
mnmnomn Guide to Creating OpenVMS Modular Procedures

Part Number: AA-PV6AA-TK

Guide to Creating Open VMS
Modular Procedures
Order Number: AA-PV6AA-TK

May 1993

This manual describes how to create a complex application program
by dividing it into modules and coding each module as a separate
procedure.

Revision/Update Information: This manual supersedes the Guide
to Creating Open VMS Modular
Procedures, Version 1.0.

Software Version: Open VMS AXP Version 1.5
Open VMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, BASIC,
Bookreader, DEC Ada, DEC Fortran, DECmigrate, DECnet, DECthreads, DECwindows, Digital,
FMS, OpenVMS, VAX, VAX BASIC, VAX C, VAX DOCUMENT, VAX FORTRAN, VAX MACRO,
VAX Pascal, VMS, the AXP logo, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4518

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Introduction to Modular Procedures

1.1
1.2
1.3
1.4
1.5

Why Bother with Modular Procedures?
Invoking a Modular Procedure
Using Procedure Libraries
Existing System Procedures
Using Translated Images (AXP Only)

2 Designing Modular Procedures

2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.4
2.2.5
2.3
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.1.3
2.4.1.4
2.4.1.5
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2
2.7
2.7.1

Organizing New Applications ~
Organizing Files and Modules
Organizing Procedures into Modules

Defining a Modular Procedure Interface
Explicit Arguments
Implicit Arguments

Implicit Arguments Allocated by the Calling Program
Implicit Arguments Allocated by the Called Procedure

How to Avoid Using Implicit Arguments
Combining Procedures
User-Action Routine
Designating Responsibility to the Calling Program

Order of Arguments
Using Optional Arguments

JSB Entry Points (VAX Only)
Using System Resources

Choosing a Storage Type
Stack Storage .. .
Heap Storage .. .
Static Storage
Avoiding Use of Static Storage
Summary of Storage Use by Language

Using Event Flags
Using Logical Unit Numbers

Using Input/Output
Terminal Input/Output
File Input/Output .. .

Documenting Modules
Writing a Module Preface
Writing a Procedure Description

Planning for Signaling and Condition Handling
Guidelines for Signaling Error Conditions

1-1
1-2
1-2
1-3
1-4

2-1
2-1
2-1
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-7

2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-13
2-14
2-14
2-15
2-15
2-16
2-17
2-17
2-18
2-20
2-20

iii

2.7.2
2.7.3

Guidelines for Returning Condition Values
When to Signal or Return Condition Values

3 Coding Modular Procedures

3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6
3.1.1.7
3.1.1.8

3.1.2
3.1.3
3.1.4
3.1.4.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.4.4
3.3.5
3.3.6

Coding Guidelines .
Adhering to the Naming Conventions

Facility Naming Conventions (Recommended)
Procedure Naming Conventions (Recommended)
File Naming Conventions (Recommended)
Module Naming Conventions (Required)
PSECT Naming Conventions (Required)
Lock Resource Naming Conventions (Recommended)
Global Variable Naming Conventions (Recommended)
Status Code and Condition Value Naming Conventions
(Required) .

Using Common Source Files (Recommended)
Using Open VMS System Services
Invoking Optional User Action Routines

Bound Procedure Value (VAX Only)
Initializing Modular Procedures

Initializing Storage
Testing and Setting a First-Time Flag .
Using LIB$INITIALIZE

Writing AST-Reentrant Code
What Is an AST? .. .
AST-Reentrancy Versus Full-Reentrancy
Writing AST-Reentrant Modular Procedures
How to Eliminate Race Conditions During Concurrent Access

Performing All Accesses in One Instruction
Using Test and Set Instructions .
Keeping a Call-in-Progress Count
Disabling AST Interrupts

Performing Input/Output at AST Level
Condition Handling at AST Level

4 Testing Modular Procedures

iv

4.1
4.1.1
4.1.2
4.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.2
4.5
4.5.1
4.5.2
4.6

Unit Testing
Black Box Testing
White Box Testing

Language-Independence Testing
Integration Testing .. .

All at Once Approach to Integration Testing
Incremental Approach to Integration Testing

Testing for Reentrancy
Checking for AST-Reentrancy

Using the Debugger to Check for AST-Reentrancy
Using Desk Checking to Check for AST-Reentrancy

Checking for Full-Reentrancy
Performance Analysis

SHOW Entry Point
STAT Entry Point

Monitoring Procedures in the Run-Time Library

2-21
2-21

3-1
3-1
3-1
3-3
3-4
3-4
3-4
3-5
3-5

3-6
3-6
3-7
3-7
3-8
3-8
3-9

3-10
3-13
3-15
3-15
3-15
3-16
3-17
3-17
3-18
3-19
3-19
3-20
3-21

4-1
4-2
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-9

5 Integrating Modular Procedures

5.1
5.2
5.3

Creating Facility Prefixes
Creating Object Module Libraries
Creating Shareable Image Libraries

6 Maintaining Modular Procedures

6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2

Making Your Procedures Upwardly Compatible
Regression Testing .
Adding Arguments to Existing Routines

Adding New Arguments to the Procedure
Using Argument Blocks

Updating Libraries .. .
Updating Object Libraries
Updating Shareable Images

A Summary of Modular Programming Guidelines

A.1
A.1.1
A.1.2
A.1.3
A.1.4
A.1.5
A.1.6
A.1.7

Index

Examples

2-1

2-2

2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5

3-6
3-7

Coding Rules : .. .
Calling Interface .. .
Initializing .
Reporting Exception Conditions
AST-Reentrancy
Resource Allocation
Format and Content of Coded Modules
Upward Compatibility

FORTRAN Program Showing the Improper Use oflmplicit
Arguments
FORTRAN Program Combining Procedures to Avoid Implicit
Arguments
Static Storage and AST-Reentrancy
Sample Module Description
A Sample Procedure Description
Pascal Program That Uses a First-Time Flag
BASIC Initialization Procedure for LIB$INITIALIZE
Program to Add Address to PSECT LIB$INITIALIZE
BASIC Main Program
VAX MACRO Program Showing Use of Queue Instructions to Perform
All Accesses in a Single Instruction
MACRO Program Showing Use of Test and Set Instructions
A FORTRAN Program Disabling and Restoring ASTs

5-1
5-2
5-2

6-1
6-1
6-2
6-3
6-3
6-4
6-4
6-5

A-1
A-1
A-3
A-3
A-3
A-4.
A-4
A-5

2-6

2-7
2-13
2-18
2-19
3-12
3-14
3-14
3-14

3-18
3-19
3-20

v

Figures

1-1
2-1
2-2
2-3
2-4
3-1
3-2
3-3
4-1
4-2
4-3
6-1
6-2

Tables

2-1
3-1
3-2
3-3
3-4

vi

Developing a Program that Calls Library Procedures
Levels of Abstraction .
Possible Procedure Groupings
Designating Storage Responsibility to the Caller
Use of Storage Types
Examples of Facility Prefixes as Used in Procedure Names
Methods of Initializing
How to Initialize Static Storage
Black Box Testing Methods
White Box Tests
A Sample Procedure for Integration Testing
Regression Testing .
One Type of Argument Block, the Signal Argument Vector

Summary of Storage Use by Language
Common Library Facilities - Prefixes and Content
Naming Procedure Entry Points
Code for the Content and Usage of Global Variables
How to Declare Common Source Files

1-3
2-2
2-3
2-8

2-12
3-2
3-9

3-11
4-3
4-4
4-5
6-2
6-4

2-13
3-2
3-4
3-5
3-6

Preface

Intended Audience
This manual contains guidelines for developing, integrating, and maintaining
modular procedures. It is intended for advanced system and applications
programmers who are already familiar with Open VMS operating system
concepts. Readers should also be proficient in at least one supported language.

Document Structure
This book contains the following chapters and appendix:

• Chapter 1 defines modular procedures and discusses the benefits of modular
programming.

• Chapter 2 covers design topics, such as organizing new applications, designing
a modular procedure interface, using system resources, using input/output,
writing internal documentation, and planning for signaling and condition
handling.

• Chapter 3 presents general coding guidelines and information about
initializing modular procedures. It also discusses guidelines for invoking
optional user-supplied action routines, and writing AST-reentrant code.

• Chapter 4 describes methods for testing procedures for modularity, language
independence, and reentrancy. This chapter also provides general information
about performance testing and monitoring procedures.

• Chapter 5 shows you how to create object module libraries, shareable images,
and shareable image libraries from your completed procedures.

• Chapter 6 covers maintenance topics, such as upward compatibility,
regression testing, updating procedures and procedure libraries, and changing
the transfer vector or linker options file.

• Appendix A summarizes the modular programming guidelines presented in
this manual.

Associated Documents
The following manuals contain more information about the programming tasks
described in this book:

• Open VMS Programming Environment Manual

• Open VMS Programming Concepts Manual

• Open VMS Programming Interfaces: Calling a System Routine

• Open VMS Calling Standard

• Open VMS System Services Reference Manual

vii

• Open VMS Linker Utility Manual

• The documentation set for your language processor

Conventions

viii

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are also used in this manual:

Ctrl/x

boldface text

italic text

UPPERCASE TEXT

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

1
Introduction to Modular Procedures

A procedure is a set of related instructions that performs a task. A module is a
single body of code and text that can be assembled and compiled as a unit.

A procedure is modular if it contains all the definitions and calls it needs to
perform a task. A modular procedure must also follow rules and principles that
permit it to be successfully linked together with other procedures that follow the
same rules and principles.

This chapter briefly discusses:

• Programming benefits of modular procedures

• Invoking modular procedures

• Using procedure libraries

• Existing Open VMS system procedures

• Using translated images

1.1 Why Bother with Modular Procedures?
Procedures can be combined to form programs in the following ways:

• Your procedure calls other procedures

• Other procedures call your procedure

• A calling program calls either your procedure or other procedures

For procedures to execute successfully when they are combined to form a
program, they must follow general guidelines. Modular procedures that do not
follow these guidelines can cause other procedures in the program image to
execute incorrectly.

The modular programming guidelines in this manual are designed to give
programmers a common environment in which to write code. If all programmers
follow these guidelines, then any modular procedure can be added to a procedure
library without conflicting with procedures already in the library or with any that
are added later.

Modular programming offers the following advantages:

• You can use any modular procedure in any program

• You can add a modular procedure to a library at any time

• You do not need to rewrite common algorithms for a new program

• You can reduce development time and complexity, and increase reliability

1-1

Introduction to Modular Procedures
1.1 Why Bother with Modular Procedures?

• You can modify or replace a procedure without modifying the calling
program provided that you adhere to the guidelines for maintaining upward
compatibility.

• You can control processwide resource allocation

• You can use different programming languages to write different procedures
for a program

Many of the guidelines in this manual are recommendations, not requirements.
By following all the guidelines, however, you can realize the following additional
advantages:

• Shareable library procedures can save memory space, disk space, and link
time

• AST-reentrant procedures can be called by AST-level procedures

• Modular procedures that conform to all coding recommendations are similar
in format; therefore, they are easier to use and maintain

1.2 Invoking a Modular Procedure
Typically, you invoke a procedure by executing a VAX CALLS or CALLG
instruction (on VAX systems) or JSR instruction (on AXP systems). If you
are using a high-level language, the compiler generates the appropriate transfer
instruction when you use the conventions required by your language to implement
a procedure.

For more information about calling sequences, refer to Open VMS Programming
Interfaces: Calling a System Routine. To find out how specific languages
implement procedures, refer to the documentation set for your language
processor.

1.3 Using Procedure Libraries

1-2

You can use modular procedures for general programming or you can group them
in procedure libraries. Grouping procedures into libraries is a way of collecting
procedures so that calling programs can access them easily. When you link your
program to a library, the Open VMS Linker utility (linker) automatically searches
that library to resolve any references that your program makes to procedures in
the library. Because the linker searches the specified library automatically, your
program can call many modular procedures without including the name of each
procedure explicitly in the LINK command. The program's executable image and
the procedures that it calls are executed in the proper sequence at run time.

Figure 1-1 shows the development of a program that calls one or more procedures
in a library. Depending on the options you select when writing modular
procedures, you can control the way the linker accesses your procedures, and
therefore, the way procedures are invoked at run time. For example, if you place
commonly used procedures within a shareable procedure library or shareable
image library, you can save memory and disk space because all user processes
can access a single copy of the shared procedures.

Introduction to Modular Procedures
1.3 Using Procedure Libraries

Figure 1-1 Developing a Program that Calls Library Procedures

Shareable
Image

Interactive Input

Editor

Language
Translator

or
Assembler

Run FILENAM.EXE

------------, I I

: Shareable :
: Image : L ___________ :

Called
Object

Modules

Executable
lmage(s)

Object
Module
Library

}
}

../

EditTime

You edit and enter
the program.

Compile Time

Compiler translates
edited program into
an object file.

Link Time

The linker searches
object module library and
shareable images.

The appropriate library
entry points are made
known to the object
module to form an
executable image .

Run Time

The executable image
is now aware of the
addresses of the relevant
library procedures in
its virtual address space.
The image can call library
procedures at run time.

ZK-4068-GE

1.4 Existing System Procedures
Many system routines that perform advanced applications are included in the
Open VMS operating system. These procedures are designed to perform various
general functions and can be useful building blocks for your own procedures.
Before you write a new procedure, make sure the application does not already
exist. You should call an existing procedure from a system library whenever
possible, instead of duplicating code.

1-3

Introduction to Modular Procedures
1.4 Existing System Procedures

The types of callable system procedures available as part of the Open VMS
operating system are:

Run-time library (RTL) Procedures
System Services
Utility Routines
Record Management Services (RMS)

For more information about the features of these procedures, refer to the
Open VMS Programming Environment Manual. For more information about how
to use them, refer to Open VMS Programming Concepts Manual.

1.5 Using Translated Images (AXP Only)

1-4

Programs that run on VAX systems can be converted to run on AXP systems by
recompiling and relinking or by translating. A single application can include both
native images (those that were recompiled and relinked) and translated images.

The most effective way to convert a program that runs on a VAX system to one
that runs on an AXP system is to recompile the source code-using a native AXP
compiler and then to relink the object files and shareable images using the linker.

The alternative method, translation, involves using DECmigrate for Open VMS
AXP, which supports the migration of VAX applications to AXP applications
by translating images. DECmigrate converts VAX images into functionally
equivalent images that can run on AXP systems. DECmigrate includes the
VAX Environment Software Translator (VEST) utility, which analyzes a VAX
executable or shareable image and creates a functionally equivalent translated
image.

The Translated Image Environment (TIE), which is part of the Open VMS
AXP operating system, provides the run-time support for translated images on
Open VMS AXP. The TIE includes an AXP shareable image that provides each
translated image with an environment similar to Open VMS VAX, interprets
untranslated VAX instructions, and processes all interactions with the native
AXP system. The TIE also includes a translated image that executes complex
VAX instructions.

For more information about VEST and TIE, refer to DECmigrate for Open VMS
AXP Thrsion 1.0 Translating Images. For more information about mixing native
AXP and translated VAX modules in a single application, see Migrating to an
Open VMS AXP System: Recompiling and Relinking Applications. +

2
Designing Modular Procedures

Well-designed procedures are more likely to be modular, well-written, and easy to
maintain. Any time that you save by skimping at the design stage will be lost as
you fix problems stemming from a poor design.

This chapter discusses the following aspects of designing a new application:

• Organizing new applications

• Defining a modular procedure interface

• Using JSB entry points

• Using system resources

• Using Input/output

• Documenting modules

• Planning for signaling and condition handling

2.1 Organizing New Applications
Before designing a new application, look at the overall organization. An
application should be made up of one or more files, each containing one or more
procedures. When linked, the procedures are organized into program sections
(PSECTs). Each procedure, as well as the interface between the procedures,
should conform to the modular guidelines described in this manual.

2.1.1 Organizing Files and Modules
Each application contains one or more files. Each file contains exactly one
module. For information about naming files, refer to Section 3.1.1.3. For
information about naming modules, refer to Section 3.1.1.4.

2.1.2 Organizing Procedures into Modules
Each module should contain a single procedure or a group of related procedures.
The linker always brings the entire module containing a called procedure into the
image if any of its entry points are referenced. Therefore, placing each procedure
in a separate module reduces image size and allows more flexibility when using a
procedure library. You can supply your own version of one procedure while using
other procedures from the library. If many procedures have been grouped in a
single module, the linker must link all or none of them.

Group procedures into a module if they share the same static storage or if they
have a similar calling sequence, perform similar functions, and share a significant
amount of code.

2-1

Designing Modular Procedures
2.1 Organizing New Applications

If you are writing a large number of related procedures that call one another
or access common data blocks, make the relationship among those procedures
as clear as possible. To do this, use the following guidelines to minimize the
interaction between procedures, and between procedures and data structures:

• Organize procedures into levels of abstraction

• Make sure each level calls only the next lower level

• Restrict read/write access to data structures and system components to as few
procedures as possible

Figure 2-1 shows the BASIC and FORTRAN record 1/0 processing procedures,
which are implemented in the following three levels of abstraction:

1. User program interface (UPI)

2. User program data formatting (UDF)

3. Record processing and Open VMS RMS interface (REC)

Figure 2-1 Levels of Abstraction

All Calls

D

Procedure
TypeC

l
Procedure

Type A

l
Procedure

TypeB

Procedure
TypeC

Procedure
Type A

Procedure
TypeB

Procedure
TypeC

Procedure
Type A

Level C: RMS Interface

Level B: User Program
Data Formatting

Level A: User Program
Interface

Modular
----------------r---------------------~----------------lntertace

Main Program

ZK-4006-GE

2-2

Designing Modular Procedures
2.1 Organizing New Applications

All calls are made in one direction, to the next innermost level. Procedures
at different levels should be in different modules. Figure 2-2 shows possible
groupings of procedures.

Figure 2-2 Possible Procedure Groupings

r Main Call ..._
....- L

Call _l .. - T

Interface

Main

rl
can ...__

u
Interface

Main

Call

can

Interface

Module

Static
i-, Storage

(Optional) ',
',, Read/Write .. ',,

1 Read/Write ',,
I ~

Modular rl
Modular

Procedure Procedure
(Optional)

REf REf

Module

Static Static
Storage Storage

(Optional) (Optional)

REf
-.- .

1 Read/Wnte

'
Modular

Procedure

REf

Static
Storage

(Optional)

REf ..
1 Read/Write

' Call

Interface

Module

----Modular
Procedure

REf

Call
Modular

Procedure
(Optional)

REf

rl
u

--~Read/Write

' Call
Modular

Procedure

REf

Procedure
(Optional)

REf

Procedure
(Optional)

REf

Although these procedures may
not be modular, the module is
modular across the interface.

ZK-4007-GE

2-3

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2 Defining a Modular Procedure Interface
Procedures communicate with one another by passing arguments. To clarify the
interactions between procedures and programs, you must define each argument
when you are designing a procedure. There are two types of arguments: explicit
arguments and implicit arguments. The following sections define explicit and
implicit arguments and describe how to use them.

2.2.1 Explicit Arguments
Explicit arguments are a procedure's primary interface with other programs.
Therefore, to maintain a modular interface, you must follow the rules for
argument order, data types, and passing mechanisms. The following format is
used to describe each argument:

argument-name

OpenVMS usage: argument-data-structure
type: argument-data-type
access: argument-access
mechanism: argument-passing-mechanism

For descriptions of each of these four argument attributes, see the Open VMS
Programming Interfaces: Calling a System Routine.

To make your procedures easier to call, be sure that the passing mechanism
used for particular data types is consistent throughout all procedures in a
facility. Passing all atomic data by reference and all string data by descriptor is
recommended.

2.2.2 Implicit Arguments
An implicit argument is one that is not specified in the argument list. Implicit
arguments provide additional information to your procedure from static storage
locations. Two types of implicit arguments are:

• Arguments allocated by the calling program

• Arguments allocated by your procedure

Using implicit arguments is discouraged because they make the relationship
across procedures less clear and tend to increase the interaction between
procedures in a way that might go undetected. If your procedure must retain
information from previous activations, see Section 2.2.3 for ways to avoid using
implicit arguments.

2.2.2.1 Implicit Arguments Allocated by the Calling Program

2-4

The calling program can allocate implicit arguments as statically allocated
variables in a named PSECT (for example, COMMON and MAP in BASIC,
COMMON in FORTRAN, or variables declared in the outer block of a procedure
or program in Pascal). The calling program can also allocate implicit arguments
as statically allocated global variables (for example, symbols defined with a
double colon[::] in MACRO and GLOBAL variables in BLISS).

Allocation of implicit arguments by the calling program is not recommended for
the following reasons:

• Two programs could use the same PSECT name or global variable for different
values. This error would be undetected.

• The calling program is no longer independent of the called procedure.
Consequently, a change in one could inadvertently affect the other.

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

• In FORTRAN, the calling program declares all variables as COMMON
regardless of the number of implicit inputs actually needed. All COMMON
variables should also be declared by all modules that use the COMMON
storage, further decreasing independence.

2.2.2.2 Implicit Arguments Allocated by the Called Procedure
Implicit arguments allocated by the called procedure are kept in local static
storage.

These implicit arguments are usually used to keep track of resources (using
resource allocating procedures) and shorten the explicit argument list. However,
the use of implicit inputs by non-resource-allocating procedures can lead to
unexpected results. For example, assume that procedure A is to leave information
for a companion procedure B. This would result in B having both explicit inputs
(from its caller) and implicit inputs (from Ns storage). Next, consider that a
calling program calls A, then calls procedure X, and finally calls B. For the calling
program to get correct results from B, it must know that X (and any procedure
that X calls) did not make a call to A, because such a call would change the
implicit inputs A leaves for B.

Because one of the objectives of modular programming is to permit procedures
to be combined arbitrarily without needing to understand each other's internal
workings, using implicit arguments is not recommended. The same problems can
occur with any non-resource-allocating procedure that leaves results for itself as
future implicit arguments.

2.2.3 How to Avoid Using Implicit Arguments
Procedures that do not allocate resources can be written in the following three
ways to avoid the implicit argument problems described in Section 2.2.2:

• When one procedure obtains results from another, combine the two procedures
into a single call. (See Section 2.2.3.1.)

• Provide a single call to an action routine that is supplied by the calling
program part way through the procedure's execution. (See Section 2.2.3.2.)

• Give the calling program responsibility for retaining information from
a procedure activation. This is done with an explicit argument. (See
Section 2.2.3.3.)

2.2.3.1 Combining Procedures
Often, non-resource-allocating procedures can be combined into a single procedure
that returns all information explicitly in a single call.

Compare Example 2-1 with Example 2-2 to see the effects of combining
procedures to avoid the use of implicit arguments.

2-5

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Example 2-1 FORTRAN Program Showing the Improper Use of Implicit
Arguments

!+
! This program demonstrates a situation where
! the input of a procedure depends on the output
! of a previously called procedure.
!-

!+

REAL*4 X, Y, RESULT
x = 1
y = 1

! Call the procedure that writes into a common data area.
!-

CALL SUM_SQUARES (X, Y)
!+
! Call the procedure that reads from the common data area.
!-

CALL GET_SQRT (RESULT)
! +
! Print the result obtained.
!-

WRITE (6,10) X, Y, RESULT
10 FORMAT(lX, 'SQRT(', F6.2, '**2 + I F6.2, '**2) =' ,F6.2)

STOP
END

! +
! This procedure sums the squares of its two inputs and
! places the result in a common area, for use by some
! other procedure.
!-

!+

SUBROUTINE SUM_SQUARES (A, B)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
TEMP_RESULT = (A ** 2) + (B ** 2)
RETURN
END

! This procedure calculates the square root of whatever
! number is in the common area.
! -

SUBROUTINE GET_SQRT (C)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
C = SQRT (TEMP_RESULT)
RETURN
END

2.2.3.2 User-Action Routine

2-6

Another way to combine several procedures into one call is to let the calling
program gain control at a critical point in your procedure's execution. For this to
happen, your procedure must specify an action routine argument that is called
during execution. Therefore, your procedure can execute twice, before and after
the action routine, with no implicit inputs. The OPEN statements in BASIC,
FORTRAN, and Pascal use this technique by permitting the user to supply a
user-action routine.

To keep the calling program from having to provide implicit inputs for its action
routine, your procedure should also provide another argument that is passed to
the action routine. The calling program uses the following calling sequence to
invoke your procedure:

CALL my-proc (... ,action-routine ,user-arg)

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Example 2-2 FORTRAN Program Combining Procedures to Avoid Implicit
Arguments

!+
! This procedure shows the subroutines called in
! the previous example combined into a single subroutine
! that eliminates the use of COMMON.
!-

!+

REAL*4 X, Y, RESULT
x = 1
y = 1

! Call the new procedure.
!-

10

!+

CALL DO_IT_ALL (X, Y, RESULT)
WRITE (6,10) X, Y, RESULT
FORMAT (lX, 'SQRT ('I F6.2, '**2 +

STOP
END

F6.2, '**2)

This procedure calculates the square root of the sum of
the squares of its first two arguments, and returns the

! result in the third argument. It combines the functions
! provided by the SUM_SQUARES and GET_SQRT
! procedures and eliminates the use of COMMON.
!-

SUBROUTINE DO_IT_ALL (A, B, C)
C =SQRT ((A** 2) + (B ** 2))
RETURN
END

Then your procedure invokes the action routine as follows:

CALL action-routine (... ,user-arg)

I I F6. 2)

For information on writing user-action routines, see Section 3.1.4.

2.2.3.3 Designating Responsibility to the Calling Program
You can make the calling program responsible for retaining information from one
procedure activation to another. There are three ways to do this:

• Require the calling program to allocate the storage your procedure needs.
Then have the calling program pass the address of the storage location as
an explicit argument on all calls to your procedure. The disadvantage of this
method is that you cannot increase the amount of storage needed by your
procedure without requiring all calling programs to be rewritten. Thus, you
should use this method only when you are confident that your procedure will
not be revised to use additional storage in the future.

• Require the calling program to allocate a longword pointer to the stored
data and pass its address to your procedure as an explicit argument. On
the first call, your called procedure will dynamically allocate storage (by
calling LIB$GET_ VM) and store its address in the caller's longword. On
subsequent calls, your procedure will use information left in the storage area
from previous calls.

• Require the calling program to pass a processwide identifying value to your
procedure on all calls. The processwide identifier indicates which information
from previous procedure activations is to be used as implicit inputs.

2-7

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Figure 2-3 shows a calling program that has responsibility for explicitly
indicating the storage to be used by the called procedure.

Figure 2-3 Designating Storage Responsibility to the Caller

Storage
for

Calling
Program

K

i
i
i
i-----------------------

- - - - -i- - ----,
-----~ - -----~--------------, ------~ I I

I I

Argument K
is written to

calling program
storage.

I
I
I
I
I
I
I
I

RET ------1----1
I

Procedure r------J
Read 1 1

I I

Storage for

Procedure X

L

Call X,._-+-_______,,.-----------+---.
Call Read (L)

RET

Call Get (K)
--+----+--.....

Argument K
is read from

calling program
storage.

RET

Procedure X

Interface

Calling Program Procedure
Get

Data
-----•Path

2-8

Interface

---• Control
Path

By giving the caller responsibility for
storage, you can separate information
stored on each procedure activation
and prevent undetected conflicts.

ZK-4004-GE

Calling Program Allocates Procedure Storage
This method causes the calling program to allocate all storage needed and pass
the address of the storage as an explicit argument on each call.

For example, the library procedure MTH$RANDOM requires that the calling
program allocate storage for the longword seed and pass its address on each call.
MTH$RANDOM takes the seed as input and computes the next random number
sequence from the current seed value. MTH$RANDOM returns a random number
between 0 and 1 and updates the longword seed passed by the calling program.
This ensures that the procedure will generate a different value on the next call.

The next two sections describe interface techniques that permit storage size to
change without affecting the interface with the calling program.

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Calling Program Passes Pointer
In this method, the calling program allocates only a longword pointer to the
dynamic heap storage to be allocated by your procedure. It then passes the
address of the longword as an explicit argument. The following two interface
techniques can be used to indicate that storage is to be initialized:

• Provide a single entry point. If your called procedure finds the value zero in
the longword that the calling program has allocated, the procedure allocates
and initializes dynamic heap storage.

• Provide a second entry point. This entry point stores the address of the
allocated storage in the longword. On subsequent calls, your procedure uses
that value as the storage address of information from previous calls.

Regardless of the method used to indicate storage allocation and initialization,
you must also provide a way to indicate storage deallocation. You can do this by
using either a separate argument or separate entry point.

For example, the procedure LIB$INIT_TIMER, which gets times and counts from
the operating system, uses a single optional argument handle-adr to determine
where these values are to be stored. The handle-adr argument is the address of
a longword pointing to a block of storage that contains the values of times and
counts:

• If handle-adr is missing, the values are stored in static storage, making this
call non-AST-reentrant.

• If handle-adr is zero, LIB$INIT_TIMER allocates a block of dynamic heap
storage by calling LIB$GET_ VM. The values are placed in that block, and the
address of the block is returned in handle-adr.

• If handle-adr is nonzero, it is considered to be the address of a storage block
previously allocated by a call to LIB$INIT_TIMER. The block is then used
again and new times and counts are stored in it.

LIB$FREE_TIMER deallocates the block of dynamic heap storage allocated by a
previous call to LIB$INIT_TIMER. The handle-adr argument to
LIB$FREE_ TIMER is the address of a longword that points to a block of dynamic
heap storage where times and counts have been stored. That storage is returned
to free storage by calling LIB$FREE_ VM.

Calling Program Passes a Processwide Identifier
In this method, the calling program passes a processwide identifying value to
identify implicit results produced on previous calls, which will be implicit inputs
on this call. Any calling program can use the processwide identifier. Examples
include BASIC or FORTRAN logical unit numbers and Open VMS system services
I/O channel numbers.

Processwide identifiers are a resource. Modular programming techniques require
that all resources allocated by a procedure be allocated by calling a resource
allocating procedure. This prevents conflicts because a single procedure can keep
track of multiple allocations to more than one procedure or procedure activation.
Therefore, if you use the method described in this section, you will also have
to write a resource-allocating procedure to control the resource. If you write a
resource-allocating procedure, it is recommended that you place it in an object
module library so that other programmers can use it.

The library procedures LIB$GET_LUN and LIB$FREE_LUN allocate and
deallocate FORTRAN and BASIC logical unit numbers outside the range normally
specified in user programs, that is, outside the range 0 to 99.

2-9

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2.4 Order of Arguments
Procedures in the RTL follow a consistent pattern for positioning arguments. You
should follow the same guidelines. Group procedure arguments from left to right
in the following order:

1. Required input arguments (read access)

2. Required input-output arguments (modify access)

3. Required output arguments (write access)

4. Optional input arguments (read access)

5. Optional input-output arguments (modify access)

6. Optional output arguments (write access)

Note that optional arguments follow required arguments. Therefore, when the
calling program omits the optional arguments, the actual argument list passed to
the procedure is shortened.

The called procedure accesses the required arguments from left to right,
beginning with the first argument. The only exceptions are procedures that
return a large function value of known size. In this case, the calling program
uses the first argument to specify where the function value is to be stored, and
the other arguments are shifted right one position. (For more information, refer
to the Open VMS Calling Standard.)

2.2.5 Using Optional Arguments
An optional argument is one that the calling program can omit. The calling
program indicates the omission by passing argument list entries containing zero.
For a trailing optional argument, the calling program can pass a shortened list or
a zero argument list entry.

A zero argument list entry is simply a zero passed to the procedure by value. For
example, if we call a procedure called GRA_CUBE and omit an optional argument
C, the calling sequence from BASIC would be as follows:

15 CALL GRA_CUBE(A, B, 0 BY VALUE)

In this call, "OBY VALUE" is the zero argument list entry.

Most Open VMS system services, unlike the run-time library procedures,
cannot accept a shortened argument list. Omitted arguments must
always be indicated with a zero argument list entry. For arguments
passed by value, there is no distinction between passing a zero value and
passing a zero argument list entry.

2.3 JSB Entry Points {VAX Only)

2-10

On VAX systems, Digital recommends that you do not use JSB1 entry points in
procedures that will be contained in a procedure library. Procedures that can
be invoked only by JSB instructions are not callable by high-level languages. If
a procedure does use a JSB entry point, it must also provide an equivalent call

1 JSB is a MACRO instruction that means jump to subroutine.

Designing Modular Procedures
2.3 JSB Entry Points (VAX Only)

entry point to maintain language independence. The call entry point must be
provided because JSB instructions are only available in VAX MACRO and VAX
BLISS-32.

If you provide a JSB entry point for your procedure, the name of the JSB entry
point is the same as the name of the procedure, except that it ends in _Rn. The n
indicates the highest register modified or used as an input argument.

For example, the JSB entry point of the run-time library procedure
LIB$ANALYZE_SDESC is LIB$ANALYZE_SDESC_R2. +

2.4 Using System Resources
The system resources available to you are limited by your account quotas and
by the amount of available resources on the system. Efficient use of system
resources makes more resources available for all processes.

2.4.1 Choosing a Storage Type
There are three types of storage: stack, heap, and static. The three forms of
storage differ in the method and duration of allocation, that is, how long that
storage is in use.

2.4.1.1 Stack Storage
A procedure dynamically allocates stack storage on the process stack at run time,
as needed. To allocate stack storage, the procedure moves the stack pointer up by
decreasing its value. Note that stack storage is not initialized to zero because the
stack is created once and reused many times for subsequent stack frames.

The procedure deallocates stack storage by moving the stack pointer down
(increasing its value) when that procedure returns control to the calling program.
Stack storage exists only for the duration of the procedure activation that creates
it.

2.4.1.2 Heap Storage
Dynamic heap storage is allocated at run time from a processwide pool, as the
procedure activation needs it and as the account quotas and virtual address space
of your process permits.

To allocate heap storage, your procedure calls a system routine such as the Run
Time Library procedure LIB$GET_VM or the system service $EXPREG. The
call to the system routine may be within the procedure itself, or you may use a
general resource-allocating procedure to centralize your resource allocations.

Heap storage is deallocated-that is, returned to the processwide pool-by calling
LIB$FREE_ VM. The system service $CNTREG cannot be used to deallocate heap
storage.

Figure 2-4 shows how the different types of storage are used.

Note

The type of storage to be used can be determined by the duration or
quantity of the storage. Any storage that is of long duration and unknown
quantity (at compile time) should be heap storage. Storage of short
duration (during the current invocation of the procedure) should be stack
storage. Storage of long duration that is needed in only one instance
should be static storage.

2-11

Designing Modular Procedures
2.4 Using System Resources

Figure 2-4 Use of Storage Types

Static
Storage

-,-
1 Read/Write

CALL

Procedure

REf

Static storage is used
when a result must
be retained for
a future procedure
activation.

Stack
Storage

I Read/Write

CALL

Procedure

REf

Stack storage is used
when results are
needed only for
the current procedure
activation.

It is deallocated
when the procedure
returns to its caller.

Heap
Storage

I Read/Write

CALL

Procedure

REf

Heap storage is
used when the
amount of storage
varies from call
to call.

Storage is deallocated
before control
returns to the
caller (by calling
LIB$FREE_ VM).

Pointer
r-------
' I
I
I
I

Heap
Storage

l-------------,
I
I
I
I
I

Static r-<>--1----J
Storage I

I

I , I

I Read/Write
I

CALL

Procedure

REf

Heap storage is
also used when the
amount of storage
needed varies and
when results must be
retained for a
future procedure
activation.

It is deallocated by
calling LIB$FREE_ VM.

ZK-4005-GE

2.4.1.3 Static Storage
At link time, the linker collects storage in similar PSECTs into a single image
section. The initial contents of this storage are specified in the source program.
The Open VMS operating system initializes any noninitialized static storage to
zero. On calls to a procedure after initialization, the static storage has the same
allocation and the contents left from the previous call.

2.4.1.4 Avoiding Use of Static Storage

2-12

Several disadvantages to using static storage are:

• It is an inefficient use of memory. When using static storage, you must
provide for the largest possible memory use.

• An image size is larger because of the inefficient use of memory.

• It can easily lead to problems with AST reentrancy, as seen in Example 2-3.
This example circumvents the problem of an AST corrupting data by setting a
first-time flag. Another method of preventing this problem is to use "test and
set" instructions. For more information, see Section 3.3.4.2.

Designing Modular Procedures
2.4 Using System Resources

Example 2-3 Static Storage and AST-Reentrancy

10 ! +
! Program to demonstrate corruption
! of static storage due to ASTs.
!-
DECLARE LONG CURRENT_NUMBER

!+
! Enable CTRL/C AST handling.
!-
ON ERROR GOTO 19000
X% = CTRLC

!+
Increment the number and print the

! current value. When the number
! reaches 1000, exit.
!-
FOR CURRENT_NUMBER = 1% TO 1000%

100 PRINT CURRENT_NUMBER;
NEXT CURRENT_NUMBER
GOTO 32767

19000 ! +
! Error-handling routine. If this routine is
! entered due to a CTRL/C
! AST, corrupt CURRENT_NUMBER by setting it to -1.
!-
IF ERR = 28 THEN CURRENT_NUMBER = -1%
RESUME 100

32767 END

2.4.1.5 Summary of Storage Use by Language
Table 2-1 summarizes storage available to the programmer in various language
procedures.

Table 2-1 Summary of Storage Use by Language

Language

Ada

BASIC

BLISS

c

COBOL

Storage Type

Static Stack

Constants and fixed- Local subprogram
size objects contained and task variables
in library packages

All COMMON and Local variables
MAP data storage

Most arrays

OWN and GLOBAL

Objects declared with
external or static
internal linkage

All data storage

Executable
DIMENSION
statement

STACK LOCAL

Objects declared
inside a function
with "automatic"
linkage

Not applicable

Heap

Dynamically sized objects in library
packages and objects created by
allocators

Dynamic strings

By calling LIB$GET_VM

By calling malloc, calloc, or realloc

By calling LIB$GET_ VM

(continued on next page)

2-13

Designing Modular Procedures
2.4 Using System Resources

Table 2-1 (Cont.) Summary of Storage Use by Language

Language
Storage Type

Static Stack Heap

DIBOL All RECORD, Not applicable Not applicable
COMMON, and
LITERAL data
storage

VAX FORTRAN All data storage Not applicable By calling LIB$GET_ VM1

Assembly Block storage Decrementing stack By calling LIB$GET _ VM
language pointer

Pascal All program or PROCEDURE and By calling NEW2

module level storage FUNCTION local

PUI STATIC AUTOMATIC ALLOCATE statement (BASED)3

RPG II All data storage Not applicable By calling LIB$GET_ VM

SCAN STATIC, GLOBAL, When AUTOMATIC DYNAMIC STRING values, TREE
COMMON, is used in a pointers, and the ALLOCATE function
EXTERNAL procedure or macro

1Storage for DEC Fortran for Open VMS Alpha is the same as for VAX FORTRAN, except that stack storage is available
as a compile time option for some variables.
2 Although this is true most of the time, there are other rules that can also determine STATIC versus STACK allocation.
For more information, see the Pascal user documentation.
3BASED is the storage class used to allocate heap storage in PUI. The ALLOCATE statement does the actual allocation.

2.4.2 Using Event Flags
Event flags allow modular procedures to communicate with each other and to
synchronize their operations. Because they can be allocated at run time, event
flags allow one procedure to run independently of other procedures existing in the
same process.

Event flags are allocated and deallocated by the run-time library procedures
LIB$GET_EF and LIB$FREE_EF. (For more information, see the descriptions of
the LIB$GET_EF and LIB$FREE_EF procedures in the Open VMS Programming
Concepts Manual and the Open VMS RTL Library (LIB$) Manual.)

2.4.3 Using Logical Unit Numbers

2-14

A logical unit number is used to define the device or file a program uses to
perform input and output. Modular procedures do not need to know the unit
numbers of other procedures running at the same time.

Logical unit numbers are used only in BASIC and FORTRAN.

Logical unit numbers should be allocated and deallocated using the
LIB$GET_LUN and LIB$FREE_LUN RTL procedures. (For more information
about using logical unit numbers, see the descriptions of the LIB$GET_LUN and
LIB$FREE_LUN procedures in the Open VMS Programming Concepts Manual
and the Open VMS RTL Library (LIB$) Manual.)

Designing Modular Procedures
2.5 Using Input/Output

2.5 Using Input/Output
In general, your procedure's input/output (1/0) is directed to either the terminal or
a file. (In some cases, you may need to use mailbox 1/0 and network operations.
For information about these areas, see the DECnet for Open VMS Networking
Manual.) Regardless of whether you are directing input/output to the terminal
screen or to a file, you must follow two rules to maintain modularity:

1. A procedure must not print error or informational messages either directly or
by calling the $PUTMSG system service. It must either return a condition
value in RO as a function value, or call LIB$SIGNAL or LIB$STOP to output
all messages. (LIB$SIGNAL and LIB$STOP may be called either directly or
indirectly.)

2. A procedure should use device independent services and procedures for
input/output.

2.5.1 Terminal Input/Output
The methods available for performing input/output to the terminal include the
following:

• Queue 1/0 Request system service ($QIO)

Using a $QIO to perform terminal 1/0 is very efficient. However, $QIOs
use device-dependent services and are the most difficult to use from high
level languages of all methods discussed here, because there are more steps
involved and because the calling interface requires more knowledge from
the caller than RMS services. Using a $QIO in your procedure may require
additional steps, such as constructing item lists, writing AST routines,
assigning an 1/0 channel, queueing an 1/0 request, testing to ensure that
the request was successfully queued and completed, and deassigning the
1/0 channel. (For more information about $QI Os, see the Open VMS System
Services Reference Manual.)

• Open VMS Record Management Services (RMS)

The RMS facility provides device-independent and general-purpose services
that are easier to call than $QIOs. However, it is often not convenient to
construct the access control blocks (FAB, RAB, and so forth) required by
RMS from a high-level language. (For more information about RMS, see the
Open VMS Record Management Services Reference Manual.)

• Language 1/0 statements

Language 1/0 statements are provided for all high-level languages. These
statements are easy to use and provide simple 1/0 and data formatting
for the high-level language user. Native language 1/0 statements make it
unnecessary for the high-level language user to call $QIO or RMS directly;
these calls are made by the compiled code on your behalf. However, low-level
and medium-level languages (VAX MACRO and BLISS-32) have no built-in
language 1/0 statements and must use $QIO and RMS for terminal and file
1/0. (For more information, see the appropriate language reference manual.)

• Screen Management Procedures in the run-time library (SMG$)

SMG$ procedures provide an easy-to-call interface for high-level languages.
They are device-independent and aid in the composition of complex
screen images. The SMG$ facility in the run-time library provides screen
composition operations; that is, SMG$ makes it easy for an application to

2-15

Designing Modular Procedures
2.5 Using Input/Output

divide its screen into multiple regions and provides functions for manipulating
· those regions. Other features provided by SMG$ procedures are as follows:

Output to virtual displays

Input from a virtual keyboard or locator device

The ability to perform asynchronous input

Built-in minimal screen updating

Optional buffering and batching to optimize performance

The ability to trap broadcast messages

The option of performing output to a file or a hardcopy device

Support for foreign (not Digital) terminals

Subprocess manipulation

For more information about SMG$ procedures, see the Open VMS RTL Screen
Management (SMG$) Manual and the Open VMS Programming Concepts
Manual.

During I/O to the terminal, it is important that the procedure and the main
program cooperate in controlling the terminal screen. For example, an I/O
procedure may write something to the terminal screen that the calling program
wants to erase. The calling program must know both what and where that
information is, in order to erase it. The calling program and the called procedure
must communicate by passing arguments that define which part of the screen will
be accessed by each. The run-time library contains Screen Management (SMG$)
procedures for this purpose.

Do not combine different methods of I/O within your application. Problems
can arise if the calling program and the called procedure use different methods
of I/O. Each method of performing input/output maintains some knowledge of
what is on the terminal screen. At the very least, the current cursor position is
remembered. If another type of I/O is performed, that information is not updated
and, therefore, becomes incorrect. The results of any subsequent I/O would be
unpredictable. If you must combine other methods with uses of SMG$ procedures,
use the SMG$ procedures that aid such an integration.

2.5.2 File Input/Output

2-16

File I/O can be performed by the following methods:

• Block I/O

Uses system services to map a section of the file to the process virtual address
space. No notion of records.

• Open VMS Record Management Services (RMS)

RMS provides a variety of file organizations and access modes from which
you can select the processing techniques best suited to your application. RMS
supports the sequential, relative, and indexed-sequential file organizations.
These modes allow you to access records within these files sequentially,
randomly by key value or relative record number, or randomly by the records
file address (RFA). It is usually not necessary to call RMS directly from
high-level languages. For specific information about performing record
management operations in the language you are using, consult your language
reference manual. (For more information about RMS, see the Open VMS
Record Management Services Reference Manual.)

• Language I/O

Designing Modular Procedures
2.5 Using Input/Output

The compiled code in most high-level languages calls a run-time library
language support procedure for file operations. The run-time library
procedures normally call RMS. Therefore, most RMS features are available
to the high-level language user without calling RMS directly. Language
I/O statements are suitable for either data files or output files. Low- and
medium-level languages (VAX MACRO and BLISS-32) do not have any
language I/O statements and must call RMS directly. (For more information,
see the appropriate language reference manual.)

2.6 Documenting Modules
You should document every module you create so that you and others know what
the procedure does. Each module should include:

• A preface that identifies the procedure

• A description of the procedure

In most cases, a module should contain only one procedure.

2.6.1 Writing a Module Preface
At the beginning of every module, include a preface that contains the following
information:

Title:

Version:

Facility:

Abstract:

Environment:

Author:

Modified by:

Module name followed by a one-line functional description.

Version and a three-digit edit number. Generally 1-001 is the
original version.

Description of the library facility, such as general utility library
(LIB).

Short (three to six lines) functional description of the module.

Describe any special environmental assumptions that the module
can make. These include assumptions made at both compilation
and execution time that could affect either the hardware or software
environments.

Describes situations that the module assumes during execution time
and optional modular programming elements that your module does
not follow.

Indicates the reentrancy characteristics of the procedures in this
module. Each procedure is either fully-reentrant, AST-reentrant, or
non-reentrant.

Your name and date the module was created.

Modification number, name of modifying programmer, modification
date, and a list of the modifications.

End the preface with a page delimiter. After the preface, include the code for the
procedure.

Example 2-4 shows a sample module description.

2-17

Designing Modular Procedures
2.6 Documenting Modules

Example 2-4 Sample Module Description

!+

!-

PROGRAM GRA_CUBE ! Create representation of a cube

VERSION: 1-002

FACILITY: User Graphics Computation Library

ABSTRACT: This module contains a procedure to create a mathematical
representation of a cube, GRA_CUBE.

ENVIRONMENT: User Mode, AST-reentrant

AUTHOR: John Smith CREATION DATE: 14-Sep-1993

MODIFIED BY:
1-001 - Original. DWS 14-Sep-1993
1-002 - Fix a minor bug in cube volume computation. MDL 15-Mar-1993

2.6.2 Writing a Procedure Description

2-18

At the beginning of every procedure in a module, describe the procedure by
including the information in this section. Include all the description elements,
even if they are not in the procedure. For example, if a procedure has no implicit
inputs, write the following:

Implicit Inputs:

NONE

Every procedure description should include the following information:

Functional description:

Calling sequence:

Describes a procedure's purpose and completely documents
its interfaces.

Includes the basis for any critical algorithms used,
including literature references where applicable, and
explains why a particular algorithm was chosen.

Indicates the reentrancy characteristics of this procedure if
they differ from those given in the module description.

Includes these elements in the following order:

1. A return status, value argument, or CALL statement

2. The procedure name

3. The argument list (typically a list of registers or
arguments)

In VAX MACRO, each argument is symbolically defined as
the offset relative to the argument pointer (AP).

Lists the arguments in the order they will appear in a
high-level language. Each argument characteristic should
also be included, using the procedure argument notation
described in Open VMS Programming Interfaces: Calling a
System Routine.

Formal arguments:

Implicit inputs:

Implicit outputs:

Completion status or
routine value:

Side effects:

Designing Modular Procedures
2.6 Documenting Modules

Lists any explicit input, input-output, or output arguments.
Includes a qualifying description with each argument. The
arguments should be listed in the order they are listed in
the calling sequence.

Lists any inputs from storage, internal or external to the
module, that are not specified in the argument list. Usually
all that will appear here is "NONE". See Section 2.2.2.

Lists any outputs to internal or external storage that are
not specified in the argument list.

Lists the success or failure condition value symbols that
could be returned. If your procedure returns a function
value other than a condition value, change the heading to
"Routine value".

Describes any functional side effects not evident from
a procedure's calling sequence. This includes changes
in storage allocation, process status, file operations,
and possible signaled conditions. In general, you should
document anything out of the ordinary that the procedure
does to the environment. If a side effect modifies local or
global storage locations, document it in the implicit output
description instead.

Example 2-5 shows a sample procedure description.

Example 2-5 A Sample Procedure Description

!++
FUNCTIONAL DESCRIPTION:

Return the system date and time, using the caller's
semantics for his/her string.

Non-reentrant; uses static storage.

FORMAL ARGUMENT(S):

RESULT-'-ADDR
VMS USAGE
TYPE
ACCESS
MECHANISM

char_string
character string
write only
by descriptor

Address of the descriptor into which the
system date and time is written.

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

(continued on next page)

2-19

Designing Modular Procedures
2.6 Documenting Modules

Example 2-5 (Cont.) A Sample Procedure Description

COMPLETION CODES:

SS$_NORMAL
LIB$_STRTRU

SIDE EFFECTS:

Procedure successfully completed
Success, but source string truncated

Requests the current date and time from VMS.

!--

2.7 Planning for Signaling and Condition Handling
Two methods are available to a procedure for indicating to its caller whether it
completed successfully. One method is to return a condition value. The other
method is to signal an error condition.

To provide a better user interface, all procedures in a facility should either return
condition values or signal error conditions. Regardless of which method you
choose, you should be consistent within the facility to make the procedures easier
for the user to call.

2.7.1 Guidelines for Signaling Error Conditions

2-20

The signaling of an error condition is, in some instances, mandatory.

Procedures that return a function value cannot also return a condition value and
therefore must signal any error conditions encountered.

However, to maintain efficiency, you might want other procedures to signal error
conditions also. Checking the return status of a called procedure for repetitive
calls can be time consuming and adversely affect the performance of the calling
program. For example, if you are going to call a procedure 100 times within a
loop and the chances of that procedure's failure are relatively small, you may not
want to take the time to check the return status after each call to make sure that
the condition value returned was SS$_NORMAL. Signaling error conditions is far
more efficient in this type of application.

From the point of view of the calling program, handling a signaled condition
is slightly more difficult than checking a returned condition value because it
involves writing a condition handler to be invoked in the event that an error
condition is signaled. However, handling a signaled condition allows the calling
program to execute more efficiently.

To signal an error condition, your procedure uses either a condition-handling
mechanism provided by the source language, or it calls the Run-Time Library
procedure LIB$SIGNAL. To use LIB$SIGNAL, your procedure calls LIB$SIGNAL
and specifies the condition code and zero or more arguments specifying the
environment of the condition. For more information about using LIB$SIGNAL,
see the Open VMS RTL Library (LIB$) Manual.

Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

2. 7.2 Guidelines for Returning Condition Values
From the point of view of the calling program, it is considerably easier to check
returned condition values than to handle signaled error conditions. When the
condition value is being returned, the calling program does not need to include
a condition handler. The calling program needs only to check the status of the
returned value.

However, if you return condition values rather than signal error conditions, you
return less information about the error condition to the calling program. It is
recommended that you return condition values when the explanation of the error
condition is simple and self-contained. For example, LIB$GET_ VM returns a
condition value, because the possible status conditions are self-contained and
simple (for example, insufficient virtual memory).

According to the Open VMS Calling Standard, the status returned must be a
condition value. (For more information, see Open VMS Programming Interfaces:
Calling a System Routine.)

2.7.3 When to Signal or Return Condition Values
To some degree, whether you decide to signal an error condition or return a
condition value depends on the language you are using for your procedure. In
some high-level languages, it is very difficult to write a condition handler to be
invoked in the event that an error condition is signaled. (For more information
about condition handling in your language, consult the appropriate language
reference manual.)

Regardless of which language you are using, there are general guidelines for
when to return a condition value and when to signal an error condition.

You should signal an error condition in the following situations:

• Your procedure returns a value in RO and cannot return a condition value.

• Your procedure must execute quickly and checking the return status of a
condition value would be inefficient.

• Your procedure will be executed repetitively and, therefore, checking the
condition value returned would adversely affect your procedure's performance.

• The amount of information you want to return about the error condition
cannot be contained in a condition value.

• A useful error message requires information that cannot be determined until
run time. For example, the FDL$PARSE procedure must tell you which line
of the FDL file was the cause of an error. Because the line number of the
line containing the error cannot be determined until run time, the signal
mechanism is preferred.

• You want to execute a specific condition handler in the event that an error
condition is signaled.

2-21

Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

2-22

You should return a condition value in the following situations:

• You want to keep the error-handling mechanism simple.

• The speed of the error-checking mechanism is not of great concern.

• The total possible errors that may be returned is a small number and
sufficient information about those errors can be contained in the condition
value returned.

• The functions provided by the procedure are so general that the procedure
will be used in various levels and environments.

3
Coding Modular Procedures

This chapter describes how to code modular procedures. Specifically, it covers the
following topics:

• Coding guidelines

• Initializing modular procedures

• Writing AST-reentrant code

Appendix A summarizes many of these guidelines. Refer to the appendix to
review the guidelines or use it as a checklist.

3.1 Coding Guidelines
The coding guidelines discussed in this section are of two types: required and
recommended. You must follow the sections marked required to ensure that
your application is modular. Digital highly recommends that you adhere to the
guidelines presented in the sections marked recommended. Following these
additional rules will help you produce consistent, uniform applications.

3.1.1 Adhering to the Naming Conventions
The following guidelines apply to the naming of facilities, procedures, files,
modules, and program sections. You must follow these conventions when choosing
names for modules, PSECTs, and status codes.

3.1.1.1 Facility Naming Conventions (Recommended)
To make it easy to locate a set of related procedures, Digital recommends that
you group your procedures into facilities. Providing related procedures with a
common facility prefix is a convenient method for organizing procedures. The
facility prefix is the first part of any procedure name.

As shown in Figure 3-1, the first three (or sometimes four) characters of a
procedure name are used to indicate the facility of a run-time library (RTL)
procedure.

3-1

Coding Modular Procedures
3.1 Coding Guidelines

3-2

Figure 3-1 Examples of Facility Prefixes as Used in Procedure Names

STR$APPEND BAS$STRING

Facility Prefix Facility Prefix
for String Manipulation
Procedures

for BASIC-Specific Support
Procedures

ZK-3084-GE

Facility names represent library facilities. A procedure is characterized as
belonging to a particular facility according to the types of operations it performs.
Facilities may differ in the conventions they use for handling errors and receiving
arguments, as well as in primary function. Table 3-1 lists some common Digital
facility prefixes.

Table 3-1 Common Library Facilities - Prefixes and Content

Prefix

ADA
APL

BAS

B32

CDU

CLI

COB

COR

C74

DBG

DBL

DECC

ERF

FDV

FOR

LBR

LIB

MATH

MTH

OTS

PAS

PLI

RMS

RPG

Content

Ada Run-Time Library procedures

APL Run-Time Library procedures

BASIC Run-Time Library procedures

BLISS-32 Run-Time Library procedures

Command Definition utility

Command language interpreter

COBOL Run-Time Library procedures

CORAL Run-Time Library procedures

COBOL-74 Run-Time Library procedures

Debugger

DIBOL Run-Time Library procedures

CRTL

Error Log Formatter

FMS Forms Driver Library procedures

FORTRAN Run-Time Library procedures

Librarian utility procedures

RTL General-Purpose procedures

Portable Math Library

RTL Mathematics procedures

RTL language-independent procedures

PASCAL Run-Time Library procedures

PLJI Run-Time Library procedures

Record Management Services

RPG II Run-Time Library procedures

(continued on next page)

Coding Modular Procedures
3.1 Coding Guidelines

Table 3-1 (Cont.) Common Library Facilities - Prefixes and Content

Prefix

SMG
SOR
STR
VAX

Content

RTL screen management procedures

Sort utility procedures

RTL string manipulation procedures

VAX Architecture Emulation

You can create your own facilities by defining a unique facility name and facility
number. The name for your facility should be a unique name between 1 and 27
characters in length. Facility names supplied by Digital all contain a dollar sign
($) after the prefix. User-supplied facility names should use an underscore (_)
rather than a dollar sign ($) to avoid any name conflicts.

The facility number is used in defining condition values for the facility. Bit 27
(STS$V _CUST_DEF) of a condition value indicates whether the value is supplied
by Digital or by the user. This bit must be 1 if the facility number is created
by the user. For more information, use the Help Message utility (MSGHLP) to
access online descriptions of system messages from the DCL ($) prompt. For
more information about using MSGHLP, refer to the Open VMS System Messages:
Companion Guide for Help Message Users.

3.1.1.2 Procedure Naming Conventions (Recommended)
When you create a procedure and make its name global, you allow other
procedures in the same image to call that procedure. The common RTL
procedures are examples of procedures with global names. In such an
environment, a naming convention is required to prevent any name conflict
between global procedures in the same image.

The rules for naming entry points to procedures have the following general form:

fac$symbol (Digital supplied)
fac_symbol (user-supplied)

fac = a two- to four-character facility name.

symbol = a symbol from one to 27 characters long.
(The entire procedure name may not exceed
31 characters in length.)

The facility name and symbol name are separated by a dollar sign ($) if the
procedure is supplied by Digital and by an underscore (_) if the procedure is
supplied by the user. This convention should be used to avoid conflict between
Digital and user procedure names.

The procedure name usually consists of a verb and an object that together
describe the action of the procedure. For example, the Run-Time Library
procedure intended to get virtual memory is called LIB$GET_ VM.

Some procedures, even though they have global names, are not intended to be
called from outside the facility in which they are located. These procedures are
only available internally, within a set of procedures, and do not by themselves
provide any functionality for the facility. The names for these procedures contain
a double dollar sign ($$) if they are supplied by Digital or a triple underscore
(___) if they are supplied by the user. (Three underscores are necessary
to avoid conflict with user-defined condition value symbols, which use two
underscores.)

3-3

Coding Modular Procedures
3.1 Coding Guidelines

Table 3-2 shows examples of procedure entry point names.

Table 3-2 Naming Procedure Entry Points

Procedure Name

LIB$GET...:VM

LIB_PRINT_REPORT

OTS$$INTERNAL

LIB ___ ADD_TAX

Description

Digital supplied global procedure

User-supplied global procedure

Digital supplied internal procedure

User-supplied internal procedure

3.1.1.3 File Naming Conventions (Recommended)
You should derive your file name from the names of the procedures contained in
the module that comprises the file.

If a module contains a single procedure, the file name consists of the procedure
name. You can remove dollar signs and underscores, but this is not required. File
types are the standard default file types for the source language. For example,
the file containing the RTL procedure MTH$EXP is named MTHEXP.MAR.
This name makes it obvious that the file MTHEXP.MAR contains the procedure
MTH$EXP and is written in VAX MACRO.

Sometimes, the module comprising the file will contain more than one procedure.
For example, the RTL procedures LIB$GET_ VM and LIB$FREE_ VM are
contained in the same module and thus in the same file. In this case, a more
general file name is used, composed of the facility prefix (LIB) and the first nouns
common to all procedure names in the module (VM). Thus, the name for the file
containing procedures LIB$GET _ VM and LIB$FREE_ VM is LIBVM.B32. (The
file type B32 indicates that the module is written in VAX BLISS-32.)

3.1.1.4 Module Naming Conventions (Required)
Module names are identical to file names except that module names do not have
extensions, and the dollar sign ($) or underscore (_), which separates the facility
prefix and symbol name, is not removed.

For example, the MTH$EXP procedure is contained in module MTH$EXP and
the file MTHEXP.MAR. The LIB$GET_ VM and LIB$FREE_ VM procedures are
contained in the module LIB$VM and the file LIBVM.B32.

3.1.1.5 PSECT Naming Conventions (Required)

3-4

The code and data sections of a customer library procedure have two separate
program sections (PSECTs), named _fac_CODE and _fac_DATA, where fac is the
facility name. Digital uses _fac$CODE and _fac$DATA as PSECT names.

Position-independent constant data is in the PSECT named _fac_CODE
(_fac$CODE for Digital) to shorten the references. For example,
_LIB$CODE and _LIB$DATA are the only two PSECT names used by LIB$
procedures.

The collating sequence for leading underscores causes the linker to place all
library procedures after the user program in the executable image. This prevents
a library procedure from being placed between two user modules and adversely
affecting any byte or word displacement addressing contained in the user
programs.

Coding Modular Procedures
3.1 Coding Guidelines

Not all languages give you control over PSECT names. In VAX BASIC and
VAX Pascal, it is not possible to control PSECT names except through use of
COMMON. However, using COMMON is not recommended.

For additional information about declaring PSECTs, see the appropriate language
reference manual.

3.1.1.6 Lock Resource Naming Conventions (Recommended)
When using the lock manager, the resource names of root-level locks (locks
without a parent) should be derived from the facility name. The naming
convention used is:

fac$name = Digital-supplied resource name
fac_name = user-supplied resource name

Following this convention will prevent unintended resource conflicts.

3.1.1.7 Global Variable Naming Conventions (Recommended)
Global variables should be named using the following format:

fac$Gt_variablename = Digital~supplied global variable name
fac_Gt_variablename = user-supplied global variable name

The letter t indicates the contents and usage of the global variable. The possible
values oft are listed in Table 3-3.

Likewise, the format for addressable global arrays is as follows:

fac$At_variablename = Digital-supplied global variable name
fac_At_variablename = user-supplied global variable name

Again, the letter t indicates the contents and usage of the addressable global
array. The possible values oft are listed in Table 3-3.

Table 3-3 Code for the Content and Usage of Global Variables

t Content and Usage of Global Variable

A Address

B Byte integer

C Single character

D D_fioating

E Reserved for Digital

F F_fl.oating

FS S_fl.oating

FT T_fioating

G G_fl.oating

tH H_fioating

I Reserved for integer extensions

J Reserved for customers· for escape to other codes

K Constant

L Longword integer

tVAX specific

(continued on next page)

3-5

Coding Modular Procedures
3.1 Coding Guidelines

Table 3-3 {Cont.) Code for the Content and Usage of Global Variables

t Content and Usage of Global Variable

M Field mask

N Numeric string (all byte forms)

0 Octa word
p Packed string

Q Quadword integer

R Records (structure)

s Field size

T Text (character) string

u Smallest unit of addressable storage

v Bit field

w Word integer

x Context dependent (generic)
y Context dependent (generic)

z Unspecified or nonstandard

3.1.1.8 Status Code and Condition Value Naming Conventions {Required)
The format of status codes and condition values is as follows:

fac$_status = Digital-supplied status code or condition value
fac~status = user-supplied status code or condition value

3.1.2 Using Common Source Files {Recommended)

3-6

For some applications, it may be necessary to make identical argument
declarations in several modules. Languages supported by the Open VMS
operating system let you centralize these declarations in one place by using
common source files. Table 3-4 summarizes the common source file declarations
for languages supported by the Open VMS operating system.

Table 3-4 How to Declare Common Source Files

Language

DEC Ada

BASIC

BLISS-32

c

Common Source File Declaration

To share common declarations among DEC Ada programs,
you include the declarations in a package (as a separate
compilation unit) and provide visibility to the package by
using a WITH clause in programs you want to share the
common declarations.

You can use the BASIC %INCLUDE directive in your
program to include the common source file, or a CDD record.

Your source program can contain a REQUIRE or LIBRARY
list option that specifies a file to be included at the point of
the declaration.

Include a preprocessor directive to include a file or a
dictionary.

(continued on next page)

Coding Modular Procedures
3.1 Coding Guidelines

Table 3-4 (Cont.) How to Declare Common Source Files

Language

COBOL

DIBOL

FORTRAN

Assembly language

Pascal

PUI

RPG II

SCAN

Common Source File Declaration

The COPY statement specifies source text from a COBOL
library file, a Librarian file, or a Common Data Dictionary
(CDD) record description that is to be included in the source
program.

The INCLUDE directive will include a common source from a
separate file, text library, or CDD record.

The INCLUDE statement specifies a file or library module to
be included at the point of the statement. You may also use a
CDD record.

An auxiliary source file or macro library can be specified in
the command line or by using a CDD record.

The %INCLUDE directive and INHERIT attribute specify
files to be included at the point of the declarations. You may
also use a CDD record.

The %INCLUDE preprocessor statement specifies a file to be
inserted as source. You may also use a CDD record.

An auxiliary source file can be specified in the command line.

The INCLUDE FILE statement can be used to include
common source from other SCAN source language modules.
SCAN does not have text library or CDD support.

3.1.3 Using OpenVMS System Services
Not all Open VMS system services are modular, according to the definitions in
this manual. Procedures that call nonmodular system services are nonmodular
themselves. If your procedure uses a nonmodular system service, you should
list the system service in the Side Effects section of the procedure description.
(For information about the procedure description, see Section 2.5.2.) For more
information about particular system services and modularity, see the Open VMS
System Services Reference Manual.

3.1.4 Invoking Optional User Action Routines
An optional user action routine is a useful way to let the calling program gain
control at a critical point in your procedure's algorithm. Success routines and
error routines are the most common user action routines. Control is passed from
your procedure to the optional error routine if the specified error is encountered
within your procedure. To transfer control, the calling program must pass the
user action routine as an argument to the called procedure. To make it easy
for the calling program to pass information to its action routine, your procedure
should supply an optional user-arg argument that the calling program can pass
to its action routine. Your procedure merely copies the argument list entry of the
user argument, if present, to the argument list it passes to the action routine.
This achieves the same effect as up-level addressing.

3-7

Coding Modular Procedures
3.1 Coding Guidelines

3.1.4.1 Bound Procedure Value (VAX Only)
4'1\:9 On VAX systems, the bound procedure value (DSC$K_DTYPE_BPV) is used

by DEC Pascal and other languages where context of the procedure must be
known. The procedure might do up-level addressing of a variable defined in a
syntactically outer block and allocated in another frame. (If you use a procedure
entry mask, this context is specified in the user-arg argument.)

For a bound procedure value passed by reference, the argument list entry
contains the address of two longwords. The first longword contains the address
of the procedure and the second contains the environment pointer to be loaded
into Rl before the procedure is called. This environment pointer allows you to
specify the context of your action routine enabling you to do up-level addressing.
To provide a user action routine using the bound procedure value passed by
reference, the calling sequence is as follows:

CALL myproc [action-routine [,user-arg]]

In this example, action-routine is a function call of the bound procedure value
type that is passed by reference, and user-arg is unspecified.

If you want to use the bound procedure value data type to pass access to a
user routine specified as a procedure entry mask, then you must pass the first
longword by value and omit the second longword. Then, the user action routine
would have this calling sequence:

status = action-routine (... [,user-arg])

In this example, status is a longword condition value that is passed by value,
and user-arg is unspecified. Your procedure copies the 32-bit argument list entry
passed by the calling program to the argument list provided to the action routine.
Therefore, the calling program and its action routine can communicate using any
data type, access type, passing mechanism, or Open VMS usage. +

3.2 Initializing Modular Procedures

3-8

Some modular procedures must initialize themselves before they can execute
correctly. Examples of initialization include the following:

• Storing in static storage a value that can only be determined at run time

• Declaring an exit handler using the $DCLEXH system service

• Allocating a processwide resource once

• Opening a file the first time the procedure is called

You must perform initialization carefully to maintain modularity.

Initialization must not affect the calling program. Therefore, avoid initializing
by providing an entry point that must be called before any other entry point
is called. Providing an entry point that must be called first forces the calling
program to provide an initialization entry point to its caller, and so forth. Also,
you would have to rewrite your calling programs if you needed to substitute a
procedure with an initialization call for one without an initialization call.

If your procedure uses LIB$INITIALIZE, you must preserve a modular
environment that does not conflict with the environment set by any other
procedure using LIB$INITIALIZE. (For more information, see Open VMS
Programming Interfaces: Calling a System Routine.)

Coding Modular Procedures
3.2 Initializing Modular Procedures

Several ways to initialize a procedure are as follows:

• Initialize at compile or link time

• Use the mechanism provided by LIB$INITIALIZE to perform initialization
once for each image activation

• Set a first-time flag at run time

• Initialize storage each time it is allocated at run time

• Initialize storage each time a procedure is called at run time

The use of each method is explained in the following sections. Figure 3-2
summarizes these methods.

Figure 3-2 Methods of Initializing

Method

LIB$1NITIALIZE Set a First Initialize Each Initialize Each
Initialization Initialize at Before Main Time Flag Time It Is Time Procedure

Needed Compile/Link Time Program (At Run Time) Allocated ls Called
(At Run Time) (At Run Time) (At Run Time)

Of Static Storage: • • •
Of Stack Storage: •
Of Heap Storage: •
To Allocate • • Resources:

To Set Up
$EXIT Handler: • •
To Open a Process- • • Permanent File:

To Set up a Handler
Before the Main •
Program:

ZK-3085-GE

3.2.1 Initializing Storage
For a procedure to produce predictable results, all statically and dynamically
allocated areas must be initialized to known values before they are read.
Initialization of dynamically allocated stack and heap data involves writing
the data after each allocation and before reading it.

If your procedure has static storage, it is usually initialized to zero. In some
languages, you do not need to explicitly initialize static storage. These languages
will automatically initialize static storage to zero. To see if the language you are
using initializes static storage implicitly, refer to your reference manual for that
language.

There are three ways to explicitly initialize storage: you can use an initialization
statement, test and set a first-time flag at run time, or use LIB$INITIALIZE. The
method of testing and setting a first-time flag is explained in Section 3.3.4.2.

Figure 3-3 shows examples of how languages supported by the Open VMS
operating system initialize a longword, DAT, in static storage using an
initialization statement.

3-9

Coding Modular Procedures
3.2 Initializing Modular Procedures

3.2.2 Testing and Setting a First-Time Flag

3-10

To do first-time initialization, your procedure can test and then set to one a
statically allocated first-time flag each time it is called. This flag is. initialized to
zero at compile or link time.

Setting and testing the flag with the RTL procedure LIB$BBSSI, a Branch
on Bit Set and Set (BBSS) VAX instruction, or a Branch on Bit Set and Set
Interlocked (VAX BBSSI) instruction, ensures that initialization is executed
exactly once. (Some high-level languages provide semantics for accessing these
VAX instructions: for instance, the _BBSSI built-in for C.)

However, if your implementation language does not have access to VAX
instructions and the procedure is to be AST-reentrant, it must follow these
steps:

1. Test the first-time flag.

2. If the first-time flag is set, initialization is complete.

3. If the first-time flag is not set, disable ASTs. Remember the previous state of
AST enable, and retest the flag.

4. If the first-time flag is now set, then initialization was performed by an AST
that occurred between the first test and the AST disable; enable ASTs if
remembered state of ASTs was enable. Initialization is now complete.

5. If the first-time flag is not set, perform the initialization.

6. Set the flag.

7. Enable ASTs if remembered state of ASTs was enable - initialization is
complete.

For additional information, see Section 3.3.

Note ~~~~~~~~~~~~~

ASTs should be enabled in Step 4 or Step 7 only if they were enabled
before Step 3. The $SETAST system service, used to disable ASTs,
indicates whether ASTs were enabled when the procedure was called.

Coding Modular Procedures
3.2 Initializing Modular Procedures

Figure 3-3 How to Initialize Static Storage

Language Statement Initialized Time of
Value Initialization

Ada X : INTEGER :=1 1 Elaboration time

BASIC BASIC does not permit static storage within a module, only common static storage.

BLISS OWN DAT; 0 Compile time
OWN DAT INITIAL(O); 0 Compile time
OWN DAT INITIAL(100); 100 Compile time

c static int x; 0 Compile time
static int x = 1 ; 1 Compile time

. 1
extern int x; Defined externally Compile time
int x; 0 Compile time
int x = 1; 1 Compile time
globaldef int x; 0 Compile time
globaldef int x = 1 ; 1 Compile time

COBOL 01 NUM PIG 0 Compile time
01 NUM PIG 9 VALUE 0. 0 Compile time
01 NUM PIG 9(3) VALUE 100. 100 Compile time

DIBOL At compile time, fields within records, commons, and/or groups are initialized to
spaces or zeros (depending on data type).

FORTRAN INTEGER*4 DAT 0 Compile time
INTEGER*4 DAT/O/ 0 Compile time
DATA DAT IOI 0 Compile time
DATA DAT /100/ 100 Compile time

MACRO DAT: .BLKL 1 0 Compile time
DAT: .LONGO 0 Compile time
DAT: .LONG 100 100 Compile time

PASCAL VAR DAT :[STATIC] INTEGER; 0 Compile time
DAT :[STATIC] INTEGER :=O; 0 Compile time
DAT :INTEGER:= 100; 100 Compile time

PUI STATIC INIT(2) 2 Compile time
EXTERNAL INIT(3) 3 Compile time
GLOBALDEF INIT(4) 4 Compile time
GLOBALREF INIT(5) 5 Compile time

RPG RPG II has static storage at the module level only. Numeric variables are initialized
to zero and alphanumeric variables are initialized to spaces at compile time.

SCAN No initialization clauses-use assignment statement.

1 You cannot initialize a variable declared with an external attribute.
ZK-6507-GE

3-11

Coding Modular Procedures
3.2 Initializing Modular Procedures

3-12

Example 3-1 illustrates the use of a first-time flag in a Pascal program to allocate
a resource.

Example 3-1 Pascal Program That Uses a First-Time Flag

{+}
{ Program to demonstrate the use of a first-time flag when allocating
{ a resource. This technique is AST-reentrant, but is NOT multithread
{ reentrant.
{-}

PROGRAM ALLOCATE;

CONST
VM_SIZE = 512;

VAR
INITIALIZED : BOOLEAN .- FALSE;
VM_ADDRESS : INTEGER . - O;
AST_STATUS : INTEGER ·- O;
VM_STATUS : INTEGER . - O;
DISABLE : INTEGER .- O;

FUNCTION LIB$GET_VM (SIZE : INTEGER; VAR ADDR : INTEGER) : INTEGER; EXTERNAL;
FUNCTION SYS$SETAST (VAR STATUS : INTEGER) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Check the first-time flag. If set, initialization has been
{ performed already.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Disable ASTs, and remember the previous state.
{-}

AST_STATUS := SYS$SETAST (DISABLE);

{+}
{ Now, recheck the flag. If it is now set, initialization was
{ performed by another invocation of this procedure between when
{ the flag was first tested and now. Otherwise, initialization
{ is performed here.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Perform the initialization.
{ - }

VM_STATUS := LIB$GET_VM (VM_SIZE, VM_ADDRESS);

{+}
{ Set the first-time flag, indicating initialization complete.
{-}
INITIALIZED .- TRUE;
END;

(continued on next page)

Coding Modular Procedures
3.2 Initializing Modular Procedures

Example 3-1 (Cont.) Pascal Program That Uses a First-Time Flag

{+}
{ Restore ASTs to the previous state.
{-}

AST_STATUS .- SYS$SETAST (AST_STATUS);
END;

END.

3.2.3 Using LIB$1NITIALIZE
One way to initialize a value at run time is by using the PSECT
LIB$INITIALIZE. An example of a value that you may need to initialize at
run time is a seed for a random number generator.

To use LIB$INITIALIZE to initialize a value at run time, you must do the
following:

1. Write the main program.

2. Write an initialization procedure.

3. Write a MACRO or BLISS program to add the address of that initialization
procedure to PSECT LIB$INITIALIZE.

4. Compile the initialization procedure, main program, and MACRO program.

5. Link the initialization procedure, main program, and MACRO program.

6. Run the main program.

Assuming that you have completed the main program, the first thing you must
do is to write an initialization procedure. If, for example, you are going to use
LIB$INITIALIZE to initialize a value for a random number generator, you
might write an initialization procedure to set the seed equal to the current
time. This would generate a different seed for each initialization because the
time is constantly changing. One possible initialization procedure is shown in
Example 3-2.

Once you have defined the initialization procedure, you must write the
MACRO program to add the address of that initialization procedure to PSECT
LIB$INITIALIZE. The format for this MACRO program is very simple, as seen in
Example 3-3.

To modify this MACRO program for use in your own procedures, substitute the
name of your initialization procedure for MY_INIT_ROUTINE.

3-13

Coding Modular Procedures
3.2 Initializing Modular Procedures

3-14

Example 3-2 BASIC Initialization Procedure for LIB$1NITIALIZE

100 !+
! Initialization routine. A common piece of data, called SEED,
! is initialized based on the number of CPU seconds used by
! this process so far.
!-
SUB MY_INIT_ROUTINE(ONE,TWO,THREE,FOUR,FIVE,SIX)
COMMON (MY_DATA) LONG SEED
PRINT "Now in initialization routine."
CURRENT_TIME = TIME(l)
SEED = CURRENT_TIME
END SUB

Example 3-3 Program to Add Address to PSECT LIB$1NITIALIZE

;+
; Make references to external routines used .

;+

. EXTRN LIB$INITIALIZE

.EXTRN MY_INIT_ROUTINE

; Make a contribution to the PSECT LIB$INITIALIZE .

. PSECT LIB$INITIALIZE USR,GBL,NOEXE,NOWRT,LONG

.ADDRESS MY_INIT_ROUTINE

.END

Once you have written the initialization procedure and the MACRO program to
add the dispatch address to PSECT LIB$INITIALIZE, you can link and run your
program. The sample program in Example 3-4 can be initialized in this manner.

Example 3-4 BASIC Main Program

10 +

!-

Mainline. The value of SEED is printed.
The linker initializes this value to zero, but because
LIB$INITIALIZE is used, an initialization routine is run
before control is transferred
here, and the value of SEED is changed to a
somewhat random value.

COMMON (MY_DATA) LONG SEED
PRINT "Now in mainline. The seed is initialized to: ";SEED

32767 END

To run LIB$INITIALIZE on the program in Example 3-4 and initialize the value
of SEED at run time, enter the following commands:

$ BASIC MAIN
$ BASIC INIT
$ MACRO INIT_SECTION
$LINK MAIN,INIT,LIBRARY
$ RUN MAIN

The following is an example of the output generated by these steps:

Now in initialization routine.
Now in mainline. The seed is initialized to: 4099

Coding Modular Procedures
3.2 Initializing Modular Procedures

If your procedure establishes a condition handler by calling LIB$INITIALIZE
before a main program, the action of this handler might conflict with other
condition handlers established by other procedures before the main program.

3.3 Writing AST-Reentrant Code
This section describes coding techniques for modular procedures that use the
asynchronous system trap (AST) interrupt mechanism or that permit calling
programs to use it.

All modular procedures should be AST-reentrant so they can be called from any
program. If your procedure is not AST-reentrant or calls any procedure that is
not, your program documentation should specify this to warn others against using
your procedure.

3.3.1 What Is an AST?
An asynchronous system trap (AST) is an Open VMS mechanism for providing
a software interrupt when an external event occurs. One example of this type
of interrupt occurs when a user presses Ctrl/C. When the external event occurs,
the Open VMS operating system interrupts the execution of the current process
and calls a procedure that you supply. This procedure is referred to as the AST
handler.

Some Open VMS system services let an external event interrupt a process.
Because the interrupt occurs out of sequence with respect to process execution,
the interrupt mechanism is called an asynchronous system trap. The AST
interrupt transfers control to the AST handler that services the event. This AST
handler can call other procedures, including library procedures.

The AST handler you provide and any procedures it calls are said to be executing
at AST level. While at AST level, a process cannot be interrupted a second time
at the same access mode. The process runs to completion at the AST level before
the non-AST level procedure resumes.

A process is executing either at AST level or at non-AST level and thus consists
of two threads of execution, one thread at each level. Keep in mind that these
levels are threads of the same process and not separate processes.

When your AST handler finishes servicing the event, it returns control to
its caller. The interrupted procedure continues execution from the point of
interruption.

For example, you could call the Set Timer system service ($SETIMR) to specify
the address of an AST-level procedure to be executed after a specified amount of
time has elapsed. At the specified time, the system generates an AST interrupt
by stopping the procedure that is currently executing and calling the specified
AST handler.

For information about the implementing AST interrupts by system services, see
the Open VMS System Services Reference Manual.

3.3.2 AST-Reentrancy Versus Full-Reentrancy
A procedure is AST-reentrant if it meets the following conditions:

• It can be interrupted at any point, permitting itself or any related procedure
to be called (reentered).

• It executes correctly when it continues from the point of interruption.

3-15

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Do not confuse the term AST-reentrant with the term fully-reentrant. Full
reentrancy refers to a more restrictive set of conditions.

In an AST-reentrant environment, the AST thread is expected to complete
regardless of whether it encounters a locked resource. When the AST thread
encounters a locked resource in an AST-reentrant environment, it expects to be
given a new resource, or else it is expected to return an error message. It is never
expected to wait for the resource that the non-AST level has locked.

In a fully-reentrant environment, all threads are treated equally when they
encounter a locked resource; they wait for the resource to be freed. In a fully
reentrant environment, AST threads are not given any special treatment. The
DEC Ada environment is an example of a fully-reentrant environment. In such a
situation, there can be more than two threads of concurrent execution, and each
thread can alternately progress toward an end.

Note --~~~~~~~~~~~~

It is highly desirable that future code satisfy the more stringent
requirement of being fully-reentrant. Full reentrancy is important
for procedures that will be called from multithread environments, such as
Ada tasks. For more information, refer to the Ada documentation.

DECthreads, the Digital multithreading run-time library, provides a portable
interface for creating and controlling multiple threads of execution within the
address space provided by a single process on AXP or VAX processors.

3.3.3 Writing AST-Reentrant Modular Procedures

3-16

To use AST interrupts, you must write an AST handler to take control at AST
level. An AST handler can be written in any language. Because the particulars
of writing an AST handler differ from one language to the next, see the reference
manual for the language you are working in for more details.

In general, an AST handler must follow these guidelines:

• It must be separate from the procedure that is currently executing.

• It must not modify data or instructions used by the interrupted procedure or
its callers.

• If it calls any other procedures, they must all be AST-reentrant.

• The AST handler cannot stall or use busy wait to avoid being called before the
non-AST level is out of a critical section of code. Once the AST handler has
begun executing, it cannot be interrupted by anything at a non-AST level. In
fact, the only thing that can interrupt the AST handler is another procedure
running at AST level in a more privileged access mode.

If you attempt to use a busy wait and expect to change the condition from
the non-AST level, the AST level circles the "busy wait" in an infinite loop.
The process continues to loop because the non-AST level does not continue
executing until the AST thread has finished and thus is never able to change
the value in the "busy wait" condition.

• You cannot use the lock manager to protect a resource being accessed at non
AST level from being accessed at AST level. The lock manager is designed
to lock resources between separate processes, not different threads (AST and
non-AST) of the same process.

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

• Avoid using static storage. A procedure that does not use static storage,
calls only AST-reentrant procedures, and does no up-level addressing, is
automatically AST-reentrant.

3.3.4 How to Eliminate Race Conditions During Concurrent Access
When using AST interrupts, you might encounter two problems: race conditions
and deadlocks. A race condition occurs when your AST handler attempts to use a
nonshareable resource already in use by the non-AST thread of execution.

If you allow the AST handler to wait for the resource (for example, by waiting
for an event flag to be set by the non-AST level code of the same access mode),
you have caused a form of deadlock. A deadlock occurs because the non-AST level
code cannot execute to free the resource until the AST-level code has finished
executing. The AST level code cannot continue either, because the non-AST level
code has effectively locked the resource.

A race condition occurs when you attempt to access or modify the same data in
static storage by both the AST and non-AST levels of a process. For example,
if an AST begins executing while the non-AST level is modifying data in static
storage, that data may be left in a nonstable state while the AST handler
executes. To prevent a race condition, you should allow only one thread at a
time to modify data. Use atomic modify operations provided by your HLL, which
correctly interlock such access.

If a procedure does not modify any static storage, then it is both
AST-reentrant and fully-reentrant. Your procedure can eliminate conflict when
accessing and modifying data in static storage in the following ways:

• Detecting concurrency of access to data using test and set instructions at
entry to and exit from data storage. The procedure may then report an error,
or retry the operation (when appropriate) if concurrency is detected.

• Keeping a call-in-progress count that is incremented when your procedure is
called and decremented when it returns. The count is used as an index into
separate allocated areas.

• Disabling AST interrupts upon entry and restore the enable state upon
exiting.

3.3.4.1 Performing All Accesses in One Instruction
All data modification in static storage can be performed in a single
uninterruptible instruction for some applications. However, this method applies
only to the VAX MACRO assembly language, and even then does not apply to
emulated instructions.

For example, you can use queue instructions to maintain a linked list in a single
instruction instead of modifying the forward and backward fields of the list in
several instructions. You can use a single queue instruction at the beginning
of your procedure to remove one section, and another can be used at the end to
insert the section back in the queue.

While a section is removed from the queue, your procedure can modify data in
it. If an AST interrupt occurs while the section is removed, a different section of
data is used instead, thus avoiding conflicts with the interrupted procedure.

3-17

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Example 3-5 VAX MACRO Program Showing Use of Queue Instructions to
Perform All Accesses in a Single Instruction

.PSECT

.LONG

.LONG

.PSECT

.ENTRY
BBC
REM QUE
BVS
RET

_LIB_DATA PIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT
FLAG: 0 ; First-time flagl
Q_HED 0,0

_LIB_CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

TRY:

10$:

;+

BSBB
BRB

LIB_GET_X,"M<>
FLAG, FIRST
@Q_HED, RO
10$

FILL
TRY

; Here on first call only
;-
FIRST: $SETAST #0

BBSS FLAG, 20$
MOVAL Q_HED, Q_HED
MOVAL Q_HED, Q_HED+4
BSBB FILL

20$: CMPL #SS$_WASSET, RO
BNEQ TRY
$SETAST 1
BRB TRY

Branch on 1st call only
RO = address of queue
Branch if empty and fill

Fill queues
Try again

Disable ASTs, RO=old setting
Branch if already set
Make queue empty
Back pointer too
Fill queues
were ASTs enabled before?
No, leave disabled, retry
Yes, enable ASTs
Try again

FILL: get space for 10 quadwords by calling LIB$GET_VM
and insert in queue using INSQUE
RSB

Example 3-5 illustrates an AST-reentrant procedure that uses queue instructions
to control allocation of quadword blocks.

3.3.4.2 Using Test and Set Instructions

3-18

One method of eliminating the possibility of a race condition or deadlock is to use
test and set instructions to detect concurrent access. You can detect concurrent
access of static storage at both AST and non-AST levels by adding the following
steps to your procedures:

1. Place a Branch on Bit Set and Set (BBSS or BBSSI) instruction immediately
before your procedure accesses static storage. Alternatively, use LIB$BBSSI
or semantics provided by your compiler.

2. Access or modify static storage, or both.

3. Place a Branch on Bit Clear and Clear (BBCC or BBCCI) instruction
immediately after your procedure has completed access to static storage.
Alternatively use LIB$BBSSI or semantics provided by your compiler.

The BBSS instruction detects that a concurrency conflict is about to take place
before static storage has been accessed. If the storage is being accessed by
multiple processors, you must use BBSSI and BBCCI.

There are two alternate techniques for resolving concurrency conflicts detected by
the BBSS and BBCC instructions:

• Use separate, statically allocated areas for storage at the AST and
non-AST levels. When the BBSS instruction detects concurrency at the

1 This example could be recoded using REMQHI and INSQHI and avoid the need for a first
time flag.

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

beginning, use the second allocated area. Note that this technique does
not work if an exception condition occurs between execution of the BBSS
instruction and the BBCC instruction, or if your procedure has not established
a condition handler. This is because a condition handler established by the
calling program might also simultaneously call your procedure.

• Reexecute your procedure if concurrency is detected. When the BBCC
instruction detects this concurrency, branch back to the beginning of your
procedure and try again.

Example 3-6 illustrates the latter technique. This MACRO procedure,
LIB_GET_INUM, allocates and deallocates identifying numbers.

Example 3-6 MACRO Program Showing Use of Test and Set Instructions

.TITLE LIB_GET_INUM -- Allocate and deallocate id. nos. 1 - 10
TAB: .WORD 0 Bitmap for flags

.ENTRY LIB_GET_INUM, AM<>
10$: FFC #1, #10,TAB, RO Find first free id, no.

20$:

BEQ 20$ Branch if none free
BBSS RO, TAB, 10$ Indicate id. no. in use
MOVL RO, @4(AP) Return id. no. found
MOVL #1, RO Indicate success
RET

CLRL
CLRL
RET
.END

@4(AP)
RO

Return 0
Indicate failure

3.3.4.3 Keeping a Call-in-Progress Count
If the database is to be kept separate between calls, you can keep track of when
your procedure is called by using a call-in-progress count. Before database
access, the count is incremented and used as an index for an address table of the
separate databases. You should check for a count that exceeds the table length.
After the database has been accessed, the count is decremented.

This technique has an advantage over the BBxx technique because it can handle
more than two levels of reentrance. However, it is less reliable because an
exception can cause the count never to be decremented, leading to an eventual
procedure malfunction. You can avoid this by establishing a condition handler in
your procedure.

3.3.4.4 Disabling AST Interrupts
A procedure is also considered AST-reentrant if AST interrupts are disabled
while critical sections of code execute. However, this method of maintaining AST
reentrancy is not recommended.

Sometimes the only way to avoid race conditions is to disable AST interrupts
during the access to static storage and restore the state of the AST enable once
the critical section of code has finished executing. However, this technique could
adversely affect performance of real-time programs using AST interrupts. The
$SETAST system service, which is used to enable and disable AST interrupts, is
time consuming. Therefore, you should avoid disabling AST interrupts whenever
you can by using the techniques described in Section 3.3.4.1 to Section 3.3.4.3.

3-19

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Try to minimize the number of instructions during which the AST interrupts
are disabled. Before disabling AST interrupts, establish a condition handler to
restore the AST level in case an exception or stack unwind occurs.

Example 3-7 demonstrates how $SETAST can be used to disable ASTs and then
restore the previous state of the enable.

Example 3-7 A FORTRAN Program Disabling and Restoring ASTs

!+
! This program demonstrates using the System
! Service SYS$SETAST to disable and then
! reenable AST interrupts.
!-

!+

INCLUDE I ($SSDEF) I

INTEGER*4 SYS$SETAST

! Turn off ASTs and remember the previous setting.
!-

!+

!-

ISTAT = SYS$SETAST (%VAL(O))

The statements in the program during whose
execution you want ASTs disabled.

If ASTs were previously enabled,
reenable them.

IF (ISTAT .EQ. SS$_WASSET) CALL SYS$SETAST(%VAL(l))
END

3.3.5 Performing Input/Output at AST Level

3-20

If your procedure performs I/O using Open VMS RMS (RMS), you must use the
following coding techniques for your procedure to be AST-reentrant:

• When opening process-permanent files - such as SYS$INPUT,
SYS$0UTPUT, SYS$COMMAND, or SYS$ERROR - check for the RMS
error status RMS$_ACT (active) after each $CREATE or $OPEN service.
This error indicates that a record operation has already started for the
process-permanent file. The error does not occur for files that are not process
permanent, and the $OPEN service follows the constraints of shared access
to the file that may have been imposed by a previous $OPEN service. If the
error occurs, perform a $WAIT using the same file access block (FAB). When
control returns to your procedure, try the $CREATE or $OPEN service again.
Repeat this sequence until it succeeds.

• When performing record I/O to any type of file, check for the RMS error status
RMS$_RSA (record stream active) or RMS$_BUSY (structure in use) after
each $GET and $PUT service. This error indicates that a record operation
has already been started for the file. If the error occurs, perform a $WAIT
using the same record access block (RAB). When control returns to your
procedure, try the $GET or $PUT service again. Repeat this procedure until
it succeeds.

Coding Modular Procedures
3.3 Writing AST-Reentrant Code

• Avoid storing data in an RAB that RMS could still be accessing. You can
avoid this situation by doing either of the following:

Allocate the RAB on the stack so the AST and non-AST level have
separate RABs.

Allocate RAB in heap or static storage along with a busy bit. The busy
bit is tested and set using a BBSS instruction before the RAB is accessed.
If the RAB is already busy, your procedure executes a $WAIT using that
RAB.

For synchronous input/output (I/0 that is always completed before returning
control to your procedure), you can allocate the RAB in either of these ways.
However, the first method is more reliable, because it does not use static
storage and therefore does not become corrupted if an exception is signaled.

For asynchronous 1/0 (when control is returned to your procedure before 1/0
is completed), you must use the second technique.

3.3.6 Condition Handling at AST Level
You should not allow an exception to propagate out of an AST handler because
the exception might be caught by any procedure that is active at the time of
the AST. Condition handlers for other active procedures might react as if the
exception was caused by a procedure that they had called.

Another reason for not allowing exceptions to propagate out of an AST handler
is that, for run-time environments that use multiple threads in a process such as
Ada, it cannot be determined which stack of the threads of execution is used to
deliver the AST. (The AST is delivered on the stack of whichever thread is active
at the time of the AST interrupt.)

It is best to catch all exceptions in the AST handler and not allow them to
propagate.

3-21

4
Testing Modular Procedures

A successful test system is one that uncovers errors. To ensure successful testing,
plan how to test your procedures while you are designing them and begin testing
while you are coding. You should test for the following:

• To ensure that the procedure you developed fulfills your requirements or
specifications.

Carefully test the functionality to ensure that the procedure does everything
that it is supposed to do. The methods you use to test this aspect of your
procedure depend upon the functions your procedure performs.

• Ensure that the procedure is modular and executes without error.

This chapter focuses on testing procedures for modularity. Modularity is
especially important to procedures that will be included in a library facility. A
procedure that is not modular can adversely affect the results and performance of
other procedures that call it.

To ensure modularity within procedures, perform at least the following tests:

• Unit testing

• Language-independence testing

• Integration testing

This chapter discusses methods for designing and administering these types of
tests. It also describes reentrancy, performance analysis, and RTL procedures for
time and resource monitoring.

4.1 Unit Testing
Before you begin combining units of code (such as subprograms, subroutines, and
internal procedures) to form your new procedure, it is essential to ensure that
each of these units works separately. Thorough unit testing is important for the
following reasons:

• Testing small units separately decreases the level of complexity within the
tests.

• It is easier and faster to debug a small unit of code than it is to find an error
within several units and their interfaces.

• It makes the integration stage that follows much easier if each of the separate
units has been thoroughly tested and the problems corrected.

• The earlier an error is found in development, the less expensive it is to fix.

Unit testing includes the following steps:

1. Review the goals of your procedure

2. Choose test cases

4-1

Testing Modular Procedures
4.1 Unit Testing

3. Run the tests

The goals of your procedure are chosen at the requirements or specifications
stage. As mentioned earlier, this topic is not discussed in this manual because
it does not have a significant effect on modularity. However, it does have a
significant effect upon whether your final product can be considered successful.
If your product does not perform the functions or meet the requirements decided
upon at the requirements or specifications stage, it is not a successful project. You
should have at least one test for each of the requirements that your procedure
was designed to fulfill.

You can use the following two types of tests:

• Black box tests

• White box tests

Black box tests assume that you know nothing about the internal workings of the
procedure that you are testing. All that you are interested in is the output that
you receive for given sets of input.

White box tests (also called clear box tests) are more complicated because they
are designed to step through particular sections of code or algorithms internal to
the procedure. They assume that you know, in great detail, the internal workings
of the procedure being tested.

4.1.1 Black Box Testing

4-2

When you are performing black box testing, you are interested only in the output
you receive for particular input values. Execute the procedure repetitively using
input from different classes. The best way to do this is to write a command
procedure or test driver program to execute the procedure a given number of
times using test data that you supply. (For information about writing command
procedures, see the Open VMS User's Manual.)

You should execute your procedure with test cases from each of the following
categories:

• Expected inputs

These include the values that you expect your procedure to receive most of
the time.

• Boundary values

If your procedure expects an input value from 1 to 999, use 1 and 999 as test
cases to make sure that your procedure returns the expected results for the
boundary cases.

• Illegal values

Using the boundary values example, what happens if your procedure receives
as input a value that is less than 1 or greater than 999? Does the user receive
a useful error message? Does the procedure simply stop, or does it attempt to
use values outside its limitations and simply return an incorrect answer? It
is essential that you run the procedure using illegal input values to determine
the answers to these questions.

Testing Modular Procedures
4.1 Unit Testing

Figure 4-1 summarizes the methods of black box testing.

Figure 4-1 Black Box Testing Methods

ZK-4071-GE

4.1.2 White Box Testing
When performing white box testing, unlike black box testing, you must
understand the internal workings of the procedure. Keep in mind that you
are testing internal workings-the specific lines of code.

To perform white box testing, do the following:

1. Test each statement

For this step, you need to provide sets of test values that ensure that every
statement in the procedure is executed at least once. This includes all
statements - even those executed only whe·n optional arguments, user
supplied arguments, subroutines, user-action routines, or specific error codes
are present.

2. Test each decision

At this step, your goal is to provide test cases that ensure that each branch
of a decision is executed at least once. In the case of a standard Boolean
decision, this generally requires providing two values; however, this number
may be much greater in the case of compound or nested decisions.

3. Test each condition

Condition testing requires writing test cases that ensure each condition in
a decision takes all possible outcomes at least once and each point of entry
to the program or subroutine is invoked at least once. Multiple test values
must be supplied in cases of compound and nested loops. In testing the entry
points, remember to invoke any optional routines (either internal or external),
as well as error handlers. If your procedure contains a JSB entry point, that
entry point should also be tested.

4-3

Testing Modular Procedures
4.1 Unit Testing

Figure 4-2 summarizes white box testing.

Figure 4-2 White Box Tests

White
Box
Testing

Statement
Testing

Decision
Testing

Condition
Testing

ZK-4069-GE

Note that each white box test finds a specific type of error. For example,
statement testing does not find an error on a negative value for a condition
if the statement is given a positive input the only time it is executed. Therefore,
you must perform all three white box tests.

4.2 Language-Independence Testing

4-4

For your procedures to be as useful as possible, they must be able to be called by
programs in any language. Providing for language independence is essential to
producing a useful procedure.

Testing for language independence is a very specific type of unit testing. It
ensures that your program executes correctly regardless of the language from
which it is called.

To test your procedures for language independence, write several driver programs
in languages you have chosen randomly. The driver program need only contain a
call to the procedure being tested.

If you do find that your procedures are not language independent, make sure that
they conform to the following rules:

• All atomic data must be passed by reference and all strings must be passed
by descriptor.

Adherence to this single guideline is the most important factor in achieving
language independence.

• Statements that assume a particular language environment are NOT allowed.

For example, the statement ON ERROR GO BACK in a BASIC procedure
assumes that the calling program is also written in BASIC.

Testing Modular Procedures
4.3 Integration Testing

4.3 Integration Testing
Integration testing is the next logical step following unit testing. Unit testing
is designed to test each separate component. Depending on your procedure,
that component might be a module, a subprogram, a subroutine, an internal
procedure (fac ___ name), or a particularly intrinsic piece of code. Once you
have determined that each unit works separately, you need to determine that the
units also work together to form the complete procedure.

Integration testing can be completed by either of the two methods described in
Section 4.3.1 and Section 4.3.2.

4.3.1 All at Once Approach to Integration Testing
One method of integration testing is the all at once approach. In this method,
you finish all the units, link them together, and test the completed structure all
at once. Use of this method is strongly discouraged, because it makes it very
difficult to find the location of errors. For example, look at the organization of the
units in the sample procedure shown in Figure 4-3. Assume that this procedure
used the all at once approach and found an error; the procedure did not work.
There is no way of knowing whether the error was in unit A, unit B, unit C, or
unit D.

Figure 4-3 A Sample Procedure for Integration Testing

~Level1

~ Level2

I

Level3

ZK-4070-GE

4.3.2 Incremental Approach to Integration Testing
The recommended approach to integration testing is called incremental testing.
Incremental testing involves testing the procedure by starting with one unit
and building on it one unit at a time. Each unit should always be subjected to
thorough unit testing before it is included in the integration tests.

Incremental integration testing is especially useful for finding the following types
of error:

• Problems with the calling interface between units (for example, inconsistent
ordering of arguments between the calling and called unit)

4-5

Testing Modular Procedures
4.3 Integration Testing

• Incorrect assumptions about what values are returned and the units to which
they are returned

• Unexpected transfer of control between units

Using the sample procedure in Figure 4-3, complete the test of unit A on
level 1 before proceeding to level 2 where you test units A and B in combination.
At each level you correct any errors before proceeding to the next level. When you
have completed the last step, you know that the entire procedure works correctly.

Because you started at the top of the sample procedure and added units
incrementally from lower levels, you were using the top-down approach to
integration testing. You could just as easily have started at Level 3 and used the
bottom-up approach.

As you can see from the example, there are several distinct advantages to
incremental integration testing:

• It is not necessary to wait until the procedure is complete to begin integration
testing.

• Debugging is simplified by incremental testing because the modules and
interfaces can be tested as the system grows.

• Programming errors in the interfaces and incorrect assumptions between
units are discovered at an early stage.

• Because previously tested units are retested as new units are added, the
probability of discovering less obvious errors is increased substantially.

4.4 Testing for Reentrancy
It is important to test your procedures for reentrancy before placing them into
a library facility. Because ASTs can occur at any time, procedures that are not
AST-reentrant may exhibit unexpected behavior. In particular, an AST occurring
during storage modification in a procedure that is not AST-reentrant can corrupt
the contents of the procedure's storage. (For further information about AST
reentrancy, see Section 3.3.)

Full-reentrancy is important to multithread tasking environments such as the
environment used by Ada.

To avoid problems with reentrancy, carefully read and follow the coding guidelines
described in Section 3.3.

4.4.1 Checking for AST-Reentrancy
There are two methods of checking a procedure for AST-reentrancy. You can use
the Open VMS Debugger or perform a manual desk check.

4.4.1.1 Using the Debugger to Check for AST-Reentrancy

4-6

When using the debugger to check for AST-reentrancy, do the following:

1. Create an activation of the procedure.

2. Set watchpoints on all storage used by the procedure.

3. Create a second activation of the procedure using the CALL command. Allow
this second activation to run to completion. (The second activation represents
the AST-level thread.)

Testing Modular Procedures
4.4 Testing for Reentrancy

Check to be sure that the AST-level thread of execution does not modify the
storage accessed by the non-AST level thread of execution. If the AST-level
thread of execution does modify any of that storage, check to ensure that
it does not cause any unwanted side effects for the non-AST level thread of
execution.

4. Step one instruction in the first activation.

5. Repeat Steps 3 and 4 until the end of the procedure for the first activation.

For more information about the debugger, refer to the Open VMS Debugger
Manual.

4.4.1.2 Using Desk Checking to Check for AST-Reentrancy
Desk checking is the term for tracing through a procedure's execution manually.
Performing a desk check for AST-reentrancy consists of the following four steps:

1. Create an activation of the procedure being tested and its data using the
method you normally use for manually tracing through a procedure.

This activation represents the non-AST level of your procedure's execution.

2. Create a second activation of the procedure using the process you used above.
This second activation represents the AST-level thread of your procedure's
activation.

Trace through the AST-level thread's execution to completion, one statement
at a time.

Remember to update the contents of all storage locations and variables for
each instruction of the procedure.

Check to be sure that the AST-level thread of execution does not modify the
storage accessed by the non-AST level thread of execution. If the AST-level
thread of execution does modify any of that storage, check to ensure that
it does not cause any unwanted side effects for the non-AST level thread of
execution.

3. Step through a single statement of the non-AST level thread of execution,
remembering to update the contents of all storage locations.

4. Repeat steps 2 and 3 until you have stepped through every statement in
the non-AST level thread of execution. (Note that every statement of the
AST-level thread is stepped through in each pass through step 2.)

As you can see, what you are actually doing in the process is testing between the
execution of every two statements in the procedure. The most rigorous method
of applying this type of desk checking for AST-reentrancy is to step through
the procedure at the assembly language level and test between each assembly
language instruction.

4.4.2 Checking for Full-Reentrancy
Full-reentrancy differs from AST-reentrancy in the number of threads of
execution. An AST-reentrant environment can support only two threads of
execution, the AST-level thread and the non-AST level thread. Full-reentrancy is
important in environments that can support many threads of execution, such as
Ada.

A procedure is fully-reentrant if any number of threads of execution can execute
to completion without affecting any of the other threads of execution.

4-7

Testing Modular Procedures
4.4 Testing for Reentrancy

Generally, a procedure that is AST-reentrant is also fully reentrant. For further
information on full-reentrancy and environments supporting multiple threads of
execution, refer to the documentation for DEC Ada.

4.5 Performance Analysis
All timer and resource allocation procedures should make statistics available
for performance evaluation and debugging. You should code timer and resource
allocation procedures with the following two entry points:

LIB_SHOW_name LIB_STAT _name

4.5.1 SHOW Entry Point
A SHOW entry point provides formatted strings containing the information you
need. The calling sequence for a SHOW entry point is as follows:

LIB_SHOW_name [code [,action-routine [,user-arg]]]

code
An optional code (in the form LIB_K_code) designating the statistic you need.
Define a separate code for each statistic available; the codes should be the same
for the SHOW and STAT entry points. The values associated with the codes
start at one for each procedure. The functional specification in the procedure's
documentation should list the codes used. If the code is omitted, or zero, the
procedure provides all statistics.

action-routine
The address of an action routine. This is an optional argument. If omitted,
statistics are written to SYS$0UTPUT.

user-arg
An optional user argument to be passed to the action routine. If omitted, a
shortened list is passed to the action routine. The user-arg argument, if present,
is copied to the argument list passed to the action routine. That is, the argument
list entry passed by the calling program is copied to the argument list entry
passed to the action routine. The access type, data type, argument form, and
passing mechanism can be arbitrary, as agreed between the calling program and
the action routine.

The optional action routine should have the following form:

ACTION-ROUTINE (string [,user-arg])

See Section 3.1.4 for an example of the code to invoke a user action·routine.

4.5.2 STAT Entry Point

4-8

A STAT procedure returns the information you want as binary results. The
calling sequence is as follows:

LIB_STAT _name (code ,value)

code
A code designating the statistic you want. A separate code is defined for each
statistic available; the codes are the same for the SHOWand STAT entry points.
Codes start at one.

value
The value of the returned statistic.

Testing Modular Procedures
4.6 Monitoring Procedures in the Run-Time Library

4.6 Monitoring Procedures in the Run-Time Library
The run-time library (RTL) contains several procedures for time and resource
monitoring. These RTL procedures and their functions are as follows:

• LIB$SHOW _ VM

LIB$SHOW _ VM is a resource monitoring procedure that returns the statistics
accumulated from calls to LIB$GET_ VM and LIB$FREE_ VM.

The following three statistics are returned by default:

Number of successful calls to LIB$GET_ VM

Number of successful calls to LIB$FREE_ VM

Number of bytes allocated by LIB$GET_ VM but not yet deallocated by
LIB$FREE_ VM

LIB$SHOW _ VM returns these statistics in the formatted form, nnnn.

• LIB$STAT_ VM

LIB$STAT_ VM is a resource monitoring procedure that returns to its
caller one of the three statistics available from calls to LIB$GET_ VM
and LIB$FREE_ VM. These are the same statistics that are returned by
LIB$SHOW _ VM. Unlike LIB$SHOW _ VM, which returns the statistics in
formatted form to SYS$0UTPUT, LIB$STAT_ VM returns the specified
statistic in a signed longword integer.

• LIB$SHOW _TIMER

LIB$SHOW_TIMER is a time monitoring procedure that returns the times
and counts accumulated since the last call to LIB$INIT_TIMER and displays
them on SYS$0UTPUT. A user-supplied action routine may alter this default
behavior.

The following statistics are provided by default:

Elapsed real time

Elapsed CPU time

Count of buffered I/O operations

Count of direct I/O operations

Count of page faults

• LIB$STAT_TIMER

LIB$STAT_TIMER is a time monitoring procedure that returns the same
information as LIB$SHOW _TIMER. The difference is that LIB$STAT_TIMER
returns the information as an unsigned longword or quadword, whereas
LIB$SHOW _TIMER returns the information in the format hhhh:mm:ss:cc
for times and the format nnnn for counts. In addition, LIB$STAT_TIMER
returns only one of the five available statistics per call.

For more information about these time and resource monitoring procedures, see
the Open VMS RTL Library (LIB$) Manual.

4-9

5
Integrating Modular Procedures

Modular procedure libraries consist of compiled and assembled object code
intended to be associated with a calling program at link time. The linker resolves
references to procedures in these libraries when it searches user libraries
specified in the LINK command or when it searches the default system libraries.
The program can then call library procedures at run time.

Digital supplies several procedure libraries, such as the Run-Time Library,
that support components of the Open VMS operating system. You can use
procedures in the Run-Time Library to perform frequently used operations by
including calls to Run-Time Library procedures in your program. The linker
automatically searches the default libraries to resolve references to Run-Time
Library procedures. (For information about the procedures available in the
Run-Time Library, see the Open VMS Programming Concepts Manual.)

This chapter briefly describes how you can create your own procedure libraries
and shareable images. For more information about creating libraries and
shareable images, use the guidelines in the Open VMS Linker Utility Manual.

5.1 Creating Facility Prefixes
A facility prefix is the group identifier for a set of related procedures contained
in a library facility. The facility prefix appears in the procedure name of every
procedure in that library facility. An example of a library facility is the Screen
Management facility in the Run-Time Library. The names of all the procedures
in the Screen Management facility begin with SMG; for example, SMG$ERASE_
CHARS.

To create your own facility prefix, follow these steps:

1. Choose a facility prefix. This prefix can be from 1 to 27 characters in length.
However, it is recommended that you choose facility prefixes between 2 and 4
characters.

2. If your facility will be generating messages, you must specify a unique facility
number in the message source file. This number can range from 0 to 4095.
Any number within this range and not being used by someone else on your
system is acceptable. This facility number will be used by the message utility
in generating the condition value for the message.

Bit 27 (STS$V _CUST_DEF) of a condition value indicates whether that value
is supplied by the user or by Digital. This bit must be 1 if the facility number
is user created. For more information, see the Open VMS System Messages
and Recovery Procedures Reference Manual.

3. Use the facility prefix when naming all procedures within the new facility.
Remember to follow the naming conventions described in Section 3.1.1.

5-1

Integrating Modular Procedures
5.2 Creating Object Module Libraries

5.2 Creating Object Module Libraries
In addition to using the system default object module libraries, you can create
your own object module libraries. An object module library that you create can
contain object files produced by any language compiler supported by the VMS
operating system.

For more information about creating object module libraries, see the Open VMS
Linker Utility Manual.

5.3 Creating Shareable Image Libraries

5-2

If you have a collection of procedures you expect a number of users to use, you
can group these procedures into a shareable image library. A shareable image
library is similar to an object library, except that it has been prelinked so that all
references between procedures in the library have already been resolved.

A shareable image has the following advantages:

• Conserves memory space

Several processes can "share" a single copy of a shareable image rather than
each process retrieving its own copy from the disk.

• Conserves disk storage space

Programs linked to a shareable image share a single disk copy of the library
code rather than each program including the code in its own executable
image.

• Shortens link time

Because the internal references in the library have already been resolved,
there is less work for the linker.

• Allows for updates without relinking

You can supply a new version of a shareable image that can automatically
be used by all programs linked to it without the need for the users to relink
their programs.

For more information about creating shareable image libraries, see the Open VMS
Linker Utility Manual.

6
Maintaining Modular Procedures

This chapter describes important aspects of maintaining modular procedures.
Specifically, it covers the following topics:

• Making your procedures upwardly compatible

• Regression testing

• Adding arguments to existing routines

• Updating libraries

6.1 Making Your Procedures Upwardly Compatible
Upward compatibility is very important when maintaining procedures. If a
procedure is upwardly compatible, then changes and updates to the procedure do
not affect executing and using previous versions of that procedure.

For example, imagine a user-written procedure named LIB_TOTAL_BILL. The
calling sequence for this procedure is as follows:

CALL LIB_ TOTAL_BILL (sale, tax)

Assume that the user who wrote this procedure decided to update the procedure
so that it could be used to calculate the total bill for credit-card customers. To
do this, a third argument, interest, must be added. To be upwardly compatible,
adding the argument interest must not conflict with the way the procedure was
previously run. The new calling sequence would be as follows:

CALL LIB_ TOTAL_BILL (sale, tax [,interest])

The procedure should be written so that the user can still call the procedure as it
was called before, simply omitting the interest argument.

If, in the updated version of this procedure, the user can still follow the
calling sequence of the previous versions, the procedure is said to be upwardly
compatible.

To ensure that your procedures are compatible with future versions of a shareable
image, see the Open VMS Linker Utility Manual.

6.2 Regression Testing
Regression testing is a method of ensuring that new features added to a procedure
do not affect the correct execution of previously tested features. In regression
testing, you run established software tests and compare test results with expected
results. If the actual results do not agree with what you expected, the software
being tested may have errors. If errors do exist, the software being tested is said
to have regressed.

6-1

Maintaining Modular Procedures
6.2 Regression Testing

Regression testing includes the following steps, as illustrated in Figure 6-1:

1. Create tests by writing command files to test your software.

2. Organize files to allow easy access to tests as they are needed.

3. Run tests as follows:

• To run a single test, submit its command file to the batch queue.

• To run multiple tests, create a command file that submits each test to the
batch queue.

4. Calculate the expected test results either by hand or by using previously
tested software.

5. Compare actual test results to the results you expected. If there are
inconsistencies, repeat your calculation in step 4. If the inconsistency still
exists, examine the changes you have made to the software to discover the
error.

Figure 6-1 Regression Testing

_.. Run i--------, ...
Tests

•
Organize Calculate

~ Tests Test
Results ,,

Create Compare
Tests Results

ZK-4061-GE

It is important to write new tests and repeat the regression testing steps every
time you add new functionality to the procedure. If you do not do so, the
procedure may regress while the errors go undetected.

6.3 Adding Arguments to Existing Routines

6-2

During the normal course of maintenance, it sometimes becomes necessary to
pass new or additional information to an existing procedure rather than create a
new procedure. This new information may be passed to the procedure in one of
the following two ways:

• Directly, by adding new arguments to the procedure

• Indirectly, using an argument block

Maintaining Modular Procedures
6.3 Adding Arguments to Existing Routines

6.3.1 Adding New Arguments to the Procedure
There are two rules you must follow when directly adding new arguments to a
procedure:

• New arguments must be added at the end of the existing argument list.

• New arguments must be optional.

It is important that new arguments be added at the end of the existing argument
list to maintain upward compatibility. If you change the order of the existing
arguments by placing the new argument at the beginning or middle of the list,
all applications written with the previous version of the procedure will no longer
work.

Your procedure should also treat the new argument as an optional argument. If
the new argument is required, applications that used the previous version of the
procedure are invalidated.

Because you cannot assume that all previously written applications will be
rewritten to include the procedure's new argument, the procedure must test for
the argument's presence before attempting to access it. If the procedure does not
verify the presence of the new argument and attempts to access that argument
when it is not present, the results will be unpredictable.

The passing mechanism of the -new argument must conform to the guidelines in
Section 2.2.1.

6.3.2 Using Argument Blocks
By using an argument block, you can avoid adding multiple arguments to your
procedure. When an argument block is used, the calling program passes a single
argument to the called procedure. This argument is the address of an argument
block. The argument block is a block of information containing any information
agreed on by the calling and called procedures. This information is required by
the called procedure to perform its task.

The argument block itself is simply a contiguous piece of virtual memory. The
information contained in the argument block can be numeric or scalar data,
descriptors, bit vectors, and so on. The format is simply agreed on by the users of
the procedure and its writer.

The first longword in the argument block contains the length of the block. The
length can be in bytes or longwords, but it must be agreed on by both the calling
program and the called process and be implemented and documented as such.

One example of an argument block is the signal argument vector used in
condition handling. A condition handler is called with a signal argument vector
and a mechanism argument vector. Each vector is an example of an argument
block. The signal argument vector in Figure 6-2 is an example of an argument
block.

6-3

Maintaining Modular Procedures
6.3 Adding Arguments to Existing Routines

Figure 6-2 One Type of Argument Block, the Signal Argument Vector

Number of longwords of information following

Condition Value

• • • • • • •

Optional Arguments Providing
Additional Information About
the Exception

Program Counter (PC) at exception

Program Status Longword (PSL) at exception

ZK-4030-GE

As you can see, the signal argument vector contains the number of longwords
of actual information in its first longword. What information actually follows
depends on the condition value of the signal.

Note that, if you lengthen an argument block to provide new information to a
called procedure, your procedure should check the length of the argument block
for validity before attempting to access the information. As with adding new
arguments directly to a procedure, the calling program may have been written to
pass the previous, shorter argument block. If your procedure does not check and
attempts to access information past the end of the actual argument block, the
results will be unpredictable.

6.4 Updating Libraries
Any time modifications or enhancements are made to modular procedures that
are a part of a library, the library containing the procedures must be updated to
reflect the new or changed procedures.

6.4.1 Updating Object Libraries

6-4

If the updated procedures are in an object library, the library needs to be updated
so that subsequent access to that library by LINK or other commands will access
the object modules for the new or changed procedures.

To update an object library, use the LIBRARY command with the REPLACE
qualifier, as follows:

$LIBRARY /REPLACE library-name filespec[, ...]

In this example library-name is the name you have given the library. The default
file type for library-name is OLB. The name of an object module is filespec. The
default file type for filespec is OBJ.

6.4.2 Updating Shareable Images

Maintaining Modular Procedures
6.4 Updating Libraries

If the updated procedures are part of a shareable image, the shareable image
needs to be relinked so that it contains the new or changed versions of any
updated object modules. If new procedures are added, the transfer vector (on VAX
systems) or symbol vector (on AXP systems) needs to be updated and recompiled
prior to relinking the shareable image. If new modules are added, the linker
options file needs to be updated prior to relinking. If new procedures and new
modules are added, then the transfer vector (on VAX systems) or symbol vector
(on AXP systems) and the linker options file will need to be updated. If the
transfer vector (on VAX systems) or symbol vector (on AXP systems) is changed,
the minor identification value of the GSMATCH must be incremented by one.
When this has been done, the shareable image can be relinked.

For more information about updating shareable images, see the Open VMS Linker
Utility Manual. ,

6-5

A
Summary of Modular Programming Guidelines

This appendix summarizes the modular programming guidelines that are
described in this manual. References to the appropriate sections appear after
each guideline. The word Optional appears before the section reference if the
guideline is not required to maintain modularity.

A.1 Coding Rules
The coding rules in this section pertain to all procedures. These rules are grouped
in the following categories:

• Calling interface

• Initialization

• Reporting exception conditions

• AST-reentrancy

• Resource allocation

• Format and content of Coded modules

• Upward compatibility

Detailed descriptions of the rules for each of these categories are presented in the
sections that follow.

A.1.1 Calling Interface

• Calls to procedures must follow the Open VMS Calling Standard. Some
elements of this standard restrict procedures to a subset of the Open VMS
Calling Standard to increase the ability of procedures to call each other. (See
Open VMS Programming Interfaces: Calling a System Routine.)

• A procedure makes no assumptions about its environment other than those
of this standard. In particular, to operate as specified, a procedure neither
makes assumptions about, or places requirements on, the calling program.

• A procedure should not call other procedures or system services if the
resulting combination violates this standard from the calling program's
viewpoint. A procedure can call other procedures or system services that
do not follow optional elements of this standard. However, if the resulting
combination (as seen from the calling program) does not follow the optional
elements, the calling procedure must indicate such nonconformance in its
documentation. (See Section 3.1.3.)

• A modular procedure must provide an interface to its callers that allows the
callers to follow all required elements of this standard.

• Each module should only contain a single public entry point. (Optional.)

A-1

Summary of Modular Programming Guidelines
A.1 Coding Rules

•. ,.

A-2

• On VAX systems, when a procedure uses a JSB entry point, it should also
provide an equivalent call entry point to maintain language independence.
This is because, although JSB calling sequences may execute faster than
procedure calls, an explicit JSB linkage to an external routine may not be
provided in some high-level languages. (Optional. See Section 2.3.) +

• The order of required arguments should be the same as that of the hardware
instructions, namely, read, modify, and write. Optional arguments follow in
the same order. However, if a function value is large or is of type string,
the first argument specifies where to store the function value, and all other
arguments are shifted one position to the right. (See Section 2.2.4.)

• A procedure's caller should indicate omitted trailing optional arguments either
by passing argument list entries that contain zero or by passing a shortened
argument list. However, system services require trailing arguments and do
not adhere to this guideline. (Optional. See Section 2.2.5.)

• String arguments should always be passed by descriptor. (See Section 4.2.)

• Procedures must not accept data from, nor return data to, their calling
programs by using implicit overlaid PSECTs or implicit global data areas. All
arguments accepted from or returned to the calling program must use the
argument list and function value registers. (See Section 2.2.2.)

• A procedure cannot assume that the implicit outputs of procedures it calls will
remain unchanged if subsequently used as implicit inputs to those procedures
or to companion procedures. (See Section 2.2.2.)

• On VAX systems, position-independent references (in a module) to another
PSECT must use longword relative addressing so the linker can correctly
allocate the data PSECT anywhere with respect to the code PSECT no matter
how many code modules are included. +

• On VAX systems, external references must use general-mode addressing
to allow the referenced procedures to be put in a shareable image without
requiring changes to the calling program. +

• Procedures cannot require their callers to pass dynamic string descriptors.
(See Section 4.2.)

• Some procedure interface specifications retain state information from one
call to the next, even though the procedures are not resource allocating.
The interface specification uses one of the following techniques (in order of
decreasing preference) to permit sequences of calls from independent parts of
a program by either eliminating the use of static storage or overcoming its
limitations:

• The interface specification consists of a sequence of calls to a set of one or
more procedures - the first procedure allocates and returns (as an output
argument to the calling program) one of the following:

The address of heap storage

Another processwide identifying value

This argument is passed to the other procedures explicitly by the
calling program, and the last procedure deallocates any heap storage
or processwide identifying value.

• The procedure's caller allocates all storage and passes the address on each
call.

Summary of Modular Programming Guidelines
A.1 Coding Rules

• The interface specification consists of a single call, where the calling
program passes the address of one or more action routines and arguments
to be passed to them. The procedure calls the action routines during its
execution. Results are retained by the procedure across calls to the action
routines. (No static storage used.)

• The interface specification consists of a sequence of calls to a set of one
or more procedures. The first procedure, saves the contents of any still
active static storage on a push-down stack in heap storage, and the last
procedure, restores the old contents of static storage. Static storage is
made available for implicit arguments to be passed from one procedure
to the next in the sequence of calls (unknown to the calling program).
However, if an exception can occur anywhere in the sequence, the calling
program must establish a condition handler that calls the last procedure
in the event of a stack unwind (to restore the old contents of static
storage).

A.1.2 Initializing

• If a procedure requires initialization once for each image activation, it is done
without the caller's knowledge by one of the following:

Initializing at compile time

Initializing at link time

Adding a dispatch address to PSECT LIB$INITIALIZE

Testing and setting a statically allocated first-time flag on each call

• A procedure must not use LIB$INITIALIZE to establish a condition handler
before the main program is called if its action can conflict with that of
other condition handlers established before the main program. For more
information about initializing modular procedures, see Section 3.2.

A.1.3 Reporting Exception Conditions
A procedure must not print error or informational messages either directly or by
calling the $PUTMSG system service. It must either return a condition value in
RO as a function value or call LIB$SIGNAL or LIB$STOP to output all messages.
(LIB$SIGNAL and LIB$STOP may be called either directly or indirectly.) (See
Section 2.5.)

A.1.4 AST-Reentrancy

• To be AST-reentrant, a procedure must execute correctly while allowing
any procedure (including itself) to be called between any two instructions.
The other procedure can be an AST-level procedure, a condition handler, or
another AST-reentrant procedure. (See Section 3.3.)

• A procedure that uses no static storage and calls only AST-reentrant
procedures is automatically AST-reentrant. (See Section 3.3.3.)

• If a procedure uses static storage, it must use one of the following methods to
be called from AST and non-AST levels:

Perform access and modification of the database in a single
uninterruptible instruction. This can be done only from
VAX MACRO, and emulated instructions are not allowed. (See
Section 3.3.4.1.)

A-3

Summary of Modular Programming Guidelines
A.1 Coding Rules

Detect concurrency of database access with "test and set" instructions at
each access of the database. (See Section 3.3.4.2.)

Keep a call-in-progress count incremented upon entry to the procedure
and decremented upon return. (See Section 3.3.4.3.)

Disable AST interrupts on entry to the procedure and restore the state of
the AST enables on return. (See Section 3.3.4.4.)

• If a procedure performs I/O from the AST level by calling RMS $GET and
$PUT system services, it must check for the record stream active error status
(RMS$_RSA). If this error is encountered, the procedure issues the $WAIT
system service and then retries the $GET or $PUT system service. (See
Section 3.3.5.)

• A procedure should not depend on AST interrupts being disabled to execute
correctly if there are other coding methods available. For example, RMS
completion routines are implemented via ASTs and will not work if ASTs are
disabled. (See Section 3.3.)

A.1.5 Resource Allocation

• A procedure should not allocate static storage unless it is a processwide,
resource-allocating procedure or unless it must retain results for implicit
inputs on subsequent invocations.

• Timing procedures and resource allocation procedures should make statistics
available for performance evaluation and debugging by providing the entry
points fac_SHOW _name and fac_STAT_name. (Optional. See Section 4.3.)

• If a procedure uses a processwide resource, it calls the appropriate resource
allocating library procedure or system service to allocate the resource to avoid
conflict with allocations made to other procedures. To conserve resources, a
procedure that requests resource allocation does one of the following:

Calls the deallocation procedure before returning to the calling program

Remembers the allocation in static storage and calls the deallocation
procedure later

Passes the responsibility for deallocation back to the calling program

Allocates a fixed number of the resources independent of the number of
times it is called (See Section 2.4 and Section 3.1.3.)

A.1.6 Format and Content of Coded Modules

A-4

• Each module must be documented with a module description. (See
Section 2.5.1.)

• Each procedure must be documented with a procedure description. (See
Section 2.5.2.)

• When symbol definitions are to be coordinated between more than one module
(such as control blocks, procedure argument values, and completion status
codes), the definitions should be centralized in a common source file. Note,
however, that the modules must be written in the same language. (See
Section 3.1.2.)

• Procedure entry point names, module names, and PSECT names must
conform to the naming conventions. (See Section 3.1.1.2, Section 3.1.1.4, and
Section 3.1.1.5.)

Summary of Modular Programming Guidelines
A.1 Coding Rules

• Digital recommends that you also adhere to the naming conventions in
choosing names for facilities and files. (Optional. See Section 3.1.1.1 and
Section 3.1.1.3.)

A.1.7 Upward Compatibility
When a new version of a procedure replaces an existing library procedure, all new
arguments should be added at the end of the call sequence and made optional to
maintain upward compatibility. (Optional. See Section 2.2.5 and Chapter 6.)

A
Argument blocks, 6-3
Arguments

adding new, 6-2
explicit, 2-4
implicit, 2-4
optional, 2-10, A-2
order, 2-10, A-2

AST (Asynchronous system trap)
condition handling at AST level, 3-21
definition, 3-15
disabling interrupts, 3-19
handler, 3-15, 3-16
I/O at AST-level, 3-20, A-4
interrupt, 3-15
reentrancy, 3-15, A-3
routine, 3-15
thread, 3-15
writing AST-reentrant procedures, 3-16

Asynchronous system trap
See AST

8
Black box testing, 4-2
Bound procedure values, 3-8
Busy wait, 3-16

c
Call-in-progress count, 3-19
Case

using upper and lower, A-4
Code

AST-reentrant, 3-15
fully-reentrant, 3-15
writing AST-reentrant procedures, 3-16

Coding guidelines, 3-1
Common source files, 3-6, A-4

declarations, 3-6
Condition handling

at AST level, 3-21
Condition values, 3-3

D
Deadlocks, 3-17
DECthreads, 3-16
Designing procedures, 2-1
Documenting modules

module description, A-4
procedure description, 2-18, A-4

Documentint modules
module description, 2-17

DSC$K_DTYPE_BPV, 3-8
See User-action routine

DSC$K_DTYPE_ZEM
See User-action routine

E
Entry points

See JSB entry points
Event flags, 2-14

F
Facilities

creation, 5-1
library, 3-2
naming, 5-1
naming conventions, 3-1
number, 3-3
prefix, 5-1

Facility
prefix, 3-1

First-time flags
testing and setting, 3-10

Full-reentrancy, 3-15

I/O, 2-15, A-3
asynchronous, 3-21
at AST-level, 3-20
file, 2-16
synchronous, 3-21

Initialization
at run time, 3-13
using LIB$INITIALIZE, 3-13

Index

lndex-1

Initializing, A-3
modular procedures, 3-8
storage, 3-9
using LIB$INITIALIZE, A-3

Ini tialzing, 3-8
Inout/Output

See I/O
Integrating procedures, 5-1
Integration testing, 4-1, 4-5

J
JSB entry points, 2-10, A-1

L
Language independence

testing for, 4-1, 4-4
Levels of abstraction, 2-2
LIB$INITIALIZE, 3-13

See also Initializing
Libraries

updating, 6-4
Library facility, 3-2
Lock manager, 3-16
Logical unit numbers, 2-14

M
Monitoring procedures, 4-8, A-4

in the run-time library, 4-9
timer, 4-8

N
Naming conventions, 3-1, A-4

for facilities, 3-1

0

for files, 3-4
for modules, 3-4
for procedures, 3-3
for PSECTs, 3-4

Object module libraries
creating, 5-2
updating, 6-4

Organizing

p

files and modules, 2-1
procedures, 2-1

Performance analysis, 4-8
Procedures

entry point names, 3-3
grouping, 5-1
interface, 2-4, A-1

lndex-2

Procedures (cont'd)
libraries, 5-1

Program section
See PSECT

PSECT, 2-12, 3-4, A-2
Digital-written, 3-4
LIB$INITIALIZE, 3-13
user-written, 3-4

R
Race conditions

avoiding at AST-level, 3-17
elimination of, 3-17

Reentrancy
AST, 3-15
full, 3-15

Regression testing, 6-1
Returning condition values, 2-21

s
Screen management resources, 2-15
Shareable image

updating, 6-5
SHOW entry point, 4-8
Signaling and condition handling, 2-20
Signaling error conditions, 2-20
Single instruction access, 3-17
STAT entry point, 4-8
Storage, 2-11

heap, 2-11
initializing, 3-9
stack, 2-11
static, 2-12, A-4
summary, 2-13

Symbol definitions, A-4
System resources, 2-11
System services, 3-7, A-1

T
Terminal I/O, 2-15
Test and set instructions, 3-18
Testing new procedures, 4-1

black box, 4-2
integration, 4-1, 4-5
languageindependence, 4-1,4-4
modularity, 4-1
reentrancy, 4-6
regression, 6-1
unit, 4-1
white box, 4-3

Threads of execution, 3-15

u
Unit testing, 4-1

black box, 4-2
white box, 4-3

Upward compatibility, 6-1, A-5
User-action routines, 2-6

optional, 3-7
passing, 3-7

w
White box testing, 4-3

lndex-3

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

5

NOTES

6

NOTES

7

NOTES

8

NOTES

9

NOTES

10

NOTES

11

NOTES

12

NOTES

13

NOTES

14

NOTES

15

NOTES

16

NOTES

17

NOTES

18

NOTES

19

NOTES

20

NOTES

21

NOTES

22

Reader's Comments Guide to Creating OpenVMS
Modular Procedures

AA-PV6AA-TK

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary
if Mailed

in the
United States

--- Do Not Tear - Fold Here ---

