
Compaq Confidential

21464 Internal Design
Specification

Available Internally from: HTTP://segsrv.hlo.dec.com/arana

This document specifies the internal design for the Alpha microprocessor
that is also known as EVS and Arana.

Revision/Update Information:

COMPAQ .. '

Revision 1. lk, January, 2001

Compaq Computer Corporation
Shrewsbury, Massachusetts

Compaq Confidential

January 2001

The information in this publication is subject to change without notice.

COMPAQ COMPUIBR CORPORJUION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED "AS IS" AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compaq Computer Corporation 2001.
All rights reserved. Printed in the U.S.A.
COMPAQ, the Compaq logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa
nies.

Compaq Confidential
5 January 2001 ·-- Subject to Change

Contents

Preface

1 Introduction

1.1 Terminology and Conventions

2 Architecture Overview

2.1
2.1.1
2.1.2
2.1.3
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.4.1
2.7.4.2
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.9
2.10
2.10.1
2.10.1.1
2.10.2
2.10.2.1
2.11
2.11.1
2.11.1.1
2.11.1.2
2.11.2
2.11.2.1
2.11.2.2
2.11.2.3
2.11.2.4

New Features
Processor Features
Memory Features
Multiprocessor Features .. .

Microarchitecture Diagram
Simultaneous Multithreading (SMT) .. .
Instruction Unit .. .

Instruction Fetch Unit - the lbox
Dependency Mapper Unit - the Pbox
Instruction Issue and Retire Unit - the Qbox

Execution Unit
Register File
Integer Instruction Execution Unit - the Ebox
Floating-Point Instruction Execution Unit - the Fbox

Functional Units .. .
Memory Controller Unit - the Mbox .. .
External Interface .. .

Scache Controller - the Cbox
Router - the Rbox
Rambus Interface - the Zbox
Cache Coherency Protocol

Introduction to the Protocol .. .
Structures that Maintain the Cache Coherence

Pipeline Organization
Pipeline Diagram
Conversion Between Negative Integer and Alphabet
Basic Pipeline Stage Conversion Equations
Conversion Table

Instruction Execution Pipelines and Latency
Instruction Issue and Retire Rules

Issue Rules
Bidding Rules .. .

Retirement Rules
Completion Rules

Implementation-Specific Architecture Features
New Instructions .. .

Thread Synchronization .. .
Short Vector SIMD (Single Instruction Stream, Multiple Data Streams)

CMOV Instruction Processing
Integer CMOV Specification

Native CMOV .. .
Floating-Point FCMOVxx Specification
Native FCMOV

Compaq Confidential
5 Jiuwary2001 -· Subject To Change

1-1

2-1
2-1
2-3
2-3
2-4
2-5
2-7
2-7
2-8
2-9

2-11
2-11
2-11
2-14
2-15
2-16
2-17
2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-20
2-21
2-21
2-21
2-22
2-27
2-27
2-27
2-29
2-29
2-29
2-29
2-29
2-30
2-32
2-32
2-33
2-33
2-34

iii

2.11.2.5 Implementation . 2-34
2.11.2.5.1 Native CMOV. 2-34
2.11.2.5.2 Legacy CMOV . 2-34
2.11.3 Mapper Alignment . 2-35
2.12 Interrupts. 2-35
2.12.1 IPR Access Mechanism . 2-36
2.12.1.1 HW_MFPR and HW_MTPR PALcode Instructions......................... 2-36
2.13
2.14

AMASK and IMPLVER Instruction Processing and Values
Performance Monitoring

2-36
2-36

3 Instruction Fetch Unit- the lbox

iv

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.3.1.1
3.4.3.1.2
3.4.3.1.3
3.4.3.2
3.4.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.4.1
3.5.4.1.1
3.5.4.1.2
3.5.4.2
3.5.4.2.1
3.5.4.2.2

3.5.4.2.4
3.6
3.6.1
3.6.1.1
3.6.1.1.1
3.6.1.1.2
3.6.1.1.3
3.6.1.1.4
3.6.1.1.5
3.6.1.2
3.6.1.2.1
3.6.1.2.2
3.6.1.3
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.7.2.1
3.7.2.2

Features
Major Sections
Forward Path Pipeline
Index Unit .. .

Fetch TPU Chooser
Line Predictor .. .
Thread Index Latches

(Re)Starting/Resuming the Pipe
Exceptions
Misprediction - PC Cale
Thread Resume - Line Predictor (two indexes)

Other Index Latch Tracking Functions
Thread Training Latches

Instruction Processing Unit
lcache Data Array .. .
lcache Tag Array
Store-Sets Based Memory Dependence Predictor
Collapsing Buffer

Instruction Buffer .. .
Data Path .. .
Control Path .. .

Collapser .. .
Data Path .. .
Start/End Buffer
f\.l u1 c+""' ... + r"'""'l"'-111"""+:,.,.n
1'1VVV v .. a11. '--IQl"'UIQl.IVll •••

CMov
Control Flow Prediction Unit .. .

Conditional Branch Prediction
Branch Prediction Components

Branch History (LGHist)
Prediction Tables .. .
Bank Selection .. .
Unshuffle Network .. .

Backend logic and checkpoint information
Branch Training

Predictor Training
Hysteresis Training .. .

PAL mode
Jump Target Predictor
Return Address Stack

PC UnR .. .
PC Calculation
PC Compare .. .

Index Mispredicts
lcache HR Determination .. .

Compaq Confidential

3-1
3-2
3-4
3-4
3-4
3-5
3-7
3-7
3-7
3-8
3-9
3-9

3-10
3-11
3-11
3-12
3-14
3-16
3-16
3-16
3-17
3-18
3-18
3-18
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-22
3-22
3-23
3-24
3-24
3-25
3-26
3-26
3-27
3-28
3-28
3-32
3-33
3-33

5 Jam1c1ry 2001 ... Subject To Cfumge

3.7.2.3
3.7.2.4
3.7.2.5
3.8
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.3.1
3.8.1.3.2
3.8.1.3.3
3.8.2
3.8.2.1
3.8.2.1.1
3.8.2.1.2
3.8.2.1.3
3.8.2.1.4
3.8.2.2
3.8.2.2.1
3.8.2.2.2
3.8.2.2.3
3.8.2.2.4
3.8.2.2.5
3.8.2.3
3.8.2.3.1
3.8.2.3.2
3.8.2.3.3
3.9
3.9.1
3.9.1.1
3.9.1.1.1
3.9.1.1.2
3.9.1.1.3
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10.5

lcache Access Violation: .. .
lcache Way Mispredict Determination:
Instruction Cache Fill Request:

Fill Unit
Instruction Translation Buffer .. .

Architecture .. .
I PRs That Affect the ITB .. .
ITB Operations

Fills .. .
Reads .. .
Invalidates

Instruction Fill Unit .. .
Demand Misses .. .

Demand case: simple .. .
Demand case: index and way match of active request: "piggybacking"
Demand case: flip_way active
Demand case: capacity stall

Prefetching .. .
Prefetch case: simple .. .
Prefetch cases: tag match or page boundary crossing
Prefetch case: Index CAM match
Pref etch case: alternate TPU demand during pref etching
Prefetch cases: badpath indication during prefetching

Fill
Predecode Bit Generation
Predecode Bits for Control Flow Instructions
Fill Data Routing .. .

Checkpoint Unit .. .
Checkpoint Table Components .. .

Checkpoint Table Functions
Restarting on an exception
Restoring Predictor States
Predictor Training

lbox Interfaces
Pbox Interface
Qbox Interface
Ebox Interface
Mbox Interface
Cbox Interface

4 Dependency Mapper Unit - the Pbox

4.1
4.2
4.2.1
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2
4.3.2.1
4.3.2.2
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3

Dependency Analysis: General Concepts
INum Space

INum Age Comparison
Component Details

INum Mapper (IMP)
Design considerations .. .
Design Architecture .. .
Map Predecode Bits from the I box

Physical Register Map (PMP)
Design Considerations
Design Architecture .. .

INum Allocator (INA) .. .
Design Considerations
Design Architecture .. .
Map Thread Chooser (MTC)

Compaq Confidential
5 January 2001 ···Subject To Change

3-34
3-35
3-35
3-36
3-36
3-37
3-40
3-40
3-40
3-41
3-41
3-41
3-42
3-43
3-44
3-44
3-45
3-45
3-46
3-47
3-47
3-47
3-48
3-48
3-49
3-53
3-55
3-55
3-56
3-59
3-60
3-61
3-62
3-62
3-62
3-62
3-62
3-62
3-62

4-2
4-4
4-5
4-7
4-7
4-7
4-7
4-9

4-10
4-10
4-11
4-13
4-13
4-13
4-14

v

4.3.4
4.3.4.1
4.3.4.2
4.3.5
4.3.5.1
4.3.5.2
4.3.5.3
4.3.5.4
4.3.5.5
4.3.5.6
4.3.5.7
4.3.5.8
4.3.5.9
4.3.6
4.3.6.1
4.3.6.2
4.3.7
4.3.7.1
4.3.7.2
4.3.8
4.3.8.1
4.3.8.2
4.3.9
4.3.9.1
4.3.9.2
4.3.10
4.3.10.1
4.3.10.2
4.3.11
4.3.11.1
4.3.11.2

Mapper Exception Logic (MEX) .. .
Design Considerations
Design Architecture .. .

Memory Queue Allocation Unit (MQA)
Allocation
Background and Terminology .. .
Basic Allocation Loop .. .
Reset. .. .
Deallocation
Kills .. .
Retires .. .
Quiesce
Merge Buffer Purging .. .

Instruction Decoder (IDC) .. .
Design Considerations
Design Architecture .. .

Load/Store Serial Number Allocator (LSN)
Design Considerations
Design Architecture .. .

Post-Map Skid Buffer (PSB)
Design Considerations
Design Architecture .. .

RC/RS Interrupt Flag Widget (RIF)
Design Considerations
Design Architecture .. .

Bid/Grant Exception Logic (BEL)
Design Considerations
Design Architecture .. .

Retire/Kill Unit (RKU) .. .
Design Considerations
Design Architecture .. .

4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-24
4-25
4-25
4-25

5 Instruction Issue and Retire Unit - the Qbox

vi

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.2.2.1
5.2.2.2
5.2.2.2.1
5.2.2.3
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.4
5.2.4.1
5.2.4.2
5.2.5
5.2.5.1
5.2.5.2
5.2.5.3
5.2.6
5.2.7

Scheduling Decisions - General Concepts
Component Details

Instruction Queue (IQ) Generalities
Design Considerations
Design Architecture .. .

Queue Entry Table (QET) and Reallocation Logic (RAL)
Design Considerations
Design Architecture .. .

Algorithm .. .
Physical Organization .. .

Dependency Arrays (DAs) .. .
Design Considerations
Design Architecture .. .
Physical Organization .. .

Picker Arrays (PKs)
Design Considerations
Design Architecture .. .

Bid Enable Logic (BID)
Design Considerations
Design Architecture .. .
Physical Organization .. .

FPCR Control Unit (FCR)
Profile-Me Data Collection (PRM) .. .

Compaq Confidential

5-2
5-3
5-3
5-3
5-3
5-9
5-9
5-9
5-9

5-11
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-14
5-14

5 Janu~1ry 2001 ··· Subject To Change

5.2.8
5.2.8.1
5.2.8.2
5.2.9
5.2.9.1
5.2.9.2
5.2.10
5.2.10.1
5.2.10.2
5.2.11
5.2.11.1
5.2.11.2
5.2.12
5.2.12.1
5.2.12.2
5.2.13
5.2.13.1
5.2.13.2
5.2.14
5.2.14.1
5.2.14.2
5.2.15
5.2.15.1
5.2.15.2
5.2.16
5.2.16.1
5.2.16.2
5.2.16.2.1
5.2.16.2.2
5.2.16.2.3
5.2.16.2.4
5.2.17
5.2.17.1
5.2.17.2
5.2.18
5.2.18.1
5.2.18.2

Source Register Number Arrays (SRNs)
Design Considerations
Design Architecture .. .

Destination Register Number Array (ORN)
Design Considerations
Design Architecture .. .

Load/Store Number High-Water Marker (HWM)
Design Considerations
Design Architecture .. .

Load/Poison Re-Arm Widget (LPR)
Design Considerations
Design Architecture .. .

Post-Issue Logic (PIL)
Design Considerations
Design Architecture .. .

Oldest CSR Selector (OCS)
Design Considerations
Design Architecture .. .

Queue Chunk Allocator/Deallocator (ALC)
Design Considerations
Design Architecture .. .

in-Flight Table (IFx)
Design Considerations
Design Architecture .. .

Completion Unit (CMP) .. .
Design Considerations
Design Architecture .. .

Completion
Kills .. · ·········
Retirement
Mbox Interface .. .

Payload Array (PAY) .. .
Design Considerations
Design Architecture .. .

Exception Kill Logic (EKC) .. .
Design Considerations
Design Architecture .. .

6 Integer Execution Unit - the Ebox

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.3
6.4
6.4.1
6.4.2

Major Components
Datapath .. .
Timing

Integer Clusters .. .
Adder .. .
Shifter .. .
Logic Box
Register File Operand Interface .. .
Virtual Address Generator .. .
Load Data Interface
Multimedia Interface
Global Control
Store Data Interface

Operand Steering .. .
Register Caches

Writing the Rcache .. .
Reading the Rcache

Compaq Confidential
5 January 2001 -- Subject To Change

5-15
5-15
5-15
5-15
5-15
5-15
5-16
5-16
5-16
5-18
5-18
5-19
5-20
5-20
5-20
5-21
5-21
5-21
5-22
5-22
5-22
5-23
5-23
5-23
5-24
5-24
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-27
5-27
5-27

6-1
6-2
6-3
6-4
6-6
6-7
6-8
6-8
6-9

6-10
6-10
6-11
6-11
6-12
6-12
6-16
6-17

vii

6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.6.1
6.5.6.2
6.5.6.3
6.5.6.4
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.6
6.7
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.9
6.10
6.11
6.12

Multimedia Unit .. .
Inputs and Outputs .. .
Signal Nomenclature .. .
Timing ... ·
Instruction Decode/Control Section
MVI Section
ALU ···························

TADD, TSUB PADD, PSUB, CMPWGE, MIN, MAX Instructions
TABSERR Instruction .. .
TSQERR Instruction
Min/Max Instruction .. .

Multiplier Array
Count Logic
Compare Word, Saturation, and the 21264 Min Max
MinMax Logic .. .
Pack, Unpack, Permute Byte .. .
Shifter .. .
Delay .. ···.···············
Integer Multiplier.

Debug Features .. .
Testability Features
External Interfaces: lbox, Qbox, Pbox, Mbox, Register File, Fbox

lbox .. · · .. ·
Qbox · · · · · · · · · ·· · · · · · · · · · · ·· · · · · · · · · ·
Pbox
Mbox .. .
Register File
Fbox
Global .. .

IPRs
Exceptions .. .
Poisoned Data
Format Conversions .. .

7 Register File

7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4

Test Structures .. .
Timing
Read Timing
Write/Read Timing .. .

External Interfaces
Qbox to Register File Interface .. .
Ebox to Register File Interface
Fbox to Register File Interface
Global Register File Interface .. .

8 Floating-Point Execution Units - the Fbox

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

Major Sections
Interface Section

External Interface
Qbox Timing to Fbox .. .
Fbox Pipeline Timing .. .
Register File/Operand Bus .. .
Loads/Stores to/from Fbox .. .
Register Cache (F _RGC)

Compaq Confidential

6-18
6-18
6-18
6-18
6-19
6-19
6-20
6-21
6-21
6-21
6-21
6-22
6-24
6-25
6-25
6-26
6-26
6-27
6-27
6-29
6-30
6-30
6-30
6-31
6-32
6-32
6-33
6-33
6-33
6-34
6-34
6-35
6-36

7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4

8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-6

viii 5 J(1nu(1ry 2001 -· Subject To Change

8.2.7 The Operand Steering Unit (F _OSU)....................................... 8-8
8.2.8 Interface Control (F _INT)...................... 8-10
8.2.9 Divide and SQRT - Qbox interface . 8-10
8.2.1 O Fbox Exceptions. 8-11
8.3 Fbox Floating-Point Control Register (FPCR)........ 8-14
8.3.1 FPCR Format... 8-14
8.4 Fbox Multiplier Unit - F _MUL and F _GML . 8-16
8.4.1 FMUL Operation. 8-16
8.5 FboxAdd Pipeline... 8-18
8.6 Fbox Add Pipe1 - F _AP1 . 8-19
8.6.1 Operation . 8-21
8.6.1.0.1 Phase FOA. 8-21
8.6.1.0.2 Phase FOB . 8-22
8.6.1.0.3 Phase F1A...... 8-23
8.6.1.0.4 Phase F1 B. 8-23
8.6.1.0.5 Phase F2A. 8-25
8.6.1.0.6 Phase F2B . 8-26
8.7 Fbox Add Pipe2 - F _AP2 . 8-26
8.7.1 Cycle 1 Operation . 8-26
8.7.1.1 Fraction: . 8-26
8.7.1.2 Exponent.... 8-28
8.7.1.3 Control . 8-28
8.7.2 Cycle 2 Operation . 8-29
8.7.2.1 Fraction.. 8-29
8.7.2.2 ExponenVControl . 8-29
8.7.3 Cycle 3 Operation . 8-30
8.7.3.1 Fraction.. 8-30
8.7 .3.2 ExponenVControl . 8-30
8.8 Fbox Short Pipe - F _SHP . 8-31
8.8.1 Short Instructions . 8-32
8.8.1.1 CPYS, CPYSN, CPYSE . 8-32
8.8.1.2 FCMOVEQ, FCMOVGE, FCMOVGT, FCMOVLE, FCMOVL T, FCMOVNE.. 8-32
8.8.2 Unusual Input Operands . 8-32
8.8.2.1 Unusual Cases . 8-33
8.8.2.2 IEEE Data . 8-34
8.8.2.2.1 ADDS, ADDT.. 8-34
8.8.2.2.2 DIVS, DIVT . 8-34
8.8.2.2.3 MULS, MUL T. 8-34
8.8.2.2.4 SORTS, SQRTT . 8-35
8.8.2.2.5 SUBS, SUBT . 8-35
8.8.3 Floating-Point Control Register (FPCR). 8-35
8.8.3.1 Reading the FPCR . 8-36
8.8.3.2 Dynamic Rounding . 8-36
8.8.3.3 Exceptions . 8-37
8.9 Fbox Divider - F _DIV . 8-39
8.9.1 Divider Description.... 8-39
8.9.2 The Divider in Detail. 8-39
8.9.3 Over-Redundant Digits to Binary and Rounding . 8-41
8.1 O Fbox Square-Root Unit - F _SQR . 8-44
8.11 Fbox Graphics Pipeline.... 8-45
8.11.1 Paired SP Floating-point Operate Instruction Format . 8-46
8.11.2 Register and Memory Formats................... 8-46
8.11.3 Rounding Modes . 8-46
8.11.4 Exceptions........... 8-46
8.11.5 Paired Single-Precision Instructions . 8-47
8.11.5.1 Graphics Add Pipeline: F_GAD....................................... 8-50
8.11.5.2 Fraction Datapath. 8-51
8.11.5.2.1 OP _MUX . 8-51
8.11.5.2.2 FTA, FTB....... 8-51

Compaq Confidential
5 January 2001 ··· Subject To Change ix

' 8.11.5.2.3 FGT . 8-52
8.11.5.2.4 LXD and EXP PRED . 8-52
8.11.5.2.5 LXS and LXE . 8-52
8.11.5.2.6 Fl1/Fl2 MUX and the LEFT/LR Shifters.............................. 8-52
8.11.5.2.7 RND CSA and ADDER . 8-53
8.11.5.3 Exponent Data Path . 8-54
8.11.5.3.1 EDIFF ADDER. 8-54
8.11.5.3.2 EDIFF DETECT. 8-54
8.11.5.3.3 ER MUX.............. 8-54
8.11.5.3.4 EXP_RES_ADD.. 8-54
8.12 G_AD Control . 8-55
8.12 .1 Fraction Data Path . 8-55
8.13 Sticky Bit Calculation. 8-56

9 Memory Instruction Execution Unit - the Mbox

x

9.1
9.1.1
9.1.2
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.10.1
9.10.2
9.10.3
9.10.4
9.10.5
9.10.6
9.10.7
9.10.8
9.10.9
9.10.10
9.11
9.11.1
9.12
9.12.1
9.12.2
9.12.2.1
9.12.2.2
9.12.3
9.12.4
9.12.5
9.12.6
9.12.6.1
9.12.7
9.12.8
9.12.9

Major Inputs & Outputs .. .
Inputs .. .
Outputs

Dcache .. .
Dtags .. .
Load Queue
Merge Buffer .. .
Pre-MAF
Store Queue (SQA and SQD)
Translation Buffers
Back End Bus
Operations .. .

Read Requests .. .
Prefetches .. .
Write Requests
Retries
Dcache Misses
Load Locked/Store Cond~ional .. .
Traps .. .
Invalidates/Probes .. .
Memory Barriers .. .
Multi-threading

Interfaces
Pipeline Legend .. .

Data address Translation buffer (DTB) .. .
Timing ... ·····················
What Data are Com pared on a DTB Lookup?

The TPU Group
Granularity Hints .. .

64K Pages .. .
Hit Determination
Returned Status .. .
Effects of a DTB Miss .. .

Speculative and Duplicate DTB entries
Data Storage in the PTE
IPRs That Affect the Contents or Behavior of the DTB
Superpages

9.12.10
9.12.10.1
9.12.10.2
9.12.11

Possible Support for Generic Superpages
Page Table Array(PTA) Implementation
Virtual Address Array(VAA) Implementation

Replacement Policy

Compaq Confidentia I

9-2
9-2
9-2
9-2
9-3
9-3
9-4
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-7
9-8
9-8
9-9

9-10
9-10
9-10
9-10
9-10
9-11
9-12
9-13
9-14
9-14
9-15
9-15
9-16
9-17
9-17
9-18
9-18
9-20
9-21
9-21
9-21
9-21

5 January 2001 -· Subject To Change

9.12.12
9.12.13
9.12.14
9.12.15
9.13
9.13.1
9.13.2
9.13.3
9.13.4
9.13.5
9.13.6
9.14
9.14.1
9.14.2
9.14.2.1
9.14.3
9.14.4
9.14.5
9.14.6
9.14.7
9.14.8
9.14.9
9.14.10
9.14.11
9.14.12
9.14.13
9.14.14
9.14.15
9.15
9.15.1
9.15.2
9.15.3
9.15.4
9.15.5
9.15.6
9.15.7
9.15.8
9.15.8.1

DTB Size
ITB Usage .. .
Reset and Testability .. .
Issues .. .

Store Logic
Overview
Store Issue Flow
Load Issue Flow .. .
Store Copy-Out Flow .. .
Block Allocate Flow (TBD) .. .
Things Not Done

Merge Buffer .. .
Overview
Merge Buffer Allocation .. .

Boundary Case .. :
Merge Buffer Writes to Dcache .. .
Scache Writes
Probe handling in the Merge Buffer
Line fill and Merge Buffer
10 Stores
Store Conditional Support .. .
MB and WMB Processing .. .
MAF request
Cache Movement ops (WH64, Evict)
Merge Buffer States
Data Array .. .
Address Array
Control Section

Load Queue
Load Queue Allocation
(Age) Young Vector generation .. .
Load Queue Limit and Block Allocation
Thread Choosing
Block Assignment
Load Issue .. .
Load Retries
Dcache Miss

MAF Pick .. .

9-21
9-21
9-22
9-22
9-23
9-23
9-25
9-25
9-25
9-26
9-26
9-26
9-26
9-27
9-27
9-28
9-29
9-31
9-31
9-32
9-32
9-33
9-33
9-33
9-33
9-34
9-35
9-35
9-35
9-36
9-36
9-36
9-37
9-37
9-37
9-37
9-38
9-38

9.15.8.2 Load Queue Pick . 9-38
9.15.9 Scache Line Miss.. 9-38
9.15.10 Load Queue retry- Bank Conflict.. 9-39
9.15.11 Retry at retirement... 9-39
9.15.12 Retry Block... 9-39
9.15.12.1 Pick Oldest Retry . 9-39
9.15.12.2 Oldest and Next Oldest Retry Chooser. 9-39
9.15.12.3 Thread Chooser . 9-39
9.15.13 Prefetches . 9-40
9.16 Load Traps . 9-40
9.16.1 DTB trap... 9-40
9.16.1.1 Load/store Order Trap . 9-40
9.16.1.2 lnval Trap (Traps Due to Probe-invalidates). 9-40
9.16.1.3 MGB Trap (Traps Due To Merge Buffer Dispatches On Back End Bus) 9-40
9.16.1.4 Trap Summary . 9-41
9.16.2 Trap Resolution... 9-41
9.16.3 Thread chooser . 9-41
9.16.4 Kill Bus . 9-42
9.16.5
9.17
9.17.1

Litmus 1 Handling .. .
Dcache Tags .. .

Front End Tags .. .

Compaq Confidential
5 January 2001 -~ Subject To Change

9-42
9-42
9-42

xi

9.17.1.1 Timing... 9-43
9.17.1.2 Tag Operations.. 9-43
9.17.2 Back End Tag... 9-43
9.17.2.0.1 Tag Operations . 9-43
9.17.3 IPRs.. 9-44
9.18 Dcache Array. 9-44
9.18.1 Read Dcache . 9-45
9.18.2 Write Dcache... 9-45
9.18.3 Bypass Fill Data... 9-45
9.18.4 Structure. 9-45
9.19 Pre-MAF . 9-45
9.19.1 Merge Buffer Requests . 9-47
9.19.2 D-stream Queue. 9-47
9.19.3 Killing Retries. 9-48
9.19.4 I-stream Queue . 9-48
9.20 Mbox Back End Bus . 9-48
9.21 Internal Processor Registers. 9-48
9.21.1 Implicitly Written IPRs . 9-49

10 Internal Ring Bus

11 Second-Level Cache and Controller (Cbox)

11.1
11.2
11.3
11.3.1
11.3.2
11.3.2.1

Cbox Overview .. .
Sbox Overview .. .
Scache Control - the CS Partition

11.3.2.2
11.3.2.2.1
11.3.2.2.2
11.3.2.2.3
11.3.2.3
11.3.2.3.1
11.3.2.3.2
11.3.2.3.3
11.3.2.3.4
11.3.2.3.5
11.3.2.3.6
11.3.2.3.7
11.3.2.4
11.3.2.5
11.3.2.6
11.3.3
11.3.4
11.3.5
11.3.5.0.1
11.3.5.1
11.3.6
11.3.6.1
11.3.6.2
11.3.6.3
11.3.6.4
11.3.7
11.3.7.1

Overall Pipeline Flow .. .
Miss Address File-the MAF

Overview
Principle of Operation

Requests from the Core .. .
Fills/Responses from the System
Probes From Other Processors

MAF Pipeline Timing Diagram and Pipeline Overview
CZ, CO: MAF Arbitration Logic
C 1: MAF Bank Conflict Detection Logic I MAF CAM I MAF RD
Exceptions
C1: MAF CAM /MAF RD .. .
c2: MAF logic .. .
C3-C6: Scache Tag Access
C7: Fill Pipe Control

Contents of MAF Entries .. .
MAF Allocation/Merge/Retry
MAF Deallocation

RSQ
Internal Probe Queue -the IPQ
Probe Queue - the PRQ .. .

Principle of Operation .. .
Probe Address File (MAF) Contents per Entry

Victim Address File - the VAF .. .
Victim Address File (VAF) Contents per Entry
Principle of Operation .. .
Secondary VAF Flows
Reserved VAF Entries

System Interface (SYS) .. .
Principle of Operation:

Compaq Confidential

11-1
11-3
11-3
11-4
11-6
11-6
11-7
11-7
11-7
11-7
11-7
11-8
11-8
11-9
11-9
11-9

11-10
11-10
11-10
11-12
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-18
11-19
11-20
11-20
11-20
11-21

xii 5 Jc1nuc1ry 2001 ···Subject To Change

11.3.7.1.1
11.3.7.1.2
11.3.8
11.3.8.1
11.3.9
11.3.9.1
11.3.10

Response FIFO Entry Fields
Request FIFO Entry Fields

System Request Queue (SRO) .. .
Principle of Operation .. .

Retry Queue (RTQ)
Principle of Operation .. .

TTQ
11.4 Fill Datapath - the CF Partition
11.4.1 FBE
11.4.2 VDB
11.4.3 FOB
11.4.4 DBM
11.4.5 RBI .. .
11.4.6 RBO
11.5 Scache Tag Array - the ST Partition
11.5.0.1 Principle of Operation .. .
11.5.0.2 Pipeline Stages
11.5.0.3 State Transition
11.5.0.4 Stale Fill Table
11.5.0.5 The 21464 Scache Least Recently Used (LRU) Scheme
11.5.0.6 Scache Tag ECG Code
11.6 Scache Data Array- the SG Partition .. .
11.7 Flows .. .
11. 7 .1 Overall Pipeline Flow .. .
11.7.1.1 Pipe Operation
11.7.1.2 Pipeline Timing Diagrams
11. 7 .1 .2.1 Scache Control Pipeline Stages
11. 7 .1 .3 Resource Conflict
11. 7 .1.4 Scache Bank Conflict Check
11.7.2 Fill and LRU Evict Flow .. .
11.7.2.1 Hiccup Flow
11.7.3 Probe Flow .. .
11.7.4 Mbox Request Flow
11. 7 .5 Victim Flow .. .
11.7.6 Retry Flow .. .
11.8 Special Support .. .
11.8.1 Input - Output
11.8.1.1 1/0 Request Ordering and Merging
11.8.1.2 1/0 System Request
11.8.1.3 Others .. .
11.8.1.4 1/0 Request Flow
11.8.1.5 1/0 Specific Structures/Operations
11.8.1.6 1/0 System Request Timing
11.8.1.7 1/0 Request Packet Format
11.8.1.7.1 Read 1/0 (RDIO) .. .
11.8.1.7.2 Write 1/0 (WRIO) .. .
11.8.2 Memory Barriers - the MB Instruction
11.8.3 Load-Locked Store-Conditional (LDx_L/STx_C) Instruction Processing
11.8.3.1 Lock Register for Each Thread
11.8.3.2 Stx_C Issuing .. .
11.8.4 Prefetch/Modify .. .
11.9 IPRs, CSRs, and Error Handling
11.9.1 Required IPRs and CSRs .. .
11.9.2 Error Handling
11.9.3 Cbox Deadlock Avoidance Mechanisms
11. 1 o Profiling Support
11.11 Stuff From Original Cbox Spec Not in Outline
11.11. 1 Scache Index (paddr<18:6>) Conflict.
11.11.2 ShrToDirty[STC]Req .. .

Compaq Confidential
5 January 2001 -~ Subject To Change

11-21
11-22
11-22
11-22
11-23
11-23
11-24
11-24
11-24
11-24
11-24
11-25
11-25
11-25
11-25
11-25
11-26
11-26
11-28
11-28
11-30
11-32
11-32
11-32
11-32
11-37
11-37
11-39
11-40
11-42
11-42
11-42
11-42
11-43
11-46
11-46
11-46
11-46
11-47
11-47
11-47
11-49
11-49
11-50
11-50
11-51
11-51
11-51
11-53
11-53
11-53
11-53
11-53
11-55
11-55
11-55
11-55
11-55
11-56

xiii

11.11.3
11.11.4
11.11.5
11.11.6
11.11.7

Scache Tag Launch Pipe
Probe Processing in Cbox .. .
Order Dependency .. .
Possible Race Conditions and Other Concerns
CBox mechanisms .. .

11-57
11-60
11-61
11-62
11-62

12 Cache Coherence Protocol Processing

xiv

12.1 Introduction to the Protocol
Structures that Maintain the Cache Coherence

Miss Address File (MAF)
System Request Queue (SRQ) .. .
Victim Buffer
Probe Queue (PRQ)
DIFT .. ·

Overview of the Cache Coherency Protocols
Comparison Between 21363 and 21464 Cache Coherence Protocols
Onchip Directory Cache .. .
Coherence Messages are Split into Three Types

Protocol Races .. .
Probe Processing .. .
Coherence State
MAF Address CAM
Scache Hit .. .
VAF Address CAM

12-1
12-2
12-3
12-3
12-3
12-4
12-5
12-5
12-5
12-6
12-6
12-7
12-8

12-10
12-11
12-14
12-17

12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3
12.3.1
12.3.2
12.3.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.12.1
12.12.1.1

Directory Responses . 12-18
System Command Opcodes . 12-20
Protocol Message Descriptions. 12-21

12.12.1.2
12.12.2
12.12.2.1
12.12.2.2
12.12.2.3
12.12.2.4
12.12.2.5
12.12.2.6
12.12.2.7
12.12.3
12.12.3.1

12.12.3.2
12.12.3.3
12.12.4
12.12.4.1
12.12.4.2
12.12.4.3
12.12.4.4
12.12.4.5
12.12.4.6
12.12.4.7
12.12.4.8
12.12.4.9
12.12.4.10
12.12.4.11
12.12.4.12

10 CHANNEL Message Details . 12-21
RdBytes, RdLWs, RdQWs, RdlPR..................................... 12-21
WrBytes, WrLWs, WrQWs, WrlPR..................................... 12-22

REQUEST CHANNEL Message Details . 12-24
ReadReq. 12-24
ReadSharedReq . 12-24
ReadModReq . 12-24
FetchReq . 12-24
SharedtoDirtyReq . 12-25
SharedtoDirtySTCReq . 12-25
lnvaltoDirtyReq . 12-25

FORWARD CHANNEL Message Details.................................... 12-26
ReadForward, ReadSharedForward, ReadModForward, FetchForward, lnvaltoDirtyFor-
ward ... 12-26
SharedlnvalSingle
SharedlnvalBroadcast.

RESPONSE CHANNEL Message Details
BlkShared
BlkExclusiveCnt .. .
Blklnval
BlklO
... Victim

VictimtoShared
VictimAckExcl .. .
VictimAckShared .. .
lnvaltoDirtyRespCnt
SharedtoDirtySuccessCnt
SharedtoDirtyProbCnt .. .
SharedtoDirtyFail

Compaq Confidential

12-26
12-27
12-27
12-27
12-27
12-27
12-28
12-29
12-30
12-30
12-30
12-30
12-31
12-31
12-31

5 Janw~ry 2001 -- Subject To Change

12.12.4.13
12.12.4.14
12.12.4.15
12.12.4.16
12.12.4.17
12.12.4.18
12.12.4.19
12.12.4.20
12.12.4.21
12.12.4.22
12.12.4.23
12.12.4.24
12.12.5
12.12.5.1

NXMResp
ERRResp
lnvalAck .. .
WrlOAck .. .
WrlONAck
VictimClean .. .
VictimCleantoShared .. .
ForwardAckExcl .. .
ForwardAckShared .. .
ForwardMiss
SharedtoDirtyComplete
SharedtoDirtyRelease .. .

SPECIAL CHANNEL Message Details
NZNOP

12.12.5.2 SpeciallnvalBroadcast
12.13 Protocol Race Descriptions
12. 13. 1 Early Forward Race
12.13.2 Late Forward Race .. .
12. 13.3 Dual Victim Race
12.13.4 Early lnvalAck Race
12. 13.5 Early lnvalShared Race .. .
12.13.6 Wrong SharedtoDirtySuccess Race
12. 13. 7 A Note on SharedtoDirties and their Resolution
12.13.8 Special Store-Conditional Support .. .
12. 13.9 Local CBOX Too Far Ahead .. .

13 Router Interface - the Rbox

13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.2
13.2.1
13.2.2
13.2.3
13.2.3.1
13.2.3.2
13.2.3.3
13.2.3.4
13.2.3.5
13.2.3.6
13.2.3.7
13.3
13.4
13.5
13.6
13.6.1
13.6.2
13.7

Protocol Messages
Messages on the IO_CHANNEL
Messages on the REQUEST_CHANNEL
Messages on the FORWARD_CHANNEL
Messages on the RESPONSE_CHANNEL
Messages on a SPECIAL_CHANNEL

Message Format Details .. .
Route Information .. .
Flow Control and Dealloc Information
Packet Formats .. .

IO_CHANNEL Formats .. .
REQUEST _CHANNEL Format
FORWARD_CHANNEL Format
RESPONSE_CHANNEL Formats
SPECIAL_CHANNEL Formats
INPUT 1/0 PORT HEADER TICK Formats
ROUTE FIELD Format

SharedlnvalBroadcast Details .. .
1/0 Port and 1/0 ASIC Assumptions .. .
Interrupt Delivery
DMA Device Assumptions .. .

1/0 DMA Access and Exclusive Caching
1/0 DMA Access via Timeouts

1/0 Space Ordering and Assumptions

14 Rambus Interface-the Zbox

14.1 The 5th Rambus Channel .. .

Compaq Confich:mtial
5 January 2001 ·- Subject To Change

12-31
12-32
12-32
12-32
12-32
12-33
12-33
12-33
12-33
12-34
12-34
12-34
12-34
12-34
12-35
12-36
12-36
12-36
12-37
12-37
12-37
12-38
12-38
12-38
12-39

13-1
13-2
13-3
13-3
13-4
13-5
13-6
13-6
13-7

13-11
13-12
13-13
13-13
13-14
13-15
13-15
13-16
13-16
13-17
13-18
13-19
13-20
13-20
13-21

14-1

xv

15 Miscellaneous Interfaces

15.1
15.1.1
15.1.2
15.1.3
15.1.3.1
15.1.3.2
15.1.3.3
15.1.4
15.1.4.1

The G 10 Port .. .
Signals
Transactions
Registers

GIO_CNFG .. .
GIO_ADDR .. .
GIO_DATA .. .

Use .. .
Differences In Implementation Between the 21364 and 21464

16 Internal Processor Registers

16.1 Internal Processor Register Summary .. .
16.1.1 PALcode Coding Rules .. .
16.1.2 IPR Issues: .. .
16.1.3 Reset .. .
16.2 lbox IPRs
16.2.1 Cycle Counter Register - CC[tpu]
16.2.2 DTB Single-Miss Return Address Register - DTBMS_RET _ADDR[tpu]
16.2.3 Exception Address Register- EXC_ADDR[tpu]
16.2.4 Exception Summary Register - EXC_SUM[tpu]
16.2.5 lbox CPU Configuration Register-CPU_CNFG
16.2.6 lbox TPU Configuration Register-TPU_CNFG
16.2.7 lbox Control Register- l_CTL[tpu]
16.2.8 lbox Process Mode Register - l_MODE[tpu]
16.2.9 lbox Process Context Register - l_PCTX[tpu]
16.2.10 lcache Status Register- IC_STAT[tpu]
16.2.11 lcache Flush Register- IC_FLUSH[tpu]
16.2.12 lcache Flush (ASM=O) Register - IC_FLUSH_ASM[tpu]
16.2.13 ITB Invalidate Multiple Register- ITB_IM[tpu]
16.2.14 ITB Invalidate Single Register - ITB_IS[tpu]
16.2.15 Instruction PTE Array Write Register - ITB_PTE[tpu]
16.2.16 Instruction Tag Array Write Register - ITB_ TAG[tpu]
16.2.17 Instruction Virtual Address Format Register- IVA_FORM[tpu]
16.2.18 PALcode Base Address Register - PAL_BASE[tpu]
16.2.19 PALcode Temp Registers- PAL_ TEMP1[tpu], PAL_ TEMP2[tpu]
16.3 Mbox IPRs .. .
16.3.1 Dcache Control Register- DC_CTL
16.3.2 Dcache Status Register - DC_STAT[tpu]
16.3.3 DTB Invalidate Multiple Register - DTB_IM[tpu]
16.3.4 DTB Invalidate Single Register - DTB_IS[tpu]
16.3.5 DTB PTE Array Write Registers - DTB_PTEO[tpu], DTB_PTE1 [tpu]
16.3.6 DTB Tag Array Write Registers - DTB_ TAGO[tpu], DTB_ TAG 1 [tpu]
16.3.7 Mbox Control Register - M_CTL[tpu]
16.3.8 Mbox Process Mode Register- M_MODE[tpu]
16.3.9 Mbox Process Context register - M_PCTX[tpu]
16.3.10 Mbox Memory Management Status Register - M_STAT[tpu]
16.3.11 Quiesce Timeout Register - QUIESCE_ TIMEOUT[tpu]
16.3.12 Virtual Address Register - VA[tpu]
16.3.13 Virtual Address Format Register - VA_FORM[tpu]
16.3.14 Watch Physical Address Register-WATCH_PHYS_ADDR[tpu]
16.4 Cbox IPRs .. .
16.4.1 Hardware Interrupt Clear Register- HW_INT_CLR[tpu]
16.5 Rbox IPRs .. .
16.5.1 Router Configuration1 (R,W) - R_CFG1

Compaq Confidential

15-1
15-1
15-2
15-2
15-2
15-3
15-3
15-4
15-6

16-1
16-5
16-5
16-5
16-6
16-6
16-7
16-8
16-9

16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-17
16-18
16-19
16-19
16-20
16-21
16-22
16-23
16-24
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
16-37
16-37
16-38
16-38

xvi 5 JcWUc1ry 2001 m Subject To Change

16.5.2
16.5.3
16.5.4
16.5.5
16.5.6
16.5.7
16.5.8
16.5.9
16.5.10
16.5.11
16.5.12
16.5.13
16.5.14
16.5.15
16.5.16
16.5.17
16.5.18
16.5.19

. 16.5.20

Router Configuration2 (R, W) - R_CFG2
Router Channel {N,S,E,W} Configuration1 (R,W) - R_n_CFG1
Router Channel {N,S,E,W} Configuration2 (R,W) - R_n_CFG2
Router Channel {N,S,E,W} Timer1 Configuration (R,W) - R_n_ T1CFG
Router Channel {N,S,E,W} Timer2 Configuration (R,W) - R_n_ T2CFG
Router Channel {N,S,E,W} Error Status (R, W1C)- R_n_ERR
Router Channel {N,S,E,W} Performance Counter (R, W)- R_n_PERF
Router 1/0-Port Configuration1 Register (R, W) - R_IO_CFG1
Router 1/0-Port Configuration2 Register (R, W) - R_IO_CFG2
Router 1/0-Port Buffer Size (R,W) - R_IO_BUFSIZ
Router 1/0-Port Timer1 Configuration (R,W) - R_IO_T1CFG
Router 1/0-Port Timer2 Configuration (R,W)- R_IO_ T2CFG
Router 1/0-Port Error Status (R, W1 C) - R_IO_ERR
Router 1/0-Port Performance Counter (R, W) - R_IO_PERF
Router Local-Port Error Status Register (R, W1 C) - R_LOC_ERR
Router Routing Table Register (R,W) - R_ROUT
Router WHOAMI Register (R,W) - R_WHOAMI
Router Overall-Timer-Control Register (R,W)- R_OVER
Router Interrupt Status (R, WIC) - R_INT_STAT
Router Interrupt Mask (R, W) - R_INT _MASK
Router Interrupt Request (WO) - R_INT _REQ
Router Interrupt Queue Register (RO) - R_INT _QUE
Router Interrupt Queue Add Register (WO)-R_INT_QUEADD
Router Interval Timer Register (R,W) - R_INTER_ TIM
Router Scratch Register 1 (R,W) - R_SCRATCH1
Router Scratch Register 2 (R,W) - R_SCRATCH2

Zbox IPRs .. .

16.5.21
16.5.22
16.5.23
16.5.24
16.5.25
16.5.26
16.5.27
16.6
16.6.1
16.6.2
16.6.3
16.6.4
16.6.5
16.6.6
16.6.7
16.6.7.1
16.6.7.2
16.6.7.3
16.6.7.4
16.6.8
16.6.9
16.6.9.1
16.6.9.2
16.6.10
16.6.10.1
16.6.10.2
16.6.10.3
16.6.11
16.6.12
16.6.13
16.6.14
16.6.15
16.6.16
16.6.17
16.6.18
16.6.19
16.6.20
16.6.21
16.6.22
16.6.23

DRAM Error Status 1 -ZBOXn_DRAM_ERR_STATUS1
DRAM Error Status 2 -ZB0Xn_DRAM_ERR_STATUS2
DRAM Error Status 3 - ZBOXn_DRAM_ERR_STATUS3
DRAM Error Control - ZBOXn_DRAM_ERROR_CTL
DRAM Timing Control 1 -ZB0Xn_DRAM_TIMING_CTL1
DRAM Timing Control 2 -ZBOXn_DRAM_TIMING_CTL2
DRAM Timing Control 3 -ZB0Xn_DRAM_TIMING_CTL3

Calculating Read to Write and Write to Read Spacing
Terminology
Ideal Rambus .. .
Non-Ideal Ram bus .. .

DRAM Refresh Control - ZBOXn_DRAM_REFR_CTL
DRAM Calibration Control 1 - ZBOXn_DRAM_CALIB_CTL 1

Temperature Calibration Interval
Current Control Interval. .. .

DRAM Calibration Control 2-ZB0Xn_DRAM_CALIB_CTL2
Read to Current Control Transition
Temperature Calibrate to Read transition
Read to Temperature Calibrate transition

DRAM Timing Control 4 - ZB0Xn_DRAM_ TIMING_CTL4
DRAM Refresh Row - ZBOXn_DRAM_REFRESH_ROW
DRAM Initialization Control - ZBOXn_DRAM_INIT _CTL
DIFT Control - ZBOXn_DIFT _CTL
DRAM Error Address - ZBOXn_DRAM_ERR_ADR
DIFT Timeout - ZBOXn_DIFT _TIMEOUT
DRAM Mapper Control - ZBOXn_DRAM_MAPPER_CTL.
Zbox Performance Counter O - ZBOXn_ZPM_CTRO
Zbox Performance Counter 1 -ZBOXn_ZPM_CTR1
Zbox Performance Control- ZBOXn_ZPM_CTL.
Zbox Sweep Directory B~s - ZBOXn_DRAM_SWEEP _DIR
Zbox Force-Error Address register - ZBOXn_FRC_ERR_ADR
Zbox DIFT Error Status - ZBOXn_DIFT _ERR_STATUS

Compaq Confidential
5 January 2001 -~Subject To Change

16-39
16-40
16-42
16-43
16-43
16-44
16-44
16-45
16-47
16-47
16-48
16-48
16-48
16-49
16-49
16-50
16-51
16-51
16-51
16-51
16-52
16-52
16-52
16-52
16-52
16-52
16-52
16-52
16-53
16-54
16-56
16-58
16-61
16-62
16-64
16-65
16-65
16-65
16-66
16-68
16-69
16-69
16-69
16-70
16-70
16-70
16-71
16-71
16-72
16-73
16-75
16-76
16-77
16-83
16-84
16-85
16-88
16-89
16-90

xvii

16.6.24 Zbox RAC Control -ZBOXn_RAC_CTL.................................... 16-91

17 Privileged Architecture Library Code

17.1
17.2
17.2.1
17.2.2
17.3
17.4
17.5
17.5.1
17.5.2
17.5.3
17.5.4
17.5.5
17.5.6
17.5.7

17.5.8

17.5.9
17.5.10

17.5.11

17.5.12

17.5.13

17.5.14
17.5.15
17.5.16

HW_LD and HW_ST Instructions . 17-1
HW_MFPR and HW_MTPR Instructions. 17-3

HW_MFPR Instruction . 17-3
HW_MTPR Instruction . 17-4

Execution of the RET Instruction in PALmode . 17-5
CMOV Execution Within PALcode . 17-6
PALcode Restrictions and Guidelines. 17-7

Restriction 1: PALcode Must Guarantee That IPR Writes Retire Before Returning . . . 17-7
Restriction 2: IFETCHB Required Between IPR Writes in the Same IPR Group 17-7
Restriction 3: Mbox IPRs Must be Written Twice to Ensure Correct Slotting 17-7
Restriction 4: All Instructions in the DTB Writer Block Must be in the Same Map Block 17-8
Restriction 5: All Four DTB MTPR Instructions Must Appear in the Same Fetch Block. 17-8
Restriction 6: Non-DTB Writer Block DTBMS_RET _ADDR MFPRs Require IFETCHB 17-9
Restriction 7: IFETCHB Required Between Non-DTB Writer Block DTB Writer Block MxPRs
. 17-9
Restriction 8: Padding Required Between DTB Writer Block and OTB-Dependent Instructions
. 17-9
Restriction 9: PALcode Must Not Allow Writes INVALID DTB_PTE Entries to Retire.. 17-1 O
Restriction 10: TAG and PTE Must be Written as Pairs with TAG Writes Before PTE Writes
. 17-10
Restriction 11: Register-Dependent MTPRs Must Not Have Read Class Dependent MxPRs
. 17-10
Restriction 12: CMOV instructions Cannot Specify PALcode Shadow Registers as Destinations
. 17-11
Restriction 13: PALmode Native CMOV Instructions Cannot Specify R24 or R25 as Destinations
. 17-12
Restriction 14: PALmode JMP Instructions Must be Followed by IFETCHB...... . . . 17-12
Guideline 15: No Push or Pop Instructions in the First Fetch Block of a PALmode Flow 17-13
Restriction 16: PALmode MT_FPCR Must be Followed by IFETCHB.............. 17-13

18 Initialization and Configuration

19 Performance Monitoring

19.1
19.1.1
19.1.2
19.1.3
19.1.3.1
19.1.3.2
19.1.3.3
19.2
19.2.1
19.2.1.1
19.2.1.2
19.2.1.3
19.2.1.4
19.2.1.5
19.2.1.6
19.2.2
19.2.2.1

Instruction Based Profiling .. .
Profiling Methodology .. .
Initiating an Instruction Profile Sample
Instruction Profile Record IP Rs .. .

Data/Event IPRs .. .
Timeline/Latency IPRs
Aggregate Event/Data IPRs

Memory Reference Performance Monitoring
Cbox Performance CSRs

Cbox Performance Control - CBOX_PRF _CTL<31 :0>
Cbox Performance Address - CBOX_PRF _ADR<63:0>
Cbox Performance Status - CBOX_PRF _STS<25:0>
Cbox Performance Match - CBOX_PRF _MAT <25:0>
Cbox Performance Match Value-CBOX_PRF _MATV<25:0>
Cbox Performance Counter - CBOX_PRF _CNT <31 :O>

Zbox Performance CSRs
Zbox Performance Counter O-ZB0Xn_ZPM_CTR0<31 :0>

Compaq Confidential

19-1
19-2
19-2
19-6
19-6

19-12
19-15
19-17
19-17
19-17
19-18
19-18
19-18
19-19
19-19
19-19
19-19

xviii 5 Jc1nuary 2001 - Subject To Cfuange

19.2.2.2
19.2.2.3
19.2.3
19.2.3.1
19.2.3.2
19.3
19.3.1
19.3.2

Zbox Performance Counter 1 - ZB0Xn_ZPM_CTR1 <31 :0>
Zbox Performance Control- ZB0Xn_ZPM_CTL<31 :0>

Rbox Peformance CSRs
Rbox Port Performance Counter - RBOX_n_PERF<27:0>
Rbox 10 Port Performance Counter - RBOX_IO_PERF<27:0>

Addendum: lmplemention Notes
From Data/Event IPRs
Following Table 17-4 .. .

20 Hardware Debug Features

20.1
20.2
20.2.1
20.2.2
20.2.3
20.2.4
20.3
20.3.1
20.3.2
20.3.3
20.4
20.4.1
20.4.2
20.4.3
20.4.4
20.5

Debug Process .. .
Feature Overview .. .

Scan
Trace Bus
Internal Processor Registers .. .
Derived Signals .. .

Global Support .. .
Scan
Trace Bus
Trigger Logic .. .

Box Support
lbox
Pbox/Qbox .. .
Ebox/Register File .. .
Mbox .. .

Software Support. .. .

21 Testability and Diagnostics

21.1
21.1.1
21.1.2
21.1.3
21.1.4
21.1.5
21.2
21.3
21.3.1
21.3.2
21.3.3
21.3.4
21.3.5
21.4

Global Block Diagram
Group 1 -Array BiST/BiSR Satellites
Group 2- BiSt Satell~es .. .
Group 3- Observability Registers (LFSRs)
Group 4- Scan Islands (TBD)
Group 5- Boundary Scan Register

Test Pins
Central Port Controller

IEEE 1149.1 Test Access Port Controller
Port Configuration and FireWall Logic
Clock Control Unit .. .
Tbox Reset Engine .. .
SROM Engine

Dot1 Test Decode and Dispatch Logic .. .

22 Error Detection and Error Handling

19-20
19-20
19-22
19-23
19-23
19-23
19-23
19-24

20-1
20-2
20-2
20-3
20-4
20-4
20-4
20-4
20-5
20-6
20-7
20-7
20-8
20-8
20-8
20-8

21-2
21-3
21-3
21-4
21-4
21-4
21-4
21-5
21-6
21-7
21-7
21-7
21-8

21-10

22.1 Disruptions . 22-1
22.1.1 High-Level Features. 22-3
22. 1 .2 Low-Level Features . 22-8

23 Hardware Interface

23.1 Signal Pad Requirements .. .

Compaq Confide11tial
5 January 2001 ···Subject To Change

23-1

xix

24 New Instructions

25 System Configurations

26 Physical Addressing and Input/Output

27 Requirements to Support "Tandem"

A Instruction Decoding

A.1
A.2
A.3
A.4
A.5
A.6
A.6.1
A.6.2
A.6.3
A.6.4
A.6.5
A.6.6
A.6.7
A.6.8
A.6.9
A .. 6.10
A.6.11
A.6.12
A.6.13
A.6.14
A.6.15

Instruction Format .. .
Predecodes
Instruction Latency
Execution Pipelines
Instruction Info (INST_INF0<15:0>) .. .
Specific Opcode and Instruction Type Decoding

Opcode 00, CALL_PAL .. .
Opcodes 01 through 07, Reserved
Opcode 10, Integer Add/Subtract/Compare
Opcode 11, Integer Logical
Opcode 12, Integer Shift
Opcode 13, Integer Multiply
Opcode 14, ITOFx and Floating-Point Square Root
Opcode 15, VAX Floating-Point .. .
Opcode 16, IEEE Floating-Point
Opcode 17, Miscellaneous Floating-Point
Opcode 1 8, Miscellaneous .. .
Load and Store Instructions
Opcode 1 C, Integer Multimedia .. .
Branch and Jump Instructions
PALcode Instructions .. .

B LDx_ARM/QUIESCE Instruction Characteristics

B.1
B.2
B.2.1
B.2.1.1
B.2.2
B.2.2.1
B.3
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.5
B.5.1
B.5.2
B.5.3
B.5.4
B.5.5
B.5.6

Relationship Between SMT and LDx_ARM/QUIESCE
Goals for the LDx_ARM and QUIESCE Instruction Definition

Specific LDx_ARM Instruction Characteristics
Instruction Description

Specific QUIESCE Instruction Characteristics
Data Sharing Using LDx_ARM/Quiesce

Proposed Opcode Assignments
Implementation .. .

Interaction of Interrupts and QUIESCE
Quiesce-Related Hardware
Reallocation Hardware Resources During Quiesce
Issues to Consider While Finalizing the Hardware Design

Alternative Proposals to the LDx_ARM/QUIESCE Current Design
Timer-Based
Unified QUIESCE Instruction .. .
Use architectural Registers to Enforce LDx_ARM/QUIESCE Dependency
Add LDx_ARM Functionality to LDx_L
Define QUIESCE to be a load and test
Define QUIESCE to be a read of memory and compare with a register

Compaq Confidetitial

A-2
A-3
A-4
A-4
A-5
A-5
A-5
A-5
A-6
A-7
A-7
A-8
A-9

A-10
A-11
A-12
A-13
A-13
A-14
A-16
A-17

B-1
B-2
B-2
B-3
B-6
B-8
B-9

B-10
B-11
B-12
B-13
B-13
B-14
B-14
B-14
B-14
B-15
B-16
B-16

xx 5 Jc1miary 2001 ··· Subject To Change

B.6 Open Issues .. .

C Proposed Memory Management IPR Design

C.1
C.2
C.3
C.3.1
C.3.2
C.3.3
C.4
C.4.1
C.4.2
C.4.3
C.4.4
C.5
C.5.1
C.5.2

Glossary

Index

Motivation for This Design .. .
Page Table Assumptions .. .
I-Stream (l_CTL) and D-Stream (M_CTL) Control Registers

l_CTL .. .
M_CTL
PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE Field Combinations

VA_FORM and IVA_FORM
The Transformation From VA to VA_FORM
43-bit VA I 8 KB Page
52-bit VA I 64 KB page .. .
52-bit VA I 64 KB Page I Reduced Page Tables

Sign Extension Checking .. .
Previous Implementation
Proposed Implementation .. .

Compaq Confidential
5 January 2001 -·· Subject To Change

B-17

C-1
C-1
C-3
C-3
C-5
C-6
C-6
C-7
C-7
C-8
C-9

C-10
C-10
C-11

xxi

Figures

2-1 21464 Block Diagram . 2-5
2-2 21464 Pipeline Stage Diagram . 2-20
3-1 lbox Block Diagram.. 3-2
3-2 Line Predictor Block Diagram . 3-5
3-3 High level diagram of the 21464 branch predictor....... 3-20
3-4 Jump Predictor Block Diagram . 3-26
3-5 Instruction Fill Unit (IFU) Request and Fill Sections . 3-42
3-6 Instruction Fill Unit (IFU) Demand Subsection . 3-43
3-7 Instruction Fill Unit (IFU) Prefetch Subsection. 3-46
3-8 Instruction Fill Unit (IFU) Fill Section. 3-48
4-1 Pbox Block Diagram . 4-1
4-2 The INum Circle . 4-4
5-1 Simplified View of One-Half of the Instruction Queue . 5-5
5-2 Simplified View of Full Instruction Queue . 5-7
5-3 Simplified Diagram of QET and Pickers for Two Pipelines. 5-11
5-4 Tracking Data-Ready Instructions. 5-18
6-1 Ebox Block Diagram . 6-2
6-2 Ebox Datapath Block Diagram . 6-3
6-3 Cluster Section Organization... 6-6
6-4 Ebox ITOFx and FTOlx Floating-Point Store Data Paths . 6-12
6-5 Ebox Register Cache Block Diagram . 6-13
6-6 Ebox Register Cache Multiport Static RAM Block Diagram . 6-13
6-7 Ebox Register Cache Single-Cycle Result Flow . 6-14
6-8 Ebox Register Cache Multi-Cycle Result Flow . 6-15
6-9 Writing Entries in the Ebox Register Cache . 6-17
6-10 Ebox Multimedia Unit Block Diagram . 6-18
6-11 Ebox Multimedia Unit Pipeline Timing. 6-18
6-12 Ebox Multimedia Unit MVI Section Block Diagram................................ 6-20
6-13 Ebox Multimedia Unit Arithmetic Logic Unit. 6-20
6-14 Ebox Multimedia Unit Computation of the Min/Max Instruction. 6-21
6-15 Ebox Multimedia Unit Multiplier Array Block Diagram . 6-23
6-16 Ebox Multimedia Unit Multiplier Array Tree Adder......... 6-24
6-17 Ebox Multimedia Unit Min/Max Logic Block Diagram . 6-26
6-18 Ebox Multimedia Unit Shifter. 6-27
6-19 Ebox Multimedia Unit Integer Multiplier. 6-28
7-1 Register File Block Diagram . 7-2
8-1 Fbox Organization. 8-2
8-2 Register Cache . 8-8
8-3 FPCR Update Mechanism... 8-16
8-4 F _API Block Diagram . 8-21
8-5 CMP Instruction Logic . 8-24
8-6 F _AP2 Block Diagram. 8-31
8-7 Fbox Floating-Point Control Registers . 8-36
8-8 F _SHP Block Diagram . 8-38
8-9 F _DIV Block Diagram . 8-44
8-10 F _SQR Block Diagram . 8-45
8-11 F _GAD Block Diagram for One-Half of the Pair . 8-50
9-1 Address and Data Path............. 9-2
9-2 Scache Write-Through Process . 9-30
9-3 Merge Buffer Entry States . 9-34
9-4 Pre-MAF Queue . 9-46
15-1 GIO Port Read Transaction Timing.. 15-2
15-2 GIO Port Write Transaction Timing.. 15-2
15-3 GIO_CNFG Register. 15-3
15-4 GIO_ADDR Register... 15-3
15-5 GIO_DATA . 15-4

Compaq Confidential
xxii 5 Jam.1c1ry 2001 ~· Subject To Change

16-1 Cycle Counter Register - CC[tpu]
16-2 DTB Single-Miss Return Address Register- DTBMS_RET _ADDR[tpu]
16-3 Exception Address Register - EXC_ADDR[tpu]
16-4 Exception Summary Register - EXC_SUM[tpu]
16-5 lbox CPU Configuration Register- CPU_CNFG
16-6 lbox TPU Configuration Register - TPU_CNFG
16-7 lbox Control Register- l_CTL[tpu] .. .
16-8 lbox Process Mode Register - l_MODE[tpu]
16-9 lbox Process Context Register - l_PCTX[tpu]
16-10 lcache Status Register- IC_STAT[tpu]
16-11 lcache Flush Register- IC_FLUSH[tpu]
16-12 lcache Flush (ASM = 0) Register- IC_FLUSH_ASM[tpu]
16-13 ITB Invalidate Multiple Register- ITB_IM[tpu]
16-14 ITB Invalidate Single Register- ITB_IS[tpu]
16-15 Instruction PTE Array Write Register - ITB_PTE[tpu]
16-16 Instruction Tag Array Write Register- ITB_TAG[tpu]
16-17 Instruction Virtual Address Format Register - IVA_FORM[tpu]
16-18 PALcode Base Address Register - PAL_BASE[tpu]
16-19 PALcode Temp Registers - PAL_ TEMP1 [tpu], PAL_ TEMP2[tpu]
16-20 Dcache Control Register - DC_CTL
16-21 Dcache Status Register- DC_STAT[tpu]
16-22 DTB Invalidate Address Space Register - DTB_IASN[tpu]
16-23 DTB Invalidate Multiple Register - DTB_IM[tpu]
16-24 DTB Invalidate Single Register - DTB_IS[tpu]
16-25 DTB PTE Array Write Registers - DTB_PTEO[tpu], DTB_PTE1 [tpu]
16-26 DTB Tag Array Write Registers - DTB_ TAGO[tpu], DTB_TAG1 [tpu]
16-27 Mbox Control Register- M_CTL[tpu] .. .
16-28 Mbox Process Mode Register - M_MODE[tpu]
16-29 Mbox Process Context Register - M_PCTX[tpu]
16-30 Mbox Memory Management Status Register - M_STAT[tpu]
16-31 Quiesce Timeout Register- QUIESCE_ TIMEOUT[tpu]
16-32 Virtual Address Register - VA[tpu] .. .
16-33 Virtual Address Format Register - VA_FORM[tpu]
16-34 Watch Physical Address Register - WATCH_PHYS_ADDR[tpu]
16-35 Hardware Interrupt Clear Register - HW_INT _CLR[tpu]
16-36 DRAM Error Status 1 .. .
16-37 DRAM Error Status 2 .. .
16-38 DRAM Error Status 3 .. .
16-39
16-40
16-41
16-42
16-43
16-44
16-45
16-46
16-47
16-48
16-49
16-50
16-51
16-52
16-53
16-54
16-55
16-56
16-57
16-58
16-59

DRAM Error Control .. .
DRAM Timing Control 1
DRAM Timing Control 2
DRAM Timing Control 3
DRAM Refresh Control .. .
DRAM Calibration Control 1 .. .
DRAM Calibration Control 2 .. .
DRAM Timing Control 4
DRAM Refresh Row .. .
DRAM Initialization Control
DIFT Control .. .
DRAM Error Address .. .
DIFT Timeout
DRAM Mapper Control .. .
Interpretation of Row High .. .
Zbox Performance Counter 0
Zbox Performance Counter 1
Zbox Performance Control
Zbox Sweep Directory Bits
Zbox Force-Error Address Register .. .
Zbox DIFT Error Status Register

Compaq Confidential
5 January 2001 ~· Subject To Change

16-7
16-8
16-8

16-10
16-11
16-12
16-13
16-15
16-16
16-16
16-17
16-18
16-18
16-19
16-20
16-21
16-21
16-23
16-24
16-24
16-25
16-26
16-27
16-27
16-28
16-29
16-30
16-32
16-33
16-34
16-35
16-36
16-36
16-37
16-38
16-52
16-53
16-55
16-57
16-59
16-62
16-63
16-66
16-68
16-69
16-71
16-72
16-72
16-74
16-76
16-76
16-78
16-83
16-83
16-84
16-85
16-88
16-89
16-90

xx iii

xxiv

16-60
17-1
17-2
17-3
17-4
19-1
20-1
20-2
20-3
21-1
21-2
21-3
21-4
21-5
21-6
21-7
A-1

Zbox RAC Control Register
HW_LD/HW_ST Instruction Format .. .
HW_MFPR Instruction Format .. .
HW _MTPR Instruction Format .. .
RET Instruction Fields
Captured Timeline for Each Profiled Instruction
Trace Bus Timing Relationships
Trace Bus Routing .. .
Trigger Logic .. .
Basic Tbox Contract .. .
Tbox Global Block Diagram
Central Port Controller
TAP Controller State Machine
Tbox Reset Engine
Tbox Reset Engine State Diagram
SROM Engine State Diagram
Instruction Formats

Compaq Confidential

16-91
17-1
17-3
17-4
17-6

19-12
20-3
20-5
20-6
21-1
21-2
21-6
21-7
21-8
21-8
21-9
A-2

5 Jam.sary 2001 ~ Subject To Change

Tables

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
4-1
4-2
4-3
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

Microarchitecture Major Sections Summary
lbox Major Component Summary .. .
Pbox Major Component Summary
Qbox Major Component Summary
Ebox Major Component Summary
Ebox Cluster Section Summary
Fbox Major Component Summary
Fbox Functional Unit Summary .. .
Mbox Major Component Summary
Cbox Major Component Summary
Negative Integers to Alphabetics Conversion
Pipeline Stage Conversion Equations
Pipeline Stage Conversion
Instruction Execution Pipelines and Latency
Thread Synchonization Instructions .. .
Short Vector SIMD Instructions .. .
lbox Major Sections
lbox Main Pipeline .. .
lcache Data Array Cache Block Contents
lcache Tag Array Predecode for Fetch Blocks
Fields in the Start/End Buffer
Fetch-Block Exit Conditions .. .
PC1 Calculation .. .
Conditions that Sqaush the Second Fetch Chunk
Hardware PC Calculation Components .. .
Matrix Legend
NextPC 0 Calculation Matrix .. .
lcache Mispredict Signalling .. .
Superpage support in the Main ITB
Granularity Hint (GH) Mapping .. .
IPRs that Affect the ITB .. .
ITB Invalidate Operations .. .
Predecode Bits Defined by the lbox Instruction Fill Unit
lbox Predecode Bit Summary
Fields in a Pre-Map Table Entry
Collapsed fields Stored Into a Post-map Table Entry at Map Time
Post-Map Table Entry Fields .. .
Fields that are Available from Collapsing Buffer at Map Time
Fields in Post-Map Table Entry That are Created During Execute (E) and Kill Time (K) .. .
Exception Types and Restart Address .. .

Creating Slot-Based Predictor States From Mapped Information in the Post-Map Table .. .
Restoring Predictor States on a Restart
Pbox Components .. .
INum Age Relationship .. .
Predecode Value Meaning for l%MAP _INST _14A_H[7:0]<35:32>
Qbox Component Summary .. .
Ebox Major Component Summary
lnterbox Timing Relationships
Integer Cluster Sections
Instructions Serviced by the Ebox Addr Unit
Instructions Serviced by the Ebox Shifter Unit
Instructions Serviced by the Ebox Logic Box Unit
Instructions Serviced by the Ebox Virtual Address Generator Unit
Instructions Serviced by the Ebox Load Data Interface Unit
Instructions Serviced by the Ebox Multimedia Interface Unit
Instructions Serviced by the Ebox Store Data Interface Unit

Compaq Confidential
5 January 2001 ··· Subject To Change

2-4
2-8
2-9

2-10
2-12
2-12
2-15
2-16
2-17
2-18
2-21
2-21
2-21
2-22
2-29
2-30
3-3
3-4

3-12
3-14
3-18
3-29
3-29
3-31
3-31
3-31
3-32
3-35
3-38
3-39
3-40
3-41
3-49
3-54
3-56
3-57
3-57
3-58
3-58
3-61
3-61
3-61

4-2
4-6
4-9
5-1
6-1
6-4
6-4
6-6
6-7
6-8
6-9

6-10
6-11
6-11

xxv

6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
7-1
7-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16

xx vi

Ebox Register Cache Single-Cycle Result Flow
Ebox Register Cache Multi-Cycle Result Flow
Ebox Cycle Timing of Operand Control Information
Ebox Multimedia Unit Min/Max Instruction Byte Reshuffling
Instruction Information From the Qbox to the Ebox
Exceptions Reported by the Ebox .. .
Ebox Reserved Opcode Exceptions .. .
Ebox/Fbox/Mbox Data Conversion Matrix
Register File Read Timing .. .
Register File Write/Read Timing
Fbox Pipeline Functional Units, Instructions, and Latencies
Operation of a Single Fbox Pipe - all Operands From Register File
Timing for Load Data .. .
Pipeline Stages of Fbox Register Cache
FDIV_SP (9 cycles), FDIV_DP (14 cycles)
FSQRT_SP (12 CYCLES), FSQRT_DP(28 CYCLES)
Arithmetic Exceptions
Fbox Exception Signaling Timing .. .
FPCR Update/Floating-Point Arithmetic Trap Legend
Fbox Retire-Time Exception (RTE) Encodings
Floating-Point Control Register Format .. .
Exponent Difference Estimation
Filing of Extension Word for F _AP2 Instructions
Arithmetic Instruction Explicit Dynamic Rounding Bits
FPCR Dynamic Rounding Bits .. .
Maskable Exceptions
F _DIV Timing Sequence
Paired SP Floating-point Operate Instruction Format
Paired Single-Precision .. .
Paired Single-Precision Instructions .. .
Fl1/Fl2 Shifter Operand/Control Selection
Fraction Data Path
Operand Data Fraction and Exponenet Data Paths
Equations of Sticky Bit Calculation
Mbox Major Components .. .
Memory Operation (Launch) .. .
HW_MTPR TB Invalidate, TAG or PTE Issue
HW_MTPR TB Invalidate or PTE Retire
HW_MTPR TB PTE Retire Bubble
HW _MTPR TB Invalidate Retire Bubble
Granularity Hint Encoding .. .
Trap Summary
Dcache Front-End Tag Timing .. .
Cbox Pipeline Stages
MAF Pipeline Timing Diagram
Scache Tag Array Bank Conflicts .. .
Contents of Each MAF Entry .. .
PRO Contents for Each Entry
VAF Commands ,
VAF Contents For Each Entry
Main Victim Flow for Each Cbox Pipeline Stage
System Interface Section Response FIFO Entry Fields
System Interface Section Response FIFO Entry Fields
Scache Tag Array Pipeline Stages
Scache Tag State Transition Table
Stale Fill Table (SFT)
Scache Least Recently Used (LRU) State Bits
Scache TAG Syndrome Bits .. .
Scache Control Pipeline Diagram .. .

Compaq Confidential

6-14
6-15
6-17
6-22
6-31
6-34
6-35
6-36
7-3
7-3
8-1
8-4
8-6
8-6

8-11
8-11
8-11
8-12
8-13
8-13
8-14
8-22
8-27
8-36
8-37
8-37
8-39
8-46
8-46
8-47
8-53
8-55
8-55
8-56

9-1
9-12
9-12
9-12
9-12
9-12
9-14
9-41
9-43
11-4
11-7
11-8

11-10
11-17
11-18
11-18
11-19
11-21
11-22
11-26
11-26
11-28
11-29
11-30
11-33

5 January 2001 ···Subject To Change

11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
15-1
15-2
15-3
15-4
15-5
16-1
16-2
16-3
16-4
16-5

Resource and Order Conflicts
Scache Control Pipeline Stages
Required Resource
Scache Bank Conflict Timing
Miss Request Command Summary
Victim Command Summary
110 Request Packet Format
Scache Block State
Scache Tag Request Command
Scache Access Order to the Same Cache Block
Comparison Between 21364 and 21464 Cache Coherence Protocols
MAF Coherence State Bits
Forwards hit MAF (Full Address Match)
Response Hit MAF (MAF Index)
Miss Requests from Mbox .. .
Forwards From (Remote) Directory
Responses (Fills) from System .. .
VAF Hit .. .
Directory State Request Responses .. .
System Command Opcodes .. .
Location of Useful Data for Fully-Merged WrQW's and WrlPR's
Location of Useful Data for Fully-Merged WrLW's
Location of Useful Data for Quadword Specified by QWADD(5,3) of a WrByte
Location of Useful Data in a BlklO in Response to a Fully-Merged RdQW or Rd IPR
Location of Useful Data in Response to Fully-Merged RdLW's
Location of Useful Data in Quadword Specified by QWADD(5,3) of a BlklO Packet
ALERT Wire Allocation .. .
Messages on the IO_CHANNEL
Messages on the REQUEST_CHANNEL
Messages on the FORWARD_CHANNEL
Messages on the RESPONSE_CHANNEL
Messages on a SPECIAL_CHANNEL. .. .
Route Information Bits
Dealloc 3-Bit Variable-Length Encoding (IPs)
Buffer Message Formats
Dealloc 3-Bit Encoding (1/0 port)
1/0 Port Buffer Size and Number
Zport Buffer Message Format
Cport Buffer Message Format
Packet Formats
l/O_CHANNEL Formats (3 Ticks) .. .
REQUEST_CHANNEL Format .. .
FORWARD_CHANNEL Format
RESPONSE_ CHANNEL Formats .. .
SPECIAL_CHANNEL Formats .. .
INPUT 1/0 PORT HEADER TICK Formats
ROUTE FIELD Format .. .
Interrupt Level Sources .. .
Router IO_CHANNEL Point-to-Point Rules
G 10 Port Signals
GIO_CNFG Register Field Descriptions
GIO_ADDR Register Fields Description
GIO_DATA Register Fields Description
GIO Address Space Registers Defined by Marvel
Internal Processor Register Summary .. .
IPR Initialization Classification .. .
IPR Reserved Field Type Definitions
Cycle Counter Register Fields Description
DTB Miss Return Address Register Field Descriptions

Compaq Confidential
5 January 2001 ··· Subject To Change

11-35
11-37
11-39
11-40
11-42
11-44
11-50
11-57
11-60
11-61
12-5

12-10
12-11
12-12
12-14
12-15
12-16
12-18
12-18
12-20
12-22
12-23
12-23
12-28
12-28
12-29
12-35
13-2
13-3
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-9
13-9

13-10
13-11
13-12
13-13
13-13
13-14
13-15
13-15
13-16
13-19
13-22

15-1
15-3
15-3
15-4
15-4
16-1
16-6
16-6
16-7
16-8

xx vii

16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
16-38
16-39
16-40
16-41
16-42
16-43
16-44
16-45
16-46
16-47
16-48
16-49
16-50
16-51
16-52
16-53
16-54
16-55
16-56
16-57
16-58
16-59
16-60
16-61
16-62
16-63
16-64

xx viii

Exception Address Register Field Descriptions
Exception Summary Register Field Descriptions
CPU Configuration Register Fields Description
lbox TPU Configuration Register Field Descriptions
lbox Control Register Field Descriptions
lbox Process Mode Register Fields Description
lbox Process Context Register Field Descriptions
lcache Status Register Fields Descriptions
lcache Flush Register Fields Description
lcache Flush (ASM = O) Register Fields Description
ITB Invalidate Multiple Register Fields Descriptions
ITB Invalidate Single Register Fields Description

16-9
16-10
16-11
16-12
16-13
16-15
16-16
16-17
16-17
16-18
16-18
16-19

Instruction PTE Array Write Register Field Descriptions. 16-20
Instruction Tag Array Write Register Fields Description . 16-21
Instruction VA Format Register (43-Bit VA) Fields Description....................... 16-21
Instruction VA Format Register (52-Bit VA, REDUCED-PT =0) Fields Description.. 16-22
Instruction VA Format Register (52-Bit VA, REDUCED-PT =1) Fields Description 16-22
PALcode Base Address Entry Points and Offsets................................. 16-22
PALcode Base Address Register Fields Description. 16-23
Dcache Control Register Field Descriptions . 16-24
Dcache Status Register Field Descriptions. 16-25
OTB Invalidate Multiple Register Fields Description . 16-27
OTB Invalidate Single Register Fields Description . 16-27
DTB_PTE Array Write Registers Fields Descriptions . 16-28
OTB Tag Array Write Registers Fields Description. 16-30
Mbox Control Register Fields Description
Mbox Process Mode Register Field Descriptions
Mbox Process Context Register Field Descriptions
Mbox Memory Management Status Register Field Descriptions
Quiesce Timeout Register Field Descriptions

16-30
16-32
16-33
16-34
16-35

Instruction VA Format Register (43-Bit VA) Fields Description. 16-36
Instruction VA Format Register (52-Bit VA, REDUCED-PT =0) Fields Description 16-36
Instruction VA Format Register (52-Bit VA, REDUCED-PT =1) Fields Description 16-37
Watch Physical Address Register Fields Description . 16-37
Hardware Interrupt Clear Register Fields Description. 16-38
Router-Configuration1 Register Fields Description. 16-38
Router-Configuration2 Register Fields Description. 16-39
Router-{N,S,E,W}-Configuration1 Register Fields Description . 16-41
Router Channel {N,S,E,W} Configuration2 Register Fields Description. 16-42
Router {N,S,E,W} Timer1 Configuration Register Fields Description 16-43
Router {N,S,E,W} Timer2 Configuration Register Fields Description 16-43
Router {N,S,E,W} Error Status Register Fields Description
Router {N,S,E,W} Performance Counter Register Fields Description
Router 1/0-Port Configuration Register Fields Description
Router 1/0-Port Configuration 2 Register Field Description
Router 1/0-Port Buffer Size Register Fields Description
Routerl/0-Port Timer1 Configuration Register Fields Description
Router 1/0-Port Timer2 Configuration Register Fields Description
Router 1/0-Port Error Status Register Fields Description
Router 1/0-Port Performance Counter Register Fields Description
Router 1/0-Port Error Status Register Fields Description
Router Routing Table Register Fields Description
WhoAml Register Fields Description .. .
Router Overall-Timer-Control Register Fields Description
Router Overall-Timer-Control Register Fields Description
DRAM Error Status 1 Fields Description
DRAM Error Status 2 Fields Description
DRAM Error Status 3 Register Fields Description
DRAM Error Control Register Fields Description

Compaq Confidential

16-44
16-45
16-45
16-47
16-47
16-48
16-48
16-48
16-49
16-50
16-50
16-51
16-51
16-52
16-53
16-54
16-56
16-57

5 Jam1c1ry 2001 ···Subject To CfJange

16-65
16-66
16-67
16-68
16-69
16-70
16-71
16-72
16-73
16-74
16-75
16-76
16-77
16-78
16-79
16-80
16-81
16-82
16-83
16-84
17-1
17-2
17-3
17-4
17-5
17-6
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17
19-18
19-19
21-1
21-2
21-3
21-4
21-5
22-1
22-2
22-3
22-4
22-5
23-1
A-1
A-2
A-3

DRAM Timing Control 1 Fields Description
DRAM Timing Control 2 Fields Description
DRAM Timing Control 3 Fields Description
DRAM Refresh Control Fields Description
DRAM Calibration Control 1 Fields Description
DRAM Calibration Control 2 Fields Description
DRAM Timing Control 4 Fields Description
DRAM Refresh Row Fields Description .. .
DRAM Initialization Control Fields Description
PID Control Fields Description .. .
DRAM Error Address Fields Description
DIFT Timeout Fields Description
DRAM Mapper Control Fields Description
Zbox Performance Counter O Fields Description
Zbox Performance Counter 1 Fields Description
Zbox Performance Control Fields Description
Zbox Sweep Directory Bits Fields Description
Zbox Force-Error Address Fields Description
Zbox DIFT Error Status Fields Description
Zbox RAC Control Fields Description
HW_LD/HW_ST Instruction Fields Description
HW_MFPR Fields Description
MT _MTPR Instruction Fields Description
GPR[1 :O] Encoding
RET Instruction Mode Transitions .. .
RET Instruction Fields Description
Control IPRs for Instruction-Based Profiling
IAGG_EVENT and MAGG_EVENT IPRs
Fields in the PRO_PC<63:0> and PR1_PC<63:0>
Fields in PR_l_INF0<63:0> .. .
Fields in PR_Q_INF0<63:0>
Fields in PRO_MEM_INF0<63:0> and PR1_MEM_INF0<63:0>
Fields in PRO_DMISS_INF0<63:0> and PR1_DMISS_INF0<63:0>
PRn_TIMELINE IPRs
Fields in PR_ST_LATENCY<63:0>
Aggregate Event Counter IPRs .. .
Fields in CBOX_PRF _CTL<31 :0> .. .
Fields in CBOX_PRF _ADR<63:0>
Fields in CBOX_PRF _STS<25:0>
Fields in CBOX_PRF _CNT <31 :0>
Fields in ZBOXn_ZPM_CTR0<31:0>
Fields in ZBOXn_ZPM_CTL 1 <31 :0> .. .
Fields in ZB0Xn_ZPM_CTL<31 :0>
Fields in RBOX_n_PERF<27:0>
Fields in RBOX_IO_PERF<27:0> .. .
Array Test Command Broadcast Bus
Simple BiSt Command Bus
Observability Register Command Bus .. .
Dedicated Test Port Pins
Shared Test Pins .. .

Key to Table 22-2, "Summary of Disruption High-Level Features'
Summary of Disruption High-Level Features
Disruption PALcode Entry Points .. .
Key to Table 22-5, "Summary of Disruption Low-Level Features'
Summary of Disruption Low-Level Features
Signal Pad Requirements .. .
Opcode Groups .. .
Predecode Logic Groups
Opcode 10 Instruction Decoding

Compaq Confidentia I
5 January 2001 ··· Subject To Change

16-59
16-62
16-64
16-67
16-69
16-70
16-71
16-72
16-73
16-75
16-76
16-76
16-78
16-84
16-85
16-85
16-88
16-89
16-91
16-92
17-1
17-3
17-4
17-5
17-6
17-6
19-3
19-5
19-6
19-7

19-10
19-11
19-11
19-13
19-15
19-17
19-17
19-18
19-18
19-19
19-19
19-20
19-20
19-23
19-23
21-3
21-4
21-4
21-4
21-5
22-3
22-3
22-7
22-8
22-8
23-1
A-1
A-3
A-6

xx ix

xxx

A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
B-1
B-2
C-1
C-2
C-3

Opcode 10 Specific Logic Functions Within the Integer Adder
Opcode 11 Instruction Decoding
Opcode 12 Instruction Decoding
Opcode 13 Instruction Decoding
Opcode 13 Specific Logic Functions Within the Integer Adder
Opcode 14 Instruction Decoding
Opcode 15 Instruction Decoding
Opcode 16 Instruction Decoding
Opcode 17 Instruction Decoding
Opcode 18 Instruction Decoding
Load and Store Instruction Decoding
Opcode 1C Instruction Decoding .. .
Branch and Jump Instruction Decoding
PALcode Instruction Decoding .. .
SMT AMASK Instruction Bit .. .
Proposed LDx_ARM/QUIESCE Opcode Assignments
l_CTL Field Definitions .. .
M_CTL Field Definitions
Valid and Invalid PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_ TABLE Combinations ..

Compaq Confidential

A-6
A-7
A-7
A-8
A-9
A-9

A-10
A-11
A-12
A-13
A-13
A-14
A-16
A-17

B-2
B-9
C-3
C-5
C-6

5 Jc1nuc1ry 2001 ·-Subject To Change

Audience

Preface

This specification is for system designers and programmers who are involved in the
Alpha 21464 microprocessor engineering project.

Organization

This specification contains the following chapters. A top-level presentation of the main
topics in these chapters is presented in Chapter 2.

Chapter 1, Introduction, which describes the terminology and conventions that are used
in this specification.

Chapter 2, Architecture Overview, which summarizes the 21464 new features and
design organization.

Chapter 3, Instruction Fetch Unit - the Ibox, which describes the first part of the
instruction unit microarchitecture.

Chapter 4, Dependency Mapper Unit - the Pbox, which describes the second part of
the instruction unit microarchitecture.

Chapter 5, Instruction Issue and Retire Unit - the Qbox, which describes the third part
of the instruction unit microarchitecture.

Chapter 6, Integer Execution Unit - the Ebox, which describes how integer instruc
tions are executed.

Chapter 7, Register File, which describes the creation and management of the virtual
and physical registers in that file.

Chapter 8, Floating-Point Execution Units - the Fbox, which describes how floating
point instructions are executed.

Chapter 9, Memory Instruction Execution Unit - the Mbox, which describes how
memory-reference instructions are executed.

Chapter 10, Internal Ring Bus, which describes the bus that connects the Cbox, Rbox,
andZbox.

Chapter 11, Second-Level Cache and Controller (Cbox), which describes how the sec
ond-level cache is controlled.

Chapter 12, Cache Coherence Protocol Processing, which describes how caches in a
multprocessor system maintain their coherency.

Compaq Confide~itia I
5 January 2001 -·Subject To Change xx xi

Chapter 13, Router Interface - the Rbox, which describes the interprocessor switch.

Chapter 14, Rambus Interface - the Zbox, which describes that interface.

Chapter 15, Miscellaneous Interfaces, which describes the GIO Port.

Chapter 16, Internal Processor Registers, which describes those registers.

Chapter 17, Privileged Architecture Library Code, which describes the interface
between the microarchitecture and the PALcode environment.

Chapter 18, Initialization and Configuration, which describes the sequences that are
used in the initialization and configuration of the microprocessor, along with their char
acteristics.

Chapter 19, Performance Monitoring, which describes the means available for monitor
ing the performance of the 21464.

Chapter 20, Hardware Debug Features, which describes the physical capabilities that
have been placed in the 21464 to aid debugging.

Chapter 21, Testability and Diagnostics, which describes the capabilities that have been
placed in the 21464 to aid in testing and performing diagnostics.

Chapter 22, Error Detection and Error Handling, which describes the various error
detection mechanisms that have been pfaced in the 21464 and the corresponding recov
ery procedures.

Chapter 23, Hardware Interface, which describes the 21464 at the level of its interface
pins.

Chapter 24, New Instructions, which describes instructions that are new for the 21464.

Chapter 25, System Configurations, which describes considerations for configuring
systems.

Chapter 26, Physical Addressing and Input/Output, which describes physical address
ing and Input/output considerations.

Chapter 27, Requirements to Support "Tandem", which describes those parts of the
design that are significant to Tandem machines that will use the 21464.

A Glossary, which provides the definition of the terms used in the specification for
which the definitions can be specific to this specification.

An Index, which provides the appropriate references into the specification.

Related Documentation

xxxii

The following documents are included by reference in this specification:

• The Alpha System Reference Manual (the SRM), Version 7

• The ALPHA_SRM notesfile, which includes an on-going discussion of topics
related to this design

To obtain an SRM and access to the ALPHA_SRM notesfile, send mail to
Audrey.Reith@Compaq.com.

Compaq Confidential
5 Jam.1~1ry 2001 -- Subject To Change

The following documents are referenced in this specification. These documents can
provide historical context, supporting information, additional information, or be of
general interest to those using this specification. These documents are available in the
same general directory as the specification and can be viewed in your browser.

Compaq Confidential
5 January 2001 -~ Subject To Change xx xiii

Compaq Confidential
xxxiv 5 Janwiry 2001 ··· Subject To Change

Terminology and Conventions

1
Introduction

1.1 Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 210 (1024)
M 220 (1,048,576)
G = 230 (1,073,741,824)

For example:

2KB = 2 kilobytes = 2 x 210 bytes
4MB = 4 megabytes = 4 x 220 bytes
8GB = 8 gigabytes = 8 x 230 bytes
2K pixels = 2 kilopixels = 2 x 210 pixels
4M pixels = 4 megapixels = 4 x 220 pixels

• Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.

MBZ Must Be Zero
Software must never place a nonzero value in bits and fields specified as
MBZ. A nonzero read produces an Illegal Operand exception. Also, MBZ
fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.

Compaq Confidential
5 January 2001 --· Subject To Change Introduction 1-1

Terminology and Conventions

Abbreviation Meaning

RC Read Clears
Bits and fields are cleared when read. Unless otherwise specified, such bits
cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used; however,
zeros can be written to reserved fields that cannot be masked.

RO Read Only
The value may be read by software. It is written by hardware. Software write
operations are ignored.

RO,n Read Only, and takes the value n at power-on reset.
The value may be read by software. It is written by hardware. Software write
operations are ignored.

RW Read/Write

RW,n

WlC

WlS

WO

WO,n

Bits and fields can be read and written.

Read/Write, and takes the value n at power-on reset.
Bits and fields can be read and written.

Write One to Clear
If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be cleared by hardware. Software write operations of a 0 do not
modify the state of the bit.

Write One to Set
If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be set by hardware. Software write operations of a 0 do not modify
the state of the bit.

Write Only
Bits and fields can be written but not read.

Write Only, and takes the value n at power-on reset.
Bits and fields can be written but not read.

• Sign extension

SEXT(x) means xis sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that has n low-order zeros. For ex
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2n is unaligned if it is stored in a byte address that is not a multiple of
2n.

Compaq Confidential
1-2 Introduction 5 January 2001 ···Subject To Change

Terminology and Conventions

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square
brackets([]). Multiple contiguous bits are indicated by a pair of numbers separated by a
colon[:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See
also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits

Byte ~ 1 8

Word 2 16

Longword 2 4 32

Quadword 4 8 64

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.

Field Notation

Other

Dword

2 longword

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets([]). For example, RegisterName[LowByte] specifies RegisterName[7:0].

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix Ox indi
cates a hexadecimal number. For example, 19 is decimal, but Ox19 and Ox19A are hexa
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclu
sive. For example, a range of integers 0 . .4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in square brackets ([]) separated by a colon
(:)and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.

Compaq Confidential
5 January 2001 ·-Subject To Change Introduction 1-3

Terminology and Conventions

Register Figures

The gray areas in register figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
are included in the register. The bit range may, but need not necessarily, correspond to
the bit Extent in the register.

Signal Names

The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21464 (that is, the sig
nal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lower
case italic x represents the assertion states. For example,
Signa1Name_x[3:0] represents Signa1Name_H[3:0] and
Signa1Name_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro
cessor; it continues to execute instructions in its normal manner. Further:

•

•

•

1-4 Introduction

Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT
ABLE.

An UNPREDICTABLE result may acquire an arbitrary value subject to a few con
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Compaq Confidential
5 January 2001 ···Subject To Change

x

Terminology and Conventions

Also, operations that may produce UNPREDICTABLE results must not:

Write or modify the contents of memory locations or registers to which the cur
rent process in the current access mode does not have access, or

Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

Do not care. A capital X represents any valid value.

Compaq Confidential
5 January 2001 ··· Subject To Change Introduction 1-5

New Features

2
Architecture Overview

This chapter presents an overview of the major parts of the 21464 microarchitecture.

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

The new features of the 21464

Microarchitecture diagram, a high-level view of the overall architecture

Simultaneous multithreading (SMT), the essential new performance element of the
21464 design

Instruction unit, composed of the Ibox, Pbox, and Qbox

Execution unit, composed of the Register File, Ebox, and Fbox

Memory controller unit, composed of the Mbox

External interface, composed of the Cbox, Rbox, and Zbox

Pipeline organization

Instruction Execution Pipelines and Latency

Instruction issue and retire rules

New Instructions

Implementation-specific execution of the CMOV and FCMOV instructions

Interrupt handling

AMASK and IMPL VER instruction values

Performance monitoring features

2.1 New Features

The 21464 can be summarized as follows.

2.1.1 Processor Features

The processor has the following characteristics:

• Instruction issue and execute out of order

Dynamic four-way simultaneous multi-threading (SMT)

Up to eight instructions mapped, issued, executed, and retired per cycle, from the
following menu:

Up to eight integer operations, including branches

Com p.aq Confidentia I
5 January 2001 ··· Subject To Change Architecture Overview 2-1

New Features

•

•
•
•
•
•
•
•
•
•

Up to four floating-point operations

Up to four memory references

Up to four multimedia operations

Latency is one cycle for most integer operations and three cycles for loads and most
floating-point operations

Store-sets memory dependence predictor - for predicting store-load dependencies

Fetches up to 16 instructions for each cycle

Collapsing instruction buffer for merging basic blocks

Up to 256 instructions in flight

128 entry instruction queue

1.4 GHz clock rate, resulting in a 700 psec cycle

Peak instruction rate exceeds 11 billion instructions per second (gigaops)

New SIMD instructions for video, graphics, and signal-processing applications

Unified register file (integer and floating point)

512 quadword capacity

16 read ports

8 write ports

• Instruction L1 cache (lcache)

64 KB capacity, 2-way pseudo-set associative

64 byte (16-instruction) block size

8 instructions per cycle from each of two addresses

Bandwidth is 90 GB/sec

Parity protected

• Data L1 cache (Dcache)

•

64 KB capacity

Two-way set associative

64 byte (8-quadword) block size

8 bytes per cycle read from each of three addresses

- Write-through concurrent with reads, subject to bank conflict

- Function unit bandwidth: 32 bytes per cycle, resulting in 45 GB/sec

Hit latency is three cycles

Fill/write bandwidth is 64 bytes per cycle, resulting in 90 GB/sec

Parity protected

Onchip L2 cache (Scache)

3 MB capacity

Compaq Confidential
2-2 Architecture Overview 5 Jc1nuc1ry 2001 -· Subject To Change

Six-way set-associative

64 byte block size

Write-back

New Features

DC/IC fill bandwidth: 64 bytes per cycle, resulting in 90 GB/sec

Best-case hit latency is 10 cycles

DC write-through bandwidth is 16 bytes per cycle, resulting in 22 GB/sec

Peak Scache fill rate is 32 bytes per cycle, resulting in 45 GB/sec

ECC protected by quadwords

• 52-bit virtual address, 48-bit physical address, 8-bit ASN

• SK and 64K page sizes, granularity hint for bigger contiguous regions

• Independent 128-entry fully-associative ITB and DTB, with superpages for kernel
maps

2.1.2 Memory Features

The memory has the following characteristics:

•
•

•
•
•
•
•
•
•

•

•

Glueless interface to Rambus main memory

Two independent interleavable RDRAM ports per processor, with optional four
way processor striping

Each port consists of four channels

All transactions in units of 64-byte (512-bit) blocks

Optional redundant fifth channel protects against full-chip failure

Each channel supports up to 32 RDRAM chips

Each processor can support up to 256 RDRAM chips (plus redundancy)

With 1 GB parts, 32 GB per processor (35 address bits)

Peak processor memory bandwidth is 200M blocks per second, or 12.8 GB per sec
ond.

With redundant channel deployed, system tolerates total failure of a memory chip
plus single-bit errors in another chip.

Without redundant channel, system corrects single-bit errors in memory and detects
double-bit errors.

2.1.3 Multiprocessor Features

The 21464 provides the following support for multiprocessor configurations:

• Up to 512 processors with main memory and coherent caches

• Fully-distributed, non-blocking, directory-based CC-NUMA coherence protocol

• Optional I/O node per processor, may have cache and/or I/O memory but not cache
able main memory

• Glueless torus configuration - others possible with switch ASIC's

Compaq Confidential
5 January 2001 ···Subject To Change Architecture Overview 2-3

Microarchitecture Diagram

•
•
•
•

•

Maximum total physical memory is 244 bytes = 16 Terabytes .

Peak instruction rate exceeds 5.7 trillion instructions per second (teraops) .

Buffered crossbar switch fabric with virtual circuits

In 21364 mode, each network port supports 3.2 GB per second in and out

Four-port network throughput is 12.8 GB per second

In 21464 mode, each port supports 4.8 GB per second in and out.

Five-port network throughput is 24 GB per second

• Bisection bandwidth of a l 6x32 torus, cut across the narrow axis, is more than 300
GB per second

2.2 Microarchitecture Diagram

Figure 2-1 shows a simplified block diagram of the 21464 microarchitecture. As listed
in Table 2-1, the microarchitecture of the 21464 is separated into four major sections or
units, each of which contain one or more functional subsections, called boxes.

Table 2-1 Microarchitecture Major Sections Summary

Major Section Subsection Description

Instruction Unit Ibox Instruction fetch unit

Pbox Instruction processing (dependency resolution) unit

Qbox Instruction issue and retire unit

Execution Unit Register file

Ebox Integer instruction execution unit

Fbox Floating-point instruction execution unit

Memory Controller Unit Mbox Memory-reference instruction execution unit

Second-level cache (Scache) controller External Interface Unit Cbox

Rbox Router controller

Zbox Rambus memory controller

Compaq Confidentia I
2-4 Architecture Overview 5 J,1nu,1ry 2001 -· Subject To Cf1ange

Simultaneous Multithreading {SMT)

Figure 2-1 21464 Block Diagram

><
0
m
a.

><
~ a

><
0 m
0

Rambus
RI~

RanbLS
RIMVI

Register File
(512 entry)

N S E W

Retie/Kl
Uni

canp1e1ai
Uni

Process in

l/O ><
~
a:

2.3 Simultaneous Multithreading (SMT)

SMT differs from the more traditional forms of hardware multithreading in that every
thread can compete for issue slots at every cycle. Traditional multithreading designs
tend to invoke alternative threads only on second-level cache misses or to schedule the
threads in a rigid, round-robin fashion. The result is less resource utilization and less
performance improvement.

Compaq Confidential
5 January 2001 ·- Subject To Change Architecture Overview 2-5

Simultaneous Multithreading {SMT)

The 21464 can execute up to four programs simultaneously, each program running in
one of the four thread processing units (TPUs). While each TPU has some dedicated
hardware, most resources are shared between the four TPU s. Maximum single-stream
performance occurs when a single program is the only active thread in the CPU. In that
case, most chip resources are available to the active TPU (the single program) and the
design makes no compromises in single-stream performance. On the other hand,
because many programs cannot always use all the chip resources, it is often possible to
at least double overall throughput by running four programs simultaneously.

SMT adds very little cost to a single processor and can be used either to increase
throughput while executing independent programs or to speed up a single task that has
been decomposed into separate threads. The 21464 adds two instructions, LDx_ARM
and QUIESCE, to provide easy synchronization between cooperating threads.
LDx_ARM sets up a memory address register that monitors memory traffic. QUIESCE
suspends a thread until the memory location is written or a time-out counter expires; the
thread does not consume any resources while waiting for the signal to continue. See
Appendix B for information on the LDx_L and QUIESCE instructions.

Each TPU has its own dedicated program state that consists of 32 integer registers, 32
floating-point registers, a PC, and internal processor registers (IPRs). Also, some
microarchitectural structures, such as the Return Stack and the Instruction Buffer, are
statically divided into four parts, with each part dedicated to a TPU. However, most
microarchitecture structures are dynamically shared among the TPUs on an as-needed
basis. Dynamically shared structures include the caches, the translation buffers, the
branch predictor, functional execution units, and the instruction queue.

Overview of SMT Operation

Most thread-specific operations take place in the Ibox, the front end of the CPU pipe
line. The Ibox is time-multiplexed on a cycle-by-cycle basis between four active
threads, each being given equal priority. The Ibox thread fetch chooser normally fetches
instructions from that thread with the fewest instructions in the instruction queue. This
policy helps programs with high ILP go as fast as they can, yet provides instructions to
programs with low ILP as those instructions are needed.

The Ibox accesses the line predictor after the thread fetch chooser selects a thread from
which to fetch an instruction. At the next cycle, the resulting indexes are used to access
the Icache and the branch predictor. The two fetch chunks are stored in the instruction
buffer. The thread map chooser selects a thread and reads its two oldest fetch chunks
from the instruction buffer and collapses them into a single map chunk, which is sent to
the mapper in the Pbox. The mapper maps the registers, assigns INums, and slots the
instructions to the various pickers as the instructions are entered into the instruction
queue. The INum space is divided into a four segments for the four threads (the four
TPUs) and the INums are thread-specific because they keep track of program order.

The instruction queue then contains a mix of instructions from the four threads. Once
instructions are in the instruction queue, they are eligible to issue when their source
operands are available, regardless of which thread they belong to. The oldest, issue
ready instruction is chosen by each picker and sent to the appropriate Ebox or Fbox
execution unit. Because the threads have no register dependencies on each other, it is
much more likely that eight instructions are continuously ready to issue.

Compaq Confidential
2-6 Architecture Overview 5 Jc1n1.uiry 2001 ~-Subject To Change

Instruction Unit

2.4 Instruction Unit

The instruction unit consists of the Ibox, Pbox, and Qbox. The Ibox is the instruction
fetch engine. It provides high instruction-stream bandwidth to the remainder of the
chip. Specifically, the Ibox delivers instructions directly to the Pbox, which is responsi
ble for instruction number (INum) resource management, dependence analysis and reg
ister renaming. From there, instructions proceed to the Qbox, where they await the
resolution of their source register dependencies. Once an instruction's register depen
dencies have been resolved, the instruction is issued, provided that it wins arbitration
for an appropriate functional unit in the Ebox (arithmetic and logic integer operations),
Fbox (arithmetic floating point operations) or Mbox (memory operations). Once an
instruction has completed execution, it retires when it is the oldest non-retired instruc
tion in the machine for the appropriate thread processing unit (TPU) context.

2.4.1 Instruction Fetch Unit - the lbox

Instruction stream bandwidth is one of the major factors in overall chip performance. A
program cannot execute faster than the rate of its instructions entering the machine.
Achieving sufficient instruction bandwidth for a machine that can execute up to eight
instructions per cycle poses several challenges. In order to meet those challanges, the
Ibox contains many new features that were not designed into prior Alpha implementa
tions.

Features

The Ibox delivers up to eight instructions per cycle to the remainder of the machine.
The Ibox maintains the correct program counter (PC) while the CPU executes programs
and receives interrupts and exceptions to properly redirect the machine.

The Ibox contains the following new features to support high-bandwidth instruction
stream fetching, advanced control flow prediction, simultaneous multi threading (SMT),
and memory dependence prediction:

•
•
•
•
•
•
•
•
•
•

An !cache size of 64 KB or 16K instructions

Up to two potentially noncontiguous cache blocks are fetched per cycle

A fetch TPU chooser that creates a resource-balanced S MT fetch engine

Advanced branch prediction that predicts up to 16 branches per cycle

History-based jump target prediction

A collapsing buffer that facilitates over-fetching and merging fetch blocks

Memory dependence prediction that uses store sets

Advanced hardware !stream prefetching

A simultaneous multithreaded fill unit

An anti-thrashing !cache fill policy

Compaq Confide11tial
5 January 2001 ·-Subject To Change Architecture Overview 2-7

Instruction Unit

The Ibox components can be grouped into the following major sections:

Table 2-2 lbox Major Component Summary

Name

Checkpoint
Unit

Control Flow
Prediction
Unit

Fill Unit

Index Unit

Instruction
Processing
Unit

PC Unit

Description

The Checkpoint Unit maintains state for restarting the CPU in the event of an exception, and
trains the control flow predictors and the memory dependence predictor. In the event of an
exception, the Checkpoint Unit resets the PC, branch predictor, jump target predictor, and return
stack to the state that existed just before the fetch of the instruction that caused an exception.
Training information for the branch and jump target predictors is also kept and used to train the
predictors at the retirement time of branch or jump instructions.

The Control Flow Prediction Unit predicts PC changes at fetch-time for instructions that can
change control flow when executed: conditional branches, computed jumps, and subroutine
returns. There is a corresponding dedicated predictor for each: the conditional branch predictor,
the jump target predictor, and the return address stack.

The Fill Unit fetches instructions from lower-level memory and can fetch instruction blocks for
multiple TPUs simultaneously. The Fill Unit maintains a dynamic hardware pref etcher that
attempts to fill the Icache with blocks that would have missed in the future. The Fill Unit also
contains the Icache Translation Buffer (ITB) that translates virtual PC miss addresses to physical
addresses before making memory requests.

The Index Unit produces up to two indexes per cycle. The indexes are usually predictions from
the Line Predictor that are used to access the Icache, Branch Predictor, and Store Sets Array. The
Index Unit also contains the Fetch TPU Chooser that arbitrates among multiple TPUs that are
ready to fetch instructions. The indexes that are produced will have an associated TPU that is
sent along with the indexes down the Ibox pipeline. The Line Predictor itself consists of a
sequential and non-sequential component, to address the sequential and non-sequential code
sequences of the running programs.

The Instruction Processing Unit stores and retrieves instructions and associated tags and data
into its 64KB !cache and associated tag array. Instruction pre-decode bits are also stored in the
Icache data and tag arrays to speed instruction processing in the Ibox and instruction format
decoding in the Pbox. The Instruction Processing Unit also contains the Store Sets Array, which
produces memory synchronization identifiers called store sets for potentially every load and
store operation. The store sets instruct the Pbox to create explicit dependencies between certain
loads and stores. The Instruction Processing Unit also contains the Collapsing Buffer, which
stores instruction blocks that are driven by the Icache and collapses up to two instruction blocks
per cycle to deliver up to 8 instructions per cycle to the Pbox.

The PC Unit maintaines the program counters for each TPU. Typically, the PC Unit calculates
PCs based on the exiting instructions of the fetch blocks (such as branches, jumps, returns, fall
through, and so forth), but it also can be reset by interrupts and exceptions. The PC Unit is also
responsible for determining Icache misses, index mispredicts, and way mispredicts in the Ibox
pipeline.

2.4.2 Dependency Mapper Unit - the Pbox

The Pbox processes instructions that are fetched by the Ibox. The Pbox assigns INums
(instruction numbers) to the instructions, analyzes the data dependencies between
instructions, and maps their architectural source and destination values into physical
registers. The Pbox also maintains data structures that allow recovery of all relevant
processor state that corresponds to the architectural state of the machine prior to any un
retired instruction. This allows the processor to perform rapid trap recovery in the pres
ence of branch mispredicts or other exception conditions. The Pbox passes the renamed
instructions to the Qbox for scheduling and dispatch.

Compaq Confidentia I
2-8 Architecture Overview 5 Jc1nuc1ry 2001 --·Subject To Cfumge

Instruction Unit

The Pbox consists of the following components:

Table 2-3 Pbox Major Component Summary

Name

Bid/Grant Exception
Logic

Instruction Decoder

INum Allocator

INumMapper

Load/Store Serial
Number Allocator

Mapper Exception
Logic

Description

Chooses which of the pending kills from all TPUs should be broadcast to the rest of the
chip.

Decodes each of the eight instructions that arrive in a cycle. The decoder is placed early
in the pipe to aid slotting decisions and to provide inputs to the load/store flow control
mechanisms and to the IPR interlock mechanisms

Allocates INums to new map blocks sent down by the Ibox. Also contains the Map
Thread Chooser, which picks the next thread that will map instruction blocks and subse-
quently informs the Ibox

Maps source operand registers (VReg) into the INum of the last writer for the source
operand

Associates a sequential identifier with each load instruction (LUum) and a second iden
tifier with each store instruction (SNum). These LNums and SNums prevent deadlock
and manage flow control into the Mbox load and store queues

When notified of an exception by the Bid/Grant Exception Logic, rolls the Inum Map
per, Physical Register May, Load/Store Serial Number, and RC/RS Interupt Flag Widget
state back to the trap point

Physical Register Map Allocates physical destination registers to each dispatched instruction. This table is also
used to map virtual register operands into the corresponding physical registers

Post-Map Skid Buffer Holds a silo of the last few map blocks that have passed through the Pbox forward path

RC/RS Interrupt Flag Maintains state necessary to implement the RC/RS instructions
Widget

Retire/Kill Unit Communicates the identity of retired and/or killed instructions to all concerned boxes
by way of the Retire/Kill bus

Memory Queue Allo
cation Unit

Governs the allocation and deallocation of load queue (LQ) and store queue (SQ)
chunks to memory instructions. Also controls the High-Water Mark (HWM) that is sent
to the Qbox to regulate the issuing of loads and stores.

2.4.3 Instruction Issue and Retire Unit - the Qbox

The Qbox processes instructions that are renamed by the Pbox, and determines an
appropriate schedule for those instructions. Instructions cannot be executed until they
are "data ready", until their dependencies have been resolved. The Qbox can identify a
data-ready instruction by checking to see that both of its parent entries have asserted
their result-ready signals. This method is called a "decoded-space" dependence array.

The Qbox attempts to choose the "best" 8 instructions to execute for each tic of the
clock from a "window" of 128 candidates that are received from the Pbox. Each of the
eight scheduling pipelines can handle a subset of the 128 candidate instructions.
Because the subset can contain (in some cases) up to half of the instructions in the win
dow, the Qbox includes "pickers" that choose the best instruction out of a set of 64 can
didates.

Scheduling is a four step process:

1. Identify all data-ready instructions.

Compaq Confidential
5 January 2001 ···Subject To Change Architecture Overview 2-9

Instruction Unit

2. For each pipe, select the ''oldest" data-ready instruction enabled for execution in
that pipe.

3. Assert the result-ready signal that corresponds to each selected instruction, so that
all instructions that are stored in the instruction queue can see that the chosen
instructions have been issued.

4. For each instruction in the instruction queue, test the result-ready signal for each
operand for each instruction in that queue.

The Qbox selects the eight best "data ready" instructions for execution in eight integer
pipeline units and four floating-point pipeline units. In addition, the Qbox selects up to
four data-ready branch instructions for resolution in each cycle. It also retires all eligi
ble instructions, committing them to architectural state.

The Qbox consists of the following components:

Table 2-4 Qbox Major Component Summary

Name

Bid Enable Logic

Completion Unit

Dependency Arrays

Destination
Register Number Array

Exception Kill Logic

FPCR Control

InFlight Table

Instruction Queue

Load/Poison
Re-arm Widget

Load/Store
Number
High-Water Marker

Oldest CBR Selector

Payload Array

Picker Arrays

Post-Issue Logic

Description

Prevents otherwise-ready instructions from bidding in pipes that cannot service them,
either because of a slotting decision or because of non-data-related resource conflict.

Tracks which instructions have issued, which have passed their trap points, which are
I/O instructions, and which have retired.

Contains an identifier for the producer of each operand for each instruction in the
instruction queue.

Contains the destination register specifiers for each instruction. This array are sepa
rately located from the SRN because it is not on any performance-critical paths.

Removes from the Instruction Queue any instructions that have been killed due to an
exception.

Controls the update of the FPCR in the Fbox. The FCR, along with the native mode
FPCR trap and PALmode fetch barrier, guarantees the correct architecture (in-order)
behavior of writing and reading the FPCR register.

Tracks instructions that have issued and feeds INums that have passed their trap
points to the Completion unit.

The queue from which instructions are picked for execution.

Handles notification of load/miss events from the Mbox and ensures that all instruc
tions that depend on a missed load will replay at some later time. The LPR also deter
mines when individual instructions are eligible to be deallocated.

Disables load and store instructions whose LSNums indicate that there may not be
space available for them in the Mbox load/store queues. Also contains the logic for
preserving the consistency of the DTB on misses.

Identifies the oldest conditional branch issuing in the current cycle (that is, the one
most likely to cause a misprediction).

Contains all the instructions and the register file addresses of all operands.

On each cycle, chooses the oldest data-ready instruction for each execution pipeline.

Gathers bubble requests and routes them to the appropriate pipelines. The Post-Issue
Logic is also responsible for sequencing completion signals for the floating-point
pipelines.

Compaq Confidential
2-1 o Architecture Overview 5 Jc1nwtry 2001 m Subject To Change

Execution Unit

Table 2-4 Qbox Major Component Summary (Continued)

Name

Profile-Me Collection

Description

Collects the following instruction-time-oriented performance data for the two in
flight profile-me instructions: data ready, bid, issue, deallocation, and queue chunk
deallocation.

Queue Chunk Allocator/ Manages the 32 chunks for instruction queue allocation. Picks the two chunks to be
Deallocator allocated to the next group of eight instructions.

Queue Entry Table

Source Registers Num
ber Arrays

Translates IN um dependencies delivered from the Pbox INum Mapper stage into
queue entry number dependencies. The queue entry table also sets the No Live
Dependency bits, when, for example, an instruction is data-ready upon entry into the
queue.

Contain the indexes of the physical registers assigned to each source operand of each
instruction. These arrays (there are two) are kept close to the dependence/bid/grant
logic as the launch of the input physical register specifiers may be a critical path.

2.5 Execution Unit

The execution unit receives instruction information from the Qbox Payload Array and
the Qbox source and destination register number arrays (SRNs and DRN). The former
is received directly by the Ebox or Fbox execution units; the latter by the Register File.

2.5.1 Register File

Although the Alpha architecture only defines 64 registers, the 21464 is a multi
threaded, out-of-order machine that requires many more than 64 registers to keep its
pipelines full. The four independent threads each require 64 registers, and an additional
256 temporary registers are used to rename registers of inflight instructions to elimi
nate write-after-read and write-after-write conflicts. At 65 bits per entry, 512-entries
result in a 4KB register file.

Eight parallel execution units can consume up to 16 source operands and can produce
up to eight results per cycle. The 21464 implements each of 32K 'not-so-little' RAM
cells with 16 read ports and 8 write ports. Although such an implementation is not triv
ial, defining a register file with fewer ports would have forced the Qbox to either issue
instructions based on the number of operands needed from the register file, or trap
whenever the set of issued instructions needed more than the available number of ports.

2.5.2 Integer Instruction Execution Unit - the Ebox

The Ebox executes those Alpha instructions that do not reference memory and are not
floating point. The Ebox contains multiple copies of its various processing elements,
allowing the Qbox to schedule as many as eight instructions per cycle.

Compaq Confidential
5 January 2001 ··· Subject To Change Architecture Overview 2-11

· Execution Unit

Table 2-5 lists the Ebox major components.

Table 2-5 Ebox Major Component Summary

Component Description

Integer Units (8) The integer functional units execute the traditional integer arithmetic
and logical instructions as well as performing the address generation
and data formatting of memory instructions.

Multimedia Units (4) The multimedia units execute the newer integer instructions targeted
at accelerating multimedia operations and also perform integer multi
plication.

Register Caches (4) The register caches store recently written register values allowing
dependent instructions to issue before the register file is updated.

Structurally, the Ebox processing elements are organized into eight functional units,
each of which executes a predefined subset of the instruction set, as listed in Table 2-6.
Each integer functional unit is a logical collection of processing elements that collec
tively execute a specific set of Alpha instructions, and each functional unit is organized
as four clusters of two units each.

Table 2-6 Ebox Cluster Section Summary

Section Name In Units Description

Adder 0-7

Cross Cluster 0-7
Result
Interface

Global Con- 0-7
trol

Load Data 4-7
Interface

A full 64-bit signed integer adder that produces a complete result each cycle. Services
the following instructions:

Type Instructions

Add ADDL, ADDLN, ADDQ, ADDQN, S4ADDL, S8ADDL,
S4ADDQ, S8ADDQ

Sub SUBL, SUBL/V, SUBQ, SUBQN, S4SUBL, S8SUBL, S4SUBQ,
S8SUBQ

Compare

Other

CMPBGE, CMPULT, CMPEQ, CMPULE, CMPLT, CMPLE

LDAH, LDA, RS, RC

Receives one-cycle results from the other functional units, bypasses the data onto the
operand busses if immediately needed, and latches the data for writing into the local
register cache.

Decodes the instruction information sent by the Qbox and coordinates the various
processing elements within a functional unit.

Interfaces the data returned from the Mbox to the functional units and register caches.
Services the following instructions:

Type

Load

Special

Instructions

LDL, LDQ, LDQ_U, LDL_L, LDQ_L, LDBU, LDWU, LDG; LDS,
LDT,LDF

HW _LD, STx_C

Compaq Confidential
2-12 Architecture Overview 5 JamJc1ry 2001 ···Subject To Change

Execution Unit

Table 2-6 Ebox Cluster Section Summary (Continued)

Section Name In Units Description

Logic Box

Multimedia
Operand
Interface

0-7

4-7

Register File 0-7
Operand
Interface

Register File 0-3
Result Pipe

Performs logical and arithmetic operations. Services the following instructions:

Type Instructions

Cmove

Branch

Logical

Special

CMOVLBS, CMOVLBC, CMOVNE, CMOVLT, CMOVGE,
CMOVLE, CMOVGT

BLBC, BEQ, BLT, BLE, BLBS, BNE, BGE, BGf

AND, BIC, BIS, ORNOT, XOR, EQV

AMASK, IMPLVER, SEXTB, SEXTW

Forwards the instruction operands from the corresponding integer functional unit to
the multimedia clusters. Each multimedia cluster is associated with the lower integer
functional unit in a cluster and derives its operands from that functional unit. Services
the following instructions:

Type Instructions

Multiply MULL, MULLN, MULQ, MULQN, UMULH

Multimedia Opcode lC.XX, except SEXTB, SEXTW

Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG, STS, STT,
STF

Special ITOFF, ITOFS, ITOFf, HW _ST

Interfaces the operands from the register file to the Ebox opbusses. Also bypasses lit
erals onto the opbusses.

Handles staging of different result latencies, floating-point load format conversion
and forwarding of results to the register file.

Compaq Confidential
5 January 2001 ·- Subject To Change Architecture Overview 2-13

Execution Unit

Table 2-6 Ebox Cluster Section Summary (Continued)

Section Name In Units Description

Shifter

Store Data
Interface

Virtual
Address
Generator

0-3

4-7

A full 64-bit shifter that produces a complete result each cycle. Services the following
instructions:

Type

Shift

Mask

Extract

Insert

Zap

Instructions

SRL, SLL, SRA

MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH

EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH, EXTQH

JNSBL, JNSWL, JNSLL, JNSQL, JNSWH, JNSLH, JNSQH

ZAP,ZAPNOT

Interfaces to the store data buses (to the Mbox). This unit is not actually part of the
integer clusters but resides in a separate partition to the right of the integer clusters.
Services the following instructions:

Type

Store

Special

Instructions

STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG; STS, SIT,
STF
ITOFS, ITOFF, ITOFT, FTOIS, FTOIT

Computes the 16-bit displacement add and factors the big/little endian control to form
a correct virtual memory address. Services the following instructions:

Type Instructions

Load

Store

Jump

Special

LDL, LDQ, LDQ_U, LDL_L, LDQ_L, LDBU, LDWU, LDG; LDS,
LDT,LDF

STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG; STS, SIT,
STF

JM~JSR,RE~JSR_COROUTINE

TRAPB, EXCB, MB, WMB, ECB, FETCH, FETCH_M, WH64,
HW _LD, HW _ST, HW _MTPR, LDx_ARM, QUIESCE

2.5.3 Floating-Point Instruction Execution Unit - the Fbox

The Fbox executes all current Alpha floating-point instructions and the new paired sin
gle-precision instructions. The Fbox receives instructions from the Qbox, by way of the
Ebox, and receives operands from the register file, the load data buses (up to three), or
its own register caches. The Fbox returns floating-point results to the Register File and
floating-point store data to the Mbox, again by way of the Ebox. The Fbox returns
exception information to the Qbox.

Compaq Confidential
2-14 Architecture Overview 5 J<1nuary 2001 ·-Subject To Change

Execution Unit

Table 2-7 lists the Fbox major components.

Table 2-7 Fbox Major Component Summary

Component

Floating-point control register
(FPCR)

Interface control (F _JN1)

Operand steering unit (F _OSU)

Pipeline Clusters (F _Pn)

Register cache (F _RGC)

2.5.3.1 Functional Units

Description

Contains rounding information and trap disable bits used by the floating-point
operate instructions, and exception status information from floating-point
operate instructions. The FPCR is read from and written to the floating-point
registers by the MF _FPCR and MT_FPCR instructions. In addition, all oper
ate instructions use the dynamic rounding mode bits to round the results and
the trap disable bits to signal traps when an exception is detected.

Performs a partial decode of the opcode, function code, and thread processor
unit (TPU) to determine if a valid floating-point instruction has been issued.
The F _INT also contains logic that allows direct access to internal operand
buses from Register File operand buses, and logic to dispatch floating-point
store data to the Ebox from either the result data of pipelines F _PO and F _Pl,
or from the register cache.

Performs comparisons against incoming physical register (Preg) numbers to
determine the source of input operands to the Fbox pipelines.

The Fbox is organized as four identical clusters, each cluster consisting of one
execution pipeline. The four pipelines, F _PO through F _P3, allow up to four
floating-point operate instructions to be issued at each cycle. Two copies of a
register cache, one for each set of two pipelines, are included to allow the
results of recently completed instructions to be used with minimal delay. Each
pipeline contains the functional units needed to execute the various floating
point instructions.

Contains staging logic and static RAM that latch and hold recently generated
result data of the Fbox pipelines as well as copies of incoming floating-point
loads. The result data is eventually dispatched to the Register File. However,
this result and load data can be used in subsequent floating-point operations
without incurring the transit time delay in returning data from the Register
File

Table 2-8 lists the instructions that are executed by each functional unit in the

Compaq Confidential
5 January 2001 --· Subject To Change Architecture Overview 2-15

Memory Controller Unit - the Mbox

Fbox.

Table 2-8 Fbox Functional Unit Summary

Functional Unit Instructions

Add pipe 1 : F _APl ADD,SUB,CMP

Add pipe 2 : F _AP2

Divider : F _DIV

Graphics ADD: F_GAD

Graphics MUL : F _GML

Mull Unit : F _MUL

Short pipe : F _SHP

Square root : F _SQR

ADD/SUB (align> 1), CVTff, CVTfq, CVTqf, CVTql, CVTlq

DIV1

Paired single-precision except PMUL, PARCPL, and PARSQRT

Paired single-precision MUL type instructions: PMUL, PARCPL, PARSQRT

MUL

CPYSx, FCMOV, FBxx

Special operands (Zeros, Denormal OPD, NANs, INF,RES.OPD),INPUT
EXCEPTIONS, Mx_FPCR

SQRT1

1 See Section 2.4.3 for instruction issue rules regarding the DIV and SQRT instructions.

2.6 Memory Controller Unit - the Mbox

The Mbox executes Alpha memory access instructions, including integer and floating
point load and store, memory barrier, prefetch, write-hint, load-locked, and store-condi
tional.

The Mbox can process up to four instructions per cycle, out of order. At each cycle, the
Mbox can accept as many as three load instructions and as many as two store instruc
tions, for a maximum of four operations. The Mbox is solely responsible for tracking
memory reference instructions that have issued but not retired, and for ensuring that the
final effect of memory reference instructions is equivalent to sequential execution of the
thread, within the Alpha SRM definition of equivalence. The Mbox also receives fill
data from the Cbox and, to maintain cache coherence, processes probes that the Cbox
receives from the rest of the system.

There are two data input busses, each of which is associated with a store port.

The Mbox has four instruction ports to handle loads, stores, and prefetches. The Mbox
can return data on three of those ports, so the Mbox can accept a maximum of three
loads issued per cycle.

Of the four ports:

•
•
•

Two can perform loads and prefetches

One can perform loads, stores and prefetches

One can perform only stores

Compaq Confidential
2-16 Architecture Overview 5 Jc111uary 2001 -- Subject To Change

External Interface

Table 2-9 lists the Mbox major components.

Table 2-9 Mbox Major Component Summary

Component

Dcache

Dtags

Load Queue

Merge Buffer

Pre-MAF

Store Queue

Description

64KB of data storage, with a write-allocate, write-through write-policy

lK entries of tag storage, arranged as 2-way set-associative with 4 read ports and 1 write
port

64-entry queue that holds issued, but not-retired load addresses. Handles load ordering
traps and re-issuing of loads

16-entry buffer that accumulates Store data before writing it into the Dcache and Cbox

16-entry buffer that holds the addresses of loads that have missed in the Dcache and need
further activity in the Cbox.

64-entry queue that holds store addresses & data before stores have retired. Used to sat
isfy load requests to addresses with uncompleted stores

Translation Buffers 128-entry, fully-associative with 4 read ports to perform the virtual-to-physical address
transactions

2. 7 External Interface

The responsibilites of the external interface unit include:

•

•

•

•
•

•

Resolve misses in the !cache and Dcache, either in the Scache, local memory, or
remote memory.

Ensure that data written by the processor is made visible coherently to other proces
sors and 1/0 nodes.

Communicate with other nodes in a multiprocessor configuration so that the total
memory space can be shared.

Control Rambus memories to provide physical memory to the multiprocessor .

Implement a coherence protocol that ensures that all processors have a consistent
image of memory.

Accept and prioritize interrupt requests, delivering thread-specific requests to the
Qbox.

The external interlace unit consists of three major subsections that work together, in
conjunction with the cache coherency protocol, to present a distributed, shared, coher
ent, cached, multiprocessor memory (CC-NUMA) to the 21464 core.

2.7.1 Scache Controller - the Cbox

The Cbox controls the second-level cache (Scache). In particular, the Cbox controls:

•
•
•
•

Requests for cache blocks from the Ibox and Mbox

Write-through from the Mbox

Fills and displaced victims

Probes from the system

Compaq Confidentia I
5 January 2001 --· Subject To Change Architecture Overview 2-17

Ex.1ernal Interface

The Cbox contains the following major components:

Table 2-10 Cbox Major Component Summary

Component Description

Miss address file (MAF)

Victim address file (VAF)
Victim data buffer (VDB)

Holds requests from the processor whilst being processed.

Hold blocks being sent back to the system either as displacement victims or in
response to system probes.

Probe address file (PAF) Holds probes waiting to be processed.

2. 7 .2 Router - the Rbox

The Rbox provides the interprocessor switch - the communication fabric by which
21464 processors are interconnected to form glueless multiprocessor systems. The
Rbox interfaces the local processor and memory to I/O controllers, all other processors,
and their associated memories, through five bidirectional ports.

The Rbox includes the following physical components:

•

•
•

•

Port input queues -packets received from interface but not yet transferred to an
output queue

Port output queues - packets waiting to be transferred to a connected processor

Routing tables - translate destination node number or mask into output port selec
tion and virtual channel

Arbitration - selects among port input queues for transfer to output queues

2.7.3 Rambus Interface - the Zbox

The Zbox provides a glueless interface to two independent interleaved arrays of Ram
bus memories for processor's main memory, including cache-coherence directory. Each
array consists of four busses, each accessing up to 32 DRAM chips.

The Zbox includes the following physical components:

•

•
•

Rambus queues and sequencer - controls attached Rambus memories for read and
write operations. Includes scheduling table and page status.

Directory management and coherence protocol state machine .

Directory in flight table- D IFT records requests to the local memory that cannot
complete immediately because required data is "in-flight" somewhere in the sys
tem.

2.7 .4 Cache Coherency Protocol

The 21464 adopts the 21364 cache coherence protocol with small enhancements. The
protocol is a directory based CC-NUMA and tolerates out-of-order channels except for
the 1/0 channel, thereby supporting an adaptive packet routing.

2.7 .4.1 Introduction to the Protocol

The coherence protocol is the mechanism that lets numerous processors maintain a con
sistent image of the contents of memory, as required by the Alpha SRM.

Compaq Confidentia I
2-18 Architecture Overview 5 Janwiry 2001 ···Subject To Change

Pipeline Organization

The 21464 increases reliability and load-distribution by using multiple resources for
enforcing cache coherence. Further, the 21464 uses nondeterministic routing, which
makes the best use of available network resources. Such routing allows two messages
to take different paths and get out of order, even if they start and end at the same nodes.

The protocol is designed to ensure that all processors that cause and/or observe changes
in memory, see those changes occur in the same apparent order, even though the mes
sages between processors and memories may get out of order. The order observed by all
processors is the order in which requests are serviced in their home memory and, in par
ticular, in the Mbox directory in-flight table (the DIFT). Caches communicate with the
DIFT as they manipulate memory data, and the DIFT delays multiple requests for any
individual block until it has coordinated previous requests with any caches affected by
those requests.

The protocol, as managed by the DIFT, is concerned with the transitions between states,
and with performing the transitions in such a way that as much of the communication
latency as possible is kept out of the critical paths.

The memory system is designed with the expectation that a disproportionate fraction of
the memory traffic produced by any processor is addressed to its own local memory;
this is true for most multiprocessor applications, though precisely how much is highly
application-dependent. The protocol uses this fact, and the onchip communication
between a cache and its local controller, to optimize references to the local memory.
The Dcache optimizes the directory accesses for requests from local and remote pro
cessors. The onchip Dcache stores the directory information of most frequently used
cache blocks to minimize memory accesses for directory information. The Dcache is
updated by requests from the local Cbox and remote processors, thereby eliminating the
need for the LPR.

2.7 .4.2 Structures that Maintain the Cache Coherence

Cache coherence is maintained by using the following structures:

• Miss address file (MAP)

• System request pending queue (SRQ)

• Victim buffer

•
•

Victim address file (VAF)

Victim data buffer (VDB)

Probe queue (PRQ): probe queue

Directory in-flight table (DIFT)

2.8 Pipeline Organization

The pipeline is organized as follows.

Compaq Confidentia I
5 Jam..1ary 2001 -· Subject To Change Architecture Overview 2-19

Pipeline Organization

2.8.1 Pipeline Diagram

Symbol

v
V8

CMPl
RETl
CMP2

RET2

CMP3
RET3

Figure 2-2 shows the 21464 pipeline stages. Note the following symbol meanings in
Figure 2-2:

Meaning

Exception funnel timing
The cycle at which an exception kill is driven onto the Retire/Kill Bus. Its position in this diagram
is relative to the first good path instruction block after the exception kill is posted on the Retire/
Kill bus.
Completion of instructions issued from the 4 main computation pipes and caused no exceptions.
The earliest retire cycle (Retire Bus cycle) of instructions completed in CMPl.
Completion of instructions issued from the 4 main computation pipes which may cause an excep
tion (including all the floating-point instructions).
The earliest retire cycle (Retire Bus cycle) of instructions completed in CMP2. This is also the V3
timing of a Retire Time Exception.
Completion of instructions issued from the 4 memory pipes.
The earliest retire cycle (Retire Bus cycle) of instructions completed in CMP3. This is also the V3
timing of a Retire Time Exception.

In Figure 2-2, alphabetic characters that follow the box letter (such as the W in the sec
ond row's PW) signify negative integers and are defined in Table 2-11.

Figure 2-2 21464 Pipeline Stage Diagram

:::c
~
w
LL

0.
<C
:ii

('I) N
0. 1-
:E w
0 a:

~
w
a:

~ ~ Z 0 ~ 0 ~ oo ~ e > ~ ~ ~ N Q ~ N ~ ~ ~ ~ ~ oo ~ 8 ~ ~
~

~ ~ ~ ~ ~ Z 0 ~ 0 ~ oo ~ ~ > ~ ~ ~ N Q ~ N ~ ~ ~ ~ ~ oo ~ u

Compaq Confidential
2-20 Architecture Overview 5 Jam.u~ry 2001 -· Subject To Change

Pipeline Organization

2.8.2 Conversion Between Negative Integer and Alphabet

Table 2-11 shows the conversion between negative integers and the alphabet.

Table 2-11 Negative Integers to Alphabetics Conversion

-26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

ABC DEF G HI J KL MN 0 P QR STU V WX Y Z

2.8.3 Basic Pipeline Stage Conversion Equations

The basic pipeline stage conversion equations are as follows. The conversions are tabu
lated in Table 2-13.

Table 2-12 Pipeline Stage Conversion Equations

To From

I P+4

p Q+2

Q R+4

R E+4

E F+O

F M+l

M C+3

2.8.4 Conversion Table

As listed in Table 2-12, from box X<a> to box Y, =<a>+<intersection of boxes
X and Y>. The intersection in Table 2-13 is bolded.

Table 2-13 Pipeline Stage Conversion

To J, From~

I p Q R E

I +4 +6 +10 +14
p -4 +2 +6 +10

Q -6 -2 +4 +8

R -10 -6 -4 +4

E -14 -10 -8 -4

F -14 -10 -8 -4

M -15 -11 -9 -5 -1

c -18 -14 -12 -8 -4

v +6 +10 +12 +16 +20

Compaq Confidentia I
5 January 2001 ··· Subject To Change

F M c v
+14 +15 +18 -6

+10 +11 +14 -10

+8 +9 +12 -12

+4 +5 +8 -16

+O +1 +4 -20

-0 +1 +4 -20

-1 +3 -21

-4 -3 -24

+20 +21 +24

Architecture Overview 2-21

ln~truction Execution Pipelines and Latency

2.9 Instruction Execution Pipelines and Latency

Instruction Latency

Defines the parent-to-child issue latency. Also identifies any cross-pipeline delay asso
ciated with broadcasting the parents results to other pipelines. Instructions that are not
pipelined are also identified as "bubbling" for completion. Latency is shown in Table
2-14 in the following formats:

Format Meaning

n N cycle latency to a child in any pipeline

m+n M cycle latency plus extra n cycle to other pipelines.

n+B N cycle latency non-pipelined, requires bubble (B) to signal completion.

Execution Pipelines

In Table 2-14, the pipelines column identifies those of the eight pipelines in which the
instruction can execute. The actual slotting algorithm is a function of the types and
positions of the instructions in each map block. Details about instruction slotting can
be found in Section 2.10. Because an instruction is slotted to a particular pipeline does
not mean it must execute there. Follow-me capabilities in the Qbox allow instructions
for which operands are data-ready in another allowed pipeline in the same half of the
queue to issue from that pipeline. Pipelines 0, 2, 5 and 7 are in one-half of the queue,
pipes 1, 3, 4, 6 are in the other half.

Pipelines are described in Table 2-14 in the following formats:

Format

0-7
0-3
0,3
0-1
Alt 0-3

Meaning

Can execute in any pipe

Can execute in pipes 0, 1, 2, or 3.

Can execute in only pipes 0 or 3
Can execute in only pipes 0 or 1 and not both in the same cycle.

Can execute in pipes 0, 1, 2, or 3, but does not issue to the same pipe in con
secutive cycles

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency

PALcode (Opcodes as follows:)

00 CALL_PAL 0-1 5 1D HW_MTPR 6,7 1131
0-1 11

1B HW_LD 6,7 3 lF HW_ST 4,5

19 HW_MFPR 0-1 5 1E IFETCHB 4,5

Add/Subtract/Compare (Opcode 10)

ADDL 0-7 1 + 1 S4ADDQ 0-7 1+1

ADDQ 0-7 1+1 S4SUBL 0-7 1+1

CMPBGE 0-7 1+1 S4SUBQ 0-7 1+1

Compaq Confidential
2-22 Architecture Overview 5 January 2001 ··· Subject To Change

Instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic

CMPEQ 0-7 1 + 1 S8ADDL

CMPLE 0-7 1 + 1 S8ADDQ

CMPLT 0-7 1 + 1 S8SUBL

CMPULE 0-7 1 + 1 S8SUBQ

CMPULT 0-7 1 + 1 SUBL

S4ADDL 0-7 1+1 SUBQ

Integer Logical (Opcode 11)

AMA SK 0-7 1+1 CMOVLE

AND 0-7 1 + 1 CMOVLT

BIC 0-7 1 + 1 CMOVNE

BIS 0-7 1+1 CMOV2

CMOVEQ 0-7 1+1 EQV

CMOVGE 0-7 1 + 1 INOP

CMOVGf 0-7 1+1 ORN OT

CMOVLBC 0-7 1 + 1 XOR

CMOVLBS 0-7 1 + 1

Integer Shift (Opcode 12)

extbh2 0-3 1 + 1 INSWH

EXTBL 0-3 1 + 1 INSWL

EXTLH 0-3 1+1 mskbh2

EXTLL 0-3 1+1 MSKBL

EXTQH 0-3 1 + 1 MSKLH

EXTQL 0-3 1 + 1 MSKLL

EXTWH 0-3 1+1 MSKQL

EXTWL 0-3 1+1 MS KWH

insbh 2 0-3 1 + 1 MSKWL

INSBL 0-3 1+1 SLL

INSLH 0-3 1+1 SRA

INS LL 0-3 1+1 SRL

INSQH 0-3 1 + 1 ZAP

INSQL 0-3 1+1 ZAPNOT

Compaq Confidential
5 January 2001 -· Subject To Change

Pipelines Latency

0-7 1 + 1

0-7 1 + 1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-7 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1 + 1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

0-3 1+1

Architecture Overview 2-23

Instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines latency Mnemonic Pipelines latency

Integer Multiply (Opcode 13)

MULL 4-5 5 UMULH 4-5 5

MULQ 4-5 5

Integer to Floating Register Transfer (Opcode 14)

ITO FF 6,7 5 SQRTG Alt 0-3 18+1

ITOFS 6,7 5 SQRTS Alt 0-3 33+1

ITO FT 6,7 5 SQRTI Alt 0-3 33+1

SQ RTF Alt0-3 18+1

VAX Floating-Point (Opcode 15)

ADDF 0-3 3+1 CVTQF 0-3 3+1

ADDG 0-3 3+1 CVTQG 0-3 3+1

CMPGEQ 0-3 3+1 DIVF Alt 0-3 9+B+1

CM PG LE 0-3 3+1 DIVG Alt 0-3 13+B+l

CMPGLT 0-3 3+1 MULF 0-3 3+1

CVTDG 0-3 3+1 MULG 0-3 3+1

CVTGD 0-3 3+1 SUBF 0-3 3+1

CVTGF 0-3 3+1 SUBG 0-3 3+1

CVTGQ 0-3 3+1

IEEE Floating-Point (Opcode 16)

ADDS 0-3 3+1 CVTIQ 0-3 3+1

ADDT 0-3 3+1 CVTTS 0-3 3+1

CMPIEQ 0-3 3+1 DIVS Alt 0-3 9+B+1

CMPTLE 0-3 3+1 DIVT Alt 0-3 13+B+l

CMPTLT 0-3 3+1 MULS 0-3 3+1

CMPTUN 0-3 3+1 MULT 0-3 3+1

CVTQS 0-3 3+1 SUBS 0-3 3+1

CVTQT 0-3 3+1 SUBT 0-3 3+1

Miscellaneous Floating-Point (Opcode 17)

CPYS 0-3 1+1 FCMOVGE 0-3 1+1

CPYSE 0-3 1+1 FCMOVGT 0-3 1+1

Compaq Confidentia I
2-24 Architecture Overview 5 Jc1nuc1ry 2001 ··· Subject To Change

Instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency

CPYSN 0-3 1+1 FCMOVLE 0-3 1+1

CVTLQ 0-3 3+1 FCMOVLT 0-3 1+1

CVTQL 0-3 3+1 FCMOVNE 0-3 1+1

FCMOV2 0-3 1+1 MF_FPCR 0,3 3+1

FCMOVEQ 0-3 1+1 MT_FPCR 0,3

Miscellaneous (Opcode 18)

CCB 4,5 QUIESCE 4,5

ECB 4,5 RC 4,5 1+1

EXCB RPCC 0-1 5

FETCH_M3 RS 4,5 1+1

FETCH3 TRAPB

LDL_ARM 6,7 3 WH64 4,5

LDQ_ARM 6,7 3 WH64EN4 4,5

MB5 WMB 4,5

Multimedia (Opcode 1 C)

CMPLGE 2,3 5 TSQERRzzz 2,3 5

CMPWGE 2,3 5 TSUBzzz 2,3 5

CTLZ 2,3 5 UNPKBL 0' 1 5

CTPOP 2,3 5 UNPKBW 0' 1 5

CTTZ 2,3 5 UPKSBW4 0' 1 5

Ff OIS 4,5 5 UPKSWL2 0' 1 5

Ff OIT 4,5 5 UPKUBW4 0' 1 5

GPKBLB4 0' 1 5 UPKUWL2 0' 1 5

MAXzzz 2,3 5 VADDSL2 2,3 5

MINSB8 2,3 5 VADDUL2 2,3 5

MINSW4 2,3 5 VADDzzz 2,3 5

MINUB8 2,3 5 VMINMAXSL2 2,3 5

MINUW4 2,3 5 VMINMAXUL2 2,3 5

PERMB8 0' 1 5 VMINMAXzzz 2,3 5

PERR 2,3 5 VMULHUW4 2,3 5

PKLB 0' 1 5 VMULLUW4 2,3 5

PKSLW4 0' 1 5 VSLB8 0' 1 5

Compaq Confidential
5 January 2001 ···Subject To Change Architecture Overview 2-25

Instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency

PKSWB8 0' 1 5 VSLL2 0' 1 5

PKULW4 0' 1 5 VSLW4 0' 1 5

PKUWB8 0' 1 5 VSRAB8 0' 1 5

PKWB 0' 1 5 VSRAL2 0' 1 5

SEXTB 0-7 1+1 VSRAW4 0' 1 5

SEXTW 0-7 1+1 VSRB8 0' 1 5

TABSERRzzz 2,3 5 VSRL2 0' 1 5

TADDzzz 2,3 5 VSRW4 0' 1 5

TMULUSB8 2,3 5 VSUBSL2 2,3 5

TMULUSW4 2,3 5 VSUBUL2 2,3 5

TMULzzz 2,3 5 VSUBzzz 2,3 5

Load and Store (Opcodes as follows:)

08 LDA 0-7 1+1 26 STS 4,5 36

09 LDAH 0-7 1+1 27 STT 4,5 36

OA LDBU 6,7 3 28 LDL 6,7 3

OB LDQ_U 6,7 3 29 LDQ 6,7 3

oc LDWU 6,7 3 2A LDL_L 6,7 3

OD STW 4-5 36 2B LDQ_L 6,7 3

OE STB 4-5 36 2C STL 4-5 36

OF STQ_U 4.5 36 2D STQ 4-5 36

20 LDF 6,7 5 2E STL_C 4-57 3

21 LDG 6,7 5 2F STQ_C 4-57 3

22 LDS 6,7 5

23 LDT 6,7 5

24 STF 4-5 36

25 STG 4-5 36

Branch and Jump (Opcodes as follows:)

lA.O JMP 0-1 5 36 FBGE 0' 1

lA.1 JSR 0-1 5 37 FBGf 0' 1

lA.2 RET 0-1 5 38 BLBC 0-7

lA.3 JSR_ CO 0-1 5 39 BEQ 0-7

30 BR 0-1 5 3A BLT 0-7

Compaq Confidentia I
2-26 Architecture Overview 5 JanutAry 2001 ·- Subject To Change

Instruction Issue and Retire Rules

Table 2-14 Instruction Execution Pipelines and Latency

31

32

33

34

35

Mnemonic Pipelines Latency Mnemonic Pipelines Latency

FBEQ 0' 1 3B BLE 0-7

FBLT 0' 1 3C BLBS 0-7

FBLE 0' 1 3D BNE 0-7

BSR 0-1 5 3E BGE 0-7

FBNE 0-3 3F BGf 0-7

1 HW _MTPR instructions can specify a writer class to create an issue dependency to future
HW _MxPR instructions. HW _MxPR instructions that indentify a reader class dependency are sched
uled to issue no earlier than 1 cycle after the HW _MTPR instruction that wrote the class dependency.
HW _MTPR instructions can also specify writer class dependencies that are satisfied on completion,
rather than issue. HW _MxPR instructions that identify a reader class dependency against this type of
writer class are scheduled to issue no earlier than three cycles after the issue of the completion bubble
signal to the writer. The 21464 only allows specifying completion dependencies against HW _MTPR
instructions that target the Mbox; those that target the Ibox are ignored.

2 The mskbh, insbh and extbh decodes are not formally defined by the Alpha SRM because all combi
nations of inputs produce a zero result. The generalized decoding in the 21464 Integer Shifter does
not special case these code points and produces a zero result.

3 FETCHx instructions never actually issue from the Qbox but are completed immediately and there
fore act as NOPs.

4 The WH64EN instruction is currently proposed as ECO#l27 to the Alpha SRM.
5 MB instructions never formally issue from the Qbox but are instead sent to the Mbox as soon as they

enter the Qbox. MB instructions do not complete until the Mbox notifies the Qbox that the necessary
conditions have been met.

6 Although store instructions do not produce a register result and therefore do not have normal depen
dents, the Ibox store-set logic can create dependency groups of loads and stores. A load that is a store
set dependent on a store instruction has an effective issue latency of three cycles from the issue of the
store.

7 Store conditional instructions issue as stores to pipelines 4 and 5, but bubble back completion to the
Qbox. Final completion of the STx_C instruction appears on the load pipes 6 and 7.

2.10 Instruction Issue and Retire Rules

2.10.1 Issue Rules

In order to issue from the Qbox instruction queue (the IQ), instructions must bid in, and
be granted by, a picker. Slotting determines each instruction's "preferred pipe", i.e. in
which picker it may bid. Each cycle, the oldest bidding instruction in a picker is
granted. Only instructions that are bidding in a given cycle are candidates for grants.

2.10.1.1 Bidding Rules

The following rules apply to initial issue; there are additional qualifications for instruc
tions that must re-issue.

General Bids

In general, instructions may bid when all of their source operands are result-ready.
Additional conditions apply in the following cases.

Compaq Confidential
5 January 2001 ··· Subject To Change Architecture Overview 2-27

Instruction Issue and Retire Rules

•

•
•

•

•

•

•

•

Stores and loads that are slotted for a load picker may bid if the following are true:

They are result-ready

They are below their high-water mark (which signifies that the Mbox has suffi
cient resources to exectute them)

They are not dependent on a DTB writer block

Loads must satisfy any store-set dependencies prior to being enabled to bid .

All loads and stores are speculatively assumed to be below their high-water mark
when they first allocate into the IQ; their actual status is available one cycle later.
Any loads or stores that are granted as the result of a bid that was based on false
high-water mark speculation are retracted and do not issue from the IQ.

Jwnps (JMP, JSR, JSR_ COROUTINE, RET), direct branches (BR, BSR), RPCC,
CALL_PAL, HW _MTPR/HW _MTPR for lbox IPRs, and HW _LD/WrChk may
only bid if they are result-ready and their slotted picker is load-enabled in the cur
rent cycle.

Because floating-point divide and square root instructions are not pipelined opera
tions, they must not issue from the same picker on subsequent cycles and are thus
enabled to bid only on every other cycle.

Unfortunately, the IQ logic does not have time to disable bids for an FDIV or
FSQRT functional unit for which an instruction has been been granted on the
immediately preceding cycle. Therefore, the 21464 globally disables all FDIV and
FSQRT bids every other cycle to give the IQ time to determine exactly which
instructions may safely bid.

Instructions expressly identified as NOPs do not bid or issue but are allocated into
the IQ as invalid (i.e. empty) entries.

MB instructions do not issue from the IQ but are subject to special retire conditions
as described in Section 2.10.2.

Instructions stop bidding if they are killed. Instructions that are killed after being
granted, but before being issued from the IQ, do not issue.

Follow Me Bids:

Instructions that have a cross cluster delay become "locally" result-ready in the cluster
in which their result is produced one cycle earlier than they become "globally" result
ready in the rest of the IQ. Instructions that are locally result-ready, and meet all other
bid criteria, may bid in the relevant picker for that one-cycle window, even if it is not
their preferred picker. This is known as a "follow me" bid, since the dependent instruc
tions follows their parent into a cluster.

Instructions are only enabled to make a follow me bid in pickers from which they may
actually issue - in other words, they must be of a type supported by the functional
units serviced by the picker.

Compaq Confidential
2-28 Architecture Overview 5 J(111u(1ry 2001 - Subject To Change

lmplementation .. Specific Architecture Features

2.10.2 Retirement Rules

An instruction is eligible to retire if it is complete and all older, unretired instructions
within its TPU are also complete. The Qbox Completion Unit (CMP) retires instruc
tions one INum block at a time, but signals retire eligibility to the Retire/Kill Bus on as
fine as a per-instruction granularity (see the Completion Unit descripton for more
details).

2.10.2.1 Completion Rules

In general, instructions that have passed their poison point and their trap point - that
is, the last point in time when they can cause a disruption - are completed, with the
following exceptions.

•

•
•
•

•

•

Some memory instructions pass their trap point very late in the pipeline and are
therefore speculatively completed and subsequently uncompleted when any disrup
tion information becomes available.

Instructions identified as NOPs complete immediately upon allocation into the IQ .

Killed instructions are automatically completed .

MB and STx_C instructions are completed only when the Mbox indicates to the
CMP that it may do so.

The Mbox flags I/O operations for the CMP. I/O operations may complete nor
mally, but the CMP may not retire any block containing them until the Mbox sig
nals that this is permitted.

There is a facility to drain the Completion Unit pipeline in the event of an external
probe, in order in insure consistency between TPUs and/or CPUs.

Note that the time interval between an instruction's issue and completion depends on
the particular picker from which the instruction issues. Instructions issuing on the four
primary ALU pickers have a faster completion path than the others.

2.11 Implementation-Specific Architecture Features

2.11.1 New Instructions

2.11.1.1 Thread Synchronization

Using a multithreading architecture, the 21464 implements three new instructions that
enhance the performance of multithread processing.

Table 2-15 Thread Synchonization Instructions

Mnemonic

LDL_ARM

LDQ_ARM

Quiesce

Operation

Load Longword and Arm the Watch Register

Load Quadword and Arm the Watch Register

Wait on Access to the Watch Register

Compaq Confidential
5 January 2001 -·Subject To Change Architecture Overview 2-29

lmplementation .. specific Architecture Features

2.11.1.2 Short Vector SIMD (Single Instruction Stream, Multiple Data Streams)

The short vector SIMD instructions provide a complete set of vectorized integer opera
tions for multimedia and signal processing applications. They allow the processing of
multiple elements in each machine cycle by vectoring smaller data types that are
packed into a quadword.

Table 2-16 Short Vector SIMD Instructions

Mnemonic

Tree Operations

TABSERRSB8

TABSERRSW4

TAB SERR UBS

TABSERRUW4

TADDSB8

TADDSW4

TADDUB8

TADDUW4

TMULSB8

TMULSW4

TMULUB8

TMULUSB8

TMULUSW4

TMULUW4

TSQERRSB8

TSQERRSW4

TSQERRUB8

TSQERRUW4

TSUBSB8

TSUBSW4

TSUBUB8

TSUBUW4

Vector Operations

CMPLGE

CMPWGE

GPKBLB4

PERMB8

PKSLW4

2-30 Architecture Overview

Operation

Tree Absolute Error Byte

Tree Absolute Error Word

Unsigned Tree Absolute Error Byte

Unsigned Tree Absolute Error Word

Tree Add Byte

Tree Add Word

Unsigned Tree Add Byte

Unsigned Tree Add Word

Tree Multiply Byte

Tree Multiply Word

Unsigned Times Unsigned Tree Multiply Byte

Unsigned Times Signed Tree Multiply Byte

Unsigned Times Signed Tree Multiply Word

Unsigned Times Unsigned Tree Multiply Word

Tree Squared Error Byte

Tree Squared Error Word

Unsigned Tree Squared Error Byte

Unsigned Tree Squared Error Word

Tree Subtract Byte

Tree Subtract Word

Unsigned Tree Subtract Byte

Unsigned Tree Subtract Word

Compare LongWord

Compare Word

Graphics Pack Byte

Permute Bytes

Pack Signed Longwords to Words

Compaq Confidential
5 Jc1m1c1ry 2001 -· Subject To Change

lmplementation .. Specific Architecture Features

Table 2-16 Short Vector SIMD Instructions

Mnemonic

PKSWB8

PKULW4

PKUWB8

UPKSBW4

UPKSWL2

UPKUBW4

UPKUWL2

VADDSB8

VADDSL2

VADDSW4

VADDUB8

VADDUL2

VADDUW4

VMINMAXSB8

VMINMAXSL2

VMINMAXSW4

VMINMAXUB8

VMINMAXUL2

VMINMAXUW4

VMULHUW4

VMULLUW4

VSLB8

VSLL2

VSLW4

VSRAB8

VSRAL2

VSRAW4

VSRB8

VSRL2

VSRW4

VSUBSB8

VSUBSL2

VSUBSW4

Operation

Pack Signed Words to Bytes

Pack Unsigned Longwords to Words

Pack Unsigned Words to Bytes

Unpack Signed Bytes to Words

Unpack Signed Words to Longwords

Unpack Unsigned Bytes to Words

Unpack Unsigned Words to Longwords

Parallel Add Byte

Parallel Add Longword

Parallel Add Word

Unsigned Parallel Add Byte

Unsigned Parallel Add Longword

Unsigned Parallel Add Word

Parallel MIN/MAX Byte

Parallel MIN/MAX Long Word

Parallel MIN/MAX Word

Parallel Unsigned MIN/MAX Byte

Unsigned Parallel MIN/MAX LongWord

Unsigned Parallel MIN/MAX Word

Parallel High Multiply Word

Parallel Multiply Word

Parallel Shift Left Byte

Parallel Shift Left Longword

Parallel Shift Left Word

Parallel Shift Right Arithmetic Byte

Parallel Shift Right Arithmetic Longword

Parallel Shift Right Arithmetic Word

Parallel Shift Right Byte

Parallel Shift Right Longword

Parallel Shift Right Word

Parallel Subtract Byte

Parallel Subtract Longword

Parallel Subtract Word

Compaq Confidential
5 January 2001 ···Subject To Change Architecture Overview 2-31

lmplementation .. specific Architecture Features

Table 2-16 Short Vector SIMD Instructions

Mnemonic

VSUBUB8

VSUBUL2

VSUBUW4

Operation

Unsigned Parallel Subtract Byte

Unsigned Parallel Subtract Longword

Unsigned Parallel Subtract Word

2.11.2 CMOV Instruction Processing

With register renaming, the CMOV instructions must be treated as having three source
operands. A CMOVx Ra, Rb, Re instruction tests Ra for the x condition and, if true,
moves the contents of Rb into Re. If the condition is false, Re is left alone. Because of
renaming, the newly assigned Re register does not already have a copy of the old Re, so
a move has to be done in this case as well. This requires the hardware to read Ra, Rb,
and Re as sources, and to write Re as a destination as well.

Because the Pbox can only map two source registers and one destination register per
instruction, the third source is a problem.The 21264 solved the problem by breaking
the CMOV instruction into two separate instructions, CMOVl and CMOV2.

The 21464 adopts a similar solution -when the 21464 encounters a CMOV, it inserts
an additional instruction, CMOV2, into the instruction stream. However, unlike the
21264, if the instruction following the CMOV is the NOP that is described in Section
2.11.2.2, the 21464 replaces that NOP with the CMOV2, instead of creating a new
space. That allows the 21464 to map up to four CMOV instructions per cycle. This pair
of instructions is called the native CMOV; its implementation is described in Section
2.11.2.5. The pair of native CMOV instructions is mapped at full bandwidth and they
require no further treatment in the 21464 pipeline.

2.11.2.1 Integer CMOV Specification

CMOV instructions use the architected integer operate instruction format:

CMOVxx Ra.rq, Rb.rq, Rc.wq

Ra.rq, #b.ib, Rc.wq

The operation consists of testing Ra for the condition specified by the xx condition and,
if true, the value in Rb is written to register Re, as follows:

IF TEST(Rav, Condition_based_on_Opcode) THEN Re<-- Rbv

The different conditions specified by the function field are:

CMOVxx Opcode.Function Field Condition Under Which Re<- Rbv

CMOVEQ 11.24 Re <-- Rbv if Rav = 0

CMOVGE 11.46 Re <- Rbv if Rav ;;::: 0

CMOVGT 11.66 Re <-- Rbv if Rav > 0

CMOVLBC 11.16 Re <-- Rbv if Rav bit 0 is clear

CMOVLBS 11.14 Re <-- Rbv if Rav bit 0 is set

CMOVLE 11.64 Re <-- Rbv if Rav ::;; 0

CMOVLT 11.44 Re <-- Rbv if Rav < 0

CMOVNE 11.26 Re <- Rbv if Rav -:F- 0

Compaq Confidential
2-32 Architecture Overview 5 January 2001 - Subject To Change

lmplementath.·:mMSpecific Architecture Features

As described in Section 2.11.2, the 21464 breaks CMOV instructions into CMOVxxl
and CMOV2. For each of these instructions, the CMOVxxl instruction has the form:

CMOVxx Ra.rq, Rc.rq, Rc.wq

For each of these instructions, the CMOV2 instruction has the form:

CMOV2 Rc.rq,Rb.rq,Rc.wq

Rc.rq, #b.ib, Re. wq

CMOV2 has opcode/function field 11.68, which is currently an unused function field
in the Alpha architecture. Because the architecture does not require that unused func
tion code to trap, there is no conflict with the 21464 opcode detector.

2.11.2.2 Native CMOV

The native CMOV-nop that is recognized and replaced with CMOV2 is:

NOP R31, R31, R31

NOP has opcode/function field 11.20 (same as BIS).

2.11.2.3 Floating-Point FCMOVxx Specification

Floating-point CMOV instructions use the architected floating-point operate instruction
format:

FCMOVxx Fa.rq, Fb.rq, Fe. wq

The operation consists of testing Fa for the condition specified by the xx condition and,
if true, the value in Fb is written to register Fe, as follows:

IF TEST(Fav, Condition_based_on_Opcode) THEN Fe <--Fbv

The different conditions specified by the function field are:

FCMOVxx Opcode.function field Condition Under Which Fe <- Fbv

FCMOVEQ 17.02A Fe<- Fbv if Fav = 0
FCMOVGE 17.020 Fe<- Fbv if Fav;;::: 0
FCMOVGf 17.02F Fe<- Fbv if Fav > 0
FCMOVLE 17.02E Fe<- Fbv if Fav:::;; 0

FCMOVLT 17.02C Fe<- Fbv if Fav < 0
FCMOVNE 11.02 Fe <-- Fbv if Fav "# 0

As described in Section 2.11.2, the 21464 breaks FCMOV instructions into
FCMOVxxl and FCMOV2. For each of these instructions, the FCMOVxxl instruction
has the form:

FCMOVxxl Fc.rq, Fc.rq, Fe. wq

The FCMOV2 instruction has the foon:

FCMOV2 Fc.rq, Fb.rq, Fc.wq

FCMOV2 has opcode/function field 17.068, which is currently an unused field in the
Alpha architecture for that opcode. Because the architecture does not require that
unused function code to trap, there is no conflict with the 21464 opcode detector.

Compaq Confidentia I
5 January 2001 -· Subject To Change Architecture Overview 2-33

lmplementation~Specific Architecture Features

2.11.2.4 Native FCMOV

The native FCMOV-nop that is recognized and replaced with the above FCMOV2 is:

FNOP F31, F31, F31

FNOP has opcode/function field 17.020 (same as CPYS).

2.11.2.5 Implementation

2.11.2.5.1 Native CMOV

At Icache fill time, the Ibox does a partial decode of the 16 instructions being loaded
into the !cache. Within each halfblock of eight instructions, pairs of CMOVs and
CMOV-nops are detected, and the CMOV-nop is replaced by the CMOV2 instruction.
The CMOV-nop instruction is only decoded to a degree sufficient to guarantee that it is
an effective NOP. This includes detecting that the destination register is number 31 and
making sure that the opcode is 11 or 17.

Predicate Bit

When the Ebox (or Fbox in the case of FCMOV) sees the CMOVxx Ra, Re, Re instruc
tion, it tests Rav for the xx condition, copies Rev into the low 64 bits of the renamed Re
register, and if the xx condition is true, sets a sixty-fifth bit (the predicate bit) in the reg
ister. If the condition is false, the bit is cleared.

When the Ebox (or Fbox in the case of FCMOV) sees the CMOV2 Re, Rb, Re instruc
tion, it tests the predicate bit in Re, and if set, copies Rbv into the new Re. If the predi
cate bit is not set, the Ebox (or Fbox) copies Rev into the new Re.

The predicate bit is never set unless the 21464 is in the middle of executing the two
parts of a CMOV instruction. A CMOV2 with the predicate bit clear is a NOP, since it
copies Rev into Re. Since interrupts are taken on aligned eight-instruction boundaries,
and CMOV does not cause exceptions, the 21464 never takes an interrupt or exception
with the predicate bit set.

A CMOV2 instruction can be executed in isolation if software branches to the CMOV2
half of a native CMOV sequence. The original placeholder with a destination of R31/
F31 has been remapped to a CMOV2 with the same destination as the original
CMOVxx instruction. Since the predicate is guaranteed to be false, the CMOV2
instruction is effectively a NOP that just copies Re to Re.

Execution within PALmode

Because the shadow register replacement process in PALmode is keyed to different
registers numbers for Rb and Re, the 21464 does not correctly replace the inserted ref
erence to Re for native CMOVxxl instructions in PAL mode. See Section 17.4 for
information.

2.11.2.5.2 Legacy CMOV

Legacy CMOV s are CMOV instructions not followed by the designated native
CMOV-nop instruction. Legacy CMOV instructions are detected at !cache fill time,
and a predecode bit is set for each such instruction. When this instruction is fetched, the
Collapsing Buffer notices the set bit and create~ a CMOV2 instruction by making a
whole new instruction chunk. This new chunk can still be merged with the next fetch
chunk, but this method is limited to mapping at-most one CMOV per cycle.

Compaq Confidential
2-34 Architecture Overview 5 Jam1c1ry 2001 ··· Subject To Change

Interrupts

2.11.3 Mapper Alignment

Although the 21464 hardware tries to schedule instructions in an optimal way, there are
occasions where software would like some control of how instructions are mapped and
assigned to functional units. For this purpose, the 21464 defines the MAP _ALIGN
instruction. When MAP _ALIGN is placed in the last slot of an aligned half-block of
eight instructions, it causes that chunk to start a new map-chunk when mapped. That is,
the last chunk is not merged in the collapsing buffer with the previous fetch chunk.

The encoding for the MAP _ALIGN instruction is:

XOR R31, R31, R31

The Opcode/function field is 11.40

Implementation

At !cache fill time, the Ibox looks for the MAP _ALIGN instruction in the last slot of
the aligned fetch chunk. If found, it sets the MA predecode bit. When this chunk is
fetched, the Collapsing Buffer sees the set predecode bit and starts a new map-chunk,
beginning with the current fetch chunk. See Table 3-17.

This instruction is only partly decoded. Probably all instructions of the type

XOR *, *, R3 l have the effect of starting a new map block when fetched as the last
instruction in a fetch chunk.

2.12 Interrupts

Interrupt handling in the 21464 is unlike most earlier processors in three important
respects:

•

•

•

It has no external mechanism for continuously-asserted interrupt requests; all
requests are made as network transactions, and held in the processor awaiting ser
vice. This implies a requirement for handshaking around the clearing of interrupt
requests, to ensure that future requests are propagated to the processor.

The processor has multiple threads, each capable of running PAL code, interrupt
level service, or user code while the others are active. This implies a requirement
for interlocking among the threads which might be servicing interrupts which was
not necessary in earlier uniprocessors.

1/0 devices can implement a programmable Interrupt ID register, whose value can
be sent with an interrupt request to permit PALcode to vector directly to the appro
priate service routine.

External interrupt requests are transmitted through the network as IOWr messages to a
block of processor-specific registers. The requestor will receive WrIOAck, except in
the case that the message is directed to the Interrupt ID (IID) queue, and that queue is
full, when the response will be WrIONack. After receiving WrIOAck, the requestor is
expected not to retransmit the request until it has received an explicit release from inter
rupt software, or it times out. After WrlONack, the requester can choose to send the
request to another processor, retry the same one, or wait for a software timeout.

Compaq Confidential
5 January 2001 -~Subject To Change Architecture Overview 2-35

AMASK and IMPLVER Instruction Processing and Values

2.12.1 IPR Access Mechanism

2.12.1.1 HW_MFPR and HW_MTPR PALcode Instructions

PALcode uses the HW _MFPR and HW _MTPR instructions to access the internal pro
cessor registers. The HW _MFPR instruction reads the value from the specified IPR
into the integer register specified by the Ra field. The HW _MTPR instruction writes
the value from the integer register specified by the Rb field into the specified IPR. See
Section 17 .2 for information.

2.13 AMASK and IMPLVER Instruction Processing and Values

The AMASK and IMPLVER instructions appear to the rest of the 21464 as normal
Integer Logic Box (Opcode 11) instructions, but are handled specially by the Ebox.

The Ebox ignores the registers specified in the instruction and forces the CPU feature
mask constant onto the Ra operand bus whenever an AMASK instruction is decoded
and the implementation version constant onto the Rb operand bus whenever the
IMPLVER instruction is decoded. For both these instructions the logic box performs
the following operation:

Re = Rb & -Ra;

Given that the Alpha SRM requires Ra== R31, the equations reduce to:

AMASK Re= Rb &-CPU_feature_mask
IMPLVER Re= Implementation_version

The current constant values are:

CPU_feature_mask (AMASK) Ox1F07
Implementation_ version (IMPL VER) Ox04

2.14 Performance Monitoring

Performance monitoring hardware provides information about the running CPU in
order to:

• Drive profiling-directed-feedback optimizations to improve application perfor
mance.

• Guide the OS Scheduler to better utilize the TPU contexts.

• Provide architectural feedback for future alpha microprocessor and system imple
mentations.

To satisfy those goals, the 21464 supports three types of performance monitoring:

• An instruction-based profiling algorithm called ProfileMe.

Instruction-based profiling is performed by sampling the dynamic instruction
stream running on the 21464. Sampled instructions are chosen at fetch time based
upon a software-programmable IPR and are monitored while in-flight in the CPU.
Latencies and events are recorded for two separate instructions into a set of profile
record IPRs. When both instructions have finished utilizing CPU resources, a gen
eral interrupt to PALcode is triggered.

Compaq Confidentia I
2-36 Architecture Overview 5 J,1nu,1ry 2001 -·Subject To Cfumge

! .

Periormance Monitoring

The general interrupt service routine reads the INTERRUPT-SUMMARY IPR to
detennine that the interrupt was caused by an instruction profile event. A privileged
PAL routine can then read out the associated data for each profiled instruction by
issuing MFPRs to the profile record IPRs. In continuous sampling, software would
record the data from the current sample and reinitialize the software-programmable
IPR to begin the process for selecting the next pair of sampled instructions.

• Aggregate event-based performance counters for monitoring IPC per TPU, as well
as intra-thread resource contention of Caches, TBs, and the branch predictor.

Aggregate performance counters provide expedient insight into chip resource con
tention problems, especially among processes running on the different TPUs simul
taneously. The most potentially problematic resources are the caches (!cache,
Dcache and Scache), the translation buffers (ITB, DTB) and the branch predictor.
Misses/mispredicts in each of these structures can be counted. Overall performance
can also be monitored by using the cycle counter and the retired instructions
counter to obtain retired instructions per cycle per TPU.

There are three aggregate performance counters: the cycle counter, the retired
instructions counter, and one general event counter that can count one of the other
specified events (!cache miss, Dcache miss, Scache miss, ITB miss, DTB miss or
Branch mispredict). The retired instructions, and general event counter are actually
four counters that count events per TPU simultaneously.

• Hardware for monitoring memory addresses that was developed for the 21364 and
is being supported by the 21464.

Memory reference performance monitoring hardware is identical to that of the
21364. While the 21464 designers intend to support the same functionality, this
specification may change to reflect architectural differences in the memory sub
system of the two processors.

Instead of IPRs, this performance monitoring hardware is controlled and collected
via IO mapped CSRs. There are separate sections for the Cbox, Zbox and Rbox.

Compaq Confidential
5 Jam.u1ry 2001 - Subject To Change Architecture Overview 2-37

Performance Monitoring

Compaq Confidential
2-38 Architecture Overview 5 Jc1nw1ry 2001 -- Subject To Change

Features

3
Instruction Fetch Unit - the lbox

The Ibox is the instruction fetch engine for the 21464. It is responsible for providing
high instruction stream bandwidth to the remainder of the chip. Specifically, the Ibox
delivers instructions directly to the Pbox, which is responsible for instruction number
(INum) resource management, dependence analysis, and register renaming. From there,
instructions proceed to the Qbox, where they await the resolution of their source regis
ter dependencies. Once an instruction's register dependencies have been resolved, it is
issued, provided that it wins arbitration for an appropriate functional unit in the Ebox
(arithmetic and logic integer operations), Fbox (arithmetic floating point operations), or
Mbox (memory operations). When an instruction has completed execution, it retires
when it is the oldest non-retired instruction in the machine for the appropriate Thread
Processing Unit (TPU) context.

Instruction stream bandwidth is one of the major factors in overall chip performance. A
program cannot execute faster than the rate of instructions entering the machine.
Achieving sufficient instruction bandwidth for a machine that can execute up to eight
instructions per cycle poses several challenges. In order to meet those challanges, the
Ibox contains many new features that were not designed into prior Alpha implementa
tions.

3.1 Features

The Ibox is responsible for:

• Delivering up to eight instructions per cycle to the remainder of the machine

• Maintaining the correct program counter (PC) while the CPU executes programs

• Receiving interrupts and exceptions to properly redirect the machine

The following new features have been added to the Ibox to support high bandwidth
instruction stream fetching, advanced control flow prediction, simultaneous multi
threading (SMT), and memory dependence prediction:

•
•
•
•
•
•

Fetching up to two potentially non-contiguous cache blocks per cycle

Fetch TPU Chooser - to create a resource-balanced SMT fetch engine

Advanced Branch Prediction - predicting up to 16 branches per cycle

History based Jump Target Prediction .

Collapsing Buffer- to facilitate over-fetching and merging fetch blocks

Memory Dependence Prediction using Store Sets

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-1

Major Sections

• Advanced Hardware I-Stream pre-fetching

• Simultaneous Multithreaded Fill Unit

• Anti-thrashing Instruction Cache fill policy

3.2 Major Sections

Figure 3-1 Shows the Ibox block diagram. Following the figure is a list of the major
sections.

Figure 3-1 lbox Block Diagram

Index
Unit

FromEBox FromQBox

Checkpoint Unit

Control
Prediction Unit

Instruction Unit

Fill Unit

FromCbox

PC Unit

ToMBox

Compaq Cordidentia l

ToPBox
8 instructions

3-2 Instruction Fetch Unit-the lbox 5 January 2001 ···Subject To Clumge

Major Sections

The Ibox can be thought of as containing the following major sections:

Table 3-1 lbox Major Sections

Name

Checkpoint
Unit

Control Flow
Prediction
Unit

Fill Unit

Index Unit

Instruction
Processing
Unit

PC Unit

Description Section

The Checkpoint Unit maintains state for restarting the CPU in the event of an excep- 3.9
tion, and trains the control flow predictors and the memory dependence predictor.

Upon an exception, the Checkpoint Unit resets the following to the state that existed
just before the fetch of the instruction that caused an exception: the PC, branch predic
tor, jump target predictor, and return stack . The Checkpoint Unit also keeps training
information for the branch and jump target predictors, to train the predictors at the
retirement time of branch or jump instructions.

The Control Flow Prediction Unit predicts PC changes at fetch-time for instructions
that can change control flow when executed.

Control flow instructions are conditional branches, computed jumps, and subroutine
returns. There is a dedicated predictor for each: the conditional branch predictor, the
jump target predictor, and the return address stack.

The Fill Unit fetches instructions from lower-level memory.

The Fill Unit can simultaneously fetch instruction blocks for multiple TPUs. The Fill
Unit also maintains a dynamic hardware prefetcher that attempts to fill the !cache
with blocks that would have missed in the future. The Fill Unit also contains the
!cache Translation Buffer (ITB) that must translate virtual PC miss addresses to phys
ical addresses before making memory requests.

The Index Unit produces up to two indices per cycle.

The indices are usually predictions from the Line Predictor that are used to access the
!cache, Branch Predictor, and Store Sets Array. The index unit also contains the Fetch
TPU Chooser that arbitrates among multiple TPU s that are ready to fetch instructions.
The produced indices have an associated TPU that is sent along with them down the
Ibox pipeline. The Line Predictor itself consists of a sequential and non-sequential
component, to address the sequential and non-sequential code sequences of the run
ning programs.

3.6

3.8

3.4

The Instruction Processing Unit stores and retrieves instructions and their associated 3 .5
tags and data, and contains the following:

1 The 64KB !cache and it's associated tag array. Instruction pre-decode bits are also
stored in the !cache Data and Tag Arrays to speed instruction processing in the
Ibox and instruction format decoding in the Pbox.

2 The Store Sets Array, which produces memory synchronization identifiers (store
sets) for potentially every load and store operation. The store sets instruct the Pbox
to create explicit dependencies between certain loads and stores.

3 The Collapsing Buffer, which stores instruction blocks that are driven by the
!cache and collapses up to two instruction blocks per cycle to deliver up to 8
instructions per cycle to the Pbox.

The PC Unit maintains the program counters for each TPU.

Mostly it calculates PCs based upon the exiting instructions of the fetch blocks (for
example, branches, jumps, returns, fall-through, and so forth), but it also can be reset
by interrupts and exceptions. The PC Unit is also determines !cache misses, index
mispredicts, and way mispredicts in the Ibox pipeline.

Compaq Confidential

3.7

5 January 2001 ···Subject To Change Instruction Fetch Unit - the lbox 3-3

Forward Path Pipeline

3.3 Forward Path Pipeline

The main Ibox pipeline is shown in Table 3-2:

Table 3-2 lbox Main Pipeline

10 11

TPU Select Index Gen.

12

Icache Access

BPR Predict

JPR Predict

RPR Predict

13

Collapse

PC Cale

14

Drive to Pbox

IO The Index Unit comprises the functionality in stages IO and Il. In IO, the Fetch TPU
Chooser arbitrates among TPU's that are ready to fetch instructions, and selects one each
cycle.

11 The Line Predictor generates up to two valid Icache indices for the selected thread. The
Icache indices are predicted because the accessing PCs are not known this early in the pipe
line.

I2 The Icache is accessed, and two blocks of up to eight instructions each are read out, along
with their corresponding tags and other information. In parallel with the Icache access, the
control flow predictors operate to provide conditional branch, jump target or return address
predictions for branch, jump or return instructions that are being read out of the Icache
simultaneously.

13 The instructions, along with the control flow predictions, provide enough information to
calculate two PCs. The PCs are compared with Icache tags and Line Predictor indices to
determine whether the fetches hit in the Icache and the predicted indices were correct. If the
Icache accesses were correct, the instructions are buffered in the Collapsing Buffer, which
reads out up to two fetch blocks per cycle and collapses the instructions into an eight
instruction map block.

I4 The map blocks are sent on to the Pbox for mapping.

3.4 Index Unit

3.4.1 Fetch TPU Chooser

The Fetch TPU Chooser (FTC) is responsible for choosing one of the TPUs each cycle.
The chosen TPU's indices will be driven to the !cache and Branch Predictor. Each
cycle, the FTC will choose the TPU that is consuming the fewest Ibox pipeline
resources, and is ready to fetch instructions. Ties can occur, and are broken using a
round robin algorithm.

In order to monitor Ibox pipeline utilization, the FTC receives input from the collapsing
buffer each cycle that indicates the number of entries consumed. The FTC also receives
input from the pipeline latches at each stage to monitor the number of in-flight fetch
chunks that may eventually consume entries in the instruction buffer. The FTC is
responsible for not selecting a TPU if fetching its' corresponding instructions will over
flow the instruction buffer. The FTC evaluates whether a TPU is ready to fetch instruc
tions each cycle by receiving input each cycle that either enable or disable a TPU for
arbitration. A TPU will be disabled from arbitration if it is awaiting a pending !cache

Compaq Confidential
3-4 Instruction Fetch Unit - the lbox 5 Jc1nwiry 2001 - Subject To Change

Index Unit

fill, or if that TPU's collapsing buffer is about to become full. The TPU will be re
enabled for arbitration when the pending fill returns or when some collapsing buffer
entries are freed.

The FTC is also responsible for ensuring that every TPU makes forward progress. It
does this by detecting when a TPU has not mapped real instructions for a very long
time, and stalling the other TPUs until the starving TPU maps instructions.

The CPU can be configured to run 1,2,3 or 4 TPUs. An IPR will indicate whether each
of the TPUs is "alive" or not. Clearing a TPU's "alive" bit will disable that TPU, that is,
the machine will no longer fetch instructions from that context.

3.4.2 Line Predictor

Figure 3-2 Line Predictor Block Diagram

PC Table

Line Predictor

PC Cale

!cache

The primary function of the Line Predictor is to provide two indices to the Icache by
which it can look up instructions. The index for the Icache are bits <15:2> of the full
address. Bit <15> in the Icache index is a way bit; it selects which way or set stores the
instructions. One way bit implies that there are only two ways a fetch block can be
stored in the Icache. The way bit <15> can be inverted in contrast to the original bit 15
of the PC to place it the other way inside the Icache. This mechanism stops two differ
ent addresses that have the same lower bits <15:2> from occupying the same cache slot.
This is also known as thrashing.

To maximize effectiveness, there are three different prediction arrays. Already it can be
seen that there is a need to predict two indices. One array could be used to predict both
indices, but performance can be dramatically increased if some optimizations are done.
First, predicting the two indices separately allows different index schemes and thus bet
ter independent predictions for the two slots. Secondly, a sequential predictor requires
less area by storing a single bit that indicates a sequential index is to be predicted (a

Compaq Confidential
5 January 2001 --· Subject To Change Instruction Fetch Unit - the lbox 3-5

Index Unit

sequential index can be generated with an adder and the current index). A non-sequen
tial array can then have more room for storing purely non-sequential indices while the
sequential array can be made quite large due to its small storage requirements. It is
infeasible to implement a sequential index generator for Slotl due to timing constraints,
therefore only SlotO prediction will have a sequential predictor in addition to a non
sequential predictor.

While the line predictor is in a free-running state, meaning that it's prediction is per
fect, the line predictor can simply obtain its input index from its own output. This is the
secondary function of the Line Predictor, to provide itself with a lookup index. The
index that the Line Predictor will use to index itself happens to be the second index it
sends to the Icache (Slotl). The read index for the Line Predictor is actually broken up
into three indices to access each of it's three arrays. Additionally, the Line Predictor
uses a "squash" bit to index itself. There is some hashing involved of the bits to get the
final read indices. The three arrays are: slotO nonsequential array, slotO sequential array,
and the slotl nonsequential array. Each array is indexed slightly differently, but they all
use the same bits. Since the two non-sequential arrays are actually smaller than the
addressable index space, hashing is employed to yield the best performance.

For SlotO, there are two hash indices, sequential and nonsequential.

• Sequential - <14:5>,<15>,<4:2>

• Nonsequential - <14:5>,<15>,(<4> I <3> I <2>)

For Slotl there is just one hashed nonsequential index

• <14:5><15>,(<3> I <2>),(<16> /\ <4>)

Bits <14:5> are commonly decoded for all three predictors. Since the arrays can do the
hashing on the fly, only non-hashed index bits need to be stored in the nonsequential
arrays.

The SlotO sequential array has 16k entries and the SlotO nonsequential array has 4k
entries. The Slotl nonsequential array has 8k entries - more than SlotO nonsequential
because Slotl does not have the benefit of a sequential predictor.

The Line Predictor index also has a additional "squash" bit. Sometimes the backend of
the Ibox pipe can't handle slotO and slotl at the same time. Without a squash mecha
nism, the Line Predictor would have restart Slotl via a line mispredict (which costs 2-3
cycles for that TPU). Instead, the Line Preditor will be indexed by the squash bit instead
of bit <15>. In the normal, no-squash case, the squash bit is the same as bit <15>.
When PCC detects the squash case, it will simply invert the squash bit from the normal
case. So now the Line Predictor can be trained with an "alternate" index by inverting
the squash bit so that it now is the inverse of bit <15>. This new "alternate" index will
be trained to re-predict slotl (in the slotO position) again. It's up to the PC calc section
to flip the squash bit for the Line Predictor after it first realizes it can't handle both slots.
This way the Line Predictor can keep moving without taking a mispredict for Slotl
every time the backend can't process it.

Compaq Confidential
3-6 Instruction Fetch Unit-the lbox 5 January 2001 - Subject To Change

Index Unit

3.4.3 Thread Index Latches

3.4.3.1 {Re)Starting/Resuming the Pipe

When the Line Predictor mis-predicts, it needs to be restarted with an index other than
its own output (because it's bad path now). There needs to be some mechanism of gen
erating an index for the !cache and Line Predictor from somewhere other than the Line
Predictor itself. The simplest way to provide this capability is to put a mux on the look
up index that picks between the Line Predictor output and an alternate PC. Old predic
tions for a sleeping thread also need to be stored until the thread is awakened. We have
many different sources for an alternate PC. This forms the basis for the thread index
latches. In general, PCs from all restarts come from one of three places :

• PAL BASE+ OFFSET

• Checkpoint Tables. Jump/Return addresses, alternate PC's, etc. that are stored here.

• PCO and PC 1 - Calculated values for the PC from PC Cale section

There are correspondingly three types of restarts: exceptions, misprediction, and thread
resume.

3.4.3.1.1 Exceptions

There are three types of exceptions that can change the PC: Post Map, Ibox internal,
and interrupts.

• Post Map

Post Map exceptions have top priority. All indices for Post Map exceptions are
received from the Checkpoint Table, while the signaling of the event can come to
the Ibox through two interfaces: the fast path and the Efunnel (Exception Funnel).
Fast path exceptions are signaled by the Ebox and Qbox, while the Exception Fun
nel is entirely contained within the Pbox.

Exceptions that are caused by mispredicted conditional branches can use the special
fast path bypass, which reduces the mispredicting branch penalty. These exceptions
can only be acted upon if nothing is coming from the exception funnel that cycle.
The Qbox sends the Ibox the INum, TPU, and prediction of the oldest issued CBR
every cycle while the Checkpoint Table sends a restart index to the Line Predictor.
Two cycles later, the Ebox will send the result of the prediction for that CBR and if
there is a mispredict, the exception is taken and the new index is ready to load into
the index latches.

The Exception Funnel is a Pbox widget that filters exceptions such that only the
oldest exceptions are signaled to the Ibox. It works by the Pbox sending the Ibox a
signal indicating what restart address to use and which TPU is excepting. The
Checkpoint Table will use this information to select an index to send to the Line
Predictor.

Since there are all sorts of delays between boxes inside the 21464, there must be
some kind of guard against taking a bad-path (younger) exception after an excep
tion has already occurred until the kill has destroyed all remnants of the bad path.
To take a bad-path exception is bad, very bad. Older exceptions are ok, however,
since they are on the good path by definition. The main problem faced here is that it
is not known when all bad-path instructions have been killed. Luckily, there is a
large window of opportunity.

Compaq Confidential
5 January 2001 -·Subject To Change Instruction Fetch Unit - the lbox 3-7

Index Unit

Kills happen relatively quickly compared to how long it takes for the first good path
instructions to get issued. What's needed is a window of time after an exception is
taken during which younger exceptions will be masked out. This is just imple
mented as a counter. The count wil be determined as follows: Ibox pipeline stages
+ Pbox pipeline stages+ Qbox pipeline stages until earlist possible issue, which is
hopefully longer than the kill time for bad-path instructions. Note that this covers
both the fast-path CBR exception interface and the Efunnel interface

• lbox internal

•

Ibox internal exceptions are medium priority, only losing priority to the Post Map
exceptions. All indices for these exceptions come to the thread index latches by
way of line mispredicts and non-index faults (see below). This means that the Ibox
internal exception indices are not directly fed to the thread index latches. Instead
they are sent to PC Cale where they will cause an index mispredict. Pipe control
will guarantee that only one TPU can take an Ibox internal exception per cycle.

There are five types of internal exceptions: Reset, Warm Reset, Uncorrectable ECC
error, ITB miss, and Read Access Violation. Each of these will be described in
more detail in another section. Although the indices physically from PC Cale, they
in fact originate from the Checkpoint Tables as a PAL BASE + OFFSET.

Interrupts

Interrupts have the lowest priority. The Cbox sends the Ibox a 4 bit TPU vector
indicating an interrupt on that TPU. Then pipe control will load Pal Base + Offset
into the PC latches. This will cause a line mispredict and PCC will send the correct
index to the Line Predictor to start on. This is the same mechanism as for Ibox
internal interrupts. It's important to note that even though Ibox internal exceptions
and interrupts have a priority ordering, the Line Predictor can not distinguish the
difference between the two. It is up to pipe control to prioritize these.

3.4.3.1.2 Misprediction - PC Cale

When the Line Predictor mispredicts, the new start index comes from the PCC (PC
Cale) section. There are two possiblites: PCO and PCl, depending on which slot
mispredicted. Additionally, a restart can ocurr a cycle later because of a tag problem -
this is called a non-index fault. In this case, the PC must be piped one cycle to line up
with the restart indication. Here are all the restart cases signaled to the line predictor
from PCC in order from youngest to oldest:

1. SLOTO mispredicts

This mispredict is the youngest mispredict and therefore has the least priority. The
index comes from PC CALC which must go directly into the thread latch. PCC will
signal this case late in 13 which makes it a critical path into the thread latches.

2. SLOTl mispredict

Again, the index comes from PC CALC which must go directly into the thread
latch and is signaled late in I4A so this is also a critical path to write PCl into the
thread latch.

3. SLOTO non-index fault

Compaq Confidential
3-8 Instruction Fetch Unit - the lbox 5 Jc1nuary 2001 m Subject To Chtmge

Index Unit

The index here is the same as SLOTO mispredict, but is piped by one cycle (I4A) in
the index latches. A way mispredict can be signaled additionally by PCC in I4A. In
this case, bit <1 S> of the PC needs to be inverted before writing into the thread
index latch. Also, a bit is sent with this new "inverted" index to tell the PC CALC
section not to way mispredict again.

4. SLOTl non-index fault

The index is the same as SLOTl mispredict, but is piped by one cycle (ISA) in the
index latches. Again, a way mispredict can be signaled additionally by PCC in
ISA. In this case, bit <1 S> of the PC needs to be inverted before writing into the
thread index latch. Also, a bit is sent with this new "inverted" index to tell the PC
CALC section not to way mispredict again.

3.4.3.1.3 Thread Resume - Line Predictor (two indexes)

When the Fetch Thread Chooser switches threads, the predictions for the previously
active thread need to be saved so that when that thread is reselected in the future, the
indices for SLOTO and SLOTl are ready to index the Line Predictor and !cache. Other
wise, you would lose performance, as the Line Predictor would be generating indices
for the thread that just stopped and not the thread that just started. This is the default
index source if the thread is selected and no other exceptions have happened.

3.4.3.2 Other Index Latch Tracking Functions

There are few more things the index latches need to track besides indexes: Slotl Valid,
bank conflict, ITB enable, squash prediction, way mispredict restarts, and a guard
mechanism:

• Slotl Valid

Slotl valid is set if the index came from the line predictor. For all other cases it is
invalidated.

• Bank Conflict

This means a read and write to the same bank has occurred. Writes take precedence
so the predictions that come out of the line predictor in the next cycle are not valid.
A bank conflict signal is sent to pipe control (PCC) so that it can invalidate the
cycle and the next cycle the index is retried.

• ITB enable

•

•

•

When a uITB miss has ocurred, the pipe has to be restarted and the ITB n~ds to be
enabled to process the !cache miss. The thread latches hold on to the ITB enable
state so that when the TPU is selected, the ITB can be enabled.

Squash Prediction

As explained previously, the line predictor arrays hold a squash bit for squash pre
diction. Squash prediction is calculated by XORing bit <14> from the prediction
with the squash bit. This prediction is then stored in the index latches so that the
prediction can be sent down the pipe when the TPU is resumed from sleep.

Way Mispredict Restart

When a way mispredict is signaled from PCC, a bit of state needs to accompany the
restart index to indicate that a way mispredict is to be ignored.

Guard

Compaq Confidential
5 January 2001 -- Subject To Change Instruction Fetch Unit - the lbox 3-9

Index Unit

As a safety precaution, there is a guard mechanism set for one cycle after any
restart. The guard causes the index latches to ignore any PC Cale exceptions (like
mispredicts). In theory, PC calc should not signal a exception after a restart since all
pipe stages are killed. The first possible index that could cause an exception is the
restart index. The guard is in place only in case pipe control can't kill it's pipe stages
in time.

3.4.4 Thread Training Latches

In order for the Line Predictor to actually predict correctly, it needs to be trained to pre
dict the correct indices when it is wrong. Training will require the corrected index to
write into the array, the index to write this new data with, and a write enable signal. In
truth, there are three separate arrays that are trained independently.
SlotO Sequential, SlotO nonsequential, and Slotl nonsequential are all read simulata
neously. This means that the training index (the write index) for all three arrays is the
same. In fact, word lines are shared between all three arrays for both reads and writes.
Writes, however, are exclusive between SlotO and Slotl. This is true because if SlotO
mispredicts, Slotl is killed so it is not known if it's prediction was correct. Slotl could
be trained with the data that was already in the array but this is difficult to implement so
Slotl and SlotO will have exclusive write enables. Similarly, if Slotl mispredicts it must
mean that SlotO was predicted correctly so SlotO doens't need to be trained.

SlotO also has another case: sequential/nonsequential training. There are three training
cases:

• SlotO predicted sequential and mispredicts (nonsequential) -The sequential array
must be written with a 0, or nonsequential prediction. The nonsequential array must
be trained with the nonsequential index. Two arrays are trained at the same time.

• SlotO predicted nonsequential and mispredicts nonsequentially - The nonsequential
prediction was wrong and needs to be trained with a new nonsequential index.

• SlotO predicted nonsequential and mispredicts sequentially - The sequential array
needs to be trained for a sequential prediction. The nonsequential array is left alone.
It is important that the nonsequential isn't written in this case even though it may
seem harmless. The truth is that the sequential array has many more entries than the
nonsequential array. The nonsequential prediction may have actually been the pre
diction for a different index that happened to alias to the same entry in the array. In
this case, the nonsequential prediction should be left alone since it may be an accu
rate prediction for a different index.

So now it can be seen that three write enables are needed. SlotO Seq, SlotO Nonseq, and
Slotl (nonseq). There are two more pieces to training. The training index and the train
ing data. The training index is just the index used to access the predictions that were
wrong. The job of the training latches is to hold on to this index for each thread. The
training data is just the restart PC index bits sent back by PCC plus the squash bit.

Training will only ocur for a thread when training data is available, an index mispredict
or way mispredict has ocurred, and that thread is selected by the thread chooser. There
fore, it is the training latches job to keep the write enables and write index for each
thread until the thread is selected. The training data comes from the thread index latches
since the write data is the same as the current read index in the line pred arrays.

Compaq Confidential
3-10 Instruction Fetch Unit- the lbox 5 Jc·muary 2001 ·-Subject To Change

Instruction Processing Unit

If it happens that the index being restarted is the same as the write index used for the
train then a condition known as bank conflict will ocurr. This means that both a read
and a write are trying to access the same bank and the line predictor array can't handle
both at the same time. When this happens, writes will take priority over reads. The
cycle of the write there will be no vaild indices coming out of the line predictor. The
pipe control must insert a bubble in the pipe for this thread since there are no valid
!cache read indices. During the bubble cycle what will happen is that the read index that
caused the bank conflict will be tried again so that the next cycle two valid indices will
be read out of the line predictor and sent to the !cache.

3.5 Instruction Processing Unit

The Instruction Processing Unit consists of the !cache data array, the !cache tag array,
store sets based memory dependence predictor, and the collapsing buff er.

3.5.1 lcache Data Array

The !cache is 64KB. It is pseudo 2-way associative, with a thrash-remap fill policy. A
cache block can be stored in one of two possible locations. Most blocks will be stored
using direct mapped indexing. However, if two blocks are detected as repeatedly com
peting for the same direct mapped cache location then one of the blocks will be
remapped by inverting the MSB of its index. This condition is detected in the Fill Unit
using a thrash detector (see Section 3.8).

The !cache array is made up of 8 banks. Each cycle the Ibox attempts to fetch two half
blocks, or fetch chunks from the !cache, one for slotO, the other for slotl. If there isn't
an !cache fill occurring in a given cycle, the slotO fetch is always allowed. The slotl
fetch is only allowed if its fetch is for an entry in a different bank from the slotO fetch,
or if it is for the exact same block (either half) in the !cache as the slotO fetch. This
allows fetching two "fetch chunks" per cycle without double pumping the !cache, as
long as the two fetch chunks are not for two different cache blocks in the same cache
bank. It has been observed that pairs of consecutive fetch blocks in a variety of bench
marks are about 50% likely to be consecutive. Since consective fetch chunks are either
on the exact same cache block, or are in the next cache bank (due to bank interleaving),
sequential program access to the cache is guaranteed not to have a read bank conflict
and should always be capable of reading two fetch chunks per cycle. Non-sequential
fetch chunks that are separated by a multiple of 8 cache blocks will attempt to access
multiple cache blocks in the same cache bank, in this case the SlotO read will be given
priority over the slotl read.

The 21464 provides the MAP _ALIGN instruction, which allows software some control
over mapping fetch chunks, in disregard for the efficiencies just described. See Section
2.11.3 for information.

When a cache miss occurs, a cache fill operation fetches and writes a full cache block of
16 instructions through the Fill Unit. Fills are given higher priority than either a slot 0
or slot 1 read. If a fill is occurring to the same bank as either a slot 0 or slot 1 read in a
given cycle, neither read will be allowed, and the two reads could be replayed the fol
lowing cycle. The Index Unit provides the two read indices (slot 0 and slot 1) to the
!cache along with a valid bit per read index. The Fill Unit provides the write index dur
ing an !cache fill along with a valid bit per !cache bank. The !cache decoders contain
logic that arbitrates slotO/slotl read conflicts, and the read/write conflicts.

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Fetch Unit- the lbox 3-11

Instruction Processing Unit

The Icache Data Array is parity protected.

The bits in an entire cache block of the I cache data array would consist of:

Table 3-3 lcache Data Array Cache Block Contents

Bits

1(15:0]<31:0>

CY[l5:0]

CI[15:0]

CM[15:0]

PQ[15:0]<3:0>

DP<9:0>

3.5.2 lcache Tag Array

Description

Sixteen 32-bit modified instructions

One overflow bit for each of the 16 instructions

One incremented branch target carry bit for each of the 16 instructions

One CMOV/FCMOV predecode bit for the CBF, for each of the 16
instructions

Four Predecode bits for the P box, for each of the 16 instructions

10 Parity bits

The !cache is virtually indexed, and virtually and physically tagged. The primary func
tion of the !cache Tag Array is to hold and deliver the virtual address tags for corre
sponding instruction blocks in the !cache Data Array. These tags are compared with the
full virtual PC calculated in the PC Unit to determine if !cache accesses were hits.
Address space numbers (ASNs) and the address space match bit (ASM) are also stored
in the tag array to determine whether the virtually addressed block that was filled into
the cache can be used by the current process that is accessing the cache, which has its
own ASN assignment. Physical tags are also stored in the cache to facilitate !cache
sharing between two processes that are addressing the same physical memory but were
not assigned the same ASN. The two processes must also be using the same virtual
index bits to be able to share the !cache. If the physical tag stored in the !cache Tag
Array is the same as the physical address of the translated virtual PC, the Ibox allows
physical I cache hits. The reason for this is to allow multiple threads to share the !cache
when running on different TPUs. There is more explanation about how !cache hits are
determined in the PC Compare section of the PC Unit documentation.

As described above in the !cache Data Array section, the !cache is pseudo 2-way set
associative. Occasionally, when a thrash is detected by the thrash detector in the Fill
Unit, the cache will be filled using the alternate location (same as the direct location's
index, except the top bit is inverted). The Line Predictor in the Index Unit will learn to
predict the alternate way for that fetch block. In order to do this, when the wrong "way"
is accidentally fetched, the PC compare logic needs to determine that the wrong way
was fetched, and that instead of taking an !cache miss, simply try to fetch the instruc
tions and tags at the alternate way's location. Instead of reading out two full tags, the
!cache tag array stores a partial tag for the alternate way. If the partial tag matches the
PC, but the primary tag does not, the Ibox attempts to fetch from the alternate way
before initiating a cache miss. The alternate tag is 9 bits in the tag array: VA<23:15>.

The Tag Array also stores and retrieves a variety of other information to support several
Ibox design choices and features:

Compaq Confidentia I
3-12 Instruction Fetch Unit - the lbox 5 J,1nuary 2001 -· Subject To Chtmge

•

•

•

•

•

•

Instruction Processing Unit

Each TPU belongs to one of four TPU groups. Instead of having one valid bit per
TPU in the !cache, there is one valid bit per TPU group. Software can configure
multiple TPUs to be part of the same group, in which case they can virtually hit on
each others Icache blocks, provided the ASN s match or the ASM bit is set.

For !cache use by PALcode, a physical fill bit is stored. When the accessing TPU is
in fetching PALcode, it can hit on !cache blocks that have the physical-fill bit set
and bypass ASN comparison. This is needed because PALcode is always physically
mapped.

When a block is filled, its corresponding protection level is written into the !cache
tags. The protection level is either U,S,E,or K as specified in the Alpha SRM.

The Fill Unit can write an istream block into the !cache if it suffered an uncorrect
able ECC error while residing in the Scache. Once the uncorrectible ECC error is
detected it will trigger an interrupt, but to keep the Ibox from fetching and process
ing the bogus block, a bit indicating the uncorrectable error is set in the !cache
Tags.

In order to expidite pc calculation and fetch block processing, a number of instruc
tion attributes are predecoded during !cache fills and then stored into the !cache Tag
Array. These bits determine whether each instruction that was filled into the !cache
was a conditional branch, unconditional branch, computed jump, or other instruc
tion. It also determines whether the return predictor should be used (ie does the
instruction perform a push or pop operation on the stack), and whether the jump tar
get predictor needs to be used.

The !cache Tag Array is protected by parity .

Here is a complete list of the contents of the Icache Tag Array for a 16-instruction
block:

• TPU group valid<3:0>

• Virtual address <51: 16>

• ASN<7:0>

• ASM

• Physical address <47:13>

• Alternate virtual address <23:15>

• Physical fill bit

• USEK<3:0>

• ECC uncorrectable bit

• !cache Tag Predecodes [15:0]<3:0>

• Parity<3 :0>

Compaq Confidential
5 January 2001 --·Subject To Change Instruction Fetch Unit- the lbox 3-13

Instruction Processing Unit

Predecodes in !cache Tag for each instruction of each fetch block:

Table 3-4 lcache Tag Array Predecode for Fetch Blocks

UE CB

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

P2 P3 PUSH POP Meaning

0 0 0 0 Fall through (CBR o JMP in PALMODE)

·o x x Not used - don't care

1 0 x x Not used - don't care

1 x x Not used - don't care

0 0 x x Not used - don't care

0 0 0 CBR (conditional branch)

1 0 x x Not used - don't care

1 x x Not used - don't care

0 0 0 0 JMP

0 0 0 BR (unconditional branch)

1 0 0 1 RET (pops return stack)

1 x x IFETCHB

0 0 0 JSR (pushes return stack)

0 1 0 BSR (pushes return stack) (JSR in PALMODE)

1 0 1 JCR (pops and pushes return stack)

1 1 0 CALLPAL (pushes return stack)

The lcache Tag array has 8 banks. The slotO, slotl and fill arbitration happens exactly
as described in the Icache Data array section above.

3.5.3 Store-Sets Based Memory Dependence Predictor

The 21464's out-of-order core could execute a load before a prior store that writes to
the same memory location. If this happens the load will get the wrong value. When the
store finally executes, this memory order violation will be detected and the load and all
subsequent dependent instructions will be aborted and re-executed, resulting in a per
formance penalty. This dilemma has created the need for memory dependence predic
tion. The goals of memory dependence prediction are 1) to predict the load instructions
that if allowed to execute would cause a memory-order violation and 2) to delay the
execution of these loads only as long as is necessary to avoid a such a violation.

Our memory dependence predictor is based upon the concept of store sets. A store set
for a specific load is the set of all stores upon which the load has ever depended. A
load's store set can be approximated in hardware by first allowing speculation of all
loads around older stores. If a load executes before a store upon which it depends, the
processor detects a memory-order violation when the store is executed and adds the
store to that load's store set. Essentially the processor discovers and remembers a load's
store set during program execution. The store set is then used to predict which stores a
load must wait for before executing. The table that holds store set IDs is in the Ibox.

Compaq Confidential
3-14 Instruction Fetch Unit - the lbox 5 Jc1nuary 2001 ·- Subject To Change

Instruction Processing Unit

For more information about store sets see: George Chrysos and Joel Erner. Memory
Dependence Prediction using Store Sets. In Proc. ISCA25, July 1998

Store-sets based prediction replaces the load wait table in the 21264.

The store sets predictor implementation has 16 store set identifiers, and has 4K entries
and the table is cleared periodically based upon an IPR. The 4k entry store sets array
and the Icache array are read simultaneously based upon an index generated by the
Index Unit. Each store set array entry is 5 bits long, one valid bit and four bits for the
store set identifier. 8 store set id's are read out contiguously for each fetch chunk. Logic
in the Pbox determines whether the instructions are loads or stores to know whether to
utilize the store set id or not. The store set id's then create predicted dependencies
between loads and stores in the Pbox dependence mapper.

The store set entry table in the Ibox is trained when a store/load order violation is
broadcast from the Mbox. The training of store set entries is governed by the following
rules:

1. If neither the load nor the store has been assigned a store set id, one is created and
assigned to the store instruction.

2. If the load has been assigned a store set id, but the store has not, the store is
assigned the load's store set id.

3. If the store has been assigned a store set id, but the load has not, the load is assigned
the store's store set id.

4. If both the load and the store have already been assigned store set ids, one of the
two store set ids is declared the "winner". The instruction assigned the losing store
set id is assigned the winning store set id. The winner is the lower numbered store
set ID.

Rule one mentions that when neither the store nor the load involved in the load/store
order violation that a store set id is created. The store set id is created by hashing the
lower bits of the load's PC:

21 20 19 18
XOR 17 16 15 14
XOR 13 12 11 10
XOR 9 8 7 6
XOR 5 4 3 2

As mentioned above, the store set entry table's valid bits are cleared periodically based
upon an IPR. The bits in the IPR that govern the store set tables clearing frequency are
defined here:

IPR Bits Clear Freq

0000 Every Cycle (Store Sets Disabled)

0001 Every lk cycles

0010 Every 2k cycles

0011 Every 4k cycles

0100 Every 8k cycles

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Fetch Unit-the lbox 3-15

Instruction Processing Unit

IPR Bits Clear Freq

0101 Every l 6k cycles

0110 Every 3 2k cycles

0111 Every 64k cycles

1000 Every 128k cycles

1001 Every 256k cycles

1010 Every 512k cycles * - recommended setting

1011 Every lm cycles

1100 Every 2m cycles

1100 Every 4m cycles

1101 Every 8m cycles

1111 Every 16m cycles

3.5.4 Collapsing Buffer

The job of the collapsing buffer is two-fold. It buffers instruction chunks (called fetch
chunks) from the lcache and merges usable instructions from these buffered chunks into
map-able chunks (called map chunks) that are sent to the Pbox. The collapsing buffer is
capable storing and merging 2 fetch chunks per cycle. Map chunks are only sent to the
Pbox upon request of the Pbox.

3.5.4.1 Instruction Buffer

3.5.4.1.1 Data Path

Each TPU has it's own buffer (implemented as a queue) of 16 entries with each entry
holding one fetch chunk (8 instructions). The IC ache sends the instruction buffer up to
two fetch chunks every cycle during 13 from a single TPU (slot 0 and slot 1). If the cor
responding TPU's buffer is empty and the Pbox requests a map chunk from that TPU,
then slot 0 can be bypassed as a map chunk during 13. Slot 1 cannot be bypassed. Both
fetch chunks are written during 13 into the instruction buffer queue corresponding to the
TPU they were fetched from (regardless of whether one slot was bypassed or not).

The queue addressing logic keeps track of the head and tail of each buff er by using two
single bit pointers arranged in a ring. Each buffer is addressed for write by taking into
account the position of the tail pointer, and whether there are one or two slots being
written. The queue read addressing is similar to the write addressing, except that the
head and tail pointers and their relative locations determine whether one or two slots are
read. Normally, two fetch chunks will be read from the buffer on each cycle during 13,
except in the case there is only one fetch chunk available in the buffer.

The 21464 provides the MAP _ALIGN instruction, which allows software some control
over mapping fetch chunks, in disregard for the efficiencies just described. See Section
2.11.3 for information.

Compaq Confidentia I
3-16 Instruction Fetch Unit - the lbox 5 Jc1nuary 2001 -~Subject To CJumge

Instruction Processing Unit

In the event that there has been an internal Ibox fault (misprediction, cache miss, etc ...
Not a branch or jump mispredict) corresponding to slot 0, then the collapsing buffer can
catch this by not advancing the write pointers, although the fetch chunks are written. If
the buffer was empty before the write, a bypass occurs and all of the valid bits sent to
the Pbox are pulled low, as that slot is invalid.

Unfortunately, faults for Slotl occurs one cycle after SlotO events. This leads to trouble
because slotl can be written and then read out of the buffer at the same time a Slotlfault
happens. In the event that there has been an internal Ibox fault corresponding to slot 1,
each buffer has the ability to "undo" the last write by backing up the write pointers.
Additionally, all instructions in the map chunk are invalidated just as they are sent to the
Pbox. This undo ability allows the collapsing buffer to capture wrong instructions
before they get sent to the Pbox. This is vital, since it means that the Ibox will not have
to hunt down and kill instructions in other boxes.

3.5.4.1.2 Control Path

To ensure that only map chunks with valid instructions get sent to the Pbox, some addi
tional signaling is needed. First, the Pbox must tell the collapsing buffer some informa
tion.

The first thing the Pbox needs to do is request a map chunk. It does so by selecting a
TPU in 13 and informing the collapsing buffer of the TPU choice. Sometimes, how
ever, the Pbox selects a TPU and finds that it can't map the map chunk it received from
the collapsing buffer. To ensure that this map chunk is not lost, the Pbox will tell the
collapsing buffer when to advance the read pointers. When the Pbox is able to map the
chunk successfully, it will tell the collapsing buffer to advance the read pointers. Other
wise, the pointers are left where they are so that the map chunk can be retried later.

In order for the Pbox to make choices about which TPU to map, the collapsing buffer
will send the Pbox a signal indicating which TPU has instructions in its buffer. Unfor
tunately, there exists a lag between detecting the emptiness of a buffer and the Pbox
actually requesting map chunk. One reason for this is that the Pbox needs to know the
state of the buffer one cycle before it can be calculated! This can lead to two problems:

• The Pbox overlooks a TPU with valid instructions.

• The Pbox requests a map chunk from a TPU that it was told had instructions but is
actually empty when the buffer gets read. This causes the Pbox to map a chunk of
instructions that are all invalid.

A similar case occurs when there is a late kill and the buffer has only bad path instruc
tions. The late kill, as mentioned earlier, clears the valid mask and will cause the buffer
to be emptied. In the next cycle, the write pointers will be fixed. In the cycle after this,
the buffer is finally declared empty. This will cause the TPU to indicate it is not empty
for the kill cycle, the cycle the pointers get fixed, and the cycle after that (remember the
bid signal is actually on cycle stale). In this case, the collapsing buffer will tell the
Pbox to abort any future map attempts on this TPU after the kill is detected so that no
more invalid map chunks get mapped in the mapper.

As mentioned earlier, there is a valid signal sent to the Pbox. This signal contains a
valid bit for each instruction in the collapsing buffer which indicates that the instruction
is valid for mapping. The collapsing buffer sometimes uses this valid mask for last
minute kills as described previously.

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Fetch Unit - the lbox 3-17

Instruction Processing Unit

3.5.4.2 Collapser

3.5.4.2.1 Data Path

The collapser's overall job is merge two fetch chunks into one 8 instruction map chunk.
The collapsing buffer collapser receives two fetch chunks from the instruction buffer in
13. To collapse, the first valid instruction (START) and exit point instruction (END) for
each fetch chunk are read from the start/end buffer. The invalid instructions (instruc
tions outside START and END) are stripped off of the two fetch chunks and then the
second fetch chunk is appended to first. Finally, the instructions are left justified within
the map chunk such that the first valid instruction is always the first instruction.

The operation of the collapser is fairly simple. However, when you fold in the fact that
there may be more than 8 valid instructions in two 8 instruction chunks. In this case,
the collapsing buffer needs to modify and store the START position for the left over
fetch chunk. In the case that a legacy CMOV instruction causes the end of the block, an
additional bit needs to be stored that indicates that the instruction corresponding to the
modified START is a CMOV2 instruction.

3.5.4.2.2 Start/End Buffer

The start/end buffer not only stores the start and end of the valid instructions in a line,
but also the CMOV predecode bits. This buffer is broken up into 4 queues, much like
the instruction buffer. Each queue holds 16 entries. Each entry is 25 bits.

Table 3-5 Fields in the Start/End Buffer

Field Contents

CMOV _PRE<7:0> CMOV mask for the corresponding FETCH_CHUNK

START<7:0>

END<7:0>

PAL_MODE

1-hot start of valid instruction in the FETCH_ CHUNK

1-hot end of valid instruction in the FETCH_CHUNK

Single bit field that indicates if the fetch chunk on this line is a PAL mode
chunk or not.

The START data is written into the buffer from the Line Predictor and the END data is
written in from the Branch Predictor exit logic. The CMOV predecodes com from the
lcache Tags and Pal mode will come from Pipe Control.

3.5.4.2.3 New Start Calculation

When two 8-instruction fetch chunks are collapsed into one 8-instruction map chunk,
there is always the possibility that there will be left over instructions in the second fetch
chunk. So, the start of FETCH_CHUNKl needs to be modified to the new start of the
valid instructions in that chunk. This is actually a rather simple calculation, and there is
plenty of time to do it.

A wrench gets thrown into the works if there is a CMOV in the 8 instruction map
chunk. In this case, the new start will correspond with the location of the CMOV in the
fetch chunk.

3.5.4.2.4 CMov

It is assumed that the reader of this document has previously read Handling CMov.

Compaq Confidential
3-18 Instruction Fetch Unit -the lbox 5 J('intiary 2001 -·Subject To Change

Control Flow Prediction Unit

The CMOV instruction needs to be spit into two halves CMOVl, and CMOV2. To
accommodate the CMOV2 instruction, map chunks are always ended on the CMOVl
(which sits in the same position as the original CMOV). The next map chunk will then
begin with a CMOV2. The remaining 7 instructions in the map chunk will be collapsed
as normal. The legacy CMOV will also require that the CMOV predecode mask be
modified and stored for the next collapsing.

3.6 Control Flow Prediction Unit

3.6.1 Conditional Branch Prediction

Conditional branches are ubiquitous in most programs. However, it takes at least 13
cycles in the deeply pipelined 21464 before the outcome of the branch is known.
Hence, the 21464 processor utilizes an aggressive branch predictor to provide the abil
ity to speculatively fetch beyond conditional branches

The 21464 branch predictor belongs to the class of skewed branch predictors. In this
class of predictors, multiple prediction tables are used that operate independently to
generate a prediction of their own while a majority vote decides the final branch f redic
tion .. For more details, please refer to the technical report by Sezec and Michaud . The
21464 used a modified form of a skewed predictor in which an additional level of pre
diction is used to choose between the majority vote and one of the prediction tables.
There are four tables that constitute the branch predictor that are termed the GO, GI,
BM and CH arrays whose sizes are 64K, 64K, 16K and 64K bits respectively. Tables
GO, Gland BM serve as prediction tables while CH serves as the chooser. Each entry in
the table has 8 prediction bits corresponding to 8 instructions in the fetch chunk. An
entry for each of these tables is indexed using a unique function that is based on a com
bination of the branch history bits as well as the address bits used for accessing the
instruction cache in the current and previous fetch slot. The 8 prediction bits from each
of these tables are further rearranged (unshuffled) using another function of the history
and address bits. The final set of 8 predictions for the fetch slot is thus derived after the
unshuffle which is followed by choosing between the majority of GO, G 1 and BM or the
prediction bits of BM itself using the CH (chooser) bits. The overall block diagram of
the prediction mechanism is illustrated in the figure 1.

A. Seznec and P. Michaud, "Dealiased hybrid branch predictors", IRISA report, Feb 1999, http://
www.irisa.fr/caps/PROJECTS/Architecture

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-19

Control Flow Prediction Unit

Figure 3-3 High level diagram of the 21464 branch predictor

The prediction tables are further complemented with additional hysteresis tables. The
sizes of the individual hysteresis tables for GO, Gl, CH and BM are 32K, 64K, 32K and
16K bits respectively. It must be noted that unlike traditional schemes, the 21464 pre
dictor does not have a unique hysteresis bit associated with every prediction bit. Rather,
the prediction entries are permitted to share hysteresis bits as can be seen from the GO
table that has 64K prediction bits but only 32K hysteresis bits. A reduction in the num
ber of hysteresis bits was shown to have little performance impact while saving valu
able die-space. The hysteresis bits prevent the prediction bits to change on the first
incorrect prediction thereby disregarding transient changes in branch behavior. The
hysteresis bits may be strengthened on a correct prediction and weakened on an incor
rect prediction. Unlike the hysteresis bits, the prediction bits may change only on incor
rect predictions based upon the state of their corresponding hysteresis bits. The
complete training of the hysteresis and predictor arrays is done at instruction retire time.
In the following sections, we describe in greater detail the different components and
functionality of the branch predictor and training mechanism.

3.6.1.1 Branch Prediction Components

3.6.1.1.1 Branch History(LGHist)

It has been shown that using the past behavior of the branches is extremely helpful in
predicting future branches. The traditional method of maintaining the global history
(also known as ghist) is to record the outcome of each and every branch that is executed
in the program.

To ease implementation, the 21464 uses a modified version of ghist called the line
based ghist (or lghist for short) that records branch history on a fetch line basis. The
lghist scheme takes into consideration only the behavior of the last branch of the fetch
line. If the branch is in the first half of the fetch line (words 0, 1, 2 or 3), a 0 is entered
for a not taken branch while a 1 is entered for a taken branch. On the other hand, if the
last branch happens to be in the second half of the fetch line (words 4, 5, 6 or 7), a 1 is
entered for a not taken branch while a 0 is entered for a taken branch.

Compaq Confidential
3-20 Instruction Fetch Unit - the lbox 5 Janwiry 2001 ·- Subject To Change

Control Flow Prediction Unit

It must be mentioned that the branch history used for predicting the branches in the slot
that is currently being fetched would not include the information of the slots fetched in
the previous cycle. This is because an extra pipeline stage is required to record the pre
dicted outcome of the branches in the lghist. The predicted outcome can be recorded
only after discarding those predictions that would play no role when the instructions in
the fetch slot are executed. This is achieved by considering (a) entry point in the fetch
slot (b) identifying the true conditional branches among the 8 instructions in the fetch
slot using pre-decode information and (c) unconditional exit instructions (such as jump,
return or unconditional branch instructions). Furthermore, in a given cycle, if two slots
are being fetched, the second slot would not only lack the history of the slots that were
fetched in the previous cycle but also of the first one that is currently being fetched.
Hence, to maintain consistency, the history information used for prediction is always
made three slots old for both the slots in a given cycle. The fact that the lghist was mod
ified for a particular fetch slot is maintained using the shift distance bits. Note that the
lghist would change only in the presence of valid conditional branches in the fetch slot.
The shift distance information is particularly valuable on restarts when the restored
lghist has to be aged by three slots before being used to access the branch predictor. A
maximum of 3 shift distance bits needs to be maintained corresponding to the three-slot
aging factor.

In addition to the shift distance bits, another bit called the no shift bit is used. This bit
prevents the shift distance bits from being modified more than once for the same fetch
slot when it is restarted (on an exception). On a restart from an exception, the check
point table restores the lghist and shift distance after updating them appropriately
depending upon the presence of a conditional branch before and after the restart posi
tion in the fetch slot. If the restart position occurs in the same fetch slot and no branches
are present after the restart position, the lghist (as well as the shift distance bits) needs
to be updated to incorporate any branches before the restart. To prevent future updates
to the shift distance for the remainder of the fetch slot that has no conditional branches,
the checkpoint table also sets the no shift bit. It is this bit that is used to determine if the
shift distance bits needs to be updated for the current fetch slot. Note that the no shift bit
is applicable only for the first fetch slot as a restart on an exception always results in
only one slot to be fetched.

Even though all prediction tables are common to all threads, the lghist, shift distance
and no shift bit are maintained on a per-thread basis.

3.6.1.1.2 Prediction Tables

As mentioned before, the branch predictor logically consists of four tables: GO, Gl, BM
and CH. However, this is implemented as one array where each word line in a bank is
made up of the four different components. The array is further sub-divided into four
single-ported banks with each bank containing 64 word lines. Even though logically
each table entry contains 8 prediction bits, implementation constrains each wordline to
have several 8-bit entries clustered together. The address bits for indexing the table
allow us to select from among the different clusters or "columns" of 8-bit entries.

The address bits that are used to access each of the tables is generated using bits <14:5>
of the line predictor index (denoted as A) and bits <20:0> of the three slot old lghist
(denoted as H). The lower bits <4:2> of the line predictor index are not used for the
array access. These bits, which denote the entry point in a fetch slot, are used solely to
discard predictions prior to the starting point. The address bits are as follows:

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the Ibex 3-21

Control Flow Prediction Unit

GO

Gl

CH

BM

a. Word address (6 bits): This is to access one of the 64 wordlines in the array.
Since each component resides in the same wordline, these bits are common to
all the tables. Moreover, since the address bits must be available at the begin
ning of the cycle, the address bits are generated directly without any hashing
involved. The 6 address bits are: H<3 :0>, A<8:7>

b. Column select address: Each wordline consists of multiple entries of GO, Gl,
BM and CH. These address bits choose from among the many 8-bit "columns"
present in a wordline. Since 8 bits are to be chosen from 256 bits of GO, G 1 and
CH, each of these tables need 5 address bits to choose the appropriate one from
a 32-1 column multiplexer. Only 3 address bits are needed for selecting 8 bits
from 64 bits of BM (which requires only an 8-1 column multiplexer). The col
umn select bits for each table are as follows:

H<7>$H<ll> H<8>$H<12> H<4>$H<5> A<9>$H<9> H<l0>$ H<6>

H<l9>$ H<12> H<18>$ H<ll> H<17>$ H<lO> H<16>$H<4> H<15>E1' H<20>

H<7>$H<ll> H<8>E1'H<12> H<5>$ H<13> H<4>$H<9> A<9>$H<6>

N.A N.A A<ll> A<9>$A<5> A<10>$A<6>

3.6.1.1.3 Bank Selection

As mentioned before, the predictor arrays are sub-divided into four banks, each of
which has only one read port. Since the branch predictor must be able to predict two
fetch slots every cycle, it is necessary that the two slots do not access the same bank in
a given cycle. To achieve this, the bank identifier is constructed in such a way that no
two consecutive slots would access the same bank.

Since the bank identifier must be available at the beginning of the cycle when the array
access is performed, it would not be possible to use any information from the current to
slots to generate the bank identifier. For this reason, we use bits 5 and 6 of the line pre
dictor index and the bank identifier of previous slots. Assume that, in the current cycle,
the predictor array is being accessed for slots N-2 and N-1 with bank identifiers BN_2
and BN-l used for the access. Also, let ZN_2 and ZN-l be bits 5 and 6 of the line predic
tor index used to access slots N-2 and N-1 respectively. The generation of bank identifi
ers for slots N and N + 1 for accessing the array in the following cycle is done as follows:
To generate the bank identifier for slot N (BN), ZN_2 is compared to BN-l· If they match,
BN is set to (ZN_2+1) otherwise, it is set to AN_2.The generation of the bank identifier
for slot N+ 1 is also similar; the newly calculated BN is compared to ZN-l · In this fash
ion, the bank identifiers for the subsequent two slots are generated in advance by using
information that is available in the current cycle.

3.6.1.1.4 Unshuffle Network

Imagine that the branch predictor is implemented such that each entry in the array has
only I-prediction bit. In this case, we would hash bits <14:2> of the line predictor index
with the lghist to generate an index for each table entry. In reality, however, each entry
stores a set of 8 predictions for each table. Hence the low bits <4:2> of the line predic
tor index is not used for the access. But these bits are eventually used as they denote the
entry point in the fetch slot, and in conjunction with the instruction pre-decode bits that
denote the actual conditional branches in the fetch slot, allow us to choose only a sub-

Compaq Confidential
3-22 Instruction Fetch Unit-the lbox 5 Jc1nuary 2001 ·-Subject To Change

Control Flow Prediction Unit

set of the 8 predictions. For performance reasons, however, it is desirable that the low
bits are also hashed with the lghist bits when accessing the predictor arrays. Thus, the
set of 8 predictions would need to be rearranged (unshuffled) to give the same set of 8
predictions that we would have got in the event of indexing a I-prediction bit based
tables 8 times (to span the low bits<4:2> ranging from 000 to 111)

Let f2f1f0 be the bits that are used for XOR-ing with the low bits of the line predictor
index while a6a5a4 denote the position of a particular branch prediction bit. After the
unshuffling, the prediction bit occupies the new position a6E9 f2, a5E9f 1, a4 E9f0. For
instance, if f2f1f0 = 101 and the 8 prediction bits are b7b6b5b4bJb2b1b0, the new posi
tions after the unshuffling would be b1b3bob1b6b7b4bs.

The hash function used here can be quite complex as the unshuffling is performed only
in the later part of the cycle after the array access and column selection has been per
formed. The address bits used for the hashing include the line predictor index (denoted
as A), lghist (denoted as H) and bits 5 and 6 of the index used to access the previous slot
(denoted as Z). The function used for the different tables are listed below:

Table Unshuffle bits <2:0>

GO A<9>© A<12>© A<l3>© H<5>© H<8>© H<l l>©Z<5>

A<5>© A<l 1>© H<9>© H<lO>© H<l2>$ Z<6>

A<6>© A<lO>© A<l4>© H<4>© H<6>© H<7>

G 1 A<6>© A<l 1>© A<14>© H<4>© H<6>© H<9>© H<14>© H<15>© H<16>© Z<6>

A<lO>© A<13>© H<5>© H<ll>© H<13>© H<18>© H<19>© H<20>© Z<5>

A<5>© A<9>© H<4>© H<7>© H<lO>© H<12>© H<13>© H<14>© H<17>

CH A<5>© A<lO>© H<7>© H<lO>© H<13>© H<14>© Z<5>

A<6>© A<12>Efl A<l4>© H<4>© H<6>© H<8>© H<14>

A<9>© A<l 1>© A<13>© H<5>© H<9>© H<l 1>© H<12>© Z<6>

BM NONE

Z<6>

Z<5>

3.6.1.1.5 Backend logic and checkpoint information

The final set of 8 branch predictions for each fetch slot is available after the chooser is
used to decide between the majority of GO, Gl, BM and the BM predictions. However,
not all of the final 8 predictions may be useful the following reasons:

1. The instruction for which a branch was predicted taken may not be a conditional
branch instruction

2. The entry point in the fetch slot may not be the first instruction

3. Not all instructions may be executed in the fetch slot due to a taken prediction for a
conditional branch or the presence of an unconditional exit point in the fetch slot
(for instance, a jump or a return instruction)

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Fetch Unit - the lbox 3-23

Control Flow Prediction Unit

The branch predictor backend logic incorporates additional information using the low
bits <4:2> of the line predictor index, instruction types using predecode information as
well as the branch predictions itself to calculate the exact exit position in the fetch slot.
This information is used by the PC calculation logic to determine the PC of the follow
ing fetch slot.

The information that needs to be check-pointed includes the following: lghist, shift dis
tance, no shift, bank identifiers and bits <6,5> of the previous line predictor indices.
Furthermore, on restarts, branches after the restart point would have to be considered if
the restart occurs in the same fetch slot. If there are branches prior to the restart position
but none after, then it must be incorporated in the restored lghist and shift distance.
Hence, we also checkpoint the conditional branch attributes that spans all instructions
until the first unconditional exit point. Finally, the 8 bits read from each of the predictor
tables (GO, Gl, CH and BM) are also stored in the checkpoint table for training the
branch predictor at retire time. This avoids reading the single-ported predictor array at
training time as doing so may result in conflict with the accesses made during fetch
time.

3.6.1.2 Branch Training

The validity of the branch predictions is known when the branches are executed in the
Ebox. A misprediction causes the branch predictor states such as lghist to be restored.
However, the actual branch training does not take place until the Pbox retires the
instruction.

As mentioned earlier, the predictor makes use of hysteresis tables to prevent modifica
tion of the prediction bits on transient branch behavior. Each prediction table has a cor
responding hysteresis table with sizes of the individual tables for GO, G 1, CH and BM
being 32K, 64K, 32K and l 6K bits respectively. Note that the sizes of GO and CH hys
teresis tables are half the size of the corresponding predictor tables. This results in two
entries in the predictor table to share an entry in the hysteresis table. As with the predic
tor tables, the hysteresis tables are implemented as a single array that is interleaved
between four single-ported banks. The only difference is the size of the wordline that
results due to the reduction in the sizes of GO and CH tables. Consequently, one parti
tion in the wordline contains 256 bits that comprise of 128 bits each of GO and CH
while the other partition contains 320 bits that consists of 256 bits of G 1 and 64 bits of
BM. The address bits used to access the wordline, column select and for performing the
''unshuffle" are the same as that for the predictor tables except that the high order bit for
the column select is no longer applicable for GO and CH due to their reduced sizes.

When a map chunk is retired, the checkpoint table produces the relevant information
regarding the fetch slots comprising the map chunk. This includes information on
whether a branch was mispredicted for the fetch slot and if so, the mispredicted posi
tion. To avoid reading the single-ported predictor array during training, the predictions
that were read from each table at fetch time is also available from the checkpoint table.
Using this information, both the prediction and the actual outcome for the fetch slot can
be reconstructed.

3.6.1.2.1 Predictor Training

The predictor tables need not be updated on a correct prediction. On an incorrect pre
diction, only one of the fetch slots that is retired would have an incorrect prediction.
This implies that only one of four predictor banks would be accessed for writing the

Compaq Confidentia I
3-24 Instruction Fetch Unit - the lbox 5 Jc1m1ary 2001 - Subject To Change

Control Flow Prediction Unit

training information. However, the write to the predictor table may conflict with a read
access performed at fetch time. To minimize this conflict, each of the banks has a one
entry write buffer to hold the write data whenever it conflicts with a read to the bank.
However, this may not be sufficient when there are back to back retirement of map
chunks with a mispredicted branch. Dropping one of the writes to the predictor array is
not preferred as it may impair the performance of the predictor. To accommodate this
situation, the predictor bank-conflict detection mechanism keeps track of pending
writes to each bank. If necessary, a bubble is inserted during the fetch stage to put future
reads on hold so as to allow a write pending in the buffer to be cleared.

The predictor tables are trained using the following rules:

1. Nothing to be done on a correct prediction

2. If either the majority or BM is correct, update chooser to the correct state provided
the hysteresis is weak

3. For each of GO, Gl and BM, modify entry when the table's prediction is incorrect
and its hysteresis is weak provided also that:

a. Neither the majority or BM is correct

b. Either the majority or BM is correct but the chooser continues to point to the
wrong predictor after the update (i.e. the chooser had a strong hysteresis)

3.6.1.2.2 Hysteresis Training

Unlike the predictor tables, the hysteresis tables would have to be updated for both cor
rect and incorrect predictions. For correct predictions, the hysteresis tables can be writ
ten without being read as they are always strengthened. However, for incorrect
predictions, we need to perform a read-modify-write of the hysteresis bits for the fetch
slot with the mispredicted branch. As with the predictor arrays, a write buffer holds
pending data for each bank. This still does not prevent bank conflicts due to read and
writes occurring at the same time. Overall, there are three different types of accesses to
the hysteresis array that may lead to bank conflicts:

1. Writes for a fetch slot with a mispredicted branch

2. Read table for a mispredicted branch

3. Writes to strengthen the hysteresis bits for fetch slots correctly predicted branches

Unlike the predictor training where a bubble inserted at the fetch point permits reads to
be put on hold, we cannot stall retires to avoid hysteresis bank conflicts. Hence, we pri
oritize accesses and drop the access with the lower priority in favor of the higher one.
For the three types of accesses mentioned above, type (i) has the highest priority fol
lowed by (ii) and finally (iii). The ordering is such that no training done for a mispre
dicted branch is dropped. If a bank's write buffer holds a mispredicted hysteresis write
with another mispredicted write to the same bank to follow, the read is disabled and a
weak hysteresis is assumed as the default read value. If, on the other hand, the incoming
write is for a correctly predicted branch, it is dropped in favor of the read access.

The hysteresis tables are trained using the following set of rules:

1. Incorrect prediction

a. If the majority and BM differ, the chooser hysteresis is weakened

Compaq Confidential
5 January 2001 - Subject To Change Instruction Fetch Unit - the lbox 3-25

Control Flow Prediction Unit

b. For the GO, G 1 and BM hysteresis, strengthen if table prediction is correct. If
the table prediction is incorrect, then weaken the hysteresis, provided:

Neither the majority or BM is correct

Either the majority or BM is correct but the chooser continues to point to the
wrong predictor after the update (i.e. the chooser had a strong hysteresis)

2. Correct prediction

3.6.1.3 PAL mode

a. If GO, Gl and BM are all correct, hysteresis is unchanged for all tables

b. Strengthen BM if it is correct

c. Strengthen GO or G 1 if it is correct and majority was used by the chooser for
prediction

In PAL mode, the predecode bits for conditional branches are not set by the instruction
fill unit. This implies that the branch predictor is not utilized during PAL code and all
branches are predicted as not taken. Since branches in PAL mode are rare, this would
have little effect on performance. Moreover, we do not want the application specific
branch history (lghist) to be corrupted by PAL code branches.

3.6.2 Jump Target Predictor

The Jump Target Predictor is responsible for predicting the targets of Alpha's computed
jump instructions: JMP and JSR. The Jump Target Predictor keeps track of partial
addresses from the last four jump target predictions - called jg hist. It hashes together
those partial addresses to form an index into a 512 entry target table. The target table is
trained with the real computed targets from the execution units. A jghist is maintained
for each of the four TPUs, but the 512 entry target table is shared among the threads.
The jump predictor can predict one jump per cycle . If both fetch blocks that are fetched
in a cycle contain a jump instruction, the first one is processed, and the second fetch
block is squashed (see PC Unit).

Figure 3-4 Jump Predictor Block Diagram

Indexing into the jump predictor table is a result of hashing of the most recent predicted
jump targets as follows:

Compaq Confidential
3-26 Instruction Fetch Unit-the lbox 5 January 2001 ···Subject To Cfumge

Control Flow Prediction Unit

Assume the four most recent jump targets, from most recent to least recent are:
D<51,2>, C<51,2>, B<51,2>, A<51,2>

The 9 bit index into the 512 jump target table for the next predicted jump target is:

D<l9, 11>

XOR D<lO, 2>

XOR CON CAT (C<l8, 11> 0)

XOR CON CAT (C< 9, 2> 0)
XOR CONCAT (B<l7,11> 00)

XOR CONCAT (B< 8, 2> 00)
XOR CON CAT (A<l6,ll> 000)

XOR CONCAT (A< 7, 2> 000)

The hash was chosen to ensure position independence of the prior targets, (eg so that
the target history A, B, A, B hashes to a different table location than B, A, B, A, since
the first should predict target A and the second should predict target B.) Zeros are
shifted into the older targets to ensure that older targets count less in the hash.

The jghist registers are checkpointed to facilitate restarting the jump target predictor in
case of an exception. When the machine is restarted the appropriate last four targets will
overwrite the jghist state that had progressed since the instruction that caused the
exception.

Jump mispredictions are trained by writing the correct target into the jump address pre
dictor's table when the mispredicting jump retires. The Checkpoint Unit receives the
correct jump target from the Ebox when the jump executes. The Checkpoint Unit will
detect a jump mispredict at that time and will keep a record of the correct target to facil
itate training once the jump retires.

3.6.3 Return Address Stack

The Return Address Stack is responsible for predicting the targets of returning instruc
tions. The return address predictor is affected by instructions that jump to subroutines
and those that return from subroutines. There are several calling instructions:

BSR Branch Subroutine

JSR Jump Subroutine

CPL Call Pal

JSC Jump Co-Routine

There are also multiple returning instructions:

RET Return

JSC Jump Co-Routine

In order to predict return addresses, we use the simple concept of a stack. When a call
ing instruction is fetched, the PC following the calling instruction is pushed onto a
stack. When a return instruction is fetched, the stack is popped, and the PC is redirected
to the popped value. The stack holds 64 return PCs per thread.

Compaq Confidential
5 January 2001 ~·Subject To Change Instruction Fetch Unit- the lbox 3-27

PC Unit

The return stack must be check-pointed. Upon a abort (branch mispredict, load/store
order trap, etc), any pushing or popping that has been done to the stack by instructions
on the badpath must be undone to restore the stack to a coherent state. In order to facil
itate a fully checkpointed return address stack, we are implementing a structure that
behaves like a linked list. We have an array of elements. Each element consists of a PC,
and a previous top of stack pointer (PTOS_PTR). Externally we access the array with a
top of stack pointer (TOS_PTR). In order to pop the "stack" the array is accessed at the
address specified by the TOS_PTR. The PC that is read out is the return target PC, or
PopPC, and the PTOS_PTR that is read out corresponds to the next top of stack. When
performing a pop, the PTOS_PTR that is read out is written into the TOS_PTR latch. In
order to push a value onto the "stack" we need another pointer into the array, which is
the next element of the array to be allocated (NALLOC). On a push the array is written
at the location specified by NALLOC. The PC written is computed by incrementing the
address of the pushing instruction (PushPC) and the current TOS_PTR is written into
the PTOS_PTR component of the array element. Then NALLOC is written into the
TOS_PTR latch, and NALLOC itself is incremented by 1 (modulo the size of the
array). Checkpointing is performed by storing the array pointer corresponding to the
current top of stack element in the Checkpoint Unit (See Checkpoint Unit Documenta
tion) for each instruction chunk. The current NALLOC pointer is also stored into the
Checkpoint Unit for each instruction chunk in order to reclaim space used by badpath
pushes and pops. The stack state is restored by restoring the TOS_PTR and the NAL
LOC pointer that were stored when the instruction causing the abort was fetched.

Since the 21464 is a multithreaded machine, we need to have a return address predictor
that can accommodate multiple code paths without getting confused. In the interest of
simplicity, we have decided to simply replicate the return stack array itself. Each of the
four (one per TPU) return stack arrays contains 64 entries.

In the 21464, we fetch up to two 8-instruction chunks from the !cache each cycle. Each
of those chunks has can contain an instruction that manipulates the return stack. The
return stack cannot, however, handle any combinations of pushes and pops in one cycle.
It can handle:

•
•
•
•

One Push

One Pop

One JCR (Pop followed by a Push)

Pop in slotO, Push in slotl

In the event that two !cache blocks are fetched that do not correspond to one of the four
scenarios above, the second block is squashed. (See Documentation for squashing in
the PC Unit PC Calculation section).

3.7 PC Unit

3.7.1 PC Calculation

The Program Counter(PC) is a register which holds the address of the instructions to
fetch next. In the 21464, there are four TPUs, each of which has an independent instruc
tion stream. To keep track of all the TPUs' instruction addresses, the Ibox maintains
four PCs. The PC changes based upon either sequential fetching of the code, or based

Compaq Confidential
3-28 Instruction Fetch Unit - the lbox 5 January 2001 ··· Subject To Cfumge

PC Unit

upon PC changing instructions such as branches, jumps and returns. The computation
of a new PC must occur ever time instructions are fetched; this computation is refered
to as PC Calculation.

As mentioned above, the Ibox fetches up to two non-contiguous fetch-blocks of instruc
tions each cycle. A fetch block begins with the PC of the first instruction, and all subse
quent instructions' PCs in the fetch block must be a sequential increment to the first.
Between fetch-blocks, however, the PC's sequential stream can be broken. Since the
ibox can fetch up to two non-contiguous fetch blocks in the same cycle, a PC must be
generated for each of the fetch blocks. A PC is needed for each fetch block to compare
with the fetched !cache blocks' tags for hit determination, and check that the !cache
indicies produced by the line predictor were correct and pertained to the correct !cache
way. The transition from one fetch-block to another is governed by the exiting condi
tion of the first fetch-block. The list of potential exits to a fetch block are listed in Table
3-6.

Table 3-6 Fetch-Block Exit Conditions

Last Instruction of a 32B Cache Line (Sequential)

Predicted Taken Conditional Branch Instruction (CBR)

Unconditional Branch Instruction (BR, BSR)

Jump Instruction(JSR, JMP, JSR_COROUTINE)

Return Instruction (RET)

IFETCHB Instruction (Halt Fetching until Retirement of IFETCHB)

Call PAL Instruction (CALL_PAL)

Starting with the PC (PCO) of the beginning of the first fetch block, the starting PC
(PCl) of the second fetch block is determined by the exiting condition of the first fetch
block:

Table 3-7 PC1 Calculation

Something

Sequential

Taken Branch

Jump Predicts

Stack Pops

Call Pal

Something

No PC Changing instructions in the first block

PCl = CONCAT(PC0<51:5> I 00000) + 1 fetch block (32B)

Predicted Taken CBR, BSR, or BR

PCl = CONCAT(PC0<51:5> I 00000) +Branch Instruction Position Offset in Fetch Block+
Branch Displacement

JSR,JMP

PCl =Output of Jump Predictor

RET, JSR_COROUTINE

PCl =Pop of Return Stack

Compaq Confidential
5 Jam.1ary 2001 --· Subject To Change Instruction Fetch Unit - the lbox 3-29

PC Unit

Table 3-7 PC1 Calculation

Something

IFETCHB

Something

PC 1 = PAL Base Address + Trap Vector Offset

PC 1 =PC of the IFETCHB + 4

In order to calculate the PCs, the fetch block exits must be known, as well as the branch
predictions, jump target prediction, and the current return address on the top of the
return stack. The fetch block exits come from the instructions themselves, ie the !cache
data array, and the predictors operate ahead of time to ensure that all the information for
PC Calculation is produced as soon as possible. For speed of PC calculation on taken
branches, the lower bits of the taken address are pre-calculated and stored in the offset
field of the instruction text in the !cache. This happens at fill time. This means that the
lower bits: <21 :2> of the target pc are not calculated, but simply read from the !cache
with the instruction. The higher bits <51 :22> need to be calculated. They could be
incremented by one, decremented by one, or not change at all based on whether the off
set of the taken branch was positive or negative, and whether it caused a carry or bor
row (we refer to both as "overflow") above bit 21. The overflow bit and sign bit are
stored with the offset in the instruction text at !cache fill time.

Two PCs are calculated per cycle. At the beginning of the cycle the current PC is
"PCO", which pertains to the start of the slot 0 fetch block. The two PCs that are calcu
lated are "PC 1 ", which pertains to the start of the slot 1 fetch block, and "NextPCO"
which pertains to the start of next cycle's slot 0 fetch block. In effect NextPCO becomes
PCO for the next cycle. In order to maintain two fetched blocks every cycle both PCl
and NextPCO are calculated together. The table above showed how exit condition of
slot 0 determined the calculation of PC 1. In order to determine the calculation for
NextPCO, both the slot 0 and slot 1 exit conditions need to be considered. This is
because the computation of NextPCO must start with PCO, and not PCl, which is being
computed simultaneously. Considering all of the possible exit combinations, that is 6x6
cross products, is quite a large task.

Several restrictions on combinations of slot 0 and slot 1 fetch chunk exits reduce this
considerably. Some of the restrictions are imposed due to hardware limitations (eg, the
jump predictor can only handle one jump per cycle, so the slot 0 and slot 1 fetch blocks
cannot both end in jmp or jsr). Others were imposed to make the PC calculation logic
feasible. The first time the Ibox attempts to fetch two fetch-blocks in the same cycle
that violate one of the restrictions, the PC comparison logic will abort the fetch of the
second block, and cause a three cycle restart penalty. Thereafter the Line Predictor will
remember that the two fetch blocks are incompatible and only the first fetch block will
be accessed in that cycle. The second fetch block will be fetched in the following cycle

Compaq Confidential
3-30 Instruction Fetch Unit-the lbox 5 Jc11mary 2001 ···Subject To Chtmge

PC Unit

and it can be combined with a subsequent fetch block. The term for this is squashing.
The following table specifies the cases when the line predictor will learn to squash the
natural occurance of a slot 1.

Table 3-8 Conditions that Sqaush the Second Fetch Chunk

Both fetch chunks are to the same !cache bank (of 8).

Both fetch chunks end in a JMP or JSR or JSR-COROUTINE.

Both fetch chunks end in a RETor JSR-COROUTINE.

The first fetch chunk ends in JSR, BSR, and the second in RET

The first or second fetch chunk ends in a CALL_PAL

The PC cannot cross a 4Mb virtual address space region delimiter going from fetch chunk 0 to fetch chunk 1

A JSR, JSR-COROUTINE, or BSR is the last instruction of a 4Mb virtual address space region for slot 0 or slot 1

In the hardware, PC calculation is broken down into three components:

Table 3-9 Hardware PC Calculation Components

Component

The high bits

The middle bits

The low bits

Bits

<51:22>

<21:5>

<4:0>

For full functionality, PCl is always calculated correctly (the Ibox will never squash
slot 0, only slot 1). NextPCO calculation is governed by the squash rules above. The
matrixes in Table 3-10 show the three components for the calculation for NextPCO,
given those rules.

Table 3-10 Matrix Legend

Matrix

SEQ

TBR

JPR

RET

CPL

PCO

PCO+l

PC0+2

JP

JP+l

RP

Description

Slot exited sequentially, ie no PC changing instruction

Slot exited with a taken branch - taken CBR or BR or BSR

Slot exited with a JMP or JSR

Slot exited with a RET

Slot exited with a CALL_PAL

Input from the original PCO

PC0<21:5>+ 1

PC0<21:5>+2

Input from Jump Predictor

Input from Jump Predictor <21:5>+1

nput from top of Return Stack

Compaq Confidential
5 January 2001 --· Subject To Change Instruction Fetch Unit - the lbox 3-31

PC Unit

Table 3-1 o Matrix Legend

Matrix

RP+l

OFO

OFO+l

OFl

xxx

3.7.2

3-32

Description

Input from top of Return Stack <21:5>+1

Input from the computed branch target <21 :5> stored in the Icache Data Array for slot 0

Input from the computed branch target <21:5> stored in the Icache Data Array+ 1 for slot 0

Input from the computed branch target <21 :5> stored in the Icache Data Array for slot 1

Not a legal combination of slot exits, output comes from the computed PCl, indicated in Table 3-9

Table 3-11 NextPC o Calculation Matrix

S1_Exit
SO_Exit SEQ TBR JPR RET CPL

PC0<51 :22>

SEQ PCO PCO JP RP xxx
TBR PCO PCO JP RP xxx
JPR JP JP xxx xxx xxx
RET RP RP JP xxx xxx
CPL xxx xxx xxx xxx xxx
PC0<21 :5>

SEQ PC0+2 OFl JP RP xxx
TBR OFO+l OFl JP RP xxx
JPR JP+l OFl xxx xxx xxx
RET RP+l OFl JP xxx xxx
CPL xxx xxx xxx xxx xxx
PC0<4:0>

SEQ 0 OFl JP RP xxx
TBR 0 OFl JP RP xxx
JPR 0 OFl xxx xxx xxx
RET 0 OFl JP xxx xxx
CPL xxx xxx xxx xxx xxx

PC Compare

The PC Comparison Logic uses the newly calculated PCs to determine the following:

• If the slot 0 and slot 1 predicted !cache indices were correct

• If the slot 0 and slot 1 cache accesses were hits .

• If there was an instruction access violation

• If slot 1 should be squashed. (see PC Cale section above)

Compaq Confidentia I
Instruction Fetch Unit - the lbox 5 January 2001 ··· Subject To Change

•
•

If slot 0 and slot 1 accessed the correct way in the Icache

When to make a fill request for an Icache miss

PC Unit

3.7 .2.1 Index Mis predicts

Each cycle, the line predictor produces up to two Icache indices, which are necessary to
maintain a fully pipelined instruction fetch engine. The actual PCs needed to determine
the correct next Icache locations to access are not available for a cycle (slotO) or
two(slotl) after they are really needed. So the predicted indices that are generated by
the line predictor are checked by the real calculated PCs later in the pipeline. The indi
ces produced by the line predictor are bits <14:2> of the anticipated PC. These bits are
compared directly with bits <14:2> of the calculated PCs. If the bits match, the index
was predicted correctly. If not, an index mispredict is signaled. The slot 0 index is com
pared in pipe-stage I3 below and the slot 1 index is compared in 14:

11 12 14

Index Pred !cache Access

I3

PCOIDXComp PCl IDXComp

The Icache can be accessed with the correct index the cycle following an index mispre
dict. So, for a slot 0 index mispredict there is a 2 cycle penalty, and a 3 cycle penalty for
a slot 1 index mispredict.

3.7.2.2 lcache Hit Determination

Whether an Icache access hits or misses is also determined by PC comparison. The
Icache tag array produces the tag contents of the accessed cache block. The tag contains
several components including virtual and physical tags, as described in Section 3.5.2.
The Ibox supports two methods of hitting in the Icache for non-PALcode instructions:

1. Virtual tag hit- occurs when:

The virtual tag matches the bits of the calculated PC <51 :15> AND
the ASN of the tag matches the Current ASN of the accessing TPU's process con
text
OR
The ASM bit in the tag is set AND
the accessing TPU's tpu group matches the tags TPU group valid designation

2. Physical tag hit - occurs when:

PC matches the Micro Translation Buffer's (Micro TB) virtual address <51:13>
AND
the Micro TB 's valid bit is set AND
the Micro TB's physical address matches the Tags Physical address<47:13> AND
the Micro TB' s ASN matches the Current ASN of the accessing TPU' s context
OR
The ASM bit in the Micro TB is set AND the tag is valid for any TPU group

Virtual tag hits are expected to be the normal way of hitting in the Icache. Essentially,
the virtual tag matches and the address space number is correct, or the address space
match bit is set and the valid bit is set for that TPU's group. Physical tag hits are sup
ported in the Ibox to facilitate sharing common code among different TPUs. Basically,
two programs running on different TPUs should be able to share instructions in the
Icache if they map to the same physical address. To facilitate this sharing, the Icache tag

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Fetch Unit - the lbox 3-33

PC Unit

array holds the physical as well as the virtual tags for all Icache blocks. Since the PC is
virtual, a fast virtual to physical address translation also needs to be done to compare
with the physical tags coming out of the Icache.

The Micro Translation Buffer (Micro TB), holds just one page table entry (PfE) per
TPU, and so is inexpensive and provides very fast translation for the newly computed
PCs. The Micro TB holds the virtual and physical tags as well as the ASN, ASM and
TPU group valid bits of the last block that was fetched from the lcache and was a vir
tual tag hit. Effectively, its a cache of the tag of the most recent virtual Icache hit. If two
TPUs address memory at the same physical address, and use the same virtual index to
access the lcache, they can share lcache blocks. The first time a TPU attempts to fetch
from a page of Icache blocks that are shared by another TPU, it will miss because the
ASN or TPU group valid bits will not match for a virtual cache hit, and the MicroTB
will be out of date since this is the first access to a new virtual page. But when this first
block is brought into the Icache, it will result in a virtual Icache hit, and the PfE infor
mation from the newly fetched block's tag will be written into the microTB so that sub
sequent lstream accesses to that physical page will physically hit in the cache.

PALcode uses a slightly different mechanism to hit in the lcache. All PALcode instruc
tion blocks are mapped physically, so ASN and ASM are not relevant. The virtual tag in
the lcache will contain the actual physical address of the instruction block. When PAL
code is fetched into the lcache, a bit in the Icache tag is set indicating that the block was
physically filled. In order to access physically filled blocks in the Icache, the TPU must
be operating in PALmode. An Icache hit occurs in PALmode if the PC matches the vir
tual tag or physical tag and the TPU and the block was physically filled.

lcache miss determination occurs roughly the same time as index mispredict determina
tion in the Ibox pipeline. Once the PCs have been calculated, they are compared with
cache tags to determine if there is an lcache miss. If there is an lcache miss, the pipeline
stages prior to the cycle that the Icache miss has been determined are aborted, the fill
unit is informed of the newly requested address. The Fetch Thread Chooser is also
informed so that it will not choose TPUs with lcache fill requests in progress.

3.7.2.3 lcache Access Violation:

An Icache access violation occurs when an lcache block is fetched and is a hit, but the
context of the running process does not have privileges to access that particular block.
Each block in the Icache has one of the four privileges:

U - user read enable
S - supervisor read enable
E - executive read enable
K - kernel read enable

The USEK bits are set in the PTE entry for a particular block, and are filled into the
Icache Tag Array during a normal Icache fill flow. The current process context for a
TPU also has a designated USEK privilege level. An access violation interrupt is initi
ated when the process context USEK for a TPU does not match the USEK designation
written into the tag array for an lcache block that is a hit.

Compaq Confidential
3-34 Instruction Fetch Unit - the lbox 5 January 2001 - Subject To Clumge

PC Unit

3.7.2.4 lcache Way Mispredict Determination:

The !cache is pseudo-2way set-associative. It is 2way set-associative because instruc
tion blocks can map into two different indexed locations in the !cache. In a standard
2way set-associative cache, both potential block locations are read out, the both sets of
tags are compared and if either of the tags matches the accessing address, a hit is sig
naled and the appropriate block is selected. In the 21464's "pseudo" 2way set-associa
tive !cache, instead of the simultaneous access method used in a standard 2way set
associative cache, one way is predicted and that block is read out. If that block is the
wrong one, the other block is read out subsequently. This avoids extending an already
critical path in the !cache access path, and keeps the processor's cycle time short.

The PC Compare logic is responsible for determining if an !cache access was to the cor
rect way. If the index generated by the line predictor is correct (ie, bits <15:2> of the
index match the PC), but the tag does not match, there is a potential way mispredict.
Each blocks tag in the !cache Tag Array stores a subset of the tag that was last filled in
the alternate way (See !cache Tag Array subsection in the Instruction Unit section). If
those alternate tag virtual address bits <23:15> match those of the accessing PC, a way
misprediction is signaled. The Line Predictor, which is responsible for predicting the
!cache way, is trained to predict the alternate way next time. On a way mispredict the
Ibox pipeline is aborted for the faulting TPU and then restarted accessing the alternate
way in the !cache. Since not all the alternate tags virtual address bits were matched, the
second access is not guaranteed to be an !cache hit. It could result in an !cache miss if
the upper bits of the virtual address tag did not end up matching. It could also result in
another way mispredict, if bits <23:15> of the originally accessed way also match the
PC, but the upper bits do not match. This can result in a deadlock, where the two I cache
locations ping pong back and forth, each time resulting in a way mispredict. To avoid
deadlock, the Line Predictor remembers if we already suffered a way mispredict while
trying to access the current PC. The second time, an !cache miss will be signaled
instead.

!cache way mispredicts are signaled in the cycle after index mispredicts are normally
signaled:

Table 3-12 lcache Mispredict Signalling

I1 12

WayPred IC Access

I3

PCOIDXCmp

14

PCOWayMisp

PC 1 Index Cmp

I5

PCl WayMisp

3.7.2.5 Instruction Cache Fill Request:

When a correctly indexed !cache access is not a hit and not a way mispredict, a fill
request is signaled to fetch the instruction block from lower level memory. Since the
21464's second level cache is physically indexed and tagged, the Ibox must send a
physical address along with the fill request to receive the appropriate data. The Ibox has
two sources for translating the virtual PC into a physical address:

• The MicroTB (See Section 3.7.2.2.)

• The 128 Entry Instruction Translation Buffer (ITB) (See Section 3.8.)

Compaq Confidential
5 Janw1ry 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-35

Fm Unit

In order to save power, the main 128 Entry ITB is not accessible every cycle. Further
more, it is only necessary to access the main ITB when the MicroTB does not contain
the proper PTE. If there is an !cache miss and the MicroTB VA tag matches the upper
PC bits and the address space comparison matches, the PA found in the PTE is the cor
rect missing physical page frame number. The page frame number <47:13> is the upper
portion of the physical address. It is concatinated with the page offset <12:6> to form
the complete physical address of the missing !cache block. If the correct PTE is not
found in the 1 entry Micro TB, the main ITB must be accessed to retrieve the page trans
lation. The ITB cannot be accessed immediately because it was not operating to reduce
power consumption. The PC Compare logic causes an Ibox pipeline abort and restart,
and sends a signal to the Line Predictor indicating that the main ITB needs to be
enabled for the next fetch attempt. The next time the missing TPU is chosen by the
Index Unit, the Line Predictor will send a signal to the main ITB, which prepares it to
be accessed. The next time the !cache miss is detected the ITB will lookup the PC's VA
and use the page frame number found in the matching entry to generate the physical
address for the fill request.

3.8 Fill Unit

3.8.1 Instruction Translation Buffer

The 21464 has a virtually addressed instruction cache. All memory references outside
the CPU core (including the Scache and off-chip memory) are physically addressed. In
the event of an !cache miss, the translation buffer's main task is to determine, as quickly
as possible, the physical address of the cache line in which the miss occurred so that it
can be fetched by the Cbox.

The ITB contains only a subset of all possible address translations, called page table
entries (PfEs). Because the ITB itself is a 'cache' of PTEs, it is possible that when an
!cache miss occurs and the virtual address is given to the ITB for translation, the PTE is
not found. In this case, a trap causes a PALcode routine to lookup the correct PTE from
a software table and use an IPR to write the translation into the ITB.

So far, this operation is consistent with the 21264 ITB. However, unlike the 21264, the
21464 includes hardware support for simultaneous multithreading, which has the fol
lowing implications for the ITB:

•

•

•

When an !cache miss occurs, only one TPU is affected. It is important that perform
ing the PTE lookup and doing the !cache fill does not stall the pipeline so that other
TPUs can continue execution.

Because ITB fills are completely independant of ITB lookups, care must be taken
to reduce the possibility of one TPU's writes interfering with another TPU's read.

TPUs operating independantly of each other in separate thread groups (TGs) can
access the same physical page. To prevent the !cache from storing the same data
twice (and thus requesting two ITB lookups), a new mechanism is needed to detect
physical address sharing between TPUs. For operating system code, sharing
already occurs between processes within a TG (identified by a distinct ASN) by
using the ASM mechanism.

Compaq Confidential
3-36 Instruction Fetch Unit-the lbox 5 January 2001 ···Subject To Clumge

Fm Unit

• Because each TG is an independant entity to which TPUs can belong (like separate
CPUs), PfEs belong to exactly one TG. The ITB stores four one-hot valid bits that
indicate to which TG the PTE belongs. TGs do not share PfE entries. The !cache,
however, does not signal a miss when there is physical address match, thus prevent
ing the ITB lookup. A PTE hit is determined as follows:

pte_ VA<51:13> == current_PC<51 :13> AND

pte_TG<3:0> == current_TG<3:0> AND

(pte_ASN<7:0> == current_ASN<7:0> OR pte_ASM == '1')

An !cache miss penalty is significantly reduced because the 21464 includes an on
board, second-level cache (Scache). Thus, time taken for address translation becomes a
significant part of the !cache miss penalty, and it is important that the ITB provides a
physical address for the fill as soon as possible.

As in the 21264, 8k page sizes are supported. The 21464 can additionally support 64k
pages sizes. Granularity hinting is allowed on 64k pages to provide up to 512MB effec
tively sized pages.

3.8.1.1 Architecture

For the first time in an Alpha implementation, the ITB consists of a pseudo two-level
'cache' of PfEs: a first-level micro ITB (uITB) and a second-level main ITB (the ITB).

The first-level uITB is a single PfE entry for each TPU. It effectively contains the last
good address translation that the !cache accessed for each TPU; the uITB is updated
any time a TPU virtually hits in the !cache. The PTE information for the update comes
from the !cache tag and not from the main ITB array. For ease of implementation, only
the first fetch can update the ulTB (the 21464 fetches twice per cycle). When there is an
!cache miss, the ulTB is quickly checked to see if it contains the correct PfE for the fill.
If the PfE is good, it is sent to the fill unit and a cache miss is signaled. The physical
address is available at the fill unit just two cycles after the miss was detected.

The second-level ITB is a 128-entry fully associative 'cache'. Writes are organized as
round-robin by using simple head/tail pointer logic. Simultaneous read/write is not pos
sible, so read scheduling is important. Reads are pipelined across one and a half cycles
as follows:

i3b Cam ASN/ASM and Group Valid

i4a Cam VA
i4b Read PIE

i5a Send PIE to fill unit

Compaq Confidential
5 Janu~1ry 2001 ·- Subject To Change Instruction Fetch Unit - the lbox 3-37

Fill Unit

To save power, the main ITB is only activated for lookup operations upon a uITB miss
(cache miss is implied). This causes a penalty of at least six cycles between cache miss
detection and when the physical address is available to the fill unit. For simplicity, the
non-index restart mechanism in pipe control is used to enable main ITB lookup. What
happens is as follows:

Cycle Event

0 (I3) Cache miss detection, uITB determined to be wrong.

1 (I4) Non-index fault is signalled causing the PC to be replayed in the pipe. !cache miss is
NOT signaled.

2 (11) Index is sent to lcache

3 (I2) lcache is read

4 (13) Main ITB is enabled. lcache miss detection

5 (I4) !cache miss signaled. Main ITB lookup in progress

6 (15) PfE sent to fill unit

It is possible for the this penalty to be longer than six cycles if the TPU is not selected
immediately after the non-index fault.

The main ITB is very similar the 21264 ITB. Super page detection and invalidation
operates the same. Additionally, a new invalidate, TBIAG, invalidates all entries in all
TGs. Superpages are supported in the main ITB as follows:

Table 3-13 Superpage support in the Main ITB

Superpage

SuperpageO

Superpagel

Superpage2

Description

Direct maps one quarter of WindowsNT's 32bit address space. The kernel code is kept in this
area of memory. It is believed that 64-bit NT will use the Unix superpage mode.

Direct maps the least significant 41 bits of the physical address space (bits <47:41> sign
extended) to support older versions of UNIX and VMS. This superpage is consistent with the
43 bit virtual address supported by EV 4, EV5 and the size of the 3 level VPfEs used in Digital
UNIX. (see SRM Digital UNIX 11-B section 3.1.1).

Direct maps the whole of the physical address space for more recent versions of UNIX and
VMS which may use four level PfEs.

If l_CTL[SPE<2>] = 1 AND VA<51:50> = "10" Then PA<47:13>=VA<47:13>, USEK="OOOl 11

If l_CTL[SPE<l>] = 1 AND VA<51:40> = Then PA<47:13>= 11 lllllll 11 ,VA<40:13>, USEK= 11000l 11

11 111111111101"

If I_CTL[SPE<l>] = 1 AND VA<51:40> =
II 111111111100 II

If I_CTL[SPE<O>] = 1 AND VA<51:30> =
11 111111111111111111111011

Then PA<47:13>= 110000000 11 ,VA<40:13>, USEK= 11 000l 11

Then PA<47:13>= #OOOOO,VA<29:13>, USEK= 11000l 11

Compaq Confideaitia I
3-38 Instruction Fetch Unit-the lbox 5 J~·muary 2001 m Subject To Change

Fm Unit

Address Space Match (ASM) is supported as in the 21264. When an entry in the main
ITB has the ASM bit set, matches against the ASN are ignored when determining TB
hit. The uITB also includes this support for hit detection.

Both the main ITB and the uITB utilize the full physical address space permitted
<47:13>. PFNs are limited to 32 bits by software, which yields a 64K-page PFN of
<47:16> and an 8K-page PFN of <44:13>. When in SK-page mode, the main ITB sign
extends the 45 bit physical address up to bit <47> when filling PfEs, and in 64K-page
mode, the ITB bypasses VA bits <15:13> from the PC into the physical address bits
<15:13> when reading. To correctly match entries in 64K-page mode, the main ITB
ignores VA bits < 15: 13> because they aren't part of the PFN. The uITB also ignores VA
bits <15:13> when performing a VA match in 64K-page mode.

Granularity Hint (GH) is taken care of in the main ITB in the same manner as the
21264. Special CAM structures on the VA bits affected by GH can disable miss detec
tion on those bits thus giving the appearance of an ITB hit on a seemingly larger page.
Upon reading the PA out of the main ITB, the affected VA bits are muxed into the cor
responding bits of the PA to return the physical PFN. Note that the ITB will always
return PfEs for base size (8k or 64k) pages. Essentially, GH allows an ITB entry to
cover multuple contiguous base size page translations. Here are the diffement GH map
pings:

Table 3-14 Granularity Hint (GH) Mapping

GH Mode=>
Page Mode JJ. gh<1 :0> == 00 gh<1 :0> == 01 gh<1 :0> == 10 gh<1 :0> == 11

8k page size

64k page size

TB entry covers 8K TB entry covers 64K TB entry covers
512K

TB entry covers 4M

TB entry covers 64K TB entry covers 2M TB entry covers 64M TB entry covers
512M

The uITB will not have support for granularity hinting or super pages explicitly. This is
taken care of since the uITB will just contain an explicit page translation that comes
from the main ITB in a round about fashion. For example, the first request in a super
page region will result in a main ITB read. The result of this read will return the hard
wired superpage PA for that VA. The fill unit will fetch the required lcache blocks and
write the hardwired PA into the Icache tags. The next time that block is fetched from the
Icache successfuly, the uITB will be updated to contain the hardwired superpage PA.
Granularity Hinted pages will only be stored as a base page size translation in the uITB.
Jumps outside of a base page will cause a uITB miss although the main ITB will hit on
the same translation that filled the uITB.

Compaq Confidential
5 Janw1ry 2001 -· Subject To Change Instruction Fetch Unit - the lbox 3-39

Fm Unit

3.8.1.2 IPRs That Affect the ITB

Table 3-15 IPRs that Affect the ITB

IPR

ITB_TAG

ITB_PTE

ITB_IASN

ITB_IA

ITB_IS

ITB_IAP

I_CTL

PCTX

Affect on the ITB

This IPR contains the VA used for filling the main ITB and also performing invalidate opera
tions. There is one for each TPU.

This IPR contains the PTE used for filling the main ITB. Retiration of the MTPR to this IPR
causes the ITB_TAG and ITB_PTE contents to be written into the main ITB. There is one for
each TPU.

When a MTPR to this IPR retires, all entries for the current ASN and TG are invalidated. The
Icache must be invalidated for the current TG and the uITB invalidated. There is one for each
TPU.

When a MTPR to this IPR retires, all entries in the current TPU's thread group are invalidated.
The Icache must be invalidated for the TG of the current TPU. The uITB must also be invali
dated for the TPU. There is one for each TPU.

When aMTPR to this IPR retires, any entry that matches the VA in ITB_TAG and matches the
current TPU's ASN and TG will be invalidated. The Icache must be flushed and the uITB invali
dated. There is one for each TPU.

When a MTPR to this IPR retires, any entry that is valid for the current TG and whose ASM bit
is not set will be invalidated. The Icache must be flushed and the uITB invalidated. There is one
for each TPU.

When a MTPR to this IPR retires, the SPE<2:0> bits in this IPR enable the 3 super page modes.
Each TPUhas it's own I_CTL IPR.

When aMTPR to this IPR retires, the ASN<7:0> bits in this IPR will indicate which ASN is
assigned to the TPU. Also, the TPU_GRP<3:0> bits in this IPR indicate which thread group the
TPU belongs to. Each TPU has it's own PCTX IPR.

3.8.1.3 ITB Operations

3.8.1.3.1 Fills

Writes stem from an ITB miss flow (PAL code). Here's a break down of what happens
from the miss code:

• A MTPR (Move To Processor Register) to the ITB_ TAG IPR is issued. The data is
written into a speculative register.

• A MTPR to ITB_PTE is issued. The data is written into a speculative register.

• When the MTPR to ITB_PTE retires, the data in the speculative registers are writ
ten into the main ITB array. The ASN of the current process is also written into the
array from the PCTX IPR. Note that there is no real ITB_PfE or ITB_ TAG IPR
register, only a speculative register.

• The MTPR to the ITB _PfE register must be followed by an IFETCHB to ensure
the main ITB state is updated before it is used.

The uITB gets written by a much more ciruitous route. It starts with a cache miss which
requires the main uITB to supply the fill unit with a PTE (PA, USEK bits, and the ASM
bit) for the page being requested. When the fill data returns, the fill unit supplies this

Compaq Confidential
3-40 Instruction Fetch Unit - the lbox 5 Jc1nuary 2001 - Subject To Change

Fm Unit

PTE to the Icache Tags for writing. The final step to writing the uITB requires that the
Icache virtually hits on an entry containing the this PTE. The virutal hit causes the uITB
to be written with PTEfrom the Icache Tags.

3.8.1.3.2 Reads

Reads are explained previously.

3.8.1.3.3 Invalidates

There are four invalidate operations for the ITB.

Table 3-16 ITB Invalidate Operations

Operation Description

Invalidate All Invalidates all entries within the current TPU's TG. Requires only a MTPR to the
TB_IA IPR. The actual invalidate is performed upon retire of the MTPR. Addi
tionally, the Icache must be invalidated for this TG. An IFETCHB must follow the
MTPR to ensure the ITB is up to date before it is accessed again.

Invalidate ASN specific Invalidates all entries in the ITB that match ASN and TG of the current TPU.
Requires only a MTPR to the TB_IASN IPR. The actual invalidate is performed
upon retire of the MTPR. Additionally, the lcache must be invalidated for the cur
rent TG. An IFETCHB must follow to ensure the ITB is up to date before it is
accessed again.

Invalidate Single Invalidates a single entry specified by VA, ASN, and TG. Two MTPRs are
required. The MTPR to the ITB _TAG IPR must ocurr before the MTPR to the
TB_IS IPR. Upon retireation of the TB_IS MTPR, the ITB_TAG VA, the current
ASN, and the TG of the current TPU will cam against the contents of the main
ITB. Any matching entries will be invalidated. Additionally, the Icache must be
invalidated for this TG. An IFETCHB must follow to ensure the ITB is up to date
before it is accessed again.

Invalidate Process Specific Invalidates all entries within the current TPU's TG which do not have the ASM bit
set. The actual invalidate is performed upon retire of the MTPR. Additionally, the
lcache must be invalidated for this TG. An IFETCHB must follow the MTPR to
ensure the ITB is up to date before it is accessed again.

3.8.2 Instruction Fill Unit

The Instruction Fill Unit (IFU) is responsible for fetching instructions when an !Cache
miss occurs. It consists of two sections: Request and Fill. The Request section itself is
made up of two subsections: Demand and Prefetch. The Demand subsection handles
!Cache misses detected by the Ibox pipeline, while also recording and sending all Ibox
memory requests to the Mbox preMAF for servicing. The Prefetch subsection generates
a fixed number of consecutive memory requests ahead of the original miss and routes
them to the Demand unit for Mbox handling. The Mbox preMAF funnels together both
Instruction stream and Data stream requests and delivers them to the Cbox for fetching.
As the I stream requests are satisfied, the resultant instructions are sent from the Cbox
to the Fill section of the IFU for predecoding and loading into the I Cache. The follow
ing simplified block diagram shows the IFU and its Request and Fill sections in relation
to the !Cache, lbox Pipeline, Mbox preMAF, and Cbox return logic.

Compaq Confidential
5 January 2001 --·Subject To Change Instruction Fetch Unit - the lbox 3-41

Fm Unit

Figure 3-5 Instruction Fill Unit (IFU) Request and Fill Sections

::·G~p±<) :·
t:~t.:~~Mt~f

A fundamental assumption in the design of the IFU is that memory requests are never
cancelled once they have been sent to the Mbox. Dropping an unneeded request would
be dangerous because a remote part of the IFU might simultaneously decide that the
request was required after all. Furthermore, the minor benefit of cancelling certain
requests would not be worth the additional hardware cost of tracking dropped requests.

3.8.2.1 Demand Misses

The Demand subsection of the Request portion of the IFU is responsible for sending
!Cache miss requests to the Mbox preMAF for servicing by the SCache and/or Mem
ory. A simplified block diagram of the Demand subsection appears in the figure below.
The physical address (PA) and pte_ valid input signals come from the ITB, while all of
the others are from the Ibox pipeline. The fill_request signal serves as the valid bit for
demand requests from that pipeline.

Compaq Confidentia I
3-42 Instruction Fetch Unit - the lbox 5 January 2001 - Subject To Change

Fm Unit

Figure 3-6 Instruction Fill Unit (IFU) Demand Subsection

i:tti~J~; ~.:"=========.;.;.;.;.;,;:.
M~:.+a..: :.,¥R.'J(t@:

#i$l~~~, ::; . I

::~:~:~:;'.f7f.~~~~f:•:•,.,...::· -~F
/f.J:J::J~:;;.;V:@'··--"· ~.;..,.;.-;4

The Index CAM Array is used to determine if there is another fill request currently out
standing to the same !Cache index and way as the current valid miss. For a 64 kB
instruction cache, fill_ VA<l4:6> is the index, while fill_ VA<15> is the way bit unless
the flip_ way signal from the Thrash Detector indicates that bit should be inverted. The
Pre tag Array stores fill_ VA<51 :6> and ITB information for each request, all of which is
retrieved when the fill instructions return from the Cbox. Together, these two arrays are
referred to as the Entry Arrays; simulation studies have shown that 32 entries are appro
priate.

The Freelist is a stack whose top indicates the next available free location in the Entry
Arrays. Because there can exist at most only one demand for each TPU, the Demand
Array contains four pointers (with valid bits) that indicate the index of a given TPU's
demand resides in the Entry Arrays. Each Demand Array entry also contains a "piggy
back" bit detailed below. The Stall Logic is used to record which TPU s attempted to use
the IFU when it was full, or when either the Mbox preMAF or Cbox MAF were full.

3.8.2.1.1 Demand case: simple

The first case to consider is a simple demand. The fill_request signal goes high at the
start of cycle 15, indicating a valid miss. The pte_valid signal is true for this simple
case, while both PMF _full and flip_ way are not. The Index CAM Array is probed: in a
simple demand, there is no match with any valid entry. Starting in 16, the output of the

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-43

Fm Unit

Index CAM Array therefore indicates that this is a legitimate miss, so Ifetch_vld goes
high. The Mbox preMAF uses this signal to validate the If etch_pa, consisting of
PA<47:13> from the ITB and fill_ VA<12:6> from the Ipipe; and the Ifetch_ptr, which
is a token used to uniquely identify this request.

Simultaneous with the request shipment to the Mbox in I6, the Entry Arrays are written
with data at the index indicated by Ifetch_ptr; and in the following phase, the Freelist
stack is popped. The Pretag Array caches the following signals: fill_ VA<51:15> and
ASN<7:0> from the Ipipe, PA<47:13> from the ITB, and 11 bits of control called the
hit conditionals. These latter bits consist of physical_fill, console, and tg_ valid<3 :0>
from the Ipipe, along with ASM and USEK<3:0> from the ITB. Finally, the fill_ way bit
is appended to fill_ VA<14:6> and stored in both of the Entry Arrays. The Demand
Array is written in I6 with the lfetch_ptr at the location indicated by the TPU number.

3.8.2.1.2 Demand case: index and way match of active request: "piggybacking"

In order to avoid potential livelock cases, the IFU allows only one outstanding memory
request to a given !Cache index and way at any time. A novel technique, denoted "pig
gybacking", is used to handle the request if such a match occurs. Following the simple
case above, the input control signals are the same, but here, the Index CAM Array indi
cates a match. This forces the lfetch_vld signal to become false to prevent the fetch
from occurring. The Demand Array is written at the requesting TPU with the pointer to
the entry that matched the request, and the piggyback bit for the same TPU is set.

When the instructions from the original request arrive from the Cbox, the Fetch Thread
Chooser (FTC) is notified to restart the corresponding TPU. A few cycles later, the FTC
is allowed to restart any other TPU that piggybacked onto that request. The use of the
term "piggybacking" for this method is now apparent, because any subsequent demand
misses that match an active request ride along with that request.

Recall that only the ICache index and way are checked for piggybacking, not the
higher-order VA bits. Simulation studies have shown that these bits often match as well.
Most often, this is caused when a redirected goodpath restart requests a block already
desired during badpath execution, or when a demand miss contains a short forward
branch to code being prefetched. If the higher-order VA bits to not match, the TPU
restart of any piggybacked entry results in a new miss.

3.8.2.1.3 Demand case: flip_way active

The ICache way into which a given miss will fill is determined at miss time. The major
ity of requests will fill into their "natural" way, which is fill_ VA<l5> in a 64 kB
ICache. The Thrash Detector determines under which circumstances flip_ way goes
high, indicating that the complement of fill_ VA<l5> (known as the "alternate" way)
should be used.

The decision whether or not a demand miss must piggyback is a function of what the
fill_ way is determined to be. Consequently, the Thrash Detector output must be read
and the fill_ way altered before the Index CAM Array is probed for a match. Otherwise,
a miss that doesn't match an active request in its natural way might have its way toggled
and have an alternate way match that is not detected.

Compaq Confidential
3-44 Instruction Fetch Unit - the lbox 5 January 2001 -~ Subject To Change

Fm Unit

3.8.2.1.4 Demand case: capacity stall

There is finite storage for handling memory requests, both in the IFU (in the Entry
Arrays) and beyond (in the Mbox preMAF and the Cbox MAF). A full_resource signal
is raised when any or all of these storage areas are full, taking into account any in-flight
delays. If a demand miss arrives when full_resource is high, a stall bit corresponding to
the TPU number of the request is set. When the full_resource line falls, the stall bits are
sent to FTC, indicating which threads must retry their requests.

3.8.2.2 Prefetching

Once a demand miss has been confirmed by the Ibox pipeline, the Prefetch subsection
can generate memory requests. Because the IFU interface to the Mbox preMAF can
accept one memory request per cycle, the Prefetch subsection generates a single request
per cycle and routes it to the Mbox through the Demand subsection interface. The
prefetch requests are for consecutive !Cache blocks beyond the confirmed miss address.
The maximum number of such prefetch requests that are generated for a given miss is
determined by a per-TPU IPR value. The actual number sent to the Mbox may be less
than the maximum due to filtering.

A simplified block diagram of the Prefetch subsection appears in the figure below.
There are four 101-bit Capture Registers (one per TPU), each of which saves all of the
required information about a confirmed Demand miss that will be needed to generated
prefetch requests (specifically, fill_ VA<51 :6>, ASN<7:0>, and fill_ way from the
Demand subsection, PA<47:13> from the ITB, and the 11-bit hit conditionals from
both). The Filter Array is essentially a copy of the I Cache Tag array in that it contains 2
sets of 512 entries each (for a 64 kB !Cache), but this copy stores a hashed version of
the tags in order save chip area. The Index CAM Probe determines if another active
request shares the same !Cache index and way as the feedback_ VA. It is shared with the
Index CAM Array in the Demand subsection.

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-45

Fm Unit

Figure 3-7 Instruction Fill Unit (IFU) Prefetch Subsection

raaan?... -r~'.it:~f :;A.r~~:f::

....... Xn-~~l::'>iri.a~i: .. < .":'.):J?#. ~~;"¥:~::,
::::;.··:::··:~:·:·::·:·.·::· .. :·<:·::·:\.::; '

·i;;.:...,....,..,.llli'I ·:· >·:i'AT.J: ~Mi>

An unusual characteristic of the Prefetch Subsection is that it conceptually exists in two
different time domains. Simulation studies have shown that demand misses should
always proceed ahead of prefetch requests, so a portion of the design uses recirculating

I
latches between clock stages to "freeze" the prefetch state while a demand miss is sent
to the Mbox. Yet certain inputs arrive from the Demand and Fill Subsections that can
not be frozen without data loss, so they must be handled immediately. More specifi
cally, the inputs to the Capture Registers and the Filter Array are stored as soon as they
are valid. The different time domain "worlds" in the prefetcher are distinguished by a
dashed line in the figure.

3.8.2.2.1 Prefetch case: simple

Activity in the prefetcher begins when an ICache miss is confirmed by fill_request in
the Demand subsection. When that is using the Index CAM Array to check the index
and way of the demand miss, the prefetcher feeds the VA through the Source Mux to
look up the hashed tag, while the same fill_ VA is both incremented and hashed in paral
lel. Ideally, an incremented fill_ VA would be used to index the Filter Array, but there is
insufficient time to do both the increment and the lookup in a single cycle; instead, the
index to which the hashed version of the banked_ VA is written is decremented before
writing the array. ICache_miss confirmation also initializes the per-TPU Range Counter
in IS.

Compaq Confide11tia I
3-46 Instruction Fetch Unit - the lbox 5 J,1nuary 2001 -· Subject To Clumge

Fm Unit

The appropriate Ipipe contents are latched into one of the Capture Registers in 16. This
also triggers the Tag Compare of the hashed Filter Array tags with the hashed fill_ VA:
in the simple case, there are no matches. The Index CAM Array probe also occurs in 16,
as long as the Demand subsection does not need the shared hardware. The Capture Reg
ister data is then used to construct a request that is sent to the Mbox via the port in the
Demand Subsection. Because this prefetch pipeline is one cycle longer than the demand
one, the first prefetch can be sent to the Mbox in the cycle after the demand has been
sent. This is critical, because the prefetched blocks most likely to be needed for execu
tion are those most near the demand miss.

Once it is confirmed that this prefetch request has been accepted, the Confirm box
sends a decrement signal to the per-TPU Range Counter, which stops the generation of
new prefetch requests when the range becomes zero. Until then, the Source Mux will
select the feedback_ VA as its input, which is the fill_ VA from the previous cycle incre
mented by the !Cache block address. Simulation studies have shown that the optimal
number of consecutive blocks to fetch ahead of the demand miss is usually between 2
and 4. The Range Counters are therefore 3-bit counters, allowing a maximum fetch
ahead distance of 7 !Cache blocks.

3.8.2.2.2 Prefetch cases: tag match or page boundary crossing

A variety of conditions may keep the number of prefetch requests sent to the Mbox
below the value specified by initial Range Counter value. First, if the Tag Compare unit
detects that a hashed tag in the Filter Array matches a hashed version of the Source
Mux VA, it is highly likely that the stream of prefetch requests will be for instructions
already (or soon to be) resident in the !Cache. In order to preserve memory bandwidth,
prefetching is squashed (stopped) by zeroing the proper Range Counter and invalidat
ing the matching request before it is sent to the Mbox. Any request that crosses an 8K
page boundary is also squashed because its PA would require an ITB translation differ
ent from that stored in its Capture Register (superpage handling is TBD).

3.8.2.2.3 Prefetch case: Index CAM match

If the Index CAM Probe reports a match without a Tag Compare match or page cross
ing, the given request is skipped (by forcing Ifetch_vld false) but prefetching is not
squashed. Recall that an Index CAM match indicates that there is another currently-out
standing request to the same index and way as the probe. Because prefetching is inher
ently speculative, it is considered too risky to have a prefetch request displace another
!Cache request, particularly if the other is a demand miss.

3.8.2.2.4 Prefetch case: alternate TPU demand during prefetching

One TPU may produce a demand miss and start prefetching when another TPU also
confirms a miss. When this happens, the recirculating latches "freeze" the state of the
prefetcher while the new demand miss is sent to the Mbox and the new demand state is
captured in the proper Capture Register. The prefetcher then resumes running in the fol
lowing cycles until the appropriate Range Counter is zero. The New Start logic then
notices that the new demand state for the alternate TPU is ready, so prefetching pro
ceeds for that TPU.

More than one Capture Register may have valid state ready for prefetching. This
requires the New Start logic to implement a picker to select amongst multiple ready
TPUs. Simulation has shown that this is a very rare occurrence, so any simple picking
algorithm is acceptable.

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-47

Fm Unit

3.8.2.3 Fill

3.8.2.2.5 Prefetch cases: badpath indication during prefetching

Again, once a request has been sent to the Mbox, it cannot be cancelled. However,
unsent requests in the Prefetch Subsection pipeline are dropped if a badpath indication
is received for the same TPU as the prefetch requests. This allows new prefetch
requests on the goodpath to proceed in the Mbox and/or Cbox without having to stall
behind the badpath ones. If a badpath indication is received for a TPU having valid
Capture Register state, that state is invalidated.

The Fill Section of the IFU contains the circuitry between the Cbox and the I Cache for
the predecoding and parity generation of instructions returning from the SCache or
memory system. A simplified block diagram of the Fill Section appears in the figure
below. The Cbox initiates the transfer of instructions to the IFU by supplying the
early_waming_ptr corresponding to the request for those instructions. This pointer is
used for probing two arrays in the Demand Subsection. The Demand Array Probe deter
mines if the returning instructions are non-piggybacked demand requests for any of the
TPUs, while the Entry Array Probe looks up the VA and tag data stored earlier for this
request. This data, combined with the returning instructions themselves, are fed into the
Predecode Br_Offset Gen and Parity Gen boxes to determine predecode bits, branch
target offsets, and parity. The aggregation of these bits, combined with the tag and
instruction bits, is called the Fill Packet.

Figure 3-8 Instruction Fill Unit (IFU) Fill Section

':(t.:;.~·:~d~ffo.t::::
.·.·. ~;'i:~9.~ltd:2t::~.:J.L±i::

:~b:+Lecic.S$:t~,t
,•. ".:-:. ~: ':. . . '·.

·.:····.-.;

<t:6:,: .
. }~%~~¢,ti~

,'.';::~~::t::¥~:¥;:·'.~~rl~:,

.. ·:<

Compaq Confidential
3-48 Instruction Fetch Unit - the lbox 5 Jc1nuary 2001 ··· Subject To ChangE~

Fm Unit

The branch offset calculations calculate a portion of the target address for both condi
tional and unconditional branches.

Carry predecodes are generated during branch targe precalculation. If an integer or
floating-point conditional branch or unconditional branch is detected, the branch target
is precalculated and the displacement field is replaced with the target as follows.

The overflow predecode bit is calculated as follows, where the circumflex (A) repre
sents an XOR operation:

[(PC <21:2> + 1) + I<19:0>] A I<20>

The increment predecode bit is calculated as follows, where the increment is to the next
address that falls on an 8-instruction boundary:

[(PC <21:2> + 1) + I<19:0>] + 8

Because the displacement is overwritten by the target address when the branch is stored
and because the displacement field is 21 bits long, only the lower 20 bits of the result
are calculated. By leaving the sign bit <20> intact and including the overflow bit in the
!cache to hold the carry-out, the rest of the addition can be performed when the PC's are
calculated. Because the sign and overflow bits can both be 0 or 1, the high bits of the
target can be incremented or decremented or unchanged.

The predecodes are split between those needed in the Ibox and those passed further
down the pipeline.

3.8.2.3.1 Predecode Bit Generation

Table 3-17 shows an overview of the predecode bits that are generated in the Instruction Fill
Unit (IFU). In the table, the last column shows the Pbox predecode bits as A, B, C, and D, and
the Ibox predecode bits as UE, CB, P2, P3, CM, and MA.

Table 3-17 is sorted according to opcode value. In the table:

• The first column lists the instructions.

• The second column lists each of the 23 possible Pbox-assigned instruction types.

• The third column lists the opcode for each instruction or group of instructions.

• The fourth column lists the function field bits in the instruction that the IFU uses to
determine the instruction type.

• The fifth column lists the predecodes that the IFU generates. The Pbox assigns the
instruction type (column two) according to the EDCBA predecode bits. Similarly,
the lbox assigns the other encoding bits for the control flow instructions, described
in Table 3-18.

Table 3-17 Predecode Bits Defined by the lbox Instruction Fill Unit

Opcode Bits: Function Field Bits:2 Predecode Bits:3

Instruction Type1 31-26 151413121110 9 8 7 6 5 p EDCBA UE CB P2 P3 CM MA

CALL PAL XXP 000000 ------------ 00010 1 1 1 1 0 0

RES xxx 000001 ------------ 01001 0 0 0 0 0 0

RES xxx 000010 ------------ 01001 0 0 0 0 0 0

Compaq Confidential
5 January 2001 ~·Subject To Change Instruction Fetch Unit - the lbox 3-49

Fm Unit

Table 3-17 Predecode Bits Defined by the lbox Instruction Fill Unit (Continued)

Opcode Bits: Function Field Bits:2 Predecode Bits:3

Instruction Type1 31-26 151413121110 9 8 7 6 5 p EDCBA UE CB P2 P3 CM MA

RES xxx 000011 ------------ 01001 0 0 0 0 0 0

RES xxx 000100 ------------ 01001 0 0 0 0 0 0

RES xxx 000101 ------------ 01001 0 0 0 0 0 0

RES xxx 000110 ------------ 01001 0 0 0 0 0 0

P.xxxx4 xxx 000111 ------------ 01001 0 0 0 0 0 0

LDA XII 001000 ------------ 11011 0 0 0 0 0 0

LDAH XI I 001001 ------------ 11011 0 0 0 0 0 0

LDBU Sii 001010 ------------ 10000 0 0 0 0 0 0

LDQ_U SUI 001011 ------------ 11001 0 0 0 0 0 0

LDWU Sii 001100 ------------ 10000 0 0 0 0 0 0

STW IIS 001101 ------------ 11111 0 0 0 0 0 0

STB IIS 001110 ------------ 11111 0 0 0 0 0 0

STQ_U IIS 001111 ------------ 11111 0 0 0 0 0 0

INTA II I 010000 ---0-------- 00100 0 0 0 0 0 0

INTA IXI 010000 ---1-------- 00101 0 0 0 0 0 0

INTL III 010001 ---0----0--- 00100 0 0 0 0 0 0

INTL IXI 010001 ---1----0--- 00101 0 0 0 0 0 0

INTL II I 010001 - - - 0 - - - 1 1 - - - 00100 0 0 0 0 0 0

INTL IXI 010001 - - - 1 - - - 1 1 - - - 00101 0 0 0 0 0 0

CMOVx II I 010001 ---0---01--- 00100 0 0 0 0 1 0

CMOVx IXI 010001 ---1---01--- 00101 0 0 0 0 1 0

MA III 010001 ---010-00--- 00100 0 0 0 0 0 1

MA IXI 010001 - - - 1 1 0 - 0 0 - - - 00101 0 0 0 0 0 1

INOP I I I 010001 ---001-00--- 00100 0 0 0 0 0 0

INOP IXI 010001 - - - 1 0 1 - 0 0 - - - 00101 0 0 0 0 0 0

INTS II I 010010 ---0-------- 00100 0 0 0 0 0 0

INTS IXI 010010 ---1-------- 00101 0 0 0 0 0 0

INTM II I 010011 ---0-------- 00100 0 0 0 0 0 0

INTM IXI 010011 ---1-------- 00101 0 0 0 0 0 0

FLTS FFF 010100 -------1---- 11100 0 0 0 0 0 0

ITOFx IXF 010100 -------0---- 00111 0 0 0 0 0 0

FLTV FFF 010101 ------------ 11100 0 0 0 0 0 0

FLTI FFF 010110 ------------ 11100 0 0 0 0 0 0

Compaq Confidential
3-50 Instruction Fetch Unit - the lbox 5 January 2001 ··· Subject To Change

Fm Unit

Table 3-17 Predecode Bits Defined by the lbox Instruction Fill Unit (Continued)

Opcode Bits: Function Field Bits:2 Predecode Bits:3

Instruction Type1 31-26 151413121110 9 8 7 6 5 p EDCBA UE CB P2 P3 CM MA

FCMOVx FFF 010111 ------01---- 11100 0 0 0 0 1 0

CPYSx FFF 010111 ------000--- 11100 0 0 0 0 0 0

MT_FPCR FFC 010111 ------001-0- 11110 0 0 0 0 0 0

MF_FPCR FFF 010111 - - - - - - 0 0 1 - 1 - 11100 0 0 0 0 0 0

CVTxx FFF 010111 ------1----- 11100 0 0 0 0 0 0

FNOP FFF 010111 ------00000- 11100 0 0 0 0 0 0

TRAPB xxx 011000 00---0------ 01001 0 0 0 0 0 0

EXCB xxx 011000 00---1------ 01001 0 0 0 0 0 0

MB xxx 011000 01--00------ 01001 0 0 0 0 0 0

(MB) xxx 011000 0 1 - - 1 - - - - - - - 01001 0 0 0 0 0 0

WMB IIX 011000 0 1 - - 0 1 - - - - - - 01111 0 0 0 0 0 0

FETCH xxx 011000 100--------- 01001 0 0 0 0 0 0

FETCH_M xxx 011000 1 0 1 0 - - - - - - - - 01001 0 0 0 0 0 0

RPCC XIY 011000 1 1 0 - - - - - - - - - 01011 0 0 0 0 0 0

Rx XXN 011000 1 1 1-0------- 00011 0 0 0 0 0 0

xCB IIX 011000 1 1 1 0 1 - - - - - - - 01111 0 0 0 0 0 0

WH64x IIX 011000 1 1 1 1 1 - - - - - - - 01111 0 0 0 0 0 0

LDx_ARM SII 011000 1 0 1 1 0 - - - - - - - 10000 0 0 0 0 0 0

QUIESCE IIX 011000 1 0 1 1 1 - - - - - - - 01111 0 0 0 0 0 0

HW_MFPR RXI 011001 ------------ 00110 0 0 0 0 0 0

JMP XII 011010 00---------0 11011 1 0 0 0 0 0
JMP XII 011010 00---------1 11011 0 0 0 0 0 0

RET XII 011010 10---------- 11011 1 0 1 0 0 0

JSR XII 011010 01---------- 11011 1 1 0 0 0 0

JCR XII 011010 1 1 - - - - - - - - - - 11011 1 1 1 0 0 0

HW_LD S II 011011 ------------ 10000 0 0 0 0 0 0

INTV II I 011100 ---00------- 00100 0 0 0 0 0 0

INTV IXI 011100 ---10------- 00101 0 0 0 0 0 0

INTV II I 011100 ---010------ 00100 0 0 0 0 0 0

INTV IXI 011100 - - - 1 1 0 - - - - - - 00101 0 0 0 0 0 0

INTV II I 011100 - - - 0 1 10----- 00100 0 0 0 0 0 0

INTV IXI 011100 - - - 1 1 1 0 - - - - - 00101 0 0 0 0 0 0

FTOix FXI 011100 - - - - 1 11----- 01110 0 0 0 0 0 0

HW_MTPR RIW 011101 ------------ 10110 0 0 0 0 0 0

Compaq Confidea1tial
5 January 2001 ·-Subject To Change Instruction Fetch Unit - the lbox 3-51

Fm Unit

Table 3-17 Predecode Bits Defined by the lbox Instruction Fill Unit (Continued)

Opcode Bits: Function Field Bits:2 Predecode Bits:3

Instruction Type1 31-26 15141312111098765 p EDCBA UE CB P2 P3 CM MA

IFETCHB xxx 011110 ------------ 01001 1 0 1 1 0 0

HW_ST IIS 011111 ------------ 11111 0 0 0 0 0 0

LDF SIF 100000 ------------ 11000 0 0 0 0 0 0

LDG SIF 100001 ------------ 11000 0 0 0 0 0 0

LDS SIF 100010 ------------ 11000 0 0 0 0 0 0

LDT SIF 100011 ------------ 11000 0 0 0 0 0 0

STF FIS 100100 ------------ 11101 0 0 0 0 0 0

STG FIS 100101 ------------ 11101 0 0 0 0 0 0

STS FIS 100110 ------------ 11101 0 0 0 0 0 0

STT FIS 100111 ------------ 11101 0 0 0 0 0 0

LDL S II 101000 ------------ 10000 0 0 0 0 0 0

LDQ S II 101001 ------------ 10000 0 0 0 0 0 0

LDL_L S II 101010 ------------ 10000 0 0 0 0 0 0

LDQ_L S II 101011 ------------ 10000 0 0 0 0 0 0

STL IIS 101100 ------------ 11111 0 0 0 0 0 0

STQ IIS 101101 ------------ 11111 0 0 0 0 0 0

STL_C IIL 101110 ------------ 00000 0 0 0 0 0 0

STQ_C IIL 101111 ------------ 00000 0 0 0 0 0 0

BR XXI 110000 ------------ 00001 1 0 0 1 0 0

FBEQ FX:X 110001 -----------0 01100 0 1 0 1 0 0

FBEQ FXX 110001 -----------1 01100 0 0 0 0 0 0

FBLT FXX 110010 -----------0 01100 0 1 0 1 0 0

FBLT FXX 110010 -----------1 01100 0 0 0 0 0 0

FBLE FXX 110011 -----------0 01100 0 1 0 1 0 0

FBLE FXX 110011 -----------1 01100 0 0 0 0 0 0

BSR XXI 110100 ------------ 00001 1 1 0 1 0 0

FBNE FXX 110101 -----------0 01100 0 1 0 1 0 0

FBNE FXX 110101 -----------1 01100 0 0 0 0 0 0

FBGE FXX 110110 -----------0 01100 0 1 0 1 0 0

FBGE FXX 110110 -----------1 01100 0 0 0 0 0 0

FBGf FXX 110111 -----------0 01100 0 1 0 1 0 0

FBGf FXX 110111 -----------1 01100 0 0 0 0 0 0

BLBC IXX 111000 -----------0 01000 0 1 0 1 0 0

Compaq Confidential
3-52 lnstructio~ Fetch Unit-the lbox 5 J<1nuary 2001 m Subject To Change

Fm Unit

Table 3-17 Predecode Bits Defined by the lbox Instruction Fill Unit (Continued)

Opcode Bits: Function Field Bits:2 Predecode Bits:3

Instruction Type1 31-26 1514131211 10 9 8 7 6 5 p EDCBA UE CB P2 P3 CM MA

BLBC IXX 111000 . -----------1 01000 0 0 0 0 0 0

BBQ IXX 111001 -----------0 01000 0 1 0 1 0 0

BBQ IXX 111001 -----------1 01000 0 0 0 0 0 0

BLT IXX 111010 -----------0 01000 0 1 0 1 0 0

BLT IXX 111010 -----------1 01000 0 0 0 0 0 0

BLB IXX 111011 -----------0 01000 0 1 0 1 0 0

BLB IXX 111011 -----------1 01000 0 0 0 0 0 0

BLBS IXX 111100 -----------0 01000 0 1 0 1 0 0

BLBS IXX 111100 -----------1 01000 0 0 0 0 0 0

BNB IXX 111101 -----------0 01000 0 1 0 1 0 0

BNB IXX 111101 -----------1 01000 0 0 0 0 0 0

BGB IXX 111110 -----------0 01000 0 1 0 1 0 0

BGB IXX 111110 -----------1 01000 0 0 0 0 0 0

BGf IXX 111111 -----------0 01000 0 1 0 1 0 0

BGf IXX 111111 -----------1 01000 0 0 0 0 0 0

1 The predecode type (or logic group) is described in Section A.2.
2 In the function field bit listing, P represents the physical bit, described below.
3 See Table 3-18 for information about predecode bits other than BDCBA.
4 Paired single-precision floating-point instructions.

3.8.2.3.2 Predecode Bits for Control Flow Instructions

Table 3-18 describes the meaning for those predecode bits that are generated by the
IFU for control flow instruction processing. In the table:

• UE is an unconditional exit and CB is a conditional branch. The UE and CB prede
codes are used by the branch predictor to quickly determine the exit point of the
two fetch slots.

P2 is popstack and normally means to pop the return stack. P3 (or branch) normally
means Bxx. P2 and P3 are used to determine how the return stack and jump predic
tor outputs are used. The following attributes can be determined for all 16 fetched
instructions during the A phase of I3 when the branch predictor is determining the
exit point:

JPRBD = UB& !P2& !P3
POP = P2 & !P3
PUSH = UB&CB
TBR = !P2 &P3
CPL = CB &P2&P3
IFBTCHB = !CB &P2&P3

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-53

Fm Unit

For detailed information, see Section 3.7

• For "legacy" CMOV/FCMOVinstructions (see Section 2.11.2), a set CM bit causes
the Collapsing Buffer to create a CMOV2 instruction by making a new instruction
chunk. Legacy CMOV/FCMOV instructions are always the first instruction in the
map chunk.

• The MA bit is set when an XOR (11.40) instruction with destination R31 is
detected as the final instruction in either half-block of eight instructions received by
the IFU. When MA is set and the chunk is fetched from the !cache, the Collapsing
Buffer starts a new map chunk that begins with the current fetch chunk. See also
Section 2.11.3 for more information.

• The physical bit, P, in the function field bits column indicates that no address trans-
lation was performed when fetching instructions. When set, the VA field in the
TAG represents the actual PA from which the instructions were fetched, and not a
translation.

Table 3-18 lbox Predecode Bit Summary

UE CB P2 P3 CM MA Meaning

0 0 0 0 0 0 Fall through (integer and floating-point conditional branch in
PALmode, physical bit = 1)

0 0 0 0 1 0 Fall through and Collapsing Buffer starts a new map chunk to
begin with a CMOV2 instruction

x x x x x 1 Collapsing Buffer starts a new map chunk at current fetch chunk

0 1 0 0 0 Integer and flaoting-point conditional branch (physical bit = 0)

1 0 0 0 0 0 Jump

1 0 0 0 0 Unconditional branch

1 0 0 0 0 Return (pops the return stack)

1 0 1 1 0 0 IFETCHB, (stops thread, next PC= PC + 4)

1 1 0 0 0 0 JSR (pushes return stack)

1 0 1 0 0 BSR (pushes return stack)

1 0 0 0 JSR_ COROUTINE (pops and pushes return stack)

1 1 1 1 0 0 CALL_PAL (pushes return stack)

0 0 0 1 x x Not used - do not care

0 0 1 0 x x Not used - do not care

0 0 1 x x Not used- do not care

0 0 0 x x Not used- do not care

0 1 0 x x Not used - do not care

0 1 1 x x Not used - do not care

Compaq Confidential
3-54 Instruction Fetch Unit - the lbox 5 January 2001 --· Subject To Cl~ange

Checkpoint Unit

3.8.2.3.3 Fill Data Routing

A few simple rules govern the routing of information in the Fill Section. First, the Cbox
returns its data in 16-instruction chunks, whether or not the request hit the Scache.
Next, if the Demand Array Probe indicates that the returning instructions are for a non
piggybacked demand miss, the wake_tpu signal for the corresponding thread is acti
vated, which is read by the FTC. Finally, the !Cache is designed to give writes priority
over reads, so buffering of writes is not necessary.

The early warning signals sent in cycle ClO are latched in cycle IX. The array probes
occur in IY, and the fill_inst instruction bus latches its C12 signals on the IZ edge. The
discard_fill and dbl_ecc_err error signals are used in IZ. If the former is true, all pro
cessing for this fill is terminated, and all IFU state will behave as if the
early_ waming_ptr had never been active for this fill. At some later time, the Cbox will
again try to complete the fill for this request. The discard_fill signal covers a number of
late-kill cases, including single-bit error detection, that occur too late to affect sending
of the early_ waming_ptr.

If discard_fill is false, but dbl_ecc_err is true, the fill proceeds as normal, but with the
resultant Fill Packet being written into the !Cache with its ecc_uncor bit set. Any reads
of this I Cache line will force a late exception. This method allows for fast processing of
double-bit errors when the machine is in PAL mode, because the normal handling via
Cbox interrupt is not possible in PALmode.

3.9 Checkpoint Unit

The checkpoint table, as the name implies, serves as a repository for important informa
tion flowing through the pipeline every clock cycle. This information is later used for
(a) restoring state when restarting on an exception and (b) for training predictors in the
Ibox.

The checkpoint table plays a pivotal role in restarting the pipeline for all exceptions
except those that are specific to the Ibox such as those caused due to line or way
mispredictions. Specifically, the checkpoint table handles only restarts for instructions
that have been mapped and assigned an INum by the Pbox. The class of exceptions that
is handled by the checkpoint table is also known as the "post-map" exceptions. Another
important role played by the checkpoint table is to provide sufficient information at
instruction retire time for training the branch and jump predictor. The information
stored in the checkpoint table is also leveraged to allow mispredicted jumps to be iden
tified as well as to generate the return address whenever a subroutine call is made.

Effectively, the checkpoint table acts as a link between the pre-mapped and post
mapped world of instructions. Before the mapping is performed, an instruction is iden
tified using its address. Once the instructions are mapped and dispatched from the Ibox
to the Pbox, the INum associated with the instruction becomes its sole identifier. How
ever, the address of an instruction may be needed occasionally during its lifetime. This
is especially true when an instruction restarts on an exception or a return address is
needed by the Ebox to be pushed into a stack register when a subroutine call is exe
cuted. The checkpoint table enables such operations to be performed with its ability to
reverse-map the INum of an instruction to its address using the information stored in it.

Compaq Confidential
5 Jam.uiry 2001 - Subject To Change Instruction Fetch Unit - the lbox 3-55

Checkpoint Unit

It must be noted that the amount of information that needs to be checkpointed for
restarts and training is non-trivial. However, due to area constraints on the die, the
information cannot be stored in a naive fashion. Hence, several optimizations are per
formed to condense the information for reduced storage without losing any details.

The following sections provide additional details of the checkpoint table.

3.9.1 Checkpoint Table Components

The checkpoint table consists of a pre-map and post-map table. The pre-map table
reflects the instruction buffer and stores information on a fetch-slot basis while the
post-map table stores information on a map-chunk basis. The post-map table forms the
core of the check-pointing mechanism. The pre-map table acts only as a temporary
store to hold data until the collapsing buffer creates a new map-chunk from fetch slots
in the instruction buffer. Once this operation is completed, the information for the col
lapsed fetch slots flows from the pre-map table to the post-map table and is stored in a
collapsed form to reduce storage requirements.

As with the instruction buffer, the pre-map table consists of 16 entries per thread for a
total of 64 entries. Information corresponding to each of the two slots that may be
fetched every cycle is written into the pre-map table using the same index that is used to
write into the instruction buffer. Table 3-19 lists the different fields that are stored for
each slot along with the producer of that information. Since a fetch slot cannot have a
valid jump as well as a return instruction, the jump and return predictions share single
field. The appropriate data is written based on the type of the exit instruction. For more
information on each specific field, please refer to the appropriate producer section.

Table 3-19 Fields in a Pre-Map Table Entry

Producer Information

PC calc logic PC<51 :5>, PC<O> (palmode bit)

Jump predictor Jghist<35:0>,

Jump or Return predictor Jump or return prediction<51:2>

Branch Predictor Lghist<23:0>. Shift distance<2:0>, No shift

Branch Predictor Bank<6:5>, Next Bank<6:5>, Next to Next Bank <6:5>

Branch Predictor Previous index <6:5>, Next to Previous index <6:5>

Branch Predictor Prediction entries: G0<7:0>, G1<7:0>, CH<7:0>, BM<7:0>

Branch Predictor Jump, Push, Pop exit attributes and sequential exit flag

Branch Predictor Conditional branch attributes<7:0>

Return Predictor Nalloc<5:0>, Tos<5:0>, Ptos<5:0>

The post-map table contains 32 entries, each of which corresponds to an in-flight map
chunk. The table is indexed using the map chunk INum. Most of the information is
stored on a map-chunk basis though some information needs to be stored on a per-slot
or per-instruction basis. The information stored in the post-map table mostly originates
either from the pre-map table or from the collapsing buffer. Since up to two fetch slots
may be collapsed to create a map-chunk, the information stored in one entry of the post-

Compaq Confidential
3-56 Instruction Fetch Unit - the lbox 5 January 2001 - Subject To Change

Checkpoint Unit

map table spans the information from two adjacent entries of the pre-map table. How
ever, the information for the two fetch slots is not stored as such. Instead, it is collapsed
such that the storage space is vastly reduced without losing any information.

Most of the fields in a post-map table entry are written during map time. However, there
are a few fields that are not created until instruction execution time or when the Pbox
signals a kill due to some exception.

We now list the different fields for an entry in the post-map table. Table 3-20 lists those
fields that store a collapsed form of the fields read from the pre-map table for two adja
cent slots: slot A and slot B. Table 3-21 lists those fields that are stored in the same for
mat (for each slot) as they are read from the pre-map table. Table 3-22 lists the
remaining fields that do not use any pre-map table entries and are written directly using
information provided by the collapsing buffer. Finally, Table 3-23 lists the fields that
are created during execution or kill time. We also provide a brief description for some
of the fields that include details on how the collapsing is performed.

Table 3-20 Collapsed fields Stored Into a Post-map Table Entry at Map Time

ID Data from Pre-Map Table Collapsed fields in Post-Map Table Entry

1 Slot A LGhist<23:0> Slot B LGhist<23:0> LGhist<24:0>

2 Slot A ShiftDist<2:0> Slot B ShiftDist<2:0> ShiftDist<3:0>

3 Slot A Bank<6:5> Slot B Bank<l:O> Bank<6:5>
Slot A Bank_next<6:5> Slot B Bank_next<6:5> Bank_next<6:5>
Slot A Bank_next_next<6:5> Slot B Bank_next_next<6:5> Bank_next_next<6:5>

B ank_next_next_next<6:5>

4 Slot A prev_index<6:5> Slot B prev _index<6:5> Prev _index<6:5>
Slot A prev _index_next<6:5> Slot B prev _index_next<6:5> Prev _index_next<6:5>

Prev _index_next_next<6:5>

5 Slot A Nalloc<5:0> Slot B Nalloc<5:0> Slot A Nalloc<5:0>
Slot A Tos<5:0> Slot B Tos<5:0> Slot B Nalloc<5:0>
Slot A Ptos<5 :0> Slot B Ptos<5:0> Slot A Tos<5 :0>

Slot B Tos<5:0>
Slot B Ptos<5:0>

6 Slot A noshif t Slot B noshift Slot A noshift

Table 3-21 shows the fields in the post-map table entry that is maintained for each slot in
a map-chunk and is directly transferred from the pre-map table at map time.

Table 3-21 Post-Map Table Entry Fields

ID Fields in the Post-Map Table entry

7 PC<51:5>, PC<O> (palmode bit), PC+4<15:5>

8 Jump, Push, Pop exit attributes and sequential exit flag

9 Branch prediction entries: G0<7, 0>, G1<7, 0>, CH<7, 0>, BM<7, 0>

10 Conditional branch attributes<7:0>

11 Jghist<35:0>, Jump prediction<51:2>

Compaq Confidential
5 January 2001 -· Subject To Change Instruction Fetch Unit - the lbox 3-57

Checkpoint Unit

Table 3-22 Fields that are Available from Collapsing Buffer at Map Time

ID Fields in the Post-Map Table entry

12 Alternate PC<21 :0> (8 in all; 1 for each map-chunk instruction)

13 Store Set ID<4:0> (8 in all; 1 for each map-chunk instruction)

14 Slot Mask<7:0>

15 Map Chunk information: length<2:0>, slot 0 start position<2:0>, slot 1 start position<2:0>, slot 0
length<2: 0>

Table 3-23 Fields in Post-Map Table Entry That are Created During Execute (E) and Kill Time (K)

ID Fields in the Post-Map Table entry

16 Jump Target<51:0>, Jump Target Valid (Execute)

17 Kill location <2:0> Kill Valid (Kill)

Notes for Tables 3-20 through 3-23:

For some of the fields mentioned above, we give a brief description that includes details
on how information is collapsed before it is written into the post-map table. Note that
we use the ID in the above tables to describe the corresponding field.

• Lghist for Slot B can have at most one new bit added to it with the rest of the bits
overlapping with that of Slot A. To determine if there was indeed a new bit added to
slot B's lghist, we use the newest Shift Distance bit for Slot B. The collapsed Lghist
is created as follows:

If Slot B Shif tDist<O>

LGhist<24:0> = CONCAT (Slot A LGhist<23:0>, Slot A Lghist<O>)

Else

Lghist<24:0> = CONCAT (0, Slot A Lghist<23:0>)

• The Shift Distance for Slot B has one new bit while the other two bits overlap with
that of Slot A.

• ShiftDist<3:0> = CONCAT (Slot A ShiftDist<2:0>, Slot B ShiftDist<O>)

• The two successors to Slot A Bank are exactly the same as Slot B Bank and its suc
cessor. Hence, we need to store only 4 out of the 6 bank identifier fields.

• As with the bank identifiers, the next prev _index of Slot A is the same as that of
Slot B prev _index. So we store only 3 out of the 4 fields.

• Ptos (previous top of stack) is used solely when restarting after an instruction that
pops the return stack. If Slot A had such an instruction, Slot B's top of stack would
indeed be slot N s Ptos. Hence, there is no need to store the Pros for slot A.

Compaq Confidential
3-58 Instruction Fetch Unit-the lbox 5 J~·muary 2001 ···Subject To Cha.ngE~

•

•

•

•

•

•

•

•

Checkpoint Unit

The no shift bit, which prevents the shift distance bits from being modified more
than once for the same fetch slot when it is restarted (on an exception), is relevant
only for the first slot (see branch predictor section for more details).

The low PC bits <4:2> are created only on a need basis for a particular instruction
in one of the fetch slots comprising the map chunk. The PC +4 field is not present in
the pre-map table and is created on the fly from the corresponding PC bits. Pre-cal
culating this field is necessary for restarting the line predictor latches with a new
index as fast as possible.

For conditional branches that are predicted as not taken, we need to store the alter
nate address (alternate PC) to handle mispredicts. This address would be used on a
restart from a mispredicted not-taken branch. Since a branch instruction can occur
in any position of the map chunk, provision must be for storing up to 8 alternate
addresses.

As with branches, a load or store instruction may occur in any position in the map
chunk. Hence, we need to provide storage for all instruction positions in the map
chunk.

The slot mask specifies whether a particular instruction originated from slot A or
slot B.

Slot 0 length is not directly available from the collapsing buffer. It is calculated
using the slot mask that is provided by the collapsing buffer.

The Jump Target Valid bit enables two jump instructions each belonging to slot A
and slot B to share the same location for storing the actual target on a jump mispre
diction. The following section provides more details on the sharing mechanism.

To ease implementation, both the pre-map and post-map tables are partitioned such
that a particular partition resides close to the check-pointed component. For
instance, in the partition residing close to the branch predictor, we need to store
only those fields that are relevant to the branch predictor such as Lghist, shift dis
tance, no shift, prediction entries etc. while fields such as store set identifiers and
Jump predictions need not be.

3.9.1.1 Checkpoint Table Functions

As mentioned earlier, the fields in the checkpoint table are not only written during
instruction map time but also during the execution phase as well as when instructions
are killed due to an exception.

When the Ebox executes a jump instruction, it forwards the actual target of the jump to
the checkpoint table so as to validate the jump prediction. The checkpoint table
accesses the corresponding entry in the post-map table using the INum that is provided
by the Ebox to access the predicted jump address. If a mismatch occurs between the
true target and the predicted address, the checkpoint table signals a jump mispredict to
the Ebox. At the same time, it stores the true target into the table. This target value will
eventually be used for restarting the pipeline as well as for training the jump predictor.
The jump valid bit is also set on a jump mispredict when the correct target is stored.
Since an earlier exception overrides a younger exception, a mispredicted jump in slot A
can always store its true target while a mispredicted jump in slot B may do so only
when a jump instruction in slot A has not already mispredicted.

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-59

Checkpoint Unit

Occasionally, the Ebox requires the return address that needs to be saved in the stack
register when executing a subroutine call. The checkpoint table uses the IN um provided
to find the associated PC of the subroutine call instruction and sends the PC of the sub
sequent instruction (PC+4) to the Ebox.

When the Ebox eventually executes the "return" instruction in the subroutine, execution
is redirected to the address that was provided by the checkpoint table. Note that the
return address also needs to be validated. The description given for jumps for signaling
mispredicts is also true for "return" instructions. This is because the address predicted
by the return and jump predictors share the same field as only a jump or a return
instruction can be valid in a fetch slot.

3.9.1.1.1 Restarting on an exception

The checkpoint table is responsible for restarting the pipeline on an exception by pro
viding the line predictor and PC calc logic with the new address. An exception may
occur appear through the exception funnel (E-funnel) from the Pbox or on the fast-path
used for early signaling of branch mispredictions.

The E-funnel exceptions take priority over the fast-path exceptions. The information
available to the checkpoint table from the E-funnel includes the type of exception and
the exception INum. The checkpoint uses the exception type and the INum to access the
post-map table to get the appropriate restart address. The slot mask (Table 3-22) lets us
determine the slot in which the misprediction occurred. With this information, we can
choose the appropriate address from a set of addresses that is stored on a fetch-slot basis
(PC). The low bits of the exception INum helps us to choose an address from a set of 8
addresses stored on an instruction basis in the map-chunk (Alternate PC). Remember
that the low bits<4:2> of the PC are not stored in the post-map table. However, by using
the map chunk information (Table 3-22) and the position of the instruction in the map
chunk, the low bits of the restart address can be easily determined.

The restart may cause control to be transferred to PAL code in which case the check
point table also needs to provide the address to which control has to resume after return
from PAL code. The PAL starting address itself is created by adding the offset provided
through the exception funnel to the base address that is read from a PAL base register.

If no exceptions are present in the E-funnel, the fast-path, which is used for early reso
lution of conditional branch mispredictions, is checked for the presence of an excep
tion. Information on whether the conditional branch instruction was a mispredicted
taken or not-taken type as well as its INum is also available on the fast path.

Table 3-24 lists the different restart scenarios that are handled by the checkpoint table.
The different types of restart addresses mentioned for the non-PAL exceptions are
available in the post-map table. Note that the complete restart address is needed only by
the PC calc logic while just the low bits of the restart address <14:2> are needed by the
line predictor latches but a cycle earlier than PC calc. Due to timing constraints in the
implementation, the low bits<14:5> of the incremented PC (PC+4) are stored apriori in
the post-map table. This would be used whenever the restart address is PC+4 rather
than calculating the value at the time of restart.

Compaq Confidential
3-60 Instruction Fetch Unit - the lbox 5 J,1nuary 2001 m Subject To Clumge

Checkpoint Unit

Table 3-24 Exception Types and Restart Address

Exception Restart Address Return Address for PAL

Mispredicted not-taken Conditional branch, IFETCHB PC+4 N.A

N.A

N.A

N.A

PC

PC+4

Mispredicted taken Conditional branch Alternate PC

Mispredicted jumps Jump Target

Replay, Load Store order violation PC

DTB Miss PALbase + offset

Unalign, Write FPCR, Integer/FF Trap PALbase +offset

3.9.1.1.2 Restoring Predictor States

In addition to providing the restart address, the checkpoint table also needs to restore
the states of the different predictors in the Ibox namely, the branch, jump and return pre
dictors. Due to the complex nature of the branch history bits, the control for restoring
the state is non-trivial. Table 3-25 shows how we create the initial lghist and shift dis
tance from the post-map entry based on whether the restart occurs in slot A or slot B.
Table 3-26 details the complete restoration process.

Table 3-25 Creating Slot-Based Predictor States From Mapped Information in the Post-Map Table

Slot_A

Slot_B

LGHIST SHIFT DISTANCE

if (MappedShiftDist<O>)
Slot_Ghist = MappedGhist<24: 1>

else
Slot_Ghist = MappedGhist<23:0>

Slot_Ghist = MappedGhist<23:0>

Table 3-26 shows

Slot_ShiftDist = MappedShiftDist<3:1>

Slot_ShiftDist = MappedShiftDist<2:0>

Table 3-26 Restoring Predictor States on a Restart

Type of
Excepting
instruction

Conditional
Branch (Bxx)

PUSH(BSR)

Jump (JMP)

LGHIST, SHIFT DISTANCE, NOSHIFT

Restart in 1st half of slot?
Taken?

Ghist = Slot_Ghist,l; ShiftDist =Slot_ShiftDist,l; NoShift = 0
Not taken & No valid Bxx insn after?

Ghist = Slot_Ghist,O; ShiftDist =Slot_ShiftDist, 1; NoShift = 1

Restart in 2nd half?
Taken?

Ghist = Slot_Ghist,O; ShiftDist = Slot_ShiftDist,l; NoShift = 0
Not taken & No valid Bxx insn after?

Ghist = Slot_Ghist,1; ShiftDist = Slot_ShiftDist, 1
NoShift = 1 (=0 if slot ends i.e PC_low<4:2> == Ox7)

JG HIST NALLOC/TOS

If valid insn before? Nalloc = Slot_Nalloc + 1
If restart in 1st half II no valid Bxx insn in 2nd half? Tos = Slot_Nalloc
Ghist = Slot_Ghist,O; ShiftDist = Slot_ShiftDist, 1; NoShift = 0

else /* restart in 2nd half & valid Bxx insn in 2nd half */
Ghist = Slot_Ghist,l; ShiftDist = Slot_ShiftDist, 1; NoShift = 0

*** Same as for Push(BSR) *** JGhist = Slot_JGhist<26:0>,
(Jtarget<19:11> "Jtarget<l0:2>)

Compaq Confidential
5 January 2001 ··· Subject To Change Instruction Fetch Unit - the lbox 3-61

lbox Interfaces

Table 3-26 Restoring Predictor States on a Restart

Type of
Excepting
instruction LGHIST, SHIFT DISTANCE, NOSHIFT JGHIST NALLOCITOS

Push+ Jump (JSR) ***Same as for Push(BSR) *** JGhist = Slot_JGhist<26:0>, Nalloc =Slot Nalloc + 1
(JTarget<19:11> "Jtarget<10:2>) Tos = Slot_NaJloc

Pop (RET) ***Same as for Push(BSR) *** Nalloc = Slot_Nalloc
if (Slot A restart)
Tos = Slot B Tos

else
Tos = Slot B Ptos

Pop + Push ***Same as for Push(BSR) *** Nalloc = Slot_Nalloc + 1 Tos =
Slot_Nalloc (JSR_COROlITINE)

Any other instruction If no valid Bxx insn after & valid insn before?
(restart would be "at" If restart in 1st half II no valid Bxx insn in 2nd half?
this instruction) Ghist = Slot_Ghist,O; ShiftDist = Slot_ShiftDist, 1; NoShift = 1

Default State

else /* restart in 2nd half & valid Bxx insn in 2nd half *
Ghist = Slot_Ghist,1; ShiftDist = Slot_ShiftDist, 1; NoShift = 1

Ghist =Slot Ghist
ShiftDist =-Slot_ShiftDist
if (Slot A restart)
NoShift =.NoShift_old (from post-map table)

else
NoShift= 0

3.9.1.1.3 Predictor Training

JGhist = Slot_JGhist Nalloc =Slot Nalloc Tos =
Slot_Tos -

The checkpoint table is also used for training the branch and jump predictors. The jump
predictor is trained only on a misprediction while the branch predictor is trained on both
correct and incorrect predictions. The mispredict information is available in the kill
field of the post-map table (Table 3-23).

The following state information is provided to the branch predictor for training each
slot in the map chunk: lghist, shift distance, bank, previous index and prediction bits
(Table 3-20). In addition, using the kill position and the map-chunk information (Table
3-22), the actual instructions retired in each slot are also provided. This includes infor
mation on whether there was a mispredict in any of the slot as well as the position in the
map-chunk where the mispredict occurred. For more details on how the training is
done, please refer to the branch predictor section.

As for the jump predictor training, the checkpoint table provides the true target to the
jump predictor. It also uses the slot J ghist to calculate the index into the jump predictor
array. The hash function for the index calculation is mentioned in the jump predictor
section.

3.10 lbox Interfaces

3.10.1 Pbox Interface

3.10.2 Qbox Interface

3.10.3 Ebox Interface

3.10.4 Mbox Interface

3.10.5 Cbox Interface

Compaq Confidential
3-62 Instruction Fetch Unit-the lbox 5 Jana.utry 2001 -·Subject To Change

4
Dependency Mapper Unit - the Pbox

The Pbox processes instructions that are fetched by the Ibox. The Pbox assigns INums
(instruction numbers) to the instructions, analyzes the data dependencies between
instructions, and maps their architectural source and destination values into physical
registers. The Pbox also maintains data structures that allow recovery of all relevant
processor state that corresponds to the architectural state of the machine prior to any un
retired instruction. This allows the processor to perform rapid trap recovery in the pres
ence of branch mispredicts or other exception conditions. The Pbox passes the renamed
instructions to the Qbox for scheduling and dispatch.

Figure 4-1 Pbox Block Diagram

8 Instructions
(fromlbox)

Trap Inst Virt Fag
tolbox)

Fatire/.K.ill IN"uIDI'PU Bus

Compaq Confidential

Forward Path

Trap/Retire Path

8 Instructions
to Qlox

,;;xec Traps (from EIF/Mboxes

5 January 2001 --· Subject To Change Dependency Mapper Unit - the Pbox 4-1

Dependency Analysis: General Concepts

The Pbox consists of the following components:

Table 4-1 Pbox Components

Name Mnemonic Description
Described
in Section

Bid/Grant Exception BEL
Logic

Instruction Decoder

IN um Allocator

INumMapper

Load/Store Serial
Number Allocator

Mapper Exception
Logic

IDC

INA

IMP

LSN

MEX

Memory Queue Alla- MQA
cation

Physical Register Map PMP

Post-Map Skid Buffer PSB

RC/RS Interrupt Flag RJF
Widget

Retire/Kill Unit RKU

Chooses which of the pending kills from all TPUs should be 4.3.10
broadcast to the rest of the chip.

Decodes each of the eight instructions that arrive in a cycle. 4.3.6
The decoder is placed early in the pipe to aid slotting deci-
sions and to provide inputs to the load/store flow control
mechanisms and to the IPR interlock mechanisms

Allocates INums to new map blocks sent down by the Ibox. 4.3.3
The INA also contains the Map Thread Chooser (see Section
4.3.3.3), which picks the next thread that will map instruction
blocks and informs the Ibox

Responsible for mapping source operand registers (VReg) 4.3.1
into the IN um of the last writer for the source operand

Associates a sequential identifier with each load instruction, 4.3.7
and a second identifier with each store instruction. These
LNums and SNums are used to prevent deadlock and manage
flow control into the Mbox load and store queues

Rolls the IMP, PMP, LSN, and RIF state back to the trap point 4.3.4
when the MEX is notified by the BEL of an exception

Governs the allocation and deallocation of load queue (LQ) 4.3.5
and store queue (SQ) chunks to memory instructions. Also
controls the High-Water Mark (HWM) that is sent to the
Qbox to regulate the issuing of loads and stores.

Allocates physical destination registers to each dispatched
instruction. This table is also used to map virtual register
operands into the corresponding physical registers

Holds a silo of the last few map blocks that have passed
through the Pbox forward path

4.3.2

4.3.8

Maintains state necessary to implement the RC/RS instruc- 4.3.9
tions

Communicates the identity of retired and/or killed instruc- 4.3.11
tions to all concerned boxes by way of the Retire/Kill bus

4.1 Dependency Analysis: General Concepts

Previous "out of order" processors detected dependencies between instructions in dif
ferent ways. The key goal is to recognize real dependencies between instructions (i.e.
true read-after-write (RAW) dependencies) while "untangling" dependencies that are an
artifact of the processor architecture (like write-after-write (WAW) or write-after-read
(WAR) dependencies). For example, take a look at the following chunk of C code:

a = b + c;

d = a * a;

a = e + f;

Compaq Confidential
4-2 Dependency Mapper Unit-the Pbox 5 Janwiry 2001 ·-Subject To Change

Dependency Analysis: General Concepts

Note that there is a RAW dependency (a = b + c must be computed before d = a * a), a
WAR dependency (d must be computed before the result of a= e + f is written), and an
apparent WA W dependency if the compiler chooses to use the same register for the first
value of a as for the second. Let's look at the macro for this C code. (Again, all macro
programs are stylized and not meant to reflect actual Alpha assembler code.)

; A is in Rl, Bin R2 ...

001 ADDL R2,R3 -> Rl

002 MULL Rl,Rl -> R4

003 ADDL R5,R6 -> Rl

As you already know, the key to out of order execution is to recognize that Rl in this
case has many different lifetimes in the course of a program. The lifetime of Rl in lines
1 and 2 is separate and distinct from the lifetime of Rl in lines 3 and thereafter. If the
processor architecture provided a bazillion registers, the compiler would use a new reg
ister for each lifetime of a value. That is, it would create a new name for each lifetime
of the variable a. Let's pretend that the C code was compiled into such an instruction
set:

001 ADDL R2,R3 -> Rl

002 MULL Rl,Rl -> R4

003 ADDL R5,R6 -> Rll

In this case the second lifetime of a is stored in Rll. This removes the WAW and WAR
spurious dependencies. Now a suitably intelligent scheduler can recognize that instruc
tion 003 can be executed in parallel with (or even before!) instruction 001 or 002.

• Alas, we don't have an infinite (or even very large) number of architectural regis
ters, so sooner or later a compiler that creates a new name for every register lifetime
would run out of new names. Fortunately, there are lots of ways to create these new
lifetime names at execution time in hardware, rather than at compile time. We
believe that execution time mechanisms offer the best opportunities to squeeze
the last bit of performance from a program. The two most frequently encoun
tered renaming approaches are:

Rename each destination register (in the architectural register space) into a
physical register (in a larger physical register space). If two different instruc
tions that are in flight (that is, they have been fetched and have entered the
scheduling unit and have not yet retired), write architectural register Rl, then
each lifetime of Rl will be assigned to a different physical register. This mech
anism removes WAW and WAR dependencies. In some cases it is used to
detect RAW dependencies. (The 21264 uses detects RAW dependencies by
comparing physical register names.)

Rename each destination register into a serial number. Each in-flight instruc
tion has a unique serial number. This instruction serial number (or IN um) can
be used for RAW dependency detection. Unfortunately, it cannot be used to
eliminate WAW or WAR dependencies unless (as in the case of machines using
a re-order buffer) the microarchitecture provides a separate architectural regis
ter file. (Since the INum space is finite, each INum is reused fairly often. If
instruction 51 writes Rl at time t1 and then writes R5 the next time INum 51 is
re-allocated at t2, then we have no way of referring to the lifetime of the Rl
that was written at t1. If the write at t1 was the last time Rl was written, then

Compaq Confidential
5 January 2001 ... Subject To Change Dependency Mapper Unit - the Pbox 4-3

INum Space

i1
we have lost its state. The solution to this problem is to copy Rl 's value to the ~
architectural register file sometime before t2. This copy operation is the reason
we don't use a classic re-order buffer organization in the 21464 Qbox.)

The 21464 Pbox renames incoming register operands into an INum space to facilitate
the scheduling decision. We rename incoming register operands into a physical register
space to eliminate WAW and WAR dependencies.

4.2 INum Space

Similarly to the 21264, 21464 uses instruction numbers (INums) to uniquely identify
in-flight instructions. All TPUs share a single INum space, so INums are unique across
TPUs. It is the INum Allocator (see Section 4.3.3) that allocates IN urns and the Qbox
Completion Unit (see Section 5.2.16) that frees them upon retirement.

We use INums in the range 0 to 511. We consider the INum space to be cyclic, so after
511 we wrap back to 0. One can visualize the space as a circle (as in the diagram below)
that increases in the clockwise direction, except where we wrap from 511 back to 0. We
allocate INums within a TPU in an increasing order (i.e. clockwise). Therefore, within a
TPU, younger instructions have larger INums, except in the case of a wrap. In the dia
gram, INum A is younger than INum B. Imagine that the space between A and B shows
the total range of INums in use. Then A represents the insert pointer (the youngest
INum is use) while B represents the retire pointer (the next INum to retire).

Figure 4-2 The INum Circle

Why do we have 512 IN urns? The architecture group did a number of studies and deter
mined that we need to support a scheduling window of 128 entries, and we need to
allow at most 256 in-flight instructions at any given time. Therefore, we need to choose

Compaq Confidential
4-4 Dependency Mapper Unit -the Pbox 5 January 2001 ~·Subject To Change

INum Space

an INum space containing at least 256 INums to uniquely identify all in-flight instruc
tions. In addition to uniquely identifying instructions, we need to be able to compare
INums of the same TPU to determine which of two instructions is older. With only 256
INums we cannot accomplish this without additional information, namely which INum
represents the youngest in-flight instruction for a given TPU. However, by increasing
the INum space to 512 values - tacking a 9th wrap bit onto the lower 8 bits - we can.

4.2.1 INum Age Comparison

A TPU's allocated (i.e. in-flight) INums will never cover more than a contiguous half of
the INum circle, 256 of the 512 possible values. This is a very important point; it is this
fact that allows us to determine which of two instructions in that TPU is older. In fact
there is a simple, robust method for making this determination. First of all, note that we
can interpret the INum space as consisting of 9-bit 2's complement signed numbers
rather than unsigned values; i.e. the wrap bit becomes a sign bit. The diagram below
visualizes the INum circle using this interpretation. Given this fact, the rule for deter
mining the relative age of INums A and Bis as follows:

if (A - B > 0}

A is younger than B

else if (A - B < 0}

A is older than B

Where A-Bis a 9-bit 2's complement subtraction. Note that the outcome A-B==O is not
possible because of the constraint that in-flight INums cover no more than a contiguous
half of the space and are therefore, by definition, unique. To understand why this algo
rithm works, consider the diagram below. Let A and B be the youngest and oldest in-

Compaq Confidential
5 January 2001 -~Subject To Change Dependency Mapper Unit-the Pbox 4-5

INum Space

flight INums, respectively. The contstraint on the distance between oldest and youngest
means that the relative values of A and B break down into four cases, illustrated below.
Note again that in every instance, A is younger than B.

Table 4-2 INum Age Relationship

Sign
Case of A Sign of B Magnitude Relationship Sign of A-B Sign of B-A

1 + + IAl>IBI +

2 + 256 < IAI + IBI < 512 + (overflow) - (overflow)

3 IAl<IBI +

4 + 0 < IAI + IBI < 256 +

Table 4-2 shows the relationship in greater detail. Tue first four columns merely tran
scribe what is evident from the illustration, while the last two show that the algorithm
gives the correct result for each case. Case 1 is very straightforward; A-B subtracts a
positive number from a larger positive one, yielding a positive result. Case 3 is the dual
of Case 1, with the signs and relative magnitudes of A and B reversed. In Case 4, A-B
subtracts a negative number from a postive one where IAI and IBI add up to a max of
255, so the result is positive and within the range of 9-bit 2's complement representation
[-256,255]. For all of these cases, B-A is simply the negation of A-B. Case 2 is a little
less intuitive. A-B subtracts a positive number from a negative one, but since IAl+IB I >
256 the result is negative yet out of the range of 9-bit representation - which means
that it wraps around to the positive side of the circle. Likewise, B-A subtracts a nega
tive number from a positive one, giving a positive, out-of-range result- which there-

Compaq Confidential
4-6 Dependency Mapper Unit - the Pbox 5 Januc1ry 2001 ··· Subject To Change

Component Details

fore maps to a negative value in 9 bits. Notice that IAl+IBI < 512 which means that
neither A-B nor B-A can wrap all the way around from positive to positive or negative
to negative. Thus 9-bit 2's complement subtraction is sufficient to determine the relative
age of any two INums.

In places where we use IN urns as unique identifiers, and do not need to do age compar
isons, we need not store the 9th bit of the IN um. Dependency detection is one situtation
where uniqueness is sufficient. Therefore, in most places in the Instruction Queue, the
21464 stores only the lower 8 bits of the INum.

4.3 Component Details

4.3.1 INum Mapper (IMP)

4.3.1.1 Design considerations

The central problem in scheduling for out-of-order-issue processors is the identification
of dependencies between instructions. Each instruction that reads results from a register
file depends on the instruction that last wrote the required result to the register file.
Before the issue mechanism can decide that an instruction X is ready to issue, it must
know what other instructions produce the data that X requires. (These instructions are
the parents of X.)

As an example, consider the following code fragment:

Il: LD R3 <- (R4)

I2: CLR R2

I3: ADD R5 <- R3 + R2

(All code fragments in this report are stylized and not meant to be in the form of legiti
mate Alpha assembler notation.)

Assume for the moment that R4 was loaded by an instruction that executed a very long
time ago. I1 then is data ready when it is fetched and passed from the Ibox to the Qbox.
It has no known parents. Similarly, 12 doesn't read any input operands. It is data ready
when it arrives at the Qbox. I3 on the other hand, requires inputs generated by I1 and 12.
I3 has two parents, (Il ,I2). Until I1 and I2 are issued, I3 is not ready. As it turns out, I1
is a load, so it has a latency of two cycles, thus I3 can't be issued any earlier than two
cycles AFTER Il has issued.

We can determine the dependencies between instructions via several different mecha
nisms. 21464 has chosen to use INum mapping. In this scheme, a mapper remembers
the INum of the last instruction to write each register. At map time, we rename each
input register for each instruction from its original virtual register name to the INum of
the last writer for that register. This mapping operation maps dependencies from the
(limited) virtual register name space with all its spurious write-after-read and write
after-write dependencies into the INum space which is free of these false dependencies.

4.3.1.2 Design Architecture

The INum Mapper (IMP) processes each map chunk (8 instructions) in parallel. It maps
the source register specifier for each instruction from the 6 bit virtual register space (31
int registers, 31 floating point register, 2 PAL permanent registers) into INum space (8
bits), each source virtual register being replaced with the INum of the in-flight instruc-

Compaq Confidential
5 January 2001 --· Subject To Change Dependency Mapper Unit - the Pbox 4-7

Component Details

tion that last wrote the virtual register (from the point of view of program order.) Addi
tionally, the IMP remembers which INum last wrote each of the 64 virtual registers in
the CMAP (current map) vector. There is a CMAP vector for each of the four hardware
threads. The vector is indexed by virtual register number. If the instruction that last
wrote a virtual register is not in flight (i.e. the last writer for the register has retired)
then the mapper will produce a NULL INum.

Instructions are processed in the order in which they were fetched. Effectively, the read
operands of the first instruction are mapped to their producer INums and the write des
tination register for the first instruction is marked with the first instruction's INum.
Then the second instruction is processed, and so on until each of the eight instructions
in the fetch block have been remapped.

In fact, the eight instructions in a fetch block are all remapped in parallel. This means
that we have two stages of mapping. The first stage maps each of the 16 source oper
ands from VReg space to the INum of its last writer ignoring other instructions in this
fetch block. This is done by a 16 way parallel lookup into the CMAP for the current
thread. The second stage of mapping looks for dependencies within the line and sup
plies new INum mappings for source operands that are written by instructions in the
same fetch block.

The IMP must also maintain a list of "last writers" for each of the registers for every
mapped instruction. This is called the back map or BMAP. Given that we support up to
256 in-flight instructions, the BMAP could require as much as 256 * 64 bytes or
l 6Kbytes of storage. A table organized in the obvious way (indexed in one dimension
by IN um, in the other by VReg) would be very hard to maintain, as we'd have to write
up to eight rows per tic into the BMAP.

As it turns out, the BMAP is indexed in one dimension by the fetch block number (this
is the IN um of the first instruction in the block divided by eight) and in the other dimen
sion by VReg number. Each cell (B,VReg) in the BMAP contains two bytes. The first
byte (LAST_ WRITER) contains the INum of the last writer of VReg BEFORE fetch
block B was processed. The second byte M contains a mask such that if M is set, then
INum = B *8 + k wrote register VReg. On a trap, the Mapper Exception logic directs the
BMAP to read the map state from the column of cells that corresponding to the trap
point and load this state into the CMAP.

This restore operation is done in parallel for each of the 64 entries in the CMAP like
this:

FOR i = 0 to 64 DO

IF BMAP(TrapINurn<7:3>,i) .M<7:0> == 0

THEN

CMAP(i) = BMAP(TrapINum<7:3>,i).LAST_WRITER

ELSE

CMAP(i) = BMAP(TrapINum<7:3>,i).LAST_WRITER

FOR j = 0 to TrapINurn<2: O> - 1 DO

IF BMAP(TrapINum<7:3>,i) .M == 1

THEN

CMAP(i) = 8 * TrapINum<7:0> + j

END

Compaq Confidential
4-8 Dependency Mapper Unit - the Pbox 5 Janw~ry 2001 ~· Subject To Change

Component Details

END

END

END

If an entry BMAP(B,VReg).M<7:0> is zero, then the CMAP(VReg) is loaded with
BMAP(B,VReg).LAST_WRITER. Otherwise we scan the writer mask for the backmap
cell up to the trap point if any instructions that are before the trap point and in this map
block have written VReg, then the CMAP is loaded with the INum of the last such
instruction. Otherwise it is loaded with the LAST_ WRITER INum.

4.3.1.3 Map Predecode Bits from the lbox

The predecode value bits communicate the type of the source and destination depen
dencies for each instruction category, as shown in the table below.

In the table:

•
•
•

•

Source A and Source B correspond to the Ra and Rb fields respectively

A Null value indicates that the corresponding field does not contain a valid source

SourceIPRclass and WriterIPRclass refer to Internal Processor Register scoreboard-
ing classes.

ShadowRegl is a PAL shadow mode register number 1; its use is implicit in the
CALL_PALL instruction opcode.

Note that this table is a somewhat coarse approximation of how opcodes are allocated
to predecode categories. The actual assignment for a particular opcode is not always
obvious. Consult Section 3.8.2.3.1 for the exact mapping. Table 4-3 lists the predecode
value meaning for the predecode bits received from the Ibox.

Table 4-3 Predecode Value Meaning for 1%MAP _INST_I4A_H[7:0]<35:32>

Source A Source B Destination Destination
Predecode Dependency Dependency Dependency Dependency
Value1 Type Type Type Field Instructions

00101 Integer Null Integer Re Integer operates with
Rb=immediate

01110 Floating-point Null Integer Re Ftolx

00011 Null Null Integer Ra Unconditional branch

01001 Null Null Null Null MB and other special
instructions

00111 Integer Null Floating-point Re ltoFx

01100 Floating-point Null Null Null Floating-point condi-
tional branch

00010 Null Null ShadowRegl Implicit CALL_PAL

01000 Integer Null Null Null Integer conditional
branch

00100 Integer Integer Integer Re Integer operates and
store-conditional

Compaq Confidential
5 January 2001 ··· Subject To Change Dependency Mapper Unit - the Pbox 4-9

Component Details

Table 4-3 Predecode Value Meaning for 1%MAP _INST_I4A_H[7:0]<35:32> (Continued)

Source A Source B Destination Destination
Predecode Dependency Dependency Dependency Dependency
Value1 Type Type Type Field Instructions

11110 Floating-point Floating-point Floating-point Re Floating-point oper-
ates, MF _FPCR, and
MT_FPCR

11011 Null Integer Integer Ra Integer loads

11000 Null Integer Floating-point Ra Floating-point loads

00110 SourceIPRclass Null Integer Re HW_MFPR(See Sec.
Section 17 .2)

11101 Floating-point Integer Null Null Floating-point stores

10110 SourceIPRclass Integer WriterIPRclass Re HW _MTPR (See Sec-
tion 17.2)

11111 Integer Integer Null Null Integer stores

1 These values do not necessarily represent the types of the operands themselves. The Pbox uses the pre-
decode bits to distinguish between floating-point, integer, IPR, and PAL shadow register dependencies
(since the same virtual register bits can have different semantics depending on the instruction type),
and to detect the absence of dependencies (i.e. the Null cases). The predecode values allow depen-
dency analysis to proceed without waiting for a full decoding of the instruction opcode and function
fields. See also Table A-2 for more mapping information.

4.3.2 Physical Register Map (PMP)

4.3.2.1 Design Considerations

While the IMP has mapped each virtual register operand from its virtual register num
ber into the INum of the last instruction to write the register (or INum =NULL if the
last writer has already retired), we still need to find out where to store each destination
and where in the physical register file the latest lifetime of each virtual register resides.
(That is, the IMP told us who last wrote register X, but we also need to know where the
writer put the data - which physical register contains the latest lifetime of each virtual
register.)

Why did we bother to remap to INum space if we're only going to map again into a
physical register space? The whole thing has to do with our nearly paralytic fear of free
lists. In a 21264-like scheme for register mapping, we would need to pick eight good
free registers out of a pool of 512. That is perceived as being very hard to do.

And so, you will notice the INum mapper has no giant free list. The next INum is
peeled off sequentially. (This is almost true, see Section 4.3.3.) Because of that, the
backup map is much simpler than it might otherwise be, and trap recovery is simpler.

Unfortunately it forces us into another remapping, since some input operands were
written so long ago that the INum that was formerly associated with them has retired
and been re-allocated to a new destination register. (An INum is only a good "rename"
for a virtual register while the IN um is in flight.) Again, we are in mortal fear of build
ing a "gimme eight good ones" free list mechanism. So, after a whole lot of collabora
tion, the 21464 team came up with a really neat scheme for mapping from INums to
physical registers that doesn't use a free list.

Compaq Confidential
4-10 Dependency Mapper Unit -the Pbox 5 Jam.1c1ry 2001 ~·Subject To Change

Component Details

4.3.2.2 Design Architecture

The general scheme that we intend to use for physical register renaming is to translate
each virtual register specifier in an instruction into the IN um that last wrote it (or NULL
if the last writer has retired) and then translate the last writer INum into the physical
register that it wrote. If the last writer INum is NULL, then we look up the physical reg
ister name in the Architectural State Table. (A register that was last written by a retired
instruction is referred to as being part of the architectural or in order state of the
machine. We will use the term architectural state here.

The IMP has done the first half of the rename task for us. The second half can best be
described with a program chunklet. We need to rename both source register operands
and destination register operands. Assume that the source virtual register is SVReg, the
INum it was last written by is SLastWriterINum, and we are looking for the register's
current physical home SPReg.

if (SLastWriterINum == NULL) {

else

/* the source register is part of the architectural state */

SPReg = ArchRegTable[SVReg];

/* the source register was last written or will be written

by an instruction that is currently in flight. What is

that instruction's next destination register? */

SPReg = NextDest[SLastWriterINurn];

Note that the operation of mapping from source virtual register to source physical regis.
ter required nothing more complicated than one or two reads from a thing that looks
like a register file.

Mapping destination registers is a little more complicated. Assume that the destination
virtual register is DVReg, the INum that the destination was last written by was DLast
WriterINum, and the physical destination register will be DPReg. The INum of the
instruction we are remapping is WriterINum.

if (DLastWri ter!Num == NULL) {

/* The last writer retired a while ago. The

DVR.eg is currently in architectural state. *I

LastDest [WriterINum] = ArchRegTable [DVReg];

else

LastDest [WriterINum] = NextDest[DLastWriterINum];

DPReg = NextDest [Wri terINum] ;

Let's start from the bottom. Note that there is an array called "NextDest" that is indexed
by the INum of the instruction we are currently mapping. This array contains the desti
nation register for each in-flight INum. If a physical register number appears once in the
NextDest array it won't appear twice. That is, each in-flight instruction has a unique

Compaq Confidential
5 January 2001 ···Subject To Change Dependency Mapper Unit - the Pbox 4-11

Component Details

destination register. (Up to 256 in-flight instructions - 512 registers; not a coinci
dence.) All we need to do in translating from a virtual destination register to a physical
destination register is look the instruction's INum up in the NextDest array. At the same
time, we find out where the previous physical home for the DVReg was. We load this
physical register number into a second array that contains the physical destination reg
ister that WriterINum will use at some point in the future. The idea here is that if an
instruction writes R5, then the previous home for R5 will be a "free" register when this
instruction retires. This is a really knotty point here. Read the paragraph again. It usu
ally takes folks a few times through before they fully appreciate the elegant simplicity
of this approach.

Now notice that if we don't retire WriterINum, then the old home for DVReg (that is,
physical register DPReg) will not become a free register. (If an instruction doesn't
retire, it is as if we never wrote its destination operand.) On the other hand, since Writ
erINum never retired, we can re-use the same physical register stored in the NextDest
array when we re-allocate WriterIN um next time. If the instruction does retire, then we
need to prepare WriterINum's entry in the NextDest array for the next time around. We
can't leave NextDest[WriterINum] unchanged, or we'll over-write what might well be
architectural state. So first we need to update the architectural state table:

ArchRegTable [DVReg] = NextDest [WriterINum] ;

Then, we simply do this:

NextDest[WriterINum] = LastDest[WriterINum];

Note also that on a trap (i.e. when we abandon a group of INums) we don't do anything
at all in the PMP.

The whole scheme looks pretty good. The downside here is that the obvious implemen
tation requires two read ports into the NextDest array for the read operands, plus one
read port for the write operand, plus one read port for writing the last writer from Next
Dest to LastDest, plus one write port for the LastDest to NextDest update for each of
eight instructions. In addition, since we may retire as many as 16 instructions per cycle,
we need 16 read ports to copy from the NextDest table to the Architectural state table.
That's 48 read ports and one write port into the

NextDest array plus the read and write ports into LastDest and NextDest for instruction
retiring and so forth.

The first refinement is to turn the copy of LastDest to NextDest into a lateral copy that
doesn't actually use any read ports at all. That makes the retire operation rather inexpen
sive in the PMP. The second refinement is to use group reads of contiguous entries (i.e.
one read port is only needed to read out one block of 8 entries) for the 8 read ports for
the write operand and the 16 read ports for updating Architecture State Table. There
fore, we reduce the number of read ports of the NextDest array to 27. One obvious
approach to further reduce is to replicate the N extDest and LastDest arrays. The Qbox/
Pbox team has developed an approach that replicates the NextDest array by a factor of
three, reducing the requirement to a register file like array that is eight bits wide, 256
entries deep, and has nine read ports, and one write port. This appears well within the
bounds of practical implementation.

Compaq Confidential
4-12 Dependency Mapper Unit - the Pbox 5 Jam1c1ry 2001 - Subject To Change

Component Details

4.3.3 INum Allocator (INA)

4.3.3.1 Design Considerations

Each incoming instruction must be assigned an INum. INums are defined in INum
Space (Section 4.2). 21464 has a space of 512 possible INums where only 256 at most
are in use at any given time - the same as the maximum number of in-flight instruc
tions.

The IN um is used for RAW dependency detection, branch mispredict recovery, and
general exception identification. Dependency detection is discussed in Section 4.1. If a
branch instruction is executed and the Ebox/Fbox/Qbox determines that the branch was
mispredicted, the executing unit must send the branch instruction's INum to the Ibox.
The Ibox uses the IN um as an index into a table containing the alternate branch address.
The INum is also used to establish priority of exceptions. If two exceptions are sig
nalled to the Ibox at the same time, the Ibox will compare the INums responsible for the
exceptions and chose the earliest INum.

To address dependency detection, the assigned INums need only be "unique", that is
two in-flight instructions can't ever have the same INum. The requirements imposed by
exception processing are more stringent, however. In order to identify the "oldest" of a
pair of in-flight instructions their INums have to be assigned such that we can always
determine whether instruction A is older than instruction B or not. This issue is
described in Section 4.2.1. But more interesting problem for the INum Allocator is
deciding how to divide INums amongst different threads.

The INum Allocator also subsumes the related but distinct functionality of the Map
Thread Chooser (Section 4.3.3.3), which decides from cycle to cycle which TPU should
map and pass an instruction block along to the Qbox.

4.3.3.2 Design Architecture

In single thread mode, INum allocation is simple; all we need to do is to allocate INums
in the range 0 to 255 and toggle a "wrap bit" that becomes INum<8> each time we pass
through 0. Further, we need only make sure that all the in-flight INums are on the same
half of the 512 entry circle.

Multithread mode is a little more complicated. In this case, we need to maintain the
ordering relationship between INums within a thread only. (A comparison between
INum A from thread 0 and IN um B from thread 1 is meaningless, or rather, doesn't need
to have any significance.Exception priority resolution - a major reason for having
INums - is done independently in each thread.) This ordering can be maintained by
ensuring, as in the single thread case, that the insert pointer and retire pointer stay in the
same 255 value range.

The problem with INum allocation in multithread mode is ensuring an optimal alloca
tion of INums to active threads. Perfect allocation requires knowledge of what each
thread will do in the future. We don't have that knowledge, so we have to settle for
"good enough" allocation.

We considered dividing the space from 0 to 255 into four equal sized chunks and allo
cating each chunk to one and only one of the four threads. We called this scheme "hard
partitioning". This approach has one really big problem: it implies that when we only
have a single thread that is active, that thread can only have 64 instructions in flight. In
this case, 21464 takes a 20% performance hit. This is unacceptable for two reasons.

Compaq Confidential
5 January 2001 ···Subject To Change Dependency Mapper Unit - the Pbox 4-13

Component Details

First, we want multithreading to be modeless: when there is only one active thread we
are in single thread mode, when there is more than one active thread we are in multi
thread mode. The transition from one to the other should not require great honking
masses of machinery to reconfigure themselves. Second, there is some suspicion that
many applications pass through serial sections of code where all the child threads are
waiting on a single parent thread to do a particular task. In the hard partitioned scheme,
that parent has no access to the idle resources for which the children have no need. (The
children are quiescent- asleep- waiting for the parent to do its thing.) This approach
was too slow.

At the other end of the solution space, we considered completely free allocation of
INums from a pool. We hate the idea of free-list choosers. This approach was too hard.

The approach we have chosen is a compromise. We divide the range 0 to 255 into four
chunks. Thread 0 is given INum blocks 0, 4, 8, 12 and so on to block 28. Thread 1 is
given INum blocks 1, 5, 9, 13 and so on. Each block contains 8 INums. When a thread
needs a new INum block, it looks forward from its insert pointer over the next four
blocks for the first free block. When a thread is quiescent, it returns all of its "own"
blocks to a "shared pool" as each block retires. (If some of a quiescent thread's blocks
are not in flight, they enter the shared pool when the thread quiesces.) When a thread
wakes up, it claims all of its own blocks from the "shared pool". When a thread X goes
looking for a new block, it looks in the shared pool, and in the list of idle (not in flight)
blocks belonging to thread X. This has the advantage of making idle resources available
to active threads, while avoiding complex free-list schemes. This approach was just
right.

4.3.3.3 Map Thread Chooser (MTC)

Apart from being responsible for INum allocation proper, the INum allocator also con
tains the Map Thread Chooser (MTC), which is responsible for picking a valid thread to
map each cycle. A valid thread is one that is not quiesced, and either has instructions in
the Ibox collapsing buffer or has its fetch valid bit set. The latter signal indicates that
this thread's instructions are currently being fetched and thus can bypass the instruction
buffer. No threads can or will map if the post-map skid buffer gets full or the INA runs
out of INums. Sometimes one or both of these events occurs - or the MTC chooses a
thread which turns out to be invalid - while a fetch block is en route from the Ibox to the
Pbox. To enable recovery in these events, the Ibox retains the last fetch block sent until
the Pbox indicates that the collapsing buffer can update itself. The MTC will assert the
update signal any cycle it has a valid map thread choice and has INums available (since
this implies the last block was successfully mapped).

The MTC will choose the thread with the fewest number of consumed INum chunks
that have valid instructions to map. In the event that two or more valid threads have the
same least number of consumed INum chunks, the tie is broken using a round-robin
algorithm. In order to monitor the number of INum chunks in flight, the MTC maintains
four counters, one per thread. A thread's counter is incremented when one of its fetch
blocks is passed to the Pbox from the !box's collapsing buffer and successfully mapped,
and decremented when one of its map blocks is retired by the Qbox. The MTC deter
mines which threads have valid instructions to map by monitoring the number of fetch
blocks in flight that could be mapped by the time the map choice is accepted by the col
lapsing buffer stage. After making a map choice, the MTC forwards its selection to the
Ibox.

Compaq Confidentia I
4-14 Dependency Mapper Unit -the Pbox 5 Jc1nwtry 2001 -- Subject To Cfumge

Component Details

The MTC may choose a thread that cannot actually map because it had a line mispre
dict, set mispredict, !cache miss, ITB miss, etc. If any of these Ibox mishaps should
occur, the Ibox will send a "slot 0 invalid" signal to the MTC. If the MTC sees this sig
nal, it knows that the chosen thread cannot map this cycle. Therefore will not update its
counters but restart its map choice on the next cycle. It will also clear all of the bits in
the Map TPU signal, indicating that the current map thread choice is invalid.

4.3.4 Mapper Exception Logic (MEX}

4.3.4.1 Design Considerations

When the Ibox signals that it has fielded an exception, the IMP, PMP, LSN, and RIF,
must restore their state to the time the trapping instruction was mapped. The INum allo
cator insert pointer is unchanged, but all INums between the trap point and the current
insert point must be abandoned.

4.3.4.2 Design Architecture

The Mapper Exception logic (MEX) takes as inputs the thread id and the exception
INum of an exception (from the BEL) and accesses the appropriate column in the back
map (BMAP) of each affected section (IMP, PMP, LSN, and RIF) to roll the thread's
context back to the trap point. In addition, the MEX clears all relevant BMAP state
between the trap and insert points. (The "writers" mask in each cell of the BMAP
between the trap and insert point is cleared if the corresponding INum has been aban
doned. This way, when the state of the mapper is restored, all registers whose last writer
is either retired or abandoned will be marked as being "ready to read".

4.3.5 Memory Queue Allocation Unit (MQA}

The Memory Queue Allocation Unit (MQA) governs the allocation and deallocation of
load queue (LQ) and store queue (SQ) chunks to memory instructions. The Mbox
accepts and implements the allocation decisions of the MQA. However, the Mbox ini
tiates the deallocation process, with the exception of killed instructions, whose LQ/SQ
chunks are aggressively reclaimed by the MQA. The MQA also controls the High
water Mark (HWM) that is sent to the Qbox to regulate the issuing of loads and stores.

Note: We will attempt to explain the operation of the MQA in terms applicable to both
load and store queue functionality. However, we will default to using the store queue
operation when a description in generic terms becomes too cumbersome. Differences
between the load and store queue allocation logic will be noted as necessary.

4.3.5.1 Allocation

Allocation is based on the per-TPU demand for load/store queue chunks (LSChunks).
The MQA assigns LSChunks only to active (i.e. not quiescent) TPUs which exhibit
demand by mapping load and store instructions - with one twist.

There is a delay of several cycles between when the HWM is elevated and the Qbox
recognizes that an instruction that was above the HWM is now below it and may issue.
To mitigate this latency, the MQA artificially inflates demand for each active TPU, so
that even without mapping any memory instructions, a TPU has demand for some num
ber of LSChunks. This number is currently thought to be 2, but that is the subject of
ongoing performance model experiments. This inflated demand effectively results in

Compaq Confidential
5 Janw1ry 2001 ~·Subject To Change Dependency Mapper Unit - the Pbox 4-15

Component Details

the preallocation of LSChunks to a TPU, and a corresponding elevation of the HWM,
such that data-ready memory instructions have a better chance of issuing immediately
upon entering the instruction queue (IQ).

4.3.5.2 Background and Terminology

To make it easier to discuss the MQA algorithm, we define the following terms:

YLSNum

ADLSNum
The Youngest LSNum allocated to mapped instructions by the LSN

The Artificial Demand LSNum - i.e. YLSNum plus artificial demand; provided
to the MQA by the LSN

In addition, there are a few important background facts to keep in mind when consider
ing MQA operation:

•
•

•
•

•

•

LSChunks contain groups of 4 LSNums .

The HWM is maintained on an LSChunk granularity (i.e. it does NOT change on
the granularity of individual LSNums).

ADLSNum is also maintained on an LSChunk granularity .

Only instructions with LSNums strictly below the HWM may issue; it follows that
the HWM is always immediately above the last allocated LSChunk.

Each of the two load queues and one store. queue have completely distinct, inde-
pendently managed LSNum/HWM spaces; so do the TPUs within a given load/
store queue.

LSNums, unlike INums, are allocated continuously; there is no necessary connec
tion between the boundaries of INum blocks and LSChunks. This fact comes into
play most significantly in dealing with kills and retires.

4.3.5.3 Basic Allocation Loop

We will use store queue operation to illustrate the basic allocation loop. On every cycle,
each TPU compares its store ADLSNum (from the LSN) to the current store HWM. If
ADLSNum >= HWM, this TPU has demand for store chunks and submits a bid to TPU
arbitration.

If there are one or more free store chunks available, the TPU Arbitration unit selects a
winner from the active TPUs which have demand. The winner is the TPU from the set
of bidders which was least recently allocated an LS Chunk; the TPU which wins in this
cycle goes to the back of the line. Arbitration declares no winner if there are no active
TPUs with demand and/or no free chunks.

The MQA allocates an LSChunk to a TPU which wins arbitration in a given cycle.
Conceptually, when an LS Chunk is allocated, it is set aside for the stores whose SNums
are in the range of the ADLSNum value for which the bid was generated. For example,
if the bidder's ADLNum was 80, the allocated LSChunk will contain the stores with
SNums 80, 81, 82, and 83.

A successful arbitration leads to a number of events, both internal and external. Inter
nally to the MQA, the winning TPU updates its store HWM by adding one LSChunk.
The Allocation Picker chooses which of the free LSChunks will be allocated, and the
ADLSNum value is written into that LSChunk's entry in the Tag Array. The match

Compaq Confidential
4-16 Dependency Mapper Unit-the Pbox 5 Jc1nuary 2001 ···Subject To Change

4.3.5.4 Reset

Component Details

enable (MATCH_EN) bit for that entry is also set. Finally, the allocated chunk is
removed from the Available vector and assigned to the Inflight Vector of the winning
TPU.

As for externally visible events, the MQA sends the winning TPU ID, ADLSNum,
encoded LS Chunk ID, and a valid bit to the Mbox, which writes the TPU and AD L
SNum into the appropriate SQ entry. When stores with LSNums in the range of this
ADLSNum issue, their state will be assigned to this entry. In addition, the MQA sends
the updated HWM to the Qbox.

Going back to the beginning of the process, if on a given cycle ADLSNum < HWM for
a given TPU, then it has no additional demand for store chunks. It does not submit a bid
to arbitration nor update its HWM.

During reset, the HWM for each TPU is set to 0, and LSNum allocation also starts from
0. However, the LSN initializes the ADLSNum for each TPU to a positive value, ensur
ing that all TPUs come out of reset with demand. At their first opportunity, the TPUs
will bid and arbitrate to raise their HWMs to the point where ADLSNum < HWM - pos
sibly before any memory instructions have been mapped or even fetched.

4.3.5.5 Deallocation

4.3.5.6 Kills

The following sections cover how the MQA responds to kill and retire events. How
ever, at this point it is important to address the non-obvious role of the Mbox in deallo
cation. It is easy to grasp that LS Chunks mapping to instructions in the shadow of a kill
can deallocate, although there are some subtleties we will discuss shortly. One would
also tend to think that LSChunks in the shadow of a retire can also be immediately
reclaimed, but this is not the case.

Both stores and loads may surrender their INums before they are ready to actually leave
the SQ or LQ. Stores maintain state in the SQ until they are copied out of the merge
buffer, which may not only happen long after they become retireable, but out of INum
order. In the LDQ, prefetches never lead to a retry and thus retire early, possibly long
before they have executed. For these reasons, the MQA may only deallocate LS Chunks
for retired instructions once the Mbox says it is safe to do so. This is achieved via a
fully-decoded deallocation signal per LQ/SQ. The MQA response to this signal is to
remove the designated LSChunks from the Inflight Vectors and place them in the Avail
able Vector.

When a kill occurs, the MQA has to reclaim any LS Chunks in the shadow of the kill. In
the interest of performance, the MQA tries to reclaim any LS Chunks that map onto
killed instructions. This is achieved by comparing the ADLSNum corresponding to the
killed instruction with all LSChunk tags for the kill TPU. All tags where LS Chunk >=
kill ADLSNum and the MATCH_EN bit is set generate a match signal, which leads to
their removal from the TPU's Inflight Vector and addition to the Available Vector. The
MATCH_EN bit is also cleared for all matching tags, making them ineligible for future
comparisons - this avoids aliasing problems when the LSNum space wraps.

Note that we kill from the ADLSNum corresponding to the kill IN um - a value obtained
from the LSN Backmap - not the YLSNum which maps to the kill INum. This means
that the blocks between the YLSNum and ADLSNum - i.e. most of the blocks allocated

Compaq Confidential
5 January 2001 -· Subject To Change Dependency Mapper Unit - the Pbox 4-17

Component Details

due to artificial demand - remain allocated to the TPU after a kill, a handy optimization.
This also has the side effect of solving the problem of partially-killed LSChunks. The
effective kill point is always at the beginning of some LSChunk after the true kill point,
so we don't need to worry if the kill occurs in the middle of a chunk or not.

Also note that the mapping from a kill INum to the corresponding YLSNum (and ADL
SNum) is subtle. If the kill INum is that of a store instruction, for example, then the cor
responding kill YLSNum is the SNum of that store. But if the kill is for some other type
of instruction, the kill YLSNum is the SNum of the last store allocated prior to this
instruction.

The aggressive reclamation of killed LSChunks by the MQA has an important implica
tion for the Mbox. To avoid a hazard, the Mbox must not send a deallocation signal for
LSChunks that are completely in the shadow of a kill. Otherwise, the MQA could
receive spurious deallocation signals for LSChunks that it has just reclaimed and then
allocated.

Making killed LSChunks available for reallocation is only part of the task. The MQA
also needs to check the relative position of the kill and the current HWM. If kill ADL
SNum >= HWM, the HWM has not yet caught up with or is just equal to demand, and
there is no problem. However, ifHWM >kill ADLSNum, then the High-Water Mark is
above the point where we have allocated LSChunks for this TPU and must be lowered.
In this case, the MQA sets HWM =kill ADLSNum. Note how this means that the TPU
comes out of a kill with a positive demand for LSChunks.

4.3.5. 7 Retires

As a final note, the Mbox must make sure on kills that it is truly good and done with
LQ/SQ entries before the MQA has a chance to reallocate them. The pipeline would
appear to provide more than enough time for this, but we need to make sure.

We have already discussed how retirement of LS Chunks is decoupled from dealloca
tion, due to the tendency of stores and prefetches to linger in their queues past retire
ment. The immediate action that the MQA must take on retirement is to disable the
retired instructions from matching against future kills (and retires). The mechanism for
handling this operates as follows: on a Retire Block event, the LSN reads its Backmap
and supplies the YLSNum corresponding to the retiring block. Note that this must be
the YLSNum, not the ADLSNum, since the latter corresponds to instructions still in
flight! The LSChunk tags compare against the retire YLSNum, and all LSChunks for
the TPU that are in the shadow of the retire (i.e. older and with MATCH_EN bits set)
clear their MATCH_EN bits. There are actually two different cases:

1.If retire YLSNum == ... 11 then clear MATCH_EN for all tags where LSChunk <=
retire YLSNum 2.If retire YLSNum != ... 11 then clear MATCH_EN for all tags where
LSChunk <retire YLSNum

In other words, if the retire YLSNum corresponds to the youngest entry in an LSChunk,
the chunk is fully retired and we may clear MATCH_EN for it and all older chunks. If
the retire YLSNum is not the youngest one in a chunk, then the chunk is only partially
retired, and only the MATCH_EN for the older chunks may be cleared.

LSChunks will typically retire well before they are deallocated. However, the MQA
retires on a granularity of Retire Block events (i.e. INum blocks), whereas the Mbox
retires at the resolution of Next-to-Retire events (i.e. individual instructions). For this

Compaq Confidential
4-18 Dependency Mapper Unit -the Pbox 5 Januc1ry 2001 -·Subject To Change

Component Details

reason, the MQA may see a block deallocate before it has retired - for instance, if a
Next-to-Retire of a store allows the Mbox to release a SQ chunk before the IN um block
containing that store can retire. This means that the block in question will reside in the
Available Vector and no longer in the TPU's Inflight Vector, but still have its
MATCH_EN set. This is not a problem, since the fact that the chunk doesn't belong to
any TPU means that its tag won't match on anything; the tag state will be overwritten
when the chunk reallocates.

4.3.5.8 Quiesce

[NOTE: This is just a sketch - we'll need to decide if things actually work this way or
not - Peter].

In the interest of performance, a TPU going into Quiesce needs to release all of its
LSChunks to the free pool. The Mbox signals Quiesce to the MQA only after the Qui
esce trap has been taken, and after all LQ and SQ instructions for the TPU have com
pleted. When the MQA sees the Quiesce signal, it removes all allocated LSChunks
from the Inflight Vector of the TPU and places them into the Available Vector. This
avoids forcing the Mbox to send out deallocate signals for any partially-utilized
LSChunks belonging to the TPU going into Quiesce. The MQA knows that when it
sees the Quiesce signal, it is safe to reclaim all chunks allocated to the TPU.

Coming out of Quiesce is relatively straightforward; for the TPU in question, it looks
very much like coming out of reset. LSNum allocation restarts at 0, and the HWM also
starts at 0, arbitrating its way up to the level called for by the ADLSNum in the first few
cycles after waking up.

4.3.5.9 Merge Buffer Purging

[This is a placeholder for whatever policy we decide to implement. - Peter]

4.3.6 Instruction Decoder (IDC)

4.3.6.1 Design Considerations

In the traditional microprocessors of yore, there was an instruction decoder (just one). It
sat at the front end of the processor, parsing instructions as they came into the machine
and telling the functional unit(s) exactly what to do for each operand; which registers or
memory to get data from, how to operate on the data, where to put it, etc. 21464 has
many more registers, funtional units, and operations than that Jurassic CPU, and by vir
tue of this additional complexity - and size - is far less centrally controlled. There is
also a complex register renaming process and out-of-order scheduling operation
between the processor front end and the functional units, so this classical model of
operations is not practical. Still, there are certain things we would like to know about
the instructions within the Pbox and Qbox before we ship them off to their ultimate des
tinations.

4.3.6.2 Design Architecture

The Pbox Instruction Decoder (IDC) acts similarly to the instruction decoder in a tradi
tional textbook microprocessor, with a few important distinctions. First of all, the IDC
operates on up to 8 instructions in parallel. Secondly, the output of the IDC does not
directly or exclusively drive the functional units which execute the instructions - the
Ebox, Fbox, and Mbox, which also see the opcode and function bits, perform local
decoding to determine (for the most part) how to execute a given instruction. Rather,

Compaq Confidential
5 January 2001 ·-Subject To Change Dependency Mapper Unit - the Pbox 4-19

Component Details

the IDC outputs are signals which highlight particular properties of the instructions, in
the manner of scoreboarding, mode, predecode, or valid signals, for example. Some of
the signals go to the Load Store Serial Number Allocator or the RC/RS Interrupt Flag
Widget to condition their behavior. The remainder go through the Post-Map Skid Buffer
to the Mbox, or to the Qbox where they either influence scheduling decisions and/or get
cached in the Payload Arrays for distribution at issue time. One of the most important
specific functions of the IDC is to provide slotting information to the Instruction Queue.

4.3. 7 Load/Store Serial Number Allocator (LSN)

4.3.7.1 Design Considerations

21464 issues loads and stores out-of-order. This can lead to deadlock situations in the
Mbox if things aren't managed properly. For instance, imagine we executed the follow
ing chunk of code:

001:

002:

003:

sr

LD

LD

R3->(R5)

(R5)->R2

(R9)->R2

Note that these three instructions must execute in order if we are to get the ''right"
answer. Now imagine that we have an Mbox with a combined load/store queue. That is,
all stores and loads enter a single queue. Further, suppose that the queue had just two
entries. Instructions enter the queue at issue time, and leave the queue when it is known
that they will retire. Suppose R3 does not become data ready until well after R5 is data
ready. In that case, the two load instructions will issue before the store instruction. They
will consume both entries in the LD/ST queue. Neither however, can leave the queue
since we don't know whether either will be able to retire until instruction 001 issues.
(Note that we don't need to wait until they retire to eject them, we just need to make
sure they won't need to be replayed. Without seeing all "earlier" stores, we can't make
that decision. The LD/ST queue is now deadlocked.

Yes, this example is contrived- we won't build a combined queue of just two entries.
However, the deadlock behavior is inherent in the design and is inevitable if the number
of LD/ST queue entries is less than the in-flight instruction limit. (Or perhaps the limit
is the size of the instruction window - it depends on when instructions are allowed to
leave the IQ window.)

4.3.7.2 Design Architecture

To solve this problem, we assign an ascending serial number to each load and store
instruction. (Each load will get a LNum and each store will get a SNum.) The Mbox has
separate load and store queues. Each has sixty four entries. We will allocate LNums and
SNums in the range 0 to 255, which accommodates the pathological case where all 128
instructions in the queue are loads. Each TPU has its own independent LNum and
SNum space. Memory barrier instructions will get an SNum. (A memory barrier
instruction will never be dispatched to a functional unit - it is a NOP. But a marker for
the MB will be sent to the Mbox when the MB passes through the Post-Map Skid
Buffer. The Mbox can always deduce the next LNum or SNum to be allocated and the
position in the load and store queues of each decoded barrier instruction.

As the Mbox processes entries in the LSqueues, it frees up space in the queue. On each
cycle the Mbox will send two values per TPU to a box in the IQ. This box is called the
Load/Store Number High-water Marker (HWM). Each load/store/barrier instruction in

Compaq Confideaitia I
4-20 Dependency Mapper Unit - the Pbox 5 Jc1nuc1ry 2001 -- Subject To CfJange

Component Details

the IQ stores its LIS number in the HWM. The Mbox sends MAXLNum<8:0> and
MAXSNum<8:0> to the HWM. Each load instruction compares its LNum to MAXL
Num. If it is "less than" MAXLNum, then the load instruction may issue as soon as it is
data ready. Otherwise the load instruction must wait. Stores behave similarly. Note that
the comparison is actually "less than" but within the same half of the 512 point LSNum
"circle".

As the Mbox processes entries in the LSqueues, it frees up space in the queue. On each
cycle the Mbox will send two values per TPU - the load and store high-water marks - to
a box in the IQ. This box is called the Load/Store Number High-water Marker (HWM).
Each load instruction compares its LNum to current load high-water mark for its TPU.
If it is "less than" (or "below") the high-water mark, then the load instruction may issue
as soon as it is data ready. Otherwise the load instruction must wait. Stores behave sim
ilarly. Note that the comparison is actually "less than" but within the same half of the
512 point LSNum "circle".

Finally, note that the LNums and SNums must be reclaimed when instructions are aban
doned due to a trap. This behavior differs from the IMP recovery mechanism. However,
the LSN is almost identical to the IMP. In this case, the backup map array for the LSN is
indexed as LSN_BMAP(B,ISload), that is there is a column for each block of INums,
and one row for loads and one row for stores. The LSN_CMAP is a pair of counters that
are incremented each cycle by the number of loads/stores that were allocated in that
cycle. On recovery, the LSN_CMAP is restored like this:

FOR i = LOAD to STORE DO

END

IF LSN_BJ).'.]'Ap(TrapINum<7:3>,i).M<7:0> == 0

THEN

LSN_CMAP(i) = LSN_BMAP(TrapINum<7:3>,i) .LAST_NUM

ELSE

END

LSN_CMAP (i) = LSN_BMAP (TrapINum<7 :3>, i) .LAST_NUM

FOR j = 0 to TrapINum<2 : 0> - 1 DO

END

IF LSN_BMAP(TrapINum<7:3>,i) .M == 1

THEN

LSN_CMAP(i) = LSN_CMAP(i) + l;

END

That is, the LSN_CMAP entry for loads is set to the last LNum allocated before the trap
point. If the trap point is in the middle of a block, we check to see if there were loads
before the trap point but within the trap block. If so, we increment the LAST_NUM by
the number of loads we find. Stores are treated in the same way.

Compaq Confidential
5 January 2001 -- Subject To Change Dependency Mapper Unit - the Pbox 4-21

Component Details

4.3.8 Post-Map Skid Buffer {PSB)

4.3.8.1 Design Considerations

Because there are fewer instruction queue entries available than the in-flight instruction
limit, the IQ sometimes fills. Because of pipeline delays, the Pbox may not realize that
IQ is full until well after it has filled, and several instructions have been dropped on the
floor. In this circumstance, we don't want to signal a trap all the way back to the Ibox,
becaise this wastes time and (perhaps more importantly) wastes INums. (We do not
reclaim bad path INums when a trap occurs, only after their retirement.) It is much bet
ter to buff er up the excess instructions until the Ibox can be informed to stop fetching in
a tidy mannerDesign Architecture

4.3.8.2 Design Architecture

As each instruction passes out of the main Pbox forward path components (INA, IMP,
PMP, IDC, LSN, and RIF) on its way to the Qbox, it is copied into the post-map skid
buffer circular queue. When an IQ full stall is signalled, the skid buffer sets the front
pointer of the queue to point to the instruction block after the last one that was success
fully allocated into IQ. Which one this is can be determined in advance from the pipe
line timing. When the IQ full condition is cleared, the skid buffer replays the stored
map blocks down to the IQ.

Control of the Ibox is achieved by sending an INHIBIT_ISTREAM signal to the INA,
which incorporates it into the ''INums available" information that it sends to the Ibox,
thus signalling that there are NO available INums. Rather than simply telling the Ibox
to send new instructions every time the Qbox signals that the IQ is not full, we prefer to
empty out the PSB so that we can bypass the new data coming down the pipe to the
Qbox. To do this, we make sure that the PSB is empty enough that by the time the new
instructions get to the PSB, we are able to bypass the data to the Qbox and not write it
into the PSB only to be read out sometime later.

The skid buffer contains all the muxing logic necessary to select between the silo out
puts and the unbuffered forward path.

The post map skid buffer (PSB) is approximately 3 entries deep, the actual depth is
dependent on the control pipeline timing from when the Qbox signals that the IQ is full
to when we can tell the Ibox to stop sending the Pbox new instructions, and the data
pipeline timing from the Ibox collapsing buffer to the IQ. Each entry stores the TPU,
the instruction valid vector, and all the data that goes to the Qbox for a given instruc
tion. The PSB is built in 4 separate storage arrays - one for data produced in PlA,
another for P3A data, and two for P2A data since these signals span a layout partition
boundary. The P2A and P3A array uses the control piped from the Pl A array.

The control logic itself uses no state machines apart from the read and write pointers,
which are one-hot and either advance or maintain their current position on every cycle.
The decisions of whether or not move the pointers, and whether to bypass incoming
blocks or read out of the buffer are based on four binary variables: the adjacency (or
not) of the pointers, the (in)validity of the incoming block, the current state of the out
put mux, and the fullness (or not) of the IQ.

On a kill, the trap TPU needs to be compared to the stored TPUs. If there is a match,
then the instruction valid vector needs to be set to all zeros. If there are any valid entries
in the PSB after a trap, (eg. there are multiple threads running, at least two threads have

Compaq Confidentia I
4-22 Dependency Mapper Unit - the Pbox 5 Januc1ry 2001 -· Subject To Change

Component Details

data in the PSB and one of the threads traps) the Pbox will send the invalidated data to
the Qbox in subsequent cycles when there is room in the IQ to accept instructions. In
other words, we won't collapse out invalid instructions if there are any valid instruc
tions in the PSB.

We do cause a performance loss by sending invalidated map blocks to the Qbox in the
case when a trap occurred to a thread that had blocks in the PSB. In the case when the
machine is running a single thread, we would not need to send the invalidated map
blocks since we could tell that the skid buffer is empty. To determine that it is empty, we
need to OR across the instruction valid vectors. If all instruction-valid vectors are 0 then
the PSB is empty!

4.3.9 RC/RS Interrupt Flag Widget (RIF)

4.3.9.1 Design Considerations

The Alpha SRM specifies two instructions that are to be used by code that translates or
emulates VAX instructions. The two instructions are RC (for Read and Clear interrupt
flag) and RS (for Read and Set interrupt flag). In real life on an in-order machine, RS
Rx sets a bit called the interrupt flag and writes the previous state of the bit to register
Rx. (RC Rx, as you might guess, clears the interrupt flag and saves the previous state to
register Rx.) The SRM further says that this bit is cleared whenever a PALCALL_REI
instruction is executed. PALCALL_REI is the PAL instruction sequence that is called
whenever an interrupt service routine decides to return to the process that got the inter
rupt. Imagine the following code sequence:

Ret:ry: RS R9

do something that is probably wrong if an interrupt occurs

End: RC R9

BLBC R9,Ret:ry

If an interrupt occurs and is serviced between Retry and End, then the interrupt flag will
get cleared by the PALCALL_REI routine that returns back to our program segment.

This is not really all that hard on an in-order machine. 21464 is not an in-order machine.
The interrupt flag must be maintained as in-order state.

21464 only knows about program order up to the point at which instructions are sent to
the Qbox. (And then again, in the completion unit: we map dependencies in order, and
retire instructions in order - everything else is higgledy-piggledy.) So it seems natural
that we'd try to do the interrupt flag processing in the Pbox at map time (or soon there
after). If this paragraph looks familiar, it is because I copied it from the description of
the Store/Conditional Failure Widget (which no longer exists).

4.3.9.2 Design Architecture

The interrupt flag (we'll call it the INTerrupt Flag or INTF) is computed based on the
speculated !stream. For this reason, the state of the flag must be "rolled back" when the
Ibox erroneously predicts a path between an RS and an RC instruction (or, for that mat
ter, between two RS's or two RC's).

Compaq Confidential
5 January 2001 --· Subject To Change Dependency Mapper Unit - the Pbox 4-23

Component Details

Let INTF _CURRENT represent the current value of the interrupt flag. This value must
be maintained on a per-thread basis. We also maintain an interrupt flag table, INTF _T,
with an entry for each INum. INTF _ T can be shared among threads, since the INum
space is partitioned between threads in a non-overlapping manner.

Here are the rules for generating and maintaining the flag. Assume for now that we pro
cess instructions coming from the lbox one at a time.

•
•

•

•
•

At reset, clear INTF _CURRENT[3 .. 0] (i.e. the current value for every thread) .

If instruction X in TPU Y is an RS, copy INTF _CURRENT[Y] to the INTF bit in
the RS's payload. Set INTF _T[X] and INTF _CURRENT[Y].

If instruction Xis a RC, copy INTF _CURRENT[Y] to the INTF bit in the RC's pay
load. Clear INTF _T[X] and INTF _CURRENT[Y].

For all other instructions X, copy INTF _CURRENT[Y] to INTF _ T[X] .

On a trap where INum Tin TPU Z is the trap point, copy INTF _T[T] to
INTF _CURRENT[Z].

You will notice that we didn't mention PALCALL_REI. That's because PALCALL_REI
is implemented as a stream of PAL instructions. Before the PALCALL_REI actually
returns to the interrupted program, it will perform an RC R31 to clear the INTF bit as
per the SRM.

4.3.10 Bid/Grant Exception Logic (BEL)

4.3.10.1 Design Considerations

The Pbox shares the responsibility with the Ibox for deciding which of all pending dis
ruptions (exceptions, traps, interrupts, etc.) should be fielded. The function of the Bid/
Grant Exception Logic (BEL) is to choose one execution-time or retire-time disruption
per cycle out of the pool to trigger a chip-wide kill and send its INum to the Retire/Kill
Unit (discussed below) which controls the Retire/Kill Bus (RK Bus). The BEL must
also inform the lbox so that it can make the final decision as to whether the kill will
actually occur. Keeping track of execution-time disruptions for every in-flight instruc
tion, and arbitrating between disruptions from different TPU s are among the challenges
in implementing the BEL.

This discussion is fairly localized to the Pbox and may not shed much light on the chip
wide framework and arbitration mechanism for disruptions. For a better understanding
of this context, see Section 22.1.

4.3.10.2 Design Architecture

The work of the BEL is simplified by the fact that the Qbox Completion Unit (CU)
maintains the information associated with retire-time disruptions. The CU passes along
no more than one candidate - the next instruction eligible to retire, if it has any associ
ated disruptions - at a time. The BEL must keep track of the execution time disruptions
for very in-flight instruction, and decide on a per-TPU basis which one is the oldest.
Only the oldest in each TPU matters, since any younger disruptions are by definition on
the bad path and will be killed off. This sorting by age is done in a decoded INum
space. Disruptions on one TPU have no effect on another, since they represent indepen
dently executing programs at the hardware level. Nevertheless, the 21464 can only
broadcast one kill at a time, which requires an arbitration mechanism. The BEL there-

Compaq Confidential
4-24 Dependency Mapper Unit - the Pbox 5 Jam.uiry 2001 ··· Subject To Change

Component Details

fore hops in a round-robin fashion between those TPUs which are signalling any execu
tion-time disruptions. If the CU is signalling a retire-time disruption on a given cycle,
that disruption trumps the execution-time ones since it is, by definition, the oldest dis
ruption in the machine. The winner of this arbitration process has its INum and TPU
passed on to the Ibox and the Retire/Kill Unit. There is an additional dimension to kills,
namely, whether the kill affects only the instructions younger than the one correspond
ing to the disruption INum, or includes that particular instruction as well. This ''kill at"/
"kill after" distinction is also passed on by the BEL.

4.3.11 Retire/Kill Unit {RKU)

4.3.11.1 Design Considerations

The Pbox owns the responsibility of driving the highest priority Retire INum or Kill
INum to all the boxes on the chip that have state affected by instructions being killed
and/or retired. The Retire/Kill Unit (RKU) controls the Retire/Kill Bus (RK Bus),
which is the medium for communication of these events for the entire CPU. The struc
ture of the RK Bus is such that only one kill or retire INum may be broadcast per cycle,
which requires some means of arbitration. Also, since the Ibox is involved in the arbi
tration process, there are delays between when the BEL informs the Ibox of its choice
for a kill and when the kill can be driven onto the RK Bus.

4.3.11.2 Design Architecture

Since the 21464 retires all instructions in order, there is only one possible candidate for
retirement at any given point in time, winnowing down the choices for what to broad
cast on the RK Bus. Further, as described above, the BEL funnels all pending kills
down to one candidate per cycle. As the final arbitration mechanism, the RKU priori
tizes kills over retires. If there is a valid kill and a valid retire in the same cycle, the kill
will win and be broadcasted on the RK Bus, causing the retire to be stalled and to try
again the next cycle.

The RKU has a stall pipeline that queues retire requests from the Qbox Completion
Unit (CU). A Kill only becomes valid if the Ibox signals to the RKU that it may pro
ceed. A pipeline in the RKU manages the latency between a kill being passed from the
BEL and the valid/invalid indication returning from the Ibox. Retire-time exceptions
(RTEs) are handled in a special way. The RKU first broadcasts them as a next-to-retire
INum event, after which they are passed along to the BEL to be re-broadcast in the
form of a kill.

The RK Bus sends the retire or kill IN um and TPU, and whether the event is a kill or
retire. The RK Bus also broadcasts whether a kill should occur at or after the retire/kill
INum, or, in the case of a retire, whether it applies just to the INum in question or the
entire INum block. For a detailed description of the RK Bus signalling protocol, please
consult Driving the Retire/Kill Bus (RK Bus).

Compaq Confidential
5 January 2001 - Subject To Change Dependency Mapper Unit - the Pbox 4-25

Component Details

Compaq Confidential
4-26 Dependency Mapper Unit - the Pbox 5 Jam.u~ry 2001 ··· Subject To Change

5
Instruction Issue and Retire Unit- the Qbox

The Qbox processes instructions that are renamed by the Pbox and determines an
appropriate schedule for those instructions. When all input operands for an instruction x
have been produced or will be produced by an instruction y, already in the execution
pipeline, we say that instruction xis "data ready". The Qbox selects the eight best "data
ready" instructions for execution in eight integer pipeline units and four floating-point
pipeline units. In addition, the Qbox selects up to four data-ready branch instructions
for resolution in each cycle. It also retires all eligible instructions, committing them to
architectural state.

The Qbox consists of the following components:

Table 5-1 Qbox Component Summary

Name

Queue Chunk
Allocator/Deallo-
ca tor

Instruction Queue

Queue Entry
Table

Dependency
Arrays

Picker Arrays

Bid Enable Logic

Completion Unit

Destination
Register Number
Array

Exception Kill
Logic

Mnemonic Description
Described
in Section

ALC

IQ

QET

DAs

PKs

BID

CMP

DRN

EKC

Manages the 32 instruction queue allocation chunks. Picks the two 5.2.14
chunks to be allocated to the next group of eight instructions.

The queue from which instructions are picked for execution. 5.2.1

Translates INum dependencies delivered from the Pbox IMP stage 5.2.2
into queue entry number dependencies. It also sets the No Live
Dependency (NLD) bits which are set, for instance, when an
instruction enters the queue data ready.

Holds an identifier for the producer of each operand for each 5.2.3
instruction in the queue.

On each cycle, chooses the oldest data ready instruction for each 5.2.4
execution pipeline.

Prevents otherwise ready instructions from bidding in pipes that 5.2.5
cannot service them, either because of a slotting decision or
because of non-data related resource conflict.

Keeps track of which instructions have issued, which have passed 5.2.16
their trap points, which are I/O instructions, and which have retired.

Holds the destination register specifiers for each instruction. This 5.2.9
array are separately located from the SRN because it is not on any
performance-critical paths.

Is repsonsible for removing from the Instruction Queue any 5.2.18
instructions that have been killed due to an exception.

Compaq Confidential
5 January 2001 ···Subject To Change Instruction Issue and Retire Unit - the Qbox 5-1

.Scheduling Decisions - General Concepts

Table 5-1 Qbox Component Summary

Described
Name Mnemonic Description in Section

In-Flight Table IFx Keeps track of instructions that have issued and feeds INums which 5.2.15
have passed their trap points to the Completion unit.

Load/Poison LPR Handles notification of load/miss events from the Mbox and 5.2.11
Re-arm Widget ensures that all instructions that depend on a missed load will

replay at some later time. The LPR also determines when individ-
ual instructions are eligible to be deallocated.

Load/Store HWM Disables load and store instructions whose LSNums indicate that 5.2.10
Number there may not be space available for them in the Mbox load/store
High-Water queues. Also contains the logic for preserving the consistency of
Marker the DTB on misses.

Oldest CBR ocs Identifies the oldest conditional branch issuing in the current cycle 5.2.13
Selector (that is, the one most likely to cause a misprediction).

Pay load Array PAY Contains all the instructions and the register file addresses of all 5.2.17
operands.

Post-Issue Logic PIL Gathers bubble requests and routes them to the appropriate pipe- 5.2.12
lines. The PIL is also responsible for sequencing completion sig-
nals for the floating-point pipelines.

FPCR Control FCR Controls the update of the FPCR in the Fbox. 5.2.6

Profile-Me Data PFM Collects the following instruction-time-oriented performance data 5.2.7
Collection for the two in-flight profile-me instructions: data ready, bid, issue,

deallocation, and queue chunk deallocation.

Source Registers SRNs Contain the indices of the physical registers assigned to each 5.2.8
Number Arrays source operand of each instruction. These arrays (there are two) are

kept close to the dependence/bid/grant logic as the launch of the
input physical register specifiers may be a critical path.

5.1 Scheduling Decisions - General Concepts

Our goal in the Qbox is to choose the ''best" 8 instructions to execute for each tic of the
clock. The Qbox chooses these instructions from a "window" of 128 candidates. Each
of the eight scheduling pipelines can handle a subset of the 128 candidate instructions.
Alas, the subset can contain (in some cases) up to half of the instructions in the window.
So, the Qbox includes "pickers" that choose the best instruction out of a set of 64 candi
dates. Scheduling is a four step process:

1. Identify all data ready instructions.

2. For each pipe, select the "oldest" data-ready instruction enabled for execution in
that pipe.

3. Assert the result-ready signal that corresponds to each selected instruction, so that
all instructions that are stored in the queue can see that the chosen instructions have
been issued.

4. For each instruction in the queue, test the result-ready signal for each operand for
each instruction in the queue. (The IMP in the Pbox has renamed each source vir
tual retister into the INum of its last writer. The QET renames these dependencies
from INum space into queue entry space.

Compaq Confidential
5-2 Instruction Issue and Retire Unit - the Qbox 5 January 2001 -~ Subject To Change

Component Details

We can identify a data ready instruction by checking to see that both of its parent entries
have asserted their result-ready signals. This scheme is called a "decoded-space"
dependence array. Earlier plans called for an encoded-space scheme, but though such
schemes are more scalable than decoded-space schemes, this comes at a cost in cycle
time and complexity. The following sections describe the individual blocks that imple
ment the general solution that has been described so far.

5.2 Component Details

5.2.1 Instruction Queue {IQ) Generalities

5.2.1.1 Design Considerations

The goal is to find every little bit of instruction level parallelism (ILP) in a program. (In
multi-thread mode, we want to find all the ILP and all the parallelism between threads.)
In the Pbox, we remove as many spurious dependencies as we can from the instruction
stream by renaming the virtual registers specified in each instruction into a physical
register space. This removes. WAW (write-after-write) and WAR (write-after-read)
dependencies. The task then is to pick from the collection of instructions that are in
flight but have not yet issued, the best eight instructions to issue on the next cycle based
on their actual RAW (read-after-write).

Picking eight instructions out of a pool of any reasonable size is a tough proposition no
matter how you do it. The problem gets more difficult as the number of candidates that
need to be examined increases. Back when dinosaurs roamed the earth we did a bunch
of studies that showed (for single threaded applications) the point of diminishing
returns (for performance vs. scheduling window size) seemed to occur around 96 to 128
entries in the window. So, 128 sounded like a good number. (More recent studies show
that, when we consider all the other nitty gritty details, the point of diminishing returns
is a little larger than 128.) The Qbox chooses 8 instructions on every tick from a pool of
128 instructions in the scheduling window.

The problem is complicated by the fact that the functional units of the Ebox and Fbox
are divided into multiple clusters. Results from Ebox cluster 0 incur a one tic delay
before they are available to clusters 1, 2, 3~5, 6, and 7. (The results are available imme
diately in clusters 0 ~d)t.) The scheduling unit must take this into account without
imposing "spurious" delays. If instruction Y depends on X, and both can execute in pipe
0, then X and Y should execute back-to-back in the absence of contention that might
otherwise delay Y.

5.2.1.2 Design Architecture

This section has an implied familiarity with the Overview and Scheduling Decisions
sections.

The 21464's solution to the scheduling problem did not spring forth all at once. It
evolved over a few years of tinkering, experimenting, and brainstorming. Our solution
features at is core a "persistent decoded space dependence array". The dependence
array is the widget that keeps trace of RAW dependencies for the instructions in the
queue. No matter how you cut it, this is a CAM. Each non-ready read operand for each
instruction must CAM against the "result ready" signals for all of the issued instruc
tions that are still in the instruction queue. When both operands for an instruction have
seen a CAM match, the instruction will send its "bid" for a picker grant slot to the

Compaq Confidential
5 January 2001 -~ Subject To Change Instruction Issue and Retire Unit - the Qbox 5-3

Component Details

"picker" units. In the 21464's decoded-space CAM one result-ready wire is associated
with each instruction in the queue. When an instruction is granted (issues), it asserts its
result-ready signal. In the 21464's persistent array, this signal stays asserted until the
relevant instruction has left the queue.

Such decoded space arrangements normally consume lots of wire tracks. Our scheme
makes use of some clever encoding tricks to reduce the width of the dependence array
to a manageable size. A description of the tricks is beyond the scope here, but they are
well documented in the "q_dax_arx" RTL code and in the detailed dependence array
block diagrams. (See the Qbox implementation leader.)

Our initial suspicion (which has been borne out in all of our subsequent circuit feasibil
ity studies) was that the CAM-bid-grant (or more concisely, "bid-grant") loop was
going to be very tight. This meant that we had to keep the width of the dependence
array as small as possible.

The first insight was to split the logic that looks at all of the "bids" from the data ready
instructions and generates the eight "grants" to the issued instructions into eight pieces.
This reduces the problem from a "pick 8 of 128" to 8 problems of "pick 1 of 128". This
looked like a good idea. But a pick 1 of 128 picker is much slower than a pick 1 of 64
relative to our cycle time. (A 10% hit in cycle time is not offset by the difference in per
formance between 8 pick 1of128 pickers and our scheme.) So, we divided the queue
into two halves. The west half of the queue contains all the in-flight instructions with
even IN urns, the east half of the queue contains the odd instructions. Each half of the
queue picks instructions for four pipes. Each pipe has its own picker. So there are eight
pickers, each picking the oldest instruction out of 64 in its half of the queue. Each
picker picks instructions for just one functional unit.

Because of the one-to-one association with pickers and functional units, each picker
considers bids from just those instructions that may execute in the corresponding pipe,
but each picker sees CAM results (data ready signals) for all 64 instructions in its half
of the queue. However, the picker's outputs -- the result-ready wires, are routed to the
dependence arrays in both halves of the queue.

Figure 5-1 shows a simplified view of one half of the instruction queue. The top picker
and dependence arrays are in the "west" or even half of the queue, the bottom picker
and dependence arrays are in the "east" or odd half. The CAM entry for an instruction
in the dependence array is loaded when the instruction is allocated into the queue.
When the CAM entry detects that both of the instruction's operands have matched
against the result ready wires, the entry sends a bid to the attached picker.

Compaq Confidential
5-4 Instruction Issue and Retire Unit - the Qbox 5 Jc1nuary 2001 - Subject To Clumge

Component Details

Figure 5-1 Simplified View of One-Half of the Instruction Queue

- Bid Enable and Picker - CAM cell

- Dependence Array e Wire-OR

l'.ll
i:!
0

-ri
.JJ
u
;:l
1-1

.JJ
w
i:!

H

For now, let's assume that the 21464 only has two pipelines. All the odd instructions
will be sent to the bottom or "odd" half of the IQ, and all the even instructions will be
sent to the top half. (This picture is rotated relative to the actual chip layout -- we often
refer to the even half as the "west" half and the odd half as the "east" half.) Assume that
we have the following code segment:

IN um

80

81

82

EntryNum

20

21

22

Op Code

SUB
ADD

ST

Operands

R3,#5 -> R5

R5,R5 -> R9

R5,(R9)

Note that we re-map from the INum space to Entry number space to make the compari
son logic smaller. The SUB instruction is in the even half, the ADD in the odd half. The
ADD instruction must wait until it sees that the instruction at entry number 20 has been
issued.

So, let's assume that the SUB instruction is data ready. It sends its data ready signals to
the bid-enable/picker logic. SUB instructions always bid as soon as they are ready, so
the picker scans all outstanding bids and picks the bid from the "oldest" instruction.
Eventually the SUB instruction wins the bid. The picker asserts the "grant" signal for

Compaq Confidential
5 January 2001 - Subject To Change Instruction Issue and Retire Unit - the Qbox 5-5

Component Details

entry 20, which asserts the "even result ready" signal for entry 20. This result ready
indication stays asserted until the SUB instruction is released from the queue. The indi
cation is sent to the dependence array blocks labeled EE and OE in the diagram.

In the odd half of the queue, the ADD instruction has been waiting for entry number 20
to signal that it has been granted. Entry 21 in Array OE was loaded (when the ADD
instruction entered the queue) with a 128 bit mask. For each of the instruction's two
input operands. One and only one bit in each mask is set, corresponding to the entry
number of the "parent" instruction for that operand. When the result of "ANDing" the
mask with all the "result ready" signals is non-zero, the operand is data ready. Depen
dence array OE is responsible for the even bits in the mask for each odd numbered
instruction. (00 holds the odd bits for odd instructions, and so on.) One cycle after the
SUB instruction was granted (or issued) the ADD instruction will become data ready,
bid, and be granted if it is the oldest bidding instruction from the odd half of the queue.

Finally, the Store instruction has been waiting for both the ADD and the SUB to issue.
Its A operand became data ready at the start of cycle 2 when the SUB was issued. The
EE dependence array noted that the SUB had issued, and sent the operand A data ready
signal into the picker. The B operand became data ready in cycle 3 when the ADD was
issued. This was noted by the EO dependence array. The STore then issues in cycle 3
when it is picked by the even picker.

The 21464, of course, has eight pipelines. For the moment, assume that each instruction
is assigned to just one pipeline (and, thus, one picker) by the Pbox instruction decode
logic. The figure below shows all eight pickers and the sixteen dependence arrays that
make up the core of the 21464's instruction queue.

To illustrate, consider our SUB instruction 20 that has been granted by a picker and has
a consumer -- ADD instruction 21. When 20 issues, every instruction in the queue tests
to see if its operands have become data ready. As a result of this test, the entry contain
ing the ADD will notice that both its operands will be data ready as a result of the SUB.

So, returning to our example, instruction 20 might be picked by the picker for pipe 7,
while instruction 21 can only execute in pipe 1. How does the grant information from
picker 7 get to picker 1? Via a global result ready signal, of course. When the SUB
instruction issues, it will assert its "global result ready" signal one cycle after it asserts
its "local result ready" signal.

Compaq Confidential
5-6 Instruction Issue and Retire Unit - the Qbox 5 Jc1nuary 2001 -· Subject To Clumge

Component Details

Figure 5-2 Simplified View of Full Instruction Queue

::::::

.· ..
~~;+:~~::;~~:~:.·::~;~~i: ·:·~:·~:::~::.~;!;:: ~.;:~~i:;~*·· : :: . : .
~~~7~~:·;:~~::(:~~#= -~~~r.~:~(:;~~f~~ :_· .. : ·.: 

•.·:::::::: . •;:::L::~~~I$•:·~:.~;~~:••~t:1:;~'.;;:~:-~;~;t~::-·· 

··:~~ .. ~- . 

·.·~~;; )}~~ 
·.·:~·~- ~-

::_· ...... :s: .• :.~ .• :.·_:: .. · .~ .·._·,·~ 
. . :-•:;t: 

:·:· ;.:.· 

11>~ 

.. . 

II" ::": 

••••••• •••••••••••••••••••••••••••••••••••• 

-~ .. -_.,,~'!;~._.·_ .•.•.. : ... :.·:•.••.:_:•::.·~~·•.· ...•. :.•.:.::=: ...• :···:·:·:~·!·:, •. :.+·········i·:./~,,!!,··.·········· .. :._.·_. ~~~~ '. ~ • ) , . r:·~h i~: :fi::.'~U 

... ·.. . 
: .. : . : 

. ·. : .».·: .... : . 

·.. . . . . .. . . .. .. 
: :· .. : ; ..•.. : ~:;: ·~.:~-:·~:; ·':{,~:;:;;~:~{·:.:::~::;.:~~~: ,:::::: :;~;;~t"~;~~:~ (~'Ji:~~:;;;.::~ :f;:J;,fo ....... i : : 

. . .. 

·~ ... ~- ~i'i· :~!>-:·~··~~fa~;#~~~~:-:_:~?(~> : :'.:.: .. 
·_: ~ .. : _:_•_,·· ... -_··.·'.· ... ·.~ .. ·.·_,· .. -~.~_.::.·.···:"·.·.··.-.·--··'..:,,_ .. _.: . . . . .... ··- .- ... "· ·~· ... ·:: ~-:::·~:\:.:~=~:::::~~~::::· . 

·.·. 

... d:;;~~: .;::· ·i~;;;m:#~~:~ < ..• : •. 

:~ .. >i~k~ ··~)~::t -:~;~~:.=:::;:;:~:: -~;~;:~::· ... 
:: '.·~~;/~~:::~~ );~~~~~/~~~~:~i~~~~~i):~~~~:.;: 

:::::. 
:.:;:. 

:::::. 

Compaq Confidential 
5 January 2001 --· Subject To Change Instruction Issue and Retire Unit - the Qbox 5-7 



Component Details 

Note that because the SUB and ADD are executing in different pipelines we incur a one 
cycle penalty (similar to the EV-6 "cross cluster" penalty). In this scheme, the ADD 
won't issue until cycle 3 even though the result from the SUB may be available early 
enough to allow the ADD to issue in cycle 2. This penalty was seen as a big deal. So we 
explored some other ideas. 

One way to mitigate this problem is to group pairs of pickers together. This way, each 
picker in the pair sees the CAM results from each entry's match against its own granted 
INum and the INum granted by the other picker in the pair. This works pretty nicely. 
Now instead of having eight opportunities to incur the cross-picker penalty, we only 
have 4 opportunities. If the SUB is "slotted" to picker 7 and the ADD is slotted for 
picker 3, we would encounter no "cross-cluster" penalty. 

A second way to mitigate the problem got the name "follow me" picking. To illustrate: 
imagine that Y depends on X, that X must execute in pipeline 7, and that Y could execute 
in either pipeline 7 or pipeline 1. We need to be careful about where Yexecutes how
ever. Imagine it became data ready in pickers 1 and 7 at the same time. Then it might 
issue from both at the same time. We'd probably get the correct answer, but at the very 
least, we'd waste an issue cycle in one of the pipelines. So, our instruction slotter picks 
a pipeline in which we'd prefer to execute Y. Assume for now that the slotter picked 
pipeline 1. With this arrangement we'd still incur the cross-picker penalty. But notice 
that Y becomes data ready in picker 7 one full tick before it becomes data ready in 
picker 1. If we allow Y to issue from picker 7 ONLY in the first tick after its operand 
became data ready from an instruction issued by picker 7, then there is no chance that it 
would be issued by pickers 7 and 1 at the same time. (Since picker 1 won't know about 
Ybeing data ready until after picker 1 samples the global data ready signal.) 

Up until now, our discussion has ignored the fact that load instructions have a three 
cycle latency -- that is, their result data is not available until the start of the third cycle 
after the start of the load's Execute (E) cycle. This means that if a LD instruction is 
issued in cycle 0, its dependents can't be issued until cycle 3. For this reason, when a 
LOAD instruction is issued, it does not assert its "result ready" wire until three ticks 
have passed. It will assert the "global result ready" wire at the same time it asserts the 
"local result ready" wire. Why? Well, we know that the load data arrives at the inputs to 
all of the functional units in the Fbox and Ebox at the same time. Therefore, by assert
ing global data ready one tick earlier than it normally would be asserted, the other func
tional units can grab load data as soon as it is ready. 

We should note that the Mbox supports three load ports. Because of our odd/even distri
bution of instructions into the pickers, we need to find some way of allocating the extra 
load port. On even ticks, load instructions in some even positions in the map block may 
issue to this "weak" load port. On odd ticks, loads in certain odd positions may issue to 
the "weak" port. 

Entries in the queue are allocated in groups of 4 instructions called "queue chunks". 
The IQ is full if either the even half or the odd half of the queue has no available queue 
chunks. An instruction stays in the IQ until we are certain that no instructions in its 
chunk will need to be replayed as the result of a load-miss or other mishap. 

Compaq Confidential 
5-8 Instruction Issue and Retire Unit-the Qbox 5 Jc1nuary 2001 - Subject To Change 



Component Details 

5.2.2 Queue Entry Table (QET) and Reallocation Logic (RAL) 

5.2.2.1 Design Considerations 

The Pbox produces dependence information based on the INum of the instruction that 
produced each input operand for a mapped instruction. That is, an instruction like 
ADDQ R3,R2,Rl will pass through the Ibox and have its input registers (Rl and R2) 
remapped into INum space. With our decoded space dependence array, it would be both 
un-necessary and slow to represent the entire INum range in the instruction queue itself. 
After all, only 128 instructions can be in the queue at the same time, why do we need to 
reflect completion for the entire 256 (or 512) instruction range? 

So, we need to transform INum based dependencies into a more compact form, as the 
speed of a decoded space scheme is dependent on keeping the dependency checking 
logic as small as possible. 

5.2.2.2 Design Architecture 

5.2.2.2.1 Algorithm 

The Queue Entry Table transforms INum dependencies into EntryNum dependencies. 
When an instruction passes through the QET, the INum of each operand's parent is used 
to index a table that indicates the position of the parent instruction in the instruction 
queue. If the parent instruction is no longer in the instruction queue, we know that the 
associated operand is now data-ready. 

The lookup is most easily described as 

for(i = O; i < 8; i++) { 

inst[i] .src_a_entry_num<6:0> = EntryTable[ inst[i) .src_a_inum]; 

inst[i] .src_b_ent:ry_num<6:0> = EntryTable[ inst[i] .src_b_inum]; 

As it turns out, the table does not need to be quite so large. We know the low three bits 
of the entry num for any parent INum: they are identical. 

Enum<2:0> = INum<2:0> 

Further, we want the entry number in decoded form to make things convenient for the 
IQ core. Finally, we need to send all the ODD parent dependencies to the ODD depen
dency arrays, while the EVEN dependencies go to the EVEN arrays. (We split the QET 
and Dependency arrays into EVEN and ODD parent dependencies to speed up the bid/ 
grant loop.) So, we're really just translating the INum BLOCK bits from INum space to 
entry number. 

for(i = O; i < 8; i++) { 

if (inst[i] .src_a_inum<O>) 

inst[i].odd,_src_a_ent:ry_rnsk<15:0> = 
OddEntryTable[ inst[i] .src_a_inum<7:3>]; 

inst [ i] . even_src_a_entry _msk<15: 0> = 0; 

else { 

inst[i] .odd_src_a_entry_rnsk<15:0> = O; 

inst[i] .even_src_a_ent:ry_msk<15:0> = 
Compaq Confidential 

5 January 2001 ~· Subject To Change Instruction Issue and Retire Unit - the Qbox 5-9 



Component Details 

EvenEnt:i::yTable [ inst [i] . src_a_inurn<7: 3>]; 

if(inst[i].src_b_intun<O>} { 

else { 

inst[i] .odd_src_b_enti::y_msk<15:0> = 
OddEntryTable[ inst[i] .src_b_inurn<7:3>]; 

inst[i] .even_src_b_entry_msk<15:0> = O; 

inst[i] .odd_src_b_entry_msk<15:0> = O; 

inst[i] .even_src_b_entry_msk<15:0> = 
EvenEnt:i::yTable [ inst [i] . src_b_intun<7: 3>]; 

For the most part, this is a rather simple operation: a RAM lookup. But there are two 
problems that must be addressed. 

1. What if instruction 51 depends on instruction 48? They are both in the same map 
block, so when 51 arrives, neither it nor 48 have yet been entered into the Queue? 

2. What if instruction 51 depends on instruction 2 which is leaving the queue just as 
instruction 51 arrives at the ET? 

We solve the first problem by updating the QET map (the table that maps INums to 
ENums) during cycle QO, while we don't actually translate the instructions that will be 
mapped until cycle Ql. 

The solution second problem is not so simple. We solve it by adding an extra bit of 
information to the parent information for each operand. This extra bit is called the "No 
Live Dependency" or NLD bit. Each "chunk" of IN urns in the map ( 4 entries comprise 
a chunk in the IQ) has a stored NLD bit. This is read each time we translate an INum 
parent into an entry num parent. SRCx_NLD is set for the x (x is A or B) operand if its 
parent is no longer in the instruction queue. 

Note that each entry in the entry tables has an associated NLD bit that indicates that all 
INums in this chunk have already issued and left the queue. The NLD bit is set for 
INum<7:3,0> when the entry for that INum chunk in the IQ is re-allocated to a new 
chunk of instructions. (So we don't actually set the NLD bit when an instruction is 
"done", but rather when we need the space that it formerly occupied.) We clear the 
NLD bit for a chunk of INums when that chunk is loaded into the IQ. 

Deriving the signals necessary to clear the NLD bit on re-allocation is entwined in the 
details of queue chunk allocation and deallocation. When a queue chunk is re-allocated 
(that is when the "write_chunk" signal is asserted for the chunk), the RAL section in the 
IQ core sends the INum block number associated with the re-allocated chunk back to 
the QET. The QET then sets the NLD bit associated with that INum block. 

Compaq Confidential 
5-10 Instruction Issue and Retire Unit-the Qbox 5 J~·muary 2001 ···Subject To Change 



Component Details 

5.2.2.3 Physical Organization 

The QET is built from a block that is replicated eight times. Each block decodes parent 
INums for HALF of the instructions entering the queue. (The west blocks decode parent 
INums for even instructions, and the east blocks decode parent INums for odd instruc
tions.) Each block corresponds to one issue pipeline in the instruction queue core. 

There are four instances of the QET schematic section. Each section contains two 
blocks (even and odd) and translates instructions bound for an associated Qx_DAE and 
Qx_DAO sections as shown in the next figure. All four instances are identical with 
identical inputs and outputs. The replication is an aid to routing and is required to limit 
the transit time through the QET stage. 

Figure 5-3 Simplified Diagram of QET and Pickers for Two Pipelines 

~ 

EVEN ODD 
Entry QJ Entry 
Table '"d Table a 

u 
QJ 

Q 

fQN_ QET _ AEO fQN _ QET_ AOO 

~ 

EVEN ODD 
Entry QJ Entry 
Table '"d Table a u 

QJ 
Q 

fQtj _QET_AE1 fQt- _QET_A01 

1 ~ 

~ 
~I 

lgrani1 

~ ><: ~ It, 
pM_DAE_A ~ 

::2i 
RM_DAOj ~ c"Y 

.. + 

~ ~ 
lgran;I 

~ ><:I ~ It, 
::2i 

pM_DAE_AR1 c"Y RM_DAO_AR~ 

The RAL (reallocation logic) is contained in the IQ core itself. 

Compaq Confidential 
5 January 2001 ···Subject To Change Instruction Issue and Retire Unit-the Qbox s-11 



Component Details 

5.2.3 Dependency Arrays (DAs) 

5.2.3.1 Design Considerations 

Once an instruction has entered the IQ it must wait until both of its operands have 
become data ready. We need to detect that an operand's parent has issued and, to sup
port the followme scheduling technique, we need to know whether the parent issued in 
a local pipeline or in a different execution cluster. The detection scheme must also take 
into account the different instruction latencies for loads, integer operations, and floating 
point operations. 

5.2.3.2 Design Architecture 

Our strategy is to represent the dependence of an operand on a parent instruction as a 
128 bit vector. Bit X in the vector is set if and only if the operand is produced by the 
instruction at entry number X in the instruction queue. When an instruction is issued we 
assert a "result_ready" wire corresponding to the instruction's entry position in the IQ. 
There are actually two result_ready signals for each instruction in each dependence 
array. One result_ready wire (local_result_ready) indicates that entry X has issued and 
dependents may now issue in the same Ebox/Fbox cluster that X issued to. The second 
result_ready wire (global_result_ready) indicates that dependents on X may issue in any 
cluster (i.e. the cross cluster penalty has been paid). 

The algorithm can be depicted as 

for(e = O; e < 128; e++) { 

ent:ry[e] .srca_lcl_rdy = 
(local_result_ready<127:0> & entry[e] .srca_entry_mask<127:0> != 0); 

ent:ry[e] .srcb_lcl_rdy = 
(local_result_ready<l27:0> & entry[e] .srcb_entry_mask<127:0> != 0); 

entry[e].srca_glb_rdy = 
(global_result_ready<127:0> & ent:ry[e].srca_ent:ry_mask<127:0> != 0); 

ent:ry[e] .srcb_glb_rdy = 

(global_result_ready<l27:0> & ent:ry[e].srcb_ent:ry_mask<127:0> != O); 

But again, we use the fact that INum<2:0> is the same as ENum<2:0> to save some 
wires when we load the dependence array, so that we need not store a 128 bit entry 
mask. Further, we divide the dependence array entry for a given position in the queue 
into two halves. The EVEN dependence array (shown on the floor plan as Qx_DAE) 
checks for dependencies on instructions in the EVEN half of the IQ core. The ODD 
array checks for dependencies on ODD instructions. This arrangement mirrors the divi
sion of the QET tables into even/odd halves. So, the actual algorithm looks like this: 

for(e = O; e < 128; e++} { 

entry[e].srca_lcl_rdy_odd = 
(local_result_ready<127:1:2> & entry[e].odd_srca_entry_mask<63:0> != 0}; 

entry[e].srcb_lcl_rdy_odd = 
(local_result_ready<127:1:2> & entry[e] .odd_srcb_entry_mask<63:0> != 0}; 

entry[e].srca_glb_rdy_odd = 

Compaq Confidential 
s-12 Instruction Issue and Retire Unit-the Qbox 5 January 2001 - Subject To Change 



Component Details 

(global_result_ready<l27:1:2> & entry[e].ockl_srca_entry_mask<63:0> != 0); 

entry[e].srcb_glb_rdy_odd = 
(global_result_ready<l27:1:2> & entry[e].ockl_srcb_entry_mask<63:0> != 0); 

entry[e].srca_lcl_rdy_even = 

(local_result_ready<126:0:2> & entry[e].even_srca_entI.Y_mask<63:0> != 0); 

entry[e].srcb_lcl_rdy_even = 
(local_result_ready<l26:0:2> & entry[e].even_srcb_entry_mask<63:0> != 0); 

entry[e].srca_glb_rdy_even = 
(global_result_ready<126:0:2> & entry[e].even_srca_entry_mask<63:0> != 0); 

entry[e].srcb_glb_rdy_even = 
(global_result_ready<126:0:2> & entry[e].even_srcb_entry_mask<63:0> != 0); 

5.2.3.3 Physical Organization 

The dependence arrays are built from a block that is replicated sixteen times. Each exe
cution pipeline picker is connected to an EVEN half dependence array and and ODD 
half dependence array. (See the floor plan). 

5.2.4 Picker Arrays {PKs) 

5.2.4.1 Design Considerations 

Given that we've found a set of instructions that are ready to issue, we need to choose 
the "best" from the set to send to an execution unit. As described in the overview sec
tion, we divide the instruction queue into eight blocks. Each block keeps track of 
instruction dependencies for all instructions in the queue and chooses one data ready 
instruction on each tic to send to a particular execution pipeline. The core of this deci
sion process is called the "bid/grant loop". The bid/grant loop is implemented, for the 
most part, in the dependence arrays and the picker arrays. 

Choosing the "best" instruction is an optimization problem. It is most likely not com
putable in bounded time. For this reason, we adopt a simple heuristic: we choose the 
oldest data ready instruction for a pipeline on each tic. Choosing the oldest is a simple 
algorithm, and we've got a simple implementation. 

5.2.4.2 Design Architecture 

As an instruction Z enters the instruction queue it is given a bidding token. The token is 
sixty-four bits wide and has all its bits set to 1 except for the bits corresponding to the 
Z's entry number and all the instructions in Z's chunk that are before instruction Z. 
Each time a new chunk Y is written into the queue, every instruction will clear bits 
<4*Y +3:4*Y> in its bidding token. 

When an instruction Z bids, it performs a bitwise AND between Z's bidding token and 
all other bids in this picker. If the result is zero, then Z wins this round of bidding. 

This mechanism guarantees that the oldest bidding instruction (age being determined 
by time-of-entry into the instruction queue) will win any bid. 

Compaq Confidential 
5 January 2001 - Subject To Change Instruction Issue and Retire Unit-the Qbox 5-13 



Component Details 

5.2.5 Bid Enable Logic (BID) 

5.2.5.1 Design Considerations 

Even though both of an instruction's operands are data ready, the instruction may not be 
able to bid for a given pipeline. First, the resource required to serve the instruction may 
not be available. (For example, floating point square root and divide operations are not 
pipelined. Additionally, resources in the Mbox are limited, so some load and store 
instructions may be prevented from bidding until they fall under the "high water mark" 
-- see the "High Water Mark" widget.) 

Further, an instruction that bids in one of its "followme" pickers, may, unfortunately, 
bid in its preferred picker on the very next cycle. The solution to this particular problem 
is still under discussion. 

5.2.5.2 Design Architecture 

The bid enable logic keeps track of issue preconditions that are separate from the data
readiness of an instruction's operands. In particular, the bid-enable logic monitors the 
results of high-water-mark comparisons, the occupancy of the non-pipelined floating 
point pipes, and, for resources that "ping-pong" between halves of the issue queue (e.g. 
the weak load pipe is shared between two pickers -- on "odd" cycles it can be used by a 
picker that chooses among odd instructions, on "even" cycles it can be used by an even 
instruction picker) such as loads, JSR, and some MTPR operations. 

5.2.5.3 Physical Organization 

The bid enable logic is replicated in two copies. One serves the four pipelines in the 
south of the instruction queue, the other serves the north pickers. The logic is identical 
and replicated for electrical reasons. 

5.2.6 FPCR Control Unit (FCR) 

The floating-point control register (FPCR) control unit controls the update of the FPCR 
in the Fbox. FPCR is implemented as a speculative-committed pair of registers. First, 
the FCR ensures that only the oldest in-flight MT_FPCR instruction in a TPU will 
update the speculative FPCR. Second, the FCR updates the committed FPCR from the 
speculative FPCR when the oldest in-flight MT_FPCR instruction in a TPU becomes 
retirable. This mechanism, along with the native mode FPCR trap and PAL mode fetch 
barrier, guarantees the correct architecture (in-order) behavior of writing and reading 
the FPCR register. 

5.2. 7 Profile-Me Data Collection (PRM) 

The IQ Profile-me data collection unit collects performance data for the two in-flight 
profile-me instructions. The data collected in this section include instruction data ready 
time, instruction bid time, instruction issue time, instruction de-allocation time and the 
instruction queue chunk de-allocation time. To be more specific, the real data collection 
storage for the data collected in this section is in the Ibox. PFM is mainly responsible 
for generating the control signals for the Ibox to capture the cycle time information so 
that the profile-me software can calculate all those data mentioned above. 

Compaq Confidentia I 
5-14 Instruction Issue and Retire Unit-the Qbox 5 January 2001 ·-Subject To Clumge 



Component Details 

5.2.8 Source Register Number Arrays {SRNs) 

5.2.8.1 Design Considerations 

The 21464 is blessed with a very large Register File which has a non-trivial access time. 
When an instruction issues, its source register IDs need to be sent to the register file to 
begin looking up the values as early as possible. The Register File also runs extremely 
hot; anything that can be done to save power by averting unnecessary lookups is a boon 
to the chip. 

5.2.8.2 Design Architecture 

The Source Register Number Arrays (SRNs) store the renamed source physical register 
(PReg) IDs for each instruction. There are actually two SRN sections; one covers the 
PRegA and PRegB values for instructions in even map block positions, and the other 
covers the ones in odd map block positions. 

Associated with each PReg ID is a valid bit. Register numbers with their valid bit deas
serted do not cause a lookup in the Register File (or the Ebox register cache), thus sav
ing power. These bits are deasserted in cases where there is no valid instruction in that 
issue block position, the source does not exist for that instruction (e.g. LDQ has no 
valid PRegA), or the source value is zero (e.g. Ra == R31 ). Since the Ebox does its own 
instruction decoding, it knows the difference between these cases - i.e. when to simply 
ignore the value returned by the Register File and when to substitute in a vector of 
zeroes. The values of these bits are determined by the Pbox. 

Because of their critical timing, the SRNs sit in the IQ core itself rather than in the 
"late" IQ, and send out their data to the Register File and Ebox as soon after instruction 
grant as is physically possible, before any of the other information associated with an 
instruction leaves the box. 

5.2.9 Destination Register Number Array {ORN) 

5.2.9.1 Design Considerations 

The register file needs physical register indices for instruction destinations, not just 
sources (see the Source Register Number Arrays description), in order to store opera
tion results. The timing is somewhat more relaxed as result writeback happens later in 
the pipeline than source reads. Similar power issues apply, but the urgency is reduced 
by the fact that each instruction has a maximum of two source operands but at most one 
destination. A more pressing problem is the fact that superfluous reads are merely 
wasteful, but spurious writes are destructive. 

5.2.9.2 Design Architecture 

There is a single Destination Register Number Array (DRN) section which stores the 
renamed destination physical register (PRegD) IDs for all instructions in the IQ. It sits 
in the "late" IQ partition, to the side of the IQ core, as its timing is aligned with the bulk 
of the information going from the Qbox to the execution boxes. When an instruction 
issues, its PRegD value is forwarded to the Register File and Ebox to address the regis
ter file and register cache, respectively. 

Compaq Confidential 
5 January 2001 -- Subject To Change Instruction Issue and Retire Unit-the Qbox 5-15 



Component Details 

Each PRegD ID has an accompanying valid bit. If this bit is deasserted, it means either 
that the instruction has no destination register (as in the case of an ordinary store), or 
that the destination register is R31. In either case, the Register File and Ebox will not 
write the register file/cache for that instruction. They rely entirely on the Pbox to cor
rectly assert these bits to avoid spurious or dropped writes. 

5.2.10 Load/Store Number High-Water Marker {HWM) 

5.2.10.1 Design Considerations 

As documented in the description of the Pbox Load/Store Serial Number Allocator, the 
aggressive, out-of-order execution of the Mbox, combined with a finite number of load 
and store queue entries, can lead to deadlock, unless there is some way to guarantee 
dependencies are resolved before the queues fill up. The Pbox addresses this by assign
ing a 8-bit serial number - an LSNum - to all memory operations. Each operation 
type has its own serial number class: loads get LNums, and stores get SNums. Each 
TPU also has its own LNum and SNum spaces. 

The Mbox keeps track of the fullness of its load and store queues on every cycle, and 
sends the Qbox a per-TPU, per type (load or store) "high-water mark" value. The Load/ 
Store Number High-Water Marker (HWM) must insure that only memory operations 
below the applicable high-water mark can issue. 

On a different but related subject, there are also a number of challenges associated with 
maintaining the consistency of virtual to physical memory mappings while a DTB miss 
is in the midst of being processed. This problem and our general policy for solving it 
are at length in How the 21464 Does DTB Fills. To summarize the important points, 
DTB misses lead to a PAL flow which services the miss. The flow contains a so-called 
"DTB writer block", a group of instructions which put the new translation into the 
"speculative" DTB entry (there is one per TPU). Each TPU sees its own speculative 
entry as well as the common, committed DTB state. When the DTB writer block retires, 
the contents of its TPU's speculative entry are written into the committed state. 

While this new translation is being written into the DTB, any memory operations which 
depend on this new translation must not be allowed to issue since they will lead to more 
misses, or, even worse, potentially erroneous behavior. This process is further compli
cated by the fact that there are actually two copies of the DTB - one accessed through 
each of the two Mbox strong load ports - which must be kept coherent. The DTB writer 
logic in the HWM must prevent memory instructions which are "DTB-dependent" from 
issuing, and handle the situation when bad path code generates spurious DTB writer 
blocks. 

5.2.10.2 Design Architecture 

The HWM affects the issue behavior of memory instructions through the "load/store 
bid enable" (LDST_BIDEN) signals - one per instruction in the queue - which it passes 
along to the Bid Enable Logic. Queue entries with their LDST_BIDEN signals asserted 
are free to bid, provided the other conditions enforced by the Bid Enable Logic (e.g. 
data readiness) are satisfied. Entries with deasserted values may not bid, with the 
exception of their very first cycle in the queue. Computing the correct LDST_BIDEN 
values takes a cycle. Since most queue entries are not memory ops, and since it turns 
out that the majority of incoming memory ops are eligible to bid on entry into the 
queue, the Bid Enable Logic speculatively assumes that the LDST_BIDEN signal for 

Compaq Confidential 
5-16 Instruction Issue and Retire Unit-the Qbox 5 J~1nuary 2001 ~·Subject To Change 



Component Details 

each entry is true on allocation. If that assumption should prove false, and the instruc
tion gets granted in the meantime, there is enough time to shoot it down before it leaves 
the IQ. 

The LDST_BIDEN signals are always asserted for instructions which are neither loads 
nor stores; the HWM knows which these are by virtue of ISLOAD and IS STORE sig
nals conveyed by the Pbox. These are maintained on a per-entry basis, while the TPU 
ID is stored on a per-chunk basis. Note that ISLOAD and ISSTORE are asserted for any 
instruction that executes in an Mbox load queue or store queue, respectively, and has a 
valid LSNum. Not all memory operations are loads or stores in the conventional sense 
(e.g. WH64). 

LDST_BIDEN is deasserted for loads and stores which are below their high-water 
mark, as determined by a comparison of the the LSNum of the individual memory oper
ation in a given entry and the high-water mark for its chunk TPU. The HWM receives a 
high-water mark update from the Mbox for each TPU on every cycle. Once a memory 
operation falls below its high-water mark, its LDST_BIDEN signal remains asserted 
until that chunk is reallocated. 

Finally, LDST_BIDEN is deasserted for any memory operation which is DTB-depen
dent. For implementation purposes, we use a somewhat coarse definition of this con
cept: any memory operation which is allocated after a valid, active DTB writer block in 
the same TPU is considered DTB-dependent on that block. This includes, unfortu
nately, operations which do not actually use the translation being modified by the DTB 
writer block. But in the average case, the memory operations that are mapped after a 
DTB miss will be dependent on same page as the reference that missed. 

When it is known, in the due course of time, that every instruction in the entire DTB 
writer block - in both halves of the IQ - is not poisoned (i.e. not the victim of a missed 
load), the DTB-dependent instructions are free to bid and be granted. The Load/Poison 
Re-arm Widget (LPR) indicates via its NO_REISSUE signals that a DTB writer 
instruction has passed its poison point. (For a general understanding of the concept of 
"poison", consult An Overview of the Poison Mechanism in the 21464.) The dependent 
instructions will read from the speculative entry for their TPU until such time as the 
DTB writer block retires and is written to the committed state of the DTB. Throughout 
this entire process, memory operations in other TPUs are free to bid and issue, as are 
memory ops in the same TPU which are older than the DTB writer. Non-memory oper
ations are completely unaffected. 

The DTB logic in the HWM tracks DTB dependencies throughout the IQ in each TPU, 
and deasserts the LDST_BIDEN signal of every DTB-dependent entry until it sees 
every applicable NO_REISSUE signal. To make this task easier, it receives "DTB 
writer" (DTBWRT) flags from the Pbox indicating which instructions are members of a 
DTB writer block. It also handles the important and dangerous scenario of spurious 
DTB writers entering the queue when a valid one is already active. There is only one 
signal per TPU indicating that there is a valid DTB writer in the queue. If a spurious 
DTB writer were to come in after a valid one and seize control of that signal, it is possi
ble that older instructions could become dependent on this younger DTB writer, leading 
to deadlock. To avoid this situation, the HWM DTB logic ignores DTB writers entering 
the queue while there is already an active one in the same TPU, since these are known a 
prioi to be on a bad path. 

Compaq Confidential 
5 January 2001 --·Subject To Change Instruction Issue and Retire Unit-the Qbox 5-17 



Component Details 

5.2.11 Load/Poison Re-Arm Widget (LPR) 

5.2.11.1 Design Considerations 

Consider Figure 5-4. 

Figure 5-4 Tracking Data-Ready Instructions 

Remember the fundamental rule for hyper-complex super-scalar deep-pipelined hell
bent-for-leather microprocessor design: if you aren't sure, guess. So, when the Qbox 
issues a load instruction we always guess that the load will hit in the first level cache. 
This is a pretty good guess, as it is correct far more often than it is wrong. But if we're 
going to guess, we need some way of backing out of incorrect guesses. The Load/Poi
son Re-arm Widget (LPR) keeps track of all instructions that became data ready 
because we guessed that a load would hit. In Figure 5-4, instruction 1 is a load. The 
Qbox scheduled its first dependent, instruction 2, in tic 3 assuming that the load would 
return data at the beginning of instruction 2's execute phase. Instruction 2 has a latency 
of 1 cycle and caused instruction 4 to become data ready in cycle 3, though it didn't 
issue until cycle 5. When instruction 4 issued it caused instruction 5 to become data 
ready in cycle 5 and then issue (broadcast its INum) in cycle 6. When instruction 1 
missed in the cache, all the instructions that depended on the load (or whose ancestors 
depended on the load) operated on "bad" data. 

Fortunately, because of register renaming and all kinds of neat stuff that happens in the 
Mbox, we don't need to worry a whole lot about the bad data that the load shadow 
instructions write. It will be overwritten later or it will be ignored completely. We do 
need to replay the instructions however. 

Compaq Confidential 
5-18 Instruction Issue and Retire Unit - the Qbox 5 Jc1nuary 2001 -· Subject To Change 



Component Details 

In order to replay the instructions in the load miss shadow we need to identify them. 
The 21264 declared that all instructions that issued in the shadow of a load miss would 
be "replayed". Using this approach, instructions 2, 3, 4, and 5 would all be re-issued at 
the appropriate time. This works well for the 21264 becaue they don't issue a whole lot 
of instructions in the shadow of a load. But notice that instruction 3 didn't depend on 
the missed load at all; the 21264 would replay this instruction unnecessarily. But for a 
short load shadow the cost is relatively low. 

The 21464, on the other hand, could issue lots of instructions in the shadow of a load, 
many of which aren't related to the load. (Some might not even be in the same TPU). 
Replaying all of them would simply be too expensive. Instead, we replay only those 
instructions that are actual dependents of a missed load. 

In order to be replayed, instructions either have to stay in the queue up to the point they 
are re-armed or, if they are allowed to deallocate on issue, be injected back into the 
queue. The latter alternative is essentially tantamount to a trap, which is too expensive 
an event for something that happens as relatively frequently as a load miss. But not only 
is queue space is limited, but it is allocated and deallocated on a chunk granularity, and 
our performance is very sensitive to how long a chunk stays in the IQ. Therefore, we 
need to remove instructions from the IQ as soon as we know that they may no longer be 
victimized by a missed load. The Load/Poison Re-arm Widget (LPR) tells the IQ core 
which entries contain instructions that are victims of missed loads and need to be re
armed, and which entries are free to be reallocated. 

5.2.11.2 Design Architecture 

The problem of how to identify which instructions are actual victims of a missed load is 
solved by ''poison". To learn more about poison across the chip, consult An Overview 
of the Poison Mechanism in the 21464. The basic idea is that the property of a load 
missing in the cache is propagated from the load to all instructions that issue and con
sume its data, to all of their issuing descendents, and so on, and so forth - just like the 
data itself. Instructions that are poisoned need to be re-armed and replayed. This is 
achieved by resetting their data readiness to its original state and then reissuing the cul
prit load via a bubble. When the load's result becomes ready once again, its dependents 
will become data ready, bid, and eventually issue, and so on down the line. 

Note that this cycle may repeat several times - for instance, if the load misses in both 
the first-level and second-level caches. Each failed attempt returns a poisoned value, 
which leads to a chain of poisonings, re-arming, a new bubble, and so on, until the load 
finally comes back poison-free. 

The Load/Poison Re-arm Widget receives the poison information from the Ebox and 
passes it to the Dependency Arrays in the form of REARM_A and REARM_B signals. 
These indicate if an instruction's A or B operand, respectively, has been poisoned. The 
LPR additionally sends out a "reset result ready" (RESET_RES_RDY) signal to each 
poisoned instruction, indicating that it should clear the "result ready" (RES _RD Y) state 
signaling to the rest of the IQ that it has produced a valid result. The RES_RDY bits 
will be set again as a consequence of instruction replay. 

The Mbox also communicates with the LPR, indicating when a load has missed via a 
WILL_RETRY signal. The LPR asserts the RESET_RES_RDY signal for load which 
misses, poisoned or not. Missed loads will set their RES_RDY state again when they 
are reissued via a bubble, triggering a chain of reissues. 

Compaq Confidential 
5 January 2001 -· Subject To Change Instruction Issue and Retire Unit - the Qbox S-19 



Component Details 

The LPR is additionally responsible for telling the Queue Chunk Allocator/Deallocator 
(ALC) when individual instructions are eligible for deallocation. This is a function of 
both poison and instruction type. Single-cycle operations, for example, can deallocate 
immediately after their "poison point" - i.e. the point in the pipeline where the Ebox 
returns poison information. Loads, by contrast, must wait until the Mbox has indicated 
whether they have hit or missed in the cache. Long-latency operations must wait until 
either their poison point or the time they bubble, whichever comes later. Multicycle 
operations must linger in the queue an extra L-1 cycles (where Lis instruction latency) 
after producing a result - enough time for any poisoned descendents to be replayed and 
see the new RES_RDY signal. The ALC asserts an "okay to deallocate" (OK_DEALC) 
signal to the ALC for each instruction that may leave the queue. 

Finally, the DTB logic in the Load/Store Number High-Water Marker (HWM) needs to 
know when a DTB writer block had passed its poison point in order to free any DTB
dependent chunks (see the HWM description for more information). The LPR sends 
NO_REISSUE signals to the HWM to indicate instructions that have passed their poi
son points and thus will not reissue; the HWM checks this information against its 
record of which instructions are elements of a DTB writer block to determine when to 
release dependent memory operations. 

5.2.12 Post-Issue Logic (PIL) 

5.2.12.1 Design Considerations 

So what happens after a load has missed and the Mbox eventually gets the correct data 
from the second level cache or the system? How does the Qbox re-fire all of the load's 
dependent instructions? (They were re-armed by the Load/Poison Re-Arm Widget.) 

For that matter, how do we handle long latency operations like square root or divide? 
These operations produce results many cycles after other concurrently issuing instruc
tions are ready to write theirs back to the register file. We need to let fast operations 
deliver their results quickly - it would be absurd to stage out the results of 1-cycle inte
ger adds to line up with those of 14-cycle floating-point divides. But when long-latency 
ops eventually do complete, they need to have exclusive access to a result bus and reg
ister file port. (Building separate buses and ports just for long-latency ops is far too 
costly.) This means that the issue slot for the instruction that would otherwise consume 
those resources at that point in time must be empty. That is, there needs to be a "bubble" 
in the pipeline into which the completing long-latency operation can slip its result. 

5.2.12.2 Design Architecture 

In both cases the IQ provides a "bubble request widget", which sits in the Post-Issue 
Logic (PIL) for operations that need to signal late completion. In the case of load 
misses, bubble requests are fielded by the strong load pick rs in the same bank of the 
queue where the instruction originated. The bubble request will cause the load to set its 
"result ready" (RES_RDY) bit and allow all its dependents to become data ready. Note 
that load miss bubble requests can still result in a cache miss, so the Load/Poison Re
arm Widget (LPR) must be prepared to kill dependents of a load bubble request. 

The Mbox first gives early warning of an impending bubble by asserting the 
WILL_RETRY signal to the issuing picker, causing the LPR to signal to the Depen
dency Arrays that the corresponding RES_RDY state must be cleared. Later, the Mbox 
sends along the actual bubble request in the form of the IQ entry number of the load 

Compaq Confidential 
5-20 Instruction Issue and Retire Unit - the Qbox 5 Jc1nuary 2001 - Subject To Change 



Component Details 

which needs to bubble. This goes to the strong load picker in that bank of the IQ. The 
Mbox always stashes away the queue entry number of loads on issue in the event of a 
bubble - this saves the Qbox the time and logic needed to do an INum-to-queue-entry 
lookup. 

Note that two loads may be issued concurrently in the same bank - one in the strong 
load pipe and one in the weak load pipe - and may both miss and need to bubble. But 
bubbled loads always reissue on the strong load pickers only. So while the 
WILL_RETRY values are always asserted at a fixed time relative to issue, the bubble 
requests themselves may be queued up and are therefore accompanied by a "retry 
valid" bit. 

In the case of long latency Fbox ops, bubble requests are routed to the picker that origi
nated the operation. When the instruction first issues, all "operand ready" matches 
against its IN urn are discarded. (The dependent instructions knew that they were depen
dent on a long latency op - they ignored the non-bubble requested broadcast of their 
parent's INum.) When the bubble request is honored, the INum is rebroadcast and all 
dependents then become data ready. 

Note that the Fbox does not generate its own bubbles; counters in the PIL keep track of 
when floating-point divide and square root operations are due to complete and send the 
requests to the appropriate picker. The PIL is also responsible for telling the Fbox when 
a floating-point instruction has been killed off as the result of a disruption, since the 
Fbox does not monitor the Retire/Kill Bus. Should something untoward happen to a 
long-latency Fbox op (such as a division by zero), the PIL will find out only after the 
retire-time exception trickles through the disruption logic and appears as a kill on the 
RKBus. 

5.2.13 Oldest CBR Selector (OCS) 

5.2.13.1 Design Considerations 

Mispredicted conditional branches need to be resolved as quickly as possible to avoid a 
major performance penalty. When a branch misprediction does occur, the Ibox needs to 
know the INum of the culprit in the shortest possible time so that it can re-fetch it and 
start the replay process. If more than one branch mispredicts, we want to handle the old
est one first, since any younger instructions in the thread are on a bad path and are wast
ing processor resources. This is especially important for multiple mispredicting 
branches in the same thread - younger branches are rendered moot by the older 
branches' misprediction, so handling the oldest branch first minimizes the chances of 
replaying bad path code. 

The problem is that quickly sorting out which branch instruction caused the mispredict 
- and if there is more than one mispredicting branch, which one is oldest - requires 
an exacting amount of logic. Certain cases, such as multiple mispredicting branches in 
one cycle, are also very uncommon. This puts the necessity of building the vast infra
structure required to find the correct answer immediately into question. 

5.2.13.2 Design Architecture 

What if we were to always assume initially - in keeping with the speculative philos
phy of 21464- that the oldest conditonal branch to issue in a given cycle is also the 
oldest mispredicting branch? It turns out that most of the time, according to benchmark 
simulations, this is a very astute guess. So this is what the OCS does: it identifies the 

Compaq Confidential 
5 January 2001 ··· Subject To Change Instruction Issue and Retire Unit - the Qbox 5-21 



Component Details 

oldest conditional branch instruction to issue in a given tic and forwards its IN um, TPU, 
Pipe ID, and Predicted Taken/Not Taken Bit to the Ibox. The Ibox uses this data to 
query the altenate PC table in preparation for a replay. If it turns out that no branches 
mispredicted, the Ibox ignores this information. 

If we discover upon Ebox branch resolution that some other branch (not the oldest) 
mispredicted, we undo the mispredict trap, and add the INum(s) of the actual culprit(s) 
to the trap pool. Between the Pipe ID and the misprediction signals from the Ebox, the 
Ibox infers that the INum we gave them was for the wrong branch without any need for 
a special signal from the Qbox (unlike what was orginally thought). Finally, if the 
branch we selected did mispredict but was the victim of a load miss, the instruction 
needs to be replayed after the data comes back from main memory. In these two latter 
cases, the Ibox fakes a line mispredict, falling back on pre-existing error-handling 
mechanisms, which keeps it from causing any further mischief. For more details on the 
branch resolution process, take a look at the document Branches, and How To Resolve 
Them. 

The OCS maintains internal state which records which of the instructions in the IQ are 
CB Rs, and the Predicted Taken/Not Taken bits for each one, information it obtains from 
the Pbox instruction decoder. INums are obtained from the Exception Kill Logic since 
the OCS does not store INums. 

Note that the implementation of this widget is in many respects similar to that of a 
picker. However, since it does not acutally influence the issuing of instructions from the 
IQ- and also operates one cycle behind the pickers - calling it a picker (as was orig
inally proposed) would be somewhat misleading. 

Note also that this mechanism only applies to integer conditional branch instructions. 
Floating-point CBRs go into the standard trap pool and are processed like generic dis
ruptions. 

5.2.14 Queue Chunk Allocator/Deallocator (ALC) 

5.2.14.1 Design Considerations 

The instruction queue is divided up into two banks, west and east. Each bank is further 
divided into sixteen chunks of four entries each. When a map block arrives at the IQ it 
is written into one chunk in each half of the IQ. We need to allocate these chunks effi
ciently, since if we run out of entries in the IQ, we need to stall at the Pbox Post-Map 
Skid Buffer (PSB) and signal back to the Ibox to stop sending map blocks. Needless to 
say, we don't want to do this very often. 

Along with allocation comes the complementary problem of deallocation. Our queue 
isn't big enough to hold all in-flight instructions, so we need to re-use chunks for new 
instructions, evicting old ones from the IQ as soon as they are able to leave. It turns out 
that our performance is very sensitive to how long chunks stay in the queue, so this is a 
significant issue. 

5.2.14.2 Design Architecture 

The Qbox does not cause IQ full traps. Ever. Not ever. We don't do that sort of thing; in 
fact, we don't even support it. Instead, we do the next worst thing, we stall. 

Compaq Confidential 
5-22 Instruction Issue and Retire Unit - the Qbox 5 Jc1nua1ry 2001 -- Subject To Clumge 



Component Details 

A queue chunk is free only if all of its instruction are eligible to be re-allocated. This is 
an important point; because of our chunk granularity, 16 "problem" instructions could 
conceivably fill one bank and thus the entire IQ. The exact conditions under which a 
given instruction may be deallocated are a function of instruction type and poison sta
tus, and are described in more detail in the Load/Poison Re-arm Widget (LPR) descrip
tion. The LPR tells the ALC when a given instruction may be deallocated. In the 
simplest, most common case, valid single-cycle instructions may be deallocated as soon 
as they are known to not be the victims of a missed load. 

The queue chunk allocator keeps track of which chunks are free. It then selects one 
chunk from each of the two queue banks to be written on the next cycle. If one or both 
banks are completely full, then the allocator signals an IQ full condition to the PSB and 
to the Map Thread Chooser in the INum Allocator. The Thread Chooser tells the Ibox 
that no threads can accept instructions until the IQ full condition is resolved. This is 
timed in such a way that the first freshly fetched and mapped blocks will arrive in the 
IQ immediately after the last buffered block is passed along from the PSB. 

5.2.15 in-Flight Table (IFx) 

5.2.15.1 Design Considerations 

The issue queue does not keep information about an instruction that has issued. Several 
cycles after an instruction issues, its entry in the issue queue is marked as free and can 
be reused. This reduces the occupancy of the queue and reduces IQ full stalls. However, 
certain information - such as the issued instruction's INum and destination register - are 
needed for later stages in the instruction's life (completion and writeback). The In
Flight Table is responsible for maintaining this state. Most importantly, the In-Flight 
Table checks - for every issued but not completed instruction - whether the instruction 
has raised an exception. If an instruction has raised an exception, its INum is marked 
accordingly in the In-Flight Table, and this information follows it to the Completion 
Unit. This is done to prevent the completion unit from thinking that the excepting 
instruction can retire. 

5.2.15.2 Design Architecture 

Basically, the In-Flight Table is a bunch of registers which mirror the 21464 pipeline 
from issue to writeback. Logically, the In-Flight Table sits between the IQ and the 
Completion Unit. Every cycle, the (up to) 8 issued INums enter 8 different staging pipe
lines - one per picker - in the In-Flight Table. Each cycle, the 8 staging pipelines 
"shift down." 

Compaq Confidential 
5 January 2001 -·Subject To Change Instruction Issue and Retire Unit - the Qbox 5-23 



Component Details 

The staging pipe for pipeline 0 is shown below. 

5.2.16 Completion Unit {CMP) 

5.2.16.1 Design Considerations 

The 21464, like other out-of-order processors, issues instructions out-of-order but com
mits (retires) them to architectural state in program order. Here, architectural state 
refers to software-visible state: registers, memory, and IPRs. The completion unit is 
responsible for this reordering. Logically, the completion unit determines which INum 
is the ''next to retire" for each TPU. This INum is driven to the Pbox RKU, where it is 
eventually driven out on the RK bus. It is important to retire instructions as early as 
possible, because many critical resources (INums, physical registers, load/store queue 
entries) are freed at retire time. 

Compaq Confidentia I 
5-24 Instruction Issue and Retire Unit-the Qbox 5 January 2001 -·Subject To Chang~~ 



Component Details 

5.2.16.2 Design Architecture 

The CMP maintains a vector ranging from INum 0 to INum 255. The state associated 
with each entry (INum) is as follows: 

State 

c bit 

IO bit 

RTE bit 

Kbit 

Etype<5:0> 

Description 

IN um is past the point at which it itself may raise an exception 

IN um has been tagged by the Mbox as an IO load instruction 

IN um has a retire time exception associated with it 

IN um has been killed 

Retire time exception code 

The following sections describe completion, killing, retirement, and Mbox processing 
in turn. 

5.2.16.2.1 Completion 

Instructions are issued from the instruction queue out of program order. They enter the 
In-Flight Table, and are checked against all possible exceptions. If the instruction 
makes it through the In-Flight Table without getting an exception, it sets the C bit for its 
INum. If the instruction gets hit with a retire-time exception while in the In-Flight 
Table, it sets the RTE bit in the completion unit and stores the exception type in the cor
responding Etype field. If the instruction gets hit with an execution-time exception, 
such as a branch mispredict, the INum is removed from the In-Flight Table, and the 
CMP state is unaltered. 

5.2.16.2.2 Kills 

The 21464 indicates kills by posting a kill INum on the Retire/Kill bus and asserting the 
Kill signal. The completion unit receives this kill INum and simply marks all instruc
tions younger than the kill INum (and in the same TPU) as complete, by setting the C 
bit. Also, for all killed instruction, we set the K bit to indicate that this instruction was 
completed due to a kill. 

When an instruction associated with an RTE is the "next-to-retire" instruction, the CMP 
first sends its INum and TPU ID to the Pbox Retire/Kill Unit (RKU) as a "next-to-retire 
INum". The CMP then passes the INum, TPU ID, and RTE type information to the 
RKU again as a kill. Please consult Driving the Retire/Kill Bus (RK Bus) for more 
detailed information. 

5.2.16.2.3 Retirement 

To retire an instruction Yin TPU X, instruction Y must not cause an exception, and all 
older instructions for TPU X must also not raise an exception. Said another way, Y must 
be complete and all older instructions must also be complete. The CMP works by find
ing the oldest uncompleted instruction A. INum A is then driven out of the CMP to the 
Pbox as the next-to-retire IN um. This indicates that all INums older than A can retire. 
The CMP then waits for INum A to complete. Until it does, TPU X has nothing to 
retire, since we must retire in order. Finally, when A completes, we search for the oldest 
uncompleted instruction in block B. If all instructions in block B are complete, the 
CMP indicates that the entire block B can retire, and we now advance to the next INum 
block for TPU X and search for the first uncompleted instruction. 

Compaq Confidential 
5 January 2001 ···Subject To Change Instruction Issue and Retire Unit-the Qbox 5-25 



Component Details 

The 21464 retires from only 1 TPU per cycle. Therefore, we need an arbitration mecha
nism to decide which TPU to retire from in a given cycle. We use a retire chooser, 
which simply chooses round-robin among those TPU that actually have something new 
ready to retire. 

The 21464 uses a shared bus for driving retires and kills. Therefore, it is possible that 
in a given cycle, both a retire and a kill request access to the shared RK bus. The policy 
for resolving this conflict is that kills always take precedence over retires. Therefore, 
the CMP supports a stall mechanism to maintain state in the presence of simultaneous 
kills and retires. 

5.2.16.2.4 Mbox Interface 

To facilitate the processing of certain memory operations, there are special hooks from 
the CMP to the Mbox. The Mbox can signal that the next-to-retire INum is an 1/0 load 
operation. The CMP sets the corresponding IO bit in the completion vector, and 
advances the retire pointer. This allows merging of 1/0 operations, an important perfor
mance enhancement. In a similar vein, the Mbox can force the completion of the next
to-retire INum. This is used to complete memory barrier instructions. 

Load/store ordering presents another interesting problem for the Mbox and CMP. A 
load instruction may complete normally, but still cause an exception. This exception is 
triggered when an older store issues and writes data to the same address as the load. To 
handle this, the Mbox has a "stall retire and zap" interface to the CMP. The stall retire 
interface freezes the CMP's retire pointer at the current instruction. It can not advance. 
The zap interface in essence "uncompletes" an instruction. The C bit of the violating 
instruction is forced to 0, thereby ensuring that the retire pointer can not advance past 
the trapping instruction. 

5.2.17 Payload Array {PAY) 

5.2.17 .1 Design Considerations 

From the Qbox core's point of view, the only significant features of an instruction are 
its dependencies, its latency, and anything else that might complicate scheduling, like 
being part of a DTB writer block. Certain other generic instruction attributes, namely 
INums and TPU IDs, are stored in the Exception Kill Logic, and the physical register 
numbers have structures devoted to them. But what about all of the other minor details 
that make up an instruction, such as its opcode? Where do they go? 

5.2.17.2 Design Architecture 

The Payload Array (PAY) contains all of the information about an instruction in which 
the Qbox has no direct interest, including opcode and function/displacement fields, and 
other flags and attributes derived by the Pbox (e.g. LSNums, the IS JUMP bits which 
flag indirect jumps) or passed through from the Ibox (e.g. the MAP _PAL_MODE bit 
which flags PALcode blocks). All of this type of information associated with a given 
instruction pops out of the PAY upon issue and is forwarded to the executing box. The 
PAY sits physically in the so-called "late" portion of the Qbox, off to the side of the IQ 
core with its sensitive timing paths. 

Compaq Confidentia I 
5-26 Instruction Issue and Retire Unit- the Qbox 5 January 2001 ···Subject To Change 



Component Details 

5.2.18 Exception Kill Logic (EKC) 

5.2.18.1 Design Considerations 

When an exception occurs, there may be instructions on that code path which have been 
allocated space in the instruction queue. These instructions must be removed from the 
queue, in the interests of correct program execution, and the conservation of scarce 
queue space and other processor resources. 

5.2.18.2 Design Architecture 

The Exception Kill Logic eliminates from the queue any younger instructions with the 
same TPU as the excepting instruction. It also has the incidental function of storing the 
INums and TPU IDs of every instruction in the queue and passing them along to the 
Ebox and Mbox at issue time. 

Compaq Confidential 
5 January 2001 -- Subject To Change Instruction Issue and Retire Unit - the Qbox 5-27 



Component Details 

Compaq Confidentia J 
5-28 Instruction Issue and Retire Unit-the Qbox 5 January 2001 ~·Subject To Change 



Major Components 

6 
Integer Execution Unit - the Ebox 

The 21464 microprocessor is organized into several major processing sections called 
boxes. The Ibox handles instruction fetching and program flow prediction, the Qbox 
schedules, often out of order the instructions fetched by the Ibox and the Ebox executes 
most of the non-floating point Alpha instructions scheduled by the Qbox. The Ebox 
contains multiple copies of its various processing elements so the Qbox can schedule as 
many instructions per cycle as possible. The upper limit is eight instructions issued 
simultaneously. 

Structurally, the Ebox processing elements are organized into twelve functional units, 
but not all units are alike. In an attempt to keep the functional units small, fast and 
tightly coupled to each other, each unit executes a predefined subset of the instruction 
set. For example, of the eight integer-units, only two can execute store instructions, and 
only two units can handle any multimedia instruction. See the instruction breakdown 
table for a complete list. 

6.1 Major Components 

The Major Ebox components are: 

Table 6-1 Ebox Major Component Summary 

Component Description 

Integer Units (8) The integer functional units execute the traditional integer arithmetic 
and logical instructions as well as performing the address generation 
and data formatting of memory instructions. 

Multimedia Units (4) The multimedia units execute the newer integer instructions targeted 
at accelerating multimedia operations and also perform integer multi
plication. 

Register Caches (4) The register caches store recently written register values allowing 
dependent instructions to issue before the register file is updated. 

Compaq Confidential 
5 January 2001 -· Subject To Change Integer Execution Unit - the Ebox 6-1 



Major Components 

Figure 6-1 Ebox Block Diagram 

6.1.1 Datapath 

M.Jltimedia 
Adc:IMJVfree 

Cluster A 

Functional 
Unit 2 

Rcache A 

Functional 
Unit 6 

EBOX Block Diagram 

M.dtimedia 
Pack/Slift!Wax 

hteger 
MUtipier O 

Cluster C 

Functional 
Unit O 

Rcache C 

Functional 
Unit 4 

M.Jltimedia 
Pack/Shift/Nlax 

hteger 
M.Jltiplier 1 

Cluster D 

Functional 
Unit 1 

Rcache D 

Functional 
Unit 5 

IVUtimedia 
AddAVU/Tree 

Cluster B 

Functional 
Unit 3 

Rcache B 

Functional 
Unit 7 

The key to understanding the architecture of the Ebox is an understanding of how oper
ands and results flow through the Ebox. Shown below are the major datapaths and a 
rough representation of their layout. The rest of this document will mostly discuss the 
details of the elements within the Ebox and how they interact with these datapaths or 
the rest of the 21464. Detailed descriptions of the high-speed circuits used to implement 
the adders, shifters or multipliers can be found in the implementation documents. 

Compaq Confidential 
6-2 Integer Execution Unit - the Ebox 5 Jc1nuc1ry 2001 ···Subject To Change 



Figure 6-2 Ebox Datapath Block Diagram 

1ru~~inedia 
IR~~~ flShift/ 

!~ax 

IN~~~~lie l 1 
! 
! 
! 
! 
: 

f ;1,mr'.~W}t1~F1~f f fi~g~~:~~:~;,!;~:,!~','~;i~'-r;;~~A,~'~;~-~: -~ 
~c:::::,· WL1nf:t~1 ~:: W~n~iq 1$1 ~:: W~n~ooH$1 ~:: J'74nptio t~ 
81: µn~ ~I a:: Wn~ ~ a:: Wti~ ~ a:: ~n~ ~ 

~ ~~i!} ~] R¢aci~ , ~] R~cJ ~] R~ch~ i: 

:· ~~ r-t ~~ 

~:J Jf4~t~I ~:: Jf L n~t~ 1$1 ~:: Jf ~nbfi4_)n<ll1 l ::::: ~ ;4~t~< 
~ µf1~l $1 ~· Wti~l ~ ~· µp~ a. ! _g. ILri~d 

__ ;_ {- -- --- -_(.) __ - -- -- --- ---~- --- --- -_8 __ - -- -- --- --- --: -+ --_8 __ - -- -- --- --- --1- -+ .. ·r ;- ------ t= ._-_-_ ___._.. _ __, ._.::__::::: t--H -+--·rt' - -- ....___. .____ __ ---!-+--'...._: _. 

r r========.:t=======================:= ====::========.:i====================:=t=r 

Major Components 

mox ommmm. 
EBOX bypass 

................ QQQX ... ·.·.~ ............... . 
, ~X results 

The Ebox bypass busses supply the Ra and Rb input operands to each functional unit. 
Values are driven onto the bypass busses from the register file, the register caches or 
directly from the functional units based on controls from the operand steering unit. The 
Ebox generates three types of results; the adders, shifters and logic units produce results 
in a single cycle, load instructions need three cycles to produce a result and multimedia 
instructions take five cycles to produce a result. To be available as operands to future 
instructions, all results are distributed throughout the Ebox and written into the register 
caches. 

6.1.2 Timing 

Cycle mnemonics are used throughout this document to identify the relative timing of 
signals. Table 6-2 identifies the cycle relationships assumed by this document. 

Compaq Confidential 
5 January 2001 ···Subject To Change Integer Execution Unit-the Ebox 6-3 



Integer Clusters 

Table 6-2 lnterbox Timing Relationships 

Qbox Ql 

Reg.File 

Ebox 

Fbox 

Mbox 

Q2 Q3 Q4 Q5 Q6 Q7 

RO Rl R2 R3 Rw Rl R2 

EO El E2 E3 E4 E5 

FO Fl F2 F3 F4 F5 

MO Ml M2 

Each cycle is further subdivided into two phases, the first half of a cycle is the 'A' 
phase, the second half of a cycle is the 'B' phase. A timing specification EOA refers to 
the first phase of cycle EO. 

All timing references in this spec refer to the latch that launches the data, when signifi
cant transit time may be involved, that time or an expected arrival time will be sepa
rately stated. 

6.2 Integer Clusters 

An integer functional unit is a logical collection of processing elements that collectively 
execute a specific set of Alpha instructions. The 21464 has eight integer functional 
units organized as four clusters of two units each. The cluster grouping is significant 
because single-cycle results from previously executed instructions can be utilized 
immediately only by elements within the same cluster, but require a cycle propagation 
delay before they are available for use as operands to instructions executing in other 
clusters. The eight units are not identical but contain a predefined mix of processing 
elements. To ease implementation, the four clusters will be implemented as identical 
copies. Functions not needed in a cluster will be left unconnected. Table 6-3 identifies 
the major sections within an integer cluster and which functional units contain copies of 
those elements. 

Table 6-3 Integer Cluster Sections 

Section Name Mnemonic In Units Description 

Adder Ep_ADx 

Shifter Ep_SHx 

Logic Box Ep_LGx 

Register File Ep_RFx 
Operand 
Interface 

Virtual Ep_VAx 
Address 
Generator 

Load Data Ep_LDx 
Interface 

0-7 

0-3 

0-7 

0-7 

4-7 

4-7. 

A full 64-bit signed integer adder that produces a complete result each 
cycle. 

A full 64-bit shifter that produces a complete result each cycle. 

Performs logical and arithmetic operations 

Interfaces the operands from the register file to the Ebox opbusses. Also 
bypasses literals onto the opbusses. 

Computes the 16-bit displacement add and factors the big/little endian 
control to form a correct virtual memory address. 

Interfaces the data returned from the Mbox to the functional units and 
register caches. 

Compaq Confidential 
6-4 Integer Execution Unit - the Ebox 5 Jc1nwiry 2001 -·Subject To Change 



Integer Clusters 

Table 6-3 Integer Cluster Sections 

Section Name Mnemonic In Units Description 

Multimedia 
Operand 
Interface 

Register File 
Result Pipe 

Cross Cluster 
Result 
Interface 

Global Con-
trol 

Store Data 
Interface 

Ep_MOx 4-7 

Ep_RPx 0-3 

Ep_XCx 0-7 

Ep_GCx 0-7 

Ep_STI 

Forwards the instruction operands from the corresponding integer func
tional unit to the multimedia clusters. Each multimedia cluster is associ
ated with the lower integer functional unit in a cluster and derives its 
operands from that functional unit. 

Handles staging of different result latencies, floating load format con
version and forwarding of results to the register file. 

Receives one-cycle results from the other functional units, bypass the 
data onto the operand busses if needed immediately and latches the data 
for writing into the local register cache. 

Decodes the instruction information sent by the Qbox and coordinates 
the various processing elements within a functional unit. 

Interfaces to the Store Data buses to the Mbox. This unit is not actually 
part of the integer clusters but resides in a separate partition to the right 
of the integer clusters 

Figure 6-3 shows how the sections are organized within a cluster. Elements that con
sume operands are generally positioned together in either the upper or lower part of the 
cluster. This also maps to physical position with the exception of the register file and 
multimedia interfaces. The operand busses span the full length of the cluster to allow 
elements in one half of the cluster to bypass results directly to any other unit in the clus
ter. 

Compaq Confidential 
5 January 2001 -- Subject To Change Integer Execution Unit - the Ebox 6-5 



Integer Clusters 

6.2.1 Adder 

Figure 6-3 Cluster Section Organization 

~ 

i ii 
~ 

J! 
! ~ a.: 

LMU!irledia ~ 

'l:Mlm 
, 

Shifter ~»«n 
1£. Local By~ss 

Regiser Rle 
~ lnerface 

M.llimedia 
IL MM Resut ~pass 

lnerface I' 

X-cluster 
L~h.Jster lntP.r&:ir.P. ~ 

~~ 7 

Adder 1----4 + -= T il IL Local Bypass 
is: 

Logic Box l-4f &IA-n 
IL Local Bypass ii 

~ 
~ Operand Regis1er 
~~ 48-entries ~ 

.c~ Seering Cache ~ 
~ IL 

I' 

Logic Box ~&IA-r ~ ~ i,,_ Local Bypass .~ ~ 

Adder ~+-=r 
IL Local Bypass ii 

Mdress cµ1 Generator 

X-Cluster 1£. XClister Bypass 
L~luster Jnterfaca I' ...lk -) 
~~ 

Load Bus 
I/ .. l..ca:I B,ipm 

Interface ~ 

l\lbox Mdress 
Interface 'W 

~ 
Load Data ~ 

7 

The adder unit completes a full 64-bit signed add/subtract operation in a single cycle. 
The inputs to the adder are adjusted swapped, complemented sign-extended, or shifted 
as necessary to allow the core adder to handle the various combinations of add and sub
tract operations. The instructions serviced by the adder are: 

Table 6-4 Instructions Serviced by the Ebox Addr Unit 

Type Instructions 

Add ADDL, ADDLN, ADDQ, ADDQN, S4ADDL, S8ADDL, S4ADDQ, S8ADDQ 

Compaq Confidential 
6-6 Integer Execution Unit - the Ebox 5 J(1nuary 2001 ···Subject To Change 



6.2.2 Shifter 

Integer Clusters 

Table 6-4 Instructions Serviced by the Ebox Addr Unit 

Type Instructions 

Sub SUBL, SUBLN, SUBQ, SUBQN, S4SUBL, S8SUBL, S4SUBQ, S8SUBQ 

Compare CMPBGE, CMPULT, CMPEQ, CMPULE, CMPLT, CMPLE 

Other LDAH, LDA, RS, RC 

Subtractions are handled by twos-complementing the Rb operand and setting the carry
in bit to the adder. 

The S4 and S8 variants simply require the Ra operand to be shifted left by two or three 
bits. 

For LDA and LDAH the register file interface has placed the displacement value onto 
the A operand bus. For RS and RC instructions, the register file interface placed the 
intr_flag passed by the Qbox in INST_INFO<O> onto the B operand bus. For all these 
instructions, the adder unit simply performs the equivalent of an ADDQ instruction. 

The overflow trap signal is computed during EOA and passed to the EQ partition where 
it is latched and driven to the Qbox from an ElA latch. 

The Adder section also allows direct bypassing of its result onto any or all of the four 
source-operand busses in the cluster. This allows dependent instructions to execute the 
following cycle. The operand steering unit detects the local bypass cases and drives the 
enable mask to the adder. If the Adder is active, it bypasses the result to all enabled bus
ses. 

The shifter unit handles the arithmetic and logical shift instructions as well as the byte 
insert, extract, mask and zap instructions. All operations complete in a single cycle. The 
instructions serviced by the shifter are: 

Table 6-5 Instructions Serviced by the Ebox Shifter Unit 

Type 

Shift 

Mask 

Extract 

Insert 

Zap 

Instructions 

SRL, SLL, SRA 

MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH 

EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH, EXTQH 

INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH 

ZAP,ZAPNOT 

The shifter receives the opcode and other instruction information from an EYA latch in 
the GCx section. The shifter decodes the opcode/function and if one of the above 
instructions is detected, controls and clocks are sent to the datapath to enable execution. 
When no match is detected, suppression of the clocks prevents any further action by the 
shifter. 

Compaq Confidential 
5 January 2001 -- Subject To Change Integer Execution Unit - the Ebox 6-7 



Integer Clusters 

When active, the shifter latches the operands at EOA and signals the opbus precharge 
logic. Results are computed in EO and can be directly bypassed onto any or all of the 
four local operand busses in the cluster for use the next cycle. The results are also 
latched at ElA and driven onto a shared result bus to both the register cache and cross
cluster interfaces. 

For big-endian threads, the shifter reverses the byte mask when computing MSKxxx, 
EXTxxx and INXxxx instructions. 

The Shifter also forwards the operands to the multimedia cluster whenever an instruc
tion handled by either the multimedia cluster or the store interface unit is issued. 

Multimedia instructions require both Ra and Rb, store instructions only use Ra. The 
Shifter must not latch Rb for store instructions because the virtual address unit will be 
using Rb to compute the target VA. 

Due to size and wiring constraints, only four instances of the shifter are implemented in 
the 21464. One in the upper pipe of each integer cluster. 

6.2.3 Logic Box 

The logic box handles the logical and conditional instructions producing all results including the conditional 
branch mispredict flag in a single phase. The instructions serviced by the logic box are: 

Table 6-6 Instructions Serviced by the Ebox Logic Box Unit 

Type Instructions 

Cmove CMOVLBS, CMOVLBC, CMOVNE, CMOVLT, CMOVGE, CMOVLE, 
CMOVGf 

Branch BLBC, BEQ, BLT, BLE, BLBS, BNE, BGE, BGf 

Logical AND, BIC, BIS, ORNOT, XOR, EQV 

Special AMASK, IMPVER, SEXTB, SEXTW 

For conditional branch instructions, the result is compared to the result predicted by the 
Ibox. Mispredicts are execution time traps which are reported directly to the Qbox and 
Pbox for corrective action. To minimize the penalty of a mispredicted branch, the Qbox 
has identified the oldest CBR issued this cycle and has prepared the Ibox for quick 
recovery. The logic box separately signals the Ibox if the CBR instruction mispredicted 
and was also the oldest executing this cycle. 

6.2.4 Register File Operand Interface 

The register file operand interface places operands supplied by the register file onto the 
Ebox operand busses. The register file supplies operands whenever the parent instruc
tions results are not in bypasses or the register caches (ie. Parent issued more than eight 
cycles before the child). 

In the case of integer operate instructions that use a literal field as the Rb operand, the 
operand will be marked as invalid by the Qbox and the OSU will default to enable the 
register file interface as the supplier. The register file interface detects integer operate 
instructions that use a literal and drives the literal value onto the bottom byte of the 
opbusses. The literal is zero-extended in the register file interface datapath. 

Compaq Confidential 
6-8 Integer Execution Unit - the Ebox 5 J,1m.uiry 2001 - Subject To Change 



Integer Clusters 

For LDA and LDAH instructions, a 16-bit displacement is forced onto the Ra operand 
by the register file interface. To support these instructions, 16-bits are extracted from 
the instruction word and driven across the datapath. Additional multiplexing in the 
datapath places the 16-bit displacement on Ra<31:16> for LDAH or Ra<l5:0> for 
LDA. The displacement is sign-extended in the register file interface datapath. 

For RS and RC instructions, the flag passed by the Qbox is the instruction result. The 
flag bit is zero-extended onto the literal field and forced onto Rb. Since Ra must be 
invalid (ie. Forced to zero), almost any functional unit could drive the result. The cur
rent plan is to execute an RS or RC instruction as an ADDQ. 

The other special case instructions are AMASK and IMPLVER. For these instructions a 
CPU specific constant is needed. The AMASK constant is driven onto Ra using the 16-
bits needed by LDA/LDAH. The IMPLVER constant is driven onto Rb as a literal. For 
both instructions, the logic box performs the operation (Re = Rb & !Ra) operation. 

To correctly handle the propagation of poison even for Fbox instructions and to service 
FTOI and Fstore instructions that will receive their Fa operand from the register file, the 
register file interface will drive the opbusses for any active (TPU != 0) instruction 
whose operands did not hit in the OSU even if it is not handled by the Ebox. 

6.2.5 Virtual Address Generator 

The virtual address generator is a specialized adder that computes the virtual address 
for instructions that reference memory. Virtual address generation involves adding a 
signed displacement to Rb and adjusting the low bits to account for endian and align
ment constraints. Although the main adder could have been extended to handled this 
function as was done in previous Alpha chips, feasibility studies showed that a com
bined adder with the additional input multiplexing and output control was too slow for 
the 21464. 

Because the Mbox acts as the conduit for addresses passed to the Ibox. This unit also 
decodes JMP instructions and passes the target PC to the Ibox via the Mbox. 

There are three basic equations: 

va =Rb+ SEXT(disp<l5,0>) LDx, STx 
va =Rb+ SEXT(disp<l0,0>) HW _LD, HW _ST 

va=Rb JMP, ECB, FETCHx, WH64, HW _MTPR, QUIESCE 

The instructions serviced by the VAx section are: 

Table 6-7 Instructions Serviced by the Ebox Virtual Address Generator Unit 

Type Instructions 

Load LDL, LDQ, LDQ_U, LDL_L, LDQ_L, LDBU, LDWU, LDQ LDS, LDT, LDF 

Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STQ STS, STT, STF 

Jump JMP, JSR, RET, JSR_COROUTINE 

Special TRAPB, EXCB, MB, WMB, ECB, FETCH, FETCH_M, WH64, HW _LD, HW _ST, 
HW _MTPR, LDx_ARM, QUIESCE 

Compaq Confidential 
5 January 2001 -~ Subject To Change Integer Execution Unit - the Ebox 6-9 



Integer Clusters 

The virtual address generator is implemented identically in each integer cluster but not 
all of the above instructions can be issued to all clusters. The Mbox has a limit of three 
load instructions, two store instructions or a combined maximum of four per cycle. The 
Ibox can only accept one jump per cycle. Slotting restrictions in the Qbox will guaran
tee that the instructions issue to the correct pipelines. 

Alignment and overflow/underflow errors are detected by the generator and reported to 
the Mbox. These errors are retire-time traps that the Mbox prioritizes with other traps 
before reporting to the Qbox. 

The address generator receives the opcode and other instruction information from an 
EYA latch in the GCx section. The opcode/function is decoded and if one of the above 
instructions is detected, controls and clocks are sent to the datapath to enable execution. 
When no match is detected, suppression of the clocks prevents any further action. 

When active, the Rb operand is latched at EOA and the opbus precharge logic is sig
naled. For non-store instructions, the address generator also activates the opbus pre
charge drivers for Ra. For store instructions, the SHx section captures the store data and 
handles Ra precharging and only Rb is latched and precharged by this section. 

The address generator does not produce a result value that must be stored in the register 
caches or register file. The virtual address is sent directly to the Mbox from an early 
EOB latch and exceptions flags and poison status flags follow from and ElA latch. For 
load operations, the LDx section will eventually receive the load data and handle for
warding it to the register cache and register file. 

The address and exception information is not passed directly to the Mbox from the VAl 
section, but goes through the VA2 interface block at the bottom of the Ebox where the 
single-ended ADDR and the differential INDX busses are formed. For clusters EC and 
ED, the addresses are alternately driven onto the weak-load (P2) and store-only (P3) 
busses to the Mbox. To keep the ability to replicate the cluster, the VA units in the EA 
and EB clusters will also contain the logic to drive one of two busses to the Mbox, but 
connections will only be made to a single bus. 

6.2.6 Load Data Interface 

The instructions serviced by the load data interface unit are: 

Table 6-8 Instructions Serviced by the Ebox Load Data Interface Unit 

Type Instructions 

Load LDL, LDQ, LDQ_U, LDL_L, LDQ_L, LDBU, LDWU, LDQ LDS, LDT, LDF 

Special HW _LD, STx_C 

6.2.7 Multimedia Interface 

The multimedia operand interface forwards instruction decode and payload information 
to both the MM cluster and store interface. Since the MM unit only handles instructions 
from opcodes 13 (MULx), 14 (12F), and lC (multimedia), and the operand interface 
needed to perform the opcode decode to correctly latch the operands; pre-decodes are 
forwarded to the MM unit instead of the opcode and TPU values. The function code 
(inst_info<6:0>) is forwarded so the MM unit can complete the specific instruction 
decoding. 

Compaq Confidential 
6-10 Integer Execution Unit-the Ebox 5 Janu,1ry 2001 -·Subject To Cfumge 



Integer Clusters 

To avoid the need to pass the opcode, TPU or inst_info fields over to the store interface 
block, the multimedia operand interface unit generates the specific control signals 
needed by the store interface to control latching, muxing an format conversion. 

For floating store or Ftol instructions that source their operands from the register file, 
the Ebox provides the conduit to the store interface unit through the multimedia oper
and interface unit. 

The instructions serviced by the multimedia unit or store interface unit are: 

Table 6-9 Instructions Serviced by the Ebox Multimedia Interface Unit 

Type Instructions 

Multiply MULL, MULL/V, MULQ, MULQ/V, UMULH 

Multimedia Opcode 1 C. *, except SEXTB, SEXTW 

Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG, STS, STT,STF 

Special ITO FF, ITOFS, ITOFT, HW _ST 

6.2.8 Global Control 

The global control section decodes the instruction issued to the pipeline and detects 
valid single-cycle instructions as well as all illegal instructions. The OP _l CYCLE sta
tus flag is used by the cross-cluster interfaces and register caches to control distribution 
and updating of results. The illegal instruction decode is combined with overflow infor
mation produced by the adder and multiplier to produce the exception status vector sent 
to the Qbox. 

6.2.9 Store Data Interface 

The instructions serviced by the Store Data Interface unit are: 

Table 6-1 O Instructions Serviced by the Ebox Store Data Interface Unit 

Type Instructions 

Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG, STS, STT, S1F 

Special ITOFS, ITOFF, ITOFT, FTOIS, FTOIT 

Figure 6-4 shows the ITOFx and FTOix instruction store data paths. 

Compaq Confidential 
5 J~muary 2001 ···Subject To Change Integer Execution Unit - the Ebox 6-11 



Operand Steering 

Figure 6-4 Ebox ITOFx and FTOlx Floating-Point Store Data Paths 

e_mo:it->t:fala_fmt 

e_mo:it->opbus_a 

e->sLda1a_e2a Fsbre 
Conwrt 

~F 
Com,ert 

12F, F21 and Floating Store data paths 

i2f_Da1a_E2A 

fSbreDala_FOA 

6.3 Operand Steering 

The operand steering unit tracks the physical register numbers of all instructions that 
have issued in the past eight cycles and performs compares against the physical register 
numbers of the four source operands issued to each cluster each cycle. The destination 
physical register numbers are staged to match the result staging and the write pointer 
into the OSU CAM is identical to the write pointer used to write the register cache. This 
structure generates match lines that directly equate bypass enable signals to the inter
face units and register cache. 

6.4 Register Caches 

The register caches locally store copies of recently generated results allowing instruc
tions which depend on these results to execute sooner than if the results needed to be 
written back to the main register file and subsequently re-read. Without the register 
caches, the parent to child issue delay on the 21464 would have been at least three 
cycles longer. 

The register caches also equalize the issue to result latency and therefore eliminate the 
contention for register file write ports the varying E-box and F-box instruction latencies 
would have created. 

Logically, the register cache can be thought of as a shift register. Results are entered 
based on their execution latency, shift out to the register file in E4, and finally out of the 
register cache in E7 after which the register file will source the value. 

Compaq Confidential 
6-12 Integer Execution Unit-the Ebox 5 Jc1nuary 2001 ···Subject To Change 



Register Caches 

Figure 6-5 Ebox Register Cache Block Diagram 

Functional 
Un~ 

RF resut 

Register 
File 

The logical representation above only shows how a single functional unit can access its 
own results, in reality the result multiplexing is much more complex and allows a func
tional unit to use any result produced by any other functional unit. Drawing a picture to 
represent that level of multiplexing is an exercise left for the reader. 

Although easy to conceptualize, physically building a register cache out of latches as 
diagrammed above would waste both area and power. The Ebox register cache is built 
with multi-port static ram cells. Instead of moving the data through a fixed fifo, the ram 
version keeps the data in place and moves the read and write pointers. 

Figure 6-6 Ebox Register Cache Multiport Static RAM Block Diagram 

Functional 
Un~ 

Register 
Cache 

Register 
File 

To provide the necessary locality to meet timing goals, each integer cluster contains a 
private copy of the register cache. The copies are identical, each containing the full set 
of available results from every instruction the Ebox executed in the past seven cycles. 

The term available is actually a key point. Single cycle instruction results are not stable 
until the late in the cycle. The results can be locally driven onto the opbus wires, but 
there is insufficient time to write the register cache or send the results to any of the 
other clusters. The El cycle is used to transport results to the other clusters, but the 

Compaq Confidential 
5 January 2001 ···Subject To Change Integer Execution Unit - the Ebox 6-13 



Register Caches 

transport delay also consumes much of a cycle leaving only enough time to bypass onto 
the remote opbusses. The register caches are actually written the second cycle after the 
results are produced. Table 6-11 and Figure 6-7 show the single-cycle result flow. 

Table 6-11 Ebox Register Cache Single-Cycle Result Flow 

EO E1 E2 E3 

A B A B A B A 

Eb ox Execute Local Transmit Xcluster Write Read 
Bypass Xcluster Bypass Re ache Rcache 

Figure 6-7 Ebox Register Cache Single-Cycle Result Flow 

r Local :=!=;::::+=!====~~ 
Bwass 
~ ICD<D-a><D-r--:---1 

r~-lD----.-1-~.'--CIXD<l>-(J[>--~'·'----O>~~-r-+---L---OXl~~ 
~luster 

Bwass 

~luser 

Bwass 
~~cn--~r1~~~-i-r1~~D<D---L-~l~E><fXI><lC)----L-, 

Compaq Confidential 

B 

6-14 Integer Execution Unit -the Ebox 5 Jam.1c1ry 2001 -·Subject To Cl'Jange 



Register Caches 

Multi-cycle instruction results are produced outside the integer clusters and broadcast 
to all clusters simultaneously. All multi-cycle instructions have either a three cycle 
latency (Loads) or a five cycle latency (multimedia, Ftol, Jumps, IPR reads). Each clus
ter independently bypasses these results if needed immediately then writes the register 
cache the following cycle. 

Table 6-12 Ebox Register Cache Multi-Cycle Result Flow 

E2 E3 E4 E5 

A B A B A B A B 

Eb ox ... Finish Bypass Write Read 
3cycle Execute Load Re ache Re ache 

Eb ox ... Finish Drive Bypass m- Write Read 
5cycle m-media result media Re ache Rcache 

Figure 6-8 Ebox Register Cache Multi-Cycle Result Flow 

Reg~>!t:r Flit: 
C~'!B;ands 

r 
Multi-media 

B}Pass 

Load 
B;pass 

~ 

Combining the single and multi-cycle cases shows each register cache receiving up to 
15 results per cycle. Eight single cycle latency results from each functional unit, three 
three-cycle latency results from the memory load interfaces coupled to functional units 
4, 5, 6 and 7, and four five cycle latency results from the multimedia clusters also asso
ciated with functional units 4, 5, 6 and 7. 

Compaq Confidential 
5 January 2001 ···Subject To Change Integer Execution Unit-the Ebox 6-15 



Register Caches 

0 

1 

2 

3 

4 

5 

6 

7 

Each register cache will source up to four operands, two to each of the functional units 
in the cluster. Because a result can be used as either or both inputs to any number of 
future instructions, every register cache entry can drive all four of the operand busses 
within the cluster. 

l--+--+---+~+-~+---+---+~+---+---+~+-----1 

l--+---+---+~+--~+---+---+~+---+---~~---

,__------~--~------~----~~~---
l--+---+---+~+--~+---+---+~t--~~~~---

l--+---+---+~+--~t---+---+~+--~~~~-+-1 

1--+--+---+~+-~+---+--+~~~~~+---+-I 

1--+--+----+~+-~+---+----+~~~--~~-+-I 

ii i i i 
t.2 ~I ~I ~I 

7 entries, 4 read ports, 1 write port 

7 entries, 4 read ports, 1 write port 

7 entries, 4 read ports, 1 write port 

7 entries, 4 read ports, 1 write port 

7 entries, 4 read ports, 3 write ports 

7 entries, 4 read ports, 3 write ports 

7 entries, 4 read ports, 3 write ports 

7 entries, 4 read ports, 3 write ports 

readport= 0 
wrileport= e-

6.4.1 Writing the Rcache 

The fixed interval between instruction issue and register file update eliminates the need 
for any form of busy or free status to be associated with register cache entries. Entries 
are assigned in a round-robin fashion and are guaranteed to be free for reallocation on 
the next pass. The assignment sequence is a simple modulo "cache depth" counter 
implemented as a 1-bit, one-hot shift register. 

The single bit allocation pointer is directly combined with the instruction latency infor
mation to produce the enable signals for each of the write ports. 

en_wrO_El [n] = lcycle_OP_El && ptr [n] ; 

en_wrl_E2 [n] = 3cycle_OP_E2 && ptr [ (n+l} %RCACHE_ENTRIES]; 

en_wr2_E4 [n] = 5cycle_OP_E4 && ptr [ (n+3} %RCACHE_ENTRIES] ; 

Remember, single-cycle results are not written until E2, where three-cycle results are 
written in E3 and five-cycle results are written in E5, and because the allocation pointer 
is just a shift register, skewing the indices is equivalent to a time delay. 

Compaq Confidential 
6-16 Integer Execution Unit -the Ebox 5 Januc1ry 2001 ·-Subject To Change 



Register Caches 

Figure 6-9 Writing Entries in the Ebox Register Cache 

* () indicates 
reset stae 

en_wrO_E 1 [5:0] 

en wr3 E25:0 

en wr5 E45:0 

6.4.2 Reading the Rcache 

Each register cache entry has four read ports, one to each opbus in the cluster. Read 
control information for each opbus is driven from the operand steering Unit. OSU CAM 
matches to upper pipe results can be used directly as read enable signals to the register 
cache. Matches to lower pipe results are more complex because of the ambiguity 
between a load result and a single-cycle operation result that occurred two cycles ear
lier. To resolve the ambiguity, the OSU also drives a set of bypass active signals for 
each of the four lower pipes. If a load or multi-media bypass is active, the register cache 
should not be read. 

The cycle timing of the operand control information is shown below. The OSU per
forms the CAM operation in cycle EYB, the match lines are distributed as bypass 
enables in EZA and the register cache is read in EZB. 

Table 6-13 Ebox Cycle Timing of Operand Control Information 

Q4RO Q5R1 R2 R3EZ EO 

A B A B A B A B A 

Qbox Xmit Src Pointers Xmit Dest Pointers 

Reg. File Decode Read Mux Transmit 

osu Drive Bypass execute 
Ebox CAM enables op bus 

Compaq Confidential 
5 J<muary 2001 - Subject To Change Integer Execution Unit - the Ebox 6-17 



Multimedia Unit 

6.5 Multimedia Unit 

The Multimedia Unit consists of three major sections shown below. The Control Logic 
and occupies the left side of the unit. The computational logic is divided into two sec
tions. The first section handles integer multiply instructions. The other section handles 
the MVI instructions. 

Figure 6-10 Ebox Multimedia Unit Block Diagram 

....._ WMUX El2r11<63:00> 
~ 

.... 
0...Q.Codel.rtl.<05:00> ..... ... 
Fune Codelnl<17:06> ..a... 

~ 
MVI Ir structions ... 

Instruction 
Decode I + ...... + 
Control 

"II 

~ Integer Multiplier 

.. ... 
RMUX El2nJ<63:00> 

RMUX_El2n+ 11<63:00> 

6.5.1 Inputs and Outputs 

The opcodes arrive from below in a wiring channel from the integer execution units. 
The operands arrive from the bottom and are shared with the Ebox lower units. The 
result bus exits from the bottom of the box and goes to the register caches. 

6.5.2 Signal Nomenclature 

All signals belong to the E box and the Media partition. Signal names start with the EM 
prefix. The three section prefixes are CTL for the control section, MUL for the Multi
plier section, and MVI for the MVI section. Thus, the three valid prefixes for multime
dia unit signals are EM_CTL, EM_MUL, and EM_MVI. 

6.5.3 Timing 

Figure 6-11 Ebox Multimedia Unit Pipeline Timing 

R2 EO E1 E2 E3 E4 E5 

A l B A B A I B A J B A l B A B A B 

Transport & Data 
Execute pipeline 

Drive X- Write Read 
decode xport result cluster rcache rcache 

Compaq Confidential 
6-18 Integer Execution Unit -the Ebox 5 Jc1m.1c1ry 2001 ···Subject To Change 



Multimedia Unit 

The Op Code and Function Code are clocked in the E box on R3A. The operands and 
final control signals are latched on EOB. Execution begins on EOB. The longest opera
tion completes by E4A. All instructions are delayed until E4A before being driven on 
the Result Bus. 

6.5.4 Instruction Decode/Control Section 

The Instruction Decoder looks at the OpCode and Function Code to determine the oper
ation to be performed. From this information, it extracts the fallowing fields: 

• Arithmetic/Logic Function 

• 
• 

Byte/Word/Longword 

Signed/Unsigned 

The OpCode and Function Codes are decoded into instruction names and latched on EO. 
Each signal is named Ep_CTL%"inst.name"_EOA_H. There are 8 opcode decodes for 
the Multiply section. There are 24 opcode decodes for the MVI section. The signal 
(Ep_CTL%quiece_EOA_H) is asserted if no instruction is recognized. A 2 bit code rep
resents the Byte/Word/Longword state. For the normal IMUL opcodes (MULL, MULL/ 
V, MULQ, MULQN, and UMULH, the data types are implicit in the opcode and are 
not included in the Byte/Word/Longword decoded state. The code is defined in the table 
below: 

Value State 

00 Byte 
01 Word 
lx Longword 

Signed/Unsigned is represented by a 2 bit code Ep_CTL%SGN_EOA_H<l :0>. This is 
defined in the table below: 

Value State 

11 Signed 

00 Unsigned 

10 Signed * Unsigned (TMUL) 

6.5.5 MVI Section 

The MVI section accepts instructions on EOA and operands on EOB. It produces results 
on E4A. The block diagram of the MVI section is shown below: 

Compaq Confidential 
5 January 2001 -- Subject To Change Integer Execution Unit - the Ebox 6-19 



Multimedia Unit 

Figure 6-12 Ebox Multimedia Unit MVI Section Block Diagram 

Ra 

6.5.6 ALU 

Result 

Shifter 

Pack 

Min /Max L 

ALU 

Rb Ra Rb 

The ALU serves a number of instructions. It computes the magnitude of (Ra-Rb) for the 
TABSERR and the TSQERR instructions. It also performs the additions and subtrac
tions for the TADD, TSUB, PADD, and PSUB instructions. In addition, it performs the 
first level of compares for the MINMAX instruction, the MIN instruction, and the 
MAX instruction. Finally, it performs the compares for the CMPWGE instruction. The 
block diagram is shown below: 

Figure 6-13 Ebox Multimedia Unit Arithmetic Logic Unit 

Diff Aop MulDiff Bop 

Mux 

cmp[1 :0]<15:08> 

cmp[1 :0]<07:00> 

Ra 

Rb 

Compaq Confidentia I 
6-20 Integer Execution Unit-the Ebox 5 Janw~ry 2001 ···Subject To Change 



Multimedia Unit 

The Pre-MIN/MAX Mux shuffles the bytes appropriate bytes to the two adders for each 
instruction. It generates 4 busses; the a and b inputs to Add/Sub X and the a and b 
inputs to Add/Sub Y. The X adders in Ra and Rb to present the performs a+b or a-b on 
bytes, words, or longwords .. The Y adders perform b-a on bytes, words, or longwords. 
CMPLT and OVFLO for each byte from both adders is brought out for control. 

6.5.6.1 TADD, TSUB PADD, PSUB, CMPWGE, MIN, MAX Instructions 

The Add/Sub X block gets all the Ra inputs on it's a inputs and all the Rb inputs on its b 
inputs in normal byte order. The MUX passes the sum. Signed/Unsigned does not mat
ter to ALU block. For byte operations, each byte grows to 9 bits, which is passed 
through the Mux to the Tree Adder (TADD) or the saturation logic (PADD). For Word 
operations, each word grows to 17 bits, which is passed on to the Tree Adder or Satura
tion Logic. The remaining instructions send the sign bits to the control logic. 

6.5.6.2 TABSERR Instruction 

Both Add/Sub blocks get the same data as the TADD, TSUB instructions. However, the 
X adder performs a-b and the Y adder performs b-a. The sign bits of the X adder are 
used to control the MUX. The MUX selects the positive result for each byte or word. 
This is passed on to the Tree adder. 

6.5.6.3 TSQERR Instruction 

A separate 8 or 16 bit subtract computes the difference between A and B and passes the 
result to the multipliers. This is done in one phase so the multipliers can start one phase 
sooner than they could if the other ALU structure were used. 

6.5.6.4 Min/Max Instruction 

The min/max instruction uses 12 of the 16 adders to perform the first level of compari
son for finding the min and max. This divides a register into 2 groups of 4 bytes and 
compares the bytes in each group as shown below: 

Figure 6-14 Ebox Multimedia Unit Computation of the Min/Max Instruction 

Byte 7 Byte 6 

The byte reshuffling is defined in Table 6-14. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Integer Execution Unit - the Ebox 6-21 



Multimedia Unit 

Table 6-14 Ebox Multimedia Unit Min/Max Instruction Byte Reshuffling 

Bus Byte7 Byte6 Bytes Byte4 Byte3 Byte2 Byte 1 ByteO 

Xa RaO Ra 1 Rao Ra2 Ral Rao 

Xb Ra 1 Ra2 Ra2 Ra3 Ra3 Ra3 

Ya Ra5 Ra7 Ra7 Ra7 Ra6 Ra6 

Yb Ra4 Ra6 Ra5 Ra4 Ra5 Ra4 

The CMPLT and OVFLO bits for each byte are sent to control logic which generates 
signals to control the remainder of the MINMAX logic further down the pipeline. 

6.5. 7 Multiplier Array 

The multiplier is used for PMUL, TMUL, TSQERR instructions. It takes inputs from 
the ALU section and is configured as 8 8X8 multipliers or 4 l 6Xl 6 multipliers. It can 
handle signed* signed, unsigned* unsigned, or signed* unsigned input operands. It 
selects inputs either from the A and B bus (PMUL, TMUL) or the multdiff output from 
the ALU (TSQERR). It passes either 4 32 bit results or 8 16 bit results on to the tree 
adder. 

It is configured as 2 bit Booth coded stages followed by an array of carry save adders. 
The l 6Xl 6 /dual 8X8 multiplier structure is shown in the figure below. Four copies are 
required for the full multiplier box. 

Compaq Confidential 
6-22 Integer Execution Unit - the Ebox 5 Jc1nuary 2001 ·-Subject To Change 



Multimedia Unit 

Figure 6-15 Ebox Multimedia Unit Multiplier Array Block Diagram 

Di ff Aop MulDiff Bop 

B Operand Mux 

Booth Encode 

Partial P oduct Mux 

The two data paths show 8X16 multipliers. For word operations, the TADD Mux shifts 
the right data path 8 bits to the right before adding to the left data path. This is required 
to form a 16Xl6 multiply from two 8Xl6 multiplies. 

For Byte operations, the Partial Product muxes sign extend each byte into bits< 15 :08>. 
The TADD Mux does not shift the right data path. The two CSA* blocks are used as the 
first stage of the Tree Adder for byte operations. (The tree adder combines 8->4, 4->2, 
2-> 1 for bytes. For words, it only combines 4->2, 2-> 1 The Tree Add Muxes also bring 
in the data for byte Tree Operations that do not use the multiplier (i.e. Tree Add, Tree 
Sub, Tree ABS Val) so the CSA* blocks can be used as the first tree adder stage. 

Compaq Confidential 
5 January 2001 --· Subject To Change Integer Execution Unit - the Ebox 6-23 



Multimedia Unit 

Figure 6-16 Ebox Multimedia Unit Multiplier Array Tree Adder 

Multiplier 3 Multiplier 2 Multiplier 1 Multiplier 0 

CSA CSA 

CSA CSA 

CSA 

CSA 

Tree I NonTree Mux 

Full Adder 

The results from the 4 multiplier blocks are combined in the tree adder as shown below: 

The Tree/NonTree mux selects the output from the tree adder for all operations except 
PMULH and PMULL. For those operations, the high or low 16 bits of product from 
each multiplier are selected. The full adder combines the sums and carries from the 
carry save adder array to form the final result. It must be multiplexed with the other 
sources of final results before being sent to the Register Cache. 

6.5.8 Count Logic 

The Count Logic is used to support the CTPOP, CTLZ, and CTIZ instructions. CTPOP 
counts the number of bits that are "1" in Rb. CTLZ counts the number of leading zeros 
in Rb. CTTZ counts the number of trailing zeros in Rb. These were implemented in the 
21264 by building logic to look at each bit pair and indicate whether 0 to 8 items to be 
counted are present. This information is then fed to the tree adder, which produces the 
final tally. The implementation in this section is done the same way. 

Compaq Confidential 
6-24 Integer Execution Unit-the Ebox 5 Jam.1c1ry 2001 ···Subject To Change 



Multimedia Unit 

6.5.9 Compare Word, Saturation, and the 21264 Min Max 

From this point on, all logic blocks take inputs from the ALU and produce results that 
will eventually be multiplexed with the Tree Adder block. The results from the rest of 
the logic blocks must be delayed to line up with the Tree Adder output. The first step in 
this delay is to latch the inputs to this block and drive the latched data to the remaining 
logic blocks. 

When the Compare Word instruction is executed, the ALU does 4 unsigned word sub
tracts and sends the sign and carry bits to the control logic. The Compare Word logic 
gets the control bits and forms 8 bits to be output in bits<7:0>. 

Saturation is required for the PADD and PSUB operations. The ALU performs the 
appropriate add or sub for bytes/words, signed/unsigned and sends the compare bits to 
control logic. It sends the arithmetic result down the data bus allowing it to overflow. 
The Saturation logic either passes the result or forces the appropriate saturation result 
based on the control bits. 

The 21264 Min and Max instructions select the minimum or maximum between A and 
Bon a byte by byte or word by word basis. The appropriate add or subtract is per
formed in the ALU, the compare bits are sent to the control logic. The 21264 MIN 
MAX logic receives the A and B bus with control bits from the control logic. It multi
plexes between the A and B inputs to select each Min or Max byte or word. 

These three functions are implemented with a multiplexer controlled by bits derived 
from the ALU Sign and Carry bits. 

6.5.10 MinMax Logic 

The MinMax logic performs the second stage of the new MINMAX instruction. The 
first stage was performed by the ALU, which generated 12 compare results for bytes, 6 
compare results for words, and one compare result for longwords. The first step for the 
second stage is to take the compares generated by the first stage and assemble the mini
mums and maximums from the A bus inputs. 

For bytes, the comparisons generated two sets of minimums and maximums; one for the 
first low 4 bytes and one for the high 4 bytes. For words and longwords, one minimum 
and maximum are selected. 

Next, these must be compared with the previously found minimums and maximums in 
the B register. This is done with partial difference circuits. The actual difference is not 
needed, just the results of the comparison. This information is then used to control a 
second multiplexer which selects the minimum and maximum from the three (bytes) or 
two (words or longwords) candidates. The results are sign extended to longwords and 
sent to the result bus. The block diagram is shown below: 

Compaq Confidential 
5 January 2001 -· Subject To Change Integer Execution Unit - the Ebox 6-25 



Multimedia Unit 

Figure 6-17 Ebox Multimedia Unit Min/Max Logic Block Diagram 

Aop Bop 

Minimum Selection Mux 

Byte Min 

mparison 

Byte Max 

omparison 

Final Max Selection Mux 

---"""""'E3A 
Pack and Sign Extend 

Result 

6.5.11 Pack, Unpack, Permute Byte 

The Pack, Unpack, and Permute Byte logic generate control signals for the Shifter 
logic. Pack must detect when word->byte or longword->word overflow. The Shifter 
logic will be commanded to saturate. Unpack must sign extend the result for signed data 
types. The Permute Byte instruction decodes the B register inputs and commands the 
Shifter Logic to reorder bytes from the A input, force zeros, force 1 's, sign extend from 
the result byte to the right, or select bytes from the high longword of the B register. 

6.5.12 Shifter 

The shifter has a horizontal bus that permits each byte to select any other byte from the 
A register, any of the 4 high bytes of the B register, or various littorals the support satu
ration, sign extension, force to ones, or force to zeros. The total bus structure and one 
byte slice are shown below: 

Compaq Confidential 
6-26 Integer Execution Unit - the Ebox 5 Jc1nuary 2001 ··· Subject To Cf1ange 



6.5.13 Delay 

Multimedia Unit 

Figure 6-18 Ebox Multimedia Unit Shifter 

l 
~ ~ ~ _y 

~ 16 Way Byte Mux 
J ~ ._ ,.-

• Result<63:56> 

[_ ~ ~ 

16 Way Byte Mux 

-----....-

I 
_y 

A<07:00> 

A<15:08> 

A<23:16> 

A<31:24> 

A<39:32> 

A<47:40> 

A<55:48> 

A<63:56> 

8<39:32> 

8<47:40> 

8<55:48> 

8<63:56> 

Sign Extend 

Saturate 

Force Ones 

Force Zeros 

J ............... 

.. . ....................... 
Result<55 :48> 

The Delay block aligns all the different instructions in time so that one result bus may 
be shared. There are 3 different busses carrying results with different timing. The result 
bus from the Tree adder is the longest latency bus. It is available to be latched on E4A 
and is sent to the result bus with no delay. The next longest delay is the result coming 
from the MINMAX logic which is available to be latched on E3A. It is delayed one 
clock and sent to the result bus. The third bus is available to be latched on E2A . It is 
delayed two clock cycles and sent to the result bus. No bypassing is performed during 
these delays. 

6.5.14 Integer Multiplier 

The integer multiplier handles the MULL, MULL/V, MULQ, MULQ/V, and UMULH 
instructions. The integer multiplier is implemented as a 2 bit Booth encoded signed 
multiply. It must support unsigned multiplies for the UMULH instruction. The block 
diagram is shown below: 

Compaq Confidential 
5 January 20()1 ··· Subject To Change Integer Execution Unit - the Ebox 6-27 



Multimedia Unit 

Figure 6-19 Ebox Multimedia Unit Integer Multiplier 
Ra In ut 

Multiplier 

2-bit Booth 
Recode Logic 

Rb Input 

Multiplicand 

Partial roduct 
Mux s (8) 

Partial Product 
Muxes (8) 

Sign 
Extend 
Logic 

CSA Array, T read 1 

Sign 
Extend 
Logic 

CSA 

Unsigned CSA 

Full Adder 

Mux 

Result 

LSB 
Logic 

The Ra inputs are encoded into 32 2 bit Booth partial products. Each Booth encoder 
looks at its own 2 bits plus one bit to the right. The three bits are encoded as shown in 
the following table. 

Code Partial Product 

000 xO 

001 xl 

010 xl 

011 x2 

100 (-l)x2 

101 (-l)xl 

110 (-l)xl 

111 xO 

Compaq Confidential 
6-28 Integer Execution Unit-the Ebox 5 Jc1mJc1ry 2001 - Subject To Change 



Debug Features 

Each partial product is created with a multiplexor the selects Ox, lx, or 2x the multipli
cand and inverted or uninverted outputs. The minus is formed by the inversion and a 
carry that is inserted in an open position in the Carry Save Adders. 

The Carry Save Adder arrays are divided into two "threads". Multiplier<! :0> , <4:5>, 
<9:8> ... partial products are summed in one thread. Multiplier <3:2>, <7:6>, <11 :10> ... 
are summed in the other. This significantly reduces the number of levels of gate propa
gation required for the final product. The two threads are summed together in two more 
ranks of CSAs. One more CSA is required to support unsigned multiplies. This also 
serves as the place to put the last carry in for the minus case of the highest order partial 
product. 

The LSB logic begins the process of propagating the carry and producing the low order 
bits of the product while the higher order bits are working their way through the CSA 
array. The Full Adder combines the sums and carries from the Carry Save Adder array 
and from the LSB logic to produce the final product. 

The multiplexor selects either the low order bits or the high order bits depending on the 
instructions that was decoded. 

6.6 Debug Features 

Debug features in the 21464 come in several flavors: 

• 
• 
• 

CYA bits to disable performance features or select simpler algorithms . 

Error detection logic to halt trap to PAL or halt trace collection 

A trace bus to collect internal state . 

There are currently no CYA bits defined for the Ebox. 

The Ebox will be able to signal a trap based on a programmable decoder in the global 
control section. A value and bitmask for pipeline, tpu, opcode and function will be com
pared to each valid instruction issued and a signal will be sent to the global debug han
dler whenever a match is detected. The decoding will not be limited to Ebox 
instructions but will not be able to detect the NOP and MB instructions retired immedi
ately by the Qbox. 

For observability, the Ebox is considering allowing collection of the following signals 
onto the debug trace bus: 

• 
• 
• 

Pipeline active flags which indicate the latency of the instruction issued to the pipe 

cbr_mispred and opx_poison status flags 

tpu, opcode, function bits for a specified pipe . 

The objective is to incorporate all debug logic into the EQ partition and take advantage 
of the fact that most interesting control wires flow over the top of the EQ partition. 

One of the most interesting problems is how to write the IPR bits necessary to control 
this logic. Some hack where the bits are actually stored in the Ibox or Mbox and cap
tured in the Ebox on an IPR read operation might make the most sence. 

Compaq Confidential 
5 J~muary 2001 -~ Subject To Change Integer Execution Unit - the Ebox 6-29 



Testability Features 

6.7 Testability Features 

The Ebox is considering a boundary SCAN based methodology for manufacturing fault 
detection. 

Scan latches would be implemented in the EQ partition where virtually all control 
inputs from the Qbox enter the Ebox. Operation of all functional elements in the Ebox 
including the register caches can be achieved through this interface. To allow deposit
ing and examination of results, the scan chains will be extended across the top of the 
Ebox through the latches that hold the operands and results flowing to and from the 
Register File. With this level of control and observability, the only major structures not 
covered would be the virtual address generation and load data interface blocks that 
interact with the Mbox. 

The current belief is that the scan-based features are adequate to test the register caches 
and BiSTengines will not be required in the Ebox. 

6.8 External Interfaces: lbox, Qbox, Pbox, Mbox, Register File, Fbox 

6.8.1 lbox 

The Ebox needs to communicate instruction flow information with the Ibox. The 
instructions that control program flow are Branches and Jumps. 

For conditional branches, the Ibox has already predicted an execution path and needs to 
be notified if it chose the wrong path. Since up to eight conditional branch instructions 
can be executed by the Ebox at once, the Ibox requires INUMs to identify which 
branches mispredicted and which predicted correctly. The Ebox does not have access to 
INUMs so it returns a set of branch mispredict flags to the Pbox. The Pbox then associ
ates the flags with INUMs and notifies the Ibox of the oldest mispredicted branch. The 
Ebox drives the mispredict flags to the Pbox exception funnel from an ElA latch in the 
EQ partition. 

The mispredict flags are not conditioned with poison so the Pbox must correctly handle 
branches that mispredict due to poisoned data. 

To speed-up the branch mispredict path, the Qbox pre-determines the oldest issued con
ditional branch and guesses it will mispredict. The Ibox prefetches the PC of this branch 
and the Ebox sends a single bit to the Ibox indicating if that branch actually mispre
dicted. If it did, we are several cycles into recovery, if not, the Ibox must wait for the 
Pbox to figure out which CBR (if any) was the oldest mispredicted branch. 

The target virtual address of a Jump instruction is sourced from register Rb. When exe
cuting a jump instruction, the Ebox forwards register Rb to the lbox for comparison 
against the predicted target PC. Since the Qbox only schedules one Jump instruction per 
cycle and only into Functional Units 4 or 5, the multiplexed weak load address bus is 
used to transmit the target address to the Ibox. The Ibox was told the jump would issue 
in Q5 and drives the return PC in time to be returned to the Ebox over the IPR_RD data 
bus in cycle E3. Return PC's from jump or unconditional branch instructions flow 
through the Ebox multimedia result path. 

Compaq Confidential 
6-30 Integer Execution Unit-the Ebox 5 Janwtry 2001 ···Subject To Cfumge 



6.8.2 Qbox 

External Interfaces: lbox, Qbox, Pbox~ Mbox, Register File, Fbox 

The Ebox also uses these paths to execute the Ibox HW _MFPR and HW _MTPR Inter
nal Processor Register (IPR) read and write instructions. IPR write data is sent on the 
weak-load address bus, IPR read data is returned with the same timing as a jump return 
PC through the IPR_RD data bus. 

The only other signals the Ebox receives directly from the Ibox are the 
KERNEL_MODE and PP _ENABLE status vectors. If a thread attempts to execute a 
privileged CALL_PAL instruction when its KERNEL_MODE bit is not set, the Ebox 
will report an illegal instruction exception. If a thread attempts to execute any floating 
point instruction when the PP _ENABLE bit is not set, the Ebox will report an illegal 
instruction exception. These signals lack a timing specifier because the pipeline must be 
flushed before the bits can change. Because of the flush, the signal is stable for many 
cycles before the next instruction reaches the Ebox. 

Instructions are passed to the Ebox from the Qbox. With each valid instruction, the 
Qbox sends most of the original instruction longword, source and dest operand pointers 
and some control information. Exception information is the only information the Ebox 
returns to the Qbox. 

Instruction information like opcode and function code is sent to the Ebox through the 
payload array in the Qbox. The opcode bits are transmitted in tact, but the rest of the 
original instruction longword is packed based the instruction format. For CALL_PAL 
instructions, the upper 11 bits of the 26-bit function code are ORed together and packed 
into the 16-bit info field. 

Table 6-15 Instruction Information From the Qbox to the Ebox 

Format 

Memory 

Branch/Jump 

Operate 

Floating 

RS/RC 

CALL_PAL 

MFPR/MTPR 

Field Instruction Bits INST_INFO 

Displacement I Function 15:0 15:0 

None None None 

Literal & Function 20:5 15:0 

Function 15:5 10:0 

Function + Intr_flag 15: 1, intr_flag 15:1, 0 

PALcode Function OR(25: 15), 14:0 15, 14:0 

Index & Class Pal, 24:21, 3:0, 11:5 15, 14: 11, 10:7, 6:0 

The data is read out of the Qbox payload in cycle Q4B, transmitted to the Ebox from a 
Q5A latch and received by the Ebox in an EYA latch for decoding. 

Since the operand data for an instruction can be found on result busses, in the register 
cache or in the main register file, the Ebox needs to determine where the source data is 
located. The operand steering unit in the Ebox keeps track of instruction results and 
generates the control signals necessary to drive the correct source operand select lines. 
The Ebox compares the instruction source operand pointers to the destination pointers 
from the recently issued instructions. A match is a bypass or register cache read, a miss 
is a register file access. 

Compaq Confidential 
5 January 2001 - Subject To Change Integer Execution Unit - the Ebox 6-31 



External Interfaces: lbox, Qbox, Pbox, Mbox, Register File, Fbox 

6.8.3 Pbox 

6.8.4 Mbox 

The thread processor unit is needed by the Ebox to select the correct IPR bits. The 
Mbox provides a per-TPU copy of the B_ENDIAN IPR bit to the Ebox for use when 
computing byte shifts or when generating memory addresses. The Ibox drives a per
TPU copy of the KERNEL_MODE and FP _ENABLE context bits for use decoding 
illegal instructions. The thread processor unit is a one-hot structure indicating the thread 
associated with this instruction. If no thread ID bits are set, the pipe is defined to be 
inactive. 

The PAL_MODE bit is used to report illegal (due to insufficient privilege) instruction 
errors only, it does not effect Ebox processing of instructions. See the exception han
dling section for more information on Ebox exception processing. 

The Pbox handles prioritization and notification of conditional branch mispredict infor
mation to the Ibox. After issuing a set of instructions, the Qbox speculates the oldest 
issued branch will mispredict. True or False, the Pbox must still scan the mispredict 
vector for any other branches that missed. The conditional branch mispredict signals 
sent to the Pbox are not conditioned with poison. The Pbox exception logic must ignore 
all exceptions resulting from poisoned operands as neither the Ebox or Fbox factor poi
son into any exception reporting. 

The Ebox interface to the Mbox is primarily used to resolve instructions that reference 
or manipulate the memory system. 

The load path is a super tight timing path. The Ebox needs to computes the virtual 
address and send it to the Mbox. The Mbox then accesses the Dcache and returns the 
data to the Ebox all within three cycles. The goal is for the Ebox to compute the address 
early in cycle EOA and begin transmitting it to the Mbox. The assumption is that trans
mission delay will account for most of EOB and that the Mbox will latch the address 
and begin processing in ElA. The Ebox intends to create adders specially tuned for the 
16-bit displacement-add. 

The 21464 architecture limits the parallelism to no more than three load type instruc
tions, two store type instructions and a maximum of four memory instructions total per 
cycle. The load data arrives in the Ebox late in cycle E2B and the Ebox will drive store 
data early in E2A expecting the data will be available in the Mbox by the end of cycle 
E2. 

For STx_C instructions, the lock flag must be returned to the Ebox and stored in the 
destination register. The Mbox will bubble STx_C instructions and drive this flag in 
cycle E2B relative to the bubble. 

IPR writes will be performed through the LD/ST interfaces to the Mbox. For Ibox 
HW _MTRP instructions the Ebox will send the data (Rb) as the address on the weak
load address port in cycle EOB and the Mbox will forward the data along to the Ibox. 
Mbox HW _MTPR instructions will issue to the strong-load pipes and can issue up to 
two per cycle. All HW _MFPR reads issue to the weak-load pipes, one per cycle. Both 
the Ibox and Mbox return data on the IPR_RD bus in cycle E3A. 

Compaq Confidential 
6-32 Integer Execution Unit - the Ebox 5 Janwiry 2001 - Subject To Cfumge 



External Interfaces: lbox, Qbox, Pbox~ Mbox, Register File, Fbox 

The Ebox drives the pipe 0 (PO) signals from partition EA, the Pl signals from partition 
EB and the P2 and P3 signals alternately from partitions EC and ED. The P2 and P3 
signals are therefore outputs of the EY partition indicating there were multiple driving 
partitions in the Ebox. 

6.8.5 Register File 

6.8.6 Fbox 

6.8.7 Global 

The Register File sources operands that are not currently in the register cache. Each 
instruction issued can take up to two operands and eight instructions can be issued at 
once for a total of 16 operands per cycle. 

Because of the way CMOV instructions are split into two instructions, each operand is 
actually 66 bits instead of the expected 64 bits; one extra bit is used to store the interme
diate result for CMOV instructions. In addition to the CMOV condition bit, poison sta
tus is stored in the register file with the data. Poison is only sent to and received from 
the Ebox. 

Although the Ebox bas more than eight functional units and instructions can complete 
in different amounts of time, the register caches equalize the instruction latencies so no 
more than eight results will ever be generated to the Register File in any given cycle. 

The Ebox and Fbox directly exchange data relating to floating store, ltoF, and FtoI 
operations. For floating store operations, the Fbox sources the store data whenever the 
operand is resident in the Fbox register caches. Since the Ebox owns the final multi
plexing of store data to the Mbox, it is responsible for forwarding floating store data 
located in the register file through the same datapaths used to send integer store data. 
This eliminates the need to route the store pipe operand from the Register File to the 
Fbox. 

FtoI operations work just like floating stores to the Fbox. Instead of sending the data to 
the Mbox, the Ebox pushes the value back through the multi-media result busses into 
the Ebox register cache. FtoI format conversion is handled by the same logic that con
verts floating store data sent to memory. 

ItoF data is format converted by the Ebox and sent to the Fbox register caches. The data 
is also pushed back through the multi-media result busses, into the Ebox register caches 
and eventually to the register file. This is necessary since the Fbox does not have a 
result path back to the main register file for these functional units. 

The intention is to clock the Ebox primarily off GCLK+2. Minimal thought has been 
put into reset requirements and there have minimal discussions about test requirements 
for the Ebox. 

Compaq Confidential 
5 January 2001 --· Subject To Change Integer Execution Unit - the Ebox 6-33 



IPRs 

6.9 IPRs 

The Ebox needs access to three IPR fields. The B_ENDIAN bit of the Mbox VA_CTL 
IPR and the KERNEL_MODE and FP _ENABLE fields of the Ibox Process Context 
IPR. 

The B_ENDIAN bit is used by the Ebox in computing the virtual address for load and 
store instructions as well controlling the byte extract, insert and mask instructions. The 
Mbox will supply a per-TPU vector shadowing the committed state. 

The KERNEL_MODE field is used to detect threads with insufficient privilege to exe
cute a CALL_PAL instruction and flag these instructions as illegal. The Ibox will 
decode the current process context IPR and drive a per-TPU structure that shadows the 
committed state. 

The FP _ENABLE field is used to force a trap whenever a floating-point instruction is 
executed. Software uses this bit during process context switches to detect the need to 
save or restore the floating-point registers. 

6.10 Exceptions 

The Ebox reports instruction status back to the Qbox for each executing pipeline. Prior
itization, reporting and any other exception based actions are left to the Qbox. In gen
eral the Ebox does not stall or take any special action in the presence of an exception 
event. 

There are several types of exceptions reported by the Ebox: 

Table 6-16 Exceptions Reported by the Ebox 

Exception 

EQ%ADD_OVERFLOW _ElA_H<7:0> 

Ep%MUL_OVERFLOW _E4A_H 

EQ%ILLEGAL_INST_E1A_H<7:0> 

Ep%Px_BAD_ VA_ALIGN_E1A_H 

Ep%Px_LD_PAR_ERROR_E4A_H 

EQ%CBR_MISPREDICT_E1A_H<7:0> 

EQ%0P{A,B }_POISON_E1A_H<7:0> 

EQ%DRAINT_INST_E1A_H<5:4> 
EQ%MTFPCR_INST_ElA_H<5:4> 

Description 

Integer add/subtract operation overflowed 

Integer multiply operation overflowed 

Illegal opcode or function code issued 

Address Alignment error 

A parity error was detected on a memory load from the Dcache. 

Branch prediction was incorrect 

The operand to this instruction was poisoned 

An IFETCHB or a non-PAL-mode MT_FPCR instruction was 
issued to the pipe. 

The Ebox also decodes each instruction and detects the cases where exception status is 
either known or guaranteed to be available early and the instruction can be retired early. 
If late status can occur, like with MULL/V or many Fbox instructions, the Qbox must 
delay retirement. Early retirement frees-up resources in the Qbox allowing more 
instructions to enter the queue earlier. 

Compaq Confide11tial 
6-34 Integer Execution Unit - the Ebox 5 Jc1nw~ry 2001 ·- Subject To Change 



Poisoned Data 

There are two classes of illegal instructions, reserved opcode/function combinations 
and insufficient privilege. The Ebox decodes the following cases as reserved opcode 
exceptions: 

Table 6-17 Ebox Reserved Opcode Exceptions 

Opcode 

00 

01 -06 

07 

14 

15 

16 

17 

lC 

19,lB,lD,lE,lF 

20-27 

Function 

00 - 3F and not in Kernel Mode 40 - 7F > BF 

All 

Codes not defined by SIMD FP extension 
All when FP _ENABLE is not set. 

Codes not defined in SRM V7.0 
Codes 14.xx8 through 14.xxF when FP _ENABLE is not set. 

All when FP _ENABLE is not set. 

Code<5:4> = 012 OR Code<8:5> = 11012 
All when FP _ENABLE is not set. 

All when FP _ENABLE is not set. 

Codes not defined in SRM V7.0 or the 21464MVI extensions 

All when not in PAL mode 

All when FP _ENABLE is not set. 

The Fbox exception information although more complex, is also driven in cycle E4 
(F4). Multiplexing E and F box exceptions is a task left to the P/Qbox. 

6.11 Poisoned Data 

Poisoned is the term given to a value that is the product of a load-miss. 

With each load operation, the Mbox returns a status bit indicating if the address hit in 
the cache or a queue. Data returned for operations that do not 'hit' is garbage and care 
must be taken to ensure that this data does not alter program state. The method used is 
to tag each data word with a poison bit. Poison is contagious so any future product of 
poisoned data is also poisoned. This includes instruction results, CBR mispredict sig
nals, load addresses, store data, target PCs of jump instructions, etc. 

Eventually, all instructions issued in the shadow of a load miss will be replayed and the 
results of those instructions will be overwritten in the register file. Poisoning store data 
and load addresses protects bad data from entering the memory system and factoring 
poison into jump addresses or CBR mispredict signals prevents the predictors in the 
Ibox from training against false data. 

To the Ebox, maintaining poison state simply involves ORing the poison status bits 
from the instruction inputs. The process is complicated slightly because the poison sta
tus bit is returned from the Mbox later than the load data, but it is still early enough to 
catch-up to any inflight instruction. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Integer Execution Unit - the Ebox 6-35 



Format Conversions 

6.12 Format Conversions 

Traditionally the only type of data formatting the Ebox handled with was sign or zero 
extension of data loaded from memory. In the 21464, the Mbox performs the sign/zero 
extensions, but the Fbox does not have a path to the register file for data loaded from 
memory, so the Ebox must handle conversion of floating-point load data. The recently 
added FTOI and ITOF instructions also define data format conversions. These instruc
tions allow for direct movement of data between Integer and Floating-point registers. 

Table 6-18 Ebox/Fbox/Mbox Data Conversion Matrix 

SRC DST Description 

Mbox Ebox Integer Loads 

Mbox Fbox Floating Load 

Eb ox Mb ox Integer Store 

Fbox Mbox Floating Store 

Eb ox Fbox ITOF Instruction 

Fbox Ebox FTOI Instruction 

Compaq Confidential 
6-36 Integer Execution Unit - the Ebox 5 Jc1nw1ry 2001 -·Subject To Change 



7 
Register File 

Although the Alpha architecture only defines 64 registers, the 21464 is a multi
threaded, out-of-order machine that requires many more than just 64 registers to keep 
its pipelines full. The four independent threads require 64 registers each and an addi
tional 256 temporary registers are used to rename registers of inflight instructions to 
eliminate write-after read and write-after-write conflicts. At 65 bits per entry, 512-
entries totals to a 4KB register file. 

Eight parallel execution units can consume up to 16 source operands and can produce 
up to eight results per cycle. Although implementing 32K 'not-so-little' ram cells with 
16 read and 8 write ports each is not trivial, defining a register file with fewer than 16 
read or 8 write ports would create many other problems. The Qbox would either be 
forced to issue instructions based on the number of operands needed from the register 
file, or trap whenever the set of issued instructions needed more than the available 
number of ports. Brute force was deemed preferable to further complicating instruction 
picking or sacrificing performance to traps so the current Register File has a full 16 
read and 8 write ports. 

Internally, the Register File is structured as two iden ical 512-entry register groups each 
with eight read and eight write ports. Each group services half the operands needed. 
Coherency is maintained by writing both groups at the same time. To keep the physical 
structures more controllable, each group is further partitioned into two 256-entry banks 
where the high-order address bit serves as a bank select. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Register File 7-1 



Test Structures 

Figure 7-1 Register File Block Diagram 
0 64 ..-=0.__ __ ----=6__,,4 r-=0,___ __ --=6-=.5 

BANK 0 

256 entries 
x 65 bits 

Result 
Select 

<I) 
"'O 
c: 

x !!! 
0 Q) 
.0 c.. 
UJO 

BANK 1 

256 entries 
x 65 bits 

BANK 2 

256 entries 
x 65 bits 

<I) 
"'O 
c: 

x !!! 
0 Q) 
.0 c.. 
UJ 0 

0 64 

BANK 3 

256 entries 
x 65 bits 

Fbox Results 

Fbox Operan s 

7.1 Test Structures 

7.1.1 Timing 

Cycle mnemonics are used throughout this document to identify the relative timing of 
signals. The following table identifies the cycle relationships assumed by this docu-
ment. 

Qbox Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 
Reg. File 
Ebox 
Fbox 
Mbox 

RO Rl R2 R3 R4 RS R6 R7 R8 Rw Rl 
EO El E2 E3 E4 
FO Fl F2 F3 F4 

MO Ml M2 

Each cycle is further subdivided into two phases, the first half of a cycle is the 'A' 
phase; the second half of a cycle is the 'B' phase. A timing specification RlA refers to 
the first phase of cycle Rl. 

All timing references in this spec refer to the latch that launched the data, when signif
icant transit time may be involved, that time or an expected arrival time will be sepa
rately stated. 

Compaq Confidential 
7-:2. Register File 5 J<1nw1ry 2001 ~-Subject To Change 



External Interfaces 

7.1.2 Read Timing 

Table 7-1 shows the Register File read timing. 

Table 7-1 Register File Read Timing 

QS 
Q4 Q5 Q6 Q7 EO 

Q3 RO R1 R2 R3 FO 

B A B A B A B A B A 

Lookup Drive Source 
Qbox src Pointers 

Registry Decode Read Bank Drive to Ebox & 
File Mux Fbox 

Bypass Execute 
Ebox Op bus 

Bypass Execute 
Fbox Op bus 

7.1.3 Write/Read Timing 

Table 7-2 shows the Register File write/read timing. 

Table 7-2 Register File Write/Read Timing 

Q13 Q13 
R9 Rw R1 R2 
E4 E5 E6 E7 
F4 F5 F6 F7 R3 

A l B A B A 8 A B A B 

Internally distrib- Decode/ Write Decode Read Bank Drive to Ebox & 
Registry ute mux & write Mux Mux Fbox 
File control 

Drive Results Bypass 
Ebox Op bus 

Drive Results Bypass 
Fbox Op bus 

7.2 External Interfaces 

7.2.1 Qbox to Register File Interface 

The Register File is controlled completely by the Qbox. As soon as the set of instruc
tions to execute next is known, the Qbox sends the set of source operand pointers and 
the Register File begins the lookup process. Since there are often situations where fewer 

Compaq Confidential 
5 January 2001 ·- Subject To Change Register File 7-3 



External Interfaces 

than eight instructions are picked, some of the instructions need fewer than two oper
ands or some of the operands map to architectural registers R31 or F3 l, a valid bit is 
also passed with each source operand pointer. Operand source pointers and valid flags 
are driven from a Q4A latch in the Qbox, spend a cycle in transit and are received by 
the Register File in an Rl A latch. 

Most instructions that issue eventually return result to the Register File. The Qbox sup
plies a set of destination physical register numbers so the Register File knows where to 
write results. The Register File must also know 'if' it should write a result. When fewer 
than eight instructions are issued or instructions are issued that either do not write a 
result or write registers R31 or F3 l, the Register File must be prevented from trashing 
valid physical register contents. A valid bit is also provided with each destination 
pointer to disable updates. 

To kick-off the decoding as early as possible, the Register File needs the write control 
information before the actual result data. The Qbox sends the write control signals from 
a Q5A latch; a cycle is spent in transit before being received by the Register File into an 
R2A latch. The Register File then pipes the data along for seven cycles before decod
ing for the write. Placing the FIFO in the Register File was convenient for the Qbox 
and allows the Register File to push the distribution delay back into the FIFO stages. 

The Register File receives separate result busses from the Ebox and Fbox and merges 
them into a common result stream since the instruction picking and result caching guar
antees that there are no conflicts. The Qbox supplies a control bit for each of the four 
Fbox result pipelines that are shared with Ebox results to indicate which result is valid. 
This bit is sent with the other write control information from a Q5A latch. Since the 
Register File can do no wrong, there is no need for any status or return information. 

7.2.2 Ebox to Register File Interface 

The Ebox has eight execution pipes; each pipe requires two input operands and pro
duces a single result. The operand and result vectors are directly mapped such that the 
A operand for picker N is simply the Ebox_OPA[N] and the B operand is 
Ebox_ OPB [N]. 

7 .2.3 Fbox to Register File Interface 

The Fbox only has four execution pipelines corresponding to pickers 0, 1, 2 and 3. The 
Fbox also has store pipes on pickers 4 and 5, but the Ebox forwards floating-store data 
to the Mbox whenever the operand is in the Register File eliminating the need to for
ward the extra two operands to the Fbox. The Register File latches the corresponding 
Ebox operands and sends them to the Fbox from an R3A latch. 

7.2.4 Global Register File Interface 

The intention is to clock the Register File primarily off MAC+2. Minimal thought has 
been put into reset requirements. 

Compaq Confidential 
7-4 Register File 5 Jc1nuc1ry 2001 ·-Subject To Change 



8 
Floating-Point Execution Units - the Fbox 

The Fbox executes all Alpha floating-point instructions, in addition to the new paired 
single-precision instructions. It receives instructions from the Qbox via the Ebox, and 
operands from the Register File, the Load Data buses (up to three), or its own Register 
Caches. The Fbox returns floating-point results to the Register File and floating-point 
store data to the Mbox, again via the Ebox. The Fbox returns exception information to 
the Qbox. 

The Fbox is organized as four identical clusters, each cluster consisting of one execu
tion pipeline. The four pipelines, referred as F _PO, F _Pl, F _P2, and F _P3, allow up to 
four floating-point operate instructions to be issued each cycle. Two copies of a register 
cache - one for each set of two pipelines, are included to allow the results of recently 
completed instructions to be used with minimal delay. Each pipeline contains the func
tional units needed to execute the various floating-point instructions. The functional 
units, their latencies, and the instructions they execute are shown in Table 8-1. Figure 
8-1 shows a high-level Fbox block diagram. 

Table 8-1 Fbox Pipeline Functional Units, Instructions, and Latencies 

Functional Unit Instructions Latency 

Graphics ADD: F_GAD Paired SP except PMUL, PARCPL, and PARSQRT 4 cycles 

Graphics MUL : F _GML Paired SP MUL type instructions: PMUL, 
PARCPL, PARSQRT 

Mull Unit : F _MUL MUL 

Divider : F _DIV DIV 

Square root : F _SQR SQRT 

Add pipe 1 : F _APl ADD,SUB,CMP 

Add pipe 2: F _AP2 ADD/SUB (align>l), CVTff, CVTfq, CVTqf, 
CVTql, CVTlq 

Short pipe : F _SHP CPYSx, FCMOV, FBxx 

3 cycles 

3 cycles 

13 cycles - double precision 
8 cycles - single precision 

33 cycles - double precision 
18 cycles - single precision 

3 cycles 

3 cycles 

1 cycle 

Special operands (Zeros, Denormal OPD, NANs, 3 cycles 
INF,RES.OPD),INPUT EXCEPTIONS, 
Mx_FPCR 

Compaq Confidential 
5 January 2001 -~ Subject To Change Floating-Point Execution Units - the Fbox 8-1 



NOTE: The F _SHP unit can supply a result for CPYSx, FCMOV, and FBxx 
instructions in one cycle. This pipeline is also used to compute results for 
all non-finite operands such as Denormals, NaNs, Infinity as well as zero 
operands. The F _SHP pipeline also detects all input exceptions and sup
plies the appropriate result. 

Figure 8-1 Fbox Organization 

Cluster 0 
F_PO PO_OP[1:0]<64:0> Pl_OP[1:0]<64:0> 

Cluster 3 
F_P3 

~ 

~ 

: 
: 
~ 

~ 
: 

RF _RD [7:4 ]<64:0> _..... J~ .... 

RF_ WR[3:0]<64:0> 
....... 
~_DAT[1]<63:0> .. 

~ 
~_DAT[2:1]<63:0> _I! 
.... _i 

~ 

~-DAT[0]<63:0> I!' I 
~ 
~DAT[0]<63:0> 

...... 

RF _RD [3:0]<64:0> 
....... _..,,,.. 

F_SQR --'"1 
~ 

F_GAD ---+ 
~ 

F_DIV -. ~ 
F _MUL/F _GML___. : 
F_APl ___.. ~ 
F_AP2 --Joo • ~ 
F_SHP 

~ I: (+FPCR) 

:I! 
xclstr30[2:0]<64:0> 

~ t._ t._ xclstr03[2:0]<64:0> 

_Ij _£_ _£_ 

1 J! 
~~ . ~ t• ~ 

REGISTER CACHE 14- 14-

.. ~ • .4 ~· ~ J! 

~ -£ ·~ 
xclstr2 !l2:Q1<64:0> 

xclstrl2fl:Q]_<64:0> 
~ ~ ~ J!j 

F_SHP ~ ~ 

F_AP2 
--Joo 

~ ~ 
F_APl --+ ~ 
F _MUL/F _GML ~ ~ 
F_DIV -. ~ 
F_GAD ~ ~ 

F_SQR ~ ~ 

F_Pl 

Cluster 1 

Pl_OP[l :0]<64:0> 

Compaq Confidential 

~~ 

_i 

1 

F_SQR --+ 

F_GAD --+ 

F_DIV ~ 

F_MUL/F_GML--to 

F_APl --Joo 

F_AP2 --Joo • 
F_SHP 

~ (+FPCR) 

_ij ..£. JI 

_Ij _L .. ..-1 

1 
~~ ,. ... y~ ~ 

REGISTER CACHE I+ 

~~ ... .4 ~· ~ 

~~ 
~ ~ ~ 
'!.... "!.... ~ 

~ 

F_SHP ___.. : 
F_AP2 

--+ • ~ 
F_APl --+ : 
F_MUL/F_GML --to : 
F_DIV ~ ~ 
F_GAD --+ ~ 

F_SQR --Joo i,. 

F_P2 

Cluster 2 

P2_0P[1:0]<64:0> 

8-2 Floating-Point Execution Units - the Fbox 5 Januc1ry 2001 ~ Subject To Change 



Major Sections 

8.1 Major Sections 

The Fbox consists of an interface section and four pipelines organized as four clusters. 
Each of the pipelines has several functional units. The following sections describe each 
of these units and the last section describes the instruction flows for each of the float
ing-point instructions. 

8.2 Interface Section 

The Interface section is responsible for communications between the Fbox and the rest 
of the chip, and for internal communications between the four Fbox pipelines and two 
register caches. 

8.2.1 External Interface 

The Fbox Interface can receive incoming operand data from the Register File or the 
Mbox, and instructions from the Qbox, both of which it transmits to any of four Fbox 
pipelines (F _PO, F _Pl, F _P2, & F _P3). The instructions and load operands from the 
Mbox are piped through the Ebox before reaching the Fbox. The interface is sub
divided into the following three subsections: 

• Register Cache (F _RGC) - contains staging logic and static ram which latch and 
hold recently generated result data of the Fbox pipelines as well as copies of incom..; 
ing floating point loads. The result data is eventually dispatched to the Register 
File. However, this result and load data can be used in subsequent floating point 
operations without incurring the transit time delay in returning data from the Regis
ter File. 

• 

• 

Operand Steering Unit (F _OSU) - performs comparisons against incoming Physi
cal Register (Preg) numbers to determine the source of input operands to the Fbox 
pipelines. 

Interface Control (F _INT) - performs a partial decode of opcode, function code and 
thread processor unit (tpu) to determine if a valid floating-point instruction has 
been issued. It also contains logic which allows direct access to internal operand 
buses from Register File operand buses, and logic to dispatch floating point store 
data to the Ebox from either result data of Fbox pipelines F _PO and F _Pl, or from 
the register cache. 

8.2.2 Qbox Timing to Fbox 

Floating-point instructions are issued by the Qbox, which transmits the opcode, func
tion code, thread select information, and source and destination physical register num
bers to the Fbox Interface. The Preg numbers go to the Operand Steering Unit (OSU) 
to control operand bypassing and reads from the register cache. The thread select infor
mation controls updates of the Floating-Point Control Registers (FPCR), and is used to 
determine if a valid instruction has been issued by the Interface Control. Source Preg 
numbers are transmitted from the Qbox to the Ebox in Q4 (same as FW), are latched 
and travel through the Ebox in Q5 (FX), reach the Fbox and are latched in Q6 (FY), to 
begin comparisons in the F _ OSU in that B phase. The destination Preg numbers are dis
patched by the Qbox a cycle later in Q5, travel through the Ebox in Q6, and are latched 
in the F _OSU in Q7 (FZ). The opcode, function code, and thread select information 

Compaq Confidential 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-3 



Interface Section 

leave the Qbox in cycle Q5 and travel through the Ebox to be latched near the Fbox in 
cycle Q6 (FY). This allows approximately 1 1/2 cycles for internal Fbox routing and 
decoding prior to execution in cycle FO. 

The Fbox vcu returns exception information back to the Qbox. The Fbox VCU returns 
branch mispredict signals in FOB, to arrive at Pbox in F2A. 

The following diagram illustrates the timing of the Fbox pipelines. Tables describing 
the Fbox /Qbox interfaces are also shown. 

8.2.3 Fbox Pipeline Timing 

Table 8-2 shows the operation of a single Fbox pipe with all operands coming from the 

Table 8-2 Operation of a Single Fbox Pipe - all Operands From Register File 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 

Q5 Q6 QO Ql Q2 Q3 Q4 Q5 Q6 

Rl R2 R3 RW Rl R2 R3 

EO El E2 E3 E4 EO El 

FX FY FZ FO Fl F2 F3 XMT FO Fl 

MO Ml M2 

SRC OPC RF Fbox EXECU'IE RES RES 
PREG INFO DATA TORF BACK 

Register File. 

8.2.4 Register File/Operand Bus 

Input operands for issued floating-point instructions can be supplied without delay from 
another functional unit in the same pipe, with a one cycle delay from a functional unit 
in another cluster, from the register cache, or from the Register File. The Register File 
supplies up to eight operands per cycle, corresponding to the maximum issue rate of 
four floating-point instructions per cycle. Up to four results are returned to the Register 
File per cycle, one for each Fbox pipe. 

Operands from the Register File are input to the Fbox pipelines on differential, low
swing, operand buses. These busses are also used for bypassing results from other 
functional units within the same cluster, results from other clusters, and incoming load 
data. They are also used to transfer operands to the functional units from the register 
cache. 

The operand buses begin evaluation at the start of the B-phase (FZB). The rising edge 
of clock at the start of the following A-phase is used to sense the differential data on the 
operand bus, while the operand buses pre-charge in the same A-phase in preparation for 
a new transaction in the following B-phase. Source operands from either the register 
cache or the Register File must be valid at the input to the Fbox pipelines by phase R3B 
(FZB ), one phase before instruction execution begins in FOA. The output result buses 
are sent back to the Register File early in phase F4A. 

Compaq Confidential 
8-4 Floating-Point Execution Units - the Fbox 5 Jc1nuary 2001 m Subject To Change 



Interface Section 

8.2.5 Loads/Stores to/from Fbox 

Fbox doesn't have direct access to store or load data moving to and from the memory 
hierarchy and the Register File. The Ebox is responsible transmitting floating-point 
load data to the Fbox from Mbox. The Mbox is expected to re-align the load such that 
the sign bit and exponent are contained in the most significant byte of the data quad
word for VAX style floating point formats, as is already the case for IEEE style formats. 
The only portion of the floating point format the Fbox is responsible for is extending 
the eight bit exponent of single precision data to eleven bits. Three dedicated load bus
ses are used to transfer up to three loads to the Fbox each cycle. The load data can be 
bypassed directly onto the operand buses, and they are also written to the register cache 
for later use. Floating point load operands are generated and transmitted to the Fbox 
with a four cycle latency, one cycle longer than for the Ebox, and arrive near the Fbox 
Interface at the beginning of phase F3A, to complete formatting for a potential bypass 
to an internal operand bus in phase F3B. 

When a load misses in the cache or the Mbox queue, the data returned to the Fbox is not 
correct, and the operation using the load data itself is retried at a later time when the 
load data is ready. To insure that the load data as a result of miss does not corrupt rest of 
the processor state, the Mbox supplies a bit called poison bit a few gate delays after the 
load data. This poison state for floating point loads is maintained in the Ebox. The log
ical state of the poison bit in a resulting operation is maintained by a logical OR of the 
poison bits of both input operands. 

If the source of floating-point store data originates from the Fbox, it is forwarded to the 
Ebox, which is responsible for formatting the store data and transmitting it to the Mbox. 
The Fbox can deliver up to two store results per cycle, each on a dedicated bus. Each 
store bus can source data directly from the result buses of one of the four Fbox pipes, 
either F _PO or F _Pl, or the register cache. A previous result from any of the four Fbox 
pipes or three floating-point load pipes located in the register cache can be the data 
source on either store bus. There are also direct connections between the load and store 
buses in the Fbox. A floating-point load that is the source operand for a store the fol
lowing cycle is allowable without first having to access the register cache. 

The floating point store data buses are driven to the Ebox in FOA. 

The Ebox dispatches the data for integer-to-floating-point convert instructions [ITOFx] 
to the Fbox as if it were a floating-point load, over the weak load data bus. Fbox is 
responsible sign extension of the exponent as in the case of a normal floating-point load 
operation, before use in the Fbox pipelines. Ebox is responsible for sign extension of 
the exponent before transmitting ItoF data to the Register File. The Qbox can issue 
only a single ItoF instruction per cycle. 

Floating-point-to-integer (FtoI) convert instructions [FTOix] operate in a similar man
ner to floating-point stores. Two FtoI instructions can be issued per cycle by the Qbox, 
and only in place of stores. Therefore, Ebox asserts control information to Fbox to indi
cate a floating-point store, whether it is a store or a FtoI instruction, and the Fbox Inter
face is not aware of the distinction. As with stores, Ebox is responsible for conversion 
of the data. 

Compaq Confidential 
5 January 2001 -· Subject To Change Floating-Point Execution Units - the Fbox 8-5 



Interface Section 

Table 8-3 shows a timing diagram for load data. 

Table 8-3 Timing for Load Data 

Cycle 1 2 3 4 5 6 7 8 9 10 

Q5 Q6 QO Ql Q2 Q3 Q4 Q5 Q6 

EO El E2 EO El 

FOLD Fl F2 F3 FO Fl 

MO Ml M2 

OPC RF OPC LOAD Floating-point instruction using LD data 
INFO DATA INFO DATA 

Table 8-4 Pipeline Stages of Fbox Register Cache 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 

Q5 Q6 Q7 QS Q9 QO Ql Q2 Q3 Q4 Q5 Q6 Q7 QS 

Rl R2 R3 R4 R5 R6 R7 RS R9 Rwrt Rl R2 R3 R4 

EX EY EZ EO El E2 E3 E4 E5 E6 E7 ES EZ EO 

FX FY FZ FO Fl F2 F3 F4 F5 F6 F7 F8 FZ FO 

Frgc lCyc Latency Byp Stgl Stg2 Stg3 Stg4/ Rel Rc2 Rc3 Rc4 RgFl Byp 
Stages RcO 

3Cyc Latency Byp Stg3 Stg4/ Rel Rc2 Rc3 Rc4 RgFl Byp 
RcO 

4Cyc Latency Byp Stg4/ Rel Rc2 Rc3 Rc4 RgFl Byp 
RcO 

8.2.6 Register Cache {F _RGC) 

The Fbox Register Cache is used to store local copies of recent results from all four 
Fbox pipes, as well as incoming loads forwarded from the Ebox. The stored data can be 
used as source operands in subsequent floating-point operations without waiting for the 
data to traverse the round trip to and from the Register File. The register cache is subdi
vided into two separate structures. First the staging logic is used to equalize the cycle 
latency of the result data to match the longest execution time of the functional units in 
the Fbox pipes. The execution times of the functional units in each Fbox pipe are one, 
three, and four cycles, with a result bus required for each different latency. The staging 
logic serializes the results from three data buses to one after four cycles. This single 
result is forwarded to the Register File and to the static RAM, the final data structure of 
the Register Cache. There are seven sets of staging logic in each copy of the Register 
Cache, one set for each of four Fbox pipes and three floating-point load pipes. A single 
SRAM structure per copy of the Register Cache is organized physically into an array of 
35 rows or entries, each 65 bits wide, consisting of 64 data bits and a single predicate 
bit for the FCMOVx instructions. Logically the SRAM is organized into seven banks 
of five entries each for the four Fbox pipelines and three floating load pipelines. 

Compaq Confidential 
8-6 Floating-Point Execution Units - the Fbox 5 Jc1mJc1ry 2001 ··· Subject To Change 



Interface Section 

The Register Cache will hold result data for a window in time that varies from five to 
eight clock cycles, depending on the execution time of the floating-point operation. 
After this the result data is available in the Register File and it is dropped from the Reg
ister Cache. Floating-point load data is held in the Register Cache for five cycles. 

There are two copies of the register cache, one each for two pipes (or clusters) in the 
Fbox. Each copy of the register cache is an exact duplicate of the other. The staging 
logic in the register cache consists of level sensitive d-type latches and 2-to-1 multi
plexers. It can be viewed logically as a shift register, with the ability to transfer result 
data from each stage to the internal operand buses for use in subsequent operations. 
Each entry in the SRAM is also capable of transferring stored result data to the operand 
bus. The result of a floating-point operation with a one cycle execution time in an Fbox 
pipe must be latched and held in the Register Cache for eight cycles until the result data 
is available in the Register File, as shown in the timing diagram above. The staging 
logic holds this result for four cycles (Stgl, Stg2, Stg3, and Stg4), and the SRAM holds 
the result for five cycles (RcO, Rel, Rc2, Rc3, and Rc4), with one overlapping stage 
between the staging logic and the SRAM (Stg4 and RcO). This A-phase latch in the 
staging logic is used chiefly to hold the result data valid to ensure it is written success
fully to the SRAM, but it also helps alleviate a critical timing path. In the event that 
result data is accessed or read from the Register Cache the same cycle it is written into 
the SRAM, the hold latch in the staging logic is used to transfer the result to the oper
and bus instead of the SRAM. This prevents a read after write access to the same 
SRAM entry within a single cycle. 

The result of a three cycle floating-point operation is held in the Register Cache for six 
cycles before it is dropped, two cycles in the staging logic (Stg3 and Stg4), and again 
five cycle in the SRAM, with one overlapping stage. A result of a four cycle flop is 
held in the Register Cache for five cycles, which is also the case for floating-point load 
data. 

Figure 2 is a diagram of one copy of a Fbox Register Cache. Each of the four Fbox 
pipelines can produce a maximum of three results per cycle, one for each flop execution 
latency, plus up to three floating-point loads must be stored each cycle. Therefore, each 
copy of the Register Cache must latch and hold up to fifteen results and loads per cycle. 
Since this data first enters the staging logic, which serializes the data to one result from 
each of seven pipes, the SRAM receiving this data requires only a single write port, 
though seven separate inputs. 

Each Register Cache can source up to five operands, requiring five read ports in both 
the SRAM and staging logic. The pair of Fbox pipelines associated with each Register 
Cache copy require two operands each for a total of four, while the fifth read port 
sources one of two floating-point store buses driven to the Ebox. Each Register Cache 
independently supplies store data, thereby supporting two floating-point stores per 
cycle. 

Register Cache entries are read in the B-phase, and they directly drive the operand bus 
in the same phase. Writes occur in the A-phase of the cycle immediately following the 
arrival of the results from the functional units (also driven during the B-phase). 
Because results from each pipe are written into both copies of the register cache, the 
register cache serves as the transfer point for cross-cluster data between pipes (clusters) 
in the Fbox. A one-cycle delay penalty is imposed for bypassing results of one cluster 
to any other cluster. 

Compaq Confidentia I 
5 January 2001 -~ Subject To Change Floating-Point Execution Units - the Fbox 8-7 



Interface Section 

Figure 8-2 Register Cache 
PO PO 

PO P3 OP OP 
RESULTS RESULTS A B 

: P3 
1Staging 
: Logic 

.______.___.,I _I_ LL -' 
I PO 
: Staging 
1 Logic 
I 

I 
I 
I 
I 
I 

1-1-1--

-1-1- I 

I 
I 
I 

4 3 1 
CYCLE CYCLE CYCLE OP 

r - - - - - - - - - - 9~ - _ST -
I 

I 

SEL 
1 

4 

1-1-1-
ST_DATAO ... -•-----------+--+---+-+-+----
t8-8~t~--::---.----+----1-+--__, .......... +---

WR_DATA 

Staging Logic 

OP ST 
OP 

RF-WRO "": ..... 1------+---+-----1 
RF:::WR1 ... ~1-----+---+-----+---1 

SRAM 
7 Banks 

35 entries 

WR WR WR WR RD (5 ports} 

5 • : ~·~ ~ ~ 
---~-- -------1--1--,-1-1-1-1-1-

5 4 I-·~ .. ------ -------1--1--,-1-1- 1-1-

5 • I ~·~ •• -------------- -~-,-1-1-1-1-1-

5 ~ 1 • H n 
------r-------~---,-l-1- 1-1-
5 • I f~ ~ •• 
------ ---------r-1-1-1-1-1-1-

5 ~ I ··~ •• ------ -------r-t--1-1-1-1-1-1-

5 • I ··~ •• 
IY!_R WR ~R RF_WR2 ~ 

RF _WR3 ... :::1------1------+---1 

~:::8~~~-~~---~----t--t--------e-+---
-1----1-1-1-1-1-
1 I 

I P1 I 

:staging : 
: Logic : 

.----!--'__,-JI : -H -I J 

,--- -1--1-1-1 

: P2 : 
1Staging 1 

:_Lm--"" _: 
P1 P2 P1 P1 

RESULTS RESULTS OP OP 
A B 

8.2.7 The Operand Steering Unit (F _OSU) 

The structure of the Operand Steering Unit is analogous to the register cache described 
above. It consists of a ten-bit control datapath which stores the destination Physical 
Register (Preg) numbers, and is organized into shift registers that feed into a content 
addressable memory (CAM). This corresponds to the staging logic and static ram of 
the register cache. There are two copies of the OSU, one for each copy of the Register 
Cache. Each copy of the OSU contains seven sets of shift registers, one set for each of 
four Fbox pipes or three floating-point load pipes. Each set of OSU shift registers con
trolling read access to a set of staging logic in the Register Cache for an Fbox pipe con
tains four stages of registers, and in some cases a fifth stage to handle local bypasses of 

Compaq Confidential 
8-8 Floating-Point Execution Units - the Fbox 5 Jc1nuc1ry 2001 m Subject To Change 



Interface Section 

result data in an Fbox pipe. These pipeline stages are named as Byp, Stgl, Stg2, Stg3, 
and Stg4 in the above timing diagram and correspond to cycles FO, Fl, F2, F3, and F4 
in the Fbox pipeline. Only two stages of shift registers are necessary for controlling the 
staging logic of a floating load pipe in the Register Cache. Each copy of the OSU also 
contains a single CAM physically organized into one array of 35 entries that are 10 bits 
wide. Logically the CAM is organized into seven banks of five entries each, one ban:k 
for each of the seven Fbox and floating-point load pipes. The structure is identical to 
the SRAM in the Register Cache. 

At each shift register stage and entry of the OSU a nine-bit exclusive or (XOR) is per
formed to compare incoming source Physical Register numbers to the stored destina
tion Preg numbers every cycle. The tenth bit or valid bit of both source and destination 
Preg numbers is logically anded to validate the comparison. Typically there are five 
XOR's per stage of shift registers or entry in the CAM, one for each read port of the 
Register Cache (the bypass stage has only three). A match in an XOR of a shift register 
stage or CAM entry of the OSU indicates that the equivalent stage of the staging logic 
or SRAM entry of the Register Cache is the source for an input operand to one of the 
Fbox pipes or store buses. As a consequence of the hit in the OSU, result or load data is 
transferred to the appropriate operand bus in the Register Cache. A hit in the XOR of 
the bypass shift register stage of the OSU indicates the source of an input operand to an 
Fbox pipe is the result of a functional unit in the same Fbox pipe. The result data is 
bypassed locally to the operand bus, without incurring any delay passing through the 
Register Cache. If there is no hit in the shift registers or CAM of the OSU, source oper
ands to the Fbox pipelines are supplied from the Register File. 

The implementation of the internal Fbox operands as low-swing differential buses con
stitute a large distributed multiplexer with connections to one Register Cache copy, two 
Fbox pipes, and a store bus. If the Qbox should issue identical destination Physical 
Register numbers too frequently, these are loaded into the F _OSU and would cause 
multiple XOR matches in this logic. The consequence of this is multiple sources driv
ing the operand buses, causing invalid data and indeterminate results in the Fbox pipe
lines. This problem must be prevented at the architectural level by ensuring the Qbox 
can issue a destination Preg number only once within a nine cycle window of time that 
it would remain in the F _OSU. In other words, once the Qbox issues a destination Preg 
number to the F _OSU, it can't be issued again for another ten cycles. 

The valid bits of source or destination Physical Register numbers have several uses in 
the F _OSU (the most significant bit). If a source Preg number is not valid in an other
wise valid floating-point operation, this indicates that architectural register F31 is 
intended as the source operand, and the internal operand bus is grounded. Should the 
Qbox issue an non-pipelined or bubble operation to an Fbox pipe such as a divide or 
square root, it is presently required to issue control information (opcode, function code, 
tpu, Pregs) to the Fbox twice, the second time once the operation is nearly completed in 
the Fbox. To ensure that the architectural constraint described above is met, the first 
time the Qbox issues an non-pipelined operation to the Fbox, the destination Preg num
ber must be invalidated. The second time the instruction for the same bubble operation 
is issued, the source Preg numbers should be invalidated. 

Compaq Confidential 
5 January 2001 ···Subject To Change Floating-Point Execution Units - the Fbox 8-9 



Interface Section 

8.2.8 Interface Control (F _INT) 

The Interface Control does a partial decode of the opcode, function code and thread 
processor unit ( tpu) passed to it each cycle by the Ebox. It performs this function to 
determine if a valid floating-point operation (flop) has been issued, and ignores any 
integer instructions that have been issued. (The Ebox indicates via separate control sig
nals to F _INT whether any floating-point loads or stores have been issued). The 
instruction decode is also used to determine the execution time of the flop, either one, 
three, or four cycles, and also to detect non-pipelined or bubble operations, such as 
floating-point divide or square root operations. 

This section also takes in control information from the F _OSU indicating whether any 
successful comparisons have occurred between source and destination Preg numbers. 
If not, data from the Register File operand buses is transferred directly to the internal 
operand buses of the Fbox. The F _INT also contains multiplexers to transfer result data 
from an Fbox pipe to the store bus in the event of a store bypass. This would be indi
cated by a match in an XOR of the bypass shift register stage of the F _OSU. Only Fbox 
pipelines F _PO and F _Pl of bypassing result data directly to a store bus. Result data 
from pipes F _P2 and F _P3 can only reach a store bus from the Register Cache, and 
incur a delay of at least one cycle from the completion of an operation. 

8.2.9 Divide and SQRT - Qbox interface 

The Divide or the Square Root units in the Fbox pipelines are not pipelined and require 
multiple cycles to finish the operation. The latencies of the operations are shown in 
Table 1. The divide unit computes the fraction result and uses the multiplier for expo
nent result and the multiplier result bus to write the results. The square root unit com
putes the fraction results and relies on the add pipe (F _AP2) to calculate the exponent 
results, final rounding, and for exception detection. For this reason, at the end of a 
square root operation, the square root unit sends the results to the F _AP2 pipeline in the 
second stage of the pipeline. After computing the final result the F _AP2 pipeline actu
ally writes the result. This also eliminates extra write ports in the register cache and 
drivers for the operand bus. 

In order to reinsert the divide or square root unit results in the Mui or add pipe, issue of 
all other instructions have to be stopped and a 'bubble' has to be created by the Qbox. 
The Qbox keeps track of the divide and square root completion and inserts the bubble 
appropriately. The following time diagrams show the relationship between done and 
bubble signals. 

It is possible to have a divide and square root to request a bubble at the same time. This 
can be seen in the timing diagrams below, by lining up a divide and square root which 
are issued at different times. This problem is solved as follows: For divides and square 
roots, the Qbox detects a collison and always delays the square root by one cycle and 

Compaq Confidential 
8-10 Floating-Point Execution Units-the Fbox 5 Jc1nuc1ry 2001 m Subject To Change 



Interface Section 

inserts two bubbles - one for divide followed by another for square root. The sequencer 
in the square root detects this condition and delays the result transfer to the F _AP2 
pipeline. 

Table 8-5 FDIV _SP (9 cycles) , FDIV _DP (14 cycles) 

FDIV in Divider .!. Drive Exceptions 

Rl R2 R3 FO Fl F2 F3 F4 FS F6 F7 t-FDIV_SP 

F2 F3 F4 F5 F6 F7 F8 F9 FlO Fll Fl2 t-FDIV_DP 

- - Ql Q2 Q3 RO Rl R2 R3 FO Fl F2 

- - - - - - - Q3 RO Rl R2 FO 

Bubble req - 1' Bubble ---1'-1'---Result Bypass 
at Qbox 

Table 8-6 FSQRT_SP (12 CYCLES), FSQRT_DP(28 CYCLES) 

Drive 
Sqrt resu It in Exceptions 

FSQRT IN SQRT Unit AP2 .i 

F6 F7 F8 F9 FlO F11 Fl2 F13 Fl4 Fl5 Fl6 Fl7 +-FSQRT_SP 

F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 +-FSQRT_DP 

- - Ql Q2 Q3 RO Rl R2 R3 FO Fl F2 F3 F4 

- - - - - - - Q3 RO Rl R2 R3 FO Fl 

IBubblereq to I-Bubble req I-Bubble Result bypass 
Qbox atQbox 

SQRT reinjected 

8.2.10 Fbox Exceptions 

The Fbox detects the following arithmetic exceptions. 

Table 8-7 Arithmetic Exceptions 

Exception Description 

Integer overflow Detected and generated for CV1FQ and CVTQL instructions. 

Invalid operation In addition to illegal operations and invalid operands, VAX reserved operands are 
included. 

Floating overflow Generated during operate instructions 

Floating Underflow Generated during operate instructions 

Inexact result Generated during operate instructions 

DIV by zero Generated by Divides, and approximate .reciprocal and square root instrcutions. 

F2 

The Ibox detects reserved opcodes and generates traps. The Ebox detects reserved val
ues in the function fields of valid Fbox opcodes and generates a RESOPC trap. 

Compaq Confidentia I 
5 January 2001 ···Subject To Change Floating-Point Execution Units - the Fbox 8-11 



Interface Section 

During the floating-point instruction execution it is possible to generate more than one 
exception. The possible multiple exceptions are Inexact with floating underflow or 
floating overflow. The graphics units can generate exceptions for each half of the result, 
including multiple exceptions on each half as mentioned before. Within the exceptions 
the input exceptions (Invalid operation, Div by zero) take precedence over output 
exceptions. 

When an exception is detected, the Fbox needs to record the exception status in the 
FPCR. These status bits are sticky bits i.e. once set only an explicit write using 
MT_FPCR can clear them The Fbox implicitly reads the status bit and requests an 
update by PALCODE only if the corresponding status bit is clear. In addition, depend
ing on the trap enables, it needs to signal traps. The trap enables can be part of the 
instruction as a qualifier or from the FPCR in the form of trap disable bits. The Fbox 
looks at the opcode and the FPCR bits to enable traps. The Fbox writes the result 
(IEEE specified non-trapping result for IEEE instructions) to the destination whether 
traps are enabled or not. Since there are four pipelines in the Fbox, at any given cycle it 
transmits exception status and traps for four instructions. The various pipelines in the 
Fbox have different latencies( 1 cycle, 3 cycles, or 4 cycles). However, the Fbox signals 
exception status and traps at one fixed point, F4 cycle of the pipeline as shown in the 
diagram. Since the Fbox processes instructions in SMT mode, up to four threads, it also 
sends back the thread ID along with the exceptions to match the trap with the instruc
tion. In addition, when a trap occurs, the software completion flag encoded in the 
opcode has to be transferred to the trap handler through the operating system. For this 
purpose it sends the 'IS' bit along with the exception information. The PALCODE cor
responding to the arithmetic exceptions also updates the IPR - EXCEPTION SUM
MARY REGISTER. The mechanism used for updating the FPCR is detailed in the 
FPCR section. 

Table 8-8 Fbox Exception Signaling Timing 

RO Rl R2 R3 

EO El E2 E3 E4 E5 

FO Fl F2 F3 F4 

OPCODE VALID vv 
RESULT BYPASS --VV --VV --VV 

lCYC 3CYC 4CYC 

EXCEPTIONS DRIVEN --VV 

The Fbox encodes the exception information, taking multiple exceptions into account 
and to signal traps as one vector exc_enc. Table 8-9 shows the legend for Table 8-10, 
which lists the various combinations: 

Compaq Confidential 
8-12 Floating-Point Execution Units - the Fbox 5 Januc1ry 2001 ·- Subject To Change 



Interface Section 

Table 8-9 FPCR Update/Floating-Point Arithmetic Trap Legend 

Symbol Meaning 

DZE Division by zero 

INE Inexact result 

INV Invalid operation 

IOV Integer overflow 

OVF Floating-point overflow 

SW Software completion flag 

UNF Floating-point underflow 

Table 8-10 Fbox Retire-Time Exception (RTE) Encodings 

Encoding Retire-Time Disruption Encoding Retire-Time Disruption 

ooxxxx No Fbox exception 100111 INVDZE 

OlXXXX FPCR Update 101000 INVUNFINE 

010000 IOVINE 101001 INVOVFINE 

010001 INV 101010 INVINE 

010110 DZE 101011 DZEUNFINE 

010011 UNFINE 101100 Reserved 

010100 OVFINE 101101 Reserved 

010101 INE 101110 UNFOVFINE 

010110 IOV INEINV 101111 Reserved 

010111 INVDZE llxxxx FP Arith Trap (SW= 1) 

011000 INVUNFINE 110000 IOVINE 

011001 INVOVFINE 110001 INV 

011010 INV INE 110110 DZE 

011011 DZEUNFINE 110011 UNFINE 

011100 Reserved 110100 OVFINE 

011101 Reserved 110101 INE 

011110 UNFOVFINE 110110 IOVINEINV 

011111 Reserved 110111 INVDZE 

lOxxxx FP Arith Trap (SW = 0) 111000 INVUNFINE 

100000 IOVINE 111001 INVOVFINE 

100001 INV 111010 INVINE 

100010 DZE 111011 DZEUNFINE 

Compaq Confidential 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-13 



Fbox Floating ... Point Control Register {FPCR) 

Table 8-10 Fbox Retire-Time Exception (RTE) Encodings (Continued) 

Encoding Retire-Time Disruption Encoding Retire-Time Disruption 

100011 UNFINE 111100 Reserved 

100100 OVFINE 111101 Reserved 

100101 INE 111110 UNFOVFINE 

100110 IOV INEINV 111111 Reserved 

8.3 Fbox Floating-Point Control Register {FPCR) 

The FPCR contains rounding information and trap disable bits used by the floating
point operate instructions, and exception status information from floating-point operate 
instructions. The FPCR is read from and written to the floating-point registers by the 
MF _FPCR and MT_FPCR instructions. In addition, all operate instructions use the 
dynamic rounding mode bits to round the results and the trap disable bits to signal traps 
when an exception is detected. The Fbox implements all bits specified by the Alpha 
architecture except the Denormal operand exception disable bit (DNOD). The Fbox 
does not implement Denormal operand processing. The FPCR format is shown below. 

Since the 21464 issues the floating-point instructions out of order, a mechanism to cor
rectly read (for both implicit and explicit readers) and write the FPCR is used. In addi
tion, in SMT mode there can be four threads with their own FPCRs. The floating-point 
instructions from each thread can be issued to any pipeline in the Fbox. In order to sup
port these features, the Fbox implements two sets (copies) of FPCRs, one for each 
group of two pipelines. Each set of FPCRs contain four FPCRs. - one FPCR per thread. 
The thread ID is used to access the correct FPCR. Each FPCR has two elements, a 
'committed state' and a 'speculative state'. In order to avoid the score boarding of the 
registers, the Fbox uses PALCODE and trap mechanism to synchronize the updates. 

8.3.1 FPCR Format 

Table 8-11 shows the format for the Floating-Point Control Register. 

Table 8-11 Floating-Point Control Register Format 

6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 0 
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 

~ ~ 
0 N :;g > ~ ~ 

U-t Ul > 0 0 0 

~ RAZ/IGN 

~ ~ ~I g ~ ~ ~ U-t Ul 

~ U'.l > N 
z 0 0 
~ 
0 

The FPCR is read and written as follows, shown in Figure 8-3: 

1. The FPCR needs to be updated for two reasons: 

a. As a result of MT_FPCR instruction. 

b. To update the status information from each operate instruction. 

Compaq Confidential 
8-14 Floating-Point Execution Units - the Fbox 5 Januc1ry 2001 ··· Subject To Change 



Fbox Floating .. Point Control Register (FPCR} 

The data in the FPCR needs to be read as a result of MF _FPCR and for the Fbox to 
use round mode information and disable bits for executing a floating-point operate 
instruction(implicit read). 

2. Whenever a MT_FPCR instruction is issues, Qbox compares the INUM of the last 
instruction that changed the FPCR(corresponding to the FPCR in the 'speculative 
register') with the INUM of the current instruction. If the current instruction is 
older then it signals 'update speculative register' and the data is written to the spec
ulative register; otherwise the data is ignored. When the MT_FPCR is retired a trap 
to PALCODE is taken where an IFETCHB instruction is executed. At this point, 
Qbox sends a 'commit FPCR' signal to the Fbox and the speculative register is cop
ied to the committed register. Whenever FPCR status update is required, the Fbox 
signals a trap to the PALCODE and supplies the exception information on exc_enc 
signals. 

3. This exc_enc information is written to the exception summary register by the hard
ware. When this trap occurs, all instructions younger than the trigger instruction are 
invalidated. The PALCO DE reads the exception summary register and executes one 
HW _MT_FPCR to write the status to FPCR as mentioned before, followed by an 
IFETCHB instruction and exits. The HW _MT_FPCR instruction is executed by the 
Fbox (in F _SHP pipeline) and the data is written to the speculative FPCR. 

4. Since the status bits (IOV, INV, DZE, OVF, UNF, INE) are sticky bits, whenever 
one of these bits need to be set, Fbox checks if the old bit is already one. If it was a 
one, Fbox does not request a trap to update the FPCR. Otherwise it transmits the 
exc_enc, the encoded exception information. This can produce up to six trap 
requests - one for each status bit for a program. Once the corresponding sticky bit 
is set, no further traps occur. The Fbox uses the speculative FPCR status informa
tion for this purpose. 

5. The Qbox sends a commit_FPCR signal to the Fbox as soon as the instruction that 
triggered the FPCR change is retired. 

6. The Fbox uses the committed FPCR DYN_RM and disable bits to round the results 
and to signal traps. 

7. The FPCR is implemented in the F _SHP units of pipelines corresponding to PO 
and P3. Whenever a MT_FPCR is executed in any of the two pipes, the second 
speculative register is copied using the cross cluster bus for the 3-cycle result. 

Compaq Confidential 
5 January 2001 - Subject To Change Floating-Point Execution Units -the Fbox 8-15 



Fbo:x Multiplier Unit - F ___ MUL and F ____ GML 

Figure 8-3 FPCR Update Mechanism 

F_PO 

xclstr03 

FPCR_ISSUE_pO 

FPCR 

ROUND MODE, 
Disable bits for 

F_PO/Pl use 

IT 

COMPARE 

upd-spec_p3 

COMMIT 
FPCR 

F_P3 

xclstr30 

FPCR 

ROUND MODE, 
Disable bits for 

F _P3/P2 use 

NEW 
STATUS 

IT 

FPCR UPDATE FPCR UPDJ\.TE 

8.4 Fbox Multiplier Unit - F _MUL and F _GML 

The floating-point multiplier executes the following instructions: 

MULF, MULG, MULT, MULS 

PMUL, PMULL, PMULH, PARCPL, PARCPLH, PARCPLL, PARSQRT, PAR
SQRTH, PARSQRTL 

8.4.1 FMUL Operation 

The 21464 FMUL is fundamentally different from previous Alpha implementations. 
Unlike previous processors, which used an odd-even array multiplier, the 21464 uses a 
Wallace tree. This one feature has many far reaching implications: 

• 3 cycle FMULs are possible 

• The array datapath is 106 bits wide 

• Radix-4 booth recode will be used instead of Radix-8 

• The least significant bits of the product are not known early . 

In phase FOA, the two source operands are read off the operand busses with sense amps. 
The B operand goes to f_mul_mpc, which does the swizzle and drives the multiplicand. 
Because radix-4 booth recoding is used, a 3x add which would normally be needed 
isn't. The swizzle is there to support PMUL instructions. Specifically the PMULL and 
PMULH instructions require that the low (or high) B operand must be used for both 

Compaq Confidential 
8-16 Floating-Point Execution Units - the Fbox 5 Jc1nw~ry 2001 ···Subject To Change 



Fbox Multiplier Unit - F ____ MUL and F ___ .GML 

multiplies. To accomplish this I potentially needed to move either the low or high oper
and to the opposite location. Also, in phase FOA, the A operand is booth recoded for 
radix 4. No swizzle is needed but a 3 bit shift is required for PMUL operations. After 
recoding, the 53 bit fraction results in booth control signals which will result in 27 par
tial products. One extra partial product is also generated which corrects for deficiencies 
in the array. (ie the array doesn't fully sign extend all partial products or add the+ 1 term 
needed for two's complement arithmetic) 

In phase FOB, Wallace compression begins. To sum up the 28 partial products 7 stages 
of CSA's are required. The quantity of CSA's for each stage are: 

Stage 1- 9 

Stage 2-6 

Stage 3-4 

Stage4-3 

Stage 5- 2 

Stage 6-1 

Stage 7 -1 

Total-26 

Both phases FOB and FlA are required for CSA stages 1-6. Stage 7 will be performed 
in phase FlB. The stage 1 CSA has some extra logic incorporated which can condition
ally force zero's into the array. This is done to support PMUL's. Ordinarily the array 
would compute: Ah*Bh<<52+Ah*Bk<29+Al*Bh<<29+Al*Bk<O 

This would be gibberish for a PMUL, but by selectively introducing zero's into the 
array the correct result can be had: Ah*Bh<<52 +Ah*0<<29 + Al*0<<29 + Al*Bl = 
Ah*Bh<<52 + Al*Bl 

Notice that Al*Bl can never result in a number that is big enough to affect the Ah*Bh 
sum which is sitting 52 bits to the left. 

Phase FlB and F2A are used for rounding. Two round adders will be built. The first 
only handles double precision multiplies. This will be the most critical. The second 
adder handles single precision multiplies, including PMULS, and an add required for 
the approximate instructions. Because a single precision add is inherently faster than 
double precision, this adder can be a degenerate copy of the double precision version. 
Having two round adders significantly simplifies the design and speeds up the hard 
double precision add. The additional area required for this scheme is approximately lK 
cdu's. These round adders differ from the 21264 in two respects. First, the carry in from 
the least significant bits of the product are not known ahead of time. Instead, they have 
to computed at the same time the add of the high bits is being done. The second compli
cation is that the sticky bit is also not known ahead of time. It's possible to compute 
sticky early but it requires a trailing zero count and an add. Because of the PMUL 
instructions this logic would be doubled. By making the round adder tolerant of a late 
sticky bit a fair amount of hardware and complexity can be saved. 

The final F2B phase is used to route the result back to the operand drivers and then 
drive the operand bus. 

Compaq Confidential 
5 Jam1~1ry 2001 ···Subject To Change Floating-Point Execution Units -the Fbox 8-17 



Fbox Add Pipeline 

Two parallel exponent additions are required prior to F2A. There is plenty of time for 
these so they don't merit further discussion. 

The approximate instructions are not handled in the main multiplier array. Instead a 
ROM is used plus 3 PP mux's and 2 CSA's. The most significant 6 bits of the source 
fraction (or for 1/sqrt, 5 fraction bits plus the lsb of exponent) are used to index into a 
64 entry ROM. Three numbers are retrieved: slope(9 bits), slope*3(10 bits), offset(l8 
bits). While the ROM lookup is happening the next less significant 8 bits of the operand 
are radix-8 booth recoded. The slope and slope*3 signals act as a multiplicand to 3 PP 
mux 's. These 3 partial products plus the offset are then compressed to 2 numbers with 
the help of 2 CSA's. The 2 number's will be muxed into the single precision round 
adder. The ROM is 64x2x2x19=4864 bits. The error of the result will be less than 1 part 
in 2Al4. 

8.5 Fbox Add Pipeline 

The Fbox ADD pipeline executes ADD, SUB, CMP, CVTXX instructions, and comple
ties the DIV and SQRT instructions. The Add pipeline is divided into two pipelines 
F _APl and F _AP2 pipelines. The F _APl pipeline is used for CMP instruction and for 
effective subtract operations with an exponent difference of 0 or 1. The F _AP2 pipeline 
executes all the other instructions. The partitioning of the add pipeline is based on the 
requirements of the effective subtract operation and is described below. 

The steps required for implementing an effective subtract operation in a straight for
ward manner follow: 

1. Find the exponent difference of the two operands to align the fractions. 

2. Align the smaller operand by shifting the smaller fraction right by the absolute dif
ference of the exponents. This alignment shift can be very large and a 54-bit shifter 
is required. 

3. Subtract the aligned operands (smaller operand from the other). The result can have 
many leading zeroes if the result is positive or leading ones if the result is negative, 
when the operands are close. 

4. Find the leading zero or the leading one position in the result to normalize. When 
the exponent difference is zero, the result of subtraction can be negative. In this 
case the position of leading zero is needed to shift left. 

5. Normalize the result by an amount indicated by the leading 1/0 position. When the 
operands are very close, many leading bits may be canceled and a large left shift 
may be required. 

6. Round the result. 

These steps can be minimized by separating the operation into two domains - 1) for 
exponent difference of 0 or l labeled 'near domain' and 2) for exponent difference 
greater than 1, labeled 'far domain'. This separation uses the following observations: 

1. In the near domain, the alignment shift is atmost 1, which can be accomplished by a 
mux. Thus, there is need for a huge alignment shifter. 

2. In the near domain, if any normalization is performed there is no need for rounding. 
The reason behind this is since the alignment is atmost 1, only the round bit(the bit 
below the LSB) can be one and when a normalization is performed this bit also 
shifts back into fraction. Hence no roundin is required. 

Compaq Confidential 
8-18 Floating-Point Execution Units-the Fbox 5 J<1nuc1ry 2001 ~·Subject To Change 



Fbox Add Pipe1 - F. ___ AP1 

3. In the far domain, the maximum normalization required is 1. Since the original 
operands are normalized(~ 1.0 for IEEE,~ 0.5 for Vax), and the aligned operand 
with a right shift~ 1 has a value< 0.5 for IEEE, a value< 0.25 for VAX, the result 
of the subtract has to be ~ 0.5 for IEEE, or ~ 0.25 for VAX. 

With those observations, the effective subtract can be performed using the following 
steps: 

Near Domain( Exp difference =0, 1) 

IN.Predict Exponent difference and align. 
Determine Leading-1/0 position using the 
input operands. 

2N.Subtract the smaller operand. 

3N.Normalize the result 

Far Domain(Exp difference> 1) 

lF. Determine exponent difference Observation 1. 

2F. Align the smaller operand 

3F. Subtract the smaller operand with rounding Observations 2,3 

In step lN above, the least two significant bits of the exponent are used to predict the 
exponent difference of 0 or 1. If the actual exponent difference turns out to be > 1, the 
far domain computes the result. 

After step 2N, the most significant bit of the result can be used to determine if normal
ization is required. By observation 2 above, if no normalization is required, rounding 
may be necessary; in this case we can switch to step 3F. If normalization is required 
there is no need for rounding and the operation can be completed in step 3 N. 

With the above principles, the F _APl implements the 'near domain' and F _AP2 imple
ments the 'far domain' .Since the COMPARE instruction is similar to an effective sub
tract with exponent difference of 0, it is implemented in the F _APl pipe. The far 
domain pipe (F _AP2) implements all the other instructions. 

8.6 Fbox Add Pipe1 - F _AP1 

The Fbox add pipe is a 3-cycle pipe. F _APl is used for the effective subtract (Ediff = 
0,1 case) and for the compare instructions. The data into the add pipe is assumed to be 
binary vectors coming from the register file, register cache, or from the other pipes, etc. 
The input operands are always assumed to be non-zero. 

The F _APl pipe does not handle the cases when one or both the operands is a true zero, 
NaN, infinity or denormal or when it sees reserved operands or dirty zeros. The short 
pipe handles these exceptions. The output latch that drives the F _APl result bus is dis
abled in these cases. The add pipe also does not do rounding. Addition is done in an 
earlier stage taking advantage of the fact that rounding is not required for Ediff =0, or 
Ediff =1 with normalization. The control is transferred to F _AP2 if normalization is not 
required and rounding may or may not be required. 

The add pipe F _APl has a fraction data path, exponent data path and control. The frac
tion data path is 55 bits wide, including the sign bit, hidden bit and the round bit. The 
exponent data path is 11 bits wide. 

Fig 1 shows the basic outline of the addpipe F _Ap 1 and the main functional blocks, 
namely, Ediff Predict, LXD, LXS, LXE, Adder, left shifter, compare_blk, and exponent 
adder, and the underflow detect. A more detailed version of the block diagram is also 
available. 

Compaq Confidentia I 
5 January 2001 -~Subject To Change Floating-Point Execution Units - the Fbox 8-19 



Fbox: Add Pipe1 - F ___ ,AP1 

Two least significant bits of the exponent are used in 'Ediff predict' to determine if the 
exponentl is equal to, less than, or greater than exponent2. This data is used as control 
signals to select the vectors A and B from the fractions Fl, F2, Fl/2, and F2/2. The frac
tion adder does effective subtract on the two vectors A and B. The leading 1/0 in A-B 
vector is partly detected in LXD, which determines all the l's in the vector. LXS com
pletes the leading 1(0) detect operation by doing a strip of all l 's(O's) except the first 
1(0) from the output of LXD and drives the shifter control that normalizes the output of 
the adder. The output of LXS, in other words, the normalization amount is encoded 
into a 6-bit vector (ELXD). ELXD is later subtracted from the result exponent (Er). 
This operation is done in the exponent adder, the output of which is the final exponent. 

Compare instructions for A=l<=I< B are handled by the compare_blk which examines 
the signs, exponents and the fractions (in that order). In the event that the vectors A and 
B have the same sign and exponent, the difference fracA-fracB is examined to generate 
the compare results. 

Underflow detection is done in two stages namely threshold and unf_detect. Threshold 
determines if there is an underflow or not, or if there is a possibility of having an under
flow. In the case of a possible underflow, Unf_ctrll and Unf_ctrl2 produce the neces
sary controls that select the appropriate fraction and exponent. 

Compaq Confidential 
8-20 Floating-Point Execution Units - the Fbox 5 Jc1nuc1ry 2001 -· Subject To Change 



Fbox Add Pipe1 - F ____ AP1 

Figure 8-4 F _API Block Diagram 

Fl F2 

Ea eq/ It/ gt/ Eb 

A 

LXD 

----------- -------------------------------- _EractiQJl._ ---------------------------

LXS 

Left 
Shifter 

Adder 

B-A 

FRI 

Compare 

fap2% 
ea 

eq/lt/gt Sign 
eb opdl 

opd2 

ELXD F 
R 

Exponent 
adder 

FS FSR 

FOUT 

8.6.1 Operation 

8.6.1.0.1 Phase FOA 

Opd1 
eq/ltlle 
Opd2 

EOUT UNF SIGN 

The operands are passed through differential sense amplifiers in this phase. The sense 
amps are assumed to be B latches followed by A latches. Hence the data is read from 
the sense amps after the rising edge of the clock with some delay due to the sense amps. 
We are assuming that the sense amps will introduce a delay of 300 ps. The output of the 

Compaq Confidential 
5 January 2001 -· Subject To Change Floating-Point Execution Units - the Fbox 8-21 



Fbox Add Pipe1 - F ___ .AP1 

sense amps is a 52 bit vector to which the round bit is concatenated at the LSB position. 
The two 53 bit vectors, one for operand fa and the other for operand fb are sent to the 
multiplexer which selects either fa, fa/2, fb or fb/2. The select lines of the multiplexer 
come from the ediff predict unit. Ediff predict is a 2 bit predict logic that uses bits 0 and 
1 of the exponent to determine whether ea = eb, ea > eb or ea < eb. 

Table 8-12 Exponent Difference Estimation 

Ea<1 :0> Eb<1:0> Potential Exponent Difference Fraction Operation Performed1 

00 00 0 Fa-Fb 

00 01 -1 Fb-Fa/2 

00 10 >1 x 
00 11 +1 Fa-Fb/2 

01 00 +1 Fa-Fb/2 

01 01 0 Fa-Fb 

01 10 -1 Fb-Fa/2 

01 11 >1 x 
10 00 >1 x 
10 01 +1 Fa-Fb/2 

10 10 0 Fa-Fb 

10 11 -1 Fb-Fa/2 

11 00 -1 Fb-Fa/2 

11 01 >1 x 
11 10 +1 Fa-Fb/2 

11 11 0 Fa-Fb 

1 Fa and Fb are the fraction parts of operands. 

The outputs of the mux are sent to LXD and the Adder in the next phase along with the 
hidden and the sign bits. 

8.6.1.0.2 Phase FOB 

LXD is the leading 1/0 detect logic. It does t_apl_ml %A-f_apl_ml %Band does lead
ing 1/0 detect. It generates a vector with a 'l' in the ;eft most position corresponding to 
the leading 1 and possibly several l's to the right. These spurious l's to the right of the 
leading 1 are stripped in LXS. LXD is needed to know the number of bits we need to 
shift the result of the effective subtract for normalization. Leading 1 detect is needed if 
f_apl_ml %A-f_apl_ml %B >0 and leading 0 is needed if f_apl_ml %A-f_apl_ml %B 
<0. 

Compaq Confidential 
8-22 Floating-Point Execution Units - the Fbox 5 Januc1ry 2001 - Subject To Change 



Fbox Add Pipe1 - F ____ AP1 

The Adder for effective subtract and compare instructions is started off in the same 
phase as LXD. The adder (FAD) performs A-Band B-A based on the following logic 
equations: 

F_AP1_M1%A - F_AP1_M1%B = F_AP1_M1%A + - F_AP1_Ml%B + 1 

F _AP1_M1%B - F _APl_M1%A = F _AP1_M1%B + - F _AP1_M1%A + 1 

- ( F_APl_Ml%A + - F_AP1_M1%B + 0) 

8.6.1.0.3 Phase F1 A 

LXS is the leading 1/0 strip logic. It keeps only the 1st 'l' and strips all the rest of the 
'l's from the leading 1 detect's output. This will be used to directly drive the shifter 
control lines. Input to the LXS is the output of LXD with some modifications to the 
round bit. Since it is possible to have an LXD output without any l's in the case of zero 
result that occurs in ea = eb, we modify the round bit as follows. If ea_eq_eb is true, the 
round bit which is the LSB is forced to a logic high. Otherwise, the original bit value of 
R bit is maintained. This ensures that LXS will never produce an all zero result which is 
necessary for the shifter control lines. 

Remaining part of the addition in the Adder block too is completed in this phase. One 
of the outputs of the adder is selected in this phase by the mux M2. A-B is selected if 
the adder result is positive or if the ediff predict predicted that ea lteb or ea_gt_eb. But 
on the other hand, if ea= eb, then there is the possiblity that the adder result is negative, 
in which case we need to select the B-A result. 

The output of the mux M2 is checked to see the hidden bit. If the hidden bit is a '1 ', it 
indicates that normalization is not required. This signal is sent to the add pipe FAP _2. 
Once it gets this signal, it does rounding if necessary and drives the output bus. FAP _l 
does not drive the output bus in this case. 

The mux M3 selects the correct exponent, ea or eb. Logic equations for M3: 

F_apl_m3%Exp f_apl_sa%ea if f_apl_sa%ea 

f_apl_sa%eb if f_apl_sa%ea 

f_apl_sa%eb >= 0 

f_apl_sa%eb < 0 

For normalizing the adder result, the Left shifter shifts it by the number of bit positions 
indicated in the output of LXS 

LXE encodes the LXS result into 6 bits. The encoded LXS is used by the exponent 
adder to generate the final exponent. 

8.6.1.0.4 Phase F1 B 

The exponent adder is used to generate result exponent and result exponent+ 1. The 
exponent adder used here is a 13 bit exponent adder. The 13th bit in the MS B position is 
'O' and is added to the exponent 'exp' to keep track of overflow and sign. The extra 6 
MSB bits added to the elxd are also all zeros. 

F_apl_ead%Res_exp f_apl_m3%exp - f_apl_lxe%elxd 

F_apl_ead%Res_exppl= f_apl_m3%exp - f_apl_lxe%elxd + 1 

Res_exppl is the result exponent+ 1. This is used when a right shift is done on the left
shifter output to correct the over-estimated LXD. 

Compaq Confidential 
5 January 2001 -· Subject To Change Floating-Point Execution Units - the Fbox 8-23 



Fbox Add Pipe1 - F .... AP1 

The compare_blk is used to execute the compare instructions. It looks at the signs of 
the two operands, their exponents and the sign of the adder fraction result, in this order. 
Depending on which compare instruction is to be executed, it will determine if a = or < 
or> b. Each of the compare conditions are calculated as follows: 

F _apl %Cmp_eq = 
F _apl %Cmp__gt = 
F _apl %Cmp_lt = 

'1' if ((sa=sb) & (ea=eb) and (fa=fb)) 
'1' if ((sa='O' & sb=' l ')I (sa=sb & ea>eb) I (sa=sb & ea=eb & fa> fb)) 

'1' if ((sa='l' & sb='O') I (sa=sb & ea<eb) I (sa=sb & ea=eb & fa< fb)) 

The compare instruction decision flow is hsown in the following figure. AZ/BZ indi
cate A/Bis zero, AN/BN indicate sign of A/B. 

Figure 8-5 CMP Instruction Logic 

OPA=AOPB 

OPA=OPB 
IEEE, +/-0 are 

equal 

AZ=BZ=1 

OPA > OPB, FN=1 
OPA < OPB, FN=O 

OPA > OPB, AN=O 
OPA < OPB, AN=1 

OPA > OPB, EN=1 
OPA< OPB, EN=O 

Sign-detect detects the sign of the result. The logic equations for sign-detect follows: 

Sign = (((ea> eb) & sign of opd a) or ((ea< eb) & sign of opd b) or ((ea= eb) & sign of fraction difference)) 

Compaq Confidential 
8-24 Floating-Point Execution Units - the Fbox 5 Jc1nu,1ry 2001 m Subject To Cf1ange 



Fbox Add Pipe1 - F .... AP1 

8.6.1.0.5 Phase F2A 

The output of LXD may be off by 1 bit. Hence the output of the left shifter may have to 
be shifted right by one bit position for the overestimate in the LXD. F _apl_ls%FS_ * 
represents the adder result left shifted by what LXD and LXS indicated. 
F _apl_ls%FSR_ * is f_apl_ls%FS_ *right shifted by one bit position. One of these 
two vectors are selected by the mux M4 and one of the vectors, res_exp or res_exppl 
are selected by the mux M5 as follows: 

F _apl_ls%FS<54> (bit AO)= 'O' Fraction output= F _apl_ls%FS; 

F _apl_ls%FS<54> (bit AO) = '1' 

Exponent output= F _apl_ead%res_exp 

Fraction output= F _apl_ls%FSR; 

Exponent output= F _apl_ead%res_exp + 1 

The underflow detect is done in two stages, namely threshold and unf_detect: 

• Threshold looks at the result exponent from the previous phase and the data type, 
for example S ,T,G or F and by doing range checking, will determine if there is a 
definite underflow, definite no underflow, or a predicted underflow. 

• Unf_detect on the other hand determines if there is an underflow if threshold has 
indicated a predicted underflow. It does so based on the following equations:-

Underflow occurs if: 

• Threshold gave a definite underflow, or 

• Threshold gave a predicted underflow & fraction result != 0 & bit AO of fraction =0 

UNFl = def_unf or (pred_unf & FS != 0 & FS<54> or AO = '0') 

UNF2 = def_unf or (pred_unf & FSR != 0 & FSR<54> or AO = '0') 

No underflow occurs if : 

• 
• 
• 

Threshold gave a definite no underflow, or 

Threshold gave a predicted underflow & bit AO of fraction =1, or 

Threshold gave a predicted underflow & fraction result = 0 

NO_UNFl = def_nounf or ( pred_unf & FS = 0) or (pred_unf & FS<54>or AO=' 1 ') 

NO_UNF2 = def_nounf or ( pred_unf & FSR = 0) or (pred_unf & FSR<54>or AO=' 1 ') 

Mux M4 selects one of the two fraction results, FS or FSR as given in the following 
equations: 

FOUT = FS if AO = '0' 

= FSR if AO = '1' 

= 0 if LXS_H<O> ='1' (zero detect) or 

UNFl or UNF2 

Similarly, 

EOUT = exp - elxd if AO ='0' 

= exp - elxd + 1 if AO ='1' 

Compaq Confidentia I 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-25 



Fbox Add Pipe2 - F ___ .AP2 

= 0 if LXS_H<O>= '1' (zero detect} or 

UNFl or UNF2 

The sign, exponent and fraction outputs are all zeros if there is an underflow or if the 
input operands are equal. Otherwise the sign, exponent and fraction results are driven 
out on the output bus in phase F2B. 

8.6.1.0.6 Phase F2B 

This is the output bypass phase. The outputs are driven on the result or the operand bus 
at the beginning of this phase. 

8.7 Fbox Add Pipe2- F _AP2 

F _AP2 is responsible for eff.ADD, eff.SUB with ediff>l, CVTLQ/QL, CVTqf, CVTff 
and CVTfq. In the case of eff. SUB with ediff=l and no normalization happening, 
rounding is required because there is one bit shifted out of the datapth and wasn't 
brought back by normalization. Therefore, we need to account for that bit not in datap
ath by rounding. Since F _APl doesn't have round adder, F _AP2 will output the result 
instead of F _APl. In this case, F _APl will send a signal to F _AP2. The exponent and 
rounding of DIV/SQRT will also be handled by F _AP2. Multiplier handles its own 
rounding and exponent. The latency of F _AP2 pipeline is three cycles. The datapath 
can be divided into 3 sections: fraction, exponent, and control. Fraction dateapath is 64 
-bit plus R bit and exponent datapath is 12-bit. At top, the data is driven by sense amps 
which are fired by the rising edge of fclk. 

In the case of unary instructions, OPB is used and OPA is ignored. Special operands are 
handled by F _SP. 

The following sections describe the operation of F _AP2. 

8.7.1 Cycle 1 Operation 

8.7.1.1 Fraction: 

Floating-point operands : 1 bit Sgn; 11 bit Exp; 52 bit Frac. -->Sign goes to control 
section; Exp goes to Exp datapath. 

Fraction part is droped into [B01.. .. B52] bit by bit. 

[BOO] is hidden 1 and [AlO .. AOO] are forced 0. 

Integer operands : 64 bit -->The operand is passed as [A10 .. B52] 

This transformation happens in "format_a" and "format_b". OPB can be signed- magni
tude floating-point numbers or 64 bit 2's complement numbers. OPA is always a float
ing-point number in signed magnitude format. They are transformed, according to data 
type and op code, to fit into fraction datapath. The interpretation of datapath format 
depends on op code. Note that for IEEE, hidden 1 is located at AOO. Exponent datapath 
doesn't need to do anything for this because the 1 will go back to AOO eventually. For 
eff. Sub, the result out of round adder will be either O.lxxx or O.Olxxx, which are differ
ent from 1.xxx and O.lxxx for eff. Add. To simplify rounding overflow detection and 
exp calculation, both eff. SUB operands are always shifted left by 1 to align with eff. 
Add. This is done here too. Note that Exp needs to take these situations into account. 

Compaq Confidential 
8-26 Floating-Point Execution Units - the Fbox 5 Jc1nwtry 2001 - Subject To Change 



Fbox Add Pipe2 - F. ___ AP2 

For CVTQL, bits<31 :30> is copied to bits<34:33>. Later, shifter left shifts the operand 
by 29 bits. For CVTLQ, <63:62> are moved to <60,59> and <63:62> are sign 
extended(by copying <63> to <62> ). Later, shifter right shift the operand by 29 bits. 

For D-floating, fraction is moved right by 3 bits and chopped. Bits 1and0 are lost for D 
format. 

SHF _MUX and PASS_MUX are used to determine which operand will be sent to 
shifter. In the cases of CVTxx, OPB is selected by default. For ADD/SUB, the fraction 
of the smaller operand is sent to shifter for alignment. The larger operand is sent to 
Rounding CSA in Fl A. Since Ediff>=l is always true, the result of round adder is 
always positive. Therefore, we don't need magnitude comparator here. The control sig
nal to both MUXes is EN, which is the sign of Ea-Eb. SHF _MUX also handles the first 
step of negation. If the instruction is effective SUB or CVTQf/CVTfQ with a negative 
operand, the operand will be inverted bitwise before shifting. However, we still need to 
add 1 to LSB to complete 2's complement. This is done by the help of TRZ and the one 
is combined with sticky bit. For instance, a number to be negated is shifted right by 10 
bits. There are 10 bits out of datapath and a 1 need to be added at B52+10, which 
doesn't exist in datapath. However, for the 1 to be propagated to B52 inside datapath, all 
10 bits shifted out must be all 1 's. Otherwise the 1 will be killed somewhere and 
ignored. Therefore, to see a 1 coming in at B52, TRZ must be larger than 10. Although 
the 1 for 2's complement can be killed, it may still change sticky bit. 

The output of SHF _MUX is sent to Lo_mux and Hi_mux controlled by shf_setup. 
These cells will setup for left shift or right shift. The shifter needs a 128-bit operand. In 
the case of a left shift, the operand is sent to LO_ word with HI_word filled with 0 or 1. 
In the case of a right shift, the operand is sent to HI_ word with LO_ word filled with 0 
or 1. Left/Righ shift is determined by the sign of elxd. The filling of extension word is 
determined by instructions shown as following. 

Table 8-13 Filing of Extension Word for F _AP2 Instructions 

Hi_ Word Lo_Word 

Add 0 operand -- Rsh only 

Sub 1 -operand -- Rsh only 

CVTQF(Rsh,posQ) 0 operand 

CVTQF(Rsh,negQ) 0 -operand -- operand is inverted if neg 

CVTQF(Lsh,posQ) operand 

CVTQF(Lsh,negQ) 1 -operand 

CVTFQ(Lsh,posF) 0 operand 

CVTFQ(Lsh,negF) 1 -operand Sign ext 

CVTFQ(Lsh,posF) operand 0 

CVTFQ(Lsh,negF) -operand 1 

Compaq Confidentia I 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-27 



Fbox Add Pipe2 - F ___ .AP2 

Table 8-13 Filing of Extension Word for F _AP2 Instructions 

CVTLQ(Rsh) 

CVTQL(Lsh) 

CVTFF 

Sign_ext operand 

operand 0 

Note: The inversion of operand is done by SHF _MUX 

TRZE(A) and TRZE(B) counts and encodes the number of trailing zeros in A and B 
respectively. It's also possible to save one encoder by putting TRZ_mux before encoder. 
TRZ_mux pick the eTRZ of the smaller operand, which is to be used to calculate sticky 
bit. It may be useful to do TRZ on B_bar for 2's complement negation. TRZ_MUX is 
also controlled by EN. CVTQF _FLE detects the position of leading 0/1 for CVTQF 
only. It strips all lower order 1 's or O's and leaves only the leading 0/1 in output like 
LXS. Physically, the stripping is done in encoded domain so that encoding and strip
ping are done in one step. The output is then decoded to control shifter. For detailed 
description of shifter control, see 2.2. If leading one is in [B53 .. BO], the encoded output 
is (53 .. 0). If leading one is in [AO .. A9], the output is encoded as (-01..-10) for exponent 
calculation. The sign also indicates the direction of shifting. 

FLE will also detect if there is a 1 in the upper LW, whcih will cause an integer over
flow in CVTQL. 

Note the calculation of the sticky bit needs 3 elements : etrz, ediff or elxd, and a con
stant. This will be explained later. 

8.7.1.2 Exponent 

8.7.1.3 Control 

In the first phase, in order to compute absolute value of exponent difference(ediff), two 
11-bit adders calculate Ea-Eb and Eb-Ea concurrently. On top of the adders, muxes are 
used to force value of Ea and Eb for specific instructions. The results of adders deter
mine which fraction to shift and exact_ediff. The sign of Eb-Ea and exact_ediff>l is 
sent to F _APl because F _APl doesn't have the adders. Ediff is used to determine shift 
amount of Add/Sub alignment, calculate sticky bit, and control many muxes. 

In the second phase, if F _AP2 will handle exponents for DIV /SQRT, their expo
nents(Eb-Ea) will be frozen in a latch, div/sqrt frz, and wait until the fraction part is 
almost done. ermux_l picks a constant for certain instructions like CVTQF. SHR_3 is 
forCVTDG. 

Er_mux determine the result to be used in final exponent calculation. In the case of eff. 
ADD/SUB, the exponent of larger operand is picked. For DIV/SQRT, the exponent is 
from DIV/SQRT frz. For CVTxx instructions, a constant is supplied. 

Exp_mux chooses among Constants, Ea-Eb, and Eb-Ea for the ediff to be used in driv
ing shifter and sticky bit calculation. Since ediff is encoded, it needs to be decoded 
before driving the shifter. The decoding is done in 2 steps here but this may change 
with physical implementation. 

CVT_mux, CSA&CASC-LAT, and PGK is the first step of sticky bit calculation. To 
calculate sticky bit, 3 numbers are involved: etrz, ediff (elxd, in the case of CVTQF), 
and a constant specified by instruction. Ediff/elxd selection is done by CVT_mux. Then 

Compaq Confidential 
8-28 Floating-Point Execution Units - the Fbox 5 Jc1nwiry 2001 -· Subject To Change 



Fbox Add Pipe2 - F ____ AP2 

a CSA reduce 3 numbers to 2 numbers so they can be used to drive PGK. To save time, 
CSA is combined with a cascode header to work as a latch. The width of this datapath 
is 6-bit. 

8.7.2 Cycle 2 Operation 

8.7 .2.1 Fraction 

L/R shifter handles the alignment for ADD/SUB and normalization for CVTxx instruc
tions. For alignments, it is always a right shift. For normalizations, both left and right 
shifts are possible. To handle all conditions fast, both operand and control are arranged 
accordingly before the clock edge. Therefore, we can squeeze in the rounding CSA in 
F2A. There are 65 control lines which are also arranged specifically for different 
instructions. The 65 control lines are coded as 00-64. The shifter works as a 65-1 mux. 
00 selects A10-B53 of INPUT_LOW; 01 selects B52 of INPUT_HI and A10-B52 of 
INPUT_LOW; 02 selects B51-B52 of INPUT_HI and A10-B51 of INPUT_LOW, and 
so forth. In the case of CVTQF, if leading one is in [A9 .. AO] (AlO is sign), shifter sets 
up to do right shift and LXD(A9 .. AO) is mapped to control lines (01..10). For leading 
one's in [BOO .. B53], shifter sets up to do left shift and LXD(B53 .. BO) is mapped to 
control lines (11 .. 64) respectively. For alignments, shifter sets up for right shift only. 
Ediff(00 .. 63) is mapped to control lines (0 .. 63). 

Rounding CSA compresses two operands and sticky bit and rounding constant to 2 
operands for PGK. Note the sticky bit is only one bit, so we can encode more informai
ton into this number. Say STICKY=l and another 1 is required for negation, STICKY is 
forced to be 2 (lOb). For different data format, the 1 of 2's complement and the sticky 
bit need to be inserted in different bit position. Round Adder starts in F2B and takes 
one cycle. 

8.7.2.2 Exponent/Control 

Exponent adder calculates ( er,er+ 1) for eff. Add and ( er,er-1) for eff. Sub. The selection 
is based on AO and BO of round_adder result. 

Threshold logic is to detect conditions which may become overflow or underflow by 
the result of rounding adder. In other words, it detects if the instruction is on the verge 
of OVF/UNF. It is basically a ROM taking inputs from Exp_adder and Op_code 
decoder. Note that in register file, all single precision exponents are extended to fit into 
double precision fields by adding 896d=380h. 

OVF/UNF Detect is tightly coupled with Threshold logic to detect definite OVF/UNF 
conditions and force exponents to Emin or Emax accordingly. 

The sticky bit calculation is done in Fl A with the following equations: 

eff. sub & fs 

eff. sub & gt 

eff. add & fs 
eff. add & gt 

cvtfq &-en 

s= etrz - (edif+27) < 0 

s= etrz - (edif -2) < 0 

s= etrz - (edif +28) < 0 
s= etrz - (edif -1) < 0 
s= etrz - (edif -1) < 0 right shift 

Compaq Confidentia I 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-29 



Fbox Add Pipe2 - F ___ .AP2 

cvtqf & FS 

cvtqf & gt 

cvtts 

cvtfq & en 

s= etrz - (29-elxd) < 0 [53 - elxd - etrz >24 or 53] 

s= etrz - (-elxd) < 0 

s= etrz - (edif+28) < 0 

s= etrz - (edif+63) < 0 left shift 

Note thats is a Boolean function, so we only need a carry chain here to determine sign. 
The exact sum is unnecessary. 

8.7.3 Cycle 3 Operation 

8.7 .3.1 Fraction 

Round Adder takes 3/4 cycle to complete. Logic is built into the adder to detect poten
tial overflow/underflow. Fraction mux handles possible one bit shift of fraction and 
pick the right exponent and merge it into 64-bit datapath for output. There is a special 
caese for F _AP2 to handle. For ediff=l, it's possible that there is no need for normal
ization and thus rounding is necessary. Since F _APl has no rounding capability, the 
rounding is done in F _AP2. 

In F3B, F _AP2 drives operand buses. 

8.7 .3.2 Exponent/Control 

If exponent has the potential to ovf /unf, one of the exponent is forced to Emax/Emin. 

Compaq Confidential 
8-30 Floating-Point Execution Units - the Fbox 5 Jc1nuary 2001 ··· Subject To Change 



Fbox Short Pipe - F ___ .SHP 

Figure 8-6 F _AP2 Block Diagram 
OPA<0:63~- l OPB<0:63> 

l i 
:y-

I I I I l 
Format Format FLE ~ Mllx 

TRZ_A TRZ_A 
.l A B 

ED ED~ 
1 11 l_ _! ELXD<0:6> Ea-~b Eb-~ 

11- [ EfRZ Constants J l rrl<0,5> EfRZ<0:5> 
EDIFF2<0:~ Shifter Pass 

MUX MUX Ed.iffMUX J 
DIV/SQRT 

OP_S 
EDIFF<0:5> + HF<0:61 L le ~ 

OP_PASS<0:52l_ ElxdMUX ] 

L Shifter Setup l Div/Sqrt 
MUX l comtant 

~ _y. l_j , l_ .... rY' 
Exponent result 

MUX 
..... Shifter 

* Left/Right 
.....-

Control Sticky ..:i:. 
Shifter Logic 

l<:>P _APAS<0:63> 
Exponent Adder 

H<0:631 STKY 

_.f 
OP_AS 

Rounding CSA 

:I :_y: l_ 

Overflow 
Rounding Adder Underflow 

Detection 

EXP<52:62> 

FRAC<0:63~ I 
Exponent Fraction format J 

.+ 

8.8 Fbox Short Pipe - F _SHP 

The short pipeline F _SHP implements single cycle latency instructions FCMOVxx, 
CPYSx, and FBRxx instructions. It also implements special or unusual operand han
dling and FPCR in two of the pipelines. These operations have full 3- cycle latency. The 
F _SHP also supplies rounding information to other pipelines and functional units from 
the instruction and the FPCR. It collects all the exception information and communi
cates exception information to the Qbox. The F _SHP mainly consists of three distinct 
sections, sharing instruction decode and output drivers but little else. 

Compaq Confidential 
5 January 2001 -· Subject To Change Floating-Point Execution Units - the Fbox 8-31 



Fbox Short Pipe - F_ ___ SHP 

8.8.1 Short Instructions 

These ten instructions require little processing - in six cases a zero compare and in the 
remaining four just selection of operand bits via a mux. 

They could be executed in a single cycle, but wiring constraints 1 may favour a three 
cycle unit. Any performance impact of this is likely to be dominated by FCMOVxx 
latency - as FCMOVxx is the most commonly used of the short instructions and 
FCMOVxx passes through the F _SHP twice, so lengthening the pipe adds four cycles 
to FCMOVxx latency. 

8.8.1.1 CPYS, CPYSN, CPYSE 

These three instructions merely copy fields of the input operands to the result, as shown 
below. The fields copied are controlled purely by the instruction - there is no data 
dependence. 

Instruction Pin Sout Eout Fout Description 

CPYS x SA EB FB Copy Sign 

CPYSN x !SA EB FB Copy Sign Negated 

CPYSE x SA EA FB Copy Sign and Exponent 

FCMOVxxl x SB EB FB Conditional Move part 1 

FCMOV2 0 SA EA FA Conditional Move part 2 

FCMOV2 1 SB EB FB Conditional Move part 2 

8.8.1.2 FCMOVEQ, FCMOVGE, FCMOVGT, FCMOVLE, FCMOVLT, FCMOVNE 

As apecified in Section 2.11.2.3, FCMOVxx copies the second source operand to the 
destination if the first source operand passes the test specified in the instruction else 
leaves the destination unchanged. This can often replace sequences of code using con
ditional branches, avoiding possible branch misprediction giving code that is faster and 
has more predictable delays. 

FCMOVxx Fa, Fb, Fe 

is functionally equivalent to 

FByy Fa, label ; yy = not xx 

CPYS Fb, Fb, Fe 

label: 

but avoids the branch. 

See Section 2.11.2 for a complete discussion of FCMOVxx instruction processing. 

8.8.2 Unusual Input Operands 

There are several unusual input operands that each arithmetic function must handle spe
cially: 

1 A single cycle unit requires its own output and bypass busses, whereas a three cycle unit can share the 
busses used by the other three cycle units (add, multiply etc.) 

Compaq Confidential 
8-32 Floating-Point Execution Units - the Fbox 5 Januc1ry 2001 -- Subject To Cf1ange 



Fbox Short Pipe - F ___ .SHP 

• IEEENaN 

• IEEE Denormal 

• IEEE Infinities 

• Zero 

• VAX dirty zero 

• VAX reserved operand 

Rather than require that each unit detects unusual input operands and generates correct 
results and exceptions, the unusual cases are handled by the F _SHP. 

The F _SHP snoops on the operation and operand busses. When it notices a combination 
that requires special handling it asserts a pipe-global suppress output signal 1 in phase 
FlB. On receiving this an arithmetic unit must suppress its output (and may cancel its 
calculation), and the F _SHP will drive the correct result instead, and possibly throw an 
exception. 

The F _SHP must detect unusual input operands in all floating-point types used by the 
Fbox - IEEE single and double precision, VAX single and double, and packed graphics 
(two IEEE single format values packed into bits 63:32 and bits 31:0 of the bus). 

8.8.2.1 Unusual Cases 

• If Fb is a NaN, propagate the quietened NaN 

Else if Fa is a NaN and Fa is used, propagate the quietened NaN 

(and throw an INV exception if FPCR<INVD> is clear and either was an SNaN). 

• If either operand is denormal then 

if FPCR<DNZ> is set, treat the operand as zero 

else throw an INV exception. 

• If both operands are usual numbers (non-zero finite numbers) the F _SHP does 
nothing, and the result is generated by the arithmetic unit. 

• If either operand is non-usual the result is generated as shown in the following 
tables. For each instruction the result to select is defined by the type of the two 
operands A and B, and can be one of the two operands, a true zero, IEEE infinity or 
the canonical quiet NaN (sign bit, all exponent and fraction MSB set, remaining 
bits of fraction cleared). 

• In the case of VAX or IEEE single or double format unusual result the F _SHP 
asserts SUPPRESSLOW _Hand SUPPRESSHIGH_H to force the active arithmetic 
unit to release the output bus, and drives the value shown below. The sign bit is 
treated as a special case (it may have to copied from A, B, a constant, not B or A 
xor B), the fraction and exponent are copied from A, Bora constant (0, Inf or 
CQNaN). 

1 Actually two signals SUPPRESSLOW _H and SUPPRESSHIGH_H to handle graphics instructions 
where the graphics unit or multiplier may have to drive one half of the output whilst the F _SHP drives 
the other. For non-graphics instructions both will be asserted. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-33 



Fbox Short Pipe - F ____ SHP 

• 

8.8.2.2 IEEE Data 

In the case of graphics format data there are two independent values in each oper
and, one on the upper half of the bus, one on the lower. The two halves are handled 
independently, each as described above. It is possible that one half of the result 
needs to be driven by the F _SHP whilst the other needs to be driven by the arith
metic unit. SUPPRESSLOW _Hand SUPPRESSHIGH_H are driven independently 
to signal the arithmetic unit which bits it needs to drive. 

8.8.2.2.1 ADDS, ADDT 

A +Inf -Inf 0 Normal 

B - - - -
+Inf A CQNaN B B 

-Inf CQNaN A B B 
0 A A A A 

Normal A A B (driven by addpipe) 

8.8.2.2.2 DIVS, DIVT 

A Inf 0 Normal 

B - - -

Inf CQNaN 0 0 
0 Inf (DZE) CQNaN(DZE) Inf (DZE) 

Normal A A (driven by AP2) 

8.8.2.2.3 MULS, MULT 

Sout =Sa xor Sb in all cases 

A Inf 0 Normal 

B 

Inf A CQNaN B 
0 CQNaN A B 

Normal A A (driven by mulpipe) 

Compaq Confidential 
8-34 Floating-Point Execution Units - the Fbox 5 Jc1nuary 2001 -· Subject To Change 



Fbox Short Pipe - F ___ .SHP 

8.8.2.2.4 SQRTS, SQRTT 

Operand Result 

0 0 
Inf Inf 

-ve CQNaN(INV) 

Normal (driven by AP2) 

8.8.2.2.5 SUBS, SUBT 

A +Inf -Inf 0 Normal 

B - - - -
+Inf CQNaN A -B -B 
-Inf A CQNaN -B -B 

0 A A A A 
Normal A A -B (driven by addpipe) 

8.8.3 Floating-Point Control Register (FPCR) 

The FPCR contains dynamic rounding information, trap disable bits and exception sta
tus. 

Two of the four F _SHPs include a copy of the FPCR. The north-west F _SHP broadcasts 
rounding mode information to and handles exceptions for the two western pipes whilst 
the north-east F _SHP handles the two eastern pipes. The two southern F _SHPs contain 
no FPCR state, but do contain some FPCR related logic. 

Each of the two northern F _SHPs contains four FPCRs, one FPCR for each thread. 
Each FPCR consists of two registers, one containing speculative state, the other com
mitted machine 

Compaq Confidential 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-35 



Fbox Short Pipe - F ____ SHP 

Figure 8-7 Fbox Floating-Point Control Registers 

F_SHP F_PO 

S eculative 0 
S eculative 1 
S eculative 2 
Speculative 3 

F_SHP F_P1 

8.8.3.1 Reading the FPCR 

CommitedO 
Commited 1 
Commited2 
Commited3 

F_SHP F_P3 

F_SHP F_P2 

CommitedO 
Commited 1 
Commited2 
Commited3 

The FPCR is read explicitly by the MF _FPCR instruction. In response to this instruc
tion, the F _SHP reads the FPCR for the current thread and writes the result bus. As the 
two copies of the FPCR are defined to be identical, this instruction can be issued to 
either of the two northern pipes. Any implicit execution barriers needed will be per
formed by the palcode routine, so the current committed value of the FPCR can be 
returned immediately. 

The FPCR (commited) is read implicitly by every dynamically rounded floating-point 
instruction (DYN_RM bits) and by every possible arithmetic trap (trap disable bits). 

8.8.3.2 Dynamic Rounding 

Every arithmetic instruction includes explicit rounding bits <12:11> 

Table 8-14 Arithmetic Instruction Explicit Dynamic Rounding Bits 

Bit Meaning 

00 Round chop 

01 Round to -infinity 

10 Normal (nearest/even) rounding 

11 Dynamic rounding 

Compaq Confidential 
8-36 Floating-Point Execution Units - the Fbox 5 Jam.u~ry 2001 - Subject To Change 



Fbox Short Pipe - F ___ .SHP 

In the case of dynamic rounding, the instruction should use the rounding mode speci
fied by <59:58> of the FPCR for that thread instead, as follows: 

Table 8-15 FPCR Dynamic Rounding Bits 

Bit Meaning 

00 Round chop 

01 Round to -infinity 

10 Normal (nearest/even) rounding 

11 Round to +infinity 

This is handled by each of the four F _SHPs rewriting the rounding mode of each 
instruction issued to its pipe. This means each arithmetic unit can use the rounding 
mode it receives directly without needing to handle the details of dynamic rounding. 

As any change to the dynamic rounding mode bits must be isolated by execution barri
ers the committed state of the FPCR of the appropriate thread can be used directly. 

This functionality must be provided by the southern F _SHPs also, so the northern 
F _SHPs must drive the dynamic rounding mode of each thread to their southern equiv
alent (eight wires). 

8.8.3.3 Exceptions 

There are five maskable arithmetic exceptions: 

Table 8-16 Maskable Exceptions 

Exception Meaning 

INE Inexact 

OVF Overflow 

UNF Underflow 

DZE Divide by zero 

INV Invalid operation 

If FPCR<DNZ> is not set then any attempt to use a denormal operand will throw an 
INV exception, even ifFPCR<INVD> is set. IfFPCR<DNZ> is set all denormal values 
are treated as true zero. 

INV and DZE are generated only by the F _SHP, so can be handled by the unusual oper
and handling logic. Because the F _SHP can handle any operation with a zero operand 
(is this true? TBS) it can handle forcing denormals to zero without involving the arith
metic unit. 

An arithmetic unit that produces an overflow, underflow or inexact result must assert 
unit_UNF, unit_OVF or unit_INE respectively. In the case of overflow or inexact result 
the unit must drive the IEEE correct result. In the case of an underflow a unit must drive 
true zero. The F _SHP will throw the appropriate exception if it is unmasked, and if the 
instruction enables the exception (for INE, if bits 15:13 = 111. For UNF, if bit 13 = 1). 

Compaq Confidentia I 
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-37 



Fbox Short Pipe - F ____ SHP 

.... -

All exceptions are thrown in cycle F3 over a dedicated 8 bit bus to the Ibox (also used 
for requesting traps to palcode for setting FPCR exception flags). 

(Exception bus coding TBD). 

The denormal to zero bits must be available to the southern F _SHPs, so the northern 
F _SHP drives the four DNZ bits to the southern F _SHP (four wires). 

The southern F _SHP has no direct access to the exception masks, so drives exceptions 
to its northern counterpart, where they are masked and sent to the Qbox . 

__[ 

Detect 
NaN, Zero, 
Denormal, 
Infinity 
(Double, 
Single) 

.1 

Detect 
NaN, Zero, 
Denormal, 
Infinity 
(graphics) 

Instruction 
Decode 

~~~ I 
·---------r------------ --------c-----------------------:}-----

1
FPCR - Floating Point

Control Register

--"'

--"'

Unusual operand

control

------- ------ ---r----

6:1 mux, low word L6: 1 mux, high word

Exception Masking

Compaq Confidential
8-38 Floating-Point Execution Units - the Fbox 5 Jc1nuc1ry 2001 -~ Subject To Change

Fbox Divider - F ____ DIV

8.9 Fbox Divider - F _DIV

8.9.1 Divider Description

The floating-point divider executes the following instructions:

• DIVS

• DIVT

• DIVF

• DIVG

The 21464 FDIV is the PCA57 divider. The only difference between PCA57 and the
21464 is that the 21464 inserts the divide result in the add pipe before the round adder.
This costs 2 cycles of additional latency. This divider uses a split remainder algorithm
which allows 6 bits/cycle and very little overhead. The timing breakdown is as follows:

Table 8-17 F _DIV Timing Sequence

Cycle Action

Oa operand transit

Ob-lOa divider array (10 passes are needed)

lOb sticky detect/add

lla add/mux

llb transit for result

12a/la mux in add pipe

13b/2b bypass

As you can see the total latency is 14 cycles for double precision. For single precision 5
cycles are removed from the array resulting in a latency of 9. The algorithm is unique
(we are patenting it) and as such isn't available in a text book. Basicly, a split remainder
divider does a SRT type operation. The true remainder is never exactly known, how
ever, the uncertainty is kept low enough and bounded to still make quotient decisions.

8.9.2 The Divider in Detail

The first phase is used to transport the A and B operands to the divider. Everything
should be setup for dynamic logic for the fOb edge. Because EV8 doesn't support
denormals, both the·divisor and dividend fractions are correctly normalized and can be
thought of as always being between 1.0 and 2.0. (1.0<= operand fraction <2.0) The
logic to compute the exponent is done in the add pipe and is uninteresting.

For the next 10 cycles the actual divide occurs. The divider array consists of 6 stages
and a recirculating mux. Because each stage retires one quotient bit the divider will end
up computing 6*10=60 bits which is more than sufficient since only 56 are needed to
correctly round. All 6 stages are substantially identical to each. The only exception to
this is that two stages have a ghost latch built into them. This results in virtually zero
latch overhead for the divider.

Compaq Confidential
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-39

Fbox Divider - F. ___ DIV

Each divider stage is composed of two different pieces. The low 49 bits of the remain
der are kept in a redundant sum carry format. Carry save adders (CSA) are used for the
divisor add on this portion of the remainder. All the remaining high remainder bits are
kept in an exact fully encoded form. Because after each stage there is a 1 bit left shift,
signals spillover out of the CSA array. These signals have the numerical value of V:z, 1A ,
1A. The spillover signals skip a stage before they are incorporated into the state
machines. Because they skip a stage they have a numerical value of 1, V:z, V:z by the time
they are incorporated. The total uncertainty of the divider is 3V:z. This number is calcu
lated this way:

CSA portion

Spillover Stage -1

Spillover Stage -2

Total

(118 +1/16 ...)*2
(Yi+ 1A + 1A)
(l+Yi+Yi)

Yi

1
2

3Y2

To compensate for having a rather large uncertainty of 3V:z, an over-redundant digit
selection was used. The range for allowed digits is { -2,-1,0, 1,2}. This requires the exact
remainder to be bounded by+- 4*divisor.(R<(R-2*divisor)*2 -> R<4*divisor) This has
the effect of changing the MUX in the CSA array from 3 to 5 inputs. Luckily 2 times
the divisor is available by looking 1 bit to the right.

The dynamic state machine circuit is a 4 high N stack. One transistor is needed for the
input, one for a mux to handle the various divisors, and 2 to do the spilover add. There
are three signals coming from the CSA array as part of the spillover add. Since two of
these are coming from the same CSA they were condensed into a single 4 bit vector. (2
vectors -> { 0,1 }{ O,V:z} becomes one vector -> { 0, V:z, 1, 1 V:z})

The NMOS devices in the state machine that handle the various divisor combinations
were problematic for speed. There are a total of 8 different divisor combina
tions(l.000,1.001,l.010,1.011...) the state machine must handle. To speed up this logic,
the state machine was broken into 2 pieces. One state machine handles divisors between
1.0 and 1.5 and the other divisors between 1.5 and 2.0. This reduced the size of the
muxing logic which meant much less source drain capacitance.

When the divide is finished information is needed about the remainder. There are 8 dif
ferent ranges that the remainder could be in:

R=-4d

-4d< R <-2d

R=-2d

-2d< R <0

R=O
0<R<+2d

R=+2d

+2d< R <+4d

Compaq Confidential
8-40 Floating-Point Execution Units - the Fbox 5 Jm1w1ry 2001 - Subject To Change

Fbox Divider - F ____ DIV

Determining these is complicated because the remainder is a little fuzzy. However,
because I did a spilover add in the ghost latch at the bottom of stage 6, the round state
machine under it knows the remainder with an uncertainty of only lYz which is suffi
cient. Basicly the round state machine looks at the remainder and if it's definitely less
than zero then it adds +2d to the remainder. If the remainder is definitely greater than
zero then it adds -2d to the remainder. If the remainder is too close to zero to be sure
then no add is performed, for this case the remainder is guaranteed to be bounded by -
2d<R<+2d. The round state machine also takes its portion of the remainder and trans
forms it from a precise fully encoded form to a binary vector. This binary vector is
merged with the CSA remainder to make two 56 bit vectors. These vectors are what the
add, prescribed by the round state machine, are performed on. The result is two vectors,
the sum of which we need to know the sign and if zero. This is done with the sign and
zero detect block at the bottom of the datapath diagram. The sign detect is actually a
carry lookahead adder except only the final carry out is needed. The actually sum val
ues are never computed. The zero detect uses logic similar to the leading zero detect
logic used elsewhere in the box. The zero detect is faster than the sign detect.

The one case in the table above that the hardware can not handle is the R=-4d case. This
is a degenerate case that can only occur when the divisor is precisely 1.0000 ... 0 (expo
nent can be anything so it is really when the divisor is a precise power of 2) When this
case occurs with the hardware described above, the round state machine will add +2d to
the remainder. The resulting sum will then be -2d which is nonzero and negative mak
ing the downstream logic think the -2d<R<+2d case was encountered. When doing
infinity rounding the final answer will be 1 LSB greater than the correct answer. For
chop rounding mode the answer would be correct, however, it would appear to be inex
act. An existing zero detect in the add pipe tells the divider that the divisor is 1.0000 ... 0
When this is known the divider forces the rounding mode to be chopped. Because
dividing a number by 1.0000 ... 0 is always exact, the rounding mode is irrelevant. The
logic also masks the inexact flag.

8.9.3 Over-Redundant Digits to Binary and Rounding

The quotient digits coming from the divider array are in the form of {-2,-1,0,l,2} and
must be converted to a binary number with correct rounding and normalization. I
included a figure showing this logic. This conversion is done in two parts. First, {-2,
l,O,l,2} must be changed into {-2,0,2}. This conversion is done with two stages of
logic and relies on the fact that I can add 1 to a digit as long as I subtract 2 from the digit
to its right. Likewise, I can subtract 1 and add 2. The first stage looks at each digit and
determines whether it is negative or positive and also if it is even or odd(even=-2,0,2
odd=-1,+1) The second stage then does the following (in C syntax):

switch(This digit)

CASE -2: if (left is odd) then return(O);

CASE -l:if (right is positive AND left is odd) then return(+2);

if (right is positive AND left is even) then return(O};

if (right is negative AND left is odd) then return(O);

if (right is negative AND left is even) then return(-2);

CASE 0: if (left is odd) then return(-2);

CASE 1: if (right is positive AND left is odd) then return(O);

Compaq Confidential
5 January 2001 ·-Subject To Change Floating-Point Execution Units - the Fbox 8-41

Fbox Divider - F ____ DIV

if (right is positive AND left is even) then return(2);

if (right is negative AND left is odd) then return(-2);

if (right is negative AND left is even) then return(O);

CASE 2: if (left is odd) then return(O);

No carry propagation is required for this. The next conversion is from {-2,0,2} to
{0,1,2}. This is accomplished by shifting things left 1 bit so I now have {-1,0,1 }. This
can be converted a standard sum carry format by a simple mapping of -1->0,0 0-> 0,1
1->l,l. This conversion is so simple no additional logic stages were needed. The ORL
block in the figure generates sum carry outputs.

Because every bit needs to know the sign of the bit to right, a complication is intro
duced. The least significant digit (stage 6) can't be converted because it needs to know
the sign of stage 1 of the next pass. This is handled by pipelining the stage 6 digit one
cycle so that it gets converted with the following pass. Its sign is still needed in the cur
rent pass for the stage 5 digit.

Rounding for the divider is virtually free. Two observations about division make this
possible. First, whether the quotient needs a one bit normalization shift can be deter
mined with out ever doing a divide. Simply if the dividend fraction is greater than or
equal to the divisor fraction no normalization shift will be needed. This is independent
of rounding modes. Second, the infinitely precise quotient can never be exactly half
way between two representable numbers. This means that the IEEE round-to-even case
never occurs. Here's why these two observations are so powerful. To do round to near
est all that is necessary is to add~ LSB to the quotient. And for infinity rounding, 1
LSB should be added to the quotient with a -1 added to the smallest possible digit. I can
do all of this because I know where the LSB is. In the figure the rounding is accom
plished with the CSA blocks while the quotient is still in a redundant form. The 'magic
rounding vector' is computed by control logic based on the rounding mode, the
datatype precision, and the normalization shift result. The total overhead for rounding
in this divider is a dynamic CSA delay. Because a CSA shifts the carry one bit left I end
up with a seven bit vector. This is corrected by pipelining the most significant carry
until the next pass. The result of the CSA stage is two 6 bit vectors ready to be added.

One approach to generate the final binary quotient from the sum carry vectors would
have been to accumulate the vectors until the divide finished. A 52 bit carry propagate
add would then be performed to yield the binary quotient. This method requires build
ing a fast adder in the datapath. The method PCA employed is different. The add is per
formed serially six bits at a time. This removed the fast adder from the datapath. It's
also faster to build a 6 bit adder than a 52 bit.

The hardware to do the serial add is located with the over-redundant logic in the control
section. Basicly 2 six bit adders were built. These two adders compute the sum of the
sum carry vectors with a carryin of 0 and of 1. In addition, I detect the case where the
sum of the two vectors would result in a carry out. This is the generate term. The prop
signal is asserted when the carryout of the block is equal to the carryin. The two 6 bit
sums (quo<5:0>,quo_plus_one<5:0>) are then routed to the datapath. These are muxed
into two registers(QO,Ql). After the first pass the 6 most significant bits of the QO,Ql
registers receive the sums. On the second pass, the six less significant bits get loaded.
This continues until the divide finishes and both registers have been loaded. The QO
register gets loaded with the quo<5:0> signal and the Ql with quo_plus_one<5:0> sig
nal. The loading mechanism on the diagram is accomplished with the Ml,M2 muxes.

Compaq Confidential
8-42 Floating-Point Execution Units - the Fbox 5 January 2001 ···Subject To Change

Fbox Divider - F DIV

You'll notice that once the bits of the register are loaded they are recirculated with some
extra muxes(M3,M4) in the path. These muxes propagate carries across bits and work
this way:

If the current block doesn't have PROP or GENERATE asserted then the more signifi
cant bits already in the registers can never get a carry from this block. For this case I
force QO=QO and Ql=QO. For the case where this block does assert GENERATE then I
force QO=Ql and Ql=Ql. The last case is where the block assert PROP then I don't
know whether the more significant bits already loaded will receive a carry because it
determine by a the carry out of a future block. For this case I force QO=QO and Q 1=Q1.
This keeps the status quo until I eventually encounter a block that I definitely know the
carryout status. I switch the entire register with the muxes. The high bits that have their
carryin determined are unaffected by this muxing action because for them QO is equal
to Ql. The bits of the current block are also unaffected because I placed the loading
mux (Ml,M2) after M3 and M4. The bits to the right of the current block are don't
cares because I will eventually overwrite their values with a load operation. As you can
see a fast adder was replaced with 2 extra lactched and 2 extra muxes plus a 6 bit adder
in the control section.

A good way to think about the quotient registers is that Ql=QO+k. The infinitely pre
cise result is always bounded between these two registers. Every pass through the
divider increases the precision of QO and Ql by 6 bits. Put another way, for every pass
through the divider, k gets reduced by 64(2A6). By the time the divide is finished k is
less than one LSB. The MO mux at the top of the diagram is used to pick whether the
final rounded quotient should the QO or Ql register. The M5 and M6 muxes perform
the one bit right normalization shift if necessary.

Back in the control section all of the signals that had to be pipelined one pass are now
needed for rounding since there won't be another pass. These are fed into a PLA along
with the rounding mode in effect and the remainder add selection from the round state
machine. The output of the PLA is whether QO or Q 1 should be used for three different
cases. The three cases are if the final remainder is less than zero, greater than zero, or
plain zero. The result of the sign and zero detect in the datapath swing this 3 to 1 mux
which then drives the final MO mux at the top of the quotient registers. This result is
then written into the register file and forward for use the next phase.

Compaq Confidential
5 January 2001 ·- Subject To Change Floating-Point Execution Units - the Fbox 8-43

Fbox Square .. Root Unit - F ____ SQR

Figure 8-9 F _DIV Block Diagram

0 DIVIDEND<0:49> DIVIDEND<50:52>

0
5 SM1

5
SM2

5 SM3

5
SM4

5 SM5

5

ROUND CSA
3 ROUND SM

ZERO DETECT SIGN DETECT

8.10 Fbox Square-Root Unit- F _SQR

The F _SQR unit is responsible for computing the square root of the fraction of the both
VAX and IEEE SQRT instructions. The square root unit does not have an exponent pro
cessor. It receives the input operand from the MUL unit and returns the result to the
divide unit. The divider unit selects either the divide result or if no divide result need to
be transferred the square root result. This result is sent to the F _AP2 pipeline for round
ing. The square root unit computes the sticky bit for rounding and sends it along with
the result. Since the square unit uses the F _AP2 pipeline for rounding, a bubble needs to
be inserted in the F _AP2. For this purpose the square unit sequencer sends a 'square
root done' signal to the Qbox <tbs> cycles ahead so that Qbox stops issuing a new
instruction to the pipeline. In addtion, it is possible to have a divide and a square collide
for using the F _AP2. To prevent this square root receives a signal from the divide unit
which is used to delay the bubble request.

There is no exception checking in the square root unit. The square root unit assumes its
operand is a non zero operand and injects the hidden bit. The input exceptions including
the zero case is handled by the F _SHP unit. It is possible to abort the square root unit
during a square root by asserting the flush signal.

Operation

The square unit uses a SRT type algorithm and computes two root bits per cycle. As
shown in the block diagram, the square root unit consists of two identical cascaded sec
tions, one section per bit, and a sequencer. The fraction part consists a RTB_IN _MUX
that selects in the first cycle the input operand and in subsequent cycles the second

Comp.aq Confidential
8-44 Floating-Point Execution Units - the Fbox 5 Jc1m.u1ry 2001 ···Subject To Change

Fbox Graphics Pipeline

row's partial remainder. The RTB_CORR_MUX provides the correction to be added to
the partila remainder. The select controls are based on the previous remainders range.
The output of the correction term and the partial remainder are added in the sign digit
plus binary adder to compute the redundant new partial remainder. The index regester is
a shift register that keep track the insertion point of the root bits. The root register and
its logic serves two purposes: it saves the new root bits and converts the root into a
binary value so that it can be used for the next iteration. The sequencer depending on
the data type sequences the operand input, bubble requests, and result transfers.

Figure 8-10 F _SQR Block Diagram

Radicand register

RTB_IN_MUX

RTB_CORR_MUX

EL

RTB_ NDEX_REG

SEL

RTA_INDEX_REG

RTA_ROOT_REG

FLUSH_SQRT
SQRT_ISSUE, SQRT_DATATYPE

SEQUENCER

DIV _BUBBLE_REQ
CLOCK

SQRT_DONE ..

8.11 Fbox Graphics Pipeline

A graphics instruction set has been added to the Alpha architecture(ECO 118). The fol
lowing is a brief summary of the ECO for ready reference. The next section provides a
brief description of the implementation.

Compaq Confidential
5 Jam.mry 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-45

Fbox: Graphics Pipeline

The Fbox implements the new paired single precision instruction set. These paired SP
instructions are intended to accelerate the front end of the 3D graphics pipeline - object
physics, geometry transformations, clipping, and lighting calculations. The proposed
instruction set also includes several instructions that aid in the calculations involving
complex numbers. They use now popular, single instruction multidata implementation.
Two single precision operands are packed into a 64-bit register and each instruction
operates on two sets of operands thus doubling the performance of these operations.
They use the existing floating-point register file. The graphics ISA is general enough
for many Single precision applications to gain significant performance improvement.

There are 36 new instructions in this proposal. The proposal is to use one new opcode
(07 hex) for the graphics instructions. Since the graphics ISA uses only paired SP/LW
integer, we will use the source datatype (2 bits) field to expand the function field to 6
bits. All other bits of the FP operate instruction remain the same.

8.11.1 Paired SP Floating-point Operate Instruction Format

Table 8-18 Paired SP Floating-point Operate Instruction Format

Bits:

Contents:

<31:26>

Opcode

<25:21>

Fa

<20:16>

Fb

<15:13>

Trp

<12:11>

Rnd

<10:5>

Fnc

Bits (10:9) used to be SRC field. Now they are part of the FNC field.

The two data types used by the new instructions are shown below:

<4:0>

Fe

8.11.2 Register and Memory Formats

Table 8-19 Paired Single-Precision

<63>

Sign

Operand High

<62:54>

Exponent

<53:32>

Fraction

<31>

Sign

Operand Low

<30:23>

Exponent

<22:0>

Fraction

8.11.3 Rounding Modes

All four IEEE rounding modes are supported. For PARCPLx and PARSQRTx instruc
tions, only chopped rounding mode is available and the round mode bits are ignored.

8.11.4 Exceptions

All exceptions as defined by the IEEE standard are generated individually on each half
and the exceptions are ORed together to report. It is possible to get two different excep
tions. The results written for each half follow the existing rules specified by the Alpha
Architecture. Note that all 64 bits of the register are always written. It is possible to get
no exception result on one half and an exception result on the other. The FPCR status
flags are updated per the existing rules for the regular floating-point instructions. The
regular floating-point trap control mechanism is also used for the graphics instruction
set.

Compaq Confidential
8-46 Floating-Point Execution Units - the Fbox 5 Jc1m.1c1ry 2001 -- Subject To Change

Fbox Graphics Pipeline

8.11.5 Paired Single-Precision Instructions

Table 8-20 lists the paired single-precision instructions. In the table, II means register concatena
tion.

Table 8-20 Paired Single-Precision Instructions

Instruction Opcode Operation
PADD fa,fb,fc 07.10 fcH f- f aH + fbH,fcL f- faL + fbL

PARCPH fb,fc 07.09 fcH f- 1/fbH, fcL f- 0

PARCPL fb,fc 07.0A fcH f- 1/fbH, fcL f- 1/fbL N01El

PARCPLLfb,fc 07.0A fcH f- 0, fcL f- 1/fbL

PARSQRT fb,fc 07.0C fcH f- 1/SQRT(fbH), fcL f-1/SQRT(fbL)

PARSQRTHfb,fc 07.0D fcH f- 1/SQRT(fbH), fcL f-0

PARSQRTLfb,fc 07.0E fcH f- 0, fcL f- llSQRT(fbL) NOTE 1

PCADD fa,fb,f c 07.11 fcH f- f aH + fbL,fcL f- faL + fbH

PCMPEQ fa,fb,fc 07.28 IF (faH .xx. fbH) THEN fcH f- IEEE 1.0 ELSE fcH f- 0 (true zero)
IF (faL .xx. fbL) THEN fcL f- IEEE 1.0 ELSE fcL f- 0 (true zero)

N01E3,4

PCMPLE fa,fb,fc 07.2D IF (faH .xx. fbH) THEN fcH f- IEEE 1.0 ELSE fcH f- 0 (true zero)
IF (faL .xx. fbL) THEN fcL f- IEEE 1.0 ELSE fcL f- 0 (true zero)

NOTE 3,4

PCMPLT fa,fb,fc 07.2C IF (faH .xx. fbH) THEN fcH f- IEEE 1.0 ELSE fcH f- 0 (true zero)
IF (faL .xx. fbL) THEN fcL f- IEEE 1.0 ELSE fcL f- 0 (true zero)

N01E3,4

PCMPNEQ fa,fb,f c 07.29 IF (faH .xx. fbH) THEN fcH f- IEEE 1.0 ELSE fcH f- 0 (true zero)
IF (faL .xx. fbL) THEN fcL f- IEEE 1.0 ELSE fcL f- 0 (true zero)

N01E3,4

PCMPUN fa,fb,fc 07.2A IF (faH .xx. fbH) THEN fcH f- IEEE 1.0 ELSE fcH f- 0 (true zero)
IF (faL .xx. fbL) THEN fcL f-IEEE 1.0 ELSE fcL f- 0 (true zero)

N01E3,4

PCPYS fa,fb,fc 07.20 fcH f- faH<s> II fbH<exp.frac>,fcL f- faL<s> II fbL<exp.frac>
NOTE7

PCPYSE fa,fb,fc 07.22 fcH f- faH<s.exp> II fbH<frac>, fcL f- faL<s.exp> II fbL<frac>
NOTE7

PCPYSN fa,fb,fc 07.21 fcH f- NOT.faH<s> II fbH<exp.frac>,

f cL f- NOT.f aL<s> II fbL<exp.frac> N01E7

PCVTFI fb,f c 07.39 FcH f- cvt.integer(fbH),

FcL f- cvt.integer(fbL

PCVTSP fa,fb,fc 07.30 fcH f- { CVT 64b SP to 32b SP of fa},

fcL f- (CVT 64b SP to 32b SP of fb) NOTE5,7

PEXTH fb,fc 07.3C fc f- { CVT 3 2b SP of fbH to 64 SP)

PEXTL fb,fc 07.3A fc f- { CVT 3 2b SP of fbL to 64 SP) NOTE6.7

PFMAX fa,fb,fc 07.2E fcH f- MAX(faH,fbH), fcL f-MAX(faL, fbL)

PFMIN fa,fb,fc 07.2F fcH f- MIN(faH,fbH), fcL f-MIN(faL,fbL)

Compaq Confidential
5 January 2001 ··· Subject To Change Floating-Point Execution Units - the Fbox 8-47

Fbox Graphics Pipeline

Table 8-20 Paired Single-Precision Instructions (Continued)

PHADD fa,fb,fc 07.12 fcH ~ faH + faL, fcL ~ fbH + fbL

PHSUB fa,fb,fc 07.16 fcH ~ faH - faL, fcL ~ fbH - fbL

PHSUBRfa,fb,fc 07.lF fcH ~ faL - faH, fcL ~ fbL -fbH

PMOVHH fa,fb,f c 07.lB fcH II fcL ~ faH II fbH

PMOVHL fa,fb,fc 07.lA fcH II fcL ~ faH II fbL

PMOVLH fa,fb,fc 07.19 fcH II fcL ~ faL II fbH

PMOVLL fa,fb,fc 07.18 fcH II fcL ~ faL II fbL NOTE2,7

PMUL fa,fb,fc 07.00 fcH ~ faH * fbH, fcL ~ faL * fbL

PMULH fa,fb,fc 07.02 fcH ~ faH * fbH, fcL ~ faL * fbH

PMULHN fa,fb,fc 07.06 fcH ~ -(faH * fbH), fcL ~faL * fbH NOTES

PMULL fa,fb,fc 07.01 fcH ~ faH * fbL, fcL ~ faL * fbL

PMULLN fa,fb,fc 07.05 fcH ~ faH * fbL, fcL ~ -(faL * fbL) NOTES

PSUB fa,fb,fc

PSUBC fa,fb,fc

07.14 fcH ~ faH - fbH,fcL ~ faL - fbL

07.15 fcH ~ faH - fbL,fcL ~ faL - fbH

Notes from Table 8-20:

1. The result for these two instructions is accurate to a minimum of 14 bits of preci
sion only. For PARCPLx and PARSQRTx instructions, only chopped rounding
mode is available and the round mode bits are ignored. For PARCPLH, PARCPLL,
PARSQRTH, and PARSQRTL instructions, no checking is done on the unused
operand and no exceptions are generated.

2. With fb = f31, the lower half of the result can be cleared. Similarly high half can be
cleared with fa = f3 l. Operands can be swapped or duplicated with fa = fb.

3. There are no separate graphics branch instructions. With these compares one needs
to use the regular floating-point branches. There was a suggestion for a specialized
Branch for clip test - branch when either is negative. This can be accomplished as
PCMPLT fa, f31, fc; test faH/faL LT 0, fc = 0 only if both positive FBREQ fc,X

4. Paired single-precision compares write the destination if condition is TRUE with a
value of IEEE 1.0, if the condition is FALSE, a true zero. This behavior is different
from normal floating-point compares. A combination of CMP and multiply instruc
tions can be used to conditionally clear a register, for normal operands.

PCMPxx fl, f2,f3 ;Each half of f3 gets 1.0 if true, 0.0 otherwise

PMUL fl ,f3 ,f 4 ;Each half of f 4 gets fl (H/L) if condition is true, 0 otherwise.

5. PCVTSP instruction converts two 64 bit single-precision floating- point operands
(with 11 bit exponents) to two 32 bit SP (with 8 bit exponents) and packs them as
paired single-precision operands. Dropping three bits (61 :59) and ignoring (28:0)
does the conversion. No checking is done and there are no arithmetic exceptions.
{The operation is similar to a STS instruction.}

6. PEXTx instruction converts a 32 bit SP in paired format to a 64-bit SP number. The
operation uses MAP _S exponent mapping (see SRM Chapter 2 Table 2-2) similar
to a LDS instruction. No checking of bits is done.

Compaq Confidential
8-48 Floating-Point Execution Units - the Fbox 5 J~1nu(1ry 2001 -~ Subject To Change

Fbox Graphics Pipeline

7. PMOVxy, PCPYSx, PCVTSP, PEXTx are bit manipulation instructions and gener
ate no arithmetic exceptions.

8. For this instruction the product is rounded first and then the appropriate half (speci-
fied by the instruction) of the result is negated.

The graphics instruction set is implemented in two pipelines in the Fbox. The PMULxx,
PARCPLx, and PARSQRTx instructions are implemented in the F _MUL pipeline. All
the other instructions are implemented in a separate pipeline F _GAD. The implementa
tion details for the PMULxx, PARCPLx, and PARSQRTx instructions are described
under the F _MUL section. In the next section the implementation details for the
F _GAD are given.

Compaq Confidential
5 January 2001 -~ Subject To Change Floating-Point Execution Units - the Fbox 8-49

Fbox Graphics Pipeline

Figure 8-11 F _GAD Block Diagram for One-Half of the Pair

MUX

er

IC

elxd

LEFT SHIFTER EXP _RES_ADD
ticky

er er+1

Fl2 VF/UNF DETECT

RND_CSA

B

ADD (32b)
msb MUX

Fr Er

8.11.5.1 Graphics Add Pipeline: F _GAD

A block diagram of the graphics add pipeline is shown in Figure 8-11. The F _GAD
pipeline has two identical units - one for each half of the paired data. In the block dia
gram only the high half (F _GHx) of the F _GAD pipeline is shown. The low half
(F _ GLx) is identical to F _GHx and it processes operands in the low half (31 :0) of the
pair. The F _GAD has been leveraged from the 21264 Fbox.

Compaq Confidential
8-50 Floating-Point Execution Units - the Fbox 5 Jc1nuc1ry 2001 ··· Subject To Change

Fbox Graphics Pipeline

The F _GAD is a 4 cycle latency pipeline. The input operands to the pipeline are driven
by the Multiplier pipeline instead of the interface section, to minimize the length of the
low swing operand wires. The input operands for the GAD pipeline are single precision
floating point operands with 23b fractions and 8b exponents . Hence at the beginning of
the pipeline the fraction datapath is narrower. To accommodate the convert from float
ing point to 32b integer instructions the shifter and the final adder are 32b wide.

The implementation of add/sub instructions in the GAD pipeline is slightly different
compared to the main Fbox add pipeline. Referring to the section Fbox add pipeline, in
the 'near domain', instead of subtracting the smaller operand at the very beginning of
the pipe (step 2N) using an adder, the two operands are first normalized (left shifted)
removing the bits that produce the leading zeros. This requires an additional left shifter
in the data path. Once the two operands are normalized, the subtraction is done in the
final adder/rounder. Since there is only one adder in the path, for the ediff = 0 case, the
final subtraction must produce a positive result to conform to the sign-magnitude repre
sentation of the result. To ensure this, the smaller operand is to be always subtracted
from the other. This is accomplished by first comparing the two fraction operands (the
exponents are same) to determine the smaller operand.

In addition to the regular floating-point instructions, the GAD pipeline needs to imple
ment several variations of add/sub instructions, Moves, floating MAX/MIN instruc
tions. The add/sub instructions and the MOVE instructions require selection of different
halves of the two operands. The FMAX/FMIN instructions are similar to the compare
instruction.

The operation and the implementation of the GAD pipeline are described below using
the high half of the pipeline as shown in the block diagram. The description applies
equally to the low half also.

8.11.5.2 Fraction Datapath

8.11.5.2.1 OP _MUX

The OP _MUX selects the two operands for each half of the pipeline from the possible 4
operands- the two pairs from each source. For the high half of the pipeline the final
operands are flh, f2h on the fraction side and elh, e2h for the exponents. For the nor
mal PADD/PSUB instructions t flh = fah and f2h = fbh, for PADDC/PSUBC instruc
tions, flh = fah, f2h = fbl; for PHADD/PHSUB - flh = fah, f2h = fal and so on. For the
PMOVxx instructions the OP _MUX selects the operand indicated by the instruction on
f2h and zero on the flh and similarly on the exponent and sign parts of the operands.
This allows passing the flh on high half and fll on the low half before they are packed
into a 64 bit result. For the PCVTSP instruction, three bits from the exponent parts of
Fa and Fb registers are dropped and fraction, sign and exponent are selected onto f2h/
f21, s2h/s21, e2h/e21 respectively. The output of the mux is available at the end of FOA.

8.11.5.2.2 FTA, FTB

The FTA, FTB count the number of trailing zeros in the two operands flh and f2h for
calculating the sticky bit. The results of this block are the two signals etzl and etz2. For
effective add/subtract operations, since it is not known until the exponent subtract is
done, which of the operands is smaller, trailing zero for both operands are counted. The
sign of the exponent difference indicates the smaller operand and this is used in calcu-

Compaq Confidea1tial
5 January 2001 - Subject To Change Floating-Point Execution Units - the Fbox 8-51

Fbox Graphics Pipeline

lating the sticky bit. If ediff is the exponent difference, which indicates the right align
ment shift, the sticky bit can be calculated by comparing the ediff and 'etz'- if etz <
ediff then a '1' must have shifted out and hence sticky is 1.

8.11.5.2.3 FGT

The FGf block compares the two fractions flh and f2h and produces a signal flh > f2h
('agtb'). This signal is used for effective subtract with ediff =0 case, PCMP, and
PFMAX/PFMIN instructions. During an effective subtract operation when the efiff = 0,
the samller operand has to be subtracted from the other operand. This signal is used to
correctly compliment the smaller operand in the FI2 Mux. For the compare instructions
this signal is used to set the indicated condition is TRUE or FALSE based on the frac
tion compare. During the PFMAX/PFMIN operations this signal is used to coorectly
pick the correct fraction to be passed to the result in the FI2 MUX.

8.11.5.2.4 LXD and EXP PRED

The LXD block calculates the leading 1/0 using the input operands flh and f2h for
exponent difference <2 cases. It computes the LXD for three cases: ediff = 0 (flh-f2h/
f2h-flh) and ediff = 1 (flh - f2h/2), and ediff = -1 (f2h-flh/2).

The EXP PRED block at same time examines the two least significant bits of the two
exponents and predicts the exponent difference using the logic presented in Table II.
One of the three possible LXD vectors is selected based on this prediction. This result
vector contains a '1' for all possible positions of the leading 1 where the very first '1' in
the vector is the correct position. To be able to drive the left shifter for normalization,
this vector needs to be stripped off of the unnecessary 1 s.

8.11.5.2.5 LXS and LXE

The LXS block strips the extraneous '1 's after the leading 1 from the LXD vector from
the previous stage. This vector, containing a '1' in the leading 1 position and zeros
everywhere else, is wired to the left shift control to shift the input operands left. The
LXS vector is also encoded in the LXE block so that the left shift amount can be sub
tracted from the exponent result.

8.11.5.2.6 Fl1/Fl2 MUX and the LEFT/LR Shifters

The Fll/F12 muxes select the input operands for the two shifters. The left shifter is used
only during the effective subtract operation to shift the flh operand left to remove the
leading zeros before they are input to the adder in the final stage. For all other opera
tions the left shifter simply passes the input operand. The L/R shifter which is capable
of shifting the operand left or right is used in all operations. Since conversion from
floating to integer operationrequires a 32b result, the L/R shifter is 32b wide, whereas
the left shifter is only 24b wide. The left shifter takes control directly from the LXS

Compaq Confidential
8-52 Floating-Point Execution Units - the Fbox 5 Jc1nuc1ry 2001 ··· Subject To Change

Fbox Graphics Pipeline

vector. The L/R shifter is controlled by LXS and by the ediff from the exponent data
path. The following table lists the operand selected by the Fil, FI2 muxes, control and
the conditions. The operands are shown as frac_l or fract_2 etc.

Table 8-21 Fl1/Fl2 Shifter Operand/Control Selection

Control
Oper. Condition LSHF LRSHF Left Shifter Input High Input Low Input

PADDx

PSUBx

Effective add:

exp_l >= exp_2 L(O) R(ediff) frac_l 0 frac_2

exp_l < exp_2 L(O) R(ediff) frac_2 0 frac_l

Effective sub:

exp_l >= exp_2+1 L(O) R(ediff) frac_l * 2 0 frac_2 * 2

exp_l+l < exp_2 L(O) R(ediff) frac_2 * 2 0 frac_l * 2

exp_l == exp_2 L(lxd) L(lxd) frac_l * 2 frac_2 * 2 0

exp_l == exp_2+1 L(lxd) L(lxd) frac_l * 2 frac_2 0

exp_l+l == exp_2 L(lxd) L(lxd) frac_2 * 2 frac_l 0

PCVTFI exp_2 - bias>= 22 L(O) L(ediff) 0 frac_2 0

exp_2 - bias < 22 L(O) L(ediff) 0 0 frac_2

PCVTFF L(O) R(O) 0 0 frac_2

PCPYSX L(O) R(O) 0 0 frac_2

NaNs: where xis not a Nan

PCM PX

PFMAX

PFMIN

Fl F2

x NaN L(O) R(O) 0 0 frac_2

NaN x L(O) R(O) 0 0 frac_l

NaN NaN L(O) R(O) 0 0 frac_2

L(O) R(O) 0 0 0

AGfB L(O) R(O) 0 frac - 1 0

BGfA L(O) R(O) 0 frac_2 0

AGfB L(O) R(O) 0 frac_2 0

BGfA L(O) R(O) 0 frac_l 0

8.11.5.2.7 RND CSA and ADDER

The RND CSA and the final ADDER perform rounding and the final addition/subtrac
tion. The round CSA enables rounding and add in one step. The rounding CSA com
bines the two fraction outputs from the shifters and a rounding constant and prepares
the two inputs for the adder. The rounding constant depends on the rounding mode,

Compaq Confidential
5 January 2001 ~· Subject To Change Floating-Point Execution Units - the Fbox 8-53

Fbox Graphics Pipeline

sticky bit from the sticky bit logic. The rounding constant is added in the CSA in the
least significant bit positions. Since there are more than 2 inputs, a CSA in these posi
tions enables adding them. In the high order bit positions a half adder is used.

The adder computes two results - one assuming the MSB = 0 and the other assuming
that the MSB = 1. If MSB = 1, the fraction needs to be shifted down and the exponent
has to be adjusted. Note that effective sub, when the ediff > 1, actually may need a 1 bit
normalization. In order to avoid looking at two bits (hidden bit and the bit below it), the
two input operands have been shifted left by 1 in the shifter input muxes as shown in
the Table. This preshift is also used for the effective sub ediff < 2 cases also to move the
1 bit uncertainty in the LXD logic so that it can be detected as an overflow and cor
rected.

8.11.5.3 Exponent Data Path

The exponent data paths is simpler than the fraction data path and deals with only 8b
exponent parts of the operands. The exponent section receives the exponent parts of the
final selected operands from the OPD_MUX for each half of the pair.

For floating point arithmetic operation it computes the exponent results and for bit
manipulating instructions it simply passes one of the exponents.

8.11.5.3.1 EDIFF ADDER

The ediff adder computes the absolute exponent difference for add/sub instructions and
the length of the integer portion in the floating-point operand for the convert to integer
operation. To calculate the absolute exponent difference, the ediff adder actually con
tains two adders - one that computes A-Band the other B-A. Based on the sign of the
first adder (En), the positive result is selected and is used to drive the L/R shifter con
trol. For the convert floating to integer operation, the bias needs to be subtracted from
the input exponent to determine the integer portion of the floating-point value. This is
done in the B-A adder. For PEXTx instructions the bias is subtracted in the B-A adder
and DP bias is added back later to complete the conversion. For PCMPx and PFMAX/
PFMIN, the A-Badder provides the comparison of exponents

8.11.5.3.2 EDIFF DETECT

The Ediff detect logic determines exponent ranges and if the exponent difference is 0,1,
GfR 1, or GTR 25, etc. The exponent range is used to classify the input operands into
denormals, infinities, NaNs, and zero operands. The ediff detects are used for choosing
the near domain vs far domain, out of range in add/sub instructions, to determine if the
exponent comparison for CMP type operation.

8.11.5.3.3 ER MUX

The ER MUX selects the intermediate result for the exponent. For add/sub instructions
it picks the MAX(el,e2), for convert type instructions the result of B-A adder, and for
CPYSX instructions one of the input operand exponents. For PFMAX?PFMIN,
depending on the instruction, MAX(el,e2) or MIN(el ,e2) is selected. The intermediate
result 'er' is driven to the next stage.

8.11.5.3.4 EXP _RES_ADD

The exp_res_add computes the two final results of the exponent. It computes exponent
results Er and Er+ 1 - in case a fraction overflow occurs and the fraction has to be
shifted down. The MSB from the fraction is used to determine which result. During the

Compaq Confidential
8-54 Floating-Point Execution Units - the Fbox 5 Janwiry 2001 - Subject To Cfumge

G AD Control

effective sub operations when the ediff <2, the 'elxd' - the normalization amount has to
be subtracted from the intermediate exponent. For this, the mux selects the elxd from
the fraction data path. Since the LXD logic can overestimate the left shift by upto 1 bit,
it is possible to shift the fraction result right by one bit The Er+ 1 result is used in this
case. During the PEXTx instructions, er represents the the unbiased exponent result.
The DP bias is selected and and is added back to the 'er'. For all other operations, a
zero is added to the intermediate 'er' and the MSB from the fraction data path is used to
select the final result exponent.

8.12 G_AD Control

The G_AD control pipeline reveves the opcode information during the FY cycle. In
addition, it receives the rounding mode information from the F _SHP pipeline. The con
trol pipeline (not shown in the block diagram) decodes the opcode and controls the frac
tion and exponent data path. The control logic also detects the various exception
conditions and signals the exceptions to the F _SHP pipe to communicate to the Qbox
using the trap disable bits from the FPCR.

8.12.1 Fraction Data Path

The bits in the Fbox fraction data path are numbered as follows:

Table 8-22 Fraction Data Path

25

Binary point

Hidden bit for floating-point numbers

Bits <AlO:AO> are used for Integer operands and D-type operands.

The exponent data path, E<l 2:0> is 13 bits wide, with E<l 2>representing the
exponent sign bit. The pipeline also maintains a sign (N) and a zero (Z) bit for each
operand.

Operand data is formatted onto the fraction and exponent data paths depending on
the data type as follows:

Table 8-23 Operand Data Fraction and Exponenet Data Paths

BITS F/S/GfT D a L

AlO:A7 0 0 0P<63:60> 0P<63>R=3

A6 0 0 0P<59> 0P<62>

A5:AO 0 0 0P<58:53> 0P<58:53>

BO l(NZ) l(NZ) 0P<52> OP<52>

Bl:B3 0P<51:49> 0P<54:52> OP<51:49> 0P<51:49>

B4:B52 0P<48:0> 0P<51:3> 0P<48:0> 0P<48:0>

B53(R) 0 OP<2> 0 0

Compaq Confidential
5 January 2001 -~ Subject To Change Floating-Point Execution Units - the Fbox 8-55

Sticky Bit Calculation

Note:

• In D format, OP<l :0> are lost. OP<2> is used as R-bit for rounding in CVTDG.

• In L format, operand is sign extended.

The predicate(p) bit and sign bits are taken directly from RF<64:63>.

8.13 Sticky Bit Calculation

The sticky bit represents the aggregated information of the bits shifted out of datapath
in the process of alignment. With the help of the stick bit and round bit, we know
whether the infinite precision result is above midway point or below midway point in
round stage and the finite precision result can be rounded with specific rounding mode.

Essentially, the sticky bit checks every bit shifted out of datapath to see if there is any
'1'. If there is 'l', the sticky bit is set to 1; otherwise, it's 0. The most straight-forward
way is to do a zero detect on the string of bits shifted out. However, this approach needs
a 128 bit datapath in the worst case.

A smarter approach is to calculate the number of trailing zeros in the operand that is
going to be aligned. If the number of trailing zeros is more the the amount of right shift,
we can be sure that bits lost by right shifting are all zeros. Hence it is concluded that the
sticky bit is 0. Otherwise, there must be a one somewhere in the lost bits, which makes
the sticky bit 1. Note that we don't care about the precise value of the lost bits. All we
need to know is the relation between precise value and midway point.

For instance, the number of trailing zeros (etrz) is 6. If the right shift amount (ediff for
elxd) is more than 6, then Sticky bit is 1. If ediff, or elxd, is less than or equal o 6, then
the sticky bit is 0.

In physical implementation, we need to consider many more factors than the simple
example. First, the R bit is in the datapath. Second, all formats are sharing a single 65
bit datapath, so we need to take their differet lengths into account. Besides, we need to
handle integer and floating-point numbers differently. Third, the amount of right shift
can be from ediff or elxd. In addition, the equations are affected by how we encode
ediff and elxd, and the sign of them.

Table 8-24 Equations of Sticky Bit Calculation

Condition Sticky

eff. sub & fs: etrz - (edif+27) < 0

eff. sub & gt: etrz - (edif -2) < 0

eff. add & fs: etrz - (edif+28) < 0

eff. add & gt or CV1FQ & -en: etrz - (edif -1) < 0 right shift

cvtqf & FS: etrz - (29-elxd) < 0

cvtqf & gt: etrz - (-elxd) < 0

cvtts: etrz - (edif+28) < 0

cvtfq & en: etrz - (edif+63) < 0 left shift

Compaq Confidential
8-56 Floating-Point Execution Units - the Fbox 5 Jc1m1ary 2001 ·- Subject To Change

Sticky Bit Calculation

In summary, these equations are composed of three elements: etrz, ediff(or elxd), and a
constant to account for different situations. In physical implementations, sticky is com
puted with a CSA to compress the 3 numbers and a carry chain to detect the sign, which
determine the value of sticky.

Compaq Confidential
5 January 2001 -· Subject To Change Floating-Point Execution Units - the Fbox 8-57

Sticky Bit Calculation

Compaq Confidentia I
8-58 Floating-Point Execution Units - the Fbox 5 J<1nw~ry 2001 ···Subject To Change

9
Memory Instruction Execution Unit - the Mbox

The 21464 Mbox is responsible for executing Alpha memory reference instructions,
including integer and floating point load and store, memory barrier, prefetch, write-hint,
load-locked, and store-conditional.

The Mbox processes several instructions per cycle, out of order. Each cycle, the Mbox
can accept as many as three load instructions, and as many as two store instructions, for
a maximum of four operations. Unlike the other function units, it is responsible for
keeping track of memory reference instructions which have issued but not retired, and
for ensuring that the final effect of memory reference instructions is equivalent to
sequential execution of the thread, within the Alpha SRM definition of equivalence.
The Mbox also receives fill data from the Cbox and, to maintain cache coherence, pro
cesses probes that the Cbox receives from the rest of the system.

The Mbox has four instruction ports to handle loads, stores and prefetches. Three of
these ports can support returning data from the Mbox. Thus, the maximum number of
loads able to be issued to the Mbox each cycle is three. Two of input ports can perform
loads and prefetches; one can perform Loads, Stores and Prefetches, and one port per
forms only Stores. There are two data input busses, each is associated with a Store port.

The major components of the Mbox are:

Table 9-1 Mbox Major Components

Components

Dcache

Dtags

Load Queue

Merge Buffer

Pre-MAP

Store Queue

Translation Buffers

Description

64KB of data storage, with a write-allocate, write-through write-policy

lK entries of tag storage, arranged as 2-way set-associative with 4 read ports and 1 write
port

64-entry queue that holds issued, but not-retired Load addresses. Handles Load ordering
traps and re-issuing of Loads

16-entry buffer that accumulates Store data before writing it into the Dcache and Cbox.

Sixteen-entry buffer that holds the addresses of loads that have missed in the Dcache and
need further activity in the Cbox.

64-entry queue that holds Store addresses & data before Stores have retired. Used to sat
isfy Load requests to addresses with uncompleted Stores

128-entry, fully-associative with 4 read ports to perform the virtual-to-physical address
transactions

Compaq Confidential
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-1

Major Inputs & Outputs

9.1 Major Inputs & Outputs

9.1.1 Inputs

• TBS

9.1.2 Outputs

• TBS

Figure 9-1 Address and Data Path

9.2 Dcache

The Data Cache, or Dcache, is a 64K-byte 2-way associative onchip data storage. The
data is organized in 64-byte blocks, divided into 32 4-byte banks (address bits 5-2 indi
cate which bank contains which longword). Each bank can accept one read and one
write a cycle. The reads share physical resources for accessing the Dcache. Three
Address ports are input to the Dcache from the Ebox; three Data ports are output back
to the Ebox.

Compaq Confidential
9-2 Memory Instruction Execution Unit-the Mbox 5 J(1nuary 2001 ···Subject To Clumge

9.3 Dtags

Dtags

There are three data ports to the Ebox upon which read data are transferred from the
Dcache. Conflicts can arise if Loads request data from the same Dcache bank (address
bits 5-2 of each Load address are identical). If this conflict occurs, a load is blocked
from completing this cycle, and is retried again as soon as possible.

Stores write into the Dcache during the second half of each cycle.

The virtual address field of bits 14-6 indexes into the Dcache. The two quadwords of
data (one from each way) that are addressed by this bit field and by bits 5 through 3
begin driving their data. At the output of the Dcache, a selector drives only one of the
two quadwords out onto the Load data bus. This selection is provided by the Tag Store,
which uses the rest of the upper address bits to decide which quadword is actually being
requested.

The Dcache also has data parity bits stored with the block data.

The Dtags, or tag stores, are address arrays organized similarly to the Dcache. There are
four Dtag arrays, one for every load port to the Mbox, and one for the back-end opera
tions (Stores, Fills, Invalidates, Victims). Each Dtag array is maintained as an exact
copy of the others. Each holds lK tag entries; every tag entry corresponds to a physical
block of Dcache. Nine bits of virtual address (bits 14-6) are used to index a set of two
tag store entries. The Dtag dedicated to the back-end has an extra capability to access
eight tag store entries (when bits 14 & 13 are not used) so that Invalidates (which use
only physical addresses) can access the Dcache.

Each tag entry has a physical tag field (bits 47-13), control bits that designate the cache
state (valid, owned, and so forth), and it will likely have a parity bit across the tag field.
Each set of two tag entries will also have an allocation bit. This bit signifies which entry
way is the next to be allocated.

The upper part of the physical address (bits 47-13) is compared to the tags being stored
at each of the two accessed entries. If a tag matches the address, and the cache entry is
determined to be in the proper state, a hit signal is generated for the operation. This hit
information is used to generate the hit signal that is sent back to the Qbox. The hit infor
mation is also used to control which of the selected quadwords of Dcache data are to
drive the Load data bus.

9.4 Load Queue

The Load Queue, abbreviated as LQ, holds unretired Loads that have been issued to the
Mbox. The LQ entries are allocated to the Loads in program order, by thread. The LQ is
used to maintain ordering of Loads related to Stores and Memory Barriers. It also is
used to re-issue Loads from the Mbox itself, when a Load cannot complete successfully
when it is first issued from the Qbox.

The LQ has 64 entries and is partitioned equally between threads at run-time. Thus,
when a single thread is run ning, all 64 entries are allocated for that thread; if two
threads are running, each is allocated 32 entries (the LQ being separated at its mid
point). When four threads are running, each thread is allocated 16 entries.

Compaq Confidential
5 January 2001 ···Subject To Change Memory Instruction Execution Unit-the Mbox 9-3

Merge Buffer

Each LQ entry contains bits 14-13 of the virtual address, the physical address, opcode,
INum, Qbox information, a done bit, and retry bits. The LQ is allocated in program
order (by thread) by the Qbox, which assigns load-serial (LNum) numbers for all Loads
during the Mapstage.

If the Load completes successfully, it is marked in the LQ during the Ml stage. Other
wise, the Load is marked to be retried. The Load may retry due to a cache miss, a bank
conflict or may be a class of Load that can only complete at retirement (i.e., 1/0 Loads
which cannot be done speculatively).

Every cycle, the retry logic in the LQ scans all the entries and finds the oldest ready
entry (in a given thread). Readiness is defined differently for each type of retry, but gen
erally refers to when the Load can make further progress. The retry logic then sends the
INum of the Load and other stored information to the Qbox. Retry candidates are cho
sen from different threads in a round-robin fashion.

The LQ facilitates speculative execution of Loads by allowing Stores to check if a Load
younger than it, in program order, may have completed (i.e., the Load returned data
before the correct Store data had been sent to the Mbox). When the Store address oper
ation dispatches from the Qbox, it checks the LQ. If a match is found, the oldest Load
that matches the Store address is forced to trap (i.e., the Load INum is read out and sent
to the Qbox). Note that this check is relevant only for Loads and Stores within the same
thread.

The LQ also facilitates speculative execution of Loads past Memory Barriers. This is
made possible by allowing Stores from the Merge Buffer to check the LQ for possible
address matches. In this case, a Store needs to trap a Load from another thread. Note
that in this case, up to three Loads can match the Store's address and signal a trap simul
taneously.

LQ entries are deallocated once the Load is past the retire point. The Qbox sends the
LQ an INum for each thread that corresponds to the youngest operation that is being
retired. All LQ entries that are older than this INum are marked as being deallocated.

The LQ drives a signal to the Qbox every cycle that specifies the youngest Load that
may issue out of the Qbox. This signal is based on the youngest Load that is being deal
located and the number of available entries in the LQ.

9.5 Merge Buffer

The Merge Buffer, abbreviated as MGB, holds Stores from the store queue after they
have retired and before they have updated the Dcache. The MGB helps to accumulate
Stores to the same cache block by allowing data from multiple Stores to fill up the same
MGB entry. This accumulation reduces the number of unique write operations needed
to send to the Dcache, thus reducing the Merge Buffer's bandwidth requirements on the
back-end bus.

The Merge Buffer has 16 entries. Two input ports, each providing a data and address
path, are driven from the SQA and the SQD, and up to two entries can be allocated each
cycle. The addresses compare against the existing MGB entries. Each entry contains a
physical address, 64 bytes of data, and a 64-bit mask to indicate which bytes of the
block have been written into the MGB.

Compaq Confidential
9-4 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 -· Subject To Change

Pre ... MAF

If a Store address matches one already in the Merge Buffer, the Store's data are loaded
into that entry, merging with the data there. The entry's byte mask is updated to reflect
the new bytes that are being written.

The Merge Buffer arbitrates with the Cbox for the DC_Data Bus. Once the MGB wins
arbitration, it looks up the Dtags. If the cache block is writeable, the data block is
updated in the Dcache and the Dtags are updated accordingly.

If the block doesn't exist in the Dcache, a miss request is made to the pre-MAF. If all 64
bytes if the MGB entry have been written, a block ownership request is launched; other
wise a block fill is initiated.

Fills may need to merge data from the Merge Buffer before it updates the Dcache.
Hence, Fill addresses search the Merge Buffer for a match at the same time that the
Dtags are looked up. If a match is found, the Merge Buffer drives the valid bytes onto
the DC_Data Bus, effectively merging with the fill data.

Probes that hit on the Dcache also need to check the MGB. Probes check the Merge
Buffer at the same time that they check the Dtags. If a probe hits on a Merge Buff er
entry, the Merge Buffer reads out the valid data bytes and drives them to the Cbox.

9.6 Pre-MAF

TBS

9.7 Store Queue (SQA and SQD)

The store queue acts as a 64-entry reorder buffer for all Store instructions and a number
of cache movement instructions. The store queue is comprised of two parts: the SQA
that stores all information except the store's data, and the SQD that stores the data and a
duplicate virtual address. The store queue holds information for a store from the time it
issues until that store can be written into either the Dcache or the Merge Buffer. This
movement of information and simultaneous store queue deallocation cannot take place
until the processor retires (or commits to) the store instruction.

While a store instruction is resident in the store queue, it will attempt to supply data to
appropriate younger loads in the same thread. Issuing load addresses compare against
STA contents. If all of the requesting data are in one STD entry, the STD will override
the Dcache's drive of the Load data bus and drive the data itself.

The store queue input ports can accept two stores per cycle. In addition, the store queue
can process up to three loads (providing data) and two deallocations per cycle.

9.8 Translation Buffers

The Translation Buffers, or DTBs, are used to perform fast virtual address-to-physical
address translation. There are four copies of the DTB, one for each Mbox input port.
The DTBs each have 128 entries and are fully associative. Virtual addresses are sent to
the DTBs when Loads and Stores are issued to the Mbox. Each address checks for a
comparison against all of the DTB entries to see if the translation for its virtual page
number (bits 51-13) has already been loaded into the DTB. If there is a match, the DTB
drives back the physical page number (bits 47-13). These address bits are the ones used
to compare against the Dtag address. It is also loaded into the appropriate queue (LQ or

Compaq Confidential
5 Jam.mry 2001 -~ Subject To Change Memory Instruction Execution Unit - the Mbox 9-5

Back End Bus

SQ) and driven down to the pre-MAF in case the operation requires miss processing. If
the virtual address bits do not match anything in the DTB, a TB Miss Trap is indicated.
This trap kicks off a PALcode routine that reaches into the operating system's page
tables and generates the appropriate physical address for the current operation. The
physical page number and the page's associated control bits are all loaded into the DTB
via an Internal Processor Register (IPR) write. When the PALcode routine exits, control
is returned to the program at the instruction that caused the TB Miss Trap. When the
operation makes it to the Mbox next time, the translated address will be in the DTBs.

The allocation policy is round-robin.

9.9 Back End Bus

TBS

9.1 0 Operations

9.10.1 Read Requests

Loads typically issue out of the Qbox (in the Q stage of the pipeline). After reading the
register file, it computes the Load address (in the E stage). The full virtual address is
sent to the Mbox at the beginning of MO. The Dtags are looked up in MO, using the
index bits (virtual address bits 14-6), while the DTB transates the virtual address to the
physical address. The translated (physical) address from the DTB is compared with the
tag address from the Dtags. The Dtags are 2-way set associative and the tag comparison
is done on the two tags simultaneously. Only one of these tags can compare with a
given address. Loads write into their assigned LQ entry starting in the MO stage.

Both indexed blocks of the Dcache are retrieved at the same time as the Dtags and
DTB. If the block is present in the Dcache, the hit indication is used to drive only one of
the retrieved quadwords from the Dcache.

The Load compares against SQ addresses in parallel with the Dcache access. If the SQ
indicates an address match, the Dcache drive is inhibited and the SQ drives the data. If
the Load is not satisfied by either the Dcache or the SQ, a miss request is launched. The
Load is retried from the LQ once the missing block is fetched by the Cbox.

If a Load that is dispatched on port 2 is to the same bank as a Load on port 1, the Load
on port 2 is marked as having a bank conflict and must be retried.

If a Load is to I/O space (physical address bit 47 equals 1), then the Load cannot dis
patch through the memory system until it is known for certain that the Load will not
abort (by an exception or a trap). Once a Load address is found to be in I/O space, after
the DTB lookup, the Load is retried and completed only when the Qbox signals thatthe
Load is next to be retired.

After a Load has completed successfully (e.g., sent data to the Ebox) but before it is
retired (and deallocated from the LQ), it may receive a trap signal. In such cases, the
Load INum is sent to the Ibox.

9.10.2 Pref etches

TBS

Compaq Confidential
9-6 Memory Instruction Execution Unit - the Mbox 5 January 2001 ~· Subject To Change

Operations

9.10.3 Write Requests

Stores are issued from the Qbox on one of two ports. Stores perform a DTB lookup and
load an STA and STD entry. The translated address from the DTB is loaded into the
STA, as well as the virtual address and the other related instruction information.

The store's virtual address also compares against the valid entries in the LQ. This is
done to ensure that if a Load has been executed out of order to the same address as the
Store, it can be replay-trapped.

When a Store retires, the store data are written to the Merge Buffer. When a Merge
Buffer entry is selected for writing to the Dcache, the Dtag is accessed to ensure that the
block is writeable. When the Merge Buffer entry completes its write to the Dcache, the
SQA entry is invalidated.

I/O Stores cannot be completed speculatively; they cannot be cached. There is also a
strict restriction of how subsequent 1/0 Stores can merge into one system request. The
Dtags look-ups are irrelevant, because there will never be an 1/0 address in the Dcache
on which an incoming Store can hit. But, since the translation occurs simultaneously to
the first Dtag access, the Dtag access will continue until the tag comparison. At that
point, when the physical address is determined to be in 1/0 space, the Dcache miss sig
nal will be inhibited, and no miss request will be sent to the MAF. Still TBD is how I/O
Stores that have made it to the Merge Buffer are coordinated with any I/O Loads in the
MAF. I/O operations within a thread must beserviced in program order.

9.10.4 Retries

A Load which issues from the Qbox may not be able to complete in the Mbox for vari
ous reasons. It can have a Dcache miss (and SQ miss), have a bank conflict, or be a
Load to I/O space which is not ready to be retired. In each of these cases, the Load is
marked to be retried.

Every cycle, the retry logic in the LQ scans all the entries and finds the two oldest ready
entries (in a given thread). Readiness is defined differently for each type of retry, but
generally refers to when the Load is again able to make further progress. It then sends
the information about the load to the pre-MAF. Retry candidates are chosen from differ
ent threads in a round-robin fashion.

For a Dcache miss, a retry is marked ready only after the Cbox has signaled to the
Mbox that the data return is imminent. The retry readiness is detected by the LQ when
the MAF number for the completing Fill (which is driven by the Cbox) matches the
MAF number stored in the particular LQ entry. All Loads that have this MAF number
will signal readiness to the retry logic. These Loads will have their retries serviced in
INumorder.

Bank conflict retries are marked ready immediately after they occur. As soon as the
retried Load is the oldest ready retry in the LQ, it will be sent to the Dcache again.
Retried Loads are guaranteed not to get a bank conflict.

When the Mbox receives the signal from the Qbox that an 1/0 Load is the next instruc
tion to retire in a particular thread, the LQ marks the operation as ready to retry. 1/0
Loads will be retried in correct order due to the fact that they become ready in INum
order and they are selected in the retry logic in INum order.

Compaq Confidentia I
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-7

Operations

9.10.5 Dcache Misses

If a Load operation is found to miss in the Mbox, based on the Dtag and SQ look-ups,
then the data are sought from the Cbox. The Cbox will first look for the data in the
Scache. If they aren't found there, it will seek the data from the external memory sys
tem. Cbox activity is initiated by loading a MAF entry with the physical address of the
missing Load. The physical address is driven to the MAF at the same time it is driven to
the LQ. The lower portion of the physical address is driven from the input ports (12:0)
and the upper portion comes from the DTB (47:13). The addresses for the issued Loads
(a maximum of three per cycle) are held at the input of the MAF until the hit/miss is
determined. Loads that have missed are queued. The addresses of the first two entries in
this queue are driven to the MAF to compare with the addresses already in the MAF.

If a miss address is found to be in an address block of an entry already in the MAF, the
address may be mergeable with the existing MAF entry, based on the merging rules
(TBS). If the address doesn't match an already existent MAF entry, a new MAF entry
will be allocated based on the MAF allocation policy (TBS). The MAF entry number
where the miss is loaded (or merged) is sent back to the LQ and stored there. If there are
no free MAF entries, though, the Load miss cannot continue yet; a retry is marked in
the LQ entry for the operation.

The Cbox arbitrates between the Loads, Stores and I-stream requests that are in the
MAF for its next Scache and system operations. The Cbox forwards the Fill data some
time later to the Mbox and indicates which MAF entry the data are for. That MAF num
ber is driven to the LQ. Any Load operations that are waiting for these returning data,
will match and signal that one or more retry is required. The data are driven by the
Cbox into the Mbox, which steers them into the FRD buffers, via the Back End Bus.
When the Load retry (or retries) have made it back through the pipeline, the appropriate
FRD buffer is addressed (either by a CAM or by an index, TBD) which drives the Load
data bus.

Stores have to check the Dtags as they write to the Dcache. The Dcache state is most
relevant to the Store right at the time it can commit its data to the memory system
(when its data become system coherent). This look-up is necessary, because the Dcache
state could have changed between when the Store first accessed the Dtags and when it
is actually committing its data. A dirty Dcache block could have been victimized by the
time the Store made it to retirement. If so, the Store needs to initiate a miss request, via
the MAF. This time, though, the address is coming from the Merge Buffer. The return
ing data from the Cbox are sent to the Fill Buff er, and there is some interaction between
the Fill Buffer and the Merge Buffer so that the newest bytes of the block make it into
the Dcache, superceding the older bytes of the data block.

9.10.6 Load Locked/Store Conditional

Load-Locked and Store-Conditional operations are used by the Alpha architecture to
facilitate data sharing by multiple processes in the machine. Generally, a processor
attempts to perform the Load-Locked (or LDx_L) and Store-Conditional (or STx_C) as
a pair of operations, atomically, both to the same address. The address represents a
block of data in memory that is a shared resource. A processor attempts to read from
and then write back to the shared resource before any other processor in the machine
has written to that resource. The LDx_L issues first, loads data from the shared memory
address, and performs an internal operation to denote that the operation has been per-

Compaq Confidential
9-8 Memory Instruction Execution Unit - the Mbox 5 J~·muary 2001 ·- Subject To Cl1ange

9.10.7 Traps

Operations

formed. The STx_C is only allowed to complete successfully if no other processor has
written to this block. If it can be successfully completed, the STx_C performs the write,
clears any internal state set up by the LDx_L, then returns a value to the source register
denoting success. If the STx_C fails, no write is performed, the internal state set up by
the LDx_L is cleared, and a return value denoting failure is written into the source reg
ister.

The 21464 implementation of LDx_L/STx_C is somewhat complicated by the fact that
Loads and Stores can be issued out of order to the Mbox. Thus, the Mbox needs to wait
until the retire point of the operations before performing the locking operation, as a way
of guaranteeing that the processor has committed to the operation, and to maintain the
proper ordering of events.

At its retire point, the LDx_L operation loads a lock register with its address. When the
STx_C retires, it compares its address with what is in the lock register. If there is a
match, the STx_C can complete successfully if and when the processor has exclusive
ownership of the block. The STx_C retire is delayed until this exclusive ownership is
acquired. If the processor already has exclusive ownership, this retirement delay is not
very long.

When the STx_C is ready to complete, whether successfully or with a failure, it signals
a retry to the Qbox, driving the STx_C INum back to the Qbox. In response, the Qbox
"bubbles" the pipeline; which means that it allocates a Load port for this operation, but
doesn't initiate a new operation to the Mbox. When this bubble reaches the point in the
pipeline where cache data are usually driven for a Load operation, the Mbox will drive
the success/failure bit onto the least significant data bit. The Qbox then writes these
data into the correct register for the STx_C.

There are several situations that can cause an STx_ C to fail. One of these situations is if
the system is not be able to give exclusive ownership to the ownership request gener
ated by the STx_C. Another case is when a Store operation to the same memory block,
from another processor, beats the STx_C to the system memory. This competing Store
will enter the processor as an invalidate, which will clear the lock register. A third way
of failing a STx_C is if the Ibox receives an interrupt, a trap, any other control flow
change (e.g., taken branches) or another memory opera ion between the time it has
detected the LDx_L and when it has detected the STx_C, a STx_C failure must occur.

Because this last case is detected in the Ibox, a special bit must travel with the STx_C
through the Qbox and then out to the Mbox. The Mbox stores the bit with the STx_C
and upon its retiring, will use it as a condition for success or failure. If the bit indicates
a failure, no further processing in the Mbox is done.

The STx_C, regardless of whether it can complete successfully, always clears the lock
register at its retire time.

A trap may be signaled while an operation is in its initial dispatch pipeline in the Mbox,
or it could be signaled later, after the operation has completed but before it has been
retired. Traps clear all processor state relating to that instruction and all other instruc
tions younger than it (in that thread). Traps are classified as either replay traps or excep
tions.

Compaq Confide11tial
5 January 2001 -~ Subject To Change Memory Instruction Execution Unit - the Mbox 9-9

Interfaces

Replay traps can be signaled due to the following: a Store address operation (front-end
Store) dispatching through the Mbox finds a matching Load that has completed; a Store
data dispatch (back-end Store) finds a matching Load in the LQ that belongs to another
thread and the Load has completed; a Probe finds a matching Load in the LQ; SQ sup
plies incorrect data to a Load; Load gets a correctable ECC error. In each of these cases,
the Load is restarted from the front-end of the pipeline.

Exceptions may be caused due to the following: a memory operation (Load or Store or
Prefetch) finds a TB Miss or a violation (non-existent page, invalid operation); a Load
encounters an ECC non-correctable error; a memory operation encounters a non-exis
tent memory error.

A trap indication along with the INum, is sent on a special kill-bus to the Qbox. The
Qbox arbitrates all the exceptions it is receiving this cycle and redirects the front-end
suitably.

9.10.8 Invalidates/Probes

• Sources/Reasons

• Flow of Events

9.1 0.9 Memory Barriers

• General Concept

• Issues with Speculation

• Issues with Multi-threading

9.10.1 O Multi-threading

• Support in Mbox for MT

• Implications of MT on Mbox Events

9.11 Interfaces

9.11.1 Pipeline Legend

Load/Store Issue Pipeline

Load/Store Queue Dealloc. Pipeline

11
ark Entries to Dealloc ick Retire Block pdate Hi Water Mark

Compaq Confidential
9-10 Memory Instruction Execution Unit-the Mbox 5 Jc1n11ary 2001 ···Subject To Change

Data address Translation buffer (OTB)

tore Copy-Out Pipeline

9 10

etire INum Com- ick Retire Block ead SQ Entry

Merge Buffer pipeline

ty13 Iv14

11
end Addr to
erge Buffer

!Allocate Merge Buffer ~ssert NAK to Store Queue

Back End Bus pipeline

Scache write-thru pipeline

id for Scache
0

ick Merge Buffer rive to Scache
ntry

z
rv. DC_data

9.12 Data address Translation buffer {OTB)

ead SQD Entry end Data to
erge Buffer

]Y_15
lPick entry to write through

2 3
omplete Scache send WriteThruD-
rocessing ne to Cbox

Point to Mbox Contract section for introductory material.

Point to Interfaces.

Compaq Confidential
5 January 2001 ·-Subject To Change Memory Instruction Execution Unit - the Mbox 9-11

Data address Translation buffer {DTB)

9.12.1 Timing

Table 9-2 Memory Operation (Launch)

EO MO M1

A B A B A B

Receive OP Ebox drives LD Launch VA into Read PA from Compare PA's;
Issue from Qbox Addr;CAM TB, Tag, Stq TB; determine determine

ASNandTPU TB miss DC_Hit

Table 9-3 HW_MTPR TB Invalidate, TAG or PTE Issue

EO MO M1

A B A B A B

Receive OP Ebox drives LD Latch VA
Issue from Qbox Addr

Table 9-4 HW _MTPR TB Invalidate or PTE Retire

vs V6 V7

A B A B A B

Receive Retire Send Wait for bubble
fromQbox Disable_Memop grant (about 18

Bubble in um to cycles)
Mbox retry/trap
logic

Table 9-5 HW_MTPRTB PTE Retire Bubble

EO of bubble MO M1

A B A B A B

Receive bubble IPR drives Tag Write PIE Tag Write PA into TB
from staging reg- Addr, write into TB
ister ASNtrPUGRP

Table 9-6 HW _MTPR TB Invalidate Retire Bubble

EO of bubble MO M1

A B A B A B

Receive bubble CAMASN CAM saved VA Clear TPU _Valid
from staging reg- (IASN/IS) (IS only) bits
ister

Compaq Confidential
9-12 Memory Instruction Execution Unit-the Mbox 5 J~·muary 2001 --·Subject To Clumge

Data address Translation buffer {DTB}

9.12.2 What Data are Compared on a OTB Lookup?

On every DTB lookup, we will need to receive the following inputs:

• Opcode issued

• TPU number (which is translated into a TPU group)

•
•

Address Space Number stored in the ASN IPR for the above TPU

Virtual Address Tag

Bits decoded from the opcode modify TB behavior in the following ways:

LD_PHYS

LD_VPI'E

ALT_MODE

bypasses TB and sets PA = VA. (PA appears with the same timing as a nor
mal LD).

Retry/trap logic generates DTB double miss fault instead of single miss.

Retry/trap logic uses mode stored in DTB_ALTMODE IPR instead of the
CM IPR for access checks

A DTB hit produces both a physical translation and a protection mask. The protection
mask is ten bits, consisting of read and write permissions for each of kernel, executive,
supervisor and user modes, along with fault on read and on write. The retry/trap logic
uses these bits, along with the current mode and opcode to determine if an access viola
tion trap is required.

The VA comes from the Ebox in EOB. The TPU ID comes from the Qbox in EOA and is
used to locate TPU group, ASN and mode information in the IPR section.

The ASN match is pre-evaluated one phase earlier, in EOB, and added to the VA CAM
in MOA to make the DTB VA CAM match lines shorter.

The Ebox will signal a BAD_ VA trap if the VA is not correctly sign extended, i.e.,
VA<63:52> != VA<51>.

For each DTB entry the following information is stored for comparison with the current
VA.

ASN<7:0>

ASM

TPUGRP _ VALID<3:0>

VA<51:13>
VA_DONTCARE<24: 13>

Address Space Number I process ID

Address Space Match

TPU Group Valid bits

Virtual Address Tag

Decoded Granularity hint bits

Every application process has its own virtual address space. Therefore each process has
its own Address Space Number. The ASN is used to specify which process the PfE is
associated with.

The operating system can allow multiple processes to share PfE's. The Address Space
Match bit allows this. If the ASM bit is set the ASN is not compared on a DTB lookup.

To allow the 21464's four TPUs to be used to create 2 or more independent virtual
CPUs, a new mechanism to allow each PfE to be specific to a subset of the 4 TPUs will
exist. Four TPUGRP _VALID bits will indicate which TPU group each entry is valid
for.

Compaq Confidential
5 January 2001 -·Subject To Change Memory Instruction Execution Unit - the Mbox 9-13

Data address Translation buffer (DTB)

9.12.2.1 The TPU Group

The TPU Group is a mechanism to control the sharing of address spaces and address
space numbers among TPU's. TPU group membership is defined by the TPUGRP IPR
and affects which lines can match on a DTB lookup. These equations will be described
later, but for now, here is the high-level description of what all these things mean.

•

•

The TPU Group delimits a space where TPU's in different groups have distinct
spaces of ASN values, ASM bits, superpages and address mappings. TPU's in dif
ferent Groups share the same relation to each other as different processors within a
SMP machine. They could even be running different operating systems.

The ASN delimits a space where TPU's share ASM entries and superpages, but
have distinct mappings for non-ASM pages. TPU's in the same Group, but with dif
ferent ASN, are running different processes within the same instance of an operat
ing system.

• TPU's whose Group and ASN both match share their entire address space. They
will be running different threads within one process and oneoperating system.

The Operating Systems people have referred to two different modes of operation, which
correspond to different TPU Group assignments. (These mode names are informational
only, and do not affect the design of the DTB.)

• Mode 2 (expected to be used by VMS) is the SMP-like mode, where every TPU is
in a different group.

• Mode 3 (expected to be used in Unix) is the full multithread mode, where all TPU's
are in one group.

To implement the TPU groups, each DTB entry has four valid bits, indicating which
group the entry pertains to. At most one valid bit may be set for a given entry. Having
all four bits clear indicates that the entry is invalid for all groups.

For a DTB entry to match when doing a compare the following condition must be met:

VA<51:13> == current_VA<51:13>

TPUGRP_VALID<current_TPU_group>

AND
1l1 AND

(ASN<7:0> current_ASN<7:0> OR ASM '1')

9.12.2.2 Granularity Hints

This condition become a bit more complicated with the addition of Granularity
Hint(GH) bits. GH is a mechanism that allows contiguous pages to be treated as one
larger page. GH bits allow recognition of pages of size 8x, 64x, and 512x. The 2 bit GH
encoding is interpreted in the following manner:

Table 9-7 Granularity Hint Encoding

GH Page Size With SKB Base Size with 64KB Base VA Compare

00 normal 8Kpage 64K page compare VA<51:13>

01 8x 64Kpage 2Mpage compare VA<51:16>

10 64x 512Kpage 64M page compare VA<51: 19>

11 512x 4096Kpage 512M page compare VA<51:22>

Compaq Confidential
9-14 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 ··· Subject To ChangE~

Data address Translation buffer (DTB}

The condition then becomes:

VA<51:22> == current_VA<51:22>

VA<21:19> current_VA<21:19>

(VA<18:16> == current_VA<18:16>

(VA<15:13> == current_VA<15:13>

TPUGRP_VALID<current_TPU_group>

(ASN<7:0> == current_ASN<7:0>

I 1'

AND

OR GH '11'

OR GH >= '10'

OR GH >= '01'

AND

OR ASM == I 1'}

If this condition is not met for any of the DTB entries a DTB miss will occur.

9.12.3 64K Pages

AND

AND

AND

The 21464 supports a 52-bit virtual address and 48-bit physical address. These widths
lead to several complications when used with the 8K page size standard with the Alpha
architecture. Chief among these is that the page table entry stores the physical page
frame number as the upper longword of the quadword entry. A 32-bit page frame num
ber and a 13-bit page offset combine to permit only a 45-bit physical address. For this
reason, the 213464 has a 64K-page mode, with a 16-bit page offset, permitting the 48-
bit physical address space.

A second benefit of the 64K-page mode is that the full 52-bit virtual address space can
also be accessed using a 3-level page table, instead of the 4-level table that would be
needed with SK pages.

The 64K page mode is implemented by a bit stored (on a per-TPU basis) in the
VA_CTL IPR. When set, this bit has the following effects:

• All granularity hint values are increased by one:

GH SK 64K

00 VA<15:13>
01 VA<15:13> VA<18:13>
10 VA<18:13> VA<21:13>
11 VA<21:13> VA<24:13>

• The PPFN stored in DTB_PTE<63:32> corresponds to PA<47:16>.

• The VPTE offset in VA_FORM<38:3> corresponds to VA<51:16>.

From a hardware perspective, the 64K mode inserts another set of conditions into the
granularity hint logic, and a 3-bit shift into the PTE part of the DTB and into the VA
input into VA_FORM.

9.12.4 Hit Determination

The DTB is also in charge of determining whether a particular load access hits in the
cache. This is located at the DTB to minimize the load bus timing, even though it is not
strictly a matter of address translation.

Hit determination is done by driving both sets' tag addresses from the corresponding
tag array and comparing them with the translated physical address. A match sets the hit
bit and steers the set select to the matching set. For test purposes, the DC_CTL IPR can

Compaq Confidential
5 January 2001 -·Subject To Change Memory Instruction Execution Unit-the Mbox 9-15

Data address Translation buffer {DTB)

force the cache to always hit in one set. In addition, the Store Logic can force a load to
hit, if Store Logic can supply data, or to miss, if it should supply data, but is unable to.
The Fill Buffer can force a load to hit, if it is supplying data for an 1/0 load. These con
ditions go into the hit logic and override the results of the tag comparison. The hit indi
cation is returned to the Mbox retry/trap logic, which, in the event of a miss, marks the
operation for retry, and poisons its load data.

The output of this logic is the DC_HIT signal, which provides the overall indication of
whether the operation generated valid data, along with drive enables to the set drivers,
Store Logic and Fill Buffer to steer the proper data onto the
M%LD_DATA_M2A<63:0> bus.

9.12.5 Returned Status

In the most general terms, either of two things can happen when a memory operation
comes in. First, the DTB translation could succeed. In this case, the DTB returns a
physical address, along with Dcache hit and set select. Secondly, the DTB translation
could trap. In this case, the DTB returns a trap reason in MIA to the Mbox retry/trap
logic. After a little while, when this gets back to the Qbox, the operation in question
will be killed. Some time thereafter, PALcode will deal with the trap. Among other
things, this means that the address and hit indications generated are irrelevant and are
permitted to be garbage.

Trap processing is governed by the following rules:

•

•

•

•

•

If the Ebox sent a poisoned address, all traps are inhibited. Poison indicates that the
operation in question is the dependent of a load miss, and thus is garbage. The
Qbox will reissue such operations after the load retry.

Otherwise, if the Ebox sent BAD_ VA, indicating that the sign extension check
failed, we signal a BAD_ VA trap. PALcode will need to emulate the instruction
(pointed to by the EXC_ADDR IPR) to find out what the failing address was.

Otherwise, if no entry in the DTB matched the address, and the opcode is a
LD_ VPfE, we signal a DTB_MISS_DOUBLE trap. PALcode will need to use the
double miss flow to find the correct PfE.

Otherwise, if no entry in the DTB matched the address, and the opcode is not a
LD_ VPfE, we signal a DTB_MISS_SINGLE trap. PALcode will need to use the
single miss flow to find the correct PfE.

Otherwise, if an entry in the DTB matches the address, but the PTE has protection
bits inconsistent with the access requested, the Mbox retry/trap logic signals an
ACV trap. The specific equations are as follows:

mode = (OP == HW _LD/Alt II OP== HW _ST/Alt) ? DTB_AL1MODE : IER_CM/CM

prot = switch (mode):

case KERNEL: (KRE, KWE);

case EXEC: (ERE, EWE);

case SUPER: (SRE, SWE);

case USER: (URE, UWE);

ACV = (RD & (FOR 1-prot[O])) I (WR & (FOW 1-prot[l]))

Compaq Confidential
9-16 Memory Instruction Execution Unit - the Mbox 5 Jc111uary 2001 ... Subject To Change

Data address Translation buffer (DTB)

9.12.6 Effects of a OTB Miss

As mentioned earlier, a DTB miss causes a DTB miss trap. The DTB miss trap is deliv
ered to the Mbox central trap handler. The central trap logic checks whether the associ
ated opcode is a LD_ VPfE, which requires double-miss handling, or anything else,
which is a single miss, and requests that the Qbox kill the faulting instruction and dis
patch to the appropriate PALcode flow.

The PALcode trap handler determines the appropriate PfE from the operating systems
page tables. It then fills this PfE into the DTB by writing to IPRs DTB_ TAG and
DTB_PfE. All communications with the DTB from the PALcode routine is done
through writes to IPR registers, which will be discussed later.

The HW _MTPR DTB_ TAGO must issue before the HW _MTPR DTB_PfEO, and, sim
ilarly, DTB_TAGl before DTB_PfEl. This is ensured by having the PALcode restric
tion that TAGO must come before PfEO, and be in the same picker, and TAGl must
come before PfEl and both must be in the opposite picker as TAGO and P'fEO. Having
the MTPR to TAGO, TAG 1, PfEO, PfEl immediately adjacent and in that order satis
fies this requirement. In addition, the MFPR VA must be before and in the same picker
as the LD_ VPfE. (Being before and in the same picker as the MFPR VA_FORM is also
acceptable.)

When the PfE has been written to the IPRs, it is not copied from the IPR into the DTB
until the instructions that write the IPRs have retired. To ensure consistency, in any flow
containing writes to the DTB TAG or PfE IPRs, either the complete set of four MTPRs
must retire, or none of the writers may retire.

So that all four TPU's can be working on TB miss flows at once without colliding, there
must be four sets of physical IPR's, with one set visible to each TPU.

A thread must not complete another DTB fill flow while a prior fill flow in the same
thread is unretired. This is done by scoreboarding the HW _MTPR TAGO at the begin
ning of the DTB fill flow against the retire of the HW _MTPR PfE 1 at the end of the
previous DTB fill in the Qbox, as documented by the Qbox.

A new DTB entry is written from the IPR set into the DTB array when the HW _MTPR
DTB_TAGl retires. When this retire occurs, the DTB requests that the Mbox retry logic
bubble back the HW_MTPR inum to the Qbox, which inserts a bubble into all four
load/store pipes, and also releases any waiting DTB writes for that TPU. The DTB
entry is written when the bubble arrives. In the meantime, memory operations in the
same TPU as the writer of a retired but unwritten DTB entry can continue to use the
copy of the DTB entry stored in the IPR.

9.12.6.1 Speculative and Duplicate OTB entries

Because the single DTB miss flow is performance-critical, DTB entries must be usable
even before the DTB writer retires. At the same time, if the DTB writer turns out to be
on a bad path, it must not have affected any good path instructions. In addition, since
the DTB is a shared resource, this restriction also applies to other TPUs.

To permit all this, a speculative DTB entry stored in a DTB_TAG/DTB_P'fE IPR set
may be used for a memory operation if all of the following conditions are met:

• The DTB entry is not the result of poisoned data .

• The DTB entry has not been invalidated as a duplicate.

Compaq Confidential
5 January 2001 ···Subject To Change Memory Instruction Execution Unit-the Mbox 9-17

Data address Translation buffer (DTB)

•
•

The DTB entry was written by the same TPU as the memory operation .

The DTB entry is older than the memory operation .

Because, among other reasons, two TPUs could execute a DTB fill almost simulta
neously, it is possible for the speculative PfEs of two TPU s to translate the same
address. These will never be used simultaneously, by the rules above. However, if one
or both PfEs retire and are written to the DTB array, multiple DTB entries could be
activated on a single operation. This has unpleasant electrical and logical consequences.
The following rules ensure that an entry in the DTB array can never duplicate another
entry in the array or a speculative PTE.

• A HW _MTPR TAG performs a CAM of the DTB when issued, and invalidates
itself if a hit occurs.

• A HW _MTPR PfE performs a CAM of all of the speculative TAGs when it retires,
and invalidates all matching speculative TAG/PfEs.

9.12.7 Data Storage in the PTE

PA_write<47:22>

The DTB uses a RAM array to store all data to be retrieved on a DTB read:

PA<47: 13> Physical address bits of 8K page.

UWE,SWE,EWE,KWE User,System,Executive and Kernel Write Enable bits.

URE,SRE,ERE,KRE

FOW,FOR

User,System,Executive and Kernel Read Enable bits.

Fault On Write, Fault On Read.

When a PA is written to the DTB, each bit is either XORed with the respective VA bit
or it is forced low. When the PTE is read from the DTB each PA bit is again XO Red
with the VA. This will restore the PA bit for any bit that was XORed on the way in. If a
bit was forced low on the write then it will insert the VA bit on the read. This provides a
mechanism for supporting GH bits and superpages(see later).

The PA bits are written in the following manner:

XORed with VA_write<47:22>
PA_write<21:19> XORed with VA_write<21: 19> if (GH < '11') otherwise write "000"

PA_write<18:16> XORed with VA_write<18: 16> if (GH < '10') otherwise write "000"

PA_write<15:13> XORed with VA_write<15: 13> if (GH < '01') otherwise write "000"

The PA bits are read in the following manner:

PA_read<47:13> is XORed with VA_matched<47:13>

The protection and fault bits are compared with the access requested, and the Mbox
retry /trap logic sends back an ACV trap if inconsistent. The IPR section will also latch
the VA and access bits in the MM_STAT and EXC_ADDR IPR's. The IPR logic tracks
Mbox faults as they happen, together with the P%RK_KILL_ V5A bus, to ensure that
these IPRs reflect the last good path faulting instruction.

9.12.8 I PRs That Affect the Contents or Behavior of the OTB

DTB_TAGO,DTB_TAG1

Compaq Confidential
9-18 Memory Instruction Execution Unit-the Mbox 5 Jc1nuary 2001 --·Subject To Clumge

Data address Translation buffer (OTB}

The VA is written to the DTB_TAG register by use of the MTPR PALcode instruction.
Four registers of each type exist (1 per TPU) although only one is visible to the user at
any given time.

DTB_PTEO,DTB_PTE1

The PA and protection bits are written to the DTB _PfE register by use of the MTPR
PALcode instruction. Four registers of each type exist (1 per TPU) although only one is
visible to the user at any given time.

DTB_IA (Invalidate All)

When a write to this IPR retires all PTEs in the DTB are invalidated for TPU s in the
writer's TPU group. PALcode must include an IFETCHB after this IPR is written and
before any memory operation.

DTB_IAP (Invalidate All Process Specific PTEs)

When a write to this IPR retires all process specific(ASM==O) PfEs are invalidated for
the writer's TPU group. PALcode must include an IFETCHB after this IPR is written
and before any memory operation.

DTB_IASN (Invalidate Address Space Number) (Proposed)

When a write to this IPR retires all process specific(ASM==O) PTEs with the ASN of
the current TPU are invalidated for the writer's TPU group. This has been requested by
Unix, and may be implemented if they provide a justification and SRM change. PAL
code must include an IFETCHB after this IPR is written and before any memory opera
tion.

DTB_IS (Invalidate Single)

When a write to this IPR retires any entry in the DTB which matches the VA provided
in the IPR(and current ASN of the TPU if ASM==O) is invalidated for the writer's TPU
group. PALcode must include a IFETCHB after this IPR is written and before any
memory operation.

M_CTL (Mbox Control Status Register)

When a write to this IPR retires, bits SPE<2:0> in this IPR enable the 3 superpage
modes. Superpage enables only affect the group of TPUs belonging to the writer of
M_CTL.

TPUGRP (Thread Processing Unit Grouping definition)

When a write to this IPR retires its contents define how TPU s are grouped. When a new
PfE is written to the DTB, the PTE can be made valid for only the group of TPUs to
which the writer belongs. Whenever a TPUGRP is reused the DTB must be flushed for
that TPUGRP.

DTB_ALTMODE (Alternate Access Check Mode)

This is the mode used when a memory reference comes in by way of a HW _LD or
HW _ST instruction with ALTMODE set. This is used to implement various probe oper
ations, and must exist on a per-thread basis. In such cases, the Mbox retry/trap logic
uses the access mode (kernel, executive, supervisor or user) stored here, rather than the
one stored in the CM IPR.

Compaq Confidential
5 January 2001 -· Subject To Change Memory Instruction Execution Unit - the Mbox 9-19

Data address Translation buffer {DTB)

9.12.9 Superpages

Superpages are an extension to VA ->PA translations. These mappings provide a trans
lation outside the DTB for three regions of VA space. The translations are all set to per
mit access in kernel mode only.

SuperpageO is used to direct map one quarter ofWindowsNT's 32bit address space. The
kernel code is kept in this area of memory. It is believed that 64-bit NT will use the
Unix superpage mode.

Superpagel is used to dir~,et map the least significant 41 bits of the physical address
space (bits <47:41> sign extended) to support older versions of UNIX and VMS. This
superpage is consistent with the 43 bit virtual address supported by EV 4, EV 5 and the
size of the 3 level VPTEs used in Digital UNIX. (see SRM Digital UNIX II-B section
3.1.1).

Superpage2 is used to direct map the whole of the physical address space for more
recent versions of UNIX and VMS which may use four level PfEs.

In hardware, we simply need a set of special match lines in the CAM which detect the
following conditions:

If M_CTL[SPE<2>] 1 AND VA<51:50> then PA<47: 13>=VA<4 7: 13>, USEK= 11 0001 11

11 10 II

If M_CTL[SPE<l>]
11 111111111101 11

1 AND VA<51:40> then PA<47:13>= "1111111 11 ,VA<40:13>,
USEK= 11 000l 11

If M_CTL[SPE<l>]
"111111111100 II

1 AND VA<51:40>

If M_CTL[SPE<O>] 1 AND VA<51:30>
11 1111111111111111111110 11

then PA<47: 13>= 11 0000000 11
, VA<40: 13>,

USEK= 11 000l 11

then PA<47: 13>= #00000, VA<29: 13>, USEK= 11 0001 11

M_CTL is an IPR. SPE<2:0> are the 3 superpage enable bits within the IPR. The oper
ating system must ensure that no valid PfE in the DTB array will ever conflict with an
active superpage, by never including the superpage region in the regular page tables.

When one of these conditions is detected - a special, hardwired PA entry is read from
the PA array. Since all PA bits are XORed with VA bits as they are read from the array -
the hardwired PA entries are as follows:

PA<47:42> PA<41> PA<40:31> PA<30:13>

Superpage 2: All Os 0 All Os All Os
Superpage 1 & VA<40>=1: All Os 1 All Os All Os
Superpage 1 & VA<40>=0: All ls 0 All Os All Os
Superpage 0: All ls All ls All Os

Since superpages are enabled separately for different TPU groups; for each superpage
mode - a full, four bit mask of TPUGRP _VALID bits will be stored. For a particular
superpage comparator - only the TPUGRP_ VALID bits corresponding to the writer's
TPU group will be affected when M_ CTL is written (bits outside the group should be
left as they are and not cleared). The superpage TPUGRP _VALID bits are not affected
by IA, IAP or IS. They do have a reset mechanism so that the whole DTB can be
flushed during Power on Reset and when TPU groups are modified by a write to the
TPUGRPIPR.

Compaq Confidential
9-20 Memory Instruction Execution Unit - the Mbox 5 January 2001 - Subject To Change

Data address Translation buffer {DTB)

9.12.10 Possible Support for Generic Superpages

Bruce mentioned the idea of using generic superpages. Instead of hardcoding the super
pages as additional DTB entries, there could be several generic superpage entries. This
certainly seems possible from an implementation standpoint with the following impli
cations:

9.12.10.1 Page Table Array(PTA) Implementation

Since the superpages would no longer be hardcoded the translations would need to be
filled into the DTB instead of simply enabled using the SPE<3:0> bits. The XOR
scheme talked about above would still allow generic superpage translation for the exist
ing superpage modes.

9.12.10.2 Virtual Address Array(VAA) Implementation

The DTB uses cam cells to compare the incoming VA with the VA stored for each entry.
For the superpages the cam cells are removed and the superpage code is hardcoded into
the array. The superpages vary in size and VA space mappings. Generic superpages will
require the addition of a 3 state cam cell into the cam array. The third state would be
'don't care'. This would allow the cam structure to compare only a subset of VA bits.
The EV6 DTB used 2 cam cells to build a 3 state cam cell for the GH bits. Something
similar could be done for the generic superpage entries.

9.12.11 Replacement Policy

Least Recently Used(LRU) vs Not Last Used(NLU) vs Round Robin?

The 21264 used a round-robin replacement policy. What will the 21464 use?

Some quick experiments indicate that (on the SQL benchmark), compared to Round
Robin, NLU improved miss rates by 1 Ilk inst, and LRU by 8/ lk inst.

Given the performance differences, the complexity of implementation, and the impact
of anything other than round robin on verification, the DTB will

use round robin replacement.

9.12.12 OTB Size

It has been observed that a 128-entry DTB is incapable of mapping a 2MB SCache
using default 8K pages. One could build a 2-set 256-entry DTB to do this. This would
essentially be two copies of the current TB, with the choice of set done by looking at
VA<l3>.

A preliminary experiment (using SQL again) indicates a 13 Ilk inst reduction in TB
miss rates with this design. Based on the above, the DTB will have 128 entries.

9.12.13 ITB Usage

The core of the DTB design will also be the core of the ITB design. Notable differences
include the following:

• There is only one ITB, but there are four DTBs .

• The ITB only stores 5 protection bits, vs. 10 in the DTB .

Compaq Confidential
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-21

Data address Translation buffer {DTB)

•

•

The ITB does not have speculative entries and will use that logic to handle the
micro-ITB instead.

The ITB does not have hit determination logic .

9.12.14 Reset and Testability

All IPRs, DTB Valid bits and the DTB Write Pointer must be cleared on reset, except
that the DCache set enable bits in the DC_CTL IPR reset to one. If this proves imprac
tical, a f allback position is to require that reset PALcode execute a DTB _IAG to reset
the write pointer and a DTP _IA to invalidate the array for each TPU group and to write
M_CTL and VA_CTL appropriately, before any virtual loads and stores are issued.

For test purposes, the test logic requires access to the virtual address (lookup), fill vir
tual address, PfE read data, PfE fill data and write pointer. The virtual address lookup
path is critical; the test port should probably be included as a leg of the retry address
mux.

Some caution is in order regarding nomenclature. The DTB is a CAM/RAM structure
whose data elements are addresses. Thus, the virtual address is the data part of the
CAM, the physical address is the data part of the RAM, and the write pointer is the
address part of the CAM, when viewed from the perspective of the test logic.

9.12.15 Issues

1. Unix changes PfEs without doing TB invalidates. Unix toggles the protection bits
without invalidating the PfE. The duplicate prevention logic must prevent ill
effects from resulting.

2. The combination of GH=l 1 and 64K pages means that GH cells have to go up to
VA<24>. EV7 seems to be doing this.

3. Enforcing issue ordering between MTPR TAG and PTE on DTB fill. This can prob
ably be done by slotting the PALflow correctly. If not, it could be done by using
another IPR reader class.

4. Is EBox doing the BAD_ VA trap? Chris has volunteered that EBox could signal the
BAD_ VA trap, since they are already signalling Unaligned.

5. Is there a separate IPR bus? Ebox feels that a separate bus for MFPR which acts
like a multimedia result bus is the cleanest way.

6. Should we make all explicitly written IPRs readable? This is for testability.

7. Should generic superpages be added? What is the mechanism? Concern is the num
ber of 3-state CAM cells.

8. Bit assignments and encodings for Trap Reason and IPRs.

9. Will Pbox ensure that we get Kill INum before freshly issued post-kill instructions.
(They have to do this for all boxes, not just us.) The current timing is V7=I2 of the
good path flow.

10. Duplicate suppression on bad paths requires handling the following conditions:
Spurious writer with GH greater than that of the overlapping entry in the main array
won't hit main array unless we bump up the GH value. If we CAM array at MT
TAG issue, GH bits and ASM are not available then. CAM at retire could hit a half
issued (TAG only) speculative entry, which doesn't have any GH bits or ASM. We
could make speculative entries work onlywith GH=OO.

Compaq Confidentia I
9-22 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 - Subject To Clumge

Store logic

11. Approval to add DTB_IASN. Having it present still maintains backward compati
bility.

12. PALcode restrictions.

13. EV6 and EV7 compatibility. EV7, in particular, is considering changes to 64K
mode and GH semantics.

14. Any issues relating to use of the DTB as the ITB.

9.13 Store Logic

9.13.1 Overview

The SQ, SQD, and SQC (collectively known as the Store Logic or STL) work together
to form a 64-entry reorder buffer for all store instructions and a number of "cache
movement instructions". These instructions are listed below:

Store Instructions STB, STW, STL, STQ, STQ_U, HW _ST
STF, STG, STS, STT
STL_C,STQ_C
QUIESCE

Cache Movement Instructions WH64, ECB, CCB, WMB

The SQ buffers nearly all information for a STL instruction (except an actual store's
data), and contains the allocation and deallocation functions. The SQD buffers the data
portion of stores, supplies that data to loads that require it, and supplies that data to the
back-end process that copies stores into the cache/memory system. In order to perform
these tasks with the required timing, the SQD duplicates some of the functions of the
SQ. The SQC contains additional control and sequencing for more complicated store
instructions and MB instructions.

The STL supports three major instruction pipeline flows: Store Issue, Load Issue, and
Store Copy-Out. Each of these flows takes place on a different port, although there may
be some sharing of wires between the Store Issue and Load Issue ports. The STL sup
ports two Store issues, and two Store Copy-Outs per cycle. In addition the STL can pro
cess up to 3 Load Issues per cycle, although only 2 loads are permitted if there are two
Store Issues in the same cycle.

The STL divides the 64 entries into 16 blocks of 4 entries, where each block will con
tain four consecutive stores (in program order) for a specific TPU. The number of
blocks allocated to each TPU is dependent on the number of active (non-quiesced
TPUs). A fifth pipeline flow controls the reallocation of a block to the same or a new
TPU.

In order to avoid the Qbox issue logic overflowing the STL buffering capability, the
Pbox assigns a store number (SNUM) to each instruction that will be processed by the
STL. The SNUM is a sequentially increasing identifier for STL instructions in program
order from a single TPU. The SNUM is unique among instructions for a given TPU, but
may be duplicated for instructions in another TPU. The STL specifies to the Qbox issue
logic a SNUM high-water mark, which is the largest SNUM that the STL has buffering
for. The Qbox will not issue STL instructions whose SNUM is greater than the high-

Compaq Confidentia I
5 January 2001 --· Subject To Change Memory Instruction Execution Unit - the Mbox 9-23

Store Logic

water mark, which prevents STL overflow. When a STL block is added to a TPU, or
one is ready for reuse, the STL will increase the high-water mark for that TPU, and the
Qbox will enable the next four STL instructions to issue.

The STL holds information for an STL instruction from the time it issues until it retires
and other structures are updated. If the instruction refers to an address that is repre
sented in the DCACHE, then the STL entry will not be deallocated until the DCACHE
is updated. If the instruction refers to an address that is not in the DCACHE, then it can
be deallocated as soon as the instruction has been copied into the MGB.

While a store instruction is buffered in the STL, it will attempt to supply data to appro
priate younger loads in the same TPU. The STL will supply data, SNUM, and status for
each load specifying that the load should:

Status

STL_MISS

STL_HIT

STL_RETRY

Action

Use DCACHE data

Use SQ data

Use SQ data, but SQ can't supply it now

If STL_RETRY is signaled, the LQ simply retries as soon as possible.

In order to facilitate the S TL finding the appropriate store instruction for a given load,
the STL computes an active range of INums for each STL entry. This range is a conser
vative estimate of the load INums that should use this entry, and is initialized by the
Store Issue for the STL entry. Subsequent Store Address Issues may reduce the end of
the range if the incoming STL instruction is in the current range and the SQD address
comparison would match the original entry.

An incoming Load Address Issue, causes the SQD to read entries whose range includes
the INum of the load, and whose SQD address overlaps the load. The STL logic guaran
tees that there will be either zero or one entries that meet these criteria. At the same
time, the SQ is computing the appropriate status for the load access. In most cases,
STL_MISS or STL_HIT will be returned enabling the load to complete as far as the
STL is concerned. In a very few cases, the STL logic will be incapable of supplying the
correct data, and the SQ will return STL_RETRY. The load is then retried continuously
until the STL condition is cleared (usually by some entry being deallocated).

When a STL instruction retires its SQ status is changed to retired, which causes it start
requesting service from the Store Copy-Out logic. The Copy-Out logic processes
retired STL instructions in program order, and can handle two STL instructions from a
given TPU in a single cycle. The Copy-Out process sends the STL instructions to the
MGB (merge buffer) which responds with a positive or negative acknowledgement. If
the MGB supplies a negative acknowledge, then the STL instructions will be sent
again, when that TPU is selected. Eventually the MGB sends a deallocate message to
the STL, which changes the SQ status to deallocate, which enables the block containing
the entry to be processed by the reallocation pipeline.

Compaq Confidential
9-24 Memory Instruction Execution Unit - the Mbox 5 January 2001 m Subject To Change

Store Logic

9.13.2 Store Issue Flow

The Store Issue loads the information about an STL instruction into the SQ and SQD.
The entry that is to be loaded is determined by the SQ by matching the incoming
instructions TPU and SNUM against the TPU and SNUM stored in each block of the
SQ. The block TPU and SNUM are initialized by the reallocation process and described
later.

Each STL entry computes an active range of INums within which this STL entry will be
visible to Load Issues. This range is computed in a conservative fashion so that for a
given Load Issue, only zero or one entries of the SQD will be read. This range is
required because a number of STL instructions to the same address can be resident in
the STL at a given time. The SQ entry stores the virtual address and physical address
for STL instructions, however only the virtual address is duplicated in the SQD. Two
STL instructions are defined to "overlap" if the they are on the same TPU, the quad
word SQD index is the same, and that some addressed bytes are shared by the two
instructions.

The lower end of the active range is simply the INum of the STL instruction until it
retires, at which point it is changed to be "negative infinity" (older than any instruction
to be issued). The end INum of the range (or EINum) is initialized to be "positive infin
ity" (younger than any instruction to be issued). When the EINum of an entry is retired,
it is changed to be negative infinity, which effectively disables this entry of the STL
from supplying data to loads. For each subsequent Store Issue, each entry in the SQ
updates its EINum if appropriate. If the incoming Store Issue's INum is younger than
the entry's INum and older than the entry's current EINum, then the entry's EINum will
be set to be the incoming Store Address Issue's INum.

9.13.3 Load Issue Flow

The three load address ports are used to look up the STL to determine if some data for
this load should come from the STL. The TPU, INum and virtual address of the load are
used to find a single entry that is enabled to supply data to this load. The TPU, IN um
and physical address of the load are then used to determine if the correct entry was
selected using the virtual address. If this second comparison determines that either the
wrong entry was selected, or that there were more than one entry required for the load
to complete, it signals this fact using STL_RETRY.

9.13.4 Store Copy-Out Flow

When a STL instruction retires its SQ status is changed to retired, which causes it start
bidding to be copied into the MGB (merge buffer) and DCACHE. The Store Copy-Out
process selects a TPU that has some STL instruction bidding to be copied-out. It then
selects the oldest block that contains a bidding STL instruction, and copies out the two
oldest bidders from that block (if there is more than one). The SQ commands the SQD
to read the data for those STL instructions, and examines their opcodes and physical
addresses. If there is no overlap in the physical addresses and the operations are com
patible, both are sent along with the data from the SQD to the MGB. After a fixed delay,
the SQ gets an acknowledgement from the MGB telling the SQ that each STL instruc
tion was either accepted or rejected, and the MGB index it was merged into if accepted.
The SQ stores this information to control deallocation of the SQ/SQD entry. If the entry
was not accepted, it becomes enabled to bid again. In some instances, the STL instruc-

Compaq Confidential
5 January 2001 -~ Subject To Change Memory Instruction Execution Unit - the Mbox 9-25

Merge Buffer

tion requires special handling by the Copy-Out process (WMB, STx_C, I/O Stores). In
this case, the Copy-Out process stops copying out STL instructions for that TPU until
the operation is done.

Because there is a window of a couple of cycles between the sending of an instruction
and the acknowledgment by the MGB, it would be possible to have a number of
instructions inflight toward the MGB. In order to process WMB instructions, the retire
ports will not send any instructions after the WMB until the MGB sends acknowledg
ment for instructions preceeding the WMB. In addition the retire ports wait until all
merge buffers for this TPU are made coherent before sending any new instructions. The
retire ports process STx_C like ordinary stores, except that STx_C holds up the retire
point. This means that no other stores can be processed after the S Tx_ C in this TPU.
When the STx_C is sent to the MGB, it will reply with a STx_C_success signal in addi
tion to the not_accepted signal.

9.13.5 Block Allocate Flow {TBD)

9.13.6 Things Not Done

Store conditional processing (in control section) IO processing signals

9.14 Merge Buffer

9.14.1 Overview

The Merge Buffer holds Stores from the SQ after they have retired and before they have
updated the Dcache and the Scache. The MGB helps to accumulate Stores to the same
cache block by allowing data from multiple Stores to fill up the same MGB entry.
Accumulating store data for a whole cache block, conserves system bandwidth by
avoiding data transfers for cache blocks that are completely dirtied; the CBox does a
CtoD transaction on the system. Furthermore, since the Scache can be written at a min
imum granularity of a quad-word, the MGB acts as a holding place for stores which
write less than a quad-word thus avoiding Scache fills (in order to merge byte/word/
lword write from the processor).

The Merge Buffer has 16 entries. Two input ports, each providing a data and address
path, are driven from the SQ, and up to two entries can be allocated each cycle. The
addresses compare against the existing MGB entries. Each entry contains a physical
address, 64 bytes of data, a 64-bit mask to indicate which bytes of the block need to be
written into the Dcache and another TBS mask to indicate which data needs to be writ
ten to the Scache.

If a Store address matches one already in the Merge Buffer, the Store's data are loaded
into that entry, merging with the data there. The entry's byte mask is updated to reflect
the new bytes that are being written.

The Merge Buffer arbitrates with the Fill Buffer (Cbox fill returns) for the Back End
Bus. Once the MGB wins arbitration, it looks up the Dtags. If the cache block is write
able, the data block is updated in the Dcache and the Dtags are updated accordingly.

If the block doesn't exist in the Dcache, a miss request is made to the MAF. If all 64
bytes of the MGB entry have been written, a block ownership request is launched; oth
erwise a block fill is initiated.

Compaq Confidential
9-26 Memory Instruction Execution Unit - the Mbox 5 Jt1nuary 2001 -~ Subject To Change

Merge Buffer

Fills may need to merge data from the Merge Buff er before it updates the Dcache.
Hence, Fill addresses search the Merge Buffer for a match at the same time that the
Btags are looked up. If a match is found, the Merge Buffer drives the valid bytes onto
the DC_Data Bus, effectively merging with the fill data.

Probes too need to check the MGB. Probes check the Merge Buffer at the same time
that they check the Dtags. If a probe hits on a Merge Buffer entry, the Merge Buffer
reads out the valid data bytes and sends them to the Cbox.

9.14.2 Merge Buffer Allocation

Every clock, the Store Queue sends up-to-two store addresses over to the Merge Buffer.
The incoming store may merge with an existing Merge Buffer entry if :

• Physical address (PA<47:6>) and VA<14:13> matches

• Both are pure store ops (not IO, WMB, STC etc.)

• If they are to different TPUs, then they may merge only if the block is owned

If the new address cannot be merged or allocated in the Merge Buffer, then a NAK is
sent to the SQA. The Store Queue needs to resend this store later. In this case, the
merge_buff er also sets write_to_Dcache (unless it is already set) on the entry with
which it could not be merged.

It is also possible that an address matches and the state is owned, but neither Dcache
nor Scache processing is pending (this is signified by the free_to_allocate bit being set).
In this case, the thread_id[l :0] is not valid and need not match. Merging is legal in this
case and the thread_id[l :0] is set to the new thread.

PA Match && VA Match TPU Match State Merge

Yes

Yes

Yes

No

Yes

No

No

x

x
State==Owned

State !=Owned

x

Yes

Yes

No

No

If the store is accepted from the Store Queue, the merge buffer index that the store
merges with or is freshly allocated to, is sent over to the Store Queue. If a store does not
merge with an existing entry, a new entry is allocated only if one is available (has its
free_to_allocate bit set).

If there is no free entry around (and the incoming store does not merge), the merge
buffer NAKs the store copy-out. The Store Queue stalls (and continues to make the
same request), until either the Store Queue asserts Purge_mgb (Store Queue starts fill
ing up) or if an entry becomes available (because its age counter times out).

9.14.2.1 Boundary Case

If the SQ sends a request such that it tries to set the dcache_dirty[64] bits at the same
time it is being cleared from a previous write dispatch to the Dcache (in DC_data stage
of the Back End bus pipe), then the setting of dcache_dirty takes precedence over clear
ing.

Compaq Confidea1tia I
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-27

Merge Buffer

9.14.3 Merge Buffer Writes to Dcache

A Merge Buffer entry will be marked for write_to_Dcache once it satisfies either of the
conditions:

• entry is not an IO-store

andif

• Line is fully dirty (all dcache_dirty bits are set)

or if

• Its timer has timed out

or if

• Purge_mgb is active and the entry's TPU matches Purge_mgb_TPU[3:0]

or if

• A STx_C op is allocated to this entry

Purge_mgb_ TPU[3:0] is sent by the Store Queue indicating that a given TPU needs to
have its Merge Buffer entries flushed, in order to make room in the Store Queue. When
Purge_mgb_TPU[3:0] is active, a request is made to the Back End Bus controller,
which then disallows the PreMAF from sending a request to the CBox in the following
clock. If in the Scache tag launch stage, the Back End Bus receives an ACK implying
that the Scache is not running a cycle this clock, then the Back End Bus may be granted
to the Merge Buffer. The Store Queue also asserts Purge_mgb_TPU[3:0] when it starts
to process a WMB.

A picker picks a Merge Buffer entry (to write to the Dcache) when the Back End Bus
controller indicates that the following cycle may be used by the Merge Buffer (to make
a request on the Back End Bus controller). The picker may pick an entry only if its
write_to_Dcache status is set. The picker may be simply a priority encode of the
write_to_dcache bits. The picked entry is read and the address sent to the Back End Bus
(in the same clock).

During the Dtag Read stage of the Back End Bus transaction, the Btag responds with
the Dcache state

(cache_state= {valid, shared, owned}). If the line is owned, the Scache set
(scache_set[l :O]) is sent to the MGB.

If the Dcache does not have write permission (dcache_state!=owned), it aborts the data
portion of the transaction by de-asserting DC_data_ valid. Else, the Merge Buffer
assumes that the data is going to be successfully written to the Dcache and therefore it
is safe to ask the Store Queue to deallocate the entry(ies) that corresponded to the
Merge Buffer entry.

The Merge Buffer data is accompanied by the 64 dcache_dirty bits.

After the data is sent over the Back End Bus, the dcache_dirty bits are reset (if
DC_data_valid is asserted and the Cbox indicated that there was no ECC error).

If the Btag read revealed that the line is not valid in the Dcache (state!=valid), the data
phase of the Back End Bus is aborted (DC_data_valid=O). However, in this case, the
Merge Buffer assert MGB_id_dealloc<3:0>, to allow the Store Queue to deallocate. If

Compaq Confidential
9-28 Memory Instruction Execution Unit - the Mbox 5 J<1nuary 2001 ~· Subject To Change

Merge Buffer

the line does not have the correct state (state is invalid or line is not owned by the pro
cessor) or if line_fill_needed bit is set, a request is made to the MAF via the PreMAF.
The Merge Buffer may send one of 3 types of requests to the MAF (PreMAF):

•
•
•

ItoD: if all bytes are dirty, but the state-=valid

CtoD: if all bytes are dirty, but the state==shared

ReadMod: if line_fill_needed is set

It is possible, that the Cbox may refuse this request (send NAK in Scache tag launch
stage). In general it is expected that the probability of this happening is low (bank con
flicts due to internal Cbox cycles); hence, if a request is NAK'ed, the write_to_dcache
bit is once again set and the request is routed via the Back End Bus to the MAF. Re
doing the entire Back End Bus cycle may seem wasteful, but this avoids SILO'ing the
request and re-issuing it to the MAF, when the CBox detects an occasional collision
with an internal (Cbox) request. Note that the bytes that were successfully written into
the Dcache, the first time around, are not re-written again; the MGB_id_deallocate[3:0]
that is sent out corresponds to the new bytes that are written this cycle (if any). If no
bytes are written into the Dcache during this repeat cycle, STQ_dealloc (which is used
to qualify MGB_id_deallocate[3:0]) is set to 0.

9.14.4 Scache Writes

An entry needs to be written through to the Scache if there are qwords ready to be writ
ten. The following figure illustrates the various states of the Scache write through pro
cess.

Compaq Confide11tial
5 Jatwary 2001 ·- Subject To Change Memory Instruction Execution Unit - the Mbox 9-29

Merge Buffer

Figure 9-2 Scache Write-Through Process

state== owned && !line_fill_needed

tim e:r! =4

Each entry has the state machine shown above. Thus, until an entry is ready to be writ
ten out to the Scache, it stays in the NoRequest state. An entry may request the Scache
picker to write through, to the Scache only after the entry reaches the B tag Write stage
of the Back End Bus pipeline. Past the Btag Write stage, the Merge Buffer entry checks
the TBS bit and transitions to RequestScache state, provided line_fill_needed bit is not
set (line_fill_needed is set in the B tag Write pipe stage, if the cache block needs to be
fetched, because all the byte_dirty bits in a quadword are not set). TBS is set if any
byte_dirty bits are set in the octaword.

Once an entry is allowed to drive its data to the Scache, it transitions to the ScacheGrant
state; the grant signal is used to read the (PA) address (to be sent to the CBox). It is
presently expected that it will take 4 cycles to receive the ack signal from the Cbox
(implying that the data was accepted). Hence a 2-bit timer needs to be loaded to count
down the time it takes to receive the ack signal (alternately, one could stage this state
for 4 cycles). At the end of the delay, the ack is sampled. If ack is asserted, then it tran
sitions to NoRequest state else it transitions to the RequestScache state, in order to
repeat the request (to the Cbox).

Compaq Confidential
9-30 Memory Instruction Execution Unit - the Mbox 5 January 2001 - Subject To Change

Merge Buffer

9.14.5 Probe handling in the Merge Buffer

Probes arbitrate for the Back End Bus (just like fills) and check the Btags once granted.
The merge buffer is checked at the same time and if the address matches and if
dcache_state == owned, merge buffer responds with mgb_hit . If there is a hit, the
Merge Buffer writes the VDB_idx[5:0] which is sent by the Back End Bus (from the
CBox). If a probe (with invalidate) hits the Merge Buffer, line_fill_needed is not
allowed to be set (unless it is already set); this is different from other Back End Bus
transactions (in all cases, line_fill_needed is set if needed).

Note that data evicted by probes (unlike Scache write-throughs), are not full quad
words. Hence 16 byte_dirty bits are read (along with the octaword data) and sent to the
Victim Data buffer (in the CBox).

A separate signal WriteThruDone is sent, once the ack for each of the octawords that
were sent (to the CBox) are received back (no octaword_dirty bits are left set). The
CB ox closes the Victim Data buffer entry once it receives WriteThruDone.

9.14.6 Line fill and Merge Buffer

After the Btag Read stage of the Back End Bus pipeline, the Merge Buffer entry may
decide to launch a FetchLineMod request to the MAF (via the PreMAF) if any quad
word does not have all the byte_dirty bits set (although atleast one byte_dirty is set) and
if the line_ valid bit is not set (implying that the complete line is not valid). This status is
latched in the line_fill_needed bit for the entry.

During the Btag Read stage (of the Back End Bus pipeline), the Merge Buffer is
CAMed (along with the Load Queue). If there is an address match, the Merge Buffer
asserts mgb_hit.

Based on cache_state (cache_state=Btag_statelMGB_statelCbox_state), following are
the actions taken by the Merge Buff er.

• cache_state==owned.

This is the case either when we initiated a fill from the Scache since we didn't have
a qword full of data to send to the Scache (line_fill_needed is set), or a fill initiated
by a load request, is returning from the Scache or system. The Merge Buffer indi
cates that it will drive the DC_data bus corresponding to the byte_dirty bits that are
set. The merge buffer reads out the bytes corresponding to byte_dirty and sources
the data onto the DC_data bus. The merge buffer receives the entire DC_data bus
and in the cycle that the DC_data bus is being driven (towards the Dcache) it also
writes itself (effectively merging the fill data with the existing dirty data).

The dcache_dirty bits are read out and sent along with the DC_data (to enable writ
ing to the Dcache, only the bytes that need to be updated).

2 cycles following the data return (from the Cbox), the ECC status is returned. If no
errors are reported, the Back End Bus is responsible for setting the valid bit on the
Btags; else if a correctable ECC error is reported, the valid bit is left unset.

If no (ECC) errors are reported, the line_fill_needed bit is reset, all the byte_dirty
bits are reset and the line_ valid bit is set. If a correctable ECC error is reported, the
line_fill_needed and byte_ dirty bits are left unchanged; the line_ valid bit not set .

If the Dcache accepts the Back End Bus request (Back End Bus indicates
DC_data_ valid), the dcache_dirty bits will be reset.

Compaq Confidential
5 January 2001 - Subject To Change Memory Instruction Execution Unit - the Mbox 9-31

Merge Buffer

The mgb_state of the Merge Buffer entry is set to cache_state .

Note that if the cache block does not exist in the Dcache (Btag state==invalid), the
Back End Bus controller is responsible for

asserting all of the dcache_dirty bits.

• (cache_state==validllshared)

This is the case when a fill (initiated by a load) returns on the Back End Bus but the
final state is shared (not owned).

The data is merged (as above) and written into the merge buffer.

The Merge Buffer indicates to the Back End Bus that the transaction needs to be
aborted (abort_fill) i.e the Dcache will not be written (DC_data_ valid is set).

Load retries triggered due to the data fill will be satisfied, since the merged data
will still be driven onto the load data bus.

• Line comes with ownership, but no data.

This is the case when a CtoD was sent in the past. The Back End Bus transaction
proceeds as normal (using the dcache_dirty bits as set by the merge buffer).

9.14.7 10 Stores

IO stores do not set the write_to_dcache bit; instead, when the CBox is ready to send
the IO store to the system, it sends the IO store address on the Back End Bus. Once the
Merge Buffer entry (corresponding to the IO store) matches the address, it is forced to
write through to the Scache. The entry is deallocated after the Scache write through is
complete.

For a complete description of I 0 handling refer to the IO handling document.

9.14.8 Store Conditional Support

STx_C ops may not merge with existing entries in the Merge Buffer. A fresh entry
needs to be allocated. However, unlike other store ops, STx_C does not send the ack to
the Store Queue until it has obtained ownership (or been refused ownership) of the
cache block. If ownership is obtained, the Merge Buff er acknowledges the Store Queue
request and at the same time writes the STx_C into the Dcache. If on the other hand
ownership is not obtained, the Merge Buffer acknowledges the Store Queue, but fails
the STx_C and consequently does not update the Dcache.

Thus, write_to_dcache bit is set as soon as the STx_C is allocated into the Merge
Buffer.

Past the Btag Read stage of the Back End Bus pipeline, the STx_C is ack'ed if the block
is owned. If not, a CtoD STx_C request is routed to the PreMAF. Once the CtoDStXC
request completes, the STx_C is known to pass or fail (in the Btag Read stage).

The Merge Buffer receives lock_ TPU<3:0> from the Load Queue. The lock_ TPU<3 :0>
signifies that the TPU (indicated by the corresponding bit) owns the lock register (set
by a previous LoadLock instruction); if at any time, the TPU deasserts the lock, the
Merge Buffer is obliged to fail the STx_C.

Compaq Confidential
9-32 Memory Instruction Execution Unit - the Mbox 5 Janwiry 2001 -- Subject To Change

Merge Buffer

If a previously initiated CtoDStXC operation returns (on the Back End Bus) and does
not find a matching Merge Buffer entry, the CtoDStXC is aborted (DC_data_ valid=O)
on the Back End Bus.

9.14.9 MB and WMB Processing

Every clock, the merge buffer will send out a 4-bit vector TPU { 0, 1,2,3} _coherent .
Each bit in the vector is set if all entries relating to that TPU (bit 0 signifies thread 0) in
the merge buffer have dcache_state = owned. Thus each Merge Buffer entry has the
TPU{0,1,2,3 }_owned vector; this vector is derived from mgb_state[2:0].
TPU{0,1,2,3 }_coherent is essentially a wired-AND of all the TPU{O,l,2,3 }_owned
bits.

When a MB is in flight, the Store Queue should assert Purge_mgb along with
Purge_mgb_thd[3:0] to assure prompt purging of merge buffer entries for that thread.

The Store Queue will use TPU{0,1,2,3 }_coherent to decide to proceed with retiring an
MB. WMB is retired at issue time, but the Store Queue needs to ensure that no stores
(for the thread in which the WMB is present) are sent to the Merge Buffer until
Thd{0,1,2,3}_coherent is active (for the thread).

9.14.10 MAF request

The Merge Buffer may make one of the following requests to load the MAF (via the
pre-MAF):

ltoD: the line is completely dirty in the Merge Buffer, but the line is not present in the
dcache (dcache_state != valid).

CtoD: line is completely dirty, but does not have ownership (dcache_state !=owned)

CtoDSTxC: this is sent out for Store Conditional operations

FetchLineMod: line does not exist in cache and the line is not completely dirtied in the
Merge Buffer

Inval: this is caused due to the Evict instruction. The effect is to do an internal probe
with invalidate. The PreMAF gives the highest priority to Merge Buffer requests; how
ever, the CBox may reject the request 3 cycles later. Therefore, the write_to_dcache sta
tus is staged and may be set back, if the CBox rejected the request.

9.14.11 Cache Movement ops (WH64, Evict)

TBS

Evict is sent from the Store Queue. Neither the byte_dirty nor the dcache_dirty bits are
set. Evict sends an Inval request to the MAF.

9.14.12 Merge Buffer States

Figure 9-3 is a logical state diagram that illustrates the states through which a Merge
Buffer entry progresses. Each of the states are represented as follows:

Free

Merging

.. - free_to_allocate;

.- -free_to_allocate && -write_to_Dcache && mgb_hit;

Compaq Confidential
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-33

Merge Buffer

Dcache_ write .- mgb_hit;
LineFill .- line_fill_needed;
ScacheWrite .- ScacheRequest II ScacheGrant;

Figure 9-3 Merge Buffer Entry States

9.14.13 Data Array

! ScacheRequest ~
!S ca.cheG:tard: ~
fiee to allocate

The data array slice consists of:

• 512 bits of data

~e_to_a11x.ate

Ffte)~

! :6:ee_to_alhca.te

! l.ine_fill_needed

!wi:ite_to_Dca.c:he &&
!mgb_hit

wJ:ite_to_Dcaclte 11
:rrgb_hit

Compaq Confidential
9-34 Memory Instruction Execution Unit - the Mbox 5 Jc1m1ary 2001 ~- Subject To Change

• 64 byte_dirty bits for each byte of data

byte_dirty is set when:

load Queue

store data (from the Store Queue) is being written per P{O,l }be[7:0] and PA[5:3]

It is reset when:

the write through to the Scache (CBox) is complete
or if
a line fill merges with an existing entry

The data is written as shown by the Store Queue. It is also written by the Back End Bus.
The data array has 3 write ports (2 write ports from the Store Queue and another write
port for the fill data from the Back End Bus). There are 2 read ports (1 for Dcache
writes and another for Scache writes).

9.14.14 Address Array

Following are the fields in the Address array:

TBS

9.14.15 Control Section

TBS

9.15 Load Queue

VIRTUALLY IDENTICAL TO Section 9.4

The Load Queue, abbreviated as LQ, holds unretired Loads that have been issued to the
Mbox. The LQ entries are allocated to the Loads in program order, by thread. The LQ is
used to maintain ordering of Loads related to Stores and Memory Barriers. It also is
used to re-issue Loads from the Mbox itself, when a Load cannot complete successfully
when it is issued from the Qbox.

The LQ has 64 entries and is partitioned equally between threads at run-time. Thus,
when a single thread is running, all 64 entries are allocated for that thread; if two
threads are running, each is allocated 32 entries. When four threads are running, each
thread is allocated 16 entries. When a thread quiesces, it gives up its load queue entries
to the other active threads.

Each LQ entry contains the physical address, opcode, INum, a done bit, retry bits and a
TBS. The LQ is allocated in program order (by thread) by the Qbox, which assigns LQ
numbers (LNums) for all Loads during the Map stage.

If the Load completes successfully, it is marked as done in the LQ. Otherwise, the Load
is marked to be retried. The Load may retry due to a cache miss, a bank conflict or may
be a class of Load that can only complete at retirement (i.e., I/O Loads which cannot be
done speculatively).

Compaq Confidential
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-35

load Queue

Every cycle, the retry logic in the LQ scans all the entries and finds the oldest ready
entry (in a given thread). Readiness is defined differently for each type of retry, but gen
erally refers to when the Load can make further progress. The retry logic then sends the
Load to the (DIFFERENT) pre-MAF. Retry candidates are chosen from different
threads in a round-robin fashion.

The LQ facilitates speculative execution of Loads by allowing Stores to check if a Load
younger than it, in program order, may have completed (i.e., the Load returned data
before the correct Store data had been sent to the Mbox). When the Store address oper
ation dispatches from the Qbox, it checks the LQ. If a match is found, the oldest Load
that matches the Store address is forced to trap. Note that this check is relevant only for
Loads and Stores within the same thread.

The LQ also facilitates speculative execution of Loads past Memory Barriers. This is
made possible by allowing Stores from the Merge Buffer to check the LQ for possible
address matches. In this case, a Store needs to trap a Load from another thread. Note
that in this case, up to three Loads can match the Store's address and signal a trap simul
taneously. Probes (invalidates) also may force a previously completed load to trap; in
this case, upto 4 loads (belonging to different threads) may trap.

LQ entries are deallocated once the Load is past the retire point. The Pbox sends the LQ
an IN um for each thread that corresponds to the youngest operation that is being retired.
All LQ entries that are older than this INum are marked as being deallocated.

The LQ drives a signal to the Qbox every cycle that specifies the youngest Load that
may issue out of the Qbox. This signal is based on the youngest Load that is being deal
located and the number of available entries in the LQ.

9.15.1 Load Queue Allocation

The Load Queue bas 64 entries that are shared between the currently active threads.
Load Queue entries are arranged in blocks of 4 entries (referred to as load blocks).
Entries within a block are physically contiguous and are in strict INum order (the oldest
is allocated to entry 0 while the youngest to entry 3). Blocks may be dynamically reas
signed from one thread to another in order to achieve a balanced sharing. In normal
mode of operation, the number of load queue entries allocated to a given thread is
shown.

During retries and traps, we need to know the age of the load with respect to other loads
in order to pick optimally. Each load block bas an young_ vector associated with itself,
which gives the location (bits correspond to the physical location of other entries) of
loads that are older than itself. When a thread is activated (or if a previously quiesced
thread wakes up), it starts to take away load blocks from other threads as those threads
release their entries (via retirement). Similarly, when a thread quiesces, it releases its
entries which are then assigned equally among the threads that are active.

9.15.2 (Age) Young Vector generation

TBS

9.15.3 Load Queue Limit and Block Allocation

TBS

Compaq Confidential
9-36 Memory Instruction Execution Unit-the Mbox 5 Jc1nuary 2001 ·-Subject To Change

load Queue

Case 1: New Thread in Machine (or a Previously Quiesced Thread Waking Up)

TBS

Case 2: A Thread Quiesces

TBS

9.15.4 Thread Choosing

TBS

9.15.5 Block Assignment

TBS

9.15.6 Load Issue

TBS

9.15.7 Load Retries

Loads may not complete (return data) after they have been issued. They end up retrying
due to the following reasons:

• The block does not exist in the Dcache (dcache miss).

• The block does not exist in the Scache (scache miss).

• Dcache bank conflict

• The data exists in the Store Queue, but the data has not arrived yet.

• The load is to IO space and thus must issue (to the system) only when the load has
retired (at retire).

When the load encounters any of the above conditions, it is marked for retry. The load
stalls in the Load Queue until its stall condition (retrying condition) has gone away i.e a
load stalled on dcache miss, is allowed to retry once the data from the Scache is immi
nent. However, since there may be more loads ready to retry than there are retry ports
(currently ports 0 and 1 are reserved for retries), a picker picks the oldest 2 loads in a
TPU (and goes round robin between TPUs).

It is possible that a load may get multiple reasons to retry (bank conflict as well as Store
Queue data not available at the same time). However, only 1 retry reason is recorded in
the Load Queue. The retry reasons are prioritized in the following order:

1. At retire

2. Scache miss

3. Dcache miss

4. Bank conflict

5. SQA immediate retry

When a load is asked to retry, it sets the retry_status register to record the reason for
retry.

Compaq Confidential
5 January 2001 -- Subject To Change Memory Instruction Execution Unit - the Mbox 9-37

Load Queue

9.15.8 Dcache Miss

When a load issuing from the Qbox, misses in the Dcache, it sets its
retry_status=dcache_miss. It also sets its retry_ready bit, thus preparing to retry imme
diately. A picker in the Load Queue picks the oldest 2 loads from the Load Queue and
sends the physical address (PA[47:6]) to the Pre MAF. The Pre MAF arbitrates between
requests arriving from the Load Queue, the IBox as well the Merge Buffer; once, the
CBox accepts the retry request, a bubble request is sent over to the Qbox.

Using the Load Queue to determine the picking in the MAF helps as follows :

• The Load Queue already has a picker that picks the oldest load in a TPU goes
round-robin between the different TPUs. The MAF looses any notion of program
order and thus the MAF can never pick the oldest waiting load. Furthermore, we
need have only 1 picker (not 1 in the Load Queue and another in the MAF).

• We cannot allocate 3 load misses per cycle in the MAF. Therefore the Load Queue
acts as a queue into the MAF.

• The Scache loop is shorter than the retry loop. Hence if the Load Queue waited
until the MAF picked an address to send through the Scache and then initiated the
retry process, it would unduly increase the latency of the load (as shown in the
pipelines below).

9.15.8.1 MAF Pick

TBS

9.15.8.2 Load Queue Pick

TBS

9.15.9 Scache Line Miss

The Load Queue schedules the dcache-miss retry, assuming it will hit the Scache. If it
turns out that the line does not exist in the Scache, then it sets the
retry _status=scache_miss and waits in the Load Queue.

When the CB ox receives the data from the system, it sends the fill address and subse
quently the fill data to the Mbox. The fill address is allocated in the Fill Buff er. Once
the Back End Bus grants arbitration to the Fill Buffer, the fill address is sent to the
Dtags, the Merge Buffer, the Load Queue as well as the Fill Buffer.

If a fill dispatching on the Back End Bus matches a Load Queue entry that is stalled on
a scache miss (retry_status==scache_miss), then its corresponding retry_ready bit is
set.

Compaq Confidential
9-38 Memory Instruction Execution Unit - the Mbox 5 January 2001 - Subject To Cfumge

Load Queue

9.15.10 Load Queue retry - Bank Conflict

-stage

Bank conflicts are detected in the A phase of MO. The retry status is written in Ml,
phaseB.

0-stage 1-stage

rite Load Queue ick oldest retry
Set
etry _status=bank
conflict
etry _code==bank
conflict

ead Load Queue end Bubble
equest to QBox

The load may be picked (to retry) as early as M2 and may start to retry (send bubble
request) 2 cycles later.

Add SQA immediate retry.

9.15.11 Retry at retirement

TBS

9.15.12 Retry Block

TBS

9.15.12.1 Pick Oldest Retry

TBS

9.15.12.2 Oldest and Next Oldest Retry Chooser

Each bank (of the Load Queue) drives out the silo_id and the lnum of the oldest block
as well as an indication

(more_than_l_retry _rdy) that the block has more than 1 entry that is ready for retry.
The 2 lnums are then compared. If the older block (depending upon the lnum compari
son) has more_than_l_retry_rdy asserted, then the oldest and next_oldest are assigned
to the same block.

Once the oldest and next_oldest entries are selected, drive retry_grant_bank to each of
the banks. Thus if the oldest and next_oldest are from separate banks then drive
retry_grant_bank to both banks; else drive only to one (bank that is selected).

The selection of the oldest and next_oldest and sending back the grant (to disable the
load queue entry from bidding again) needs to happen in 1 phase (as shown above).

In the next phase, we read out the inum of the oldest_retry and next_oldest_retry (using
the silo_id read out in the previous phase).

9.15.12.3 Thread Chooser

A 4-bit vector last_thd_chosen[3:0] records the last thread chosen (to retry). Priority
encode thread_mask[3:0] starting at last_thd_chosen[3:0] to generate
thread_choose[3 :0].

Compaq Confidential
5 January 2001 -~ Subject To Change Memory Instruction Execution Unit - the Mbox 9-39

load Traps

The Pre-MAF may send block_rty_TPU[3:0] to disable retries from being chosen in a
given TPU. This is used in conjunction with TPU_mask[3:0] to choose the next TPU to
retry.

9.15.13 Prefetches

Following are the forms of prefetch instructions which arrive on the load port(s):

• LDL r3 l ,(r):if Dcache miss, fetch from Scache/system and install in Dcache (Pref)
• LDQ r31,(r):if Dcache miss, fetch from Scache/system and set LRU to evict

(PrefEvict)
• LDB r3 l ,(r):if Dcache miss, fetch from Scache/system in shared state (PrefShared)
• LDW r3 l,(r)
• LDF r31,(r)
• LDG r31,(r):if Dcache miss, fetch from Scache/system but don't cache in Bcache

(PrefDC)
• LDS r3 l ,(r):if Dcache miss, fetch from Scache/system in owned state (PrefMod)
• LDTr31,(r):if Dcache miss, fetch from Scache/system but do not cache in either

Bcache or Dcache

Pref Send out a FetchLine command to the Cbox.

PrefEvict Send out a FetchLineEvict command. The Cbox treats it the same as a FetchLine however, when the
block returns to the MBox, the Dtag sets the LRU bit to evict.

PrefOnce Send out a PrefOnce command to the Cbox. The Cbox sends out a FetchLine command but does not
cache the block in Scache (invalidates

PrefDC Send out a PrefDC command to the Cbox. The

9.16 Load Traps

TBS

9.16.1 OTB trap

9.16.1.1 Load/store Order Trap

TBS

9.16.1.2 lnval Trap (Traps Due to Probe-invalidates)

TBS

9.16.1.3 MGB Trap (Traps Due To Merge Buffer Dispatches On Back End Bus)

TBS

Compaq Confidential
9-40 Memory Instruction Execution Unit - the Mbox 5 Jt1nuary 2001 ·- Subject To Change

load Traps

9.16.1.4 Trap Summary

Table 9-8 shows the trap summary.

Table 9-8 Trap Summary

Status Bit Signalled in
Trap (Trap_status) Pipe Stage Trap Condition

DTBtrap dtb_trap Ml

Load-store order con- order_trap M2

TB_not_present II TB_access_ vio

TBS
flict

Parity /non-correctable Machine_check M3 (P{ 0, 1,2} ECC_check_result == error_corrected) II
P{O,l,2}dcache_parity_error error

ECC correctable error correctable_error M3

Inval trap in val_ trap
(also MGB trap)

Back End Bus
Tag Read stage

(DC_addr[47:6]==LdQ.PA[47:6])&&
((DC_op==store) && (DC_thread_id !=
Ldq.thread_id) II (DC_op==inval))

Load Queue not avail
able

MO load_queue_not_avail

9.16.2 Trap Resolution

Up to 4 threads may have their trap bits set in thread_trap[3 :0] but we can process only
1 thread at a time. In order to prevent the Completion Unit from advancing the retire
point past the trap point, we assert stall_retire_thd[3:0] for each of the threads that have
a possible trap.

The Load Queue examines the trap status of the Load Queue blocks belonging to the
thread chosen. It finds the oldest Load Queue entry that has its trap bit set. The block is
oldest if N AND(younger_ vector[i] ,block_ trap) is true.

In M4 phase B, the lnum for the oldest block in each bank is compared. Drive
grant_trap_bank in phase B, to the bank that is older. The oldest entry in the block that
is granted resets its trap bit (so as not to bid again). The inum of the oldest load is read
out of the Load Queue and sent to the Retire/Kill unit.

9.16.3 Thread chooser

Each port records the thread ID in M3 (a 4-bit vector thread_trap[3:0]) if it has a poten
tial trap. thread_trap[3:0] may also be loaded directly by the Load Queue (when an
probe invalidation or store dispatch from the Merge Buffer finds a hit in the Load
Queue).

The Store Queue sends its trap status (for each of the ports). If either of the threads (on
the 2 store ports) match a thread in the thread_trap register, then choose the matching
thread. If both threads match, choose one.

If there is no thread match between the store ports and the thread_trap register, then
choose (in a round robin fashion) a thread from among the bits set in the thread_trap
register. Send the thread ID to the Trap Resolution block in M3 (i.e send the chosen
thread at the same time the ECC error is being latched at the Load Queue).

Compaq Confidential
5 January 2001 - Subject To Change Memory Instruction Execution Unit-the Mbox 9-41

DcacheTags

If the Store Queue has traps on 2 different threads, while the Load Queue has a trap on
yet another thread, then allow the Store Queue to report its traps (the Load Queue loses
its bid to report its trap that cycle). All this is because, the Mbox can report only 2 trap
inums per clock.

9.16.4 Kill Bus

The Kill bus (kill_ valid,kill_inum[7 :0], kill_thread_id[l :0], trap_type[?? :O]) is sent to
the Retire/Kill unit.

9.16.5 Litmus 1 Handling

If a probe-inval or a store from the Merge Buffer sets the inval_trap, it asserts
stall_retire . Once the Retire/Kill unit acknowledges (for that thread) that there are no
more pending retired instructions in the pipe, the Load Queue initiates trap processing
on that thread. This ensures that a load queue entry may trap only if it hasn't advanced
past the retire point. Exact interface signal names are not known at this time.

9.17 Dcache Tags

The MB ox contains four tag arrays. These tags describe the contents and state of every
line in the DCache. Three of the arrays are at the front end, and are connected to the
load ports. One array is at the back end, and is tied to the Back-End Bus.

9.17.1 Front End Tags

The front end tags serve one and only one purpose, namely to indicate whether a load
coming in on its associated port is a hit. Tag launch is slated for MOA, and hit determi
nation for MlA.

In accordance with the DCache structure, the tag is 2-way set associative, with 512
entries per set indexed by VA<14:13> and PA<l2:6> (or, equivalently, by VA<14:6>).

The data stored in the front end tags are the physical tag, PA<47:13> and valid and fill
in-progress bits. One parity bit protects the tag entry. Parity errors have the effect of
forcing a trap. The fill-in-progress bit indicates that the associated tag entry is not yet
valid, but will soon be. This allows the Load Queue to initiate a retry for that entry
immediately.

The front-end tags have three read ports and one write port. Physically, there are three
copies of the front-end tag to provide the necessary number of ports.

To support multiple synonym invalidation, valid bits for all four combinations of
VA<14:13> for a given physical index PA<12:6> need to be able to be rewritten simul
taneously. It may be convenient to pull the valid bits out of the main tag array to permit
this operation.

Compaq Confidential
9-42 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 m Subject To Change

DcacheTags

9.17.1.1 Timing

Table 9-9 show the Dcache front-end tag timing.

Table 9-9 Dcache Front-End Tag Timing

EO MO M1

A B A B A B

Receive OP Issue Ebox drives LD Launch VA into
TB, Tag, Stq

Read PA's from
tags

ComparePA's with
TB; determine
DC_Hit

from Qbox Addr

9.17.1.2 Tag Operations

•

•

•

Incoming loads on the three load ports are looked up in the tag, using VA<14:6> as
the index, compared with the output of the DTB, and return a hit indication, a set
selection and a fill-in-progress indication.

The back end tag may send a new tag entry to be written. Some flight time delay is
acceptable, as long as the new tag arrives before the entry is set valid.

The back end tag may send a new set of valid bits to be written .

The tag needs to support both a read and a write in the same cycle.

9.17 .2 Back End Tag

This tag handles stores, synonyms, probes and fills. Because this uses physical
addresses, this tag is 8-way set associative, indexed by PA<12:6>. VA<14:13> are con
catenated to the set number.

The back end tag must contain, in addition to PA<47:13>, valid, shared and owned bits,
and the SCache set in which the cache line resides. Each pair of entries also must con
tain a set allocation bit, indicating the destination set of the next DCache fill. The tag
entry is parity protected.

9.17.2.0.1 Tag Operations

• Start fill.

When the Cbox MAF accepts a PreMAF miss request, the PreMAF requests a back
end tag launch, using VA<14:6>, and reads the set allocation bit. The entry so
indexed is then written with the new tag value, including the appropriate ownership
and SCache set values. The valid bit is cleared and the fill-in-progress bit set. The
set allocation bit is flipped, unless directed otherwise (Prefetch Evict Next). With
the exception of the valid bit, these data need not be written immediately, as long as
the write occurs before the End Fill operation.

• Endfill.

When all fill data are transferred from the Cbox to the DCache array, the PreMAF
requests that the valid bit in the tag be set and the fill-in-progress bit cleared.

• Probe.

The CBox requests a tag launch with PA<l2:6>. If any of the 8 entries so indexed
hit, a write cycle is initiated clearing the matching valid and fill-in-progress bits, of
which there may be as many as four.

Compaq Confidentia I
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-43

Dcache Array

9.17.3 IPRs

• Store.

The Merge buffer requests a tag launch with PA<12:6> and also supplies
VA<14:13> at the time that the PreMAF accepts a merge buffer evict request. For
the two entries indexed by VA<14:13>, return a hit indication. For the other six
entries, invalidate entries that hit.

Tag operation is controlled by the DC_CTL IPR. Relevant fields include the following:

DC_CTL Field

SET_EN[l:O]

F_HIT

FLUSH

F_BAD_TPAR

DCTAG_PAR_EN

Description

Gates the match lines for the respective sets.

Forces the DC_HIT line.

Clears all the valid bits.

Forces bad parity on tag writes.

Gates parity checking.

9.18 Dcache Array

The Data Cache, or Dcache, is a 64K-byte on-chip data storage. The data are organized
in 64-byte blocks, divided into 32 4-byte (longword) banks (virtual address bits 6-2 are
used to address the banks). Each bank can accept a read and a write per cycle. Three
Address ports are input to the Dcache from the Ebox; three Data ports are output back
to the Ebox.

There are three data ports to the Ebox upon which read data are transferred from the
Dcache. Since only 1 read is permitted per clock, in the event of a bank conflict, the
older load on port 0 and 1 is given priority, followed by the younger load on port 0 and
1, followed by the load on port 2. In the event of a bank conflict, the load is retried out
of the Load Queue.

Cache block fills originating either from the CBox or stores in the Merge Buffer, may
write upto an entire cache-block (512 bits) per cycle into the Dcache. The write data is
accompanied by 64-parity bits, which are stored in the array, as well as 64 dcache_dirty
bits, which control the write to the appropriate byte-bank. During a write, the cache
index bits are sent from the Back-End Bus, while the set bit is sent from the Dtags.

During a read operation, 3 indexes are presented to the Dcache. After prioritizing
between the 3 ports, each bank is selected to drive the load data bus on the correspond
ing port. Both sets are read out of the Dcache, formatted and sign-extended. Once the
Dtag compare as well as the Store Queue check (to see if the Store Queue may drive the
data, instead of the Dcache) is done, the appropriate set is selected and sourced onto the
Load Data bus.

The parity bits (for each byte) are read out and sent along with the Load Data bus. The
EBox is responsible for signalling parity errors.

Compaq Confidential
9-44 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 ··· Subject To CJumge

Pre ... MAF

9.18.1 Read Dcache

The Dcache row index (lndx<l2:0>) comprises of VA<14:13> and PA<l2:2>. The row
index arrives at the MBox in early MO phase A (or late MY phase B). During phase A,
the row address is decoded and possible bank conflicts checked. The array is read in
phase B of MO.

The data is formatted in early phase A of Ml; the set select (as well as Store Queue hit)
is known in phase A of Ml. The data is selected and driven to the EB ox.

Back-End Bus Pipeline/Dcache Write Pipeline/Load Pipeline TBS.

9.18.2 Write Dcache

Write pipeline is shown above. Write data may originate either from the the Merge
Buffer, directly from the CB ox (via a latch in the Mbox) or from one of the 4 Fill Buffer
entries (for IO and partial fill data).

The fill data and the fill address (VA[l4:13], PA[46:6]) busses are sent to the Dcache
during the Drv. DC_data phase of the Back End Bus pipeline.

The data is written during phase A of the Dcache Write phase of the Back End Bus
pipeline.

9.18.3 Bypass Fill Data

Presently it is thought that the fill data bus (write data) will mux onto the read lines in
order to bypass the data to the Load Data bus. This needs to be examined.

9.18.4 Structure

The array is physically structured in 2 halves: left and right. The right half provides the
even long words (0,2,4 etc.) while the left half provides the odd long words (1,3, etc).
Each half contains both sets A and B. The bits for each set are interspersed (bitO of set
A and set Bare adjascent). The LSBs for each of the 4 bytes are grouped together
(0,8,16,24) and the corresponding bit position of each of the 8 longwords are kept
together as follows:

(0,32) / (8,40) / (16,48) / (24,56) I (1,33) I (9,41) • • • • • •

The 32 banks are arranged as 8 sets: each set comprises of 4 banks which are inter
leaved between the right half and the left half. Thus bank 0 (and bank2) is on the right
array, while bank 1 (and bank3) is on the left array.

6 sets (3 ports* 2 ways) of differential bit wires (12 wires) or global bit lines enter the
DRV section (sense amp). Following the DRV section is the SWP section which does
format conversion (byte, word, lword, qword) as well as sign extension. The formatted
data for each of the 2 sets (ways) are then muxed with the Store Queue data path and
onto the Load Data bus.

The channel in between the 2 arrays (left and right halves) is used to route
Index<12:0>.

9.19 Pre-MAF

Figure 9-4 shows the pre-MAF queue.

Compaq Confidential
5 January 2001 ··· Subject To Change Memory Instruction Execution Unit - the Mbox 9-45

I
<»

s:::
CD
3
0
-<
3'"
se.
2 n
(5'
:J

m x
~ s. o·
:J

c
:J
;:::+(")

I o
_3
:::r "a
CD ~
s:: ..0
O" (")
0 0 x :s

Ul
0:...
~ ::s
~
~
~
Q

(/)
:c:::
~
~·
"'*
Qi
Q
ii}

~
~

-s:
t1)
:s -;·

I-stream

L:l.O_M2

Ll.l_:M2

L:l.2_M2

L:l.O_:M3

Ldl_M3

L::l.2_:M3

Me:igebu:ff'er

I-sire.am bypass

I-stream Queue

bypass f l.O:tn Loai Q.i&e

8:0>

Bypass Buffer

Dstream Queue

Retry SILO
(Fill Bufffer)

Porto b:ypass

Port 1 b:yp ass

D-s'llearn PA[47 :6]

t

I\

PA.[47:6] to CBax:

Ret:ry _FO_Inunl.8 :O] to QBox

Retiy_Pl_Inunl.8:0] to QBax:

.,, "'O
cS" tong

c «> .. ~

CD s:
co > ~ "Tl

"'O ..
CD
I

== J> .,,
0
c
CD c
CD

Pre ... MAF

The Pre-MAF queue can accept requests every clock from the following sources:

• I-stream

• Merge buffer

• 2 load retries from the load queue

The Merge Buffer requests have the highest priority and are always forwarded to the
Cbox (MAF) in the cycle that the request arrives. The load retries are written into the
D-stream Queue while the I-stream requests are written into the I-stream Queue.

If the D-stream request queue is empty, newly issued loads (from either ports 0,1or2)
may be bypassed directly to the CBox, without going through the extra stages of writ
ing into the Load Queue and then being scheduled from it. The bubble requests are con
ditioned upon the CBox acknowledging that the request is indeed being sent to the
Scache. Retry requests from the Load Queue which do not need Scache access, bypass
the Dstream Queue and are allowed to send their bypass request directly. The bubble
request is arbitrated 3 cycles prior to being sent.

9.19.1 Merge Buffer Requests

Merge Buffer requests are sent via the Back End Bus. Merge Buffer requests are TBS.

Merge Buffer requests are sent to the MAF, without any queuing delays in the Pre MAF.
The acknowledgement (ack) is sent directly to the Merge Buffer. If the request was not
accepted by the MAF, the Merge Buffer needs to resend the request.

9.19.2 D-stream Queue

The purpose of the Dstream Queue is to buffer requests from the Load Queue enroute to
the CBox. Since it takes many cycles to re-read the Load Queue in case the request
doesn't get access to the MAF, the Dstream Queue buffers 16 retry requests destined for
the CBox MAF.

Requests emanating from the Load Queue have a status bit send_to_scache, implying
that the request needs to be sent to the CBox. These are the requests that are enqueued
in the Dstream Queue. All others proceed directly via the bypass path shown (Port 0 &
1 bypass), to send the bubble request to the Qbox.

Retry requests coming in, CAM the Fill Buffer (Retry SILO) as well as the Bypass
Buffer. If a match is found, the send_to_Scache bit is reset (implying that the request
should not be forwarded to the CBox). Requests entered into the Dstream Queue are
allowed to send their bubble request only after all preceding entries in the Dstream
Queue have sent their bubble request. By disallowing requests which hit in the Retry
SILO (Fill Buffer), from proceeding to the MAF, allows the request to send its bubble
request paired with another. It also preserves Scache bandwidth. One exception to this
are IO requests, which keeps its send_to_Scache bit set, even if a hit is found (in the
Retry SILO).

Three cycles after a request is sent to the CBox, an ack is received which implies that
the Cbox accepted the request; if the ack is not received, the request needs to be resent.
At the time, the ack is received, the PA of the request that was just sent is used to CAM
the Dstream Queue; if any entry finds a match, it's send_to_Scache bit is reset (except if
its IO).

Compaq Confidential
5 January 2001 -· Subject To Change Memory Instruction Execution Unit - the Mbox 9-47

Mbox Back End Bus

9.19.3 Killing Retries

The D-stream queue also acts as a staging latch (silo) for retries waiting for Scache
access. The kill bus is routed to the D-stream queue and all retry entries need to com
pare their inum to check if the retry needs to be aborted; if so the entry sets retry _abort.
Once the tail_ptr comes to an entry whose retry _abort is set, it suppresses the bubble
request. However, the MAF request will still be made.

Entries whose retry _abort bit is set, do not assert block_retry.

9.19.4 I-stream Queue

The I-stream Queue is constructed as a separate queue primarily because of the follow
ing reasons:

• !stream requests do not need to CAM previous requests in order to suppress
requests to the Scache

• There is no bubble widget for !stream requests.

The I-stream queue is a 16-entry-deep FIFO. When the !stream queue is almost full, the
pre-MAF asserts pmf_full to prevent additional entries from being sent.

9.20 Mbox Back End Bus

TBS

9.21 Internal Processor Registers

The Mbox Internal Processor Registers (IPRs) provide visibility and control for proces
sor-specific operations in the Mbox. These include handling Translation Buffer misses,
along with various kinds of Dstream faults, and enabling and disabling various parts of
the box, generally for test and reset use.

Mbox IPRs are described in Section 16.3.

All IPRs, with the exception of DC_CTL, exist on a per-TPU basis. That is, any read to
a readable IPR returns data specific to that TPU. Any explicit write to a writable IPR
takes effect when the write retires in that TPU. However, many IPRs control chip-wide
state. Thus, retiring an IPR write can affect state that is visible to another TPU. For
example, the DCache and DTB are shared resources. DC_CTL is a chip-wide IPR, it is
used to control the shared DCache.

In addition to the general 21464 treatment of IPRs, the Mbox applies the following spe
cific rules to its IP Rs;

• TB entries must be usable speculatively. For further information, see the Transla
tion Buffer document. IPRs that write the DTB, including invalidates, exist as a
pair of IPRs (such as DTB_PTEO and DTB_PfEl). To perform a write, both mem
bers of the pair must be written in adjacent slots in the same map block, slotted to
the strong load ports, with the IPRl following the IPRO. The IPRl operation is a
long latency operation which causes a bubble back, allowing the QBox to release
subsequent DTB writers.

Compaq Confidentia I
9-48 Memory Instruction Execution Unit - the Mbox 5 J(1nuary 2001 ·- Subject To Change

•

•

Internal Processor Registers

All other MBox IPRs only take effect on retire, and must be protected with an
IFETCHB instruction. The MBox IPR write port is connected to the
LD_ADDR[0]<63:0> bus. In order to write an MBox IPR, two identical
HW _MTPR instructions must be issued in adjacent slots in the same map block,
slotted to the strong load ports. This ensures that one of the two writes will travel
down the LD_ADDR[O] bus. The other will go down LD_ADDR[l] and will be
ignored.

The MBox IPR read port is connected to the Ebox IPR read bus, which operates as
a 5-cycle multimedia instruction slotted through a weak load picker. Thus, all
MBox HW _MFPR instructions must be issued on the weak load port.

In addition to the MBox IPRs, several other box IPRs also interact with the MBox.
They are handled as follows:

• The CBox IPRs are mapped into physical memory. Access to them is via IO Loads
and Stores.

• The IBox IPRs are accessed through the load address and data busses they same
way JSR call and return addresses are. In particular, the JSR call and HW _MTPR
path is connected to the LD_ADDR[2]<63:0> bus. This connection is made at the
Ebox end of the bus, adjacent to the drivers. These instructions must issue on the
weak load port. The JSR return and HW _MFPR path is connected to the Ebox IPR
read bus. These operations must be slotted as 5-cycle multimedia operations on the
weak load port.

9.21.1 Implicitly Written IPRs

There are two groups of Mbox IPRs that are written implicitly, that is, by other than an
HW _MTPR instruction. Implicitly written IPRs require special and careful handling, as
documented by the Qbox. The first group consists of the DC_STAT IPR, which is writ
ten when any of several asynchronous events happen on a DCache fill. DC_STAT is an
implicitly event-written IPR, in that we do not attempt to associate its writing with any
particular instruction. Also, events set bits in DC_STAT which are not cleared even if
the instruction (indirectly) leading to that event turns out to have been killed.

The second, and more complex, group consists of the VA, VA_FORM and MM_STAT
IPRs, which, for simplicity, will be referred to as the MM_STAT IPR set, as all three
share the same update criteria. The MM_STAT IPRs are implicitly written by any
instruction causing a Dstream fault leading to any DTB_MISS or DFAULT PALcode
entry point. Furthermore, the set of MM_STAT IPRs read by a particular entry to PAL
code must correspond to the instruction that generated the disruption leading to that
PALcode entry. This means that if an older disruption overshadows a younger one, the
older disruption must overwrite the MM_STAT IPRs. Note that poisoned instructions
must never generate faults.

This may be expressed, in a TPU-centric view, as assigning an INum to each (TPU-spe
cific) MM_STAT IPR set, and only allowing a faulting instruction to update the set if all
of the following conditions hold:

• The instruction is older than all faulting instructions for the same TPU issued in the
same cycle in other memory pipes.

Compaq Confidential
5 January 2001 -· Subject To Change Memory Instruction Execution Unit - the Mbox 9-49

Internal Processor Registers

• The instruction is older than any instruction in this TPU that decided in the previ
ous cycle that it will write MM_STAT.

• The instruction is older than the INum, if any, currently associated with this TPU's
MM_STAT IPR set.

If this is the case, the instruction's particulars and INum are written to the MM_STAT
IPR set. The MM_STAT IPR set INum is cleared whenever that INum or an older IN um
is killed.

A special case condition is that the LD _ VPTE instruction, which is only executed
within the DTB single miss flow, writes only its INum, and not its particulars, to the
MM_STAT IPR set. The reason is that the LD _ VPIE disruption handler deals with cor
rectly fixing up the underlying memory operation that caused the DTB single miss
immediately preceding the LD_ VPIE, rather than fixing up the LD_ VPIE itself, which
was merely the first attempt to deal with the DTB miss, and not anything interesting of
itself. Thus, the MM_STAT particulars from the original disruption must be preserved.

The INum of the LD _ VPIE must be written to the MM_STAT set to ensure that we do
not speculate all the way through a DTB single miss and into another Dstream fault
while a LD_ VPTE double miss or trap is pending. The particulars of the original single
miss entry will still be preserved at the time the LD_ VPIE traps, as all subsequent
memory operations are dependent on the DTB writer block issue, which is in tum data
dependent on the LD_ VPTE. The Mbox must detect LD_ VPIE faults before this pro
tective window expires to avoid having younger memory operations overwrite the
MM_STAT particulars before the LD _ VPTE disruption has a chance to write its INum
to the MM_STAT set.

Compaq Confidential
9-50 Memory Instruction Execution Unit - the Mbox 5 Jc1nuary 2001 -~ Subject To Cl1ange

10
Internal Ring Bus

This chapter is to connect the Cbox, Rbox, and Zbox chapters.

Compaq Confidential
5 January 2001 -~Subject To Change Internal Ring Bus 10-1

Compaq Confidential
10-2 Internal Ring Bus 5 J<1nu<1ry 2001 ··· Subject To Change

Cbox Overview

11
Second-Level Cache and Controller {Cbox)

The Sbox and the Cbox contain the onchip 3 MB six-way set-associative second-level
cache (the Sbox) and the control of this cache (the Cbox). Additionally, the Cbox, in
conjunction with the Mbox and Zbox, implements the cache coherent, distributed
shared memory system.

11.1 Cbox Overview

The Cbox is divided into two logical and physical partitions:

• CS - the "Scache controller" partition. The CS manages the Scache pipeline.

• CF - the "fill datapath" partition. CF handles data flowing to and from the Cbox

The following sections comprise the CS partition.

Name

Internal probe queue

Miss address file

Probe queue

Response queue

Retry queue

System interface

System request queue

Test structures

Victim address file

Mnemonic Description

IPQ Sixty-four entry FIFO for holding MAF indexes that
require internal probe processing

MAF Holds requests from the local processor until satisfied,
and holds probes and forwards from remote proces
sors.

PRQ

RSQ

RTQ

SYS

SRQ

TIQ

VAF

Thirty-two entry FIFO for holding probes and non
block responses that are waiting for access to the
Scache pipeline.

FIFO to hold VAF indices that have not yet been
delivered to system.

Sixty-four entry FIFO for holding MAF indexes of
Scache transactions that must execute through the
Scache pipe again due to an error or bank conflict.

Connects the Cbox to the Rbox and Zbox via 21464's
internal ring bus.

Stores MAF indices requiring a system request.
Tracks number of outstanding system requests for a
given Scache index.

Holds responses being sent back to the system either
as displacement victims or in response to system
probes.

Config and status registers CSR Holds the Cbox CS Rs.

Compaq Confidential
5 January 2001 - Subject To Change Second-Level Cache and Controller (Cbox) 11-1

Cbox Overview

The following sections comprise the CF partition.

Name

Data buffer muxes

Fill data buff er

Fill data logic, ecc

Rambus input

Rambus output

Victim data buff er

Mnemonic

CF_DBM

CF_FDB

CF_FBE

CF_RBI

CF_RBO

CF_VDB

Description

Buffer that holds fill data from the Zbox, destined for
the Rbox or Cbox.

Buffer for victim data from the Cbox, destined for the
Zbox or Rbox.

When the processor (Ibox or Mbox) needs access to a block of data that it does not
have, it makes a request to the Cbox. If there is a copy of the requested block in the sec
ond level cache (Scache) Cbox returns that copy. Otherwise Cbox will make a request
to the system to get a copy of the requested block. In multi-processor systems, to keep
memory coherent, Mbox must be sure that this processor is the only processor with a
copy of that block (exclusive) before it writes to it. If the block Mbox wants to write
resides in the Dcache or the Scache but is marked as shared then there may be other
processors with copies of that same block. Cbox must make a request to the system to
obtain an exclusive copy.

When a stores retires it is first written into the Mbox merge buffer. The merge buffer
merges stores to the same block before requesting an exclusive copy of the cache block
from the Dcache, Scache or system. Once an exclusive copy has been obtained, the
store data in the merge buff er merges with fill data returned from Dcache, Scache or
system. The complete cache block is then written-through to Dcache and Scache simul
taneously.

The system responds to requests for cache blocks by returning a copy of the block with
state indicating if you have a shared or exclusive copy and if the block is dirty or not.
The returned block is filled into the Scache and also sent back to the requester (Ibox or
Mbox). Filling a block can cause an existing Scache block to be displaced and sent back
to the system as a victim.

To process a request for a copy of a cache block, the system must be able to determine
where copies exist. A directory is used to hold this information (see ?). The system will
ensure that the requester gets the most up-to-date copy of the block, and if requested
exclusive then the system will initiate the invalidation of copies residing in processors.
To do this the system sends probes to processors holding copies of the block. The
probes ask the processor to forward its copy to the requester and mark its copy as
shared and/or invalidate its copy.

In summary, the Cbox major features are:

•

•
•
•

Up to six outstanding requests to the same Scache index. (By comparison, the
21364 can have one outstanding request to a given Scache index.)

64-entry MAF

64-entry VAF

Fills entire cache line (512 bits) to the Mbox and Ibox per cycle. (By comparison,
the 21364 fills 128 bits per cycle.)

Compaq Confidential
11-2 Second-Level Cache and Controller (Cbox) 5 Jc1nuc1ry 2001 ·-Subject To Change

Sbox Overview

11.2 Sbox Overview

The Scache has the following features:

• 3 MB, six-way set associative

• Physically indexed, physically tagged

• 16 banks, with one read/write port per bank

• QUAD-word (64 bits) writeable, single-bit ECC correction on tags and data. Dou
ble-bit ECC detection on tags and data

• LRU replacement

11.3 Scache Control - the CS Partition

The following sections describe the Scache control logic - the CS partition.

Compaq Confidential
5 January 2001 - Subject To Change Second-Level Cache and Controller (Cbox) 11-3

....
I
~

en
CD
0
0
::J
0..

~
~

~
0
::J"
CD
$l)
::J
0..

0
0
::J -Q_
<DO ..., 0
-3 g2 "O
0 ~ c,..o

Ul

' ~ :::s
c:
~

~
~

8

(I)
t::
~
~ a
01
9
!i
(Q
e

(")
0
~ -s:
~
~ -!

Internal Probes (IPQ)

Read PA & MAP state.
Bank conflick check.

Compute new MAF
state. int_probe_ack

Write new MAP state.
Read tag.

Tag ECC detect.
Set select.

Tag ECC correct.
Writetag. Read data.

Send probe addr/tag/cmd
toMbox.

Retries (RTQ) LRUevict/BLK*1 (SYS)

Arbitrate for Scache pipe

Read PA & MAP state. Read PA & MAP state.
Bank conflict check. Alloc VAF entry.

Co~ute new MAP Read PA& Compute new MAP
state . retry _ack MAFstate. state.

Write new MAP Compute new Write new MAP state.
state. Rd tag. MAP state. Read LR U/tags

Tag ECC detect. Write new Victim set select.
Set select. MAP state.

Taf ECC correct. Read data.
Write tag. Read3 data. Victim tag ECC.

Write LRU/tag.

Send addr/tag/ Send Victim addrr and VDB.
cmdtoMbox. idx to Mbox. Write VAF.

Send fill addr/
tag to Mbox.

Fill data on Victim data on the fill bus.
the fill bus. Victim data correction.

CAM MAP with victim PA.

Fill data on Write VDB.
the fill bus.

WriteVAP.
WriteRSQ.

Decrement
inflight count

Write data.

Transaction Type (Source)

0 > 0 ...
Arb

C"

0 s: ... > .,,
MAF

Tag 0
I\)

Launch

0 w
Read Tag en

n
0 m

Tag n .l:;o ::r
Compare CD

0
-I

Read Data m
en CQ

Write Tag .,,
0 -a· "' Set CD (')
O> D>

Select (')
::T

Drive 0 CD
..... .,,

Data -a·
0 CD

Fill CC» 5'
Bus CD

~ (/)

er
.....

ii' ~
(')
D)

...... (')

...... :r
I 0

('!)
......

n
< ("')
CD 0

er ""'I

0 g. ;
Q) :i

>< - ...
""" .,, = (!) ""O 2.

ii' 00 0 -s·
CD 1-1> <
5"

,_.(.'!) !e. . ~
w~ s·

CD . - :r
N-

"'
• 1-tj CD

(f) ... w
D> • 1-tj .,, ("')

U2
1-1> (!)

0 en
CD e g:
th 8 (!) :e '1l

~ 0.
m

(IQ
~

C" ~
....

(IQ
:;::;

1-1> ~ cs s·
• I-ti

::::J

~o
w~

:...:i e
(!)

n
cr'
0
~

0 "' ... co D>
WR1 ...

CD

0 th

00

00

g
~ ...

0 s·
WR2

en
n
m

g n
::r

WR3 ... CD
c

0 a ... m
WR4 I\) .,,

-a·

~ g:
(!)

1-1> -I -~
&

0 CD ...
WRS w

0.
(!)
00 g

0
WR6

...

.l:;o

......
cr'
(!)
0.

C15 s·
Cl'.l

C16
(!)
0
I

Ul
~
§
t:
:Q)

~
~ c

ti)
t::
~
~·
~,.

Qi

~
~

~
~

0
0
3 ,,
~

..Q

0
0

en ::i
CD~
0 Q.
0 ~
::J ::::s
c. -r- ~r
CD
<
92..
()
Sl>
0
:::::r
CD
Sl>
::J
c.
()
0
::J

[
CD
""'II

0
C"
0 c,
... ...
J,

Early Warn5

(SYS)

Read PA.

Send addr/tag
toMbox.

Sharedlnval Forwards (PRQ) S2D* (PDQ)
(PRQ)

Arbitrate for Scache pipe

Alloc/merge MAP entry. Read Read PA & MAP state.
MAP states Bank conflict Bank conflict check.
check. Alloc V AF entcy. Alloc VAF entry.

Compute new MAP Compute new MAP
state. probe_ack. state. probe_ack

Write new MAP
state. Read tag.

Tag ECC detect.
Write tag.

Tag ECC correct. Tag ECC correct. Tag ECC correct.
Write tag. Write tag. Read data. Write tag. Read data.

Send probe addr/tag/cmd to Mbox Send add/tag/cmd
to Mbox.

Fill data on the fill Fill data on the fill bus.
bus4• ECC correction.

Write VDB.

Decrement
inflight count.

Transaction Type (Source)

n > C> ...
Arb tr

52 s::
>

MAF
'T1

Tag n
N

Launch

n w
Read Tag en

(")

n m
Tag (")

~ ::J"
Compare CD

Read Data n ~
(n ca

Write Tag "'CJ

n -a· Cb
Set CD n

0) I»
Select n

::r
Drive n CD

..... "'O
Data -a·

n CD
Fill Q) s·
Bus CD

n Ch -co I»
WR1 -CD

n tn ...
0

WR2
en
(")
m

n (")
::J" CD

WR3 ...
c

n a ... m
WR4 N "'CJ -a·

n CD ...
WRS w

n
WR6

....
~

C15

C16

~ er
i"
.....
I

(")
er
0
><
"'O

I s·
CD
Cb
S'
ca
CD
tn -(")
0
:::s -s·
c
CD
CL -

tfJ
(')
~
(')
:r
(!)

0
0
::::5
"""' ""'ll

2.

,..
~
(fp

0
w
~
""'ll ,..
;:;:
er
:J

Scache Control - the CS Partition

Table 11-1 Cbox Pipeline Stages (Continued)

- Scache Pipeline States G)

~
:::s Arb MAF Scache Tag Pipe Scache Data Pipe 0 e co C1 C2 C3 C4 cs C6 C7 cs C9 C10 C11 C12 C13 C14 G)
Q.

~
c
0

~ C) CD .; C) U) ca cu .. c~
0 .c ._ cu 0 () ts c c ,, Q.

i~ ~cu (\I ~ -=:I' U) co
l! -s LL.

2' ii cu C) E
- .! =~ a: a: a: a: a: a: c:(CD cu 0 CD ._ CD CD ·c 1a

I- c:(
==

._ ...I a: ._ 0 a: ;:: "' "' cc LL. m ;:: ;:: ;:: ;:: ;:: ;::
~
0,-.. ,,;

~J s .5
.._,<.#

~
:::::

~5 <.,:::
Q,I 00 c:ll §
~ r:l.l ~~ ~:a ;:::)

c:ll
~

~ ~~ 'O ..c ~ Cl) t' ~ ~t .~ cO

~
..... 0
~

t--- ~ 5 ~
~-

Cl) ~ ~ ~ ~ !5 ..c:: ..c Q,I g ~ '°~ ~ "" sg ~~ ~ 'cl u ~s::! = ~]~
oil .._,(.# Clj

~ ""(.) ~ ~ .Q CJ rl:i ·6 ~00

2 =~~ t$ ~e3 ~~ ~~ ~ . (.) . ~ ·c ~ >< ""= .si u~ IZl .;!l 0

~ l~
'a:l~ 0 [~, ~H ~ (.)

~B ~~ ~~ ~~ Cl)

~~~ 'O~ ~'O B 
Cd .~~ 

..... ~ 'O ~ ~~ ~§ ] s ~ 0"" ~ ·~ g. ..c ~ .b .g ~a 
~~ ~~ ~~ 

= ~ 
~~ ~t :§ <!~i::Q 8'~ ~] ~~ o .... 

1----i 

= < 
~ 

~ ~ 
~I .s~ :c ~ ·~ i::Q,.c:: ~ 
1$:~ 5 . 0 (.) 

~ ""e :> () ~ ~o ]'S, ·E~ ·E ~..c 

~e ..... '~ ~~ ~8 a: g ~ 

Block responses and 12DResponses require two Scache transaction. The first transaction is the 
LRUEvict, which extracts the victim data, and the second transaction is the fill. These happen atomi
cally. Timing shown here assumes that the extracted LRUvictim is a) coherent, and b) we don't need 
MGB to write-thru. 

2 The only retry action that updates the MAF state is STODFAIL. A retrying STODFAIL can set 
MAF.need_sys_req. 

3 If the retry is due to a data ECC error, the Scache tag has already been updated and the retry must not 
change the tag state again. 

4 Cbox sends the cache block to Mbox if Scache is to keep a copy of the cache block Shared after the 
probe. 

5 EarlyWarn does not set MAF.sc_inflight. 

11.3.2 Miss Address File - the MAF 

11.3.2.1 Overview 

co ..... 
0 

The miss address file or MAF, is the major control structure in the Cbox and is respon
sible for tracking outstanding miss requests to the system. The MAF is a 64-entry asso
ciative memory, with control logic for managing the Scache pipeline. Note that the 
number of MAF entries ( 64) corresponds to the number of misses (where a miss may be 
ad-stream cache-block request, i-stream cache-block request, ownership-only request, 

Compaq Confidential 
11-6 Second-Level Cache and Controller (Cbox) 5 January 2001 -~Subject To Change 



Scache Control - the CS Partition 

etc) that a processor may have in-flight at any one time. Allowing several simulta
neous outstanding misses is critical to keeping a wide-issue superscalar machine like 
the 21464 fed. By way of comparison, the previous-generation Alpha processor (the 
21364) has 16 MAF entries. 

11.3.2.2 Principle of Operation 

<block diagram needed here> 

MAF operation is initiated by 3 major classes of operations: 

1. Requests from the core 

2. Fills/responses from the system 

3. Probes from other processors 

11.3.2.2.1 Requests from the Core 

The Mbox PreMAF and Mbox MGB may deliver a total of 1 request per cycle to the 
MAF. The Mbox delivers the physical address and other request state to the MAF. The 
MAF firstCAMs the PA against existing MAF entries to check if there already is a 
MAF entry with thisphysical address. If there is, the MAF attempts to merge the new 
request into the existing MAF entry. If there is no CAM match, a new MAF entry is 
created. Note that along with merging or creating a new MAF entry, the request is 
launched into the Scache pipeline. 

11.3.2.2.2 Fills/Responses from the System 

If a miss request from the core does not find the data (or the required cache state) in the 
Scache, a request is launched to the system. The system will respond with the data and 
the new cache state. This response from the system carries with it the MAF index num
ber of the corresponding request. When the fill arrives from the system, the MAF index 
is used to access the correctMAF entry, extract the relevent information, and perform 
the fill. 

11.3.2.2.3 Probes From Other Processors 

Probes (Forwards, lnvals) 

Probes, like Mbox miss requests, may or may not find that the MAF already has an 
entry with the probe physical address. Therefore, an incoming probe first CAMs the 
MAF. If a MAF entry already exists, the probe uses this MAF entry, and launchs into 
the Scache pipe. If a MAF entry does not exist for this physical address, one is created, 
and the probe launches into the Scache pipe. 

11.3.2.3 MAF Pipeline Timing Diagram and Pipeline Overview 

Table 11-2 shows the MAF pipeline timing diagram. 

Table 11-2 MAF Pipeline Timing Diagram 

CZ co C1 C2 C3 C4 cs C6 C7 

Pre Arb Arb RD/CAM Sc ache Write new Fill 
PA pipe MAFstate C1RL 

CTRL 

Compaq Confidential 
5 January 2001 -·Subject To Change Second-Level Cache and Controller (Cbox) 11-7 



Scache Control - the CS Partition 

11.3.2.3.1 CZ, CO: MAF Arbitration Logic 

The MAF arbitration logic selects one transaction each cycle to launch into the Scache 
pipe. This arbitration is split across two stages: CZ and CO. CZ is called the PreArb 
stage and CO is the Arb stage. Transactions arbitrate in the PreArb stage with the fol
lowing priority: 

1. Retries from RTQ 

2. Internal probes from IPQ 

3. Probes/non-block responses from PRQ 

4. Mgb requests from Mbox 

The winner from this stage is latched and sent to the CO arbitration stage, where the 
Cbox arbitrates with the following priority: 

1. System fill from SYS 

2. PreArb winner 

3. Mbox PreMAF request from Mbox 

Note that the logic is designed to give the Mbox PreMAF requests (such as the L1 Load 
Miss) as low a latency as possible. 

11.3.2.3.2 C1: MAF Bank Conflict Detection Logic I MAF CAM I MAF RD 

The Scache tag array (STAG) and Scache data array are large memory structures. The 
pipeline diagram in Table 11-1 shows that the arrays are read and written in different 
cycles, thereby requiring multiple ports. Multiporting an array as large as the tag or data 
array would result in a prohibitively large structure. To avoid this constraint, the arrays 
are banked into individual, smaller arrays. 

Specifically, there are 16 banks for the Scache tags and 16 banks for the Scache data, 
with each bank having a single read/write port. The low four bits of the physical address 
(PA<9:6>) give the bank number. Although single transactions are launched into the 
Scache pipe each cycle, bank conflicts can still arise, and are managed with the follow
ing logic. 

Consider the Scache tag array first (STAG). The STAGs are read in cycle C3 of the 
Cbox pipe and are written in cycle C5. Recall that the STAG array has only a single 
merged read/write port per bank. Table 11-3 illustrates how a bank conflict can 
occur: 

Table 11-3 Scache Tag Array Bank Conflicts 

Cycle Number ~ 
Transaction .J, 0 1 2 

Sharedlnval RD tag WR tag 

MissReql RD tag 

MissReq2 RD tag 

In cycle 3, the Sharedlnval transaction is trying to write the STAGs at the same 
time the MissReq2 transaction is trying to read them. If the Sharedlnval and the 
MissReq2 have the same PA<9:6>, then we have a bank conflict. This situation also 
applies to the Scache data array. 

Compaq Confidential 
11-8 Second-Level Cache and Controller (Cbox) 5 Januc1ry 2001 m Subject To Change 



Scache Control - the CS Partition 

The bank conflict detection logic in the CS_MAF is responsible for detecting situa
tions like the one above, and rejecting the later arriving transaction to prevent the 
bank conflict. (Exceptions to this are described in Section 11.3.2.3.3.) This is 
accomplished as follows: 

For every transaction that enters the pipe, we note when it wants to access the 
STAG (C3, C5) and/or SDATA (CS, C15) arrays. 

We check this against what is already in the pipe. For instance, if the particular 
transaction wants to read the STAGs (C3), we check if we currently have a 
transaction in the C3 stage that is going to write the STA Gs in C5. If so, the 
incoming transaction is either NACKed (Mbox) or placed in the RTQ (RTQ, 
IPQ, PRQ). 

{ SHOULD A TABLE BE PLACED HERE OF EACH TRANSACTION TYPE 
ALONG WITH WHEN THEY READ/WRITE TAGS/DATA ? } 

11.3.2.3.3 Exceptions 

Fills (and LRUevicts) are special transactions. They are never stalled, rejected, or 
retried (but see section on hiccup). If the BCL detects a bank conflict for a fill or 
LRUevict in Cl, the transaction which IS ALREADY IN THE PIPE AND IS CAUS
ING THE BANK CONFLICT is "preempted". 

The unlucky transaction is placed in the RTQ for later execution, and the fill procedes 
merrily along. 

11.3.2.3.4 C1: MAF CAM I MAF RD 

In the C 1 pipe stage of the Cbox, we either CAM the MAF with the incoming transac
tion's physical address or we read the MAF entry specified by the incoming transaction. 
The state at the corresponding CAMed or read entry is read out and is delivered to the 
C2 stage of the pipe. There is a single CAM port on the PA<47:6> stored in the MAF, 
which is shared between: 

• Mbox requests 

Incoming Mbox requests CAM against the entries in the MAF. If there is a MAF 
entry with a matching PA, we attempt to merge the incoming Mbox transaction 
with the matching MAF entry. 

• Probes (such as Forwards and Sharedlnvals) 

These CAM the MAF to discover if there is an outstanding request to the same 
address. 

• Victims 

Victims on their way to the VAF CAM the MAF to determine if they are coherent. 

11.3.2.3.5 c2: MAF logic 

The C2 stage of the MAF is the most complex. Here, based on the incoming transaction 
and the state read from the corresponding MAF entry, if any, we compute the "next 
state" of this MAF entry, and required outputs for subsequent stages. The logic involved 
is too complex to be discussed in detail here; it will be covered later in this chapter 
when we discuss the flows for each transaction type. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Second-Level Cache and Controller (Cbox) 11-9 



Scache Control - the CS Partition 

11.3.2.3.6 C3-C6: Scache Tag Access 

In these cycles, the physical address is delivered to the Sbox and the tag state is looked 
up. These cycles technically belong to the Sbox. No MAF logic runs here. 

11.3.2.3.7 C7: Fill Pipe Control 

In cycle C7, the result of the STAG lookup is latched in the MAF, and, based on the tag 
state and the transaction state, various commands are delivered to the Mbox and to the 
VAF. Again, the details of this logic will be discussed later. 

11.3.2.4 Contents of MAF Entries 

Table 11-4 shows the contents of each MAF entry. 

Table 11-4 Contents of Each MAF Entry 

Contents #Bits Ports Description 

I. Physical address bits 

miss_pa<47 :6> 42 1RD/WR,1RD,1 CAM I/O space:PA<47> =1. 

miss_tpu<3 :0> 4 1 WR,2 RD Thread processing unit, merged 

miss_ifill_ptr<4: O> 5 1WR,1 RD I fill buffer index. 

II. I/O request fields 

mgw_closed 1 lCAM, lWR I/O merge window is closed. 

io_mask<7:0> 0 Stored in a separate table 1/0 byte mask. 

io_size< 1 :0> 0 
indexed by the TPU 

I/O size. 

QW_addr 0 RdIO orWrIO 

Ill. Request type 

i_fill_ena 1 2RD,2WR I-stream fetches (I-demand/1-prefetch). 

dc_req_type<4:0> 5 2RD, lWR Request type ( LD, ST, STx_C, Prefetch Scache, 
prefetch mod) 

IV. Request state 

valid 1 Multi-port MAF entry is valid. 

sc_inflight 1 2Rd, 2WR Has inflight miss/fill/probe in the Scache pipeline. 

sys_cmd<2:0> 3 3RD,1 .... 2 WR System request command. 

need_sys_rqst 1 2RD, 1 WR Waiting for the system request launch. 

sys_inflight 1 2RD, 1 WR Has an inflight system request. 

IV. Coherence state bits 

Compaq Confidential 
11-10 Second-Level Cache and Controller (Cbox) 5 Jc1m.1c1ry 2001 ... Subject To Change 



Scache Control - the CS Partition 

Table 11-4 Contents of Each MAF Entry 

Contents #Bits Ports Description 

coherent 1 lRD, lWR Coherence state 

cohr_cnt<5:0> 5 

timer_on 1 

has_int_probe 1 

VA<15:14> 2 

Inval_seen 1 

victimize 1 

vic2shr 1 

Invalidate 1 

evict_next 1 

MB _retired<3 :0> 4 

Total -83 

Notes: 

Physical Address 

• The physical address field PA<47:6> of the MAF needs: 

CAM ports (1 ): 

Allocation and merging of Miss from Mbox. 

Probe processing CAM. 

Victim processing CAM. 

Since probes and Scache victims are infrequent, we share 1 CAM port for all 
three functionality with the priority: 

Victim CAM. 

Scache pipe (Probe CAM and Miss CAM). 

• Write port (1 ): MAF allocation for new Misses. 

• Read ports (2): 

• 
• 
• 

Scache pipe (Blk*, Retries, ShrToDirty*, *Req, and *Forward). 

System request. 

Write and read are mutually exclusive and we share a single port for Read & Write . 

The current proposal is to have one RD/WR port and one RD-only port. 

A MAF entry may be originated from more than one thread due to merging. When 
we merge MissReqs from Mbox, we must merge the thread processing unit of the 
first requester. Mbox does not merge retires and I/O requests across threads. Cbox 
does merge MissReqs across thread and preventing Cbox from mergeing I/O 
request across threads must be done in Mbox (i.e. close the merge window first). 

When a Shr2Dirty[STC]Req fails: 

Compaq Confidential 
5 January 2001 -·Subject To Change Second-Level Cache and Controller (Cbox) 11-11 



Scache Control - the CS Partition 

• 
• 
• 

If the MAF entry has a I-miss or LD, then send a ReadReq . 

If the MAF entry has a ST, then send a ReadModReq . 

If the MAF entry has only Stx_ C, then send no system request. 

Since we can have only one 1/0 request bidding for the system request pipe at any given 
time, we will have a small structure to store 1/0 specific fields. 

The MAF.sys_cmd<2:0> is set if a system request is needed after looking up the Scache 
tag. 

• 

• 

• 

If a new Miss gets merged before the system request is sent out (i.e . 
MAF.need_sys_rqst = 1 ), then we change the system command. 

If a Sharedlnval hits a ShrToDirty, we do not need to change the system command 
to a ReadMod since the ShrToDirty gets forwarded. 

If a Sharedlnval hits a ShrToDirtySTC, we may reset the Stx_C bit . 

Coherent= (have_max_coh = 1 & timer_running = 0). 

11.3.2.5 MAF Allocation/Merge/Retry 

• 

• 

MAF Full 

1 

x 
x 
0 

0 

0 

Overview and working assumptions 

The MAF accepts one Miss request per cycle from the Pre-MAF (Pre-MAF). 

There is ONE MAF entry for a cache block. 

There is one MAF entry that has the merging window open for an 1/0 block. 

No-cache pre-fetches from Mbox will follow the same path as for the regular 
loads miss but the pre-fetch block doesn't get written to the Scache. We must 
make sure the block is not a ExclCln or Dirty. 

Miss Request Inputs 

1/0 requests never ask for the write permission. 

Ibox never asks for the write permission of a cache block. 

Upon receiving a new Miss request from the PMF, the MAF determines whether to 

Reject the Miss request. 

Allocate a MAF entry for the Miss request. 

Merge the Miss request. 

Scache Pipe MAFCAM 
Available Available Address Match sc_inflight Action 

x x x x Reject 

0 x x x 
x 0 x x 
1 1 1 1 

1 1 1 0 Merge 

1 1 0 x Allocate 

Compaq Confidential 
11-12 Second-Level Cache and Controller (Cbox) 5 Jc1m.1c1ry 2001 -- Subject To Change 



sc_inflight 

1 

0 

0 

0 

Scache Control - the CS Partition 

Eviction requests and ChgToShared requests from Mbox need a VAFNDB 
slot. Can we just set the MAE victimize* bit for the request rather than see if 
VAF slot is avaialble before deciding whether to accept the request. Then take 
the same flow as MAP.victimize path? 

• Reject: The MAF asks the PMF to retry the Miss request 

If Cbox can't service the Miss request. 

Since Mbox filters multiple Miss requests to the same cache block, the merits 
of merging Miss request when the MAF is full seems small. Hence the MAF 
will rejects new Miss requests when the MAF is full. 

The Pre-MAF continuously retry the failing requests which minimizes possible 
thread starvation for access to MAF entries. 

• Allocate: The MAF allocates a new MAF entry for a Miss request 

The MAF returns the ACK along with the MAF index to Mbox so that Mbox 
can pull a Qbox bubble. 

The new Miss request enters the Scache pipe except for 1/0 requests. 1/0 
requests enters the Scache pipe (or goes directly to the CRQ?) only if the merg
ing window is closed (i.e. m%io_ok_to_send = 1). 

• Merge (1/0 space) 

1/0 requests from the same thread gets merged in Mbox but Mbox uses the 
MAF CAM port for the PA compare. 

1/0 requests to the same block get merged in the MAF if the merge window is 
open. 

The MAF may have more than one MAF entry for the same 1/0 block (e.g. 1/0 
byte reads) but only one has its merge window open. 

1/0 request whose merge window is closed (m%io_ok_to_send = 1) enters the 
Scache pipe (or system request pipe?). 

The merging windows for 1/0 requests are managed by Mbox. 

We may have only one 1/0 request per thread waiting for the system launch. 

The first four VDB entries are reserved for WrIO data block. 

Mbox does not send multiple 1/0 requests to the same block from different 
threads unless the merge window is closed to prevent 1/0 merging across 
threads. 

All 1/0 merging rules conforming the SRM are handled in Mbox. 

MAF States 

need_sys_rqst sys_inflight Action Notes 

0 0 Reject Has in-flight miss/probe/fill in the 
Scache. 

0 0 Merge Request enters No outstanding request. 
the Scache. 

1 0 Merge Request does Bidding for the system request pipe. 

0 1 
not enter the Scache. 

nflight request in the system. 

Compaq Confidentia I 
5 January 2001 -·Subject To Change Second-Level Cache and Controller (Cbox) 11-13 



Scache Control - the CS Partition 

1 

1 

0 

1 

MAF States 

0 1 Merge1 

1 0 Merge 1] 

1 1 Must not happen 

1 1 Must not happen 

This can happen since we delay clearing of the sc_inflight bit to give Mbox sufficient time to consume 
fill blocks. But to minimize the system fill latency we may send a system request if necessary before 
resetting the sc _inflight bit. 

• Merge (Memory space) 

Mbox filters the most of multiple Miss requests to the same cache block by 
CAMing the fill buffer. 

Filtering of multiple Misses to a cache block is to conserve the Scache band
width. 

The MAF merges multiple Miss requests to a cache block if they didn't get fil
tered in Mbox. 

For merged Miss requests, the MAF 

Returns the merged MAF index to the PMF. 

Sets the appropriate control flags for the merged MAF entry. 

If a non-no-cache prefetch request merges onto a no-cache pref etch, we clear 
the bit. 

- We merge STx_C across different threads but only one thread will succeed 
depending on the order of the retry in Mbox. 

Since the I-fill buffer index may get reassigned to a new miss in the Ibox, we 
must not fill the Ibox more than once with the same cache block. Resetting the 
miss_icache bit after the block has been delivered to the Ibox prevents the fill
ing the same block twice. 

After Scache tag return. 

After System fill. 

11.3.2.6 MAF Deallocation 

• 1/0 Read can be deallocated when the requested block is returned or NXMResp is 
received. 

• 1/0 Write can be deallocated when the WrioAck is received. When we receive the 
WrloAck, we also need to notify the Mbox so Mbox can retire the MB. 

pa<47> *_inflight_in_sc need_sys_rqst inflight_in_sys coherent victimize vic2shr Notes 

1 

0 

0 

0 

0 

0 

0 

0 

x 

Compaq Confidential 

x 

0 

x 
0 

IO request 

11-14 Second-Level Cache and Controller (Cbox) 5 January 2001 -·Subject To Cf1ange 



• 

• 

• 

11.3.3 RSQ 

Scache Control - the CS Partition 

If we receive NXMResp, we save the PA & ... and Mbox will trap. We can de-allo
cated the MAF index once we notify the Mbox and save necessary information into 
the error status register. 

If the MAF entry has a victim waiting to become coherent in the victim buffer, we 
must clear the blockage when the cache block becomes coherent even before we 
de-allocate the MAF entry. 

If MAP.victimize, MAF.vct2shr, MAF.cvt2inval, MAF.cvt_inv_if_shr bit is set, 
then we need to perform the Scache tag update before we de-allocate the MAF 
entry. 

11.3.4 Internal Probe Queue-the IPQ 

The internal probe queue or IPQ is a 64-entry FIFO for holding "internal probes". An 
internal probe is a special Scache transaction that either invalidates or victimizes an 
Scache block. 

Principle of Operations 

Internal probes can be created by the following three transactions: 

1. Cache manipulation instructions from the Mbox (CCB, ECB instructions). 

2. Block response from system arrives and one of the following is set: 

MAF. victimize 
MAF. vict2shared 
MAP.invalidate 

3. Non-block response from system arrives and one of the following is set: 

MAF. victimize 
MAF. vict2shared 
MAF.inval_seen 

Other than the cache manipulation case, internal probes arise because the network is not 
ordered. The following sequence illustrates the generation of an internal probe: 

1. Processor A sends an ownership request to the home node. 

2. The home responds by sending an exclusive copy of the block to processor A. 

3. Before the exclusive copy arrives at processor A, another processor requests the 
same block, and the home sends a FWD message to processor A. 

4. The FWD message arrives at processor A before the exclusive copy arrives. 

Processor A records the fact that another processor has requested ownership of this 
block and sets the MAP.victimize bit. When the exclusive copy finally arrives, proces
sor A cannot simply throw the block out, because that would cause a livelock. Instead, 
processor A fills the block to the Mbox and the core, ensuring forward progress, and 
loads the IPQ with a Victim command. Thus, we satisfy the forward progress require
ment, as well as the requirement that we reliquish ownership of the block. 

Compaq Confidential 
5 January 2001 -~Subject To Change Second-Level Cache and Controller (Cbox) 11-15 



Scache Control - the CS Partition 

If an internal probe wins arbitration but is rejected because there is another transaction 
in the scache pipe to the same address, the internal probe is placed at the back of the 
FIFO queue. 

If an internal probe wins arbitration but is rejected due to a bank conflict, the internal 
probe is placed in the retry queue. 

11.3.5 Probe Queue - the PRQ 

The Probe Queue (PRQ) is a 32-entry FIFO, similar in design to the RTQ and IPQ. The 
PRQ holds probes and non-block responses from the system before being processed in 
the Scache pipe. The PRQ accepts one probe or one non-block response from the SYS 
section every cycle. Additionally, a NACKed probe or non-block response from the 
MAF may also need to be written into the PRQ; therefore, the PRQ has two write ports. 

11.3.5.0.1 Principle of Operation 

The 21464 probe queue, unlike the 21363 design, holds two different classes of mes
sages from the system: probes and non-block responses. 

The probes are: 

• FetchFwd 
• ReadShrFwd 
• ReadFwd 
• ReadModFwd 
• InvalToDirtyFwd 
• Sharedlnval 

The non-block responses are: 

• ShrToDirtySuccessCnt 
• ShrToDirtyFail 
• ShrToDirty ProbCnt 
• InvalAck 
• WrIOACK 
• NXMResponse 
• ERRResponse 

The other key difference between the 21464 and 21364 designs is that in the 21364, the 
PRQ is strictly ordered. Requests must be processed in FIFO order. In the 21464, no 
such restriction applies. 

Each cycle, the head of the FIFO is read out and delivered to the MAE Should this 
transaction be NACKed by the MAF (in C2), the transaction is placed at the tail of the 
FIFO and will be reissued again when it reaches the head. To prevent a transaction 
from being continuously NACKed, we record, at each PRQ entry, whether this probe 
has been rejected before. If a probe that has been rejected before is rejected again, a 
counter is incremented. When this counter saturates, a signal to the MAF arbitration 
logic asserts, giving the PRQ priority. 

Because we place responses and forwards in the same queue, and because forwards 
generate responses, we have the possibility for deadlock. If the PRQ was full of for
wards, and the response channel was full of responses, we wouldn't be able to take a 

Compaq Confideaitia I 
11-16 Second-Level Cache and Controller (Cbox) 5 Janwiry 2001 - Subject To Change 



Scache Control - the CS Partition 

forward out of the PRQ because to process the forward requires a response buffer. But 
we can't sink any responses because the PRQ is full. To allieviate this, we reserve one 
PRQ entry for non-block responses. This ensures forward progress. 

The PRQ receives responses and probes from the Rbox and Zbox. Should the probe 
queue become full, it must prevent the Rbox and Zbox from sending it more transac
tions. To accomplish this, the probe queue asserts backpressure signals to the Rbox and 
Zbox. It must assert these backpressure signals early enough so that all transactions 
already in flight to the PRQ can be sunk. 

Use the following calculation to determine when to assert the back pressure signals: 

• 
• 

4 (entries in pipe which may be NACKed) 

2 (probes on the way to PRQ from SYS) 

• 6 (probes in ring or that will be injected onto ring before backpressure signal 
arrives). 

Thirty-two minus twelve equals 20, therefore: 

Throttle probes when 19 entries in use. 

Throttle non-block responses when 20 entries in use. 

11.3.5.1 Probe Address File (MAF) Contents per Entry 

Table 11-5 PRQ Contents for Each Entry 

Contents 

valid 

probe_paddr<47:6> 

probe_cmd<4:0> 

transaction_id< 16:0> 

TOTAL 

#Bits Ports Description 

1 

42 

5 

17 

-65 

lWR, lRD 

2WR, lRD 

2WR, lRD Processor ID+ Requester's MAF index 

11.3.6 Victim Address File - the VAF 

The Scache retains most blocks until the space (i.e. Scache set) they occupy is needed 
for another block. If a block is not held exclusively in the Scache at the time it is 
evicted, it is simply overwritten. But, if a block is in exclusive state, the directory must 
be notified that this cache is releasing exclusive access and, if the block is dirty, it must 
be written back to memory. Rather than delaying the fill that overwrites this block, the 
Scache moves the old contents to the victim data buffer (VDB), where the block waits 
for coherence before being sent to the home node. The victim address file (VAF) is a 
64-entry buffer that stores addresses of Scache victims or probe responses to be sent to 
the memory system. 

Compaq Confidential 
5 January 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-17 



Scache Control - the CS Partition 

In the VAF 64-entry buffer, four entries (one for each TPU) are reserved for Wrlo 
requests from the Mbox and four entries are reserved for probe responses. 

Table 11-6 VAF Commands 

Class Encoding Network Message Destination Data Directory State 

Non-block CS_ VAF _CMD_SPCL_INV _ACK InvalAck Requester No RemoteExcl 
Responses 

cs_ VAF _CMD_INV _ACK InvalAck Requester No RemoteExcl 

CS_ VAF _CMD_INV _TO_DIRTY _RESP InvalToDirtyRespCnt(O) Requester No RemoteExcl 

Release CS_ VAF _CMD_ VICTIM_ CLEAN Victim Clean Home Diectory No InMemory 
Responses 

CS_ VAF _CMD_ VICTIM_CLEAN_TO_SHR VictimCleanToShared Home Diectory No Shared 

cs_ VAF _CMD_FORWARD_ACK_EXCL ForwardAck:Excl Home Diectory No RemoteExcl 

cs_ VAF _CMD_FORWARD_ACK_SHR ForwardAckShared Home Diectory No Shared 

CS_ VAF _CMD_FORWARD_MISS ForwardMiss Home Diectory No RemoteExcl/Shared 

CS_ VAF _CMD_SHR_TO_DIRTY _COMPL SharedfoDirtyComplete Home Diectory No RemoteExcl 

cs_ VAF _CMD_SHR_TO_DIRTY _RELEAS SharedToDirtyRelease Home Diectory No InMemory/Shared 

Block CS_ VAF _CMD_BLK_SHR BlockShared Requester No Shared 
Responses 

CS_ VAF _CMD_BLK_INV Blocklnvalid Requester Yes Shared 

cs_ VAF _CMD_BLK_DIRTY BlockDirty Requester Yes RemoteExcl 

cs_ VAF _CMD_BLK_EXCL Block:ExclCnt(O) Requester Yes RemoteExcl 

Victim cs_ VAF _CMD_ VICTIM Victim HomeDirec- Yes InMemory 
Block tory 
Responses 

cs_ VAF _CMD_ VICTIM_TO_SHR VictimToShared HomeDirec- Yes Shared 
tory 

cs_ VAF _CMD_ VICTIM_ACK_SHR VictimAckShared Home Direc- Yes Shared 
tory 

cs_ VAF _CMD_ VICTIM_ACK_EXCL VictimAckExcl HomeDirec- Yes RemoteExcl 
tory 

11.3.6.1 Victim Address File (VAF) Contents per Entry 

Table 11-7 shows the VAF contents for each entry. 

Table 11-7 VAF Contents For Each Entry 

Contents #Bits Ports Description 

The VAF entry has the valid response. valid 

allocated 

1 

1 The VAF entry is speculatively allocated and not available 
for allocation. 

victim_pa<46:6> 42 lWR, lRD 

victim_cmd0<4: 0> 5 lWR, lRD 

victim_cmd1<4:0> 5 lWR, lRD 

maf_idx<5:0> 6 lWR, lRD, lCAM Requester's MAF index 

Compaq Confidential 
11-18 Second-Level Cache and Controller (Cbox) 5 Jc1m.1c1ry 2001 - Subject To Change 

~ 



Scache Control - the CS Partition 

Table 11-7 VAF Contents For Each Entry 

Contents 

req_node<9:0> 

has_full_blk 

TOTAL 

#Bits Ports 

10 lWR, lRD 

1 lWR, lRD 

-81 

Description 

Requester's node ID 

Has the full victim block (i.e. ECC corrected and merge 
buffer data has been extracted). 

11.3.6.2 Principle of Operation 

The following table outlines the main victim flow for each Cbox pipe stage. 

Table 11-8 Main Victim Flow for Each Cbox Pipeline Stage 

Stage 

co 
Cl 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

ClO 

Cll 

Cl2 

C13 

Main Victim Flow 

Speculatively allocate a VAF entry based on the transaction that won the arbitration. The follow
ing transactions allocate a VAF entry in Cl: 
• LRUevict 
• BlkExclusiveProbable 
• futernal probes 
• Forwards (Sharedlnvals, etc) 
• ShrToDirtySuccess, ShrToDirtyProbable 

Deallocate VAF entry if transaction is rejected - if the incoming transaction got NACKed. 

MAP logic computes initial VAF command based on tag from the Stag array and transaction 
type. This logic is covered in a later section on Cbox Flows. 

Send initial victim command from MAP to VAF. 

Write victim physical address to VAF, deallocate VAF entry if no victim. 

CAM MAP with victim PA. 
If we hit a MAP entry with the victim PA, and the MAP state indicates that the victim PA is not 
coherent, then we must wait for coherence before sending the victim. 

Write victim data read from the scache into the victim data buffer (VDB). 

Receive probe_hit from Mbox and compute final victim command. 
This signal indicates if the Mbox MGB has modified data for the victim cache block. If this is 
the case, we must allow the Mbox MGB to "write-thru" to the VDB before sending the victim. 

Write VAF cmd, write VAF index to RSQ, if the victim is ready to be sent. 
The following two conditions can prevent the victim from being sent: 
• Victim is not coherent 
• Mbox MGB has modified data for this cache block, and has not yet written thru to the VDB. 

Compaq Confidential 
5 Jam.J~1ry 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-19 



Scache Control - the CS Partition 

Table 11-8 Main Victim Flow for Each Cbox Pipeline Stage 

Stage Main Victim Flow 

C14 Read head of RSQ, read VAF index specified by RSQ. 

C 15 Send the VAF command to SYS, deallocate VAF entry if no VDB read required. However, if the 
corresponding VDB entry needs to be read by either the Zbox or Rbox, the VAF entry is not 
deallocated until this read occurs. 

C 16 Send second victim command, if applicable. 
A victim flow can require two messages to be delivered: one to the requesting node and one to 
the home node. If this is the case, then we send the second victim command at stage C16. 

11.3.6.3 Secondary VAF Flows 

As noted above, if the victim is not coherent, or if the Mbox MGB has not yet written 
the modified data thru to the VDB, we must not send the victim, as follows: 

1. When an incoherent MAF entry receives the final lnvalAck, making it coherent, the 
MAF sends the MAF index that became coherent to the VAF. We CAM the VAF 
with this MAF index, and the hit entry is written to the RSQ (note the retiming as 
we go from CS to C15): 

CS MAF sends coherent MAF index to VAF. 

C15/C6 CAM VAF with MAF index 
Cl6 Send VAF index to RSQ 

C 17 Write RSQ 

2. When the Mbox MGB writes thru to the VDB, the VAF entry (if coherent) is ready 
to be sent to the system (note retiming as we go from C12 to Cl6): 

C9 Mbox MGB sends write-thru VDB 

ClO 

Cll 

C15/C12 MAF sends wr_thru_vdb_done to VAF 

C16 

C17 Send VAF index to RSQ 
C 18 Write RSQ 

11.3.6.4 Reserved VAF Entries 

Four VAF entries, one per TPU, are available only for WRIO requests. The Mbox uses 
these four entries along with the four corresponding VDB entries, to store write IO data. 

Additionally, four VAF entries are reserved for handling responses to forwards. 

11.3. 7 System Interface {SYS) 

The System interface section (SYS) connects the Cbox to the Zbox and Rbox via the 
internal packet ring network. The SYS contains two 8-entry FIFOs: one for requests 
from the Cbox destined for either the Zbox or the Rbox, and one for responses from the 
Cbox destined for either the Zbox or the Rbox. Incoming packets from the Rbox are 

Compaq Confidential 
11-20 Second-Level Cache and Controller (Cbox) 5 Jc1m.1c1ry 2001 ... Subject To Cf1ange 



Scache Control - the CS Partition 

either passed along to the Zbox, placed into the PRQ (probes and forwards), or driven 
into the scache pipe (block responses and I2DResponse). The SYS section also contains 
the Cbox CSRs. 

In the 21464, unlike the 21364, we victimize Scache blocks at fill time. When the new 
fill arrives with data, we extract the victim, write the new data to the Scache, and write 
the victim to the VDB. Since we never stall fills, we must be assured that when the fill 
arrives, we have a VAF entry into which to put the victim. The MAF maintains a 
counter of the number of available VAF entries. Every time the SYS sends a request, 
we send a signal to the MAF counter to decrement the number of free VAF entries. Fur
thermore, the MAF sends back to the SYS a signal that indicates,...whether there is an 
available VAF entry. If there is not an available VAF entry, then the SYS must not send 
a request. 

Note: The BlkExclusiveProb message might require two VAF slots. Therefore, 
when we send a ReadModSTC request from the SYS, we decrement the 
VAF free count by 2. 

11.3.7.1 Principle of Operation: 

Every cycle, the SYS section must arbitrate among the 3 possible sources that want to 
drive the ring. It does so with the following priority: 

1. Rbox packet destined for the Zbox 

2. System response packet from Cbox 

3. System request packet from Cbox 

The SYS section receives "back pressure" signals from both the Zbox and Rbox. These 
signals tell the Cbox whether the Zbox or Rbox can accept new packets for a particular 
class (responses or requests). If either the Rbox or the Zbox cannot accept responses, 
the CBox does not place anything on the ring. If either the Rbox or the Zbox cannot 
accept requests, the Cbox does not send a new request packet. Finally, to prevent Zbox 
starvation, if the Cbox has driven new packets out onto the ring in 15 consecutive 
cycles, it stalls for one cycle and does not place a new packet on the ring. 

When the 8-entry FIFO in SYS for Cbox requests is filled, the SYS section signals back 
to the SRQ, which then stops sending further system requests to SYS. 

Similarly, when the 8-entry FIFO in SYS for Cbox responses is filled, the SYS section 
signals back to the RSQ section, which then stops sending further responses to SYS. 

11.3.7.1.1 Response FIFO Entry Fields 

A response FIFO entry contains the following fields: 

Table 11-9 System Interface Section Response FIFO Entry Fields 

Field Name 

Block Address 

Home_Owner_Node 

Stripe_bit 

Cmd 

Size 

31 bits 

10 bits 

1 bit 

8 bits 

Compaq Confidential 
5 January 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-21 



Scache Control - the CS Partition 

Table 11-9 System Interface Section Response FIFO Entry Fields 

Field Name 

Requester_Node 

Requester_MAF _Idx 

Requester_ VAF _Idx 

Request_destined_for_zbox 

Size 

10 bits 

6 bits 

6 bits 

1 bit 

11.3.7.1.2 Request FIFO Entry Fields 

A request FIFO entry contains the following fields: 

Table 11-10 System Interface Section Response FIFO Entry Fields 

Field Name 

Block Address 

Req_Home_Node 

stripe_bit 

cmd 

req_maf_idx 

request_destined_for_zbox 

iomask 

qwadd 

tpu_idx 

11.3.8 System Request Queue (SRQ) 

Size 

31 bits 

10 bits 

1 bit 

8 bits 

(6 bits 

1 bit 

8 bits 

3 bits 

2 bits 

The SRQ is a 60-entry 1 FIFO queue that buffers requests which miss in the Scache and 
require a system request. The SRQ serves two main functions: 

• Since we can generate requests more rapidly than the paths to memory can accept 
them, the SRQ serves as a buffer between the MAF and the system interface: 

We can generate one request per cycle, but the ring interface is shared with the 
Rbox and Zbox, so sometimes our request will not win arbitration for the ring. 

• The SRQ limits the number of outstanding requests to a given Scache index. 

11.3.8.1 Principle of Operation 

The Scache is six-way set associative, which means that at any given Scache index, we 
have six sets of storage, and six tags. If we were to allow more than six outstanding 
requests to the same Scache index, it is possible that the first six responses (fills) would 
arrive, write into the Scache, and then the seventh fill would arrive and victimize the 
first before we have actually written the fill data to the Scache.2 

1 Four MAF entries are reserved for forward probes, so the SRO needs to be only 60 entries, 
not 64. 

Compaq Confidential 
11-22 Second-Level Cache and Controller (Cbox) 5 Janwiry 2001 ··· Subject To Cfu.mge 



Scache Control - the CS Partition 

When the MAF generates a system request - either due to a miss from the Mbox or a 
system response that does not fully satisfy the original request - we put the MAF 
index of the miss into the SRQ, along with the Scache index. Each cycle, we take the 
entry from the head of the SRQ and check how many outstanding requests we already 
have to the stored Scache index. If the number of outstanding requests is less than six 
(the number of Scache sets at any index), we do the following: 

• We use the stored MAF index to read the PA from the MAF, and we deliver the 
request to the C-U-Z interface unit (CS_SYS). 

• We increment the count of the number of outstanding requests to this Scache index. 

However, if the number of outstanding requests is equal to six, we leave the SRQ entry 
on the queue and advance to the next SRQ entry; no request is sent. 

When we receive a response from the system, the proper counter is decremented. 

As noted earlier, the Scache index consists of bits PA<18:6>. Using counters to keep 
track of the number of outstanding requests at each index would therefore require 8K 
counters. To reduce this storage requirement, we instead allow a total of six requests to 
a group of 128 indixes. Physical address bits <11:6> are used to specify one of 64 
counters. As an example, we would allow a total of six requests to be outstanding to the 
following group of Scache indices at any one time: 

0, 128, 256, 384, ..... 

This could be a performance issue for strided code. 

There is a debug mode in the Cbox that allows only one outstanding request per 
PA<ll:6>. 

11.3.9 Retry Queue (RTQ) 

Transactions in the Scache pipeline can encounter conditions that prevent them from 
completing normally. In those cases, the transaction must be retried, that is, reexecuted 
through the Scache pipeline. The retry queue is a 64-entry FIFO that holds transactions 
which must be retried. 

11.3.9.1 Principle of Operation 

The following conditions can cause an Scache transaction to be placed in the retry 
queue and retried: 

• 
• 
• 
• 
• 
• 

Scache tag array bank conflict 

Scache data array bank conflict 

Single-bit ECC Scache tag error 

Single-bit ECC Scache data error 

Ifetch request from Mbox hits data in Mbox MGB 

System response arrives and finds MAF entry with MAF.i_fill_ena asserted 

2 The current Scache pipeline is such that with six sets, this situation can not occur. Since the 
pipeline and the number of sets may change between now and tapeout, the SRQ remains in 
the design. 

Compaq Confidential 
5 January 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-23 



Fm Datapath - the CF Partition 

11.3.10 TTQ 

An entry in the RTQ consists of the following: 

• MAF index associated with the transaction (6 bits) 

• VAF index associated with the transaction ( 6 bits) 

• Retry type (2 bits) 

• Retry command (4 bits) 

• Retry due to data error ( 1 bit) 

• This retry has been nacked (1 bit) 

• This transaction originated with an IO processor (1 bit) 

If a transaction is to be retried, the MAF.sc_inflight bit for the MAF entry associated 
with the retry is kept asserted until the retry successfully retries and clears the Scache 
pipe. This ensures that no other transaction to the same address (with fills being the 
only exception) may enter the Scache pipeline until the retry has been processed. 

The RTQ must have the same number of entries as the MAF (64) because we could 
have a situation where every system fill returns an exclusive block to the Cbox, and 
each MAF entry associated with these fills has MAF.i_fill_ena asserted (!stream 
request). This requires that each !fetch be retried from the RTQ. 

Each cycle, the RTQ reads the entry at the head of the FIFO, delivers it to the MAF, and 
deallocates the RTQ entry. If the MAF signals an ACK 3 cycles later, all is well. If 
instead, the MAF signals a NACK back to the RTQ (transaction was rejected), the RTQ 
allocates a new entry and pushes it into the back of the FIFO. 

Situations can arise whereby a transaction in the retry queue is continuously denied 
access to the Scache pipeline. The RTQ has logic to detect this situation. When the RTQ 
detects that an entry is being denied access, a signal is asserted to the MAF arbitration 
logic. This signal forces the MAF to reject all requests that have a lower priority than 
the RTQ. Please refer to the section on Cbox livelock/starvation avoidance for more 
details. 

11.4 Fill Datapath - the CF Partition 

11.4.1 FBE 

11.4.2 VDB 

11.4.3 FOB 

Compaq Confidential 
11-24 Second-Level Cache and Controller (Cbox) 5 Jam.1c1ry 2001 - Subject To Change 



Scache Tag Array - the ST Partition 

11.4.4 DBM 

11.4.5 RBI 

11.4.6 RBO 

11.5 Scache Tag Array - the ST Partition 

The Scache tag array (STAG) stores cache states of blocks in the secondary cache 
(Scache). 

11.5.0.1 Principle of Operation 

In response to a Scache tag request command from the Scache control, the Scache tag 
array is responsible for the following: 

• 

• 
• 

• 

Look up the Scache tag and send the CURRENT cache block state to the Scache 
control. 

Update the cache state and LRU if necessary . 

In case of a single bit tag ECC error, correct and store the corrected tag in the tag 
ECC register and signal it to the Cbox. The Cbox (i.e. Scache control) retries the 
request. 

The tag ECC register gets cleared 

- After the retry reads the corrected tag from the register. 

- A probe or a system fill to the same Scache index since they may displace or 
victmize the cache block which is in the tag ECC register. 

Compaq Confidential 
5 January 2001 -~Subject To Change Second-Level Cache and Controller (Cbox) 11-25 



Scache Tag Array - the ST Partition 

11.5.0.2 Pipeline Stages 

Table 11-11 shows the pipeline stages for the Scache tag array. 

Table 11-11 Scache Tag Array Pipeline Stages 

$2 

1. Decode the 
Scache index for 
RD. 
2. Generate the tag 
ECC [1]. 

$3 

1. Read the Scache 
tag/LRU. 
2. CAM the ECC tag 
register with the 
MAFindex. 

Notes: 

$4 

1. Tag compare and 
Set select. 
2. Syndrom genera
tion and Error detec
tion. 
3. Decode the 
Scache index for 
WR. 
4. Decode the LRU 
and look up the stale 
fill table if 
LRU_RD_ENA is 
asserted. 
5. Fix the tag ECC 
bits if necessary [ 1]. 

$5 

· 1. Send the set num
ber to the Cbox and 
SC data array. 
2. Write the Scache 
tag and/or LRU if 
necessary. 
3. Single bit error 
correction and load 
the corrected tag into 
the ECC register if a 
retry is required [2]. 
4. Clear the tag ECC 
register if necessary. 
5. Write the stale fill 
table if 
C_ST_CMD_LRUE 
VICT. 

$6 

1. Send the response 
(VSD) to the Cbox. 

• [l]: The ECC bits are function of the physical address and the cache state. Yet we 
only need tag ECC bits which depend only on the physical address for the tag com
pare. Tag ECC bits which depend on the cache state are generated before the tag is 
written back. 

• [2]: A retry is required if 

Scache miss and a single bit tag ECC error in any set OR 

Scache hit and a single bit ECC error in the same set. 

11.5.0.3 State Transition 

Table 11-12 shows the Scache tag state transition table. 

Table 11-12 Scache Tag State Transition Table 

Current Tag State 
Command 
(cs%st_cmd_c3a) Invalid Shared Exel Dirty LRURD LRUWR Tag RD Tag WR 

C_ST_CMD_NOOP Invalid Shared ExclCln Dirty No No No No 

C_ST_CMD_MISS Invalid Shared ExclCln Dirty No Yes2 Yes No 

C_ST_ CMD_SEfDIITTY Invalid Shared Dirty Dirty No Yes2 Yes Yes 

Compaq Confidential 

Write the 
Stale Fill Inv al. 
Table ECC1 

No No 

No No 

No No 

11-26 Second-Level Cache and Controller (Cbox) 5 Jc1nuc1ry 2001 ... Subject To Change 



Scache Tag Array - the ST Partition 

Table 11-12 Scache Tag State Transition Table (Continued) 

Current Tag State Write the 
Command Stale Fill Inv al. 
(cs%st_cmd_c3a) Invalid Shared Exel Dirty LRURD LRUWR Tag RD Tag WR Table ECC1 

C_ST_CMD_LRUEVICT3 Invalid Yes No Yes No Yes Yes 

C_ST_CMD_INVAL Invalid Invalid Invalid Invalid No Yes4 Yes Yes No 

C_ST_CMD_CTOS Invalid Shared Shared Shared No Yes2 Yes Yes 

C_ST_CMD_STOE ]Invalid ExclCln Must not happen. No Yes2 Yes Yes 

C_ST_CMD_STOD Invalid Dirty No Yes2 Yes Yes 

C_ST_CMD_BLKINV Invalid Must not happen No Yes4 No Yes [Yes] 

C_ST_CMD_BLKSHR Shared No Yes2 No Yes 

C_ST_CMD_BLKEXCL ExclCln No Yes2 No Yes 

C_ST_CMD_BLKDIRTY Dirty No Yes2 No Yes 

C_ST_CMD_RCVRY Invalid Shared ExclCln Dirty No No No No Yes 

C_ST_CMD_STOI 

C_ST_CMD_ETOS_DTOI 

1 Invalidate ECC register in the index match 
2 Make the set most recently used. 
3 To prevent the LRUEvict from evicting a stale fill block, we check the stale fill block table at the same 

time as we read out the LRU. The stale fill block table stores the set numbers that may have stale fill 
blocks. Those sets in the stale fill table must not get evicted. The stale fill block table is a simple FIFO 
that stores the last N bits ( 4 - 8 bits ) of Scache index and the set number of system fills in-flight in 
the Scache. 

4 Make the set least recently used. 

• Stag Read/Write conflict 

Because the Scache bank conflict can't be detected early enough it is possible 
to have a read/write conflict to the same Scache bank. 

For a Scache bank conflict, the earlier transaction takes precedence over the 
later one, which means the WRITE must proceed. One exception is when we 
try to evict a block to make a room for the following fill (i.e. LRU_RD_ENA is 
asserted), the WRITE is discarded in favor of the READ. The Scache control 
(Cbox) is responsible for replaying the rejected transaction. 

ST_RD_ENA_C2A LRU_RD_ENA_C2A ST_ WR_ENA_C4A LRU_WR_ENA_C4A ACTION 

0 0 0 0 NoOp/Fill 

x x 0 Must not happen 

0 0 0 WriteLRU 

0 0 Write tag and LRU 

0 x x Must not happen 

0 0 0 Read tag 

Compaq Confidential 
5 January 2001 ~·Subject To Change Second-Level Cache and Controller (Cbox) 11-27 



Scache Tag Array - the ST Partition 

ST_RD_ENA_C2A LRU_RD_ENA_C2A ST_WR_ENA_C4A LRU_WR_ENA_C4A ACTION 

0 0 

0 

x 

11.5.0.4 Stale Fill Table 

x 

Read tag and write 
LRU 

Bank conflict: Write 
tag and write LRU 

Bank conflict: Read tag 
andreadLRU 

The SFf (Stale Fill Table) stores the set number and the Scache index of the system fill in pro
gess in the Scache to prevent from victimizing the set which has the stale data in the Scache. 

Table 11-13 Stale Fill Table (SFT) 

C4 CS C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 Notes 

C_ST_CMD_LRUEVICT(O) [1] [2] 

c_sT_CMD_BLK*(O) 

C_ST_CMD_LRUEVICT(5) 

Notes: 

[3] 

• [l] LRU decode and set select 

• [2] Scache data array read 

• [3] Scache tag array write 

• [ 4] Scache data array write 

[4] 

[1] [2] Victimizing the 
block before the 
block is written into 
theScache. 

• If we have less than 6 sets, we must not send more than (N-1) system requests to the 
same Scache index, where N is the number of sets. 

11.5.0.5 The 21464 Scache Least Recently Used (LRU) Scheme 

The 21464 Scache is 6-way set associative cache. To minimize the probability of the Scache 
bank conflict, the 21464 LRU scheme is designed such that only a LRU victim needs to read 
the LRU. All other Scache transaction does not require reading of the LRU array. The pro
posed 21464 Scache LRU uses an approximate tree-like structure. 

Compaq Confidential 
11-28 Second-Level Cache and Controller (Cbox) 5 Jc1nuc1ry 2001 - Subject To Change 



Scache Tag Array - the ST Partition 

Table 11-14 Scache Least Recently Used (LRU) State Bits 

States 

Arb 

CrD 

ErF 

ABrCD 

ABrEF 

CDrEF 

Notes 

The set A is more recent than the set B 

The set C is more recent than the set D 

The set E is more recent than the set F 

The set AB is more recent than the set CD 

The set AB is more recent than the set EF 

The set CD is more recent than the set EF 

• Making a set the most recently used (MRU) set: 

LAU states 

ArB CrD ErF ABrCD 

Make the set A MR U Set No change No change Set 

Make the set B MRU Clear No change No change Set 

Make the set C MRU No change Set No change Clear 

Make the set D MRU No change Clear No change Clear 

Make the set E MRU No change No change Set No change 

Make the set F MRU No change No change Clear No change 

• Making a set the least recently used (LRU) set 

LAU States 

ArB CrD ErF ABrCD 

Make the set A LRU Clear No change No change Clear 

Make the set B LRU Set No change No change Clear 

Make the set C LRU No change Clear No change Set 

Make the set D LRU No change Set No change Set 

Make the set E LRU No change No change clear No change 

Make the set F LRU No change No change set No change 

Compaq Confidential 

ABrEF CDrEF 

Set No change 

Set No change 

No change Set 

No change Set 

Clear Clear 

Clear Clear 

ABrEF CDrEF 

Clear No change 

Clear No change 

No change Clear 

No change Clear 

Set Set 

Set Set 

5 January 2001 - Subject To Change Second-Level Cache and Controller (Cbox) 11-29 



Scache Tag Array - the ST Partition 

• Determining an LR U set from the LRU states 

LAU States 

ArB CrD ErF ABrCD ABrEF CDrEF LRU Set 

0 x x 0 0 x Set A is the LRU 

1 x x 0 0 x Set Bis the LRU 

x 0 x 1 x 0 Set C is the LRU 

x 1 x 1 x 0 Set Dis the LRU 

x x 0 x 1 1 Set Eis the LRU 

x x 1 x 1 1 Set Fis the LRU 

x x x 0 1 0 Illegal state 

x x x 1 0 1 Illegal state 

Notes: 

• We assign an arbitrary set when an illegal state is detected . 

11.5.0.6 Scache Tag ECC Code 

The 21464 Scache tag (paddr<46:19> + vsd<2:0>) array is protected by a 32b ECC 
code. 

The C"s in the table below indicate which bits contribute to the corresponding check 
bit. The corresponding check bit is the parity of the contributing bits and the syndrom 
bit is the parity of the corresponding check bit and the contributing bits. 

Check bits 6 and 4-0 are calculated with odd parity, meaning that the total number of 
ones in the contributing data bits and the check bit will be odd when stored in memory. 
Check bit 5 is calculated with even parity, to ensure that the cases of all-zero and all
ones returned from the memory are reported as uncorrectable errors. 

When the tag is invalidated, a complete entry will be written, with zeros in all the data 
bits; this will require that the check bits be written with Ox5F so that it can be read with
out error. All valid syndromes (in the sense that they represent correctable errors) have 
either 1 or 3 ones. A syndrome with only 1 one represents an error in a check bit; a syn
drome with 3 ones represents an error in a data bit. Any syndrome with an even number 
of ones, or with 4 or more ones, represents an uncorrectable error. Customary practice is 
to ignore the cases of 5 or 7 ones, and report an uncorrectable error when there is an 
even number of ones in the syndrome. 

Table 11-15 Scache TAG Syndrome Bits 

VSD Physical Address 

"C 
G> 
~ ;g ~ 

... 
as .c .: as co IJ) -=:I' (I) N .... 0 O> co ...... co IJ) -=:I' (I) N .... 0 O> co ...... co IJ) -=:I' (I) N .... 0 O> 

0 CJ) c > "1:1' -=:I' -=:I' "1:1' -=:I' -=:I' "1:1' (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) N N N N N N N N N N .... 
6 c c c c c c c c c c c c c c 

Compaq Confidential 
11-30 Second-Level Cache and Controller (Cbox) 5 Jc1nw1ry 2001 ··· Subject To Change 



Scache Tag Array - the ST Partition 

Table 11-15 Scache TAG Syndrome Bits 

5 

4 

3 

2 

1 

0 

"' r/.l 

c 
c c c c c c 

c c c c 
c c c c 
c c c c c c 

M in ~· ~ ~ u Cl .:r.i ;;:; 
"'" "'" "'" 0 0 

1 C/S means Check/Syndrome 
2 S means Syndrome 

c 

c 

N 
in 

c c c 

c c c c c c c c 
c c c c 

c c c c 
c c c c c 
c c c c c 
~ "'" ~ ~ 00 ~ ~ u ...... N ~ in in ...... \0 \0 

• Masks to select data participating in each check bit: 

check 6 mask= Ox7 A691A44 

• 

- check 5 mask= OxOOOOlFFF 

- check 4 mask= Ox007FE007 

check 3 mask= Ox1F81E078 

- check 2 mask= Ox238E2388 

- check 1 mask= Ox4CB 24C91 

- check 0 mask= Ox75549522 

Tag compare 

valid 

- paddr<46:19> 

- CB<5:3> 

• Error detection 

Zero 

OR (SYN<5:0>) 

Non-zero 

c c c c c c c c c c 
c c c 

c c c c 

c c c c 
c c c 

c c c 

"'" ~ ~ 00 ~ ~ ~ 0 ...... N 
\0 \0 t- M M 

EVEN PARITY(SYN<6:0>) Even Good data Double or even number of 
errors 

Odd Triple or odd number of Single bit error 
errors 

If the memory returns all zeros in the data and check bits, the resulting syndrome will be Ox5F. 
All zeros will result in a syndrome of Ox12. Both syndromes have an even number of ones, so 
will be reported as uncorrectable errors. 

• Error correction 

The SYN<5 :0> indicates the location of the bit error. Then the error bit simply 
gets flipped. 

Corrected bit= (Uncorrected bit) XOR (DECODE(SYN<5:0> )) 

Compaq Confidential 
5 Jam.mry 2001 -~Subject To Change Second-Level Cache and Controller (Cbox) 11-31 



Scache Data Array - the SG Partition 

11.6 Scache Data Array - the SG Partition 

This is mentioned in Tables 10-2 and 10-3. 

11.7 Flows 

11.7.1 Overall Pipeline Flow 

Fills, Probes, and Misses all access the Scache using the same pipeline. Each cycle one 
operation is picked for launch: 

• 

• 
• 
• 

• 
• 
• 

FillExcl, FillShared from system; displace a victim (2 cycle operation, granted on 
even cycles. Highest priority) 

Transfers between Router and Rambus 

Replays (Tag ECC error, Data ECC error, resource or ordering conflict) 

ChgToExclMark, ReadMark, Probes (Inval, Forward, Forwardlnval) and Victi
mAcks 

Local memory accesses 

Misses and Evict requests from the MAF 

Early returns from system 

(To avoid deadlocks the system priorities are: Fills-> Forwards -> Probes-> Requests) 

11.7.1.1 Pipe Operation 

Operations are launched into the pipe and either complete successfully or fail because 
of an error in the Tag or Data ECC code, or fail because of a resource conflict with a 
previously launched operation. Failed operations queue to be replayed. Corrected tag or 
data for ECC fails is temporarily saved in a bypass register. When the operation is 
retried it accesses the bypass register. The bypass register is cleared by Tag or Data 
writes with the same index. 

Compaq Confidential 
11-32 Second-Level Cache and Controller (Cbox) 5 Jam1(1ry 2001 m Subject To Change 



Ut 
~ 
~ ..., 
t: 
~ 

~ 
I\) 

8 ..... 

tr; 
a::: 
~ 
G 
~ 
""'$< 

~ 
~ 
!i 
~ 

0 
0 
3 

"'C m 
..0 
0 
0 

(/) ::3 
<D ~ (") a.. 
0 ~ 
::J :3 o..-

1 ~· r ..... 
~ se. 
Q 
(") 
::r 
<D 
S» 
::J 
0.. 

~ 
::J 

~ 
(j) 
""'I 

0 
C" 
0 

.?.$. 
...... ...... 

~ 

CTE_ 1 (fill from victim) 

Read PA from MAE 
Check MAF: CIB [3]. 

Update MAP state. 

Detect conflicts [1]. 
Row decode 

Tag Ram. 
CheckVAF. 

If don't find shared block 
follow 'change' above. 

Read tag ram. 

Select victim set (LRU). 
Generate victim tag syndrome. 

(Don't write tags) . 
Correct victim tag. 

Read data ram. 

Send victim PA to MBox. 
Write victim PA to VAF 

Set select victim data. 

Write victim data to VDB. 

CTE_2 (change) CTE_ 1 (change) 

Read PA from MAE Read PA from MAE 
Check MAF: CTE [3]. 

Update MAP state. 

Row decode tag ram. Detect conflicts [1]. 
Row decode Tag Ram. 

Check VAF. 
If find shared block follow 'fill 

from victim' below. 

Read tag ram. Read tag ram. 

Compare PA to tags. 
Determine set number. 

Generate tag syndromes . 

Set Exel, LRU (if match). 
Correct tags. 

Tag ECC replay [4]. 
Invalidate Tag_ECC register if 

index matches CIB index. 
Read data ram. 

Send CTE PA to MBox. Set select data. 

Generate data syndrome. 

Send fill data to MBox. 
Correct data. 

Data ECC r<;m_layj3J, 

Fill_2 Fill_ 1 

Grant if cycle is even. 

Read PA from MAE Read PA from MAP. 
Check MAP: CIB [3]. 

Update MAP state. 

Detect conflicts [1]. 
Row decode Tag Ram. 

(Don't read tags). Read tag ram. 

Bypass victim set number from Fill_l Select victim set (LRU). 
Generate victim tag syndrome. 

Write tag, VSD. (Don't write tags) . 
Invalidate Tag_ECC register if Correct victim tag. 

index matches fill index. Read data ram. 

Send fill PA to MBox. Send victim PA to MBox. 
Write vitctim PA to VAP. 

Set select victim data. 

Send fill data to MBox. 

Write vitctim data to VDB. 

Write data ram. 

> a-;::;: .. 
II» -CD 

3C :u 
)>CD .,, ~ 

r-
II» -I c II» 5 CQ 
::r 

-I :u 
II» CD 

CQ II» 
tn a. 

.,, 0 
II» 0 
Ci;~ 

:u 
CD 

& 
c 
~ 

"' !. g> 
8 --
<21 
C CD 
m& 
m.,, 
C=: 
tn -

< ::e c ~. m ;-

::e ...... 
;::::a: 
CD 

::e 
N ~. -CD 

";j 
tr 
ii" .... .... 
I .... 

O> 

w 
~ 
:::s" 
CD 
0 
0 
::::s -2. .,, 
ii' 
!. s· 
CD 
c 
i' 

CCl .. 
I» 
3 

.,, 
0 :e 
(A 



.... .... 
~ 
~ 

(/) 

~ 
0 
:J c. 

I r 
~ 
92.. 

~ 
0 =r 
CC> 

Sl> 
:J c. 
() 
0 
:J -Q. 
Ci)(") 
"""'0 
-3 
~"O 
0 ID e,...o 

Ul 
e.... 
~ 
!:l 
s: 
~ 

~ 
~ 

8 
'-..f. 

! 

g> 
~ 
~ a 
01 
~ 
~ 
e 

~ 
""' -s: 
('!) 
:s 
"""" ;· 

Probe (Forward) 

CAM MAP; merge or allocate entry. 
Detect hold conditions [2]. 

HoldinMAF. 

Detect conflicts [l]. 
Row decode Tag Ram. 

CheckVAP. I 
f victim is there mark and don't try reloading. 

Still need to update tags. 

Read tag ram. 

Compare PA to tags. 
Determine set number. 

Generate tag syndromes. 

Update tag. 
(Exel-> DirtyShared, DirtyShared ~> Shared) 

Correct tags. 
Tag ECCreplay [4]. 

Invalidate Tag_ECC register if index matches fill index. 
Read data ram. 

If was Exel send probe to MBox. 
MBox write through to SData and VDB. 

Set select forward data. 

Generate data syndrome. 

Send fill data to MB ox. 
Correct data. 

Data ECC rnll.~. 

If not already there, write forward data to VDB. 

Probe (lnval) 

CAM MAP; merge or allocate entry. 
Detect hold conditions [2]. 

HoldinMAF. 

Detect conflicts [1]. 
Row decode Tag Ram. 

Check and conditionally Invalidate VAF [5]. 

Read tag ram. 

Compare PA to tags. 
Determine set number. 

Generate tag syndromes. 

Write tag Invalid (if match). 
Correct tags. 

Tag ECC replay [4]. 
Invalidate Tag_ECC register if 

index matches fill index. 

Send probe to MBox. Send InvalAck. 

CTE_2 (fill from victim) 
-I "Tl m 0 tr 
er 

== )> ... g 
..... (}'; ..... 
I ... 

a 
CD 

..... 
CJ) 

"' Read PA from MAF. !!: :a 
)>CD 

'T1 ~ 

() 
m 
() 
::::r 
CD 

Row decode tag ram. 
0 
0 .... ::s 

I! ;t gu:a -... 2. 
:::s" "CJ -a· 

!!. 
Read tag ram. (Not used) ;t :a 

ca I 
s· 
CD 

,,, Q. c 
i' 

Bypass victim set "C (") 
number from Fill_l Cl» 0 

; ~ 

ca 
DJ 
3 -Write tag, VSD. :a 

Invalidate Tag_ECC register if CD 

index matches fill index. !. 
CJ 
a 
Cl» 

0 
0 
::s -5· 
c 
CD 
~ -

Send fill PA to MBox. (/) 

!. g> a-
Read VDB < :a 

CJ CD 
m~ 

Send fill data from m ,, 
VDBtoMBox. c -· ,,, = 

<:E 
CJ:!. 
m ;-

:e ...... 
::i: 
CD 

Write data ram. :e 
N:::!. -CD 



~ 

~ c 
~ 

~ 
l\) 

8 ...... 

~ .s: 
G 
~ -(ii 
9 
~ 
~ 

(") 
0 
3 
] 
..0 
(") 
0 

(/) :3 
a>~ 
8 a. 
::J ~ 
a. a r- s· 
a> -
< 
~ 

~ 
(") 
::T 
a> 
Q) 
::J 
a. 
g 
::J 

~ 
Ci) 
""'I 

0 
C'" 
0 c. ... 
z 
U'I 

n 
trl 

ocnncn 
~ s c. s 
n ('!) ('!) ('!) 

as~s 
~()'Q e; ()'Q 

00 O"' :=: O"' 
(!) ~ ('!) p:l 

e; ~ !"1 0 ....... ~ ...... ~ ~ 

~~ ; 
§. trl 
('!) 

Q 
~ 
00 
00 

~ 

N 

Q 
w 

~0"'&5' 
c:;C:('l)I 
ogioo2! 
~ >-! ~ ()'Q 
• ('!) t:! ::r' 

t:I ('!) ...... 

~ 
...... ~ 
t:I ...... 
0..::::: 

~ ('!) ~ 

~~n 
s.~ ....:i 
...... ::r' tr.I 5· ()" .._ 

()'Q ::r- c/ 
g ~ ~ 
9: '< e; 
l:!l ~ 0.. 
('!) ...... 0 
0.. >-! >-! 

O"' ~ ~ '$:; Q 
?); c=;· ~ 
~a.e; 
oSe; s. t:I 

~~ 
§"8 

s 
('!) cn~.Q en 
!:;e; ..... nt:l 
~ t:t 00 ...,_ d 
('!) (!) ~ ~ ('!) 
!"1...... ...... 
- ~ ('!) ~ ,.., ('/Q e; ('/Q 

.g O"' :=: O"' 

~~ ~ ~ 
n~ :::c ~ 
i-3 00 .g 00 

tr.In ....... 'tj 
• i-3 ~ 8 

m >-o o-
w >-t ('!) 

0 
o o 

'< O"' >-! 
n ('!) ~ 
......... 0 =:::. 
('!) >-! 00 
00 00 

N 

~ 5' 
~ .. 6 
(!) ...... 

&°& 
('!) ...... 

o.. n 
stii 
g. Q 
~ l:!l 
g. ::::: 
('!) ...... 

'"""'0 ............ 
:::::::r-
..... ('!) 
00 00 ::. s 
Q. ('!) 

§" 5· 
oo· o.. 
s· ~ 

('/Q ~ 
• O"' 

g 
8 

:c 
i 
0 c 
c:; 
CD 
(') 
0 
::::s = ~ 
(I) 

0 

2-... 
(') 

0 
::::s = 5· 
at 

~ er 
i" 
...... 
...... 
I ...... 

...... 
lJ 
CD 
tn 
0 
c 
fl 
CD 
Cl) 
::s 
c. 
0 a. 
CD 
""I 

(") 
0 ::s = [ 
tn 

........., 
....... ......... 

~ 
CIJ 
0 

~ 
0 
~ 

5. 
0 a 
~ 
n g 
I-'• 
('") 
~ 
CIJ 

z 
2. 
CD 
!'! 

Miss 

Read PA from MAP. 
Update MAP in-flight bit. 

Row decode tag ram. 

Read tag ram. 

Compare PA to tags. 
Determine set number. 

Generate tag syndromes. 

Write tag LRU (if match). 
Correct tags. 

Tag ECC replay [4]. 
Read data ram. 

Send fill PA to 

MBBox. Set select data. 

Generate data syndrome. 

Send fill data to MBox. 
Correct data. Data ECC replay [3]. 

Local 
Probes Probe (Forwardlnval) 

CAM MAP; merge or allocate entry. 
Detect hold conditions [2]. 

Hold inMAF. 

Detect conflicts [1]. 
Row decode Tag Ram. 

CheckVAF. 
If victim is there mark and 

don't try reloading. 
Still need to update tags. 

Read tag ram. 

Compare PA to tags. 
Determine set number. 

Generate tag syndromes. 

Write tag Invalid. 
Correct tags. 

Tag ECCreplay [4]. 
Invalidate Tag_ECC register if 

index matches fill index. 
Read data ram. 

If was Exel send probe to MBox. 
Set select forward data. 

Generate data syndrome. 

Correct data. 

lfnot already there, write forward data to VDB. 

)> 

a-
;::::;: .. 
a 
Cl> 

== lJ )>Cl> .,, l 

r 
~ ;' 
5 CQ 

=-

~ lJ 

CQ = 0 Q. 

.,,o 
I» 0 
a; ~ 

lJ 
CD a. 
c 
a 
I» 

0 
!. g> 
l-
< lJ ca> 
m~ 

m.,, 
c = 
0 -

< =e 
C::!. 
m i 

=e ..... 
;::;: 
CD 

=e 
N ::!. 

i 

';1 
er 
ii' 
...... 
...... 
I ...... 

a> 
en 
n 
Cl) 
n 
:::r 
CD 
(") 
0 ::s a ,, 
i5' 
!!. s· 
CD 
c 
~· 
D1 
3 

0 
0 ::s -s· 
c 
CD c. -

-n 

~ 



Flows 

Table 11-17 Resource and Order Conflicts 

Probe 

Miss 

Resource conflicts 

Same tag bank as Fill or CTE 3 
cycles earlier. 
Same data bank as Fill or CTE 7 
cycles earlier. (not Inval) 
Same tag bank as Probe or Miss 2 
cycles earlier. 

As Probe 

Write Same tag bank as .. 
Through Same data bank as .. 

[2] MAF holds CTE or Probe when: 

Order conflicts 

In-flight Fill, CTE, Forward or Forwardinval to 
the same index which may extract victim. 
In-flight Fill or CTE to the same index about to 
write the data that the Probe is reading. 

In-flight Fill, CTE, Forward or Forwardinval to 
the same index which may extract victim. 
In-flight Fill or CTE to the same block about to 
write the data that the Miss is reading. 

- Match MAF entry for the same block which has received a ReadMark or 
CTEMark but is not yet coherent. 

- Probe to the same block in-flight which might replay. (For CTE, In-flight For
ward for case FillExcl; Forward; CTEMark) 

[3] CTE cases: 

- FillExcl checks MAF. If already have Shared block, Fill is dropped and Read-
Mark is converted into a CTE. (or vice versa?) 

- CTEMark checks MAF. If already have Exel block, don't need to do anything. 

[4] ECC replays: 

- CTE (change), Inval, Forward, Forwardinval or Miss may replay because of 
Tag ECC error. 

- CTE (change) or Miss may replay because of a Data ECC error. 

[5] Invalidating VAF entries: 

- Probe Inval invalidates and deallocates shared blocks in the VAF. 

- Probe Inval marks excl blocks which have not sent victim request as 'no victim 
req needed'. 

Compaq Confidential 
11-36 Second-Level Cache and Controller (Cbox) 5 January 2001 - Subject To Cfumge 



~ 

' :eJ 
::::= 
t: 
:eJ 
~ 
t.) 

8 ..... 
i 

if' 
~ 
~ ....,.. 

fj 

9 
~ 
~ 

(") 
0 
3 
~ 
..0 
(") 
0 

(/)~ 

~ s: 
0 ~ 
:J ~ a.-r- ~· 
CD ...... 
< 
92.. 
Q 
(") 
:::::r 
CD 
Sl> 
:J a. 
(') 
0 
:J 

[ 
<D ..., 
0 
O"' 

.§. 
.... 

~ 

S2D* 

Arbitrate for the Scache pipe 

Read the PA & MAF states. 
Bank conflict check. 

Compute the new MAF state. 

Write the new MAF state. 
Read tag. 

Error detection. 
Set select. 

Tag ECC correct 
Update the Stag. 

SC data rd. 

Send address/tag to Mbox 

fill data on the fill bus. 

Retry Blk* 12DResp [4] 

Arbitrate for the Arbitrate for the Scache pipe Arbitrate for the Scache pipe 
Scachepipe 

Read PA. Read PA & MAF states. 
Bank conflict check. Allocate a VAF entry 

Compute the new MAF states 

Read tag. Write the new MAF state 
Read LRU/tags 

Error detection. Victim set select 
Set select 

Tag ECC correct Rd Scache data array. 
Update the SC tag [3]. Victim tag ECC. 

Read SC data. 

Write LRU/tag. 

Send addr/tag Send Victim addr and VAF idx to Mbox. 
to Mbox Write the V AF. 

Send the Fill addr/tag to Mbox 

Fill data on Victim data on the fill bus. 
the fill bus. Victim data correction. 

Fill data on the fill bus. Write the VDB (CllB). 

Write SC data array. 

:c t/) co > .! ! ... 
Arb C" Q. 

I---

s:: C1 > 
MAF 'Tl 

I---

C2 > (') 

Ta_g_ launch ~ 

I---

C3 C" CD 

Rd Tag 
i" §. 

t/) 
(') I---

C4 m 
(') 

Tag Compare :::; 
CD I--- s:: cs ~ 0 C" 

0 
Rd Data ca >< ,, 

t/) :c -a· 
~ I--- !. CD 

C6 (') :c -< :::; 0 
Set Select CD ::!! ,, ~ "'t'S 

C7 -a· :c CD .... 
Drive Data !.. s· 1---1 

cs CD :c 
Yi N 

Fill Bus m 

~ 
_.. 

C" 
_.. 

iD 
:.... 

_.. ~ 

_.. N 
I _.. "'CJ 

C» -a· 
g> !. 

~ 
_.. :;· 
_.. CD 

::::r :.... ~ CD ~ 
(') N 
0 

:;· 
::::s 

~ ca -.. "' 
c 

2. g ~· 
"'CJ -a· n .. 

::::r m 
CD CD 3 
s: (') 0 

CD 
0 

"' 
::::s -- a m ca -

CD "'CJ 
0 -a· 

CD 

3" 
CD 

"' S' ca 
CD 
0 

ca r-------1 

C9 CD m 
(I) 

WR1 
r-------1 

C10 s:: 
0 

WR2 t/) 
(') f-------1 

C11 m s:: (') .... 
WR3 

:::; 
CD 
c f-------1 

C12 s:: a N 
WR4 m ,, 

C13 i" 
WR5 

C1 
4WR6 "TI 

C15 ~ 
(/,) 

C16 



.... .... 
I w co 
en 
CD 
0 
0 
;:, 

Misses WRIOAck Sharedlnval Forwards 

Arbitrate for the Scache pipe Arbitrate for the Arbitrate for the Arbitrate for the Scache pipe co > ::c en 
Scachepipe Scachepipe ... CD CD 

Arb tr _g a 

-I .,, 
D> 0 er 
ii' :E 
..I. ~ 
..I. 

I 
..I. 
C» 

a. 
r-
~ z 
~ 

0 -0 
~,......, r::r,......, ,......, CD = !..>) o~ = !'! Sl:> 0. ":-:" 

0 5' ==+: 
(') .. 

::J" Po;"() U'.l * n 
CD (D g. U'.l r::r ::r' l"I'J r::r 
Sl:> ::r' 0 e; ~ 0 
;:, 8 (D e; >< a ~ >< 

~~ a. ~ 
(D 00 - ~ 00 

() 
=~ 

o. B ~ a B 
0 ~~ e. 0. 
;:, = ..... 00 - 00 00 ~ 5' * 5' a - 0. as=(") g § g. (D (D 

~ 0 - (D £ 8 -3 (') 0 ~ (') 

() "C s~ 8i r::r 
(D 

O"' ~ ~ 0. r::r r::r ~ .§, ..0 (D ~ ~ - 0. 0 ~ (") g. ~ ~ 0 (D tr1 (D - 00 
~ _n 0 00 
-i. ~n 0: (1Q (D ~ 0 
~ ;a. ~ r::r ~ ~ 0 - ~ 0 r::r s· ft v~ >< 0 ..... 

~ 5' :::+; >< 
Ul 0: (D 

U'.l 
..... 
>-ti 

e... 0 g. ..... U'.l ~ 
~ Fl 0 g. ::J ~ 

(D 

:i::: 0 (D ~ ~ ::r' ..... 
-< (D 00 0 - 0 

r::r 

8 cf6 
(D 

Po;" 
..... 

::r' 
00 

(D 
~ ~ (D 

00 ~ 
i ~ ~ 

tJ) I:;" 0 t: (D 
0 

~ ~ ~ 

~· "< "< 
(') r::r 0 
'"'le (D >-ti 

~ 
(D g. := (D 

~ .§ 0 
0. ~ 

~ 
~ g. 
$ (D 

~ 0. 

Alloc/merge MAF entry. Read MAF state. Alloc/merge MAF entry. s:: Read out MAF state. Rd MAF states C1 > bank conflict check. Bank conflict check. MAF "T1 

1---1 

Compute the new MAF state. Compute the new Compute new MAF states. C2 ~ Send ACK/MAF index to Mbox. MAF state. Tag_ launch ~ 

Write the new MAF state. Write the new WR new MAF states C3 tr CD 
Read Scache Tag. MAF state. -C 

Rd Tag CD tr 
en I 

n 
Error detection. Set select. Error detection. C4 D> n 

Set select. Tag Compare ::T 
CD ,______ s:: 

Tag Error correct. Tag ECC correct cs -;: tr 
Update the LRU. Update the Stag. cc 

" 
0 

Rd Data >< 
Rd SC data. SC data rd. .,, 

en ::c ·er n ,______ !. CD D> -< C6 n ::c ::T 
Set Select CD 0 :E .,, 1---1 "C 

Send tag to Mbox. Send WRIOAck Send address/tag to Mbox. C7 -s· CD 
::c 

CAMtheVAF. toMbox. CAMtheVAF. Drive Data !!. .... 
s· 1---1 

cs CD 

!O ::c 
Fill Bus 

I'\) 
D> cc t--------1 

C9 CD 
(I) m 

WR1 
1---1 

Fill data on the fill bus. fill data on the fill bus [2]. C10 s:: 
ECC correction WR2 en 0 

n ,______ 
WRthe VDB C11 D> s:: n 

WR3 
::T .... 
CD 
c 

,______ 
C12 !. s:: 

WR4 D> I'\) .,, 
C13 "i" 

WRS 

C1 
4WR6 

C15 

"' n 
D> n 
=t' 
CD 
0 
0 
::s -a 
"O -s· 
!. :;· 
CD 

"' -D> ca 
CD 
tR -n 
0 
::s -:;· 
c 
CD 
c. -

C16 



Flows 

[4]: Blk* and InvToDirtyResp take 2 Scache cycles. Cbox sends early warning to 
Mbox if the fill address bus is not used by other transaction. CB ox must ensure to 
send the early warning such that the Mbox retry will find the fill data (i.e. do not 
send the early warning too early). 

[5]: Writing the VDB with the ECC corrected victim data is not time critical as long 
as we write the VDB before the merge buffer write to the VDB. 

The Scache control reads the physical address from the MAF in Cl A and drive 
them to the Scache tag in C 1B. 

11. 7 .1.3 Resource Conflict 

The following resources are shared: 

• Scache tag pipe. 

• MAF PA read port. 

• MAF PA CAM port. 

• FillNictim/Probe address bus (47+ bits). 

• Fill data bus (512+ bits). 

• Scache tag bank. 

• Scache data bank. 

Table 11-19 Required Resource 

MAFPA Scache 

MAF VAF WR RD CAM Tag Fill Write-thru Data Fill Data 
entry entry Bank Addr Bus Bank Bus 

Bus 

Blk* 1 1 2 2 2 2 

InvalToDirty RespCnt 1 1 2 2 1 

ShrToDirty*Cnt 11 1 2 1 1 1 

*Req/*Fwd 1 1 1 1 2 1 1 1 

Sharedlnval 1 1 1 1 2 1 

Miss 1 1 1 2 0- 1 1 1 

Partial Fill 1 1 1 

Write-thru 1 1 1 

1 TIDS FOOTNOTE NOT SPECIFIED 

Notes: 

• We need a VAF entry, 

- For a VictimClean if a ShrToDirtySuccessCnt does not find a Shared copy in 
the Scache. 

- For a ShrToDirtyComplete or ShrToDirtyRelease for a ShrToDirty ProbCnt. 

Compaq Confidential 
5 January 2001 - Subject To Change Second-Level Cache and Controller (Cbox) 11-39 



Flows 

• Blk* and InvToDirtyRespCnt takes 2 Scache pipe cycle since may victimize a 
cache block. 

The victim block: send the victim address to Mbox & write the VDB via the fill 
bus. 

The fill block: send the fill address and the fill data to Mbox/Ibox. 

• Blk* writes the Scache data ram while Misses and Probes read the Scache data ram. 

11.7.1.4 Scache Bank Conflict Check 

Table 11-20 shows the Scache bank conflict timing 

Table 11-20 Scache Bank Conflict Timing 

$2 $3 54 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14 $15 Notes 

MissO ~~ .a ~ 

:1~ ~ ~ 
Cl)] iE = !+:I 
~~ "C "C 

5' 5 5 
U'.l U'.l 

Missl H ~~ ~ ~ 
~ ~~ = 

~] iE !+:I 
S' "C ] 
8 5'~ 5 Cl) 

U'.l U'.l 

Miss2 H a g~ 
i..: 

~ :::'.. "C 
Cl) ~ 

] !a .....:iU'.l 
~ ~ S' ~~ !+:I 

0 8"~ "8 "8 u Cl) Cl) 

U'.l U'.l 

Victim3 ~ 1 cJ .a ~· 
§~ 

i ~ ~ ~ ,t::i· .... 

a s ~~ 
S' '+J ~.s 

] ·~ 
. ~ ,_:i ..... 

8 > Cl) :s: 
"C ,.c: ti 

~ :>' 5 ~ ...... 
U'.l ul:l 

8 

Fill4 g~ ~ ~ ~ ] 
~~ iE U'.l 

.s Cl) tE $ 
$~ ] ] ·i:: 

~ 
~ U'.l U'.l 

8" 
Victim6 ~ 1 cJ .a ti ...t 

i ~ "C ~s 
~ 

<l:l OU:.. 

E s o.S 
S' ti f ~ ~ 0 s ·;; 

Cl) u ·.g "C ,t::l 

~ :>' 5 ~ U'.l 

Compaq Confidential 
11-40 Second-Level Cache and Controller (Cbox) 5 Jc1nuc1ry 2001 ~Subject To Change 



Flows 

Table 11-20 Scache Bank Conflict Timing 

$2 

Miss5 

Miss6 

Miss13 

$3 $4 SS $6 $7 $8 $9 $10 $11 $12 S13 $14 $15 Notes 

i i ~ .a c'il 

] ~ 
] ~ "g 1E i.E 
~ E" <!) 

] ~ ] 0 
ci u tZl t:I) 

~ 
<!) 

~ 
8' 

H E ci rl .a ~ §:i 
~~ ] 't:I ~~ 

! ~ ::::: 

~] ~ <+::: o.o,.s 
E" $ ..... 

't:I 't:I 
<!) ~ c: 

8 8'~ 5 <!) '5-u 
tZl tZl c:IS•-< 

~~ 
0 
(.) 

::::) E ~ §s 
~ ~ 

't:I ~ll.. 
tZl 

~..s "g ] <!) E" ~-~ 
~ 8 ~ ~~ ci 

~ 
0§ 

(.) 

* 't:I 

~ 

Notes: 

• 

• 
• 

• 

• 

• 
• 

• 

[l]: We have a separate LRU array; hence, this does not cause a Stag array bank 
conflict (i.e. no miss-miss bank conflict). 

The current Scache proposal has 16 independent banks . 

The Scache bank conflict check prevents: 

Two accesses to the same Scache bank (tag & data array). 

The write through to the bank (index ??) that has a stale victim block (i.e. vic
tim block in the process of being written to the VDB). 

The write-through to the bank (index) that has an inflight fill block. 

In case of a bank conflict, the request that entered the Scache pipe later gets 
retried. However, the system fill preempts the preceding Scache access in case 
of bank conflict to avoid retrying the system fill. 

Do a system fill at even cycle to prevent the resource conflict with the immediately 
following system fill. 

We must ensure that there is no bank conflict between reading of the Scache data 
for LR UVictim and writing of the Scache for a fill block. This means the 

Scache write must be in the even cycle . 

Misses(X) can have bank conflict to the Scache data bank with a preceding system 
fill. 

In case of bank conflicts, the request that entered the Scache pipe later gets retried 
except for system fills which forces the conflicting request to get retried even if it 
entered the Scache pipe earlier. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Second-Level Cache and Controller (Cbox) 11-41 



Flows 

11.7.2 Fill and LRU Evict Flow 

11.7.2.1 Hiccup Flow 

11.7.3 Probe Flow 

11.7.4 Mbox Request Flow 

The Cbox looks up the Scache tag and sends the tag and/or fill data to the Mbox in 
response to the Mbox Miss request. In case of Scache miss, the Cbox sends the system 
request. Miss request Scache look=up. 

Table 11-21 Miss Request Command Summary 

Miss Request VSD Fill Data MAF .sys_cmd<2: 
Command Scache State Dcache Fill Command to Mbox to Mbox 0> 

Ifetch oxx C_DFILL_CMD_MGBPROBE oxx No Read Shared 

100/110 C_DFILL_CMD_MGBPROBE1 100/110 No None 

101 C_DFILL_CMD_MGBPROBE1 101 Yes None 

FetchLine oxx C_DFILL_CMD_FILLBLK2 oxx No Read 

100/101/110 C_DFILL_ CMD _FILLBLK 1001101 31110 Yes None 

FetchLineMod CtoD oxx C_DFILL_ CMD _FILLBLK2 oxx No ReadMod 

110 C_DFILL_ CMD _FILLBLK 110 Yes ShrToDirty 

100/101 C_DFILL_CMD _FILLBLK 1013 Yes None 

PfetchLineMod oxx C_DFILL_ CMD _FILLBLK2 oxx No ReadMod 

100/101/110 C_DFILL_CMD_FILLBLK 1001101 31110 Yes None 

Pf etchNocache oxx C_DFILL_ CMD _FILLBLK2 oxx No ReadShr 

100/101/110 C_DFILL_CMD_NOCACHE 1001101 3/110 Yes None 

Pf etchScache oxx C_DFILL_CMD_FILLBLK2 oxx No ReadShr 

100/101/110 C_DFILL_CMD_NOOP oxx No None 

ltoD oxx C_DFILL_CMD_FILLBLK2 oxx No InvToDirty 

110 C_DFILL_ CMD _FILLBLK 110 Yes ShrToDirty4 

lOX C_DFILL_CMD_ITODRESP 101 3 Yes None 

CtoDSTC oxx C_DFILL_CMD_STCDONE2 oxx No None 

110 C_DFILL_ CMD _FILLBLK 110 Yes ShrToDirtySTC 

lOX C_DFILL_CMD_STCDONE 1013 Yes None 

1 Mbox send dl%probe_hit when the Ifetch hits the dirty block in the MGB. 
2 Mbox invalidates the Dcache block. 
3 The cache state to the Mbox will be ExclCln if the block is not coherent to prevent the merge buffer 

from wring the Scache. 

Compaq Confidential 
11-42 Second-Level Cache and Controller (Cbox) 5 Janw'*rY 2001 -- Subject To Change 



Flows 

4 In order not to replay InvToDirtyRespCnt due to Scache tag ECC error, we send a ShrToDirtyReq if 
we have a shared copy even if Mbox has the full cache block modified. 

Notes: 

• 
• 

The MAEsys_cmd gets set after Misses look up the Scache tag . 

The MAEsys_cmd can be changed before we make the system request (i.e . 
MAEneed_sys_rqst): 

A new Miss request gets merged. 

A probe hits a ShrToDirtyReq. 

If a probe hits a ShrToDirtySTCReq, we may de-allocatethe MAF entry. 

System request pipe arbitration 

• The system request pipe is arbitrated between Miss requests from the MAF and 
Victim from the VAE 

• System requests queued in the MAF are arbitrated based on the age priority. 

• The responses in the VAF has the priority over the reqeusts in the MAE 

11.7.5 Victim Flow 

The sources of Scache Victim(X) are: 

• External probe ( *Forwards). 

• Internal probe. 

• LRU displacement by a system fill. 

The victim block has to be coherent before the Victim can be sent to the home node. 
This requires a victim to CAM the MAE 

The LRU evicted Victim(X) at the system fill time must: 

1. Pull the victim out of the Scache. 

2. Perform the victim Tag ECC correction. 

3. If the victim block is shared, then the victim process completes. 

4. If the victim block is Exclusive or Dirty: 

Write the ECC corrected victim address to the VAE 

Send the ECC corrected victim address to the Mbox. 

Put the ECC corrected victim data into the VDB. 

CAM the MAF to see if the victim block is coherent. 

If the merge buff er has modified bytes, the merge buffer writes the modified 
bytes to the VDB after the ECC corrected Scache victim is in the VDB. 

Compaq Confidential 
5 January 2001 -- Subject To Change Second-Level Cache and Controller (Cbox) 11-43 



Flows 

There exists a time window where the merge buffer does not know the block 
has been victimized until it receives the victim address even though the victim 
block has been removed from the Scache. The bank conflict check in the 
Scache prevent the merge buffer from writing to the displaced Scache block. 

Probe induced victim. (CHECK WEBSITE) 

Table 11-22 Victim Command Summary 

Extract CAM 
Victim command 1 MGB the 

SC command SCVSD (cmd1) Victim Command O (cmdO) Data MAF1 

LRU Displacement 

CS_MAF _SC_CMD_LRUEVICT OXX/ 110 cs_ VAF _CMD_NOOP cs_ VAF _cMD_NOOP No No 

100 CS_ VAF_CMD_NOOP cs_ VAF _CMD_ VICTIM_ Yes Yes 
CLEAN 

101 CS_ VAF _CMD_NOOP cs_ VAF _CMD_ VICTIM Yes Yes 

Internal Probe 

CS_MAF _SC_CMD_ VICTIM OXX/ 110 cs_ VAF _CMD_NOOP cs_ VAF _CMD_NOOP No No2 

100 CS_ VAF_CMD_NOOP cs_ VAF _CMD_ VICTIM_ Yes 
CLEAN 

101 CS_ VAF_CMD_NOOP cs_ VAF _CMD_ VICTIM Yes 

CS_MAF _SC_CMD_ VICTOSHR OXX/ 110 CS_ VAF _CMD_NOOP cs_ VAF _CMD_NOOP No 

100 cs_ VAF _cMD_NOOP cs_ VAF _CMD_ VICTIM - Yes 
CLEAN_TO_SHR 

101 CS_ VAF_CMD_NOOP cs_ VAF _CMD_ VICTIM_TO_ Yes 
SHR 

CS_MAF _SC_CMD_INVAL OXX/ 110 CS_ VAF_CMD_NOOP cs_ VAF _CMD_NOOP No 

100/101 Must not happen 

External Probe 

Compaq Confidential 
11-44 Second-Level Cache and Controller (Cbox) 5 Jc1nuary 2001 - Subject To Change 



Flows 

Table 11-22 Victim Command Summary (Continued) 

Extract CAM 
Victim command 1 MGB the 

SC command SCVSD (cmd1) Victim Command O (cmdO) Data MAF1 

CS_MAF _SC_CMD_FETCHFWD OXX/ 110 CS_ VAF _CMD_NOOP cs_ VAF _CMD_FOWARD_ No No3 

MISS 

100 CS_ VAF _CMD_BLK_ CS_ VAF_CMD_FORWARD_ Yes 
INVAL ACK_SHR 

101 CS_ VAF _CMD_BLK_ cs_ VAF _CMD_ VICTIM_ACK_ Yes 
INVAL SHR 

CS_MAF _SC_CMD_READSFWD OXX/ 110 CS_ VAF_CMD_NOOP cs_ VAF _CMD_FOWARD_ No 
MISS 

100 CS_VAF_CMD_BLK_S CS_VAF_CMD_FORWARD_ Yes 
HARED ACK_SHR 

101 CS_ VAF _CMD_BLK_S CS_ VAF _CMD_ VICTIM_ACK_ Yes 
HARED SHR 

CS_MAF _SC_CMD_READFWD OXX/ 110 CS_VAF_CMD_NOOP cs_ VAF _CMD_FOWARD_ No 
MISS 

100 CS_ VAF _CMD_BLK_S cs_ VAF _CMD_FORWARD_ Yes 
HARED ACK_SHR 

101 CS_ VAF _CMD_BLK_S cs_ VAF _CMD_ VICTIM_ACK_ Yes 
HARED SHR 

CS_MAF _SC_CMD_READMFWD OXXI 110 cs_ VAF _CMD_NOOP CS VAF CMD FOWARD No 
MISS - - -

100 CS_ VAF _CMD_BLK_E CS VAF CMD FORWARD Yes 
XCL ACK_EXCL - -

101 CS_ VAF _CMD_BLK_ cs_ VAF _CMD_FORWARD_ Yes 
DIRTY ACK_EXCL 

CS_MAF _SC_CMD_READMFWD OXX/ 110 CS_ VAF_CMD_NOOP CS_VAF_CMD_FOWARD_ No 
requester is IO proc. MISS 

100 CS_ VAF _CMD_BLK_ CS VAF CMD FORWARD Yes 
EXCL ACK_EXCL - -

101 CS_ VAF _CMD_BLK_ cs_ VAF _CMD_ VICTIM_ACK_ Yes 
EXCL EXCL 

CS_MAF _SC_CMD_ITODFWD OXX/110 CS_ VAF _CMD_NOOP cs_ VAF _CMD_FOWARD_ No 
MISS 

100 CS_ VAF _CMD_INV _ cs_ VAF _CMD_FORWARD_ No 
TO_DIRTY _RESP ACK_EXCL 

101 CS_ VAF _CMD_INV _ CS_ VAF _CMD_FORWARD_ No 
TO_DIRTY _RESP ACK_EXCL 

CS_MAF _SC_CMD_ITODFWD OXX/ 110 CS_ VAF_CMD_NOOP CS_VAF_CMD_FOWARD_ No 
requester is IO proc. MISS 

100 CS VAF CMD INV CS VAF CMD FORWARD Yes 
To=.DIRfY _RESP - ACK_EXCL - -

101 CS_ VAF _CMD_INV _ CS_ VAF _CMD_ VICTIM_ACK_ Yes 
TO_DIRTY _RESP EXCL 

CS_MAF _SC_CMD_SHRINVAL OXX/ 110 CS_ VAF _CMD_NOOP CS_ VAF _CMD_INVAL_ACK No 

100/ 101 Must not happen. 

CS_MAF _SC_CMD_SHRINVALB OXXI 110 CS_ VAF _CMD_NOOP cs_ VAF _cMD_SPCL_INVAL_ No 
ACK 

100/ 101 Must not happen. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Second-Level Cache and Controller (Cbox) 11-45 



Special Support 

Table 11-22 Victim Command Summary (Continued) 

Extract CAM 
Victim command 1 MGB the 

SC command SCVSD (cmd1} Victim Command O (cmdO) Data MAF1 

Non-Block Responses 

CS_MAF _SC_CMD_STODSUCC oxx CS_ VAF _CMD_NOOP cs_ VAF _CMD_ VICTIM_ 
CLEAN 

110 CS_ VAF _CMD_NOOP cs_ VAF _CMD_NOOP 

100/ 101 Must not happen. 

CS_MAF _SC_CMD_STODPROB oxx CS_ VAF _CMD_NOOP cs_ VAF _CMD_SHR_TO_ 
DIRTY _RELEAS 

110 CS_ VAF _CMD_NOOP CS_ VAF_CMD_SHR_TO_ 
DIRTY _COMPL 

100 / 101 Must not happen. 

1 CAM the MAF to check whether the victim block is coherent. 
2 Internal probes are processed only when the block is coherent. 
3 If the block is not coherent, we send ForwardMiss in response to a *Forward. 

11.7.6 Retry Flow 

11.8 Special Support 

11.8.1 Input - Output 

Yes Yes 

No No 

No No 

No No 

I/O request is reference to blocks in the I/O portion of the physical address space (i.e. 
PA<47> = 1). In contrast to the memory address space, both 1/0 read and I/O write may 
have side effects, and data may change without having been written. Since I/O space 
behaves differently from the memory space, (1) I/O blocks are not cached, (2) I/O 
requests may not be issued speculatively, and (3) I/O requests must follow the same 
order given by the program order. 

11.8.1.1 VO Request Ordering and Merging 

• The Mbox maintains the I/O ordering. Mbox will send a new I/O request only after 
the previous I/O request for the same thread is sent out to the system. Cbox is 
responsible for notifying Mbox when Cbox launches an I/O request to the system 
by sending the thread processing unit(TPU). For WRIO requests, Cbox is also 
responsible for notifying Mbox when the IOWrAck is received so Mbox can retire 
Memory Barrier (MB). 

• RDIO and WRIO from the same thread get merged in Mbox. WRIO get merged in 
the merge buffer while RDIO get merged by (YTD). The MAF provides Mbox with 
the physical address CAM to assist the I/O request merging in Mbox. 

• if (m%miss_pa<47:6> == pa[i]<47:6> &io_ok_to_send[i] = 0) 

merge the new I/O request & return the merged MAF index. 

Compaq Confidential 
11-46 Second-Level Cache and Controller (Cbox) 5 Jc1nuary 2001 m Subject To Change 



• 
• 
• 
• 

• 
• 

Special Support 

else 

allocate MAF entry & return the new MAF index. 

The merging window (i.e. io_ok_to_send) is managed by Mbox . 

We may have only ONE I/O request per thread waiting for the system launch . 

I/O requests whose merging window is open does not bid for the system request. 

Mbox does not send multiple I/O requests to the same block from the different 
threads unless the merging window is closed (i.e. no merging across threads). 

I/O requests to the same block from different thread are not merged . 

There will be no I/O requests from the Ibox . 

11.8.1.2 1/0 System Request 

• 

• 

• 

• 

• 

11.8.1.3 Others 

• 

• 

• 

Both I/O read (RDIO) and I/O write (WRIO) are queued in the miss address file 
(MAF) waiting to be system launched. 

Since WRIO has a victim-like flow, we may consider putting WRIO requests into 
the VAF??? 

110 read and 1/0 write transfers can be variable length depending on the instruction 
size (Quad-word, Long-word, Byte). I/O packets contain the byte mask to accom
modate variable length transactions. 

MAF may have the maximum of 4 I/O requests (one for each thread) to be system 
launched at any given time. To save the MAF width, I/O specific flags will not be 
kept in the MAF. Instead we have a small 4-entry buffer to store IO_mask<7:0> and 
IO _sized :0>. This is possible because once we send out I/O request, we do not 
need to keep those flags and data for RDIO or WRIO. Since we have one pending I/ 
0 request per thread, we use the thread ID of the pending I/O request to address the 
4-entry buffer. 

For a WRIO, we store the data block in the victim data buffer (VDB). When Mbox 
does WRIO, Mbox sends the request along with the physical address to the MAF 
(or VAF --- YTD). At the same time Mbox sends the data to the VDB. When we are 
ready to launch the WRIO to the system, we read the data out of VDB. We reserve 
the first 4 VAF/VDB entries for WRIO data. 

We victimize a cache block at fill time and each MAF system request may create a 
victim. In order not to stall a fill, we need to guarantee a VAF spot at fill time. This 
is implemented by stalling a new system request when the number of empty VAF 
entries becomes less than r equal to the number of outstanding system requests. 

The 21464 does not provide any special hardware support for WRIO handshaking . 
Any synchronization of I/O is done by software using memory barriers (MB). 

Ldx_L/Stx_C is not supported in I/O address space . 

11.8.1.4 1/0 Request Flow 

&/* Allocation */ 

Compaq Confidential 
5 January 2001 -·Subject To Change Second-Level Cache and Controller (Cbox) 11-47 



Special Support 

If (m%io_fill_rqst_valid && c%maf_full) 

ask M'.box to ret:i:y; 

else if (m%io_fill_rqst_valid && !c%maf_full) 

allocate M'AF' ent:i:y; 

write PA & flag bits; 

allocate Pending Queue ent:ry and arbitrate for the system launch; 

/* I/O request system launch *I 

if (PA<47>[to_be_sys_launched_idx] 1) 

if (io_rqst_type[thread_id] 1) 

{ /* read I/O */ 

else 

read PA<47:6>[to_be_sys_launched_idx]; 

IO_mask<7:0>[thread_id], IO_size<l:O>[thread_id]; 

send them to the router; 

/* write I/O *I 

read PA<47:6>[to_be_sys_launched_idx]; 

read IO_mask<7:0>[thread_id], IO_size<l:O>[thread_id]; 

read VDB [ thread_id] ; 

send them to the router; 

/* MAF de-allocation, no cache coherence check is necessary */ 

for (i = O; i < MAX_MAF_ENTRIES; i++) 

{ /* we could follow the same routine as RdBlk request if desired */ 

/* this will require the marker to be sent for RDIO as well as WRIO * / 

if (RDIO && have_data[i]) 

deallocate M'AF' and PQ entries; 

if (WR.IO && have_marker[i]) 

deallocate M'AF', PQ, VAF, and VDB entries; 

Compaq Confidential 
11-48 Second-Level Cache and Controller (Cbox) 5 January 2001 m Subject To Change 



Special Support 

11.8.1.5 VO Specific Structures/Operations 

• MBOX 

Merge Buffer. 

Memory Barrier. 

RDIO merge. 

• Interface 

• CBOX 

Name 

Valid 

MAF allocation and system request 

I/O requests to the same block get merged in the MAF until Mbox closes the 
merging window. Then the closed MAF entry bids for the system request pipe. 

When the I/O request is picked, we send the physical address along with the I/O 
mask and the MAF index to the Router. If the request is WRIO, the data block 
is read from VD B and is sent to the Router. 

At the same time as we send the selected I/O request to the Router, we also 
send the thread ID of the I/O request to the Mbox so that Mbox may send a new 
I/O request for the thread. 

We can de-allocate the MAF entry when the requested BlkIO and WrIOACK 
are received for RDIO and WRIO respectively. 

I/O buffer. 

The small 4-entry buffer, one entry for each thread, contains I/O request-spe
cific control flags. The control flags are loaded when a new MAF entry is allo
cated for I/O request and are sent to the router along with the physical address 
when the I/O request is picked for the system launch. 

#Bits Description 

1 

IO_MASK<7:0> 8 

May not need this ??? 

Byte mask 

QW,LW,BYTE IO_SIZE<l:O> 2 

IO_RD_WR 1 0: WRIO, l:RDIO 

TOTAL 12 

11.8.1.6 VO System Request Timing 

I/O system request follows the same path and timing as ones for system requests for 
memory space. 

Compaq Confidentia I 
5 January 2001 ~· Subject To Change Second-Level Cache and Controller (Cbox) 11-49 



Special Support 

C1 C2 C3A C3B C4A C4B 

1. WR MAF 1. SetMAFValid 1. Arbitrate. 1. RD MAF idx 1.Decode MAF 1. RD PA. 
2. WR I/O buffer bit. and send to the idx. 2. RD I/O flags 

and data. 2. WRPQ. MAF. 
3. Drive them to 
Router. 

11.8.1.7 1/0 Request Packet Format 

Table 11-23 1/0 Request Packet Format 

Channel 

QIO 

QIO 

QIO 

QIO 

QIO 

QIO 

Length (phit) Command Name Packet Format Description 

3 IORdBytes PIO I/O read with byte mask. 

3 IORdLWs PIO I/O read with longword mask. 

3 IORdQWs PIO I/O read with quadword mask. 

3+15 IOWrBytes PIO I/O write with byte mask 

3+15 IOWrLWs PIO I/O write with longword mask. 

3+15 IOWrQWs PIO I/O write with quadword mask 

11.8.1.7.1 Read 1/0 (RDIO) 

Command 

RdBytes 
RdLWs 
RDQWs 

System Request System Response 

PA<47:5> BlkIO or NXMResp 
Mask<7:0> 
MAFIDX<5:0> 
Processor ID 

NAMResp indicates the request referenced a non-exsistent block. This command is a 
possible response to RdBlk, RdBlkMod, RdBlkShared, and RdIO. 

Compaq Confidential 
11-50 Second-Level Cache and Controller (Cbox) 5 J,1rmary 2001 -·Subject To Change 



11.8.1.7.2 Write 1/0 (WRIO) 

Command 

WrBytes 
WrLWs 
WrQWs 

System Request System Response 

PA<47:5> WrIOAck or WrIONack 
Mask<7:0> 
MAF IDX<5:0> 
Processor ID 
DATA 

11.8.2 Memory Barriers - the MB Instruction 

Special Support 

A memory barrier retires when all prior (program order) memory references are visible 
to the whole system. This is managed by MBox. 

MB ox retires memory barriers after prior loads have retired and after prior stores have 
obtained modify permission of the cache block they require. (The store may still be in 
the write buffer, and if an invalidate arrives, this store may never get made.) 

IO writes return a 'coherency' or 'completion' message once they have been made visi
ble to the whole system, and this coherency message must be passed on to MBox so it 
can retire following MB's. Regular stores must have been retired to the Merge Buffer, 
and we must have obtained the ownership marker and data for the block which they 
write before a following MB can retire. We do not need to wait for all the coherency 
markers to have been received, and the cache block to be coherent, before we retire the 
MB. (We need to wait for coherency before we can forward or victimise the block). 

All other memory transactions have implicit completion marks which MB ox sees. 
Loading shared data has the data as the marker, what about loads returning exclusive? 
CTD has the state change. 

The 21464 speculatively executes ahead of memory barriers, but any speculative loads 
must be replayed if another processor or thread writes the location before the MB 
retires. If another processor writes, we will receive an invalidate probe which will cause 
the load to trap and reply. 

CBox sends all invalidate probes to MBox so it can trap any speculated loads in the 
shadow of an MB. (Not just invalidates hitting the MAF. 

11.8.3 Load-Locked Store-Conditional {LDx_USTx_C) Instruction Processing 

The basic LDx_L/STx_C flow is: 

5. Mbox executes a LDx_L instruction at retire time and loads the lock address into a 
TPU specific lock register. The Cbox no longer requires that the LDx_L be forced 
to miss the Dcache. 

6. Mbox executes a STx_C instruction at retire time, and sends a CTODSTC(X) to the 
Cbox if Mbox does not have ownership of block X. 

7. The Cbox may find block X shared, exclusive, or invalid in the Scache, and takes 
different actions for each. 

CTODSTC(X) finds block X shared in the Scache of Processor o (PO): 

1. Cbox fills block shared to the Mbox, and sends S2DSTC(X) to home. 

2. At the home: 

Compaq Confidential 
5 January 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-51 



Special Support 

a. PO is on sharing list: home sends S2DsuccessCnt() to PO and Sharedlnvals to 
sharers. 

b. Block Xis shared or invalid, and PO is not a sharer (including sharing mask 
case where PO's group is not a sharer): home sends S2DFail to PO. 

c. Block Xis exclusive at some other processor: home sends S2DFail to PO. 

d. Sharing mask bit for PO is set: home sends S2DprobCnt() to PO. Home will 
send Sharedlnval's if it receives S2Dcomplete from PO. 

3. At PO: (3a corresponds to PO action in response to dir. message in 2a, etc.) 

a. Cbox sends CTOD to Mbox when block is coherent. 

b. Cbox sends NOOP to Mbox (Sharedlnval will fail the lock) 

c. Cbox sends NOOP to Mbox (Sharedlnval will fail the lock) 

d. If PO has received a Sharedlnval, PO sends S2Drelease to home and NOOP to 
Mbox. If PO has not received Sharedlnval, Cbox sends S2Dcomplete to home 
and CTOD to Mbox when block becomes coherent. 

CTODSTC(X) finds block X exclusive in the Scache of PO: 

1. Cbox fills block exclusive or dirty to Mbox (depending on coherence) 

CTODSTC(X) finds block X invalid in the Scache of PO: 

How does this situation arise? PO's Scache must have displaced block X (if PO has 
instead received an inval or forward, the Mbox would have failed the lock.) We cannot 
just fail the lock on a displacement (due to livelock). We also run into problems if we 
just victimize an exclusive block that the Mbox has locked because the home will no 
longer send us invals and we could incorrectly succeed the lock. When we displace a 
block (due to either LRU eviction or an ECB instruction) for which the Mbox has a 
lock, we want the home to let us know if another processor takes ownership of the 
block, so we can fail the lock. Thus when a processor displaces an exclusive or dirty 
block, we send C_DFILL_CMD_LRUVICTIM. 

The Mbox should check the victim PA from the Cbox against the lock registers. If there 
is a match, the Mbox responds to the Cbox with victim_addr_locked; the Mbox does 
NOT invalidate the lock registers. When the Cbox sees victim_addr_locked asserted, it 
sends a VictimToShared message (instead of a Victim) to the home. This message will 
cause the home to add PO to the sharing list for block X, ensuring that PO's lock will get 
invalidated should another processor succeed its STx_C. 

1. Cbox sends ReadModSTC(X) to home. 

2. At the home: 

a. PO is on sharing list: home sends BlkExclCnt() to PO and Sharedlnvals to shar
ers. 

b. Block Xis shared or invalid, and PO is not a sharer (including sharing mask 
case where PO's group is not a sharer): home sends S2DFail to PO. 

c. Block Xis exclusive at some other processor: home sends S2DFail to PO. 

d. Sharing mask bit for PO is set: home sends BlkExclProbCnt() to PO. Home will 
send Sharedlnval's if it receives BlkExclComplete from PO. 

3. AtPO: 

Compaq Confidential 
11-52 Second-Level Cache and Controller (Cbox) 5 Janwiry 2001 -- Subject To Change 



IPRsj CSRs, and Error Handling 

a. Cbox sends FILLBLK to Mbox. 

b. Cbox sends NOOP to Mbox (Sharedlnval will fail the lock) 

c. Cbox sends NOOP to Mbox (Sharedlnval will fail the lock) 

d. If PO has received a Sharedinval, PO sends S2Drelease to home and NOOP to 
Mbox. If PO has not received a Sharedlnval, Cbox sends BlkExclComplete to 
home and FILLBLK to Mbox. 

11.8.3.1 Lock Register for Each Thread 

• 
• 

• 

• 
• 

Ldx_L retires when the requested data block is received . 

The lock register is set when the requested data is received, which can be before all 
the coherences are received. 

Mbox is responsible for clearing the lock register for invalidate probe, write from 
other threads, and exception. 

Write from the same thread is considered legal and does not clear the lock register . 

A new Ldx_L by the same thread overwrites the lock register causing all previous 
Ldx_L/Stx_C to fail. 

11.8.3.2 Stx_C Issuing 

• The lock register is compared with Stx_C address when STx_C retires. If the 
STx_C address matches the address in the lock register: 

In the normal mode, if DCache hit then the LDx_L/STx_C succeeds. If DCache 
miss, then Mbox sends CTDSTx_C request to the MAF (need Scache tag 
launch & system launch). 

In the conservative mode, LDx_L/STx_C succeeds if addresses match and we 
have the ownership of the block. If we do not have the ownership, we request 
the ownership to the system. LDx_L/STx_C succeeds if the CTDSTx_C 
request succeeds. 

• Ldx_L/Stx_C may work using regular CTD because the home node would send us 
an Invalidate when it grants the ownership to other processor and the invalidate will 
clear the lock register which will cause the Stx_C to fail. But Issuing CTD for a 
Stx_C can cause unnecessary ownership changes and unnecessary data communi
cation, which can have significant performance impact or possible live-lock. 

11.8.4 Pref etch/Modify 

11.9 IPRs, CSRs, and Error Handling 

11.9.1 Required IPRs and CSRs 

Cbox CSR's, with the exception of interrupt controls, contain static values that are 
loaded at system initialization time and do not change while power is on. They there
fore do not maintain the speculative/committed protocol that is required of many con
trol registers; software may be required to jump through hoops to write them safely and/ 
or read them accurately. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Second-Level Cache and Controller (Cbox) 11-53 



IPRs, CSRs, and Error Handling 

In general, Cbox registers are accessed as memory-mapped 1/0 devices, with register 
identifiers passed along address paths, and contents along data paths (we have yet to 
decide which quadword of the block). 

• 

• 

• 

• 

• 

• 

Interrupt requests and current level or mask 

Interrupt mask 

Interrupt request bits 

Queue (Read, Delete, Append) 

ECC correction reports (Scache Data, Scache Tag, Router Ports, Memories) 

Physical Address (not useful in Route~ port) 

Syndrome 

Corrected Block (wrong if double-error) 

Memory configuration 

Access to presence-detect EEPROM on RIMM 

Redundant-channel enables 

Directory state-machine controls 

Directory /ecc initialization 

Fairness-scan timer 

PLL controls 

Datasheet constants 

Debug stream controller 

Select debug write mode 

Current debug write pointer 

Debug data read enable 

Router configuration 

This node number, first NXM 

Output port to each node 

Sharing mask for each node 

Output port for each mask bit 

ECC correction reports 

PLL controls 

Virtual-channel buffer thresholds (depend on link latency) 

Diagnostic control and access 

Force S cache hit or miss, per set 

Examine tag 

Examine selected MAF entry 

Debugging/performance-analysis controls and logs 

Compaq Confidential 
11-54 Second-Level Cache and Controller (Cbox) 5 Janw~ry 2001 - Subject To Change 



• Optimization enables: 

- LDx_L can issue RdBlkMod 

- Read/InMemory returns data Exclusive 

- Migratory data prediction 

- Timeout before forwarding ownership 

- Purge controls 

- Uniprocessor (no directory accesses required) 

Small MP (mask bits uniquely identify processors) 

11.9.2 Error Handling 

11.9.3 Cbox Deadlock Avoidance Mechanisms 

11.10 Profiling Support 

11.11 Stuff From Original Cbox Spec Not in Outline 

(That I can see anyway .... ) 

Were Hl 's 10.6 through 10.15 and are now all H2's 

Last section was 10.20.9 Cbox Mechanisms 

11.11.1 Scache Index (paddr<18:6>) Conflict 

Profiling Support 

Scache index can be a hash function of the physical address. But the hashing introduces 
the extra delay in the critical path. Our current thinking is that the potential performance 
improvement does not justify the extra complexity. 

In contrast to the 21264 and the 21364, the 21464 allows the Scache to service multiple 
system requests to the same Scache index concurrently. 

• Scache index conflict is resolved by victimizing the LRU cache block at system fill 
time (i.e. Blk* or InvToDirtyRespCnt). 

• 

• 

The Scache fill schedules both the read and write pipeline and use the read pipe to 
extract the victim just ahead of the fill data write. 

Current proposal: 

- Cbox read the victim block out of the Scache, performs ECC correction of the 
victim data, and writes the corrected victim data to the VD B. 

- Cbox does not send the victim data to the Mbox. 

- If the merge buff er has the cache block modified, the merge buffer overwrites 
modified bytes in the VDB using byte write capability of the VDB. The merge 
buffer should write the VDB after the ECC corrected victim block has been 
written to the VDB. 

Compaq Confidential 
5 January 2001 ···Subject To Change Second-Level Cache and Controller (Cbox) 11-55 



Stuff From Original Cbox Spec Not in Outline 

- Cbox rejects the write-throughs to the banks that have in-flight system fills 
(Le.Possible Stale Victim) until the ECC corrected data gets written to the 
VDB. This can be implemented using the bank conflict check. 

• In order not to stall system fills, we need an available victim buffer slot before 
launching a system fill request (Read*Req or InvToDirtyReq). 

Outstanding system request to the memory space< Available VAFNDB entries 
for memory space (4 slots are reserved for Wrlo) - 4 (reserved for Probes). 

• Mbox is responsible for victimizing a cache block in the Mbox. 

• We decided against the proposal to victimize the LRU block at the Scache miss 
time as well as at the system fill time. 

- Pros: 

Allows the victim process to start early (no need to wait until the fill) 

Reduces the probability of stalling the MAF system fill request pipe. 

- Cons: 

If a block that has been victimized at the miss time is referred again, then we 
have to send the victim data to the home and bring the data back in again, 
which may result in increased network traffics. 

A MAF entry may cause two victims, which may require 2X VAF entries. 

Incompatible victim/fill path. 

11.11.2 ShrToDirty[STC]Req 

Cbox sends a ShrToDirty[STC]Req to the home node when it needs the write permis
sion of a Shared block for a non-speculative store (i.e. merge buffer write). Cbox does 
NOT send a ShrToDirtyReq for a speculative store. 

When the home memory receives a ShrToDirty[STC]Req: 

• If the cache block is not owned by other processor, i.e. the directory state is either 
InMemory or Shared, and the requester is a sharer, the directory sends ShrToDirt
ySuccessCnt to the requester and Sharedlnval to other sharers. 

• If the directory state is InMemory or Shared but the requester is not a sharer, the 
driectory sends BlkExcl to the requester and Sharedlnval to sharers in response to 
the ShrToDirtyReq. The directory sends ShrToDirtySTCFail in response to a Shr
ToDirtyS TCReq. 

• If the directory state is RemoteExcl, the directory sends the ReadModFwd to the 
current owner. However, the directory DOES not forward ShrToDirtySTCReq and 
sends a ShrToDirtyFail to the requester. 

• If the directory state is SharedMask, the directory node can't tell whether the 
requester is a sharer or not even though the requester is in the sharing mask. 

e. A sendsReadModReq(X). 

f. B sendsShrToDirtyReq(X). 

g. The directory receives the ReadModReq(X) from A and sends Sharedlnval (X) 
to node B. 

Compaq Confidential 
11-56 Second-Level Cache and Controller (Cbox) 5 Jc1nuary 2001 -· Subject To Change 



Stuff From Original Cbox Spec Not in Outline 

h. B invalidate the shared block and sends a InvalAck to node A. 

i. The directory receives Victim(X)frorn node A. 

j. C sends ReadShrReq to the directory. 

k. The directory processes the ReadShrReq from C. If A belongs to the same 
group as C, A becomes a sharing node even though it does not have the block. 

1. When the directory processes the ShrToDirtyReqfrom A, the directory does not 
know whether A is true sharing node or not. 

• For a ShrToDirtyReq and a sharing mask is used, the directory optimistically suc
ceeds the ShrToDirtyReq and sends a ShrToDirtySuccessCnt to the requester. The 
requester is responsible for resolving the ShrToDirtySuccessCnt. The appropriate 
action for the requester if the requester does not have the shared copy in its Scache 
is to do a VictimClean followed by a ReadModReq. 

• To avoid a dead-lock, for a ShrToDirtySTCReq when a sharing mask is used, the 
directory sends a ShrToDirtyProbCnt to the requester. If the ShrToDirtySTCReq 
succeeds, the requester sends a ShrToDirtyComplete to the directory and then the 
directory sends Sharedlnval to sharers. If the ShrToDirtySTCReq fails, the 
requester sends a ShrToDirty Release to the directory. 

If the directory receives a *Req from the current owner, it means that the victim is on its 
way to the directory. The directory must wait for the victim. After the directory receives 
the victim, it sends a response to the requester. 

The EV7 protocol does not forward a ShrToDirty[STC]Req to the current owner. To 
reduce the latency, the 21464 forwards ShrToDirtyReqs to the current owner but not 
ShrToDirtySTCReqs. 

• 

• 

• 

If the requester is not a sharer and the directory state is not RemoteExcl, then the 
DIFT sends BlkExclCnt to the requester. 

If the requester is not a sharer and the directory state is exclusive, the DIFT sends a 
ReadModFwd to the owner. 

This proposed scheme does not break the assumption that Cbox will not receive a 
Blk* if the Scache has a copy of the cache block. 

ShrToDirtyResp 

• ShrToDirtySuccess. 
• ShrToDirtyProb. 

11.11.3 Scache Tag Launch Pipe 

Table 11-24 shows the Scache block state. 

Table 11-24 Scache Block State 

Scache state 

Valid Shared Dirty State Coherent Ownership Mbox Can Write Victim 

0 x x Invalid x No No None 

1 0 0 Exel Clean x Yes No VictimCln or VictimClnToShr 

Compaq Confidential 
5 January 2001 ···Subject To Change Second-Level Cache and Controller (Cbox) 11-57 



Stuff From Original Cbox Spec Not in Outline 

Table 11-24 Scache Block State 

1 0 

1 0 

1 1 

1 1 

1 Dirty 0 Yes No Victim or VictimToShr 

1 Dirty 1 Yes Yes Victim or VictimToShr 

0 Shared x No No None 

1 Must not happen 

We have separate pipelines for the Scache tag launch and the write-through operations. 
In case of the Scache bank conflict, we must stall one pipeline. For the performance 
reason, we prefer to stall the write-through pipeline. 

The Scache pipe is arbitrated with the following priority. 

4. Blk*/InvToDirtyRespCnt from system or System fill hiccup recovery. 

5. Replays (from the retry queue): 

Scache bank conflicts. 

Scache tag ECC error. 

Scache data ECC error. 

6. Internal probes from the Internal probe queue. 

7. Probes from the PRQ. 

8. The system fill early warning. 

9. New Misses from the Pre-MAE 

System fills (Blk* and InvToDirtyRespCnt) may cause victims: 

• Send an early warning (fill address) to Mbox if the early warning wins the Scache 
pipe arbitration. Otherwise, we do not send the early warning incurring extra 
latency to the Scache miss retry pipe. 

• Take 2 cycles of the Scache tag pipe. 

• To minimize the cost, we'd like to avoid skidding or bypassing of the system fill: 

The system fill consists of 2 Scache tag pipes: one for victim extraction and the 
other for fill. 

Launch a system fill at even cycles to avoid the bank conflict with the previous 
system fill. 

System fill can have the bank conflict with a Scache accesses which is already 
in the pipe (i.e. 2 cycle earlier). Then the conflicting Scache access gets pre
emptied and must be retried. 

Scache retry pipe. 

• Any Scache access except for system fill (Blk*) may get retried due to 

Scache tag ECC error. 

Scache Data ECC error. 

- Bank conflicts. 

• The retry queue entry contains: 

6-bit MAF index. 

Compaq Confidential 
11-58 Second-Level Cache and Controller (Cbox) 5 January 2001 -- Subject To Change 



6-bit VAF index. 

Command type. 

Stuff From Original Cbox Spec Not in Outline 

• Need 2 - 3 write ports since the retry may come from 

Scache bank conflict. 

Scache tag ECC. 

Sc ache data ECC. 

• The retry do not CAM the MAF again but it reads the PA from the MAF. 

Internal probe queue 

• 
• 

64 entry FIFO . 

Timer queue is loaded when: 

Invalidate: received a Shared block from the system and MAF.mb_retired = 0 
& MAF.inval_seen = 1. 

Victimize: 

Received ownership from the system, the block is coherent, and MAF. victimize 
= 1 I MAF.vic_to_shr = 1. 

Received EvictBlk or CleanBlk requests from Mbox. 

• If Cbox has the pending internal probe which Invalidates the cache block, Mbox 
must not retire a MB. Cbox sends the per-thread signal (i.e. cs%mb_ret_tpu_c4a_h) 
to Mbox indicating whether Mbox can retire MB. 

ShrToDirty*Cnt from the PRQ. 

• 

• 

A ShrToDirty*Cnt can be retried due to Scache tag ECC error, Scache data ECC 
error, or Scache bank conflict. 

ShrToDirty*Cnt and subsequent Probe to the same block must be processed in 
order. 

- Problem: ShrToDirty*Cnt (X) --->Tag ECC error---> Probe(X)---> ShrTo
Dirty*Cnt (X) retry. 

Probes to the block that has in-flight Scace transaction (MAF.sc_inflight) stalls 
in the PRQ until the conflicting Scache transaction passes the retry point. 

Misses check the Scache to see if the requested cache block is in the Scache with the 
required state. 

• If Scache has the requested block for requests: 

Fill the D-fill buffer and/or I-fill buffer. 

Update the LRU bits in the Scache tag. 

If Scache has a Shared block for an ownership request, then make a ShrToDirt
yReq request to the system. 

• If the cache block doesn't exist in the Scache, then the MAF makes a Read*Req to 
the system. 

• Since 1/0 blocks are not cache-able, I/O requests do not need the Scache tag 
lookup. 

Compaq Conficlentia I 
5 January 2001 --·Subject To Change Second-Level Cache and Controller (Cbox) 11-59 



Stuff From Original Cbox Spec Not in Outline 

Scache Bank conflicts. 

Scache tag ECC error or Scache data ECC error. 

• We store the ECC corrected tag(data) in the Scache Tag (Data) ECC register and 
replay the request. 

• The replayed request talces the tag (data) from the Scache Tag (Data) ECC register. 

• 

• 

• 

The ECC registers get cleared if we modifies the Scache tag in the same Scache 
index (i.e. probe or fill). 

We write back corrected tag into the tag array after the retry accesses the corrected 
tag using the tag write cycle. 

We do not write corrected data back to the Scache. If the error block gets referred 
many times, we need software intervention or evict the block. 

Arbitration among Miss request is done in the Pre-MAF to: 

• Reduces the Dcache miss retry latency . 

• Accesses to the Scache follow the program order more closely. 

Scache Tag Request Command 

Table 11-25 Scache Tag Request Command 

Scache pipe Commands cso/ost_req_cmd_c3a_h<3:0> Notes 

Bank conflict, WrIOAck, BlkIO C_ST_CMD_NOOP No need for Scache tag. 

Ifecth, FetchLine, C_ST_CMD_MISS Look up the tag and update the LRU. 
PfetchLineMod, PrefNocache, 
PrefScache 

FetchLineMod, CtoD[STC], ltoD C_ST_CMD_SETDIRTY Set the dirty bit if the specified block is ExclCln. 

LRUEvict C_ST_ CMD_LRUEVICT Victimize the least recently used block from the 
same Scache index as the specified cache block. The 
victim set number is used for the fill block in the fol-
lowing cycle. 

Victimize, ReadModFwd, C_ST_CMD_INVAL Invalidate the specified cache block. 
InvToDirtyFwd, Sharedinval 

VictimToShr, FetchFwd, C_ST_CMD_C1DS Make the specified cache block Shared. 
ReadShrFwd, ReadFwd 

ShrToDirty*Cnt C_ST_CMD_S1DD Make the cache block Dirty if shared. 

BlkShared C_ST_CMD_BLKINV Invalidate the set victimized in the previous cycle. 

BlkShared C_ST_CMD_BLKSHR Fill block. Use the Scache set victimized in the pre-

BlkExclCln C_ST_CMD_BLKEXCL 
vious cycle. 

BlkExclCln, BlkDirty, C_ST_CMD_BLKDIRTY 
InvToDirtyRespCnt 

Also see the Scache tag state transition table, Table 11-12. 

11.11.4 Probe Processing in Cbox 

See Section 6.5.2 

Compaq Confidential 
11-60 Second-Level Cache and Controller (Cbox) 5 Jc1nuary 2001 ···Subject To Change 



Stuff From Original Cbox: Spec Not in Outline 

11.11.5 Order Dependency 

Scache access to the same cache block 

Table 11-26 Scache Access Order to the Same Cache Block 

MAF states 

miss_inflight_in_sc probe_inflight_in_sc fill_inflight_in_sc 

Miss from Mbox 
Reject the miss request. Reject the miss request [l]. Reject the miss request 

[2]. 

*Fwd from PRQ 
Stall the probe queue [3]. Stall the probe queue [4]. Stall the probe queue 

[2]. 

lnvalAck/Timer Expiration from Stall the probe queue [6]. 
PRQ 

ShrToDirty*Cnt from PRQ Must not happen [5]. 

Blk*/12DRespCnt from system Must not happen [5] 

Notes: 

• 

• 

• 

• 
• 

[1]: If a ShrToDirty*Cnt (or InvToDirty*Cnt) is in the retry queue, the Miss will see 
the stale Scache tag and we may send a system request even though we have the 
ownership of the block. This will break the cache coherence protocol. 

[2]: Stale fill data access: 

There are 6 - 8 cycle separation between the Scache tag update and the Scache 
data update for a system fill. 

A Miss(X) from Mbox gets rejected if we have a Blk*(X) in-flight in the 
Scache to prevent the Miss from accessing the stale fill data. 

A probe(X) to a stale fill block gets stalled in the PRQ. 

A Blk* must not get evicted before the fill data gets written into the Scache. 

We have a stale fill table to prevent the Scache tag control from evicting a stale 
fill block .. 

[3]: The probe can proceed even if there is a miss request in-flight in the Scache . 
But to simplify the design, we will stall the probe queue. 

[4]: Probes to the same cache block must be serviced in order . 

[5]: The miss request gets merged and do not enter the Scache pipe if we have an 
outstanding system request for the cache block. 

If Cbox gets a Load miss request from Mbox to a cache block which has an out
standing ShrToDirtyReq to the system, Cbox will not fill the shared block to 
Mbox until it receives a response for the ShrToDirtyReq even though the 
Scache has a shared copy. 

This case happens if the shared block which was filled at the time when Cbox 
made the ShrToDirtyReq has been evicted from Mbox. In addition the load 
can't retire until the store which needs the ownership gets retired. So we believe 
the performance impact will be minimal. Alternatively we could allow the load 
miss request enter the Scache pipe even if we have an outstanding ShrToDirty
Req to the system. However this may add a significant complexity. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Second-Level Cache and Controller (Cbox) 11-61 



Stuff From Original Cbox Spec Not in Outline 

• [6]: This is not required to be functionally correct. But to simplify the de-allocation 
of MAF entry, we do not allow changing the MAF states if the MAF entry has in
flight Scache transaction. 

11.11.6 Possible Race Conditions and Other Concerns 

• For the system launch, or system fill, we read out the PA and control flags. We must 
not change control flags while we try to read them out: 

• 

- Read the physical address in B-phase 

- Change control flags in B-phase .. 

- Read control flag bits a phase later in A-phase. 

We must not fill the I-fill buffer twice for a MAF entry since the 1-FB entry may get 
recycled. 

11.11. 7 CBox mechanisms 

• IO write 'coherency mark' to MBox 

• All Invalidate or Forwardlnvalidate probes to LQ 

Compaq Confidential 
11-62 Second-Level Cache and Controller (Cbox) 5 Jc1nuc1ry 2001 ·-Subject To Cfumge 



Introduction to the Protocol 

12 
Cache Coherence Protocol Processing 

The 21464 adopts the 21364 cache coherence protocol with small enhancements. The 
protocol is a directory based CC-NUMA and tolerates out-of-order channels except for 
the I/O channel, thereby supporting an adaptive packet routing. 

12.1 Introduction to the Protocol 

The coherence protocol is the mechanism by which large numbers of processors main
tain a consistent image of the contents of memory, as required by the Alpha SRM. 

Small-scale multiprocessors like Turbolaser maintain consistency by monitoring a bus, 
so that all caches observe all memory transactions; this approach does not work well for 
larger numbers of processors because the bus becomes physically too large to be fast, 
and because the number of external transactions that each cache must process grows 
with the number of processors. 

Mid-scale systems like Wildfire depend on a central switch to impose the same order as 
a bus, and require that messages be kept in order along their communication paths. The 
directory serves as a filter to minimize the traffic to any particular node, but maintain
ing order is costly and inefficient, and limits the scalability of these systems. 

Larger systems, such as the 21464, try to avoid dependence on any single resource for a 
number of reasons, including reliability and load-distribution. Further, they use nonde
terministic routing, to make the best use of available network resources. This means 
that two messages can take different paths and get out of order, even if they start and 
end at the same nodes. 

The protocol is designed to ensure that all processors which cause and/or observe 
changes in memory see those changes occur in the same apparent order, even though 
the messages between processors and memories may get out of order along their way. 
The order observed by all processors is the order in which requests are serviced in their 
home memory, and in particular, in the D IFT, a control module in the memory control
ler. Caches communicate with the DIFT as they manipulate memory data, and the DIFT 
delays multiple requests for any individual block until it has coordinated previous 
requests with any caches affected by those requests. 

There are two major states in which caches hold data (each with a number of minor 
variants): Shared, meaning that any number of processors can read the data, but none 
can write it, and Exclusive, meaning that there is exactly one processor with a valid 
copy, and that processor is permitted to read or write it. The so-called Invalid state 

Compaq Confidential 
5 January 2001 ·- Subject To Change Cache Coherence Protocol Processing 12-1 



Structures that Maintain the Cache Coherence 

means that there is no valid copy of the block in any cache; the name does not refer to 
the validity of the block in memory. References to Invalid are being replaced by Local, 
which is more accurately descriptive. 

The protocol, as managed by the DIFT, is concerned with the transitions between states, 
and with performing the transitions in such a way that as much of the communication 
latency as possible is kept out of the critical paths. 

Whenever a block is held Exclusive by some processor (which we refer to as the 
owner), and another processor needs access, the protocol requires the DIFT to tell the 
owner to give up Exclusive state, and the owner to report to the DIFT when it has done 
so. Until the DIFT hears back from the owner, the DIFT does not process other requests 
for the block. 

On the other hand, when a block is held Shared by some processor(s), the DIFT can per
mit any number of other processors to read the block, until one needs write access. At 
that time, it notifies all processors which have read the block to invalidate it in their 
caches, and they report to the new owner, rather than the DIFT, when they have done so. 
The new owner must not release exclusive access until it receives acknowlegement that 
all previously-existing copies of the block have been invalidated. 

During the transitions when Exclusive access is passed from one processor to 
another, there can be periods during which two processors believe that they 
have exclusive access; in some circumstances it is possible for the "second" 
processor to complete its writes and send a victim block to the memory which 
arrives before that sent by the first writer. This rare event is called a dual-victim 
rac~, and is sorted out by special rules in the DIFT (see Section 12.4 ). 

The memory system is designed with the expectation that a disproportionate fraction of 
the memory traffic produced by any processor will be addressed to its own local mem
ory; this is true for most multiprocessor applications, though precisely how much is 
highly application-dependent. We use this fact, and the on-chip communication 
between a cache and its local controller, to optimize references to the local memory. 
The directory cache optimizes the directory accesses for requests both from local and 
remote processors. The on-chip directory cache stores the directory information of most 
frequently used cache blocks to minimize memory accesses for directory information. 
Requests from the local Cbox as well as remote processors update the directory, thereby 
eliminating needs for the LPR. 

12.2 Structures that Maintain the Cache Coherence 

The Cbox maintains the cache coherence with the following structures. 

• Miss address file (MAF) 

• System request pending queue (SRQ) 

• Victim buffer 

Victim address file (VAF) 

Victim data buffer (VDB) 

• Probe queue (PRQ): probe queue 

• Directory In-Flight Table (DIFT) 

Compaq Confidential 
12-2 Cache Coherence Protocol Processing 5 Jc1nuc1ry 2001 ·-Subject To Change 



Structures that Maintain the Cache Coherence 

• Scache tag array (Sbox) (not described) 

• Scache data array (Sbox) (not described) 

12.2.1 Miss Address File (MAF) 

The Scache is a non-blocking cache, which means that it continues to accept new 
requests while waiting for responses from the system resulting from previous misses. In 
order to associate those responses with the original requests, and to know how to pro
cess each response, the Cbox records each request in the MAF as processing begins, 
and compares each request address against the addresses of all outstanding requests to 
detect multiple requests to the same block and avoid conflicts. The MAF contains: 

• 
• 
• 

Miss Requests from Ibox/Mbox, both to local addresses and to remote addresses . 

Probes that are in-flight in the Scache pipe . 

Coherence states that are associated with the outstanding request. 

12.2.2 System Request Queue (SRQ) 

Requests which miss in the Scache must be serviced by memory, either local or remote, 
but the paths to memory cannot accept requests as rapidly as they can be generated. The 
system request pending queue (SRQ) stores the MAF index of requests which are wait
ing to be sent to memory. As buffers become available, the SRQ arbitrates among pend
ing requests round-robin among threads, then FIFO within thread, to select which 
request to launch next. The current proposal is to do away with the thread round-robin 
since Mbox does consider thread fairness for load retry. Hence the system request pend
ing queue is a simple 64-entry FIFO queue. 

12.2.3 Victim Buffer 

The Scache retains most blocks until the space they occupy is needed for another block. 
If a block is not held exclusively in this cache at the time it is evicted, then it is simply 
overwritten, but if it is in exclusive state, then the directory must be notified that this 
cache is releasing exclusive access, and if the block is dirty, it must be written back to 
memory. Rather than delaying the fill which overwrites this block, the Scache moves 
the old contents to the victim buffer, where it waits before being sent. The victim buffer 
contains: 

• Victim, VictimToShr, VictimCln, and VictimClnToShr, which can be sent to the home 
memory. 

• 

To minimize the number of *Forwards, EV8 is considering adding the Purging 
option to the protocol where Cbox gives up the ownership of the cache block volun
tarily and send Victim[Cln]ToShr to the remote directory. Notice that if the cache 
block is in the local memory space, there is no benefit of purging. EV8 decided 
against the purging option since performance simulation indicated the purging pro
vides no significant benefits. 

Response to the home memory: 

VictimAckShr, VictimAckExcl, FwdAckShr, or FwdAckExcl to the remote 
memory or to the local memory. 

FwdMiss to a remote or local memory. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Cache Coherence Protocol Processing 12-3 



Structures that Maintain the Cache Coherence 

• 
ShrToDirtyComplete or ShrToDirty Release to a remote or local memory. 

Response to the remote requester 

Blk* to be sent to the remote requester in response to a forward. 

InvToDirtyRespCnt to a remote requester. 

InvalAcks to be sent to a remote requester. 

12.2.4 Probe Queue (PRQ) 

The Scache must service several kinds of requests from other nodes in the system. For 
some of these requests, it is important that probes to the same cache block be serviced 
in the same order in the Scache as they are in the DIFT, so they are all stored in the 
probe queue, called the PRQ, while awaiting service in the Scache. The protocol does 
not mandate keeping the same order of the probes in the Scache as in the DIFT. The 
probe queue is a simple 24-entry FIFO. The PRQ contains: 

• *Forward: Forwards from remote and local directories. 

• Response without a fill data. 

ShrToDirtySuccessCnt. 

ShrToDirty Fail. 

ShrToDirty ProbCnt. 

InvalAck. 

- WrloAck. 

- WrloNack. 

NXMResp/ERRResp. 

• Since the InvalToDirtyRespCnt must allocate a Scache set, it takes the same path as 
the fill block (i.e. Blk*) taking two Scache cycles. Since the InvToDirtyResp does 
not accompany the data, the Scache has an invalid data until the merge buffer com
pletes the write-through. It will be functionally incorrect if Ifecth grabs the data out 
of the Scache before the merge buffer writes the cache block. There are two propos
als: 

Option 1 (current favorite): Have Ifecth probe the merge buffer. If the merge 
buffer has the block, then notify the Ibox and retry the !fetch. 

Option 2: always bypass the InvToDirtyResp straight to the victim buffer and 
have the merge buffer write the cache block to the victim buff er. This scheme 
prevents from filling Icache with the invalid cache line but will require victim
izing the cache block and re-requesting the block. Since we often read the 
cache block after store, this scheme has some performance impact. 

• Remote requests, Local requests, and local victims no longer come to the probe 
queue for the new EV8 protocol. 

• To avoid a deadlock problem, the PRQ takes: 

Any message if there are more than one free entries. 

Only a Response from the router if there is exactly one free entry. 

No transaction if there is no free entry. 

Compaq Confidential 
12-4 Cache Coherence Protocol Processing 5 J(1nuary 2001 -~Subject To Change 



Overview of the Cache Coherency Protocols 

• 2-4 VAF entries are reserved for probes. 

12.2.5 DIFT 

The memory controller may have a large number of requests in progress at any 
moment, some being serviced in the local memory, others awaiting responses from 
remote nodes. All requests are recorded in the DIFT as soon as they arrive, and removed 
when the transaction is complete. For a any given cache block, there is one active trans
action at any given time. In other words, the DIFTwill not process another request to 
the same cache block until the current transaction is complete. 

12.3 Overview of the Cache Coherency Protocols 

12.3.1 Comparison Between 21363 and 21464 Cache Coherence Protocols 

Table 12-1 summarizes the differences between the 21363 and 21464 cache coherency 
protocols. 

Table 12-1 Comparison Between 21364 and 21464 Cache Coherence Protocols 

Assumptions 21364 

Have multiple outstanding system requests to the same Scache index. No 

A dirty block can't be sent in response to a request from an 1/0 device. Yes 
This requires a snarf (i.e. VictimAckExcl) when a modified cache block 
is to be sent to an 1/0 device. 

Cbox may send a VictimToShr or a VictimClnToShr to its local mem- No 
ory. 

A successful ReadMod, ShrTodirty[STC], or InvToDirty never results Yes 
in a VictimCln or a VictimClnToShr. This means that the cache block is 
considered dirty even if the block is not modified. 

The current owner sends a BlkExclCnt(O) to the requester and a Victi- Yes 
mAckExcl to the home in response to a ReadFwd when the block is 
dirty. Otherwise, it must send a Shared block to the requester and a 
FwdAckShr to the home. 

The directory doesn't have the requester for a ShrToDirtyReq as a sharer 
and no one including its own Cbox owns the block exclusive. 

ShrToDirtyReqs get forwarded as ReadModFwds. 

To simplify the DIFT design, Cbox can't respond with a FwdAckExcl in 
response to a forwarded request that originated from an 1/0 device. 

Cbox never responds FwdAckExcl to any ReadForward3. 

Send a BlkExclCnt to the requester and a a VictimAckExcl to the direc
tory in response to a ReadReq or ReadFwd if the block is modified. 

Local memory references update the directory state5. 

ShrToDirtyFail--> 
requester. 

No 

Yes 

Yes 

Yes 

No 

21464 

Yes 

Yes 

Yes 1 

No2 

No3 

BlkExclCnt -> 
requester. 

Yes 

No4 

No 

No3 

Yes 

1 In order to support the CleanCacheBlk instruction, the processor wants to give up the ownership vol
untarily but keeps a Shared copy, Cbox must be able to do a VictimToShr or a VictimClnToShr. 
Scache will send VictimToShr or VictimCleanToShr if the block addressed by CCB is in dirty or 
exclusive clean state, respectively (it will send nothing if there is a miss or the block is in shared state). 

Compaq Confidential 
5 January 2001 - Subject To Change Cache Coherence Protocol Processing 12-5 



Overview of the Cache Coherency Protocols 

2 For the 21464, a BlkExcl is filled as BlkDirty if the MAF state indicates a merge buffer write which is 
non-speculative and the block is coherent. Otherwise, it is filled as ExclClean block and Mbox is not 
allowed to write the cache block. Mbox will send CtoD to Cbox to gain write permission. 

3 The 21464 is considering a selective migration option where an exclusive block can be passed in 
response to a ReadFwd. But it is unlikely that the 21464 will adopt the 21364 migration scheme. The 
current default is to send BlkShared to the requester and a VictimAckShared to the directory. 

4 This restriction is imposed on the 21364 to avoid read-modify-write of the directory for a VictimClean 
from a new owner (if FwdAckExcl comes after the VictimClean, then the DIFT entry must do Read -
Write - Read - Write which makes the DIFT state machine complicated). Currently, the 21464 is plan
ning to have one-to-one correspondence between the DIFT and the fill buffer. Hence, the VictimClean 
case above results in Read - Write - Write which is identical to a Victim. 

5 For the 21364, local references do not update the directory to minimize the memory access for direc
tory updates. Instead the cache coherence is maintained by forcing all remote requests to probe the 
local caches. EV8 has an on-chip 256KB directory cache to store the directory states of the most fre
quently used cache blocks. The directory cache significantly cut the memory access for both local and 
remote requests. Thanks to the directory cache, the 21464 local references update the directory thereby 
eliminating local probes. 

12.3.2 Onchip Directory Cache 

The 21464 has an onchip directory cache: 

• Unlike the 21364, local references DO change the directory states thereby eliminat
ing needs for local Cbox probes. 

• No local victim and local request race. 

• The DIFTis responsible for keeping order between requests, both local and remote 
requests. So local *Req, *Req, and local victim* do not come to the probe queue. 

12.3.3 Coherence Messages are Split into Three Types 

• Requests (*Req) 

All requests come to the home node and the home node is responsible for either 
responding to the requests or forwarding the request to the current owner including 
its local Cbox. 

• Forwards (*Fwd) from home nodes 

Cbox receives *Forward both from remote directories and the local directory. 

Cbox may not receive another Forward for the same cache block until Cbox 
sends a response to the previous Forward to a cache block because the directory 
does not process another request to the same cache block until it receives a 
response from the previous owner for the *Forward. 

For *Forward, Cbox forwards the cache block to the requester and sends a 
response to the directory. However for the following cases, Cbox sends a Fwd
Miss to the directory: 

Cache block is not coherent 

Cbox did not receive the Blk* (i.e. The exclusive block is on its way to 
us). 

Cbox did not receive all the InvalAcks from sharers. 

Compaq Confidential 
12-6 Cache Coherence Protocol Processing 5 Jtmuc1ry 2001 - Subject To Change 



• 

Protocol Races 

For theses cases, Cbox victimize the cache block when the cache block 
becomes coherent. 

The Scache doesn't have the block (i.e. the victim block is on its way to the 
directory). 

Responses 

12.4 Protocol Races 

• Victim races 

• 

Remote Victim race 

Cbox does not have to maintain the ordering between a request to a remote 
memory and a remote victim. Remote victim races are handled by the directory. 
If the directory receives the *Req before the Victim*, since the *Req is from 
the current owner, the DIFT knows that the Victim* is on its way and waits for 
the victim before servicing the *Req. 

Local victim race 

Since local requests update the directory, the directory knows the current 
owner, including the local processor, of a cache block. Cbox no longer has to 
maintain the ordering between local requests and local victims. 

Dual Victim race 

A Victim* from the new owner arrives before the forward acknowlegement 
arrives from the previous owner in response to the *Forward. The DIFT is 
responsible for resolving the race. 

Early Forward race 

A forward arrives while there is an outstanding system request or not all InvalAck's 
have been received. The early forward race can happen due to either: 

The exclusive block is in its way to us and the *Forward is to the the yet-to-be 
received block. 

We victimized the block. The directory forwarded a request to us. Before we 
received the *Forward we send the system request asking for the cache block. 

Send a ForwardMiss to the home memory and victimize the cache block when the 
cache block arrives or becomes coherent. 

• Late Forward race 

A *Forward arrives after we victimized the cache block. We simply send a For
wardMiss to the home memory for this case. 

• Early InvalAck race 

• 

An Invalack arrives before the *Cnt arrives. Like the 21364, EV8 has the coherence 
counter which can keep count of early InvalAck's. 

Early Sharedlnval race 

A Sharedlnval arrives while we have the outstanding Read[Shr]Req. The early 
Sharedlnval race happens due to one of the following: 

Compaq Confidentia I 
5 January 2001 ·- Subject To Change Cache Coherence Protocol Processing 12-7 



Probe Processing 

The Shared block is in its way to us and the Sharedlnval is to the returning 
block. 

The Sharedlnval is to the previous copy of the block we already displaced from 
the Scache. 

The Sharedlnval is to the previous copy of the block which has been invali
dated before. When the sharing mask is used, we can receive the Sharedlnval if 
another processor which shares the same sharing mask bit is invalidated even 
though we do not have the block. 

When the Shared block arrives, we must not blindly discard the block to avoid 
potential live-lock problem. 

If the fill block is after the MB retire, we must discard the block and re-send the 
system request. 

If the fill block is before the MB retire, we fill Mbox with the block and invali
date the block. 

• Wrong SharedToDirtySuccess race 

A SharedToDirtySuccess finds no shared copy in the Scache. The wrong SharedTo
DirtySuccess race happens due to either: 

The shared copy has been invalidated. But another processor which shares the 
sharing mask sends a Read[Shr]Req thereby setting the sharing mask bit. 
Hence when the directory receives a ShrToDirty Req and the sharing mask is 
used, the directory doe not know whether the requester is a true sharer or not. 
The directory optimistically succeeds the SharedToDirtyReq and the the 
requester is responsible for resolving the problem by doing VictimClean first 
them sending a ReadMod. 

The shared copy has been displaced out of the Scache. We bypass the ShrTo
DirtyResp directly to the victim buffer and extract the merge buffer into the 
victim buff er thereby making forward progress. 

We can distinguish two cases by recording Sharedlnval in the MAF. In other words, 
if we receive a ShrToDirtySuccess and the MAF.inval_seen bit is set, then we know 
the ShrToDirtyReq was incorrectly granted. 

To avoid live-lock, the directory can't not optimistically succeed a SharedToDirt
ySTCReq when the sharing mask is used. Instead the directory sends a ShrToDirt
y Prob to the requester but do not send Sharedlnval to sharers. If the 
SharedToDirtyProb succeeds, the requester sends a ShrToDirtyComplete to the 
directory and the directory sends Sharedlnval to sharers. If the SharedToDirtyProb 
fails, then the requester send a SharedToDirtyRelease to the directory. 

12.5 Probe Processing 

• Probe Pipeline Stages 

• Unlike the 21364 protocol, the directory sends a Sharedlnval to its local Cbox since 
remote requests (*Req) no longer come to Cbox. 

• Responses without a fill block from the PRQ : 

Changes the states of corresponding MAF entries. 

Updates the Scache tag. 

Compaq Confidential 
12-8 Cache Coherence Protocol Processing 5 Jmmary 2001 ·-Subject To Change 



Probe Processing 

Unlike a Blk*, it can be replayed if it encounters a Scache tag ECC error or a 
Scache bank conflict. 

• A ShrToDirtySuccessCnt does not find the shared cache block in the scache. 

The previous proposal was to do a VictimClean and send a ReadModReq if the 
request was not StxC. If the request was for a StxC, then we would send a Stx
Fail message to Mbox. However, this creates a potential live-lock. 

The current proposal 

If the MAF.inval_seen bit is set: 

Do VictimClean and send a ReadModReq if the request was not StxC. 

If the MAF.inval_seen bit is not set: 

This means the shared block has been displaced from the Scache. 

Send the StxCSuccess to Mbox. 

Extract the merge buffer entry to the VDB. 

Send Victim to the home node. 

Cbox sends a ReadShrReq if it has a pending If etch to the cache block. 

• A ShrToDirtyProbCnt does not find the Shared block in the Scache. 

If the MAF.inval_seen bit is set: 

This means the shared block was invalidated. 

Send a ShrToDirtyRelease to the home node. 

If we have pending non StxC request, send a system request. 

If the MAF.inval_seen bit is not set: 

This means the shared block has been displaced from the Scache. 

Send the StxCSuccess to Mbox. 

Extract the merge buffer entry to the VDB. 

Send ShrToDirtyComplete and Victim to the home node. 

Cbox sends a ReadShrReq if it has a pending If etch to the cache block. 

• The only case where Cbox send a StxCFail to Mbox is when Cbox gets a CtoDSTC 
from Mbox and we do not have the block in the Scache. 

• Cbox does not send STCFail message to Mbox when Cbox receives a ShrToDirty
Fail from the directory since a Sharedlnval must have failed the StxC. 

• Forwards from remote directories need the Scache pipe: 

To update the Scache tag. 

To send a response to the requester and the directory. 

• To avoid a dead-lock, we reserve four VAF and four MAF slots for probes. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Cache Coherence Protocol Processing 12-9 



Coherence State 

12.6 Coherence State 

Cbox implements a coherence protocol which ensures that all processors have a consis
tent image of memory. 

Table 12-2 MAF Coherence State Bits 

Name 

MAP.coherent 

MAF.coh_cnt<5 :0> 

MAF. timer_on 1 

MAF. sc_inflight 

MAF. victimize 

MAF. vct2shr 

MAF.inval_seen2•3 

Meaning 

The exclusive cache block is coherent. 

The number of coherence messages 
received. 

Has a timer queue entry. 

Has an inflight transaction in the Scache 
pipe. 

After the ownership is received and the 
block becomes coherent, the cache block 
must be victimized (i.e. invalidate the 
cache block and send a Victim or a Vic-
timCln to the directory). If a BlkShared is 
received, Cbox may keep the Shared 
copy. 

After the ownership is received and the 
block becomes coherent, the cache block 
must be changed to Shared. Cbox should 
send VictimToShr or VictimClnToShr to 
the remote home directory. 

Sharedlnval has been received before the 
fill block. 

Victim to Home Set By 

InvalAck, *Cnt. 

Forward, ShrTo-
Dirty*Cnt, Sharedlnval. 

Victim or Victim- Remote Request 
Cln (MemFwdMiss) or 

Forward (ForwadMiss) 

VictimToShr or Forward (ForwadMiss) 
VictimClnToShr 

None Sharedlnval 

1 The timer is set due to either: 1) An exclusive fill block is received, the block is coherent, and either 
MAP.victimize or MAF.vic2shr bit is set; or, 2) A shared fill block is received and the MAF.inval_seen 
bit is set. 

2 This bit is set if we receive a Sharedfuval and have an outstanding system request. If a BlkShared is 
returned and the MAF.inval_seen is set, then we do not know whether the block is before the Sharedln
val or after the Sharedlnval. To be conservative, the block has to be invalidated. 

If the MAF.mb_retired is set, discard the fill block. 
If the MAF.mb_retired bit is no set, fill the Mbox with the block and when the timer expires, 
invalidate the block. 

If BlkExclCnt or BlkDirty returns, then we know the block is after the Sharedlnval and we fill the 
Scache with the exclusive block. 

3 If we receive SharedToDirtySuccess or ShwedToDirtyProb and the MAF.inval_seen is set, then the the 
SharedToDirty has been incorrectly granted. 

Notes: 

• Can more than one bit set for a MAF entry? 

MAF. victimize and MAF. vct2shr 

The MAF. victimize must override the MAF. vct2shr. 

Any other case??? 

Compaq Confidential 
12-10 Cache Coherence Protocol Processing 5 Jtmwiry 2001 ···Subject To Change 



MAF Address CAM 

12.7 MAF Address CAM 

• MAFmiss 

Load the probe into the MAF to store the probe while the probe is in-flight in the 
Scache pipe. 

For a possible probe retry due to bank conflict, Scache tag ECC error, or 
Scache Data ECC error. 

To maintain probe sequence to the same cache block. 

• MAFhit 

If the probe hits a MAF entry which has a transaction in-flight in the Scache (i.e. 
MAF.sc_inflight is set), then the PRQ stalls until the conflicting transaction com
pletes and clears the MAF.sc_inflight. 

Otherwise, the probe changes MAF states and probes the Scache if necessary. 

Table 12-3 Forwards hit MAF (Full Address Match) 

MAF states 

- l: .c .2> c en 
=e iS f c ·:1 Cl) ·:1 .c 
> 0 Need 

"i 'Ii (,) 

Forwards (*Fwd) 
LL LL u: Scache 
< < < MAF .sys_cmd<2:0> Response Action action :ii :ii :ii 

*Fwd 1 x x xxx Stall the Probe pipe (PRQ) 

1 1 x xxx [1] 

0 0 1 xxx [2] Yes 

FetchFwd 0 0 0 xxx FwdMiss Set MAF.vct2shr [3] No 
ReadFwd 
Read.ShrFwd 

0 1 x Read FwdMiss Set MAF.vct2shr No 

0 1 x ReadShr FwdMiss No 

0 1 x ReadMod/I2D/S2D/S2DSTC FwdMiss Set MAF.vct2shr No 

ReadModFwd 0 0 0 xxx FwdMiss Set MAP.victimize [3] No 
InvToDirtyFwd 

0 1 x Read FwdMiss Set MAP.victimize [4] No 

0 1 x ReadShr FwdMiss No 

0 1 x ReadMod/I2D/S2D/S2DSTC FwdMiss Set MAF.victimize[4] No 

Sharedlnval Shared- 0 0 0 xxx Must not happen 
InvaILeaf 
SharedlnvalMaster 

0 1 x xxx InvalAck Set MAF.inval_seen [7] Yes 
[5][6] 

Notes: 

• We send a FwdMiss for a *Fwd to a non-coherent cache block. 

Compaq Confidentia I 
5 January 2001 -··Subject To Change Cache Coherence Protocol Processing 12-11 



MAF Address CAM 

• 

• 

• 
• 

• 

• 

• 

[1]: This case happens because we clear the MAF.sc_inflight late in order to give 
the Mbox enough time to consume the fill block before the block gets victimized or 
invalidated. The current design guarantees 15 cycles between the fill address and a 
probe to the fill block. Since we delay clearing the MAF.sc_inflight bit, we send a 
system request before clearing the sc_inflight bit. We believe it takes more than 8 
cycles to receive a fill block from the system after sending a system request. Hence, 
we must not receive a fill block from the system while the MAF.sc_inflight bit is 
set. 

[2]: This case happens because either: 

Cbox received a exclusive block and victimized the block. Then Cbox wanted 
the cache block back but hasn't sent a system request yet OR 

Cbox received the ownership of the cache block but the cache block is not 
coherent. 

[3]: Cbox received the ownership of the block but the cache block is not coherent. 

[4]: Cbox does not know whether the *Fwd is for an earlier version of the block we 
victimized or for new block which is on its way to us. To be conservative Cbox vic
timizes the block. 

[5]: Cbox sends a InvalAckMaster and a InvalAckLeaf in response to a Sharedln
valMaster and a SharedinvalLeaf respectively. 

[6]: We must send the InvalAck right away. If the Sharedlnval was before the cur
rent request and we do not send the InvalAck, then the owner of the cache block 
will wait for the InvalAck from us indefinitely and we will not receive the fill 
block. 

[7]: If a BlkShared is returned in response to the outstanding Read[Shr]Req, then 
we do not know whether the block is before the Sharedlnval or after the Sharedln
val; hence, block has to be invalidated. If BlkExclCnt or BlkDirty returns, then we 
know the block is after the Sharedlnval and it is safe to fill the Scache with the 
block. 

Table 12-4 Response Hit MAF (MAF Index) 
... 
.c 
~I 
:;1 
·s: 
LL 

c <C ... ,, 
:i ;: 

G> G> ._I G> ... G> 
(I) ;; N G> 

;,,; I G> ·e --ca ... ::J 
G> > I ;; 

.cl 1U c .c (,) 

u; ~I E ·s: G> u.: u.: 0) ... LL <C <C <C G> 

Responses <C :i :i :i E Action :i 

Blklnval Must not happen 

BlkIO x x x x Send the IO block to Mbox. 

BlkShared 0 x x x Fill the Scache as Shared. 

Compaq Confidential 
12-12 Cache Coherence Protocol Processing 5 Jc1nuc1ry 2001 ·- Subject To Change 



MAF Address CAM 

Table 12-4 Response Hit MAF (MAF Index) (Continued) 
... 
.c 0, 
0 ... , 
u ·:;: 
u.: 

c <C ... .,, :a: il: G) G) ._I G) ... G) 
(I) ;:: N G) 

0 
_, G) ·e :a:: as ... :::J G) > .a' ;:: .tl ... 
.!: u I as E ·;: 

ti) I G) 

LL u.: u.: en ... LL <C <C <C G) 

Responses <C :a: :a: :a: E Action :a: 
1 0 x x Fill the Scache/Mbox and set the timer. When the timer 

expires, invalidate the block. 

1 1 x x Discard the fill block and send a system request. 

BlkExclCnt x x 0 0 Fill the Scache as ExclCln. Update the coherence 
counter. 

x x 1 0 Fill the Scache as ExclCln. Update the coherence 
counter. Set the timer if coherent. 

x x 0 1 Fill the Sc ache as Dirty if the block is coherent. If the 
block is not coherent, fill the Scache as exclusive. 
Update the coherence counter. 

x x 1 Fill the Scache as Dirty. Update the coherence counter. 
Set the timer if coherent. 

BlkDirty x x 0 x Fill the Scache as Dirty. 

x x 1 x Fill the Scache as Dirty. Set the timer. 

InvToDirtyRespCnt 1 x x 0 x Fill the Scache as dirty if coherent and as exclusive if not 
coherent. 

x x 1 x Fill the Scache as dirty if coherent and as exclusive if not 
coherent. Set the timer and when the timer expires vie-
tirnize the block. 

ShrToDirtySuccessCnt 0 x 0 x Enter the Scache pipe to update the Scache tag. Set the 
ShrToDirtyProbCnt coherence timer. Update the coherence counter. 

1 x x x Incorrectly granted ShrToDirtyReq. Do VictimClean. 

x x x 0 Must not happen. 

ShrToDirtyFail x x x x Cbox does not need to send ShrToDirtyFail to 
Mbox but Cbox must send a Read*Req if a non-
StxC request has been merged. 

Inva1Ack2 x x x x Update the coherence counter. 

WrioAck/WrIONack x x x x Notify the Mbox. 

NXMResp/ERRResp x x x x 
1 If we have a pending Ifecth, put it in the retry queue. 

Compaq Confidentia I 
5 January 2001 ···Subject To Change Cache Coherence Protocol Processing 12-13 



Scache Hit 

2 The InvalAck makes the block coherent. If the MAF. victimize or MAF. vic_to_shr is set, enter the 
Scache pipe and victimize the block. If the MAF entry is for a merge buffer write, then 
change the Scache tag to dirty and send it to Mbox. 

Notes: 

• Cbox does not receive a ShrToDirtyFail in response to a ShrToDirtyReq. Instead 
the ShrToDirtyReq gets forwarded and Cbox must receive: 

ShrToDirtySuccessCnt if the Scache has a shared copy. 

ShrToDirtySuccessCnt, BlkExclCnt, or BlkDirty if the Scache does not have a 
shared copy. 

12.8 Scache Hit 

Note that the 1, 3, 6, and 13 "footnotes" to the tables in the web spec are not called out 
in the tables. Is this okay? They are: 

• Cbox sends ShrToDirtyReq if Mbox needs the ownership of the cache block. 
• We may send BlkDirty to the requester and transition to Invalid. Unlike the 21364, 

the current proposal is to have extra state (migratory bit) for cache blocks. 
• The directory, not the Scache, sends this. 
• If a StxC request from Mbox finds no shared copy in the Scache, fail the StxC and 

send a STCFail message to Mbox. 
Tables 12-5, 12-6, and 12-7 show ..... 

Table 12-5 Miss Requests from Mbox 

ExclClean ExclClean 
Merge Buffer Merge Buffer 

Scache State Does Not Have has Block 
Commands Invalid Block Modified Dirty Shared 

!Fetch FetchLine SC State --> Invalid Exel Clean Dirty Shared 
PfetchLine 

l/Mbox <- FillBlkExcIClean FillBlkDirty FillBlkShared 

Home <- Read[Shr]Req 

PfetchLineMod SC State --> Invalid Exel Clean Dirty Shared 

l/Mbox <- FillBlkExclClean FillBlkDirty FillBlkShared 

Home <- ReadModReq 

FetchLineMod SC State --> Invalid Dirty Shared 

l/Mbox <- FillBlkDirty FillBlkShared 

Home <- ReadModReq ShrToDirtyReq 

CtoD ltoD SC State --> Invalid Dirty Shared 

l/Mbox <- FillBlkDirty FillBlkShared 

Home <- InvToDirtyReq ShrToDirtyReq 

CtoDSTC SC State --> Invalid Dirty Shared 

l/Mbox <- StxCFail FillBlkDirty FillBlkShared 

Home <- ShrToDirtySTCReq 

EvictBlk SC State --> Invalid3 
I Invalid 

Compaq Confidential 
12-14 Cache Coherence Protocol Processing 5 January 2001 -~Subject To Cfumge 



Scache Hit 

Table 12-5 Miss Requests from Mbox (Continued) 

ExclClean ExclClean 
Merge Buffer Merge Buffer 

Scache State Does Not Have has Block 
Commands Invalid Block Modified Dirty Shared 

Home <- VictimCln l Victim 

CleanBlk SC State --> Invalid3 Shared 

Home <- VictimClnToShr J VictimToShr 

Victimize SC State --> Invalid3 Invalid Invalid1 

MAE victimize* 

Home <-- VictimCln J Victim 

VictimToShr SC State --> Invalid3 Shared2 Shared 
MAF.vct2shr* 

Home <-- VictimClnToShr J VictimToShr 

Invalidate SC State --> Invalid3 Must not happen. Invalid 
MAF.inval_seen* 

Home <- Must not happen 

This case happens because the MAP.victimize bit was set when a ReadModFwd or a InvToDirtyFwd 
hit the MAF entry which had outstanding ReadReq. If the BlkShared was returned, the cache block is 
after the ReadModFwd or the InvToDirtyFwd. Hence Cbox can keep the shared copy. However, it is 
also possible that this case happens because a Chg2Shared from Mbox hit the Exclusive block. Then 
we must invalidate the cache block. To be conservative, we invalidate the Shared copy. 

2 If the merge buffer has modified data, the merge buffer writes both to the VDB and to the Scache: 
- Cbox sends cache block to the merge buffer. 
- The cache block gets merged with the merge buffer data. 
- The merge buffer writes to the Scache and to the VDB. 

3 The block has already been victimized by a fill. 

Table 12-6 lists the forwards from the remote directory. 

Table 12-6 Forwards From (Remote) Directory 

ExclClean ExclClean 
Merge Buffer Merge Buffer 

Scache State Does Not Have has Block 
Commands Invalid Block Modified Dirty Shared 

FetchFwd SC State -> Invalid Shared1 Shared 

Home <- FwdMiss FwdAckShr 1 VictimAckShr FwdMiss 

Requester <- Blklnval 

ReadShrFwd SC State -> Invalid Shared1 Shared 
ReadFwd 

Home <- FwdMiss FwdAckShr 1 VictimAckShr FwdMiss 

Requester <- BlkShared 

ReadModFwd SC State -> Invalid 
Requester is a processor 

Home <- FwdMiss FwdAckExcl FwdMiss 

Requester <- BlkExclCnt(O) l BlkDirty 

Compaq Confidential 
5 Janw1ry 2001 ···Subject To Change Cache Coherence Protocol Processing 12-15 



Scache Hit 

Table 12-6 Forwards From (Remote) Directory (Continued) 

ExclClean ExclClean 
Merge Buffer Merge Buffer 

Scache State Does Not Have has Block 
Commands Invalid Block Modified Dirty Shared 

ReadModFwd SC State -> Invalid 
Requester is a I/O device 

Home <- FwdMiss VictimAckExcl FwdMiss 

Requester <- BlkExclCnt(O) 

InvalToDirtyFwd SC State -> Invalid 
Requester is processor 

Home <-- FwdMiss FwdAckExcl FwdMiss 

Requester <- Inva1ToDirtyRespCnt2 

InvalToDirtyFwd SC State -> Invalid 
Requester is I/O device 

Home <- FwdMiss FwdAckExcl l VictimAckExcl FwdMiss 

Requester <- InvalToDirty RespCnt2 

Sharedlnval SC State -> Invalid Must not happen Invalid 

Requester <- InvalAck Must not happen InvalAck 

If the merge buffer has modified data, the merge buffer writes both to the VDB and to the Scache: 
Cbox sends cache block to the merge buffer. 
The cache block gets merged with the merge buffer data. 
The merge buffer writes to the Scache and to the VDB. 

2 The Scache, not the directory, sends this. 

Table 12-7 lists the responses (fills) from the system. 

Table 12-7 Responses (Fills) from System 

ExclClean 
Merge Buffer 

Scache State Does Not Have 
Commands Invalid Block 

ExclClean 
Merge buffer 
has Block 
Modified Dirty 

Blklnval Must not happen (21464 processors do not send Fetch request.) 

BlkIO Mbox <- DataIO 

BlkShared SC State -> Shared Must not happen 

l/Mbox <- FillBlkShared Must not happen 

BlkExclCnt SC State -> ExclClean Must not happen 

l/Mbox <- FillBlkExclCln Must not happen 

BlkDirty SC State -> Dirty Must not happen 

l/Mbox <- DataDirty Must not happen 

InvalToDirtyRespCnt SC State -> Invalid Must not happen 

l/Mbox <- Victimize Must not happen 

ShrToDirtySuccessCnt SC State -> Invalid Must not happen 

l/Mbox <- STCFail1 Must not happen 

Compaq Confidential 

Shared 

Exel Clean 

DataExclCln 

12-16 Cache Coherence Protocol Processing 5 Jc1nwiry 2001 ···Subject To Change 



V AF Address CAM 

Table 12-7 Responses (Fills) from System (Continued) 

ExclClean ExclClean 
Merge Buffer Merge buffer 

Scache State Does Not Have has Block 
Commands Invalid Block Modified Dirty Shared 

Home <- VictimCin, Must not happen 
ReadModReq2 

ShrToDirtyProbCnt SC State -> Invalid Must not happen Exel Clean 

I/Mbox <- STCFail Must not happen DataExclCin 

Home <- ShrToDirtyRe- Must not happen ShrToDirtyCom-
Iease3 plete 

ShrToDirtyFail [14] SC State -> Invalid Must not happen 

l/Mbox <- Must not happen 

Home <- Read*Req4 Must not happen 

1 If the response was for a StxC request. If a non-StxC and a StxC request gets merged at the MAF, 
Cbox send a ShrToDirtyReq. So when ShrToDirty*Cnt or ShrToDirtyFail returns, Cbox has to look at 
the MAF.miss_stxc bit, not the request that was sent, to determine whether the response is for a StxC. 

2 Cbox does VictimCln when all the InvalAcks are received and then sends ReadModReq if non-StxC 
request. 

3 Cbox needs to send Read.ModReq if a non-StxC request. 
4 A ShrToDirtyFail does not need Scache action. Cbox sends a Read*Req if a non-StxC request has 

been merged. 

Notes: 

• According to the current proposal, InvalToDirtyReqs get forwarded even if they are 
originated from processor as well as 1/0 devices. Hence Sharedlnval must not hap
pen if we have the Exclusive block. 

• Since there can be only one outstanding request for a cache block: 

• 

Must not receive ShareToDirty*Cnt if the Scache has the block Exel Clean or 
Dirty. 

Must not receive Blk* if the Scache has a copy of the block, either Shared or 
Exclusive. 

FwdMiss may happen due to: 

The cache block has been victimized. 

The cache block is not coherent. 

The cache block hasn't been received. 

12.9 VAF Address CAM 

• If there is a VAF hit, then the victim entry gets a high priority to expedite the pro
cessing (i.e The DIFT needs the Victim before servicing the request). 

• No local victim and local request race for the new cache coherence protocol with no 
LPRs. 

Compaq Confidential 
5 January 2001 -·Subject To Change Cache Coherence Protocol Processing 12-17 



Directory Responses 

Table 12-8 VAF Hit 

Probes 

Miss 

Victimize* 

Forwards (*Fwd) 

Sharedlnval 

Victims to home directory Response to remote node 

Victim* *Ack* lnvToDirtyRespCnt, Blk* 

Set the high priority bit for the VAF entry 

Set the high priority bit for the VAF entry 

Set the high priority bit for the VAF entry. Must not happen 

Must not happen Must not happen 

• Victim* 

Victim, VictimToShr, VictimCln, VictimClnToShr. 

Cbox is in the process of giving up ownership. 

Victim-Request race gets resolved at the DIFT. 

• *Ack* (VictimAckShr, VictimAckExcl, FwdAckShr, FwdAckExcl): 

VictimAckShr, VictimAckExcl, FwdAckShr, FwdAckExcl 

linvalAck 

Cbox is in the process of giving up the ownership in response to A *Fwd. 

The DIFf has an entry waiting for the *Ack*. Subsequent requests to the block 
will not be serviced until the *Ack* is received by the DIFT, thereby maintain
ing the order. 

• A VAF entry can generate two messages to the system. 

A ForwardMiss and a Victim* to the home node ( if *Fwd hit a Victim* ). 

An *Ack* to the home node and Blk* to the requester. 

A Victim* and a ShrToDirtyComplete. 

12.10 Directory Responses 

Table 12-9 show the directory state request responses. 

Table 12-9 Directory State Request Responses 

Directory State 
Request Local (lnMemory) RemoteExcl (0) Shared1 (S1 ) Shared2 (S1 ,S2) SharedM (M) 

FetchReq Dir: ->Local Dir:-> Shrl(O) Dir:-> Shrl(Sl) Dir:-> Shr2(Sl,S2) Dir: -> ShrM(M) 
Requester<- Blkfuval Owner <- Fet.chFwd Requester <- Blklnval Requester<- Blkfuval Requester <- Blklnval 

ReadShrReq Dir: ->Shrl(R) Dir: -> Shr2(0,R) Dir: ->Shr2(Sl,R) Dir:-> Dir: -> ShrM(M,R) 
Requester<- Blk- Owner <- ReadShr- Requester<- Blk- ShrM(Sl,S2,R) Requester <- Blk-
Shared Fwd Shared Requester<- Blk- Shared 

Shared 

ReadReq Dir: ->Shrl(R) Dir:-> Shr2(0,R)1 Dir:-> Shr2(Sl,R) Dir:-> Dir: -> ShrM(M,R) 
Requester<- BlkEx- Owner <- ReadFwd Requester<- Blk- ShrM(S 1,S2,R) Requester <- Blk-
clCnt(O) Shared Requester<- Blk- Shared 

Shared 

ReadModReq Dir:-> Remote- Dir: ->Remote- Dir: ->Remote- Dir: -> Remote- Dir: ->Remote-
Excl(R) Excl(R) Excl(R) Excl(R) Excl(R) 
Requester<- BlkEx- Owner<- ReadMod- Requester<- BlkEx- Requester<- BlkEx- Requester <- BlkEx-
clCnt(O) Fwd clCnt(l) c1Cnt(2) clCnt(M) 

Sl <- Sharedfuval Sl,S2 <- Sharedlnval M <- SharedlnvaIB-
cast 

Compaq Confidential 
12-18 Cache Coherence Protocol Processing 5 J~1muiry 2001 -~Subject To Change 



Directory Responses 

Table 12-9 Directory State Request Responses (Continued) 

Directory State 
Request 

InvToDirtyReq 

ShrToDirtyReq 
Requester is a sharer 
(R= Sl) 

ShrToDirtyReq 
Requester is not a 
sharer 

ShrToDirtySTCReq 
Requester is a sharer 
(R= Sl) 

ShrToDirtySTCReq 
Requester is not a 
sharer 

Local (lnMemory) 

Dir:-> Remote-
Excl(R) 
Requester <- InvTo-
DirtyRespCnt(O) 

Dir:-> Remote-
Excl(R) 
Requester<- BlkEx-
c1Cnt(0)2 

Dir:-> Remote
Excl(R) 
Request~r <- BlkEx
clCnt(O) 

Dir:-> Local 
Requester <
Shr2Dirty Fail 

Dir: -> Local 
Requester <
Shr2Dirty Fail 

RemoteExcl (0) 

Dir: ->Remote-
Excl(R) 
Owner <- InvToDirty-
Fwd 

Dir:-> Remote-
Excl(R) 
Owner <- ReadMod-
Fwd 

Dir: ->Remote
Excl(R) 
Owner <- ReadMod
Fwd 

Dir: ->Remote
Excl(O) 
Requester<- ShrTo
DirtyFail 

Dir: ->Remote
Excl(O) 
Requester<- ShrTo
DirtyFail 

Shared1 (S1) 

Dir: ->Remote-
Excl(R) 
Requester <- InvTo-
DirtyRespCnt(l) 
Sl <- SharedDirty 

Dir: ->Remote-
Excl(R) 
Requester <-
S2DSuccCnt(O) 

Dir: ->Remote
Excl(R) 
Request'41" <- BlkEx
clCnt(l) 
Sl <- Sharedinval 

Dir: ->Remote
Excl(R) 
Requester <
Shr2DirtySuccCnt(l) 

Dir: ->Sharedl(Sl) 
Requester <
Shr2DirtyFail 

Shared2 (S1,S2) SharedM (M) 

Dir: ->Remote- Dir: ->Remote-
Excl(R) Excl(R) 
Requester <- InvTo- Requester <- InvTo-
DirtyRespCnt(2) DirtyRespCnt(M) 
Sl,S2 <- SharedDirty M <- ShrDirtyBcast 

Dir:-> Remote
Excl(R) 
Requester<
S2DSuccCnt(l) 
S2 <- Sharedinval 

Dir:-> Remote
Excl(R) 
Requester <
S2DSuccCnt(M)3 M 
<- ShrinvalBcast 

Dir: -> Remote- Dir: ->Remote-
Excl(R) Excl(R) 
Requester<- BlkEx- Requester <- BlkEx-
clCnt(2) clCnt(M) 
Sl,S2 <- Sharedinval M <- ShrinvalBcast 

Dir: -> Remote
Excl(R) 
Requester<
Shr2DirtySuccCnt(2) 
S2 <- Sharedinval 

Dir:-> 
Shared2(Sl,S2) 
Requester<
Shr2DirtyFail 

Dir: -> ShrM(M) 
Requester <- ShrTo
Dirty ProbCnt(M) 

Dir: -> ShrM(M) 
Requester <
Shr2Dirty Fail 

The directory state transitions to Shr2(0, R) if Victim[/Fwd]AckShared is received and transition to 
RemoteExcl(O) if Victim[/Fwd]AckExcl is received. 

2 The 21364 fails the ShrToDirtyReq since the request is not a sharer. 
3 The directory may incorrectly succeed the ShrToDirtyReq when the sharing mask is used. The request 

is responsible for the recovery (i.e. do VictimClean and re-send the request). 
4 No corresponding footnote text 

Notes: 

• 

• 

• 

• 

• 

EV8 processors are not allowed to send a FetchReq. Only I/O processors may send 
a FetchReq. 

This table is based on the new EV8 cache coherence protocol where local requests 
update the directory. Hence local request and remote requesters are treated exactly 
the same way. 

If the requester is the exclusive owner, this indicates that the victim block from the 
requester is on its way to the directory. The DIFT send a response after it receives 
the victim. 

For *Req if the directory state is exclusive, the DIFT forward the request and spec
ulatively write the directory. If the DIFT receives a ForwardAck*, then the direc
tory does not have to write the directory again. If the DIFT receives a VictimAck*, 
then the directory has to write the whole cache block. However if the new owner 
does Victim Clean* and the VictimClean* arrives before the ForwardAck*, the 
DIFT entry must do read-modify-write of the directory. To avoid this scenario, the 
21364 Cbox is not allowed to respond with a ForwardAckExcl in response to a 
ReadFwd. The 21364 Cbox is also not allowed to send a VictimClean* for a cache 
block obtained through a ReadModReq. EV8 has the same number of the fill buffer 
entries as for the DIFT thereby eliminating speculative directory writes. 

The 21464 does not support the "Shared3" state . 

Compaq Confidential 
5 January 2001 ·-Subject To Change Cache Coherence Protocol Processing 12-19 



System Command Opcodes 

• If the directory state is "Incoherent", then the directory sends "ERRResp" to the 
requester. 

• The 21464 forwards ShrToDirtyReq if the directory is certain that the requester 
does not have a shared copy. 

12.11 System Command Opcodes 

Table 12-10 lists the system command opcodes. 

Table 12-10 System Command Opcodes 

Type Command Name Opcode 

IO RdIOQWS CR_OP_IO_RD_QWS Ox40 

RdIOLWS CR_OP _IO_RD_LWS Ox41 

RdIOBytes CR_OP _IO_RD_BYTES Ox43 

RdIOIPR CR_OP _IO_RD_IPR Ox44 

WrIOQWS CR_OP _10_ WR_QWS Ox50 

WrIOLWS CR_OP _10_ WR_LWS Ox51 

WrlOBytes CR_OP _10_ WR_BYTES Ox53 

WrlOLPR CR_OP _10_ WR_LPR Ox54 

Request ReadReq CR_OP _REQ_RD Ox60 

ReadShrReq CR_OP_REQ_RD_SHR Ox61 

FetchReq CR_OP _REQ_FETCH Ox62 

ReadModReq CR_OP_REQ_RD_MOD Ox64 

InvToDirtyReq CR_OP _REQ_INVAL_TO_DRTY Ox65 

ShrToDirtyReq j CR_OP_REQ_SHR_TO_DRTY Ox66 

ShrToDirtySTCReq CR_OP_REQ_SHR_TO_DRTY_STC Ox67 

Forwards ReadFwd CR_OP _FWD_RD Ox80 

ReadShrFwd CR_OP _FWD_RD_SHR Ox81 

FetchFwd CR_OP _FWD_FETCH Ox82 

ReadModFwd CR_OP_FWD_RD_MOD Ox84 

InvToDirtyFwd CR_OP _FWD_INVAL_ TO_DRTY Ox85 

SharedlnvalSingle CR_OP _FWD_SHR_INVAL_SINGLE Ox86 

SharedlnvalMask CR_OP _FWD_SHR_INVAL_MASK Ox87 

Response with Block BlkDirty CR_OP_RSP_BLK_DRTY Ox CO 

BlkShared CR_OP _RSP _BLK_SHR OxCl 

Blklnval CR_OP _RSP _BLK_INVAL OxC2 

BlkExclCnt CR_OP_RSP_BLK_EXCL_CNT OxC4 

BlkIO CR_OP _RSP _BLK_IO OxC5 

Victim response Victim CR_OP_RSP_ VIC OxD8 

VictimToShared CR_OP _RSP _ VIC_TO_SHR OxD9 

Compaq Confidential 
12-20 Cache Coherence Protocol Processing 5 Januc1ry 2001 ·-Subject To Change 



Protocol Message Descriptions 

Table 12-10 System Command Opcodes 

Type Command Name Opcode 

VictimAckExcl CR_OP _RSP _ VIC_ACK_EXCL OxDa 

VictimAckShared CR_OP_RSP_ VIC_ACK_SHR OxDb 

Responses without Block NXMResp CR_OP _RSP _NXM OxEO 

ERRResp CR_OP _RSP _ERR OxEl 

InvalAck CR_OP _RSP _INVAL_ACK OxE2 

ShrToDirtyS uccessCnt CR_OP _RSP _SHR_ TO _DRTY _SUCC_CNT OxE4 

ShrToDirtyProbCnt CR_OP _RSP_SHR_TO_DRTY_FROB_CNT OxE5 

ShrToDirtyFail CR_OP _RSP _SHR_ TO _DRTY_FAIL OxE6 

InvalToDirty RespCnt CR_OP _RSP _INV AL_TO _DRTY _CNT OxE7 

WrIOAck CR_OP _RSP _ WR_IO _ACK OxE8 

WrIONack CR_OP _RSP _ WR_IO_NACK OxE9 

InvalAckLeaf CR_OP _RSP _INV AL_ACK_LEAF OxEA 

InvalAckMaster CR_ OP _RSP _INVAL_ACK_MASTER OxEB 

Release response VictimClean CR_OP_RSP_ VIC_CLN OxFO 

VictimClnToShr CR_OP_RSP_ VIC_CLN_TO_SHR OxFl 

ForwardAckExcl CR_OP _RSP _FWD_ACK_EXCL OxF2 

ForwardAckShared CR_OP _RSP _FWD_ACK_SHR OxF3 

ForwardMiss CR_OP_RSP_FWD_MISS OxF4 

SharedToDirtyComplete CR_OP_RSP_SHR_TO_DRTY_COM OxF5 

SharedToDirtyRelease CR_OP_RSP_SHR_TO_DRTY_REL OxF6 

Special NZ-NoOp CR_OP _SPEC_NZNOP OxAO 

SharedlnvalBcast CR_OP _RSP _SHR_INVAL_BRD OxBl 

SharedlnvalBcastLeaf CR_OP _RSP _SHR_INVAL_BRD_LEAF OxB2 

SharedlnvalBcastMaster CR_OP _RSP _SHR_INVAL_BRD _MASTER OxB3 

12.12 Protocol Message Descriptions 

12.12.1 10 CHANNEL Message Details 

12.12.1.1 RdBytes, RdLWs, RdQWs, RdlPR 

This processor/1/0 device wishes to do a load to IO space. The request includes an 
address, a MAF#, PID, and a Mask indicating which parts of the block are being read. 

QWADD(5:3) contains the exact address bits of the first load in the block (i.e. the load 
with the lowest address). For RdQWs the mask indicates the merged quadword loads. 
For RdLWs 32 bytes of information is expected to be returned (double-pumped into 
64-bytes) and the mask indicates the merged longword loads within the given 
hexaword. For RdBytes no merging is allowed and the mask indicates the valid bytes/ 
words - one or two bytes of properly aligned information is expected to be returned. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Cache Coherence Protocol Processing 12-21 



I 

I 
I 
I 
I 
I 
I 
I 
I 

Protocol Message Descriptions 

RdIPR is identical to RdQWs, except that the different opcode indicates that the refer
ence was within the range of the processor UO space rather than the ASIC 1/0 space 
(i.e. the address references an 21364 IPR). 

The likely response to a Rd* command is BlkIO. Also possible is NXMResp and ERR
Resp. 

Note that 21364 does not support executing instructions directly from 1/0 space, so 
these commands can only be generated by load instructions that reference I/O space. 

These commands are used on both 1/0 and router channels. Note that an 1/0 device can 
source one of these commands. 

12.12.1.2 WrBytes, WrLWs, WrQWs, WrlPR 

Table 12-11 

QWADD(5:3) 

0 

1 

2 

3 

4 

5 

6 

7 

The processor-1/0 device did a store to I/O space. The request has an address, a PID, a 
mask indicating which parts to write, a write I/O identifier, and the block of data. 

QWADD(5:3) contains the exact address bits of the first store in the block (i.e. the store 
with the lowest quad word address). For WrQWs and WrIPR the mask indicates the 
merged quadword stores. For WrLWs 32 useful bytes of information is sent and the 
mask indicates the merged longword stores in the hexaword. For WrBytes no merging 
is allowed and the mask indicates the valid bytes/word. 

The opcode, mask and QWADD are always consistent. Mask is never zero. 

The tables below show the useful data for I 0 writes that are initiated by the 21464 pro
cessor. 

Table 12-11 shows the location of the useful data for fully-merged WrQW's and 
WrIPR's. In the table, N.L is the lower longword of quadword N, N.H is the upper long
word of quadword N. Xis unused data. Quadwords are merged only if they are issued in 
ascending address order. Noncontiguous quadwords can be merged. 

In the case of a WrIPR, the two longwords indicated by a single bit in the mask 
and by QWADD(5,3) contain all the useful information. The first longword con
tains bits 0-31 and the next contains bits 3 2-63. 

Location of Useful Data for Fully-Merged WrQW's and WrlPR's 

Mask Ordered Block Data for WrQWs and WrlPR (in Long-words) 

OxFF O.L,0.H,1.L,l.H,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxFE X.X,X.X,1.L,l.H,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxFC x.x,x.x,x.x,x.x,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxF8 x.x,x.x,x.x,x.x,x.x,x.x,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxFO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxEO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,5.L,5.H,6.L,6.H,7.L,7.H 

OxCO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,6.L,6.H,7.L,7.H 

Ox80 x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,7.L,7.H 

Compaq Confidential 
12-22 Cache Coherence Protocol Processing 5 Jc1m.1c1ry 2001 ···Subject To Change 



Protocol Message Descriptions 

Table 12-12 shows the location of useful data for fully-merged WrLWs. The numbers 
shown are the sequential longwords. Longwords are merged only if they are issued in 
ascending address order. Noncontiguous longwords can be merged. 

Table 12-12 Location of Useful Data for Fully-Merged WrLW's 

QWADD(5:3) 

000 

000 

001 

001 

010 

010 

011 

011 

100 

100 

101 

101 

110 

110 

111 

111 

Mask Ordered Block Data for WrLWs (in Long-Words) 

OxFF O,l,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

OxFE X,l,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

OxFC X,X,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

OxF8 X,X,X,3,4,5,6,7,X,X,X,X,X,X,X,X 

OxFO x,x,x,x,4,5,6,7,X,X,X,X,X,X,X,X 

OxEO x,x,x,x,x,5,6,7,X,X,X,X,X,X,X,X 

OxCO x,x,x,x,x,x,6,7,X,X,X,X,X,X,X,X 

Ox80 x,x,x,x,x,x,x,7,X,X,X,X,X,X,X,X 

OxFF x,x,x,x,x,x,x,x,o,1,2,3,4,5,6,7 

OxFE x,x,x,x,x,x,x,x,x,1,2,3,4,5,6,7 

OxFC x,x,x,x,x,x,x,x,x,x,2,3,4,5,6,7 

OxF8 x,x,x,x,x,x,x,x,x,x,x,3,4,5,6,7 

OxFO x,x,x,x,x,x,x,x,x,x,x,x,4,5,6,7 

OxEO x,x,x,x,x,x,x,x,x,x,x,x,x,5,6,7 

OxCO x,x,x,x,x,x,x,x,x,x,x,x,x,x,6,7 

Ox80 x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,7 

Here is the complete table of the useful data in the quadword specified by 
QWADD(5,3) of a WrByte. (The other 7 quadwords in the packet are always garbage so 
they are not listed in the table.) The table byte values are listed from low-order bytes 
(left) to high-order bytes (right). 

Table 12-13 Location of Useful Data for Quadword Specified by QWADD(5,3) of a WrByte 

Mask Quadword of Data for WrBytes (in Bytes) 

Ox03 0,1,X,X, x,x,x,x 

Ox02 X,l,X,X, x,x,x,x 

OxOC X,X,2,3, x,x,x,x 

Ox08 X,X,X,3, x,x,x,x 

Ox30 x,x,x,x, 4,5,X,X 

Ox20 x,x,x,x, X,5,X,X 

Ox CO x,x,x,x, X,X,6,7 

Ox80 x,x,x,x, x,x,x,7 

Compaq Confidential 
5 January 2001 ··· Subject To Change Cache Coherence Protocol Processing 12-23 



Protocol Message Descriptions 

WrIPR is identical to WrQWs, except that the different opcode indicates that the refer
ence was within the range of the processor 1/0 space rather than the ASIC 1/0 space 
(i.e. the address references a 21364 IPR). The "is for IO" bit is set for a WrlPR, though 
the message is really destined for the CSR master. 

The only responses to a Wr*s command are WrIOAck or WrIONAck. (WrIONAck can 
only be returned in response to an IO write to the RBOX_INTA IPR.) 

These commands are used on both 1/0 and router channels. Note that an 1/0 device 
may source one of these commands. 

12.12.2 REQUEST CHANNEL Message Details 

12.12.2.1 ReadReq 

A load miss. The block may either be returned in shared or exclusive state. The request 
includes an address (offset and routing information), MAF #, PID, and wrap. 

The likely response to a ReadReq is BlkShared or BlkExclusiveCnt. Also possible is 
NXMResp and ERRResp. 

This command is used only on the interprocessor channels. 

12.12.2.2 ReadSharedReq 

Same as ReadReq except we must end up in shared state. Usually generated by an 
instruction fill. The request includes an address (offset and routing information), 
MAF#, PID, and wrap. 

The likely response to a ReadSharedReq is BlkShared. Also possible is NXMResp and 
ERRResp. 

This command is used only on the interprocessor channels. 

12.12.2.3 ReadModReq 

A processor store miss, ordered DMA read, or a DMA write. The block may be 
returned in either exclusive or dirty state. (It will normally be written into the cache in 
the dirty state by the processor core. If generated by a DMA read request, data returned 
in the exclusive state may ever be converted to the dirty state, though.) The request 
includes an address (offset and routing information), MAF#, PID, and wrap. 

The likely response to a ReadModReq is BlkExclusiveCnt and InvalAck. NXMResp 
and ERRResp are also possible. BlkExclusiveCnt returned to an 21364 processor in 
response to a ReadModReq forces the block to be written into the cache dirty. 

This command is used on both 1/0 and interprocessor channels. 

An 1/0 device may source this packet. In this case, the memory must always have an 
up-to-date copy of the block. For instance, this means that it is not acceptable to return 
a dirty block copy from a processors cache directly without also updating memory with 
a VictimAckExcl. This restriction is so that the I/O device only has to victimize a dirty 
block if it actually has written to the block-minimizing bandwidth on the I/O port. 

12.12.2.4 FetchReq 

A no-cache load request or a (possibly unordered) DMA read. The block must be 
returned in invalid state. The request includes an address (offset and routing informa
tion), MAF#, PID, and wrap. 

Compaq Confidential 
12-24 Cache Coherence Protocol Processing 5 J<·t11uary 2001 ·-Subject To Cfumge 



Protocol Message Descriptions 

The likely response to a FetchReq is Blklnval. NXMResp and ERRResp also possible. 

This command is used on both 1/0 and interprocessor channels. An 1/0 device may 
source this packet. When used for DMA reads, requests to multiple outstanding blocks 
may be (from a coherence perspective) reordered. See Section 13.6. 

12.12.2.5 SharedtoDirtyReq 

This processor has/had a shared copy of this block and wishes to write it. There are two 
possi le responses to this request: success or failure. The request includes an address 
(offset and routing information), MAF#, and PID. 

This command should be failed if it reaches the directory and does not find the block in 
shared state with the corresponding sharing mask bit set or if it does not find the proces
sor on the sharing list (when the requesting processor is remote). 

The likely response to a SharedtoDirtyReq is SharedtoDirtySuccessCnt, SharedtoDirty
Fail, or InvalAck. Also possible is ERRResp. 

This command is used only on the interprocessor channels. 

The directory may incorrectly succeed this request in which case the source processor 
must recover from the mistake. See Section 12.13.6. 

Store-conditional instructions will generate SharedtoDirtyReq commands when the 
source processor is in STC-optimistic mode. When the source processor is in STC-con
servative mode it will instead generate SharedtoDirtySTCReq. See Section 12.13.8. 

12.12.2.6 SharedtoDirtySTCReq 

This processor is in STC-conservative mode, has/had a shared copy of this block, and 
wishes to succeed a store-conditional. There are three possible responses to this request: 
success, probable success, or failure. This conservative request allows the requesting 
processor to avoid unnecessary invalidates. The request includes an address (offset and 
routing information), MAF# and PID. 

The possible responses to a SharedtoDirtySTCReq are: SharedtoDirtyProbCnt, Shared
toDirtySuccessCnt, SharedtoDirtyFail, or InvalAck. Also possible is ERRResp. 

See Section 12.13.8. SharedtoDirtyFail should be the directory's response when the 
requesting processor is not in the sharing mask or sharing list. SharedtoDirty Proba
bleCnt should be the directories response when the processor is in the sharing mask. 
SharedtoDirtySuccessCnt should be the response when the processor is in the sharing 
list. 

This command is used only on the interprocessor channels. 

12.12.2.7 lnvaltoDirtyReq 

A full-block write request (most likely) from the processor or DMA write. The data 
need not be returned. The request includes an address (offset and routing information), 
MAF#, andPID. 

The response to a InvaltoDirtyReq is InvaltoDirtyRespCnt or InvalAck. NXMResp is 
also possible (only in the presence of a true software error when from the processor or a 
mispeculation by a DMA engine). ERRResp is also possible. 

Compaq Confidential 
5 January 2001 - Subject To Change Cache Coherence Protocol Processing 12-25 



Protocol Message Descriptions 

This command is used on both 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

Note that the system guarantees that the old value of the memory location resides in 
memory when responding with InvaltoDirtyRespCnt to a InvaltoDirtyReq generated by 
a DMA device. This allows the DMA device to "speculatively" launch an InvaltoDirty
Req. See Section 13.6. 

12.12.3 FORWARD CHANNEL Message Details 

12.12.3.1 ReadForward, ReadSharedForward, ReadModForward, FetchForward, lnvaltoDirtyFor
ward 

The corresponding requests reached the directory and found the block to be in exclusive 
state at different processor. A DIFT (Directory in-flight table) entry has been created, 
which will typically be cleared when the forward request is acked. The command 
includes an address (including both an offset and a PID of the directory), a MAF#, PID, 
wrap (except for InvaltoDirtyForward), and routing information to reach the forwarded 
destination. The MAF# and PID indicate the original source of the request. 

There are two categories of responses (to the DIFT) to a *Forward command. The most 
likely category of responses are: VictimAckExcl, VictimAckShared, ForwardAckExcl, 
or ForwardAckShared. In these cases a Blk* response is also sent to the requestor. 

The less likely response (to the DIFT) to a *Forward command is ForwardMiss. A For
wardMiss is accompanied by a Victim, VictimClean, VictimtoShared, or VictimClean
toShared. 

If the block had been thought to be exclusive at the same processor as generated the 
request, the request must block rather than generate a forward. Otherwise, the block 
might continually be reloaded and evicted- livelock. (It doesn't make any sense to for
ward to yourself anyway.) 

If a block is exclusively held by a DMA device, forwards must always be generated, 
even if the exlusive owner is the requestor. A DMA device has the uppermost PID bit 
set. In response to the forward, a DMA device will send a ForwardMiss and eventually 
evict the block. 

These commands are used on both the 1/0 and interprocessor channels. 

12.12.3.2 SharedlnvalSingle 

The directory sends these when a processor wishes to gain exclusive access to a block 
that is in shared state. SharedlnvalSingle is generated when a block is in the Sharedl or 
Shared2 states, or if each mask bit refers to a single processor and the block is in 
SharedM state. The SharedlnvalSingle command contains an address (including both 
an offset and a PID of the directory), MAF#, PID, and routing information to reach the 
forwarded destination. 

Note that the cache invalidate associated with a SharedlnvalSingle should never be per
formed at the requesting PID, even though it may be included in the sharing list. On 
21364, the DIFT never launches a SharedlnvalSingle to the requesting processor (and 
the coherence count never includes the requestor). 

This command is used only on the interprocessor channels. 

Compaq Confidential 
12-26 Cache Coherence Protocol Processing 5 Jc1nuc1ry 2001 --Subject To Change 



Protocol Message Descriptions 

12.12.3.3 SharedlnvalBroadcast 

The directory sends these when a processor wishes to gain exclusive access to a block 
that is in SharedM state and each mask bit refers to more than one processor. The router 
is required to fanout the inval within the cluster of processors that share a mask bit, fan 
back in the completion, and send a single InvalAck back to the requesting processor. 
The SharedlnvalBroadcast command contains an address (including both an offset and 
a PID of the directory), MAF#, PID, and routing information to reach the forwarded 
cluster. 

Note that it is required that during the fanout at the cluster that includes the requesting 
PID, the inval should never be executed on the requesting PID, though it must be exe
cuted on all other processors in the cluster that share the same sharing mask bit. 

See Section 12.12.3.3 for more detail on the fanin/fanout operation. 

This command is used only on the interprocessor channels. 

12.12.4 RESPONSE CHANNEL Message Details 

12.12.4.1 BlkShared 

Data returned in response to a ReadReq or ReadSharedReq command. The data should 
be deposited into the cache in the shared state. The command header contains a MAF #, 
wrap, and routing information to reach the destination. The data in the packet must 
always be wrapped in the octa-word order specified by the corresponding request. The 
wrap bits must always match this wrap order. 

This command can be returned in response to a ReadReq or ReadSharedReq request. 

This command is used only on the interprocessor channels. 

12.12.4.2 BlkExclusiveCnt 

Data returned in response to a ReadReq or ReadMod command. The data should be put 
into the cache in exclusive-clean state in response to a ReadReq, the dirty state in 
response to a Readmod generated by a store.The command header contains a MAF #, 
wrap, a coherence count, and routing information to reach the destination. The data in 
the packet must always be wrapped in the octa-word order specified by the correspond
ing request. The wrap bits must always match this wrap order. 

A BlkExclusiveCnt with non-zero count can be generated when a ReadMod finds a 
block in the shared state. The count is the number of InvalAck's to expect in response at 
the requestor. (Except when solving the for the "Local CBOX Too Far Ahead" problem 
described below.) 

BlkExclusive can be returned in response to a ReadReq or ReadModReq request. A 
non-zero count can only occur in response to a ReadMod (except when solving the for 
the "Local CBOX Too Far Ahead" problem described below). 

This command is used on both I/O and interprocessor channels. 

12.12.4.3 Blklnval 

Data returned in response to a FetchReq command. The data should not be cached. The 
command header contains a MAF #, wrap, and routing information to reach the destina
tion. The data in the packet must always be wrapped in the octa-word order specified by 
the corresponding request. The wrap bits must always match this wrap order. 

Compaq Confidential 
5 January 2001 ···Subject To Change Cache Coherence Protocol Processing 12-27 



Protocol Message Descriptions 

This command may be returned in response to a FetchReq request. 

This command is used on both I/O and interprocessor channels. 

12.12.4.4 BlklO 

Data is returned in response to a read 1/0 command. The command header contains a 
MAF #, wrap, and routing information to reach the destination. The data is laned and 
data bytes in the packet are positioned according to their address. 

The wrap bits field must be zero for BlkIO commands. 

The coherency count field must be zero for BlkIO commands. 

Table 12-14 shows the location of the useful data in the 16 longwords contained in a 
BlkIO in response to a fully-merged RdQW or RdIPR. N.L is the lower longword of 
quadword N, N.H is the upper longword of quadword N. Xis unused data. 

In the case of a RdIPR, the two longwords indicated by a single bit in the mask and by 
QWADD(5,3) contain all the useful information. The first longword contains bits 0-31 
and the next contains bits 32-63. 

Table 12-14 Location of Useful Data in a BlklO in Response to a Fully-Merged RdQW or RdlPR 

QWADD(5:3) Mask Ordered Block Data for RdQWs or RdlPR (in Long-Words) 

O OxFF O.L,O.H,l.L,l.H,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

1 

2 

3 

4 

5 

6 

7 

OxFE x.x,x.x,l.L,l.H,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxFC x.x,x.x,x.x,x.X,2.L,2.H,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxF8 x.x,x.x,x.x,x.x,x.x,x.x,3.L,3.H,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxFO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,4.L,4.H,5.L,5.H,6.L,6.H,7.L,7.H 

OxEO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,5.L,5.H,6.L,6.H,7.L,7.H 

OxCO x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,6.L,6.H,7.L,7.H 

Ox80 x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,x.x,7.L,7.H 

Table 12-15 shows the location of the useful data in response to fully-merged RdLWs. The 
numbers shown are the (up to 8) merged longwords. Xis unused data. 

Table 12-15 Location of Useful Data in Response to Fully-Merged RdLW's 

QWADD(5:3) MAsk Ordered Block Data for RdLWs (in Long-Words) 

000 OxFF 0,1,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

000 Ox FE X,l,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

001 OxFC X,X,2,3,4,5,6,7,X,X,X,X,X,X,X,X 

001 OxF8 X,X,X,3,4,5,6,7,X,X,X,X,X,X,X,X 

010 OxFO x,x,x,x,4,5,6,7,X,X,X,X,X,X,X,X 

010 OxEO x,x,x,x,x,5,6,7,X,X,X,X,X,X,X,X 

011 OxCO x,x,x,x,x,x,6,7,X,X,X,X,X,X,X,X 

Compaq Confidential 
12-28 Cache Coherence Protocol Processing 5 Januc1ry 2001 ···Subject To CfJange 



Protocol Message Descriptions 

Table 12-15 Location of Useful Data in Response to Fully-Merged RdLW's 

QWADD(5:3) MAsk Ordered Block Data for RdLWs (in Long-Words) 

011 

100 

100 

101 

101 

110 

110 

111 

111 

Ox80 x,x,x,x,x,x,x,7,X,X,X,X,X,X,X,X 

Ox FF x,x,x,x,x,x,x,x,o,1,2,3,4,5,6,7 

Ox FE x,x,x,x,x,x,x,x,x,1,2,3,4,5,6,7 

OxFC x,x,x,x,x,x,x,x,x,x,2,3,4,5,6,7 

OxF8 x,x,x,x,x,x,x,x,x,x,x,3,4,5,6,7 

OxFO x,x,x,x,x,x,x,x,x,x,x,x,4,5,6,7 

OxEO x,x,x,x,x,x,x,x,x,x,x,x,x,5,6,7 

Ox CO x,x,x,x,x,x,x,x,x,x,x,x,x,x,6,7 

Ox80 x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,7 

Table 12-16 lists all of the useful data in the quadword specified by QWADD(5,3) of a 
BlkIO packet that is a response to RdBytes. (The other 7 quadwords in the packet are 
unused so they are not listed in the table.) 

The table byte values are listed from low-order bytes (left) to high-order bytes (right). X 
is unused data. 

Table 12-16 Location of Useful Data in Quadword Specified by QWADD(5,3) of a BlklO Packet 

Mask 

Ox03 

Ox02 

OxOC 

Ox08 

Ox30 

Ox20 

Ox CO 

Ox80 

Quadword of Data for WrBytes (in Bytes) 

O, l,X,X, x,x,x,x 

X,l,X,X, x,x,x,x 

X,X,2,3, x,x,x,x 

X,X,X,3, x,x,x,x 

x,x,x,x, 4,5,X,X 

x,x,x,x, X,5,X,X 

x,x,x,x, X,X,6,7 

x,x,x,x, x,x,x,7 

This command may be returned in response to a RdBytes, RdLWs, RdQWs, or RdIPR 
request. This command is used on both I/O and interprocessor channels. An I/O device 
may source this packet. 

12.12.4.5 Victim 

Data written back to memory because it was dirtied. The block must have been in the 
exclusive state in the directory (when non-local). The command header contains an 
address. 

Victim writes a block into memory in the state invalid as well as CAM'ing the DIFf 
and updating DIFT state. 

The Victim command is used on both I/O and interprocessor channels. An I/O device 
may source this packet. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Cache Coherence Protocol Processing 12-29 



Protocol Message Descriptions 

12.12.4.6 VictimtoShared 

Write back data to memory and change the state of the block to shared. The block must 
have been in the exclusive state in the directory. The command header contains an 
address and a sharing PID. 

VictimtoShared is similar to Victim except the final state of the block is shared in the 
directory. 

VictimtoShared is similar to VictimAckShared except that a ForwardMiss may (or may 
not) also be in flight to the DIFT. VictimAckShared is sure to find a DIFT entry waiting 
when it returns to the directory, whereas VictimtoShared is not. 

This command is used only on the interprocessor channels. 

12.12.4.7 VictimAckExcl 

Data written back to memory as a result of a ReadForward or an InvaltoDirtyForward 
that orignated from a DMA reference. The command header contains an address. 

This command is similar to the victim command except in how it affects the DIFT and 
the final state of the block in the directory. VictimAckExcl implies that a forwarded 
command found a dirty block at the exclusive owner. The final state of the block should 
be exclusive owned by the requesting PID. It is assumed that the requesting PID is 
stored in the DIFT at the time the DIFT entry was created, and can be extracted in 
response to the VictimAckExcl address cam. 

In a special race case, the write of the block to memory and/or the directory update 
must not be performed. See Section 12.13.3. 

VictimAckExcl may be generated by an InvaltoDirtyForward or ReadModForward that 
originated from a DMA reference - so that memory always has an up-to-date copy of 
the block. See Section 13.6. 

This command can only be generated in response to a ReadForward when the migratory 
data optimization is implemented. See section "Migratory Data Optimization" TBS. 

This command is used only on the interprocessor channels. 

12.12.4.8 VictimAckShared 

Data written back to memory as a result of a ReadForward or ReadSharedForward. The 
command header contains an address and the sharing PID of the (prior) exclusive 
owner of the block. 

This command is similar to the victim command except in how it affects the DIFT And 
the final state of the block in the directory. VictimAckShared implies the final state of 
the block should be shared, with both the prior exclusive owner and the requestor (if the 
requestor is non-local) on the sharing list. It is assumed that the PID of the requestor 
was stored at the time the DIFT entry was created and can be extracted from the DIFT 
to update the sharing list. 

This command is used only on the interprocessor channels. 

12.12.4.9 lnvaltoDirtyRespCnt 

Response to a InvaltoDirtyReq command. The command contains the requestor MAF 
#,a coherence count, and routing information to reach the destination. 

Compaq Confidential 
12-30 Cache Coherence Protocol Processing 5 Jcwwiry 2001 - Subject To Change 



Protocol Message Descriptions 

This command is a possible response to a InvaltoDirty Req request. 

Note that InvaltoDirtyRespCnt responses to a DMA device must ensure that memory 
has an up-to-date copy of the block. See Section 13.6. 

These commands are used on both the 1/0 and interprocessor channels. 

12.12.4.1 o SharedtoDirtySuccessCnt 

Success response to a SharedtoDirtyReq or a SharedtoDirtySTCReq. The command 
contains the requestor MAF #,coherence count, and routing information to reach the 
destination. 

This command is a possible response to a SharedtoDirty Req or a SharedtoDirtyST
CReq. SharedtoDirtySuccessCnt is generated in response to a SharedtoDirtyReq when
ever the block is in shared state and the source processor is on the sharing list or the 
sharing mask bit corresponding the source processor is set. SharedtoDirtySuccessCnt is 
generated in response to a SharedtoDirtySTCReq only when the block is in Sharedl or 
Shared2 state (or in SharedM state when there is only one processor per mask bit) and 
the source processor is on the sharing list. 

The directory may incorrectly succeed a SharedtoDirtyReq, but may not incorrectly 
succeed a SharedtoDirtySTCReq. See Sections 12.13.6 and and 12.13.8. 

This command is used only on the interprocessor channels. 

12.12.4.11 SharedtoDirtyProbCnt 

Probable success response to a SharedtoDirtySTCReq (the source processor must be 
the final arbiter of success). The command contains the requestor MAF #,a coherence 
count, and routing information to reach the destination. 

This is a response to a SharedtoDirtySTCReq when the block is in SharedM state and 
the mask bit corresponding to the source processor is set. See Sections 12.13.6 and 
12.13.8. Note that Sharedinval's are not sent out together with SharedtoDirtyProbCnt; 
Rather, the Sharedinval's are sent out only with SharedtoDirtyComplete receipt. 

This command is used only on the interprocessor channels. 

12.12.4.12 SharedtoDirtyFail 

Failure response to a SharedtoDirty Req or SharedtoDirtySTCReq. The command con
tains the requestor MAF # and routing information to reach the destination. 

This command is a possible response to a SharedtoDirtyReq or SharedtoDirtySTCReq 
requests. A SharedtoDirty must fail when the block is not in shared state or if the source 
processor is not on the sharing list or the sharing mask bit corresponding to the source 
processor is not set. 

This command is used only on the interprocessor channels. 

12.12.4.13 NXMResp 

Indicates the request referenced an area of memory that does not exist. The response 
contains the requestor MAF # and routing information to reach the destination. 

This command is a possible response to a ReadReq, ReadSharedReq, ReadModReq, 
FetchReq, InvaltoDirtyReq, or Rd* (IO read) request. Of this list, on 21364 the Invalto
DirtyReq (from a processor, not a DMA engine) is one one that cannot be generated 

Compaq Confidential 
5 January 2001 --·Subject To Change Cache Coherence Protocol Processing 12-31 



Protocol Message Descriptions 

speculatively, and therefore indicates a software error. Software may use NXM 
responses to RdBytes requests to detect the presence of 1/0 devices. For all the other 
requests a NXMResp is not known to be an error. 

This command is used on both the 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

12.12.4.14 ERRResp 

Indicates the request referenced an area of memory that encountered a hardware error. 
The response contains the requestor MAF # and routing information to reach the desti
nation. 

This command is a possible response to a ReadReq, ReadSharedReq, ReadModReq, 
FetchReq,InvaltoDirtyReq, SharedtoDirty*Req, or RdBytes request. 

This command is used on both the 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

12.12.4.15 lnvalAck 

A command sent to the requesting processor in response to a SharedlnvalSingle or 
SharedlnvalBroadcast command at a (possible) sharer. The command contains a MAF # 
and routing information to reach the destination. 

When a processor wishes to write a (non-local) shared block (a ReadMod, Sharedto
Dirty*, InvaltoDirty, or SharedtoDirtyComplete), two things normally happen: (1) a 
*Cnt response is returned to the requestor, and (2) a Sharedlnval* (forward) is sent to 
all sharers. The coherence count is the number of InvalAcks to expect, and also the 
number of Sharedlnval * messages sent. 

Note that the router broadcasts invalidates and sends one InvalAck in response to a 
SharedlnvalBroadcast message. 

This command is a possible response to a ReadModReq, SharedtoDirtyReq, Sharedto
DirtySTReq, or InvaltoDirtyReq request. Note that SharedtoDirtySTCReq invals are 
sometimes delayed until receipt of a SharedtoDirtyComplete to avoid unnecessary 
invalidates. See Sections 12.13.6 and 12.13.8. 

This command is used on both the 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

12.12.4.16 WrlOAck 

A command sent back to the source of an 1/0 write in response to each 1/0 write com
mand. The command contains a requesting WRIO #. This response indicates that the 
write is MB complete. The source processor is expected to track outstanding 1/0 write 
requests. 

This command is the response to a Wrbytes, WrLWs, WrQWs, or WrIPR request. 

This command is used on both the 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

12.12.4.17 WrlONAck 

This command is identical to the WrIOAck command except for the following: 

1. It can only be returned in response to a write of the RBOX_INTA register, 

Compaq Confidentia I 
12-32 Cache Coherence Protocol Processing 5 Jt1nw~ry 2001 -~Subject To Change 



Protocol Message Descriptions 

2. In this special case the WrIONAck indicates that the interrupt request was not 
accepted. 

See Section 13.5 for more information on interrupts. 

This command is the response to a WrIPR request. 

This command is used on both the 1/0 and interprocessor channels. 

12.12.4.18 VictimClean 

A command sent to the directory to release exclusive access to a clean block (much like 
a victim with no data). The command contains the address to release. 

This command updates the directory state to invalid. It also cams the DIFT and may 
update DIFT state. 

This command is used on both the 1/0 and interprocessor channels. An 1/0 device may 
source this packet. 

12.12.4.19 VictimCleantoShared 

A command sent to the directory to release exclusive access to a clean block (much like 
a victim with no data) but leave the block in shared state. The command contains the 
address to release and the sharing PID of the (prior) exclusive owner of the block. 

VictimCleantoShared is similar to ForwardAckShared except that a ForwardMiss may 
(or may not) also be in flight to the DIFT. ForwardAckShared is sure to find a DIFT 
entry waiting when it returns to the directory, whereas VictimCleantoShared is not. 

VictimCleantoShared is similar to VictimClean except the final block state should be 
shared rather than invalid. 

VictimCleantoShared is similar to VictimtoShared except the data need not be written 
back. 

This command is used only on the interprocessor channels. 

12.12.4.20 ForwardAckExcl 

Directory/DIFT update as a result of a ReadModForward or InvaltoDirtyForward. The 
command contains an address. 

This command is similar to the VictimAckExcl command except that the block need 
not be written back. The final state of the block at the directory should be exclusive 
owned by the requesting PID. It is assumed that the requesting PID was stored in the 
DIFT at the time the DIFT entry was created and can be extracted in response to the 
ForwardAckExcl address cam. This command is used only on the interprocessor 
channels. 

12.12.4.21 ForwardAckShared 

Directory/DIFTupdate as a result of a ReadForward or ReadSharedForward. The com
mand contains an address and the sharing PID of the (prior) exclusive owner of the 
block. 

Compaq Confidential 
5 January 2001 -~Subject To Change Cache Coherence Protocol Processing 12-33 



Protocol Message Descriptions 

This command is similar to the VictimAckShared command except that the block is not 
written back. ForwardAckShared implies the final state of the block should be shared, 
with both the prior exclusive owner and the requestor (if the requestor is non-local) on 
the sharing list. It is assumed that the requesting PID was stored at the time the DIFf 
entry was created and can be extracted from the DIFT to update the sharing list. 

This command is used only on the interprocessor channels. 

12.12.4.22 ForwardMiss 

This command indicates that a forwarded request did not find the block at the exclusive 
owner of the block. The command contains the address. 

This command is generated in the unlikely event that a forwarded request does not find 
the block at the exclusive owner of the block (this can only happen when the victim 
was/is in flight from the exclusive owner of the block to the directory). The DIFT can 
determine the occurence of this unlikely event when it sees a Victim, VictimClean, or 
ForwardMiss while a forward request is pending to the block. When this unlikely case 
does happen, the DIFf regenerates the request (after waiting for both the Victim* and 
ForwardMiss responses to return) as if the block were originally found invalid in the 
directory. See Sections 12.13.1 and 12.13.2. 

This command is used on both I/O and the interprocessor channels. An I/O device may 
source this packet. 

12.12.4.23 SharedtoDirtyComplete 

This command is a response from the source processor to the DIFT indicating that the 
source processor agreed that the SharedtoDirty should succeed. The command contains 
the address. 

This command results when a SharedtoDirtyProbCnt was successful. The result of 
receipt of a SharedtoDirtyComplete is that SharedlnvalBroadcast's are launchedby the 
DIFT. 

See Sections 12.13.6 and 12.13.8 for the usage of this command. 

This command is used only on the interprocessor channels. 

12.12.4.24 SharedtoDirtyRelease 

This command is a response from the source processor to the DIFT indicating that the 
source processor disagreed that the SharedtoDirty should succeed. The command con
tains the address. 

This command results when a SharedtoDirtyProbCnt was unsuccessful. 

See Sections 12.13.6 and 12.13.8 for the usage of this command. 

This command is used only on the interprocessor channels. 

12.12.5 SPECIAL CHANNEL Message Details 

12.12.5.1 NZNOP 

This command is used to fill idle slots on the interconnect. 

Compaq Confidentia I 
12-34 Cache Coherence Protocol Processing 5 J(1nw1ry 2001 -- Subject To Change 



Protocol Message Descriptions 

The ALERT wires are used for system broadcast interrupt. These signals fan out to all 5 
ports (north, south, east, west, 1/0). The alert wires also contain the SYNCH functional
ity. The SYNCH signals need only be used on the compass points (north, south, east, 
and west). 

Three of the four ALERT wires are currently allocated: 

Table 12-17 ALERT Wire Allocation 

ALERT Wire Type of Connection 

ALERT[O] Hardware ALERT 

ALERT[l] Software ALERT 

ALERT[2] Hardware SYNCH 

ALERT[3] Unused 

An ALERT is a (high-priority) broadcast interrupt. When an 21364 receives an ALERT 
and does not already have its ALERT bit set, then it sets its ALERT bit and sends out an 
ALERT pulse on all five output ports. An 21364 can receive an ALERT in the follow
ing ways: 

• 
• 

• 

It can receive an ALERT assertion on one of the five input ports 

It can suffer a hardware error that is expected to produce an ALERT (see Rbox Port 
Config IPR). (This is only true for a hardware ALERT.) 

It can receive a IPR write indicating that it should launch an ALERT . 

The current ALERT status is indicated in the Rbox_INT register. Software clears the 
(local) ALERT status (and allows the receipt of another ALERT) by a write to this reg
ister. 

A software ALERT is initiated by a write to the Rbox_IREQ register. This sets the local 
SW ALERT bit and causes the ALERT to propagate throughout the network. 

A SYNCH forces the SYNCH counter(s) to remain in synchronization with the other 
counters in the other 21364's in the system. (See the Rbox Config register for a descrip
tion of the function of the SYNCH counter(s).) 

The following things may cause the SYNCH counter(s) to enter the SYNCH interval. 
Note that the period counter is re-initialized at each entry into the SYNCH interval in 
order to keep the counters in sync. In both of these cases the local 21364 sends out a 
SYNCH pulse on all four compass pointsif it is not already in the SYNCH interval: 

• The local period has been covered (i.e. the period counter has stepped through the 
required number of cycles since the last SYNCH) 

• A synch is received on one of the four input ports 

This command is used both on the I/O and interprocessor channels. An I/O device may 
source this packet. 

12.12.5.2 SpeciallnvalBroadcast 

This command is used to complete a SharedlnvalBroadcast. The message is broadcast 
among the processors that share the same sharing mask bit. The command contains the 
full address (DPID and offset) and the requesting processor's PID. 

Compaq Confidential 
5 January 2001 ~·Subject To Change Cache Coherence Protocol Processing 12-35 



Protocol Race Descriptions 

SpeciallnvalBroadcast has many special properties that are different from other mes
sages. See Section 12.12.3.3 for more details. 

This command is used only on the interprocessor channels. 

12.13 Protocol Race Descriptions 

12.13.1 Early Forward Race 

A forward arrives while there is an oustanding ReadReq or ReadModReq (for example, 
an exclusive block has not been returned) or if not all InvalAck's have arrived. This 
may be caused by either: 

(A) the block is returning from the directory (or another processor) and the forward 
is for a subsequent request, but the forward beat the block 

or 

(B) The forward was for a prior copy of the block (the victim is on its way to the 
directory) 

1. Forward sets "force shared" ("force vie" if ReadModPorward) bit in the MAP, 
sends back a ForwardMiss to DIPT. 

2. When the block returns and coherence count is zero, the MAP entry is not deleted 
until it forces a Victim, VictimClean, VictimtoShared, or VictimCleantoShared, 
whichever is appropriate 

3. DIFT waits for both the Victim (or VictimClean, VictimtoShared, orVictimClean-
toShared) and the ForwardMiss before proceeding 

4. Then, the DIPT entry returns data to the requestor and updates directory 

This solution conservatively victimizes the block even though in some cases (for exam
ple, case (B) above) it would not have been necessary. 

The final directory state should be set as if the state were invalid before the last request 
when Victim or VictimClean are produced. The final directory state should be set as if 
the state were shared with the prior exclusive owner on the sharing list when Victim
toShared or VictimCleantoShared are produced. If a Victim or VictimtoShared was cre
ated, the request must get the data from the Victim or VictimtoShared command, and 
the memory copy must be updated to this value also. Otherwise, the memory copy of 
the data was/is correct. 

12.13.2 Late Forward Race 

A forward arrives to a block that has been recently victimized. This is simular to case 
(B) of the above "Early Forward" race, except it is simpler in that there is no outstand
ing request to the block. 

1. The forward sees the block is not in the cache and a ForwardMiss is returned to the 
directory 

2. DIFTwaits for both the Victim (or VictimClean) and the PorwardMiss before pro
ceeding 

3. Then, the DIPTentry returns data to the requestor and updates directory 

Compaq Confidential 
12-36 Cache Coherence Protocol Processing 5 Jtmuc1ry 2001 --Subject To Change 



Protocol Race Descriptions 

With a Victim, the final directory state is set as if the state was invalid before the new 
request. With a VictimClean, however, the final directory state is shared (due to specu
lative directory writes). If a Victim was created, the request must get the data from the 
Victim command and the memory copy must also be updated to this value. Otherwise, 
the memory copy of the data was correct. 

12.13.3 Dual Victim Race 

A Victim (or VictimClean) arrives from the requesting node before the forward acknowledge
ment (VictimAckExcl or ForwardAck.Excl) arrives from the node the forward went to. 

1. Victim sets "block written" and "set invalid" bits (VictimClean sets only "set 
invalid") as it cams the DIFf 

2. VictimAckExcl does not write to memory when the "block written" bit is set 

3. VictimAckExcl and ForwardAckExcl set the directory state to invalid whenever the 
"set invalid" bit is set 

The final directory state must be invalid. If it was a Victim command, the final memory 
copy of the data must be the data from the Victim command. If it was a VictimClean 
command and the ack was VictimAckExcl, then the final memory copy must be the 
data from the VictimAckExcl. 

12.13.4 Early lnvalAck Race 

An InvalAck arrives at the requestor before the *Count response arrives. 

• CMAF must keep count of early InvalAck's (i.e. the count must be able to go nega
tive) before the count from the *Count command is added in 

12.13.5 Early lnvalShared Race 

An InvalShared arrives while a ReadReq or ReadSharedReq is still outstanding (for example, 
the block hasn't yet been returned). This may be caused by either: 

(1) the block is returning from the directory and the InvalShared is for a subsequent 
request, but the InvalShared beat the block 

or 

(2) The InvalShared was for a prior copy of the block (either in this processor or in 
another processor that shares the same sharing mask bit at the directory) 

a. InvalShared sets "force inval" bit in CMAF (and fails set dirties) and sends Inv
alAck 

b. If the block returns shared, put the data in the cache (shared) but do not delete 
the MAF entry until it has invalidated the block 

This solution conservatively invalidates the block even though in some cases (for 
example, case (2) above) it would not be necessary. 

The final state of the block at this processor is invalid. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Cache Coherence Protocol Processing 12-37 



Protocol Race Descriptions 

12.13.6 Wrong SharedtoDirtySuccess Race 

A SharedtoDirtySuccess arrives from the directory even though the cache copy of the 
block has been invalidated (and probably the "force inval" bit is set?). The directory 
incorrectly responded success in this case. This can happen when the block was written 
(thus causing an InvalShared) while the set dirty was outstanding, and then another pro
cessor that shares a sharing mask bit at the directory received a shared copy of the 
block, and only then did the directory see the set dirty, which it responds success to 
since the corresponding sharing mask bit is set for the source of the set dirty. 

• Fail the set dirty in this case (and make sure the cache is invalid) 

• But do not release the MAF until a VictimClean is sent to the directory 

Once the VictimClean reaches the directory the final state of the block is invalid. In 
response to the set dirty failure, the processor will generate a new ReadModReq MAF 
(unless it was due to a store conditional). 

12.13.7 A Note on SharedtoDirties and their Resolution 

The ultimate arbiter of StoD success is always the requesting MAF entry (and the cache 
at that processor). If the cached copy of the block has been deleted between the time 
that a request is launched and resolved, the StoD fails. If the cached copy has not been 
invalidated, the StoD succeeds. 

For local StoD's (i.e. StoD's from the local processor), success or failure of the StoD is 
determined at the time that the request enters the DIFT and CAM's across the local 
MAF. If no prior reference has invalidated the block the StoD succeeds. 

For StoD's from a remote processor, success or failure is determined at the time of the 
response from the directory is received at the requesting processor. In some cases the 
directory can prove that a StoD has succeeded or failed. The request will certainly fail 
when the block is not in shared state, the processor is not on the sharing list, or the cor
responding sharing mask bit is not set. The request will certainly succeed if the block is 
in Sharedl or Shared2 state and the requesting processor is in the sharing list. But when 
the block is in SharedM state and the corresponding sharing mask bit is set, the direc
tory cannot be certain whether the request should succeed or fail since it may be that 
another processor that shares the same mask bit has the up-to-date copy of the block, 
and the requesting processor's copy has been invalidated. See Section 12.13.6 for more 
details. 

12.13.8 Special Store-Conditional Support 

Even though the directory cannot determine the success or failure of a StoD for certain 
in some cases, it normally optimistically assumes that the StoD will succeed and acts 
accordingly. If the directory turns out to be incorrect in this assumption, the source pro
cessor corrects the error. See Section 12.13.6. 

General use of this optimistic behavior could lead to a store-conditional livelock prob
lem. The problem is that in optimistically assuming the StoD will succeed, the directory 
ends up performing unneeded invalidates in the cases when it was wrong. It may be 
possible to get into the situation where no store-conditionals could ever succeed if there 
are too many unneeded invalidates. 

Compaq Confidential 
12-38 Cache Coherence Protocol Processing 5 Jc1nuc1ry 2001 m Subject To Change 



Protocol Race Descriptions 

We resolve this problem by supporting an optimistic and conservative mode for store
conditional SharedtoDirty's. When in optimistic mode, a store-conditional generates a 
normal (i.e. optimistic) SharedtoDirty. When in conservative mode, a store-conditional 
generates a SharedtoDirtySTC (i.e. a conservative StoD). When a processor detects that 
a StoD was incorrectly succeeded by the directory, it enters conservative mode. This 
conservative mode is controlled by a counter. The counter is set to seven whenever a 
STOD that was generated from a store-conditional incorrectly succeeds. The counter is 
decremented on every successful SharedtoDirtySTC. Conservative mode is when the 
counter is not zero. A set CBOX_CTL[FORCE_STXC_CONS] always makes Shared
toDirtySTC 's conservative. 

The directory never optimistically succeeds a StoDSTC, it only responds success when 
it can prove that the StoDSTC will succeed. In cases where the directory cannot deter
mine success/fail exactly, a SharedtoDirtyProbCnt is returned to the requesting proces
sor, the invals are not performed, and a DIFT entry is retained to wait for the success/ 
failure determination from the source. After the source processor receives the Sharedto
DirtyProbCnt, it responds to the DIFT with a SharedtoDirtyComplete or SharedtoDirty
Release. Upon receipt of the SharedtoDirtyComplete, the directory/DIFT sends out the 
invals and updates the directory state. Upon receipt of a SharedtoDirtyRelease, the 
DIFT entry is deallocated. 

12.13.9 Local CBOX Too Far Ahead 

Since the directory state is generally not updated when a block is loaded into the local 
cache, all remote requests arriving at a destination 21364 must probe the local L2 cache 
tags as well as the directory state to determine where the response should come from 
(L2 or memory) and what the final state of the block is. As the remote request arrives it 
is queued in the DIFT and the CBOX probe queue. Eventually, the CBOX responds to 
the DIFT after checking the L2 tags. The DIFf does not perform any coherence actions 
other than reading the current directory state until it receives the CBOX response. Gen
erally, the CBOX runs ahead of the DIFT since the L2 tags are faster than memory and 
the DIFT must wait for the CBOX response. 

Consider the following scenario. In the beginning a block is owned by a remote proces
sor. A local ReadMod is forwarded to the remote processor by the (local) DIFT. The 
remote processor responds with a BlkExclusiveCnt and (A) a ForwardAckExcl. The 
(A) ForwardAckExcl gets stalled in the network but the BlkExclusiveCnt arrives at the 
destination. The local CB OX evicts the block, so there is a (B) Victim being transferred 
to the DIFT. Meanwhile another remote request arrives, which the CBOX responds to 
the DIFT with (C) ForwardMiss. At this point there are three things in-flight to the 
DIFT: (A) The ForwardAckExcl from the original forward, (B) The Victim from the 
local CBOX, and (C) the ForwardMiss from the local CBOX. It is easy for the DIFf to 
get confused and think that the Victim applies to the original forward, then leaving the 
DIFT waiting for the Victim pair to the (C) ForwardMiss. 

The solution to this race is to prevent the local cbox from sending the (C) Victim until 
after the DIFT has received the (A) ForwardAckExcl. The remote CBOX sets the 
coherence count for the B lkExclusiveCnt to 1. This causes the local CB OX to wait. 
Once the DIFT receives the ForardAckExcl it responds to the local CBOX (internally) 
with an "InvalAck" that allows the Cbox to proceed with this block. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Cache Coherence Protocol Processing 12-39 



Protocol Race Descriptions 

Specifically, the remote CBOX sets the coherence count to one to solve this instance 
whenever (1) it sends a response to a requestor resulting from a forward (2) with a 
matching DPID and RPID (and the request did not originate from the 1/0 ASIC at the 
node) (3) where the response gives the requestor exclusive access to the block. The 
DIFT sends an "lnvalAck" to the CBOX after it receives a ForwardAckExclusive or 
VictimAckExclusive when the request source is local. 

Compaq Confidential 
12-40 Cache Coherence Protocol Processing 5 Jc1nuc1ry 2001 m Subject To Change 



Protocol Messages 

13 
Router Interface - the Rbox 

Introductory information about the Rbox is located in Section 2. 7 .2. Information about 
the Rbox IPRs is located in Section 16.5. 

13.1 Protocol Messages 

The following direction symbols are used in Tables 13-1through13-5: 

Symbol Meaning 

T Sent to 107 ASIC 

F Received from I07 ASIC - can be sent to a 21464 processor only 

G Received from I07 ASIC - can be sent to an I07 ASIC only 

H Received from I07 ASIC- can be sent to a 21464 processor or an I07 ASIC 

Compaq Confidential 
5 January 2001 -· Subject To Change Router Interface - the Rbox 13-1 



Protocol Messages 

1

13.1.1 Messages on the IO_CHANNEL 

Table 13-1 lists messages on the IO_CHANNEL. 

Table 13-1 Messages on the IO_CHANNEL 

Command Direction Contents 

RdBytes Packet Format (TBD Ticks) 

RdBytes T,G 

RdLWs T,G 

RdQWs T,G 

RdIPR F 

WrBytes Packet Format (19 Ticks) 

WrBytes T,G 

WrLWs T,G 

WrQWs T,G 

WrIPR F 

13-2 Router Interface - the Rbox 

Route(16), Dealloc(9), Opcode(8), Block Address(32), req MAF(6), 
req PID(l 1), QW add(3), Mask(8) 

Route(16), Dealloc(9), Opcode(8), Block Address(32), req MAF(6), 
req PID(l 1), QW add(l), Mask(8) 

Route(16), Dealloc(9), Opcode(8), Block Address(32), req MAF(6), 
req PID(l 1), QW add(O), Mask(8) 

Route(16), Dealloc(9), Opcode(8), Block Address(32), req MAF(6), 
req PID(l 1), QW add(O), Mask(8) 

Route(16), Dealloc(9), Opcode(8), Block Address(32), reqWRI0(6), 
reqPID(ll), Mask(8), QWadd(3), Data 

Route(16), Dealloc(9), Opcode(8), Block Address(32), reqWRI0(6), 
reqPID(ll), Mask(8), QWadd(l), Data 

Route(16), Dealloc(9), Opcode(8), Block Address(32), reqWRI0(6), 
reqPID(ll), Mask(8), QWadd(O), Data 

Route(16), Dealloc(9), Opcode(8), Block Address(32), reqWRI0(6), 
reqPID(ll), Mask(8), QWadd(O), Data 

Compaq Confidential 
5 Jmumry 2001 - Subject To Change 



Protocol Messages 

13.1.2 Messages on the REQUEST_CHANNEL 

Table 13-2 lists messages on the REQUEST_CHANNEL. 

Table 13-2 Messages on the REQUEST_CHANNEL 

Command Direction Contents 

Request Packet Format (3 Ticks) 

ReadReq 

ReadSharedReq 

ReadModReq 

FetchReq 

SharedtoDirtyReq 

SharedtoDirtySTCReq 

InvaltoDirtyReq 

F 

F 

F 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
req MAF(6), req PID(ll) 

13.1.3 Messages on the FORWARD_CHANNEL 

Table 13-3 lists messages on the FORWARD_CHANNEL. 

Table 13-3 Messages on the FORWARD_CHANNEL 

Command Direction Contents 

Forward Packet Format (3 Ticks) 

ReadForward 

ReadSharedF orward 

ReadModForward 

FetchForward 

InvaltoDirtyForward 

SharedlnvalSingle 

SharedlnvalBroadcast 

T 

T 

T 

T 

T 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll), Wrap(2) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll) 

Route(16), Dealloc(9), Opcode(8), DPID(lO), Stripe(l), 
Block Address(31), req MAF(6), req PID(ll) 

Compaq Confidentia I 
5 Jam.1ary 2001 - Subject To Change Router Interface - the Rbox 13-3 



Protocol Messages 

13.1.4 Messages on the RESPONSE_CHANNEL 

Table 13-4 lists messages on the RESPONSE_CHANNEL. 

Table 13-4 Messages on the RESPONSE_CHANNEL 

Command Direction Contents 

Block Response Packet (18 Ticks) 

BlkShared 

BlkExclusiveCnt 

Blklnval 

BlkIO 

T 

T 

T,H 

Route(16), Dealloc(6), Opcode(8), req MAF(6), Wrap(2), Data 

Route(16), Dealloc(6), Opcode(8), req MAF(6), Wrap(2), CohCnt(5), 
Data 

Route(16), Dealloc(6), Opcode(8), req MAF(6), Wrap(2), Data 

Route(16), Dealloc(6), Opcode(8), req MAF(6), Wrap(2), Data 

Victim Block Response Packet (19 Ticks) 

Victim F Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID(l 1), Data 

VictimtoShared Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID(lO), Data 

VictimAckExcl Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), Data 

VictimAckShared Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID(lO), Data 

Compaq Confidential 
13-4 Router Interface - the Rbox 5 Jc1nuc1ry 2001 ··· Subject To Change 



Protocol Messages 

Table 13-4 Messages on the RESPONSE_CHANNEL (Continued) 

Command Direction Contents 

No Block Response Packet (2 Ticks) 

InvaltoDirtyRespCnt 

SharedtoDirtySuccessCnt 

Shared to Dirty ProbCnt 

SharedtoDirtyFail 

NXMResp 

ERRResp 

InvalAck 

WrlOAck 

WrIONAck 

T 

T,H 

T,H 

T 

T,H 

T 

Release Response Packet (3 Ticks) 

VictimClean 

VictimCleantoShared 

ForwardAckExcl 

ForwardAckShared 

ForwardMiss 

SharedtoDirtyComplete 

SharedtoDirtyRelease 

F 

F 

Route(16), Dealloc(6), Opcode(8), req MAF#(6), CohCnt(5) 

Route(16), Dealloc(6), Opcode(8), req MAF#(6), CohCnt(5) 

Route(16), Dealloc(6), Opcode(8), req MAF#(6), CohCnt(5) 

Route(16), Dealloc(6), Opcode(8), req MAF#(6) 

Route(16), Dealloc(6), Opcode(8), req MAF#(6) 

Route(l6), Dealloc(6), Opcode(8), req MAF#(6) 

Route(16), Dealloc(6), Opcode(8), req MAF#(6) 

Route(l6), Dealloc(6), Opcode(8), req WRI0#(6) 

Route(16), Dealloc(6), Opcode(8), req WRI0#(6) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID(l 1) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID( 10) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31), 
Source PID( 10) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31) 

Route(16), Dealloc(9), Opcode(8), Stripe(l), Block Address(31) 

13.1.5 Messages on a SPECIAL_CHANNEL 

Table 13-5 lists messages on the SPECIAL_CHANNEL. 

Table 13-5 Messages on a SPECIAL_CHANNEL 

Command Direction Contents 

NZNOP T,F Opcode(8), Dealloc(6), Alert(5) 

SpeciallnvalBroadcast Route(16), Dealloc(9), Opcode(8), Dir PID(lO), Stripe(l), 
Block Address(31), req PID(ll) 

Compaq Confidential 
5 January 2001 -- Subject To Change Router Interface - the Rbox 13-5 



Message Format Details 

13.2 Message Format Details 

Physical channels have 32 bits of information plus a 7-bit SECD ED ECC code. Packets 
are always sent contiguously in time. 

13.2.1 Route Information 

This information tells where to route a message. Along the taken route it also (dynami
cally) determines the buffers that are used. 

The 16 route information bits in the first tick of each message are shown in Table 13-6. 
This table shows that: 

• Most of these bits do not change their value as a message hops. 
• "Virtual channel" is recalculated for every corner turn. 
• "Did adapt" inverts every time a message converts from adaptive/deadlock-free 

buffers (and vice-versa). 
• "Virtual channel" is unused (but must be preserved) when "did adapt" is asserted. 
• "Did adapt" need not be zero when "can adapt" is zero: 

A message in the IO_CHANNEL may take an initial hop into the adaptive/ini
tial buffers. 

A message not in the IO_CHANNEL that has "can adapt" clear can still route 
in the adaptive buffers - a clear "can adapt" implies only that the message must 
route in a fixed path. 

• The 21464 uses only four of the NS value and EW value bits because the largest 
configuration is 16 processors in each dimension. 

Table 13-6 Route Information Bits 

Bits 

NS dir (1) 

NS value (5) 

EW dir (1) 

EW value (5) 

Can adapt (1) 

Is for 1/0 (1) 

Virtual channel ( 1) 

Did adapt (1) 

Bit Position(s) Meaning 

NS direction to travel (north or south). 

No more NS travel needed when NS WHOAMI is 
this value. 

EW direction to travel (east or west). 

No more EW travel needed when EW WHOAMI is 
this value. 

This message can travel in adaptive directions. 

This message is for the 1/0 channel (or CSR mas
ter) at the node. 

Select which of the two virtual channels in this 
direction. 

Place this message into an adaptive buff er. 

The opcode bits are included in the first tick of each message so that the length of the 
message and the exact virtual channel can be determined quickly. 

Compaq Confidential 
13-6 Router Interface - the Rbox 5 Janwiry 2001 - Subject To Cbange 



Message Format Details 

13.2.2 Flow Control and Dealloc Information 

The flow control works as follows (thought of as "credit-based"): 

• 

• 

• 
• 

• 

• 

Senders and receivers are paired (in one direction one is the sender and the other the 
receiver, and in the other direction their roles are inverted). 
The sender has N buffers in each class to send into (the actual N value varies for 
each class). 
Each sent packet allocates one of the buffers . 
The sender knows how many buffers are available. If there may be an overflow, 
sender stops sending until space is available. 
The "dealloc" encodings listed in Table 13-7 are used to free up buffer space of 
each class. 
There is one deallocation response from the receiver for each message sent. 

The buffer space is deallocated using 3-bit signals sent as part of the header information 
with each message sent along the corresponding return channel. Each tick in the control 
portion of the packets contains at least one 3-bit signal. The packets, including cache 
blocks, contain one or more 3-bit signals in each control tick. 

The concatenation of all the dealloc information included in all messages produces a 
string of 3-bit deallocation signals. The encoding is a "huffman" encoding that may 
require multiple 3-bit signals per deallocation. (The dealloc encoding to release a multi
ple-signal deallocation may span across multiple messages.) As listed in Table 13-7, 
deallocation of the adaptive messages requires a single 3-bit signal, while the virtual 
channels require two 3-bit signals. Also, the RDIO and WRIO packets are merged into 
one. 

Table 13-7 Dealloc 3-Bit Variable-Length Encoding (IPs) 

Code Meaning 

0 Nop 

1 Special inval broadcast complete 

61 Special inval broadcast (special) 

2 Request adaptive 

62 Request virtual channel 0 

72 Request virtual channel 1 

3 Forward adaptive 

63 Forward virtual channel 0 

73 Forward virtual channel 1 

4 Response non-block adaptive 

64 Response non-block virtual channel 0 

74 Response non-block virtual channel 1 

5 Response block adaptive 

65 Response block virtual channel 0 

75 Response block virtual channel 1 

Compaq Confidentia I 
5 January 2001 ·-Subject To Change Router Interface - the Rbox 13-7 



Message Format Details 

Table 13-7 Dealloc 3-Bit Variable-Length Encoding (IPs) (Continued) 

Code Meaning 

60 Read I/O initial/adaptive 

66 Read I/O virtual channel 0 

67 Read I/O virtual channel 1 

70 Write I/O initial/adaptive 

76 Write I/O virtual channel 0 

77 Write I/O virtual channel 1 

The inval broadcast packets are given special buffering, separate from the rest of the 
traffic. There is also inval completion information that flows on the dealloc channel. 
See Section 13.3 for a description of the special operation of the inval broadcast pack
ets. 

Table 13-8 shows the message formats that can flow on each set of buffers. 

Table 13-8 Buffer Message Formats 

Size of Buffer Number of Entries 
Buffer Pool (Ticks) (adap+vcO+vc 1) Formats Included 

Request 3 8+1+1 Request Packet 

Forward 3 8+1+1 Forward Packet 

Response non-block 3 8+1+1 No Block Response Packet 
Release Response Packet 
Interrupt Response Packet 

Response block 19 3+1+1 Block Response Packet 
Victim Block Response Packet 

Readl/O 3 1+2+2 RdBytes Packet 

Write I/O 19 1+2+2 WrBytes Packet 

In.val broadcast 3 8 Inval Broadcast Packet 

The "size of buffer" is the maximum number of ticks in each format included in that 
buffer pool. 

Compaq Confidential 
13-8 Router Interface - the Rbox 5 Jc1mJc1ry 2001 - Subject To Change 



Message Format Details 

The 1/0 port has a simpler single-tick dealloc encoding as listed in Table 13-9. It is sim
pler because the 1/0 port does not separate the adaptive and virtual channel buffers. 

Table 13-9 Dealloc 3-Bit Encoding (1/0 port) 

Code Meaning 

0 Nop 

1 Unused 

2 Request 

3 Forward 

4 Response non-block 

5 Response block 

6 Read I/O 

7 Write I/O 

Table 13-10 shows the size and number of each buff er on the 1/0 port. 

Table 13-10 1/0 Port Buffer Size and Number 

Buffer Pool Size of Buffer Number In Number Out 

Request 3 8 

Forward 3 1-8 

Response non-block 3 8 1-8 

Response block 19 4 1-8 

Readl/O 3 2 1-8 

Write I/O 19 2 1-8 

The column, Number In, indicates the number of buffers that the 21464 has on its I/O 
port. The number out (on the I07 ASIC) is variable as specified in the RBOX_IO_BUF 
register. 

Table 13-11 shows the size and number of each buffer for each of the Zports. 

Table 13-11 Zport Buffer Message Format 

Size of Buffer Number of 
Buffer Pool (ticks) Entries Formats Included 

Forward 3 8 Forward Packet 

Response non-block 3 8+1 1 No Block Response Packet 
Release Response Packet 
Interrupt Response Packet 

Response block 19 4 Block Response Packet 

1 The 1 extra is used by the broadcast inval widget 

Compaq Confidential 
5 January 2001 -Subject To Change Router Interface - the Rbox 13-9 



Message Format Details 

Table 13-12 shows the size and number of each buffer on the Cport. 

Table 13-12 Cport Buffer Message Format 

Size of Buffer Number of 
Buffer Pool (ticks) Entries Formats included 

Request 3 8 Request Packet 

Response non- 3 4+41 No Block Response Packet 
block Release Response Packet 

Interrupt Response Packet 

Response block 19 6 Block Response Packet 

Read IO 3 4 Rdbytes Packet 

Write IO 19 4 Wrbytes Packet 

1 The 4 extra are used by the broadcast inval widget 

Compaq Confidential 
13-1 o Router Interface - the Rbox 5 J(1mi(1ry 2001 -· Subject To Change 



Message Format Details 

13.2.3 Packet Formats 

Table 13-13 lists the packet format identifiers and thier contents. 

Table 13-13 Packet Formats 

Identifier 

OP 

ADD 

STRIPE 

RMAF 

RWRIO 

RPID1 

DPID 

SPID1 

DESTPID1 

IO ADD 

QWADD 

IOMASK 

COUNT 

DATA 

ECC 

TBD 

WRAP 

ALERT 

MBZ 

Contents 

Opcode (8 bits). 

Block address of block at DPID (offset at DPID) (32 bits). 

Stripe bit. 

Requestor MAF (6 bits). 

Requestor WRIO number (6 bits). 

Requestor PID (11 bits) - uppermost bit is IJO. 

PID of directory for block (10 bits). 

Source PID (11or10 bits depending if it can be sourced from IJO). 

PID for a packet generated by the I07 ASIC (11 bits). The DESTPID indicates the destination 
for the packet. (An I07 ASIC can address another I07 ASIC.) DESTPID[lO] must be set for 
RdIPR and WrIPR operations received by the 21464 on the incoming I/O port. 

I/O space address bits (32 bits). 

Bits below cache block for IJO address (3 bits). 

Bits indicating bytes/longwords/quadwords read/written (8 bits). 

Coherency count. 

Data bits. 

ECC bits. 

For header ticks from the I07 ASIC - value depends on the opcode. 

Indication of which 128 bits from the block will/should arrive first. The wrap is address bits [5 :4] 
and specifies the order of the octaword transfers. The following table specifies the order of the 
longwords, where X. Y means longword Y within octaword X. 

Wrap Value Wrapped Longword Order in the Packet 

0 0.0, 0.1, 0.2, 0.3, 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 3.2, 3.3 

1 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 3.2, 3.3, 0.0, 0.1, 0.2, 0.3 

2 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 3.2, 3.3, 0.0, 0.1, 0.2, 0.3, 1.0, 1.1, 1.2, 1.3 

3 3.0, 3.1, 3.2, 3.3, 0.0, 0.1, 0.2, 0.3, 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3 

4 bits allocated, 3 used: one HW ALERT, one SW ALERT, one HW SYNCH (not needed for the 
I/O port). 

Must be zero. 

1 RPID, SPID, and DESTPID are typically one more bit than DPID because a DPID cannot be an I07 
ASIC. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Router Interface -the Rbox 13-11 



Message Format Details 

Packet formats are listed in Tables 13-14 through 13-19. In all formats, bits 
ADD[34:7] equal OFF[34:7] (??OLD SECTION 3.1 ??). Bits ADD[36:35] and 
IOADD[37:35] are unused (zeros). Bit ADD[34] must be zero when not in 32GB/pro
cessor mode. 

In Tables 13-14 through 13-19, RPID[lO], SPID[lO], DESTPID[lO] when asserted, 
indicate the I07 ASIC connected to the corresponding 21464. RPID[9:8], SPID[9:8], 
IPID[9:8], DESTPID[9:8], and DPID[9:8] are unused (zeros). 

Bits RMAF[5:4] are unused, but all of RMAF[5:0] are passed on; therefore, each 107 
ASIC can have up to 64 outstanding references. 

Bits RWRI0[5:0] are unused by the 21464 because outstanding write I/Os are tracked 
only by means of the account; however, all of RWRI0[5:0] are passed on. Therefore, 
each 107 ASIC can track up to 64 outstanding 1/0 writes. 

In the following formats, the most-significant bits are on the left (the ECC bits are a 
separate field). The line following each header tick line indicates the bit positions of the 
corresponding field in the header tick line. 

13.2.3.1 IO_CHANNEL Formats 

Table 13-14 lists the IO_CHANNEL packet formats. 

Table 13-14 l/O_CHANNEL Formats (3 Ticks) 

Tick Contents 

RdBytes Packet Format (3 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] IOADD[10:6] ECC[6:0] 

[31 :16] [15:13] [12:5] [4:0] 

Tick 1 IOADD[37:22] DEALLOC[5:3] IOADD[21:11] QWADD[5:4] ECC[6:0] 

[31 :16] [15:13] [12:2] [1:0] 

Tick2 RPID[lO:O] QWADD[3] RMAF[5] SPARE[2:0] DEALLOC[8 :6] IOMASK[7:0] RMAF[4:0] ECC[6:0] 

[31 :21] [20] [19] [18:16] [15:13] [12:5] [4:0] 

WrBytes Packet Format (19 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] IOADD[l 0:6] ECC[6:0] 

[31 :16] [15:13] [12:5] [4:0] 

Tick 1 IOADD[37:22] DEALLOC[5:3] IOADD[21:11] QWADD[5:4] ECC[6:0] 

[31 :16] [15:13] [12:2] [1:0] 

Tick2 RPID[lO:O] QWADD[3] RWRI0[5] SPARE[2:0] DEALLOC[8:6] IOMASK[7:0] RWRI0[4:0] ECC[6:0] 

[31 :21] [20] [19] [18:16] [15:13] [12:5] [4:0] 

First Wrapped Octaword: 

Tick 3 DATA[31:0] ECC[6:0] (low-order longword of the octaword) 

Tick 4 DATA[63:32] ECC[6:0] 

Tick 5 DATA[95:64] ECC[6:0] 

Tick 6 DATA[127:96] ECC[6:0] (high-order longword of the octaword) 

Compaq Confidential 
13-12 Router Interface - the Rbox 5 Janut1r;12001 ~-Subject To Change 



Message Format Details 

13.2.3.2 REQUEST _CHANNEL Format 

Table 13-15 lists the REQUEST_CHANNEL packet format. 

Table 13-15 REQUEST _CHANNEL Format 

Tick Contents 

REQUEST _CHANNEL Packet Format (3 Ticks) 

TickO ROUTE[15 :O] DEALLOC[2:0] OP[7:0] ADD[10:6] ECC[6:0] 

[31:16] [15:13] [12:5] [4:0] 

Tick 1 STRIPE[O] ADD[36:22] DEALLOC[5:3] ADD[21:11] WRAP[5:4] ECC[6:0] 

[31] [30:16] [15:13] [12:2] 

Tick2 RPID[lO:O] SPARE[O] RMAF[5] SPARE[2:0] DEALLOC[8:6] SPARE[7:0] 

[31:21] [20] [19] [18:16] [15:13] [12:5] 

13.2.3.3 FORWARD_ CHANNEL Format 

Table 13-16 lists the FORWARD_CHANNEL packet format. 

Table 13-16 FORWARD_CHANNEL Format 

Tick Contents 

FORWARD_CHANNEL Packet Format (3 Ticks) 

Tick 0 ROUTE[15:0] 

[31:16] 

Tick 1 STRIPE[O] ADD[36:22] 

[31] [30:16] 

Tick 2 RPID[lO:O] SPARE[O] RMAF[5] SPARE[O] 

[31:21] [20] [19] [18] 

DPID[9:8] 

[17:16] 

DEALLOC[2:0] OP[7:0] 

[15:13] [12:5] 

DEALLOC[5:3] ADD[21:11] 

[15:13] [12:2] 

DEALLOC[8:6] DPID[7:0] 

[15:13] [12:5] 

[1:0] 

RMAF[4:0] ECC[6:0] 

[4:0] 

ADD[10:6] ECC[6:0] 

[4:0] 

WRAP[5:4] ECC[6:0] 

[1:0] 

RMAF[4:0] ECC[6:0] 

[4:0] 

Compaq Confidential 
5 January 2001 - Subject To Change Router Interface -the Rbox 13-13 



Message Format Details 

13.2.3.4 RESPONSE_CHANNEL Formats 

Table 13-17 lists the RESPONSE_CHANNEL packet formats. 

Table 13-17 RESPONSE_CHANNEL Formats 

Tick Contents 

Block Response Packet (18 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] RMAF[4:0] ECC[6:0] 

[31:16] [15:13] [12:5] [4:0] 

Tick 1 SPARE[l 1 :O] RMAF[5] SPARE[2:0] DEALLOC[5 :3] SPARE[5:0] COUNT[4:0] WRAP[5:4] ECC[6:0] 

[31:20] [19] [18:16] [15:13] [12:7] [6:2] [1:0] 

First Wrapped Octaword: 

Tick2 DATA[31:0] ECC[6:0] (low-order longword of the octaword) 

Tick3 DATA[63:32] ECC[6:0] 

Tick4 DATA[95:64] ECC[6:0] 

Tick5 DATA[127:96] ECC[6:0] (high-order longword of the octaword) 

Second Wrapped Octaword: 

Tick6 DATA[31:0] ECC[6:0] (low-order longword of the octaword) 

Tick7 DATA[63:32] ECC[6:0] 

Tick8 DATA[95:64] ECC[6:0] 

Tick9 DATA[127:96] ECC[6:0] (high-order longword of the octaword) 

Victim Block Response Packet (19 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] ADD[10:6] ECC[6:0] 

[31 :16] [15:13] [12:5] [4:0] 

Tick 1 STRIPE[O] ADD[36:22] DEALLOC[5:3] ADD[21:11] MBZ[l:O] ECC[6:0] 

[31] [30:16] [15:13] [12:2] [1:0] 

Tick2 SPID[lO:O] SPARE[4:0] DEALLOC[8:6] SPARE[l 2:0] ECC[6:0] 

[31:21] [20:16] [15:13] [12:0] 

First Unwrapped Octaword: 

Tick3 DATA[31:0] ECC[6:0] (low-order longword of the octaword) 

Tick4 DATA[63:32] ECC[6:0] 

Tick5 DATA[95:64] ECC[6:0] 

Tick6 DATA[127:96] ECC[6:0] (high-order longword of the octaword) 

No Block Response Packet (2 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] RMAF[4:0] ECC[6:0] 

[31 :16] [15:13] [12:5] [4:0] 

Tick 1 SPARE[l 1 :O] RMAF[5] SPARE[2:0] DEALLOC[5 :3] SPARE[5:0] COUNT[4:0] SPARE[l:O] ECC[6:0] 

[31:20] [19] [18:16] [15:13] [12:7] [6:2] [1:0] 

Compaq Confidential 
13-14 Router Interface -the Rbox 5 Jc1nuc1ry 2001 ··· Subject To Change 



Message Format Details 

Table 13-17 RESPONSE_CHANNEL Formats (Continued) 

Tick Contents 

Release Response Packet (3 Ticks) 

TickO ROUTE[15:0] DEALLOC[2:0] OP[7:0] ADD[10:6] ECC[6:0] 

[31:16] [15:13] [12:5] [4:0] 

Tick 1 STRIPE[O] ADD[36:22] DEALLOC[5:3] ADD[21:11] SPARE[l:O] ECC[6:0] 

[31] [30:16] [15:13] [12:2] [1:0] 

Tick2 SPID[lO:O] SPARE[4:0] DEALLOC[8:6] SPARE[l 2:0] ECC[6:0] 

[31 :21] [20:16] [15:13] [12:0] 

13.2.3.5 SPECIAL_CHANNEL Formats 

Table 13-18 lists the SPECIAL_CHANNEL packet formats. 

Table 13-18 SPECIAL_CHANNEL Formats 

Tick Contents 

Nop Packet (1 Tick) 

TickO SPARE[l 2:0] DEALLOC[5:0] OP[7:0] SPARE[l:O] SYNCH[O] SW _ALERT[O] HW _ALERT[O] 

[31:19] [18:13] [12:5] [4:3] [2] [1] [0] 

lnval Broadcast Packet Format (3 Ticks) 

TickO ROUTE[l 5 :O] DEALLOC[2:0] OP[7:0] ADD[10:6] 

[31:16] [15:13] [12:5] [4:0] 

Tick 1 STRIPE[O] ADD[37:22] DEALLOC[5:3] ADD[21:11] SPARE[l:O] 

[31] [30:16] [15:13] [12:2] [1:0] 

Tick2 RPID[lO:O] SPARE[2:0] DPID[9:8] DEALLOC[8:6] DPID[7:0] SPARE[4:0] 

[31 :21] [20:18] [17:16] [15:13] [12:5] [4:0] 

13.2.3.6 INPUT 1/0 PORT HEADER TICK Formats 

Table 13-19 lists the INPUT 1/0 PORT HEADER TICK packet formats. 

Table 13-19 INPUT 1/0 PORT HEADER TICK Formats 

Tick Contents 

Nop Packet (1 Tick) 

TickO SPARE[15:0] 

[31:16] 

All Other Packets (2 - 19 Ticks) 

DEALLOC[2:0] 

[15:13] 

TickO SPARE[4:0] DESTPID[lO:O] DEALLOC[2:0] 

[31:27] [26:16] [15:13] 

OP[7:0] ALERT[4:0] 

[12:5] 

OP[7:0] 

[12:5] 

[4:0] 

TBD[10:6] 

[4:0] 

ECC[6:0] 

ECC[6:0] 

ECC[6:0] 

ECC[6:0] 

ECC[6:0] 

ECC[6:0] 

Compaq Confidential 
5 Jam.mry 2001 -~Subject To Change Router Interface -the Rbox 13-15 



SharedlnvalBroadcast Details 

13.2.3.7 ROUTE FIELD Format 

Table 13-20 lists the ROUTE FIELD format. 

Table 13-20 ROUTE FIELD Format 

ROUTE Bit Meaning 

ROUTE[O] Did adapt 

[16] 

ROUTE[l] Virtual channel 

[17] 

ROUTE[2] Is for 1/0 

[18] 

ROUTE[3] Can adapt 

[19] 

ROUTE[8:4] EW value 

[24:20] 

ROUTE[9] EW direction 

[25] 

ROUTE[14:10] NS value 

[30:26] 

ROUTE[15] NS direction 

[31] 

13.3 SharedlnvalBroadcast Details 

SharedinvalBroadcasts are sent from the directory to one of the nodes in the cluster of 
processors sharing a mask bit. That processor receives the SharedlnvalBroadcast and 
buffers it in an internal structure called the inval widget. This is the root of the inval 
fanin/fanout tree. 

SpeciallnvalBroadcast messages are fanned out within the cluster from node to node. 
At each node a new inval widget entry is allocated. The inval widget entry waits for all 
the children processors in its subtree to complete before it completes. It also performs 
the invalidate on the local processor (if the local processor is not the requesting proces
sor) and must wait for the local inval to complete before the inval widget entry com
pletes. This means that once the children of the root node complete and the root node 
itself performs its inval, all of the invalidations are complete. Once a node is complete, 
the inval widget entry is deallocated and a SpeciallnvalBroadcast complete message is 
sent to the parent node. Once the root node completes the SharedlnvalBroadcast, an 
InvalAck is returned to the requesting processor. 

Com p.aq Confidentia I 
13-16 Router Interface - the Rbox 5 Jc1nuary 2001 m Subject To Change 



1/0 Port and 1/0 ASIC Assumptions 

To avoid deadlock, SpeciallnvalBroadcast messages are expected to be fanned out (and 
back in) in a dimension order. This, combined with the fact that the inval widgets are 
specific to particular inputs, allows multiple broadcast messages to be fanned out from 
different starting points while avoiding deadlock. 

SpeciallnvalBroadcast messages have their own special buffering. This buffering is 
deallocated in the normal way. The SpeciallnvalBroadcast complete signals are also 
transferred along the deallocation channel. 

13.4 1/0 Port and 1/0 ASIC Assumptions 

The I/O ASIC communicates with the rest of 21464 via the I/O port. The packet for
mats are the same as the 21464-to-21464 packet formats. The 1/0 ASIC can only issue 
a subset of the commands, and only needs to be able to receive a subset of the com
mannd, as described in Section 13.5. 

The interface to the I/O ASIC follows the same dealloc strategy as the 21464-to-21464 
ports. The only difference is that the packets coming from the I/O ASIC encode the des
tination PID in place of the route information. (The 21464 then does a routing table 
lookup and replaces the destination PID with the routing information.) 

The header tick format is specified in Section 13.2.3.6 

New messages on the out-going I/O port can only be initiated on the rising edge of the 
out- going forward clock. This can make the decode on the I/O ASIC simpler. The only 
packet type that can start on the falling edge is the NZNOP instruction (or the true NOP 
during reset). 

An 1/0 ASIC has a PID with the uppermost bit set. The lower PID bits equal the PID of 
the processor with the I/O port the ASIC is connected to. The PID of the 1/0 ASIC is 
what allows the messages routed on the 21464 interconnect to reach the I/O device -
first route to the processor with the same lower bits, then route out the I/O port. 

Here are the high-level operations supported in the 214641/0 port interface: 

• DMA read and write access by the I/O ASIC to the memory in the 21464 system 

• 

• 

Read and write access by the 21464 microprocessors to registers in the I/O ASIC 
and on the 1/0 buses connected to the I/O ASIC 

Read and write access by the 1/0 ASIC to the system IPR's in the 21464 micropro
cessors 

DMA read and write access to memory space via the I/O ASIC is described in Section 
13.6. 

The read and write access by the 21464 microprocessors to the registers in the I/O 
ASIC and on the I/O buses connected to the 1/0 ASIC allow the microprocessors to 
control the 1/0 devices connected on the port. The 21464 interconnect has enough vir
tual channels and the coherence protocol is such that the I/O ASIC may stall these 
accesses pending completion of DMA references and the system will not deadlock. 

I/O ASIC references can read/write the system IPR's of any 21464 in the system. This 
allows for 21464 system IPR's to be configured by the I/O ASIC or another device on 
an 1/0 bus connected to the I/O ASIC. This is also the mechanism by which interrupts 
are delivered from an I/O device to a 21464 (see Section 13.5 for more information on 

Compaq Confidential 
5 January 2001 - Subject To Change Router Interface -the Rbox 13-17 



Interrupt Delivery 

interrupts). Note that these references must never block either of the two prior types of 
access (DMA or 1/0 register access by the microprocessor), otherwise deadlock may 
occur. 

Note that an 1/0 ASIC may send an IO_CHANNEL Rd* or Wr* message to another I/ 
0 ASIC in order to implement peer-to-peer I/O. See Section 13.7 for deadlock-avoid
ance requirements. 

Note that the I/O port protocol does not explicitely support coherent I/O TLB 's, but that 
I/O TLB coherence can be maintained by hardware exclusive caching of TLB entries. 

The I/O port also has a synchronous mode for lock-step operation. In this mode, data 
from the I/O port input is not directly taken into the router core. Rather, it is written into 
a four-entry FIFO using a (two-bit) write pointer. The router core later reads the data 
from this FIFO using its two-bit read pointer. The FIFO write path writes a piece of data 
into the FIFO and increments the write pointer every cycle that valid data is sampled. 
The FIFO read path reads a FIFO entry and increments the read pointer at the rate of the 
incoming data, synchronous to the internal 21464 clock. 

This synchronous mode allows the 21464 router core to sample data from the incoming 
I/O port (via the FIFO) at a predictable time even though the 21464 pads may sample 
the incoming I/O port data at an unpredictable time. Short-term jitters can be tolerated. 
Over the long term, the system must be synchronous. 

The read and write pointers are initialized as follows. At boot time the 21464 forward 
clocks on the I/O output ports are not transitioning. Also, the forward clocks in the 1/0 
input ports are not transitioning. The write pointer increments only when an incoming 
forward clock is received, so the write pointer is initialized at this time. At some point 
boot software starts the outgoing forward clocks from 21464. It does this by a write to 
the RBOX_IO_CFG IPR. During the same register write it also initializes the read 
pointer to the appropriate value. The I/O ASIC must detect the start of the forward 
clock from 21464 and start its forward clocks a fixed (predictable) amount of time later. 
When the 21464 starts receiving the forward clocks from the 1/0 ASIC (a fixed time 
later), the write pointer starts incrementing. Since this time is fixed, it should have been 
possible to pre-calculate the necessary read pointer value. (Either that, or try all 4 possi
ble combinations.) The same read pointer value can be used from one boot to the next 
even though the latency for the forward clocks to transition may vary slightly from one 
boot to the next. 

13.5 Interrupt Delivery 

There are two mechanisms to deliver an interrupt to an 21464 microprocessor: 

• Queueing an identifier 

• Setting a mask bit 

21464 includes a 4 entry queue to hold 24-bit identifiers that can uniquely identify the 
source of an interrupt. These 24-bit identifiers are called interrupt id's (110 's). Interrupt 
software can read the head of the queue to determine how to process an interrupt. This 
queue is accessible via references to the RBOX_INTQ and RBOX_INTA IPR's. 

21464 also includes a 32 bit mask for coarser interrupt receipt. This mask can be refer
enced via the RBOX_INT IPR. The individual interrupts can be masked via the 
RB OX_IMASK system IPR. Some of the bits in this mask will be reserved for specific 

Compaq Confidential 
13-18 Router Interface - the Rbox 5 Jc1nuc1ry 2001 - Subject To Change 



OMA Device Assumptions 

purposes - e.g. interrupt queue, performance counter, error, 1/0 error, and other bits will 
be available for general software use - e.g. interprocessor interrupt. New interrupts can 
be launched via the RB OX_IREQ IPR. 

1/0 devices will typically queue an IID to produce an interrupt. In order to use this 
method, the I/O ASIC will issue a write to the RBOX_INTA IPR in the appropriate 
21464. The 1/0 device must be prepared to receive a WrIONAck response indicating 
that the given 21464's interrupt queue has overflowed. When the I/O ASIC receives the 
overflow response, it must resend the interrupt again to the same or another 21464 until 
it is accepted by one of them. 

Interprocessor interrupts will typically be performed via writes (to the RBOX_IREQ 
IPR) that set a mask bit in the RBOX_INT IPR of another 21464. Interprocessor inter
rupts will typically not use the interrupt queue method since there is no hardware mech
anism to determine when the interrupt queue overflows. 

The 21264 core allows for 6 interrupt wires into the core. 21464 will partition the inter
rupt sources onto these six wires as follows: 

Table 13-21 Interrupt Level Sources 

Interrupt Level Source 

IRQ(O) System correctable I performance count 

IRQ(l) Interrupt queue 

IRQ(2) Interval timer 

IRQ(3) Other (interprocessor/SW ALERT) 

IRQ(4) Halt interrupt/other 

IRQ(5) Uncorrectable/machine-check/HW ALERT 

13.6 OMA Device Assumptions 

This section describes two alternative techniques for the I/O ASIC to perform DMA 
accesses to the 21464 system memory -- exclusive caching and timeouts. 

A DMA Device is contained within the I/O ASIC off the I/O port. Its purpose is to ser
vice I/O bus reads and writes. 

A DMA device can access data in one of three different ways: 

1. An uncached FetchBlk request to read the block 

2. A ReadMod request to obtain exclusive access to the block (often to write a portion 
of the block) 

3. An InvaltoDirty request to gain exclusive access to the block (presumably to write 
the entire block). 

For a DMA read stream there are two ways to prefetch data in multipleblocks, depend
ing on the ordering required by the DMA device. The most efficient way is to use a 
stream of FetchReq (i.e. non-cacheable fetch) commands. As an example, the I/O con
troller might Fetch blocks A and B. The references to blocks A and B may be serviced 
in any order by the memory system, and the responses may return in any order. Note the 
two sources of difficulty: (1) the references are serviced out of order, and (2) the refer-

Compaq Confidential 
5 January 2001 - Subject To Change Router Interface -the Rbox 13-19 



DMA Device Assumptions 

ences may return out of order. Source (1) may violate the memory reference ordering 
constraints required by the DMA read stream (the returned loads are not sequentially 
consistent, for example). Source (2) makes the implementation of the DMA controller 
more difficult because the data may have to be reordered. 

The second way to prefetch data in multiple blocks for a DMA read stream is to use 
ReadModReq commands. The advantage of this method is that the I/O device can 
implement a sequentially consistent read stream since the exclusive access forces order. 
One disadvantage is that VictimClean must be generated to release exclusive access to 
the block. The other disadvantage is that exclusive access is required. Multiple DMA 
devices that attempt to access the same block at the same time will be serialized, as a 
consequence, as will a processor and a D MA device. 

There are also two ways to prefetch data in multiple blocks for a DMA write streams. 
The first way is via a stream of ReadModReq commands. The second is via a stream of 
InvaltoDirtyReq commands. The InvaltoDirtyReq's require that the writes be full-block 
writes. 

Note that the protocol specifies that InvaltoDirty's may be issued speculatively from a 
DMA device since the memory always contains the prior copy of the block -- a Victim
Clean will back out the request if it is found to be a mis-speculation. Also, the DMA 
device will never dirty blocks in response to a ReadModReq. This means that Victim 
commands will never be needed for a DMA read (via ReadMod command) stream. 

13.6.1 1/0 OMA Access and Exclusive Caching 

When using this technique, the DMA device is expected to force the eviction of a cache 
block soon after receiving a forward for the cache block. The I/O ASIC may (exclu
sively) cache copies of blocks for long time periods. If a processor or another I/O ASIC 
(or even if this I/O ASIC) requests a copy of the block, the directory will see that this I/ 
0 ASIC is the exclusive owner of the block and will forward the request to the I/O 
ASIC. When this happens, the directory expects to eventually receive both a Forward
Miss and a Victim (or Victim Clean) in response. 

When the I/O ASIC is using this mode to access DMA, it should respond ForwardMiss 
to every received forward request. The following is additionally required: 

• Any currently cached blocks/TLB entries that could possibly match the address in 
the forward must be marked for eventual eviction (after a time-out) 

• Any currently pending MAF entries that could possibly match the address must be 
marked so that the block eventually gets evicted after it returns. 

Note that the receipt of a forward does not imply that the I/O ASIC currently holds a 
copy of the block. (A victim may be on its way from the 1/0 ASIC to the directory 
before the I/O ASIC receives the forward.) 

Note that this scheme allows the 1/0 ASIC to (exclusively) cache copies of scatter
gather maps, or I/O TLB entries. 

13.6.2 1/0 OMA Access via Timeouts 

When using this technique, the DMA device is expected to evict blocks soon after they 
obtain exclusive access to the block. This allows the I/O ASIC to ignore the forwards. 

Compaq Confidential 
13-20 Router Interface - the Rbox 5 Jc1nw1ry 2001 -· Subject To Change 



110 Space Ordering and Assumptions 

When the 1/0 ASIC is using this mode to access DMA, it should simply respond For
wardMiss to every received forward request, and otherwise ignore the forward. 

DMA devices must take care to avoid deadlock in this mode. Take the following sce
nario: 

1. The DMA device requests exclusive access to blocks A and B simultaneously, 

2. The response for block B returns but cannot be written until the response for block 
A returns. In this scenario deadlock could result if the DMA device does not even
tually release exclusive access to the block B. It is possible that the response to the 
request A cannot be completed since requests are blocked waiting for the eviction 
of B. Thus, after a timeout, block B must be released in order to make forward 
progress, even though the reference to the block has not been completed. 

Note also that I/O TLB 's may not be cached (long-term) when this timeout mechanism 
is used. 

13.7 1/0 Space Ordering and Assumptions 

21464 supports the same I/O space ordering rules as the 21264: LD-LD ordering is 
maintained to the same I/O ASIC or processor, ST-ST ordering is maintained to the 
same I/O ASIC or processor, LD-ST or ST-LD ordering is maintained to the same 
address, and LD-STor ST-LD ordering is not maintained when the addresses are differ
ent. 

All these ordering constraints are on a single processor basis to the same I/O ASIC or 
processor. Multiple loads (to the same or different addresses) may be in flight without 
being responded to, though their in-flight order is maintained to the destination by the 
core/CBOX and the router. Similarly, multiple stores (to the same or different 
addresses) can be in flight. 

When there is a load I/O outstanding to address A, 21464 will not launch a store to 
address A until the BlkIO response to the load I/O is received. 21464 may have an ear
lier write I/O request to address B in flight at the same time as there are load I/O 
requests in flight to address B; the CB OX/router guarantee that the earlier write I/O 
request reaches the destination before the later load I/O requests. 

21464 also supports peer-to-peer I/O. In order to avoid deadlock among peer I/O ASIC 
clients, writes must be able to bypass prior reads. This is required because read 
responses cannot be returned until prior writes have completed in order to maintain 
some PCI ordering constraints. By allowing the writes to bypass the reads, we guaran
tee that the writes will eventually drain, thereby guaranteeing that the reads will eventu
ally drain. 

Compaq Confidential 
5 January 2001 -~Subject To Change Router Interface - the Rbox 13-21 



110 Space Ordering and Assumptions 

In order to implement all these requirements, the 21464 router must maintain the fol
lowing point-to-point rules on the IO_CHANNEL: 

Table 13-22 Router IO_CHANNEL Point-to-Point Rules 

First Second Description 

Rd* Rd* Order must be maintained 

Rd* Wr* The later Wr* must be allowed to bypass the earlier Rd* to avoid dead
lock 

Wr* Rd* Order must be maintained 

Wr* Wr* Order must be maintained 

In other words, except for the case of a read followed by a write, a total order must be 
maintained. 

Note that 21464 does not support instruction references to 1/0 space. 21464 cannot exe
cute code received directly from the 1/0 ASIC. Code residing in I/O space must first be 
copied/DMA'ed into cacheable memory before it can be directly executed. 

Note that all I/O writes are acknowledged. MB 's wait for all 1/0 write acknowledge
ments to be received before proceeding. MB 's also wait for the response to all 1/0 reads 
before proceeding. 

Note also there there are no ordering constraints between different I/O space accesses 
that reference different I/O ASIC's or processors; the ordering rules apply only with the 
same source and destination for the references. MB 's must be used to order references 
to different I/O ASIC's or processors. 

Compaq Confidential 
13-22 Router Interface - the Rbox 5 Januc1ry 2001 m Subject To Change 



The 5th Rambus Channel 

14 
Rambus Interface - the Zbox 

Introductury information about the Zbox is located in Section 2.7.3. Information about 
the Zbox IPRs is located in Section 16.6. 

14.1 The 5th Rambus Channel 

For higher reliability in large memory systems, a fifth Rambus channel (one extra for 
every four channels) can optionally be enabled. This extra channel allows the system to 
tolerate the failure of any single DRAM part or any single DRAM row. 

The technique used is one used in RAID schemes for disks. (Is it RAID 5?) When 
enabled, the stored bits in the 5th channel are the bit-wise exclusive-or of the corre
sponding 4 bits in the original 4 channels. If the stored bits in channel i are a bit-stream 
Pi, and if the expected information for channel i is a bit-stream Vi, then the operation to 
store the expected bit-stream to memory is: 

PO = VO 

Pl = V1 

P2 = V2 

P3 = V3 

P4 = VO /\ V1 /\ V2 A V3 

And, the operation to read the expected bit-stream from memory under normal opera
tion is: 

VO = PO 

V1 = Pl 

V2 = P2 

V3 = P3 

check that (P4 == PO /\ Pl /\ P2 /\ P3) 

In the case when the parity check calculation on the stored bits indicates that there are 
no mismatches, the read operation is complete; We assume that the reconstructed data 
VO-V3 is correct. In the case that there is a single-bit mismatch on the parity check cal
culation, the read operation is also complete; We assume that the ECC codes contained 
in VO-V3 will correct the (likely) resultant single-bit error. 

However, in the case when the parity check calculation mismatches on more than one 
bit, this indicates that the resultant data VO-V3 may have a multi-bit error that is uncor
rectable, and that it may have bad data that appears either good or correctable. In this 
case we can attempt to correct the error by mapping out a channel. 

Compaq Confidential 
5 January 2001 - Subject To Change Rambus Interface - the Zbox 14-1 



The 5th Rambus Channel 

The algorithm to map out a channel is simply to try all possible combinations and pick 
the one that results in the cleanest resultant ECC codes. 

After we have decided to map out a physical channel, we can reconstruct the expected 
data using the redundant information contained in the 5th channel. If we assume that PO 
has failed, the read operation to reconstruct the original data would be: 

VO = Pl A P2 A P3 A P4 

Vl = Pl 

V2 = P2 

V3 = P3 

Similar calculations can be applied when mapping out one of the other four channels. 

Note that after we map a channel out, we still store the expected bit-stream to memory 
in the same way that we did before we mapped the channel out. This makes it simple to 
remap the channel back in when there is a soft-error; After re-writing the bits to mem
ory the channel can be restored to full functionality. 

Note also that when the 5th channel is enabled, correctable memory errors will not 
propagate; All errors that can be corrected by remapping a channel will be corrected 
without sending corrupt data on the network or putting corrupt data in the local caches. 
(When the 5th channel is not enabled, corrupted memory data may be propagated in the 
network (via "garbage codes") and may also be written into the local caches. 

Compaq Confidentia I 
14-2 Rambus Interface - the Zbox 5 Jc1nuc1ry 2001 ·- Subject To Change 



The GIO Port 

15 
Miscellaneous Interfaces 

15.1 The GIO Port 

As in the 21363, the GIO port is a way for the 21464 to interface with miscellaneous 
external I/O functions. During power-up initialization sequences, the GIO port pro
vides access to system configuration information including PLL divisors, WHOAMI 
and other router configuration components, the Rambus SIO and 120 chains. The GIO 
port also provides a connection to server management memory where XSROM or con
sole code can be loaded or mailboxes set-up to allow communication with the server 
management subsystem. 

The functional model is for the 21464 to control the operation of the port performing all 
reads and writes. Status bits and interrupts are used for reverse communications. This 
is in contrast to the JTAG port where the system is the master and initiates all read and 
write transactions to the 21464. 

15.1.1 Signals 

The GIO port is a low bandwidth, simple interlace to external logic. In currently planned systems the GIO port is 
expected to interface with an external FPGA running in the 33Mhz range. The GIO port signals are: 

Table 15-1 GIO Port Signals 

Name Path 

GIO_TFR<3:0> B 

GIO_ALE 0 

GIO_RD 0 

GIO_CLK 0 

GIO_INT I 

GIO_HINT I 

Description 

Address/Data bus. Transfers 32 data bits per transaction in 8 cycle bursts of 4 
bits per cycle. Addresses are 8-bit values transferred in the first two 4-bit cycles. 

Address latch enable signal. Asserts for two cycles at the beginning of each 
transaction defining when transaction address bits 0-3, then 4-7 are driven on 
GIO_ TFR<3:0>. 

Read enable signal. If asserted in cycles 2-9 of a transaction, the operation is a 
read, if deasserted, the operation is a write transaction. 

Free running clock. 

External interrupt signal. Asserted when system logic is requesting communica
tion with the 21464. Interrupt handlers then perform reads and writes across the 
GIO port to examine and respond to the interrupt request. 

High priority interrupt. Currently just a separate device interrupt but we are eval
uating a true HALT type of function. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Miscellaneous Interfaces 15-1 



The GIO Port 

15.1.2 Transactions 

Both read and write transactions are fixed 12 GIO clock cycle operations. Eight bits of 
address are transferred in the first two cycles and 32 bits of data are transferred in 
cycles 4-11. Cycles 3 and 12 are used to tum-around the bus for read operations and are 
included in write transactions to simplify the state machines. 

Figure 15-1 GIO Port Read Transaction Timing 

GIO_CLK 

GIO_TFR 

GIO_ALE 

GIO_RD 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Read Transaction 

Figure 15-2 GIO Port Write Transaction Timing 

GIO_CLK 

GIO_TFR 

GIO_ALE 

GIO_RD 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Write Transaction 

15.1.3 Registers 

There are three registers in the 21464 that software uses to interact with the GIO port. 
These CSRs reside in the Rbox and are mapped to IO space. 

15.1.3.1 GIO_CNFG 

The GIO_CNFG register defines the characteristics of the GIO_CLK signal. The 
GIO_CLK pin is disabled by reset (which resets?) and enabled by writing a non-zero 
value to the Divisor. The Divisor allows GIO_CLK to be between half and 1/256th of 
the core clock. This allows the GIO port to run as slow as lOMHz on a 2.5 GHz 21464. 

Compaq Confidential 
15-2 Miscellaneous Interfaces 5 Jc1nuc1ry 2001 ·-Subject To Change 



The GIO Port 

Figure 15-3 GIO_CNFG Register 

63 s..;...7 ___ ,~o 
Divisor 

Table 15-2 GIO_CNFG Register Field Descriptions 

Field Name 

DIVISOR 

Extent Type Description 

7:1 RW,O Defines the number of Core clock cycles in each GIO_CLK phase (half 
cycle). A divisor of zero also disables the clock. 

15.1.3.2 GIO_ADDR 

The GIO_ADDR register defines the address of the next GIO transaction. If the 
START_READ bit is set when the GIO_ADDR register is written, a read transaction on 
the GIO bus is initiated. If the START_READ bit is written with a zero, no transaction 
is initiated. 

Software must not write this register while a GIO transaction is in progress. A GIO 
transaction is in progress when the DONE bit of the GIO_DATA register is clear. 

Figure 15-4 GIO_ADDR Register 
63 

Addr 

START_READ __ _, 

Table 15-3 GIO_ADDR Register Fields Description 

Field Name 

ADDR 

START_READ 

Extent Type Description 

7:1 

0 

RW,O Defines the eight-bit address of the GIO transaction. 

RW,O When written with a 1, a read transaction to ADDR is performed on the 
GIO bus. 

15.1.3.3 GIO_DATA 

The GIO_DATA register specifies the data to be written on the GIO bus and holds the 
data read from the GIO bus on read transactions. When the GIO_DATA register is writ
ten, a write transaction is initiated on the GIO bus. Software must poll the DONE bit of 
the GIO_DATA register to detect the completion of the write transaction and must not 
perform any subsequent writes to the GIO_DATA register before the DONE bit is set. 
The DO NE bit also indicates completion of a read transaction. 

***I find the sense of the DONE bit to be backwards. It should be a BUSY bit. Soft
ware will typically issue a read and poll until complete. The loop control would be a 
BLT instead of a BGE but with a BUSY bit, the value returned from the completed read 
would be correct whereas a DONE bit would need to be masked-off before the value 
was used. A BUSY bit also naturally resets to zero. 

Compaq Confidential 
5 January 2001 - Subject To Change Miscellaneous Interfaces 15-3 



The GIO Port 

***The BUSY vs. DONE debate is a minor nit. My inclination is to mimic the 21364, 
rather than implement the more natural interface but comments are welcome. 

Figure 15-5 GIO_DATA 
63 323:...:...1 _______________ _..::., 

Data 

Table 15-4 GIO_DATA Register Fields Description 

Field Name 

DONE 

DATA 

15.1.4 Use 

Extent Type Description 

63 RO, 1 Status bit indicating the GIO bus controller is idle and has completed 
any read or write transactions. Software must query this bit to ensure 
the GIO logic is not busy before updating any GIO registers. 

31:0 RW,O Data written to the GIO_DATA register is immediately written to the 
GIO bus. For read transactions, the DATA field is the valid result of the 
read operation once the DONE bit is set. 

Aside from the restrictions imposed by an 8-bit address and 32-bit data word, the 21464 
does not define the external structure of the GIO port. Marvel systems intend to use a 
FPGA to interface to the GIO port so the external structure of the GIO port could be 
modified by a simple update to the FPGA program. 

To better understand the capabilities and operation of the GIO port, consider the pro
posed interface to server management on a Marvel platform. Marvel has defined sev
eral registers in GIO address space: 

Table 15-5 GIO Address Space Registers Defined by Marvel 

Register Name 

OOh CPUx_CTRL 

Olh CPUx_DMA_Data 

02h CPUx_DMA_Addr 

03h CPUx_RIMM_Serial_Port 

04h CPUx_ComO_Xmit 

05h CPUx_ComO_Rcv 

06h CPUx_Coml_Xmit 

07h CPUx_Coml_Rcv 

These registers allow three basic functions to be performed: 

Compaq Confidential 
15-4 Miscellaneous Interfaces 5 Janu,1ry 2001 - Subject To Change 



Operation 

The GIO Port 

• Direct interaction with the RAMbus serial controls 

• Dual Simple UART communication links 

• DMA access to Server Management memory 

As an example of how the GIO bus is used, consider the sequence of operations neces
sary to read a value from server management memory: 

Description 

IOstore GIO_ADDR CPUx_DMA_Addr 

IOstore GIO_DATA addr 

\\Send DMA address to FPGA 

IOload GIO_DATA (until done bit set) 

IOstore GIO_ADDR CPUx_CTRL 

IOstore GIO_DATA 1 

IOload GIO_DATA (until done bit set) 

IOstore GIO_ADDR CPUx_CTRL I Start 

IOload GIO_DATA (until done bit set) 

(repeat read of CPUx_CTRL until bit<O> clear) 

IOstore GIO_ADDR CPUx_DMA_Data I Start 

IOload GIO_DATA (until done bit set) 

(mask off done bit) 

\\Wait for GIO port to idle 

\\Tell FPGA to start the DMA 

\\Wait for GIO port to idle 

\\Get DMA status from FPGA 

\\Wait for GIO port to idle 

\\Repeat read until DMA done 

\\Get DMA data from FPGA 

\\Wait for GIO port to idle 

Each three-line group above equates to a single (360ns) GIO bus transaction. For the 
16-bit DMA transactions currently planned, the third group would likely execute twice 
because the actual DMA from server management memory into the FPGA is expected 
to take -600ns. 

In total the 16-bit transfer would require (5 * 360ns) 1.8us to complete yielding an 
effective bandwidth of just over lMB/sec. 

If the FPGA implementation can accommodate it, a recommended optimization is to 
define the DMA start bit and opcode in the CPUx_DMA_Addr register instead of the 
CPUx_CRTL register. This would merge the first two GIO bus transactions into a sin
gle transaction and reduce the latency of each read sequence to 1.44us. Increasing the 
DMA transfer size to 32-bits per operation is another available option. The bandwidth 
of large transfers would be increased to over 2MB/sec but the latency of a single opera
tion would likely be extended back to 1.8us. 

To initiate communications, server management will post a GIO interrupt after storing a 
message packet in a predefined location in server management memory. 21464 PAL
code, in response to the interrupt, will read the packet and can respond by writing a 
response packet to a predefined location in server management memory. 

Multi-threading creates several problems unique to the 21464: 

• Which TPU (s) will service the GIO interrupt? 

• The GIO port is a shared resource, how to we prevent multiple TPU s from access
ing it simultaneously? 

Compaq Confidential 
5 January 2001 --· Subject To Change Miscellaneous Interfaces 15-5 



The GIO Port 

• Does server management need to allocate separate message blocks or addresses for 
each TPU? 

The current plan is to require software to restrict access to the GIO port to a single TPU 
at a time. A mask register will define which TPU(s) are to receive the GIO interrupt. If 
multiple TPU s are selected, software must synchronize among the TPU s and ensure 
there is no contention for the GIO port. We currently do not have a mechanism that 
allows server management to target specific interrupts to specific TPUs. The mask reg
ister must be pre-set. 

15.1.4.1 Differences In Implementation Between the 21364 and 21464 

The following differences exist between the 21464's GIO port implementation and the 
21364 implementation: 

• The enable bit in GIO_CNFG does not exist in the 21464. If software ensures the 
divisor is zero whenever the GIO_CLK should be disabled, both chips will behave 
identically. 

• The 21364 defined GIO transactions to be 64-bit writes and 63-bit reads. The 
21464 restricts all GIO transactions to 32 bits. As long as systems define GIO port 
registers to be no larger than 32-bits, the size difference should be transparent. The 
largest GIO operation defined in Marvel is currently 23 bits. 

• Because the 21464 sequences 4-bits per cycle across the GIO bus, the FPGA will 
need to shift/pack differently than the 21364, but this will be transparent to soft
ware. 

• It has been requested that we make the GIO_HINT pin perform a real halt function 
rather than act as another device interrupt. This is under consideration. 

The motivation for implementing a different interface from the 21364 was primarily the 
availability of pins. The Marvel CMM module connector and FPGA are already pin 
constrained. The 21464 will have additional voltages to control and needs to connect to 
the JTAG port for access to debug controls. Optimizing the GIO port to utilize a four 
bit datapath and single read/write control wire saves enough pins to connect the CMM 
to the JTAG port on the 21464. We are looking to consolidating other functions (like 
GIO_CLK and SROM_CLK) as a way to further optimize the interface to the Marvel 
CMM. 

Compaq Confidential 
15-6 Miscellaneous Interfaces 5 Jc1nuc1ry 2001 ··· Subject To Change 



Internal Processor Register Summary 

16 
Internal Processor Registers 

16.1 Internal Processor Register Summary 

See the Preface for the location of other documents that provide additional information 
about the 21464 internal processor registers. 

Information can be read from and written into IPRs in various ways, as described in 
Section 2.12.1. Table 16-1 distinguishes registers that are explicitly written by an 
MTPR instruction, implicitly written as the result of executing an instruction, and 
implicitly written as a result of some event not directly associated with the execution of 
a specific instruction. 

Not all IPRs can be read. To aid debug, it is important that those IPRs with a strong 
need to be readable be identified early. 

The ability for one TPU to read or write another TPUs IPRs is still a source of debate. 
Currently no mechanism exists, but it is generally believed that debugging needs and 
error fix-up code might require this capability. 

Table 16-1 Internal Processor Register Summary 

Per- Writer 
Name Mnemonic TPU Index Class 1 Read lnit2 Grp 

Performance Monitoring IPRs3 

Event Counter IPR Bundle 

I General Events for 1PU 0 

I General Events for 1PU 1 

I General Events for 1PU 2 

I General Events for 1PU 3 

M Event Counter IPR Bundle 

M General Events for TPU 0 

M General Events for TPU 1 

M General Events for 1PU 2 

M General Events for TPU 3 

Profile I Data IPR Bundle 

Profile Instruction Control 

IAGG_EVENTO N 

IAGG_EVENTl N 

IAGG_EVENT2 N 

IAGG_EVENT3 N 

MAGG_EVENTO N 

MAGG_EVENTl N 

MAGG_EVENT2 N 

MAGG_EVENT3 N 

PR_INST _CTL N 

Compaq Confidential 
5 January 2001 ~· Subject To Change 

1 1100 000 E y Dbg 

1 1100 001 E y Dbg 

1 1100 010 E y Dbg 

1 1100 011 E y Dbg 

0 1100 000 E y Dbg 

0 1100 001 E y Dbg 

0 1100 010 E y Dbg 

0 1100 011 E y Dbg 

11101 000 M y All 11 

Internal Processor Registers 16-1 



Internal Processor Register Summary 

Table 16-1 Internal Processor Register Summary (Continued) 

Per- Writer 
Name Mnemonic TPU Index Class1 Read lnit2 Grp 

Profile Trigger on PC PR_TRIG_PC N 1 1101 001 M y All 11 

Profile Instruction Character. PRn_pc N 1 1101 Oln E y Dbg 

Profile Instruction Ibox Info PR_I_INFO N 1 1101 100 E y Dbg 

Profile Instruction Qbox Info PR_Q_INFO N 1 1101 101 E y Dbg 

Profile M Data IPR Bundle 

Profile MAGG_EVENT CTRL PR_MEM_EVENT_CTL N 0 1101 000 M y All Ml 

Profile Memory Information PRn_MEM_INFO N 0 1101 Oln E y Dbg 

Profile Store Latency Info PR_ST _LATENCY N 0 1101 100 E y Dbg 

PROFILE Timeline IPR Bundle 

Profile Instr Timeline part 0 PRn_TIMELINEO N 1 1110 OOn E y Dbg 

Profile Instr Timeline part 1 PRn_TIMELINEl N 1 1110 Oln E y Dbg 

Profile Instr Timeline part 2 PRn_TIMELINE2 N 1 1110 lOn E y Dbg 

Profile Instr Timeline part 3 PRn_TIMELINE3 N 1 1110 lln E y Dbg 

Profile D Miss Bundle 

Profile Dcache Miss Info PRn_DMISS_INFO N 0 1110 OOn E y Dbg -

lbox (Instruction Fetch Unit) IPRs 

Cycle Counter cc y 1 0111 o:xx M y * 11 

CPU Configuration CPU_CNFG N 1 1001 000 M y All 11 

DTB Single-Miss Return Address DTBMS_REI _ADDR y 10100111 y Dbg 11 

Exception Address EXC_ADDR y 10100001 y Dbg 11 

Exception Summary EXC_SUM y 10100000 y Dbg 11 

!box Control I_CTL y 1 oooooxx M y Dbg 11 

!box Mode !_MODE y 1 0001 o:xx M y Dbg 11 

!box Process Context I_PCTX y 1 OOlOXXX M y Dbg 11 

!cache Status IC_STAT y 11001 001 E y Dbg 11 

!cache Flush IC_FLUSH y 11001100 M N 

!cache Flush (ASM=O) IC_FLUSH_ASM y 1 1001101 M N 

ITB Invalidate Multiple ITB_IM y 11000000 M N 12 

ITB Invalidate Single ITB_IS y 11000010 M N No 12 

Instruction PfE Array Write ITB_PfE y 11000100 M N No 13 

Instruction TAG Array Write ITB_TAG y 11000110 M N No 12 

Inst. Virtual Address Format IVA_FORM y 10100011 y 

PALcode Base PAL_BASE y 1 0101 000 M y ? 11 

CPU Base CPU_BASE N 1 0101 010 M y All 11 

Compaq Confidential 
16-2 Internal Processor Registers 5 Janw~ry 2001 -· Subject To Change 



Internal Processor Register Summary 

Table 16-1 Internal Processor Register Summary (Continued) 

Per- Writer 
Name Mnemonic TPU Index Class1 Read lnit2 Grp 

PALcode Temporary 1 PAL_TEMPl y 10101001 M y Dbg 11 

PALcode Temporary 2 PAL_TEMP2 y 10101010 M y Dbg 11 

Thread Config TPU_CNFG y 11011000 M y All 11 

Mbox ( Internal Memory Controller Unit ) IPRs 

Dcache Control DC_CTL N 0 1001 000 M y All Ml 

Dcache Status DC_STAT y 01001001 y Dbg Ml 

DTB Invalidate Multiple DTB_IM y 01000000 M N Ml 

DTB Invalidate Single DTB_IS y 0 1000010 M N No M2 

DTB PIE Array Write DTB_PfE y 01000 lOX M N No M3 

DTB Tag Array Write DTB_TAG y 0100011X M N No M2 

Mbox Control M_CTL y ooooooxx M y Dbg Ml 

Mbox Process Mode M_MODE y 00001 xxx M y Dbg Ml 

Mbox Process Context M_PCTX y 0 OOlOOXX M y Dbg Ml 

Mbox Mem. Management Status M_STAT y 0 0100000 y Dbg Ml 

Quiesce Timeout QUIESCE_ TIMEOUT y 0 0111000 M y Dbg Ml 

Virtual Address VA y 0 0100001 y Dbg Ml 

Virtual Address Format VA_FORM y 0 0100011 y 

Watch Physical Address WATCH_PHYS_ADDR y Dbg 

Cbox (Scache Control) IP Rs 

Hardware Interrupt Clear HW_INT_CLR y M N 

Int. Enable and Current Mode IER_CM y M y 

Interrupt Summary ISUM y 

Software Interrupt Request SIRR y M y 

Rbox ( External Router Unit ) IPRs 

Router Configuration 1 R_CFGl 

Router Configuration 2 R_CFG2 

Router Interrupt Mask R_INT_MASK 

Router Interrupt Queue R_INT_QUE 

Router Interrrupt Queue Add R_INT_QUEADD 

Router Interrupt Request R_INT_REQ 

Router Interrupt Status R_INT_STAT 

Router Interval Timer R_INTER_ TIM 

Router IO Port Buffer Size R_IO_BUFSIZ 

Router IO Port Config 1 R_IO_CFGl 

Router IO Port Config 2 R_IO_CFG2 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-3 



Internal Processor Register Summary 

Table 16-1 Internal Processor Register Summary (Continued) 

Per-
Name Mnemonic TPU Index 

Router IO Port Error Status R_IO_ERR 

Router IO Port Pelf. Counter R_IO_PERF 

Router IO Port Timerl Config R_IO_TlCFG 

Router IO Port Timer2 Config R_IO_T2CFG 

Router Local Port Error Status R_LOC_ERR 

Router Channeln Config 1 R_n_CFGl 

Router Channeln Config 2 R_n_CFG2 

Router Channeln Error Status R_n_ERR 

Router Channeln Pelf Count R_n_PERF 

Router Channeln Timerl Config R_n_TlCFG 

Router Channeln Timer2 Config R_n_T2CFG 

Router Overall Timer-Control R_OVER 

Router Routing Table R_ROUT 

Router Scratch 1 R_SCRATCHl 

Router Scratch 2 R_SCRATCH2 

Router Who-Am-I? R_WHOAMI 

Zbox (External Memory Controller Unit) IPRs 

DIFT Control 

DIFT Error Status 

DIFT Timeout 

DRAM Calibration Control 1 

DRAM Calibration Control 2 

DRAM Error Address 

DRAM Error Status 1 

DRAM Error Status 2 

DRAM Error Status 3 

DRAM Error Control 

DRAM Initialization Control 

DRAM Mapper Control 

DRAM Refresh Control 

DRAM Refresh Row 

DRAM Sweep Directory Bits 

DRAM Timing Control 1 

DRAM Timing Control 2 

DRAM Timing Control 3 

ZBOXn_DIFf_CTL 

ZBOXn_DIFf_ERR_STATUS 

ZBOXn_DIFf _TIMEOUT 

ZBOXn_DRAM_CALIB_CTLl 

ZBOXn_DRAM_CALIB_CTL2 

ZBOXn_DRAM_ERR_ADR 

ZBOXn_DRAM_ERR_STATUSl 

ZBOXn_DRAM_ERR_STATUS2 

ZBOXn_DRAM_ERR_STATUS3 

ZBOXn_DRAM_ERROR_CTL 

ZBOXn_DRAM_INIT_CTL 

ZBOXn_DRAM_MAPPER_CTL 

ZBOXn_DRAM_REFR_CTL 

ZBOXn_DRAM_REFRESH_ROW 

ZBOXn_DRAM_SWEEP _DIR 

ZBOXn_DRAM_TIMING_CTLl 

ZBOXn_DRAM_TIMING_CTL2 

ZBOXn_DRAM_TIMING_CTL3 

Compaq Confidential 

Writer 
Class 1 Read lnit2 Grp 

16-4 Internal Processor Registers 5 Jc1m.1c1ry 2001 - Subject To Change 



Internal Processor Register Summary 

Table 16-1 Internal Processor Register Summary (Continued) 

Per- Writer 
Name Mnemonic TPU Index Class 1 Read lnit2 Grp 

DRAM Timing Control 4 ZBOXn_DRAM_TIMING_C1L4 

ZBOXn_FRC_ERR_ADR 

ZBOXn_RAC_C1L 

ZBOXn_ZPM_C1Ll 

ZBOXn_ZPM_CTRO 

Force Error Address 

RAC Control 

Performance Counter 1 

Performance Counter 0 

M = MTPR; I = Implict; E = Event 
2 See Table 16-2. 
3 Chapter 19 contains the information for Performance Monitoring IPRs. 

16.1.1 PALcode Coding Rules 

PALcode coding rules are described in Section 17.5. 

16.1.2 IPR Issues: 

16.1.3 Reset 

• The 21264 had the behavior that an implicitly written register would read as zero if 
read while being written. Will the 21464 have the same behavior? Should we 
define a valid bit in each of the implicitly-written registers to explicitly flag this 
case? All registers except VA have bit<63> available. 

• Need to better understand SLEEP modes and GCLK PLL programming. This is 
also tied into how to bring the chip alive. What state must be preserved when enter
ing/exiting sleep mode? 

• What does I_CTL[CHIP _ID] do? If it cannot be written, how is it different than 
AMASK/IMPLVER? 

• Disruptions and PALmode in the !box describes several cases where a combination 
of traps within traps overwrites implicitly written IPRs. Can these cases be enumer
ated to form guidelines or define a rule? 

This section should be moved to the !nit chapter when more known .... 

The 21464 will have at least three major reset modes (with maybe a fourth for manufac
turing test): 

1. Cold 

Power-on full-reset. Initialize all IPRs. 

2. Fast 

Quick, complete reset for Tandem synchronization. Initialize all IPRs. 

3. Debug 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-5 



lbox IPRs 

Programmable reset for debug. Initialize only required IPRs; the required subset 
being defined as IPRs that contain bits that could alter the initial post-reset code 
flow. 

IPRs fall into two basic categories: 

• Registers that must be set by hardware to an initial value for all reset flows. 

• Registers that can be initialized by software (PALcode) during the flow. 

The primary reason to NOT initialize an IPR is for debug. Manufacturing test patterns, 
Tandem synchronization, and general chip simulation and verification benefit from 
hardware initialization of most or all IPR values. In addition, implicitly written and 
event-written IPRs that are not also writable by a HW _MTPR can be difficult to initial
ize with software. 

It should also be noted that if a destructive scan dump operation precedes a debug reset, 
the contents of all uninitialized IPRs are potentially unknown random values. 

Table 16-2 defines the classes of initialization. 

Table 16-2 IPR Initialization Classification 

Class Meaning 

All The value is initialized by hardware for all reset flows. 

Dbg The value is initialized by hardware for Cold and Fast reset flows but left to soft
ware to initialize for the debug reset flows. 

No The value is not initialized by hardware during any reset flow. The goal is to elimi
nate this class. 

16.2 lbox IPRs 

This section describes the Ibox IPRs. 

The IPR reserved fields can have the following type: 

Table 16-3 IPR Reserved Field Type Definitions 

Type Meaning 

MBZ Must be zero when written and always read as zero. 

RAZ Ignored for writes and always read as zero. 

X Ignored for writes and reads. 

16.2.1 Cycle Counter Register - CC[tpu] 

The process cycle counter consists of two fields. The COUNT field is an unsigned, 
wrapping counter, the OFFSET field is an operating-system specific offset which, when 
added to the wrapping counter, forms a per-process or per-thread cycle count. The 
ENABLE field is used to enable/disable the counter. 

The RPCC instruction is used to read the process cycle counter. It is TBD whether a 
MFPR instruction will also read the cycle counter. 

Section (II-A) 2.1.12 of the Alpha SRM requires a mechanism to cause the RPCC 
instruction to read-as-zero, writing CC_CTL with a zero achieves that result. 

Com p.aq Confidential 
16-6 Internal Processor Registers 5 Jc1nw1ry 2001 ···Subject To Cfumge 



lbox IPRs 

Notes: 

• Most event-written IPRs in the 21464 will have a valid bit because they may not 
read correctly when being updated by an event. This register must read correctly 
even if the counter is being incremented. 

Read: 

Written 

Index 

RPCC 

HW_MTPR 

OxB8-0xBB 

The low two index bits allow for selective writing of fields. 

00 

01 

10 

11 

write nothing 

write OFFSET and ENABLE fields only 

write COUNT field only 

write all fields 

Figure 16-1 Cycle Counter Register- CC[tpu] 

Table 16-4 Cycle Counter Register Fields Description 

Field Name 

OFFSET 

COUNT 

Reserved 

ENABLE 

Extent Type Description 

63:32 RW,O OS specific value that is added to PCC_CNT to derive the per-process 
cycle count. Overflow of PCC_CNT does not alter PCC_OFF. 

31:4 RW,O Wrapping counter which increments once every 16th CPU cycle. 

3:1 

0 

RAZ 

RW,O Cycle counter enable. The COUNT field increments monotonically 
when enabled and remains unchanged when disabled. 

16.2.2 OTB Single-Miss Return Address Register - DTBMS_RET _ADDR[tpu] 

Stores the return PC for single-level DTB miss traps. On the 21264, the return address 
was stored in EXC_ADDR, but saving the value in a separate register avoids cases 
where disruptions during the single miss flow cause the EXC_ADDR register to be 
modified and the return PC for the DTB miss flow to be lost. 

The traps that set DTBMS_RET_ADDR are: 

DTBMS_SINGLE 

DTBMS_SINGLE_CONS 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-7 



lbox IPRs 

DTBMS_RET_ADDR is readable at two different locations. The first location (OxA6) 
is a general location with no side-effects. The second location (OxA 7) has the side
effect of setting a issue block against load and store instructions and is intended to only 
be used within the block of instructions that modifies a DTB entry. 

Written 

Readable 

Index 

Reset 

Implicitly written when a DTB single miss trap occurs. 

HW_MFPR 

OxA6, OxA7 
Unchanged for debug. 

Figure 16-2 OTB Single-Miss Return Address Register - DTBMS_RET _ADDR[tpu] 
63 

ADDR ~·1 
MODE 

Table 16-5 OTB Miss Return Address Register Field Descriptions 

Field Name 

ADDR 

MODE 

Extent Type Description 

63: 2 IR,O Sign-extended PC of the instruction that caused the TB miss, where 
ADDR is SEXT(PC<51:2>). 

1 :0 IR,O Mode of the trapping instruction: 
00-Normal 
01-PALmode 
11 - SuperPALmode 

16.2.3 Exception Address Register - EXC_ADDR[tpu] 

Implicitly written with the expected restart PC for most PALmode traps. 

The only PALmode traps that do not write EXC_ADDR are: 

DTBM_SINGLE 

DTBM_SINGLE_CONS 

IMCHK 

For Interrupts, this register contains the PC of the next instruction that would have exe
cuted had the interrupt not occurred. PALcode uses this address as the return address 
from the interrupt handler. 

Written 

Readable 
Index 

Reset 

Implicitly written when a trap occurs. 

HW_MFPR 

OxAl 

Unchanged for debug. 

Figure 16-3 Exception Address Register - EXC_ADDR[tpu] 
63 

ADDR ~·1 
MODE 

Compaq Confidential 
16-8 Internal Processor Registers 5 Jc1nuc1ry 2001 - Subject To Change 



lbox IPRs 

Table 16-6 Exception Address Register Field Descriptions 

Field Name 

ADDR 

MODE 

Extent Type Description 

63:2 IR,O For all traps except ARITH and MT_FPCR, the restart PC written into 
EXC_ADDR is the sign-extended PC, SEXT(PC<51:2>), of the instruc
tion that caused the trap. For ARITH andMT_FPCR, the restart address 
is the PC of the next instruction 

1 :0 IR,O Mode of the trapping instruction: 
00-Normal 
01 - PALmode 
11 - SuperPALmode 

16.2.4 Exception Summary Register - EXC_SUM[tpu] 

The exception summary register is an implicitly written register that contains trap status 
information and any register specifiers present in the original instruction. 

The traps that set EXC_SUM are: 

ARI TH 

DFAULT 

UN ALIGN 

DTBM_SINGLE 

DTBM_SINGLE_CONS 

BAD_JMP _IVA 

The register fields actually reflect bits <26:16> and <4:0> of the instruction longword 
independent of the type of operation. The fields are not qualified in any way for 
instructions that lack one or more of the register fields. 

Written 

Readable 

Index 

Reset 

Implicitly written when a trap occurs. 

HW_MFPR 

OxAO 

Unchanged for debug. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-9 



lbox IPRs 

Figure 16-4 Exception Summary Register - EXC_SUM[tpu] 
63 28 2423 

Ra Rb 

1918 

Re 

INT 
SET_IOV 
SET_INE 

SET _UNF ----' 
SET_OVF ----' 
SET_DZE -----' 
SET_INV ___ ___, 

IOV------' 
INE -------' 

UNF -------' 
OVF--------' 
DZE --------' 
INV--------' 
swc--------' 

Table 16-7 Exception Summary Register Field Descriptions 

Field Name Extent Type Description 

Reserved 63:29 RAZ 

Ra 28:24 IR,O Instruction bits<25:21> of the trapping instruction 

Rb 23:19 IR,O Instruction bits<20: 16> of the trapping instruction 

Re 18:14 IR,O Instruction bits<4:0> of the trapping instruction 

INT 13 IR,O Integer overflow/underflow trap 

SET_IOV 12 IR,0 PALcode should set FPCR[IOV] 

SET_INE 11 IR,0 PALcode should set FPCR[INE] 

SET_UNF 10 IR,O PALcode should set FPCR[UNF] 

SET_OVF 9 IR,O PALcode should set FPCR[OVF] 

SET_DZE 8 IR,O PALcode should set FPCR[DZE] 

SET_INV 7 IR,O PALcode should set FPCR [INV] 

IOV 6 IR,O Floating convert to integer trap 

INE 5 IR,O Floating inexact error trap 

UNF 4 IR,O Floating underflow trap 

OVF 3 IR,0 Floating overflow trap 

DZE 2 IR,O Divide by zero trap 

INV 1 IR,O Invalid operation trap 

swc 0 IR,O Software completion possible/requested. Set if the instruction that trig-
gered the trap contained the /S specifier. 

Compaq Confidential 
16-10 Internal Processor Registers 5 Janwiry 2001 ··· Subject To Change 



lbox IPRs 

16.2.5 lbox CPU Configuration Register - CPU_CNFG 

Per-chip configuration register. Settings apply to all TPUs. 

Written HW _MTPR 

Readable HW _MFPR 

Index Ox CS 

Reset All modes. 

Figure 16-5 lbox CPU Configuration Register - CPU_CNFG 
63 

CHIP_ID 

SLOT1_DIS __ __, 
LPR_SEQ_DIS __ ___, 

FTC_RR ___ __. 

CBBYP _DIS ----..J 
CBCLPS_DIS ------l 

CBRFAST_DIS -------' 
TLB_USE1 ---------' 

UPD_TD --------l 
RMP_WAY ---------' 
PREF _EN ---------' 

ANTl_STARVE ----------' 

SS_2TRAIN -----------' 

4 3 

SS_GH ------------' 
SS_CLR------------' 

THRASH_LIMIT ---------------' 

Table 16-8 CPU Configuration Register Fields Description 

Field Name Extent Type Description 

CHIP_ID 63:56 RO,O Read-only CHIP _ID code 

Reserved 55:25 MBZ 

µITB_DIS 24 RW,O Disable the µITB performance feature (a debug mode). 

BPR_DIS 23 RW,O Disable the branch predictor. When set, all branches will be predicted 
not-taken. 

SLOTl_DIS 22 RW,O Disable the use of slot 1 fetching. 

LPR_SEQ_DIS 21 RW,O Disable sequential training, predict non-sequential 

FTC_RR 20 RW,O Force the fetch thread chooser into round-robin mode 

CBBYP_DIS 19 RW,O Disable bypasses around the collapsing instruction buffer 

CBCLPS_DIS 18 RW,O Disable the collapsing capability of the collapsing buffer 

CBRFAST_DIS 17 RW,O Disable Oldest CBR mispredict fast restart optimization 

TLB_USEl 16 RW,O Use only one entry in the ITB. 

UPD_TD 15 RW,O Update the thrash detector array 

RMP_WAY 14 RW,O Enable remapping the !cache way when a thrash has been detected by 
the thrash detector. 

Compaq Confidential 
5 January 2001 -~Subject To Change Internal Processor Registers 16-11 



lbox IPRs 

Table 16-8 CPU Configuration Register Fields Description (Continued) 

Field Name Extent Type Description 

PREF_EN 

ANTI_STARVE 

SS_2TRAIN 

13 RW,O Enable the prefetch hardware. 

12:11 RW,O Controls the fetch starvation threshold detection. If a TPU does not 

10 RW,O 

retire an instruction for the selected number of instructions, the other 
TPUs will be suspended until the starving threads have retired at least 
one good instruction. 

00 Off (anti-starvation detection disabled) 
01 lK cycle non-retire threshold 
10 16K cycle non-retire threshold 
11 128K cycle non-retire threshold 

SS_GH 9:8 RW,O By enabling these bits, one or both of the upper two bits of the Store Set 
array index will include LGHIST information. 

SS_CLR 7:4 RW,O The Store Set array is cleared whenever the bit defined by this field 
overflows in a free-running counter. The bit monitored is bit (9 + 
SS_CLR) creating a clear frequency of 2<9+ss_CLR)_ A SS_CLR value 
of zero disables the Store Set array. The recommended value of 
SS_CLR is ten causing the Store Sets to be cleared every 512K cycles. 

THRASH_LIMIT 3:0 RW,O Number of thrashes before the entry is remapped to a set location in the 
le ache. 

16.2.6 lbox TPU Configuration Register-TPU_CNFG 

Icache/Ibox configuration register. 

Written HW _MTPR 

Readable HW _MFPR 

Index OxD8 

Reset All modes. 

Figure 16-6 lbox TPU Configuration Register - TPU_CNFG 
63 58 56 

Table 16-9 lbox TPU Configuration Register Field Descriptions 

Field Name 

Reserved 

TPU_ID 

Reserved 

Extent Type Description 

63:58 MBZ 

57:56 R0,0-3 Read-only ID of the current TPU. The 21464 has four TPUs numbered 
0,1,2,3. 

55:8 MBZ 

Compaq Confidential 
16-12 Internal Processor Registers 5 Jc1nuc1ry 2001 ·- Subject To Change 



lbox IPRs 

Table 16-9 lbox TPU Configuration Register Field Descriptions 

Field Name 

MCHK_EN 

PREF_RANGE 

Reserved 

Extent Type Description 

7 

6:4 

3:0 

RW,O Enable machine-check interrupts to this TPU. 

RW,O Number of le ache blocks to pref etch beyond a demand miss 

MBZ 

16.2.7 lbox Control Register - LCTL[tpu] 

The per-TPU l_CTL register controls !stream memory management functions. 

Most fields in I_CTL are replicated in M_CTL. It is expected (but not required) that 
these registers will be typically written together. 

Written HW _MTPR 

Readable HW _MFPR 

Index Ox80-0x83 
Reset Unchanged for debug. 

The low two index bits allow for selective writing of fields. 

00 Write nothing 
01 Write VPfE_BASE only 

10 Write SUPERPAGE, VA_SIZE and PAGE_SIZE fields 

11 Write all fields 

Figure 16-7 lbox Control Register - I_ CTL[tpu] 
63 525;;.,;..1 ________ --""""33 26 24 2120 

VPTE_BASE<51 :33> 

REDUCED_PT 
SUPERPAGE 

VA_SIZE -------' 
PAGE_SIZE ____ _, 

Table 16-10 lbox Control Register Field Descriptions 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VPTE_BASE 

Reserved 

51:33 RW,O Virtual Page Table Base. See IVA_FORM, Section 16.2.17, for details. 

32:28 MBZ 

REDUCED_Pf 27 RW See Appendix C.3. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-13 



lbox IPRs 

Table 16-10 lbox Control Register Field Descriptions 

Field Name 

SUPERPAGE 

Reserved 

VA_SIZE 

PAGE_SIZE 

Reserved 

Extent Type Description 

26:24 RW,O !stream Super Page mode enables. Any combination of bits can be set 
at once. Any non-kernel mode access to an enabled superpage region 
must result in an access violation. 

SPE[2] Enables super page mapping when PC[63:50] = Ox3FFE. In 
this mode PC[47:0] is mapped directly to PA[47:0]. 

SPE[l] Enables super page mapping when PC[63:41] = Ox7FFFFE. 
In this mode PA[47:0] = SEXT(PC[40:0]). 

SPE[O] Enables super page mapping when PC[63:30] = 
Ox3FFFFFFFE. In this mode PA[47:0] = ZEXT(PC[29:0]). 

23:22 RAZ 

21 

20 

19:0 

RW,O Defines the I-Stream Virtual address size. Controls the IVA_FORM 
register and sign extension checking. 
VA_SIZE = 0 - 43-bit addressing 
VA_SIZE = 1 - 52-bit addressing (invalid if PAGE_SIZE = 0) 

RW,O Defines the I-Stream page size. Controls the IVA_FORM register 
PAGE_SIZE = 0 - 8KB pages 
PAGE_SIZE = 1 - 64KB pages 

As follows: 

Bits Type 

19 x 
18 MBZ 

17:8 x 
7:6 RAZ 

5:3 x 
2:0 MBZ 

16.2.8 lbox Process Mode Register- l_MODE[tpu] 

The Ibox process mode register specifies the console and current process mode. These 
mode bits shadow the bits in M_MODE and exists on a per-TPU basis. 

Written 

Read 
Index 
Reset 

HW_MTPR 

HW_MFPR 

Ox88-0x8B 
Unchanged for debug. 

The low two index bits allow for selective writing of fields. 

00 Write nothing 

01 Write CURRENT field only 

10 Write CONSOLE field only 

11 Write all fields 

Compaq Confidential 
16-14 Internal Processor Registers 5 Jc1nuary 2001 m Subject To Change 



lbox IPRs 

Figure 16-8 lbox Process Mode Register - l_MODE[tpu] 
63 65432 0 

Table 16-11 lbox Process Mode Register Fields Description 

Field Name Extent Type Description 

Reserved 63:6 As follows: 

Bits Type 

63:52 MBZ 

51:33 x 
32:28 MBZ 

27:19 x 
18 MBZ 

17:6 x 

CONSOLE 5 RW,O ITB traps in console mode are reported to the trap handler separately 
from non-console mode traps so they can be vectored to different 
addresses. 

CURRENT 4:3 RW,O The CURRENT mode field is encoded as follows 
00-Kernel 
01-Executive 
10 - Supervisor 
11-User 

Reserved 2:0 MBZ 

16.2.9 lbox Process Context Register - l_PCTX[tpu] 

The process context register contains information associated with the context of the 
process currently running on the TPU. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

HW_MFPR 

Ox90-0x97 

Unchanged for debug. 

The low three index bits allow for selective writing of fields. 

000 Write nothing 

001 Write ASN field only 

010 Write TPU_GRP field only 

100 Write FP _ENABLE field only 

111 Write all fields 

Compaq Confidential 
5 January 2001 ···Subject To Change Internal Processor Registers 16-15 



lbox IPRs 

Figure 16-9 lbox Process Context Register - l_PCTX[tpu] 

Table 16-12 lbox Process Context Register Field Descriptions 

Field Name 

Reserved 

FP_ENABLE 

Reserved 

TPU_GRP 

ASN 

Reserved 

Extent Type Description 

63:20 As follows: 

19 

18 

Bits Type 

63:52 MBZ 

51:33 x 
32:28 MBZ 

27:20 x 

RW,O If clear, floating-point instructions generate FEN exceptions. Used at 
process context switch time to detect if any FP state exists. Software 
clears the bit when a process is initially created and only sets it when the 
first FP instruction traps. 

MBZ 

17: 16 RW,0 TPU group number associated with this TPU. Allows TB entries to be 
collectively allocated/invalidated for all TPUs that belong to the same 
group. 

15:8 RW,O Address space number. Stored in TBs and compared during invalidate 

7:0 

operations to minimize the number of entries invalidated on a process 
context switch. See SRM Section (II-B) 3.8 for details. 

As follows: 

Bits Type 

7:3 x 
2:0 MBZ 

16.2.10 lcache Status Register- IC_STAT[tpu] 

The Ibox status register is a read/write-1-to-clear register that contains Ibox status 
information. 

Written 

Readable 

Index 

Reset 

Set implicitly by lcache data or tag parity error, WlC 
HW_MFPR 

OxC9 

Unchanged for debug. 

Figure 16-10 lcache Status Register- IC_STAT[tpu] 
1 0 

INDEX 

MULTIPLE __ __, 
PAR_ERROR ___ _, 

Compaq Confidential 
16-16 Internal Processor Registers 5 Jc1m.1c1ry 2001 ~·Subject To Change 



lbox IPRs 

Table 16-13 lcache Status Register Fields Descriptions 

Field Name Extent Type Description 

Reserved 63:16 RAZ 

INDEX 15:5 RO,O Cache line index that caused the PAR_ERROR bit to be set. 

Reserved 4:2 RAZ 

MULTIPLE 1 RO,O Set when a data or tag parity error occurs and the PAR_ENABLE bit is 
already set. Cleared whenever the PAR_ERROR bit is cleared. 

PAR_ERROR 0 WlC,O Set when a data or tag parity error occurs, Cleared when wtten with a 1. 
Writing a 1 also clears the MULTIPLE field. 

16.2.11 lcache Flush Register- IC_FLUSH[tpu] 

When a write to the IC_FLUSH pseudo-register retires, all !cache blocks that match the 
group number of this TPU (in l_PCTX) are marked invalid. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

No 

Ox CC 

NIA 

Figure 16-11 lcache Flush Register- IC_FLUSH[tpu] 
63 

Table 16-14 lcache Flush Register Fields Description 

Field Name Extent Type Description 

Reserved 63:0 x 

16.2.12 lcache Flush (ASM=O) Register- IC_FLUSH_ASM[tpu] 

When a write to the IC_FLUSH_ASM pseudo-register retires, all !cache blocks that 
match the group number of this TPU (in l_PCTX) and have their ASM bit cleared are 
marked invalid. 

The current implementation actually performs an IC_FLUSH when this IPR is written. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

No 

OxCD 

NIA 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-17 



lbox IPRs 

Figure 16-12 lcache Flush (ASM = 0) Register- IC_FLUSH_ASM[tpu] 
63 0 

Table 16-15 lcache Flush (ASM = O) Register Fields Description 

Field Name Extent Type Description 

Reserved 63:0 x 

16.2.13 ITB Invalidate Multiple Register- ITB_IM[tpu] 

The ITB Invalidate Multiple register is a write-only pseudo-register. When write instructions to this register retire, 
all ITB entries matching the criteria specified by the mode bits are invalidated. An explicit write to IC_FLUSH is 

required to flush the lcache of the corresponding blocks. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

NO 

Ox CO 

NIA 

Figure 16-13 ITB Invalidate Multiple Register- ITB_IM[tpu] 

63 5 4 ---. 
MODE 

Table 16-16 ITB Invalidate Multiple Register Fields Descriptions 

Field Name 

Reserved 

MODE 

Extent Type Description 

63:5 

4:0 

MBZ 

WO,O Defines the invalidation mode, as follows: 

Value Mnemonic Description 

OxOO IAG Invalidate all entries independent of group 

OxOl IA Invalidate all entries that match the current 
TPUGRP field in M_PCTX. 

Ox03 IASM Invalidate all entries with the ASM bit set that 
also match the current TPUGRP. 

Ox05 IAP Invalidate all entries with the ASM bit clear that 
also match the current TPUGRP 

Ox OD IASN Invalidate all non-ASM entries that match the 
current TPUGRP and ASN fields. 

OxlO IAG Invalidate all entries independent of group and 
reset the write pointer 

Ox16 IWRP Reset the write pointer only. Nothing is invali-
dated 

Compaq Confidential 
16-18 Internal Processor Registers 5 Jc1nuc1ry 2001 -·Subject To Change 



lbox IPRs 

16.2.14 ITB Invalidate Single Register- ITB_IS[tpu] 

When a write to the ITB_IS pseudo-register retires, all ITB entries that match the group 
number and address space number of this TPU (in I_PCTX) and match the tag value 
supplied are marked invalid. 

The implementation physically shares storage for this register with the ITB_ TAG regis
ter so writes to these registers must be separated by a IFETCHB instruction to ensure 
correct ordering. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

No 

OxC2 
No 

Figure 16-14 ITB Invalidate Single Register- ITB_IS[tpu] 

63 525.;..;..1 __________________ --'-'1312 

VA<51:13> 

Table 16-17 ITB Invalidate Single Register Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VA<51:13> 51:13 

Reserved 12:0 MBZ 

16.2.15 Instruction PTE Array Write Register- ITB_PTE[tpu] 

The ITB PfE array is written by way of this register. A write transaction to the 
ITB_TAG writes a register outside of the ITB array. When a write to the ITB_PTE reg
ister is retired, the contents of both the ITB_TAG and ITB_PfE registers are written 
into the ITB entry. The specific ITB entry written is determined by the round-robin 
algorithm described above. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

No 

OxC4 
No 

Compaq Confidential 
5 January 2001 -· Subject To Change Internal Processor Registers 16-19 



lbox IPRs 

Figure 16-15 Instruction PTE Array Write Register - ITB_PTE[tpu] 
63 

PA<44:13> or PA<47:16> 

URE--~ 

SAE--__. 
ERE---~ 

KRE -------' 
GH[1:0] _____ ...... 

ASM --------' 

Table 16-18 Instruction PTE Array Write Register Field Descriptions 

Field Name Extent 

PA<44:13> or 63:32 
PA<47:16> 

Reserved 31: 12 

URE 11 

SRE 10 

ERE 9 

KRE 8 

Reserved 7 

GH[l:O] 6:5 

ASM 4 

Reserved 3:0 

Type 

W,? 

MBZ 

W,? 

W,? 

W,? 

W,? 

MBZ 

W,? 

W,? 

MBZ 

Description 

The physical page number is PA<44:13> when in SK page mode and 
PA<47: 16> when in 64K page mode. The 21464 cannot address more 
than 16TB when in 8K page mode. 

User write enable. When process context is User mode, this bit must be 
set to write this entry. 

Supervisor write enable. When process context is Supervisor mode, 
this bit must be set to write this entry. 

Executive write enable. When process context is Executive mode, this 
bit must be set to write this entry. 

Kernel write enable. When process context is Kernel mode, this bit 
must be set to write this entry. 

Granularity hint. 

Address space match bit. When set, this PTE matches all address space 
numbers. 

16.2.16 Instruction Tag Array Write Register- ITB_TAG[tpu] 

The ITB tag array is written by way of this register. A write transaction to the 
ITB _TAG writes a register outside of the ITB array. When a write to the ITB _PTE reg
ister is retired, the contents of both the ITB_TAG and ITB_PTE registers are written 
into the ITB entry. The specific ITB entry written is determined by a round-robin algo
rithm; the algorithm writes to entry number 0 as the first entry after the 21464 is reset. 

The implementation shares the physical register with the ITB_IS register so a 
IFETCHB instruction must separate writes to the ITB_TAG and ITB_IS registers. 

Written 

Readable 

Index 

Reset 

HW_MTPR 

No 

OxC6 

No 

16-20 Internal Processor Registers 
Compaq Confidential 

5 Jc1m.1c1ry 2001 -· Subject To Change 



lbox IPRs 

Figure 16-16 Instruction Tag Array Write Register- ITB_TAG[tpu] 
63 525.;...;..1 ____________________ 1312 

VA<51:13> 

Table 16-19 Instruction Tag Array Write Register Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VA<51:13> 51:13 

Reserved 12:0 MBZ 

16.2.17 Instruction Virtual Address Format Register - IVA_FORM[tpu] 

The read-only virtual address format register contains the virtual page table entry 
address derived from the faulting virtual address stored in the EXC_ADDR register 
along with the virtual page table base and associated control bits stored in the I_CTL 
register. 

Written 

Readable 

Index 

Reset 

NIA (Derived from other implicitly and explicitly written registers) 

HW_MFPR 

OxA3 
NIA 

Figure 16-17 Instruction Virtual Address Format Register- IVA_FORM[tpu] 

43-bitVA/ 8KB pages (VA_SIZE=O, PAGE_SIZE=O, REDUCED_PT=O) 
~63'------------------'-33~32;;;.._ ______________ .....;..,32 0 

~I _____ s_EX_T_N_P_T_E __ B_A_S_E<_5_1:_33_>_) ____ ~l _______ PC_<4_2_:1_3> _________ ~ 

52-bitVA/ 64KB pages (VA_SIZE=1, PAGE_SIZE=O, REDUCED_PT=O) 
63 4241 3 2 0 
~I --S-EXT_N_P_T_E-_B_A_S_E<_5_1-:42_>_)_-....l ________ S_E_XT_(_PC_<_5_1:-16_>_) _______ __,~ 

52-bitVA/ 64KB pages (VA_SIZE=1, PAGE_SIZE=1, REDUCED_PT=1) 

~63'------------4~24~1-~~------~-------------.32 0 
~I __ s_EXT_N_P_T_E __ B_A_s_E<_5_1_:4_2>_) _ ___.l_ooo__.l~o_1~I _ooo_oooo __ ooo_o_oo _ _,_ ____ P_C_<4_9_:2_9> ___ ___.~ 

Table 16-20 Instruction VA Format Register (43-Bit VA) Fields Description 

Field Name Extent Type Description 

SEXT(VPfE_BASE<51:33>) 63:33 

PC<42: 13> 32:3 

Reserved 2:0 RAZ 

Compaq Confidential 
5 January 2001 -· Subject To Change Internal Processor Registers 16-21 



lbox IPRs 

Table 16-21 Instruction VA Format Register (52-Bit VA, REDUCED-PT =0) Fields Description 

Field Name Extent Type Description 

SEXT(VP1E_BASE<51 :42>) 63:42 

SEXT(PC<51: 16>) 41:3 

Reserved 2:0 RAZ 

Table 16-22 Instruction VA Format Register (52-Bit VA, REDUCED-PT=1) Fields Description 

Field Name Extent Type Description 

SEXT(VP1E_BASE<51 :42>) 63:42 

41:39 

38:37 

36:24 

PC<49:29> 23:3 

Reserved 2:0 RAZ 

16.2.18 PALcode Base Address Register - PAL_BASE[tpu] 

Based on the type of fault, the hardware vectors into the appropriate PALcode handler 
as an offset from the physical address in PAL_BASE. 

The specific PALcode entry points and offsets are: 

Table 16-23 PALcode Base Address Entry Points and Offsets 

RESERVED PB + xOOO 

DTBM_DOUBLE PB +xlOO 

DTBM_DOUBLE_ALT PB + x180 

FEN PB +x200 

UNALIGN PB + x280 

DTBM_SINGLE PB + x300 

DFAULT PB + x380 

OPCDEC PB + x400 

IACV PB + x480 

MCHK PB + x500 

ITB_MISS PB + x580 

ARITH PB + x600 

INTERRUPT PB + x680 

MT_FPCR PB +x700 

IMCHK PB + x780 

DTBM_SINGLE_CONS PB + x800 

ITB_MISS_CONS PB + x880 

Compaq Confidential 
16-22 Internal Processor Registers 5 J~1n1.u~ry 2001 ··· Subject To Change 



Table 16-23 PALcode Base Address Entry Points and Offsets 

RESERVED PB + xOOO 

BAD _JUMP _IVA 

FAULT_RESET 

WAKEUP 

IP_RESET 

RESET 

PB +x900 

PB +x980 

PB +xAOO 

PB +xA80 

PB +xBOO 

lbox IPRs 

PAL_BASE is also used in the computation of CALL_PAL branches. The 21464 com
putes the target PC of a CALL_PAL instruction as follows: 

Bits Contents 

PC<51:15> PAL_BASE<51: 15> 

PC<l4> 0 

PC<l3> 

PC<l2:12> CallPal function<?> 

PC<ll:6> CallPal function<5:0> 

PC<5:2> 0 

PC<l> Current PC< 1> 
PC<O> 1 

The SRM does not actually define the behavior of PAL_BASE<63:52>, but reading 
anything other than zero feels unwise. 

Written 

Readable 

Index 

HW_MTPR 

HW _MFPR, Implicitly by trap to PALmode. 

OxA8 

Figure 16-18 PALcode Base Address Register- PAL_BASE[tpu] 

Table 16-24 PALcode Base Address Register Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VA<51:15> 51:15 

Reserved 14:0 MBZ 

16.2.19 PALcode Temp Registers - PAL_ TEMP1 [tpu], PAL_ TEMP2[tpu] 

The PAL_ TEMP registers are for miscellaneous use by PALcode. The primary inten
tion is not to use these registers for save/restore type sequences within normal PALcode 
flows, but as infrequently written holders of important state. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-23 



Mbox IPRs 

The 21464 does not define a specific use for these registers but discussed uses include: 

• 

• 

Hold the physical address of a scratch area of memory where this TPU can save and 
restore values. During the PALcode initialization sequence, each CPUffPU would 
do a calculation to produce a unique pal_temp_address. On previous processors, 
this value would have been stored in a PALcode shadow register, but given the lack 
of shadow registers in the 21464, this might be a good use for the scratch registers. 

Use during PALcode flows, where the ability to reliably access memory is ques
tionable. In this case, HW _ST/HW _LD would not be an option so the overhead of 
synchronizing writes and reads to these registers is reasonable. 

Written HW _MTPR 

Readable HW _MFPR 

Index OxA9, OxAA 

Figure 16-19 PALcode Temp Registers- PAL_TEMP1[tpu], PAL_TEMP2[tpu] 
63 

Anything 

16.3 Mbox IPRs 

16.3.1 Dcache Control Register - DC_CTL 

The Dcache control register is a chip-wide register controlling Dcache state. 

There are many open issues relating to the structure of this register. One new bit, when 
written with a one, will reset the DTB write pointer to zero. Is this the flush bit? 

Written 

Read: 

Index 

HW_MTPR 

HW_MFPR 

Ox48 

Figure 16-20 Dcache Control Register- DC_CTL 

....__ ___ FLUSH 
.__ ____ F_BAD_TPAR 

'-------- F _BAD_DECC 
'-------- DCTAG_PAR_EN 

------- DCDAT_PAR_EN 

Table 16-25 Dcache Control Register Field Descriptions 

Field Name Extent Type Description 

Reserved 63:56 MBZ 

DCDAT_PAR_EN 55 

DCTAG_PAR_EN 54 

RW,O Dcache data parity error enable 

RW,O Dcache tag parity enable 

Compaq Confidentia I 
16-24 Internal Processor Registers 5 J(1nu(1ry 2001 -~ Subject To Change 



Mbox IPRs 

Table 16-25 Dcache Control Register Field Descriptions (Continued) 

Field Name Extent Type Description 

F_BAD_DECC 53 RW,O Force Bad Data ECC. When set, ECC data is not written into the cache 
along with the block that is loaded by the fill or store. 

F_BAD_TPAR 52 RW,O Force Bad Tag Parity. When set this bit cause bad tag parity to be put in 
the Dcache tag array during Dcache fill operations 

FLUSH 51 RW,O 

F_HIT 50 RW,O Force Hit. When set, this bit causes all memory space load and store 
instructions to hit in the Dcache, independent of the Dcache tag address 
compare. 

SET_EN 49:48 RW,O Dcache Set Enable. At least one set must be enabled. 

Reserved 47:0 MBZ 

16.3.2 Dcache Status Register- DC_STAT[tpu] 

The Dcache status,register is a per-TPU read-write register containing information 
about Dcache parity and ECC errors. 

The status bits indicate an error when set and must be explicitly written with a 1 to 
clear. 

Written 

Read 

Index 

Reset 

Set when the parity or ECC error event occurs. 

HW_MFPR 

Ox49 

Unchanged for debug modes. 

Figure 16-21 Dcache Status Register- DC_STAT[tpu] 

...._ ___ TPERR_PO 
.___ ____ TPERR_P1 

'------- TPERR_P2 
.___ _____ ECC_ERR_LD 

.___ _____ ECC_ERR_ST 
.___ ______ SEO 

Table 16-26 Dcache Status Register Field Descriptions 

Field Name Extent Type Description 

SEO 63 WlC,O A second ECC error occurred within N cycles of a previous ECC error. 

ECC_ERR_ST 62 WlC,O An ECC error occurred when processing a store 

ECC_ERR_LD 61 WlC,O An ECC error occurred when processing a load from the Dcache or any 
fill 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-25 



Mbox IPRs 

Table 16-26 Dcache Status Register Field Descriptions (Continued) 

Field Name Extent Type Description 

TPERR_P2 60 WlC,O A Dcache tag probe from pipe 2 resulted in a tag parity error. The error 
is uncorrectable. 

TPERR_Pl 59 WlC,O A Dcache tag probe from pipe 1 resulted in a tag parity error. The error 
is uncorrectable. 

TPERR_PO 58 WlC,O A Dcache tag probe from pipe 0 resulted in a tag parity error. The error 
is uncorrectable. 

Reserved 57:0 RAZ 

Figure 16-22 OTB Invalidate Address Space Register - DTB_IASN[tpu] 
63 0 

16.3.3 OTB Invalidate Multiple Register - DTB_IM[tpu] 

The DTB fuvalidate Multiple register is a write-only pseudo-register. When write instructions to this register 
retire, all DTB entries matching the criteria specified by the mode bits are invalidated. 

Written 

Readable 

Index 

HW_MTPR 

No 

Ox40 

16-26 Internal Processor Registers 
Compaq Confidentia I 

5 Jc1mJc1ry 2001 ~-Subject To Change 



Mbox IPRs 

Figure 16-23 OTB Invalidate Multiple Register - DTB_IM[tpu] 
63 5 4 

Table 16-27 OTB Invalidate Multiple Register Fields Description 

Field Name 

Reserved 

MODE 

Extent Type Description 

MBZ 63:5 

4:0 WO,O Defines the invalidation mode, as follows: 

Value Mnemonic Description 

OxOO IAG Invalidate all entries independent of group 

OxOl IA Invalidate all entries that match the current 
TPUGRP field in M_PCTX. 

Ox03 IASM Invalidate all entries with the ASM bit set that 
also match the current TPUGRP. 

Ox05 IAP Invalidate all entries with the ASM bit clear that 
also match the current TPUGRP 

OxOD IASN Invalidate all non-ASM entries that match the 
current TPUGRP and ASN fields. 

OxlO IAG Invalidate all entries independent of group and 
reset the write pointer 

Ox16 IWRP Reset the write pointer only. Nothing is invali-
dated 

16.3.4 OTB Invalidate Single Register - DTB_IS[tpu] 

The DTB Invalidate Single register is a write-only pseudo-register. Write instructions to 
this register invalidate any DTB entries that would match the virtual page number writ
ten, given the current values of the TPUGRP and DTB_ASN registers. 

Written 

Readable 

Index 

HW_MTPR 

No 

Ox42 

Figure 16-24 OTB Invalidate Single Register - DTB_IS[tpu] 

Table 16-28 OTB Invalidate Single Register Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VA<51:13> 51:13 

Reserved 12:0 MBZ 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-27 



Mbox IPRs 

16.3.5 OTB PTE Array Write Registers - DTB_PTEO[tpu], DTB_PTE1 [tpu] 

The DTB PTE write register is a write-only register used to write the PTE part of the 
DTB array. It contains the physical page mapping and protection bits for the array. 
When a write to it retires, the PTE, along with the DTB_TAG, DTB_ASN and TPUGRP 
registers, are written to the DTB. PALcode must perform two consecutive writes to 
DTB_PTE to guarantee both copies of the TB are updated together. 

The bits in this register are also specified in Section (II-A) 3.6 of the Alpha SRM. 

Written 

Readable 

Index 

HW_MTPR 

No 

Ox44 

Figure 16-25 OTB PTE Array Write Registers - DTB_PTEO[tpu], DTB_PTE1 [tpu] 
63 

PA<44:13> or PA<47:16> 

UWE-----' 
SWE----' 
EWE----
KWE---~ 

URE----~ 

SRE-------' 
ERE _____ ___, 

KRE --------' 
GH[1:0) ---------' 

2 0 

ASM --------
FOW -----------' 
FOR----------

VALID ---------~ 

Table 16-29 DTB_PTE Array Write Registers Fields Descriptions 

Field Name Extent Type Meaning 

PA<44: 13> or 63:32 wo,o The physical page number is PA<44: 13> when in 8K page mode and 
PA<47:16> PA<47: 16> when in 64K page mode. The 21464 cannot address more 

than 16 TB when in 8K page mode. 

Reserved 31:16 MBZ 

UWE 15 wo,o User write enable. When process context is User mode, this bit must be 
set to write this entry. 

SWE 14 WO,O Supervisor write enable. When process context is Supervisor mode, this 
bit must be set to write this entry. 

EWE 13 WO,O Executive write enable. When process context is Executive mode, this 
bit must be set to write this entry. 

KWE 12 WO,O Kernel write enable. When process context is Kernel mode, this bit 
must be set to write this entry. 

URE 11 WO,O User read enable. When process context is User mode, this bit must be 
set to read this entry. 

Compaq Confidential 
16-28 Internal Processor Registers 5 Jc1nwiry 2001 -~Subject To Change 



Mbox IPRs 

Table 16-29 DTB_PTE Array Write Registers Fields Descriptions 

Field Name 

SRE 

ERE 

KRE 

Reserved 

GH[l:O] 

ASM 

Reserved 

FOW 

FOR 

VALID 

Extent Type Meaning 

10 

9 

8 

7 

6:5 

4 

3 

2 

1 

0 

WO,O 

wo,o 

WO,O 

MBZ 

WO,O 

wo,o 

MBZ 

WO,O 

WO,O 

WO,O 

Supervisor read enable. When process context is Supervisor mode, this 
bit must be set to read this entry. 

Executive read enable. When process context is Executive mode, this 
bit must be set to read this entry. 

Kernel read enable. When process context is Kernel mode, this bit 
must be set to read this entry. 

Granularity Hint. 

Address space match bit. When set, this PfE matches all address space 
numbers. 

Fault-on-write control bit. 

Fault-on-read control bit 

Valid bit. Not actually written to the TB, but is used to prevent the writer 
block interlock from being lifted unitl the MTPR instruction is killed. 
The DTB miss PALcode must include a branch-on-invalid check before 
the DTB write or the 21464 hangs if an invalid TB entry is written. 

16.3.6 OTB Tag Array Write Registers- DTB_TAGO[tpu], DTB_TAG1[tpu] 

The DTB Tag write register is a write-only register used to write the DTB tag array. It 
contains the virtual page number of the entry currently being written to the DTB, and 
will be committed to the DTB array when the corresponding write to DTB_PTE retires. 
The DTB_ASN and TPUGRP registers are also implicitly included in the data written 
to the DTB when the write to DTB_PTE retires. PALcode must perform two consecu
tive writes to DTB_PTE to guarantee both copies of the TB are updated together. 

Written 

Readable 

Index 

HW_MTPR 

No 

Ox46 

Figure 16-26 OTB Tag Array Write Registers - DTB_ TAGO[tpu], DTB_ TAG1 [tpu] 

63 52;;..;.51 ___________________ ____;,,,,;1312 

VA<51:13> 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-29 



Mbox IPRs 

Table 16-30 OTB Tag Array Write Registers Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VA<51: 13> 51: 13 

Reserved 12:0 MBZ 

16.3.7 Mbox Control Register- M_CTL(tpu] 

The Mbox control register was a write-only register in the 21264, but is proposed to be read-write in the 21464. 
M_CTL controls the formatting of the VA_FORM register by storing the virtual page table base, along with con
trol bits for big-endian and 64K page modes. 

Written 

Read 

Index 

HW_MTPR 
HW_MFPR 

Ox00-0x03 

The low two index bits allow for selective writing of fields. 

00 Write nothing 

01 Write VPTE_BASE field only 

10 Write SUPERPAGE, BIG_ENDIAN, VA_SIZE and PAGE_SIZE only 
11 Write all fields 

Figure 16-27 Mbox Control Register- M_CTL[tpu] 
63 

VPTE_BASE<51 :33> 

BIG_ENDIAN --
DBL_ALT __ ___, 
VA_SIZE ___ ___, 

PAGE_SIZE -----' 

Table 16-31 Mbox Control Register Fields Description 

Field Name Extent Type Description 

Reserved 63:52 MBZ 

VPTE_BASE<51 :33> 51 :33 RW,O Virtual Page Table Base. See the VA_FORM register section for details. 

Reserved 32:28 MBZ 

REDUCED_PT 27 

Compaq Confidential 
16-30 Internal Processor Registers 5 January 2001 ··· Subject To Change 



Mbox IPRs 

Table 16-31 Mbox Control Register Fields Description 

Field Name 

SUPERPAGE 

BIG_ENDIAN 

DBL_ALT 

VA_SIZE 

PAGE_SIZE 

Reserved 

Extent Type Description 

26:24 RW,O Dstream Super Page mode enables. Any combination of bits can be set 
at once. Any non-kernel mode access to an enabled superpage region 
must result in an access violation. 

23 

22 

21 

20 

19:0 

Bits Meaning 

SPE[2] Enables super page mapping when VA[63:50] = Ox3FFE. In 
this mode VA[47:0] is mapped directly to PA[47:0]. 

SPE[l] Enables super page mapping when VA[63:41] = Ox7FFFFE. 
In this mode PA[47:0] = SEXT(VA[40:0]). 

SPE[O] Enables super page mapping when VA[63:30] = 
Ox3FFFFFFFE. In this mode PA[47:0] = ZEXT(VA[29:0]). 

RW,O When set, the lower bits of the physical address for Dstream accesses 
are inverted based upon the length of the datatype referenced. Also, the 
shift amount (Rbv[2:0]) is inverted for EXTxx, INSxx and MSKxx 
instructions. 

RW,O Determines which double miss flow will be vectored to when a hw _ld/ 
vpte misses in the TB. This bit controls the vectoring for all double TB 
misses -- I-Stream and D-Stream. 0 Vector to DTB_MISS_DOUBLE 1 
Vector to DTB_MISS_DOUBLE_ALT DTB_MISS_DOUBLE and 
DTB_MISS_DOUBLE_ALT are in used in place of the 21264's 
DTB_MISS_DOUBLE_3 and DTB_MISS_DOUBLE_ 4 with the dis
tinction being that the decision is the discretion of PALcode. 

RW,O Defines the D-Stream Virtual address size. Controls the VA_FORM 
register and sign extension checking. 
VA_SIZE = 0 specifies 43-bit addressing 
VA_SIZE = 1 specifies 52-bit addressing (invalid if PAGE_SIZE = 0) 

RW,O Defines the D-Stream page size. Controls the VA_FORM register. 
PAGE_SIZE = 0 specifies 8KB pages 
PAGE_SIZE = 1 specifies 64KB pages 

As follows: 

Bits Type 

19 x 
18 MBZ 

17:3 x 
2:0 MBZ 

16.3.8 Mbox Process Mode Register- M_MODE[tpu] 

The Mbox process mode register specifies the console, current and alternate processor 
mode. These mode bits shadow the bits in !_MODE and exists on a per-TPU basis. 

Written 

Read 

Index 

HW_MTPR 

HW_MFPR 

Ox08-0xOF 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-31 



Mbox IPRs 

The low three index bits allow for selective writing of fields. 

000 Write nothing 

001 Write CURRENT field only 

010 Write CONSOLE field only 

100 Write ALT field only 
111 Write all fields 

Figure 16-28 Mbox Process Mode Register - M_MODE[tpu] 
63 8765432 0 

CONSOLE _ ___, 
CURRENT __ ___, 

Table 16-32 Mbox Process Mode Register Field Descriptions 

Field Name Extent Type Description 

Reserved 63:8 As follows: 

Bits Type 

63:52 MBZ 

51:33 x 
32:28 MBZ 
27:19 x 
18 MBZ 

17:8 x 

ALT 7:6 RW,O The ALT field is encoded as follows: 
00-Kernel 
01-Executive 
10 - Supervisor 
11- User 

CONSOLE 5 RW,O DTB traps in console mode are reported to the trap handler separately 
from non-console mode traps so they can be vectored to different 
addresses. 

CURRENT 4:3 RW,O The CURRENT field is encoded as follows: 
00-Kernel 
01 - Executive 
10 - Supervisor 
11-User 

Reserved 2:0 MBZ 

16.3.9 Mbox Process Context register - M_PCTX[tpu] 

The Mbox process context register is a copy of the Ibox process context register stored 
locally to the Mbox for implementation convenience. 

Written HW _MTPR 

Readable HW _MFPR 

Index Ox10-0x13 

Compaq Confidential 
16-32 Internal Processor Registers 5 Janu~1ry 2001 ··· Subject To Change 



Mbox IPRs 

The low two index bits allow for selective writing of fields. 

00 Write nothing 

01 Write ASN field only 

10 Write TPU_GRP field only 

11 Write all fields 

Figure 16-29 Mbox Process Context Register - M_PCTX[tpu] 

ASN 

Table 16-33 Mbox Process Context Register Field Descriptions 

Field Name 

Reserved 

TPU_GRP 

ASN 

Reserved 

Extent Type Description 

63: 18 As follows: 

17:16 

15:8 

7:0 

Bits 

63:52 

51:33 

32:28 

27:19 

18 

RW,O 

RW,O 

Type 

MBZ 

x 
MBZ 

x 
MBZ 

Thread Group number this TPU belongs to 

Address space number, should be identical to the value in PCTX con
trolling the ITB 

As follows: 

Bits Type 

7:3 x 
2:0 MBZ 

16.3.10 Mbox Memory Management Status Register - M_STAT[tpu] 

The memory management status register is implicitly written register containing inf or
mation about the most recent Dstream TB miss or fault in the TPU. 

The traps that set M_STAT are: 

UN ALIGN 

DFAULT 

MCHK 

DTBM_SINGLE 

DTBM_SINGLE_CONS 

Compaq Confidential 
5 January 2001 ·-Subject To Change Internal Processor Registers 16-33 



Mbox IPRs 

*** One of the bits should indicate a BAD_ VA fault (sign extension check failure)??? 

Written 

·Readable 

Index 

Implicitly written when a Dstream fault occurs. 

HW_MFPR 

Ox20 

Figure 16-30 Mbox Memory Management Status Register- M_STAT[tpu] 

DCDAT_PERR ---~ 
DCTAG_PERR ___ __. 

OPCODE -------' 
FOW ---------' FOR ________ _.. 

ACV ------------' 
WR-----------' 

Table 16-34 Mbox Memory Management Status Register Field Descriptions 

Field Name 

Reserved 

DCDAT_PERR 

DCTAG_PERR 

OPCODE 

FOW 

FOR 

ACV 

WR 

Extent Type Description 

63:12 RAZ 

11 

10 

9:4 

3 

2 

0 

IR,O 

IR,0 

IR,O 

IR,O 

IR,O 

IR,O 

IR,0 

Set when a Dcache data parity error occurs during the initial tag probe 
of a load or store instruction. A DFAULT PALmode trap is generated. 

Set when a Dcache tag parity error occurs during the initial tag probe of 
a load or store instruction. A DFAULT PALmode trap is generated. 

The opcode of the instruction that generated the error. 

Set when a fault-on-write error occurs and PfE[FOW] was set 

Set when a fault-on-read error occurs and PfE[FOR] was set 

Set when an access violation occurs. This includes bad virtual 
addresses 

Set when an error occurs during a write operation 

16.3.11 Quiesce Timeout Register - QUIESCE_ TIMEOUT[tpu] 

This IPR specifies a limit to the number of CPU cycles that may elapse between issuing 
the QUIESCE instruction and the watch_flag (see WATCH_PHYS_ADDR) being 
cleared. The value in this register is used to load the quiesce timer. 

Allowing this value to be set per-TPU is necessary to give the 21464 the capability of 
running virtual machines, i.e., the ability for different TPUs to run different O/S 's 
simultaneously. 

Does the counter wrap or saturate and what is the behavior of a zero value? 

Compaq Confidential 
16-34 Internal Processor Registers 5 Jc1m.u1ry 2001 - Subject To Change 



Mbox IPRs 

The background for booting document assumes the ability to define an infinite wait 
condition in the Suspending TPUs section. Disabling the timer should suffice. 

Written 

Readable 

Index 

HW_MTPR 

HW _MFPR, Implicitly by Quiesce instruction 

Ox38 

Figure 16-31 Quiesce Timeout Register- QUIESCE_TIMEOUT[tpu] 
63 201"""'"9 ________ 4 

TIMEOUT 

WATCH_EN 
TIMEOUT_EN 

Table 16-35 Quiesce Timeout Register Field Descriptions 

Field Name 

Reserved 

TIMEOUT 

Reserved 

WATCH_EN 

TIMEOUT_EN 

Extent Type Description 

63:20 MBZ 

19:4 RW, Number of CPU cycles to wait before clearing the watch_flag of a qui
Ox280 esced TPU. What does zero do??? 

3:2 MBZ 

1 

0 

RW,O Enables comparison against the physical address specified by the 
LDx_ARM instruction. If disabled, a TPU will not awaken when an 
access to the WATCH_PHYS_ADDR is detected. 

RW,O Enables the timeout counter. If disabled, a TPU will not timeout from a 
quiesce operation. 

The actual timer value is not currently readable. While the process is quiesced, that is 
not important, but would the ability to read the timer value when awaken by an inter
rupt or address match be useful? 

16.3.12 Virtual Address Register - VA[tpu] 

When a Dstream fault occurs, the associated virtual address is stored in the VA register. 
The VA is not written when an LD _ VPTE gets a DTB miss or Dstream fault. 

Traps that cause VA to be written are: 

UN ALIGN 

DFAULT 

DTBM_SINGLE 

DTBM_SINGLE_CONS 

Written 

Readable 

Index 

Implicitly by instruction that caused the miss. 

HW_MFPR 

Ox21 

Compaq Confidential 
5 January 2001 -~Subject To Change Internal Processor Registers 16-35 



Mbox IPRs 

Figure 16-32 Virtual Address Register - VA[tpu] 
63 

VA<63:0> 

NOTE: The SRM states that the pre-endian adjusted address (va, not va') is 
reported for memory management faults. The 21464 stores va' and 
requires PALcode to adjust back to va where necessary. 

16.3.13 Virtual Address Format Register - VA_FORM[tpu] 

The read-only virtual address format register contains the virtual page table entry 
address derived from the faulting virtual address stored in the VA register along with 
the virtual page table base and associated control bits stored in the VA_CTL register. 

Written 

Readable 

Index 

NIA (Derived from address in VA and control bits in M_CTL) 

HW_MFPR 
Ox23 

Figure 16-33 Virtual Address Format Register - VA_FORM[tpu] 

43-bitVA/ 8KB pages (VA_SIZE=O, PAGE_SIZE=O, REDUCED_PT=O) 

~63~~~~~~~~~~~~~~~~33~32"--~~~~~~~~~~~~~__.;;..32 0 

~I ~~~~S_EX~n_v_PT_E ___ BA_S_E_<5_1_:33_>_)~~~~~'~~~~~~-VA_<_42_:_13_>~~~~~~mll 

52-bitVA/ 64KB pages (VA_SIZE=1, PAGE_SIZE=O, REDUCED_PT=O) 
63 4241 3 2 0 
~I ~~S-EXT~(V-P-TE-_-B-AS_E_<-51-:4-2>-)~____,,.--~~~~~~~S-E-XT-~-A-<-51-:1-6-~~~~~~~~~mll 

52-bit VA/ 64KB pages (V A_SIZE=1, PAGE_SIZE=1, REDUCED_PT =1) 

-63~~~~~~~~~~---"'i42-41~.--..--~~~~~----.-~~~~~~~~~~---32 0 

~I ~~s_EXT~(V_P_TE ___ B_As_E_<_51_:4_2>_)~~1~000~~'0_1~l~ooo~ooo~ooo~oo_oo~--'-~~~~V_A_<_49_:2_9>~~~--E11 

Table 16-36 Instruction VA Format Register (43-Bit VA) Fields Description 

Field Name Extent Type Description 

SEXT(VPIE_BASE<51 :33>) 63:33 

VA<42: 13> 32:3 

Reserved 2:0 RAZ 

Table 16-37 Instruction VA Format Register (52-Bit VA, REDUCED-PT=O) Fields Description 

Field Name Extent Type Description 

SEXT(VPIE_BASE<51 :42>) 63:42 

SEXT(VA<51:16>) 41:3 

Reserved 2:0 RAZ 

Compaq Confidential 
16-36 Internal Processor Registers 5 Jc1nw~ry 2001 - Subject To Cf1ange 



CboxlPRs 

Table 16-38 Instruction VA Format Register (52-Bit VA, REDUCED-PT =1) Fields Description 

Field Name Extent Type Description 

SEXT(VPIE_BASE<51 :42>) 63:42 

41:39 

38:37 

36:24 

VA<49:29> 23:3 

Reserved 2:0 RAZ 

16.3.14 Watch Physical Address Register - WATCH_PHVS_ADDR[tpu] 

When a LDx_ARM instruction retires, the physical address specified is loaded into this 
register and the watch flag is set. If the watch flag is still set when a Quiesce instruction 
to the TPU retires, the TPU is put to sleep until the flag is cleared. 

The watch flag is cleared by a memory write to the physical address, an interrupt to the 
TPU or when the quiesce timer expires. 

Written 

Readable 

Index 

Implicitly by LDx_ARM instruction 

No 

NIA 

Figure 16-34 Watch Physical Address Register- WATCH_PHYS_ADDR[tpu] 
63 

phys_addr<47:4> 

WATCH_FLAG _ ____, 

Table 16-39 Watch Physical Address Register Fields Description 

Field Name Extent Type Description 

Reserved 63:48 MBZ 

PHYS_ADDR<47:4> 47:4 

Reserved 3:1 MBZ 

WATCH_FLAG 0 

16.4 Cbox IPRs 

16.4.1 Hardware Interrupt Clear Register - HW_INT _CLR[tpu] 

The hardware interrupt clear register is a write-only register used to clear edge-sensitive 
interrupt requests. 

I believe this register is moving to the Cbox and will be completely reworked given 
how the 21364/21464 handle interupts, as opposed to the 21264. 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-37 



Rbox IPRs 

Note: The FBTP bit will be move. 

Written ?? 
Readable No 

Figure 16-35 Hardware Interrupt Clear Register - HW _INT_ CLR[tpu] 

63 

CR----
PC---..... 

MCHK_ID ____ _. 

Table 16-40 Hardware Interrupt Clear Register Fields Description 

Field Name Extent Type Description 

Reserved 63:32 

CR 31 Clears a corrected read error interrupt request. 

PC 30:29 Clears a performance counter interrupt request. 

MCHK_ID 28:27 Clears a Dstream machine check interrupt request. 

Reserved 26:0 

16.5 Rbox IPRs 

This section describes the Rbox IPRs. 

16.5.1 Router Configuration1 (R,W) - R_CFG1 

Table 16-41 shows the router configuration register fields. 

Table 16-41 Router-Configuration1 Register Fields Description 

Bit Field Value Meaning Comments 

<31> IRW If set then ignore writes to the Router Table. This bit 
helps reduce the risk that an errant IPR write will corrupt 
the Routing table. Table 2: Router-Configuration register 
(Part 2) 

<30:25> reserved 

<24:22> DRl<2:0> 0 0 Drain Interval. Indicates how many cycles after the drain 
1 3 interval starts, before the router forces out the starved 
2 15 packet. The drain interval starts once an input-buffer slot 3 63 
4 255 becomes available for the starved packet. 
5 1023 
6 409 
7 516383 

<21> DRE Enable Drain Mode 

Compaq Confidential 
16-38 Internal Processor Registers 5 J(1m.1(1ry 2001 --Subject To Change 



Rbox IPRs 

Table 16-41 Router-Configuration1 Register Fields Description 

Bit Field Value Meaning Comments 

<20:18> STI 0 0 Starvation Interval. Indicates how many cycles the star-
1 3 vation token can last in the header queue before it trig-
2 15 
3 63 gers the starvation mode. When in starvation mode, the 
4 255 router treats all packets in the header queue in front of 
5 1023 the token as starved. 
6 4095 
7 16383 

<17> STE Enable Starvation mode 

<16:14> SYF<2:0> N (range is SYNCH frequency: Interval = (N+ 1) * 4096 cycles 
0:7) Period = (N+ 1) * ( 1024) 2 cycles 

<13> SYE Enable SYNCHs 

<12:10> reserved 

<9> ADA Enable adaptive routing when set. 

<8:7> SHB<l:O> 0 0 Size of Packet queue in ticks. A value of zero, and ADA 
1 64 = 0 forces deterministic routing. The other values allow 
2 128 
3 256 performance experiments. 

<6:3> BR0<3:0> <0> North Determines which output ports to send the broadcast 
<1> South packet that are in the local input port. 
<2> East 
<3> West 

<2:1> TRT 0 North Turn Route Type: 
1 South Selects whether the routing type is North-last, etc. North-
2 East last and South-Last imply XY-routing for the Starvation-3 West 

recovery routine. East-last and West-last imply YX-rout-
ing. 

<0> ECB 01 Normal Low ECC Bypass: 
If set enable the low latency ECC checker. 
(Currently not implemented) 

16.5.2 Router Configuration2 (R, W)- R_CFG2 

Table 16-42 shows the Router Configuration2 register fields. 

Table 16-42 Router-Configuration2 Register Fields Description 

Bit Field 

<31 :22> reserved 

<21:20> TGl 

<19:18> TGO 

Value 

0 
1 
2 
3 

0 
1 
2 
3 

Meaning 

0% 
33% 
67% 
100% 

0% 
33% 
67% 
100% 

Comments 

Toggle rate for Header queue entries 4 through 15. Same 
asTGO. 

Toggle rate for the first four Header-Queue entries. 
Chooses fifth channel over the Adaptive-route field. 

Compaq Confidentia I 
5 January 2001 ·- Subject To Change Internal Processor Registers 16-39 



Rbox IPRs 

Table 16-42 Router-Configuration2 Register Fields Description 

Bit Field Value Meaning Comments 

<17:14> WAL<3:0> <0> NorthO/P Wall: 
<1> SouthO/P The output port is a wall. Packets with the Bounce bit set 
<2> EastO/P 
<3> WestO/P will tum on encountering the wall. 

<13:12> DNC 0 16 De-allocate NOP Counter: Number of network cycles 
1 32 before the 21464 tries to force a De-allocate NOP on the 
2 64 links. This NOP will dispatch as soon as any packet cur-3 128 

rently on the link completes. 

<11> WID 0 Narrow Width: 
1 Wide Selects the width of the network links. 

<10:9> FDR<l:O> 0 No force Force Deterministic Route: 
1 every 4th Force every 4th to 16th cycle to route deterministically. 
2 every 8th This is a performance tweak. 3 every 16th 

<8> TCB 0 normal Two Cycle Bid: 
1 2-cycle The local arbiter does not bid in the cycle after issuing a bid. 

Setting this bit prevents the local arbiter from bidding in the 
next two cycles, which allows packets to route in order. 

<7:6> reserved 

<5:0> DRM <0> Request Deterministically Route Message class: 
<1> Forward Setting a bit causes all packets in the selected message class to 
<2> Block-Response route deterministically. This is an insurance policy in case we 
<3> Victim-Block find a ships-passing-in-the-night problem 
<4> Non-Block 
<5> Release 

16.5.3 Router Channel {N,S,E,W} Configuration1 (R,W)- R_n_CFG1 

There are four such registers - one per network port - called R_N_CFGl, R_S_CFGl, 
R_E_CFGl, R_W_CFGl. 

Compaq Confidential 
16-40 Internal Processor Registers 5 January 2001 ··· Subject To Change 



RboxlPRs 

Table 16-43 Router-{N,S,E,W}-Configuration1 Register Fields Description 

Bit Field Value Meaning Comments 

<31:26> reserved 

<25> NUL When set, the Output-Port issues Null ticks. 

<24:21> SPD<3:0> 0 1:1 The clock ratio between the interface and the CPU. For 
1 3:2 instance, a ratio of 3:2 means that there are three CPU 
2 2:1 clocks for every 2 interface clocks. 
3 5:2 
4 3:1 This table is still TBD. Need some slower ratios for test 
5 7:2 purposes. 
6 4:1 
7 9:2 
8 5:1 
9 11:2 
10 6:1 
11 13:2 
12 7:1 
13 15:2 
14 8:1 
15 reserved 

<20> IGD Ignore incoming de-allocate NOP packets. This is a test 
bit, used to ensure that the router timers expire. 

<19:18> FEM<l:O> 0 Normal Force-Error mode: 
1 Error-D Error-D: force 1-shot, double-bit error 
2 Error-C Error-C: force a continuous stream of 1-bit errors 
3 Error-S Error-S: force 1-shot, single-bit error 

A hidden, 20-bit counter triggers the forced error modes. 
Once per million GCLK clock cycles, this counter forces 
the error on a random, outward-bound packet tick. 

The Router-TCTL IPR defines this counter. A write to 
this IPR clears the hidden counter, and clears the force-
error conditions. 

The interval timer, the SYNC timer, and the time-out 
timer, all share this hidden counter. 

<17> INI Initialize Mode: 
Causes the port to go through a clock-forward init on the 
next fast reset. Also causes the output to send true NOP 
packets rather than NUL-NOP packets, until the clock 
initialization sequence completes. The hardware clears 
this bit at the end of a clock-forward initialization 
sequence. 

<16> SYC Run the port input in synchronous mode 

<15:14> UNI Unload pointer init value (for clock-forward reset) 

<13> SYE Enable the port to respond to a SYNCH. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-41 



Rbox IPRs 

Table 16-43 Router-{N,S,E,W}-Configuration1 Register Fields Description 

Bit 

<12> 

<11> 

<10> 

<9> 

<8> 

<7> 

<6:3> 

<2> 

<0> 

Field Value 

FCC 

ECC 

SAE 

HAE 

reserved 

reserved 

BR0<3:0> <0> 
<1> 
<2> 
<3> 

OE 

ICO 

IE 

Meaning 

North 
South 
East 
West 

Comments 

Enable the port to check the Forwarded clock. This 
check logic confirms that the clocks are at the expected 
rate, and that the clocks are in synchronization. 

Enable the ECC checking/correction logic. 

Enable the port to respond to a SW alert 

Enable the port to respond to a HW alert 

Broadcast Output port: 
These bits direct the broadcast packet on the Local Port 
to the enabled output ports. 

Output Port Enable: 
If clear, the router discards any packet destined for this 
port. The hardware clears this bit when the channel goes 
down. 

Input Connected to Output: 
If set the input port is connected to an output port (i.e., 
another node). If it is not connected then the hardware 
disables the port logic to minimize power, noise, etc. 

Input Port Enable: 
When clear the router ignores any packets on this input 
port. The hardware clears this bit when the channel goes 
down. 

16.5.4 Router Channel {N,S,E,W} Configuration2 (R,W)- R_n_CFG2 

Table 16-44 shows the Router Channel Configuration2 register fields. 

Table 16-44 Router Channel {N,S,E,W} Configuration2 Register Fields Description 

Bit Field 

<31 :9> reserved 

<8:6> 

<5:3> 

<2:0> 

FOF<2:0> 

TOF<2:0> 

SOF<2:0> 

Value Meaning Comments 

Output-FIFO Fullness offset for fifth channel see SOF<2:0> 

Output-FIFO Fullness offset for turning path: see SOF<2:0> 

Output-FIFO-Fullness offset for straight-through path: 
This value is added to the actual Output Buff er fullness amount 
in the pre-decode logic. The pre-decode uses this result to 
determine which output FIFO is the least heavily used, and it 
routes new packets to this output port. 

Com p.aq Confidentia I 
16-42 Internal Processor Registers 5 J~1nwiry 2001 -- Subject To Change 



RboxlPRs 

16.5.5 Router Channel {N,S,E,W} Timer1 Configuration (R,W)- R_n_T1CFG 

There are four such registers - one per network port- called R_N_TlCFG, 
R_S _Tl CFG, R_E_ Tl CFG, R_ W _Tl CFG 

Table 16-45 Router {N,S,E,W} Timer1 Configuration Register Fields Description 

Bit Field 

<31:28> reserved 

<27> WITE 

<26:21> WITV<5:0> 

<20> RITE 

<19:14> RITV<5:0> 

<13> FWTE 

<12:7> FWTV<5:0> 

<6> RSTE 

<5:0> RSTV<5:0> 

Value Meaning Comments 

Enable the Write-IO timer 

Write-IO message-class timer value 

Enable the Read-IO timer 

Read-IO message-class timer value 

Enable the Forward timer 

Forward message-class timer value 

Enable the Response timer 

Response message-class (both block and non-block ) timer 
value 

16.5.6 Router Channel {N,S,E,W} Timer2 Configuration (R,W)- R_n_T2CFG 

There are four such registers - one per network port - called R_N_ T2CFG, 
R_S_ T2CFG, R_E_T2CFG, R_ W _T2CFG 

Table 16-46 Router {N,S,E,W} Timer2 Configuration Register Fields Description 

Bit Field Value Meaning Comments 

<31 :21> reserved 

<20> FITE Enable the Fan-in timer 

<19:14> FITV<5:0> Broadcast-Acknowledge Fan-in class timer value 

<13> FOTE Enable the Fan-out timer 

<12:7> FOTV<5:0> Broadcast Fan-out class timer value 

<6> RETE Enable the Request timer 

<5:0> RETV<5:0> Request message-class timer value 

Compaq Confidential 
5 January 2001 ·- Subject To Change Internal Processor Registers 16-43 



Rbox IPRs 

16.5.7 Router Channel {N,S,E,W} Error Status (R, W1C)- R_n_ERR 

There are four such registers - one per network port - called R_N_ERR, R_S_ERR, 
R_E_ERR, R_ W _ERR. 

Table 16-47 Router {N,S,E,W} Error Status Register Fields Description 

Bit 

<31:19> 

<18> 

<17> 

<16> 

<15> 

<14> 

<13> 

<12> 

<11> 

<10> 

<9> 

<8:2> 

<1> 

<0> 

Field Value 

reserved 

FITX 

FOTX 

WITX 

RITX 

FWTX 

RETX 

RSTX 

reserved 

FCE 

DBE 

SYN<6:0> 

MSE 

SBE 

Meaning Comments 

Broadcast-Acknowledge Fan-in Trmer expired 

Broadcast Fan-out Timer expired 

Write-IO Timer expired 

Read-IO Trmer expired 

Forward Trmer expired 

Request Trmer expired 

Response Timer expired 

Forwarded-clock error: 
To determine the presence of a clock, then clear this bit are read 
it again (while the forward-clock checking is enabled). 

Double-bit error 

ECC syndrome 

Multiple, single-bit errors 

Single-bit error 

Notes: 

• 

• 

The syndrome reflects the first error condition. For example, if the double-bit error 
bit is set then the syndrome is for the first occurrence of the double-bit error. 

The hardware will disable the input and output ports on the failing compass point, 
for the following errors: 

Double-bit error 

Forward-clock error 

The expiration of any timer. 

In addition, the hardware will force the adjacent node to shut-down its port by forcing a 
double-bit error in the first tick of the next packet heading to the adjacent node. 

16.5.8 Router Channel {N,S,E,W} Performance Counter (R, W)- R_n_PERF 

There are four such registers - one per network port - called R_N_PERF, 
R_S_PERF, R_E_PERF, R_ W _PERF. 

Compaq Confidential 
16-44 Internal Processor Registers 5 Jc1nuc1ry 2001 -· Subject To Change 



RboxlPRs 

The PCV counter stops incrementing when it reaches the maximum value (all 
ones). It also sets an interrupt at this point if the interrupt mask has enabled this 
interrupt. 

Table 16-48 Router {N,S,E,W} Performance Counter Register Fields Description 

Bits Field 

<31:3> PCV<27:0> 

<2:0> PCC 

Value Meaning 

0 
1 
2 
3 
4 
5 
6 
7 

Comments 

Counter value 

Performance Counter Selection: 
Port usage 0 - increment the count for every outward tick. 
Port usage 1 - increment the count for every outward packet 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 

16.5.9 Router 1/0-Port Configuration1 Register {R, W)- R_IO_CFG1 

Table 16-49 shows the Router I/O Port Configuration register fields. 

Table 16-49 Router 1/0-Port Configuration Register Fields Description 

Bits Field Value Meaning Comments 

<31:27> reserved 

<26> KCL Keep Clock running: 
The IO-ASIC may derive its clock from the forwarded clock 
sent by the 21464. If this bit is set, then keep the forwarded 
clock running, and instead set the DTN (Drive True-NOP) bit 
(see above). 

<25> NUL When set, the Output-Port issues Null ticks. 

<24:21> SPD<3:0> 0 3:2 The clock ratio between the interface and the CPU. For 
1 2:1 instance, a ratio of 3 :2 means that there are three CPU clocks 
2 5:2 for every 2 interface clocks. 
3 3:1 
4 7:2 
5 4:1 
6 9:2 
7 5:1 
8 11:2 
9 6:1 
10 13:2 
11 7:1 
12 15:2 
13 8:1 
14 reserved 
15 
reserved 

<20> IGD Ignore incoming de-allocate NOP packets. This is a test bit, 
used to ensure that the router timers expire. 

Compaq Confidentia I 
5 January 2001 ~· Subject To Change Internal Processor Registers 16-45 



Rbox IPRs 

Table 16-49 Router 1/0-Port Configuration Register Fields Description 

Bits 

<19:18> 

<17> 

<16> 

<15:14> 

<13> 

<12> 

<11> 

<10> 

<9> 

<8:3> 

<2> 

<1> 

<0> 

Field 

FEM<l:O> 

DTN 

UNU(RAZ, 
RW) 

UNl<l:O> 

SYE 

FCC 

ECC 

reserved 

HAE 

reserved 

OE 

reserved 

IE 

Value 

0 
1 
2 
3 

Meaning 

Normal 
Error-D 
Error-C 
Error-S 

Comments 

Force error mode: 
Error-D: force 1-shot, double-bit error 
Error-C: force a continuous stream of 1-bit errors 
Error-S: force 1-shot, single-bit error 

A hidden, 20-bit counter triggers the forced error modes. Once 
per million G clocks, this counter forces the error on a random, 
outward-bound packet tick. 

The Router TCTL IPR defines this counter. A write to this IPR 
clears the hhlden counter, and clears the force-error conditions. 

The interval timer, the SYNC timer, and the time-out timer, all 
share this hidden counter. 

Drive True-NOP packet. 

Software should first assert this bit before pulsing the UNU bit 
(see previous field). 

Hardware will then reset the bit. Hardware will set this bit 
whenever it disables the 1/0 port because of an error condition, 
and if the KCL (Keep clock - see below) bit is set. 

If this bit is set then the port will discard any messages that are 
attempting to travel through the port. 

Unload Pointer Update (for lock-step synchronous mode). Set
ting this bit: 
Causes the unload pointer to initialize to the UNI value and to 
start counting when the clock-forward initialize sequence 
begins (i.e., when the NUL-NOP is sent). 
Causes the DTN bit (see next field) to transition from one to 
zero 

Unload pointer init value (for lock-step synchronous mode). 

Synchronous input mode enabled (for lock-step) 

Enable the port to check the Forwarded clock. This check logic 
confirms that the clocks are at the expected rate, and that the 
clocks are in synchronization. 

Enable ECC checking and correcting. 

Enable the port to respond to a HW alert 

Output Port Enable. If clear, the router discards any packet des
tined for this port. The hardware clears this bit when the chan
nel goes down. 

Input Port Enable. When clear the router ignores any packets 
on this input port. The hardware clears this bit when the chan
nel goes down. 

Compaq Confidential 
16-46 Internal Processor Registers 5 Janw~ry 2001 - Subject To Change 



RboxlPRs 

16.5.10 Router 1/0-Port Configuration2 Register {R, W) - R_IO_CFG2 

Table 16-50 shows the Router 1/0 Port Configuration2 register fields. 

Table 16-50 Router 1/0-Port Configuration 2 Register Field Description 

Bits 

<31:13> 

<13> 

<12> 

<11> 

<10:6> 

<5:1> 

0 

16.5.11 

Field Value Meaning Comments 

reserved 

FTG 01 Toggle Disable toggling of fifth channel in the local arbiter when 
No toggle selecting routing direction. 

FCW 01 East Fifth channel is wired in an East or West direction 
West 

PCS 01 North Fifth channel is wired in a North or South direction 
South 

FEW<4:0> East-West Coordinates of node at the other end of the fifth 
channel. 

FNS<4:0> North-South Coordinates of node at the other end of the fifth 
channel. 

PIO 01 IO-ASIC I/O Channel usage. 
5th 

Router 1/0-Port Buffer Size {R,W)- R_IO_BUFSIZ 

This register only applies when the 1/0-port is acting as an 1/0 channel. When it is act
ing as a fifth channel then it ignores this register. The buffer sizes correspond to the size 
of the input buffers inside the I/O ASIC. (Hence there is no request buffer because the 
network does not send request packets to the 1/0 ASIC.) 

Table 16-51 Router 1/0-Port Buffer Size Register Fields Description 

Bits Field 

<31:15> reserved 

<14:12> WIB<2:0> 

<11:9> RIB<2:0> 

<8:6> FWB<2:0> 

<5:3> NSB<2:0> 

<2:0> RSB<2:0> 

Value Meaning Comments 

Number of Write-IO buffers in IO-ASIC 

Number of Read-IO buffers in IO-ASIC 

Number of Forward buffers in IO-ASIC 

Number of Non-Block-response buffers in IO-ASIC 

Number of Block-response buffers in IO-ASIC 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-47 



Rbox IPRs 

16.5.12 Router 1/0-Port Timer1 Configuration {R,W)- R_IO_T1CFG 

These timers apply to the out-going port. Whenever the timers expire then the 1./0-port 
starts to discard the packets. These values apply whether the 1/0-port is acting as the I/ 
0-channel or the Fifth-channel. However, the fifth channel never transfers Read-IO or 
Write-I 0 packets, and thus these counters should not be enabled. 

Table 16-52 RouterUO-Port Timer1 Configuration Register Fields Description 

Bits Field 

<31:28> reserved 

<27> WITE 

<26:21> WITV<5:0> 

<20> RITE 

<19:14> RITV<5:0> 

<13> FWTE 

<12:7> FWTV<5:0> 

<6> RSTE 

<5:0> RSTV<5:0> 

Value Meaning Comments 

Enable the Write-IO timer 

Write-IO message-class timer value 

Enable the Read-IO timer 

Read-IO message-class timer value 

Enable the Forward timer 

Forward message-class timer value 

Enable the Response timer 

Response message-class (both block and non-block) timer value 

16.5.13 Router 1/0-Port Timer2 Configuration {R,W}- R_IO_ T2CFG 

This register only applies when the I/0-port is acting as a fifth channel. When the 1/0-
port is acting as a I/0-channel then it disables these timers. 

Table 16-53 Router 1/0-Port Timer2 Configuration Register Fields Description 

Bits Field Value Meaning Comments 

<31 :7> reserved 

<6> 

<5:0> 

RETE 

RETV<5:0> 

Enable the Request timer 

Request message-class timer value 

16.5.14 Router 1/0-Port Error Status (R, W1C)- R_IO_ERR 

The RETX field only applies to the fifth channel. The RITX and WITX only apply to 
the I/O channel. 

Table 16-54 Router VO-Port Error Status Register Fields Description 

Bits Field 

<31:17> reserved 

<16> WITX 

<15> RITX 

<14> FWTX 

<13> RETX 

<12> RSTX 

<11> reserved 

Value Meaning Comments 

Write-IO Timer expired (1/0 channel only) 

Read-IO Ttmer expired (I/O channel only) 

Forward Ttmer expired 

Request Timer expired (Fifth channel only) 

Response Timer expired 

Compaq Confidential 
16-48 Internal Processor Registers 5 Jc1nuary 2001 - Subject To Change 



RboxlPRs 

Table 16-54 Router 1/0-Port Error Status Register Fields Description 

Bits 

<10> 

<9> 

<8:2> 

<1> 

<0> 

Field 

FCE 

DBE 

Value Meaning Comments 

Forwarded-clock error: To determine the presence of a clock, then 
clear this bit are read it again (while the forward-clock checking is 
enabled). 

Double-bit error 

SYN<6:0> ECC syndrome 

MSE 

SBE 

Multiple, single-bit errors 

Single-bit error 

Notes: 

• 

• 

The syndrome reflects the first error condition. For example, if the double-bit error 
bit is set then the syndrome is for the first occurrence of the double-bit error. 

The hardware will disable the input and output ports on the failing compass point, 
for the following errors: 

Double-bit error 

Forward-clock error 

The expiration of any timer. 

In addition, the hardware will force the adjacent node to shut-down its port by forcing a 
double-bit error in the first tick of the next packet heading to the adjacent node. 

16.5.15 Router 1/0-Port Performance Counter (R, W) - R_IO_PERF 

The PCV counter stops incrementing when it reaches the maximum value (all ones). It 
also sets an interrupt at this point if the interrupt mask has enabled this interrupt. 

Table 16-55 Router 1/0-Port Performance Counter Register Fields Description 

Bits Field 

<31:3> PCV<27:0> 

<2:0> PCC 

Value 

0 
1 
2 
3 
4 
5 
6 
7 

Meaning Comments 

Counter value 

Performance Counter Selection: 
Port usage 0 - increment the count for every outward tick. 
Port usage 1 - increment the count for every outward packet 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 

16.5.16 Router Local-Port Error Status Register (R, W1C)- R_LOC_ERR 

The 21464 does not check the interface between the router and the Scache/memory for errors. 
The packets travel to and from the Router and the C-box or Z-box without ECC or parity bits. 
However, the interface ports perform error checking, as follows: The input ports write a 
reserved-double-bit error pattern into the packet tick on detecting a double-bit error. When this 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-49 



Rbox IPRs 

packet arrives at the local-output port, the router sends the packet to the C-box with the error 
signal asserted. 

Table 16-56 Router 1/0-Port Error Status Register Fields Description 

Bits Field Value Meaning Comments 

<31 :9> reserved 

<8> RTP Router-Table parity error 

<7: 1> reserved 

<0> RES Reserved Double-bit error code detected 

16.5.17 Router Routing Table Register (R, W) - R_ROUT 

This table holds the routing information the packet needs to reach the destination pro
cessor. There are 532 routing table entries, There is one for each of the 512 nodes, and 
20 for each sharing mask bit in the directory mask. These 20 entries define which node 
the router sends the SharedlnvalBroadcast packets. 

Table 16-57 Router Routing Table Register Fields Description 

Bits Field 

<23> PAR 

<22> reserved 

<21:20> IND 

<19:16> 

<15:12> 

<11> 

<10> 

<9> 

<8> 

<7> 

<6> 

<5> 

DNS<3:0> 

DEW<3:0> 

REW 

RNS 

STF 

BOU 

CAD 

PME 

PIO 

Value 

0 
1 
2 
3 

0 
1 

0 
1 

0 
1 

Meaning Comments 

North 
South 
East 
West 

East 
West 

North 
South 

Cut-thru. 
Store/Fwd 

Parity 

Initial Direction: 
This field defines which direction the packet will leave the source 
node if CAD = 0. If CAD= 1 then hardware will ignore this field if it 
chooses to adaptively route. The Initial direction should always be on 
the deterministic path (even if CAD = 1). 

North-South (Y) coordinate of the destination 

East-West (X) coordinate of the destination 

Route in the East-West direction 

Route in the North-South direction 

Store-&-Forward. 
If set then packet destined for an I/O ASIC waits in destination node 
until complete packet is in the output FIFO. Only required if packet 
crosses a slow link. 

Bounce: 
If set the packet will turn on encountering the wall; otherwise it will 
pass through the wall. 

Can-adapt: 
When set the packet can adapt (i.e., use the A-route paths). Typically, 
this bit is set. The error-recovery code clears this bit when it needs to 
prevent a packet from adaptively routing into a faulty region of the 
network. 

If set, request packet can access memory at this destination node. 

If set, 1/0-packets can access the IO-ASIC at this destination node. 

Compaq Confidential 
16-50 Internal Processor Registers 5 Jc1nuary 2001 - Subject To Change 



RboxlPRs 

Table 16-57 Router Routing Table Register Fields Description 

Bits Field 

<4> PIP 

<3> IME 

<2> 110 

<1> IIP 

<0> VAL 

Value Meaning Comments 

If set, 1/0-packets can access the IPRs at this destination node. 

If set then the IO-ASIC (on this node) can access memory at this des-
tination node. 

If set then the IO-ASIC (on this node) can access the IO-ASIC at this 
destination node (for peer-to-peer transactions). 

If set then the IO-ASIC (on this node) can access the IPRs at this des-
tination node. 

Destination is valid for all transfers 

Occasionally, a torus offers two paths to the destination node from the current node that 
are equidistant. The routing algorithm should favor both paths equally, because this 
increases the network performance. The 21464 uses the 21363 approach, which 
assumes that the software creating the routing table has balanced the equidistant paths 
amongst the nodes. Thus an individual node will favor a particular direction, but a dif
ferent node in the network will favor the opposite direction. Hence, overall, the network 
will exhibit no particular bias. 

16.5.18 Router WHOAMI Register (R,W) - R_ WHOAMI 

This contains a 10-bit address defining the nodes address. 

Table 16-58 WhoAml Register Fields Description 

Bits Field 

<31 : 10> reserved 

<9:5> 

<4:0> 

EW<4:0> 

NS<4:0> 

Value Meaning Comments 

East-West (x-axis) coordinate 

North-South (y-axis) coordinate 

16.5.19 Router Overall-Timer-Control Register (R,W)- R_OVER 

This register specifies the period between increment pulses to the port, fan-in, and fan
out timers. 

Table 16-59 Router Overall-Timer-Control Register Fields Description 

Bits Field 

<31:21> TIM 

<20:0> HID 

Value Meaning Comments 

Tllllet Value: Software visible portion. 

Hidden portion: Only the hardware can write to this portion 

16.5.20 Router Interrupt Status (R, WIC) - R_INT _STAT 

TBD: 

16.5.21 Router Interrupt Mask (R, W) - R_INT _MASK 

TBD: 

Compaq Confidentia I 
5 Jam.1ary 2001 -- Subject To Change Internal Processor Registers 16-51 



Zbo:xlPRs 

16.5.22 Router Interrupt Request (WO) - R_INT _REQ 

TBD: 

16.5.23 Router Interrupt Queue Register (RO) - R_INT _QUE 

A read of this register reads the head of the interrupt queue. This read is non-destructive 
- to remove the entry at the head of the queue, software must write an arbitrary value to 
this register. 

TBD: 

16.5.24 Router Interrupt Queue Add Register (WO) -R_INT _QUEADD 

This register is typically used by 1/0 devices to post interrupts. A write to this register 
attempts to add an interrupt identifier to the interrupt queue (via an write-IO command). 
If the queue is full then the 21464 discards the interrupt identifier and returns a WrION
Ack packet. Otherwise, the write succeeds and the 21464 returns a WrIOAck packet. 

The interrupt queue is two-entries deep. 

TBD: 

16.5.25 Router Interval Timer Register (R, W) - R_INTER_ TIM 

TBD: Do we need this? 

Table 16-60 Router Overall-Timer-Control Register Fields Description 

Bits Field Value Meaning Comments 

<31 :8> reserved 

<7:0> ITV Interval Tllller value 

16.5.26 Router Scratch Register 1 (R,W) - R_SCRATCH1 

TBD: Do we need this? 

16.5.27 Router Scratch Register 2 (R,W) - R_SCRATCH2 

TBD: Do we need this? 

16.6 Zbox IPRs 

This section describes the internal processor registers that control Zbox functions. 
These registers are duplicated for each of the two memory controllers. 

16.6.1 DRAM Error Status 1 - ZBOXn_DRAM_ERR_STATUS1 

There are two DRAM error status 1 registers; ZBOXO_DRAM_ERR_STATUS 1 and 
ZBOXl_DRAM_ERR_STATUS 1. 

Figure 16-36 shows the DRAM error status 1 register. 

Figure 16-36 DRAM Error Status 1 

Compaq Confidential 
16-52 Internal Processor Registers 5 Jc1nwiry 2001 ·- Subject To Change 



ZboxlPRs 

2322 1413 1110 s 4 

DAT_ERRSYN0[8:0]--------------~ 

DAT_ERRSYN1[8:0]-------------------~ 

Rese~ed----------------------~ 

DIR_ERRSYN[5:0]------------------------~ 

TCLOCK_CHAN[4:0]---------------------------~ 
LK99-0093A 

Table 16-61 describes the DRAM error status 1 register fields. 

Table 16-61 DRAM Error Status 1 Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 
MBZ 

DAT_ERRSYN0[8:0] [31 :23] RWRC ECC syndrome for octaword 0 - valid only when RAID, RMAP, 
SGL, DBL, GE3, or PAR set 

DAT_ERRSYN1[8:0] [22:14] RWRC ECC syndrome for octaword I -valid only when RAID, RMAP, 
SGL, DBL, GE3, or PAR set 

Reserved [13:11] MBZ, 
WAC 

DIR_ERRSYN[5 :0] [10:5] RWRC Directory syndrome for single-bit ECC error 

TCLOCK_CHAN[4:0] [4:0] RWAC Bit mask of which channels had tclock errors - only valid 
when TCLK error bit set 

Any write to DRAM_ERR_STATUSl forces a load of TCLOCK_CHAN. This should 
clear it if no errors are occurring. 

See ???? , which describes error syndromes while a channel is being remapped. 

16.6.2 DRAM Error Status 2 - ZBOXn_DRAM_ERR_STATUS2 

There are two DRAM error status 2 registers; ZBOXO_DRAM_ERR_STATUS2 and 
ZBOX1_DRAM_ERR_STATUS2. 

Figure 16-37 shows the DRAM error status 2 register. 

Figure 16-37 DRAM Error Status 2 

Compaq Confidentia I 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-53 



ZboxlPRs 

DAT_ERRSYN2[8:0]---------------~ 

DAT_ERRSYN3[8:0]---------------------' 

Rese~ed----------------------~ 

TEMPCAL_DEV[4:0]------------------------~ 

TEMPCAL_CHAN[4:0J---------------------------LK--'
99

-0o
94

A 

Table 16-62 describes the DRAM error status 2 register fields. 

Table 16-62 DRAM Error Status 2 Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 
MBZ 

DAT_ERRSYN2[8:0] [31 :23] RWAC ECC syndrome for octaword 2 - valid only when RAID, 
RMAP, SGL, DBL, GE3, or PAR set 

DAT_ERRSYN3 [8:0] [22:14] RWAC ECC syndrome for octaword 3 - valid only when RAID, 
RMAP, SGL, DBL, GE3, or PAR set 

Reserved [13:10] MBZ, 
WAC 

TEMPCAL_DEV[4:0] [ 9:5] RWAC Identifies which device had a temperature calibration error -
valid only when TCALERR is set 

TEMPCAL_CHAN[ 4:0] [ 4:0] RWAC A bit mask of those channels that had temperature calibration 
errors - valid only when TCALERR is set 

Any write to DRAM_ERR_STATUS2 register will: 

• Force a reload of the syndrome registers DAT_ERRSYNO, DAT_ERRSYNl, 
DAT_ERRSYN2, DAT_ERRSYN3, and DIR_ERRSYN 
(if ECC_COR_ENABLED = 0, the syndromes are defaulted to 0). 

• Force a write of TEMPCAL_CHAN (if any read has been performed after reset, 
this will be some bits of the data read, which will be the same on replicated sys
tems). Writer note: Unclear- needs updating/augmenting. 

• Clear TEMPCAL_DEV 

See ????? , which describes error syndromes while a channel is being remapped. 

16.6.3 DRAM Error Status 3 - ZBOXn_DRAM_ERR_STATUS3 

There are two DRAM error status 3 registers; ZBOXO_DRAM_ERR_STATUS3 and 
ZBOX1_DRAM_ERR_STATUS3. 

Figure 16-38 shows the DRAM error status 3 register. 

Compaq Confidential 
16-54 Internal Processor Registers 5 Jc1nuc1ry 2001 m Subject To Change 



ZboxlPRs 

Figure 16-38 DRAM Error Status 3 

ERR_STATUS[15:0]--------------------------~ 

Compaq Confidential 
5 January 2001 ··· Subject To Change 

LK99-0095A 

Internal Processor Registers 16-55 



ZboxlPRs 

Table 16-63 describes the DRAM error status 3 register fields. 

Table 16-63 DRAM Error Status 3 Register Fields Description 

Name 

Reserved 

Extent Type Description 

[63:16] RO, 
MBZ 

ERR_STATUS[15:0] [15: 0] RWlC Bitmask of DRAM error conditions: 

Name Bit Meaning When Set 

SWP [15] An error occurred during sweep mode read 

SEO [14] A second uncorectable error occurred for which no 
physical address was saved 

MEO [13] A second correctable error occurred for which no 
Phys Addr. was saved 

Reserved [12] 

Reserved [11] 

OLCK [10] A DLL had an out-of-lock condition 

TJME [9] A DIFf timeout occurred 

TCAL [8] Some channel had a over temperature fault 

TCLK [7] Some channel had a clock fault 

D21 [6] Directory[21] was read as 1 

DBL [5] A double ECC error was detected on a read 

GE3 [4] Three or more single ECC errors were detected on a 
read 

MAPF [3] A raid-remap occurred, and no unique best remap-
ping was found 

RAID [2] A raid-remap occurred, and a remapping was 
selected 

SGL [1] One or two single bit ECC errors were detected on a 
read 

PAR [0] One or more parity errors were detected on a read 

See ????? , which describes error syndromes while a channel is being remapped. 

16.6.4 DRAM Error Control - ZBOXn_DRAM_ERROR_CTL 

There are two DRAM error control registers; ZBOXO_DRAM_ERROR_CTL and 
ZBOXl_DRAM_ERROR_CTL. 

Figure 16-39 shows the DRAM error control register. 

Compaq Confidential 
16-56 Internal Processor Registers 5 Janu,1ry 2001 - Subject To Cfumge 



ZboxlPRs 

Figure 16-39 DRAM Error Control 

FRC_LOCAL--------------~ 

ECC_COR_ENABLED-----------------' 

FRC_WTERR[2:0]---------------~ 

SET_DIR21 ---------------------' 

RAID_ON-----------------~ 

RAID_MAP[4:0]------------------~ 

Rese~ed----------------------~ 

ERR_INT_ENAB[10:0]---------------------------~ 
LK99-0096A 

Table 16-64 describes the DRAM error control register fields. 

Table 16-64 DRAM Error Control Register Fields Description 

Name 

Reserved 

FIFTH_CH_ENA 

FRC_LOCAL 

Extent Type Description 

[63:32] RW, 

[31] 

[30] 

MBZ 

RW RAID channel has power and is enabled. 

RW If set, forces directory data being sent to the DIFT to be read as zero 
(local). Directory data that is stored into the DRAM_SWEEP _DIR 
register when SWEEP _ON is set is not affected. No directory ECC 
errors are reported when FRC_LOCAL is set. 

ECC_COR_ENABLED [29] RW Used to disable ECC correction of fill data to fill buffer. If clear, 
data is not corrected, errors are not reported, and syndromes are 
forced to zero. 

FRC_ WTERR[2:0] 

SET_DIR_21 

[28:26] RW If the address matches the value of Zbox force-error address 
register, then do one of the following, depending on the value 
in this field:: 

[25] 

Bits Meaning 

000 Do nothing 

001 Substitute victim_data[27:0] for Dir[21,E5:0,20:0] 

010 Force COL_ADR[O] to 0 on channel 4 only 

011 Force COL_ADR[O] to 0 on all channels 

100 Force COL_ADR[O] to 0 on channel 0 only 

101 Force COL_ADR[O] to 0 on channel 1 only 

110 Force COL_ADR[O] to 0 on channel 2 only 

111 Force COL_ADR[O] to 0 on channel 3 only 

RW If set, forces the spare directory bit to be set based on 
address-match when matched block is written to memory 
(Section 6.7.22). RAID_ON must be set if this function is 
enabled. 

Compaq Confidential 
5 January 2001 --· Subject To Change Internal Processor Registers 16-57 



Zbox:IPRs 

Table 16-64 DRAM Error Control Register Fields Description (Continued) 

Name Extent Type Description 

RAID_ON [24] RW Used to disable byte writes - If set: 
1. FIFTH_CH_ENA must be set 
2. Directory byte writes are disabled 

RAID _MAP[ 4:0] [23: 19] RW Indicates which channel should be remapped (one-hot encoded). 

Reserved [18: 11] RO, 
MBZ 

There are only eight legal encodings for the combination of 
RAID_ON, ECC_COR_ENABLED, and RAID_MAP: 

ECC_COR_ 
RAID_ON ENABLED RAID_MAP 

1 1 00000 Use raid channel, nothing mapped 
out yet 

1 10000 Raid channel exists, some chan-
nel mapped out (used for chanel 
4 observation port). 

1 1 01000 Raid channel exists, some chan-
nel mapped out. 

1 1 00100 Raid channel exists, some chan-
nel mapped out. 

1 1 00010 Raid channel exists, some chan-
nel mapped out. 

1 1 00001 Raid channel exists, some chan-
nel mapped out. 

0 1 10000 No raid channel, ECC enabled. 

0 0 10000 No raid channel, no ECC ch/corr. 

ERR_INT_ENAB[lO:O] [10:0] RW If set, enables appropriate interrupt to be generated when the error 
status bit in the corresponding bit position of ERR_STATUS[lO:O] 
is being set. Setting the enable after the ERR_STATUS bit is 
already set does not cause an interrupt to be generated. 

16.6.5 DRAM Timing Control 1 - ZBOXn_DRAM_ TIMING_CTL 1 

There are two DRAM timing control 1 registers; ZB OXO_D RAM_ TIMING_ CTLl and 
ZBOXl_DRAM_TIMING_CTLl. 

Figure 16-40 shows the DRAM timing control 1 register. 

Compaq Confidentia I 
16-58 Internal Processor Registers 5 Jc1f'IU«iry 2001 - Subject To Change 



Figure 16-40 DRAM Timing Control 1 
63 302926272625 2322 191617161514 1110 9 

ReseNed------~ 

ROW_STAG_SEL[1:0]--------------------' 

TCWD_TCLK_OFF[1 :O]---------------------' 

TCWD_TCLK_WIDTH[2:0]---------------------' 

TCWD_GCLK_WIDTH[3:0]------------------------' 

ZboxlPRs 

4 3 

CLOCK_RANGE[1 :O]--------------------~ 

SYNC_LD_UNLD--------------------~ 

CLOCK_ENABLED[O]---------------------~ 

CLOCK_RATI0[3:0]----------------------~ 

CLOCK_RATIO_HALF-----------------------~ 

TCAC_TCLK_SEL[S:O]-------------------------------' 

TCAC_ADJ_SEL[3:0]----------------------------~ 

LK99-0097A 

Table 16-65 describes the DRAM timing control 1 register fields. 

Table 16-65 DRAM Timing Control 1 Fields Description 

Name 

Reserved 

ROW _STAG_SEL[l:O] 

TCWD_ TCLK_OFF[l:O] 

Extent Type Description 

[63:30] RW, 
MBZ 

[29:28] RW Row stagger select for refresh (0, 1, 2 or 4 TLCKs). The refresh 
operations to the ROW bus can be staggered from channel to 
channel by 0 (no stagger), 1, 2 or 4 TCLKs, controlled by 
ROW _STAG_SEL[l:O], encoded as follows: 

Value Meaning 

0 No stagger 

1 1 TCLK stagger 

2 2 TCLKs stagger 

3 4 TCLKs stagger 

[27:26] RW Signal tcwd_off_a_h adjusts for tCWD less than 6 by starting 
write_sent pulse at an early TCLK. Values are as follows: 

RDRAM tCWD TCWD_TCLK_OFF 

~6 0 

5 1 
4 2 

TCWD_TCLK_WIDTH[2:0] [25:23] RW See tableunderTCWD_GCLK_WIDTH[3:0] fortCWD = 4, 
5 or 6 values. For tCWD = 7, use the value from the table +1. 

Compaq Confidential 
5 January 2001 -- Subject To Change Internal Processor Registers 16-59 



ZboxlPRs 

Table 16-65 DRAM Timing Control 1 Fields Description (Continued) 

Name Extent Type Description 

TCWD_GCLK_ WIDTH[3:0] [22:19] RW Use the following table for any tCWD value of 4 ... 7: . 
Clock 
Ratio TCWD_ TCLK_ WIDTH[2:0] TCWD_GCLK_ WIDTH[3:0] 

2 3 0 

2.5 3 2 

3 4 

3.5 3 6 
4 5 0 

4.5 5 1 

5 5 2 

5.5 5 3 

6 5 4 

6.5 5 5 

7 5 6 

7.5 5 7 

8 6 0 
16 6 8 

For RDRAM tCWD < 6, program TCWD_TCLK_ WIDTH 
and TCWD _ GCLK_ WIDTH as above, and adjust 
TCWD _ TCLK_OFF. For tCWD = 7, add 1 to the 
TCWD_TCLK_ WIDTH value above. 

CLOCK_RANGE[l:O] [18:17] RW Tell DLL min/max elk freq range (encoding TBF). 

SYNC_LD_UNLD [16] RW Synchronize silos. 

CLOCK_ENABLED[O] [15] RW,O Rambus clocks are not enabled until this bit is set. 

CLOCK_RATI0[3:0] [14:11] RW This is the GCLK to TCLK ratio according to this table: 

Clock_Ratio[3:0] GCLK:TCLK Ratio 

0 16:1 

1 Illegal 

2* 2:1 

3* 3:1 

4* 4:1 

5* 5:1 

6* 6:1 

7* 7:1 

8 8:1 

9 ... 15 Illegal 

CLOCK_RATIO_HALF [10] RW This adds 0.5 to the GCLK to TCLK ratio if set. This bit may 
only bit set for the ratios marked with * under 
CLOCK_RATI0[3 :0]. 

TCAC_TCLK_SEL[5:0] [9:4] RW Selects TCAC RDRAM delay parameter (COL= RD-7Data). 
Set this value according to table under TCAC_ADJ_SEL[3:0]. 

Compaq Confidential 
16-60 Internal Processor Registers 5 Jc1nwtry 2001 --· Subject To Change 



ZboxlPRs 

Table 16-65 DRAM Timing Control 1 Fields Description (Continued) 

Name Extent Type Description 

TCAC_ADJ_SEL[3:0] [3:0] RW Used for fine (GCLK) adjustment of the tCAC parameter. The 
supported range is 0 ... 15. This is used to: 
• Compensate for the runway depth 
•Center the read-strobe in the clock-forward silo 

data-valid window 
The following table lists base values (no delay compensation). 

Baseline CSR values for TCAC (RDRAM tCAC=8 to 0 fine 
adjustment). For RDRAM tCAC>8, add offset to 
TCAC_TCLK_SEL baseline value (support for RDRAM tCAC 
from 7 to 39). For fine adjustment, add needed cycles to 
TCAC_ADJ_SEL baseline value 

Clock Ratio TCAC_ TCLK_SEL[S:O] TCAC_ADJ_SEL[3:0] 

2 9 0 
2.5 9 2 

3 9 2 

3.5 9 2 

4 9 2 

4.5 9 2 

5 9 2 

5.5 9 2 

6 9 2 

6.5 9 2 

7 A 6 

7.5 9 D 

8 9 2 

16 9 7 

16.6.6 DRAM Timing Control 2 - ZBOXn_DRAM_ TIMING_CTL2 

There are two DRAM timing control 2 registers; ZBOXO_DRAM_ TIMING_CTL2 and 
ZBOX1_DRAM_ TIMING_CTL2. 

Figure 16-41 shows the DRAM timing control 2 register. 

Compaq Confidential 
5 January 2001 ·- Subject To Change Internal Processor Registers 16-61 



ZboxlPRs 

Figure 16-41 DRAM Timing Control 2 

TRAS_OFF[5:0]-----------------' 

Reserved-----------------~ 

TRP _OFF[4:0]------------------~ 

Reserved--------------------~ 

4 3 

TPP _OFF[3:0]--------------------------' 

Reserved----------------------~ 

TRR_OFF[3:0]---------------------------' 

TRCD_OFF[4:0]--------------------------~ 

TRDP_OFF[3:0]----------------------------~ 

LK99-0098A 

Table 16-66 describes the DRAM timing control 2 register fields. 

Table 16-66 DRAM Timing Control 2 Fields Description 

Name Extent Type Description 

Reserved [63:31] RW,MBZ 

TRAS_OFF[5:0] [30:25] RW Used to determine tRAS (RAS-PRE) 
TRAS_OFF = Rambus tRAS 

Reserved [24] RW,MBZ 

TRP _OFF[4:0] [23:19] RW Used to determine tRP (PRE-RAS) 
TRP _OFF= Rambus tRP 

Reserved [18] RW,MBZ 

TPP _OFF[3:0] [17:14] RW Used to determine tPP (PRE-PRE to same device) 
TPP _OFF = Rambus tPP 

Reserved [13] RW,MBZ 

TRR_OFF[3:0] [12:9] RW Used to determine tRR (RAS-RAS to same device) 
TRR_OFF = Rambus tRR 

TRCD_OFF[4:0] [8:4] RW Used to determine tRCD (RAS-CAS delay) 
TRP_OFF= Rambus tRP 

TRDP _OFF[3:0] [3:0] RW Used to determine tRDP (CAS=RD-PRE delay) 
TRDP _OFF= Rambus tRDP 

16.6.7 DRAM Timing Control 3- ZBOXn_DRAM_TIMING_CTL3 

There are two DRAM timing control 3 registers; ZB OXO_DRAM_ TIMING_CTL3 and 
ZBOXl_DRAM_ TIMING_CTL3. 

Compaq Confidential 
16-62 Internal Processor Registers 5 Jam.u~ry 2001 - Subject To Cfumge 



ZboxlPRs 

Z_SLT attempts to gang commands of like type (rd or wr) in consecutive COLC pack
ets. To prevent locking out the command of unlike type, there is logic which monitors 
the number of pending and consecutively slotted transactions. Based on thresholds pro
grammed by means of CSRs, the slotter switches to the other command type. 

Figure 16-42 shows the DRAM timing control 3 register. 

Figure 16-42 DRAM Timing Control 3 
63 3231 2827 2423 2019 1413 9 8 7 4 3 

Reserved-----~ 

RD_STRV_MAX_WR[3:0]-----------------' 

WR_STRV_MIN_WR[3:0]-------------------' 

WR_STRV_MAX_RD[3:0]---------------------' 

RD_WR_SPC[5:0]-----------------------' 

WR_RD_SPC[4:0]-----------------------~ 

Reserved---------------------------' 
TRTP _OFF[3:0]-----------------------------' 

TRTR[3:0]----------------------------~ 

Compaq Confidential 
5 January 2001 ··· Subject To Change 

LK99-0099A 

Internal Processor Registers 16-63 



ZboxlPRs 

Table 16-67 describes the DRAM timing control 3 register fields. 

Table 16-67 DRAM Timing Control 3 Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 
MBZ 

RD _STRV _MAX_ WR [31:28] RW This is used by the read starvation logic. It is the maximum num-
[3:0] ber of consecutive writes that may be slotted to the COLC bus 

while a read is pending in the ZRQ-CSQ. Supported range is 
0 ... 15. This is the maximum number of consecutively-slotted 
writes that are tolerated before considering reads to be starved. 
The additional criterion is that there must be at least one (not pro-
grammable) read pending in the ZRQ. The CSR is programmed 
with the desired maximum - 1. Legal values are 0 ... 15, yielding 
1 ... 16 maximum number of consecutively slotted writes while a 
read is pending. 

WR_STRV _MIN_ WR [27:24] RW This is the minimum number of writes that must be pending 
[3:0] before interrupting a stream of reads. Used to enforce the Alpha 

architecture write-timeliness requirement. Supported range is 
0 ... 7, yeilding a pending write count of 1 ... 8. To disable 
interrupting the read stream, use a value of 8 in this field. Values 
in the range of 9 ... 15 can result in UNPREDICTABLE operation. 
This is the minimum number of writes that must be pending in the 
ZRQ before considering writes to be starved by reads. 

WR_STRV _MAX_RD [23:20] RW This is the maximum number of consecutive reads allowed before 
[3:0] attempting to satisfy the write timeliness clause. This is the maxi-

mum number of consecutively-slotted reads that will be tolerated 
before considering writes to be starved. The additional criterion is 
that there must be at least z_csrN-7wr_strv _rnin_wr_a_h 
+ 1 writes pending in the ZRQ. The CSR is programmed with the 
desired maximum- 1. Legal values are 0 ... 15, yielding 1 ... 16 
maximum number of consecutively slotted reads while the mini-
mum number of writes are pending. 

RD_ WR_SPC[5:0] [19: 14] RW This is the number of TCLKs of dead time that must be inserted 
between COLC=RD and COLC=WR packets. 

WR_RD_SPC[4:0] [13:9] RW This is the number of TCLKs of dead time that must be inserted 
between COLC=WR and COLC=RD packets. 

Reserved [8] RW, 
MBZ 

TRTP _OFF[3:0] [7:4] RW Used to determine tRTP (COLC=RET-ROWR=PRER) 
TRTP _OFF= Rambus tRTP 

TRTR[3:0] [3:0] RW Specifies tRTR value (COLC=WR-COLC=RET) or 
COLC=WR-COLC=BMSK) 

16.6.7 .1 Calculating Read to Write and Write to Read Spacing 

There are CSRs to control the number of "gap" cycles to inject between adjacent read 
and write transaction packet pairs. These gap cycles are required to avoid driver overlap 
on the Rambus data lines. 

Compaq Confidential 
16-64 Internal Processor Registers 5 Jc1nw~ry 2001 -- Subject To Change 



ZboxlPRs 

In an ideal (zero skew, zero CFM-7CTM delay) arrangement, the CSRs can be pro
grammed such that the last data cycle of the first transaction can be followed immedi
ately (the next cycle) by the first data cycle of the second transaction. 

16.6.7 .2 Terminology 

Timing parameter tCAC is the CAS access delay, and specifies the number of TCLK 
cycles between the end of a CAS=READ packet and its corresponding data cycles. 
Direct RD RAMs support tCAC values of 7 to 12 cycles. The ZBox supports a higher 
tCAC limit to allow for repeater chips, which add approximately 30nS of delay. 

Timing parameter tCWD is the CAS write delay, and specifies the number of TCLK 
cycles between the end of a CAS=WRITE packet and its corresponding data cycles. 
The Direct RD RAM tCWD parameter is defined as 4 + tCLS. tCLS is a RD RAM core 
parameter and, for example, has the value of 2 for the 256k x 18 x l 6d device, yielding 
tCWD = 6. tCLS is a 2 bit field, so tCWD can vary from 4 to 7. 

16.6.7 .3 Ideal Rambus 

In an ideal arrangement, the minimum read to write spacing that must be injected 
(expressed in TCLKs) is tCAC - tCWD. 

The formula for calculating the (ideal) read to write spacing CSR in the ZBox, namely, 
RD_ WR_SPC[5:0] is: 

RD_WR_SPC {IDEAL) = {tCAC-tCWD) + tPACKET 

similarly for wr_rd spacing: 

WR_RD_SPC {IDEAL) = {tCWD-tCAC} + tPACKET 

Note: Because tCWD is typically less than tCAC, a negative result should be that 
a tPKT value is placed in the CSR (where tPKT = 4 TCLKs). 

16.6.7 .4 Non-Ideal Rambus 

Skews and delays in actual (non-ideal) designs must be accounted for in determining 
the values of the spacing CSRs. Thus, a read to write transition might need to have fur
ther dead cycles injected (for example, to account for delay that could make a read's 
data collide with a subsequent write's data if IDEAL values are programmed in the 
CS Rs). 

System designers must determine these additional delays, round up to the nearest 
TCLK, and add them to the ideal calculated values. These delays are called: 

tRES 

tWES 

tRead Extra Spacing 

tWrite Extra Spacing 

Furthermore, when the 21464 is issuing write-data to the channel, there must be 2 
TCLKs of dead space before a read transaction can supply its data, to allow ringing on 
the channel to settle, and not disrupt read data arriving at the 21464. Thus, if tCAC -
tCWD < 2, then tWRA (Write Ringing Avoidance) cycles must be added to the write to 
read spacing to enforce the 2 TCLK minimum. 

The CSR equations now become: 

RD_WR_SPC[5:0] = {tCAC-tCWD} + tRES 

Compaq Confidential 
5 January 2001 ~·Subject To Change Internal Processor Registers 16-65 



ZboxlPRs 

WR_RD_SPC[4:0] = (tCWD-tCAC} + tWES + tWRA 

(If negative result, set CSR to 4) 

16.6.8 DRAM Refresh Control - ZBOXn_DRAM_REFR_CTL 

There are two DRAM refresh control registers; ZBOXO_DRAM_REFR_CTL and 
ZBOXl_DRAM_REFR_CTL. 

Figure 16-43 shows the DRAM refresh control register. 

Figure 16-43 DRAM Refresh Control 

FRC_PRE------------___, 

Reserved-----------------' 

FORCE_NOCOP-----------------' 

ENA_PREC--------------------' 

ENA_PREX-------------------' 

DRAIN_WRITE_CTL[1:0]-------------------' 

REFBIT_BNK[2:0]---------------------' 

1716 1312 

REF _BURST[3:0]-----------------------' 

REF_INT[12:0]--------------------------' 

Compaq Confidential 

LK99-0102A 

16-66 Internal Processor Registers 5 Jc1mJc1ry 2001 - Subject To Change 



ZboxlPRs 

Table 16-68 describes the DRAM refresh control register fields. 

Table 16-68 DRAM Refresh Control Fields Description 

Name 

Reserved 

FRC_PRE 

Reserved 

FORCE_NOCOP 

ENA_PREC 

ENA_PREX 

DRAIN_ WRITE_CTL[l:O] 

REFBIT_BNK[2:0] 

REF _BURST[3:0] 

REF _INT[12:0] 

Extent Type Description 

[63:32] RO, 
MBZ 

[31] RW 

[30:25] RW, 
MBZ 

[24] RW 

[23] RW 

[22] RW 

[21:20] RW 

[19:17] RW 

[16:13] RW 

[12:0] RW 

When set, disables page-hit logic in memory controller, forc
ing full PRE-RAS-CAS for every access. Set to 1 on cold or 
fast reset. Firmware must clear this bit to enable use of 
the ZBox page table. 

When set, forces nocop to have higher priority than READS 
during retire slot. 

Enables the slotter to use a COLC_PREC precharge packet. 

Enables the slotter to use a COLX-PREX precharge packet. 

Controls when to force write drains. Encoded as: 

Bits Meaning when set 

00 Drain write timer disabled, and reset to 0 

01 Drain writes every 64 TCLKs 

10 Drain writes every 128 TCLKs 
11 Reserved 

A 3-bit mask that corresponds to the BNK[5:3] address bits 
that are to be ignored during refresh (REFA/REFP) in support 
of multi-bank refresh. 

REFBIT_BNK[2:0] BNK[5:3] 

000 No mask 

100 Mask BNK[5] 

110 
111 

Mask BNK[5:4] 

Mask BNK[5 :3] 

The number of refresh commands in a burst. The number is 
encoded as REF_BURST[3:0] + 1 

The number of Tpkts (each= 4 Rambus clocks) to wait 
between refresh intervals. The number of refreshes that will be 
serviced within a given TREF _INT interval is determined by 
REF _BURST as described in text following this table. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-67 



ZboxlPRs 

The refresh interval (expressed in TCLKs) is programmed by using REF _INT[12:0]. 

The formula is: 

REF_INT[l2:0] MIN(uREF_INT, uRAS_INT) - 1 

Where: 

• uREF _INT is the "micro" refresh interval 

• uRAS _INT is the constraint that guarantees all banks are precharged (due to refresh 
operations) such that the RDRAM tRAS,MAX parameter is satisfied 

• uREF _INT= INT((.25 * tREF _T * nBURST) I (2**(b+r)) 

• uRAS_INT = INT((.25 * tRASMAX_T * nBURST))/(2**b) 

• tREF _Tis RDRAM refresh interval expressed as a number of TCLKs 

• b = number of refresh bank bits (may not be equal to number of bank-address bits 
due to multibank refresh) 

• r = number of row address bits 

• nBURST = number of refresh operations/interval. This should be set to the number 
ofREFP-REFA transactions that can be issued within the tRAS,MIN interval. This 
reduces the overhead of refresh activity 

• tRASMAX_T is the RDRAM tRAS,MAX parameter expressed as a number of 
TCLKs 

• A REF _INT value of 0 disables memory refresh. 

The number of refresh operations issued each interval is programmed by means of 
REF _BURST[3:0]. This register serves as an offset, in that the actual burst length is 1 
more than the programmed value. Legal range for the CSR is 0 ... 15, yielding burst 
length range of 1 ... 16. 

16.6.9 DRAM Calibration Control 1-ZBOXn_DRAM_CALIB_CTL1 

There are two DRAM calibration control l registers; ZBOXO_DRAM_CALIB_CTLl 
and ZBOXl_DRAM_CALIB_CTLl. 

Figure 16-44 shows the DRAM calibration control 1 register. 

Figure 16-44 DRAM Calibration Control 1 

CCTLIN[6:0]----------------~ 

RAC_QUIET_SEL[1 :0)------------------~ 

RD_CC_SPC[4:0)--------------------~ 

CC_INT[14:0]----------------------------' 

Com p.aq Confidential 

LK99-0122A 

16-68 Internal Processor Registers 5 Jc1nUc1ry 2001 - Subject To Change 



ZboxlPRs 

Table 16-69 describes the DRAM calibration control 1 register fields. 

Table 16-69 DRAM Calibration Control 1 Fields Description 

Name 

Reserved 

TC_INT[14:0] 

CC_INT[14:0] 

Extent Type Description 

[63:30] RW, 
MBZ 

[29:15] RW 

[14:0] RW 

The number of refresh intervals between temperature calibrations. 

The number of refresh intervals between current calibrations. 

16.6.9.1 Temperature Calibration Interval 

The Temp Calibrate interval (expressed in number of refresh intervals) is programmed 
by means of TC_INT[14:0]. It should be set to the number of intervals contained in 
one-half of the RDRAM's temperature calibrate (tTCAL) parameter. The one-half 
arises from the fact that each temperature calibration sequence consists of 2 commands, 
TCEN followed by TCAL, such that the TCAL is issued once per RDRAM tTCAL 
interval. 

16.6.9.2 Current Control Interval 

The current calibrate interval (expressed in number of refresh intervals) is programmed 
by means of field CC_INT[l4:0]. It should be set to the number of refresh intervals in 
one RDRAM current calibrate interval, divided by the number of devices on the chan
nel. The 21464 RAC performes its current calibration immediately following the calbi
ration of RDRAM device #0. 

16.6.10 DRAM Calibration Control 2 - ZBOXn_DRAM_CALIB_CTL2 

There are two DRAM calibration control 2 registers; ZBOXO_DRAM_CALIB_CTL2 
and ZBOX1_DRAM_CALIB_CTL2. 

Figure 16-45 shows the DRAM calibration control 2 register. 

Figure 16-45 DRAM Calibration Control 2 
22 2120 1514 

TCQUIET[7:0]--------------------' 

TC_QUIET_SEL-------------------~ 

RD_TC_SPC[5:0]--------------------~ 

TC_INT[14:0]--------------------------~ 
LK99-0123A 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-69 



ZboxlPRs 

Table 16-70 describes the DRAM calibration control 2 register fields. 

Table 16-70 DRAM Calibration Control 2 Fields Description 

Name Extent Type Description 

Reserved [63:30] RW, 
MBZ 

CCTLIN[6:0] [29:23] RW Used for manual RAC current control update. The value of 
CCTLIN[6:0] is copied to the die bumps. 

RAC_QUIET_SEL [22:21] RW This field selects the number of tPKTs (1 tPKT = 4 TCLKs) of quiet 
[1:0] period (no Rambus activity) after performing current calibration of 

21464 internal RACs. 

RAC_QUIET_SEL[1 :O] Amount of additional delay 

0 0 

1 1 tPKT 

2 2 tPKTs 

3 4 tPKTs 

RD_CC_SPC[4:0] [20:15] RW This is the number of TCLKs of dead time that must be inserted 
between COLC=CC and COLC=RD packets. 

TCQUJET[7:0] [14:7] RW Number of read cycles prohibited after teal. 

TC_QUIET_SEL [6] RW Enables optional all-quiet period after TempCal command is issued to 
RDRAMs. When set, the quiet period as specified by TCQUIET[7:0] 
causes ROW, COL and DATA buses not to be driven. When clear, the 
quiet period only applies to a period of prohibition of reads. 

RD_TC_SPC[5:0] [5:0] RW This is the number of TCLKs of dead time that must be inserted 
between COLC=RD and COLC=TC packets. 

16.6.10.1 Read to Current Control Transition 

Prior to executing a current calibration packet to a given device, that device may not 
have been read READTOCC TCLKs prior. The field that controls this quiet period is 
RD_CC_SPC. This CSR should be programmed to the RDRAM's READTOCC param
eter. 

16.6.10.2 Temperature Calibrate to Read transition 
A rw0"9' m .... C"-f- ho ,:...,.,:,.,.,-.f.orl ,....,...,.... 4-l,,.,. D n.T"r"lh .... .n +,....,. ,.,. ....... ~,,.,.--,.,. +J,,.,. ,,,.... .. ,..:,...+'' _,..._.:,.......:I J...,..4-,..,.. .. ,.,. __ •-----~ 
~ 5"P .11.lU.:>l. U\:.< .l.l.ljv\Al;AJ vu U.lv .l'-.a.l.l.lUU.:> l.V v.11.lV.l\;v Ulv 'fUlvl. pvl.1VU Uvl.WvvJ.1 l.v111J:JCU:l-

ture calibrate (TCAL) and the next read transaction. TCQUIET[7:0] controls the length 
of the quiet period. The formula for calculating TCQUIET[7:0] is: 

tCAL + tTCQUIET - tPACKET - tCAC 

16.6.10.3 Read to Temperature Calibrate transition 

One must make sure that the the beginning of the tTCQUIET period is not violated by a 
prior read or CAL/SAM operation. To do this, the TCAL packet must be delayed to a 
certain point past the last previous READ or CAL/SAM packet. RD_TC_SPC[5:0] con
trols the length of this period. The formula for calculating RD_TC_SPC[5:0] is: 

tCAC - tTCAL + tPACKET + tPACKET 

Compaq Confidential 
16-70 Internal Processor Registers 5 Jt111Ut1ry 2001 ···Subject To Cfumge 



ZboxlPRs 

16.6.11 DRAM Timing Control 4 - ZBOXn_DRAM_ TIMING_CTL4 

There are two DRAM timing control 4 registers; ZBOXO_DRAM_ TIMING_CTL4 and 
ZBOX1_DRAM_ TIMING_CTL4. 

Figure 16-46 shows the DRAM timing control 4 register. 

Figure 16-46 DRAM Timing Control 4 
2524 1918 1413 

TRASref_OFF[6:0]--------------~ 

TRPref_OFF[5:0]------------------~ 

TPPref_OFF[4:0]-----------------------' 

TRRref_OFF[4:0]---------------------------' 

9 8 5 4 3 

111~1111111111111 

Rese~ed----------------------------' 

REF_TIMER-----------------------------' 

TOFFP[3:0]----------------------------____, 

Table 16-71 describes the DRAM timing control 4 register fields. 

Table 16-71 DRAM Timing Control 4 Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 
MBZ 

TRASref_OFF[6:0] [31:25] RW Used to determine tRAS (RAS-PRE) during burst refresh. 

TRPref_OFF[5:0] [24:19] RW 

TRASref_OFF = Rambus tRASref 

Used to determine tRP (PRE-RAS) during burst refresh. 
TRPref_OFF = Rambus tRPref 

LK99-0103A 

TPPref_OFF[4:0] [18:14] RW Used to determine tPP during burst refresh (PRE-PRE to same device). 
TPPref_OFF =Rambus tPPref 

TRRref_OFF[4:0] [13:9] RW Used to determine tRR during burst refresh (RAS-RAS to same device). 
TRRref_OFF =Rambus tRRref 

Reserved [8:5] RW, 
MBZ 

REF_TIMER [4] RW If set, enables alternate parameters during refresh. 

TOFFP[3:0] [3:0] RW Specifies tOFFP value (COLX = PREX to "implied" ROWR = PRER) 

16.6.12 DRAM Refresh Row - ZBOXn_DRAM_REFRESH_ROW 

There are two DRAM refresh row registers; ZBOXO_DRAM_REFRESH_ROW and 
ZBOXl_DRAM_REFRESH_ROW. 

Compaq Confidentia I 
5 January 2001 ~· Subject To Change Internal Processor Registers 16-71 



Zbox:IPRs 

Figure 16-47 shows the DRAM refresh row register. 

Figure·16-47 DRAM Refresh Row 
63 1413 1 0 --------.-. 

REF _ROW_REG[12:0]----------------------------' 

RIP-------------------------------J 
LK99-0104A 

Table 16-72 describes the DRAM refresh row register fields. 

Table 16-72 DRAM Refresh Row Fields Description 

Name Extent Type Description 

Reserved [63:14] RO, 
MBZ 

REF _ROW _REG[12:0] [13:1] RW The next row to be refreshed - the refresh row number should 
be written to zero for the refresh all memory function (110 for 
CMD in DRAM_INIT_CTL). 

RIP [0] RO Refresh-all-mem_In_Progress status (polled to control PDN 
entry/exit). 

16.6.13 DRAM Initialization Control - ZBOXn_DRAM_INIT _CTL 

There are two DRAM initialization control registers; ZBOXO_DRAM_INIT_CTL and 
ZB OXl_DRAM_INIT _CTL. 

Figure 16-48 shows the DRAM initialization control register. 

Figure 16-48 DRAM Initialization Control 
63 

LDR-------------------------~ 

SAE-------------------------~ 

SFZ--------------------------~ 

8--------------------------~ 

DEV[4:0] 
-----------------------------' 

RACCMD[4:0] 

3 2 0 

CDM[2:0]---------------------------~ 

LK99-0105A 

Com p.aq Confidential 
16-72 Internal Processor Registers 5 JamJc1ry 2001 - Subject To Change 



ZboxlPRs 

Table 16-73 describes the DRAM initialization control register fields. 

Table 16-73 DRAM Initialization Control Fields Description 

Name Extent Type 

Reserved [63: 11] RO, 
MBZ 

SAE [10] WO 

SFZ [ 9] WO 

B [ 8] WO 

DEV[4:0] [7:3] WO 

RACCMD[ 4:0] [7:3] WO 

CMD[2:0] [2: 0] WO 

Description 

Stop refresh-all-mem after refreshing bank=max, row=max 

Start from bank=O, row=O for Refresh-All-mem 

Broadcast to all devices. Cannot be used for AT1N 

If non-RAC function (CMD!=Oblll), device number targeted by CMD 

If RAC function (CMD=Oblll), encoded as follows: 

Bits Meaning Bits Meaning 

0000 NOP 0001 NOP 

0010 Assert PWRUP 0011 Deassert PWRUP 

0100 Assert RESET 0101 Deassert RESET 

0110 Reserved 0111 Reserved 

1000 Assert CCTLAUTO 1001 Deassert CCTLA UTO 

1010 Assert CCTLEN 1011 Deassert CCTLEN 

1100 Assert CCTLLD 1101 Deassert CCTLLD 

1110 Reserved 1111 Reserved 

Function encoded as follows: 

Bits Meaning 

000 NOP 

001 TCALdevice 

010 TCENdevice 

011 Current calibrate 

100 PDNR 

101 AT1N 

110 Refresh all mem 

111 RAC Function 

16.6.14 DIFT Control -ZBOXn_DIFT_CTL 

There are two DIFT control registers; ZBOXO_DIFT_CTL and ZBOXl_DIFT_CTL. 

Figure 16-49 shows the D IFT control register. 

Compaq Confidential 
5 January 2001 -- Subject To Change Internal Processor Registers 16-73 



ZboxlPRs 

Figure 16-49 DIFT Control 
63 2928 2726 17161514131211 9 8 7 

PRBQ_FORCE_Sn<C---------------~ 

PRBQ_STI<C_DIS-------------------' 

DIFT_ISS_CTL[9:0]---------------------' 

ReseNed----------------------~ 

DIFT_SGLSTP----------------------~ 

BYP_EN-----------------------~ 

INIT_ON--------------------------' 

SWEEP_ON---------------------------' 

PIDSHIFT[2:0]------------------------~ 

PIDWIDTH--------------------------~ 

PID[7:0]------------------------------' 

Compaq Confidential 

LK99-0106A 

16-74 Internal Processor Registers 5 Jammry 2001 - Subject To Change 



ZboxlPRs 

Table 16-7 4 describes the PID control register fields. 

Table 16-74 PIO Control Fields Description 

Name Extent Type Description 

Reserved [63:29] RW, 
MBZ 

PRBQ_FORCE_STXC [28] RW Mimics functions of signal with same name in Cbox CSR and 
should be set to the same value. 

PRBQ_STXC_DIS [27] RW Mimics functions of signal with same name in Cbox CSR and 
should be set to the same value. 

DIFT_ISS_CTL[9:0] [26: 17] RW Maximum value to initialize Softsnap counter. 

Reserved [16] RW, 
MBZ 

DIFT_SGLSTP [15] RW When set, BeginQueue is stalled until the DIFT is idle (that is, 
all previous transactions have retired). 

BYP_EN [14] RW Bypass enable from allocation to ZRQ. This bit, when set, 
enables bypassing directly from DIFT allocation directly into 
the Zbox middle (ZRQ). 

INIT_ON [13] RW Put DIFT into init mode. INIT mode is used to initialize memory. 
When the Zbox is in this mode the processor is expected to submit 
inval_to_dirty requests to the zbox. The zbox ignores the current 
memory state and responds success to the inval_to_dirty command. 
Once the block is victimized, memory is initialized. 

SWEEP_ON [12] RW Put DIFT into sweep mode. 

PIDSHIFT[2:0] [11:9] RW Processor Shift value. Specifies how many bits to right shift the PID. 
Supported Range [0 .. .4]. 

PIDWIDTH [8] RW Processor ID width mode: 

Pidwidth Mode 

0 6bit PID 
1 8bit PID 

PID[7:0] [7:0] RW Processor ID value (loaded from module CSR) 

16.6.15 DRAM Error Address - ZBOXn_DRAM_ERR_ADR 

There are two DRAM error address registers; ZBOXO_DRAM_ERR_ADR and 
ZBOXl_DRAM_ERR_ADR. 

Figure 16-50 shows the DRAM error address register. 

Compaq Confidential 
5 January 2001 ·- Subject To Change Internal Processor Registers 16-75 



Zbo:xlPRs 

Figure 16-50 DRAM Error Address 

L.K99-0107A 

Table 16-75 describes the DRAM error address register fields. 

Table 16-75 DRAM Error Address Fields Description 

Name Extent Type Description 

Reserved [63:29] RO, 
MBZ 

ERR_ADDR [28:0] RWAC Memory Address of the first (more serious) error encountered. A correct
able error address can be overwritten by an uncorrectable error address. 
(Memory Address is Physical Address with PID and byte-in-Cache_line 
address bits PA[5:0] removed. 

16.6.16 DIFT Timeout - ZBOXn_DIFT _TIMEOUT 

There are two DIFT timeout registers; ZBOXO_DIFT_TIMEOUT and 
ZBOXl_DIFT_TIMEOUT. 

Figure 16-51 shows the DIFT timeout register. 

Figure 16-51 DIFT Timeout 
63 323130 

DIFT_TIMEOUT_EN-------------~ 

DIFT_TIMEOUT_VALUE--------------------~ 

Table 16-76 describes the DIFT timeout register fields. 

Table 16-76 DIFT Timeout Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 

DIFT_TIMEOUT_EN [31] 

DIFT_TIMEOUT_ VALUE [30:0] 

MBZ 

RW 

RW 

Enables DIFT timeout interrupts if set. 

Value to reload DIFT timer when it counts down to 0. 

Compaq Confidential 

LK9!)-0108A 

16-76 Internal Processor Registers 5 Jc1m.u1ry 2001 --Subject To Change 



ZboxlPRs 

This register specifies a timeout value for the overall DIFf timer. This timer sends 
pulses to the 5 bit timers held with each DIFT entry. The value in this register specifies 
the period of the pulses. 

When the N bit timer with a given DIFT entry cycles through all ZN states, the timer 
expires. Each timer cycles to the next state with each pulse from the overall DIFT timer. 
This allows DIFf timeouts in the range of 26 to 236 cycles. 

The DIFT timer is reloaded when it counts to zero, or when DIFT_ TIMEOUT_EN tran
sitions from a 0 to a 1. 

16.6.17 DRAM Mapper Control - ZBOXn_DRAM_MAPPER_CTL 

There are two DRAM mapper control registers; ZBOXO_DRAM_MAPPER_CTL and 
ZBOXl_DRAM_MAPPER_CTL. 

The system programmer is given the flexibility to extract Rambus BANK, DEVICE, 
ROW and COLUMN fields from the Memory Address (MA) to reduce the overall 
number of batik conflicts (that is, the unnecessary act of closing pages). 

Physical ~ Memory Address Mapping 

There are four modes of interpretation for the physical -7 memory address mapping, 
based on the small_addr and striped mode enable bits in the Cbox. ??????? describes 
and illustrates these modes, and the following table summarizes them. 

striped mode 
small_addr PA[36] mem_adr[28:0] 

0 

0 

1 

0 

1 

0 

MA[28:0] = PA[42] I PA[33:6] 

MA[28:0] = PA[42] I PA[35:9] I PA[6] 

MA[28:0] = PA[42] I PA[37] I PA[35] I PA[31:6] 

MA[28:0] = PA[42] I PA[33:32] I PA[37] I PA[35] I PA[31:9] I PA[6] 

Figure 16-52 shows the DRAM mapper control register. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-77 



ZboxlPRs 

Figure 16-52 DRAM Mapper Control 
63 302928 2625 2221 1817 15141312 10 9 7 6 4 3 2 1 0 

NUM_PORT_OFF[O]--------------~ 

DEV_START _OFF[2:0]-------------------' 

BNK_START _OFF[3:0]--------------------' 

RWH_START_OFF[3:0]----------------------' 

RWL_START_OFF[2:0]---------------------~ 

DEV_WIDTH_OFF[1:0]----------------------~ 

BNK_WIDTH_OFF[2:0]-----------------------~ 

ROW_WIDTH_OFF[2:0]-------------------------~ 

RWL_WIDTH[2:0]--------------------------_____, 

COL_WIDTH_OFF[1:0]------------------------------' 

DEP_BNK----------------------------~ 

SPLIT_BNK--------------------------------' 
L.K99-0109A 

Table 16-77 describes the DRAM mapper control register fields. 

Table 16-77 DRAM Mapper Control Fields Description 

Name 

Reserved 

NUM_PORT_OFF[O] 

DEV _START_OFF[2:0] 

Extent Type Description 

[63:30] RW, 

[29] 

MBZ 

RW This offset value specifies the number of memory ports that will 
be active. If one port is specified (num_port_off=O), the colstart is 
implied to be MA[O]. If two ports are specified (num_port_off=l), 
the colstart is implied to be MA[l]. 

[28:26] RW This offset value specifies the bit position within the MA to start 
the DEVICE field extraction. Valid ranges are 7 ... 0, with the 
device start= MA[DEV _START_OFF+5] 

DEV_START_OFF[2:0] Dev_start 

0 MA[5] 

1 MA[6] 

2 MA[7] 

3 MA[8] 

4 MA[9] 

5 MA[lO] 

6 MA[ll] 

7 MA[12] 

Compaq Confidential 
16-78 Internal Processor Registers 5 January 2001 m Subject To Change 



ZboxlPRs 

Table 16-77 DRAM Mapper Control Fields Description (Continued) 

Name 

BNK_START_OFF[3:0] 

Extent Type Description 

[25:22] RW This offset value specifies the bit position within the MA to start 
the BANK field extraction. The BANK field is extracted from the 
MA in reverse bit order (eg: B [O:n]) to minimize bank conflicts in 
dependent bank Direct RDRAM devices. Unlike the other start 
fields, BNK_START_OFF describes which MA bit to start B[O] 
extraction. Valid ranges are 14 ... 0, with the 
bank start= MA[DEV _START_OFF+8] 

BNK_START_OFF[3:0] Bnk_start B[O] 

0 MA[8] 

1 MA[9] 

2 MA[lO] 

3 MA[ll] 

4 MA[12] 

5 MA[13] 

6 MA[14] 

7 MA[15] 

8 MA[16] 

9 MA[17] 

10 MA[18] 

11 MA[19] 

12 MA[20] 

13 MA[21] 

14 MA[22] 

RWH_START_OFF[3 :0] [21: 18] RW This offset value specifies the bit position within the MA to start 
the high order ROW field extraction. This field must compensate 
for any low order ROW bits that have already been extracted from 
the row hole. If none of the row address bits are used in the row 
hole (rwl_ width= 0), then the values of 0 and 10 correspond to bit 
positions MA[9] and MA[19] respectivly. The corresponding val
ues increase by one for each bit taken into the hole. Valid ranges 
are 10 ... 0, with RowN starting at bit position 
RWH_START_OFF+9+n. The following table shows the appro
priate values. Figure 16-53 shows an intpretation of Row High. 

RWL_WIDTH 

0 

2 

3 

4 
5 

RWH_START _OFF 

0 1 2 3 4 5 6 7 8 9 10 

9 10 11 12 13 14 15 16 17 18 19 

10 11 12 13 14 15 16 17 18 19 20 

11 12 13 14 15 16 17 18 19 20 21 

12 13 14 15 16 17 18 19 20 21 22 

13 14 15 16 17 18 19 20 21 22 ~ 

14 15 16 17 18 19 20 21 22 ~ ~ 

The chart shows the initial high order bit to be extracted. For 
example if a three bit row hole (2) is found in the lower bits, then 
the "Three bit hole(R3)" is consulted. To begin the upper order 
extraction from bit position 22, a RWH_START_OFF of 4 is 
required. 

Compaq Confidential 
5 January 2001 -~ Subject To Change Internal Processor Registers 16-79 



ZboxlPRs 

Table 16-77 DRAM Mapper Control Fields Description (Continued) 

Name Extent Type Description 

RWL_START_OFF[2:0] [17:15] RW This offset value specifies the bit position within the MA to start 
the low order ROW field extraction. Valid ranges are 4 ... 0, with 
the row lower start= MA[5+RWL_START_OFF] 

RWL_START_OFF[3:0] Rwl_start B[O] 

0 MA[5] 

1 MA[6] 

2 

3 
4 

MA[7] 

MA[8] 

MA[9] 

DEV_ WIDTH_OFF[l:O] [14: 13] RW This offset value specifies the number of bits to extract from the 
MA for the DEVICE field. 

16-80 Internal Processor Registers 

DEV_WIDTH_OFF[1:0] Dev_width 

0 2b 4 devices 

1 
2 

3 

Compaq Confidential 

3b 8 devices 
4b 16 devices 

5b 3 2 devices 

5 Jc1nuc1ry 2001 ... Subject To Change 



ZboxlPRs 

Table 16-77 DRAM Mapper Control Fields Description (Continued) 

Name Extent Type Description 

BNK_ WIDTH_OFF[2:0] [12: 10] RW This offset value specifies the number of bits to extract from the 
MA for the BANK field. The BANK field is extracted from the 
MA in reverse bit order (eg: B [O:n]) to minimize bank conflicts in 
dependent bank Direct RDRAM devices. The 

ROW_ WIDTH_OFF[2:0] [9:7] 

BNK_ WIDTH_OFF field describes how many bits to extract to 
the right of the MA starting bit position. The BNK bits are 
extracted [LSB:MSB]. To enable 64 bank mode 
(BNK_ WIDTH_OFF=4), software must guarantee that Depen
dent Bank mode is also enabled (DEP _BNK=l). 

BNK_ WIDTH_ OFF[2:0] 

0 

Bnk_width 

2b 4 banks 

3b 8 banks 

4b 16 banks 

Sb 32 banks 

6b 64 banks 

1 
2 

3 

4 

An example of how BANK is extracted from MA: 

f BNK_START_OFF[3:0] 

l*l*I J .. 
BNK_WIDTH_OFF[2:0] 

The system programmer is given the ability to extract lower order 
ROW bits from the MA between the DEVICE and COLUMN 
extraction points. This "row hole" is required if the DEVICE 
starting MA bit position does not fall exactly next to the COL
UMN ending MA bit position, as shown in the following figure. 

JoojRsjR4jRsjR2 jR1 jRo Jcmax Jcmax-1 J ... J 

~ Row Hole -...j 

RW This offset value specifies the total number of row bits to extract 
from the MA (including those from the row hole). For instance, If 
row_width_off=O (row size=9b) andrwl_width_off=5 (row 
hole=5b), then (9b-5b)=4b are extracted for the high order row. 
See table under BNK_ WIDTH_OFF[2:0] to determine where the 
high order row bits are extracted based on the size of the row hole. 
The Rambus ROW packet protocol allows extensions for 12- and 
13-bit rows by using bits defined as bank bits. 

ROW _WIDTH_OFF[2:0] Row_width 

0 9b 

1 
2 

3 

4 

lOb 

llb 

12b [bank(5) = row(ll)] 

13b [bank(5,4) = row(ll,12)] 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-81 



ZboxlPRs 

Table 16-77 DRAM Mapper Control Fields Description (Continued) 

Name Extent Type Description 

RWL_ WIDTH[2:0] [6:4] RW This value specifies the number of bits to extract from the MA for 
the low order ROW field. 

RWL_ WIDTH[2:0] Rwl_width 

0 Ob (no row hole) 

1 lb 

2 2b 

3 3b 

4 4b 

5 5b 

COL_ WIDTH_OFF[l:O] [3:2] RW This off set value specifies the number of bits to extract from the 
PA for the COLUMN field. 

COL_WIDTH_OFF[1 :O] Col_ width 

0 5b 

6b 

2 7b 

DEP_BNK [1] RW Dependent Bank Mode. When set, assumes dependent bank 
devices. 

SPLIT_BNK [0] RW Split Bank Mode. When set, assumes a split bank device. When 
SPLIT_BNK is set, DEP _BNK must also be set because a 
split bank device implies that the banks are dependent. 

Compaq Confidential 
16-82 Internal Processor Registers 5 Jc1nuary 2001 ··· Subject To Change 



ZboxlPRs 

Figure 16-53 Interpretation of Row High 

Figure TBS (LK99-0110A.WMF). 

Need clarification on the ASCII figure below in order to create useful line art. 

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

<---1 rwh_start_off 
<-------1 rwl_width 
A Row-High starting bit = 

MA<9+rwh_start_of f +rwl_width> 

16.6.18 Zbox Performance Counter 0 - ZBOXn_ZPM_ CTRO 

There are two Zbox performance counter 0 registers; ZBOXO_ZPM_CTRO and 
ZBOXl_ZPM_CTRO. 

This is a 31-bit event counter and an underflow bit. ZBOXn_ZPM_CTRO can be pro
grammed to count one of 32 items related to the Zbox middle. 

The counter can be preloaded with an initial count via software. When the selected 
event occurs, the corresponding counter is decremented. When either counter counts 
below zero, the Zbox generates a performance_monitor interrupt. 

Only the first underflow causes a perf ormance_monitor interrupt, so that the interrupt 
can be disabled by writing a 1 to the underflow bit. The interrupt occurs on the 0-71 
transition, therefore, #event-1 must be loaded into the counters. 

Figure 16-54 shows the Zbox performance counter 0 register. 

Figure 16-54 Zbox Performance Counter O 

ZBOX_PERF _CTRO_UND---------------' 

ZBOX_PERF_CTRO-----------------------' 
LK91t-0111A 

Compaq Confidential 
5 January 2001 ··· Subject To Change Internal Processor Registers 16-83 



ZboxlPRs 

Table 16-78 describes the Zbox performance cowiter 0 fields. 

Table 16-78 Zbox Performance Counter o Fields Description 

Name Extent Type Description 

Reserved [63:32] RW, 
MBZ 

ZBOX_PERF _CTRO_UND [31] RW Indicates counter underflow. 

ZBOX_PERF _CTRO [30:0] RW Zbox Performance counter 0. Decrements when the condition 
specified by ZBOX_PERF _CTL[ 4:0] have been met. A perfor
mance counter interrupt is signalled when the counter under
flows. 

16.6.19 Zbox Performance Counter 1 - ZBOXn_ZPM_CTR1 

There are two Zbox performance cowiter 1 registers; ZBOXO_ZPM_CTRl and 
ZBOXl_ZPM_CTRl. 

This is a 31-bit event cowiter and an underflow bit. ZBOXn_ZPM_CTRl can be pro
grammed to count one of 16 items related to the Zbox front-end (DIFT). 

The counter can be preloaded with an initial count via software. When the selected 
event occurs, the corresponding counter is decremented. When either counter counts 
below zero, the Zbox generates a performance_monitor interrupt. 

Only the first underflow causes a performance_monitor interrupt, so that the interrupt 
can be disabled by writing a 1 to the underflow bit. The interrupt occurs on the 0-71 
transition, therefore, #event-1 must be loaded into the counters. 

Figure 16-55 shows the Zbox performance cowiter 1 register. 

Figure 16-55 Zbox Performance Counter 1 
63 3231 30 

ZBOX_PERF _CTR1_UND---------------' 

ZBOX_PERF_CTR1 ---------------------~ 

Compaq Confidential 
16-84 Internal Processor Registers 5 Jc1m1ary 2001 m Subject To Change 



ZboxlPRs 

Table 16-79 describes the Zbox performance counter 1 fields. 

Table 16-79 Zbox Performance Counter 1 Fields Description 

Name Extent Type Description 

Reserved [63:32] RW, 
MBZ 

ZBOX_PERF_CTRl_UND [31] RW Indicates counter underflow. 

ZBOX_PERF _CTRl [30:0] RW Zbox Performance counter 1. Decrements when the condition 
specified by ZBOX_PERF _CTL[8:5] have been met. A perfor
mance counter interrupt is signalled when the counter under
flows. 

16.6.20 Zbox Performance Control - ZBOXn_ZPM_CTL 

There are two Zbox performance control registers; ZBOXO_ZPM_CTL and 
ZBOXl_ZPM_CTL. 

Figure 16-56 shows the Zbox performance control register. 

Figure 16-56 Zbox Performance Control 
63 9 8 5 4 

lllt:::::::·:·:·:.Jllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll!llllllllllllll!llllllllllllllllllllll 

Reserved-------------' 
ZPM_CTL 1[3:0)-----------------------------' 

ZPM_CTL0[4:0]-------------------------------' 
LK99-0113A 

Table 16-80 describes the Zbox performance control fields. 

Table 16-80 Zbox Performance Control Fields Description 

Name Extent Type Description 

Reserved [63:12] RO,MBZ 

Reserved [11:9] RW,MBZ 

ZPM_CTL1[3:0] [8:5] RW Control for Zbox Performance Counter 1. 

CTLl Item to count (ZPM_CTR1) 

00000 nq_any - regardless of reject status 

00001 nq_prq - regardless of reject status 

00010 nq_rsq - regardless of reject status 

00011 nq_csq - regardless of reject status 

00100 nq_any-qualified by&! reject 

00101 nq_prq - qualified by & ! reject 

Compaq Confidential 
5 January 2001 ·- Subject To Change Internal Processor Registers 16-85 



ZboxlPRs 

Table 16-80 Zbox Performance Control Fields Description (Continued) 

Name Extent Type 

16-86 Internal Processor Registers 

Description 

00110 nq_rsq -qualified by&! reject 

00111 nq_csq - qualified by & ! reject 

01000 nq_any - qualified by & reject 

01001 nq_prq - qualified by & reject 

01010 nq_rsq - qualified by & reject 

01011 nq_csq - qualified by & reject 

01100 nq_rej -No Fill Buffers available 

01101 nq_rej - Shadow Reject (tRR, tPP) in PDN or SHDPND 
Interval 

Compaq Confidential 
5 Jc·muc1ry 2001 - Subject To Change 



ZboxlPRs 

Table 16-80 Zbox Performance Control Fields Description (Continued) 

Name Extent Type 

ZPM_CTL0[4:0] [4:0] RW 

Description 

CTLl Item to count(ZPM_CTR1) 

01110 nq_rej- Page-Conflict Reject (tRP,tRCD) in PND or BLK
PND or NQPRPND Interval, (tRAS) in PND or HLDPND 
Interval (R/w), (tRDP) in SHDPND interval (R) 

01111 nq_rej- WRB Reject (tRTR, tRTP) 

10000 nq_rej - Queue Full Reject 

10001 nq-rej-NQ' Waterfall priority over DFf-NQ 

10010 cmd = dir_only_read 

10011 cmd = dir+data_read 

10100 cmd = dir_only_write 

10101 cmd = dir+data_ write 

10110 PRER precharge 

10111 PREX precharge 

11000 PREC precharge 

11001 COL=RD 

11010 COL= WR 

11011 COL=NOCOP 

11100 COL=Any 

11101 Starvation detections 

11110 Force write retire 

11111 Deferred write retire 

Control for Zbox Performance Counter 0. 

CTLO Item to count {ZPM_CTRO) 

0000 Incoming transaction (any) 

0001 Incoming ReadSharedReq 

0010 Incoming ReadModREq 

0011 Incoming ReadReq 

0100 Incoming FetchReq 

0101 Incoming SharedToDirtyReq 

0110 incoming SharedToDirtySTCReq 

0111 Incoming InvalToDirtyReq 

1000 Incoming Victim 

1001 Incoming VictimClean 

1001 Outgoing Forward (any) 

1010 Outgoing Forward=InvalSingle 

Compaq Confidential 
5 January 2001 - Subject To Change Internal Processor Registers 16-87 



Zbo:xlPRs 

Table 16-80 Zbox Performance Control Fields Description (Continued) 

Name Extent Type Description 

CTLO Item to count (ZPM_CTRO) 

1011 Outgoing Forward=lnvalMask 

1100 Outgoing Forward=Read(anytype )Forward 

1101 Outgoing Forward=FetchForward 

1110 Outgoing Forward=ItoDForward 

1111 Forward Miss received 

16.6.21 Zbox Sweep Directory Bits - ZBOXn_DRAM_SWEEP _DIR 

There are two Zbox sweep directory bits registers; ZB OXO_DRAM_SWEEP _DIR and 
ZBOXl_DRAM_SWEEP _DIR. 

Figure 16-57 shows the Zbox sweep directory bits register. 

Figure 16-57 Zbox Sweep Directory Bits 
63 282726 2120 

DIR_DATA[21]---------------~ 

DIR_ECC[5:0]-----------------~ 

DIR_DATA[20:0]------------------------~ 

Table 16-81 describes the Zbox sweep directory bits fields. 

Table 16-81 Zbox Sweep Directory Bits Fields Description 

Name 

Reserved 

Extent Type Description 

[63:28] RO, 
MBZ 

LK99-0114A 

DIR_DATA[21] [27] RO Contains directory entry data[21] from last read from memory. Valid 
only if SWEEP _ON is set. This bit is normally 0, and should be set 
only if the directory entry is written with the SET_DIR21 control bit 
set. 

DIR_ECC[5:0] [26:21] RO Contains directory entry ECC from last read from memory. Valid 
only if SWEEP _ON is set. 

DIR_DATA[20:0] [20:0] RO Contains directory entry data from last read from memory. Valid 
only if SWEEP _ON is set. 

Compaq Confidentia I 
16-88 Internal Processor Registers 5 Janwiry 2001 - Subject To Change 



ZboxlPRs 

16.6.22 Zbox Force-Error Address register - ZBOXn_FRC_ERR_ADR 

There are two Zbox force-error address registers; ZBOXO_FRC_ERR_ADR and 
ZBOXl_FRC_ERR_ADR. 

The Zbox provides a means to force errors when a particular physical address is written. 
The address is specified in Rambus device, bank, row and column format. When the 
matching function is enabled (by means ofDRAM_ERR_CTL[MAT_ERR_ENA]), the 
LSB of the Column address is cleared (as specified by 
DRAM_ERROR_CTL[FRC_ WTERR]). The physical address match is on a cache
block granularity, with separate, independent registers for each Zbox. Use of this regis
ter requires knowledge of the address mapping scheme in use. 

This register can also be used to provide a means to set directory _data[21] when an 
address match occurs (by means of DRAM_ERR_CTL[ADR_MAT_TRIGGER]). The 
Zbox can also optionally generate an interrupt (if 
DRAM_ERROR_CTL[ERR_INT_ENAB[6]] is set) upon reading a block of memory 
with directory _data[21]=1. 

Figure 16-58 shows the Zbox force-error address registers. 

Figure 16-58 Zbox Force-Error Address Register 
2625 2019 7 6 

Reserved------~ 

FRC_DEV[4:0]---------------~ 

FRC_BNK[5:0]--------------------' 

FRC_ROW[12:0]--------------------------' 

FRC_COL[6:0]------------------------------' 

0 

LK99-0124A 

Table 16-82 describes the Zbox force-error address fields. 

Table 16-82 Zbox Force-Error Address Fields Description 

Name Extent Type Description 

Reserved [63:31] RW, 
MBZ 

FRC_DEV[4:0] [30:26] RW Rambus Device number 

FRC_BNK[5:0] [25:20] RW Rambus Bank number 

FRC_ROW[12:0] [19:7] RW Rambus Row number 

FRC_COL[6:0] [6:0] RW Rambus Column number 

Compaq Confidential 
5 Jatnmry 2001 -- Subject To Change Internal Processor Registers 16-89 



ZboxlPRs 

16.6.23 Zbox DIFT Error Status - ZBOXn_DIFT _ERR_STATUS 

There are two Zbox DIFT error status registers; ZBOXO_DIFT_ERR_STATUS and 
ZB OXl_DIFT_ERR_STATUS. 

Figure 16-59 shows the Zbox DIFT error status registers. 

Figure 16-59 Zbox DIFT Error Status Register 

DIFT_ERR_STATUS[31 :0)-------------------------' 
LK99-0125A 

Compaq Confidential 
16-90 Internal Processor Registers 5 Janw~ry 2001 ·-Subject To Change 



ZboxlPRs 

Table 16-83 describes the Zbox DIFT error status fields. 

Table 16-83 Zbox DIFT Error Status Fields Description 

Name Extent Type Description 

Reserved [63:32] RO, 
MBZ 

DIFT_ERR_STATUS[31:0] [31:0] RWAC Contains hardware error status bits from DIFT. For HW 
debugging only. A write clears all bits. 

[31:18] MBZ 

[17] 

[16] 

[15] 

[14] 

[13] 

[12] 

[11] 

[10] 

[9] 

[8] 

[7] 

[6] 

[5] 

[4] 

[3] 

[2] 

[l] 

[0] 

Reserved 

DIFT debit counter overflow 

D IFT debit counter underflow 

Block response to Rbox credit overflow 

Block response to Rbox credit underflow 

Non-block response to Rbox credit overflow 

Non-block response to Rbox credit underflow 

Forward to Rbox credit overflow 

Forward to Rbox credit underflow 

Protocol violation or unsupported case detected during DIR 
write 

DirWrite command logic error 

DirRead command logic error 

Simultaneous issue of Forward and Invalidate to FORWARD 
channel 

Simultaneous issue of DirRead and DirWrite to MEM chan
nel 

Incoming ACK failed to merge to any DIFT entry 

New entry allocation failed due to empty freelist 

Unknown command decoded by packet accumulator 

Framing error on incoming packet from Rbox 

z_dft_acc->err_cbad_frame_a_h = framing error on incom
ing packet from Cbox 

16.6.24 Zbox RAC Control - ZBOXn_RAC_CTL 

There are two Zbox RAC control registers; ZBOXO_RAC_CTL and 
ZBOXl_RAC_CTL. 

Figure 16-60 shows the Zbox RAC control registers. 

Figure 16-60 Zbox RAC Control Register 

Figure TBS when bits are defined. 

Compaq Confidential 
5 January 2001 -·Subject To Change Internal Processor Registers 16-91 



ZboxlPRs 

Table 16-84 describes the Zbox RAC control fields. 

Table 16-84 Zbox RAC Control Fields Description 

Name 

Reserved 

RAC_CTL[31:0] 

Extent Type 

[63:32] RO, 
MBZ 

[31:0] RW 

Description 

Contains control bits for RAC. 
No bits are currently defined. 

Compaq Confidentia I 
16-92 Internal Processor Registers 5 Jc1nuc1ry 2001 - Subject To Change 



HW ___ .LD and HW ___ .ST Instructions 

17 
Privileged Architecture Library Code 

17.1 HW_LD and HW_ST Instructions 

PALcode uses the HW _LD and HW _ST instructions to access memory outside the 
realm of normal Alpha memory management and perform special Dstream load and 
store transactions. The data conversions are identical to byte, word, long and quad inte
ger counterparts. 

Data alignment traps are disabled for all forms of the HW _LD and HW _ST instructions 
and the effective address is forced to match the specified data size. 

The instruction format of the HW _LD and HW _ST instructions is: 

Figure 17-1 HW_LD/HW_ST Instruction Format 
31 2625 0 

HW_LD: I Opcode I Displacement 

HW_ST: 

Table 17-1 HW_LD/HW_ST Instruction Fields Description 

Field Name 

Opcode 

Ra 

Rb 

Extent Description 

31: 26 The instruction Opcode. 
OxlB HW_LD 
OxlF HW_ST 

25:21 The destination register number for loads or the write data for stores 

20: 16 Source register which holds the base address of the operation. 

Compaq Confidential 
5 Janm1ry 2001 - Subject To Change Privileged Architecture Library Code 17-1 



HW ____ lD and HW ____ ST Instructions 

Table 17-1 HW_LD/HW_ST Instruction Fields Description (Continued) 

Field Name Extent Description 

Type 15:13 Type of memory reference to perform. The /PfE and /WrChk operations are 
valid only for HW _LD operations. 

Bits Set Type of Reference Meaning 

000 Physical The effective address for the HW _LD/ST 
instruction is physical, not virtual. 

010 Virtual/PfE Valid only for HW _LD, used to fetch page table 
entries from memory. TB faults vector directly 
to the double-miss flows. Kernel mode access 
checks are performed. 

100 Virtual The address virtual. How is this different from 
LD/ST? Alignment checks are disabled. 

101 Virtual/WrChk The effective address for a HW _LD instruction 
is virtual. Access checks for fault-on-read, 
fault-on-write, read and write are performed 

110 Virtual/ Alt Same as Virtual but the ALT field of the 
M_MODE register is used for access checking. 

111 Virtual/WrChk/Alt Same as Vitrual/WrChk but the ALT field of the 
M_MODE register is used for access checking. 

Length 12: 11 The size of the data transaction. Data alignment checks are not performed but 
alignment is forced to the data size. 

Bits Set Meaning 

00 Byte Access 

01 Word Access 

10 Longword Access 

11 Quadword Access 

Disp 10:0 An 11-bit signed displacement that is added the value in Rb to form the effective 
address of the load or store. 

Compaq Confidential 
17-2 Privileged Architecture Library Code 5 Jc1nuc1ry 2001 m Subject To Change 



HW ____ MFPR and HW. ___ MTPR Instructions 

17.2 HW_MFPR and HW_MTPR Instructions 

PALcode uses the HW _MFPR and HW _MTPR instructions to access the internal pro
cessor registers. The HW _MFPR instruction reads the value from the specified IPR 
into the integer register specified by the Ra field. The HW _MTPR instruction writes 
the value from the integer register specified by the Rb field into the specified IPR. 

17.2.1 HW _MFPR Instruction 

The instruction format of the HW _MFPR instruction is: 

Figure 17-2 HW_MFPR Instruction Format 

31 5 4 0 

HW MFPR: Opcode Index Re 

Table 17-2 HW _MFPR Fields Description 

Field Name 

Opcode 

Re 

Index 

Rclass 

Extent Description 

31:26 The instruction Opcode: Ox.19 

4:0 Destination integer register. 

12:5 Identifier of the IPR to read. See the IPR table for a complete list of indexes. 
The MSB of the Index field differentiates between IPRs located in the Mbox and 
IPRs located in the Ibox. 
MSB =0 Mbox 
MSB = 1 Ibox 

24:21 Reader class of the instruction. The reader class defines an dependency against a 
previous IPR writer of the same class. The reader will not issue until the writer 
dependency has cleared. The format of the reader class field is as follows: 

Bits Description 

3 Valid bit. If clear, no dependency exists 

2:0 Class number 

The currently defined/allowed values for reader class are: 

Bits Set Meaning 

OXX:X No dependency 

lXXO Dependency against an IPR writer class of 0 

lXXl Dependency against an IPR writer class of 1 

Compaq Confidential 
5 January 2001 - Subject To Change Privileged Architecture Library Code 17-3 



HW ____ MFPR and HW ___ MTPR Instructions 

17.2.2 HW_MTPR Instruction 

The instruction format of the HW _MTPR instruction is: 

Figure 17-3 HW_MTPR Instruction Format 

31 26 24 2120 16 12 5 4 0 

HW_MTPR: .-1 -O-p-cod_e....,l __ R_c_la-ss_,..l_R_b __ .--__ lnd-e-~-...... 1-w-c-las_s_,I 

Table 17-3 MT _MTPR Instruction Fields Description 

Field Name 

Opcode 

Rb 

Index 

Rclass 

Extent Description 

31:26 The instruction Opcode: OxlD. 

20: 16 Source integer register. 

12:5 Identifier of the IPR to read or write. See the IPR table for a complete list of indi
cies. The MSB of the fudex field differentiates between IPRs located in the 
Mbox and IPRs located in the Ibox. 
MSB =0 Mbox 
MSB = 1 Ibox 

24:21 Reader class of the instruction. The reader class defines an dependency against a 
previous IPR writer of the same class. The reader will not issue until the writer 
dependency has cleared. 
The format of the reader class field is as follows: 

Bits Description 

3 Valid bit. If clear, no dependency exists 

2:0 Class number 

The currently defined/allowed values for reader class are: 

Bits Set Meaning 

OXXX No dependency 
lXXO Dependency against an IPR writer class of 0 
lXXl Dependency against an IPR writer class of 1 

Compaq Confidential 
17-4 Privileged Architecture Library Code 5 J<1nwiry 2001 -~Subject To Change 



Execution of the RET Instruction in PAlmode 

Table 17-3 MT _MTPR Instruction Fields Description (Continued) 

Field Name 

Wclass 

Extent Description 

4:0 Writer class of the instruction. The writer class defines the source of a reader 
class dependency. HW _MTPR instructions that define a writer class create an 
issue dependency that must be cleared before any IPR reader (MFPR or MTPR) 
of the same class can issue. The dependency is cleared when the writer issues 
unless the bubble-bit is set, when the bubble-bit is set, the dependency does not 
clear until a bubble acknowledgement is received for the writer. 

The general format of the writer class field is: 

Bits Description 

4 Bubble bit - If set, issue logic waits for notification 

3 Valid bit. - If clear, no writer dependency is set. 

2:0 Class number. 

The currently defined/allowed values for writer class are: 

Bits Set 

xoxxx 
OlXXO 
Ol:XX:l 
llXXO 

llXXl 

Meaning 

No dependency 

Set dependency for IPR writer class 0 

Set dependency for IPR writer class 1 

Set completion buble dependency for IPR writer class 0 

Set completion buble dependency for IPR writer class 1 

Completion bubble dependencies are only created for HW _MTPR instructions 
that target the Mbox IPRs. If the MSB of the Index field is set, indicating an Ibox 
register target, the bubble bit is ignored and an issue dependency is created. 

17.3 Execution of the RET Instruction in PALmode 

The special PALmode HW _RET instruction that was implemented in the 21264 is not 
supported by the 21464. Instead, the normal RET instruction is used to return instruc
tion flow to a specified PC and to exit PALmode and SuperPALmode. 

The RET instruction Rb field specifies an integer general-purpose register (GPR) that 
holds the target PC. GPR[l :0] specifies the new value of PALmode after the RET is 
executed, as follows: 

Table 17-4 GPR[1 :O] Encoding 

Value Meaning 

00 Normal mode 

01 PALmode 

11 SuperPALmode 

The only exception is that Normal mode RET instructions cannot cause a transition into 
PAlmode or SuperPALmode. Only a CALL_PAL instruction, an interrupt, or a trap 
condition can elevate the mode from Normal mode to PAlmode, and only a PNMI event 

Compaq Confidential 
5 January 2001 ··· Subject To Change Privileged Architecture Library Code 17-5 



CMOV Execution Within PAlcode 

can cause a transition from Normal mode to SuperPAlmode. The implementation actu
ally allows PALmode code to transition to SuperPALmode by using the RET instruc
tion. It is not clear why PALcode would ever do that. 

Table 17-5 RET Instruction Mode Transitions 

Old Mode New Mode 

GPR[1 :O] Normal mode PALmode 

Normal mode RET CALL_PAL!frap/Interrupt 

PALmode RET RET 

SuperPALmode RET RET 

SuperPALmode 

PNMI/RET 

RET 

In a RET to Native mode, the Rb field is likely to be a PALcode shadow register. In a 
RET to PALmode, the register may or may not be a PALcode shadow register. It is 
expected that Ra field of the RET will usually be R31. 

Normally, the RET instruction succeeds a CALL_PAL instruction, an exception entry, 
or a BSR subroutine call from within PALmode. Those cases push the return PC onto 
the prediction stack and subsequently pop that stack to generate a predicted target 
address. That address is always predicted Native mode, regardless of the circumstances 
of the push onto the prediction stack and, therefore, all returns to PALmode incur a 
mispredict. 

Figure 17-4 RET Instruction Fields 

31 2625 2120 1615 

RET: I Opcode I Ra I Rb I Hint 

Table 17-6 RET Instruction Fields Description 

Name 

Opcode 

Ra 

Rb 

Hint 

Extent Description 

31:26 The instruction Opcode. OxlA 

25:21 Receives the PC of the instruction following the RET. 

20: 16 Holds the target PC of the RET. 

15:0 Return predictor stack hints. See Section (I) 4.3.3 of the Alpha SRM 
for a complete description. 

17.4 CMOV Execution Within PALcode 

Because the shadow register replacement process in PALmode is keyed to different 
registers numbers for Rb and Re, the 21464 does not correctly replace the inserted ref
erence to Re for native CMOVxxl instructions in PALmode. 

Legacy CMOV instructions in PALcode are special cased to disable all replacements of 
Re/Fe. This allows PALcode to modify the architectural registers R24/F24 and R25/ 
F25 without requiring a special mode to control the PALcode shadow replacement pro
cess. 

Compaq Confidential 
17-6 Privileged Architecture Library Code 5 Januc1ry 2001 m Subject To Change 



PALcode Restrictions and Guidelines 

The general coding rule is that shadow registers cannot be used as the destination of 
either a legacy or native CMOV instruction in PALmode. If PALcode needs to modify 
architectural registers R24/F24 or R25/F25, it must do so in PALmode by using the leg
acy version of CMOVxx/FCMOVxx. Other uses of either legacy or native CMOV 
instructions in PALmode are allowed. 

See Section 2.11.2.5 for complete information about CMOV instruction execution. 

17.5 PALcode Restrictions and Guidelines 

Open questions: 

1. Is Restriction 5 necessary? Clarification needed. 

2. Is Restriction 6 necessary? Should we doubly map all elements of the DTBWINQ 
group? This would allow us to avoid the DTBWINQ mechanism if there is a bug in 
it, an IFETCHB would be required in the single miss flow. 

3. For Restriction 7, clarify how back-to-back single misses work. 

4. For Restriction 16, why is the IFETCHB necessary in the flow? 

17.5.1 Restriction 1: PALcode Must Guarantee That IPR Writes Retire Before 
Returning 

Use the IFETCHB instruction to guarantee IPR write data is committed before instruc
tions that depend on the IPR value are allowed to proceed. In general, all PALcode 
flows that write IPRs have an IFETCHB instruction after the last IPR write before 
returning. 

Exception: 

The DTB writer block in DTBM_SINGLE is protected through the DTB Writer In 
Queue (DTBWINQ) interlock logic. In that case, an IFETCHB is not necessary. 

17.5.2 Restriction 2: IFETCHB Required Between IPR Writes in the Same IPR 
Group 

There can be at most one in-flight good-path IPR Write for each TPU to each IPR 
group. 

IPR writes are speculatively issued but not committed until the HW _MTPR instruction 
retires. The internal storage that holds the speculative value is shared among all IPRs in 
a group, so take care to ensure another IPR write does not attempt to overwrite the spec
ulative storage before the first writer retires. The 21464 interlocks the speculative reg
ister that grants access to the oldest writer, which ensures that random bad-path code 
does not alter the speculative value before it is written. However, if a younger good
path IPR write is issued before an older good-path IPR write in the same speculative 
group, the younger IPR write might get the data of the older write. 

PALcode must separate writes to IPRs in the same speculative group with an IFETCHB 
instruction. 

17.5.3 Restriction 3: Mbox IPRs Must be Written Twice to Ensure Correct Slot-

Compaq Confidential 
5 January 2001 ···Subject To Change Privileged Architecture Library Code 17-7 



PAlcode Restrictions and Guidelines 

ting 

Mbox IPRs must be written twice by consecutive instructions in the same fetch 
block. 

Mbox IPR write data is communicated to the Mbox by using the primary address bus
ses. Mbox IPR write instructions that slot to an odd position utilize bus PO and instruc
tions that slot to an even position utilize bus Pl. 

Mbox IPRs consist of two groups: 

• Mbox IPRs in speculative group Ml only connect to bus PO and can, therefore, only 
be written by instructions that slot to odd positions. Writing these IPRs in consecu
tive instructions in the same fetch block guarantees that one of the writes is slotted 
in an odd position. 

Exception: 

Mbox IPRs in speculative group Ml can be written with only a single write if 
care is taken to use the map-block alignment instruction to guarantee that the 
write is slotted in an odd position. 

• Mbox IPRs in speculative groups M2 and M3 have two copies of each IPR, one 
connected to bus PO and one connected to bus Pl. Writing these IPRs in consecu
tive instructions in the same fetch block guarantees that one write is slotted for each 
bus and both copies are updated. 

If the instructions were allowed to span a fetch block, the second fetch block could 
!cache miss, allowing the instructions to possibly map into separate blocks. Without 
forced alignment, the last instruction in the first block has a 50 percent chance of being 
even aligned and, since the first instruction of the second block is guaranteed to be even 
aligned, the rule could be violated. 

17.5.4 Restriction 4: All Instructions in the OTB Writer Block Must be in the 
Same Map Block 

The DTB Writer Block consists of the following instructions: 

HW_MTPR SO-> DTB_TAG, R#l, W#O 
HW _MTPR SO-> DTB_TAG, R#l, W#l 
HW_MTPR SI-> DTB_PTE, R#O 
HW_MTPR SI-> DTB_PTE, R#l, W#l, BB 
HW _MFPR DTBMS_RET_ADDR -> SI 
NOP 
NOP 
ALIGN_NOP 

These instructions must be in the same map block beause the DTB Writer In Queue 
(DTBWINQ) interlock logic assumes that all members of the block are allocated into 
the queue in the same cycle. 

The ALIGN_NOP instruction must be in position 7 of a fetch chunk so these eight 
instructions are also guaranteed to be in the same fetch block. 

17.5.5 Restriction 5: All Four OTB MTPR Instructions Must Appear in the Same 

Compaq Confidential 
17-8 Privileged Architecture Library Code 5 Jt1nwiry 2001 -· Subject To Change 



PAlcode Restrictions and Guidelines 

Fetch Block 

If any MTPR to DTB_ TAG or DTB_PTE is in a fetch block, all four MTPRs must be 
in that fetch block. 

All four MTPR instructions are necessary to write the DTB. These instructions cannot 
be separated: 

HW_MTPR SO-> DTB_TAG, R#l, W#O 
HW _MTPR SO-> DTB_TAG, R#l, W#l 
HW_MTPR Sl -> DTB_P'fE, R#O 
HW_MTPRSl -> DTB_P'fE,R#l, W#l,BB 

. ***What hardware case caused this restriction? Assuming Restriction 3 is obeyed, the 
TAG and PTE writes are correctly paired. Why must the TAG and PTE writes be in the 
same fetch chunk? 

17.5.6 Restriction 6: Non-OTB Writer Block OTBMS_RET _AOOR MFPRs Require 
IFETCHB 

H an MFPR From DTBMS_RET _ADDR appears in a PALcode Flow, there must be 
an IFETCHB before the end of that PALcode flow. 

MFPRs from DTBMS_RET_ADDR are considered part of the DTB Writer In Queue 
(DTBWINQ) interlock mechanism. Therefore, PALcode must guarantee that a read 
from DTBMS_RET_ADDR retires before leaving PALmode. 

Exception: 

If the MFPR from DTBMS_RET_ADDR is part of the writer block in a flow 
that is protected by the DTBWINQ mechanism (that is, DTB Miss Single), the 
IFETCHB is not necessary 

***Is this restriction necessary? We have provided a second mapping for 
DTBMS_RET_ADDR that has no side effects. What is the impact of not including the 
IFETCHB? I assume it has to do with the MFPR for the DTBMS_RET_ADDR creat
ing a writer block and somehow effecting the writer block of a subsequent OTB _MISS? 
We need to clarify this, and explain how normal back-to-back DTB misses do not have 
this problem. 

17.5.7 Restriction 7: IFETCHB Required Between Non-OTB Writer Block OTB 
Writer Block MxPRs 

If any DTB writer block instruction appears in a PALcode flow, an IFETCHB is 
necessary before any subsequent fetch block that contains DTB writer block 
instructions. 

Since the DTB writer block instructions are part of the DTB Writer In Queue (DTB
WINQ) mechanism, PALcode must guarantee that only one DTB Writer Block can be 
in flight at a time. Therefore, PALcode must issue an IFETCHB between fetch blocks 
containing DTB Writer instructions. 

***How does PALcode accomplish this? How can it know that back-to-back 
DTB_SINGLE flows are separated by a IFETCHB? 

17.5.8 Restriction 8: Padding Required Between OTB Writer Block and OTB-

Compaq Confidential 
5 January 2001 ~· Subject To Change Privileged Architecture Library Code 17-9 



PALcode Restrictions and Guidelines 

Dependent Instructions 

OTB-dependent instructions must not be allowed to map the cycle after a OTB 
writer sequence maps. 

The implementation does not recognize load or store instructions that allocate into the 
Instruction Queue in the cycle immediately following the DTB Writer Block as DTB
dependent. Those instructions could thus issue before the DTB Writer Block has modi
fied the speculative DTB entry or even left the IQ, causing a second DTB miss before 
the first has been satisfied. 

Padding the DTB writer flow with enough NOPs to fill the succeeding map block guar
antees that memory operations after the DTB writer flow are not allocated on the cycle 
following the DTB Writer Block. 

Note: This issue should only apply to the DTBM_SINGLE_CONS and 
DTBM_SINGLE flows because they are the only flows expected to rely on 
the DTB WRT interlock mechanism. 

17.5.9 Restriction 9: PALcode Must Not Allow Writes INVALID DTB_PTE Entries to 
Retire 

PALcode must explicitly check the value being written to the DTB PTE and ensure 
bit<O> is set. Ifbit<O> is not set, PALcode must branch away. Since the 21464 predicts 
all branches in PALmode as not-taken, the MTPR speculatively issues, but is killed 
when the branch resolves. 

The valid bit of the DTB_PTE entry is used as a completion condition. Invalid PTE 
entries do not complete and, therefore, preserve the DTBWRT interlock. If a invalid 
DTB_PfE write was not killed and attempted to retire, the machine would hang. 

Note: Writing R31 to the DTB_PTE has a slightly different effect. The 21464 
completes the write of R3 l, so the machine does not hang, but the DTB
WRT block is also lifted and subsequent loads and stores are allowed to 
issue. 

17.5.10 Restriction 10: TAG and PTE Must be Written as Pairs with TAG Writes 
Before PTE Writes 

The TAG (OTB_ TAG/ITB_ TAG) and PTE (OTB_PTE/ITB_PTE) must be written 
together with the tAG being ·written before the PTE. 

The TAG and PfE IPRs represent two fields of a single PfE and, therefore, updates 
must be atomic - hence the pairing requirement. Also, the PTE field might contain 
granularity hint information that modifies the contents of the TAG field; therefore, the 
updates must occur in the order of TAG, and then PfE. Otherwise the TAG value might 
not correctly reflect the granularity hint data in PTE, potentially causing multiple 
matches and electrical contention in the TB. 

To ensure ordering of the writes, the write the PfE must be Reader Class dependent on 
the write to the TAG. 

17.5.11 Restriction 11: Register-Dependent MTPRs Must Not Have Read Class 

Compaq Confidential 
17-10 Privileged Architecture Library Code 5 Jc1m1c1ry 2001 -·Subject To Change 



PALcode Restrictions and Guidelines 

Dependent MxPRs 

HW _MTPR and HW _MFPR instructions must never have reader class issue 
dependencies on any HW_MTPR possessing a register dependency (direct or 
indirect) on a load unless they share the same register dependency. 

The reason for this rule is poison, because poison is communicated through physical 
register dependencies, while Reader/Writer Class dependencies are independently 
transmitted through INum dependencies (which are translated into queue entry depen
dencies in the Instruction Queue). 

Consider the following instruction sequence: 

LD (Sl)-> SO 
HW _MTPR SO -> IPRx, W#O 
HW _MTPR S 1 -> IPRy, R#O 

If the load misses, the HW _MTPR from SO is poisoned. In principal, the HW _MTPR 
from Sl should also be poisoned, but isn't, because it has no physical register depen
dency on the first HW _MTPR. It is free to issue, and may do so long before the load is 
satisfied and the first HW _MTPR is replayed. The two HW _MFPRs effectively issue 
out of order, violating the Reader/Writer class dependency. 

Recall that writes to the speculative DTB entry must occur in the order of DTB_TAG, 
and then DTB_PfE. Now consider this hypothetical PALcode flow: 

LD (Sl)-> SO 
HW_MTPRSO->DTB_TAG, W#O 
HW_MTPR Sl -> DTB_PTE, R#O 

If the load misses, the MBox ignores the poisoned write to DTB_TAG, allows the write 
to DTB_PTE, and then allows the second write to DTB_TAG, possibly causing the 
speculative DTB entry to be incorrect. 

Note that if the value used in the HW _MTPR to DTB_TAG is sourced by a 
HW _MFPR, the HW _MTPR cannot be poisoned. This is the case in the 
DTBM_SINGLE flow. 

Also note that this rule does not apply to Reader/Writer Class retire dependencies, 
because any poison cases have been resolved by the time the HW _MTPR makes its 
retire-time bubble. 

If there must be a Reader Class dependency on an MTPR that has a register dependency 
on a load, an artificial register dependency can be created so that if the MTPR is poi
soned, the Reader Class dependent MTPR or MFPR is also poisoned. For example: 

LD (Sl)-> SO 
XOR Sl, SO-> Sl 
XOR Sl, SO-> Sl 
HW _MTPR SO -> IPRx, W#O 
HW _MTPR Sl -> IPRy, R#O 

17.5.12 Restriction 12: CMOV instructions Cannot Specify PALcode Shadow 
Registers as Destinations 

Compaq Confidential 
5 January 2001 ···Subject To Change Privileged Architecture Library Code 17-11 



PAlcode Restrictions and Guidelines 

Because of the shadow register overlay rules and the way a CMOV is split into two 
instructions, PALcode shadow registers cannot be used as the destination (Re) of any 
CMOV instruction. 

Legacy CMOV instructions in PALmode are special cased to disable shadow register 
replacements of Re. This allows PALcode to use a legacy CMOV to modify the archi
tectural registers R24 and R25 without requiring a special mode to disable the PALcode 
shadow replacement process. 

17.5.13 Restriction 13: PALmode Native CMOV Instructions Cannot Specify R24 
or R25 as Destinations 

The 21464 does not have a "mode" bit to enable/disable shadow register replacement. 
Instead, the 21464 implements the following position-dependent replacement policy. 

Operand A 

Operand B 

Destination 

R22 

so 

R23 

Sl 

R24 

so 

so 

R25 
Sl 

Sl 

The SrcA and SrcB operands have different mappings for shadow registers to make it 
easy for PALcode to read from any register, shadow or architectural. The SrcA operand 
and the destination have the same mapping to ensure the correct handling of STx_C, 
where Ra specifies both SrcA and Destination. 

For Native CMOV instructions, the 21464 replaces the original instruction: 

CMOVxx Ra, Rb-> Re 

With: 

CMOVxl Ra, Re-> Re 
CMOV2 Re, Rb-> Re 

Because the SrcB operand is keyed to a different replacement policy than the destina
tion, the CMOVxl part of the instruction sequence fails to replace the SrcB operand 
with a the correct shadow register. 

If PALcode needs to modify architectural registers R24 or R25, it must do so in PALm
ode by using the legacy version of CMOVxx. Other uses of legacy style CMOV 
instructions in PALmode are allowed. 

Other uses of native the 21464 style CMOV instructions in PALmode are allowed. 

17.5.14 Restriction 14: PALmode JMP Instructions Must be Followed by IFETCHB 

To provide PALmode with a nonspeculative jump instruction, all JMP instructions in 
PALmode predict to the next instruction in the flow and always cause a jump mispredict 
trap. 

For example, the following code sequence in PALmode behaves as follows. 

JMP Sl 
IFETCHB 

Compaq Confidential 
17-12 Privileged Architecture Library Code 5 J~1m.u1ry 2001 -·Subject To Change 



PALcode Restrictions and Guidelines 

The JMP predicts to the IFETCHB, which prevents further speculation by inhibiting 
fetching. When the JMP issues, it causes a jump mispredict trap, which causes a kill 
and redirects the machine to the true jump target. 

Without the trailing IFETCHB, the 21464 speculates past the JMP, possibly leading to a 
trap on the bad path and corruption of implicitly instruction-written IPRs. 

Note: An IFETCHB after a JMP does not satisfy the requirement for an 
IFETCHB prior to a return from PALcode (Restriction 2). The IFETCHB 
that follows a PALmode JMP never reaches its retire point and is killed by 
the JMP mispredict. It cannot serve as the required retire barrier since it is 
guaranteed to be on the bad path. 

Also note that this rule applies only to JMP, not other jump instructions (i.e. JSR, 
JSR_COROUTINE, and RET). 

17.5.15 Guideline 15: No Push or Pop Instructions in the First Fetch Block of a 
PALmode Flow 

During the cycle when the first eight instructions of a PALmode flow are fetched, the 
Ibox is busy writing the trap return address to the return stack and cannot write the 
return address for the push (BSR, JSR, JSC, CALL_PAL) or pop (RET, JSC) instruc
tion. 

Violating this rule degrades performance because the stack order is broken and future 
return instructions are almost guaranteed to mispredict. 

Doing a superfluous PUSH without a corresponding RET, such as a B SR to the next 
instruction, can repair the damage to the return stack. The first return mispredicts, but 
the rest of the return stack is not corrupted. 

17.5.16 Restriction 16: PALmode MT_FPCR Must be Followed by IFETCHB 

PALcode must guarantee the retirement of any MT _FPCR instruction in PALcode 
prior to the return of control to native code, and prior to the issuing of another 
PALmode MT _FPCR or MF _FPCR, or any PALmode instructions that implicitly 
read the FPCR. 

The Floating-Point Control Register (FPCR) is a special form of Speculative-Commit
ted IPR (SCIPR); the speculative value is only committed to the architectural FPCR 
when the MT _FPCR instruction that wrote it becomes retireable. The FPCR is explic
itly read by an MF _FPCR instruction and implicitly read by all floating-point instruc
tions. 

**Peter: What makes it special? All SCIPRs commit when retirable. 

MT_FPCR instructions in native mode cause a PALcode trap to the MT_FPCR entry 
point, which consists of the following code: 

HW _MFPR EXC_ADDR -> S 1 
IFETCHB 
RETSl 

The IFETCHB causes a next-to-retire event that is younger than the MT_FPCR, caus
ing its value to be committed. 

Compaq Confidential 
5 January 2001 ~·Subject To Change Privileged Architecture Library Code 17-13 



PALcode Restrictions and Guidelines 

Issues 

***Peter: Why is the IFETCHB necessary here? The User-mode MT_FPCR commits 
at retire time and kills any inflight FP instructions. Isn't the trap alone enough to ensure 
correct state? 

MT_FPCR instructions in PALmode do not trap, which means that the values in 
EXC_ADDR and Sl do not need to be safeguarded before executing an MT_FPCR. 
However, as a result, any PALcode that includes an MT_FPCR must execute an 
IFETCHB prior to exiting the flow. If there are any MT _FPCR, MF _FPCR, or float
ing-point instructions in a PALcode flow after an MT_FPCR, there must be an interven
ing IFETCHB to ensure that the MT_FPCR value has been committed before the 
reading/writing instructions issue. 

*The 21264 had the behavior that an implicitly written register would read as zero if 
read while being written. Will the 21464 have the same behavior? Should we define a 
valid bit in each of the implicitly written registers to explicitly flag this case? All regis
ters except VA have bit<63> available. 

Compaq Confidential 
17-14 Privileged Architecture Library Code 5 J(1nu(1ry 2001 -·Subject To Cfumge 



18 
Initialization and Configuration 

Compaq Confidential 
5 January 2001 --·Subject To Change Initialization and Configuration 18-1 



Compaq Confidential 
18-2 Initialization and Configuration 5 J,1m.1,1ry 2001 ···Subject To Change 



Instruction Based Profiling 

19 
Performance Monitoring 

The 21464 provides the most performance monitoring hardware of any Alpha imple
mentation to date. The goal of the 21464 performance monitoring hardware is to pro
vide information about the running CPU in order to: 

1. Drive profiling-directed-feedback optimizations to improve application perfor
mance. 

2. Enable the development of useful performance monitoring software tools. 

3. Assist in post-silicon chip and system debug. 

4. Provide information to enable more intellegent OS scheduling of processes onto 
TPUs. 

5. Provide architectural feedback for future Alpha microprocessor and system imple-
mentations. 

This document consists of two main sections. The first details the implementation of an 
instruction-based profiling algorithm called ProfileMe. The second section describes 
performance monitoring hardware for memory addresses that was developed for the 
21364 and is being supported by the 21464. 

19.1 Instruction Based Profiling 

As microprocessors get more and more complicated, the behavior of instructions flow
ing through the machine is harder to determine with aggregate event counter style per
formance monitoring hardware, such as what was implemented in the 21164. Profile
based feedback has become very important in getting the best performance out of com
plex CPUs. The data obtained from hardware performance monitoring can be used to 
drive compiler optimizations that increase a CPU's architectural performance. Instruc
tion-based profiling can get more accurate data about performance bottlenecks in spec
ulative out-of-order microprocessors such as the 21264, the 21364, and the 21464. The 
basic idea is to enable software to sample fetched instructions randomly, collecting 
detailed information about each sampled instruction's execution in the machine. This 
includes information such as the amount of time the instruction spends in each phase of 
its lifetime in the CPU, as well as performance impacting events, such as cache misses 
and branch mispredictions. In the 21464, we implement a variation of ProfileMe called 
paired-sampling, where two in-flight instructions can be sampled simultaneously. This 
provides for better analysis, because events and data that are collected for the two 
instructions can be correlated. For more information on ProfileMe in general, or on 
paired sampling specifically, refer to the Micro-30 paper: 

Compaq Confidential 
5 January 2001 -~ Subject To Change Performance Monitoring 19-1 



Instruction Based Profiling 

ProfileMe: Hardware Support for Instruction-Level Profiling on Out-of-Order Pro
cessors. 

In Proceedings of the 30th Annual International Symposium on Microarchitecture, 
pages 292-302. IEEE, December 1997. (Postscript) 

Jeffrey Dean, James E. Hicks, Carl Waldspurger, William E. Weihl, and George 
Chrysos. 

19.1.1 Profiling Methodology 

Instruction-based profiling is performed by sampling the dynamic instruction stream 
running on the 21464. Sampled instructions are chosen at map time based upon a soft
ware programmable IPR (PR_INST_CTL<63:0>) and are monitored while in-flight in 
the CPU. Latencies and events are recorded for two separate instructions into a set of 
profile record IPRs. When both instructions have finished utilizing CPU resources, a 
general interrupt to PALcode is triggered. The general interrupt service routine will 
read the INTERRUPT-SUMMARY IPR to determine that the interrupt was caused by 
an instruction profile event. A privileged PAL routine can then read out the associated 
data for each profiled instruction by reading from the profile record IPRs. In continuous 
sampling, software would record the data from the current sample and reinitialize the 
PR_INST_CTL IPR to begin the process for selecting the next pair of sampled instruc
tions. 

The hardware provides two countdown values which determine the selection of the first 
and second profile instructions. In the normal profile mode, the countdown values indi
cate the number of valid (that is, having at least one valid instruction) map blocks from 
the specified profiled TPU s that are counted before the profiled instruction is assigned. 
In a special profile mode, called "PC trigger mode", the countdown values represent the 
number of valid map blocks from the specified profiled TPU s after instructions corre
spondh1g to a specified PC have been mapped. Due to hardware constraints, the count
down values actually represent the number of valid map blocks plus some small 
constant number of valid map blocks (currently 10). 

19.1.2 Initiating an Instruction Profile Sample 

To setup a profile sample, software calls a PAL routine that writes to the 
PR_MEM_EVENT_CTL and (possibly) the PR_TRIG_PC IPRs, followed an 
IFETCHB and PR_INST_CTL. The PAL routine should first check that an existing 
profile is not already underway. It can do this by reading the PR_I_INFO IPR and 
exa.111ining the "outstanding" bits, PR_I_INF0<63> and PR_I_INF0<31>, which indi
cate whether either the first or the second profiled instruction from a prior profiling 
attempt is still outstanding. The outstanding bits should both be clear when a profile is 
complete, and it is safe to read the profile record and start a new sample. 

The profiling control IPRs: PR_INST_CTL, PR_MEM_EVENT_CTL, and 
PR_TRIG_PC are specified in Table 19-1. 

Compaq Confidential 
19-2 Performance Monitoring 5 J(1nuary 2001 ~- Subject To Change 



Instruction Based Profiling 

Table 19-1 Control IPRs for Instruction-Based Profiling 

IPR Field Bits Description 

PR_INST_CTL<63 :0> 

I_EVENT_CTL 63-60 Specifies the event to be counted by the IAGG_EVENTn IPRs 
between the retire/kill of the first profiled instruction and the retire/ 
kill of the section profile instruction. The events are listed in Table 
19-10. 

PROFILING_EN 59 Profiling Enabled. This will create a profiled sample according to the 
fields specified below. 

PC_TRIG_MODE 58 PC Trigger Mode Enabled. PRO_CTR will not start countdown until 
instructions corresponding to the PR_ TRIG_PC for one of the 

PRl_POS 

PRl_CTR 

PRO_POS 

PRO_CTR 

PR_ TPUS have been mapped. 

57-55 Profile Second Map-Block Position 
Contains the exact position of the second profiled instruction in the 
map-block selected by the PR l_ CTR. Two bits per instruction are 
delivered with each map-block to the Pbox. The bits correspond to 
whether each instruction is the first or second profiled instruction. 

54-31 Profile Interval for the second instruction 
Contains an unsigned number between 0 and 16M-1 that represents 
the number of metered map-blocks between the profile 0 and profile 1 
instructions. A counter is initially written with the PRl_CTR value 
when the PR_INST_CTL IPR is written. When the first interval's 
counter reaches 0, the second interval's counter begins decrementing 
its value, again based on metering map-blocks from all appropriate 
TPUs specified in PR_TPUS. The profile 1 instruction of the pair is 
chosen from the first valid map-block sent to the Pbox after the sec
ond interval counter reaches 0. 
If the PC_TRIG_MODE is enabled, the countdown does not begin 
until one of the PR_ TPUs has mapped instructions that correspond to 
the PR_TRIG_PC. 

30-28 Profile First Map-Block Position 
Contains the exact position of the first profiled instruction in the map
block selected by the PRO_CTR. 

27-4 Profile Interval for the first instruction 
Contains an unsigned number between 0 and 16M-1 that represents 
the number of metered map-blocks. A counter is initialized to the 
PRO_CTR value when the PR_INST_CTL IPR is written. Each cycle 
that the Ibox 's collapsing buffer sends a map-block with any valid 
instructions for a TPU specified by PR_ TPUS to the Pbox, the 
counter is decremented. The first profiled instruction of the pair will 
be chosen from the first valid map-block that is being sent to the Pbox 
after the first interval counter reaches 0. 
If the PC_TRIG_MODE is enabled, the countdown does not begin 
until one of the PR_ TPUs has mapped instructions that correspond to 
the PR_TRIG_PC. 

Compaq Confidential 
5 January 2001 - Subject To Change Performance Monitoring 19-3 



Instruction Based Profiling 

Table 19-1 Control IPRs for Instruction-Based Profiling 

IPR Field 

PR_TPUS 

Bits 

3-0 

Description 

Specifies the TPUs to be selected for profiling. Only map-blocks for 
specified TPUs are metered and only instructions from those TPUs 
are profiled. If the value is 0000, no TPU will be profiled. Different 
instructions in a profiled pair can come from different specified 
TPUs. 

PR_MEM_EVENT_CTL<63:0> 

M_EVENT_CTL 63-60 Specifies the event to be counted by the MAGG_EVENTn IPRs 
between the retire/kill of the first profiled instruction and the retire/ 
kill of the section profile instruction. The events are listed in Table 
19-10. 

Reserved 59-0 Reserved for future use. Not currently used. 

PR_TRIG_PC<63:0> 

Reserved 63-52 Reserved for future use. Currently, writing to these bits does not cause 
any defined action in the chip. 

Match PC 51-5 These bits are used to compare against bits 51:5 of the PCs of valid 
mapped instructions for the PR_TPUS. A match will start the MAJ 
and MIN countdown counters if PC_ 1RIG mode is set in the 
PR_INST_CTL IPR. If the PC_TRIG_MODE is not set in the 
PC_INST_CTL IPR the counters will countdown without reguard to 
the Match PC. Mapped instructions on a badpath (instructions that are 
mapped but never commit to machine state (as in a branch mispre
dicted path) will also trigger the match. 

Reserved 4:0 Reserved for future use. Currently, writing to these bits does not cause 
any defined action in the chip. This implies that bits 4:0 are don't care 
in the PC comparison. 

Considerations: 

• 

• 

The instruction position indicators (PRO_POS, PRl_POS) may be assigned to a 
map-block instruction position that does not contain a valid instruction. This will be 
reflected in the profile record, and will result in some invalid samples. The samples 
do provide some meaningful information, however, which is that the map-block 
was not full. 

If the value in the second interval counter (PRl_CTR) is initially 0, the two profiled 
instructions will be chosen from the same map-block. Note, however, that 
PRO_POS and PRl_POS can point to any position in the map-block, so the second 
ProfileMe instruction could be before the first in program order. Also, if PRO_POS 
and PRl_POS indicate the same position in the map-block, the hardware collects 
two records of the SAME instruction. It is up to software to avoid these effects if 
they are unwanted. 

The I_EVENT_CTL and M_EVENT_CTL fields in the controlling IPRS listed above 
pertain to the use of the IAGG_EVENTn and the MAGG_EVENTn IPRs which are 
described in Section 19.1.3.3. Certain events per TPU in the window between when the 
first profile instruction is retired or killed and when the second profile instruction is 
retired or killed can be counted. During on paired profile sample, one Ibox event and 

Compaq Confidential 
19-4 Performance Monitoring 5 Januc1ry 2001 - Subject To Change 



Instruction Based Profiling 

one Mbox event can be counted together, per TPU. The events that are counted are 
determined by the value in the I_EVENT_CTL and M_EVENT_CTL fields. Those 
event designations are listed in the following table: 

Table 19-2 IAGG_EVENT and MAGG_EVENT IPRs 

Event Counted 
Value 

I_EVENT_CTL 0000 !Cache Misses 

0001 !stream Scache Misses 

0010 Line Mispredicts 

0011 !stream misses serviced by remote Rambus 

0100 Way Mispredicts 

0101 Squashes 

0110 Squash Mispredicts 

0111 !Cache read bank conflicts 

1000 !Cache fill bank conflicts 

1001 Total postmap exceptions 

1010 Retired Instructions 

1011 ITB Misses 

1100 Branch Mispredicts 

1101 Jump/Return Mis predicts 

1110 Mapped Instructions 

1111 Load/Store Order Traps (tentative/temporary) 

M_EVENT_CTL 0000 Total Retries 

0001 Total Traps 

0010 Synonym Traps 

0011 Store/Load Order Traps 

0100 Dcache Misses 

0101 Dstream Scache Misses 

0110 DTB Misses 

0111 Bad End Inum Retries 

1000 Wrong Size Retries 

1001 Reserved 

1010 Reserved 

1011 Reserved 

1100 Dcache Bank Conflict Retries 

Compaq Confidential 
5 January 2001 ··· Subject To Change Performance Monitoring 19-5 



Instruction Based Profiling 

Table 19-2 IAGG_EVENTand MAGG_EVENT IPRs 

Event Counted 
Value 

1101 Reserved 

1110 Dstream misses serviced by local Rambus 

1111 Reserved 

19.1.3 Instruction Profile Record IPRs 

Several IPRs collect information about the selected profiled instructions. The data con
sists of events, addresses, and various timing information about each profiled instruc
tion's execution in the CPU. 

19.1.3.1 Data/Event IPRs 

The program counter, address space number (ASN) and TPU identifier of each profiled 
instruction are recorded in the PRO_PC<63:0> and PR1_PC<63:0> IPRs. A valid bit 
associated with each IPR is set to indicate whether the profiled instruction was part of a 
valid position in a valid map-block. Finally, an additional bit indicates whether the 
instruction is PALcode. When the instruction is PALcode, the associated PC will be a 
physical address, and the ASN is irrelevant. 

Table 19-3 Fields in the PRO_PC<63:0> and PR1_PC<63:0> 

Field 

Reserved 

Valid 

ASN 

TPU 

PC 

SuperPalMode 

PalMode 

Extent 

63 

62 

61-54 

53-52 

51-2 

0 

19-6 Performance Monitoring 

Description 

Not yet assigned. 

The profiled instruction was from a valid instruction in a valid map block. 

The address space number for the profiled instruction, if it v1as not in 
PALmode 

The encoded TPU ID of the profiled instruction 

The PC (normally virtual) of the profiled instruction (bits 1 and 0 are 
always clear and not recorded). 

Indicates the profiled instruction was taken in a special debug mode of the 
21464 

Indicates the profiled instruction was a PAL instruction in privileged mode. 
If this bit is set, it also indicates that the PC field is a physical address 

Compaq Confidential 
5 J<·u1uc1ry 2001 m Subject To Change 



Instruction Based Profiling 

Events and data associated with the profiled instructions during the fetch, map, and 
queue stages are recorded in the PR_I_INF0<63:0> and PR_Q_INF0<63:0>. These 
IPRs record events for both profiled instructions. 

Table 19-4 Fields in PR_l_INF0<63:0> 

Name Extent 

For the Profile1 Instruction 

PRl OUTSTANDING 63 

PRlSLOT 62 

PRl LGHIST 61-56 

RESERVED 55-53 

PRl CAUSED KILL 52 

PRl SSID 51-47 

PRl BPRED 46 

PR 1 RETIRED 45 

PR 1 LP BNK CONF 44 

PRl EXCPREST 43 

PRlICFBNKCNF 42 

PRl IC BNK CNF 41 

PR 1 SQSH MISP 40 

PRlSQSH 39 

Description 

Indicates that the profile 1 instruction is outstanding. The bit is 
cleared, when the profile 1 instruction is either killed or retired. 

Indicates which icache access (up to two per cycle) the profile 1 
instruction was fetched with. 

Indicates the latest 6 bits of the lghist of the branch predictor cor
responding to its 3-slot-old index that was used to access the 
branch predictor the cycle that a branch in the profiled instruc
tion's block would have been predicted. The higher numbered bits 
are older and the lower numbered bits are younger. 

Not yet assigned. 

The profiled instruction caused a kill. This means that if the 
instruction was a branch, the kill was a branch mispredict, if it 
was a jump, it was a jump mispredict, if it was a return, it was a 
return stack error, or if it was a load, a memory trap occurred. 

The store set id of the profile 1 instruction. Only valid if PRl 
SSID [51] is set and this instruction is a load or a store. 

Indicates whether the profiled instruction was a PC changing 
instruction, ie, either a predicted taken branch or an unconditional 
branch or jump or callpal. For a conditional branch, this bit indi
cates the branch prediction. 

Indicates that the profile 1 instruction was retired. If PRl 
RETIRED is set, the profiled instruction retired; if clear, the pro
filed instruction was killed. 

Indicates that the fetch block for the profile 1 instruction was 
delayed by 1 cycle due to a conflict with a training write into the 
line predictor. 

Indicates that the profile 1 instruction was in the first block 
fetched after an exception restart in the Ibox (branch mispredict, 
etc). 

Indicates the profile 1 instruction was delayed by 1 cycle because 
an attempt to fetch it from the icache failed due to a conflict with 
an icache fill into the same Icache bank. 

Indicates the profile 1 instruction was delayed by 1 cycle because 
an attemp to fetch it from the icache failed due to a conflict with 
an icache read for another icache fetch in the same cycle. 

Indicates the profile 1 instruction had a line mispredict due to an 
incorrectly predicted squash. 

Indicates that the profile linstruction was delayed for 1 cycle due 
to a squash. 

Compaq Confidential 
5 January 2001 --·Subject To Change Performance Monitoring 19-7 



Instruction Based Profiling 

Table 19-4 Fields in PR_l_INF0<63:0> 

Name 

PRl WAYMISP 

PRl LOCAL RAM 

PRl LINEMISP 

PRl SC MISS 

PRl ITB ENA 

PRl_ICMISS 

PRl_SLOTl 

Extent 

38 

37 

36 

35 

34 

33 

32 

For the ProfileO Instruction: 

PRO OUTSTANDING 31 

PRO SLOT 30 

PRO LGHIST 29-24 

RESERVED 23-21 

PRO CAUSED KILL 20 

PRO SSID 19-15 

PROBPRED 14 

19-8 Performance Monitoring 

Description 

Indicates the profile 1 instruction was delayed for either 4 or 5 
cycles due to an lcache way mispredict. 

Indicates that the profile 1 instruction was an icache miss, and an 
scache miss, and hit in the local RAMBUS memory (not a router 
request). 

Indicates the profile 1 instruction was delayed for 2 or 3 cycles 
due to a line predictor mispredict. 

Indicates that the profile 1 instruction was an icache miss and an 
scache miss 

Indicates that the profile 1 instruction was an icache miss, and was 
delayed an extra 4 or 5 cycles due to the micro TB being out of 
date. This bit also indicates that the main 128 entry ITB was uti
lized to translate the PC from a VA to a PA. 

Indicates that the profile 1 instruction was an icache miss. 

Indicates that the original icache fetch for the profile 1 instruction 
was a slot 1 fetch. This can help to determine penalties for line 
mispredicts and way mispredicts. It this bit is clear, an indicated 
line mispredict caused a 2 cycle delay, and a way mispredict 
caused a 4 cycle delay. If the bit is set, an indicated line mispredict 
caused a 3 cycle delay, and a way mispredict caused a 5 cycle 
delay. Note these delay assumtions may be inaccu ate for a num
ber of reasons, but should be right in the common cases. 

Indicates that the profile 0 instruction is outstanding. The bit is 
cleared, when the prnfile 0 instruction is eit.11er killed or retired. 

Indicates which icache access (up to two per cycle) the profile 0 
instruction was fetched with. 

Indicates the latest 6 bits of the lghist of the branch predictor cor
responding to its 3-slot-old index that was used to access the 
branch predictor the cycle that a branch in the profiled instruc
tion's block would have been predicted. The higher numbered bits 
are older and the lower numbered bits are younger. 

Not yet assigned. 

The profiled instruction caused a kiiL Tnis means that if the 
instruction was a branch, the kill was a branch mispredict, if it 
was a jump, it was a jump mispredict, if it was a return, it was a 
return stack error, or if it was a load, a memory trap occurred. 

The store set id of the profile 0 instruction. Only valid if PRO 
SSID[19] is set and this instruction is a load or a store. 

Indicates whether the profiled instruction was a PC changing 
instruction, that is, either a predicted taken branch or an uncondi
tional branch or jump or callpal. For a conditional branch, this bit 
indicates the branch prediction. 

Compaq Confidential 
5 Januc1ry 2001 ··· Subject To Cfumge 



Instruction Based Profiling 

Table 19-4 Fields in PR_l_INF0<63:0> 

Name 

PRO RETIRED 

PRO LP BNK CONF 

PRO EXCP REST 

PRO ICF BNK CNF 

PRO IC BNK CNF 

PRO SQSH MISP 

PROSQSH 

PROWAYMISP 

PRO LOCAL RAM 

PRO LINE MISP 

PRO SC MISS 

PROITB ENA 

PRO_ICMISS 

PRO_SLOTl 

Extent 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Description 

Indicates that the profile 0 instruction was retired. If PRO 
RETIRED is set, the profiled instruction retired; if clear, the pro
filed instruction was killed. 

Indicates that the fetch block for the profile 0 instruction was 
delayed by 1 cycle due to a conflict with a training write into the 
line predictor. 

Indicates that the profile 0 instruction was in the first block 
fetched after an exception restart in the Ibox (branch mispredict, 
etc). 

Indicates the profile 0 instruction was delayed by 1 cycle because 
an attempt to fetch it from the !cache failed due to a conflict with 
an !cache fill into the same !cache bank. · 

Indicates the profile 0 instruction was delayed by 1 cycle because 
an attempt to fetch it from the icache failed due to a conflict with 
an icache read for another icache fetch in the same cycle. 

Indicates the profile 0 instruction had a line mispredict due to an 
incorrectly predicted squash. 

Indicates that the profile 0 instruction was delayed for 1 cycle due 
to a squash. 

Indicates the profile 0 instruction was delayed for either 4 or 5 
cycles due to an !cache way mispredict. 

Indicates that the profile 0 instruction was an icache miss, and an 
scache miss, and hit in the local RAMBUS memory (not a router 
request). 

Indicates the profile 0 instruction was delayed for 2 or 3 cycles 
due to a line predictor mispredict. 

Indicates that the profile 0 instruction was an icache miss and an 
scache miss 

Indicates that the profile 0 instruction was an icache miss, and was 
delayed an extra 4 or 5 cycles due to the micro TB being out of 
date. This bit also indicates that the main 128 entry ITB was uti
lized to translate the PC from a VA to a PA. 

Indicates that the profile 0 instruction was an icache miss. 

Indicates that the original icache fetch for the profile 0 instruction 
was a slot 1 fetch. This can help to determine penalties for line 
mispredicts and way mispredicts. It this bit is clear, an indicated 
line mispredict caused a 2 cycle delay, and a way mispredict 
caused a 4 cycle delay. If the bit is set, an indicated line mispredict 
caused a 3 cycle delay, and a way mispredict caused a 5 cycle 
delay. Note these delay assumtions may be inaccu ate for a num
ber of reasons, but should be right in the common cases. 

Compaq Confidential 
5 January 2001 ···Subject To Change Performance Monitoring 19-9 



Instruction Based Profiling 

Table 19-5 Fields in PR_Q_INF0<63:0> 

Field Bits Description 

For the Profile1 Instruction: 

Reserved 63-45 Not yet assigned 

PR 1 INSTRS MAPPED 44-41 Indicates the number of valid instructions in the profile 1 instruction's map 
block. 

PRl GRANTCNT 

PR 1 BRMISS OLD 

PRl PICKER 

40-36 Indicates the number of times the profile 1 instruction was granted for exe
cution. If the number is greater than 1, it indicates that the profile 1 
instruction was poisoned and reexcecuted (this value - 1) times. 

35 If the profile 1 instruction was a branch that mispredicted, this bit indi
cates that it was the oldest mispredicting conditional branch in the cycle it 
mispredicted, thus qualifying it to take the "fastpath" to restart the PC on 
the goodpath. If it is not set for a mispredicting branch, it indicates that 
this branch had a several cycles of additional branch mispredict penalty 
(about 4 or 5). 

34-32 Indicates the number of the Qbox Picker which selected the profile 1 
instruction for execution. If the picker number is not the same as the map 
block position of this instruction (PRl_POS for the profile 1 instruction), 
it indicates that this instruction followed a parent instruction to another 
picker. 

For the ProfileO Instruction: 

Reserved 31-13 

PRO INSTRS MAPPED 12-9 

PRO GRANT CNT 8-4 

PRO BRMISS OLD 3 

PRO PICKER 2-0 

19-1 o Performance Monitoring 

Not yet assigned 

Indicates the number of valid instructions in the profile 0 instruction's map 
block. 

Indicates the number of times the profile 0 instruction was granted for exe
cution. If the number is greater than 1, it indicates that the profile 0 
instruction was poisoned and reexcecuted (this value - 1) times. 

If the profile 0 instruction was a branch that mispredicted, this bit indi
cates that it was the oldest mispredicting conditional branch in the cycle it 
mispredicted, thus qualifying it to take the "fastpath" to restart the PC on 
the goodpath. If it is not set for a mispredicting branch, it indicates that 
this branch had a several cycles of additional branch mispredict penalty 
(about 4 or 5). 

Indicates the number of the Qbox Picker which selected the profile 0 
instruction for execution. If the picker number is not the same as the map 
block position of this instruction (PRl_POS for the profile 0 instruction), 
it indicates that this instruction followed a parent instruction to another 
picker. 

Compaq Confidential 
5 January 2001 m Subject To Change 



Instruction Based Profiling 

Data associated with loads and stores is recorded in the PRO_MEM_INF0<63 :0> and 
PRl_MEM_INF0<63:0> IPRs. 

Table 19-6 Fields in PRO_MEM_INF0<63:0> and PR1_MEM_INF0<63:0> 

Name 

Reserved 

CONTENTION 

TRP_INV 

TRP_SYN 

TRP_SLOO 

TRP_DTBM 

RET_SCM 

RET_BAD_EINUM 

RET_WRSZ 

RET_BCNF 

RET_DCM 

VA 

Extent 

<63:62> 

<61> 

<60> 

<59> 

<58> 

<57> 

<56> 

<55> 

<54> 

<53> 

<52> 

<51:0> 

Description 

Not yet assigned .. 

Mbox trap or replay was due to contention with the other profiled instruc
tion. 

Mbox trap - invalidate speculative load or store 

Mbox trap - virtual synonym dependence ignored 

Mbox trap - dependent store-load executed out of order 

Mbox trap - DTB miss. 

Mbox retry - scache miss 

Mbox retry - bad end inum 

Mbox retry - wrong size Id/st 

Mbox retry - dcache bank conflict. 

Mbox retry - dcache miss. 

The virtual address of the profiled instruction if it was a load or store. 

The S cache, memory controller and router can be invoked for loads and stores that miss 
in the first level Dcache. Two IPRs, PRO_DMISS_INF0<63:0> and 
PRl_DMISS_INF0<63:0> collect latency and event information for the profiled 
instructions that generate activity in the Cbox. 

Table 19-7 Fields in PRO_DMISS_INF0<63:0> and PR1_DMISS_INF0<63:0> 

Name 

Reserved 

ROUTER_DEST 

LAT_SNAP_FWD 

LAT_DENQ_SNAP 

RAM_RAS 

RAM_PRCHG 

DIR_CACHE_HIT 

LCL_RMBS 

Extent 

<63:61> 

<60:52> 

<51:43> 

<42:35> 

<34> 

<33> 

<32> 

<31> 

Description 

Not yet assigned. 

Processor id of a memory request for the profiled instruction that is ser
viced remotely (ie, another processor is the home node) 

For a local RAM access, the number of cycles from the snapshot point until 
the data is forwarded. 

For a local RAM access, the number of cycles from DIFT enqueue until the 
snapshot point. 

Indicates the bank for the profiled instruction's request had to perform a 
row access strobe, ie, this request was not a page hit in the local RAM. For 
local RAM requests only. 

Indicates the bank for the profiled instruciton' s request had to precharge. 
For local RAM requests only. 

Indicates the profiled instruction's request hit in the directory cache. 

If the profiled instruction results in an scache miss, this bit indicates 
whether the data was resident in the local memory. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Performance Monitoring 19-11 



Instruction Based Profiling 

Table 19-7 Fields in PRO_DMISS_INF0<63:0> and PR1_DMISS_INF0<63:0> 

Name Ex.tent Description 

COHER_CNT <30:26> Records the number of invalidates the profiled instructions memory 
request must await before being allowed to obtain ownership of the 
requested block. 

MAF _ALC_DLC <25: 16> Records the number of cycles the profiled instruction's MAF entry was 
allocated to the time when it was deallocated. 

PMAF _LAT_RPL <15: 12> Records the number of cycles the profiled instruction's preMAF request 
waited for the Scache due to replays. 

PMAF _LAT_PRB <11:8> Records the number of cycles the profiled instruction's preMAF request 
waited for the Scache due to probes. 

PMAF _LAT_ICM <7:4> Records the number of cycles the profiled instruction's preMAF request 
waited for the Scache due to Icache miss requests. 

PMAF _LAT_FILL <3:0> Records the number of cycles the profiled instruction's preMAF request 
waited for the Scache due to other fills. 

19.1.3.2 Timeline/Latency IPRs 

The 21464 keeps an internal running cycle counter whose value is recorded when cer
tain events happen to a profiled instruction. A sequence of recorded counter values cre
ates a timeline of a profiled instruction's execution in the CPU. For example, the 
counter is recorded into a timeline register field when the instruction fetch unit first 
tries to fetch the profiled instruction. The counter is recorded into another timeline reg
ister field when the instruction is retired. By subtracting the two recorded counter val
ues, software can determine how long a profiled instruction was in-flight in the CPU. A 
complete timeline for an instruction gives insight about the performance bottlenecks in 
the CPU. Figure 19-1 illustrates the timeline that is captured for each profiled instruc
tion: 

Figure 19-1 Captured Timeline for Each Profiled Instruction 

Counter 
Bits 

- .. 
1Kecoraea1 

Fetch 
(Last 
Valid Data Bid IQ Chunk IQ Retire Killed or 
Map) Map IQAlloc Ready Enable Grant Dealloc Dealloc Able Retired 

32 16 16 16 16 16 16 16 16 48 

In addition to the basic timeline described above, the timeline IPRS also record the time 
that the last valid instruction before the profile instruction, and in the same TPU, 
became retireable. This is useful to determine whether the profile instruction's execu
tion had delayed the executing program, and if so, by how many cycles. If the prior 
instruction's retireable time and the profiled instruction's retireable time are the same, 
the profiled instruction did not directly contribute to the execution time of the running 
program. If, on the other hand, the prior instruction's retireable time is earlier than the 
profiled instruction's, speeding up the processing of the profiled instruction could 
increase the performance of the running program. 

Compaq Confidential 
19-12 Performance Monitoring 5 January 2001 --·Subject To Change 



Instruction Based Profiling 

The sizes of the "Fetch" and "Retire" timeline fields are intentionally large, to ensure 
that in the event of an instruction that was very slow to execute, the total time from 
Fetch to Retire can still be computed. The 32 bit register field sizes of fetch and the 48-
bit register field of retire also serve to allow software to determine the time between the 
two profiled instructions. The upper 16 bits of the retire field allow software to deter
mine the time between two pairs of samples. So, the latency between when the first pro
filed instruction retired and the second profiled instruction retired can be calculated 
simply by subtracting the two retired timeline snapshots. The same running cycle 
counter is recorded for both profiled instructions, which provides this feature. 

Due to poisoning (see Mbox/Qbox documentation), instructions can actually go 
through some of the timeline points more than once. If this happens the register field(s) 
corresponding to the recurring events will simply be set more than once. This will actu
ally yield the correct data, as earlier event occurances were due to a misspeculation. So, 
for example, an instruction may appear data ready, but is not in reality. 

There are four timeline IP Rs per profiled instruction. The fields of the timeline IP Rs 
and their meanings are specified in Table 19-8. Note that the following timestamps are 
UNPREDICTABLE for instructions that are invalid (not mapped), decoded as a 21464 
NOP, or killed: 

IQ_ALLOC 
DATA_READY 
BID_ENABLE 
GRANT 
IQ_DEALLOC 

Also, the RETIREABLE timestamp is UNPREDICATABLE for instructions that are 
killed. 

Table 19-8 PRn_ TIMELINE IPRs 1 

IPR Field 

PRn_ TIMELINEO 

FETCH 

RETIRE/KILL (bits 
31-0) 

PRn_ TIMELINEl 

MAP 

Bits Description 

63-32 Fetch really implies the earliest time at which the profiled instruction 
could have been fetched, or the time of the last valid map from one of 
the PR_TPUs. If there is more than 1 cycle between the last valid 
map, and the map time of the profiled instruction, a fetch delay of 
some sort was encountered. The fetch delay could have been due to 
an icache miss, line mispredict, way mispredict, etc, or just because 
the map thread chooser chose against the PR_ TPU s. The use of the 
PR_l_INFO IPR data can help to determine the cause of the fetch 
delay. 

31-0 The time when the profiled instruction's map block inum was broad
cast on the RK bus as a retire block, OR, the time that a kill that killed 
the profiled instruction was broadcast on the rk bus. PR_l_INFO will 
indicate whether the profiled instruction retired, was killed, or caused 
a kill itself. 

63-48 The time when the profiled instruction's map block was driven from 
the Ibox to the Pbox. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Performance Monitoring 19-13 



Instruction Based Profiling 

Table 19-8 PRn_TIMELINE IPRs1 

IPR Field 

IQ_ALLOC 

DATA_READY 

BID_ENABLE 

Bits Description 

47-32 The time when the profiled instruction's map block was allocated 
space in the instruction queue. This is usually a fixed delay from the 
"map" time, unless the instruction queue is backed up and not able to 
allocate more space. If this happens the profiled instruction's map 
block can be delayed in the post-map skid buffer. 

31-16 The time when the profiled instruction is data ready, that is all of it's 
source operands (including store sets for loads) were available. 

15-0 This time is normally the cycle following data_ready for most 
instructions. The notable exceptions are loads and stores, which could 
be data ready, but not issue because there are not enough entries in the 
load or store queues. Also, if bid_enable occured the same cycle as 
data_ready, it implies that the profiled instruction followed it's parent 
to another picker. 

PRn_ TIMELINE2 

GRANT 63-48 This is more commonly known as "issue time", or the time when the 

IQ_DEALLOC 

profiled instruction is sent to it's functional unit for execution. If there 
is more cycles beween grant and bid_enable than the normal fixed 
delay, it implies that the profiled instruction suffered from functional 
unit queueing delay. 

47-32 This is the time that an instruction is past it's poison point and will no 
longer hold up it's queue chunk's iq deallocation time. This also cor
responds to the completion unit's notion of "complete". 

PRED_RETIREABLE 31-16 This is the time that the last valid predecessor instruction, before the 
profiled instruction, became retireable. The predecessor instruction 
must be in the same thread (and running on the same TPU) as the pro
filed instruction. 

RETIREABLE 15-0 

PRn_ TT_MELINE3 

19-14 Performance Monitoring 

This is the time that the profiled instruction itself became retireable, 
that is when it is complete, and all instructions older than it in the 
same TPU are also complete. It should be greater than or equal to 
PRED _RETIREAB LE above. If this is not the same as 
PRED_RETIREABLE, it indicates that the profiled instruction con
tributed to the overall program execution time by the number of 
cycles difference between the two. Instructions which have much 
greater retireable times than PRED_RETIREABLE times point to 
areas in the program that contribute to significant performance loss. 

Compaq Confidential 
5 Jarwc1ry 2001 -·Subject To Change 



Instruction Based Profiling 

Table 19-8 PRn_TIMELINE IPRs1 

IPR Field Bits Description 

IQ_CHK_DEALLOC 63-48 This is the time that the iq chunk that the profiled instruction was a 
part of is deallocated. If this is the same time as the iq_dealloc time in 
PRn_ TIMELINE2 above, it indicates that the profiled instruction was 
one of, or the only, instruction gating the deallocation of the queue 
chunk. If the iq_cnk_dealloc time is greater than the iq_dealloc time, 
it indicates that a different instruction in the iq chunk was gating the 
deallocation of the queue chunk. By subtracting iq_alloc time 
(PRn_TIMELJNEl) from iq_cnk_dealloc time, software can obtain 
the total q chunk lifetime for the profiled instruction's queue chunk. 
Since the queue chunks are a limited resource, a high average queue 
chunklifetime may indicate a performance bottleneck in a running 
program. The compiler or a run time optimizer, may be able to associ
ate long latency instructions together in the same queue chunks, so 
that other queue chunks with all shorter latency instructions are deal
located sooner, alleviating the queue chunk resource constraint. 

RETIRE (bits 47-32) 47-32 Upper 16 bits of retire timestamp 

Reserved 31-0 Not yet assigned. 

1 Where n = 0 means first profiled instruction and n = 1 means second profiled instruction. 

There is an additional latency IPR associated with store processing. The latency 
counters are only for the first profiled instruction. The data is interesting if both profiled 
instructions are stores, and the latter store is not able to issue because the prior store is 
clogging store processing. The IPR that holds the latencies is called 
PR_ST_LATENCY <63:0>. 

Table 19-9 Fields in PR_ST_LATENCY<63:0> 

Name Extent Boxes Description 

Reserved <63:24> Not yet assigned. 

ACK_2_MBFREE <23:16> M Number of cycles between the first profiled instruction's merge 
buffer entry is acknowleged and the time that that merge buffer 
entry is freed. 

MB_2_ACK 

STQ_2_MB 

<15:8> M 

<7:0> M 

Number of cycles between the first profiled instruction is eligible 
to merge in the merge buffer and the time that its entry into the 
merge buffer is acknowleged. 

Number of cycles between the first profiled instruction enters the 
store queue and it becomes eligible to merge in the merge buffer. 

19.1.3.3 Aggregate Event/Data IPRs 

The IPRs listed before here in this section obtain information specifically about the pro
filed instructions. The 21464 also collects aggregate events in region of execution 
between the retrires or kills of the two profile instructions. This allows for the collecting 
of aggregate event or data information in a certain region, per TPU. So, over an interval 
delimited by the retire times of two dynamic instructions, information such as: 

Retired instructions 

ITB Misses 

Compaq Confidential 
5 January 2001 -- Subject To Change Performance Monitoring 19-15 



Instruction Based Profiling 

Store Load Order Traps 

Scache Misses 

And so forth (see the I_EVENT_CTL and M_EVENT_CTL IPR definitions above 
for a full list). 

can be accrued per TPU. The per TPU information can be summed to give total CPU 
stats. The rate of these events can also be determined by subtracting the retire/kill time 
of the first profiled instruction from the second. This gives the total number of cycles 
that the aggregate event counters were monitoring the selected events. Dividing the 
events by cycles, yields the event rate (eg. Retired instructions per cycle). Repeated 
profile samples will give multiple data points over the span of a programs execution. In 
general, fairly infrequent samples can create very accurate data, but, if needed, the sam
ples can be very close together, so as not to miss any statistically significant informa
tion using the following algorithm: 

In PR_INST_CTL the profile PRO_CTR to something small (say 0 or slightly 
larger to ignore the profiling PAL routine and other software overhead), and the 
PRl_CTR to something relatively large (say 1-16 Million Map Blocks). When 
the interrupt is triggered, collect the information, and reset the PR_INST_CTL 
register again to initiate the next sample. 

The profiling hardware can only collect two aggregate events per sample, 1 
IBOX(lnstruction Unit) related event, and 1 MBOX (Memory Unit) event. A software 
profiler can alternate between the events to get them all. This should work well for pro
grams whose behavior is repetative. Varying the PRl_CTR, or the order that the events 
are collected, will avoid missing phasic behavior (eg, If retired instructions and icache 
misses are alternately collected for l 6M map blocks each, and the program just so hap
pens to have different phases at the same frequency, it would be a mistake to assume 
that the icache miss rate and the IPC rate are constantly at their measured values. Alter
nating the order in which they are collected, or varying the PRl_CTR time wiii heip 
avoid this). If a program does not have repeated behavior, the program can be sampled 
over several runs to obtain all the data. 

This can be quite powerful in finding bottlenecks in a running program. A chart of IPC 
over time will reveal sections of the program that are performing the least. The other 
aggregate event information can hint at the cause of this diminished performance. Also, 
the PC's of profiled instructions collected in the regions of low performance, can later 
become trigger PCs in the PR_ TRIG_PC IPR, in order to collect more instruction sam
ples in the regions of diminished performance. 

The aggregate event counter IPRs are specified in Table 19-10 

Compaq Confidential 
19-16 Performance Monitoring 5 Jc1nuc1ry 2001 - Subject To CfJange 



Memory Reference Performance Monitoring 

Table 19-10 Aggregate Event Counter IPRs 

IPR Bits Description 

IAGG_EVENTn 31-0 The aggregate event count chosen by the value written by software into 
I_EVENT_CTL. The events are listed in Table 19-1. Then pertains to the TPU 
for which the events are collected. There are a total of 4 32 bit IPRs here, one per 
TPU. The events are counted between the retire/kill of the first and second profile 
instructions. 

MAGG_EVENTn 31 :0 The aggregate event count chosen by the value written by software into 
M_EVENT_CTL. The events are listed in Table 19-1. Then pertains to the TPU 
for which the events are collected. There are a total of 4 32 bit IPRs here, one per 
TPU. The events are counted between the retire/kill of the first and second profile 
instructions. 

19.2 Memory Reference Performance Monitoring 

The memory reference performance monitoring hardware is identical to that of the 
21364. While the 21464 designers intend to support the same functionality, this specifi
cation may change to reflect architectural differences in the memory subsystem of the 
two processors. 

Instead of IPRs, this performance monitoring hardware is controlled and collected via 
IO mapped CSRs. There are separate sections for the Cbox, Rbox, and Zbox. 

19.2.1 Cbox Performance CSRs 

19.2.1.1 Cbox Performance Control -CBOX_PRF _CTL<31 :0> 

Table 19-11 Fields in CBOX_PRF_CTL<31:0> 

Name Extent Access Description 

ISTM_SAMP _ENA <31> RW,O Enable istm sampling (on non-abtd bcache lookup) 

PRF _SAMP _ENA <30> RW,O Enable performance sampling 

PAGE_MIGR_FAST <29> RW,O Selects between 0 (fastest possible sample (=1)) or 16 (=0) 
events between migration samples 

PAGE_MIGR_ENA <28> RW,O Enable page migration sampling 

WATCH_SEL <27> RW,O Event for watch register to trigger on 
0- BC lookup (non-aborted) 
1- SYS sent 

WATCH_ENA <26> RW,O Enable watch register 

Compaq Confidential 
5 January 2001 -·· Subject To Change Performance Monitoring 19-17 



Memory Reference Performance Monitoring 

19.2.1.2 Cbox Performance Address- CBOX_PRF _ADR<63:0> 

Table 19-12 Fields in CBOX_PRF_ADR<63:0> 

Name 

PA<42:6> 

REQPID<lO:O> 

OPCODE<7:0> 

Extent Access Description 

<63:27> RW RW physical address 

<25:15> RW Requestor PID 

<9:2> RW Network opcode -or- CMAF rdtype w/opcode<7:4> == 0 

The performance sample. 

A sampled watch address due to WATCH_EN locks the register until 
CBOX_PRF _ADR is written. 

19.2.1.3 Cbox Performance Status - CBOX_PRF _STS<25:0> 

Table 19-13 Fields in CBOX_PRF _STS<25:0> 

Name Extent Access Description 

SYS_BYP _USED <25> RO,O System port bypass was used 

SYS_BYP 

TAG_BYP 

COUPLED 

CMAF_HIT 

SVAF_HIT 

BC_DTY 

BC_SHR 

DMR_BCV 

DMR_BCVDC 

DMR_DCS 

BC_VLC 

BC_VSH 

DC_BCV 

BC_ VIC 

DC_SYN 

BC_HIT 

DC_ VIC 

OPCODE<7 :0> 

<24> RO,O Address granted bypass to system port 

<23> RO,O Address bypassed from Mbox to BTAG 

<22> RO,O Lookup was CMAF coupled lookup 

<21> RO,O c_cmf -> prq_cmaf_addr_hit_l2a 

<20> RO,O c_cmf-> prq_svaf_addr_hit_l2a 

<19> RO,O b -> c_blk_dirty _12a 

<18> RO,O b -> c_blk_shared_12a 

<17> RO,O b -> c_dm_reqd_bcv _12a 

<16> RO,O b-> c_dm_reqd_bcv_in_dc_12a 

<15> RO,O b -> c_dm_reqd_dc_syn_12a 

<14> RO,O b -> c_local_bcv_l2a 

<13> RO,O b -> c_bcv_shared_12a 

<12> RO,O b -> c_bcv _in_dcache_l2a 

<11> RO,O b -> c_bc_ victim_l2a 

<10> RO,O b -> c_dc_synonym_12a 

<9> RO,O b -> c_bc_hit_l2a 

<8> RO,O b -> c_dc_ victim_l2a 

<7:0> RO,O Network opcode -or- CMAF rdtype w/opcode<7:4> == 0 

The status associated with CBOX_PRF _ADR.These bits are reset to zero on either cold 
or fast reset. 

19.2.1.4 Cbox Performance Match - CBOX_PRF _MAT <25:0> 

Fields are the same as CBOX_PRF _STS, except they are RW. See Section 19.2.1.3) 

Compaq Confidential 
19-18 Performance Monitoring 5 J<"inmiry 2001 -· Subject To Change 



Memory Reference Performance Monitoring 

This register provides, in combination with CBOX_PRF _MATV, a way to filter perfor
mance events. A set bit in this register means that the CBOX_PRF _CNTevent counter 
will only increment forperformance events which would set the corresponding bit in 
CBOX_PRF _STS to the value given by the corresponding bit in CBOX_PRF _MATV. 

For example, if CBOX_PRF _MAT<25:24> == 3 and ICBOX_PRF _MATV <25:24> == 
1, only performance events which were granted a system port bypass and did not use it 
would be countedby the event counter. 

19.2.1.5 Cbox Performance Match Value - CBOX_PRF _MATV<25:0> 

The fields are the same as CBOX_PRF _STS, except they are RW. See Section 19.2.1.3. 
Also see the description under CBOX_PRF _MAT, Section 19.2.1.4. 

19.2.1.6 Cbox Performance Counter - CBOX_PRF _ CNT <31 :0> 

Table 19-14 Fields in CBOX_PRF_CNT<31:0> 

Name Extent Access Description 

EVENT_CNT<31:0> <31:0> RW RW performance counter 
Software can write this counter to any value to provide any resolu
tion desired. Interrupts are triggered upon carry out of the high-bit of 
thecounter, so writing the initial counter value with a large number 
willcause an earlier interrupt. 

See description of CBOX_PRF _MAT (3.1.4) for explanation of how the decision to 
increment this counter is made. 

19.2.2 Zbox Performance CSRs 

19.2.2.1 Zbox Performance Counter O - ZBOXn_ZPM_CTR0<31 :0> 

Table 19-15 Fields in ZB0Xn_ZPM_CTR0<31:0> 

Name Extent Access Description 

ZBOX_PERF_CTRO_UND <31> RW Indicates counter underflow. 

Zbox Performance counter 0. ZBOX_PERF _CTRO <30: 0> RW 

Decrements when the condition specified by ZPM_CTLO have been met. A perfor
mance counter interrupt will be signalled when the counter underflows. A 31-bit event 
counter and an underflow bit. ZPM_CTRO can be programmed to count one of 32items 
related to the Zbox middle. The counter can be preloaded with an initial count via soft
ware.When the selected event occurs, the corresponding counter is decremented. When 
either counter counts below zero, the Zbox will generate a 
performance_monitorinterrupt.Note that only the first underflow causes a perf-monitor 
interrupt,so we can disable the interrupt by writing a 1 to the underflow bit.The inter
rupt occurs on the 0->-l transition, so #eventsl must be loaded into the counters. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Performance Monitoring 19-19 



Memory Reference Performance Monitoring 

19.2.2.2 Zbox Performance Counter 1 -ZBOXn_ZPM_CTR1<31:0> 

Table 19-16 Fields in ZBOXn_ZPM_CTL1<31:0> 

Name Extent Access Description 

ZBOX_PERF _CTRl_UND <31> RW 

RW 

Indicates counter underflow. 

Zbox Performance counter 1. ZBOX_PERF_CTRl <30: 0> 

Decrements when the condition specified by ZPM_CTLl have been met. A perfor
mance counter interrupt will be signalled when the counter underflows.A 31-bit event 
counter and an underflow bit. ZPM_CTRl can be programmed to count one of 16 items 
related to the Zbox front-end (DIFT).The counter can be preloaded with an initial count 
via software.When the selected event occurs, the corresponding counter is decre
mented.When either counter counts below zero, the Zbox will generate a 
performance_monitorinterrupt.Note that only the first underflow causes a perf-monitor 
interrupt,so we can disable the interrupt by writing a 1 to the underflow bit.The inter
rupt occurs on the 0-> -1 transition, so #event-1 must be loaded into thecounters. 

19.2.2.3 Zbox Performance Control- ZBOXn_ZPM_CTL<31 :O> 

Table 19-17 shows the fields in ZB0Xn_ZPM_CTL<31:0> IPR 

Table 19-17 Fields in ZBOXn_ZPM_CTL<31 :0> 

Name Extent Access Description 

unused<31: 12> <31:12> RO MBZ 

Compaq Confidential 
19-20 Performance Monitoring 5 J(1nuary 2001 - Subject To Change 



Memory Reference Performance Monitoring 

Table 19-17 Fields in ZBOXn_ZPM_CTL<31 :0> (Continued) 

Name Extent Access Description 

unused<l1:9> <11:9> RW MBZ 

ZPM_CTL1<3:0> <8:5> RW Control for Zbox performance counter 1: 

ctl1 Item to Count (ZPM_CTR1) 

0000 Incoming transaction (any) 

0001 Incoming ReadSharedReq 

0010 Incoming ReadModREq 

0011 Incoming ReadReq 

0100 Incoming FetchReq 

0101 Incoming SharedToDirtyReq 

0110 Incoming SharedToDirtySTCReq 

0111 Incoming InvalToDirtyReq 

1000 Incoming Victim 

1001 Incoming VictimClean 

1001 Outgoing Forward (any) 

1010 Outgoing Forward=InvalSingle 

1011 Outgoing Forward=InvalMask 

1100 Outgoing Forward=Read(anytype )Forward 

1101 Outgoing Forward=FetchForward (tRR, tPP) 

1110 Outgoing Forward=ItoDForward 

1111 Forward Miss received 

Compaq Confidential 
5 January 2001 ··· Subject To Change Performance Monitoring 19-21 



Memory Reference Performance Monitoring 

Table 19-17 Fields in ZB0Xn_ZPM_CTL<31:0> (Continued) 

Name Extent Access Description 

ZPM_CTL0<4:0> <4:0> RW Control for Zbox performance counter 0: 

ctlO Item to Count (ZPM_CTRO) 

00000 nq_any -- regardless of reject status 

00001 nq_prq -- regardless of reject status 

00010 nq_rsq -- regardless of reject status 

00011 nq_csq -- regardless of reject status 

00100 nq_any -- qualified by & !reject 

00101 nq_prq -- qualified by & !reject 
00110 nq_rsq -- qualified by & !reject 

00111 q_csq -- qualified by & !reject 

01000 q_any -- qualified by & reject 
01001 nq_prq -- qualified by & reject 

01010 nq_rsq -- qualified by & reject 

01011 nq_csq -- qualified by & reject 

01100 nq_rej -- No Fill Buffers available 

01101 nq_rej -- Shadow Reject in SHDPND, PDN Interval 

01110 nq_rej -- Page-Conflict Reject 
(tRAS) in HLDPND, PND Interval (R/w) 
(tRDP) in SHDPND interval (R) 
(tRP,tRCD) in BLKPND, PND or NQPRPND Interval 

01111 nq_rej -- WRB Reject (tRTR, tRTP) 

10000 nq_rej -- Queue Full Reject 

10001 nq-rej -- NQ' Waterfall prior over DFf-NQ 10010 cmd = 
dir_only _read 

10011 cmd = dir+data_read 
10100 cmd = dir_only_write 

10101 cmd = dir+data_ write 

10110 PRER precharge 

10111 PREX precharge 
11000 PREC precharge 

11001 COL=RD 

11010 COL=WR 

11011 COL=NOCOP 

11100 COL=Any 

11101 Starvation detections 

11110 Force wr. ret 

11111 Deferred write retire 

19.2.3 Rbox Peformance CSRs 

This section describes the Rbox performance IPRs. 

Compaq Confidential 
19-22 Performance Monitoring 5 Januc1ry 2001 ·- Subject To Change 



Addendum: lmplemention Notes 

19.2.3.1 Rbox Port Performance Counter- RBOX_n_PERF<27:0> 

Table 19-18 Fields in RBOX_n_PERF<27:0> 

Name Extent Access Description 

PCV<23:0> <27:4> RW Counter value 

PCC <1:0> RW 

There is a hidden (not software visible) 8-bit register. The hidden register is 
cleared on every write (by software) to this register. The software-visible 
counter is only incremented when the hidden register overflows. The counter 
stops incrementing once it overflows (carry out of bit <27> ). An interrupt is 
also asserted at that point (but may be blocked by the interrupt mask). 

Counter Control 
00 - port utilization (increment for every outgoing used tick) 
01 - undefined 
10 - #of message bypasses 
11 - #of messages 

19.2.3.2 Rbox 10 Port Performance Counter- RBOX_IO_PERF<27:0> 

Table 19-19 Fields in RBOX_IO_PERF<27:0> 

Name Extent Access Description 

PCV<23:0> <27:4> RW Counter value 

PCC<l:O> <1:0> RW 

There is a hidden (not software visible) 8-bit register. The hidden register is 
cleared on every write (by software) to this register. The software-visible 
counter is only incremented when the hidden register overflows. The counter 
stops incrementing once it overflows (carry out of bit <27> ). An interrupt is 
also asserted at that point (but may be blocked by the interrupt mask). 

Counter Control 
00 - port utilization (increment for every outgoing used tick) 
01 - # cycles the router is in drain mode 
10 - # cycles the router is in starve mode 
11 - # of messages 

19.3 Addendum: lmplemention Notes 

19.3.1 From Data/Event I PRs 

Implementation Note: 

The information for generating the profileMe PCs is already kept in the PC Table. 
When the collapsing buffer drives map blocks to the Pbox, information from the pre
map PC table is read out and merged with information coming from the collapsing 
buffer to be stored into the Post-Map PC Table. The PC<51 :2> of a profiled instruction 
can be determined from the following pieces of information: 

• 
• 
• 

PC A<51:5> -the first fetch-block's PC in the map block 

PC B<51 :5> - the second fetch-block's PC in the map block 

Total Map Block Length<3 :0> - in instructions 

Compaq Confidentia I 
5 January 2001 ··· Subject To Change Performance Monitoring 19-23 



Addendum: lmplemention Notes 

• Length of instructions from slot A<3 :0> - in instructions 

• Starting PC offset position for slot A <3 :0> 

• Starting PC offset position for slot B <3 :0> 

• Position of the profiled instruction in the map block, (PRO_POS, and PRl_POS in 
PR_INST_CTL) 

• Two bits from the selection engine that indicate either or both of the profiled 
instructions are being chosen this cycle. 

19.3.2 Following Table 17-4 

Implementation Note: 

• 

• 

Event-flags will be kept, per TPU, along with the current PC latches in the PC data
path. This state will indicate whether certain types of events happened while 
attempting to fetch from that PC. We can take advantage of the fact that all restarts: 
Icache Miss, Line Mispredict, Way Mispredict, micro TB (uTB) out of date, and 
Exception/Disruption restarts, will all restart in slot 0, resetting the current PC latch 
in I2B. When that PC latch is set, the event-flags for those restarts can also be set. 
Whenever a PC is sent onto I3, the event information is sent along with it, indicat
ing the events that occurred regarding that PC fetch. If a pipe restart occurs while 
attempting to fetch a PC that already has event-flags set, the event-flags will follow 
the PC and be copied back into the current event-flags state. In this way, we can 
record multiple events for one attempted PC fetch. So, if first we line mispredict, 
then Icache miss, we can see both events. 

These event-flag bits will be recorded for each of the profileMe instructions when 
they are chosen. If the PC changes due to a PC-redirecting exception, the event
flags are cleared, because the old event-flags no longer pertain to THIS fetch. Also, 
an event flag indicating that this was a PC redirect is set. Whenever the PC is incre
mented or changed as part of normal program flow, the event-flags are cleared. The 
event-flags must be passed through the pre-map PC Table to stay with the appropri
ate fetch block. Unfortunately, the pre-map PC Table will have space for event
flags for all fetch slots, even though slot 1 fetches do not need any. This is because 
any or all slots in the collapsing buffer could be slot-0 fetches. When a map-block 
is sent with one or more profileMe instructions in it, we store the event-flags in a 
register (there is no need to store these in the post-map PC Table), to be read later 
by IPR reads. Right now, we should plan for about 8 bits for event flags. 

Compaq Confidential 
19-24 Performance Monitoring 5 Jc1nuc1ry 2001 m Subject To Change 



Debug Process 

20 
Hardware Debug Features 

Debugging real 21464 hardware in a timely fashion is a key element to achieving our 
time-to-market goals. As the complexity and speed of Alpha chips increases, the ability 
to observe, understand and potentially effect the operation of faulty hardware through 
just software or the pin interface gets more difficult and time consuming. This docu
ment will outline the capabilities we intend to include in the 21464 to aid in the hard
ware debug and FRS effort. 

In the past, capabilities such as feature disable or bypass bits, performance monitors, 
and status ports have been embedded into silicon for the purpose of debug. Many of 
these features have proved invaluable in the quest to understand unexpected behavior. 
Previous experience has shown how difficult and time-consuming the process can be 
when there is minimal controllability and almost no visibility features. The 21464 will 
be significantly more complex and must have better debug hooks in the hardware. 

Although this document will focus on features to help find logic bugs, other sources of 
problems like manufacturing defects, implementation and layout errors or even soft
ware errors can create problems which appear to be logic errors and often can be iso
lated through the same techniques. This document will not cover manufacturing test 
specific goals or features but it should be noted that observability features added for 
system debug can ease the manufacturing test pattern generation process. 

The process of specifying the debug features in the 21464 has just begun. At this point, 
the goal of this document is to provide some focus and structure and to specify the com
mon high level features that are currently being proposed. Eventually, as the detailed 
lists of signals and controls being integrated into each box becomes better defined, this 
document will become a reference. As this is still in the proposal stage, any sugges
tions for enhancements or other concerns are definitely welcome. 

20.1 Debug Process 

Typically, when something goes wrong, the first goal is to just reproduce the failure, 
then to prune the case down to reduce the number of cycles and eliminate interactions 
with other possible sources of error. The difficult task here is identifying the condi
tions that contribute to the failure and recreating just those conditions in an ever more 
simplified way. 

Compaq Confidential 
5 J~muary 2001 ··· Subject To Change Hardware Debug Features 20-1 



Feature Overview 

Once the failure is easily reproducible, the task shifts to isolation of the exact cause. In 
a simulator we would typically augment tracefiles with signals until the problem is 
traced backwards from symptom to cause. In real cases where the stimulus fails to 
reproduce the failure in the model, hardware features that allow internal state to be 
observed are precious. 

Quickly identifying the cause of a failure is very important to achieving time-to-market 
goals, but the ability to find a workaround may be equally important. Fab times for the 
21464 will likely result in weeks or months to tum-around changes to silicon. Once 
prototypes or revenue hardware is shipped, the cost of hardware upgrades also factors 
into the cost and impact of bugs. Bugs will exist, our success depends on the ability to 
quickly resolve the issues and ship revenue hardware. 

The Debug features we incorporate into the 21464 need to address the demands of all 
the phases of debug. When reviewing this document or defining visibility hooks, keep 
the debug flow in mind and try to ensure we create a complete solution. 

20.2 Feature Overview 

20.2.1 Scan 

The 21464 has committed to implementing some amount of debug logic specifically 
targeted at observing and controlling the processors flow. The trick is to carefully bal
ance the cost with the benefit. The overall guideline is minimal area penalty ( <5%) and 
to avoid any speed penalty. The current plan is to support debug with the following glo
bal structures. 

Manufacturing test is the driving force behind the Scan and BiST implementation but 
this infrastructure also allows for significant debug visibility to internal states. The 
21364 model of multiple scan islands, each with multiple scan chains, is also the plan of 
record for the 21464. This methodology requires scan on only a small percentage of the 
latches but allows almost any latch to be included in the chain if desired. Detecting dif
ficult stuck-at faults is the most common reason for adding latches to the scan chains, 
but debug visibility is an equally good reason and designers should be encouraged to 
make as many important states as possible visible through scan. 

When considering what to add to the scan chains for debug remember that although 
scan is an efficient way to extract the current state of a large number of signals, it is a 
destructive process that reflects only one instant in time. If the failure symptom is a 
hang, the problem that caused the hang can hopefully be deduced from the scanable 
state. When the failure symptom is dynamic (data corruption, application crash, etc.), 
narrowing in on a point in time where incorrect behavior can be observed through scan 
is much more difficult. 

BiST can help. The BiST engines in the 21464 will have a read-out mode that extracts 
the internal state into the scan chain. Structures like the register file, pc and branch his
tory tables can be completely dumped through the scan paths. Counters, fifo's or other 
structures that preserve some extended state can also provide some historical informa
tion to the scan dump. CAM structures like the TBs are directly dumpable even 
through BiST. Additional debug hooks will need to be designed into CAMs if they are 
to be dumped through scan. 

Compaq Confidential 
20-2 Hardware Debug Features 5 Januc1ry 2001 - Subject To Change 



Feature Overview 

Aside from ensuring the correct information is scanable, the major issue relating to scan 
for debug is how to activate the scan dump. 

20.2.2 Trace Bus 

The traditional method of debugging hardware in the lab is to attach a logic analyzer to 
some number of pins, find a trigger condition near the failure and infer internal opera
tion from the pin trace. Compared to processors of just a few years ago, the 21464 
more closely resembles a system on a chip. The information needed to understand the 
events surrounding most failures is buried deep in the processor inaccessible to tradi
tional oscilloscopes or logic analyzers. Our solution for the 21464 is to embed the logic 
analyzer functions directly into the silicon. 

A logic analyzer type trace differs from a scan dump in that it provides a continuous 
view of signal state over a large number of cycles. The number of signals that can be 
traced is very small but the time window is large. The 21464 will be able to trace up to 
36 signals over a window of 64 million cycles. 

Figure 20-1 Trace Bus Timing Relationships 

-.(Trace 

Time 

The signals captured on the trace bus will be dumped off-chip through the redundant 
RDRAM channel where software can later recover and process the information. Since 
this channel runs at a fixed 800Mhz, the full 36-bits can only be dumped when the core 
is running at or below 800Mhz. Between 800Mhz and 1.2Ghz the channel will be lim
ited to 27-bits. Between 1.2Ghz and 1.6 Ghz 18-bits can be dumped and above l.6Ghz, 
9-bits per cycle is all that can be traced. 

The selection of which 36 bits to trace will be somewhat programmable but degree of 
flexibility is still undecided. The simple approach is to allow each box to selectively 
drive any or all of four 9-bit chunks. Once the list of signals that can be traced is avail
able we can better evaluate whether more sophisticated sharing is necessary. 

Each box can make many more than 36 signals available for tracing, but software must 
select no more than 36 at once. Multiple runs can collect multiple 36-bit traces but 
exact cycle-to-cycle reproducibility may not be possible and will make correlation of 

Compaq Confidential 
5 January 2001 -~Subject To Change Hardware Debug Features 20-3 



Global Support 

multiple traces difficult. When selecting signals to be traced, consider generating 
marker signals that could give a strong correlation among multiple traces. A signal 
indicating the PC matched some address within a loop would give a strong indication of 
how to overlay two traces. 

20.2.3 Internal Processor Registers 

The ability to read/write internal processor registers exits for many reasons other than 
debug but it also plays a major role in supporting debug. Values that are readable can 
provide good visibility into the current state of the machine and can allow software to 
watch for situations that may be causing or symptomatic of a failure. Status bits, aggre
gate counters and the ProfileMe registers are excellent examples of planned readable 
Internal Processor Registers that hold valuable information to debug. Debug is a per
fectly valid reason to make additional information readable through IPRs. 

IPR readability differs from scan and trace by being both non-destructive and immedi
ate. Debug or workaround software that is trying to evaluate if the machine is in trou
ble could use the information to trigger a scan or trace dump. This is the primary 
consideration when determining if a signal should be tracable, scanable or readable. 

Writable IPR bits are a major part of the low-level infrastructure. The debug process 
also needs writable IPR bits for two functions. First, IPRs will be used to customize the 
selection of signals to trace as well as the trigger conditions for the trace bus and scan 
chains. Writes to flow control or configuration IPRs will also be the primary method to 
alter chip behavior and avoid conditions that are not reliable. Even if the controls are 
insufficient to 

20.2.4 Derived Signals 

None of the methods described above provide visibility to more than a small fraction of 
the total internal state. Often some form of internal processing can significantly 
increase the information content. Encoders, programmable counters and comparitors 
are examples of simple structures that compress the information. 

A comparison match against a PC or memory address is an example of a very valuable 
derived signal. It is only one bit vs. a 64-bit virtual address, makes an excellent marker 
in a trace file, could be used as a trigger for the scan or trace dump or even a PAL trap 
that could do some fix-up and prevent a bug from propagating. 

20.3 Global Support 

20.3.1 Scan 

The debug process will leverage the existing scan for manufacturing support as much as 
possible. Additional capabilities that will be added include: 

1. The ability for the BiST engines to dump the existing contents of structures onto 
the scan paths. The traditional BiST engine overwrites the existing contents first 
then reads and computes a signature. In debug mode, the overwrite phase will be 
skipped and the reads will be sequencing to deposit the data onto the scan chains. 

Compaq Confidential 
20-4 Hardware Debug Features 5 January 2001 - Subject To Change 



Global Support 

2. The ability for internal trigger conditions to initiate a scan dump operation. The 
21464 will have a fairly elaborate mechanism to detect internal events which may 
indicate a failure. The output of this detection circuit (the trigger) can be used to 
initiate a scan dump operation. QUESTION: How does the external logic (that 
captures the dump) know the scan operation is in progress? 

20.3.2 Trace Bus 

The Trace bus is a 36-bit bus that winds through the chip touching the section or sec
tions of debug logic in each box. It terminates in the Cbox where the data is multi
plexed onto the redundant channel in debug mode. When debug mode is enabled the 
Cbox will continuously dump until signaled to stop. Every 64M (or is it RDRAM 
depth?) cycles the addresses will wrap and start overwriting previously collected trace 
data. The bus will be highly pipelined with latches positioned wherever necessary to 
avoid timing problems. The bus will take a low priority in routing, utilizing low/slow 
metal and winding around congestion whenever necessary. 

Figure 20-2 Trace Bus Routing 

----· ------· ---·· ------· ---·. 
==----------------------------

::::::::::::::::::::::::::::::...__ ____ ___, 

Each point will to either source or repeat the value on to the next point in the chain. An 
enable bit will be used to quiesce the bus when tracing is not enabled. The trace bus 
control signals will likely be distributed through the standard IPR mechanisms rather 
than from a centralized debug control section. Another suggestion was to utilize a 
serial channel to distribute the controls in much the same way the scan control informa
tion is distributed to the control registers in the scan islands. 

There is no need to synchronize the injection of data onto the trace bus. Any skew 
between traced signals relative to the architectural pipeline can be adjusted for when the 
trace data is extracted and analyzed. This also eliminates any dependencies on the 
number of stages or order of connection to the trace bus. Once the final structure of the 
bus is known, it will be important to specify the timing of each traceable signal relative 
to a common point so software can reassemble and interpret the data. 

***The address of the last location written to the RD RAM will need to be readable so 
software can unwind the trace. If this is a problem we could burn a bit in the data 
stream that inverts with each pass, but that would be a waste of a precious resource. 

Compaq Confidential 
5 January 2001 ···Subject To Change Hardware Debug Features 20-5 



Global Support 

20.3.3 Trigger Logic 

On a 1.5Ghz chip even 64M samples is only l/20th of a second of information. Some 
means to stop/initiate the data collection process near the probable cause of a failure is 
required. The proposed trigger will accept one or two trigger signals from each box, 
combine them, and count the hits. When the counter reaches some programmable 
value, the global trigger will assert and cause one of the following events: 

• 
• 
• 

Stop trace capture 

Initiate scan dump 

Trap to PAL 

The trigger signals generated by each box are assumed to be a boolean combination of 
interesting status signals within the box. The Ibox may signal the trigger logic when it 
detects a specific PC, or detects an Icache miss at a specific PC or takes a cache miss at 
a specific PC that is a mispredicted branch. 

How the global trigger combines the box triggers is still under debate. The simple 
approaches are to either OR the signals or select a specific signal to use. More complex 
approaches involve PLA type functions. A more precise definition of the types of trig
ger conditions that would be useful to create needs to take place before precisely defin
ing the method of combining the signals. 

Figure 20-3 Trigger Logic 

~o 
~ 
~~ 

~~----
qboxtriggery"'--'-=--\ inc I Counter 

~ vomume 

<Xfl~~/ 

~ 

scan dump 

Delay 

Another good suggestion was to place a variable delay after the global trigger. If a 
reproducable trigger could be found relatively near an interesting event, the variable 
delay would be useful in conjunction with the scan dump to capture several positions 
near the failure. The variable delay might also be useful to delay stopping the trace 
dump until the interesting data surrounding the failure has been written into the 
RD RAMs. 

The dynamic range of the two counters is an interesting question. The basic mechanism 
should degenerate into a "fire after n cycles" (increment every cycle, set threshold ton) 
or a "fire on first occurrence" (inc when signaled, set threshold to 1 ). The counter 
should probably be in the 16-24 bit range, the delay is probably more like a 10-bit 
value. 

PALcode can directly force a scan dump or stop the trace collection. The operational 
model would be to trigger into PAL and examine the machine state. If not near the 
expected failure, continue otherwise dump. Writing the threshold to zero, the delay to 

Compaq Confidential 
20-6 Hardware Debug Features 5 Jc1nuc1ry 2001 ··· Subject To Change 



Box Support 

zero and setting the scan_dump_en bit would force a scan dump. The trace dump is 
started by setting an IPR bit and stopped by either clearing the bit or when the trigger 
fires to stop the trace. 

It would also be desirable for external logic to be able to activate the trigger and for the 
trigger signal to be sent externally. This would allow multiple chips to trigger each 
other or for an external logic analyzer to trigger or be triggered in conjunction with the 
internal logic. An external interface, maybe the JTAG port that could trap to PAL and/ 
or manipulate IPRs and memory would allow a simple configurable monitor to be cre
ated. 

20.4 Box Support 

20.4.1 lbox 

Each box needs to: 

1. Identify the states and structures that will be most useful to debug and determine 
which of the techniques (scan, trace, IPR) is best suited to provide visibility. The 
box verification teams should play an active role in the definition. 

2. Define the interesting trigger conditions and any interactions with other boxes that 
should be considered when developing the global trigger conditions. The number 
of triggers sent to the global trigger logic should also be defined. 

3. Define the IPRs necessary to support the debug features. These registers should 
include trigger condition controls, trace bus controls, counter or comparison values 
and general readable or writable signals for debug. To allow multiple boxes to 
drive pieces of the trace bus, some type of swizzling (4:1 mux) at each box would 
ensure that combinations of signals are not inaccessible because they share a fixed 
bit position. 

4. Review the BiSTable structures to ensure the contents are readable for debug. 
Given the value to debug of most structures large enough to contain BiST, struc
tures that will not be readable should be clearly identified and discussed. 

5. Identify the point or points within the box where the trace bus should be routed. 
The bus needs to be identified in the global floorplan. 

The following is a list of items suggested during recent discussions about debug fea
tures. It does not represent a complete list or even a committed list but rather a seed for 
thought as the individual boxes begin to develop official plans. 

The Ibox must: 

• 
• 

• 
• 
• 
• 

Allow the PC to be traced. Must include thread ID . 

Include a programmable PC comparitor. The output should be tracable as a marker 
and usable as a trigger. 

Make the TPUalive status bits IPR readable and tracable . 

Trace many of the PR_FE_INFO bits 

Trigger on the profiled instruction issuing . 

Make the PC comparison match tag an instruction for profiling . 

Compaq Confidential 
5 January 2001 - Subject To Change Hardware Debug Features 20-7 



Software Support 

20.4.2 Pbox/Qbox 

The Pbox and Qbox must: 

• Trace INUM allocation and kill sequences. 

• Trace LSNUM allocation and high-water marks. 

• Consider implementing some model assertion checks as debug trigger conditions. 

• Bits to unwedge a hung tpu. 

20.4.3 Ebox/Register File 

20.4.4 Mbox 

The Ebox and Register File must: 

• Encode and trace TPU for all pipes. 

• 

• 

Add programmable instruction trigger. Detect specific opcode/function/tpu/pipe
line patterns and trigger on a match. 

BiST dump entire register file contents . 

The Mbox must: 

• 

• 
• 

Include both virtual and physical address match comparison logic. Trace and trig
ger against matches. 

Trace inputs to exception funnel. 

Trace the PR_MEM_INFO bits (except VA) . 

20.5 Software Support 

Extracting 64M samples from the RDRAMs and reassembling the data in some useful 
way will take some assistance from various pieces of system software. Reset modes 
need to be created that will ensure the information is not lost or overwritten. Boot flags 
will need to be defined that cause the information to be extracted and saved or left 
untouched during the boot process. Either PAL or OS hooks will be needed to make the 
trace data available to an application for processing. And the application that process 
the trace data needs to be written. 

Console, PAL and/or OS hooks will need to be added to allow state to be monitored and 
trigger conditions manipulated relative to initiating a failure. 

Anyone who has been close to this process in the past is encouraged to help define the 
software features that will best optimize the debug process. 

Compaq Confidential 
20-8 Hardware Debug Features 5 Jc1nuc1ry 2001 -·Subject To Change 



21 
Testability and Diagnostics 

The Tbox provides the testability strategy and test solutions. The Tbox provides a com
prehensive tester-driven access to the chip's testability features during manufacturing as 
well as allows a simple automatic chip-initiated access that leverages the same features 
during normal chip operation. The testability features themselves are scattered through
out the chip, implementing various components of the testability strategy, namely, self
test, self-repair, internal controllability and observability for debug diagnosis, manufac
turing test and test pattern development. See [1] for details of the testability strategy. 

Figure 21-1 shows the basic contract between the Tbox and a test target in the 21464. A 
Test Target is simply a functional block under test for which hardware test assist, that is, 
design for test feature is desired. For example, Icache, Dcache and Scache arrays, Reg
ister file, TLB are some test targets. The testability feature implements engines that 
exercise test algorithms or provide controllability and observability required for testing 
the test target. The Satellite Interface Unit provides the local control of the testability 
feature and communicates with the Central Controller for the transport of test com
mands and test data and results. 

Figure 21-1 Basic Tbox Contract 

The Test Target, the Testability Feature, the Satellites Interface Unit together make up a 
generic test satellite. The 21464 has a number of such test satellites. The Central Con
troller communicates with all test satellites in the chip over dedicated test command 
broadcast buses and interlaces with the test pins to provide comprehensive and orderly 
control of and exchange of test data/results with test features. 

Compaq Confidential 
5 January 2001 --·Subject To Change Testability and Diagnostics 21-1 



Global Block Diagram 

The Central Controller, the Satellite Interface Units and the Testability features in the 
distributed test satellites, the tets pins and the various test command broadcast busses 
and the the test data lines make up the bulk of the Tbox . 

. 21.1 Global Block Diagram 

Figure 21-2 shows the global block diagram of the Tbox. The Tbox consists of three basic com
ponents: the Central Controller; the distributed test satellites that house the function under test 
and their testability features; and the test command broadcast buses connecting the Central Con
troller and the distributed test satellites. The test satellites have serial input and output data ports 
that are daisy-chained to form scan rings with the Central Controller. 

Figure 21-2 Tbox Global Block Diagram 

TbaxReset_L 

SromDfta_H .::::· 
SromClk_H 

ScanMcde_H :::::·. 
ScanShill_H ·::::· 

ScanDln_H(3,0) :::::· 
ScarDOut_H(n,O) 

Teststatus _H_H 

Ltcb(1,o) 

stct(2,0) 

SerialO 

Serialln 

Jtcb(2,o) 

21-2 Testability and Diagnostics 
Compaq Confidential 

5 Jc1nuc1ry 2001 ·- Subject To Change 



Global Block Diagram 

The Central Controller is based on the IEEE 1149.1 TAP. It receives commands from 
both the IEEE 1149.1 TAP and the automatic chip agents (such as chip's reset state 
machine), encodes them into command packets and distributes them to the test satellites 
over five distinct test command broadcast buses. 

The test satellites are organized into five general groups. Each is serviced by the Central 
Controller by a dedicated test command broadcast bus and one or more pairs of serial 
data lines. 

Sections 21.1.1through21.1.5 describe the five groups of Satellites. 

21.1.1 Group 1 - Array BiST/BiSR Satellites 

This group consists of the satellites with large array structures with self-test and self
repair features. The satellites in this group are the most comprehensive. Each has sub
stantial Built-in Self-Test (BiST) and Built-in Self-Repair (BiSR) engines and each has 
sophisticated Satellite Interface Unit capable of supporting a multitude of local test fea
ture control and exchanging test data with tester via the central controller. This group is 
accessed both externally from a tester and internally by the chip-initiated automatic 
actions. 

The group is serviced by a 3-wire Array Test Command Bus ATcb_h(2,0). Table 21-1 
lists the commands supported ny the bus. The satellite itself is described later. The 
!cache Data, Tag, and Line Predict arrays, the BHT array, the Dcache Data and Tag 
arrays, the Register File, the Scache Dtata and Tag arrays are expected to belong to this 
group. 

Table 21-1 Array Test Command Broadcast Bus 

Atcb(2,0) Command 

111 ATNop 

110 ATShiftTcr 

101 ATShiftTdr 

100 ATDolt 

011 ATDoBiST 

010 ATDoResult 

001 ATDoQuicklnit 

000 ATDoReset 

21.1.2 Group 2 - BiSt Satellites 

Purpose 

No operation. 

Shift Test Command Registers (Tcrs) in satellites. 

Shift the test data registers selected by Tcrs. 

Initiate execution. 

Chip initiated simultaneous BiST in satellites. 

Chip initiated simultaneous result extraction from satellites. 

Chip initiated simultaneous quick-init of embedded RAMs 
and other structures in satellites. 

Reset all satellites. 

This group also consists of array structures with only self-test support. The tets feature 
do not have as many test modes as in the Group 1 satellites and the only darta 
exchanged with the Central Controller is the Pass/Fail result and occasionally address 
map. The satellite's test feature consists of simple BiST engine. The satellite interface 
unit is also simple with limited capabilities. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Testability and Diagnostics 21-3 



Test Pins 

This group is serviced by a 2-wire test command broadcast bus called B tCB(l ,0). Table 
21-2 lists the boradcast commands on this bus. A number of smaller enbedded RAM 
arrays, CAM arrays such as TLBs etc are expected to belong to this group. 

Table 21-2 Simple BiSt Command Bus 

Btcb(1,0) Command Purpose 

11 BTNop DoBiST 

10 ATShiftTcr Shift Test Command Registers (Tcrs) in satellites. 

01 ATShiftTdr Shift the test data registers selected by Tcrs. 

00 ATDoReset Reset all satellites 

21.1.3 Group 3 - Observability Registers {LFSRs) 

This group consists of the observability registers. Unlike the arrays and their self-test 
features with multiple modes in the first group, the observability registers are highly 
uniform and require a simple satellite interlace unit. This unit can turn on the observa
tion, shift out the contents and selectively bypass itself in a chain. This group is con
trolled by the two-wire observability register command bus RTcb_h(l :0). The 
commands are listed in Table 21-3 .. 

Table 21-3 Observability Register Command Bus 

LCB(1:0) 

00 

01 

10 

11 

Command 

RTNop 

RTShiftTcr 

RTShiftTdr 

RTCapture 

Purpose 

Observability registers inactive. 

Shifts control bits in observability register satellite interface 
units 

Shifts through observability registers to initiaiize it or off-ioad 
signatures. 

Captures chip data for test and debug. 

21.1.4 Group 4 - Scan Islands {TBD) 

21.1.5 Group 5 - Boundary Scan Register 

The boundary scan register cells are located at the I/O pins. There is no satellite interface unit, but the broadcast 
from the Central Controller directly controls each boundary scan register cell. 

21.2 Test Pins 

The Testability Access Architecture uses both dedicated and some shared pins. Table 21-4 lists the dedicated pins. 
Table 21-5 lists the shared pins. 

21-4 

Table 21-4 Dedicated Test Port Pins 

Pin Name 

Tms_H 

Tdi_H 

Trst_L 

Testability and Diagnostics 

Type 

Input 

Input 

Input 

Function 

IBEE 1149 .1 test mode select 

IBEE 1149 .1 Test data in 

IBEE 1149.1 test logic reset 

Compaq Confidential 
5 January 2001 -·Subject To Change 



Central Port Controller 

Table 21-4 Dedicated Test Port Pins (Continued) 

Pin Name Type Function 

Tck_H Input IEEE 1149 .1 test clock 

Tdo_H Output IEEE 1149.1 test data output 

SromData_H Input SROM data/Diagnostic terminal data input. 

SromClk_H Output SROM clock/Diagnostic terminal data output 

SromEn_L Output SROM enable/Diagnostic terminal enable 

ScanMode_H Input Scan Mode Control (place holder) 

ScanShift_H Input Scan shift operation control 

Table 21-5 Shared Test Pins 

Pin Name Type Test Function/Normal Function 

TestStat_H Output BiST status/timeout output 

DumpDataO_H( 63,0) 

DumpValidO_H 

DumpDatal_H( 63,0) 

DumpValidl_H 

ScanDatain_H(3,0) 

Output 

Output 

Output 

Output 

Input 

Bitmap-LFSR Dump port-0/Tbd 

Bitmap-LFSR Sample valid for port-0/Tbd 

Bitmap-LFSR Dump port-1/Tbd 

Bitmap-LFSR Sample valid for port-1/Tbd 

Scan Data Inputs/Tbd 

ScanDOut_H(3,0) Output Scan Data Outputs/Tbd 

21.3 Central Port Controller 

The Central Port Controller links the external world with the testability features. It 
broadcasts test commands to control test operation exchange test data between the test 
controller (tester) and the testability features. It is an IEEE 1149.1 based controller that 
accesses both the standard compliant features and the chip manufacturing test features. 
The later are accessed synchronously with CPU clock. 

Figure 21-3 shows the block diagram of the Central Port Controller, which consists of 
the: 

• 
• 
• 
• 
• 
• 
• 
• 

IEEE 1149.1 TAP Controller 
Timing Control Unit 
Configuration Flags and Fire Wall 
SROM Engine, Reset Engine 
OutputMux 
Dispatch Units for the IEEE 1149 .1 
Cache 
LFSR featues 

Compaq Confidential 
5 January 2001 ··· Subject To Change Testability and Diagnostics 21-5 



Central Port Controller 

Figure 21-3 Central Port Controller 

serial Lim j/f to 
!Box gclk _h 

21.3.1 IEEE1149.1 Test Access Port Controller 

This is the IEEE 1149.1 compliant Test Access Port Controller. The port's pin interface 
consists of Tdi_H, Tdo_H, Tms_H, Tck_H, and Trst_L pins. 

The port supports access to the IEEE 1149 .1 mandated public test features as well as 
several chip manufacturing test features. The scope of 1149 .1 complaint features on the 
21464 is expected to be limited to the board level assembly verification test. The sys
tems that do not intend to drive this port MUST terminate the port pins as follows: pull
ups on Tdi_H and Tms_H, pull-downs on Tck_H and Trst_L. 

The controller is clocked by the Clock Control Unit. It is clocked externally by the test 
clock Tck_H during normal operation, and internally by the cpu clock during synchro
nous manufacturing operation. 

Compaq Confidential 
21-6 Testability and Diagnostics 5 Janwiry 2001 ~·Subject To Change 



Central Port Controller 

The Port Controller consists of the TAP Controller State Machine, the Instruction Reg
ister, the Bypass Register, and the TDO Mux. The Bypass Register provides a short 
shift path through the chip's IEEE 1149.1 logic. It is generally useful at the board level 
testing. It consists of a 1-bit shift register. 

The Instruction Register holds test instructions. It is 8-bit wide. Section 4.9 lists (Table 
8) and describes the instructions supported on the 21464. 

Figure 21-4 shows the TAP Controller State Machine state diagram. Tms_H controls 
the state transitions. The transitions occur with the rising edge of clock .. The TAP state 
machine states are decoded and used for initiating various actions for testing. 

The Output Mux steers the output from the various testability shift registers in the chip 
to the Tdo_H pin. 

Figure 21-4 TAP Controller State Machine 

ti-reset 

0 

21.3.2 Port Configuration and Firewall Logic 

21.3.3 Clock Control Unit 

21.3.4 Tbox Reset Engine 

0 

0 

0 

1 
update-ir ------

1 0 

The Reset Engine controls the flow of automatic BiST/BISR, self-init, and lcache ini
tialization operations. 

The Reset engine consists of the Reset State Machine and the IRESET flag, and the 
Master BiST Counter. Figure 21-5 shows the flow diagram of the Reset Engine. The 
engine is triggered upon detection of the chip reset deassertion edge. MRESET and 
DONTBIST flags determine the path through the flow diagram. Do-Array-Test state 
either performs the simultaneous BiST or self-init. Do-Results state extracts the result 

Compaq Confidential 
5 January 2001 -~ Subject To Change Testability and Diagnostics 21-7 



Central Port Controller 

of BiST from the test satellites. IRESET flag holds reset to the internal chip logic. The 
flag is set by the chip reset and deasserted by the Reset State machine returning to the 
Idle state. Figure 21-6 shows the reset engine state machine. 

Figure 21-5 Tbox Reset Engine 

ToJfrom 
KB ox 

F ireV\/all & 
Config. 
Flags 

SROM 
Engine 

P crtcon11aJ 

.QoSrom .,. 

SromDcne 

Figure 21-6 Tbox Reset Engine State Diagram 

..... SELFINIT 
/do_bist-asr 

21.3.5 SROM Engine 

'I--------... ~ Satellite 
·-------;.-Broadcast 
, _____ _.. .... bus 

-., dis pate h 
units 

The SROM Engine controls the serial initialization of the Cbox configuration bits and the instruction cache array. 
The SROM Engine drives the SROM pin interface as well as controls the shift and write operation in the Icache 
test satellites. Normal loading occurs at the rate of 1 bit per 256 CPU cycles. If FASTSROM is set, the loading 
occurs at the rate of one bit per 16 CPU cycles. The maximum rate at which the port may be operated is limited to 
one-bit per 160 nanoseconds. Thus, the fast SROM loading is usable only if the CPU clock is slowed down, for 
example, at wafer probe. 
Figure 21-7 shows the state diagram of the SROM Engine. The engine is triggered by reset engine upon entry into 
the DOSROM state. It first loads the Cbox configuration registers followed by the Icache address counter. The 

Compaq Confidentia I 
21-8 Testability and Diagnostics 5 Jc1nuc1ry 2001 -· Subject To Change 



Central Port Controller 

value shifted in the lcache address counter determines the number of fetch blocks to be filled. Unlike the previous 
generations of Alpha microprocessors, EV6 allows variable amount of lcache to be filled. In the next step, engine 
loads each fetch-block in reverse order. See Section 9.2 for the details of the SROM map and SROM operation. 

Figure 21-7 SROM Engine State Diagram 

shift write shift CBOX 
data & no. of 
fetch blocks to 

fetch block fetch block 

fetch block ountcount = 0 

This port supports two functions. During power-on, It supports automatic initialization 
of the Cbox configuration registers and the instruction cache (!cache) from the system 
serial ROMs. After power-on, it supports a serial diagnostic terminal terminal. 

During SROM load: 

• The Srom_OE_L pin supplies the output enable as well as the reset to the serial 
ROM. (Refer to the serial ROM specifications for details.) The 21264 asserts this 
signal low for the duration of the lcache load from the serial ROM. Once the load is 
complete, the signal remains deasserted. 

• The Srom_Data_H pin reads data from SROMs. 

• The Srom_Clk_H pin supplies the clock to the SROMs that causes it to advance to 
the next bit. Simultaneously, it causes the existing data on Srom_Data_H pin to be 
shifted into an internal shift register. The cycle time of this clock is 256 times the 
CPU clock rate. (If FASTROM flag is set, the rate is 16 times the CPU clock rate.) 
The hold time on Srom_Data_H is 2* CPU Cycle time with resepect to the 
Srom_Clk_H. 

Once the lcache load is complete, the port reconfigures into a simple software-timed 
serial line interface, similar to RS422, that may be used for system debug and diagnosis. 
In a system the serial line interface is automatically enabled if the Srom_OE_L pin is 
wired to the active high enable of an RS422 (or 26LS32) driver driving to 
Srom_Data_H and to the active high enable of an RS422 (or 26LS31) receiver driven 
from the Srom_ Clk_H pin. 

After reset, the Srom_Clk_H pin is driven from the sl_xmit bit I_CTL (13) in the Ibox 
IPR. This IPR is cleared during reset, so it will start driving as a 0, but it can be written 
and modified by any program. The data becomes available at the pin after retire of the 
HW _MTPR instruction that write the sl_xmit bit. (Remember that the output only 
changes after retirement of the HW _MTPR which can take a variable number of cycles 
depending on machine state.) 

On the receive side, while in native mode, any transition on the sl_rcv bit (I_CTL(14) 
driven from the Srom_Data_H pin result in a trap to the pal interrupt handler (assuming 
that the serial line interrupt enable bit is set in the SIRR). Once in pal mode, all inter
rupts are blocked. The interrupt routine can then begin sampling the sl_rcv bit in the 
I_CTL ipr under a software timing loop to input as much data as needed using whatever 

Compaq Confidential 
5 January 2001 -· Subject To Change Testability and Diagnostics 21-9 



Dot1 Test Decode and Dispatch Logic 

serial line timing protocol chosen. The delay between transition on the pin and interrupt 
trap is TBD, but probably around 5 cycles or so. For complete description of IPRs asso
ciated with this interface refer to IPR Chapter. 

21.4 Dot1 Test Decode and Dispatch Logic 

This logic controls the operation of the boundary scan register and the Die-ID register. 
It basically decodes the instructions held in the Port Controller and combines the same 
with suitable TAP Controller state machine decodes to generate control signals. 

When BSRDLY instruction is loaded, bsr_drv_pins_h, bsr_highz_h, bsr_capture_h, 
bsr_update_h, signals are con ected back-to-back to form a long inverter delay path 
consisting of 780x4 = 3120 inverters with a nominal delay of approximately 624ns. 
This delay path may be used for predicting the speed performance of a die. 

Compaq Confidential 
21-10 Testability and Diagnostics 5 Jam.1ary 2001 ···Subject To Change 



Disruptions 

22 
Error Detection and Error Handling 

22.1 Disruptions 

We need a word for "Interrupts and Exceptions". We will use the word disruption to 
describe an event that could be either an interrupt or an exception. 

A disruption will be delivered - that is, it will start the events in motion that cause the 
change in program flow - from one of three points in the pipeline. 

• 

• 

• 

Retire-time delivery - Most disruptions will be delivered when the instruction that 
caused them retires. 

Execution-time delivery - Some disruptions, whose rapid handling is important to 
performance, will be delivered when their triggering instruction executes. 

Pre-map time delivery - A few disruptions, including all interrupts, will be deliv-
ered before the triggering instruction has reached the INum map stage. 

Besides delivery time alone, disruptions are divided into several classes. The first divi
sion is into Pre-map and Post-map disruptions; the former have no INums associated 
with them, while the latter do. Post-map disruptions with PALcode handlers are further 
divided into those delivered at execution time, i.e. DTB misses only, and those deliv
ered at retire time, which includes everything else. Micro-traps, which have no associ
ated PALcode flows, can have either execution-time or retire-time delivery depending 
on the cause. Pre-map disruptions are subdivided into Internal IBox disruptions, such as 
ITB misses, and Interrupts proper - both from hardware and software sources. Finally, 
there is a special class of disruptions, Machine Checks, which signify fatal hardware 
errors. 

The PBox Bid/grant Exception Logic (BEL) prioritizes all post-map disruptions. It puts 
execution-time disruptions from all sources (not just PALcode-assisted ones) through a 
structure known as the Exception Funnel (or Efunnel) and picks the oldest. The BEL 
also monitors whether the Completion Unit (CU) in the QBox is posting a retire-time 
exception (RTE) for this TPU. RTE's are reported to directly to Completion Unit, or to 
the QBox Inflight Table (from whence they flow into the CU), depending on at what 
point in the Arafia pipeline they are detected. A valid retire-time exception will always 
take priority in the BEL, since a retiring instruction is by definition the oldest in the 
CPU. The IBox uses an algorithm to arbitrate between pre-map and post-map disrup
tions. Briefly, every cycle the IBox services disruptions with the following priority: 

1. Post-map 

2. IBox internal 

Compaq Confidential 
5 Jatwary 2001 --· Subject To Change Error Detection and Error Handling 22-1 



Disruptions 

3. Interrupts 

Interrupts are postponed in favor of IBox internal disruptions, which are deferred in 
favor of post-map disruptions. If the IBox has decided to take a post-map disruption, it 
stores the INum of the disrupting instruction and tells the BEL to broadcast the kill. The 
IBox will accept no younger post-map disruptions for a fixed period of time - enough 
for the kill to take effect across the chip, but not so long as to ignore valid disruptions 
on the new good path. However, the IBox will restart the disruption flow if an older dis
ruption is signaled. For taken post-map disruptions, the BEL vectors the IBox into the 
appropriate PALcode flow, while on pre-map disruptions the IBox redirects itself. For 
all taken PALcode-assisted disruptions, IBox starts fetching down the PALcode path 
after saving the correct return PC. Note that there is a special class of interrupt, RESET/ 
WAKEUP, which has a PALcode entry point that the IBox only vectors into when a 
TPU is restarted or woken from sleep mode. 

It should be noted that there is an important consequence to delaying the taking of cer
tain disruptions until retire time. This means that all of the data needed to identify and 
rectify the disruption must be stored somewhere in the time between the error event and 
the retirement of the instruction. Although the details are still being worked out, our 
current plan is to store most of the retire-time disruption type information in the Com
pletion unit in a compressed form. We have also defined, coded up, and reviewed the 
Virtual Register Table (VRT) in the PBox, which supplies the virtual source or destina
tion of the faulting instruction (depending on the exception type) for a particular class 
of disruptions that require it. 

Keep in mind that there are many error cases that can occur in different parts of the chip 
which do not rise to the level of disruptions. For instance, !Cache misses and line 
mispredictions are not only not visible architecturally, but they are handled entirely 
within the IBox without intervention or assistance from any other part of the CPU. 

Compaq Confidential 
22-2 Error Detection and Error Handling 5 Jc1nuc1ry 2001 -~ Subject To Change 



Disruptions 

22.1.1 High-Level Features 

Text goes here ..... . 

Table 22-1 Key to Table 22-2, "Summary of Disruption High-Level Features' 

Heading 

Name: 

Posted Time 

Restart PC: 

Kill Point: 

Meaning 

Name of exception, interrupt, trap, and so forth, such as Integer Overflow. 

Point in time when disruption is delivered. 

Values Meaning 

Interrupt Asynchronous with respect to instruction stream, lower priority 
than other disruptions. Reported to Ibox PCC. 

N-M Interrupt At interrupt time but Non-Maskable - even by PALcode. Reported 
to Ibox PCC. 

Reset At interrupt time but taken unconditionally - that is, with highest 
priority of all disruptions. Reported to Ibox PCC. 

Pre-map Prior to mapping INum assignment of disrupting instruction. 
Reported to Ibox PCC 

Execution After mapping of disrupting instruction. Reported to Pbox BEL. 

Retire When disrupting instruction is next eligible to retire. Reported to 
Qbox CMP. 

Virtual address of post-disruption good path after handler (if any) relative to PC of dis
rupting instruction or interrupt victim. 

Values Meaning 

PC Disrupting instruction or interrupt victim. 

PC+ 4 Instruction after disrupting instruction. 

CBR/FCBR Target True branch target of mispredicted (integer/floating) conditional 
branch. 

Jump Target 

n/a 

True jump target of mispredicted jump. 

Code does not return from handler. 

Location of kill relative to disrupting IN um. 

Values 

At 

After 

n/a 

Meaning 

Kill disrupting instruction and all younger in TPU 

Kill instruction after disrupting instruction and all younger in TPU 

Not relevant- for example, is for pre-map disruptions) 

PALcode Entry Point: Name of PALcode disruption entry if any (for example, DTBM_SINGLE). 

Description: Textual explanation of disruption meaning, purpose, function, etc. 

Table 22-2 Summary of Disruption High-Level Features 

Posted Restart PALcode Entry Kill 
Name Time PC Point1 Point Description 

lbox Disruptions 

Bad Jump !stream VA Retire pc2 BAD_JUMP _IVA At Jump target is outside of current vir-
tual address space 

lbox Debug Trap Retire PC n/a At Placeholder for chip debug excep-
tion from Ibox 

Compaq Confidential 
5 January 2001 ··· Subject To Change Error Detection and Error Handling 22-3 



Disruptions 

Table 22-2 Summary of Disruption High-Level Features (Continued) 

Posted Restart PALcode Entry Kill 
Name Time PC Point1 Point Description 

!stream Access Violation Pre-map pc2 IACV n/a !stream access violation (prvilege 
mismatch or walk/branch out of IVA 
space) 

ITB Miss Single Pre-map PC ITB_MISS n/a Single level ITB miss (not in con-
sole mode) 

ITB Miss Single Console Pre-map PC ITB_MISS_ CONS n/a Single level ITB miss while in con-
sole mode 

Jump Mispredict Execution Jump Target n/a After Predicted Jump Target did not match 
true Jump Target 

Uncorrectable !stream ECC Error Pre-map pc2 IMCHK n/a Instruction fetch experienced an 
uncorrectable ECC error 

Ebox Disruptions 

Add Overflow Retire PC+42 AR ITH After Add/Subtract operation overflowed/ 
underflowed 

CBR Mispredict Execution CBR Target n/a After An integer conditional branch 
instruction was incorrectly predicted 

Ebox Debug Trap Retire PC n/a At Placeholder for chip debug excep-
tion from Ebox 

Floating-Point Disabled Fault Retire pc2 FEN At A legal FP instruction issued while 
the Floating-Point Enable (FPE) bit 
was deasserted 

IFETCHB Issued Retire PC+4 n/a After A IFETCHB instruction was exe-
cuted 

Illegal Instruction Retire PC2 OP CD EC At Thread not allowed to execute this 
instruction, or invalid opcode/func-
ti on 

Mui Overflow Retire PC+42 AR ITH After Integer multiply operation over-
flowed/underflowed 

Native Mode MT_FPCR Issued Retire PC+4 MT_FPCR After An MT _FPCR instruction has 
issued in user mode 

Mbox Disruptions 

Bad VA Alignment Execution pc2 UN ALIGN At Computed virtual address LSBs 
(VA<2:0>) not legal for datatype 

Bad VA Sign Execution pc2 DFAULT At Computed Dstream virtual address 
sign extension (VA<63:52>) not 
correct 

Dstream Access Violation Execution pc2 DFAULT At Process has insufficient privileges to 
load to/store from this page 

DTB Miss Double Execution PC DTBM_DOUBLE At DTB miss on LD_ VPfE with 
default page table configuration 

DTB Miss Double Alternate Execution PC DTBM_DOUBLE_ALT At DTB miss on LD_ VPfE with alter-
nate page table configuration 

DTB Miss Single Execution PC DTBM_SINGLE At Single level DTB miss (not in con-
sole mode) 

DTB Miss Single Console Execution PC DTBM_SINGLE_CONS At Single level DTB miss while in con-
sole mode 

Fault On (Read/Write) Execution pc2 DFAULT At Fault on Read or Fault on Write bits 
set in PfE for this VA 

Compaq Confidential 
22-4 Error Detection and Error Handling 5 Jam.utry 2001 -· Subject To Change 



Disruptions 

Table 22-2 Summary of Disruption High-Level Features (Continued) 

Posted Restart PALcode Entry Kill 
Name Time PC Point1 Point Description 

Load Data Parity Error Execution PC n/a At Data returned from the Dcache had 
bad parity 

Load Double-Bit ECC Error Execution pc2 MCHK At Load tag or data experienced an 
uncorrectable ECC error 

Load ErrResp from Memory Execution pc2 MCHK At Memory system returned an Error 
Response on a load 

Load Invalidate Execution PC n/a At TPU received an invalidate probe 

Load NXMResp from Memory Execution pc2 MCHK At Load attempted from Non-eXistent 
Memory 

Load Rambus Uncorrectable Error Execution pc2 MCHK At Rambus interface detected an uncor-
rectable error on a load 

Load Single-Bit ECC Error Execution PC n/a At Load tag or data experienced a cor-
rectable ECC error 

Load Tag Parity Error Execution PC n/a At Tag matching load VA experienced 
a parity error 

Load/Store Order Violation Execution PC n/a At Store executed out of order with 
respect to a load 

Load/Store Synonym Detection Execution PC n/a At Mbox has detected a virtual-to-
physical alias 

Mbox Debug Trap Execution PC n/a At Placeholder for chip debug excep-
tion from Mbox 

QUIESCE Execution3 PC+4 n/a After A QUIESCE instruction is about to 
retire 

Fbox Disruptions 

FCBR Mispredict Execution FCBRTarget n/a After A floating conditional branch 
instruction was incorrectly predicted 

FP Trap (SW = 0) Retire PC+42 AR ITH After Floating-Point trap without software 
completion 

FPTrap (SW= 1) Retire PC+42 AR ITH After Floating-Point trap with software 
completion 

FPCR Update Retire PC+4 AR ITH After Fbox requests an update of the 
FPCR 

Pbox/Qbox Disruptions 

Pbox/Qbox Debug Trap Retire PC n/a At Placeholder for chip debug excep-
ti on from Pbox/Qbox 

Cbox Reset Interrupts 

Cold Reset Reset n/a MILD_RESET4 n/a Cold start (power-on or platform/ 
remote reset) - initialize all state, run 
SROM and BIST 

Fast Reset Reset n/a FAST_RESET n/a Reset after loss of lockstep - initial-
ize core/caches, no SROM, no BIST 
- e.g. Tandem re-sync 

Mild Reset Reset n/a MILD_RESET n/a Reset after core HW error- initialize 
core, no SROM, no BIST 

Compaq Confidential 
5 January 2001 -- Subject To Change Error Detection and Error Handling 22-5 



Disruptions 

Table 22-2 Summary of Disruption High-Level Features (Continued) 

Posted Restart PALcode Entry Kill 
Name Time PC Point1 Point Description 

Tepid Reset Reset ri/a MILD_RESET4 ri/a Reset after system HW error - ini-
tiali:re core, system/memory inter-
faces, run SROM, no BIST 

TPU Restart N-M Inter- ri/a TPU_RESTARf ri/a Another TPU has requested a restart 
rupt 

Wakeup Reset ri/a WAKEUP ri/a Wakeup from sleep mode - initialize 
core/caches, no SROM, no BIST 

Cbox Service/Error Interrupts 

ALERT Interrupt Interrupt pc2 INTERRUPf ri/a A remote CPU has signaled an 
ALERT 

External Interrupt Interrupt pc2 INTERRUPf ri/a External hardware interrupt 

IP Bus Correctable Error Interrupt pc2 INTERRUPf ri/a Switchport experienced a correct-
able (single-bit) ECC error 

IP Bus Uncorrectable Error Interrupt pc2 INTERRUPf ri/a Switchport experienced an uncor-
rectable (double-bit) ECC error 

ProfileMe Service Interrupt pc2 INTERRUPf ri/a Data collection for a ProfileMe 
instruction pair is complete 

Rambus Correctable Error Interrupt pc2 INTERRUPf ri/a Rambus experienced an correctable 
(single-bit/RAID-correctable multi-
bit) ECC error 

Rambus Uncorrectable Error Interrupt pc2 INTERRUPf ri/a Rambus experienced an uncorrect-
able ( double-bit/RAID-uncorrect-
able) ECC error 

Scache Data Correctable ECC Error Interrupt pc2 INTERRUPf ri/a Second-level cache data experi-
enced a correctable (single-bit) ECC 
error 

Scache Tag Correctable ECC Error Interrupt pc2 INTERRUPf ri/a Second-level cache tag experienced 
a correctable (single-bit) ECC error 

Scache Uncorrectable ECC Error Interrupt pc2 INTERRUPf ri/a Second-level cache tag or data expe-
rienced an uncorrectable (double-
bit) ECC error 

Software Interrupt Interrupt pc2 INTERRUPf ri/a Software interrupt 

TPU PALmode Timeout N-M Inter- pc2 INTERRUPf ri/a A TPU has been in PALmode too 
rupt long 

Cbox Logging Interrupts 

Dcache Parity Error Interrupt pc2 INTERRUPf ri/a Data cache tag or data experienced a 
parity error 

Icache Parity Error Interrupt pc2 INTERRUPf ri/a Instruction cache tag or data experi-
enced a parity error 

Load IP Bus Parity Error Interrupt pc2 INTERRUPf ri/a Load switchport experienced a par-
ity error 

Oustanding DIFT Entry Timeout Interrupt pc2 INTERRUPf ri/a A forwarded DIFf entry has been 
outstanding too long 

Compaq Confidential 
22-6 Error Detection and Error Handling 5 Jc1nuary 2001 ·- Subject To Change 



Disruptions 

Table 22-2 Summary of Disruption High-Level Features (Continued) 

Posted Restart PALcode Entry Kill 
Name Time PC Point1 Point Description 

Outstanding MAP Entry Timeout Interrupt pc2 INTERRUPf n/a A MAP entry has been outstanding 
too long 

Store IP Bus Parity Error Interrupt pc2 INTERRUPf n/a Store switchport experienced a par-
ity error 

TPU Inst. Retirement Timeout Interrupt pc2 INTERRUPf n/a A TPU has not retired any instruc-
tions for too long 

1 See Table 22-3 
2 For these PALcode traps, the Restart PC is nominal; the PALcode handler may elect to not return to 

the trapping code flow (e.g. in the case of uncorrectable errors). However, this value still needs to be 
saved in the appropriate IPR. 

3 The disruption is reported via the execution-time interface, but only when the disrupting instruction is 
reported as next-to-retire on the Retire/Kill bus. 

4 Since both Cold Reset and Tepid Reset execute from SROM code, which essentially has its own 
address space, the 21464 overlays their entry points on top of the one for Mild Reset. 

Table 22-3 Disruption PALcode Entry Points 

Disruption PALcode Entry Points PC IPRs Implicitly Written 

Reserved1 

Available 

DTBM_DOUBLE 

DTBM_DOUBLE_ALT 

FEN 

UN ALIGN 

DTBM_SINGLE 

DFAULT 

OPCDEC 

IACV 

MCHK 

ITB_MISS 

ARI TH 

INTERRUPT 

MT_FPCR 

IMCHK 

DTBM_SINGLE_ CONS 

ITB_MISS_CONS 

BAD_JUMP _IVA 

FAST_RESET 

WAKEUP 

TPU_RESTART 

PB + xOOO 11fa 

PB+ x080 n/a 

PB + xlOO EXC_ADDR 

PB+ x180 EXC_ADDR 

PB + x200 EXC_ADDR 

PB+ x280 EXC_ADDR, EXC_SUM, VA, VA_FORM, M_STAT 

PB+ x300 DTBMS_RET_ADDR, EXC_SUM, VA, VA_FORM, M_STAT 

PB+ x380 EXC_ADDR, EXC_SUM, VA, VA_FORM, M_STAT 

PB + x400 EXC_ADDR 

PB + x480 EXC_ADDR 

PB+ x500 EXC_ADDR, M_STAT 

PB + x580 EXC_ADDR, IVA_FORM 

PB+ x600 EXC_ADDR, EXC_SUM 

PB + x680 EXC_ADDR 

PB + x700 EXC_ADDR 

PB + x780 EXC_ADDR 

PB+ x800 DTBMS_RET_ADDR, EXC_SUM, VA, VA_FORM, M_STAT 

PB + x880 EXC_ADDR, IVA_FORM 

PB + x900 EXC_ADDR, EXC_SUM 

PB + x980 11f a 

PB + xAOO 11fa 

PB + xA80 11fa 

Compaq Confidential 
5 January 2001 ~· Subject To Change Error Detection and Error Handling 22-7 



Disruptions 

Table 22-3 Disruption PALcode Entry Points (Continued) 

Disruption PALcode Entry Points PC IPRs Implicitly Written 

MILD_RESET PB+xBOO llf a 

DST_NXM PB+xB80 EXC_ADDR 

Available PB+xCOO n/a 

Available PB+xC80 llfa 

Available PB+xDOO llfa 

Available PB+xD80 n/a 

Available PB+xEOO llfa 

Available PB+xE80 llfa 

Available PB+xFOO llfa 

Available PB+ xF80 llfa 

1 PB + xOOO is reserved as entry point FROM the Swap PALcode (CALL_PAL SWPPAL) routine or 
the SROM boot codeinto the RESET code sequence. 

22.1.2 Low-Level Features 

Text here ..... 

Table 22-4 Key to Table 22-5, "Summary of Disruption Low-Level Features' 

Heading Meaning 

Name: 

Detected By: 

Name of exception, interrupt, trap, and so forth, such as Integer Overflow. 

box responsible for detecting the disruption. 

ETypeCode: Encoding of exception type communicated to the Ibox to determine its restart address 
(symbolic name defined in global I arana_traps. mnh) 

Completion Prevention: Method of preventing retirement of disrupting instruction or interrupt victim. 

Values Meaning 

Map 

Inflight 

Zap 

Never mapped. 

Invalidated in inflight table. 

Zapped/retire stalled in completion unit. 

Any other text here .... 

Table 22-5 Summary of Disruption Low-Level Features 

Name Kill Point Detected By EType Code 

lbox Disruptions 

Bad Jump !stream VA At Ibox AT_RTE_BAD_JUMP _IVA 

Ibox Debug Trap At Ibox AT_RTE_I_DBG 

Compaq Confidential 

Completion 
Prevention 

Inflight 

Inflight 

22-8 Error Detection and Error Handling 5 Jc1nw1ry 2001 ·- Subject To Cfumge 



Disruptions 

Table 22-5 Summary of Disruption Low-Level Features (Continued) 

Completion 
Name Kill Point Detected By EType Code Prevention 

!stream Access Violation n/a Ibox n/a Map 

ITB Miss Single n/a Ibox n/a Map 

ITB Miss Single Console n/a Ibox n/a Map 

Jump Mispredict After Ibox AT_ETE_JMP _MISPRED Inflight 

Uncorrectable !stream ECC Error n/a Ibox n/a Map 

Ebox Disruptions 

Add Overflow After Eb ox AT_RTE_IOVF Inflight 

CBR Mispredict After Eb ox AT_ETE_CBR_MISPRED Inflight 

Ebox Debug Trap At Eb ox AT_RTE_E_DBG Inflight 

Floating-Point Disabled Fault At Ebox AT_RTE_FPDIS Inflight 

IFETCHB Issued After Eb ox AT_RTE_IFETCHB lnflight 

Illegal Instruction At Ebox AT_RTE_OPCDEC Inflight 

Mui Overflow After Eb ox AT_RTE_IOVF Inflight 

Native Mode MT_FPCR Issued After Ebox AT_RTE_MT_FPCR Inflight 

Mbox Disruptions 

Bad VA Alignment At Mbox AT_ETE_BADVA Zap 

Bad VA Sign At Mb ox AT_ETE_DST Zap 

Dstream Access Violation At Mbox AT_ETE_DST Zap 

DTB Miss Double At Mbox AT_ETE_DTB_DBL In flight 

DTB Miss Double Alternate At Mb ox AT_ETE_DTB_DBL_ALT Inflight 

DTB Miss Single At Mbox AT_ETE_DTB_SING Inflight 

DTB Miss Single Console At Mb ox AT_ETE_DTB_SING_CONS Inflight 

Fault On (Read/Write) At Mb ox AT_ETE_DST Zap 

Load Data Parity Error At Mb ox AT_ETE_DST_RPLAY Zap 

Load Double-Bit ECC Error At Mbox AT_ETE_DST_MCHK Zap 

Load ErrResp from Memory At Mb ox AT_ETE_DST_MCHK Zap 

Load Invalidate At Mbox AT_ETE_DST_RPLAY Zap 

Load NXMResp from Memory At Mbox AT_ETE_DST_MCHK Zap 

Load Rambus Uncorrectable Error At Mbox AT_ETE_DST_MCHK Zap 

Load Single-Bit ECC Error At Mbox AT_ETE_DST_RPLAY Zap 

Load Tag Parity Error At Mbox AT_ETE_DST_RPLAY Zap 

Compaq Confidential 
5 January 2001 ~·Subject To Change Error Detection and Error Handling 22-9 



Disruptions 

Table 22-5 Summary of Disruption Low-Level Features (Continued) 

Completion 
Name Kill Point Detected By ETypeCode Prevention 

Load/Store Order Violation At Mbox AT_ETE_LDST_ORDER Zap 

Load/Store Synonym Detection At Mbox AT_ETE_DST_RPLAY Zap 

Mbox Debug Trap At Mbox AT_RTE_M_DBG Zap 

QUIESCE After Mbox AT_ETE_QUIESCE Zap 

Fbox Disruptions 

FCBR Mispredict After Ebox AT_ETE_CBR_MISPRED Inflight 

FP Trap (SW = 0) After Fbox AT_RTE_SWO [110xxxx] Inflight 

FP Trap (SW = 1) After Fbox AT_RTE_SW 1 [ 11 lxxxx] In flight 

FPCR Update After Fbox AT_RTE_FPCR [lOlxxxx] Inflight 

Pbox/Qbox Disruptions 

Pbox/Qbox Debug Trap At Pbox/Qbox AT_RTE_PQ_DBG Inflight 

Cbox Reset Interrupts 

Cold Reset n/a Cbox n/a Map 

Fast Reset n/a Cbox n/a Map 

Mild Reset n/a Cbox n/a Map 

Tepid Reset n/a Cbox n/a Map 

TPU Restart n/a Cbox n/a Map 

Wakeup n/a Cbox n/a Map 

Cbox Service/Error Interrupts 

ALERT Interrupt n/a Cbox n/a Map 

External Interrupt n/a Cbox n/a Map 

IP Bus Correctable Error n/a Cbox n/a Map 

IP Bus Uncorrectable Error n/a Cbox n/a Map 

ProfileMe Service n/a Ibox n/a Map 

Rambus Correctable Error n/a Cbox n/a Map 

Rambus Uncorrectable Error n/a Cbox n/a Map 

Scache Data Correctable ECC n/a Cbox n/a Map 
Error 

Scache Tag Correctable ECC Error n/a Cbox n/a Map 

Scache Uncorrectable ECC Error n/a Cb ox n/a Map 

Compaq Confidential 
22-1 o Error Detection and Error Handling 5 J,1m1,1ry 2001 ·-Subject To Change 



Disruptions 

Table 22-5 Summary of Disruption Low-Level Features (Continued) 

Completion 
Name Kill Point Detected By EType Code Prevention 

Software Interrupt n/a Cbox n/a Map 

TPU PALmode Timeout n/a Qbox n/a Map 

Cbox Logging Interrupts 

Dcache Parity Error n/a Mb ox n/a Map 

Icache Parity Error n/a Ibox n/a Map 

Load IP Bus Parity Error n/a Mbox n/a Map 

Oustanding DIFT Entry Timeout n/a Cbox n/a Map 

Outstanding MAF Entry Timeout n/a Cbox n/a Map 

Store IP Bus Parity Error n/a Mbox n/a Map 

TPU Inst. Retirement Timeout n/a Qbox n/a Map 

Compaq Confidential 
5 January 2001 ···Subject To Change Error Detection and Error Handling 22-11 



Disruptions 

Compaq Confidential 
22-12 Error Detection and Error Handling 5 Jam.u~ry 2001 ···Subject To Change 



Signal Pad Requirements 

23 
Hardware lnterf ace 

23.1 Signal Pad Requirements 

Table 23-1 lists the signal pad requirements for the 21464. 

Table 23-1 Signal Pad Requirements 

Signal 110/B Pins Type Description 

RamDataA_L(8,0) B 9 RSL RAM Data 

RamDataB_L(8,0) B 9 RSL RAMData 

RamRow _L(2,0) 0 3 RSL RAM Row Control 

RamCol_L( 4,0) 0 5 RSL RAM Column Control 

RamClkToMaster_H RSL RAM Receive Clock 

RamClkToMaster_L RSL RAM Receive Clock 

RamClkFromMaster_H RSL RAM Transmit Clock 

RamClkFromMaster_L RSL RAM Transmit Clock 

RamCMD 0 CMOS RAM Control register command 

RamSCK 0 CMOS RAM Control register clock 

RamSIO(l,O) B 2 CMOS RAM Serial rd/wr data for register (daisy chained) 

RamVRef Analog RAM Reference Voltage for above signals 

RamVTerm Analog RAM Termination Voltage for above signals 

RamSCL 0 CMOS RAM Presence Detect Clock 

RamSDA B CMOSOC RAM Presence Detect Data 

RamClkOut_L 0 ? RAM 400 Mhz clock for distribution to RClk/TClk 

Subtotal Per-Rambus 39 Subtotal Rambus Signals 

PortData_L(55,0) IorO 56 ? Port Data 

PortClock_H(2,0) I orO 6 ? Port Clock 

PortVRef !Analog Analog Port Reference Voltage for Data & Clock 

Subtotal Per-Port 63 Subtotal Port Signals 

Srom_Data_H ? Serial ROM data/receive data 

Srom_Clk_H 0 ? Serial ROM clock/transmit data 

Srom_OE_L 0 ? Serial ROM output enable 

Compaq Confidential 
5 January 2001 ···Subject To Change Hardware Interface 23-1 



Signal Pad Requirements 

Table 23-1 Signal Pad Requirements 

Signal 1/0/B Pins Type Description 

Tdi_H ? JTAG test data in 

Tdo_H 0 ? JTAG test data out 

Trst_L ? JTAG test reset 

Tck_H ? JTAG test clock 

Tms_H ? JTAG test mode select 

TestStat_H 0 ? Test??? 

Clkln_H ? Clock input, differential 

Clkln_L ? Clock input, differential 

reset_L ? Processor reset 

DcOK_H ? System DC power OK 

PllBypass_H ? Bypass internal PLL 

PllVdd !Analog ? PLL Supply voltage 

VddSel !Analog ? Supply selection 

Subtotal Common 16 Subtotal Common Signals 

Subtotal Rambus Signals 39*10 Subtotal Rambus Signals 

Subtotal Port Signals 63*10 Subtotal Port Signals 

Subtotal Common Signals 16 Common Signals 

Total Signals 1036 Total Signals 

Compaq Confidential 
23-2 Hardware Interface 5 Janwtry 2001 ~- Subject To Change 



//This is a place holder for this chapter.// 

Compaq Confidential 
5 January 2001 -· Subject To Change 

24 
New Instructions 

New Instructions 24-1 



Compaq Confidential 
24-2 New Instructions 5 Jm1w1ry 2001 -· Subject To Change 



25 
System Configurations 

//This is a placeholder for a new chapter.// 

Compaq Confidential 
5 January 2001 ···Subject To Change System Configurations 25-1 



Compaq Confidentia I 
25-2 System Configurations 5 Jc1mJc1ry 2001 - Subject To Change 



26 
Physical Addressing and Input/Output 

Compaq Confidential 
5 January 2001 - Subject To Change Physical Addressing and Input/Output 26-1 



Compaq Confidential 
26-2 Physical Addressing and Input/Output 5 January 2001 ··· Subject To Change 



27 
Requirements to Support 11Tandem 11 

Compaq Confidential 
5 January 2001 ···Subject To Change Requirements to Support "Tandem" 27-1 



Compaq Confidential 
27-2 Requirements to Support "Tandem" 5 Jc1nuary 2001 m Subject To Change 



A 
Instruction Decoding 

This appendix defines the exact behavior of instruction decoding in the 21464. This is 
not a rewrite of the Alpha System Reference Manual (the SRM). Rather, it is a clarifica
tion of some of the exact implementation details. The target audience is the design and 
verification teams, but the information might also be useful to compiler developers or 
anyone who generates assembly code by hand. 

The instruction set is organized in ascending order, according to opcode value, or by 
instruction type for Load and Store, Jump and Branch, and PALcode instructions. 

Instruction decoding is a distributed event. The Ibox, Pbox, Ebox, Fbox, and Mbox all 
decode portions of the !stream. To ease verification, we want to ensure that all boxes 
that decode instructions make the same assumptions. For the instructions defined by 
the SRM, this is straightforward, but there are many unused function codes and combi
nations of instruction bits that are only defined by the SRM as producing UNPRE
DICTABLE behavior. Verifying that several boxes that separately decode 
UNPREDICTABLE instructions do not cause hangs or otherwise violate the require
ments of the SRM would be a tedious task at best. 

This appendix specifies an instruction decoding that uniquely maps all unused function 
codes to a known behavior. Assuming that all boxes in the 21464 use this decoding 
scheme, behavior is easily predictable and we will avoid cross-box bugs where the 
instruction stream was interpreted differently. 

Because of the large number of instructions and function codes, the decoding descrip
tions are broken into opcode groups. 

Table A-1 Opcode Groups 

Opcode Type Format In Section 

00 Call_PALL PALcode A.6.1 

01-07 Reserved PALcode A.6.2 

08-0F Load and store Memory Displacement A.6.12 

10 Integer add/sub/compare Integer Operate A.6.3 

11 Integer logical Integer Operate A.6.4 

12 Integer shift Integer Operate A.6.5 

13 Integer multiply Integer Operate A.6.6 

14 ITOFx and FSQRT Floating Operate A.6.7 

15 VAX floating-point Floating Operate A.6.8 

Compaq Confidential 
5 January 2001 -·Subject To Change Instruction Decoding A-1 



Instruction Format 

Table A-1 Opcode Groups (Continued) 

Opcode Type Format In Section 

16 IEEE floating-point Floating Operate A.6.9 
17 Miscellaneous floating-point Floating Operate A.6.10 
18 Miscellaneous Memory Function A.6.11 
lA Jump Memory Function A.6.14 
lC Multimedia Integer Operate A.6.13 
19,lD HW_MxPR IPR 17.2 
lB,lF HW_LD/ST Memory Displacement 17.1 
lE IFETCHB PALcode 
20-2F Load and store Memory Displacement A.6.12 
30-3F Branch Branch A.6.14 

A.1 Instruction Format 

Figure A-1 

PALcode: 

Branch: 

The Alpha SRM defines several instruction formats and specifies the format for each 
instruction. The 21464 generally uses the SRM-defined formats with the following 
exceptions: 

• 

• 

• 

The FTOix instructions are decoded as Integer Operate rather than the Floating 
Operate specified in the SRM. 

Instructions listed as Memory format in the SRM are explicitly categorized as 
either Memory Displacement format or Memory Function format in the 21464. 

Instructions listed as Misc format by the SRM are decoded as Memory Function 
format by the 21464. 

Instruction Formats 
31 2625 0 

I Opcode I PALcode function I 
31 2625 2120 0 

I Opcode I Ra I Displacement I 
31 2625 2120 16 11 5 4 0 

Integer Operate: I Opcode I Ra I Rb - Function I Re I 
31 2625 2120 13 11 5 4 0 

I Opcode I Ra I Literal 11 Function I Re I 
31 2625 2120 1615 5 4 0 

Floating Operate: I Opcode I Fa I Fb I Function I Fe I 
31 26 12 5 4 0 

IPR: Opcode Index Re 

31 26 24 2120 16 12 5 4 0 I Opcode I Rclass I Rb • Index I Wclass I 
31 2625 2120 1615 0 

Memory Displacement: I Opcode I Ra I Rb I Displacement I 
31 2625 2120 1615 0 

Memory Function: Opcode I Ra I Rb I Function I 
Compaq Confidential 

A-2 Instruction Decoding 5 Jc1nw~ry 2001 ~· Subject To Change 



Predecodes 

The instruction format defines the location of the operand specifiers and any function 
code bits. The function code further subdivides the opcode into many separate instruc-
tions. The decode tables in this document define a decoding of function code bits that 
form a non-overlapping map of every possible bit combination. The behavior of every 
instruction bit pattern is known and consistently decoded throughout the 21464. 

The tables use the Alpha SRM mnemonics (in upper-case) to identify instructions. 
Mnemonics listed in lower-case do not exactly map to a specific Alpha instruction. 

A.2 Predecodes 

The lbox does a quick partial decode of instructions defining several buckets useful to 
the early stages of the pipeline. The predecode logic identifies an instruction as belong-
ing to one of the following 23 groups. 

Table A-2 Predecode Logic Groups 

Instruction Type Format PreDec Type 1 SrcA SrcB Dest PreDec Bits2 

CALL_PAL instruction PALcode XXP p 00010 

Floating conditional branch Branch FXX Ra 01100 

Floating-point load operation Memory SIF s Rb Fa 11000 

Floating-point operation Floating FFF Fa Fb Fe 11100 

Floating-point store instruction Memory FIS Fa Rb s 11101 

FTOI instruction Integer FXI Fa Re 01110 

HW _MFPR instruction IPR RXI R Re 00110 

HW _MTPR instruction IPR RIW R Rb w 10110 

Integer conditional branch Branch IXX Ra 01000 

Integer load operation Memory Sii s Rb Ra 10000 

Integer operation Integer III Ra Rb Re 00100 

Integer operation with Rb a literal Integer IXI Ra Re 00101 

Integer store instruction (Not STx_C) Memory IIS Ra Rb s 11111 

ITOF instruction Floating IXF Ra Fe 00111 

LDQ_ U instruction Memory SUI s Rb Ra 11001 

Misc with no A operand Memory XII Rb Ra 11011 

Misc with no operands Memory xxx 01001 

Misc with no result Memory IIX Ra Rb 01111 

MT _FPCR instruction Floating FFC Fa Fb c 11110 

RPCC instruction Memory XIY Rb Ra 01011 

Rs I Re VAX compatibility Memory XXN Ra 00011 

Store conditional Memory IIL Ra Rb L 00000 

Unconditional branch Branch XXI Ra 00001 

Compaq Confidential 
5 January 2001 -~ Subject To Change Instruction Decoding A-3 



Instruction latency 

1 The three-character type identifier defines the type of the A operand, B operand, and result, 
as follows: 

Character Meaning 

C Floating-Point Control register 

F Floating-point register or result 
I Integer register or result 

L Lock flag value 

N Interrupt flag value 
P PALmode shadow register Sl (CALL_PAL only) 

R IPR reader class specifier 
S Store Set identifier 

U Unaligned address operand 

W IPR writer class specifier 
X No operand or No result 
Y Cycle counter IPR 

2 The Ibox IFU predecode bits EDCBA. See Section 3.8.2.3.1. 

For Opcodes 10, 11, 12, 13 and lC, bit<l2> of the instruction defines whether a literal 
or a register is used for Rb. In the tables, the predecode is listed as I?I for these instruc
tions. They predecode to III if bit<12> is clear (register Rb operand) or IXI if bit<12> 
is set (literal Rb operand). 

Not every instruction is defined exactly as the predecodes suggest. Many instructions 
identified as III or FFF do not require two input operands (ex. SEXT, SQRT). In most 
of these cases the SRM requires the unused register to be R31/F31 which results in the 
exact same treatment as if the extra predecodes had existed. The few exceptions are 
listed in the format discussion below. 

A.3 Instruction Latency 

Defines the parent-to-child issue latency. Also identifies any cross-pipeline delay asso
ciated with broadcasting the parents results to other pipelines. Instructions that are not 
pipelined are also identified as "bubbling" for completion. For Example: 

n N cycle latency to a child in any pipeline 
m+n M cycle latency plus extra n cycle to other pipelines. 

n+B N cycle latency non-pipelined, requires bubble (B) to signal completion. 

A.4 Execution Pipelines 

Identifies which of the eight pipelines the instruction can execute in. The actual slotting 
algorithm is a function of the types and positions of the instructions in each map block. 
Details about instruction slotting can be found at<???>. Just because an instruction is 
slotted to a particular pipeline does not mean it must execute there, follow-me capabili-

Compaq Confidential 
A-4 Instruction Decoding 5 Jcwuary 2001 - Subject To Change 



Instruction Info (INST.JNF0<15:0>} 

ties in the Qbox allow instructions whose operands are data-ready in another allowed 
pipeline in the same half of the Queue to issue from that pipeline. Pipelines 0, 2, 5 and 
7 are in one half of the Queue, pipes 1, 3, 4, 6 are in the other half. 

Format 

0-7 
0-3 

0,3 

Meaning 

Can execute in any pipe 

Can execute in pipes 0, 1, 2, or 3. 

Can execute in only pipes 0 or 3 

o ..... 1 

Alt 0-3 

Can execute in only pipes 0 or 1 and not both in the same cycle. 

Can execute in pipes 0, 1, 2, or 3, but does not issue to the same pipe in con
secutive cycles 

A.5 Instruction Info (INST _INF0<15:0>) 

To optimize the efficiency of internal queues, the instruction longword is not passed 
throughout the chip but compressed into two separate fields. The opcode field contains 
the original 6-bit instruction opcode but the rest of the instruction longword is com
pressed into a 16-bit inst_inf o field based on instruction format. 

The general rule is: 

Instruction Format 

PALcode 

Memory/IPR 

Otherwise 

Contents of INST _INF0<15:0> 

OR(inst<25:15>), inst<14:0> 

inst<15:0> 

inst<20:5> 

The only exceptions to the general rule follow: 

INST _INF0<15:0> Instruction 

RPCC 

RS/RC 

inst<15: 13>, index:OblOll 1000, inst<4:0> 

inst<l5: l>, flag 

A.6 Specific Opcode and Instruction Type Decoding 

A.6.1 Opcode 00, CALL_PAL 

The CALL_PAL instruction is only executed in combination with a valid PALcode 
instruction. For example, a valid combination for Open VMS is CALL_PAL BPT, with 
an opcode/function code of 00.0080. Valid PALcode instructions and their function 
codes are specified in the Alpha SRM according to operating system. The CALL_PAL 
instruction issues on pipelines 0-1 with a latency of 5. 

A.6.2 Opcodes 01 through 07, Reserved 

Opcodes 01through07 are reserved for the 21464. They predecode to XXX and if exe
cuted, return an OPCDEC (or opDec) fault. 

Compaq Confidential 
5 January 2001 -· Subject To Change Instruction Decoding A-5 



Specific Opcode and Instruction Type Decoding 

A.6.3 Opcode 10, Integer Add/Subtract/Compare 

Integer Add/Subtract/Compare instructions. 

Table A-3 Opcode 10 Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode Pipelines Latency 

00 xOO OxOx ADDL I?I 0-7 1+1 

02 xOO Oxlx S4ADDL I?I 0-7 1+1 

09 xOO lOOx SUBL I?I 0-7 l+l 

OB xOO 101x S4SUBL I?I 0-7 1+1 

OF xxx 111x CMPBGE I?I 0-7 l+l 

12 XOl Oxxx S8ADDL I?I 0-7 1+1 

1B XOl lOxx S8SUBL I?I 0-7 1+1 

1D 001 110x CMPULT I?I 0-7 1+1 

20 xlO OxOx ADDQ I?I 0-7 1+1 

22 xlO Oxlx S4ADDQ I?I 0-7 1+1 

29 xlO lOOx SUBQ I?I 0-7 1+1 

2B xlO 101x S4SUBQ I?I 0-7 1+1 

2D OxO 110x CMPEQ I?I 0-7 1+1 

32 xll Oxxx S8ADDQ I?I 0-7 1+1 

3B xll lOxx S8SUBQ I?I 0-7 1+1 

3D 011 110x CMPULE I?I 0-7 1+1 

4D 10x 110x CMPLT I?I 0-7 1+1 

6D llx 110x CMPLE I?I 0-7 1+1 

The specific logic functions within the Integer adder are selected as: 

Table A-4 Opcode 1 O Specific Logic Functions Within the Integer Adder 

21464 Decode Mnemoic Description 

xxx Oxxx ADD Add operations 

xxx 10xx SUB Subtract operations 

xxx llxx CMP Compare operations 

xxo xxOx so Ra used unshifted 

xxo xxlx S4 Ra shifted left two bits before use 

xxl xxxx S8 Ra shifted left three bits before use 

lxO OXOX ADDxN Enable overflow/under flow exception trapping 

lxO lOOX SUBx/V Enable overflow/under flow exception trapping 

xOx xxxx Long 32-bit inputs/outputs sign extended into 64-bits 

xlx xxxx Quad 64-bit inputs/outputs 

Compaq Confidential 
A-6 Instruction Decoding 5 Jc1m.1c1ry 2001 -~ Subject To Cfwnge 



Specific Opcode and Instruction Type Decoding 

A.6.4 Opcode 11, Integer Logical 

Integer Logical instructions. 

Table A-5 Opcode 11 Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode Pipelines Latency 

00 oox OOxx AND I?I 0-7 1+1 

08 OOx lxxx BIC I?I 0-7 1+1 

14 oox OlOx CMOVLBS I?I 0-7 1+1 

16 OOx Ollx CMOVLBC I?I 0-7 1+1 

20 Olx OOxx BIS I?I 0-7 1+1 

24 Olx OlOx CMOVEQ I?I 0-7 1+1 

26 Olx Ollx CMOVNE I?I 0-7 1+1 

28 Olx lxxx ORN OT I?I 0-7 1+1 

40 lOx OOxx XOR I?I 0-7 1+1 

44 lOx OlOx CMOVLT I?I 0-7 1+1 

46 lOx Ollx CMOVGE I?I 0-7 1+1 

48 lOx lxxx EQV I?I 0-7 1+1 

61 llx OOxx AMA SK I?I 0-7 1+1 

64 llx OlOx CMOVLE I?I 0-7 1+1 

66 llx Ollx CMOVGf I?I 0-7 1+1 

68 llx lOxx CMOV2 I?I 0-7 1+1 

6C llx llxx IMPLVER I?I 0-7 1+1 

A.6.5 Opcode 12, Integer Shift 

The mskbh, insbh and extbh decodes are not formally defined by the Alpha SRM 
because all combinations of inputs produce a zero result. The generalized decoding in 
the 21464 Integer Shifter does not special case these code points and will produce a 
zero result. 

Table A-6 Opcode 12 Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode 

02 000 OOlx MSKBL I?I 

06 xOO 0110 EXTBL I?I 

OB xOO 1011 INSBL I?I 

12 001 OOlx MSKWL I?I 

16 xOl 0110 EXTWL I?I 

1B xOl 1011 INSWL I?I 

Compaq Confidential 
5 January 2001 -~ Subject To Change 

Pipelines Latency 

0-3 1+1 

0-3 1+1 

0-3 1+1 

0-3 1+1 

0-3 1+1 

0-3 1+1 

Instruction Decoding A-7 



Specific Opcode and Instruction Type Decoding 

Table A-6 Opcode 12 Instruction Decoding (Continued) 

Function Code 21464 Decode Mnemonic 

22 010 OOlx MSKLL 

26 xlO 0110 EXTLL 

2B xlO 1011 INS LL 

30 xxx 0000 ZAP 

31 xxx 0001 ZAPNOT 

32 011 OOlx MSKQL 

34 xxx OlOx SRL 

36 xll 0110 EXTQL 

39 xxx lOOx SLL 

3B xlO 1011 INSQL 

3C xxx llxx SRA 

42 100 OOlx Mskbh 

47 xOO 0111 Insbh 

4A xOO 1010 Extbh 

52 101 OOlx MSKWH 

57 xOl 0111 INSWH 

5A xOl 1010 EXTWH 

62 110 OOlx MSKLH 

67 xlO 0111 INSLH 

6A xlO 1010 EXTLH 

72 111 OOlx MSKQH 

77 xll 0111 INSQH 

7A xll 1010 EXTQH 

A.6.6 Opcode 13, Integer Multiply 

Integer Multiply Instructions. 

Table A-7 Opcode 13 Instruction Decoding 

Function Code 21464 Decode 

00 xOx xxxx 

20 xlO xxxx 

30 xll xxxx 

Mnemonic 

MULL 

MULQ 

UMULH 

Predecode 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

I?I 

Predecode 

I?I 

I?I 

I?I 

Com p.aq Confidentia I 

Pipelines 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

0-3 

Pipelines 

4,5 

4,5 

4,5 

Latency 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

1+1 

Latency 

5 

5 

5 

A-8 Instruction Decoding 5 Jc1nuary 2001 -· Subject To Change 



Specific Opcode and Instruction Type Decoding 

The specific logic functions within the Integer adder are selected as: 

Table A-8 Opcode 13 Specific Logic Functions Within the Integer Adder 

21464 Decode 

lxO xxxx 
110 xxxx 

Qualifier Description 

MULLN Enable overflow/under flow exception trapping for 
MULQN MULL and MULQ instructions 

A.6.7 Opcode 14, ITOFx and Floating-Point Square Root 

Integer to Floating register transfer and Floating square root instructions. 

For ITOFx instructions, the Ebox format converts Ra and multiplexes the result into the 
Fbox load datapath. 

SQRT instructions only issue on even cycles and are not pipelined. 

Table A-9 Opcode 14 Instruction Decoding 

Function Code 21464 Decode 1 Mnemonic Predecode Pipelines Latency 

004 

014 

024 

xOA 

xOB 

x2A 

x2B 

xxx xxOO Oxxx ITOFS IXF 6,7 5 

xxx xxOl Oxxx ITO FF IXF 6,7 5 

xxx xxlx Oxxx ITO FT IXF 6,7 5 

ttt rrOx lxxO SQ RTF FFF Alt 0-3 18 + B + 1 

ttt rrOx lxxl SQRTS FFF Alt0-3 18 + B + 1 

ttt rrlx lxxO SQRTG FFF Alt 0-3 33+B+1 

ttt rrlx lxxl SQRTI FFF Alt 0-3 33+B+1 

For SQRT instructions, the ttt and rr fields define the trapping and rounding modes, and all 
modes are defined for each function code (see below). The 21464 generates an OPCDEC 
(illegal instruction) trap for any opcode 14 function code that is not defined. 

rr Ox IC Chopped 

lx None Normal (default) 

ttt OxO None Imprecise (default) 

Oxl IV Underflow Enable 

lxO IS Exception completion enabled 

lxl /SU Underflow & Exception enabled 

The FBOX decodes these modes for IEEE instructions (SQRTS, SQTRT) as follows: 

rr 00 IC Chopped 

01 JM Minus Infinity 

10 None Normal (default) 

11 ID Dynamic 

ttt OxO None Imprecise (default) 

Oxl /U Underflow Enable 

lOx /SU Software completion w/underflow 

llx /SUI Software completion w /inexact 

Compaq Confidential 
5 January 2001 -· Subject To Change Instruction Decoding A-9 



Specific Opcode and Instruction Type Decoding 

A.6.8 Opcode 15, VAX Floating-Point 

VAX floating-point instructions. 

Table A-10 Opcode 15 Instruction Decoding 

Function Code 21464 Decode 1 Mnemonic Predecode Pipelines Latency 

xOO ttt rrOx xOOO ADDF FFF 0-3 3+1 

xOl ttt rrOx xOOl SUBF FFF 0-3 3+1 

x02 ttt rrOx xOlO MULF FFF 0-3 3+1 

x03 ttt rrOx xOll DIVF FFF Alt 0-3 9+B+l 

xlE ttt rrOx llxx CVTDG FFF 0-3 3+1 

x20 ttt rrlx xOOO ADDG FFF 0-3 3+1 

x21 ttt rrlx xOOl SUBG FFF 0-3 3+1 

x22 ttt rrlx xOlO MULG FFF 0-3 3+1 

x23 ttt rrlx xOll DIVG FFF Alt0-3 13 + B + 1 

x25 ttt xxxx OlOx CMPGEQ FFF 0-3 3+1 

x26 ttt xxxx 0110 CMPGLT FFF 0-3 3+1 

x27 ttt xxxx 0111 CMPGLE FFF 0-3 3+1 

x2C ttt rrlO 1100 CVTGF FFF 0-3 3+1 

x2D ttt rrlO 1101 CVTGD FFF 0-3 3+1 

x2F ttt rrlO lllx CVTGQ FFF 0-3 3+1 

x3C xxx rrll llOx CVTQF FFF 0-3 3+1 

x3E xxx rrll lllx CVTQG FFF 0-3 3+1 

1 The ttt and rr fields define the trapping and rounding modes. The Fbox decodes these modes 
for VAX instructions as shown below. 

rr Ox IC Chopped 
lx None Normal (default) 

ttt OxO None Imprecise (default) 
Oxl /U Underflow Enable 
lxO IS Exception completion enabled 
lxl /SU Underflow & Exception enabled 

The CMPxxx instructions only define one trap option. The txx mode is decoded as fol-
lows: 

txx Oxx None Imprecise (default) 
lxx IS ForCMPxxx 

Compaq Confidential 
A-10 Instruction Decoding 5 January 2001 -- Subject To Change 



Specific Opcode and Instruction Type Decoding 

A.6.9 Opcode 16, IEEE Floating-Point 

IEEE floating point instructions. 

Table A-11 Opcode 16 Instruction Decoding 

Function Code 21464 Decode1 Mnemonic Predecode Pipelines Latency 

xOO 

xOl 

x02 

x03 

x20 

x21 

x22 

x23 

x24 

x25 

x26 

x27 

x2C 

2AC 

x2F 

x3C 

X3E 

1 

ttt rrOx xOOO ADDS FFF 0-3 3+1 

ttt rrOx xOOl SUBS FFF 0-3 3+1 

ttt rrOx x010 MULS FFF 0-3 3+1 

ttt rrOx x011 DIVS FFF Alt0-3 9+B+1 

ttt rrlx xOOO ADDT FFF 0-3 3+1 

ttt rrlx xOOl SUBT FFF 0-3 3+1 

ttt rrlx x010 MULT FFF 0-3 3+1 

ttt rrlx x011 DIVT FFF Alt0-3 13+B+l 

txx xxxx 0100 CMPIUN FFF 0-3 3+1 

txx xxxx 0101 CMPTEQ FFF 0-3 3+1 

txx xxxx 0110 CMPfLT FFF 0-3 3+1 

txx xxxx 0111 CMPfLE FFF 0-3 3+1 

ttt rrxO 110x CVTTS FFF 0-3 3+1 

tlO xxxO 110x CVTST FFF 0-3 3+1 

ttt rrxO lllx CVTTQ FFF 0-3 3+1 

txx rrxl 110x CVTQS FFF 0-3 3+1 

txx rrxl lllx CVTQT FFF 0-3 3+1 

The ttt and rr fields define the trapping and rounding modes. The Fbox decodes these modes 
for VAX instructions as shown below: 

rr 00 IC Chopped 
01 /M Minus Infinity 

10 None Normal (default) 

11 ID Dynamic 

ttt OxO None Imprecise (default) 
Oxl /U Underflow Enable 

lOx /SU Software completion w/underflow 
llx /SUI Software completion w/inexact 

The CMPxxx and CVTQx instructions only define one trap option. The txx mode is 
decoded as follows: 

txx Oxx 

lxx 

None 

/SU 

Imprecise (default) 

For CMPxxx, /SUI For CVTQx 

Compaq Confidential 
5 January 2001 ·-Subject To Change Instruction Decoding A-11 



Specific Opcode and Instruction Type Decoding 

Unlike any other floating-point instruction, decoding of the trap mode bits differentiates 
CVTST and CVTTS instructions. The special decoding is: 

ttt 000 CVTIS None Imprecise (default) 

Oxl CVTIS /U Underflow enable 

lOx CVTIS /SU Software w/Underflow 

111 CV TIS /SUI Software w/Inexact 

tlO 010 CVTST None Imprecise (default) 

110 CVTST IS Software denormal fixup 

A.6.1 O Opcode 17, Miscellaneous Floating-Point 

For FCMOVxx instructions, the Ibox will scan for a FCPYS->R31 instruction immedi
ately following the FCMOVxx instruction and if found replace it with a FCMOV2 
instruction. If the instruction following a FCMOVxx is not a FCPYS->R31, the Ibox 
tags the FCMOVxx instruction as legacy. Legacy FCMOVxx instructions terminate a 
map-block and are repeated in the next map-block. The Pbox then converts the 
repeated FCMOVxx instruction (which is always in position 0 of the new map-block) 
to the FCMOV2. 

The Ebox detects user-mode MT_FPCR instructions and traps to PALmode to fix-up. 

Table A-12 Opcode 17 Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode Pipelines Latency 

xlO xxx xxOl xxxx CVTLQ FFF 0-3 3+1 

x20 xxx xxxO 0000 CPYS FFF 0-3 1+1 

x21 xxx xxxO 0001 CPYSN FFF 0-3 1+1 

x22 xxx xxxO OOlx CPYSE FFF 0-3 1+1 

x24 xxx xxxO OlxO MT_FPCR FFC 0,3 

x25 xxx xxxO Olxl MF_FPCR FFF 0,3 3+1 

x68 xxx xxxO lOOx FCMOV2 FFF 0-3 1+1 

x2A xxx xxxO 1010 FCMOVEQ FFF 0-3 1+1 

x2B xxx xxxO 1011 FCMOVNE FFF 0-3 1+1 

x2C xxx xxxO 1100 FCMOVLT FFF 0-3 1 + 1 

x2D xxx xxxO 1101 FCMOVGE FFF 0-3 1+1 

x2E xxx xxxO 1110 FCMOVLE FFF 0-3 1 + 1 

X2F xxx xxxO 1111 FCMOVGT FFF 0-3 1+1 

X30 ttt 1 xxll xxxx CVTQL FFF 0-3 3 

1 Only CVTQL has a defined trap mode, as shown below: 

ttt OxO None Imprecise (default) 

Oxl /U Underflow Enable 

lxx /SU Software completion w/underflow 

Compaq Confidential 
A-12 Instruction Decoding 5 Januc1ry 2001 - Subject To Change 



Specific Opcode and Instruction Type Decoding 

A.6.11 Opcode 18, Miscellaneous 

TRAPB, EXCB and FETCHx instructions never actually issue from the Qbox but are 
completed immediately and therefore act as NOPs. MBs also never formally issue from 
the Qbox but are instead sent to the Mbox as soon as they enter the Qbox. MB instruc
tions do not complete until the Mbox notifies the Qbox that the necessary conditions 
have been met. 

The WH64EN instruction is currently proposed as ECO#l27 to the Alpha SRM. 

Table A-13 Opcode 18 Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode 

0000 OOxx xOxx xxxx xxxx TRAPB xxx 
0400 OOxx xlxx xxxx xxxx EXCB xxx 
4000 0 lxx OOxx xxxx xxxx MB xxx 
4400 · Olxx Olxx xxxx xxxx WMB IIX 

4800 0 lxx lxxx xxxx xxxx (MB) xxx 
8000 1 OOx xxxx xxxx xxxx FETCH xxx 
AOOO 1010 xxxx xxxx xxxx FETCH_M xxx 
BOOO 1011 OOxx xxxx xxxx LDL_ARM Sii 

B400 1011 0 lxx xxxx xxxx LDQ_ARM Sii 

B800 1011 lxxx xxxx xxxx QUIESCE IIX 

cooo 11 Ox xxxx xxxx xxxx RPCC XIY 

EOOO 1110 Oxxx xxxx xxxx RC XXN 

E800 1110 1 Oxx xxxx xxxx ECB IIX 

ECOO 1110 llxx xxxx xxxx CCB IIX 

FOOO 1111 Oxxx xxxx xxxx RS XXN 

F800 1111 lOxx xxxx xxxx WH64 IIX 

FCOO 1111 llxx xxxx xxxx WH64EN IIX 

A.6.12 Load and Store Instructions 

Load and store instructions. 

Table A-14 Load and Store Instruction Decoding 

Opcode Mnemonic Predecode 

08 LDA XII 

09 LDAH XII 

OA LDBU SII 

OB LDQ_U SUI 

oc LDWU SII 

Compaq Confidential 
5 January 2001 -· Subject To Change 

Pipelines Latency 

4,5 

6,7 3 

6,7 3 

4,5 

0-1 5 

4,5 1+1 

4,5 

4,5 

4,5 1+1 

4,5 

4, 5 

Pipelines Latency 

0-7 1+1 

0-7 1+1 

6,7 3 

6,7 3 

6,7 3 

Instruction Decoding A-13 



Specific Opcode and Instruction Type Decoding 

Table A-14 Load and Store Instruction Decoding (Continued) 

Opcode Mnemonic Predecode Pipelines Latency 

OD STW IIS 4,5 32 

OE STB IIS 4,5 32 

OF STQ_U IIS 4,5 32 

20 LDF SIF 6,7 5 

21 LDG SIF 6,7 5 

22 LDS SIF 6,7 5 

23 LDT SIF 6,7 5 

24 STF FIS 4,5 32 

25 STG FIS 4,5 32 

26 STS FIS 4,5 32 

27 STT FIS 4,5 32 

28 LDL Sii 6,7 3 

29 LDQ Sii 6,7 3 

2A LDL_L Sii 6,7 3 

2B LDQ_L Sii 6,7 3 

2C STL IIS 4,5 32 

2D STQ IIS 4,5 32 

2E STL_C IIL 4 '5
1 3 

2F STQ_C IIL 4 '5
1 3 

1 Store Conditional instructions issue as stores to pipelines 4 and 5 but bubble back 
completion to the QBOX, and the final completion of the STx_C instruction appears 
on the load pipes 6 and 7. 

2 Although store instructions do not produce a register result and therefore do not 
have normal dependents, the IBOX store-set logic can create dependency groups of 
loads and stores. A load that is store-set dependent on a store instruction will have 
an effective issue latency of three cycles from the issue of the store. 

A.6.13 Opcode 1 C, Integer Multimedia 

Integer multimedia instructions. 

Table A-15 Opcode 1C Instruction Decoding 

Function Code 21464 Decode Mnemonic Predecode Pipelines Latency 

00 000 OOxO SEXTB I?I 0-7 1+1 

01 000 OOxl SEXTW I?I 0-7 1+1 

04 000 OlxO CMPWGE I?I 2,3 5 

05 000 Olxl CMPLGE I?I 2,3 5 

08 000 lxxO PERMB8 I?I 0' 1 5 

Compaq Confidential 
A-14 Instruction Decoding 5 Jc1nuc1ry 2001 - Subject To Change 



Specific Opcode and Instruction Type Decoding 

Table A-15 Opcode 1C Instruction Decoding (Continued) 

Function Code 21464 Decode Mnemonic Predecode Pipelines Latency 

09 000 lxxl GPKBLB4 I?I 0,1 5 

10 001 OOzz VADDzzz I?I 2,3 5 

14 001 OlOx VADDUL2 I?I 2,3 5 

16 001 Ollx VADDSL2 I?I 2,3 5 

18 001 lOzz VSUBzzz I?I 2,3 5 

lC 001 110x VSUBUL2 I?I 2,3 5 

1E 001 lllx VSUBSL2 I?I 2,3 5 

20 010 OOzz VMINMAXzzz I?I 2,3 5 

24 010 OlOx VMINMAXUL2 I?I 2,3 5 

26 010 Ollx VMINMAXSL2 I?I 2,3 5 

28 010 1000 PKUWB8 I?I 0' 1 5 

29 010 1001 PKULW4 I?I 0,1 5 

2A 010 1010 PKSWB8 I?I 0,1 5 

2B 010 1011 PKSLW4 I?I 0' 1 5 

2C 010 1100 UPKUBW4 I?I 0' 1 5 

2D 010 1101 UPKUWL2 I?I 0' 1 5 

2E 010 1110 UPKSBW4 I?I 0' 1 5 

2F 010 1111 UPKSWL2 I?I 0' 1 5 

30 011 0000 CTPOP I?I 2,3 5 

31 011 0001 PERR I?I 2,3 5 

32 011 0010 CTLZ I?I 2,3 5 

33 011 0011 CTIZ I?I 2,3 5 

34 011 0100 UNPKBW I?I 0,1 5 

35 011 0101 UNPKBL I?I 0' 1 5 

36 011 0110 PKWB I?I 0' 1 5 

37 011 0111 PKLB I?I 0' 1 5 

38 011 1000 MINSB8 I?I 2,3 5 

39 011 1001 MINSW4 I?I 2,3 5 

3A 011 1010 MINUB8 I?I 2,3 5 

3B 011 1011 MINUW4 I?I 2,3 5 

3C 011 llzz MAXzzz I?I 2,3 5 

40 100 OOzz TADDzzz I?I 2,3 5 

44 100 Olzz TSUBzzz I?I 2,3 5 

48 100 lOzz TABSERRzzz I?I 2,3 5 

Compaq Confidential 
5 January 2001 ··· Subject To Change Instruction Decoding A-15 



Specific Opcode and Instruction Type Decoding 

Table A-15 Opcode 1C Instruction Decoding (Continued) 

Function Code 21464 Decode Mnemonic Predecode 

4C 100 llzz TSQERRzzz I?I 

50 101 OOzz TMULzzz I?I 

54 101 OlxO TMULUSB8 I?I 

55 101 Olxl TMULUSW4 I?I 

59 101 lxOx VMULLUW4 I?I 

5b 101 lxlx VMULHUW4 I?I 

60 110 0000 VSRB8 I?I 

61 110 0001 VSRW4 I?I 

62 110 0010 VSRAB8 I?I 

63 110 0011 VSRAW4 I?I 

64 110 OlOx VSRL2 I?I 

66 110 Ollx VSRAL2 I?I 

68 110 lOxO VSLB8 I?I 

69 110 lOxl VSLW4 I?I 

6C 110 llxx VSLL2 I?I 

70 111 Ox.xx FTOIT FXI 

78 111 lxxx FTOIS FXI 

A.6.14 Branch and Jump Instructions 

Branch and Jump instructions. 

Table A-16 Branch and Jump Instruction Decoding 

Opcode 21464 Decode Mnemonic Predecode 

lA.O 0 Oxx xxxx xx ... JMP XII 

lA.1 O lxx xxxx xx ... JSR XII 

lA.2 1 Oxx xxxx xx ... RET XII 

lA.3 1 lxx xxxx xx ... JSR_ CO XII 

30 BR XXI 

31 FBEQ FXX 

32 FBLT FXX 

33 FBLE FXX 

34 BSR XXI 

35 FBNE FXX 

36 FBGE FXX 

Compaq Confidential 

Pipelines 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

0' 1 

0' 1 

0' 1 

0' 1 

0' 1 

0' 1 

0' 1 

0' 1 

0' 1 

4,5 

4,5 

Pipelines 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

Latency 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

Latency 

5 

5 

5 

5 

5 

5 

A-16 Instruction Decoding 5 Jc1nuc1ry 2001 ~· Subject To Change 



Specific Opcode and Instruction Type Decoding 

Table A-16 Branch and Jump Instruction Decoding (Continued) 

Opcode 21464 Decode Mnemonic Predecode Pipelines Latency 

37 FBGf FXX 0-1 

38 BLBC IXX 0-7 

39 BEQ IXX 0-7 

3A BLT IXX 0-7 

3B BLE IXX 0-7 

3C BLBS IXX 0-7 

3D BNE IXX 0-7 

3E BGE IXX 0-7 

3F BGf IXX 0-7 

A.6.15 PALcode Instructions 

The MSB of the index field of the HW _MTPR instruction indicates the destination: 

O=Mbox 

1 = Ibox 

Table A-17 PALcode Instruction Decoding 

Opcode 21464 Decode 1 Mnemonic Predecode Pipelines Latency 

Ox19 xxxO ii ii iiix xxxx HW_MFPR RXI 4-5 5 
xxxl iiii iiix xxxx HW_MFPR RXl 0-1 5 

OxlB ttts SXXX XXXX XXXX HW_LD SIT 6,7 3 

OxlD xxxO iiii iiiw wwww HW_MTPR RIW 6,7 1132 

xxxl iiii iiiw wwww HW_MTPR RIW 0-1 12 

OxlE xxxx xxxx xxxx xxxx IFETCHB xxx 4,5 

OxlF ttts SXXX XXXX XXXX HW_ST IIX 4,5 

1 The decode bit symbols i, r, s, and t are defined as follows: 

For HW_LD and HW_ST: 

ttt Type of memory reference to perform. See the Type field in Table 17-1. 

ss Size of the data transaction. See the Length field in Table 17-1. 
For HW_MFPR and HW_MTPR: 

iiii iiii Identifier of the WR to read. See the Index field in Tables 17-2 and 17-3 and Table 16-1. 

rrrr Reader class of the instruction. See the Rclass field in Tables 17-2 and 17-3. 

w wwww Writer class of the instruction. See the Wclass field in Table 17-3. 

Compaq Confidential 
5 January 2001 ··· Subject To Change Instruction Decoding A-17 



Specific Opcode and Instruction Type Decoding 

2 HW _MTPR instructions can specify a writer class to create an issue dependency to 
future HW _MxPR instructions. HW _MxPR instructions that identify a reader class 
dependency are scheduled to issue no earlier than 1 cycle after the HW _MTPR 
instruction that wrote the class dependency. HW _MTPR instructions can also spec
ify writer class dependencies that are satisfied on completion rather than issue. 
HW _MxPR instructions that identify a reader class dependency against this type of 
writer class are scheduled to issue no earlier than 3 cycles after the issue of the com
pletion bubble signal for the writer. The 21464 only allows specifying completion 
dependencies for Mbox HW _MTPR instructions; the completion bit is ignored for 
lbox destinations. 

Compaq Confidential 
A-18 Instruction Decoding 5 Jc1m.1c1ry 2001 ~·Subject To CfJange 



Relationship Between SMT and LD:x ____ ARM/QUIESCE 

B 
LDx_ARM/QUIESCE Instruction Characteristics 

The 21464 supports simultaneous multithreading (SMT), where up to 4 threads (or pro
cesses) share the resources of the CPU. On an SMT CPU, a spin-lock loop wastes CPU 
resources that could be used by other processes or threads that are executing. We are 
proposing two new instructions for the Alpha architecture, LDx_ARM and QUIESCE, 
which will permit a thread to wait on a memory location without actively spinning. 

8.1 Relationship Between SMT and LDx_ARM/QUIESCE 

The 21464 is implementing Simultaneous Multithreading because of the boost in 
throughput it provides when running independent programs, and because of the 
expected performance improvement for decomposed application. For independent pro
grams executing simultaneously, performance studies show roughly 100% increase in 
throughput, compared with running the programs only one at a time. June 1998 results 
showed: 

Programs 1-threaded IPC1 harmonic mean 4-threaded IPC 

Compress, Gee, M88ksim, Go (int) 2.38 5.15 
Tomcat, Applu, Swim, Povray (float) 3.50 6.12 
SQL traces (database) 1.33 3.40 

1 IPC=lnstructions Per Cycle 

4T/1T IPC increase 

2.16x 
1.75x 
2.55x 

We anticipate that SMTwill also be very useful for decomposed applications, where 
one program is broken into multiple threads and locking protocols are used by each 
thread to control access to shared data. Preliminary results show speedups from 1. lx to 
2.5x (Cilk results from CRL). These results were produced with code that used QUI
ESCE; other runs done without QUIESCE showed no speedup at all, or even degrada
tion. The reason for the poor performance without QUIESCE is due to the way threads 
wait for access to a lock, as explained in the following paragraphs. 

An integral part of many locking protocols is a busy wait loop, often referred to as a 
spin lock. In a spin lock, a process loops looking at a particular memory location and 
waiting for it to change to a specific value before proceeding. Once the value has 
changed, the process is then free to attempt an atomic update of the location, thus 
obtaining the lock. 

Compaq Confidential 
5 January 2001 -~Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-1 



Goals for the LDx ____ ARM and QUIESCE Instruction Definition 

In a conventional multiprocessor the CPU resources and memory bandwidth consumed 
by a task in a spin lock are not simultaneously shared with any other tasks. Thus, while 
the task is spinning there is no resource contention within the CPU, and no reason not to 
let the task spin as much as it wants. Studies have shown that approximately 15% of 
processor time is spent in spin loops. 

In a simultaneous multithreaded CPU, however, the resources consumed by the spin
ning task are being denied to the other threads that are doing useful work. Thus, it is 
desirable to prevent the task in the spin lock from consuming resources when there is no 
chance that it will find the value it is looking for. We refer to the action of pausing exe
cution of a thread (until the condition it is waiting for might be satisfied) as quiescing 
the thread. In a simultaneous multithreaded machine, the act of quiescing would mean 
that no instructions are executed from the quiesced "thread processing unit" or TPU. 
The other TPUs continue normally. 

We propose to add two new instructions to the Alpha architecture, LDx_ARM (long or 
quad) and QUIESCE. Software uses these in sequence, LDx_ARM and then QUI
ESCE. These instructions allow a processor to declare that it has no work to do until 
some other processor writes a specified location in memory space. Two internal proces
sor registers are also involved, watch_physical_address and watch_flag. In addition, the 
processor has a counter to signal the timeout of the quiesce period at intervals. 

For backwards compatibility, the LDx_ARM/QUIESCE sequence must be conditional
ized with the AMASK instruction, so that non-SMT processors do not execute these 
new instructions. We also propose defining a new AMASK bit to identify a processor 
with SMT capability. 

Table B-1 SMT AMASK Instruction Bit 

Bit Meaning 

10 Support for Simultaneous Multithreading. This processor is part of an implementa-
tion where multiple threads, or processes, are executed simultanously within a single 
CPU. 

B.2 Goals for the LDx_ARM and QUIESCE Instruction Definition 

We would like to achieve the following goals in our definition of these instructions: 

• 

• 

• 
• 

Define the instructions such that in-order execution of LDx_ARM and QUIESCE is 
ensured. This is accomplished through the defined dependency on watch_flag -
LDx_ARM sets it and QUIESCE uses it as a condition on its operation. 

Eliminate possibility of a race between the lock just becoming available, and qui
escing the machine. This is accomplished by having the LDx_ARM load the lock 
value so that code can test the lock before executing the QUIESCE. 

May be used either in PALmode or in normal mode . 

Have code using these instructions still be functional if executed in older machines . 

B.2.1 Specific LDx_ARM Instruction Characteristics 

The following sections contain the specific characteristics and requirements that define 
the LDL_ARM and LDQ_ARM instructions. 

Compaq Co11fide11tia I 
B-2 LDx_ARM/QUIESCE Instruction Characteristics 5 Jc1nuary 2001 ···Subject To Change 



Goals for the LDx ____ ARM and QUIESCE Instruction Definition 

B.2.1.1 Instruction Description 

The mnemonics/description for the LDx_ARM instructions are: 

Description Mnemonic 

LDL_ARM 

LDQ_ARM 

Load sign-extended longword from memory to register and arm 

Load quadword from memory to register and arm 

The LDx_ARM instructions are described in a manner that is as similar as possible to 
the LDx_L instructions, except the LDx_L instructions affect lock_flag and 
locked_physical_address, while the LDx_ARM instructions affect watch_flag and 
watch_physical_address. Note however, that LDx_ARM, because they use the Mem
ory /function code instruction format, have no displacement. 

Instruction Format: 

LDx_ARM Ra, {Rb.ab) ! Mfc fo:rmat 

Operation: 

va <- Rbv 

CASE 

big_endian_data: va' <- va XOR 000 {base 2) 

big_endian_data: va' <- va XOR 100 {base 2) 

little_endian_data: va' <- va 

ENDCASE 

watch_f lag <- 1 

watch_physical_address <- PHYSICAL_ADDRESS{va) 

Ra<- SEXT{ (va')<31:0>) 

Ra<- {va')<63:0> 

Exceptions: 

Access Violation 

Alignment 

Fault on Read 

Translation Not Valid 

Qualifiers: 

None 

!LDQ_ARM 

!LDL_ARM 

!LDL_ARM 

!LDL_ARM 

!LDQ_ARM 

LDx_ARM is used in conjunction with QUIESCE to idle a process while waiting for a 
shared resource (rather than looping and continually testing the lock bit). 

The virtual address is in register Rb. For a big-endian longword access, va<2> (bit 2 of 
the virtual address) is inverted, and any memory management fault is reported for va 
(not va'). The source operand is fetched from memory, sign-extended for LDL_L, and 
written to register Ra. If the LDx_ARM instruction encounters an exception, it is 
treated just as for a LDQ instruction. 

Compaq Confidential 
5 January 2001 -·Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-3 



Goals for the LDx ____ ARM and QUIESCE Instruction Definition 

When a LDx_ARM instruction is executed without faulting, the processor records the 
target physical address in a per-processor watch_physical_address register and sets the 
per-processor watch_flag. 

If the per-processor watch_flag is (still) set when a QUIESCE instruction is executed, 
the processor quiesces, as described for the QUIESCE instruction. 

Processor A causes the clearing of a set watch_flag in Processor B by doing any of the 
following in B's watched range of physical addresses: a successful store, a successful 
store_conditional, or executing a WH64 instruction that modifies data on processor B. 
A processor's watched range is the aligned block of 2**N bytes that includes the 
watch_physical_address. The 2**N value is implementation dependent, and must 
match the lock range implemented for LDx_L and STx_C. It is at least 16 (minimum 
lock range is an aligned 16-byte block) and is at most the page size for that implementa
tion (maximum lock range is one physical page). 

A processor's watch_flag is cleared if that processor's implementation-specific quiesce 
timeout counter expires, as described for the QUIESCE instruction. A processor's 
watch_flag is also cleared if that processor encounters a CALL_PAL REI, CALL_PAL 
rti, or CALL_PAL rfe instruction. A processor's watch_flag is cleared if that processor 
encounters a CALL_PAL retsys (return from syscall) or CALL_PAL urti (return from 
user mode trap). It is UNPREDICTABLE whether or not a processor watch_flag is 
cleared on any other CALL_PAL instruction. It is UNPREDICTABLE whether a pro
cessor's watch_flag is cleared by that processor executing a WH64 or ECB instruction. 
The watch_flag may also be cleared for implementation-specific reasons. 

It is UNPREDICTABLE whether the watch_flag is cleared by an interrupt to the pro
cessor, whether or not the processor is in PALmode. 

The fallowing sequence: 

LDQ_ARM 

<branch to GetLock if lock available> 

QUIESCE 

GetLock: 

when executed on a given processor, will quiesce the processor if the branch to Get
Lock is not taken, and will continue execution if the branch is taken. 

Notes 

• The conditions which clear watch_flag are intended to cover the cases when a 
change of control, occurring between a LDx_ARM and a QUIESCE, may have 
executed a LDx_ARM and changed the watch_physical_address value. We don't 
want to quiesce on the wrong value of watch_physical_address. 

• Executing a LDx_ARM on one processor does not affect any architecturally visible 
state on another processor, and in particular cannot clear watch_flag on another 
processor, causing the other processor to come out of a quiescent state. Note: With
out this restriction, two processors executing LDQ_ARM/QUIESCE sequences 
could be continually re-arming each other. 

Compaq Confidential 
B-4 LDx_ARM/QUIESCE Instruction Characteristics 5 Jmuuiry 2001 ···Subject To Change 



• 
• 

• 

Goals for the lDx ____ ARM and QUIESCE Instruction Definition 

LDx_ARM and QUIESCE instructions need not be paired. In particular, a 
LDx_ARM may be followed by a conditional branch: on the fall-through path a 
QUIESCE is executed, whereas on the taken path no matching QUIESCE is exe
cuted. 

If two LDx_ARM instructions execute with no intervening QUIESCE, the second 
one overwrites the state of the first one. If two QUIESCE instructions execute with 
no intervening LDx_ARM, the second one never quiesces the processor because 
watch_flag was clear after execution of the first, whether it quiesced the processor 
or not. 

Software will not emulate any LDx_ARM instruction . 

If the physical address of the LDx_ARM and the physical address intended to be 
watched are not within the same naturally aligned 16-byte sections of physical 
memory, the processor may continue to be quiesced despite another processor's 
store to the watched range; hence, care should be taken to specify the addresses 
with correct alignment. 

If any other memory access (ECB, LDx, LDDQ_U, STx, STQ_U, WH64) is exe
cuted on the given processor between the LDx_ARM and the QUIESCE, the QUI
ESCE may always fail on some implementations. 

Note: Otherwise, a direct-mapped TB could thrash. Or, the memory reference 
could change the contents of the cache which the implementation might 
depend upon. It should be possible to always code very few instructions 
between the LDx_ARM and the QUIESCE. 

• 

• 

• 

• 

• 

If a branch is taken between the LDx_ARM and the QUIESCE, the sequence above 
may always fail (processor will not quiesce) on some implementations. (CMOVxx 
may be used to avoid branching.) 

If a subsetted instruction (for example, floating-point) is executed between the 
LDx_ARM and the QUIESCE, the QUIESCE may always fail on some implemen
tations because of the Illegal Instruction Trap. 

If an instruction with an unused function code is executed between the LDx_ARM 
and the QUIESCE, the QUIESCE may always fail on some implementations 
because an instruction with an unused function code is UNPREDICTABLE. 

If a large number of instructions are executed between the LDx_ARM and the QUI
ESCE, the QUIESCE may always fail on some implementations because of a timer 
interrupt always clearing the watch_flag before the sequence completes. 

Execution of a WH64 instruction on processor A to a region within the watched 
range of processor B, where the execution of the WH64 changes the contents of 
memory, causes the watch_flag on processor B to be cleared. If the WH64 does not 
change the contents of memory of processor B, it need not clear the watch_flag. 

Implementation Notes 

• When not in PALmode, the signalling of an interrupt should clear the watch flag, so 
that QUIESCE cannot be used as a way to delay interrupt processing. 

Compaq Confidential 
5 January 2001 ···Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-5 



Goals for the LDx ____ ARM and QUIESCE Instruction Definition 

• 

• 

The watch_flag and watch_physical_address register must be loaded simulta
neously with reading the value of the lock. Hardware must ensure that even if the 
lock value becomes unlocked immediately after reading it, and before the QUI
ESCE is executed, watch_flag will be cleared and will prevent the processor from 
quiescing (the QUIESCE will fail, as should happen). Note: in some sense, this is a 
performance issue, not a functional issue: if the watch_flag is not cleared due to the 
change in the lock, QUIESCE_ TIMER will eventually time out and end the quiesce 
period. 

Since watch_flag and watch_physical_address are implicitly written by LDx_ARM 
and implicitly read by QUIESCE, implementations must ensure that any specula
tive execution of those instructions preserves the read-order and write-order of 
watch_flag and watch_physical_address, as intended in the original program. 

For example, in the code below, if the first branch is incorrectly predicted taken, the 
second LDx_ARM must not be allowed to affect the behavior of the first QUIESCE 
by changing watch_physical_address. 

LDQ_ARM Rl, (RS) 

BEQ Rl, test 

QUIE'SCE 

test: 

LDQ_ARM Rl, (RS) 

BEQ Rl, xxx 

QUIE'SCE 

B.2.2 Specific QUIESCE Instruction Characteristics 

The following sections contain the specific characteristics and requirements that define 
the QUIESCE instruction. 

The rrmemonic/description for the QUIESCE instruction are as follows: 

Mnemonic 

QUIESCE 

Format 

QUIESCE 

Operation: 

Description 

Quiesce Conditional 

! Mfc format 

IF (watch_flag != 0) THEN 

start QUIESCE_TIMER 

suspend program execution 

resume execution ~en watch_flag==O 

Exceptions: 

NONE 

Compaq Confidential 
B-6 LDx_ARM/QUIESCE Instruction Characteristics 5 J~1nuary 2001 ···Subject To Change 



Goals for the LDx. ___ ARM and QUIESCE Instruction Definition 

Qualifiers: 

None 

QUIESCE checks the watch_flag to see if it is set; if it is, the processor starts the imple
mentation-specific QUIESCE_ TIMER and pauses execution of this instruction stream. 
When the watch_flag is cleared, execution begins again. It is implementation-specific 
exactly how/if the machine pauses execution and when exactly it resumes. If the 
watch_flag is set, the QUIESCE instruction is considered complete at the beginning of 
the quiescent period. 

The implementation-specific QUIESCE_ TIMER starts counting when the QUIESCE 
determines that the processor is going to quiesce. After some implementation-specific 
finite period of time, QUIESCE_ TIMER expires and clears the watch_flag. If the qui
esce period ends before the QUIESCE_ TIMER expires, the QUIESCE_ TIMER must 
be stopped, to prevent it clearing watch_flag after a future LDx_ARM. 

After the quiescent period, execution resumes at the instruction following the QUI -
ESCE, or, if the QUIESCE was terminated because watch_flag was cleared by an inter
rupt, execution may resume at an interrupt servicing routine. 

By definition, the watch_flag is clear at the end of the quiescent period, since the quies
cent period cannot end until watch_flag is clear. 

Implementation notes 

• 

• 

• 

• 

If an interrupt causes a processor to end a quiescent period and immediately start 
executing the interrupt servicing routine, that ISR may return to the QUIESCE 
instruction only if watch_flag is guaranteed to be clear. If it is not, the ISR must 
return to the instruction after the QUIESCE, since the value of 
watch_physical_address may have been changed by a LDx_ARM executed while 
servicing the interrupt. 

If an interrupt occurs during a quiescent period, an implementation does not have to 
start the ISR immediately after the QUIESCE; it may choose to delay execution of 
the ISR until some later point in the instruction stream. 

An implementation may allow software to specify the QUIESCE timeout period 
through an IPR. A timeout value of 0 would effectively disable the QUIESCE 
instruction. 

The implementation-specific maximum timeout value should not exceed n micro
seconds (where n is TBD ). 

Software/Hardware Note 

The quiesce timeout counter is useful/necessary for the following reasons: 

• 

• 

• 

The timeout enables the implementation of a backoff algorithm, where a process 
can deschedule itself after some period of time if it hasn't gotten the lock. 

The quiesce timeout counter prevents a processor from deadlocking if there is a 
coding error. 

Suppose the code updating the memory location takes an access violation and never 
gets to unlock the lock. The quiesce timeout allows the waiting processor to wake 
up and discover the problem with checking code. 

Compaq Confidentia I 
5 January 2001 ···Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-7 



Goals for the LDx ____ ARM and QUIESCE Instruction Definition 

Software Note 

If a longer quiesce period is desired than that provided by a given implementation, soft
ware can accomplish that by looping and quiescing repeatedly. 

B.2.2.1 Data Sharing Using LDx_ARM/Quiesce 

Efficient Data Sharing in a Simultaneous Multithreaded Processor 

In a simultaneous multithreaded (SMT) CPU, multiple threads, or processes, are exe
cuted simultaneously while sharing the resources of a single CPU. On an SMT CPU, a 
spin-lock loop wastes CPU resources that could be used by other processes or threads 
that are executing. The LDx_ARM and QUIESCE instructions are used in a simulta
neous multithreaded CPU to keep a thread from consuming resources while it waits for 
a lock. 

An example code sequence using the quiesce operation follows. In this program, R5 
contains the address of a lock. The program is spinlocking on the lock until it is 0. RO is 
loaded with the value of the lock. 

GetLock: 

LDQ_L RO, (RS} ;load the lock value 

BNEQ RO, HandleBusyLock ; if not available, quiesce 

<modify RO> 

STQ_C RO I (RS} 

BEQ RO, GetLock 

<critical section> 

<clear lock> 

RET 

;store new lock value if lock_flag still set 

;if store conditional failed, try again 

; we have the lock, now do the real work 

;done 

HandleBusyLock: 

IDA R2, Ox400 (R31} 

AMASK R2, R2 

BEQ R2, CheckLock 

LDQ_ARM RO, (RS} 

BEQ 

QUIESCE 

CheckLock: 

1DQ 

BEQ 

RO, GetLock 

RO, (RS} 

RO, GetLock 

;set bit 10, SMI' bit in AMASK 

;test whether SMT processor 

;if no SMT, skip quiesce 

;load the lock value at address RS into RO 

;put lock address into watch_physical_address 

; set watch_flag 

;if lock available, t:ry to get it 

;if watch_flag set, go quiet 

;load lock value again 

;if available, try for it again 

<check for spinning on lock too long> 

BR HandleBusyLock ;loop again 

Compaq Confidential 
B-8 LDx_ARM/QUIESCE Instruction Characteristics 5 Jc1nuary 2001 -·Subject To Change 



Proposed Opcode Assignments 

In that code sequence, testing the lock just after the LDQ_ARM is crucial to perfor
mance in the case where the lock is available - otherwise the code would quiesce for no 
reason. Having the QUIESCE fall through into the CheckLock section allows us to 
check the lock again, in case the QUIESCE ended for some other reason than a change 
in the lock value. Note however that for a lock which is highly contended, the lines 
"BEQ RO, GetLock" will mispredict when the lock is finally given up, assuming that 
we issued QUIESCE multiple times before getting a chance at the lock. This mispredict 
will slow down the attempt to get the lock. 

Note also that if we execute the LDQ_ARM and we don't QUIESCE, because we 
branch away to get the lock, the watch_flag will still be set. It will continue to be set 
until it is cleared by one of the conditions given for clearing watch_flag. This should 
have no actual effect on machine hardware since it won't be quiesced at the time. The 
fact that watch_flag is set when a QUIESCE is not actually watching for anything is 
harmless - the next LDx_ARM which executes will load a new watch_physical_address 
and set watch_flag whether or not it is already set. 

B.3 Proposed Opcode Assignments 

We propose the following opcode assignments 

Table B-2 Proposed LDx_ARM/QUIESCE Opcode Assignments 

Mnemonic Instruction Type Opcode 

LDL_ARM 

LDQ_ARM 

QUIESCE 

Mfc 18.BOOO 

Mfc 18.B400 

Mfc 18.B800 

Ideally, we would choose opcodes with the following characteristics: 

• 
• 
• 

They are memory format instructions, for ease of implementation . 

They are NOPs to all pre-EV8 Alpha processors . 

LDx_ARM has a displacement field . 

If we found opcodes meeting these criteria, QUIESCE code could be written without 
using AMAS K to condition the code based on the processor type. (If code depended on 
the register value loaded by the LDx_ARM, an ordinary load would be needed before 
the LDx_ARM, to accomplish the load operation in older machines.) We do not believe 
it is possible to find opcodes that look like NOPs to all older implementations, and also 
fit our other criteria. For example, we could use opcodes in the 11.xx (integer logical) 
category, such as were used for AMASK; however, these are operate format, not mem
ory format. 

We conclude that QUIESCE code sequences will have to be conditioned with AMASK. 
Since this is the case, we'd like to choose opcodes with the following characteristics: 

• 
• 
• 

They are memory format instructions, for ease of implementation . 

LDx_ARM instructions are illegal operations to all pre-EV8 Alpha processors . 

LDx_ARM has a displacement field . 

Compaq Confidentia I 
5 January 2001 -~Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-9 



Implementation 

The Miscellaneous category of opcodes ( 18.xxxx) provides memory format instruc
tions. But, this category has no displacement field, since that field is used as the func
tion field. This gives LDx_ARM a dissimilarity from LDx_L: LDx_ARM cannot have 
a displacement when specifying the load address. 

Note: Matt Reilly tried all the 18.xxxx opcodes and found that most of the unused 
ones trap (illegal instruction trap) on the 21164, but are NOPs on the 21064 
and the 21264. So, we don't think we can meet the goal of having the 
LDx_ARM instructions trap on all previous implementations. 

B.4 Implementation 

The design intent is that the LDx_ARM/Quiesce mechanism have the following proper
ties: 

• 

• 

• 

• 

For the most part, it makes use of hardware or architectural features or components 
that already exist to support single threaded uniprocessor operation. 

The quiesce instructions are implemented such that speculative or spurious execu
tion of these instructions in any form or sequence will not result in an UND E
FINED operation. This is accomplished by deferring most state changes related to 
LDx_ARM and QUIESCE until retire time. 

The quiesce operation eliminates the possibility of quiescing the TPU just as the 
lock becomes available (this is necessary for conformance to the instruction defini
tions). 

Restarting after a quiesce is low-overhead . 

The LDx_ARM instruction looks very much like a load-lock. The load-lock returns 
load data, sets lock_flag and loads lock_physical_address. LDx_ARM returns load 
data, sets watch_flag and loads watch_physical_address. The load data is returned to 
the LDx_ARM at the time the cache access is done, before retire, as is done also for 
load-lock. The watch_flag and watch_physical_address are updated when the 
LDx_ARM retires Gust as lock_flag and lock_physical_address are changed when the 
load-lock retires). 

When the LDx_ARM is executed, it is put into the Load Queue in the Mbox. Among 
other things, the entry contains the physical address specified by the LDx_ARM. If, at 
any time before the LDx_ARM retires, a memory write of any type occurs to that phys
ical address, the LDx_ARM is aborted and scheduled to be reexecuted. At the time 
when the LDx_ARM retires successfully, watch_flag is set and 
watch_physical_address is loaded with the address from the LDx_ARM. 

The LDx_ARM instruction, since it has the characteristics of LDx, may incur a DTB 
miss. In this case the DTB miss is handled before watch_flag and 
watch_physical_address are affected (since they don't change until retire time). 

Similarly, the QUIESCE effects occur at the point of the QUIESCE retiring. This 
ensures that the instructions are executed in-order, and the watch_flag/ 
watch_physical_address values loaded by the LDx_ARM are what are used by the 
QUIESCE. 

Compaq Confidential 
B-10 LDx_ARM/QUIESCE Instruction Characteristics 5 Januc1ry 2001 --Subject To Change 



Implementation 

If the watch_flag is set when the QUIESCE instruction retires, this TPU enters sleep 
mode. In this case, all instructions subsequent to the QUIESCE are flushed, the 
QUIESCE_ TIMER is started, and the QUIESCE retires. Certain hardware resources on 
the chip are deallocated from the quiescent TPU (described below). Once watch_flag is 
cleared, this TPU becomes active again, the map thread chooser resumes mapping at 
the instruction following the QUIESCE, and the hardware resources are reallocated 
back to the reactivated TPU. 

We implement the QUIESCE trap by treating a QUIESCE as a WMB. When it is issued 
to the MBOX, the MBOX makes an entry in the store queue for it and waits for the 
QBOX to signal that the QUIESCE instruction is the next to retire. The MBox then 
checks the watch_flag: if it is set, the MBOX signals a trap to flush the subsequent 
instructions. The QUIESCE is allowed to retire. 

The quiesce trap is analogous to a branch-mispredict, in that it kills the wrongly specu
lated instructions and restarts at the next correct instruction after the branch. The QUI
ESCE retires, all instructions after the QUIESCE are killed, and instruction fetch 
restarts at the next instruction after the QUIESCE. 

Alternate method: The trap clears out all subsequent instructions and instruction fetch 
restarts at the QUIESCE. In this case, the second QUIESCE would never successfully 
quiesce the machine, since watch_flag would by definition be clear since no 
LDx_ARM instruction has set it again. Or, if an interrupt was serviced in this TPU just 
after finishing the trap - the watch_flag would have been cleared on the REI. 

After the TPU's instructions are flushed, instruction fetch resumes for the quiesced 
TPU. Only at the map thread chooser is this TPU idled (not chosen). This means that 
when the thread restarts, it can start from the map point, which is much faster than start
ing at instruction fetch. This brings the idle TPU's instructions as far forward as possi
ble into the pipe, without using Inum space or registers for those waiting instructions. 

B.4.1 Interaction of Interrupts and QUIESCE 

When a TPU is quiescing, it kills all following instructions and starts refetching from 
the instruction following the quiesce. These instructions enter the pipe up to the map 
stage, where they are not chosen for mapping until the quiesce is over. 

If the watch_flag is cleared due to an interrupt, the pipeline is already full of the instruc
tions following the QUIESCE. The Ibox starts fetching the ISR but does not disturb the 
instructions already in the pipeline. Thus, the ISR will be executed at some point down
stream from the QUIESCE instruction. 

If a branch mispredict on the previously fetched code kills the ISR code, the TPU needs 
to remember to service the interrupt. This works because the interrupt signal is level
sensitive, and is only cleared once the interrupt servicing routine code is successfully 
executing. 

If an interrupt is directed to a quiesced TPU, the watch_flag is cleared so that the qui
esce period will end immediately, in the interest of getting to the interrupt as soon as 
possible. 

Compaq Confidential 
5 January 2001 --·Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-11 



Implementation 

If an interrupt is pending to a quiesced TPU, any attempted setting of the watch_flag by 
a LDx_ARM fails, so that the TPU will not quiesce. Again, this is in the interest of get
ting to the ISR as soon as possible. This situation could come up if a QUIESCE is 
already in the pipe with an ISR coming along behind it. 

B.4.2 Quiesce-Related Hardware 

• QUIESCE_ TIMEOUT_ VALUE[3:0]<19:0> IPR. One per TPU, each 20 bits wide. 
This is an implementation-specific IPR, which specifies a limit to the number of 
CPU cycles that may elapse between the QUIESCE instruction and watch_flag 
being cleared. This IPR is writable by PALcode; it does not have to be readable, as 
it is never modified by hardware. The value in this register is used to load the 
QUIESCE_ TIMER (internal 21464 hardware). The default value loaded by hard
ware at power-up is lOK cycles, which proved to be an effective timeout period in 
simulation. 

QUIESCE_ TIMEOUT_ VALUE[3:0]<19:0> is loaded by startup (boot) code. The 
timeout value can be specified up to 2"20, or 1048576 (lM) cycles. 

Note: For ease of implementation, it may be useful to have the bottom two bits be 
free running, so that the incrementer only has to cycle every fourth cycle. 

If software wanted to use a different QUIESCE_TIMEOUT_ VALUE for each pro
cess that is scheduled on a TPU, then QUIESCE_ TIMEOUT_ VALUE would have 
to become part of the process context. We are assuming this is not the case, instead, 
QUIESCE_ TIMEOUT_ VALUE is loaded by powerup code for each TPU. 

Note: Allowing a different value for each TPU is necessary to provide the capa
bility of running virtual machines, i.e., the ability for different TPUs to run 
different operating systems simultaneously. If we rule out this design alter
native, one single QUIESCE_TIMEOUT_ VALUE IPR, used by all TPU's 
and loaded at powerup is sufficient. 

• QUIESCE_ TIMER[3:0]<19:0>. This is hardware internal and not accessible by 
software. There is one QUIESCE_ TIMER per TPU. The QUIESCE_ TIMER is 
loaded with the value in the QUIESCE_ TIMEOUT_ VALUE IPR, when the QUI
ESCE instruction retires. It then decrements once per CPU cycle. When it reaches 
zero, watch_flag is cleared, and the timer remains at zero until restarted by the next 
QUIESCE retiring. Since QUIESCE_TIMER[n] is only started when a QUIESCE 
retires on TPU[n], it is guaranteed to count down to zero eventually; it can't be 
restarted speculatively by another QUIESCE. Also, this implementation should 
give reproducible results, as desired for verification and also for Tandem. 

• QUIESCE_TIMEOUT[3:0]. Each TPU has its own QUIESCE_TIMEOUT signal. 
This signal is asserted for one cycle when QUIESCE_ TIMER reaches zero. This 
assertion has the effect of clearing watch_flag. 

• watch_flag[3:0]. As specified by the LDx_ARM and QUIESCE instructions; one 
perTPU. 

Compaq Confidential 
B-12 LDx_ARM/QUIESCE Instruction Characteristics 5 January 2001 - Subject To CfMmge 



• 

Implementation 

watch_physical_address[3:0]<43:4>. One per TPU. Note that this register does not 
have to be the full width of the physical address, it could be less wide. In this case 
watch_flag would be cleared more frequently than with the full-width address. 

B.4.3 Reallocation Hardware Resources During Quiesce 

For as long as a TPU[j] is quiesced, one of four bits 
M%QUIESCE_TPU_Q19A_H[3:0] is asserted which has the following effects: 

• 
• 

• 

• 

• 

• 

Thread map chooser no longer chooses instructions from TPU[j] 

Inum allocator allocates no more Inums to TPU[j], and as TPU[j] frees Inums, 
allows them to be allocated to other, active, TPUs. 

Load queue entries are repartitioned among the remaining active TPUs. (need more 
description here). 

Store queue entries are repartitioned among the remaining active TPUs. (need more 
description here). 

As a result of Inum reallocation, non-architectural physical registers gradually 
migrate from TPU[j] to other TPUs, as they are freed. more description needed here 

Other effects worth mentioning? 

When watch_flag is cleared, M%QUIESCE_TPU_Q19A_H[3:0] is deasserted and 
machine resources are gradually given back to the previously quiesced TPU, so that it 
can resume execution. At this point, instructions are waiting in the collapsing buffer, 
ready to be mapped, once chosen by the map chooser. The TPU is out of Inums, and it 
may take some time for the Inums to become available for the TPU, which is probably 
the critical resource as far as restarting this TPU. 

We estimate it will cost about 100 cycles for a TPU to quiesce and wake up. It will take 
about 50 cycles, on average, from the time a TPU comes out of quiesce to the time it 
executes its first instruction. The delay is because while quiesced, the TPU gave up 
resources (Inums, registers, load queue and store queue entries). It can only gradually 
get those resources back as other TPU s retire instructions. 

It is not desirable to reserve an Inum block for a quiesced TPU, because we would not 
want to do that for a TPU that is not being used at all, and we want to use the same 
mechanisms no matter why the TPU is inactive. 

B.4.4 Issues to Consider While Finalizing the Hardware Design 

• 

• 

• 

How much performance is lost because LDx_ARM, QUIESCE, LDx_L and STx_C 
all wait until retire time to have an effect? 

If 4 TPU s are using a lock heavily, is the hardware fair in passing the lock from 
TPU to TPU? Consider 2 EV8 CPUs, which each have 4 TPUs. A contended lock 
will have the same kinds of concerns between CPUs as exist today with load-lock/ 
store conditional - the local TPUs will have an advantage over the remote ones. We 
need to avoid the situation where the winner keeps winning on repeated uses of the 
lock. 

Does a TPU that quiesces and times out repeatedly eat up too much of the CPU 
from the other TPUs? 

Compaq Confidential 
5 January 2001 -~Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-13 



Alternative Proposals to the LDx ___ .ARMIQUIESCE Current Design 

• 

• 

For real time applications, should we have a mode so that a quiesced TPU would 
not give up resources at all (except being scheduled for execution slots). 

How can we make branch predictions go the right way - so that non-contended lock 
works fast? Can we build a branch predictor hint in somehow? 

8.5 Alternative Proposals to the LDx_ARM/QUIESCE Current Design 

As the current proposal for LDx_ARM/QUIESCE was being developed, a number of 
alternatives were considered but not chosen. The alternatives are presented here as 
background material. 

B.5.1 Timer-Based 

A purely timer-based approach was studied at CRL, using the 21464 model, but found 
not to work. A QUIESCE instruction that watched the memory location until it changed 
was needed to obtain speedups. 

B.5.2 Unified QUIESCE Instruction 

QUIESCE Ra, (Rb) 

This QUIESCE is a load. If a QUIESCE is executed when the watch_flag is clear, it 
loads watch_physical_address, sets watch_flag and does not quiesce the processor. 
Thus, it acts as an ARM. If a QUIESCE is executed when the watch_flag is set, it does 
quiesce the processor. It then stays quiesced until watch_flag is cleared by a store to 
watch_physical_address. 

For the "first" QUIESCE, the load data can be tested by subsequent instructions to find 
out if the lock is held. For a "second" quiesce, it is unclear what that load means or 
when it is loaded. It would be nice to load it at the end of the QUIESCE period, to see 
what it has changed to, but this is very difficult to implement. 

Pros: 

• Just one instruction. 

Cons: 

• More difficult to understand and implement. 

• Two flavors of the instruction, "first" and "second", are hard to think about. 

• 
• 

Returning meaningful load data to the second QUIESCE would be difficult. 

Specifying what can or can't happen "between" QUIESCEs seems unmanagable . 

B.5.3 Use architectural Registers to Enforce LDx_ARM/QUIESCE Dependency 

Here, LDQ_ARM is a load and QUIESCE is a store, of sorts. 

LDQ_ARM RO, (RS) 

BEQ getlock 

QUIESCE RO, (R31) 

this is a load 

this is a "store" 

Compaq Confidentia I 
B-14 LDx_ARM/QUIESCE Instruction Characteristics 5 Janu(1ry 2001 ·-Subject To Change 



Alternative Proposals to the LDx. ___ ARM/QUIESCE Current Design 

Since the QUIESCE reads the value in RO, the already-existing hardware in an out-of
order implementation will naturally keep the QUIESCE in-order with the LDQ_ARM, 
which it is dependent upon. The watch_physical_address and watch_flag registers are 
used as in the originally proposed instructions. 

However, having these registers explicitly part of the instruction still does not solve the 
problem of keeping writes/reads to watch_flag and watch_physical_address in order. 
Hardware still must solve this (the 21464 does it by not accessing them till retire time). 
So this suggestion does not really solve any problem. 

Pros: 

• Hardware implementations don't have to take special care to order the instructions. 

Cons: 

• 
• 

QUIESCE "looks" like a store but it really isn't; non-intuitive . 

watch_physical_address and watch_flag access order still must be managed by 
hardware other than the usual register-ordering hardware. 

B.5.4 Add LDx_ARM Functionality to LDx_L 

The LDx_ARM functionality is overloaded on the LDx_L instruction. Whenever a 
LDx_L is executed, the watch_physical_address and the watch_flag are set, in addition 
to the lock_flag and the lock_physical_address. Or, instead of having the watch_flag 
and watch_physical_address registers at all, the lock_flag and the 
lock_physical_address could be used both for LDx_L/STx_C functionality and for 
ARM/QUIESCE functionality. In this case, QUIESCE would watch for the clearing of 
the lock_flag. The same LDx_L would not be used both as the partner of a QUIESCE 
and the partner of a STx_C. If the watch* registers are used, LDx_ARM functionality 
could be specified using the low address bit of the LDx_L to specify ARM. If only the 
lock* registers are used, no differentiation in the LDx_L instruction is needed. 

Pros: 

• 
• 
• 

Have to define only one new instruction (QUIESCE) . 

Backwards-compatible code, if QUIESCE is a NOP . 

LDx_L and LDx_ARM already share a lot of functionality . 

Cons: 

• Overloading the LDx_L instruction (even more difficult to understand and verify) 

• Restricts implementations by requiring two functionalities; for example, LDx_L 
would not be able to request write privileges for a block, since it might be used in 
conjunction with a QUIESCE rather than a STx_C. 

• Using low-order address bit to differentiate functionality seems kludgy. 

Compaq Confidential 
5 January 2001 ·-Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-15 



Alternative Proposals to the LDx ___ .ARM/QUIESCE Current Design 

B.5.5 Define QUIESCE to be a load and test 

The idea here is to have the QUIESCE load a value, and quiesce based on that value. 
QUIESCE Ra, (Rb) would load Ra from the memory address in Rb. Then, the thread 
would quiesce if the value in Ra was non-zero, and would effectively be a NOP if the 
value in Ra was a zero. The QUIESCE instruction would also load the watch_flag and 
the watch_physical_address. 

It is too restrictive to have just one flavor of test, so we would have to define different 
types of QUIESCE, just as there are many types of branches. 

Pros: 

• 
• 
• 

LDx_ARM is not needed . 

Coding restrictions not needed . 

Only one instruction accomplishes the functionality . 

Cons: 

• 
• 

Too many new instructions to define (multiple flavors) 

Different type of instruction - hardware has to operate on load data (data from 
memory). 

B.5.6 Define QUIESCE to be a read of memory and compare with a register 

(Ernie Petrides) 

This version of QUIESCE is used as follows: 

LDQ RO, (RS) 

BEQ RO, getlock 

QUIESCE RO I (RS) 

The QUIESCE translates the VA in R5 and reads the lock value from that physical 
address. It then compares that lock value with the contents of RO, which was previously 
loaded by a vanilla load preceding the QUIESCE. If the two values are equal, the QUI
ESCE succeeds and the thread goes to sleep. If they are not equal, the QUIESCE is like 
a NOP and does not put the thread to sleep. 

While the processor is asleep, the hardware watches the PA as calculated when the 
QUIESCE executed. This is analogous to the watch_physical_address register as 
defined in other instructions, but is entirely private to the hardware (not software visible 
at all). The quiesce period ends if some write access happens to that PA, etc. 

Pros: 

• 
• 
• 
• 

• 

LDx_ARM is not needed . 

Coding restrictions not needed . 

Only one instruction accomplishes the functionality . 

watch_flag and watch_physical_register do not need to be defined as IPRs or men
tioned in the SRM at all. 

Very appealing from a software point of view . 

Compaq Confidential 
B-16 LDx_ARM/QUIESCE Instruction Characteristics 5 January 2001 m Subject To CfJange 



Open Issues 

Cons: 

• Complicated instruction, unlike any other - loads from memory, reads from a regis
ter, does a compare all in the same instruction. 

• Difficult to implement - introduces datapath completely unlike anything we have 
already. 

B.6 Open Issues 

• Is the lack of a displacement for LDx_ARM a problem? We believe it is not an 
issue for Unix or VMS. 

• Should we add anything to Section B.2.2.1? 

• Sections B.2.1.1 and B.2.2.1 use "processor" to mean "TPU" and "CPU" to mean a 
thing that can contain multiple processors. It seems confusing to use "processor" to 
mean both "TPU" and "CPU". Does the terminology need to be changed? 

Compaq Confidential 
5 January 2001 ~·Subject To Change LDx_ARM/QUIESCE Instruction Characteristics B-17 



Open Issues 

Compaq Confidential 
B-18 LDx_ARM/QUIESCE Instruction Characteristics 5 Jc1nuary 2001 -·Subject To Change 



Motivation for This Design 

c 
Proposed Memory Management IPR Design 

This appendix proposes a design for the 21464 memory management IPRs from Jeff 
Wiedemeier, Judy Hall, and Eileen Samberg. Upon approval, it will be incorporated 
into the body of the Specification. 

There are references in this appendix to ECO 129, which is available at: 

http://amt233.lkg.dec.com/alphaarchitect/approved-ecos/eco129/ 
eco129_prelim_mm.doc 

C.1 Motivation for This Design 

The 21464 memory management IPR design eliminates bit overloading that can limit 
the options that are available to an operating system and the PALcode. 

Limitation: The same bit (VA_ 48) that controls sign-extension checking also dictates the format of VA_FORM. 
When VA_ 48 is set, VA_FORM is based on a 4-level page table. Software that uses 48-bit superpage 
and 43-bit (or smaller) mapped addresses has no VA_FORM that works. If software uses 3-level 
page tables, it must use VA_ 48=0. This prevents it from using 48-bit superpage and thus from being 
able to directly address (without mapping) the entire physical address space of the CPU outside of 
PALmode. 

Correction: Separate the control of sign-extension checking from the format control of VA_FORM. 

Limitation: Sign extension checking is applied to superpage and mapped addresses equally. If software wants to 
use 48-bit superpage, sign extension checking must be set up for 48-bit checking. This means that if 
software uses 48-bit superpage and 43-bit virtual addresses, VA<46:42> are not checked by hard
ware for proper sign extension and must either be checked by PALcode or ignored and assumed to be 
correct. Besides being slow, checking by PALcode can only be done in memory-management related 
traps and therefore cannot catch all cases. 

Correction: Modify the sign extension checking algorithm to accommodate the large superpage in all virtual 
addressing modes. This is how the 21464 will support the mixed mode described in ECO 129. 

Limitation: Arbitrarily basing the decision of which double miss flow to use (DTB_MISS_DOUBLE_3 or 
DTB_MISS_DOUBLE_ 4) on VA_ 48 prevents other uses for multiple double miss flows. 

Correction: Base the decision of which double miss flow to use on an independent IPR bit rather than VA_ 48. 

C.2 Page Table Assumptions 

The following assumptions are made concerning the page tables. 

1. The SRM allows only 3-level page tables. 

ECO 129, Section 1, removes 4-level page tables from the architecture. 

Compaq Confidential 
5 January 2001 -- Subject To Change Proposed Memory Management IPR Design C-1 



Page Table Assumptions 

2. The SRM allows the level 1 page table to be partially utilized. 

ECO 129, Section 3, states: 

The level one of the page table is partially utilized, similar to the previous 4-
level proposal. 

If the level 1 page table is required to be fully-utilized, then 64 KB pages require 
55-bit virtual addresses. Since the 21464 implements a 52-bit virtual address, the 
level 1 page table in 64 KB page mode will not be fully-utilized. 

3. At least 2 bits of level 1 page table index must be implemented 

Page (II-A) 3-3 of the Version 7 SRM states: 

An implementation that supports the fourth level-number field may further sub
set the supported address space to include only a subset of low-order bits within 

that field. That subset must be at least two bits 1, and may be as large as n bits, 
where n is the full bit count of any given level-number field. The most signifi
cant bit in the chosen subset is sign-extended to VA<63> for any valid virtual 
address. 

10penVMS requires at least three PfEs in the highest-level page table. The 
lowest-order PTE must map process space, the highest-order PfE must map 
system space, and the penultimate PfE maps the page table structure. 

If 2 bits of level 1 page table index must be implemented, then 64 KB pages require 
at least a 44-bit virtual address [2/13/13/16] but can be used with up to a 55-bit vir
tual address [13/13/13/16]. 

Compaq Confidential 
C-2 Proposed Memory Management IPR Design 5 J~1nw~ry 2001 - Subject To Cfumge 



1 ... stream {l ____ CTL) and o ... stream (M ____ CTl) Control Registers 

C.3 I-Stream {l_CTL) and D-Stream {M_CTL) Control Registers 

The following sections define the fields for I_C1L and M_CTL. 

C.3.1 l_CTL 

The following fields are defined for I_ CTL. 

Table C-1 l_CTL Field Definitions 

Name 

PAGE_SIZE 

VA_SIZE 

Type Description 

RW Controls the I-Stream page size: 

RW 

Value Meaning 

1 I-Stream page size is 64 KB 

0 I-Stream page size is 8 KB 

PAGE_SIZE influences the format of IVA_FORM (see Section C.4). 

Controls the I-Stream virtual address size: 

Value Meaning 

1 I-Stream virtual address size is 52 bits 
0 I-Stream virtual address size is 43 bits 

VA_SIZE influences the format of IVA_FORM (see Section C.4) and 
influences sign extension checking (see Section C.5). 

Compaq Confidential 
5 January 2001 ·-Subject To Change Proposed Memory Management IPR Design C-3 



1 ... stream {t.CTL) and o ... stream (M .... CTL) Control Registers 

Table C-1 l_CTL Field Definitions (Continued) 

Name 

REDUCED_PAGE_TABLE 

SPE<2:0> 

Type Description 

RW Controls reduced page table mode: 

RW 

Value Meaning 

1 Quadrant 1 of the virtual address space (VA<n:n-1> = 01) 
is the reduced page table region 

0 No special handling of quadrant 1 

REDUCED _PAGE_ TABLE influences the format of IVA_FORM 
(see Section C.4). See ECO 129 for information on reduced page 
table mode. 

I-Stream Superpage mode enable. 

Bit Mnemonic Meaning When Set 

SPE<2> SPE52 Enables superpage mapping when 
VA<63:50> = Ox3FFE. In this mode 
VA<47:0> are mapped directly to PA<47:0>. 
Because the physical address is only 48 bits, 

SPE<l> SPE43 

SPE<O> SPE32 

VA<49:48> are ignored. 

Enables superpage mapping when 
VA<63:41> = Ox7FFFFE. In this mode 
VA<40:0> are mapped directly to PA<40:0> 
and PA<47:41> are copies of PA<40> (sign 
extension). 

Enables superpage mapping when 
VA<63:30> = Ox3FFFFFFFE. In this mode, 
VA<29:0> are mapped directly to PA<29:0> 
and PA<47:30> are cleared. 

o Any non-kernel mode access to an enabled superpage region must 
result in an access violation. 

o Any combination of these bits is allowed. 
o These bits influence sign extension checking (see Section C.5). 

DOUBLE_MISS_CONTROL RW Controls the vectoring for all double TB misses, both I-Stream and 
D-Stream, and determines which double miss flow is vectored to 
when a hw_ld/vpte misses in the TB. 
Value Meaning 

A TB miss on a hw _ld/vpte will vector to 
DTB_MISS_DOUBLE_ALT. 

0 A TB miss on a hw _ld/vpte will vector to 
DTB_MISS_DOUBLE. 

DTB_MISS_DOUBLE and DTB_MISS_DOUBLE_ALT are in used 
in place of the 21264's DTB_MISS_DOUBLE_3 and 
DTB_MISS_DOUBLE_4, the distinction from the 21264 being that 
PALcode decides which to use. 

Compaq Confidential 
C-4 Proposed Memory Management IPR Design 5 Januc1ry 2001 ·-Subject To Change 



I-Stream {l ____ CTl) and D-Stream (M ____ CTL) Control Registers 

C.3.2 M_CTL 

The following fields are defined for M_CTL. 

Table C-2 M_CTL Field Definitions 

Name 

PAGE_SIZE 

VA_SIZE 

REDUCED_PAGE_TABLE 

SPE<2:0> 

Type Description 

RW Controls the D-Stream page size: 

RW 

RW 

RW 

Value Meaning 

1 D-Stream page size is 64 KB. 

0 D-Stream page size is 8 KB. 
PAGE_SIZE influences the format of VA_FORM (see Section C.4). 

Controls the D-Stream virtual address size: 

Value Meaning 

1 D-Stream virtual address size is 52 bits. 

0 D-Stream virtual address size is 43 bits. 

VA_SIZE influences the format of VA_FORM (see Section C.4) and 
influences extension checking (see Section C.5). 

Controls reduced page table mode: 

Value Meaning 

1 Quadrant 1 of the virtual address space (VA<n:n-1> = 01) 
is the reduced page table region. 

0 No special handling of quadrant 1. 

REDUCED_PAGE_TABLE influences the formatofVA_FORM 
(see Section C.4). See ECO 129 for information on reduced page 
table mode. 

D-Stream Superpage mode enable. 

Bit Mnemonic Meaning When Set 

SPE<2> SPE52 Enables superpage mapping when 
VA<63:50> = Ox3FFE. In this mode 
VA<47:0> are mapped directly to PA<47:0>. 
Because the physical address is only 48-bits, 
VA<49:48> are ignored. 

SPE<l> SPE43 

SPE<O> SPE32 

Enables superpage mapping when 
VA<63:41> = Ox7FFFFE. In this mode 
VA<40:0> are mapped directly to PA<40:0> 
and PA<47:41> are copies of PA<40> (sign 
extension). 

Enables superpage mapping when 
VA<63:30> = Ox3FFFFFFFE. In this mode, 
VA<29:0> are mapped directly to PA<29:0> 
and PA<47:30> are cleared. 

o Any non-kernel mcxle access to an enabled superpage region 
must result in an access violation. 

o Any combination of these bits is allowed. 
o These bits influence sign extension checking (see Section C.5). 

Compaq Confidential 
5 January 2001 ·- Subject To Change Proposed Memory Management IPR Design C-5 



VA .... FORM and IVA ___ FORM 

C.3.3 PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE Field Combinations 

Combinations of the PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE fields 
are valid or invalid as shown in Table C-3. 

Although every valid combination of these bits has PAGE_SIZE and VA_SIZE set the 
same way, it is recommended that the bits remain separate since the two controls serve 
distinct functions. One of the primary situations which led to this document was the 
overloading of bits in previous Alpha implementations. 

Table C-3 Valid and Invalid PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE Combinations 

PAGE_ SIZE VA_SIZE REDUCED_PAGE_TABLE Description 

0 

0 

0 

0 

1 

1 

0 0 43-bit VA with 8 KB pages. This is the addressing 
mode used by Tru64 UNIX and Open VMS today. 

0 1 43-bit VA with 8 KB pages and reduced page 
tables. This mode is invalid 1• 

1 0 52-bit VA with 8 KB pages. This mode is invalid2. 

1 52-bit VA with 8 KB pages and reduced page 
tables. This mode is invalid1'2• 

0 0 43-bit VA with 64 KB pages. This mode is 
invalid3• 

0 1 43-bit VA with 64 KB pages and reduced page 
tables. This mode is invalid3• 

1 0 52-bit VA with 64 KB pages. 

1 1 52-bit VA with 64 KB pages and reduced page 
tables. 

1 Reduced Page Table mode requires 64 KB pages 
2 3-level page tables with 8 KB pages only allow a 43-bit virtual address 
3 64 KB pages require at least a 44-bit virtual address 

C.4 VA_FORM and IVA_FORM 

This is a generalized discussion of the impact of the PAGE_SIZE, VA_SIZE, and 
REDUCED_PAGE_TABLE IPR bits on the format of VA_FORM and IVA_FORM. 

Note: These bits in l_CTL control the format of IVA_FORM; in M_CTL, they 
control the format of VA_FORM. Because the behavior of VA_FORM and 
IVA_FORM is the same, VA_FORM represents both VA_FORM and 
IVA_FORM throughout this discussion. 

The effect of these bits on VA_FORM is: 

• PAGE_SIZE controls where VA is positioned for inclusion in VA_FORM. If 
PAGE_SIZE is set, VA<l6> is positioned at VA_FORM<3>. If PAGE_SIZE is 
clear, VA<l3> is positioned at VA_FORM<3>. VA_FORM<2:0> are always 0 for 
alignment of the 64-bit PTE address. 

Compaq Confidential 
C-6 Proposed Memory Management IPR Design 5 Janw'fry 2001 -~Subject To Change 



• 

• 

VA. ___ FORM and IVA. ___ FORM 

VA_SIZE controls how many bits are transferred from VA to VA_FORM. If set, 
VA<51:n> are transferred. If clear, VA<42:n> are transferred. n is either 16 if 
PAGE_SIZE is set or 13 if PAGE_SIZE is not set. 

REDUCED_PAGE_TABLE controls how VA_FORM is formed in quadrant 1 
(VA<n:n-1> == 01) and is only valid in 52-bit VA/64 KB page mode. If set, 
VA_FORM is formed as discussed in the transformations that follow. 

The transformations in Section C.4.1 show how VA_FORM is formed in each of the 
valid modes. 

C.4.1 The Transformation From VA to VA_FORM 

The diagrams below show how the transformation from VA to VA_FORM is made for 
each of the valid combinations of VA_SIZE, PAGE_SIZE, and 
REDUCED_PAGE_TABLE. The addresses in the diagrams are broken down into their 
component fields: 

L1 - Level 1 PFN 

L2 - Level 2 PFN 

L3 - Level 3 PFN 

BI - Byte Index (Offset within page) 

The data in VA_FORM is different from the data in VA. Therefore, the component 
fields in VA_FORM are referred to as L1 ', L2', L3', and Bl'. Additional information 
indicating where in VA the data came from is listed parenthetically for VA_FORM. So, 
L2' (Ll) indicates that this is the Level 2 PFN in VA_FORM and the data came from 
the Level 1 PFN of VA. 

C.4.2 43-bit VA I 8 KB Page 

63 
VA 

VA_SIZE = O, PAGE_SIZE = 0, REDUCED_PAGE_ TABLE = 0) 

So: 

43 42 33 32 23 22 

From VPTE_BASE 

VA_FORM<63:33> comes from VPTE_BASE 
VA_FORM<32: 3> comes from VA<42:13> 
VA_FORM< 2: 0> is 0 

Compaq Confidential 

13 12 0 

5 January 2001 ··· Subject To Change Proposed Memory Management IPR Design C-7 



VA ___ .FORM and IVA ___ FORM 

C.4.3 52-bit VA/ 64 KB page 

63 

VA_SIZE = 1, PAGE_SIZE = 1, REDUCED_PAGE_ TABLE= O 

So: 

52 51 42 41 29 28 16 15 

VA_FORM<63:42> comes from VPTE_BASE 
VA_FORM<41:39> comes from VA<54:52> or SEXT(VA<51>) 
VA_FORM<38: 3> comes from VA<51:16> 
VA_FORM< 2: 0> is 0 

0 

Note: 

There are only 52 bits of VA (VA<51:0>), but VA<54:52>, the sign extension of 
VA<51:0>, is used in VA_FORM. This is required because with 64 KB pages, a 52-
bit address does not fully utilize a 3-level page table. With 64 KB pages, 55 bits of 
virtual address are required to fully utilize a 3-level page table. See Assumptions 2 
and 3 at the beginning of this document for the full discussion of partially-utilized 
page tables. 

Compaq Confidential 
C-8 Proposed Memory Management IPR Design 5 January 2001 - Subject To Change 



VA. ___ FORM and IVA. ___ FORM 

C.4.4 52-bit VA I 64 KB Page I Reduced Page Tables 

63 
VA 

VA_SIZE = 1, PAGE_SIZE = 1, REDUCED_PAGE_TABLE = 1 

Quadrant 1 (VA<51:50>=01 2) behaves as described here. VA_FORM is set for all 
other virtual addresses as described above under 52-bit VA I 64 KB page. 

52 51 42 41 29 28 0 

I 

I 
I 
I 

I 
I 
I 

I 2 I 
I 

So: 

VA_FORM<63:42> comes from VPTE_BASE 
VA_FORM<41: 39> is 0 
VA_FORM<38:37> comes from VA<51:50> (01 2) 

VA_FORM<36:24> is 0 
VA_FORM<23: 3> comes from VA<49:29> 
VA_FORM< 2: 0> is 0 

Note: 

ECO 129, section 4 states: 

This reduced page table mode does not modify the format of the PTE's (sic) 
from the base 64KB mode. The lower 13 bits of the PFN are unused and the 
GH bits must be all ones (a value of 3) in this mode for the VA<47:46> == 1 
space. 

In reduced page table mode, the OS is required to set the granularity hints in quadrant 1 
such that each second-level PfE maps what an entire third level page table would nor
mally map. 

Compaq Confidential 
5 January 2001 ···Subject To Change Proposed Memory Management IPR Design C-9 



Sign Extension Checking 

C.5 Sign Extension Checking 

C.5.1 Previous Implementation 

The 21264 implemented sign extension and superpage checking as shown in the fol
lowing pseudo-code. 

As shown in the code, although 48-bit superpage was the only superpage mode that 
could directly address the entire physical address space of the processor, it could only 
be used if 48-bit addressing was turned on. Unfortunately, enabling 48-bit addressing 
lost some sign-extension validation of legitimate addresses in a 43-bit or smaller virtual 
addressing environment and broke VA_FORM for 43-bit or 32-bit addressing modes. 

if ((VA_48 && (VA<63:0> != SEXT(VA<47:0>))) I I 
(!VA_48 && (VA<63:0> != SEXT(VA<42:0>)))) { 

DFAULT; // improperly sign extended address ... 

if (SPE48 && (VA<47:46> == 2)) 

if (mode == kernel) { 

PA<43:0> = VA<43:0>; 

else { 

DFAULT; // superpage access in non-kernel mode 

} else if (SPE43 && (VA<47:41> == Ox7E)) 

if (mode == kernel) { 

PA<43:0> = SEXT(VA<40:0>); 

else { 

DFAULT; // superpage access in non-kernel mode 

} else if (SPE32 && (VA<47:30> == Ox3FFFE)) 

if (mode == kernel) 

PA<43:30> = O; 

PA<29:0> = VA<29:0>; 

} else { 

DFAULT; // superpage access in non-kernel mode 

} else 

PA<43 : 0> = TBLookup (VA) ; 

Compaq Confidential 
C-10 Proposed Memory Management IPR Design 5 January 2001 ·-Subject To Change 



Sign Extension Checking 

C.5.2 Proposed Implementation 

To allow any superpage mode (most importantly, the mode that can directly address the 
entire physical address space of the processor), the pseudo-code in Section C.5.1 can be 
changed to the following (assuming IPR bits as discussed above): 

if (SPE52 && (VA<63:50> == Ox3FFE)) 

if (mode == kernel) { 

PA<47:0> = VA<47:0>; 

else { 

DFAULT; // superpage access in non-kernel mode 

else if (SPE43 && (VA<63:41> == Ox7FFFFE)) 

if {mode == kernel) { 

PA<47:0> = SEXT(VA<40:0>); 

else { 

DFAULT; // superpage access in non-kernel mode 

else if {SPE32 && (VA<63:30> == Ox3FFFFFFFE)) 

if (mode == kernel) 

PA<47:30> = O; 

PA<29:0> = VA<29:0>; 

else { 

DFAULT; // superpage access in non-kernel mode 

else if (((VA_SIZE == 52-bit) && (VA<63:0> == SEXT(VA<51:0>))) I I 
((VA_SIZE == 43-bit) && (VA<63:0> == SEXT(VA.<42:0>)))) { 

PA<47: 0> = TBLookup (VA) ; 

else { 

DFAULT; // improperly sign extended address 

Note: 

Besides including the superpage checks as peers of the traditional virtual address 
sign-extension check, the superpage checks are changed to check all the way to bit 
63. The superpage checks require that the superpage address be a properly sign
extended address for the size of the superpage region. 

Compaq Confidential 
5 January 2001 ·-Subject To Change Proposed Memory Management IPR Design C-11 



Sign Extension Checking 

Compaq Confidential 
C-12 Proposed Memory Management IPR Design 5 J<1nuary 2001 ·-Subject To Change 



Glossary 

Bank Conflict 

Bbox 

Bcache 

Blacklist 

Block 

The Dcache is implemented as eight independent, interleaved memories (banks), so that 
they can perform multiple operations per cycle. If two instructions need the same bank 
at the same time, they cannot both be satisfied. This event is called a bank conflict, and 
causes one of the instructions to be retried. Similarly, the Scache has several banks 
(probably 16) which may be needed in different pipeline stages for different kinds of 
requests. If two requests conflict for use of the same bank in different stages, one 
request is retried. 

BIU (see Cbox) Interface unit which controls the Scache (formerly Bcache), the sec
ond-level cache, which is shared by data and instructions. 

External second-level cache, which has been eliminated from the design in favor of an 
internal second-level cache called the Scache. 

A cache containing the PC addresses of load and store instructions which have recently 
caused memory order traps. 

Whenever a load instruction is found to be on the blacklist, it is forced to wait for com
pletion until all older blacklisted stores have been executed. 

A contiguous, naturally aligned 64-byte region of the logical memory space. It may be 
contained in a single cache which is permitted to modify it, or it may be shared by many 
caches which have read access. A block is the unit of interprocessor communication, 
and also the unit managed by the coherence protocol. 

We don't use the word block to refer to a group of instructions in the pipeline. Groups of 
instructions in the pipeline are called "chunks" -- as in "Map Chunk", "Fetch Chunk" 
and others. 

Cache Coherence 

In a system with multiple processors, each having a cache, correct operation of the soft
ware requires that the caches maintain a consistent (or coherent) representation of the 
contents of memory. This is accomplished by communication among the caches and 
memories using a coherence protocol. 

Compaq Confidential 
5 January 2001 ~· Subject To Change Glossary-1 



CAM 

Cb ox 

Clean Victim 

Content addressible memory. A structure that takes an input and compares it with a 
number of tags and automatically reads the contents of every location that has a match
ing tag. Although similar to a cache, in a CAM, the tag check and data lookup is inte
grated. Typically, a CAM is fully associative. 

Secondary cache, external memory, and system interface, including cache coherence. 
Documentation in Cbox. 

See Victim. 

Coherence Message 

Complete 

Db ox 

DIFT 

Directory 

Glossary-2 

In order to ensure that all processors see memory modifications in the same order, the 
system must make sure that all sharing processors have invalidated their copies of a 
block before the block is passed from the owner to another processor. Sharing proces 
ors respond to the invalidate message with a coherence message, and the new owner 
counts coherence messages to make sure all sharers have been invalidated before for
warding the block. 

An instruction has been completed (alt. is complete) when it has produced a value that 
can be consumed by its dependents and it has passed the point at which it may itself 
trigger a trap. (e.g. A STore instruction is not complete until the Mbox has determined 
that execution of the STore it will not result in a DTB miss.) Even speculatively exe
cuted instructions can complete. 

Data Cache (Dcache, see Mbox). First-level data cache. 

• 
• 
• 
• 
• 
• 

64K Bytes 

Write back 

2-way set associative 

8 banks, interleaved on bits 5-3 of address (quadword banks) 

Double-pumped for two reads or one write per cycle per bank 

Write & victim-extract performed in otherwise-idle banks to avoid conflict 

Directory In-Flight Table. A list of uncompleted requests to the local memory. Any new 
request which matches the address of a DIFT entry must wait for release of that entry 
before being processed. Requests which do not collide with existing DIFf entries are 
eligible for service by the memory, and are scheduled to optimize memory utilization. 

Compaq Confidential 
5 Jc1nuary 2001 ~· Subject To CfJange 



Dirty 

Done 

OTB 

Eb ox 

Exclusive 

Fbox 

Information associated with each 64-byte block of memory which indicates which 
node, if any owns the block (meaning that the node has permission to write the block), 
and which nodes, if any, are sharers (meaning that they may have cached read-only cop
ies of the block). 

Descriptive of a block which has been modified with respect to the version of the same 
block held in memory. In general, a dirty block must eventually be written back to 
memory, but it may be forwarded among caches for an indefinite period before the 
writeback occurs, and it is even possible that it will be invalidated before being written 
back. A dirty block is owned by the cache that holds it, but ownership does not imply 
that the block is dirty, and it is possible for a processor to obtain ownership specula
tively and later evict the block without ever modifying it. 

Done-ness is a matter of perspective. While rare is acceptable to many, others prefer 
well-done or charred. We do not use the term "done" to refer to the status of an instruc
tion. The correct technical term is 11 outa here 11

• 

Dcache Translation Buffer. A 128-entry, fully-associative cache of virtual-to-physical 
address translations used for data references. The DTB has 4 read ports, so that it can be 
accessed by four memory references concurrently, plus one write port so that it can be 
updated. 

Execution unit for Integer Operate instructions. 

One of the four possible states of a cache block. A block in the Exclusive state is a clean 
copy of the corresponding data in memory, but no other processor has a copy, and this 
processor has been granted permission to write it. 

Execution unit for Floating Point Operate instructions. 

Fetch Chunk 

Fill 

Fill Buffer 

The Ibox fetches up to sixteen instructions at one time. The group of instructions that 
the Ibox fetches in a given cycle is referred to as a fetch chunk. 

The process by which data which was not present in the cache is assigned to a location 
in the cache, and stored there for future access. Documentation in Filling. 

A small memory which holds cache blocks from the system or Scache while waiting for 
an opportunity to update the Dcache. 

• 32 entries, each 64 bytes 

• 2 write ports, 1 read port 

Compaq Confidential 
5 January 2001 -~ Subject To Change Glossary-a 



FRO 

Home 

I box 

In Flight 

Fill Retry Data Buffer, pronounced "Fred". A small buffer which can bypass fill data to 
the load result busses before the Dcache is updated. 

The node, consisting of CPU and memory, at which a given 64-byte memory block is 
stored. The home node number is bits 45-36 of the physical address. The home memory 
stores both the block and the directory, which identifies the owner and sharing nodes, if 
any. 

Instruction Fetch Frontend. Instruction cache with prefetcher, line predictor, branch/ 
jump/return predictor, collapsing buffer, and mapper. Documentation in Ibox. 

The state of an instruction which has been mapped but not yet retired or trapped. This 
corresponds to the time during which it may be out of order with respect to other in
flight instructions. 

In Flight is also used to describe cache coherence messages which have been sent by 
one node but not yet processed by the intended recipients. 

Instruction Execution 

The performance of the operation specified by the opcode of an instruction. In general, 
an instruction begins execution three cycles after it is issued; its completion time may 
be one or more cycles later, depending on the operation. 

Instruction Issue 

The process of assigning an instruction whose operands are ready to a particular func
tion unit for execution beginning in a particular cycle. More precisely, an instruction 
may be issued as soon as its operands are expected to be ready in time for the instruc
tion to meet the operands at the selected function unit. This can lead to complexity 
when the operand is the result of a load which needs to be retried, because the successor 
instruction may already have been issued at the time the retry condition is detected. 

Instruction Mapping 

Invalid 

Invalidate 

Glossary-4 

The process of identifying the physical registers currently associated with the virtual 
registers used by an instruction. Mapping also assigns each instruction to a subset of the 
instruction pickers so that it can be sent to an appropriate function unit. Once it has 
been mapped, an instruction is kept in the instruction queue while waiting for its oper
ands to become ready, then waiting to be picked for issue to a function unit. 

One of the possible states of a block in its home directory. The name is confusing, 
because it does not mean that the block in memory is not valid; in fact, it means that the 
copy in memory is the only one, because the block is known not to be valid in any 
cache. 

Compaq Confidential 
5 January 2001 m Subject To Change 



1/0 Space 

Jbox 

Kbox 

Lb ox 

Load Queue 

Local 

(when used as a noun) A variant of probe used by the coherence protocol, which 
removes a single cache block if present in the dcache or scache of a processor. Also 
forces a trap of any load which refers to the cache block and is in the shadow of an MB. 

That portion of the processor's physical address space which is not assured to have 
memory-like behavior (reads and writes may have side-effects, and data may change 
without having been written). I/O space must not be cached, may not be referred to 
speculatively, and must be referred to in the order given by the program. 

Instruction Cache (See Ibox). 

Clocks. 

Phase Locked Loop. 

An associative memory in the Mbox which keeps track of the state of, and addresses 
used by, load instructions which have been issued but not yet retired or trapped. The 
load queue contains the information necessary to retry a load which failed to complete 
when it first issued, and it detects and causes a trap in the case in which an older store 
(that is, earlier in program order) modifies the data used by this load. 

• 
• 
• 
• 
• 
• 

64 entries, fully associative 

virtual & physical addresses, opcode attributes 

3 read ports (2 stores, inval), 3 write ports 

detects next-to-retire, store-data-ready 

partitioned by threads, allocated in order within thread 

controls load retries 

The components of the load queue are: 

• 
• 
• 

• 
• 
• 
• 

SSB Index CAM (2 ports). Initiate retry of load when matching store data arrives . 

MAF Index CAM (2 ports). Initiates retry when MAF index matches . 

Flags: DTB Miss, MAF Full, Bank Conflict, Retry Ready, Lock, Valid, Done, DC 
Hit, I/O. 

Ld Opcode . 

Ld VA register (64 bits) . 

Ld PA register, with 3 write ports, 3 CAM ports (2 Stores plus Invalidate) . 

Ld Inum comparitors: 2 ports for Stores, to detect RAW hazard trap; plus 1 port to 
initiate retry at retire point and free entry after instruction retired or killed. 

Compaq Confidentia I 
5 January 2001 -~ Subject To Change Glossary-5 



Descriptive of requests from a CPU to the memory attached directly to the same chip. 
Some local memory transactions can be optimized because of knowlege that the Scache 
state is always coherent with the memory directory, at the cost of probing the Scache for 
every memory access by an external node. 

Long Latency Instruction 

MAF 

Map Chunk 

MB 

Mb ox 

Instructions that return results at either an unpredictable time, or with a latency greater 
than 4 cycles (is it 4? or 5? or 6?) are termed "long latency instructions". Dependents 
for these instructions do not become data ready (in the instruction queue) until the long 
latency instruction signals that it will complete via a bubble request to the IQ. Among 
other instructions, integer multiply, floating divide, and square root are all long-latency 
instructions. 

Miss Address File, sometimes called Miss Latch. An associative memory in the inter
face between the Mbox and the Cbox which keeps track of the address and state of all 
outstanding requests by the Mbox or Ibox. 

• 64 entries: address and flags 

• Merges new misses with outstanding fill requests 

• Detects new misses to blocks in the Write Buffer or Fill Buffer 

The Ibox sends instructions to the Pbox in groups of up to eight instructions. The eight 
instructions are contiguous and formed in the collapsing buffer. These groups are 
referred to as map chunks. 

Memory Barrier or Write Memory Barrier. An instruction which requires that all previ
ous memory reference instructions (or in the case of WMB, store instructions) be com
pleted before any subsequent memory reference instructions. 

Dcache/Intemal Memory. First-level cache with load and store queues. Tutorial in 
Mbox. 

Merge Buffer 

Node 

Glossary-6 

A intermediate memory in which multiple writes to the same Dcache line are buffered 
so that they can update the Dcache in the same cycle, and where data waits to be written 
to the Dcache until there is a cycle in which the required bank is not in use. Helps 
reduce tag bandwidth, as well as letting stores give priority to fills. 

• 8 entries, each 64 bytes of data, plus mask & address 

• 2 CAM ports (store address merge), 2 write ports (store retire), 1 read port (Dcache 
update) 

Compaq Confidential 
5 Januc1ry 2001 ···Subject To Change 



Older 

000 

A 21464 CPU chip with its directly-connected memory, if any, or in some circum
stances, an I/O interface which participates in the interprocessor communication net
work. I/O nodes may make requests in the cache coherence protocol, and may keep 
cached copies of memory data, but never serve as the home node for cacheable mem
ory. 

Earlier in program order, though not necessarily in order of execution. (See 000). 

Out of Order execution. The 21464, like many modem microprocessors, attempts to 
find and exploit opportunities for instruction-level parallelism by looking far ahead, and 
executing those instructions whose operands are known, even if previous instructions in 
the program order have not been completed. This often permits the processor to find 
useful work even while waiting for cache misses and other long delays to be completed. 
Correct operation of the processor requires that results be the same as if instructions 
were performed in the order written. Out of order execution is possible but not very 
effective without speculation. 

Out of order execution 

See 000. 

Ownership 

Packet 

Pb ox 

PAF 

In order to ensure that the memory system behaves in accordance with the rules set out 
in the Alpha SRM, we require that the system establish and enforce a particular order in 
which store instructions are serviced by the memory. This is accomplished by identify
ing, at each instant, a single cache (the owner) as having permission to write any block. 

The directory for the block shows it to be in Exclusive state, and the cache holds it as 
Exclusive (while it has permission to write but has not yet modified), or Dirty (when it 
has been modified and remains writable). 

Ownership carries extra responsibility, in that the home memory must always be able to 
identify the owner of every block, and must be able to obtain the block from the owner. 
Therefore the cache notifies the home memory whenever a block it owns is replaced in 
the cache, even if it had not been modified (is not dirty). 

In the context of interprocessor communication, the message unit. Packets may consist 
of 1, 3, or 5 ticks, but the ticks are transmitted in consecutive cycles, and are handled as 
a unit throughout the system. 

Dependency mapper unit. 

Probe Address File is a queue which records requests which have been received by this 
cache but have not been serviced yet. Once serviced, PAF entries may change the MAF 
state, may cause invalidation of the Dcache and/or forwarding of a block, or may gener
ate a Local Probe Response to the DIFT. 

Compaq Confidential 
5 January 2001 -· Subject To Change Glossary-7 



Probe 

Processor 

Qbox 

Quiesce 

Rambus 

Rbox 

A cache-coherence transaction which tests a processor's Dcache and Scache for the 
presence of data from a particular addresst optionally modifying the valid/shared/dirty 
state of the data if foundt and/or forcing a transfer of the data to another processor. 

Either a TPU or a CPU. 

Instruction issue and retire unit. 

A variant of a load instruction which is used to put a thread "to sleep"t so that it doesn't 
delay the execution of other threads on the same processor while the sleeping thread 
waits for release of a lock used for interprocessor communication. It is expected that 
Quiesce will be used in the spin loop in which a process waits after failing to acquire a 
lockt and before the next attempt. 

A high-bandwidtht syncronous interface for dynamic memory chips. The bus consists 
of 18 data and 15 control signalst clocked at 800 MHz. AraOa will provide a glueless 
direct interface to two independentt concurrently active arrays of Rambus memory. 
Each array consists of 4 parallel bussest each of which can interface up to 32 DRAM 
chips. 

Also the company which designedt developedt and promoted the interface. See their 
technical overview. 

Router unit. 

Register File 

Requestor 

The multi-ported memory consisting of the physical registers which contain integer and 
floating point values in the virtual registers of some thread. 

In discussions of the memory system and cache coherencet the node which initiated a 
transactiont for examplet by executing a load instruction which missed the cachet 
resulting in a read request. 

Retire Chunk 

Retireable 

Retired 

Glossary-a 

The Qbox retires instructions in groups of eight or sixteen at a time. A group of instruc
tions retired all at the same time is referred to as a retire chunk. 

An instruction is retireable when it is complete and the Mbox has determined that no 
other instruction may cause this instruction to trap because of a litmus test violation or 
other ordering constraint. 

Compaq Confidential 
5 Jc1nuary 2001 ···Subject To Change 



Retirement 

An instruction is retired after it becomes retireable and all instructions occurring before 
it (in program order) are retireable. 

While the 21464 is able to execute instructions out of order, it has only finite resources 
for keeping track of all the instructions in progress, and so it must release those 
resources for reuse after instructions have completed correctly. This release process is 
called retirement, and is performed in the order specified by the program. Before retire
ment, an instruction is speculative, and all its effects can be undone; after retirement, an 
instruction is said to be retired, or committed. This can be particularly confusing in the 
case of store instructions, which have only begun at the time of retirement. Once a store 
has retired, its write must be performed (unless a subsequent store from the same pro
cessor replaces it), but if the processor does not have exclusive write access to the refer
enced block, such access must be obtained before the Dcache and Bcache can be 
updated. 

Register Renaming 

Retry 

Router 

Scache 

Set 

In order to support out-of-order execution, the processor has many more registers 
(called physical registers) than are required by the instruction-set architecture (the vir
tual registers), and it associates a physical register with a particular assignment of a 
value to a virtual register. When a new value is assigned to a virtual register, a new 
physical register is chosen to hold the value. This permits the calculation and storage of 
the new value to be performed before the final use of the old value has taken place, and 
also facilitates roll-back of the processor state in case of mis-speculation. 

The process which completes a load instruction which was issued but could not com
plete on the normal schedule. The inability to complete was detected in time to prevent 
execution of the dependents, so they can be held for execution following the retry. Dis
tinguished from replay trap, which occurs when the dependents may already have exe
cuted, and therefore must be flushed. 

The interprocessor crossbar switch, incorporated in the AraOa chip, which permits 
arrays of processors to be directly interconnected and communicate with and through 
one another. 

Secondary Cache. Internal cache of 2-4MB, replacing the external Bcache. The Scache 
is smaller than the Bcache, but has much lower latency and higher bandwidth, which 
has a larger performance benefit on most benchmarks than the Bcache's size. 

In logic, to force true; in arithmetic, to force to one. 

In caches, the collection of tags and blocks which are are selected by one address com
paritor; one column of a cache. 

Compaq Confidential 
5 January 2001 - Subject To Change Glossary-9 



Shared 

Sharer 

This usage is contrary to another widely-observed usage, in which a set is the collection 
of blocks and tags selected by a single index value; one row of the cache. Usage within 
the Alpha engineering organization seems predominantly to favor the column defini
tion, so we chose to accept this convention, with a warning to those who may be used to 
the alternative. 

One of the four possible states of a cache block. A block in the Shared state is a clean 
copy of the corresponding data in memory. Other processors may have copies, and this 
processor does not have permission to write it. The processor uses SharedToDirty to get 
write permission. 

In discussions of the memory system and cache coherence, a node which may have a 
cached copy of a given block, but not ownership. 

Ship Passing 

SMT 

Snarf 

SRM 

Speculation 

A reference to the expression "Like ships passing in the night", refers to the problem 
that two elements of the system may see related events in different orders, creating con
fusion about each other's state. A major source of bugs in pipelined systems. 

Simultaneous Multithreading. Provides, on a single CPU, the capability of simulta
neously executing instructions from multiple threads. 

In bus-snooping coherence protocols, the practice of using one bus transaction both to 
pass a modified block between caches, and to update the memory. 

In the 21464, snarfing requires a separate transaction, but is used with the same intent, 
namely, to update the memory with modified data that is being passed between proces
sors, with the hope of reducing the network traffic required for forwarding and mini
mizing interference in the writer's cache. 

Alpha System Reference Manual, the ultimate reference for definition of the software
visible architecture (sometimes called "instruction-set architecture") of Alpha proces
sors. 

The policy of assuming or predicting some condition before it is known. This permits 
the processor to discover opportunities for parallel execution, but requires the ability to 
discard the effect of any operation which depends on a condition which was incorrectly 
speculated (mis-speculation). There are many kinds of unlikely but possible events 
which could make the result of an instruction executed out of order different from the 
result that should have occurred if the program were performed in order, including 
branch misprediction, memory reference order hazards, and exceptions. 

Speculatively Complete 

Compaq Confidential 
Glossary-10 5 Jc1nuc1ry 2001 - Subject To Change 



SSB 

Spurious 

STAQ 

The state of an instruction which has produced its result (hence complete) but has not 
yet retired (hence speculative). 

The dependents of an instruction may issue once it has reached this state. 

Speculative Store Buffer. The memory which holds the addresses and data of store 
instructions which have been issued but not yet retired and propagated to the Dcache. 
Used to satisfy younger (later in program order) load instructions in the same thread. 
SSB slots are assigned as store instructions are mapped. The address and data portions 

of a store instruction are issued separately, so may arrive at the SSB in any order. An 
SSB entry is regarded as not valid until the address arrives, valid but not ready when 
there is a valid address but no data, and ready when both address and data are present. 

• 64 entries, fully associative 

• 8 byte data with mask 

• virtual & physical addresses, opcode attributes 

• 3 CAM ports (loads), 2 write ports (store exec), 2 read ports (store retire) parti-
tioned by threads, allocated in order within thread 

The components of the SSB are: 

• MAF Index register, with 2 CAM's. 

• Snum read decoder. 

• Snum write decoder. Writes the SSB entry when selected by the execution of a store 
instruction assigned to this slot. 

• Flags: STC, Evict, WMB, DC Hit, Valid, Retry, I/O. 

• Store VA register, with 3 CAM's to match Load addresses. 

• Store PA register. 

• Store Data Register. 

• Store Opcode Register, with 3 load opcode compares (for byte control?) 

• Store Inum register, with 3 subtractors for load instructions, and 1 for retire/kill. 

Spurious instructions are encountered when a program branches or jumps to a sequence 
of bits that may or may not form valid Alpha instructions. The branch or jump may be 
incorrectly speculated (i.e. a mispredict) or may be the result of a broken or malicious 
program or programmer. (Watch out for broken programmers.) Such sequences, by def
inition, are unlikely to obey coding rules and standards. Spurious instructions, if we 
arrive at them via a mispredicted flow, may not cause any architecturally visible state 
changes. If a spurious instruction is retired (i.e. it was not incorrectly speculated) then 
its effect on architectural state is UNPREDICTABLE if the current processor mode is 
not "kernel". If the current processor mode is "kernel" then non-speculative spurious 
instructions may cause the processor to perform an UNDEFINED operation. 

Compaq Confidential 
5 January 2001 ···Subject To Change Glossary-11 



Tb ox 

Thread 

Tick 

TPU 

Trap 

UNDEFINED 

Store Address Queue. The address portion of the SSB. 

Box that manages testability and diagnostics. 

The state of a program. A thread consists of the PC, registers, address space, and other 
state that an Alpha program uses to complete its task. Each 21464 processor is capable 
of running up to four threads simultaneously, with each behaving as if it had a processor 
to itself, and it is also possible for any subset of the threads to communicate through 
shared memory in order to cooperate on completing a single task. 

In general, one cycle. Used specifically in the interprocessor interface ports to refer to 
the 40-bit unit of information transferred in one cycle of the port. Commands used 
among the processors are encoded in packets, which consist of 1, 3, or 5 consecutive 
ticks. 

Thread processing unit. On a simultaneously multithreaded processor, the hardware that 
is capable of executing a thread. A TPU has all the capabilities of a conventional CPU. 
The TPU holds a full process context while a process or thread is executing on that 
TPU. The 21464 contains four TPUs. 

The recovery process when possible mis-speculation is detected. A trap is associated 
with a particular instruction (the trapped instruction), whose result may not be consis
tent with sequential execution of the program. Instructions prior to the trapped instruc
tion in program order are permitted to retire normally, but the results of the trapped 
instruction and all subsequent instructions are discarded, and the processor resumes 
execution with the trapped instruction. Traps may be described as: 

• Replay traps, meaning that the appropriate instruction was executed with incorrect 
data or timing. 

• Branch mispredict traps, where the processor has followed the wrong sequence of 
instructions. 

• Exceptions, where the SRM requires a break in the normal instruction flow because 
of some data condition (divide by zero, NaN) or processor state (access violation). 

See definition in the Preface. 

UNPREDICTABLE 

VAF 

Glossary-12 

See definition in the Preface. 

Victim Address File stores the address and state of blocks evicted from the cache which 
were held exclusively by this processor. Corresponding data is kept in the VDB until it 
has been sent to the home memory and/or requesting processor. 

Compaq Confidential 
5 Jc1nuary 2001 -·Subject To Change 



VDB 

Victim 

Victim Data Buffer After the Scache detects a miss, and before the appropriate fill data 
is written into the cache line, the victim block must be read out of the Scache. While it 
is waiting to be written to the memory, it is held in the victim data buffer. The VDB is 
also used to hold forwarded blocks while they are waiting to be sent to a requestor. 
Contains 64 entries, each of 64 bytes 

Whenever a new block is filled into the cache, the old contents of the cache line is 
evicted. If the line was dirty, it had the only current copy of the memory location it rep
resents, so its value must be written back to the system. The line which is about to be 
replaced in the cache is called the victim, and the process is called victimization. 

There are significant circumstances under which a processor is granted ownership of 
data, but never modifies it before displacing it from the cache. In that case, the proces
sor must notify the home memory that the processor is no longer keeping the data; this 
is called clean victimization, and no data is sent back to the memory, because the mem
ory is actually still valid. 

Virtual Channel 

A technique for preventing deadlock in a network by ensuring that when resources are 
scarce, they are assigned to the messages closest to completion. 

Valid, Shared, Dirty (VSD) state 

Younger 

Zbox 

Each block in a cache may be in any of four states, which are encoded in the VSD bits 
associated with that block. Valid means that the block is a useful representation of the 
memory location; if Valid is not set, the remaining bits are meaningless. Shared means 
that there may be other caches with copies of the data, and hence that this processor 
must negotiate for write permission. Dirty means that this data is modified, and super
cedes the value in memory. 

Later in program order, but not necessarily in order of execution. (See Out-of-Order 
execution). 

Rambus interface unit. 

Some terminology (for glossary): 
uITB - Micro Istream Translation Buffer 
ITB - the main Istream Translation Buffer 
TPU - Thread Processing Unit 
TG - Thread Group 
PTE - Page Table Entry 
IPR - Internal Processor Register 
ASN - Address Space Number 
ASM - Address Space Match 
TB/AG - TB Invalidate All Groups 

Compaq Confidential 
5 January 2001 -- Subject To Change Glossary-13 



Glossary-14 

TB/A -TB Invalidate All 
TBIS - TB Invalidate Single 
TB/AP - TB Invalidate All Process-specific 

Compaq Confidential 
5 Jc1m1c1ry 2001 -· Subject To Change 



A 

Abbreviations, 1-1 
binary multiples, 1-1 
register access, 1-1 

Address conventions, 1-2 

Aligned convention, 1-2 

8 

Binary multiple abbreviations, 1-1 

Bit notation conventions, 1-3 

Block response packet, 13-14 

c 
Caution convention, 1-3 

Conventions, 1-1 
abbreviations, 1-1 
address, 1-2 
aligned, 1-2 

D 

bit notation, 1-3 
caution, 1-3 
data units, 1-3 
do not care, 1-3 
external, 1-3 
field notation, 1-3 
note, 1-3 
numbering, 1-3 
ranges and extents, 1-3 
register figures, 1-4 
signal names, 1-4 
unaligned, 1-2 
x, 1-3 

Data units convention, 1-3 

Do not care convention, 1-3 

E 
External convention, 1-3 

Index 

F 
Field notation convention, 1-3 

FORW ARD_CHANNEL 
messages, 13-3 

SharedlnvalBroadcast, 13-16 
FORWARD_CHANNEL packet format, 13-13 

INPUT I/O PORT HEADER TICK packet formats, 
13-15 

Inval broadcast packet format, 13-15 

IO_CHANNEL 
messages, 13-2 
packet formats, 13-12 

M 
Messages 

N 

Dealloc, 13-7 
flow control, 13-7 
formats, 13-6\+ ?? 
FORWARD_CHANNEL, 13-3 
IO_CHANNEL, 13-2 
packet formats, 13-11 
REQUEST_CHANNEL, 13-3 
RESPONSE_CHANNEL, 13-4 
route information, 13-6 
SPECIAL_CHANNEL, 13-5 

No block response packet, 13-14 

Nop packet 
under INPUT I/O PORT HEADER TICK packet 

format, 13-15 
under SPECIAL_CHANNEL packet format, 

13-15 
Note convention, 1-3 

Numbering convention, 1-3 

Compaq Confidential 
5 January 2001 ··· Subject To Change lndex-1 



p 

Packet formats 
FORWARD_CHANNEL, 13-13 
INPUT 1/0 PORT header tick, 13-15 
IO_CHANNEL, 13-12 
REQUEST_CHANNEL, 13-13 
RESPONSE_CHANNEL, 13-14 
SPECIAL_CHANNEL, 13-15 

Privileged architecture library code 
See PALcode 

R 
Ranges and extents convention, 1-3 

RdBytes 
packet format, 13-12 

Register access abbreviations, 1-1 

Register figure conventions, 1-4 

Release response packet, 13-15 

REQUEST_CHANNEL 
messages, 13-3 
packet format, 13-13 

RESPONSE_ CHANNEL 
messages, 13-4 
packet format, 13-14 

RO,n convention, 1-2 

RW,n convention, 1-2 

s 
Second-level cache. See Bcache 

Security holes 
with UNPREDICTABLE results, 1-5 

SharedlnvalBroadcast message, 13-16 

Signal name convention, 1-4 

SPECIAL_ CHANNEL 

u 

messages, 13-5 
packet formats, 13-15 

Unaligned convention, 1-2 

v 
Victim block response packet, 13-14 

w 
WO,n convention, 1-2 

WrBytes 
packet format, 13-12 

Index-2 

x 
X convention, 1-3 

z 
Zbox 

DIFT control ZBOXn_DIFT_CTL, 16-73 
DIFT timeout ZBOXn_DIFT_TIMEOUT, 

16-76 
DRAM calibration control I 

ZBOXn_DRAM_CALIB_CTLl, 
16-68 

DRAM calibration control 2 
ZBOXn_DRAM_CALIB_CTL2, 

16-69 
DRAM error address 

ZBOXn_DRAM_ERR_ADR, 16-75 
DRAM error control 

ZBOXn_DRAM_ERROR_CTL, 
16-56 

DRAM error status 1 
ZBOXn_DRAM_ERR_STA TUS 1, 

16-52 
DRAM error status 2 

ZBOXn_DRAM_ERR_STA TUS2, 
16-53 

DRAM error status 3 
ZBOXn_DRAM_ERR_STA TUS3, 

16-54 
DRAM initialization control 

ZBOXn_DRAM_INIT_CTL, 16-72 
DRAM mapper control 

ZBOXn_DRAM_MAPPER_CTL, 
16-77 

DRAM refresh control 
ZBOXn_DRAM_REFR_CTL, 16-66 

DRAM refresh row 
ZBOXn_DRAM_REFRESH_ROW, 

16-71 
DRAM timing control 1 

ZBOXn_DRAM_ TIMING_CTLl, 
16-58 

DRAM timing control 2 
ZBOXn_DRAM_ TIMING_CTL2, 

16-61 
DRAM timing control 3 

ZB0Xn_DRAM_ TIMING_CTL3, 
16-62 

DRAM timing control 4 
ZBOXn_DRAM_TIMING_CTL4, 

16-71 
Zbox DIFT error status 

ZBOXn_DIFT _ERR_STA TUS, 
16-90 

Zbox force-error address 
ZBOXn_FRC_ERR_ADR, 16-89 

Zbox performance control ZBOXn_ZPM_CTL, 
16-85 

Zbox performance counter 0 
ZBOXn_ZPM_CTRO, 16-83 

Zbox performance counter 1 

Compaq Confidential 
5 Jc1nuc1ry 2001 - Subject To Change 



ZBOXn_ZPM_CTRl, 16-84 
Zbox RAC control ZBOXn_RAC_CTL, 16-91 
Zbox sweep directory bits 

ZBOXn_DRAM_SWEEP _DIR, 
16-88 

ZBOXn_DIFT_CTL DIFT control register, 16-73 

ZBOXn_DIFT_ERR_STA TUS Zbox DIFT error 
status register, 16-90 

ZBOXn_DIFT _TIMEOUT DIFT timeout register, 
16-76 

ZBOXn_DRAM_CALIB_CTLl DRAM calibration 
control 1 register, 16-68 

ZBOXn_DRAM_CALIB_CTL2 DRAM calibration 
control 2 register, 16-69 

ZBOXn_DRAM_ERR_ADR DRAM error address 
register, 16-75 

ZBOXn_DRAM_ERR_STATUSl DRAM error 
status 1 register, 16-52 

ZBOXn_DRAM_ERR_STATUS2 DRAM error 
status 2 register, 16-53 

ZBOXn_DRAM_ERR_STATUS3 DRAM error 
status 3 register, 16-54 

ZBOXn_DRAM_ERROR_CTLDRAMerrorcontrol 
register, 16-56 

ZBOXn_DRAM_INIT_CTL DRAM initialization 
control register, 16-72 

ZBOXn_DRAM_MAPPER_CTL DRAM mapper 
control register, 16-77 

ZBOXn_DRAM_REFR_CTL DRAM refresh control 
register, 16-66 

ZBOXn_DRAM_REFRESH_ROW DRAM refresh 
row register, 16-71 

ZBOXn_DRAM_SWEEP _DIR Zbox sweep 
directory bits register, 16-88 

ZBOXn_DRAM_ TIMING_CTLl DRAM timing 
control 1 register, 16-58 

ZBOXn_DRAM_ TIMING_CTL2 DRAM timing 
control 2 register, 16-61 

ZBOXn_DRAM_TIMING_CTL3 DRAM timing 
control 3 register, 16-62 

ZB0Xn_DRAM_TIMING_CTL4 DRAM timing 
control 4 register, 16-71 

ZBOXn_FRC_ERR_ADR Zbox force-error address 
register, 16-89 

ZBOXn_RAC_CTL Zbox RAC control register, 
16-91 

ZBOXn_ZPM_CTL Zbox performance control 
register, 16-85 

ZBOXn_ZPM_ CTRO Zbox performance counter 0 

register, 16-83 

ZBOXn_ZPM_CTRl Zbox performance counter 1 
register, 16-84 

Compaq Confidential 
5 January 2001 -~ Subject To Change lndex-3 



Compaq Confidentia I 
Index-4 5 Jam.1c1ry 2001 ···Subject To Change 


