I I I I I I I I I I I I I

PAL_BASE<31 :15> RAZ/MBZ

63 4443 32

I I I I I I I I I I I

RAZ/MBZ PAL_BASE<43:32>

Digital Confidential Do Not Copy 97

5.2.14 I CTL
lbox Control (l_CTL) is a read/write register which controls various lbox functions. Its contents are
cleared by chip reset.

313029 2423222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

I: 1:;::: 1111111111111: 1: 1: 1: :1: II

.

63

I I I I I I I I I I I

' ' ' ' ' ' ' ' ' ' '

l

Name TyPe

SPCE RW,O

IC_ENABLE<l:O> RW,3

SPE<2:0> RW,O

SDE<l:O> RW,O

SBE<l:O> RW,O

BP _MODE<l:O> RW,O

Digital Confidential

I I I I~
SPCE
IC EN<1:0> .. SPE<2:0> .. SDE<1:0>

" SBE<1:0>
I I .. BP MODE<1 :0> .. HWE .. FBTP - FBDP VA 48 VAt=ORM 32 SINGLE ISSUE_L

PCTO EN PCT1~N CALL-PAL R23 . MCHK EN---. .. TB MB" EN . . CHIP ID - VPTB<31 :30>

....

4847 32

I I I I I I I I I I I I I I I I I I I

VPTB<47:32>
' ' ' ' ' ' I I I I • I t I I t I ' .

,.. SEXT(VPTB<47>)

Description
System Performance counter enable. A performance counter is
enabled if its individual enable is asserted (PCTRO or PCTR 1) and
either SPCE or the PPCE bit of the Ibox process context IPR is set
!cache set e.nable. The entire cache may be enabled by setting both
bits. Zero, one, or two icache sets can be enabled.
Super page mode enables - just like the SPE bits in the lVIBOX
M_C1LIPR.
When set, enables access to the PAL shadow registers.
If SDE<O> is set, R8-Rl 1& R24-R27 are used as PAL shadows.
If SDE<l> is set, R4-R7 & R20-R23 are used as PAL shadows.
Both SDE<O> and SDE<l> may be set. However, this reduces the
size of the physical integer register free pool, and may reduce
overall system performance.
Stream· Buffer Enable. The value in this bit field specifies the
number of stream buffer prefetches (besides the demand-fill) which
are launched after an Icache miss. If the value is zero, only demand
requests are launched.
Branch prediction mode selection:

Do Not Copy 98

·--~~~ !~ ~.~!!J!!!Q~ -···-·--·····---····--·······-·-····-·-······-·-··-·········-···········-·

HWE

FB1P
FBDP
VA_48

VA_FORM_32

SINGLE_ISSUE_L

PCTO_EN

PCTl_EN

CALL_PAL_R23

MCHK_EN
TB_MB_EN

Digital Confidential

RW,O

RW,O
RW,O
RW,O

RW,O

RW,O

RW,O

RW,O

RW,O

RW,O
RW,O

BP _MODE<l>: If set, forces all branches to be predicted
fall-thru. If clear, the dynamic branch predictor is chosen.
BP _MODE«>>: If set, the dynamic branch predictor
chooses local history prediction. If clear, the dynamic
branch predictor chooses local or global prediction based
on the state of the chooser.

If set, allow P ALRES intructions to be executed in kernel mode.
Note that modification of the ITB while in kernel mode/native mode
may cause unpredictable behavior.
When set, forces bad Icache tag parity on fills.
When set, forces bad Icache data parity on fills.
This bit controls the format applied to effective virtual addresses by
the IV A_FORM register and the lbox virtual address sign extension
checkers. When VA_ 48 is clear, 43-bit virtual address format is
used, and when VA_ 48 is set, 48-bit virtual address format is used.
The effect of this bit on the IV A_FORM register is identical to the
effect of VA_ CTL<V A_ 48> on the V A_FORM register. See section
5.1.4

When VA_ 48 is set the sign extension checkers generate an ACV
if:

va<63:0> != SEXT(va<47:0>)
When VA_ 48 is clear the sign extension checkers generate an
ACVif:

va<63:0> != SEXT(va<42:0>)
This bit also affects three additional functions:
(1) JSR return address: The address is sign-extended from bit 47.
Otherwise it is sign-extended from bit 43.
(2) PC adder: The PC incrementer generates addresses in a 48-bit
virtual address space instead of a 44 bit virtual address space.
(3) DTB_OOUBLE Traps: if set, the DTB double miss traps vector
to the DTB_OOUBLE_ 4 entry point.
This bit controls address formatting on a read of the IVA_FORM
register. See the section 5.1.4 5.1.4
When clear, this bit forces instructions to issue only from the

. hottom-most entries of the IQ and FQ.
Enable performance counter #0. If this bit is one, the performance
counter will count if EITHER the system (SPCE) or process (PPCE)
performance counter enable is set.
Enable performance counter #1. If this bit is one, the performance
counter will count if EITHER the system (SPCE) or process (PPCE)
performance counter enable is asserted.
When set, the CALL_PAL linkage register is R23, when clear it's
R27. This choice should correspond to SDE so as to ensure that a
shadow register is used as the linkage register.
Machine check enable - set to enable machine checks.
When set, the hardware ensures that the virtual-mode loads in DTB
and ITB fill flows which access Lhe page table and the subsequent
virtual mode load or store which is being retried are 'ordered'
relative to another processor's stores. This must be set for
multiprocessor systems in which no MB instruction is present in the
TB fill flow.

Do Not Copy 99

··-··-·----···-----·-~~-----,"' ._ r _.t" -·-·--- -->

... !'!~C?·---··-··········-··········--.!~---·····-··········-~~~!!Q!!..-·-············---··--··--···---················-···········-··--···-·-··················
CHIP _ID<5:0> R This is a read-only field which suppli~ the revision ID number for

the EV6 part. EV6 pass 1 parts will have a chip ID of 000001.
VPTB<63:30> RW,O Virtual P~e Table Base. See section 5.1.4 for details.

Digital Confidential Do Not Copy 100

5.2.15 I ST AT
lbox Status (I_STA1) is a read/write register which contains lbox status information.

31 30 29 28 0

I I I I I I I

RAZ RAZ

TPE
OPE

32 .. IGN

63 32

IGN

·--~~!? I~ ~~-~P.!!.Q!!
TPE R,WlC H set, an !cache tag parity error occurred.
DPE R,WlC If set, an Icache data parity error occurred.

5.2.16 IC FLUSH
IC __ FLUSH is a pseudo register which, wh~n written, results in all Icache blocks being invalidated. The
cache is actually flushed at the retire of the next encountered HW _RET/STALL instruction.

5.2.17 CLR MAP
CLR_MAP is a pseudo register which, when written, results in the clearing of the current map of virtual
to physical registers. This register must only be written after there are no regisler-borne dependencies
present and there are no unretired instructions. See P ALcode restrictions for a usage example.

5.2.18 SLEEP

1 SLEEP is a pseudo register which, when written, results in the PLL speed being reduced and the chip
entering-a iow-power mode. This register Ii1ust only be written after a seque11ce of code has been· run
which saves all necessary state to DRAM, flushes the caches, and unmasks certain interrupts so the chip
can be woken up. The details of this sequence are TBD .

Digital Confidential Do Not Copy 101

. ""'""'""~-~........___,. __ ~
.._. l V,.i"" .._,.t-'""""'""..t...1.-.,..w.w.v••t ..,...,:-.:.. • -•\..-

5.2.20 Ibox Proc~ Context IPR (PCTX)
This register contains infonnation associated with the context of a process. Any combination of the bit
fields within this register may be written with a single HW _M1PR instruction. When bits <7:6> of the
IPR index field of a HW _M'IPR instruction contain the value Oh, this register is selected. Bits <4:0> of
the IPR index indicate which bit fields are to be written. The correspondence between register fields and
IPR index bits is:

... ~~-~~~~.P.~! ~~g!~~~.!:~~!~
0 ASN
1 AS1ER
2 ASTRR
3 PPCE
4 ·FPE

A HW _MFPR from this register retwns 1he values in all of ilS component bit fields.

31

63

Name
ASN
AS'IER

AS1RR

PPCE

IGN/RAZ

IGN

TyPe

RW
·- RW

RW

RW

Digital Confidential

13 12

4746

Description

9 8 543210

IGN/RAZ
PPCE
FPE
IGN/RAZ
ASTER

'--------------~• ASTRA
3938 32

IGN/RAZ .___ _______ .,.. ASN

Address Space Number.
- AST Enable Register - used to individually enable each of the four AST

interrupt requests. The bit order with this field is:·
User Mode <11>
Supervior Mode <10>
Executive Mode <9>
Kernel Mode <8>

AST Request Register - used to request AST interrupts in each of the
four processor modes. In order to generate a particular AST interrupt, its
corresponding bits in ASTRR and ASTER must be set, along with the
ASTE bit in IER. Further, the value of the current mode bits in the PS
register must be equal to or higher than the value of the mode associated
with the AST request. The bit order with this field is:

User Mode <11>
Supervior Mode <10>
Executive Mode <9>
Kernel Mode <8>

Process Performance Counter Enable. Both performance counters are

Do Not Copy 102

"·

·--~~~---·········-···········!~---··················~!!P.~~~---················-··--·········· .. ···········-·---··-············-··-······-····-···························
enabled if either this bit is set or the SPCE bit of the I_CTL register is
set

FPE RW,O Floating Point Enable - if clear, floating point instructions generate FEN
exceptions.

Digital Confidential DoNotCopy 103

i\.pru .1.V, .1.~:to

5.2.21 PCTR_CTL
Perfonnance counter control (PCTR_ cn.) is a read/write register which controls the function of the
performance counters.

31

I

63

Name
SLl

SLO

PCTRl
PCTRO

28 27 28 25

I I I I I I I I I I I I I I I I I I

PCTR1<19:0>
I I I I

6 5 4 3 0

I I I

~ SL1<3:0>
.____ __ SL0<0>_____ IGN/RAZ

1..-----------------_.• IGN/RAZ
L....--------------------_.• PCTR0<3:0>

48 47 32

IGN PCTR0<19:4>

Twe Description
.RW Select Input for Performance Counter # 1

0000: Retired Instructions
0001: Retired Conditional Branches
0010: Retired Branch Mispredicts
0011: Retired ITB Misses
0100: Retired OTB Misses
0101: Retired Unaligned Traps
0110: !cache Misses
0111: MBOXReplay Traps
1000: Dcache Load Misses
1001: Dcache Misses
1010: Bcache Reads
1011: Bcache Writes
1100: SysPortReads ·
1101: SysPort Writes
1110:
1111:

RW Select Input for Performance Counter #1
0: Cycles
1: Retired instructions

RW Performance Counter #1
RW Performance Counter #0

Digital Confidential Do Not Copy 104

5.3 Mbox IPRs
This section describes the IPRs which control Mbox functions.

5.3.1 DTB TAGO & DTB TAGl - -
DTB_ TAGO and DTB_TAG 1 are write-only registers through which the two memory pipe DTB tag
arrays are written. Writes to DTB_TAGO and DTG_TAGl actually write registers outside the DTB
arrays. When writes to the corresponding DTB _PTE registers are retired, the contents of both the
DTB _TAG and DTB _P'IE registers are written into their respective DTB arrays at locations determined
by the round-robin allocation algorithm.

31 13 12 0

I I I I I I I I I I I I I I I

VA<31 :13> IGN

63 48 47 32

I I I I I

IGN VA<47:32>

Digital Confidential Do Not Copy 105

5.3.2 DTG_PTEO& DTB_PTEl
DTB_PTEO and DTB_P'fEl are registers though which the DTB P1E arrays are written. The entries to be
written are chosen by a round-robin allocation scheme. Writes to the DTB _P1E registers, when retired,
result in both the OTB _TAG and DTB_P1E arrays being written.

31

I I I I I I I I I I I I

IGN

63 62

5.3.3 DTB ALTMODE

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I

1~
-~

•
--"" --.-
.....
...... .
• ..
--"" .
--"" --.-... ..
~

32

PA<43:13>

IGN
FOR
FOW
IGN
ASM
GH<1:0>
IGN
KRE
ERE
SRE
URE
KWE
EWE
SWE
UWE

DTB_ALTMODE is a write only register whose contents specify the alternate processor mode use by some
HW _LD and HW _ST instructions.

31 2 1 0

MBZ
I I I • t <' t 1 ~ f

L-+ ALT _MODE<1 :0>

63 32

MBZ

.... ~~~ T.~ ~.~!!P.~~.!'! .. .
ALT_MODE<l:O> RW Alt_Mode:

00 Kernel

Digital Confidential Do Not Copy 106

·--~~!?··················-············--!~ ~~P.P.!!!?.~---·························--·--···-··---·-··-······-·····---··--·-························-···-··
01 Executive
10 Supervisor
11 User

5.3.4 DTB IAP
D-stream Translation Buffer Invalidate All Process (DTB_IAP) is a write-only pseudo register. Writes to
this register invalidate all DTB entries in which the address space match (ASM) bit is clear.

5.3.5 DTB IA
D-stream Translation Buffer Invalidate All (DTB_IA) is a write-only pseudo register. Writes to this
register invalidate all DTB entries and reset the DTB not-last-used pointer to its initial state.

Digital Confidential Do Not Copy 107

npn.1 .lV, .l.::; ;;.u

5.3.6 DTB ISO & DTB ISl - -
The D-stream Translation Buffer Invalidate Single registers {DTB_ISO & DTB_IS 1) are write-only
pseudo registers through which software may invalidate a single entry in the DTB arrays. Writing a
virtual page number to one of these registers invalidates any DTB entry in the corresponding memory
pipeline which meets one of the following criteria:
• the DTB entry's virtual page number matches DTB_IS<47:13> and its ASN field matches

DTB_ASN<63:56>
• the DTB entry's virtual page number matches DTBIS<47:13> and its ASM bit is set

31 13 12 0

VA<31 :13> IGN

63 48 47 32

IGN VA<47:32>

S.3. 7 DTB ASNO & DTB ASNl - -
The D-stream Translation Buffer Address Space Number registers (DTB_ASNO & DTB_ASNl) are
write-only registers which should be written with the address space number of the current process.

31 0

IGN

63 56 55 32

ASN<7:0> IGN

Digital Confidential Do Not Copy 108

S.3.8 MM_STAT
MM_ST AT is a read-only register. When a D-stteam TB miss or fault occurs information about the error
is latched in the MM_STAT register. MM_STAT is not locked by a LD_ VPTE instruction.

31

I I I I I I I

63

Name
WR
ACV
FOR
POW
OPCODE
DC_TAG_PERR

Note:

I

10 9 4 3 2 1 0

I I I I I I I I I I I I I I I I I

IGN OPCODE

11'1X'c't FOR
FOW ,_____ ______ ~ DC_TAG_PERR

32

IGN

Description
Set if the reference which triggered the error was a write
Set if the reference caused an access violation. Includes bad virtual address.

. Set if the reference was a read operation and the PTE FOR bit was set.
Set if the reference was a write operation and the PTE FOW bit was set.
Opcode of the instruction which niggered the error.
Set to indicate that a Dcache tag parity error occurred during the initial tag probe of a
load or sLore instruction. This error created a synchronous fault to the D_FAULT
P ALcode entry point, and is correctable. The virtual address associated with the error
is available in the VA register.

The Ra field of the instruction which triggered the error can be obtained from the Ibox
EXC_SUM register.

Digital Confidential Do Not Copy 109

S.3.9 M_CTL
Mbox Control (M_CTL) is a write-only register, the contents of which are cleared by chip reset

31

63

Name Twe
SPE<2:0> wo,o

Digital Confidential

4 3 1 0

I I

MBZ

32

MBZ

SPE<2:0>

MBZ

Description
Super Page mode enables. Only one (or none) may be set

SPE<2>, when set, enables super page mapping when
VA<47:46> = 2. In this mode VA<43:13> are mapped directly to
PA<43:13> and VA<45:44> are ignored.

SPE<l>, when set, enables super page mapping when
VA<47:41> = 7E16• In this mode VA<40:13> are mapped directly to
PA<40:13> and PA<43:41> are copies of PA<40> (sign extension).

SPE<O>, when set, enables super page mapping when
VA<47:30> = 3FFFE16• In this mode VA<29: 13> are mapped
directly to PA<29:13> and PA<43:30> are cleared.

Note: Super page accesses are only allowed in kernel mode. Non
kernel mode references to su~r Eases result in access violations.

Do Not Copy 110

5.3.10 DC_ CTL
Dcache Control (DC_CTL) is a write-only register that controls Dcache activity. The contents of
DC_ST AT are initialized by chip reset as indicated.

31 8 7 6 5 4 3 2 1 0

I;::::;:::: ;~W:::::::: 1111111: I

~
63 32

MBZ

SET _EN<1 :0>
F_HIT
FLUSH
F_BAD_TPAR
F_BAD_DECC
DCTAG_PAR_EN
DCDAT _ERR_EN

.... ~~-~ !~ Q~.~.C?.~P.~Q~ .. .
SET_EN<l:O> W,3
F_IIlT W,O

FLUSH W,O

F_BAD_TPAR W,O

F_BAD_DECC W,O

DCTAG_PAR_EN W,O
DCDAT_ERR ___ EN W,O

Digital Confidential

Dcache Set Enable. At least one set must be enabled.
Force Hit. When set, this bit causes all memory space load and store
instructions to hit in the Dcache, independent of the tag status bits.
In this mode, only one of the two sets may be enabled, and tag parity
checking must disabled (set DCTAG_PER __ EN to zero).
When the value written into the DC_CTL register contains a one in
this bit position all the Dcache tag valid bits are cleared.
Force Bad Tag Parity. If set, this bit causes bad tag parity to be put
into the Dcache tag array during Dcache fill operations ..
Force Bad Data ECC. If set, this bit ECC data to NOT be written into
the cache along with the block that is loaded by a fill or store. This
can be used to cause bad. ECC to be present in the dcache by writing ·
the same block with different data than is already present. Since the
old ECC value will remain, it will be 'bad' relative to the new data.
Dcache tag parity enable.
Dcache data ecc and parity error enable

Do Not Copy 111

rtpru. 1v, .L'.:170

5.3.11 DC STAT
Dcache Status (DC_STAT) is a read/write register. If a Dcache tag parity error or data ECCerror occurs
information about the error is latched in DC_STAT.

31 5 4 3 2 1 0

1::::::::::~+:::::::::::::111111

~
63 32

TPERR_PO
TPERR_P1
ECC_ERR_ST
ECC_ERR_LD
SEO

RAZ

Name Type
TPERR_PO R,WlC

TPERR_Pl R,WlC

ECC_ERR_ST R,WlC

ECC_ERR_LD R,WlC

SEO R,WlC

5.4 Cbox CSRs and IPRs

Description
Tag Parity Error - Pipe 0. When set, this bits indicate that a Dcacbe
tag probe from pipe 0 resulted in a tag parity error. The error is
uncorrectable and will result in a machine check.
Tag Parity Error - Pipe 1. When set, this bits indicate that a Dcache
tag probe from pipe 1 resulted in a tag parity error. The error is
uncorrectable and will result in a machine check.
When set, this bit indicates that an ECC error occurred while
processing a store.
When set, this bit indicates that an ECC error occurred while
processing a load (load data retrieved from dcache or bcache fill
data).
Second Error.Occurred. When set, this bit indicates that a tag parity
or Store data ECC error occurred while the DC_ST AT register was
already locked; or that a Load data ECC error occurred while the
DC_STAT register was already locked and error recovery was in
Erogress.

The CBOX ControVStatus Registers (CSR's) are write-only registers which define system configuration,
command processing, and timing parameters. They are written via a serial load/shift register. Six bits of
data are written to CBOX_DAT A IPR via a HW _MTPR instruction. When the instruction retires, the
data in the register is shifted into the CBOX. The process is repeated until all CBOX data is shifted in.

The CBOX Internal Processor Registers (IPR's) are read-only registers which allow software access to
system error information. They are read via a serial shift/read register. A SHIFT command is written to
CBOX_SHIFf IPR. When the instruction retires, the CBOX_DATA IPR contains the first six bits of
error information and can be read via a HW _l\1FPR instruction. The process is repeated until all CBOX
data is shifted in.

Digital Confidential Do Not Copy 112

31 6 5 0

I I I t I I I t

IGN

...___..,.., C_DATA<5:0>

63 32

I I I I I

IGN

Name TyPe Description
C_DATA<5:0> RW Cbox data register. Writes 6 bits of CSR data into serial shift

register. When read (after C_SHIFT), allows access to 6 sequential
bits of CBOX IPR data.

31 1 0

IGN

L+ C_SHIFT <0>

63 32

IGN

I Nam~- --._T_ype,..... _____ De_sc_n ·p_ti_on __ ~---------
1 C_SHIFf <lJ> Wl When written (with a '1 ') causes 6 bits of CBOX IPR data to shift

into CBOX_DATA register where it can be read by software (via a
HW _:MFPR instruction). All bits of the CBOX IPR data scan chain
must be shifted.

5.4.1 CBOX CSR Description

Note that the precise order of these CSR's is TBD.

Name
FRAME_SEL<2:0>

Digital Confidential

Description
Sets ratio of framing clock to bit time. This in Lum specifies the
number of samples per framing clock. Allowed values:

0001: 1 (one sample per framing clock)
0010: 2
0100:4

Do Not Copy 113

- --------------··----------------
•&jJ.l.U. J.V, ;,.;J ::Iv ·• v '-'l..&..1..t"' 1o.1 .t'"""'"""'..._.._~..,.._.,v..,..,, •"""" ~ -·v

·-~~~············-····-··-····································-·~~!!P.~Q~ ... -.. ···--··-·-·-··-·······-···························---··-·························-·····················

VICTIM_THRESH<7:0>

BC_RDVICTIM<O>, ·

SYSCLK_,RA TI0<15:0>

DUP _ TAG_ENA<O>
SET_DIRTY _ENA<2:0>

ZEROBLK_ENA<l:O>

SPEC_READ_ENA<O>

SYSBUS_FORMAT<O>

Digital Confidential

1000: 8

Dcache victim threshold. Number of dcache read victims to allow
to accumulate in V AF before writing them bcache. The number of
victims is specified by a set bit in the vector. Allowed values:

00000001: 1 (write bcache on presence of one victim)
00000010: 2 (write bcache on presence of two victims)
00000100:3
00001000:4
00010000:5
00100000:6
01000000:7
10000000: 8

When set, causes EV6 to abut victim writes ·with reads. Used for
systems in which victim data and read data are on the same DRAM
page.
Ratio of CPU clock to SYSCLK. The final multiple of CPU clock
period to SYSCLK period is calculated as

I + (0.5 * SYSCLK_RA TIO)
Allowed values are:

0000000000000001: final multiple is 1.5
0000000000000010: final multiple is 2.0
0000000000000100: final multple .is 2.5
0000000000001000: final multiple is 3
0000000000010000: final multiple is 3.5
0000000000100000: final multiple is 4.0

When set, indicates to EV6 that external system has a duplicate tag
Enable sending set-dirty commands to system. Protocols
supported:

000: EV6 sends no dirty commands off chip
001: EV6 sends clean-to-dirty commands
010: EV6 sends shared/clean
011: EV6 sends clean commands
100: EV6 sends shared/dirty commands
101: EV6 sends shared/dirty. AND clean commands
110: EV6 sends all shared commands
111: EV6 sends all commands off chip

Enable zero block processing and commands:
ZEROBLK_ENA< 1>: Enables zeroblk commands to
system (Multiprocessor systems or duplicate tagged
systems need to see zeroblk commands)
ZEROBLK_ENA<O>: If set, enables EV6 processing
zeroblk command as zero-block. If clear, EV6 converts
1..eroblk commands to read-modified commands.

Enable speculative reads (read commands sent to system before
bcache hit is known).
Format of physical address as it appears on system bus. Two
allowed configurations:

0: Interleaved on bcache block boundries
1: Page mode-hit
(refer to chapter 6)

Do Not Copy 114

1 ... ~~~························-·········-···-······-······-··-~E.P!!P.!! -····------··-··-·-····-·--··--··-············-···-·············-···-··
SYSBUS_MB_ENA<O>
SYSBUS_ACK_LIMIT<4:0>

STI0_32_LIMIT<0>
Bcache Port Control/Status
BC_ENA<O>
BC_ CLEAN_ VICTIM<O>

BC_SIZE<3:0>

BC_RD _RD _BBL<l:O>

BC_RD_CLK_RATIO <15:0>

BC_RD_ WR_BBL<5:0>

BC_LATE_ WR_BC<2:0>

Digital Confidential

When set, sends memory barrier commands (MB) to system.
Encoded count of maximum number of outstanding commands the
system can accept Values are interpretted as:

00000: INF (system can accept an infinite number of
outstanding commands)
00001: 1 (system can accepL 1 outstanding command)
00010: 2 (system can accept 2 outstanding commands)

IOI 10: 22 (system can accept 22 outstanding commands)
If set, system is imposing a 32-byte limit for stores Lo IO space.

If set, bcache is enabled
If set, causes EV6 to notify system that a clean block is being
evicted. EV6 sends a CleanVictimBlk command along with the
victim address.
Encoded bcache size. Allowed values are:

0000: I MB
0001: 2 MB
0011: 4MB
0111: 8 MB
1111: 16MB

Number of CPU cycles Lo insert between reads to differenL SRAM
banks. If the bcache is builtas one bank, the value should be zero.
Values are interpreLted as:

00: 0 (no bubble cycles between reads to differeP! SRAM
banks)
01: 1 (one bubble cycle)
10: 2 (two bubble cycles)
11: 3 (three bubble cycles)

Ratio of bcache clock period to CPU clock period. The final
multiple is computed as:

1 + (0.5 * N)
where N is encoded in BC-'RD_CLK-'RATIO as one of the
following allowed values:

0000000000000001: final multiple is 1.5
0000000000000010: final multiple is 2
0000000000000100: final multiple is 2.5
0000000000001000: final multiple is 3
0000000000010000: final multiple is 3.5
0000000000100000: final multiple is 4

Encoded number of bcache clock cycles between a bcache read and
write. Allowed values are:

00000: zero clock cycles
01111: fifLeen clock cycles

For Late Write synchronous SRAMs. The following three IPRs
encode the Lotal delay for which bcache data is delayed from bcache
address. The total delay is calculated as the sum of the specified
number of Bcache and CPU Clock cycles plus the CPU clock phase
offset

LA TE_ WR_BC encodes the number of Bcache clock cycles to delay
the write data. (000 = 0 cycles; 111 = 7 cycles)

Do Not Copy 115

·--~~~---···················-··-··········-···················--~~E.P.!!9.~ --·-····--·-·-·············--·--···-····-···········-········-·········-····-··············
BC_LA1E_WR_CPU<l:O>

BC_LA 1E_ WR_PHASE<O>
BC_BURST_MODE_ENA<O>
Internal Cbox CSRs
BC_RDCLK_ VECTOR<15:0>

MBZ<4:0>

Encoded number of CPU Clock cycles to delay the write data (see
above). (00 = 0 cycles; 11=3 cycles)
When set, delays write data by one CPU clock phase (see above).
When set, enables bcache burst mode.

Vector describing bcache read clocks 1 bit per phase, 50% duty
cycle 111000 for 1.5

Write zeros to last group to extend shift chain to a multiple of six

5.4.2 CBOX IPR Description
The CBOX IPR' s are read 6 bits at a time: ERR_ADDR<43:38> comprises the first read-group;
ERR_ADDR<43> is read in CBOX_DATA<5> .

.... ~~-~-~ ... P.~~£!!P.!~.2.'! .. .
ERR_ADDR<43:6>
ERR_CODE<2:0>

ECC_SYNDROME<7:0>
RAZ<4:0>

Digital Confidential

Address of last reported ECC or parity error
Summary of where error wa~ detected:

000: No error
001: Bcache tag parity error
010: Triplicate tag parity error
011: Memory data ECC error_
100: Bcache data ECC error
101: Dcache data ECC error

Syndrome of last reported ECC error
Padded zero's to extend shift chain to a multiple of 6

Do Not Copy 116

6. IEEE Floating Point Conformance

EV6 supports the IEEE floating-point operations defined in the Version 6 of the Alpha SRM. Support for
a complete implementation of the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Standard 754-1985) is provided by a combination of hardware and software. EV6 provides several
hardware features to facilitate complete support of the IEEE standard. These features are outlined in this
section.

• EV6 implements precise exception handling in hardware.
• EV6 accepts both Signaling and Quiet NaNs as input operands and propagates them as specified by

the Alpha Architecture. In addition, EV6 delivers a canonical Quiet NaN when an operation is
required to produce a NaN value and none of its inputs are NaNs. Encodings for Signaling NaN and
Quiet NaN are defined by the Alpha SRM, version 6.

• EV6 accepts infinity operands and implements infinity arithmetic as defined by the IEEE standard.
• EV6 implements SQRT for single (SQRTS) and double (SQRTT) precision in hardware.
• Denormal input operands produce an unmaskable Denorm Trap when used with arithmetic

operations. CPYSFJCPYSN, FCMOVxx, and MF _FPCR/MT _FPCR are not arithmetic operations,
and will pass Denormal values without initiating arithmetic traps

• EV6 implements the following disable bits in the Floating-Point Control Register (FPCR):
~ Underflow Disable (UNFD)
~ Overflow Disable (OVFD)
~ Inexact Result Disable (INED)
~ Division by Zero Disable (DZED)
~ Invalid Operation Disable (INVD)
If one of these bits is set and an instruction with the /S qualifier set generates the associated
trapping result, EV6 produces the IEEE nontrapping result and supresses the trap. These
nontrapping responses include correctly signed infinity, largest finite number, and Quiet NaNs
as specified by the IEEE standard. EV6 will not produce a Denorm result for the underflow
exception. Instead, a true zero (+0) is written to the destination register. In EV6 the FPCR
Underflow to Zero (UNDZ) bit must be set if Underflow Disable (UNFD) bit is set. If desired,
trapping on Underflow can be enabled by the instruction and the FPCR, and software may
compute the Denorm value as defined in the IEEE Standard.

EV6 records floating-point exception information in two places:

• The FPCR status bits record the occurance of all exceptions that are detected whether or not the
corresponding trap is enabled. The status bits are cleared only through a explicit clear command
(MT_FPCR), hence the exception information they record is a summary of all exceptions that have
occurred since the last time they were cleared.

• If an exception is detected and the corresponding trap is enabled by the instruction, and is not
disabled by the FPCR control bits, EV6 will record the condition in the EXC_SUM register and
initiate an arithmetic trap.

The following tables list all exceptional inputs and output conditions recognized by EV6, the result and
exception generated for each condition. Notes:

• EV6 will always trap on a Denormal input operand for all arithmetic operations.
• Input operand traps take precedence over arithmetic result traps.
• Abbreviations used in table:

Digital Confidential Do Not Copy 117

=> Inf: Infinity

=>
=>
=>

QNaN:
SNaN:
CQNaN:

Quiet NaN
Signalling NaN
Canonical Quiet NaN

Alpha AXP Instructions

ADDx SUBx INPUT
Inf operand
QNaN operand
SNaN operand
Effectivesubtractoftwoinf
operands
ADDx SUBx OU1PUT
Exponent overflow -·
Exponent underflow
Inexact result
MULxINPUT
Inf operand
QNaN operand
SNaN operand
0 *Inf
MULxOU1PUT
(same as ADDx)
DIVxINPUT
QNaN operand
SNaN operand
0/0 or Inf/Inf
NO{AnotO)
Nlnf
Inf/A
DIVxOU1PUT
(same as ADDx)
SQRTxINPUT
+Inf operand
QNaN operand
SNaN operand
-A (A not 0) ·
-0
SQRTx OU1PUT
Inexact result
CMPIEQ CMPTUN INPUT
Inf operand
QNaN operand
SNaN operand
C:MPTLT CMPTLE INPUT
Inf operand
QNaN operand
SNaN operand
CVTfilNPUT
Inf operand
QNaN operand
SNaN operand

Digital Confidential

EV6 Hardware Supplied Result

+/-Inf
QNaN
QNaN
CQNaN

+/-Inf or +/-MAX
+O
Result

+/-Inf
QNaN
QNaN
CQNaN

QNaN
QNaN
CQNaN
+/-Inf
+/-0
+/-Inf

+Inf
QNaN
QNaN
CQNaN
-0

root

True or False
False for EQ, True for UN
False for EQ,True for UN

True or False
False
False

0
0
0

Do Not Copy

Exception

(none)
(none)
Invalid Op
Invalid Op

Overflow
Underflow
Inexact

(none)
(none)
Invalid Op
Invalid Op

(none)
Invalid Op
Invalid Op
Div Zero
(none)
(none)

(none)
(none)
Invalid Op
Invalid Op
(none)

Inexact

(none)
(none)
Invalid Op

(none)
Invalid Op
Invalid Op

Invalid Op
Invalid Op
Invalid Op

118

Alpha AXP Instructions
CVffi OU'IPUT
Inexact result
Integer overflow
CVfif OU'IPUT
Inexact result
CVffflNPUT
Inf operand
QNaN operand
SNaN operand
CVfffOU1PUT
(same as ADDx)
FBEQ FBNE FBLT FBLE FBGT
FBGE
LDSLDT
STS STT
CPYSCPYSN
FCMOVx

Digital Confidential

EV6 Hardware Supplied Result

Result
Truncated result

Result

+/-Inf
QNaN
QNaN

Do Not Copy

Exception

Inexact
Invalid Op

Inexact

(none)
(none)
Invalid Op

119

.n.p.u.J. .l v, .l:;, :;, u

6.1 Floating Point Control Register (FPCR)

31 0

I I I I I I I I I I I

IGN/RAZ

~~~~$~~~~M~~~OO~~ ~ 

11111 : 1111111111 : : ; : : i~+~~ : : : : : I 
11

11.__._1 ----------: ~!8 
- ~ OVF 
'--~~~~~~~~~~~~~~~~-.• UNF 

INE 
IOV 
DYN 
UNDZ 
UNFD 
INED 
SUM 

.... ~~~ ............................ I~ .................. ~~~-~P.~~~---···································································································································· 
SUM RW Summary bit. Records bit-wise OR of FPCR exception bits. 
INED RW Inexact Disable. If this bit is set and a floating point instruction which 

enables trapping on inexact results generates an inexact value, the result 
is placed in the destination register and the trap is suppressed. 

UNFD RW Underflow Disable. H UNFD and UNZD are set and a floating point 
instruction which enables trapping on underflow and which has the 
software completion qualifier set generates an underflow, then the trap is 
suppressed. 

UNZD RW Underflow to zero. The Alpha architecture specifies that if this bit is set 
along with UNFD, then on underflow implementations place an 

DYN RW 

IOV RW 

Digital Confidential 

appropriately signed zero value in the destination register rather than the. ···· · 
denonnal number specified by the IEEE standard, if they are capable of 
doing so. 

EV6 is not capable of generating IEEE compliant denonnal results and 
always generates a positive zero ( +0.0) on underflow. Hence this bit is 
only used along with UNFD to determine whether to suppress underflow 
traps. 
Dynamic rounding mode. Indicates the rounding mode to be used by an 
IEEE floating point instruction when the instruction specifies dynamic 
rounding mode: 

OOi Chopped 
Minus infinity 
Normal 

1 h Plus infinity 
Integer overflow. An integer arithmetic operation or a conversion from 
floating to integer overflowed the destination precision. 

Do Not Copy 120 



·--~~~ ........................... I~ .................. ~~!!P.!!Q!! ............... -·····································-···············-···························································· 
INE RW Inexact result. A floating arithmetic or conversion operation gave a result 

that differed from the mathematically exact result. 
UNF RW Underflow. A floating arithmetic or conversion operation gave a result 

that underflowed the destination exponent. 
OVF RW Overflow. A floating arithmetic or conversion operation gave a result that 

overflowed the destination exponent 
DZE RW Divide by zero. An attempt was made to perform a floating divide with a 

divisor of zero. 
INV RW Invalid operation. An attempt was made to perform a floating arithmetic 

operation and one or more of its operand values were illegal. 
OVFD RW Overflow disable. If this bit is set and a floating arithmetic operation 

generates an overflow condition, then the appropriate IEEE non-trapping 
result is placed in the destination register and the trap is suppressed. 

DZED RW Division by zero disable. If this bit is set and a floating divide by zero is 
detected, the appropriate IEEE non-trapping result is placed in the 
destination register and the trap is suppressed. 

INVD RW Invalid operation disable. If this bit is set and a floating operate generates 
an invalid operation condition and EV6 is capable of producing the 
correct IEEE nontrapping result, that result is placed in the destination 
register and the trap is suwressed. 

Digital Confidential Do Not Copy 121 



-------···-·---- .. --""-~""'w~-~=a~.·• ·--·'-··-'--·"""=""-'·~'~-"'-----=C=---· ··-··----··-----=.....:..---·-,.·..:., ...... .," 

fi.i'.l.U .l.V, .l.::1:10 

7. Error Detection and Handling 
This section gives an overview of EV6' s error detection and error handling mechanisms. 

• The system port data bus is quadword .ECC protected. 
• The Bcache tag is parity protected. 
• The Bcache data bus is quadword ECC protected. 
• The Dcache tag array is parity protected. 
• The Dcache data array is quadword ECC protected, however this mode of operation is only supported 

in systems in which ECC is enabled on both the system and Bcache ports. 
• The Icache tag array is parity protected. 
• The lcache data array is parity protected. 
• The Dcache duplicate tag array is ECC protected. 

The EV6 ECC implementation detects and corrects single bit errors in hardware. Multiple bit errors 
within a quadword are not detected. 

7.1 /cache Data or Tag Parity Error 
• The hardware detects the error, replay-traps the instructions which were fetched under the error, and 

flushes the entire icache so the re-fetched instructions are not sourced directly from the icache. 
• I_ST AT <TPE> or <DPE> is set. 
• A CRD interrupt is posted. 

7.2 Dcache Tag Parity Error 
The primary copies of the Dcache tags are only used when servicing CPU-generated loads and stores, 
hence a Dcache tag parity error is processed as a fault. 
• Machine check occurs before any machine state is changed. 
• EXC_ADDR contains the PC of the load or store instruction which triggered the error. 
• The 1PERR_PO and TPERR_Pl fields of the DC_STATregister are written to indicate the source of 

the error. 
• The virtual address associated with the error is available in the VA register. 
• Recovery: flush the errored block using the EDCB (Evict Data Cache Block) instruction. The on-chip 

duplicate tag provides the correct victim address and cache state. 

7.3 Dcache Data Correctable ECC Error 
The actions which may invoke Dcache data ECC errors are: 

• Loadinstructions 
• Stores of less than quadword length 
• Dcache Victim Reads 

The hardware flow used for Dcache data ECC errors depends the action which triggered the error. 

7.3.1 Load Instruction 
Load instructions only trigger Dcache ECC errors if they use the data, i.e. if they hit in the Dcache. Loads 
which read their data from the Dcache may do so either in the same cycle as the Dcache tag probe (typical 
case) or in some subsequent cycle (load-queue retry). The hardware flows for these two error cases differ 
slightly. 

Digital Confidential Do Not Copy 122 



If an ECC error occurs when a load reads the Dcache data array in the same cycle as the t.ag array, then 
the lbox stops retiring instructions before the offending load retires, and does not start retiring again until 
after hardware recovers from the error. 

If an ECC error occurs when a load reads the Dcache data array after it read the Dcache tag array, then 
the load may already have retired. 

In either case: 

• The load's destination register is written with incorrect data, however the load queue will retain the 
state associated with the load instruction. 

• A consumer of the load's dat.a may issue before the error is recognized, however the lbox will invoke 
a replay trap at an instruction which is older than (or equal to) any instruction which consumes the 
load's data, and then stalls the replayed I-stream in the map st.age of the pipeline until the error is 
corrected. 

• The Cbox scrubs the block in the Dcache, which it does by evicting the block into the victim buffer 
(thereby scrubbing it) and writing it back into the Dcache. 

• The load queue retries the load and rewrites the register. 
• A corrected read (CRD) interrupt is posted. 
• DC_STATregister: 

=> DECC_ERR set 
=> DECC_CORset 

7 .3.2 Store Instruction (Less than Quadword Length) 
A store of less than quadword length could invoke a Dcache ECC error since the original quadword must 
be read to calculate the new check bits. 

• The Mbox scrubs the original quadword and replays the write. 
• The Mbox posts a CRD interrupt: 
• DC_ST AT register: 

=> DECC_ERR set 
=> DECC_CORset 

7 .3.3 Victim Reads 
• ECC-errored Dcache victims are scrubbed as Jiey ·are written into the victim data !>uffer 
• A CRD interrupt is posted. 
• DC_STATregister: 

=> DECC_ERR set 
=> DECC_CORset 

7.4 Dcache Triplicate Tag Parity Error 
• Machine check 
• C_STAT: TPERRis set 
• C_ADDR: contains bits <43:6> of the address associated with the error. 

7.5 Bcache Tag Parity Error 
• Machine check 
• C_STAT: TPERRis set 
• C_ADDR: contains bits <43:6> of the address associated with the error. 
• BC_ TAG: contains the tag and t.ag control fields of the errored Bcache block. 

Digital Confidential Do Not Copy 123' 



-----~--........... ~-=-..o ----~-· ~·· -------····- -~---- --·--····· ~ .. ~--
.t\.pru 1v, 1:1:10 .i....,' V '--•.t..l.}.i UiJ~.a.,,,_.._~'4 ..... V••, .._,,,,"""" \ ..... -v 

• Bcache Tag Parity Errors are not recoverable. 

7.6 Bcache Data Correctable ECC Error 
The actions which may trigger Bcache data ECC errors are: 

• !cache fill 
• Dcache fill, data possibly used by load instruction. 
• Victim read invoked by a system port probe or by the processor's own reference stream. 

Independent of the action which triggered the error: 

• A CRD interrupt is posted 
• C_STAT: BC_ECC is set. ECC_CRD is set 
e C_ADDR: contains bits <43:6> pf the address associated with the error. 

The recovery mechanism depends on the action which triggered the error. 

7 .6.1 Icache Fill from Bcache 
For an !cache fill, bad !cache data parity is generated for the octaword which contains the errored 
quadword. 
• The hardware flushes the icache 
• C_STAT: BC_ECC is set 
• A machine check is invoked .. The PAL machine check handler must scrub the block in the bcache. 

7 .6.2 Dcache Fill from Bcache 
If the errored quadword is not used to satisfy a load instruction no hardware recovery flow is invoked - the 
errored quadword and its associated check bits are written into the Dcache 

If the errored quadword is used to satisfy a load instruction then the flow is very similar to that used for a 
Dcache ECC error: · 

• The load's destination register is written with incorrect data, however the load queue will retain the 
state associated with the load instruction. 

• A consumer of the load's data may issue before the error is recognized, however the lbox will invoke 
a replay trap at an instruction which is older thari (or equal to)· any instruction which consumes the -· 
load's data, and then stalls the replayed I-stream in the map stage of the pipeline until the error is 
corrected. 

• The Cbox scrubs the block in the Dcache, which it does by evicting the block into the victim buffer 
(thereby scrubbing it) and writing it back into the Dcache. 

• The load queue retries the load and rewrites the register. 

7 .6.3 Victim Read 
The errored quadword is written to the system port. It is not scrubbed. 

7.7 Bcache Data Uncorrectable ECC Error 
• Machine Check 
• C_STAT: BC_ECC is set. ECC_CRD is clear. 
• C_ADDR: contains bits <43:6> of the address associated with the error 

Digital Confidential Do Not Copy 124 



7.8 Memory Data Correctable ECC Error 
The actions which may trigger memory data ECC errors are: 

• !cache fill 
• Dcache fill, data possibly used by load instruction. 

Independent of the action which triggered the error: 

• A CRD interrupt is posted 
• C_STAT: MEM_ECC is set. ECC_ CRD is sel 
• C_ADDR: contains bits <43:6> of the address associated with the error. 

The recovery mechanism depends on the action which triggered the error. 

7.8.1 lcache Fill from Memory 
For an !cache fill, bad lcache data parity is generated for the octaword which contains the errored 
quadword. 
• The hardware flushes the icache 
• C_STAT: MEM_ECC is set 
• A machine check is invoked.. The PAL machine check handler must scrub the block in the bcache 

and memory. 

7.8.2 Dcache Fill from Memory 
If the errorcd quadword is not used to satisfy a load instruction no hardware recovery flow is invoked - the 
errored quadword and its associated check bits are written into the Dcache and later written into the 
Bcache. 

If the errored quadword is used to satisfy a load instruction then the flow is very similar to that used for a 
Dcache ECC error: 

• The load's destination register is written with incorrect data, however the load queue will retain the 
state associated with the load instruction. 

• A consumer of the load's data may issue before the error is recognized, however the lbox will invoke 
a replay trap at an instruction which is older than (or equal to) any instruction which consumes the 
load's data, and then stalls the replayed I-stream in the map stage of the pipeline until the error is 
corrected. · 

• The Cbox scrubs the block in the Dcache, which it does by evicting the block into the victim buffer 
(thereby scrubbing it) and writing it back into the Dcache. 

• The load queue retries the load and rewrites the register. 

7.9 Memory Data Uncorrectable ECC Error 
• Machine Check 
• C_STAT: BC_ECC is set. ECC_CRD is clear. 
• C_ADDR: contains bits <43:6> of the address associated with the error 

7.10 System Port Read Errors 
• Machine Check 
• C_STAT: SRDERR sel 
• C_ADDR: contains bits <43:6> of the address assoiciated with the error. 

Digital Confidential Do Not Copy 125 



8. Initialization and Test 
**To be specified. Here are a few key points: 

• The SROM port will work just like EV4 and EV5. 
• The SROM pins can do double-duty as a software-controlled UART, just like EV4 and EV5. 
• Unlike EV4 and EV5, systems are required to have an SROM - that will be the only way to configure 

the system port. 
• There will be an IEEE 1149.1 compliant test access port. 
• There will be Built-in-Self-Test (BIST) of all major storage arrays, and Built-in-Self-Repair (BISR) of 

the lcache and Dcache tag and data arrays. 

Digital Confidential Do Not Copy 126 



9. Electrical Data 

This chapter describes the electrical characteristics of EV6 and its interface pins. It will contain electrical 
characteristics, DC characteristics, AC characterisitcs and power supply considerations. 

9.1 Electrical Characteristics 

The following table lists the maximum ratings for EV6. 

Characteristics Ra tin~ 
Storage Temperature -SSC to + 12SC 
Junction Temperature ?C to lOOC 
Supply Voltage VSS OV, VDD 2.0 V 
Input or Output applied -0.S to TBD V 
Maximum Power@ VDD=? TBD W typical 
Frequency=TBD 1vlHz TBD W maximum 

9.2 DC Characteristics 

9.2.1 Power Supply 
The VSS pins are connected to O.OV, and the VDD pins are connected to 2.0V, +/- IOOmV. 

9.2.2 Input Signal Pins 
Nearly all input signals are CMOS inputs with 2.0V levels. The one exception is CLK_IN_H/L. 

9.2.3 Driven Signals From EV6 
EV6 requires a floating well type driver on the Bcache 1/0 interface, due to Bcache configurations that 
may drive voltages in excess of a threshold voltage above the 2V VDD. All 1/0 cells will use the same 
floating well design, however the drive strengths will not be the same. 

The output only cells will not use a floating well design, but, will use a simple push/pull circuit. More 
t.ltan-one drive strength may be required tor this pin category. 

The SROM pins must be truly TTL compatible. This is achieved by employing open drain pulldown 
circuits. A resistor must be placed on the module to the 3.3V supply to pull the signal past the TfL Vih 
point. 

Some lines will be either series or parallel terminated. For the parallel terminated lines, the chip will 
provide good Voh and Vol margins while sourcing or sinking the termination current, as defined in the 
table below. 

(TBD) 

Digital Confidential Do Not Copy 127 



.n..p.1.u .iv, 1.:t:;ro 

The following table show the drive specifications for each category of driver(typical-typical process/ Tj=85 
degrees CNDD=2.0V). 

EV6 IO SPECIFICATIONS 
Parameter Units Current Notes 
Voh_ca VDD-0.25V 45mA 1 
Vol_ca 0.25V 25mA 1 
Voh_cd VDD-0.25V 2mA 2 
Vol_cd 0.25V 2mA 2 
Vih Vref +/- 250m V TBDmA 3 
Vil Vref +/- 250m V TBDmA 3 
Vol_ OD 0.25V 75mA 4 
Vih_HV VDD/2 + 250m V TBDmA 5 
Vil_HV VDD/2 - 250m V TBDmA 5 
Vol_OD3V 0.4 v 4mA 6 

1. Applies to cache address drivers 
2. Applies to cache data drivers 
3. Applies to all 2.5V tolerant inputs 
4. Applies to 'OPEN DRAIN' type outputs,(assumes a TDB ohm resistor connected to the 3.3V supply 

on the module. 
5. Applies to 3V tolerant pins. 
6. Applies to 3V open drain outputs (assumes resistor to 3.3V supply). 

9.3 AC Characteristics 

This section describes the a:c timing specifications for the 21164. 

9.3.1 Clocking Scheme 

The System port clocking scheme is described in detail in section 3.3.12. It requires a differential input 
clock and a system or framing clock. There is one signal that is considered synchronous while all other 
signals employ a clock forwarding scheme that is described in section 3.3.12. The system or FrameClk_H 
is used to establish a starting point for multi-cycle transfers of command and data to the system. It is also 
used to perform a synchronous clock forward reset of the interface. 

9.3.2 Input Clocks 

The differential input clock signals CLK_IN_H/L are frequencies ranging from 80 to 200 Mhz. Systems 
choose the appropriate frequency within that range which matches the requirement for their own clock 
distribution. This input clock is used to compare against a divided down copy of the VCO output for 
phase alignment. The GCLK is not the product of this oscillator input so there is no requirement for 
specialized circuitry to detect the presence of CLK_IN_H/L. 

One additional input clock is a single ended square wave clock called the framing clock. This is expected 
to be a skewed controlled copy of the exact clock distributed throughout the system. The period of this 
clock can be identical to the osc_clk_in_h/l or an integer multiple of that signal and it should be phase 
aligned with the osc_clk_h/l with distribution skew not in excess of TDB psec. 

It has a two functions. First, it is used to provide a known starting point for all clock forwarding transfer 
that emanate from EV6. Second, it is the clock used for the only synchronous signal in the interface, the 
clock forward reset 

Digital Confidential Do Not Copy 128 



9.3.2.1 Clock Termination and lmpeda.nce Levels 

9.3.2.2 AC Coupling 

9.3.3 

9.3.4 l.3.3Analog PLL 
*************PUT PLL SPEC HERE*********** 

9.3.5 Timing 

9.3.5.1 Synchronous Signals 

There is one synchronous output signal driven from EV6. That is, ClkFwdReset_ H. All clock forward 
circuits are reset using this signal. It is operationally specified in section 3.3.11.11. This signal is 
clocked by a copy of the Framing clock described above and is not derived from GCLK off the internal 
PLL. Therefore, there it does not have a skew component caused by the drift in the PLL. The timing 
specification is the delay from the input of the framing clock to the output pad driver and that is TBD min 
and TBDmax. 

9.3.5.2 Asynchronous Signals 

The following is a list of asynchronous input signals: 

IRQ<S:O> SROMDATA DC OK H RESET 

9.3.5.3 Clock Forwarded Signals For System Interface 

Clock forwarding is described in detail in secti0n 3.3.11.4. The following is a list of input only signals 
that are accompanied by a clock and are open drain: . . 

SysAddln<14:0> SysFillValid SysDataln Valid SysDataOutValid 

Setup and Hold With Respect To SysAddlnClkH 
450MHz 500MHz 600MHz 

min Setu_Q -200.psec -300psec -400psec 
min Hold 1005 psec 1005 _Qsec 1005 psec 

9.3.5.3.1 

The following is a list of output signals that are accompanied by a clock and are open drain: 

SysAddOut<14:0> SysAddOutClkH 

Digital Confidential Do Not Copy 129 



Timin_g_ difference across all signals includin_g_ clock 
450MHz SOOMHz ()()()MHz 

max output 500 psec 500 psec 500 psec 
skew 

The following is a list of bi-directional signals that are accompanied by a clock, when Ev6 is driving the 
data bus there is one clock for 18 bits (ie SysClkOut<3> is associated with SysData<63:48> and 
SysCheck<7:6>, when EV6 is receiving there is on clock for every 9 bits. The drivers are open drain: 

SysData<63:56> SysCheck<7> SysDatalnClk<7> SysDataOutClk<3> 

SysData<SS:48> SysCheck<6> SysDatalnClk<6> SysDataOutClk<3> 

SysData<47:40> 

SysData<39:32> 

SysData<31:24> 

SysData<23: 16> 

SysData<lS:8> 

SysData<7:0> 

min Setu 
min Hold 

SysCheck<S> 

SysCheck<4> 

SysCheck<3> 

SysCheck<2> 

SysCheck<l> 

SysCheck<O> 

SysDatalnClk<S> SysData0utClk<2> 

SysDatalnClk<4> 

SysDatalnClk<3> 

SysDatalnClk<2> 

SysDatalnClk<l> 

SysDatalnClk<O> 

SysData0utClk<2> 

SysDataOutClk<l> 

SysDataOutClk<l> 

SysDataOutClk<O> 

SysDataOutClk<O> 

Timing difference across ou_!Q_uts including_ SysDataOutClk 
450MHz 500MHz ()()()MHz 

max output 560 psec 560 psec 560 psec 
skew 

9.3.5.4 Bcache Timing 
The Bcache is entirely private to the EV6 pinbus. Address and control are directly driven from EV6 
along with multiple differential clocks. There is internal adjustment which delay the clock relative to the 
address and control. All signals to the synchronous SRAM devices are directly driven to the device. Data 
is bidirectional. For writing, data is clocked in the SRAM by the same clock used for address and control. 
For reading, there are two styles of data delivery to EV6. First, the conventional REG/REG component 
drives data on the rising edge of its received clock and EV6 uses a copy of this same clock to capture this 
data at the pads. The second type of data from the SRAM is clock forwarded from the device with data 
supplied on the rising and falling edge of the clock. 

The following signals are driven from EV6 to the devices and must meet the setup and hold 
constraints of the receiving device: 

BcAddress<23:4> BcDataOE L BcLoad L BcDataWr_L 

Digital Confidential Do Not Copy 130 



BcTagOE_L BcTagWr_L 

Clocks: BcDataOutClk<3:0>HIL 

The following signals are Bidirectional. When EV6 is driving, these signals must meet the setup and hold 
constraints of the receiving device: 

BcData<l27:0> BcCbeck<7:0> 

Clocks: BcDatalnClk<7:0>HIL 

Incomin direction with re t to BcDatainClk 
450MHz 500MHz ()()(}MHz 

min Setu 
min Hold 

BcTag<42:20> BcTagValid_H BcTagDirty_H BcTagShared_H 
Clocks: BcTaglnClkH/L 

600MHz 
min Setu 
min Hold 

9.4 Power Supply Considerations 

9.4.1 Decoupling 

9.4.2 Power Supply Sequencing 

Digital Confidential Do Not Copy 

BcTagParity _ H 

131 



···-··-·····--···-···. '-"-···· 
.._. ~ v "-U"'.f:J u_tJ...._. ....... ,. ... ,,u..a.v.1., J..'-"' • -·'-' 

10. Packaging Information 

10.1 Introduction 
This chapter provides detailed information on the chip package and the complete pinout for the 587 pin 
ceramic PGA for EV6. 

10.2 Package Information 
The following figure shows the pin location and the package dimensions. 

Digital Confidential Do Not Copy 132 



10.3 EV6 Pinout 

BE43 BE41 BE39 BE37 BE3S BE33 BE31 BE29 BE27 BE2S BE23 BE21 BE19 BEl:i' BElS BE13 BEil BES BE7 BES BE3 

8044 B042 8049 8038 8036 8034 8032 8030 8028 802& 8024 8022 8020 8018 801& B014 8012 8010 BOS BD& 804 802 

BC4S BC43 8C41 BC39 BC37 BC3S BC33 BC31 BC29 BC27 BC2S BC23 8C21 BCIS BC17 8C1S BC13 BCl 1 8C9 BC7 BCS BC3 BCI 

BB44 BB42 BB49 BB38 8836 B834 8832 BB39 8828 8826 BB24 B822 B828 8Bl8 B816 B814 8812 8Bl0 BBB 886 884 882 

BA4S BR43 BAA!l BA39 BR37 BA3S BA33 BA31 BR29 BA27 BA2S BA23 BA21 BA19 BA17 SAIS BA13 BA11 BAS BA7 BAS BR3 BRl 

AY44 AY42 AY48 AY38 AY36 AY34 AY32 AY3B A'f28 AY26 AY24 AY22 AY28 AYIB AY16 AY14 AY12 AY19 AYB RY& AY4 AY2 

AH4S AH43 AH41 AH39 A"37 Rtl3S 1*33 AH31 Rl'l29 AH27 AH2S 1*23 AH21 AH19 A1'117 ANIS AH13 RW1 I Al'IS RH7 AHS AH3 AHi 

AV414 AV42 AV49 AV3B AV36 AV34 AY32 AV3B A\128 RV26 R\124 A\122 A\129 A\118 AV16 AV14 AY12 A\118 RVS AY6 A\14 A\12 

AU45 AU43 AU41 AU39 

AT44 AT42 AT49 AT38 

AR4S AR43 AR41 AR39 

AP44 AP42 AP49 AP38 

AN4S AN43 t:lN41 AN39 

AM44 AM42 AM4e RM38 

AL4S AL43 AL41 AL39 

Al<44 Al<42 Al<49 Al<38 

AJ4S AJ43 RJ41 AJ39 

AH44 AH42 AH48 AH38 

AG4S AG43 RG41 AG39 

Ar44 ·1-1r42 · AF'40 Ar3a I 
AE4S AE43 AE41 AE39 

A044 AD42 A040 AD38 

AC4S AC43 PC4 I AC3S 

AB44 AB42 AB49 AB38 

AA4S AA43 AA41 AA39 

Y44 Y42 Y40 Y38 

H4S H43 H4 l H39 

V44 1142 V40 V38 

U4S U43 U41 U39 

T44 T42 T40 T38 

R4S R43 R41 R39 

P44 P42 P40 P38 

tl'IS 1'1'13 1'141 N39 

M44 M42 M40 M3B 

L4S L43 L41 L39 

1<44 1<42 1<40 1<38 

J4S J43 J41 J39 

0 0 

H44 H42 H40 H38 H36 H34 H32 H30 H28 H2& H24 H22 H20 HIS H16 H14 Hl2 Hl0 

AU7 AUS f:IJ3 AUi 

ATS AT6 AT4 AT2 

AR7 ARS AR3 AR 1 

RPS RPG AP4 AP2 

AN7 ANS RN3 AN 1 

AMS AM6 AM4 AM2 

AL7 ALS i:l...3 AU 

Al<B RI<& Al<4 Al<2 

AJ7 AJS RJ3 AJ1 

AH8 AH6 AH4 AH2 

AG7 ACS ~3 RGI 
RF'B AF"6 · Ar4 AF'2 

AE7 AES AE3 REI 

ROB RD6 A04 R02 

AC7 AC\. AC3 AC! 

ABS AB6 AB4 A82 

AR7 AAS 1¥l3 ARI 

YB Y6 Y4 Y2 

H7 HS H3 Hl 

vs vr. \14 \12 

U7 us U3 Ul 

TB T6 T4 T2 

R7 RS R3 RI 

PB P& P4 P2 

1'0 NS N3 I'll 

MB M& M4 M2 

L7 LS L3 L1 

1<8 1<6 1<4 1<2 

J7 JS J3 JI 

H6 H4 H2 

'"4S G43 GJ:1 Gls;:, G.:i7 G35 G33 G31 G29. G27 G2S G23 G21 Gl9 t:17 GIS Gll GU GS G7 GS • -G3 Gt 

r44 r42 F"4e r3a F"36 F"34 r32 r30 F"2B F"26 r24 r22 r2e ne F 16 F"l4 F"l2 F"10 re rr. r4 r2 

E4S E43 E41 E39 E37 E3S E33 E31 E29 E27 E2S E23 E21 E19 E17 EIS E13 El 1 ES E7 ES E3 Et 

044 042 040 038 03& 034 032 030 028 026 024 022 020 018 01& 014 012 010 08 06 04 02 

C4S C43 C41 C39 C37 C3S C33 C31 C29 C27 C2S C23 C21 C19 CP CIS C13 C11 C9 C7 CS C3 Ct 

844 842 940 839 836 834 832 830 828 826 824 822 920 818 816 914 812 810 88 86 84 82 

A43 A41 A39 A37 A3S A33 A31 A29 A27 A2S A23 A21 AIS A17 RIS A13 Rt 1 RS A7 AS R3 

Digital Confidential Do Not Copy 133 



rtpr.u .i.U, J.:1:10 

Signal Pin 

Signal Name Pin Number Type 
BCADDRESS 4 D26 OUT 
BCADDRESS 5 E27 OUT 
BCADDRESS-6 C27 OUT 
BCADDRESS 7 B28 OUT 
BCADDRESS-8 D28 OUT 
BCADDRESS-9 H28 OUT 

BCADDRESS lO G29 OUT 
BCADDRESS 11 C29 OUT 
BCADDRESS-:12 A29 OUT 
BCADDRESS-13 B30 OUT 
BCADDRESS-14 A31 OUT 
BCADDRESS 15 F30 OUT 
BCADDRESS-16 H30 OUT 
BCADDRESS 17 E31 OUT 
BCADDRESS-18 G31 OUT 
BCADDRESS-19 032 OUT 
BCADDRESS-20 F32 OUT 
BCADDRESS-21 E33 OUT 
BCADDRESS-22 C33 OUT ·-··. 
BCADDRESS-23 B34 OUT 

BCCHECKO BC7 BI 
BCCHECK 1 AV12 BI 
BCCHECK-2 BCll BI 
BCCHECK-3 AY14 BI 
BCCHECK-4 AY38 BI 
BCCHECK-5 BE41 BI 
BCCHECK-6 BB38 BI 
BCCHECK-7 AW35 BI 
BCCHECK-8 BBS BI 
BCCHECK-9 BE9 BI 

BCCHECKlO BB12 BI 
BCCHECK-11 AW15 BI 
BCCHECK-12 AW37 BI 
BCCHECK-13 BD40 BI 
BCCHECK-14 BA37 BI 
BCCHECK-15 AV34 BI 

BCDATAINCLK 0 H F8 IN 
BCDATAINCLK_O_ L E7 IN 
BCDATAINCLK 1 H P4 IN 
BCDATAINCLK_l_ L RS IN 
BCDATAINCLK_2_ H AH4 IN 
BCDATAINCLK_2_ L AJ3 IN 
BCDATAINCLK_3_ H AY8 IN 
BCDATAINCLK_3_ L AW9 IN 
BCDATAINCLK_4_ H E39 IN 
BCDATAINCLK_4_ L F38 IN 
BCDATAINCLK_S_ H R41 IN 
BCDATAINCLK_S_ L P42 IN 
BCDATAINCLK_6_ H AF40 IN 

Signal Name Pin Number Type 
BCDATAINCLK 6 L AG41 IN 
BCDATAINCLK_7_ H AV40 IN 

Digital Confidential Do Not Copy 134 



BCDATAINCLK_7_ L AW41 IN 
BCDATAOE L E25 OUT 

BCDATAOUTCLK 0 H JS OUT 
BCDATAOUTCLK-0 L K6 OUT 
BCDATAOUTCLK=l H AUS OUT 
BCDATAOUTCLK 1 L AV4 OUT 
BCOATAOUTCLK-2 H J41 OUT 
BCOATAOUTCLK-2 L K40 OUT 
BCOATAOUTCLK-3 H AP42 OUT 
BCOATAOUTCLK-3 L AR43 OUT 

BCOATAWR L G25 OUT 
BCOATA 0 E13 BI 
BCOATA 1 BlO BI 
BCOATA 2 Gll BI 
BCOATA-3 OS BI 
BCOATA-4 cs BI 
BCOATA 5 KS BI 
BCOATA-6 E3 BI 
BCOATA-7 MS BI 
BCOATA-S G3 BI 
BCOATA-9 Jl BI 

BCOATA -10 P6 BI 
BCOATA 11 Ll BI 
BCOATA12 T6 BI 
BCOATA-13 Rl BI 
BCOATA 14 Ul BI 
BCOATA 15 Y6 BI 
BCDATA-16 AAS BI 
BCOATA 17 AB6 BI 
BCDATA-18 AC3 BI 
BCOATA-19 ADS BI 
BCDATA-20 AE7 BI 
BCDATA 21 AG3 BI 
BCDATA-22 AGS BI 
BCDATA-23 AH8 BI 
BCDATA-24 AN3 BI 
BCDATA-25 AK8 BI 
BCOATA-26 AR3 BI 
BCDATA-27 AW3 BI 
BCOATA-28 BAl BI 
BCOATA-29 BCl BI 
BCDATA-30 BCS BI 
BCDATA-31 AVlO BI 
BCDATA-32 034 BI 
BCDATA-33 B36 BI 
BCDATA-34 G35 BI 
BCOATA-35 D38 BI 
BCOATA-36 C41 BI 
BCDATA-37 E43 BI 
BCDATA-38 H40 BI 
BCDATA-39 E45 BI 

Signa1 Name Pin Number Type 
BCOATA 40 H42 BI 
BCOATA-41 P40 BI 
BCOATA-42 J45 BI 
BCDATA-43 N43 BI 
BCOATA 44 T40 BI 
BCOATA-45 T44 BI 
BCOATA-46 W41 BI 

Digital Confidential Do Not Copy 135 



n.p.ru iv, 1~:::1v 

BCDATA 47 
BCDATA-48 
BCDATA-49 
BCDATA-50 
BCDATA-51 
BCDATA-52 
BCDATA-53 
BCOATA-54 
BCOATA 5S 
BCOATA-56 
BCOATA-57 
BCOATA-58 
BCOATA-59 
BCOATA-60 
BCOATA-61 
BCOATA-62 -
BCOATA-63 
BCOATA-64 
BCOATA-65 
BCOATA-66 
BCOATA-67 
BCOATA-68 
BCOATA-69 
BCDATA-70 
BCOATA 71 
BCOATA-72 
BCOAT/l ... ~73-
BCOATA 74 
BCDATA 7S 
BCDATA-76 
BCDATA 77 
BCDATA-78 
BCDATA-79 
BCDATA-80 
BCDATA-81 
BCDATA-82 
BCDATA-83 
BCDATA-84 
BCOATA-85 
BCDATA-86 
BCDATA-87 
BCDATiC88 
BCDATA-89 
BCDATA-90 
BCDATA-91 
BCDATA-92 

Signal Name 
BCDATA 93 
BCDATA-94 
BCDATA-9S 
BCOATA-96 
BCDATA-97 
BCOATA-98 
BCOATA-99 

BCOATA lOO 
BCOATA-101 
BCOATA-102 
BCOATA-103 
BCOATA-104 

Digital Confidential 

V44 
AB38 
AB40 
AC43 
AD44 
AE45 
AH44 
AK44 
AK38 
AL39 
AN43 
AR4S 
AP38 
AW43 
AT38 
BA43 
BC41 
012 
A9 

FlO 
C7 
06 
GS 
D2 
L7 
F2 
K2 
R7 
M2 
U7 
T2 
V2 
Y4 

AAl 
ABS 
AD2 
AEl 
AF4 
AH2 
AK2 
AJ7 
AP2 
AL7 
AT2 
AY2 
BA3 

Pin Number 
BE3 
BB6 
BES 
A3S 
A37 
F36 
C39 
040 
044 
J39 
F44 
L39 

Do Not Copy 

BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 

Type 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 

136 



BCDATA 105 L43 BI 
BCDATA-106 L45 BI 
BCDATA-107 R39 BI 
BCDATA-108 U39 BI 
BCDATA-109 R45 BI 
BCDATA-110 Y40 BI 
BCDATA-111 W43 BI 
BCDATA-112 AA41 BI 
BCDATA-113 AB44 BI 
BCDATA-114 AD38 BI 
BCDATA-115 AE39 BI 
BCOATA-116 AF42 BI 
BCOATA 117 AH38 BI 
BCOATA-118 AL45 BI 
BCOATA-119 AK40 BI 
BCOATA-120 AM42 BI 
BCOATA-121 AN41 BI. 
BCOATA-122 AT44 BI 
BCOATA-123 AR39 BI 
BCOATA-124 AY44 BI 
BCOATA-125 AU39 BI 
BCOATA-126 BB44 BI 
BCOATA-127 B042 BI 

BCLOAD L F26 OUT 
BCTAGOATA 20 F14 BI 
BCTAGOATA-21 G15 BI 
BCTAGOATA-22 H16 BI 
BCTAGOATA-23 All BI 
BCTAGOATA-24 B12 BI 
BCTAGOATA-25 C13 BI 
BCTAGOATA-26 014 BI 
BCTAGOATA-27 El5 BI 
BCTAGOATA-28 Fl6 BI 
BCTAGOATA-29 G17 BI 
BCTAGOATA-30 H18 BI 
BCTAGOATA-31 Al5 BI 
BCTAGOATA-32 Bl6 BI 
BCTAGOATA-33 C17 BI 
BCTAGOATA 34 018 BI 
BCTAGOATA 35 El9 BI 
BCTAGOATA-36 A17 BI 
Signal. Name Pin Number Type 

BCTAGOATA 37 F20 BI 
BCTAGOATA-38 020 BI 
BCTAGOATA-39 G21 BI 
BCTAGOATA-40 E21 BI 
BCTAGOATA-41 A21 BI 
BCTAGOATA-42 H22 BI 
BCTAGOIRTY H G23 BI 
BCTAGINCLK-H C19 IN 
BCTAGINCLK-L B18 IN 

BCTAGOE L H24 OUT 
BCTAGOUTCLK H C23 OUT 
BCTAGOUTCLK-L B24 OUT 
BCTAGPARITY-H F22 BI 
BCTAGSHAREO-H B22 BI 
BCTAGVALID H F24 BI 

BCTAGWR L A25 OUT 
CLKFWDRESET H BC19 OUT 

Digital Confidential Do Not Copy 137 



- - - -----------------·-----------·- ·-

.tit.j.>i.i.1 .l\J, .l:7:7V ""-' 't V '-''-.i.4,t' t.J .l-""'"""" ... .._.._""'"4W.V••, ........ ......- • -• -

CLKIN H ANS IN 
CLKIN-L AP4 IN 
DCOKH BB20 IN 

EV6CLK H AMS OUT 
EV6CLK-L AP8 OUT 

FRAMECLK H BA19 IN 
IRQ H 0 AY16 IN 
IRQ_H_l BA15 IN 
IRQ_H_2 AV16 IN 
IRQ_H_3 BB14 IN 
IRQ=H=4 BC13 IN 
IRQ_H_S BD12 IN 

PLLBYPASS H AT6 IN 
PLLVDD ATS IN 

RESET L AY20 IN 
SROMCLK H AV18 BI 

SROMDATA H AW17 BI 
SROMEN L BE15 OUT 

SYSADDINCLK H BE25 IN 
SYSADDINCLK L AW25 IN 
SYSADDIN 0 L BD28 IN 
SYSADDIN_l_L BA27 IN 
SYSADDIN_2_L AY26 IN 
SYSADDIN_3_L BC27 IN 
SYSADDIN_4_L BB26 IN 
SYSADDIN_S_L BA25 IN 
SYSADDIN_6_L AV24 IN 
SYSADDIN_7_L AY24 IN 
SYSADDIN_8_L BD24 IN 
SYSADDIN_9_L AW23 IN 

SYSADDIN lO L BC23 IN 
SYSADDIN_ll_L AY22 IN 
SYSADDIN--12-L BD22 IN 
SYSADDIN-13-L BE21 IN 
SYSADDIN 14 L BA21 IN 

. - -
SYSADDOUTCLK H BB32 OUT 

Signal Name Pin Number Type 
SYSADDOUTCLK L BA31 OUT 
SYSADDOUT 0 -L BD36 OUT 
SYSADDOUT_l_L BC35 OUT 
SYSADDOUT_2_L BB34 OUT 
SYSADDOUT_3_L BA33 OUT 
SYSADDOUT_4_L AY32 OUT 
SYSADDOUT 5 L BE35 OUT 
SYSADDOUT_6_L BD34 OUT 
SYSADDOUT_7_L BC33 OUT 
SYSADDOUT 8 L AW31 OUT 
SYSADDOUT_9_L AV30 OUT 

SYSADDOUT l 0 L AY30 OUT 
SYSADDOUT-11-L AW29 OUT 
SYSADDOUT-12-L AV28 OUT 
SYSADDOUT-13-L BE31 OUT 
SYSADDOUT-14-L BD30 OUT 

SYSCHECK-0 L AWll BI 
SYSCHECK_l_L BDlO BI 
SYSCHECK_2_L BA13 BI 
SYSCHECK_3_L BEll BI 
SYSCHECK_4_L AV36 BI 
SYSCHECK_S_L BC39 BI 

Digital Confidential Do Not Copy 138 



SYSCHECK 6 L AY36 BI 
SYSCHECK 7 L BE37 BI 

SYSDATAINCLK-0 H H6 IN 
SYSDATAINCLK_O_L J7 IN 
SYSDATAINCLK_l_H V4 IN 
SYSDATAINCLK 1 L ws IN 
SYSDATAINCLK_2_H ALS IN 
SYSDATAINCLK_2_L AM4 IN 
SYSDATAINCLK_3_H BA9 IN 
SYSDATAINCLK_3_L AYlO IN 
SYSDATAINCLK 4 H G41 IN 
SYSDATAINCLK 4 L F42 IN 
SYSDATAINCLK_S_H V42 IN 
SYSDATAINCLK S L U43 IN 
SYSDATAINCLK_6_H AH42 IN 
SYSDATAINCLK_6_L AJ43 IN 
SYSDATAINCLK 7 H BA39 IN 
SYSDATAINCLK 7 L BB40 IN 
SYSDATAINVALID L BB28 IN 

SYSDATAOUTCLK 0 H M4 OUT 
SYSDATAOUTCLK_O_L NS OUT 
SYSDATAOUTCLK_l_H AV6 OUT 
SYSDATAOUTCLK 1 L AWS OUT 
SYSDATAOUTCLK_2_H M42 OUT 
SYSDATAOUTCLK_2_L N41 OUT 
SYSDATAOUTCLK 3 H AU41 OUT 
SYSDATAOUTCLK_3_L AV42 OUT 
SYSDATAOUTVALID L BE29 IN 

SYSDATA 0 L Cll BI 
SYSDATA 1 L Hl2 BI 
SYSDATA_2_L E9 BI 
Signal Name Pin Number Type 
SYSDATA 3 L B6 BI 
SYSDATA 4 L HlO BI 
SYSDATA 5 L F4 BI 
SYSDATA_6_L Cl BI 
SYSDATA 7 L H4 BI 
SYSDATA_8_L El BI 
SYSDATA_9_L L3 BI 

SYSDATA lO L TS BI 
SYSDATA 11 L N3 BI 
SYSDATAli-L va BI 
SYSDATA-13-L U3 BI 
SYSDATA 14 L W3 BI 
SYSDATA 15 L AA7 BI 
SYSDATA-16-L AB2 BI 
SYSDATA-17-L AC7 BI 
SYSDATA-18-L AD6 BI 
SYSDATA-19-L AES BI 
SYSDATA-20-L AF6 BI 
SYSDATA-21-L AJl BI 
SYSDATA-22-L ALl BI 
SYSDATA23-L AK6 BI 
SYSDATA-24-L ARl BI 
SYSDATA-25-L AM6 BI 
SYSDATA-26-L AUl BI 
SYSDATA-27-L AY4 BI 
SYSDATA-28-L BB2 BI 
SYSDATA-29-L BD4 BI 

Digital Confidential Do Not Copy 139 



SYSDATA 30 L 
SYSDATA-31-L 
SYSDATA-32-L 
SYSDATA-33-L 
SYSDATA-34-L 
SYSDATA-35-L 
SYSOATA-36-L 
SYSOATA-37-L 
SYSOATA-38-L 
SYSDATA-39-L 
SYSOATA-40-L 
SYSOATA 41 L 
SYSOATA-42-L 
SYSOATA-43-L 
SYSDATA 44 L 
SYSDATA 45 L 
SYSDATA-46-L 
SYSOATA-47-L 
SYSDATA-48-L 
SYSOATA-49-L 
SYSDATA-50-L 
SYSDATA 51 L 
SYSDATA-52-L 
SYSDATA-53-L 
SYSDATA 54 L 
SYSDATA 55 L 
Signal Name 

SYSDATA 56 L 
SYSDATA-57-L 
SYSDATA-58-L 
SYSDATA-59-L 
SYSDATA-60-L 
SYSOATA 61 L 
SYSDATA-62-L 
SYSDATA-63-L 

SYSFILLVALID L 
TESTCLK H 

TESTDATAIN H 
TESTDATAOUT H 

TESTMODESELECT H 
TESTRESET L 
VREFBCACHE 

VREFSYS 

Ground Pins 

BD44 
BB42 
AY40 
AV38 
AV44 
AT42 
AP40 
AM38 
AM44 
AK42 
AH40 
AF38 

Digital Confidential 

D36 
F34 
H32 
B32 
030 
F28 
H26 
B26 
024 
A23 
D22 
B20 

BA7 
BD6 
C35 
H34 
E37 
B40 
G37 
C45 
K38 
G43 
M38 
K44 
M44 
T38 
V38 
U45 

AA39 
Y42 

AA45 
AC39 
AD40 
AE41 
AG43 
AJ45 
AJ39 
AL41 

Pin Number 
AM40 

AP44 

Y8 
Y2 

AB4 
ACl 
AD4 
AF2 
AF8 
AH6 
AK4 
AM2 
AP6 
AR7 

AU45 
AT40 
BA45 
AY42 
BC45 
BE43 
BC29 
BC17 
BB18 
B018 
BD16 
BE17 
AW21 
AV22 

AV26 
AY28 
BB30 
BD32 
AV32 
AY34 
BB36 
B038 
AV38 
BD26 

Do Not Copy 140 



AF44 
AD42 
AC45 
AB42 
Y38 
Y44 
V40 
T42 
P44 
P38 
M40 
K42 
H44 
H38 
F40 
042 
B44 
B42 
B38 

VDD 2V 

BC43 
BA41 
AW4S 
AU43 
AR41 
AN39 
AN4S 
AL43 
AJ41 
AG39 
AG45 
AE43 
AC41 
AA43 
W4S 
_W39 
U41 
R43 
N4S 
N39 
L41 
J43 
G4S 
G39 
E41 
C43 
A43 

A41 
H36 
A39 
C37 
E3S 
G33 

Digital Confidential 

H20 
F18 
D16 
B14 
H14 
Fl2 
DlO 
BS 
G9 
B4 
B2 
D4 
F6 
H2 
K4 
M6 
PS 
P2 
V6 

A19 
G19 
El7 
C15 
Al3 
Gl3 
Ell 
C9 
A7 
AS 

A3 
C3 
ES 
G7 
Sl 
J3 
LS 
N7 
Nl 
R3 
us 
W7 
Wl 

AA3 
ACS 
AE3 
AGl 
AG7 
AJS 
AL3 
ANl 
AN7 
ARS 

AU7 
AT4 
AV2 
AY6 
BB4 
BD2 
AV8 

AV14 
AY12 
BBlO 
BD8 

AV20 
AY18 
BB16 
BD14 
BD20 
BB22 
BB24 
BE23 

AW13 
BE13 
BClS 
BA17 
AW19 
BE19 
BC21 
BA23 
BC2S 
BE27 
AW27 
BA29 
BC31 
BE33 
AW33 
BA3S 
BC37 
BE39 
AW39 

Do Not Copy 141 



A33 
C31 
E29 
G27 
A27 
C25 
E23 
C21 

Digital Confidential 

AU3 
AWl 
BC3 
BAS 
AW? 
BE? 
BC9 

BA11 

Do Not Copy 142 



11. Appendix 1 : Reset and Sleep Mode 

This chapter contains reset and sleep mode information. It has not been written yet. 

Digital Confidential Do Not Copy 143 



rtpr.u. 1v, .A.7:tv 

12. Appendix 2: PAL Coding Restrictions 

12.1 Restriction: Reset Sequence Required by Retirator and Mapper 
• (a) For convenience of implementation, the retirator "done" status bits are not initialized during reset. 

Instead, it relies on the first batch of valid instructions to sweep through inum-space and initialize 
these bits. The 80 status bits, corresponding to the maximum number of inflight instructions, must be 
marked "not done" by the first 80 instructions mapped after reset and subsequently marked "done" 
when those instructions retire. Therefore, the first 20 fetch blocks must contain 4 valid instructions 
apiece, and containing no retirator-nops (see previous guideline). 

• Example: 
reset: 
ADDQ R31,#19,RO 
ADDQ R31,RO,RO 
ADDQ R31,RO,RO 
ADDQ R31,RO,RO 
loop: 
SUBQ R0,#1,RO 
ADDQ R31,RO,RO 
ADDQ R31,RO,RO 
BNERO,loop 
continue: 

• Note that all four instructions in each fetch block are valid and none have R31 as a destination. (b) 
For convenience of implementation, the mapper requires that all virtual registers (architected and 
PAL shadow, excluding R31 and F31) be used a~ destinations before they are used as sources. In 
other words, the hardware does not create the "initial mapping" of virtual-to-physical registers; it 
relies on software. Since there is no hardware-created initial mapping, a virtual register cannot be 
used as a source operand before it is mapped. An example initial mapping sequence is as follows: 

• ADDQ R31,R31,RO 
ADDQ R31,R31,Rl 
ADDQ·R31,R31,R2 ·· 
ADDQ R31,R31,R3 

ADDQ R31,R31,R4 
ADDQ R31,R31,R5 
ADDQ R31,R31,R6 
ADDQ R31,R31,R7 

ADDQ R31,R31,R28 
ADDQ R31,R31,R29 
ADDQ R31,R31,R.30 
ADDQ R31,R3 l ,Rl ; note that R31 need not be initialized as a destination 

ADDF F31,F31,FO 
ADDF F31,F31,Fl 

Digital Confidential Do Not Copy 144 



ADDFF31,F31~ 
ADDFF31,F31,F3 

ADDFF31,F31,F4 
ADDF F31,F31,F5 
ADDFF31,F31,F6 
ADDF F31,F31,F7 

ADDF F31,F31,F28 
ADDF F31,F31,F29 
ADDF F31,F31,F30 
ADDF F31,F31,Fl; note that R31 need not be initialized as a destination 

• Note that this sequence can be used to initialize the retirator staus bits as well. 

12.2 Restriction: No Multiple Writers to IPRs in Same Scoreboard Group 
• Only one explicit writer (HW _MTPR) to IPRs that are in the same group can appear in the same fetch 

block ( octaword-aligned octaword). Multiple explicit writers to IPRs that are NOT in the same 
scoreboard group can appear. If this restriction is violated the IPR readers might not see the in-order 
state. Also, the IPR might ultimately end up with a bad value. This is for convenience of 
implementation. 

12.3 Restriction: (removed) 

12.4 Restriction: No Writers and Readers to IPRs in Same Scoreboard 
Group 
• Within one fetch block ( octaword-aligned octaword), an implicit or explicit reader of an IPR in a 

particular Scoreboard Group an not follow an explicit writer (HW _MTPR) to an IPR in that 
scoreboard group. This is for convenience of implementation. Note that implicit readers include all 
memory operations and JSR/HW _RET. 

12.5 Restriction: PAL shadow enables 
• Once pal shadows are enabled (via I_CTL<SDE>), tlte NT-mode (I_CTL<NT_MODE>)-.state must 

not be changed. Enabling PAL shadows will allow the assignment of 8 physical registers to the 8 
additional general-purpose register specifier as determined by I_CTL<NT_MODE>. Subsequent 
changing of I_ CTL<NT _MODE> will assign 8 additional physical registers to the specifiers in the 
new overlay range but will not deallocate the prior 8 registers. The net effect is that 8 physical 
register will be removed from the resource pool. 

12.6 Guideline: Avoid Consecutive read-modify-write-read-modify-write 
sequences to IPRs in the Same Scoreboard Group 
• The latency between the first write and the second read is determined by the retire latency of the IPR. 

For convenience of implementation, the latency between when the read issues and the final write 
issues depends on the runtime contents of the issue queue. It is somewhere between 4 and 9 cycles 
even if there is no data dependency between the read and write. 

Digital Confidential Do Not Copy 145 



12.7 Restriction: Replay trap and interrupt code sequence and STFllTOF 
• On an MBOX replay trap, the EV6 lbox guarantees that the refetched load or store that caused the 

trap will issue before any newer loads or stores. For loads and integer stores this is a consequence of 
the natural operation of the issue queue. The refetched instruction enter the age-prioritized queue 
ahead of newer loads and stores will not have any dependencies on dirty registers. Since there is no 
time-overhead for checking these register dependencies (i.e. it is known upon enqueueing that there 
are no dirty registers) The queue will issue it in priority order. For floating stores, there is normally 
some overhead associated with checking the floating point source register dirty status so the store 
would normally wait before issuing. This would have the undesired consequence of allowing newer 
loads and stores to issue out-of-order. A deadlock can occur if this out-of-order issue causes the 
floating store to continually replay trap. To avoid the deadlock, on a floating store replay trap, the 
source register dirty status is not checked (the source register is assumed to be clean because the store 
was issued before). 

• The hardware mechanism which keeps track of replayed floating stores and cancels the dirty register 
check requires some software restrictions to guarantee that it is applied appropriately to the replayed 
instruction and not to other floating stores. It operates by marking the position in the fetch block (low 
two bits of the PC) where the replay trap occurred and then canceling the floating point dirty source 
register check of the next valid instruction enqueued to the integer queue (integer instructions, all 
loads and stores, and ITOF) which has the same position in the fetch block (normally the replayed 
STF). If the PC is somehow diverted to a PAL flow, this hardware might inadvertently cancel the 
register check of some other S1F (or ITOF) instruction. Fortunately, there are a minimal number of 
reasons why the PC might be diverted during a replay trap. They are: 
Interrupts 
ITB Fill 
(others?) 

• In these PAL flows, a SlF or ITOF instruction in a given position in a fetch block must be preceded 
by a valid instruction that is issued out of the integer queue in the same position in an earlier fetch 
block. Acceptable instruction classes include loads, integer stores, integer operates that do not have 
R31 as a destination, branches. 

• Example: 
Bad_Interrupt_Flow _Entry: 
ADDQ R31,R31,RO 
STF Fa,(Rb) ; this STF might NOT undergo a dirty source register check and might give wrong 
results · 
ADDQ R31,R31,RO 
ADDQ R31,R31,RO 

Good_Interrupt_Flow _Entry: 
ADDQ R31,R31,RO; enables FP dirty source register check for {PC<l:O> == 00) 
ADDQ R31,R31,RO; enables FP dirty source register check for {PC<l:O> == 01) 
ADDQ R31,R31,RO; enables FP dirty source register check for (PC<l:O> == 10) 
ADDQ R31,R31,RO; enables FP dirty source register check for (PC<l:O> == 11) 

ADDQ R31,R31,RO 
STF Fa,(Rb) ; this STF will successfully undergo a dirty source register check 
ADDQ R31,R31,RO 
ADDQ R31,R31,RO 

Digital Confidential Do Not Copy 146 



12.B Restriction (removed) 

12.9 Restriction: PALmode I-Stream address ranges 
• PALmode<physical> I-Stream addresses must insure proper sign extension for the selected value of 

I_CTL<V A_ WIDE>. When I_CTL<VA_ WIDE> is clear, indicating 43-bit virtual address format, 
PALmode<physical> I-Stream addresses must sign extend address bits above bit 42 although physical 
address range is 44 bits. An illegal address can only be generated by a PALmode JSR-type instruction 
or a HW _RET instruction returning to a P ALmode address. 

12.10 Restriction: Duplicate IPR mode bits 
• Duplicate IPR mode bits l_CTL<VA_ WIDE> and VA_CTL<VA_ WIDE>, I_CTL<NT_MODE> and 

V A_CTL<NT _MODE> must be equal when executing in native( virtual) mode. 

12. 11 Guideline: /box IPR update synchronization · " . :~· 

• When updating any Ibox IPR, a return to native( virtual) mode should use the HW _RET instruction 
with associated ST ALL bit set to insure that the updated IPR value affects all instructions following 
the return path. The new IPR value takes effect only after the associated HW _MrPR instruction 
retires. 

12.12 Restriction: HW_MFPR EXC_ADDRllVA_FORM/EXC_SUM Usage 
• These three registers are sourced by non-renamed hardware registers that need to be available for 

· · subsequent traps. Hardware protects the values from overwrite by locking the registers, but only for a 
limited time. Their values can only be read reliably by a HW _MFPR within the first four instructions 
of a P ALflow AND prior to any taken branch in that P ALflow, whichever is earlier. After the 
delimiting instruction defined above retires, these registers are unlocked and may change due to new 
exception conditions. 

• If a second exception occurs before the registers are unlocked, it will be either delayed or forced to 
replay trap until the register has been unlocked. After being unlocked, a subsequent, new path 
exception condition will be allowed to reload the register and trap to PAL. Note that the CPU may 
complete execution of the first PAL flow, encountering the second exception condition before the 
delimiting instruction retires, hence the need for the locking mechanism to insure visibility of the 
initial register value. 

12.13 Restriction: DTB FILL flow collision 
' - . 

• Two DTB Fill flows might collide such that t.~e HW _MTPR's in the second fill could issue before all 
of the HW _MTPR's in the first flow retired. This can be prevented by putting appropriate software 
scoreboard barriers in the PAL flow. 

12.14 Restriction: HW_RET 
• No hw _ret in the first fetch block of PAL routine. The HW _RET will be mispredicted and the 

JSR/RETURN stack might lose its synchronization. 

12.15 Restriction: (REMOVED) 

12.16 Restriction: JSR-BAD VA 
• A JSR memory format instruction which generates a bad VA (IACV) trap requires PAL assistance to 

determine the correct exception address. If the EXC_SUM<BAD_IVA> bit is set, bits <63,1> of the 
exception address are valid in the VA IPR and not the EXC_ADDR as usual. The PALmode bit, 

Digital Confidential Do Not Copy 147 



Apru iU, i,~o 

however, is always located in EXC_ADDR<O> and must be combined, if necessary, by PALcode to 
detennine the full exception address. 

12.17 Restriction: MTPR to DTB_ TAGO/DTB_PTEO/DTB_ TAG1/DTB_PTE1 
• These four writes must be executed atomically, i.e. either all four must issue and retire or none of 

them may issue and retire. 

12.18 Restriction: No FP OPERATES or FP CONDITIONAL BRANCHES in 
same fetch block as MTPR 
• For convenience of implementation, no floating point operate instructions or FP conditional branches 

in the same fetch block as any move-to-processor register instructions. This inludes 
ADDF/MULF/DIVF/FBxx but does not include LDF/STF or ITOF/FfOI. 

12.19 Restriction: HW_RET/STALL after updating the FPCR via MT~FPCR· 
in PALmode 
• FPCR updating happens in hardware based on the retire of nontrapping version of MT _FPCR (in 

PALcode). Use a HW _RET/STALL after the nontrapping MT_FPCR to achieve minimum latency (4 
cycles) between the retiring of the MT_FPCR and the first FLOP that uses the updated FPCR. 

12.20 Guideline: l_CTL SBE Stream Buffer Enable 
• The I_ CTL(SBE) bits should not be enabled when running with the !cache disabled to avoid 

potentially long fill delays. When the !cache is disabled, the only method of supplying, instructions is · 
via a stream hit. If the fill is returned in non-sequential wrap order, the stream will continue fetching 
through the entire page while waiting for a hit. Normally the data will be found in the cache. 

12.21 Restriction: HW_RET/STALL after MT ASNO/ASN1 
• There must be a scoreboard bit -> register dependency chain to prevent MT ASNO or MT ASNl from 

issuing while ANY of scoreboard bits <7:4> are set. A code sequence which accomplishes this: 

; assume Ra holds value to write to ASNO/ASN1 
HW _MFPR IPR_ V A,SCBD<7 ,6,5,4> ,RO 
XOR RO,RO,RO 
BIS RO,R9,R9 
BIS R31,R31,R31 
HW _MTPR R9,ASNO,SCBD<4>
HW _MTPR R9,ASN1,SCBik7> 

• This sequence guarantees, through the register dependency on RO, that neither HW _MTPR are issued 
before scoreboard bits <7:4> are cleared. In addition, there must be a HW _RET/STALL after a MT 
ASNO/MT ASNl pair. Finally, these two writes must be executed atomically, i.e. either both must 
issue and retire or neither may issue and retire. 

12.22 Restriction: HW_RET/STALL after MT ISO/IS1 
• There must be a scoreboard bit -> register dependency chain to prevent MT ISO or MT IS 1 from 

issuing while ANY of scoreboard bits <7:4> are set. A code sequence which accomplishes this: 

HW _MFPR IPR_ VA,SCBD<7 ,6,5,4>,RO 
XOR RO,RO,RO 
BIS RO,R9,R9 

Digital Confidential Do Not Copy 148 



BIS R31,R31,R31 
HW _MTPR R9,ISO,SCBD<6> 
HW _MTPR R9,IS1,SCBD<7> 

• This sequence guarantees, through the register dependency on RO, that neither HW _MTPR are issued 
before There must be a HW _RET/ST ALL after a MT ISO/MT IS 1 pair. Also, these two writes must be 
executed atomically, i.e. either both must issue and retire or neither may issue and retire. 

12.23 Restriction: HW_STIP/CONDITIONAL does not "clear" the lock flag 
• A HW _ST IP/CONDITIONAL will not "clear" the lock flag such that a successive store-conditional 

(either STx_C or HW _ST/C) might succeed even in the absence of a load-locked instruction. In EV6 
a store-conditional is forced to fail if there is an intervening memory operation between the store
conditional and its address-matching LDxL. The memory operations are: 

LDL/Q/F/G/S{f 
STL/Q/F/G/Sff 
LDQ_U (notto R31) 
STQ_U 
Absent from this list are HW _LD (any type), HW _ST (any type), ECB, and WH64. Their absence implies 
that they will NOT force a subsequent store-conditional instruction to fail. P ALcode MUST insert a 
memory operation from the above list after a HW _ST/CONDmONAL in order to force a future store
conditional to fail if it was not preceded by a load-locked: 
HW_LD/L 
xxx 
HW _ST/C ->RO 
Bxx RO, try _again 
STQ /*force next ST/C to fail if no preceding LDxL *I 
HW_RET 

12.24 Restriction: HW_RET/STALL after MT ITB_IA, ITB_IAP, IC_FLUSH 
• There must be a HW _RET/STALL after a MT ITB_IA, ITB_IAP or IC_FLUSH. The !cache flush 

associated with these instructions will not occur until the HW _RET stall occurs and all outstanding !
stream fetches have been completed. 

12.25 Restriction: MT ITB_IA after Reset 
c An MT ITB_IA is required·in the reset P.ALcode to initialize ihe·ITB. It is also required that ·· 

P ALcode not be exited, even via a mispredicted path until this MT ITB _IA has retired. P ALmode can 
change temporarily after fetching a HW _RET, regardless of the ST ALL qualifier, down a 
mispredicted path leading to use of the ITB before it is actually initialized. 

• Unexpected instruction fetch and execution can occur following misprediction of any memory format 
Control instruction (JMP ,JSR,RET ,JSR_CO, or HW _JMP ,HW _JSR,HW _RET, HW _JSR_CO 
regardless of the ST ALL qualifier), or after any mispredicted conditional branch instruction. If the 
unexpected instruction flow contains a HW _RET instruction, P ALmode may be exited prematurely. 

• One way to insure that P ALmode is not exited is to place the MT ITB _IA at least 80 instructions 
before any possible HW _RET instruction can be encountered via any fetch path. Since memory 
format Control instructions can mispredict to any cache location, they should also be avoided within 
these 80 instructions. 

12.26 Guideline: Conditional branches in PALcode 
• To avoid pollution of the branch predictors and improve overall branch prediction accuracy, 

conditional branch instructions in P ALcode will be predicted not taken. The only exception to this 

Digital Confidential Do Not Copy 149 



rule are conditional branches within the first cache fetch (up to four instructions) of all pal flows 
except call_pal flows. It is advisable that conditional branches be avoided in this window. 

12.27 Restriction: Reset of 'Force-Fail Lock Flag' State in PALcode 
• A virtual mode load or store is required in PAL code before the execution of any load-locked or store

conditional instructions. The virtual-mode load or store may not be a HW _LD, HW _ST, LDx_L, 
ECB, or WH64. 

1. 

Digital Confidential Do Not Copy 150 


