
OpenVMS RTL Parallel Processing.
(PPL$) Manual

Part Number: AA-PV6JA-TK

OpenVMS RTL Parallel
Processing (PPL$) Manual
Order Number: AA-PV6JA-TK

May 1993

This manual documents the parallel processing routines contained in
the PPL$ facility of the Open VMS Run-Time Library.

Revision/Update Information: This manual supersedes the Open VMS
RTL Parallel Processing (PPL$)
Manual, Version 5.5.

Software Version: Open VMS AXP Version 1.5,
Open VMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
CDA, Datatrieve, DDIF, DEC, DEC C, DECdtm, DEC Fortran, DECnet, DECUS, DECwindows,
DECwriter, DEQNA, Digital, GIGI, HSC, LiveLink, LN03, MASSBUS, MicroVAX, OpenVMS,
PrintServer 40, Q-bus, ReGIS, ULTRIX, UNIBUS, VAX, VAX Ada, VAX BASIC, VAX C,
VAX COBOL, VAX CORAL, VAX DSM, VAX DIBOL, VAX Fortran, VAX Pascal, VAX SCAN,
VAXcluster, VAX RMS, VAXserver, VAXstation, VMS, VT, XUI, the AXP logo, and the DIGITAL logo.

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4375

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Overview of Parallel Processing

1.1
1.2
1.3
1.4
1.4.1
1.4.1.1
1.4.1.2
1.4.1.3
1.4.2
1.4.3
1.4.3.1
1.5
1.5.1
1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4

Advantages of Parallel Processing
Definition of Terms
Characteristics of a Parallel Processing Application
Software Models for Parallel Processing .

Master/Slave
True Master/Slave Model
Self-Scheduling Master/Slave Model
Synchronization Method

Pipelining .
Work Queue Processing

Synchronization Method
System Requirements

Privileges .. .
Quotas .. .

Subprocess Quota
AST Limits .. .
Enqueue Quota
Global Section Quota

2 Process Management and Naming Operations
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3

Accessing the PPL$ Facility
Initializing PPL$.. .
Deleting an Application .
Terminating Access to the PPL$ Facility

Participant Management
Creating a Subordinate
Deleting a Subordinate
Retrieving Participant Information

Application-Wide Naming

3 Shared Memory Operations

3.1
3.1.1
3.1.2
3.1.3
3.2
3.3

Shared Memory Routines
Creating Shared Memory
Flushing Shared Memory to Disk
Deleting Shared Memory

Creating a Virtual Memory Zone
Deleting a Virtual Memory Zone

1-1
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-6

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4

3-1
3-1
3-3
3-3
3-3
3-4

iii

4 Synchronization Operations

4.1 Retrieving an Object Identifier. 4-1
4.2 Barrier Synchronization . 4-2
4.2.1 Creating a Barrier . 4-2
4.2.2 Deleting a Barrier . 4-3
4.2.3 Reading a Barrier . 4-3
4.2.4 Waiting at a Barrier. 4-3
4.2.5 Setting a Barrier Quorum . 4-4
4.2.6 Adjusting a Barrier Quorum . 4-4
4.3 Event Synchronization... 4-5
4.3.1 Creating an Event , 4-5
4.3.2 Deleting an Event . 4-6
4.3.3 Enabling an Event AST . 4-6
4.3.4 Enabling an Event Signal . 4-6
4.3.5 Disabling an Event . 4-7
4.3.6 Awaiting an Event . 4-7
4.3.7 Triggering an Event.. 4-7
4.3.8 Reading an Event . 4-8
4.3.9 Resetting an Event . 4-8
4.3.10 Predefined Events . 4-8
4.4 Semaphore Synchronization . 4-9
4.4.1 Creating a Semaphore . 4-11
4.4.2 Deleting a Semaphore . 4-11
4.4.3 Decrementing a Semaphore . 4-11
4.4.4 Incrementing a Semaphore . 4-12
4.4.5 Reading a Semaphore Value. 4-12
4.4.6 Adjusting a Semaphore Maximum . 4-12
4.4.7 Setting a Semaphore Maximum.............................. 4-13
4.5 Spin Lock Synchronization . 4-13
4.5.1 Creating a Spin Lock . 4-13
4.5.2 Deleting a Spin Lock . 4-14
4.5.3 Seizing a Spin Lock . 4-14
4.5.4 Releasing a Spin Lock . 4-14
4.5.5 Reading a Spin Lock . 4-14
4.6 Work Queue Synchronization . 4-14
4.6.1 Creating a Work Queue . 4-15
4.6.2 Deleting a Work Queue . 4-15
4.6.3 Reading a Work Queue . 4-16
4.6.4 Inserting a Work Item . 4-16
4.6.5 Removing a Work Item . 4-16
4.6.6 Deleting a Work Item . 4-17

5 Developing Parallel Processing Applications

iv

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.2
5.2.1

Programming Considerations
Granularity and Decomposition
Data Dependence .. .
Deadlock .. .
Naming Components
Using SYS$HIBER
Disabling ASTs .. .
ADA, DECthreads, and FORTRAN Considerations

Comparing the Use of Synchronization Elements
Barriers

5-1
5-1
5-2
5-4
5-5
5-5
5-5
5-6
5-6
5-6

5.2.2
5.2.2.1
5.2.3
5.2.4
5.2.5
5.2.6
5.3
5.3.1

Events .. .
Asynchronous Signal

Semaphores .. .
Spin Locks
Work Queues
Sharing an Element Identifier

Performance Measurements
Geometric Model of Performance

5-6
5-7
5-7
5-8
5-8
5-8
5-9
5-9

6 Examples of Calling PPL$ Routines

6.1
6.2
6.3

BLISS Example .. .
DEC FORTRAN Example
DEC C Example .. .

6-1
6-4

6-11

PPL$ Reference Section

PPL$ADJUST_QUORUM . PPL-3
PPL$ADJUST_SEMAPHORE_MAXIMUM . PPL-5
PPL$AWAIT_EVENT... PPL-7
PPL$CREATE_APPLICATION . PPL-9
PPL$CREATE_BARRIER PPL-13
PPL$CREATE_EVENT PPL-15
PPL$CREATE_SEMAPHORE . PPL-19
PPL$CREATE_SHARED_MEMORY . PPL-22
PPL$CREATE_SPIN_LOCK PPL-26
PPL$CREATE_ VM_ZONE . PPL-28
PPL$CREATE_WORK_QUEUE................................. PPL-33
PPL$DECREMENT_SEMAPHORE . PPL-35
PPL$DELETE_APPLICATION . PPL-37
PPL$DELETE_BARRIER PPL-38
PPL$DELETE_EVENT PPL-40
PPL$DELETE_SEMAPHORE . PPL-42
PPL$DELETE_SHARED_MEMORY . PPL-44
PPL$DELETE_SPIN_LOCK . PPL-46
PPL$DELETE_VM_ZONE..................................... PPL-48
PPL$DELETE_ WORK_ITEM . PPL-50
PPL$DELETE_WORK_QUEUE................................. PPL-52
PPL$DISABLE_EVENT PPL-54
PPL$ENABLE_EVENT_AST . PPL-55
PPL$ENABLE_EVENT_SIGNAL. PPL-58
PPL$FIND_OBJECT_ID . PPL-62
PPL$FLUSH_SHARED_MEMORY . PPL-64
PPL$GET_INDEX . PPL-66
PPL$INCREMENT_SEMAPHORE . PPL-67
PPL$INDEX_TO_PID . PPL-68
PPL$INSERT_WORK_ITEM................................... PPL-70
PPL$PID_TO_INDEX . PPL-72
PPL$READ_BARRIER. PPL-74

v

Index

Examples

6-1
6-2
6-3

Figures

5-1
5-2
5-3
PPL-1
PPL-2

vi

PPL$READ_EVENT .. .
PPL$READ_SEMAPHORE
PPL$READ_SPIN_LOCK
PPL$READ_WORK_QUEUE
PPL$RELEASE_SPIN_LOCK
PPL$REMOVE_ WORK_ITEM
PPL$RESET_EVENT .. .
PPL$SEIZE_SPIN_LOCK
PPL$SET_QUORUM .. .
PPL$SET_SEMAPHORE_MAXIMUM
PPL$SPAWN .. .
PPL$STOP .. .
PPL$TERMINATE .. .
PPL$TRIGGER_EVENT
PPL$UNIQUE_NAME
PPL$WAIT_AT_BARRIER

Using PPL$ Routines in BLISS
Using PPL$ Routines in DEC FORTRAN
Using PPL$ Routines in DEC C

Time-Processor Product for a System with No Parallelism
Time-Processor Product for a System with Unlimited Parallelism
Time-Processor Product for a System with Limited Parallelism
Signal Vector for a User-Defined Event
Signal Vector for a PPL$-Defined Event

PPL-76
PPL-78
PPL-80
PPL-81
PPL-83
PPL-84
PPL-86
PPL-87
PPL-89
PPL-91
PPL-93
PPL-97
PPL-98
PPL-99

PPL-101
PPL-103

6-1
6-4

6-11

5-10
5-10
5-11

PPL-59
PPL-60

Preface

This manual provides users of the Open VMS operating system with detailed
usage and reference information on parallel processing routines supplied in the
PPL$ facility of the Run-Time Library.

Intended Audience
This manual is intended for system and application programmers who want to
call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I contains six chapters. The material covered is as follows:

Chapter 1 provides an overview of parallel processing.

Chapter 2 discusses process management and naming operations.

Chapter 3 describes shared memory operations.

Chapter 4 discusses synchronization operations.

Chapter 5 discusses some recommended methods for using the Parallel
Processing Facility for developing new programs.

Chapter 6 contains examples demonstrating how to call some PPL$
routines from major Open VMS languages.

• The PPL$ Reference Section provides detailed reference information on
each routine contained in the PPL$ facility of the Run-Time Library. This
information is presented using the documentation format described in
Open VMS Programming Interfaces: Calling a System Routine. Routine
descriptions are in alphabetical order by routine name.

Associated Documents
The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed is presented in
the Open VMS Programming Interfaces: Calling a System Routine. Descriptions
of the other RTL facilities and their corresponding routines are presented in the
following books:

• DPML, Digital Portable Mathematics Library

• Open VMS RTL DECtalk (DTK$) Manual

• Open VMS RTL Library (LIB$) Manual

• Open VMS VAX RTL Mathematics (MTH$) Manual

• Open VMS RTL General Purpose (OTS$) Manual

vii

• Open VMS RTL Screen Management (SMG$) Manual

• Open VMS RTL String Manipulation (STR$) Manual

The Guide to DECthreads contains guidelines and reference information for
DECthreads, the Digital Multithreading Run-Time Library.

Application programmers using any language can refer to the Guide to Creating
Open VMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user's guide provided with your
Open VMS language software.

For a complete list and description of the manuals in the Open VMS
documentation set, see the Overview of Open VMS Documentation.

Conventions

viii

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

4'm:•

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are used in this manual:

mouse

MBl, MB2, MB3

PBl, PB2, PB3, PB4

SB1,SB2

Ctrllx

PFlx

The term mouse is used to refer to any pointing device, such
as a mouse, a puck, or a stylus.

MBl indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (The buttons can be redefined by the user.)

PBl, PB2, PB3, and PB4 indicate buttons on the puck.

SBl and SB2 indicate buttons on the stylus.

A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl, then press and release
another key or a pointing device button.

GOLDx

()

[]

{}

boldface text

italic text

UPPERCASE TEXT

numbers

A sequence such as GOLD x indicates that you must first
press and release the key defined GOLD, then press and
release another key. GOLD key sequences can also have a
slash(/), dash (-),or underscore(_) as a delimiter in EVE
commands.

In examples, a key name is shown enclosed in a box to
indicate that you press a key on the keyboard. (In text, a key
name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices in
parentheses.

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the book.

Italic text represents information that can vary in system
messages (for example, Internal error number).

Uppercase letters indicate that you must enter a command
(for example, enter OPEN/READ), or they indicate the name
of a routine, the name of a file, the name of a file protection
code, or the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are assumed
to be decimal. N ondecimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

Other conventions used in the documentation of Run-Time Library routines are
described in Open VMS Programming Interfaces: Calling a System Routine.

ix

1
Overview of Parallel Processing

Parallel processing occurs when a section of an application is divided into
multiple tasks, and those multiple tasks are executed simultaneously on multiple
processors. You should not confuse parallel processing with the more widely
known computing method called multiprogramming.

Briefly, multiprogramming is a mode of operation that lets you share hardware
resources among multiple, independent software processes. Timesharing is a
common form of multiprogramming. In a timesharing system, each process is
given a specific amount of execution time on a processor. When the time for one
process has run out, that process is put into a wait state and the next process
begins execution for its allotted time, and so on.

You can use parallel processing techniques to implement fault-tolerant systems,
to decrease the amount of elapsed time required to execute an application, and
to express the inherent logical parallelism in an algorithm. While the term
parallel processing usually implies a number of processors working together
on a particular problem, you can apply the same techniques to a variety of
applications, including those that run on a single CPU.

The PPL$ facility offers routines to help you implement concurrent programs
on both single-CPU and multiprocessor systems, using Open VMS processes for
parallelism.

1.1 Advantages of Parallel Processing
The PPL$ facility provides routines to simplify many of the tasks commonly
required to implement a parallel processing application. The PPL$ routines are
designed to work together to help you create and maintain parallel applications.
Instead of using all of the common event flag system services, for example,
to implement a semaphore, you can use the PPL$ routines that create, read,
decrement, increment, and delete a semaphore.

The parallel processing techniques implemented by PPL$ show the greatest
performance improvements in applications that are CPU intensive. Areas such
as computer-aided design, image processing, high-energy physics, and geophysical
research, among others, see a significant lessening of elapsed time when using
PPL$ routines. Applications that are I/O intensive will most often not realize any
significant decrease in elapsed time, and may even suffer in system performance
when executing in parallel. In other words, you must examine every application
individually to determine whether or not using the PPL$ routines, or parallel
processing in general, is appropriate.

1-1

Overview of Parallel Processing
1.2 Definition of Terms

1.2 Definition of Terms

1-2

A process is the basic entity that is scheduled by the system software. This
system software provides the context in which an image executes; for example,
the process's quota, privilege, and file context. A process, therefore, consists of an
address space and both hardware and software context.

On an Open VMS system there are two possible types of processes: detached
processes and subprocesses. A detached process is an independent entity on
the system. A subprocess, or subordinate process, is spawned from another
process; therefore a subordinate shares some system resources with its parent
process, and it is deleted either when the parent is deleted or when the image
that it is executing exits. In the PPL$ facility, a subordinate is defined as an
Open VMS subprocess.

The term participant is used to refer to any one of an arbitrary number of
independent processes (parent or subordinate) that performs an application
defined piece of work.

One method of ensuring consistent access to program data is to synchronize
cooperating processes. Synchronization can be described as a set of constraints
that affects or controls the ordering of events in your decomposed application.
You can use synchronization mechanisms to delay execution of a particular
process in order to satisfy any such constraints.

A synchronization element is a part of the PPL$ facility that controls the
order of processing in a parallel application. A synchronization element can
be a barrier, event, semaphore, spin lock, or work queue. An object can be a
synchronization element or shared memory zone.

Mutual exclusion describes the situation where only one participant at a time
is allowed access to a critical section of a parallel task or a critical physical
resource. (A physical resource can be a printer or an I/O device, for example.)
Mutual exclusion can be implemented using either a spin lock or a semaphore.
(Refer to Chapter 4 for more information about spin lock and semaphore
synchronization.)

Within Open VMS, a global section (or shared memory) is a data structure or
shareable image section potentially available to all processes in the system. See
the Open VMS System Services Reference Manual for more information on global
sections.

When a participant is blocked, a synchronization element is preventing that
participant from executing. A participant can be blocked by a barrier, semaphore,
event, spin lock, or work queue. When you specify blocking of a participant, the
participant is usually blocked by a PPL$ call to the system service $HIBER,
so that ASTs can be delivered. (In the case of spin locks, however, a blocked
participant executes a tight loop instead of hibernating.)

The term critical section refers to any segment of your program that must be
executed only by a single process at a time.

Overview of Parallel Processing
1.3 Characteristics of a Parallel Processing Application

1.3 Characteristics of a Parallel Processing Application
Applications that can benefit from using PPL$ routines will likely be described by
at least one of the following characteristics:

• The application runs on a multiprocessing system that consists of two or more
processors (CPUs) that can use shared memory (global sections).

• The application represents a single application program that can have several
tasks or instructions executing simultaneously across multiple processors.

• The application uses communication and synchronization mechanisms for
controlling access to shared variables.

1.4 Software Models for Parallel Processing
The routines provided by the PPL$ facility are based on several software and
performance models. This section discusses the models to consider when you
design your own parallel applications.

When you begin designing an application for parallel execution, you should
structure your program after the parallel processing model that best fits your
application. You will find that, in general, your application does not exactly
match one particular model, but instead more closely resembles a collection or
combination of these models, including:

• The master/slave model

• The pipelining model

• The work queue processing model

1.4.1 Master/Slave
The general master/slave model of parallel processing has the following
characteristics:

• One participant is selected as the master, and that participant is responsible
for creating and deleting any subordinates (slaves) required for your
application.

• When you separate your application into single-stream and
multiple-stream tasks, the master is responsible for executing all of the
single-stream tasks and notifying the slave subordinates when multiple
stream tasks are available for execution. Note that the master can also
execute some of the parallel code, but is always responsible for the execution
of the single-stream code.

All of the characteristics mentioned above hold true for any master/slave software
model. However, within this general model there are two different forms of the
master/slave model: the true master/slave model, and a self-scheduling master
/slave model, sometimes called the queuing model.

1.4.1.1 True Master/Slave Model
In the true master/slave model of parallel processing, the master executes all
the single-stream tasks and then specifically assigns a multiple-stream task
to each slave subordinate. In other words, the master is not only responsible
for executing all of the single-stream tasks and notifying the subordinates
that multiple-stream tasks are available, but also for assigning a task to each
subordinate for execution. The subordinates cannot assign work to themselves.

1-3

Overview of Parallel Processing
1.4 Software Models for Parallel Processing

1.4.1.2 Self-Scheduling Master/Slave Model
In the self-scheduling master/slave model, the master is again responsible for
executing all the single-stream tasks and notifying the slave subordinates that
multiple-stream tasks are available for execution. However, in the self-scheduling
master/slave model, the master does not assign tasks to the subordinates.
Instead, the master informs the slaves which multiple-stream tasks are available,
and each slave subordinate takes a task and executes it. That is, the slave
subordinates assign tasks to themselves, although the master is still responsible
for the creation of these subordinates as well as the execution of the single-stream
code.

1.4.1.3 Synchronization Method
The most common synchronization method to use in the master/slave parallel
processing model is barrier synchronization. That is, once the master notifies the
slave subordinates that multiple-stream tasks are available for execution, the
master waits until all the slaves reach the designated barrier, which is generally
at the completion of a set of work items. At that point, the master resumes
control and continues to execute the single-stream code. (Refer to Chapter 4 for
more information about barrier synchronization.)

1.4.2 Pipelining
The pipelining parallel processing model is task oriented. That is, each
processor in the system is assigned a specific task, and the data moves from
task to task. At each time step, each processor performs its assigned task and
then passes the information on to the next task, meanwhile receiving data from
the previous task.

You can compare the pipelining model of parallel processing to an assembly line,
where the work performed at each station in the line is a task in the pipe, and
the piece moving through the assembly line is the piece of data moving through
the pipe.

In the ideal situation, all of the stations in an assembly line have equal processing
speed, so that once the assembly line is fully loaded, it outputs one completed
product per clock period. The same is true for a pipelining parallel processing
model. Ideally, each task requires the same amount of execution time so that,
once fully loaded, the pipe outputs one completed product per clock period. If this
is not the case, then the slowest task becomes the bottleneck for the entire pipe.
There is, however, a time overhead associated with the initial filling of the pipe,
before the first output item appears. This overhead is a function of the number of
tasks and the completion time for each task.

Because a pipelining model is task oriented, there are not many synchronization
and communication requirements, and those that exist can be satisfied with a
message-passing technique such as a mailbox.

1.4.3 Work Queue Processing

1-4

The work queue parallel processing model consists of a queue of work items and
processes to complete these work items. Each participant can take a work item
off the queue and, if necessary, each participant can add newly generated work
items to the queue. As each participant completes its work item, it does not wait
for some participant to assign it a new task, but instead takes the next item off
the work queue and begins execution. The work queue parallel processing model
can be combined with other models. For example, work queues can be used in
pipelining to carry data between tasks.

Overview of Parallel Processing
1.4 Software Models for Parallel Processing

The work queue parallel processing model is similar to the self-scheduling master
/slave model in that the participants can assign themselves tasks from the queue
and execute them to completion. However, there are two major differences. In the
self-scheduling master/slave model, the predesignated master participant always
executes the single-stream code; the work queue model has a "floating'' master,
which means that any participant that assigns itself the single-stream code can
execute it. The other difference is that, in the self-scheduling master/slave model,
if a slave subordinate generates an additional piece of work, it must pass that
information back to the master. In the work queue model, any participant that
generates additional work items can simply add them to the queue.

A common example of the work queue model of parallel processing is a typing
pool. The work that must be done is stored in a bin in the middle of the room,
and each typist takes one of these work items and completes it. If that work item
in turn generates additional work, the typist puts the additional work items back
into the bin and completes execution of the current work item. When the typist
has completed the current work item, the typist simply takes the next work item
from the bin and performs that task. Again, if that task generates additional
work items, those items are placed in the bin for later execution.

1.4.3.1 Synchronization Method
Use the PPL$ routines that manage work queues and work items to achieve
synchronization in a work queue model. Refer to Section 4.6 for more information
about work queue synchronization.

1.5 System Requirements
This section discusses the privileges and process quotas required by the PPL$
facility.

1.5.1 Privileges
Privileges are not required to use most of the routines in the PPL$ facility.
However, four routines require privileges. The following table shows those PPL$
routines and the privileges required to use them.

Routine

PPL$CREATE_APPLICATION with PPL$M_PERM flag

PPL$CREATE_APPLICATION with PPL$M_SYSTEM flag

PPL$CREATE_SHARED_MEMORY with PPL$M_PERM flag

PPL$CREATE_SHARED_MEMORY with PPL$M_SYSTEM flag

PPL$DELETE_APPLICATION

PPL$DELETE_SHARED_MEMORY with PPL$M_PERM flag

Required Privilege

PRMGBL

SYSGBL and
SYSLCK

PRMGBL

SYSGBL

PRMGBL

PRMGBL

GROUP/WORLD privileges are required for process control (for example, $WAKE)
in applications comprised of processes with different user/group UICs.

1-5

Overview of Parallel Processing
1.5 System Requirements

1.5.2 Quotas
Before you begin using PPL$, check your process quotas by using the following
DCL command:

$ SHOW PROCESS/QUOTA

The following sections discuss some process quotas that PPL$ may require you to
increase.

1.5.2.1 Subprocess Quota
Each user process has a quota that determines the maximum number of
subprocesses that process can create, thereby limiting the number of processes
spawned by a participant in a PPL$ application. Check your subprocess quota to
be sure that the quota is greater than or equal to the number of subprocesses you
plan to create in your parallel application.

1.5.2.2 AST Limits
Because PPL$ uses ASTs (asynchronous system traps) internally, a PPL$
application that uses other AST system services extensively may need to increase
its ASTLM quota. Under most conditions, adding two per participant to your
current value is sufficient. For each application, you must calculate the possible
extent of your AST use.

1.5.2.3 Enqueue Quota
PPL$ uses the $ENQ system service internally. If you also use the locking system
services independently of PPL$, you may have to increase your ENQLM quota.
The largest possible increase that PPL$ may need is five per participant.

1.5.2.4 Global Section Quota

1-6

If your application uses a large amount of shared memory, you may want to
request that your system manager increase the following system parameters:

• GBLSECTIONS

• GBLPAGES

• GBLPAGFIL

2
Process Management and Naming Operations

The PPL$ facility provides routines to help you manage your application's
processes. These management routines include those that create and delete an
application, terminate a process's access to an application, create and delete
subordinates, retrieve subordinate information, and produce a name for the
application that is unique but consistent throughout the application.

2.1 Accessing the PPL$ Facility
The PPL$ facility provides the following routines to create and delete an
application and terminate a process' access to an application:

PPL$CREATE_APPLICATION Informs the PPL$ facility that the caller is forming or
joining the parallel application

PPL$DELETE_APPLICATION

PPL$TERMINATE

2.1.1 Initializing PPL$

Marks the PPL$ internal data area for deletion
and prevents additional processes from joining the
application

Ends the caller's participation in the parallel
application

PPL$CREATE_APPLICATION informs the PPL$ facility that the caller is
forming or joining the parallel application. You are not required to call this
routine. You need only call PPL$CREATE_APPLICATION if you want to
specify a value other than the supplied defaults. If you do not call it explicitly,
PPL$CREATE_APPLICATION is called automatically when you call one of the
routines listed in the following table. Note that PPL$ does not automatically
initialize when you call routines that require a previously created element. (In
other words, PPL$ does not automatically initialize when you call a routine
listed in the following table for the second and subsequent times.) This keeps the
overhead of these routines-requests for barriers, semaphores, events, spin locks,
and work queues-at a minimum.

The routines that perform automatic initialization when first called are:

PPL$CREATE_BARRIER

PPL$CREATE_EVENT

PPL$CREATE_SEMAPHORE

PPL$CREATE_SHARED_MEMORY

PPL$CREATE_SPIN_LOCK

PPL$CREATE_VM_ZONE

PPL$CREATE_ WORK_QUEUE

PPL$FIND_ OBJECT_ID

PPL$GET_INDEX

PPL$INDEX_TO_PID

PPL$PID_TO_INDEX

PPL$SPAWN

PPL$STOP

PPL$UNIQUE_NAME

2-1

Process Management and Naming Operations
2.1 Accessing the PPL$ Facility

If you do not call PPL$CREATE_APPLICATION, PPL$ allocates the default (link
time) constant PPL$K_INIT_SIZE pages for its internal data structures. This
initial allocation accommodates a minimum of 32 processes, 8 semaphores, 4
events, 4 spin locks, 4 barriers, 4 work queues, and 16 global sections. (These
numbers represent a rough guideline for combinations of PPL$ components.
If you have less than 32 processes, for example, you can have more than 8
semaphores, and so forth.) You can specify another value for the size argument
in PPL$CREATE_APPLICATION if these defaults are not appropriate for your
application. If you intend to use more PPL$ resources than PPL$K_INIT_SIZE
pages allows, you should specify a larger value for the size argument.

2.1.2 Deleting an Application
PPL$DELETE_APPLICATION marks all shared memory in an application for
deletion. This includes the PPL$ internal data area, all shared memory sections,
and shared zone sections. Because the shared memory is not actually deallocated
until the last process exits, this routine has no effect on processes that are
already members of the application. However, after you call this routine, no new
processes are allowed to join the application. The process calling this routine
requires the PRMGBL privilege.

If a process attempts to join an application that has been deleted, PPL$ instead
forms a new application with the same name (subject to the options specified in
PPL$CREATE_APPLICATION). This prevents completely separate instances of
an application with the same name from interfering with each other.

Calling PPL$DELETE_APPLICATION is the only way to remove a permanent
application (one which was formed with the PPL$M_PERM flag set in
PPL$CREATE_APPLICATION). After calling PPL$DELETE_APPLICATION, the
application is no longer permanent. When the last process leaves the application,
all shared memory sections are deallocated, and the application is deleted.

2.1.3 Terminating Access to the PPL$ Facility
The PPL$TERMINATE routine lets you "prematurely" terminate the caller's
participation in the application; that is, before the caller has actually completed
its execution. Normally, you do not need to call this routine because the PPL$
facility automatically performs cleanup operations when the participating process
completes its execution. Optionally, this routine forces the exit of all of the caller's
descendants. ·

2.2 Participant Management

2-2

The PPL$ facility provides several routines to simplify the tasks involved in
creating, deleting, and retrieving information about a participant. These routines
are as follows:

PPL$SPAWN

PPL$STOP

PPL$GET_INDEX

PPL$INDEX_TO_PID

PPL$PID_TO_INDEX

Creates one or more subordinates to execute code in parallel
with the caller

Terminates the execution of a participant in the application

Returns a unique index for the specified participant

Returns the process identifier of the participant associated
with the specified index

Returns the index of the participant with the specified
process identifier

These routines are discussed in the following sections.

Process Management and Naming Operations
2.2 Participant Management

2.2.1 Creating a Subordinate
The PPL$SPAWN routine lets you create one or more subordinates that can
execute code in parallel with the caller. Any subordinate created executes
the specified code in parallel on the same node as the caller. After calling
PPL$SPAWN, typically the parent (caller) immediately continues processing in
its own context, and each subordinate begins executing immediately after it is
created. Optionally, you can specify that the caller and all the subordinates being
created only continue after each and every subordinate has performed its PPL$
initialization; that is, performed a call to PPL$CREATE_APPLICATION. You can
also specify the PPL$M_NODEBUG value for the flags argument. Specifying this
value prevents the startup of the Open VMS Debugger, even if the debugger was.
linked with the image. You can therefore selectively turn the Debugger on and off
for each subordinate process.

It is important to note that if you want to be notified when a subordinate
terminates execution abnormally, you must call PPL$ENABLE_EVENT_
SIGNAL or PPL$ENABLE_EVENT_AST. PPL$ENABLE_EVENT_SIGNAL
and PPL$ENABLE_EVENT_AST are discussed in Chapter 4. In the following
example, the call to PPL$ENABLE_EVENT_SIGNAL indicates that the user
wants to be notified if any of the created subordinates terminates abnormally.

desired_condition = PPL$K_ABNORMAL_EXIT
status = PPL$ENABLE_EVENT_SIGNAL (desired_condition)
status= PPL$SPAWN (nurn_of_procs,,id_array)

2.2.2 Deleting a Subordinate
The PPL$STOP routine terminates the execution of the specified participant in
the parallel application. If you call PPL$STOP for a process that has spawned
subordinates, the Open VMS operating system forces the termination of the
"descendants" of the specified process. You should call this routine only if you
want to stop a participant before it completes execution.

2.2.3 Retrieving Participant Information
The PPL$ facility provides three routines that supply information about a
particular participant. These routines are as follows:

• PPL$GET_INDEX

• PPL$INDEX_TO_PID

• PPL$PID_TO_INDEX

The PPL$GET_INDEX routine returns an index unique within the parallel
application. An index with a zero value indicates the top or main process, that
is, the participant executing first in the application. The index of each participant
is assigned in order as it joins the application, so that all the participants in the
application always return an index greater than zero.

You can use PPL$GET_INDEX to retrieve the PPL$ identifier (participant index)
of the caller.

status = PPL$GET_INDEX (rny_index)

The PPL$INDEX_TO_PID routine returns the Open VMS process identifier of the
participant associated with the index you specify. Similarly, the PPL$PID_TO_
INDEX routine takes an Open VMS process identifier and returns the PPL$ index
of the associated participant.

2-3

Process Management and Naming Operations
2.2 Participant Management

To continue the previous example, the caller can subsequently call PPL$INDEX_
TO_PID to retrieve its own process identifier.

status = PPL$INDEX_TO_PID (my_index, my_pid)

2.3 Application-Wide Naming

2-4

The PPL$UNIQUE_NAME routine returns an application-unique name. This
name consists of a system-unique string specific to the calling application; this
string is appended to the string that you specify. The resulting name will be
identical for all participants in the application, but different from all other
applications on that system.

This unique name is useful, for example, if your application creates a scratch file
that must not interfere with other users who are also running their own copies of
the same application at the same time.

For example, two users running the same application in different jobs call
PPL$UNIQUE_NAME and supply the same value for the name-string argument
("x"). The name that PPL$UNIQUE_NAME returns to the first user is different
from the name returned to the second user.

The user can also request that PPL$UNIQUE_NAME return a string unique
to a process. By specifying the new PPL$M_PROC_UNIQUE flag, the user will
receive a process unique name. That is, each time the user supplies the same
string to PPL$UNIQUE_NAME within a process, the same unique string will
be returned. If the user specifies the same input string in another process, a
different string will be returned, one which is unique to this process.

In addition to process-unique names, the user may now request that a name
be made call-unique. When you specify the PPL$M_CALL_UNIQUE flag,
PPL$UNIQUE_NAME produces a different return string each time it is called,
regardless of the process or the application from which it is called.

3
Shared Memory Operations

When you execute a program in a sequential processing environment, all
instructions in your program are executed in order. However, when you execute
your applications in a parallel processing environment, the operating system
controls such things as the availability of processors and the order of execution
and completion of participants. While the instructions within a single task are
still executed sequentially, you cannot predict the order in which tasks will
execute.

Because of this unpredictability, you often require some form of interprocess
communication for tasks that are executed in parallel. The PPL$ facility provides
several routines that facilitate interprocess communication by creating and
controlling shared memory. Shared memory is a generic term that refers to
any memory that can be accessed by two or more processes running concurrently.
Applications calling PPL$ routines use shared memory (known as global sections
in Open VMS) to share information among participants. Shared memory contains
shareable code or data that can be read, or read and written, by more than
one process. For more information about global sections, refer to the Open VMS
System Services Reference Manual.

3.1 Shared Memory Routines
The shared memory routines provided by the PPL$ facility are as follows:

PPL$CREATE_SHARED_MEMORY

PPL$FLUSH_SHARED_MEMORY

PPL$DELETE_SHARED_MEMORY

PPL$CREATE_VM_ZONE

PPL$DELETE_ VM_ZONE

Create (if necessary) and map a section of
memory that can be shared by multiple
participants

Write (flush) the contents of a global section to
disk

Delete or unmap from a global section

Create a new storage zone that is available to
all participants in the application

Delete a storage zone

These routines are discussed in more detail in the following sections.

3.1.1 Creating Shared Memory
The PPL$CREATE_SHARED_MEMORY routine creates (if another participant
has not already created) and maps a section of memory that can be shared by
multiple participants. By default, PPL$CREATE_SHARED_MEMORY gives the
shared memory a name unique to the application, initializes the section to zero,
and maps the section with read/write access. If you want to change any of these
defaults, you can do so using the flags argument.

3-1

Shared Memory Operations
3.1 Shared Memory Routines

3-2

In addition, PPL$ tries to share the memory at the same address with all other
participants in the application, if possible. This operation merely attempts to
"reserve" that address range, and it is only mapped in other participants at
the time they issue calls to this routine. If PPL$CREATE_SHARED_MEMORY
cannot map the shared memory to the same addresses for all participants, the
error condition value PPL$_NONPIC is returned and the shared memory is not
created. (This might occur when the application executes more than one different
program image.)

Optionally, this routine opens a backup storage file for the shared memory with a
specified file name.

The PPL$ facility offers two distinct memory sharing services through
PPL$CREATE_SHARED_MEMORY. The first mechanism lets you request an
unspecified range of addresses, and the PPL$ facility arranges to allocate the
same set of addresses in each participant in the application. In other words, you
let the PPL$ facility determine the address of the shared memory being created.
You request this service by specifying the starting address as zero. If you allow
the PPL$ facility to select the virtual addresses for a section of shared memory,
PPL$ selects the virtual addresses so that each process already in the application
can map the section to the same address range. A participant that joins the
application after the shared memory is created may not be able to access the
shared memory if the new participant's image size is significantly larger than
the image size of the participant(s) that created the shared memory. If you have
difficulty creating shared memory, be sure that all participants that will use the
section have joined the application before the shared memory is created. This
applies to memory allocated from shared VM zones as well, because they are
created using PPL$ shared memory sections.

The second mechanism lets you specify a particular range of addresses to be
shared. This allows the sharing of an arbitrary collection of variables, such as
a FORTRAN common block, that appear at a certain address. Since Open VMS
maps memory in pages (512 bytes), you must take care to share exactly the data
intended for sharing-no more and no less. When the data does not fall exactly
on page boundaries, extra effort is required to prevent accidental sharing of local
data while guaranteeing that all participants can access the shared memory at
the expected addresses. You can accomplish this by allocating a 512-byte array at
both the beginning and the end of such a data area (common block). The request
to this routine then specifies the starting address to be that of the front "guard"
array. The length is calculated by subtracting the last address of the last "guard
page" from the starting address of the front guard. PPL$ maps the requested
memory so that the lower address is rounded up to the nearest page boundary,
and the higher address is rounded down to the nearest page boundary. This
guarantees that no data is shared unexpectedly, and that all important data in
the common area (that is, everything but the two guard pages) is fully shared.

In the following example, a section of shared memory contains a variable named
front_guard (the first variable in the section), as well as last_guard (the last
variable in the section). The lenadr array contains the length of the desired
section (including guard pages) and the starting location of the section.

Shared Memory Operations
3.1 Shared Memory Routines

parameter (one_page = 512)

lenadr(l) = %LOC(last_guard) + one_page - %LOC(front_guard)
lenadr(2) = %LOC(front_guard)
status = PPL$CREATE_SHARED_MEMORY ('pgrn_shared_data', lenadr)
IF (.NOT. STATUS) GO TO 999

3.1.2 Flushing Shared Memory to Disk
The PPL$FLUSH_SHARED_MEMORY routine writes (flushes the contents of) a
global section that has a disk file backing store to disk. This global section must
have been created by a call to PPL$CREATE_SHARED_MEMORY.

Only the pages that have been modified are flushed to disk. This is useful, for
example, if you want to store intermediate values of the variables stored in the
global section. The flush is performed by each of the participants.

To continue the previous example, you use the following statement to flush the
pgm_shared_data section to disk:

status= PPL$FLUSH_SHARED_MEMORY ('pgrn_shared_data')

3.1.3 Deleting Shared Memory
The PPL$DELETE_SHARED_MEMORY routine deletes or unmaps from a
global section. This global section must have been created through a call
to PPL$CREATE_SHARED_MEMORY. If you specify PPL$M_FLUSH as an
argument to this routine, the contents of the global section are written to disk
before the section is deleted. Note that if another participant is using the global
section when you call this routine, PPL$DELETE_SHARED_MEMORY unmaps
the global section from the calling process' memory. When all participants have
unmapped from the section or have been deleted, PPL$DELETE_SHARED_
MEMORY deletes the global section.

In the following example, the section pgm_shared_data is deleted after its
contents are written to disk. (This is specified by the PPL$M_FLUSH flag.)

flag = PPL$M_FLUSH
status= PPL$DELETE_SHARED_MEMORY ('pgrn_shared_data' ,,flag)

3.2 Creating a Virtual Memory Zone
The PPL$CREATE_ VM_ZONE routine creates a new storage zone that is
available to all participants in the application. You can use the zone identifier
returned by this routine in calls to the following RTL LIB$ routines:

LIB$FREE_ VM

LIB$GET_VM

LIB$DELETE_ VM_ZONE

LIB$RESET_ VM_ZONE

LIB$SHOW _ VM_ZONE

LIB$VERIFY _ VM_ZONE

The arguments for PPL$CREATE_ VM_ZONE are identical to those of
LIB$CREATE_ VM_ZONE, except for the last two arguments; PPL$CREATE_
VM_ZONE does not accept the get-page and free-page arguments provided by
LIB$CREATE_ VM_ZONE. It is the caller's responsibility to ensure that the caller
has exclusive access to the zone while the reset operation is being performed.

All participants in the application share the memory allocated by calls to
LIB$GET_ VM. Therefore, memory allocated by one participant can be read and
freed by another participant.

3-3

Shared Memory Operations
3.3 Deleting a Virtual Memory Zone

3.3 Deleting a Virtual Memory Zone

3-4

PPL$DELETE_ VM_ZONE deletes a specified storage zone and returns all pages
owned by the zone to the application-wide page pool. For more information on
deleting virtual memory zones, refer to the description of LIB$DELETE_ VM_
ZONE in the Open VMS RTL Library (LIB$) Manual.

You must ensure that all processes in the application are no longer using any of
the memory in the zone before you call PPL$DELETE_ VM_ZONE. None of the
processes in the application can perform any further operations on the zone after
you call PPL$DELETE_ VM_ZONE.

4
Synchronization Operations

One method of ensuring consistent access to program data is to synchronize
cooperating processes. Synchronization can be described as a set of constraints
that affects or controls the ordering of events in your decomposed application.
You can use synchronization mechanisms to delay execution of a particular
process in order to satisfy any such constraints.

The PPL$ facility provides routines to create and manipulate synchronization
elements, which control the order of processing in a parallel application. These
routines implement the following synchronization elements:

• Barriers

• Events

• Semaphores

• Spin locks

• Work queues

The PPL$ facility also provides a routine that can be used to retrieve the
identifier of any named object. An object can be a synchronization element or
shared memory zone. All of the synchronization routines are discussed in the
following sections.

4.1 Retrieving an Object Identifier
Given the name of a barrier, event, semaphore, spin lock, work queue, or shared
memory zone, the PPL$FIND_OBJECT_ID routine returns the identifier of the
object associated with the name you specify. (An object can be a synchronization
element or shared memory zone.) This routine is useful when you are trying to
ensure that a particular object's identifier is available to all participants that
need access to that object. By naming the object when you actually create it,
you can then use PPL$FIND_OBJECT_ID to let other participants retrieve the
identifier of the object of that name. Object names are case sensitive.

You can also retrieve the identifier of an object by naming that object and
"recreating" it. That is, after you have created an object, all participants that
need to access that object's identifier can call the appropriate "create" routine,
specifying the same name for the object. This returns the identifier of the existing
object and a status of PPL$_ELEALREXI. One benefit of using this method is
that all participants can share the same code, with each one calling the same
create routine with the same parameter values.

4-1

Synchronization Operations
4.2 Barrier Synchronization

4.2 Barrier Synchronization
Barrier synchronization lets you establish a barrier, or a point that a specific
number of participants must reach before continuing their work. This method
of synchronization is useful if you have multiple execution paths that need to
synchronize at a particular point (generally, at the completion of a set of work
items). To implement barrier synchronization, the PPL$ facility supplies the
following routines:

PPL$CREATE_BARRIER

PPL$DELETE_BARRIER

PPL$READ_BARRIER

PPL$WAIT_AT_BARRIER

PPL$SET_QUORUM

PPL$ADJUST_QUORUM

Creates a barrier synchronization element

Deletes a barrier synchronization element

Returns a barrier's current quorum and number of
participants waiting at the barrier

Waits until the quorum is reached for that barrier

Establishes the initial quorum for an inactive barrier

Increments or decrements an active barrier's quorum

Using all of these routines, you can implement barrier synchronization in your
parallel application.

4.2.1 Creating a Barrier

4-2

The PPL$CREATE_BARRIER routine creates and initializes a barrier
synchronization element, and returns the identifier of that barrier. This identifier
is used as an argument to the other barrier synchronization routines.

When you create a barrier using PPL$CREATE_BARRIER, you can optionally
specify a quorum. The quorum specifies the number of participants required
to terminate a wait for the barrier. For example, if the quorum value is set to
3, the first two callers of PPL$WAIT_AT_BARRIER that specify this barrier
will be blocked until a third caller issues that request. At that point, all three
participants will be released for further processing. If you omit the quorum
parameter, a default value of 1 is assigned.

For example, the following call to PPL$CREATE_BARRIER creates a barrier
named my_barrier with a quorum value of 3.

status= PPL$CREATE_BARRIER (my_barrier_id, 'rny_barrier', %REF(3))

PPL$CREATE_BARRIER returns a barrier identifier that you must use in all
subsequent operations on that barrier. It is your responsibility to make this
identifier available to all participants that need to access that barrier. To do so,
you can place the barrier identifier in shared memory. However, there is another
option. When you initially create the barrier, specify a barrier name. Then use
either of the two following methods to let any participant retrieve the barrier
identifier:

• Call PPL$FIND_OBJECT_ID to retrieve the identifier of the barrier with that
name.

• Call PPL$CREATE_BARRIER again, specifying the same barrier name, to
retrieve the identifier of that barrier.

Synchronization Operations
4.2 Barrier Synchronization

4.2.2 Deleting a Barrier
PPL$DELETE_BARRIER deletes a barrier and releases any storage associated
with it. A barrier may be specified by either its name or its identifier.

You cannot delete a barrier if participants are waiting at the barrier. If you
attempt to delete a barrier at which participants are waiting, PPL$ returns
the PPL$_ELEINUSE error. (Call PPL$ADJUST_QUORUM to release the
waiting participants before deleting the barrier.) None of the participants in
the application can perform any further operations on the barrier after you call
PPL$DELETE_BARRIER.

4.2.3 Reading a Barrier
The PPL$READ_BARRIER routine returns the specified barrier's current quorum
and the number of participants currently waiting (blocked) at the barrier. This
routine is useful if, for example, you want to adjust the barrier's quorum with
the PPL$ADJUST_QUORUM routine, but you want to first determine how many
participants have reached the barrier.

Calls by other participants to the PPL$ barrier routines may affect the values
returned by PPL$READ_BARRIER. In effect, the values returned by this routine
may be outdated before you receive them.

4.2.4 Waiting at a Barrier
The PPL$WAIT_AT_BARRIER routine causes the caller to wait at the specified
barrier until the specified number (quorum) of participants have arrived at the
barrier. Once the quorum is reached, all waiting participants are released for
further execution. The barrier is in effect from the time the first participant calls
PPL$WAIT_AT_BARRIER until each member of the quorum has issued the call.

The number of participants required to constitute a quorum can be defined by
calls to the PPL$CREATE_BARRIER, PPL$SET_QUORUM, and PPL$ADJUST_
QUORUM services. Note that a call to PPL$ADJUST_QUORUM can result in
the conclusion of a barrier wait. '

In the following example, a barrier is created with the name synch_barrier and
an identifier named barrier _id. The quorum for this barrier is set to one greater
than the number of subordinates, meaning that all participants in the application
(including the parent) are required to terminate barrier synch_barrier. Later in
the application, every participant must perform the same call to PPL$WAIT_AT_
BARRIER, specifying the same barrier identifier (barrier _id) in order to reach the
quorum and terminate the barrier.

status = PPL$CREATE_BARRIER (barrier_id, 'synch_barrier',
1 %REF (subordinates+l))

status = PPL$WAIT_AT_BARRIER (barrier_id)

PPL$WAIT_AT_BARRIER also has a spin/wait option. A user may request
to have a process spin instead of hibernating while it is blocked on the
synchronization object. In addition, the user may specify the maximum number
of spins to be performed before hibernating.

4-3

Synchronization Operations
4.2 Barrier Synchronization

Two new flags have been added to the PPL$ facility:

• PPL$M_SPIN_ WAIT

Causes the process to spin as long as it is blocked on the synchronization
object (never hibernate).

• PPL$M_SPIN_COUNTED

Causes the process to spin the specified number of times and then to
hibernate.

4.2.5 Setting a Barrier Quorum
The PPL$SET_QUORUM routine lets you establish an initial value for the
specified barrier's quorum. That is, you can use PPL$SET_QUORUM to change
the value of the quorum for any barrier at which participants are not currently
waiting. For example, you might want to use PPL$SET_QUORUM to set the
initial barrier quorum if you did not supply a value in your call to PPL$CREATE_
BARRIER. You can also use PPL$SET_QUORUM to change the quorum of a
barrier once the previous quorum has been reached and all waiting participants
have continued execution.

To illustrate, the previous example could also have been accomplished using the
PPL$SET_QUORUM routine instead of specifying the quorum value in the call to
PPL$CREATE_BARRIER.

status PPL$CREATE_BARRIER (barrier_id, 'synch_barrier')
status= PPL$SET_QUORUM (barrier_id, %REF(subordinates+l))

status = PPL$WAIT_AT_BARRIER (barrier_id)

Note that PPL$SET_QUORUM must be called while no participants have called
PPL$WAIT_AT_BARRIER (in other words, while there are no participants
waiting at the barrier).

4.2.6 Adjusting a Barrier Quorum

4-4

The PPL$ADJUST_QUORUM routine lets you increment or decrement the
quorum of a barrier that is currently active. That is, using PPL$ADJUST_
QUORUM, you can dynamically alter the number of participants required to
conclude a wait on a particular barrier.

For example, if an expected barrier participant terminates without calling
PPL$WAIT_AT_BARRIER, the quorum will never be reached and the waiting
participants will wait forever. By using PPL$ADJUST_QUORUM, any
participant that discovers the unexpected termination of a barrier participant
could then decrement the quorum value by one to accommodate this situation.
Note that if you dynamically alter the quorum value to match the number of
participants already waiting at a barrier, the barrier will be concluded and the
participants will continue their execution. Be sure that your application properly
accounts for the number of participants expected to wait at a specified barrier.

4.3 Event Synchronization

Synchronization Operations
4.3 Event Synchronization

An event is a synchronization element that has an associated state; this state
may take on a value of occurred or not_occurred. You can enable notification
when an event occurs, and you can trigger that notification as desired. You can
also enable event notification for two predefined events, PPL$K_NORMAL_EXIT
and PPL$K_ABNORMAL_EXIT. One of those events, as appropriate, is triggered
automatically by PPL$ when a process terminates. (See PPL$CREATE_EVENT
for more information.) The PPL$ facility provides nine routines that help you
implement event synchronization.

PPL$CREATE_EVENT

PPL$DELETE_EVENT

PPL$ENABLE_EVENT_AST

PPL$ENABLE_EVENT_SIGNAL

PPL$DISABLE_EVENT

PPL$AWAIT_EVENT

PPL$TRIGGER_EVENT

PPL$READ_EVENT

PPL$RESET_EVENT

Creates a user-defined event

Deletes a user-defined event

Delivers an AST when the event has occurred

Delivers a signal condition when the event has
occurred

Disables delivery of event notification to the caller
by AST or signal, or both

Blocks the caller until the event state becomes
occurred

Sets the event state to occurred

Returns the current state of the event

Resets the event state to not_occurred

The following sections discuss each of the event synchronization routines in more
detail.

4.3.1 Creating an Event
The PPL$CREATE_EVENT routine creates an arbitrary user-defined event
and returns the event's identifier. When you first create an event, the state of
the event is set to not_occurred. All other operations on an event hinge on the
operation of setting the state of an event to occurred.

In the following example, an event is created called synch_event.

status= PPL$CREATE_EVENT (my_event_id, 'synch_event')

PPL$CREATE_EVENT returns an event identifier that you must use in all
subsequent operations on that event. It is your responsibility to make this
identifier avai_lable to all the participants that need to access that event. To do so,
you could place the event identifier in shared memory. However, there is another
option. When you create the event initially, specify an event name. Then use
either one of the two following methods to let any participant retrieve the event
identifier:

• Call PPL$FIND_OBJECT_ID to retrieve the identifier of the event with that
name.

• Call PPL$CREATE_EVENT again, specifying the same event name, to
retrieve the identifier of that event.

4-5

Synchronization Operations
4.3 Event Synchronization

4.3.2 Deleting an Event
PPL$DELETE_EVENT deletes a specified event and releases any storage
associated with it. You cannot delete an event if participants are waiting for
the event to occur. However, an event can be deleted if other participants have
enabled notification of the event, or if outstanding triggers are queued for the
event. None of the participants in the application can perform any further
operations on the event after you call PPL$DELETE_EVENT.

4.3.3 Enabling an Event AST
The PPL$ENABLE_EVENT_AST routine lets you establish an AST routine (and
optionally an argument to that routine) that will deliver an AST when a specified
event occurs; that is, when the state of the event becomes occurred. If the state
of the event is already occurred when you call this routine, the AST is delivered
immediately, and the event state is reset to not_occurred. If the state of the event
is not_occurred when you call this routine, your request for an AST to notify
the caller of an event's occurrence is placed in a queue, and is processed once
the event actually occurs (when a corresponding trigger is issued). Generally,
a trigger is issued when a participant calls PPL$TRIGGER_EVENT. However,
the PPL$ facility triggers predefined events automatically. Note that the caller
continues execution immediately after the AST request is placed in the queue.

The astprm parameter has special requirements when used in conjunction with
the PPL$ facility.

• For user-defined events, the astprm should point to a vector of two unsigned
longwords. The first longword is a "context" reserved for the user; it is not
read or modified by PPL$. The second longword receives the value specified
in the call to PPL$TRIGGER_EVENT that results in the delivery of this AST.

• For PPL$-defined events (those not created by the user), the astprm
parameter should point to a vector of four unsigned longwords that
accommodates the following:

• The user's "context" longword

• The longword to receive the event's distinguishing condition-value

• The parameters to the PPL$-defined event (the "trigger" parameter)

For example, the events corresponding to PPL$_ABNORMAL_EXIT and
PPL$_NORMAL_EXIT require an array of four longwords, since each of
these events has two additional parameters-the participant-index and
the exit-status of the terminating participant. A condition value of PPL$_
ABNORMAL_EXIT or PPL$_NORMAL_EXIT is passed as the astprm for the
corresponding PPL$-defined event.

4.3.4 Enabling an Event Signal

4-6

The PPL$ENABLE_EVENT_SIGNAL routine lets you specify a condition value
to be signaled when the specified event occurs; that is, when the state of the
event becomes occurred. If the state of the event is already occurred when you
call this routine, the signal is delivered immediately, and the event state is reset
to not_occurred. Otherwise, your request for a signal to notify the caller of an
event's occurrence is placed in the queue, and is processed once the event actually
occurs (when a corresponding trigger is issued). Generally, a trigger is issued
when a participant calls PPL$TRIGGER_EVENT. However, the PPL$ facility
triggers predefined events automatically. Note that the caller continues execution
immediately after the signal request is placed in the queue.

Synchronization Operations
4.3 Event Synchronization

The following example illustrates a simple call to PPL$ENABLE_EVENT_
SIGNAL. Once the event my _event_id is triggered, the value user _arg is signaled
at the time the event occurs.

user_arg = rny_cond_value + STS$K_SEVERE
status = PPL$ENABLE_EVENT_SIGNAL (rny_event_id, user_arg)

Note that two values are signaled if you also supply a value to PPL$TRIGGER_
EVENT. The parameter you pass to PPL$ENABLE_EVENT_SIGNAL is the first
condition value, and the parameter you pass to PPL$TRIGGER_EVENT is the
second condition value.

Refer to the Open VMS System Services Reference Manual for more information on
condition values.

4.3.5 Disabling an Event
PPL$DISABLE_EVENT disables delivery of event notification to the calling
participant by AST or signal, or both. (This routine has no effect on other
participants that called PPL$AWAIT_EVENT and are waiting for an event to
occur.)

There may be some delay between the time that this routine is called and the
time that the event is actually disabled. The calling program should be prepared
to handle event notification until the time that this routine returns.

4.3.6 Awaiting an Event
The PPL$AWAIT_EVENT routine lets you specify that the caller should be
blocked until the specified event occurs; that is, until the state of the event
becomes occurred. If the state of the event is already occurred when you call this
routine, the caller proceeds immediately (without being blocked), and the event
state is reset to not_occurred. Otherwise, the caller's request to be awakened
when the event occurs is queued, and the caller is blocked.

In this example, the caller specifies that it should be blocked until the event
specified by my _event_id has occurred.

user_arg = rny_cond_value
status = PPL$AWAIT_EVENT (rny_event_id, user_arg)

4.3. 7 Triggering an Event
The PPL$TRIGGER_EVENT routine lets you set an event's state to occurred.
At that point, all requests queued for event notification are processed, so that
any enabled ASTs or signals, or both, are delivered, and any participant blocked
awaiting an event is awakened. You may also specify notification of only one
of the queued requests. Once any signals and ASTs have been processed and
any blocked participants have been awakened, the state of the event is reset to
not_occurred. All of these actions occur atomically with respect to the event (in
other words, once these actions begin, they complete without interruption from
other event operations).

If no requests are queued for the event at the time of the trigger, the event's
state becomes occurred, and the first call to PPL$ENABLE_EVENT_AST or
PPL$ENABLE_EVENT_SIGNAL receives the requested notification.

Note ___________ _

An arbitrary number of triggers may be queued for an event before any
participant enables event notification. The pi:;esence of another queued

4-7

Synchronization Operations
4.3 Event Synchronization

trigger at the completion of processing one trigger forces the state to
again become occurred. That is, processing of a queued trigger occurs
immediately after processing the previous trigger.

In the following example, the event my _event_id is triggered, thereby releasing
all participants awaiting the change of that event's state to occurred. Because
a value is not specified for the signal value in this call, or in the previous call
to PPL$ENABLE_EVENT_SIGNAL, the status signaled is PPL$_EVENT_
OCCURRED.

user_arg = my_cond_value + STS$K_SEVERE
status = PPL$TRIGGER_EVENT (my_event_id, user_arg)

4.3.8 Reading an Event
The PPL$READ_EVENT routine returns the current state of the specified event.
The state can be occurred or not_occurred.

Calls by other participants to the PPL$ event routines may affect the values
returned by PPL$READ_EVENT. In effect, the values returned by this routine
may be outdated before you receive them.

4.3.9 Resetting an Event
PPL$RESET_EVENT resets the event state associated with a specified event
to not_occurred. Any triggers queued by calls to PPL$TRIGGER_EVENT are
removed from the queue.

4.3.10 Predefined Events

4-8

The PPL$ facility creates and predefines the events PPL$K_NORMAL_EXIT and
PPL$K_ABNORMAL_EXIT. You need not create these events. (These events are
described in the following sections.) When a normal or abnormal exit occurs,
PPL$ triggers the event automatically. Note that you can ignore these predefined
events at no cost. However, Digital recommends that you enable event notification
of PPL$K_ABNORMAL_EXIT, because that condition usually indicates a severe
error. Notification is delivered only if you explicitly request it by specifying the
predefined event as the event-id in a call to PPL$ENABLE_EVENT_SIGNAL,
PPL$ENABLE_EVENT_AST, or PPL$AWAIT_EVENT.

1. PPL$K_NORMAL_EXIT-This event is triggered by PPL$ when an
application participant exits normally. Normal exits include the following:

• The participant returns a success status

• The participant calls PPL$TERMINATE

• The subordinate's parent calls PPL$TERMINATE, specifying PPL$M_
STOP _CHILDREN

• Some other participant calls PPL$STOP to terminate this participant or
its parent

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is PPL$_
NORMAL_EXI-T.

Synchronization Operations
4.3 Event Synchronization

2. PPL$K_ABNORMAL_EXIT-This event is triggered by PPL$ when an
application participant exits abnormally. Abnormal exits include the
following:

• The participant returns an error status

• A mechanism outside PPL$ forces termination and prevents the execution
of exit handlers (for example, the DCL command STOP/ID)

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is PPL$_
ABNORMAL_EXIT.

There are some special usage considerations for the PPL$ predefined events
if delivery of an AST is requested. Refer to the description section of
PPL$ENABLE_EVENT_AST for more information.

4.4 Semaphore Synchronization
A semaphore is a special common variable that you can use to implement mutual
exclusion. That is, a semaphore lets you control the availability of a particular
critical region or resource. The value of the semaphore variable represents the
number of resources available, so that by decrementing and incrementing the
semaphore you can control the access to some critical section of your application.

The semaphore, referred to here ass, is usually initialized to 1. Ifs can
only assume the values 0 and 1, it is called a binary semaphore. A binary
semaphore acts like a lock bit; it allows only one process at a time to execute
a critical section or access a resource, and all other processes are blocked. If
a fairness queue is included in the implementation of the semaphore, then
any blocked process is put into the queue. When the critical region or resource
becomes available, the blocked processes are granted access in some fair order.
If there is no fairness queue, then when the critical section is free, any waiting
process can be granted access randomly.

If you want to implement a semaphore that represents multiple resources,
you can use a counting semaphore. A counting semaphore can take any
nonnegative integer value; this value again represents the number of available
resources. By decrementing and incrementing this semaphore, you can control
access to these multiple resources. The semaphores provided by the PPL$
facility are counting semaphores. Counting semaphores have associated waiting
queues, so that semaphore requests are not lost but are placed in the appropriate
waiting queue until they can be processed. (If you want to implement a binary
semaphore, specify a maximum semaphore value of 1.)

Consider the following situation. You have a system with three available line
printers. By creating a counting semaphore with an initial value of 3, you can
control access to these resources. Process A requests a single line printer; you
decrement the semaphore value and grant process A access. Process B then
requests access to a line printer. Because there are two printers still available,
you decrement the semaphore again and grant process B access. If, however,
process C requests access to two line printers, you cannot grant access to process
C because there is only one printer available. At that point, process C must wait
until one of the other printers becomes available, and then access can be granted.

4-9

Synchronization Operations
4.4 Semaphore Synchronization

4-10

You control the values of both binary and counting semaphore variables by means
of the Wait and Signal primitive operations. (See Section 4.4.3 for the routine,
PPL$DECREMENT_SEMAPHORE, that corresponds to the Wait operation. See
Section 4.4.4 for the routine, PPL$INCREMENT_SEMAPHORE, that corresponds
to the Signal operation.) The Wait operation lets you acquire permission to enter
a critical section. If the process cannot be granted access at that time, the Wait
operation causes the requesting process to wait. The Signal operation records
the termination of another process's access to a critical section and signals the
next process to get permission to enter. The following example shows a general
implementation of the Wait and Signal operations.

Wait(s): IF s > 0
THEN

s := s - 1
ELSE

Suspend the execution of the process that
called Wait(s).

Signal(s): IF some process A has been suspended by a previous
Wait(s) on this semaphore

THEN
Wake up process A

ELSE
s := s + 1

The Wait operation tries to grant a requesting process access to some resource.
If, at the start of the Wait operation, the value of the semaphore s is greater than
zero, then access is granted and the semaphore is decremented. If the value of
s is zero, then no resources are available and the requesting process is forced to
wait.

The Signal operation notifies a waiting process that a resource is now available.
If there is a suspended process waiting for that resource, then that process is
immediately woken and granted access. If there is no waiting process, then the
Signal operation increments the value of s by the appropriate number so that the
released resources are marked as available.

The PPL$ facility supports the use of semaphores as a synchronization technique.
You can implement semaphore synchronization using the following PPL$ routines:

PPL$CREATE_SEMAPHORE Creates and initializes a semaphore with a
waiting queue

PPL$DELETE_SEMAPHORE Deletes a semaphore and releases any
storage associated with it

PPL$DECREMENT_SEMAPHORE Waits for the semaphore to have a value
greater than zero and then decrements the
semaphore

PPL$INCREMENT_SEMAPHORE Increments the value of a semaphore by 1

PPL$READ_SEMAPHORE Returns the current and/or maximum values
of the specified semaphore or the number of
waiting participants

PPL$ADJUST_SEMAPHORE_MAXIMUM Increments or decrements the maximum
value of a semaphore

PPL$SET_SEMAPHORE_MAXIMUM Sets the maximum value of a semaphore

The routines supporting semaphore synchronization are discussed in the following
sections.

Synchronization Operations
4.4 Semaphore Synchronization

4.4.1 Creating a Semaphore
The PPL$CREATE_SEMAPHORE routine creates and initializes a
semaphore with a waiting queue. The waiting queue stores any caller of
PPL$DECREMENT_SEMAPHORE that must be blocked because the resource
is unavailable. In your call to PPL$CREATE_SEMAPHORE, you can specify a
semaphore name, a maximum value for the semaphore, and an initial value for
the semaphore, all of which are optional. The identifier parameter is required.

In the following example, PPL$CREATE_SEMAPHORE is used to create a binary
semaphore (maximum value of 1).

max_value = 1
init_value = 1

status = PPL$CREATE_SEMAPHORE (my_sem_id, 'my_sem', max_value,
init_value)

PPL$CREATE_SEMAPHORE returns a semaphore identifier that you must use
in all subsequent operations on that semaphore. It is your responsibility to make
this identifier available to all the participants that need to access that semaphore.
To do so, you could place the semaphore identifier in shared memory. However,
there is another option. When you create the semaphore initially, specify a
semaphore name. Then use either one of the two following methods to let any
participant retrieve the semaphore identifier:

• Call PPL$FIND_OBJECT_ID to retrieve the identifier of the semaphore with
that name.

• Call PPL$CREATE_SEMAPHORE again, specifying the same semaphore
name, to retrieve the identifier of that semaphore.

4.4.2 Deleting a Semaphore
PPL$DELETE_SEMAPHORE deletes a specified semaphore and releases any
storage associated with it. You cannot delete a semaphore if participants are
waiting for the semaphore. None of the participants in the application can
perform any further operations on the semaphore after you call PPL$DELETE_
SEMAPHORE.

4.4.3 Decrementing a Semaphore
The PPL$DECREMENT_SEMAPHORE routine waits for a semaphore to have
a value greater than zero, and then decrements the value by 1 to indicate the
allocation of a resource. If the value of the semaphore is zero at the time of the
call, the caller is put in the associated waiting queue and is suspended. This
operation is analogous to the wait protocol.

You can modify the behavior of this routine by specifying a flag parameter that
indicates that you do not want the caller to be blocked for this operation. That
is, you can request that the semaphore be decremented only if it can be done
without causing the caller to be blocked. You might want to do this, for example,
in situations where the cost of waiting for a resource is not desirable, or if you
merely intend to request immediate access to any one of a number of resources.

In the following example, the caller requests access to a resource by decrementing
the semaphore my _sem_id. However, the caller does not want to be blocked if the
resource is not available, so the flag PPL$M_NON_BLOCKING is specified.

4-11

Synchronization Operations
4.4 Semaphore Synchronization

flag = PPL$M_NON_BLOCKING

status = PPL$DECREMENT_SEMAPHORE (rny_sern_id, flag)

PPL$DECREMENT_SEMAPHORE also has a spin/wait option. A user may
request to have a process spin instead of hibernating while it is blocked on the
synchronization object. In addition, the user may specify the maximum number
of spins to be performed before hibernating.

Two new flags have been added to the PPL$ facility:

• PPL$M_SPIN_ WAIT

Causes the process to spin as long as it is blocked on the synchronization
object (never hibernate).

• PPL$M_SPIN_COUNTED

Causes the process to spin the specified number of times and then to
hibernate.

4.4.4 Incrementing a Semaphore
The PPL$INCREMENT_SEMAPHORE routine increments the value of a
semaphore by 1. This is analogous to the signal protocol. If any participants
are blocked on a call to PPL$DECREMENT_SEMAPHORE for this particular
semaphore, one of these participants is removed from the waiting queue and
awakened.

If the caller in the previous example gains access to the semaphore my _sem_id, a
subsequent call to PPL$INCREMENT_SEMAPHORE is required once the caller
completes its required access to the resource.

status = PPL$INCREMENT_SEMAPHORE (rny_sern_id)

4.4.5 Reading a Semaphore Value
PPL$READ_SEMAPHORE returns the following information about a semaphore:

• The current value of the specified semaphore

• The number of participants currently waiting at the semaphore

• The maximum value of the specified semaphore

You can use this routine to determine how many resources are currently
available, for example, or the maximum number of resources that can be
allocated.

Calls by other participants to the PPL$ semaphore routines may affect the values
returned by PPL$READ_SEMAPHORE. In effect, the values returned by this
routine may be outdated before you receive them.

4.4.6 Adjusting a Semaphore Maximum

4-12

PPL$ADJUST_SEMAPHORE_MAXIMUM dynamically increases or decreases the
maximum value of a semaphore, therefore allowing you to dynamically alter the
number of resources protected by the semaphore. The semaphore's current value
is adjusted by a value you specify to reflect the new maximum. A semaphore
maximum cannot be decreased by a value that is greater than the current value
of the semaphore.

4.4.7 Setting a Semaphore Maximum

Synchronization Operations
4.4 Semaphore Synchronization

PPL$SET_SEMAPHORE_MAXIMUM allows you to dynamically set the
maximum value of a semaphore. This allows semaphores to be reused for
different purposes with various numbers of participants.

Calling PPL$SET_SEMAPHORE_MAXIMUM changes the semaphore's current
value to the new maximum value you specify.

You can call PPL$SET_SEMAPHORE_MAXIMUM only when the semaphore's
current value is equal to its maximum (in other words, there are no participants
using resources that are protected by the semaphore).

4.5 Spin Lock Synchronization
A spin lock is a lock on a critical section that constantly tests to see whether or
not access to the critical section is available. (Any segment of your program that
must be executed by only a single process at a time is called a critical section.)
Because this method of mutual exclusion is constantly testing the lock and is
therefore CPU intensive, it should only be used on dedicated parallel processing
systems. A spin lock is not recommended for use in a general time-sharing
environment, or when fairness in obtaining the lock is important.

The PPL$ facility provides routines to implement spin lock synchronization. You
can implement spin locks using the following PPL$ routines:

PPL$CREATE_SPIN_LOCK

PPL$DELETE_SPIN_LOCK

PPL$SEIZE_SPIN_LOCK

PPL$RELEASE_SPIN_LOCK

PPL$READ_SPIN_LOCK

Creates and initializes a simple (spin) lock

Deletes a spin lock and releases any storage associated
with it

Retrieves a simple (spin) lock by waiting in a spin loop
until the lock is free

Relinquishes a spin lock

Returns the current state of a spin lock

The routines implementing spin locks are discussed in the following sections.

4.5.1 Creating a Spin Lock
The PPL$CREATE_SPIN_LOCK routine creates and initializes a simple (spin)
lock and returns the identifier. The newly created lock is initialized to zero,
indicating that the lock is not set.

In the following example, a spin lock is created named my _spin_lock. This lock is
initialized to zero at creation.

status= PPL$CREATE_SPIN_LOCK (my_lock_id, 'my_spin_lock')

PPL$CREATE_SPIN_LOCK returns a spin lock identifier that you must use in
all subsequent operations on that spin lock. It is your responsibility to make this
identifier available to all the participants that need to access that spin lock. To do
so, you could place the spin lock identifier in shared memory. However, there is
another option. When you create the spin lock initially, specify a spin lock name.
Then use either one of the two following methods to let any participant retrieve
the spin lock identifier:

• Call PPL$FIND_OBJECT_ID to retrieve the identifier of the spin lock with
that name.

• Call PPL$CREATE_SPIN_LOCK again, specifying the same spin lock name,
to retrieve the identifier of that spin lock.

4-13

Synchronization Operations
4.5 Spin Lock Synchronization

4.5.2 Deleting a Spin Lock
PPL$DELETE_SPIN_LOCK deletes a spin lock and releases any storage
associated with it. You cannot delete a spin lock if it is held by any process
in the application. None of the participants in the application can perform any
further operations on the spin lock after you call PPL$DELETE_SPIN_LOCK.

4.5.3 Seizing a Spin Lock
The PPL$SEIZE_SPIN_LOCK routine acquires a spin lock by waiting in a spin
loop until the lock is free. If you specify the PPL$M_NON_BLOCKING flag in
your call to PPL$SEIZE_SPIN_LOCK, the caller does not wait in the spin loop if
it cannot immediately obtain the lock.

Once you acquire the spin lock, you have exclusive access to it until you call
PPL$RELEASE_SPIN_LOCK to free the lock.

In the following example, the caller puts itself in a spin loop waiting for the spin
lock to be available. If the caller had specified the PPL$M_NON_BLOCKING
flag, the caller would not have been blocked if the spin lock was not available.

status = PPL$SEIZE_SPIN_LOCK (my_lock_id)

4.5.4 Releasing a Spin Lock
The PPL$RELEASE_SPIN_LOCK routine relinquishes your control over the spin
lock. If there are other participants waiting in a spin loop to obtain this lock, this
routine allows one of those participants to get the lock, thereby terminating that
spin loop. Note that the participant that then gets the lock is not necessarily the
one that has been waiting the longest.

Continuing the previous example, once the caller gains access to the spin loop, it
continues processing and must call PPL$RELEASE_SPIN_LOCK once the caller
is finished with the lock. Otherwise, any other participants blocked in spin loops
can never resume execution.

status = PPL$RELEASE_SPIN_LOCK (my_lock_id)

4.5.5 Reading a Spin Lock
PPL$READ_SPIN_LOCK returns the current state of the specified spin lock. The
state can be seized or not_seized. Calls by other participants to the PPL$ spin
lock routines can affect the state returned by this routine. In effect, the state
returned by this routine may be outdated before you receive it.

4.6 Work Queue Synchronization

4-14

A parallel application that uses a work queue consists of a queue of work
items and participants to complete the work items. In this method of parallel
processing, one or more participants serve as task "dispatchers." These
·participants place work items that identify a task to be performed into a
work queue. For example, the work items can be obtained from a user or a
transaction file. Other participants ("servers") remove the work items from the
queue and execute the indicated task. When there is no work to be done, the
dispatchers await input from the user, and the servers block on the empty queue.

Work queues are similar to semaphores-inserting an item into a work queue
is analogous to incrementing a semaphore, and removing an item from a work
queue is analogous to decrementing a semaphore.

Synchronization Operations
4.6 Work Queue Synchronization

The PPL$ work queue routines implement a simple priority queue. You can
attach a priority to a work item, but by default the priority is zero. Therefore, if
an application accepts the default when inserting work items into the queue, the
queue behaves like a simple FIFO (first in, first out) model.

The PPL$ facility provides the following routines to implement work queue
synchronization.

PPL$CREATE_WORK_QUEUE Creates a work queue

PPL$DELETE_WORK_QUEUE Deletes a work queue

PPL$READ_ WORK_QUEUE Retrieves the number of items in a work queue or the
number of waiting participants

PPL$DELETE_ WORK_ITEM Deletes a specified item from a work queue

PPL$INSERT_ WORK_ITEM Inserts an item into a work queue

PPL$REMOVE_ WORK_ITEM Removes the next item in order from a work queue

The routines implementing work queues are discussed in the following sections.

4.6.1 Creating a Work Queue
PPL$CREATE_WORK_QUEUE creates and initializes a work queue, and returns
the identifier of the queue. The work queue stores work items, which identify
tasks to be performed by other participants.

PPL$CREATE_WORK_QUEUE returns a work queue identifier that you must
use in all subsequent operations on that queue. It is your responsibility to make
this identifier available to all the participants that need to access the queue. To
do so, you can place the work queue identifier in shared memory. However, there
is another option. When you initially create the work queue, specify a queue
name. Then use either one of the two following methods to let any participant
retrieve the work queue identifier:

• Call PPL$FIND_OBJECT_ID to retrieve the identifier of the work queue with
that name.

• Call PPL$CREATE_ WORK_ QUEUE again, specifying the same queue name,
to retrieve the identifier of that work queue.

4.6.2 Deleting a Work Queue
PPL$DELETE_ WORK_QUEUE deletes a work queue and releases any internal
storage associated with that queue. If another participant is waiting for a
work item to be placed in the queue, it is awakened. None of the participants
in the application can do further operations on the work queue after you call
PPL$DELETE_ WORK_QUEUE.

A work queue must be empty before it can be deleted (unless you specify the
PPL$M_FORCEDEL flag). You can force deletion of a queue that is not empty by
specifying the PPL$M_FORCEDEL flag. If you force a queue to be deleted, the
PPL$ facility makes no assumptions about the contents of the work items. If your
items consist of pointers to pieces of shared memory, it is your responsibility to
deallocate all work items in the queue before deleting the queue.

4-15

Synchronization Operations
4.6 Work Queue Synchronization

4.6.3 Reading a Work Queue
PPL$READ_WORK_QUEUE returns the following information about a work
queue:

• The number of items presently in the specified work queue

• The number of participants currently waiting for items to be inserted into the
work queue

Calls by other participants to the PPL$ work queue routines may affect the
values returned by PPL$READ_WORK_QUEUE. In effect, the values returned by
this routine may be outdated before you receive them.

4.6.4 Inserting a Work Item
PPL$INSERT_WORK_ITEM inserts a value into a work queue. If another
participant is waiting for an item to be placed into the queue, that participant
is awakened and will remove the newly inserted item after the call to
PPL$INSERT_ WORK_ITEM.

By default, the item is inserted into the queue after any items with a higher or
equal numerical priority and before any items with a lower priority. If you specify
the flag PPL$M_ATHEAD, the item is inserted before any other items of an equal
priority.

If an application always uses the default (zero) for the priority argument, the
result is a simple FIFO (first in, first out) queue. PPL$ inserts new items at the
end of the queue by default, or at the beginning of the queue if you specify the
PPL$M_ATHEAD value for the flags argument.

The content of the work-item argument is completely arbitrary. You may want
to place single longword values into work-item (for example, the number of
a function or task to be performed). You can also use work-item to pass a
pointer to a data block. (This data block must reside in memory created by
PPL$CREATE_SHARED _MEMORY or allocated from a shared memory zone
created by PPL$CREATE_ VM_ZONE.)

4.6.5 Removing a Work Item

4-16

PPL$REMOVE_ WORK_ITEM removes the next item with the highest priority
from the specified queue. If the queue is empty, the participant hibernates until
an item is placed in the queue by another participant. When an item is placed in
the queue, the participant awakens and proceeds normally. If the queue is empty
and PPL$REMOVE_ WORK_ITEM is called with the PPL$M_NON_BLOCKING
flag set, the routine returns immediately with the PPL$_NOT_AVAILABLE
status, indicating that an item was not removed from the queue.

If a participant is hibernating (awaiting an item to be placed into the queue) and
the queue is deleted, the participant is awakened and returns immediately with
the PPL$_DELETED status, indicating that the queue was deleted and no item
was removed.

PPL$REMOVE_ WORK_ITEM also has a spin/wait option. A user may request
to have a process spin instead of hibernating while it is blocked on the
synchronization object. In addition, the user may specify the maximum number
of spins to be performed before hibernating.

Synchronization Operations
4.6 Work Queue Synchronization

Two new flags have been added to the PPL$ facility:

• PPL$M_SPIN_ WAIT

Causes the process to spin as long as it is blocked on the synchronization
object (never hibernate).

• PPL$M_SPIN_COUNTED

Causes the process to spin the specified number of times and then to
hibernate.

4.6.6 Deleting a Work Item
PPL$DELETE_ WORK_ITEM searches a work queue for an item whose value
matches the one you specify. By default, this routine searches the queue from
beginning to end. If you specify PPL$M_TAILFIRST for the flags argument, the
queue is searched from the end to the beginning. When the first matching work
item is found, the item is deleted and the routine returns with a success status.
However, if the PPL$M_DELETEALL flag is set, PPL$DELETE_ WORK_ITEM
continues searching and deleting matching items until it reaches the end of the
queue.

4-17

5
Developing Parallel Processing Applications

The Parallel Processing Facility (PPL$) is a process-oriented library of routines
that simplifies development of a parallel application. This chapter discusses some
recommended methods for using the Parallel Processing Facility for developing
new programs.

5.1 Programming Considerations
This section describes some items you should consider when you develop a
parallel processing application.

5.1.1 Granularity and Decomposition
When you initially design an application, or redesign an existing application for
parallel execution, you must first decompose the application into separate tasks
that can be executed simultaneously. Decomposition, then, is the act of modifying
a single-stream program into a parallel program by creating parallel sections that
can be executed concurrently.

The first step in decomposing an application is to determine the maximum
number of work items that can be executed simultaneously. You should be able to
carry out these work items independently of:

• The number of processors available

• The order in which the work items will begin execution

• Which work items will finish first

In addition to determining the maximum number of work items for simultaneous
execution, you should also analyze the code to determine

• Which portions of the application are compute intensive

• What dependencies exist between the data used by these work items

• How the data structures are accessed by the application during parallel
execution

By decomposing your application, you have defined which tasks you can execute
in parallel. The amount of work performed by these separate tasks defines the
level of granularity of your decomposed application. The levels of granularity
are as follows:

Coarse Level 1 tasks are those tasks that are actually separate programs.

Level 2 tasks are procedures or subroutines within a program.

Level 3 tasks are loop iterations or code sequences within a single routine of a
program.

Level 4 tasks are the individual statements within a routine of a program.

5-1

Developing Parallel Processing Applications
5.1 Programming Considerations

Fine Level 5 tasks are individual machine instructions.

In general, a finer level of granularity means that less work is performed by
each task, thereby causing a more granular decomposition. It is important to
note that, in most cases, very fine granular decomposition causes a decrease in
performance because the amount of work included in each task does not warrant
the oversynchronization and communication for those tasks.

5.1.2 Data Dependence

5-2

The term data dependence describes a situation in which information produced
by one part of your program is needed for another part to produce accurate
results. By examining data usage in your application, you can determine any
data dependencies that you must maintain in order for your application to
achieve the correct results. Therefore, the goal in analyzing and defining the data
dependencies in a program is to identify which variables and constructs need
synchronization before parallel processing can be implemented correctly.

There are four types of data dependence:

• True dependence

• Antidependence

• Output dependence

• Control or conditional dependence

These types of data dependence are described as follows:

Where 8 represents a statement, if 81 precedes 82, then 82 depends on 81 if

• 82 uses the output of 81. This situation is defined as true dependence and
is shown in the following statements:

81: x = y

82: z = x

In this example, the value of z in 82 depends on the value xis assigned in 81,
thus creating a true dependence.

• 82 might incorrectly use the output of 81 if the statements were reversed.
This is defined as antidependence, and is shown in the following example:

81: z = x

82: x = y

In this example, no dependence exists between 81 and 82 when the
statements are executed sequentially. The value of x in 82 does not depend
on the execution of 81. However, if the order of execution of these two
statements is reversed, a dependence is created. If 82 is executed before Si,
then the value of y again depends on the previous value of x. Therefore, this
example shows antidependence.

• 82 resets the output of 81. This defines output dependence, which is shown
in the following statements:

81: x = 3

82: x = 2

Output dependence defines the situation in which two values are assigned
to the same variable. In this situation, you must preserve the order of these
assignments in case these values are output in some significant order.

Developing Parallel Processing Applications
5.1 Programming Considerations

• 81 is a conditional statement upon which the execution of 82 depends. This
situation is defined as conditional or control dependence, and can be seen
in the following example.

81:IFx=lTHEN ...

82: y = 4

The execution of statement 82 depends on the conditional statement in 81. If
the conditional statement does not test as expected, required code may not be
executed; hence you have a conditional dependence.

A common method of avoiding data dependence is to ensure that the statements
exhibiting dependence are coded in the same task. This ensures that they will
be executed in the proper order. However, for some dependencies you can derive
solutions that still allow for the parallel execution of operations. Consider the
following example:

do i = 6,1000
a(i) = a(i-5) * 5

end do

In this situation, every value of a(i) depends on the previously calculated value
of a(i - 5), thereby exhibiting a true dependence. Although it seems that this
loop cannot be decomposed into parallel tasks because of the data dependency,
there is a possible solution. Since each value of a(i) depends only on the value
of a(i - 5), you can implement parallel do loops that calculate a series of a(i)
values. For example, the first loop could calculate a(i) for values of i including 6,
11, 16, 21, and so on. The second loop could concurrently calculate a(i) for values
of i including 7, 12, 17, and so forth. All of these loops could then be executed
concurrently.

LOOP 1:

do i=6,1000 step 5
a(i) = a(i-5) * 5

end do

LOOP 2:

do i=7,1000 step 5
a(i) = a(i-5) * 5

end do
LOOP 3:

do i=B,1000 step 5
a(i) = a(i-5) * 5

end do
LOOP 4:

do i=9,1000 step 5
a(i) = a(i-5) * 5

end do

LOOP 5:

do i=l0,1000 step 5
a(i) = a(i-5) * 5

end do

You should generally try to avoid situations involving data dependence in parallel
tasks. However, if data dependence is unavoidable, you must use the correct
synchronization and communication mechanisms to maintain the integrity of the
data while executing paths in parallel.

5-3

Developing Parallel Processing Applications
5.1 Programming Considerations

5.1.3 Deadlock

5-4

A process is said to be in a state of deadlock if it is waiting for a particular
lock that it can never get. Deadlock can occur whenever processes compete for
resources or whenever processes wait for each other to complete certain actions.
A simple example of a deadlock situation is as follows: process A is granted
resource X and then requests resource Y. Process B is granted resource Y and
then requests resource X. If both of these resources are unshareable and neither
process will release the resource it holds, then deadlock occurs.

In general, you can create a deadlock situation if one or more of the following
conditions is in effect:

• Mutual exclusion - Each task claims exclusive control of the resources
allocated to it.

• Nonpreemption - A task cannot release the resources it holds until they are
no longer required.

• Wait for - Tasks hold resources already allocated to them while waiting for
additional resources.

• Circular wait - A circular chain of tasks exists such that each task holds one
or more resources that is being requested by the next task in the chain.

Although the first three conditions listed above are desirable for parallel
programming, their existence can lead to deadlock situations in your parallel
applications. There are three ways to deal with deadlock:

• Prevention

In general, to implement a prevention method, you must somehow constrain
your processes so that requests leading to a deadlock never occur. In other
words, you must design your application so that none of the conditions
outlined above can occur.

• Avoidance

For deadlock avoidance, you must create some sort of "scheduler" that controls
resource allocation on the basis of advance information about resource usage
so that deadlock is avoided. That is, you must create ~n environment where
the criteria for deadlock can never occur.

• Detection and Recovery

With deadlock detection and recovery, your "scheduler" gives a resource to a
requesting process as soon as it becomes available. If a deadlock is detected,
the "scheduler" preempts some resource in order to recover from the deadlock
situation.

The difference between deadlock avoidance and detection lies in the fact that, to
implement deadlock avoidance, you must create a parallel processing environment
that never allows the criteria for deadlock to be satisfied. This need not be true
for deadlock detection to be implemented. Deadlock may still occur in a detection
implementation; however, your system will detect the deadlock situation and
recover from it.

Developing Parallel Processing Applications
5.1 Programming Considerations

5.1.4 Naming Components
Digital recommends that you do not name any user-defined component of PPL$
with a name that includes a dollar sign ($). A name that includes a dollar sign
may coincide, with Open VMS facility names.

5.1.5 Using SYS$HIBER
PPL$ uses the $HIBER system service internally. If you intend to use $HIBER
in an environment of layered software, you must consider possible interactions
with underlying layers. Two possible interactions are of particular concern here.
The $WAKE system service does not maintain a count of the number of calls to
$WAKE issued for a given process, nor does it provide for any association between
a particular $WAKE and a particular $HIBER. A program using these services in
a multiprocess environment must ensure that it responds only to those $WAKEs
intended for that program. The program must also guarantee that it does not
unintentionally "use up" a $WAKE required by some other component.

Therefore, any call to $HIBER should be enclosed in a loop that checks for the
validity of a received $WAKE request. This helps ensure correct behavior, at
the expense of some overhead for instances in which no $WAKE was issued to
another facility.

loop
exit when (this_op.hiber_ended);

implying the waker sets this
$HIBER;
endloop;
$WAKE; in case someone else needs it,

expecting that they will similarly
check validity

Note, however, that in a multithread (for example, ADA tasking) environment,
this approach still does not allow for the immediate resumption of threads blocked
by a call to $HIBER other than the current thread, because the current thread is
effectively queuing all those resumption requests. This scenario can be repeated
to an arbitrary depth, thus defeating the parallelism. In addition, threads that
rely on other threads for resumption may be arbitrarily delayed as a result of the
deferral of calls to $WAKE.

In sum, use of a $HIBER/$WAKE scheme can increase response latency and
program overhead. You can avoid the need for those services by using only the
PPL$ routines. Use of the $HIBER and $WAKE system services is discouraged in
conjunction with the PPL$ facility.

Therefore, do not use $HIBER in your parallel application because doing so can
cause unpredictable results.

5.1.6 Disabling ASTs
Because of the potential impact on PPL$, user disabling of ASTs is not
recommended. Use the PPL$ routines for synchronization and notification
rather than AST synchronization and notification techniques.

5-5

Developing Parallel Processing Applications
5.1 Programming Considerations

5.1. 7 ADA, DECthreads, and FORTRAN Considerations
If you call PPL$ from an ADA or a DECthreads application, be sure that only one
thread (task) calls to PPL$ routines at a time. This is necessary because PPL$
is not multithread reentrant. You may want to implement a single thread (task)
that performs all PPL$ operations.

If you use PPL$ in conjunction with VAX FORTRAN Version 5.0, be sure that
you do not explicitly share memory that FORTRAN is already sharing. The
remapping can make it impossible for FORTRAN code to reference these
addresses. Digital recommends that you do not use PPL$ and FORTRAN to
operate on the same shared data. However, you can use PPL$ and FORTRAN
facilities within the same application, and all other features are compatible. Since
FORTRAN's parallel support is fine-grained, you may want to use FORTRAN for
fine-grained tasks and PPL$ for medium- to coarse-grained tasks.

If you use the /PARALLEL qualifier when compiling a FORTRAN program that
calls PPL$ routines, be aware that when the FORTRAN parallel processing
application completes, the subprocesses created during its execution are not
properly deleted and are left in a spin loop, using CPU time. These subprocesses
must be stopped by the user. The easiest way to stop them is to either log out of
the account that executed the parallel application, or explicitly stop them.

5.2 Comparing the Use of Synchronization Elements
When you begin developing a parallel processing application, you can choose
from five types of synchronization elements: barriers, events, semaphores,
spin locks, and work queues. The following sections discuss each type of
synchronization element in general terms. (Refer to Chapter 4 for more
information on synchronization elements.)

5.2.1 Barriers
A barrier achieves synchronization by actually controlling the execution of the
participant. Barrier synchronization is useful if you have multiple execution
paths (participants) that need to synchronize at a particular point (generally, at
the completion of a set of work items). A barrier synchronizes participants or
tasks rather than resources.

A barrier has an associated quorum of participants that are required to reach
the barrier before the blocked participants are released for further execution. You
can dynamically alter the value of the quorum after you create the barrier and
even after participants are waiting at the barrier. This is useful if, for example, a
participant terminates prematurely so that the quorum you initially established
is never reached.

5.2.2 Events

5-6

Event synchronization is different from barrier synchronization in that a
participant reacts to an outside event rather than simply reaching normally
some point in its code. The event routines are useful if you want to search a tree
in parallel, for example. In that case, you could define an event to indicate the
completion of the search. All of the participants call PPL$ENABLE_EVENT_
SIGNAL, and when one participant successfully completes the search, that
participant calls PPL$TRIGGER_EVENT. The other participants are notified that
the search is complete, at which point they stop their own searches. Using events
in this case allows you to search the tree in parallel while preventing participants
from needlessly searching after the desired item is located.

Developing Parallel Processing Applications
5.2 Comparing the Use of Synchronization Elements

You can use the PPL$ predefined events (described in PPL$CREATE_EVENT)
to be notified when a participant exits. You do this by passing the predefined
event name (for example, PPL$K_ABNORMAL_EXIT) as the event's identifier
in a call to PPL$ENABLE_EVENT_AST or PPL$ENABLE_EVENT_SIGNAL.
For example, if you call PPL$ENABLE_EVENT_AST specifying PPL$K_
ABNORMAL_EXIT as the event identifier, you could supply an AST routine that
checks to see if the terminated participant is a member of a barrier. If so, the
AST routine could then call PPL$ADJUST_QUORUM to decrement the quorum
by 1 so that the other waiting participants do not hang. (Note that PPL$K_
ABNORMAL_EXIT refers to the event identifier, while PPL$_ABNORMAL_EXIT
refers to the corresponding condition value.)

5.2.2.1 Asynchronous Signal
PPL$ENABLE_EVENT_SIGNAL provides for cross-process asynchronous
signaling. This is a powerful mechanism, and it must be used only in carefully
controlled environments.

Asynchronous exceptions are those that are not a direct result of the execution
of the code, but rather are caused by some concurrent and not directly related
event. For example, an AST interrupts a MOVC instruction and the AST routine
attempts to reference an invalid address, resulting in an access violation. The
signaled exception is an ACCVIO, which is not related to the interrupted MOVC
instruction. Occurrences of asynchronous exceptions have previously been quite
uncommon, and the majority of existing code expects to terminate upon receipt of
such an exception. The PPL$ENABLE_EVENT_SIGNAL service introduces the
means for use of asynchronous signals as a communications mechanism.

Delivery of an asynchronous signal to an arbitrary layered environment can
result in unwinding code that is totally unprepared for it, resulting in corrupted
data. For example, any RTL routine or the code of a layered product might
be interrupted by such an exception. Code that executes in multiple threads
under one process context is particularly vulnerable-for example, ADA tasking.
Delivery of an asynchronous exception interrupts the task that is executing at the
time, and will result in task termination. Do not use this routine in environments
that support multitasking within a process.

To avoid the potential program data corruptions and unintended alterations of
control flow implied by unexpected unwinding of an unprepared code section,
use this asynchronous signaling capability only when the code that can be
interrupted is your own. Also note that you can accomplish the same tasks
in a less dangerous way-using the standard AST facilities-by using the
PPL$ENABLE_EVENT_AST routine.

5.2.3 Semaphores
A semaphore lets you control the availability of a particular critical region or
resource; in other words, it implements mutual exclusion. You can also use
a semaphore as a communication tool. The value of the semaphore variable
represents number of processes waiting or the number of resources available, so
that by decrementing and incrementing the semaphore you can control the access
to a critical section of your application.

5-7

Developing Parallel Processing Applications
5.2 Comparing the Use of Synchronization Elements

5.2.4 Spin Locks
Spin locks are one of the fastest forms of synchronization. This form of
synchronization can improve the performance of applications using fine-grained
parallelism. (Fine-grained parallelism means that each task performs a very
small amount of work, such as an individual machine instruction or a few
program statements.)

However, there are some negative consequences of using a spin lock. First, the
spinning action consumes a large amount of CPU resources. Second, when the
lock is released, it is given at random to a participant waiting in the spin loop. In
other words, it does not take into consideration how long a participant has been
waiting for the lock. In general, you should not use a spin lock in a time-sharing
environment or when fairness is important.

5.2.5 Work Queues
Work queues are a higher-level construct than simple synchronization
mechanisms, such as spin locks. The work queue parallel processing model
consists of a queue of work items and processes to complete these work items.
Each participant removes a work item from the queue, and if necessary, each
participant can insert newly generated work items into the queue. As each
participant completes its work item, it does not wait for some participant to
assign it a new task, but instead removes the next item from the work queue and
begins execution.

Work queues are similar to semaphores-inserting an item into a work queue
is analogous to incrementing a semaphore, and removing an item from a work
queue is analogous to decrementing a semaphore. Unlike semaphores, however,
work queues allow you to prioritize each work item inserted into the queue.
If you do not attach a priority to a work item, by default the priority is zero.
Therefore, if an application accepts the default when inserting work items into
the queue, the queue behaves like a simple FIFO (first in, first out) model.,

The work queue routines also provide process synchronization. If there are no
items in a work queue, a participant attempting to remove a work item from the
queue by default will hibernate until an item is inserted into the queue.

5.2.6 Sharing an Element Identifier

5-8

To use the PPL$ synchronization elements (barriers, events, semaphores, and
spin locks), you first create the element with the appropriate "create" routine
(for example, PPL$CREATE_BARRIER). You then use the identifier returned by
that routine in all calls to other routines that use the element you created (for
example, PPL$WAIT_AT_BARRIER). The following list shows four ways you can
share the element identifier among the routines that need to access it.

1. Call PPL$FIND_OBJECT_ID, supplying the name of the element.

2. "Re-create" each element by calling the PPL$CREATE routine again,
supplying the existing element name.

3. Place the element identifier in shared memory.

4. Use a facility outside of PPL$ (such as an Open VMS mailbox) to communicate
the identifiers among participants.

Note that when you first create an element, you must give it a name if you want
to use the name in other calls to retrieve the element identifier (as described in 1
and 2 in the preceding list).

Developing Parallel Processing Applications
5.2 Comparing the Use of Synchronization Elements

You can also create unnamed synchronization elements that you do not have to
name. However, this forces you to arrange for shared access to the identifier
(as in 3 or 4 in the preceding list). The advantage of unnamed objects is that
they are unique, and cannot be inadvertently re-created by another part of an
application.

5.3 Performance Measurements
It is difficult to accurately predict and measure the performance of a
parallel application. Performance, after all, depends not only on the optimal
decomposition of the application, but also on the multiprocessing system running
the application. Performance also depends on your goals. Although the generally
accepted goal of parallel processing is to increase system throughput, there are
situations in which response time or fault tolerance may be more significant than
increased throughput.

Theoretically, the maximum speedup that you can attain using a multiprocessing
system with n identical processors working concurrently on a single problem is at
most n times faster than a single processor system working on the same problem.
In practice, the speedup is much less, since at a given time some processors
are idle because of memory or bus conflicts or inefficient decomposition of the
program.

There are numerous methods you can use to measure the performance of a
parallel application. The following list mentions some of the theoretical models
you can use to try to predict the performance of your parallel application:

• Digital simulations

• Analytic models

• Probability functions

• Geometric models

To measure performance you can use simple test programs, or hardware or
software monitors. The following section describes the geometric model of
performance.

5.3.1 Geometric Model of Performance
The geometric model of performance lets you approximate the parallelism ratio
and efficiency ratio for a system with W parallel tasks, N processors, and a single
job stream. Based on this model, the following figures show the amount of time
required for N processors to complete W tasks. In these figures, ti represents the
time required to execute any initialization or single-stream code, and t2 is the
time required to execute any task W.

In Figure 5-1, a parallel application having W tasks and a single processor will
require some initialization time (ti) plus the amount of time required to execute
each task multiplied by the number of tasks. Therefore, for a system with W
tasks and one processor, the total processing time Ti is as follows:

Ti= ti+ Wt2

5-9

Developing Parallel Processing Applications
5.3 Performance Measurements

5-10

Figure 5-1 Time-Processor Product for a System with No Parallelism

Processors

•
J
\

J : 1

1----t1 ----+----- w * t 2 --------1
lime

ZK-6491-GE

Figure 5-2 shows an application with W parallel tasks being run on a system
with an infinite number of processors. Because there are an unlimited number
of processors available, no matter how many parallel tasks there are, the total
processing time T 00 is as follows:

Too= ti+ t2

Figure 5-2 Time-Processor Product for a System with Unlimited Parallelism

Processors

w

1

lime

1-----t1-------t2---

ZK-6490-GE

Figure 5-3 shows a typical multiprocessing system, where you have W parallel
tasks running on N processors. For this type of configuration, the total processing
time TN is as follows:

TN= ti+ ~t2

Developing Parallel Processing Applications
5.3 Performance Measurements

Using the geometric model previously described, you can determine several
performance ratios for a given parallel system. Use the following equation to
determine the parallelism ratio p:

-~
p - ti+Wt2

Another performance ratio that you can derive using this geometric model is the
efficiency ratio E:
E - ti+Wt2

- TN*N

All of the above equations can be used to predict the performance of a given
multiprocessing system. Although the models are theoretical, tests have shown
that these models yield fairly accurate results.

Figure 5-3 Time-Processor Product for a System with Limited Parallelism

Processors

+

N

I-- t 1 ----- (W/N) * t 2-------t

""P

Time

ZK-6497-GE

5-11

6
Examples of Calling PPL$ Routines

This chapter contains examples demonstrating possible uses of PPL$ routines
in the implementation of concurrent programming problems from BLISS, DEC
FORTRAN, and DEC C. The example programs in this chapter include I/O
statements to aid you in tracing program execution. Prime considerations for
program decomposition include a complete understanding of the data to be
processed and the data to be output, and mechanisms for controlling access to
this data by the various participants in the application. PPL$ routines provide
mechanisms to support access to the data by all participating processes, and
to control that access. This chapter is not meant to provide a comprehensive
methodology for the development of concurrent algorithms.

6.1 BLISS Example
Example 6-1 shows the use of PPL$ routines in BLISS to perform a predefined
event test.

Example 6-1 Using PPL$ Routines in BLISS

module example2 (main=main, addressing_mode (external=general))
begin

'+
This example program shows event handling using PPL$ routines.

This program demonstrates the need for recognizing the termination of a
subordinate and its potential impact on the use of synchronization
mechanisms - in this case, a barrier.

library 'sys$library:starlet';

forward routine
main,
handler : novalue,
print;

external routine
PPL$ADJUST_QUORUM,
PPL$CREATE_BARRIER,
PPL$ENABLE_EVENT_AST,
PPL$GET_INDEX,
PPL$SPAWN,
PPL$WAIT_AT_BARRIER;

(continued on next page)

6-1

Examples of Calling PPL$ Routines
6.1 BLISS Example

Example 6-1 (Cont.) Using PPL$ Routines in BLISS

macro

own

fail_badly_ =
begin
local i;

9-,.
0 I

i = . O;
end

index
barrier

unsigned long,
unsigned long;

Cause an Access Violation

This participant's role

routine main
begin

6-2

local
status unsigned long;

literal
num_children = l;

status= PPL$GET_INDEX (index);
if not .status then return signal (.status);
print (%ascid' !/I am #!UL', .index);

status= PPL$CREATE_BARRIER (barrier, %ascid'barrier' ,%ref(num_children+l));
if not .status then return signal (.status);
print (%ascid' !/!UL:!_created barrier !XL!_stat = !XL',

.index, .barrier, .status);

case .index from 0 to num_children of
set
[0] ! Parent code

begin
! Set up for termination event notification
status= PPL$ENABLE_EVENT_AST (%ref(ppl$k_abnormal_exit), handler);
if not .status then return signal (.status);

! Create the child(ren)
status = PPL$SPAWN (%ref (num_children), Number of children

0, Run the same image
0, Don't need the ID list
%ref (ppl$m_init_synch Wait for child to init

or ppl$m_nodebug)); Don't run the debugger
print (%ascid' !/!UL: !_spawn status= !XL', .index, .status);

! It's safe for the parent to wait here, since the condition
! handler will correct the barrier quorum when a participant exits
! prematurely. Otherwise, this wait would hang the application.
status = PPL$WAIT_AT_BARRIER (barrier) ;
print(%ascid' !/!UL: !_wait status= !XL', .index, .status);
end; End of parent code

[1] : ! Child code
begin
! This child would normally be doing some work for the application,
! but it breaks, never reaching the barrier as the parent expects.

fail_badly _; ! Terminate

! The remaining code never executes ...

status = PPL$WAIT_AT_BARRIER (barrier) ;
print(%ascid' !/!UL: !_wait status= !XL', .index, .status);
end; ! End of child code

(continued on next page)

Examples of Calling PPL$ Routines
6.1 BLISS Example

Example 6-1 (Cont.) Using PPL$ Routines in BLISS

[inrange]

[outrange]
tes;

return ss$_normal;

begin
status= PPL$WAIT_AT_BARRIER (barrier);
print(%ascid' !/!UL: !_wait status= !XL', .index, .status);
end;

O; ! Do nothing

end; ! End of Main Routine

routine handler : NOVALUE =
begin

!+
This handler is invoked as notification of the predefined event,

! PPL$K_ABNORMAL_EXIT. It fixes up the barrier quorum to account for the
! lost "body", and prevents the application-wide hang.
!-

local status;

! Avoid application-wide hang by completing the outstanding barrier wait
_status= PPL$ADJUST_QUORUM (barrier, %ref(-l});

print (%ascid' !/!UL:!_adjust_quorum status= !XL', .index, .status);

end; ! End of handler

routine print (ctrstr, pl)
begin

!+
! This formats a string with $fao and writes it.
!-

external routine
LIB$PUT_OUTPUT;

local
buffer
desc

$bblock [132] ,
vector[2];

desc[O] = %allocation(buffer);
desc[l] =buffer;

$faol (ctrstr = .ctrstr,
outlen = desc[O],
outbuf = desc[O],
prmlst = pl);

LIB$PUT_OUTPUT (desc[O])

end; ! End of print

end End of module
eludom

The preceding BLISS example shows the potential for application-wide problems
when a participant terminates. A participant may terminate without performing
its expected synchronization functions.

In this example, the parent and child plan to synchronize at the completion of the
work by waiting at a common barrier. The parent handles possible failure of a
subordinate by requesting notification of the PPL$K_ABNORMAL_EXIT event.
(Note that this artificial example merely demonstrates the principle, and that

6-3

Examples of Calling PPL$ Routines
6.1 BLISS Example

a typical application -might have a more difficult time determining whether the
child had reached the barrier. For example, the PPL$READ_BARRIER routine
might be useful in order to determine the current number of participants waiting
at the barrier.)

Tracing the execution of this program, the parent spawns the child, and then
waits for completion of the work at the barrier. The child terminates prematurely,
which triggers the PPL$K_ABNORMAL_EXIT event that delivers the AST
as requested by the parent. The parent's AST service routine adjusts the
barrier quorum to account for this termination, the hang is prevented, and the
application completes.

6.2 DEC FORTRAN Example
Example 6-2 shows the use of PPL$ routines in DEC FORTRAN to decompose a
loop.

Example 6-2 Using PPL$ Routines in DEC FORTRAN

0001 PROGRAM EXAMPLEl
0002
0003 c
0004 C PROGRAM DESCRIPTION:
0005 c
0006 C This example program demonstrates master/slave loop
0007 C decomposition using PPL$ routines.
0008 c
0009 C***
0010 C DATA DECLARATIONS
0011 C***
0012
0013 C EXTERNAL DEFINITIONS
0014 EXTERNAL stsk_info, stsk_severe
0015 EXTERNAL PPL$K_ABNORMAL_EXIT, PPL$M_NODEBUG
0016 INTEGER*4 PPL$CREATE_APPLICATION, PPL$CREATE_SHARED_MEMORY
0017 INTEGER*4 PPL$SPAWN, PPL$GET_INDEX
0018 INTEGER*4 PPL$CREATE_BARRIER, PPL$WAIT_AT_BARRIER
0019 INTEGER*4 PPL$CREATE_SEMAPHORE
0020 INTEGER*4 PPL$INCREMENT_SEMAPHORE, PPL$DECREMENT_SEMAPHORE
0021 INTEGER*4 PPL$ENABLE_EVENT_SIGNAL
0022 INTEGER*4 LIB$PUT_OUTPUT
0023
0024 C DEFINE ITEMS FOR USE WITH PPL$
0025 INTEGER*4 spawn_flags
0026 INTEGER*4 fatal_signal
0027 !for event handling
0028 INTEGER*4 sem_max_val, sem_init_val
0029 PARAMETER (sem_max_val = 1, sem_init_val 1)
0030 !for a binary semaphore

(continued on next page)

6-4

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

Example 6-2 (Cont.) Using PPL$ Routines in DEC FORTRAN
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059 '
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908

C DEFINE APPLICATION DATA NEEDS
INTEGER*4 stride

PARAMETER (stride = 5)
!number of consecutive array indices each party processes

INTEGER*4 subordinates
PARAMETER (subordinates = 2)

!number of slaves
INTEGER*4 array_size

PARAMETER (array_size = 50)
!a small array for demonstrative purposes

INTEGER*4 one_page
parameter (one_page = 512)

C DEFINE DATA TO BE USED LOCALLY BY EACH PARTICIPANT
INTEGER*4 copies !for parent's spawn call
INTEGER*4 id_list (subordinates) ! 11

INTEGER*4 index !each participant's PPL-index
INTEGER*4 lenadr(2) !for creating shared memory
INTEGER*4 status !info on each call
INTEGER*4 mygroup, row, col, offset !for doing the real work
CHARACTER*12 my_id, group !just for execution trace

C DEFINE DATA FOR SHARING
byte
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
byte

front_guard(one_page) !memory is mapped on page boundaries
arrayl(array_size, array_size) !input array
array2(array_size, array_size) !input array
final_array(array_size, array_size) !output array
next_task_number !work item info
semaphore_id !synchronization
barrier_id ! 11

rear_guard(one_page)

C PUT ALL THE SHARED DATA IN A COMMON BLOCK, WHICH WILL GET SHARED
COMMON /pgm_shared_data/ f ront_guard,
1 arrayl,
1 array2,
1 f inal_array,
1 next_task_number,
1 semaphore_id,
1 barrier_id,
1 rear_guard

C***
C CODE FOR ALL PARTICIPANTS STARTS HERE
C***

type *,'Initializing'
status = PPL$CREATE_APPLICATION ()
if (.not. status) call LIB$STOP (%val(status))

C MAP SHARED ADDRESS SPACE - enough for the shared variables + the spacers

lenadr(l) = %loc(rear_guard) + one_page - %loc(front_guard)
lenadr(2) = %loc(front_guard)
status= PPL$CREATE_SHARED_MEMORY ('pgm_shared_data', lenadr)
if (.not. status) call LIB$STOP (%val(status))

(continued on next page)

6-5

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

Example 6-2 (Cont.) Using PPL$ Routines in DEC FORTRAN

0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969

6-6

C DISPATCH TO ROLE-SPECIFIC CODE - PARENT @100, CHILD @200

status = PPL$GET_INDEX (index)
if (.not. status) call LIB$STOP (%val(status))

if (index .ne. 0) go to 200
go to 100

!act like a child
!act like a parent

C***
c PARENT CODE HERE
C***

C The master performs all set-up functions, initializing both the
C application's data and the synchronization support.

100 type *, 'Parent Init'

C INIT A SEMAPHORE AND BARRIER FOR SYNCHRONIZATION

status = PPL$CREATE_BARRIER (barrier_id, 'synch_barrier',
1 %ref (subordinates + 1))

!slaves and master all wait at this barrier
if (.not. status) call LIB$STOP (%val(status))

status = PPL$CREATE_SEMAPHORE (semaphore_id, 'mutex',
1 sem_max_val, sem_init_val)
if (.not. status) call LIB$STOP (%val(status))

C REQUEST A SIGNAL IF SOMETHING UNUSUAL OCCURS IN A SUBORDINATE

fatal_signal = %loc(sts$k_severe) !severe means we stop
status= PPL$ENABLE_EVENT_SIGNAL (%loc(ppl$k_abnormal_exit),
1 %val(fatal_signal))
if (.not. status) call LIB$STOP (%val(status))

C CREATE THE SUBORDINATES

copies = subordinates
spawn_flags = %loc(ppl$m_nodebug) !disable child debug
status = PPL$SPAWN (copies, !how many children
1 , !use current image name
1 id_list, !children IDs
1 spawn_flags) !special D
if (.not. status) call LIB$STOP (%val(status))

C PREPARE FOR TASK (WORK ITEM) ALLOCATION

next_task_number = 1

C INIT THE DATA TO BE PROCESSED

do 11 i = l,array_size !clear the space for results
do 12 j = l,array_size

final_array(i,j) = 0

(continued on next page)

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

Example 6-2 (Cont.) Using PPL$ Routines in DEC FORTRAN
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

12 continue
11 continue

14
13

16
15

do 13 i = l,array_size
do 14 j = l,array_size

arrayl(i,j) = i
continue
continue

do 15 i = l,array_size
do 16 j = l,array_size

array2(i,j) = 1
continue
continue

!arbitrarily init array 1

!likewise init array 2

C At this point, all initialization functions have been performed by
C the master, which must now wait for the subordinates to catch up.
C Each of the subordinates waits at this barrier, guaranteeing that
C they all proceed in unison.

C WAIT FOR THE CHILDREN TO INIT

type*, 'Parent waiting for children to init'
status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

C A master might also want to participate in the parallel code sections,
C which would happen right here.
C In this example, the master waits.

C WAIT FOR THE CHILDREN TO COMPLETE

type*, 'Parent waiting for work completion'
status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

C VERIFY RESULTS - LEFT AS AN EXERCISE FOR THE READER

C call verify_results
write (*,2) (((final_array(i,j), i=l,array_size), j=l,array_size))

2 format (z12.8)

C WRITE TERMINATION MESSAGE

type *, 'Parent Terminating'

go to 999

(continued on next page)

6-7

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

Example 6-2 (Cont.) Using PPL$ Routines in DEC FORTRAN

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

6-8

C***
c CHILD CODE HERE
C***

C PREPARE MY INDEX FOR OUTPUT - EXECUTION TRACE

200 write (unit=rny_id, frnt=' (I12) ') index
status= LIB$PUT_OUTPUT ('child init' II rny_id(10:12))

C GET READY, SLAVES

status = PPL$WAIT_AT_BARRIER (barrier_id) !par~nt has to say go
if (.not. status) call LIB$STOP (%val(status))

C PROCESSING LOOP - PERFORM THE INTENDED PROGRAM FUNCTION

do while (.true.)

! FIND OUT WHAT TO DO - IN A CRITICAL REGION

status = PPL$DECREMENT_SEMAPHORE (sernaphore_id)
if (.not. status) call LIB$STOP (%val(status))

rnygroup = next_task_nurnber
next_task_nurnber = next_task_nurnber + stride

status = PPL$INCREMENT_SEMAPHORE (sernaphore_id)
if (.not. status) call LIB$STOP (%val(status))

! MAYBE THERE'S NO WORK TO DO

if (rnygroup .gt. array_size) go to 888

! EXECUTION TRACE

write (unit=group, frnt=' (I12) ') rnygroup
status =

1 LIB$PUT_OUTPUT ('childlgrp:' II rny_id(10:12) II group(10:12))

! DO THE WORK

do 333 offset = 0, (stride-1)
row = rnygroup + offset
do 344 col = l,array_size

final_array(row, col) = 0
do 355 i = l,array_size

final_array(row,col) = final_array(row,col) +
1 (arrayl(row,i) * array2(i,col))

355 continue
344 continue
333 continue

end do

(continued on next page)

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

Example 6-2 (Cont.) Using PPL$ Routines in DEC FORTRAN

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

C CHILD TERMINATION POINT - get here when all work is done

888 status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

status= LIB$PUT_OUTPUT ('termination: child' II my_id(10:12))

go to 999

C***
c EXIT
C***

C WRITE STATUS

999 print l,status
1 format(t8, 'final status= ',zl2.8)

END

The preceding FORTRAN example shows a PPL$ implementation of a loop
decomposition problem. It performs a matrix multiplication of two input arrays,
resulting in an output array containing the matrix product.

Note that this example shows a simple master/slave model, just one of many
approaches to solve this problem. Although this application is particularly
suited to a fine-grained parallel approach, it is useful to show some parallel
processing techniques. This example also includes nonessential I/O calls to help
you understand the flow of control. Similarly, for purposes of demonstration,
the contents of the arrays is irrelevant, and their size has been diminished
considerably from what might normally be expected for an effective (beneficial)
parallel implementation.

Data dependencies are not of concern in this example, and several participants in
this application work on the calculations at the same time in a straightforward
manner. Each participant calculates the results for a different subset of the
array indexes. This requires that each participant can access the data (that it
be shared), and that each participant abide by a common set of conventions for
maintaining data integrity (by use of standard synchronization mechanisms).

Each participant in the application executes the same program image. (This is
not a requirement, but is convenient in this example.) This is accomplished by
calling PPL$SPAWN and specifying a null value for the image-name argument.
The differentiation of the master and slave roles is achieved by interpreting
the participant-index for each participant (returned by the call to PPL$GET_
INDEX). The value 0 means "master". All other values are used to indicate
"slave" roles. (Such conventions for use of the participant-index are entirely
at the discretion of the application designer.) All necessary common functions,
such as setting up access to the shared data, are performed in code executed by
all participants. Then, role-specific code is executed by the master or slave, as
appropriate.

6-9

Examples of Calling PPL$ Routines
6.2 DEC FORTRAN Example

6-10

The required data is shared by placing both input arrays (array 1 and array2)
and the output array (final_array) in a single common block, named pgm_shared_
data. This common block is shared by all participants through their calls to
PPL$CREATE_SHARED_MEMORY. Note that you must guarantee that all
shared data is actually shared, and that no local data is accidentally shared.
This example demonstrates the use of guard pages at the front and rear of the
shared data. (See the Description section of PPL$CREATE_SHARED_MEMORY
for more information.) A set of array indexes is allocated to each participant upon
its request for a work item. To assure that this task assignment phase is not
confused by concurrent access to the controlling data, these actions are performed
in an atomic fashion by use of a (binary) semaphore. (Other synchronization
elements such as spin locks can be used similarly.) Examine the following code
sequence:

PPL$INCREMENT_SEMAPHORE (semaphore_id)
mygroup = next_task_number
next_task_number = next_task_number + stride
PPL$DECREMENT_SEMAPHORE (semaphore_id)

Calls to the semaphore routines establish a critical region around the use
of the next_task_number, which provides an application-wide mechanism for
guaranteeing that all array indexes are considered in the calculations. That
is, next_task_number indicates the starting array index to be processed by a
participant requesting a work item. Next_task_number must also be included in
the data to be shared, but it is there for functional reasons quite different from
the need to share the input and output arrrays. The variable mygroup obtains
the identification of the work item (the starting array index) for use locally by a
given participant. This requires that mygroup is not a shared data item. Stride
is the number of array indexes that each participant processes. All must agree on
this range to avoid miscalculation.

The semaphore-id used in implementing this critical region must be the same
in all participants. There are several ways to do this, but the method used here
places that semaphore-id in shared memory. Again, it is there for reasons of
common access entirely separate from the need to access the actual data being
manipulated by the algorithm.

This FORTRAN program arranges for orderly initiation and completion of the
application. The master (which has a participant-index of 0) creates the
subordinates and performs all single-stream actions. These actions include
preparing the data initially and doing any required cleanup (both of which are
only touched upon lightly in this example). The slaves wait for the master to
say "go". They do this by waiting at a (common) barrier. As each participant
calls PPL$WAIT_AT_BARRIER, it is blocked until all participants have reached
that barrier. Then they all proceed. Once the master has freed the participants
to do their work, it waits until the work is done, and then does cleanup. This
completion is also indicated by waiting at the barrier. This barrier-id must also
be in shared memory so that they wait at the same barrier.

Finally, this example enables notification of the predefined event PPL$K_
ABNORMAL_EXIT. This event is triggered if any process in the application
exits with a failure status. It is recommended that you always enable this event,
since PPL$K_ABNORMAL_EXIT usually indicates a severe problem with the
application. Notice that the value STS$K_SEVERE is specified as the enable
parameter, which forces termination of the process that receives the notification
(in the absence of a condition handler).

Examples of Calling PPL$ Routines
6.3 DEC C Example

6.3 DEC C Example
Example 6-3 consists of two programs that show the use of PPL$ routines in
DEC C to create an intercom between two processes running separate program
images. This example demonstrates the following:

• Simple pipelining to perform tasks in parallel

• Allocating shared virtual memory zones, passing the address of the memory
between processes, and freeing the shared memory

• Using PPL$FIND_OBJECT_ID

• Using work queues to synchronize processes and pass information between
processes

In this C example, the first program, named SEND, creates a PPL$ application
and PPL$ objects. It then waits for an outside (second) process to join. When the
second process joins the application, the first process acquires shared memory,
deposits a user input string into the shared memory, and then passes the memory
address to the second process, by means of a work queue. The second process
then displays the string. The process continues until "quit" is input.

The second program, named RECEIVE, joins the application created by the first
process, finds the identifiers of all PPL$ objects needed to perform its tasks,
synchronizes with the first process at a barrier, and then waits on a work queue
to receive the address of a character string in shared memory. When it receives
the address, the character string is displayed and the associated memory is freed.

You must run the SEND program first because it creates the PPL$ application.
If SEND is not run first, the second program will not find an existing PPL$
application and will exit with an error. Programs SEND and RECEIVE must be
run under the same user UIC. (Running the programs on separate terminals is
one way to accomplish this.)

Example 6-3 Using PPL$ Routines in DEC C

/*

#include
#include
#include
#include
#define

PROGRAM SEND

<ppl$def. h>
<ppl$routines.h>
<Stdio.h>
<descrip.h>
MAXLINE 256

/* PPL$ object names */
$DESCRIPTOR(barrl_name , "Synchl_barr"
$DESCRIPTOR(barr2_name , "Synch2_barr"
$DESCRIPTOR(app_name I "Intercom"
$DESCRIPTOR(workq_name , "Task_queue"
$DESCRIPTOR(shared_mem , "Wire"

) ;
) ;
) ;
) ;
) ;

global value
PPL$K_INIT_SIZE; /* Default PPL$ size

*/

*/

(continued on next page)

6-11

Examples of Calling PPL$ Routines
6.3 DEC C Example

6-12

Example 6-3 (Cont.) Using PPL$ Routines in DEC C

int size; /* Application size */
/* Application protection */ int prot;

int flag; /* Flag for application */
int status; /* Return status */
int barrierl; /* Barrierl ID */
int barrier2; /* Barrier2 ID */
int sendq; /* Work Queue ID - send */
int mem_id; /* Shared VM zone ID */
int num_bytes;
int base_address;
short quorum;
char *message;

/* Message buffer size */
/* Address returned for VM */
/* Barrier quorum */
/* Pointer to shared memory message buffer */

int ppl$create_application();

main ()
{

size 2 * PPL$K_INIT_SIZE; /* Application size twice the default */
prot OXFFOD; /* Protection allows User and System access */
flag PPL$M_FORMONLY; /* Form an application, do not join one */

status = ppl$create_application (&size, &app_name, &prot, &flag) ;
if (!(status & 1)) return status;

/* Create work queue to pass message buffer to second process */
status= ppl$create_work_queue (&sendq, &workq_name);
if (!(status & 1)) return status;

quorum = 2; /* Need two processes at barrier to pass */

/* Create first barrier to synchronize processes */
status = ppl$create_barrier (&barrierl, &barrl_name, &quorum) ;
if (!(status & 1)) return status;

/* Create second barrier to synchronize processes */
status= ppl$create_barrier (&barrier2, &barr2_name, &quorum);
if (!(status & 1)) return status;

/* Wait at the barrier until second process joins the application */
status= ppl$wait_at_barrier (&barrierl);
if (!(status & 1)) return status;

/* Create shared memory zone, obtain an ID, give a specific name */
status= ppl$create_vm_zone(&mem_id, 0,0,0,0,0,0,0,0,0, &shared_mem);
if (!(status & 1)) return status;

/* Wait for joining process to find VM zone */
status= ppl$wait_at_barrier (&barrier2);
if (!(status & 1)) return status;

num_bytes = MAXLINE + 1;

do

/* Size of VM to be created */

{
/* Get memory for message */
status= lib$get_vm(&num_bytes, &message, &mem_id);
if (!(status & 1)) return status;

printf("Input> ");
gets(message); /* Get user message */

(continued on next page)

Examples of Calling PPL$ Routines
6.3 DEC C Example

Example 6-3 (Cont.) Using PPL$ Routines in DEC C

}

/* Put address of user message into workq */
status= ppl$insert_work_item (&sendq, message);
if (!(status & 1)) return status;

while (strcmp(message, "quit") != 0);

/* End of program SEND */

!*

#include
#include
#include
#include
#define

PROGRAM RECEIVE

<ppl$def. h>
<ppl$routines.h>
<Stdio.h>
<descrip.h>
MAXLINE 256

/* PPL$ object names */
$DESCRIPTOR(barrl_name, "Synchl_barr");
$DESCRIPTOR(barr2_name , "Synch2_barr") ;
$DESCRIPTOR(app_name , "Intercom") ;
$DESCRIPTOR(workq_name, "Task_queue");
$DESCRIPTOR (shared_mem , "Wire") ;

int flag; /* Flag for applicaton */
int status;
int barrierl;
int barrier2;
int receiveq;
int mem_id;
int procede;
int num_bytes;
char *message;

/* Return status */
/* Barrierl ID */
/* Barrier2 ID */
!* Work Queue ID - send */
/* Shared VM zone ID */
!* Flag used for exiting */
/* Message buffer size */
/* Pointer to shared memory */

int ppl$create_application();

main ()
{

flag = PPL$M_JOINONLY; /* Join, do not form application */

status = ppl$create_application (0, &app_name, 0, &flag) ;
if (!(status & 1)) return status;

/* Find the ID for synchronizing barrierl */
status = ppl$find_object_id (&barrierl, &barrl_name) ;
if (!(status & 1)) return status;

/* Synchronize with the other process */
status= ppl$wait_at_barrier (&barrierl);
if (!(status & 1)) return status;

/* Find the ID for work queue */
status = ppl$find_object_id (&receiveq , &workq_name) ;
if (!(status & 1)) return status;

/* Find the ID for synchronizing barrier2 */
status= ppl$find_object_id (&barrier2, &barr2_name);
if (!(status & 1)) return status;

/* Allow original process to create VM zone */
status= ppl$wait_at_barrier (&barrier2);
if (!(status & 1)) return status;

/* Find the ID for shared memory zone */
status= ppl$find_object_id(&mem_id, &shared_mem);
if (!(status & 1)) return status;

*/

(continued on next page)

6-13

Examples of Calling PPL$ Routines
6.3 DEC C Example

6-14

Example 6-3 (Cont.) Using PPL$ Routines in DEC C

precede = l; /* Used to signal 'quit' */
/* Size of VM zone */ num_bytes = MAXLINE + 1;

do
{

}

/* Get message address from work queue */
status= ppl$remove_work_item (&receiveq, &message);
if (!(status & 1)) return status;

/* If message is to quit, set procede to signal this */
if (strcmp(message, "quit") == 0)

precede = O;
else /* Print message */

printf("Message> %s\n", message);

/* Free VM in which message was contained */
status= lib$free_vrn(&num_bytes, &message, &mem_id);
if (!(status & 1)) return status;

while (procede == 1);

/* End of program RECEIVE */

In the preceding C example, program SEND is run first so that it can set up the
PPL$ environment for program RECEIVE to join. The environment set up by
program SEND has twice the default (PPL$K_INIT_SIZE) memory available for
PPL$ objects, and allows user and system access to the PPL$ application. An
application name is specified in the call to PPL$CREATE_APPLICATION so that
program RECEIVE can join the correct application. (If an application name is not
specified, an external program cannot join an application.)

When the application is created, program SEND creates a work queue and a
barrier. It then waits at the created barrier for RECEIVE to join. The shared
memory zone is created after both processes have joined the application.

RECEIVE will only join an existing PPL$ application-it will not create a new
application because the PPL$M_JOINONLY flag has been specified in its call to
PPL$CREATE_APPLICATION. When RECEIVE joins the application, it uses the
PPL$FIND_OBJECT_ID routine to obtain the identifiers of the work queue and
barrier that were created by SEND. When the identifiers are obtained, RECEIVE
waits at the barrier, allowing both RECEIVE and SEND to proceed.

Communication begins when both programs have joined the PPL$ application,
the underlying communication and synchronization objects are in place, and both
programs possess those objects' identifiers.

First, SEND obtains a block of virtual memory from the shared memory zone.
This is done by passing the shared memory zone identifier to LIB$GET_ VM as a
parameter. (The identifier was originally retrieved from a call to PPL$CREATE_
VM_ZONE.)

SEND prompts the user for one line of input and places it in the newly created
shared memory. SEND then passes the address of this memory to RECEIVE.
This is done by inserting the address of the memory into a work queue using the
PPL$INSERT_ WORK_ITEM routine.

Examples of Calling PPL$ Routines
6.3 DEC C Example

RECEIVE calls PPL$REMOVE_ WORK_ITEM to obtain the address of the shared
memory (specifying the same work queue identifier as SEND specified in its call
PPL$INSERT_WORK_QUEUE). If no work items are in the work queue when
RECEIVE calls PPL$REMOVE_ WORK_ITEM, RECEIVE is blocked until an item
(in this case, the address of the shared memory) is inserted into the queue. When
RECEIVE removes the address of the shared memory, it displays the contents
of the memory location (the character string entered by the user) to the screen
and then frees the memory using LIB$FREE_ VM. This communication continues
until the user inputs the string "quit".

6-15

PPL$ Reference Section

This section provides detailed descriptions of the routines provided by the
Open VMS RTL Parallel Processing (PPL$) Facility.

PPL$ADJUST _QUORUM

PPL$ADJUST _QUORUM-Adjust Barrier Quorum

Format

Returns

Arguments

Description

The Adjust Barrier Quorum routine increments or decrements the quorum
associated with a barrier.

PPL$ADJUST _QUORUM barrier-id ,amount

Open VMS usage
type
access
mechanism

barrier-id

cond_value
longword (unsigned)
write only
by value

Open VMS usage identifier
type longword (unsigned)
access read only
mechanism by reference

Identifier of the barrier. The barrier-id argument is the address of an unsigned
longword containing the barrier identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

amount
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by reference

Value to add to the barrier quorum. The amount argument is the address
of a signed word containing the amount. You can specify a negative value to
decrement the quorum.

PPL$ADJUST_QUORUM allows you to dynamically alter the number of
participants expected to wait at a barrier. A quorum is the number of participants
required to call PPL$WAIT_AT_BARRIER (and thereby be blocked) before all
blocked participants are unblocked and allowed to pass the barrier. The barrier
must have been created by PPL$CREATE_BARRIER. (See PPL$CREATE_
BARRIER for more information about quorums.)

A barrier's quorum can be dynamically increased or decreased to allow more
participants in the quorum. This can be useful when a process that was
an expected barrier participant terminates without calling PPL$WAIT_AT_
BARRIER. The process that discovers the termination of an expected participant
can then call this routine, specifying a value of -1 for the amount argument.
This adjustment of the barrier quorum results in the conclusion of a barrier wait
when sufficient participants are already blocked at the barrier.

PPL-3

PPL$ADJUST_QUORUM

Condition Values Returned

PPL-4

PPL$_NORMAL
PPL$_INVARG

PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.
Invalid argument.
Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$ADJ UST _SEMAPHORE_MAXIMUM

PPL$ADJUST _SEMAPHORE_MAXIMUM-Adjust a Semaphore
Maximum

Format

Returns

Arguments

Description

The Adjust a Semaphore Maximum routine increments or decrements the
maximum associated with a semaphore.

PPL$ADJUST _SEMAPHORE_MAXIMUM semaphore-id ,amount

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

amount
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by reference

Value to add to the semaphore maximum. The amount argument is the address
of a signed word containing the amount. Specify a positive value for amount to
increase the maximum; specify a negative value to decrease the maximum.

PPL$ADJUST_SEMAPHORE_MAXIMUM dynamically increases or decreases
the maximum value of a semaphore, therefore allowing you to dynamically alter
the number of resources protected by the semaphore. The semaphore's current
value is adjusted by the same value you specify for amount to reflect the new
maximum. A semaphore maximum cannot be decreased by a value that is greater
than the current value of the semaphore. The semaphore must have been created
by PPL$CREATE_SEMAPHORE.

PPL-5

PPL$ADJUST _SEMAPHORE_MAXIMUM

Condition Values Returned

PPL-6

PPL$_NORMAL

PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.
Invalid argument.
Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$AWAIT _EVENT

PPL$AWAIT _EVENT-Await Event Occurrence

Format

Returns

Arguments

Description

The Await Event Occurrence routine blocks the caller until an event occurs.

PPL$AWAIT _EVENT event-id [,output]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

The event-id is returned by PPL$CREATE_EVENT.

output
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
write only
by reference

Receives the event-param argument from PPL$TRIGGER_EVENT. The output
argument is the address of an unsigned longword that receives the value of
event-param. The value of event-param is copied to output when an event is
triggered.

PPL$AWAIT_EVENT blocks the caller until a corresponding trigger sets the
event's state to occurred. (Generally, a trigger is issued when a participant calls
PPL$TRIGGER_EVENT. However, the PPL$ facility triggers predefined events
automatically.) The caller is blocked by the PPL$ facility's call to the system
service $HIBER.

If the event state is occurred when this routine is called, the caller continues
execution immediately (without blocking), and the event state is reset to not_
occurred. If the event state is not_occurred when this routine is called, the caller
is blocked and a request for a wakeup is queued. The caller is awakened when a
corresponding trigger is issued for this event.

Refer to Section 4.3. 7 for more information about triggering an event.

PPL-7

PPL$AWAIT _EVENT

Condition Values Returned

PPL-8

PPL$_NORMAL
PPL$_INSVIRMEM
PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion. '
Insufficient virtual memory available.

Invalid argument.
Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$CREATE_APPLICATION

PPL$CREATE_APPLICATION-Form or Join a PPL$ Application

Format

Returns

Arguments

The Form or Join a PPL$ Application routine informs the PPL$ facility that the
calling process is forming or joining a parallel application.

PPL$CREATE_APPLICATION [size] [,application-name] [,protection] [,flags]

Open VMS usage
type
access
mechanism

size
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

Number of (512 byte) pages that PPL$ allocates for its internal data structures.
The optional size argument is the address of an unsigned longword containing
this size value. See the Description section for information about the default
value.

application-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

The name of the application that the calling process will form or join. The
optional application-name argument is the address of a descriptor pointing to a
character string containing the name of the application. The application-name
argument can contain up to 11 characters.

protection
Open VMS usage
type
access
mechanism

file_protection
longword (unsigned)
read only
by reference

Numeric value representing the protection mask to be applied to the application.
The optional protection argument is the address of an unsigned longword
containing this numeric value. For more information, see the description of the
$CRMPSC system service in the Open VMS System Services Reference Manual.

flags
Open VMS usage
type
.access
mechanism

mask_longword
longword (unsigned)
read only
by reference

PPL-9

PPL$CREATE_APPLICATION

Description

PPL-10

Specifies options for forming or joining a PPL$ application. The flags argument
is a longword bit mask containing the flags. Valid values for flags are as follows:

PPL$M_FORMONLY Form a new application only-do not join an existing
application. If this flag is not specified, a process will
join an application if it already exists.

PPL$M_JOINONLY Join an existing application only-do not form a new
application. If this flag is not specified, a process will
form an application if it does not already exist.

PPL$M_PERM Form a permanent application in which data is
maintained even though there are no active processes.
By default, application data is lost when the last
process in the application exits. Use of this flag requires
PRMGBL privilege.

PPL$M_SYSTEM Form or join a systemwide application. By default, the
application is available only to processes running under
the same group UIC. Use of this flag requires SYSGBL
and SYSLCK privileges.

PPL$CREATE_APPLICATION informs the PPL$ facility that the calling process
is forming or joining a parallel application. This routine initializes internal
data structures that provide the caller with all of the PPL$ functions.· You
need only call PPL$CREATE_APPLICATION if you want to specify a value
other than the supplied defaults. If you do not call it explicitly, PPL$CREATE_
APPLICATION is called automatically when you call one of the routines listed
in the following table. Note that PPL$ does not automatically initialize when
you call routines that require a previously created element. (PPL$ does not
automatically initialize when you call a routine listed in the following table for
the second and subsequent times.) This keeps the overhead of these routines
requests for barriers, semaphores, events, spin locks, and work queues-at a
minimum.

The routines that perform automatic initialization when first called are:

PPL$CREATE_BARRIER

PPL$CREATE_EVENT

PPL$CREATE_SEMAPHORE

PPL$CREATE_SHARED_MEMORY

PPL$CREATE_SPIN_LOCK

PPL$CREATE_ VM_ZONE

PPL$CREATE_ WORK_QUEUE

PPL$FIND _ OBJECT_ID

PPL$GET_INDEX

PPL$1NDEX_TO_PID

PPL$PID _TO _INDEX

PPL$SPAWN

PPL$STOP

PPL$UNIQUE_NAME

The size argument determines the amount of space allocated for the supporting
PPL$ data structures. If your application terminates with the fatal error PPL$_
INSVIRMEM when you call a PPL$ routine, you do not have enough space for the
PPL$ routines to perform the requested operation. The lack of space can occur
because of the following:

• Your system quotas are not sufficient for the amount of memory requested by
the application.

PPL$CREATE_APPLICATION

• You have requested PPL$ routines for which the default allocation cannot
accommodate the necessary data structures. In this case, you should carefully
consider your use of PPL$ routines. You can increase the PPL$ allocation of
space for internal data structures by specifying a larger value for the size
parameter.

By default, PPL$ allocates PPL$K_INIT_SIZE pages for its internal data
structures. (PPL$K_INIT_SIZE is available to user programs as a link-time;
in other words, external, constant.) This initial allocation provided by PPL$
accommodates a minimum of 32 processes, 8 semaphores, 4 barriers, 4 events, 4
spin locks, 4 work queues, and 16 sections of shared memory. (These numbers
represent a rough guideline for combinations of PPL$ components. If you have
fewer than 32 processes, for example, you can have more than 8 semaphores, and
so forth.) You can increase this allocation by specifying another value, as in the
following example:

status = PPL$CREATE_APPLICATION (2*PPL$K_INIT_SIZE)

If your process was spawned using PPL$SPAWN, and you do not call
PPL$CREATE_APPLICATION explicitly (or if you call it explicitly but do
not specify an application name), your process joins the same application to
which the spawning process is joined. If your process was not spawned using
PPL$SPAWN, and you do not call PPL$CREATE_APPLICATION explicitly (or
if you call it explicitly but do not specify an application name), PPL$ checks the
spawning process to determine if it is a member of a PPL$ application. If it is
a member, your process joins that application. Otherwise, the process forms a
private (unnamed) application. In a private application, only processes that were
spawned by a member of the application can join it. Because the application
has no name, no other process may specify it in a call to PPL$CREATE_
APPLICATION and therefore cannot join it.

By default, only processes with the same group UIC may participate in the same
application. Therefore, if two users with different group UICs run the same
parallel application (in other words, a PPL$ appli~ation with the same name),
two separate applications will run. However, if two users with the same group
UIC run the same parallel application, their processes will attempt to form a
single application. The same problem results with two invocations of the same
systemwide parallel application (one that is initialized with the PPL$M_SYSTEM
flag set). It is important that each invocation of an application have a unique
name to keep it from interfering with, or being interfered by, another application
or invocation of the same application.

The PPL$M_FORMONLY and PPL$M_JOINONLY flags can be used to keep
different instances of the same application from interfering with each other.
Use the PPL$M_FORMONLY flag in the initialization of a process that expects
to form a new PPL$ application. Its initialization will fail with the PPL$_
APPALREXI error if an application with that name is already running. Similarly,
use the PPL$M_JOINONLY flag in the initialization of a process that expects
only to join an existing application. Its initialization will fail with the PPL$_
NOSUCHAPP error if the specified application is not currently in existence. Note
that PPL$M_JOINONLY and PPL$M_FORMONLY are conflicting options and
you cannot specify both in a single call to PPL$CREATE_APPLICATION. ·

PPL-11

PPL$CREATE_APPLICATION

The application protection mask can be used to control the ability of different
processes to access a PPL$ application. Access to an application can be granted
to the following (similar to file access):

• System processes

• Processes with the same owner as the process that formed the application

• Processes in the same UIC group as the forming process (GROUP privilege is
required)

• Processes with different group UICs (WORLD privilege is required)

To participate in a PPL$ application, a process needs read and write access to the
application (execute and delete access are not used). Processes that are not in the
same group as the forming process may not join the application, regardless of the
protection mask, unless the application is initialized with the PPL$M_SYSTEM
flag set. (This requires SYSLCK and SYSGBL privileges as well as WORLD.)

By default, PPL$ internal data structures are deallocated when the last process
in an application terminates. However, an application's data structures can be
preserved when no processes are participating in the application, provided that
the application and all shared memory and zones are created with the PPL$M_
PERM flag set. (This requires PRMGBL privilege.)

The size and protection arguments and the PPL$M_PERM flag are meaningful
only at application formation and should not be specified by a process that is
joining an application. If values are specified for these arguments that are
incompatible with the existing application, the process's initialization will fail,
and PPL$CREATE_APPLICATION will return the PPL$_INCOMPARG error.

Condition Values Returned

PPL-12

PPL$_FORMEDAPP

PPL$_JOINEDAPP

PPL$_APPALREXI

PPL$_INCOMPARG

PPL$_INSVIRMEM

PPL$_INVAPPNAM

PPL$_INVARG

PPL$_NONPIC

Successful completion. Formed a new
application.

Successful completion. Joined an existing
application.

The specified application already exists.
Specified arguments are incompatible with the
existing application.

Insufficient virtual memory available.

Invalid application name or illegal character
string.

Invalid argument.

Cannot map shared memory to same addresses
as other processes have mapped section.

PPL$_NOSUCHAPP The specified application does not exist.

PPL$_WRONUMARG Wrong number or arguments.

Any condition value returned by the system service $CRMPSC.

PPL$CREATE_BARRIER

PPL$CREATE_BARRIER-Create a Barrier

Format

Returns

Arguments

The Create a Barrier routine creates and initializes a barrier, and returns the
barrier identifier. You use the barrier identifier to perform all operations on that
barrier.

PPL$CREATE_BARRIER barrier-id [,barrier-name] [,quorum]

Open VMS usage
type
access
mechanism

barrier-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
write only
by reference

Identifier of the barrier. The barrier-id argument is the address of an unsigned
longword containing the identifier. Barrier-id must be used in calls to the other
barrier routines (listed in the Description section) to identify the barrier.

barrier-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the barrier. The optional barrier-name argument is the address of a
descriptor pointing to a character string containing the barrier name. The name
of the barrier is arbitrary. If you do not specify this argument, or if you specify 0,
an unnamed barrier is created. An arbitrary number of unnamed barriers may
be created by a given application.

quorum
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by reference

Number of participants required to terminate an active wait for this barrier.
The quorum argument is the address of a signed word containing the quorum
number. For example, a quorum value of 3 indicates that the first two callers
of PPL$WAIT_AT_BARRIER specifying this barrier-id are blocked until a third
caller calls PPL$WAIT_AT_BARRIER. At that point, all three participants are
released for further processing. If you do not specify a value for quorum, a
default value of 1 is assigned.

PPL-13

PPL$CREATE_BARRIER

Description

PPL$CREATE_BARRIER creates and initializes a barrier, and returns the barrier
identifier. A barrier is a synchronization mechanism that allows an arbitrary
number of participants to cooperate by blocking at a given point (generally at the
conclusion of a set of work items) until all have reached the barrier.

If an element having the specified barrier-name already exists, then the current
request must be for the same type of synchronization element. If the types are
different, the error PPL$_INCOMPEXI is returned. For example, if a lock of
a given name exists, you cannot create a barrier by that name. (The name is
case sensitive.) If the elements are of the same type, this routine returns the
barrier-id of the existing element. A new barrier is created each time a null
name is supplied.

It is your responsibility to ensure that the barrier-id returned is made available
to any other participant in the application using the barrier. You can retrieve the
barrier-id by naming the barrier and "re-creating" it. That is, after you have
created the barrier, all participants that need to access that barrier's identifier
call this routine, specifying the same name for the element. This returns the
barrier-id of the existing barrier and a status of PPL$_ELEALREXI. (Note that
this method does not work for unnamed barriers.) Another method is to store the
returned barrier-id in shared memory.

The value you specify for quorum indicates exactly how many participants are
required to conclude a wait at that barrier. If you do not specify a value, a default
of 1 is assigned for the quorum.

Related routines that implement barrier synchronization are as follows:

PPL$DELETE_BARRIER

PPL$WAIT_AT_BARRIER

PPL$READ _BARRIER

PPL$SET_QUORUM
PPL$ADJUST_QUORUM

Deletes the barrier and releases any storage
associated with it.
Waits until the quorum reaches the barrier.

Returns the barrier's quorum and number of
waiting participants.

Establishes the initial quorum for the barrier.

Increments or decrements a barrier's quorum.

Condition Values Returned

PPL-14

PPL$_NORMAL
PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELENAM

PPL$_ WRONUMARG

Normal successful completion.
Successful completion. An element of the same
name already exists.

Incompatible type of element with the same
name already exists.
Insufficient virtual memory available.

Invalid argument.

Invalid element name or illegal character.

Wrong number of arguments.

PPL$CREATE_EVENT

PPL$CREATE_EVENT-Create an Event

Format

Returns

Arguments

Description

The Create an Event routine creates an arbitrary user-defined event and returns
the event identifier. You use the event identifier to perform all operations on that
event.

PPL$CREATE_EVENT event-id [,event-name]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
write only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier. Event-id must be used in other calls to
identify the event.

event-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the event. The event-name argument is the address of a descriptor
pointing to a character string containing the event name. The name of the event
is entirely arbitrary. If you do not specify a value for event-name, or if you
specify 0, a new unnamed event is created, which can be referenced only by its
identifier. An arbitrary number of unnamed events can be created by a given
application.

PPL$CREATE_EVENT creates an arbitrary user-defined event and returns its
identifier, which is used in subsequent calls to other PPL$ event routines.

If an element having the specified event-name already exists, then the current
request must be for the same type of synchronization element. If the types are
different, the error PPL$_INCOMPEXI is returned. For example, if a lock of a
given name exists, you cannot create an event by that name. (The names are
case sensitive.) If the elements are of the same type, this routine returns the
event-id of the existing element. A new event is created each time a null name
is supplied.

PPL-15

PPL$CREATE_EVENT

PPL-16

It is your responsibility to ensure that the event-id returned is made available
to any other participants in the application using the event. You can retrieve
the event-id by naming the event and "re-creating" it. That is, after you have
created the event, all participants that need to access that event's identifier
call this routine, specifying the same name for the element. This returns the
event-id of the existing event and a status of PPL$_ELEALREXI. (Note that this
method does not work for anonymous events.) Another method is to store the
returned event-id in shared memory. '

An event is a synchronization mechanism having an associated state that may be
either occurred or not_occurred. (A call to this routine initializes the state to not_
occurred.) A participant can trigger an event (by calling PPL$TRIGGER_EVENT)
as well· as enable an action to be taken when an event is triggered. When a
participant triggers an event, it may request that either exactly one pending
action is processed, or that all pending actions are processed. An action is either
an AST, a signal (condition), or a wakeup.

Refer to Section 4.3.7 for more information about triggering an event.

Related routines that implement event operations are as follows:

PPL$AWAIT_EVENT Blocks the caller until the event state
becomes occurred. If the state is already
occurred when this routine is called, the
state is reset to not_occurred and the
caller continues processing without being
blocked. (If there is a queued trigger for
the event when this routine is called,
then once again the state immediately
becomes occurred.) If the event is not_
occurred when this routine is called, the
caller is blocked, to be awakened by a
corresponding trigger for this event.

PPL$DELETE_EVENT Deletes the event and releases any
storage associated with it.

PPL$DISABLE_EVENT

PPL$ENABLE_EVENT_AST

Disables delivery of event notification to
the calling process by AST or signal, or
both.

Requests that a specified AST be
delivered when the event has occurred.
If the state is already occurred when this
routine is called, the AST is immediately
delivered and the state is reset to not_
occurred. (If there is a queued trigger for
the event when this routine is called, then
once again the state immediately becomes
occurred.) If the state is not_occurred
when this routine is called, the request
is queued to the event, and the AST is
delivered as a result of a corresponding
trigger for this event.

PPL$ENABLE_EVENT_SIGNAL

PPL$READ_EVENT

PPL$RESET_EVENT

PPL$TRIGGER_EVENT

PPL$CREATE_EVENT

Requests that a specified signal condition
be delivered when the event is occurred.
If the state is already occurred when
this routine is called, the signal is
immediately delivered and the state
is reset to not_occurred. (If there is a
queued trigger for the event when this
routine is called, then once again the

' state immediately becomes occurred.)·
Otherwise, the request is queued to the
event, and the signal will be delivered as
a result of a corresponding trigger for this
event.

Returns the current state of the event.
The state can be occurred or not_occurred.

Resets the event state to not_occurred.
Any queued calls to PPL$TRIGGER_
EVENT are removed from the queue.

Sets the event state to occurred and
examines the queue of requested
operations. If any signals or ASTs have
been enabled for the event, or if any
participant is waiting for the event, the
appropriate action is taken and the event
state is reset to not_occurred. If the event
state is already occurred, then the trigger
is queued for later processing.

The PPL$ facility creates and predefines the events PPL$K_NORMAL_EXIT and
PPL$K_ABNORMAL_EXIT. You need not create these events. (These events are
described in the following sections.) When a normal or abnormal exit occurs,
PPL$ triggers the event automatically. Note that you can ignore these predefined
events at no cost. However, Digital recommends that you enable event notification
of PPL$K_ABNORMAL_EXIT, because that condition usually indicates a severe
error. Notification is delivered only if you explicitly request it by specifying the
predefined event as the event-id in a call to PPL$ENABLE_EVENT_SIGNAL,
PPL$ENABLE_EVENT_AST, or PPL$AWAIT_EVENT.

1. PPL$K_NORMAL_EXIT-PPL$ triggers this event when an application
participant exits normally. Normal exits include the following:

• The participant returns a success status

• The participant calls PPL$TERMINATE

• The subordinate's parent calls PPL$TERMINATE specifying PPL$M_
STOP _CHILDREN

• Some other participant calls PPL$STOP to terminate this participant

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is PPL$_
NORMAL_EXIT.

PPL-17

PPL$CREATE_EVENT

2. PPL$K_ABNORMAL_EXIT-PPL$ triggers this event when an application
participant exits abnormally. Abnormal exits include the following:

• The participant returns an error status

• A mechanism outside of PPL$ forces termination and prevents the
execution of exit handlers (for example, the DCL command STOP/ID)

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is PPL$_
ABNORMAL_EXIT.

There are some special usage considerations for the PPL$ predefined events
if delivery of a signal is requested. Refer to the Description section of
PPL$ENABLE_EVENT_SIGNAL for more information.

Condition Values Returned

PPL-18

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELENAM

PPL$_ WRONUMARG

Normal successful completion.

Successful completion. An element of the same
name already exists.

Incompatible type of element with the same
name already exists.

Insufficient virtual memory available.

Invalid argument.

Invalid element name or illegal character.
Wrong number of arguments.

PPL$CREATE_SEMAPHORE

PPL$CREATE_SEMAPHORE-Create a Semaphore

Format

Returns

Arguments

The Create a Semaphore routine creates and initializes a semaphore with a
waiting queue, and returns the semaphore identifier. You use the semaphore
identifier to perform all operations on that semaphore.

PPL$CREATE_SEMAPHORE semaphore-id [,semaphore-name]
[,semaphore-maximum] [,semaphore-initial]

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
write only
by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier. Semaphore-id must be used in
other calls to identify the semaphore.

semaphore-name
Open vMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the semaphore. The semaphore-name argument is the address of a
descriptor pointing to a character string containing the semaphore name. The
name of the semaphore is entirely arbitrary. If you do not specify a value for
semaphore-name, or if you specify 0, a new unnamed semaphore is created. An
arbitrary number of unnamed semaphores may be created by a given application.

semaphore-maximum
Open VMS usage word_signed
type word (signed)
access read only
mechanism by reference

Maximum value of the semaphore. The semaphore-maximum argument is the
address of a signed word containing the maximum value. This value must be
nonnegative. If you do not supply a value for semaphore-maximum, a default
value of 1 is used, thereby making it a binary semaphore.

PPL-19

PPL$CREATE_SEMAPHORE

Description

PPL-20

semaphore-initial
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by reference

Initial value of the semaphore. The semaphore-initial argument is the address
of a signed word containing the initial value. This value must be less than or
equal to the semaphore-maximum value. If you do not supply a value for
semaphore-initial, a default value equal to semaphore-maximum is used.

PPL$CREATE_SEMAPHORE creates and initializes a semaphore and a waiting
queue, and returns the identifier of the semaphore. The semaphore created may
be used to control access to any user-defined resource.

If an element having the specified semaphore-name already exists, then the
current request must be for the same type of synchronization element. If the
types are different, the error PPL$_INCOMPEXI is returned. For example, if a
lock of a given name exists, you cannot create a semaphore by that name. (The

·name is case sensitive.) If the elements are of the same type, this routine returns
the semaphore-id of the existing element. A new semaphore is created each
time a null name is supplied.

It is your responsibility to ensure that the semaphore-id returned is made
available to any other participant in the application using the semaphore. You
can retrieve the semaphore-id by naming the semaphore and "re-creating"
it. That is, after you have created the semaphore, all participants that need to
access that semaphore's identifier call this routine, specifying the same name for
the element. This returns the semaphore-id of the existing semaphore and a
status of PPL$_ELEALREXI. (Note that this method does not work for unnamed
semaphores.) Another method is to store the returned semaphore-id in shared
memory. Refer to Section 5.2.6 for more information.

Depending on the value specified for semaphore-maximum, you can create
either a binary semaphore (semaphore-maximum= 1) or a counting semaphore
(semaphore-maximum > 1).

Related routines that implement semaphore synchronization are as follows:

PPL$ADJUST_SEMAPHORE_
MAXIMUM
PPL$DECREMENT_SEMAPHORE

PPL$DELETE_SEMAPHORE

PPL$INCREMENT_SEMAPHORE

PPL$READ_SEMAPHORE

Increments or decrements the maximum
value of a semaphore.
Waits for the semaphore to have a value
greater than zero, then decrements the
semaphore.

Deletes a semaphore and releases any
storage associated with it.

Increments the semaphore and wakes a
participant blocked by the semaphore, if
any exists.

Returns the current and/or maximum
values of a semaphore.

PPL$SET_SEMAPHORE_
MAXIMUM

Condition Values Returned

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELENAM

PPL$_INVSEMINI

PPL$_INVSEMMAX

PPL$_ WRONUMARG

PPL$CREATE_SEMAPHORE

Dynamically sets the maximum value of
a semaphore.

Normal successful completion.

Successful completion. An element of the same
name already exists.

Incompatible type of element with the same
name already exists.
Insufficient virtual memory available.

Invalid argument.

Invalid element name or illegal character.

Invalid semaphore initial value; cannot be
greater than the maximum value.

Invalid semaphore maximum value; must be
greater than zero.

Wrong number of arguments.

PPL-21

PPL$CREATE_SHARED_MEMORY

PPL$CREATE_SHARED_MEMORY-Create Shared Memory

Format

Returns

Arguments

PPL-22

The Create Shared Memory routine creates (if necessary) and maps a section of
memory that can be shared by multiple processes.

PPL$CREATE_SHARED_MEMORY section-name ,memory-area [,flags] [,file-name]
[,protection]

Open VMS usage
type
access
mechanism

section-name
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
read only
by descriptor

Name of the shared memory section you want to create. The section-name
argument is the address of a descriptor pointing to the shared memory section
name.

memory-area
Open VMS usage
type
access
mechanism

vector_longword_unsigned
longword (unsigned)
modify
by reference, array reference

The area of memory into which the shared memory is mapped. The memory
area argument is the address of a two-longword array containing, in order, the
length (in bytes) and the starting virtual address for the area of memory.

If you specify the starting address as zero, the PPL$ facility selects the virtual
address space so that each current process in the application can map the section
to the same set of virtual addresses.

PPL$CREATE_SHARED_MEMORY returns to this argument the actual length
and starting virtual address of the shared memory created or mapped.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for creating and mapping shared memory. The flags argument
is the address of a longword bit mask containing the flag. Valid values are as
follows:

PPL$M_NOZERO

PPL$M_NOWRT

PPL$M_NOUNI

PPL$M_PERM

PPL$M_SYSTEM

file-name
Open VMS usage
type
access
mechanism

PPL$CREATE_SHARED_MEMORY

Does not initialize the shared memory to zero. By default,
PPL$CREATE_SHARED_MEMORY initializes the shared
memory to zero.

Maps the shared memory with no write access (in other
words, read only). By default, the shared memory is
available with read/write access.
Names the shared memory a nonunique name. By default,
PPL$CREATE_SHARED_MEMORY gives the specified
shared memory a name unique to the application by using
PPL$UNIQUE_NAME.
Creates permanent shared memory in which data is
maintained even though there are no active processes.
The default is determined by your call to PPL$CREATE_
APPLICATION: if you specify the PPL$M_PERM flag in
your call to PPL$CREATE_APPLICATION, this behavior
is the default and you do not need to specify PPL$M_
PERM in your call to PPL$CREATE_SHARED_MEMORY.
If you do not specify the PPL$M_PERM flag in your calls
to PPL$CREATE_APPLICATION and PPL$CREATE_
SHARED_MEMORY, application data is lost when the
last process in the application exits. Use of this flag
requires PRMGBL privilege.

Creates systemwide shared memory. The default is
determined by your call to PPL$CREATE_APPLICATION:
if you specify the PPL$M_SYSTEM flag in your call
to PPL$CREATE_APPLICATION, this behavior is the
default and you do not need to specify PPL$M_SYSTEM
in your call to PPL$CREATE_SHARED_MEMORY. If you
do not specify the PPL$M_SYSTEM flag in your calls
to PPL$CREATE_APPLICATION and PPL$CREATE_
SHARED_MEMORY, the application is available only to
processes running under the same group UIC. Use of this
flag requires the SYSGBL privilege.

char _string
character string
read only
by descriptor

Name of the file used for backup storage of the shared memory. The file-name
argument is the address of a descriptor pointing to the file name. The size of the
resulting address space is the smaller of the following:

• The specified section size

• the Size of the file being mapped

If you do not specify a file name, PPL$CREATE_SHARED_MEMORY creates for
backup storage a page file section instead of a disk file section.

If you specify a file that does not exist, PPL$CREATE_SHARED_MEMORY
creates it.

PPL-23

PPL$CREATE_SHARED_MEMORV

Description

PPL-24

protection
Open VMS usage
type
access
mechanism

file_protection
longword (unsigned)
read only
by reference

Numeric value representing the protection mask to be applied to the shared
memory. The optional protection argument is the address of an unsigned
longword containing this numeric value. If you do not specify a value, the default
is the value for protection specified in the call to PPL$CREATE_APPLICATION.
For more information, see the description of the $CRMPSC system service in the
Open VMS System Services Reference Manual.

PPL$CREATE_SHARED_MEMORY creates (if necessary) and maps a section
of memory that can be shared by multiple processes. Within Open VMS, a
global section (or shared memory) is a data structure or shareable image section
potentially available to all processes in the system. See the Open VMS System
Services Reference Manual for more information on global sections.

By default, PPL$CREATE_SHARED_MEMORY gives the shared memory a name
unique to the application, initializes the section to zero, and maps the section
with read/write access. You use the flags argument to change any or all of those
defaults. In addition, all other participants share the same memory addresses if
possible. This operation merely attempts to "reserve" that address range, and it
is only mapped in other participants at the time they issue calls to this routine. If
PPL$CREATE_SHARED_MEMORY cannot map the shared memory to the same
addresses in all participants, the memory is not mapped and PPL$_NONPIC
is returned. (This might occur when the application executes more than one
different program image.)

Optionally, this routine opens a backup storage file for the shared memory with a
specified file name.

The PPL$ facility offers two distinct memory sharing services through this
routine. The first mechanism lets you request an unspecified range of addresses,
and the PPL$ facility arranges to allocate the same set of addresses in each
participant in the application. You request this service by specifying the starting
address as zero. If you allow the PPL$ facility to select the virtual addresses
for a section of shared memory, PPL$ selects the virtual addresses so that each
process already in the application can map the section to the same address range.
A participant that joins the application after the shared memory is created may
not be able to access the shared memory if the new participant's image size is
significantly larger than the image size of the participant(s) that created the
shared memory. If you have difficulty creating shared memory, be sure that all
participants that will use the section have joined the application before the shared
memory is created.

The second mechanism lets you specify a particular range of addresses to be
shared. This allows the sharing of an arbitrary collection of variables that
appears at a certain address, such as a FORTRAN common block. Because
Open VMS maps memory in pages (512 bytes), you must take care to share
exactly the data intended for sharing-no more and no less. When the data does
not fall exactly on page boundaries, extra effort is required to prevent accidental
sharing of local data while guaranteeing that all participants can access the
shared memory at the expected addresses. You can accomplish this by allocating

PPL$CREATE_SHARED_MEMORY

a 512-byte array at both the beginning and the end of such a data area (common
block). The request to this routine then specifies the starting address to be that of
the front "guard" array. The length is calculated by subtracting the last address
of the end "guard page" from the starting address of the front guard. PPL$ maps
the requested memory so that the lower address is rounded up to the nearest
page boundary, and the higher address is rounded down to the nearest page
boundary. This guarantees that no data is shared unexpectedly, and that all
important data in the common area (that is, everything but the two guard pages)
is fully shared.

Condition Values Returned

PPL$_NORMAL

PPL$_ CREATED

PPL$_INVARG

PPL$_NONPIC

PPL$_ WRONUMARG

RMS$_xxx

Normal successful completion.

Successful completion. Shared memory created.

Invalid argument.
Cannot map shared memory to same addresses
as other processes have mapped section.

Wrong number of arguments.

Miscellaneous RMS errors pertaining to file
name.

Any error returned by the system service $CRMPSC.

PPL-25

PPL$CREATE_SPIN_LOCK

PPL$CREATE_SPIN_LOCK-Create Spin Lock

Format

Returns

Arguments

Description

PPL-26

The Create Spin Lock routine creates and initializes a simple (spin) lock, and
returns the lock identifier. You use that lock identifier to get and free the lock.

PPL$CREATE_SPIN_LOCK lock-id [,lock-name]

Open VMS usage
type
access
mechanism

lock-id

cond_value
longword (unsigned)
write only
by value

Open VMS usage identifier
type longword (unsigned)
access write only
mechanism by reference

Identifier of the newly created lock. The lock-id argument is the address of an
unsigned longword containing the lock identifier. You must use lock-id when
getting or freeing the lock.

lock-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the lock. The lock-name argument is the address of a descriptor
pointing to a character string containing the name. The name of the lock is
entirely arbitrary. If you do not specify this argument, or if you specify 0, an
unnamed lock is created. An arbitrary number of unnamed locks can be created
by a given application.

PPL$CREATE_SPIN_LOCK creates and initializes a simple lock, and returns the
lock identifier. The lock is initialized to zero (not set).

If an element having the specified lock-name already exists, then the current
request must be for the same type of synchronization element. If the types are
different, the error PPL$_INCOMPEXI is returned. For example, if a barrier of
a given name exists, you cannot create a lock by that name. (The name is case
sensitive.) If the elements are of the same type, this routine returns the lock-id
of the existing element. A new lock is created each time a null name is supplied.

It is your responsibility to ensure that the lock-id returned is made available
to any other participant in the application using the lock. You can retrieve the
lock-id by naming the lock and "re-creating" it. That is, after you have created
the lock, all participants that need to access that lock's identifier call this routine,
specifying the same name for the element. This returns the lock-id of the

PPL$CREATE_SPIN_LOCK

existing lock and a status of PPL$_ELEALREXI. (Note that this method does not
work for unnamed anonymous locks.) Another method is to store the returned
lock-id in shared memory.

Related routines that implement spin lock synchronization are as follows:

PPL$DELETE_SPIN_LOCK

PPL$READ _SPIN_LOCK

PPL$RELEASE_SPIN_LOCK

PPL$SEIZE_SPIN_LOCK

Deletes a spin lock and releases any storage
associated with it.
Returns the current state of the spin lock. The
state can be seized or not_seized.

Releases the lock.

Obtains the lock for exclusive access.

This form of lock is recommended for use only in a dedicated parallel processing
environment, and only when fairness is not important. This lock is not
recommended for use in a general time-sharing environment because in that
environment a spin lock consumes CPU resources.

Condition Values Returned

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INVARG
PPL$_INVELENAM

PPL$_ WRONUMARG

Normal successful completion.

Successful completion. An element of the same
name already exists.
Incompatible type of element with the same
name already exists.

Invalid argument.
Invalid element name or illegal character string.

Wrong number of arguments.

PPL-27

PPL$CREATE_VM_ZONE

PPL$CREATE_ VM_ZONE-Create a New Virtual Memory Zone

Format

Returns

Arguments

PPL-28

The Create a New Virtual Memory Zone routine creates a new storage zone,
according to specified arguments, which is available to all participants in the
application.

PPL$CREATE_ VM_ZONE zone-id [,algorithm] [,algorithm-argument] [,flags]
[,extend-size] [,initial-size] [,block-size] [,alignment]
[,page-limit] [,smallest-block-size] [,zone-name]

Open VMS usage
type
access
mechanism

zone-id

cond_value
longword (unsigned)
write only
by value

Open VMS usage identifier
type longword (unsigned)
access write only
mechanism by reference

Zone identifier. The zone-id argument is the address of a longword set to the
zone identifier of the newly created zone.

algorithm
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Algorithm. The algorithm argument is the address of a signed longword that
represents the code for one of the LIB$VM algorithms:

1

2

3
4

LIB$K_VM_FIRST_FIT

LIB$K_ VM_QUICK_FIT
LIB$K_ VM_FREQ_SIZES

LIB$K_ VM_FIXED

First fit
Quick fit, lookaside list
Frequent sizes, lookaside list

Fixed size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

algorithm-argument
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference

Algorithm argument. The algorithm-argument argument is the address of
a signed longword that contains a value specific to the particular allocation
algorithm.

PPL$CREATE_VM_ZONE

Algorithm Value

QUICK_FIT The number of queues used. The number of queues must be
between 1 and 128. ·

FREQ_SIZES The number of cache slots used. The number of cache slots
must be between 1 and 16.

FIXED The fixed request size (in bytes) for each get or free. The
request size must be greater than 0.

FIRST_FIT Not used, may be omitted.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes, or fixed-size-blocks algorithms. However, this argument
is optional if you are using the first-fit algorithm.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Flags. The flags argument is the address of an unsigned longword that contains
flag bits that control various options:

Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Value

LIB$M_ VM_BOUNDARY_TAGS

LIB$M_ VM_GET_FILLO

LIB$M_ VM_GET_FILLl

LIB$M_ VM_FREE_FILLO

LIB$M_ VM_FREE_FILLl

LIB$M_ VM_EXTEND_AREA

Bits 6 through 31 are reserved and must be 0.

Description

Boundary tags for faster freeing
Adds a minimum of eight bytes to
each block
LIB$GET_ VM; fill with bytes of 0

LIB$GET_VM; fill with bytes of
FF (hexadecimal)

LIB$FREE_ VM; fill with bytes of
0

LIB$FREE_ VM; fill with bytes of
FF (hexadecimal)

Add extents to existing areas if
possible

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Zone extend size. The extend-size argument is the address of a signed longword
that contains the number of (512-byte) pages to be added to the zone each time it
is extended.

The value of extend-size must be between 1 and 1024.

PPL-29

PPL$CREATE_VM_ZONE

PPL-30

This is an optional argument. If extend-size is not specified, a default of 16
pages is used.

Note

Extend-size does not limit the number of blocks that can be allocated from
the zone. The actual extension size is the greater of extend-size and the
number of pages needed to satisfy the LIB$GET_ VM call that caused the
extend.

initial-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Initial size for the zone. The initial-size argument is the address of a signed
longword that contains the number of (512-byte) pages to be allocated for the
zone as the zone is created.

This is an optional argument. If initial-size is not specified or is specified as 0,
no pages are allocated when the zone is created. The first call to LIB$GET_ VM
for the zone allocates extend-size pages.

block-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Block size of the zone. The block-size argument is the address of a signed
longword specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Block alignment. The alignment argument is the address of a signed longword
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

page-limit
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Description

PPL$CREATE_VM_ZONE

Maximum page limit. The page-limit argument is the address of a signed
longword that specifies the maximum number of (512-byte) pages that can be
allocated for the zone. The value of page-limit must be between 0 and 32, 767.
Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by the
Open VMS operating system. If page-limit is specified, then initial-size must
also be specified.

smallest-block-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Smallest block size. The smallest-block-size argument is the address of a
signed longword that specifies the smallest block size (in bytes) with a queue for
the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is,
queues are provided for the first n multiples of block-size.

zone-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to a character string containing
the zone name. If zone-name is not specified, the zone does not have an
associated name.

PPL$CREATE_ VM_ZONE creates a new storage zone. The zone identifier value
that is returned can be used in calls to the following LIB$ routines:

LIB$FREE_ VM

LIB$GET_VM

LIB$DELETE_ VM_ZONE

LIB$RESET_ VM_ZONE

LIB$SHOW _ VM_ZONE

LIB$VERIFY_ VM_ZONE

The arguments for PPL$CREATE_ VM_ZONE are identical to those for
LIB$CREATE_ VM_ZONE, except for the last two arguments: PPL$CREATE_
VM_ZONE does not accept the get-page and free-page arguments provided by
LIB$CREATE_ VM_ZONE. For more information about the RTL LIB$ virtual
memory zone routines, refer to the Open VMS RTL Library (LIB$) Manual.

The restrictions for LIB$RESET_ VM_ZONE also apply to shared zones. That is,
it is the caller's responsibility to ensure that the called program has exclusive
access to the zone while the reset operation is being performed.

All participants in the application share the memory allocated by calls to
LIB$GET_ VM. Memory allocated by one process may be freed by another process.

PPL-31

PPL$CREATE_VM_ZONE

It is your responsibility to ensure that the zone-id returned is made available
to any other participants in the application using the zone. You can retrieve
the zone-id by naming the zone and "recreating" it. That is, after you have
created the zone, all participants that need to access that zone's identifier call
this routine, specifying the same name for the element. This returns the zone-id
of the existing zone and a status of PPL$_ELEALREXI. (Note that this method
does not work for unnamed zones.) Another method is to store the returned
zone-id in shared memory.

If an error status is returned, the zone is not created.

Condition Values Returned

PPL-32

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INSVIRMEM

PPL$_INVARG

Normal successful completion.

Successful completion. An element of the same
name already exists.
Incompatible type of element with the same
name already exists.

Insufficient virtual memory available.

Invalid argument.

Any error returned by LIB$CREATE_ VM_ZONE.

PPL$CREATE_ WORK_QUEUE

PPL$CREATE_WORK_QUEUE-Create a Work Queue

Format

Returns

Arguments

Description

The Create a Work Queue routine creates and initializes a work queue and
returns the work queue identifier.

PPL$CREATE_WORK_QUEUE queue-id [,queue-name]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
write only
by reference

The work queue identifier. The queue-id argument is the address of an unsigned
longword containing the identifier. Queue-id must be used in calls to the other
work queue routines to identify the work queue.

queue-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the work queue. The optional queue-name argument is the address of
a descriptor pointing to a character string containing the work queue name. The
work queue name is case sensitive. If you do not specify this argument, or if you
specify 0, an unnamed work queue is created. An arbitrary number of unnamed
work queues may be created by a given application.

PPL$CREATE_WORK_QUEUE creates and initializes a work queue and returns
the identifier of the work queue.

A parallel application that uses a work queue consists of a work queue of work
items and participants to complete the work items. One or more participants
serve as task dispatchers. These participants place work items that identify a
task to be performed into a work queue. Other participants (servers) remove the
work items from the work queue and execute the indicated task. When there is
no work to be done, the dispatchers await input, and the servers block on the
empty work queue.

PPL-33

PPL$CREATE_ WORK_QUEUE

If a PPL$ element having the specified queue-name already exists, then
the current request must be for the same type of element. For example, if a
semaphore of a given name exists, you cannot create a work queue by that
name. If the types are different, the error PPL$_INCOMPEXI is returned. If the
elements are of the same type, this routine returns the queue-id of the existing
element. A new work queue is created every time a null name is specified.

It is your responsibility to ensure that the queue-id returned is made available
to any other participant in the application using the work queue. You can retrieve
the queue-id by naming the work queue and "recreating" it. That is, after you
have created the work queue, all participants that need to access that work
queue's identifier call this routine, specifying the same name for the element.
This returns the queue-id of the existing work queue and a status of PPL$_
ELEALREXI. (Note that this method does not work for unnamed work queues.)
Another method is to store the returned queue-id in shared memory.

Other routines that manipulate work queues are:

PPL$DELETE_ WORK_QUEUE

PPL$READ_ WORK_QUEUE

PPL$DELETE_ WORK_ITEM

PPL$INSERT_ WORK_ITEM

PPL$REMOVE_ WORK_ITEM

Deletes a work queue.

Retrieves the number of items in a work
queue or the number of waiting processes.

Deletes a specified item from a work
queue.

Inserts an item into a work queue.

Removes the next item in order from a
work queue.

Condition Values Returned

PPL-34

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_INCOMPEXI

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELENAM

PPL$_ WRONUMARG

Normal successful completion.

Successful completion. An element of the same
name already exists.

Incompatible type of element with the same
name already exists.

Insufficient virtual memory available.

Invalid argument.

Invalid element name or illegal character string.

Wrong number of arguments.

PPL$DECREMENT_SEMAPHORE

PPL$DECREMENT _SEMAPHORE-Decrement a Semaphore

Format

Returns

Arguments

The Decrement a Semaphore routine waits for a semaphore to have a value
greater than 0, then decrements the value by 1 to indicate the allocation of a
resource.

PPL$DECREMENT _SEMAPHORE semaphore-id [,flags] [,spin]

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Bit mask specifying options for decrementing the semaphore. The flags argument
is a longword bit mask containing the flag. The valid values for flags are as
follows:

PPL$M_NON_BLOCKING

PPL$M_SPIN_ WAIT

PPL$M_SPIN_COUNTED

spin

Indicates that the caller is not to block if the
resource is not available. The default is FALSE:
the caller will block if resource is unavailable.

Indicates that the caller is never to block, but
rather to always spin while waiting at this
barrier.

Indicates that the caller wishes to spin for a
given amount of instructions and then to block.
The default is block immediately, do not spin at
all.

Open VMS usage
type
access
mechanism

mask_longword
long (unsigned)
read only
by reference

PPL-35

PPL$DECREMENT_SEMAPHORE

Description

This value must be specified when using the PPL$M_SPIN_COUNTED flag and
represents a relative time that a process will spin before blocking.

PPL$DECREMENT_SEMAPHORE waits for a semaphore to have a value greater
than 0, then decrements the value by 1 to indicate the allocation of a resource.
If the value of the semaphore is 0 at the time of the call, the caller is put in
the queue and suspended, unless the PPL$M_NON_BLOCKING value for the
flags argument is specified. If you specify PPL$M_NON_BLOCKING, the caller
is not blocked, the semaphore is not decremented, and the routine returns the
status code PPL$_NOT_AVAILABLE. The semaphore must have been created by
PPL$CREATE_SEMAPHORE.

Condition Values Returned

PPL-36

PPL$_NORMAL

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOT_AVAILABLE

PPL$_ WRONUMARG

Normal successful completion.

Invalid argument.

Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

Operation cannot be performed immediately;
therefore it is not performed.
Wrong number of arguments.

PPL$DELETE_APPLICATION

PPL$DELETE_APPLICATION-Delete a PPL$ Application

Format

Returns

Arguments

Description

The Delete a PPL$ Application routine marks all shared memory for deletion and
prevents additional processes from joining the application.

PPL$DELETE_APPLICATION

Open VMS usage
type
access
mechanism

None.

cond_value
longword (unsigned)
write only
by value

PPL$DELETE_APPLICATION marks all shared memory in an application for
deletion. This includes the PPL$ internal data area, all shared memory sections,
and shared zone sections. Because the shared memory is not actually deallocated
until the last process exits, this routine has no effect on processes that are
already members of the application. However, after you call this routine, no new
processes are allowed to join the application. The process calling this routine
requires the PRMGBL privilege.

If a process attempts to join an application that has been deleted, PPL$ instead
forms a new application with the same name (subject to the options specified in
PPL$CREATE_APPLICATION). This prevents completely separate instances of
an application with the same name from interfering with each other.

Calling PPL$DELETE_APPLICATION is the only way to remove a permanent
application (one which was formed with the PPL$M_PERM flag set in
PPL$CREATE_APPLICATION). After calling PPL$DELETE_APPLICATION, the
application is no longer permanent. When the last process leaves the application,
all shared memory sections are deallocated, and the application is deleted.

Condition Values Returned

PPL$_NORMAL

PPL$_NOINIT
Normal successful completion.

PPL$CREATE_APPLICATION has not been
called.

Any condition value returned by the system service $DGBLSC.

PPL-37

PPL$DELETE_BARRIER

PPL$DELETE_BARRIER-Delete a Barrier

Format

Returns

Arguments

Description

PPL-38

The Delete a Barrier routine deletes a barrier and releases any storage associated
with it.

PPL$DELETE_BARRIER [barrier-id] [,barrier-name]

Open VMS usage
type
access
mechanism

barrier-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the barrier. The optional barrier-id argument is the address of an
unsigned longword containing the barrier identifier.

barrier-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the barrier. The optional barrier-name argument is the address of a
descriptor pointing to a character string containing the barrier name.

PPL$DELETE_BARRIER deletes a specified barrier and releases any storage
associated with it. A barrier may be specified by either its name or by its
identifier. Unnamed barriers must be deleted by specifying the barrier-id.

You cannot delete a barrier if there are participants waiting at the barrier. If
you attempt to delete a barrier at which participants are waiting, PPL$ returns
the PPL$_ELEINUSE error. (Call PPL$ADJUST_QUORUM to release the
waiting participants before deleting the barrier.) None of the participants in
the application can perform any further operations on the barrier after you call
PPL$DELETE_BARRIER.

Condition Values Returned

PPL$_NORMAL
PPL$_ELEINUSE

PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_NOSUCHELE
PPL$_ WRONUMARG

PPL$DELETE_BARRIER

Normal successful completion.
The specified element is currently in use and
cannot be deleted.
Invalid argument.
Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

PPL-39

PPL$DELETE_EVENT

PPL$DELETE_EVENT-Delete an Event

Format

Returns

Arguments

Description

PPL-40

The Delete an Event routine deletes an event and releases any storage associated
with it.

PPL$DELETE_EVENT [event-id] [,event-name]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The optional event-id argument is the address of an
unsigned longword containing the event identifier.

event-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the event. The optional event-name argument is the address of a
descriptor pointing to a character string containing the event name.

PPL$DELETE_EVENT deletes a specified event and releases any storage
associated with it. An event can be specified either by its name or by its identifier.
Unnamed events must be deleted by specifying the event-id.

You cannot delete an event if there are participants waiting for the event to occur.
If you attempt to delete such an event, PPL$ returns the PPL$_ELEINUSE error.
(Call PPL$TRIGGER_EVENT to release the waiting participants before deleting
an event.) However, an event can be deleted if other participants have enabled
notification of the event, or if there are outstanding triggers queued for the event.
None of the participants in the application can perform any further operations on
the event after you call PPL$DELETE_EVENT.

Condition Values Returned

PPL$_NORMAL
PPL$_ELEINUSE

PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOSUCHELE
PPL$_ WRONUMARG

PPL$DELETE_EVENT

Normal successful completion.
The specified element is currently in use and
cannot be deleted.
Invalid argument.
Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

PPL-41

PPL$DELETE_SEMAPHORE

PPL$DELETE_SEMAPHORE-Delete a Semaphore

Format

Returns

Arguments

Description

PPL-42

The Delete a Semaphore routine deletes a semaphore and releases any storage
associated with it.

PPL$DELETE_SEMAPHORE [semaphore-id] [,semaphore-name]

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the semaphore. The optional semaphore-id argument is the address
of an unsigned longword containing the semaphore identifier.

semaphore-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the semaphore. The optional semaphore-name argument is the
address of a descriptor pointing to a character string containing the semaphore
name.

PPL$DELETE_SEMAPHORE deletes a specified semaphore and releases any
storage associated with it. A semaphore can be specified either by its name or by
its identifier. Unnamed semaphores must be deleted by specifying semaphore
id.

You cannot delete a semaphore if there are participants waiting for the
semaphore. If you attempt to delete a semaphore for which participants are
waiting, PPL$ returns the PPL$_ELEINUSE error. (Call PPL$INCREMENT_
SEMAPHORE to release waiting participants before deleting the semaphore.)
None of the participants in the application can perform any further operations on
the semaphore after you call PPL$DELETE_SEMAPHORE.

Condition Values Returned

PPL$_NORMAL

PPL$_ELEINUSE

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOSUCHELE

PPL$_ WRONUMARG

PPL$DELETE_SEMAPHORE

Normal successful completion.

The specified element is currently in use and
cannot be deleted.
Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.

Wrong number of arguments.

PPL-43

PPL$DELETE_SHARED_MEMORY

PPL$DELETE_SHARED_MEMORY-Delete Shared Memory

Format

Returns

Arguments

PPL-44

The Delete Shared Memory routine deletes or unmaps from a global section that
you created using the PPL$CREATE_SHARED_MEMORY routine. Optionally,
this routine writes the contents of the global section to disk before deleting the
section.

PPL$DELETE_SHARED_MEMORY section-name [,memory-area] [,flags]

Open VMS usage
type
access
mechanism

section-name
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
read only
by descriptor

Name of the global section you want to delete. The section-name argument is
the address of a descriptor pointing to a character string containing the global
section name.

memory-area
Open VMS usage
type
access
mechanism

vector_longword_unsigned
longword (unsigned)
read only
by reference, array reference

The area of memory into which the global section that you want to delete is
mapped. The memory-area argument is the address of a two-longword array
containing, in order, the length in bytes and the starting virtual address of the
area of memory.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Bit mask specifying actions to be performed before deleting the global section.
The flags argument is the address of a longword bit mask containing the flag.
Valid values for flags are as follows:

PPL$M_FLUSH Writes the global section to disk before deleting it.

Description

PPL$M_NOUNI

PPL$DELETE_SHARED_MEMORY

Identifies the global section as having a nonunique
name. By default, PPL$CREATE_SHARED_MEMORY
gives the specified global section a name unique to
the application by using PPL$UNIQUE_NAME. If
you specified this value to give the global section a
nonunique name when you called PPL$CREATE_
SHARED_MEMORY, you must also specify it when you
call PPL$DELETE_SHARED_MEMORY.

PPL$DELETE_SHARED_MEMORY unmaps the calling process from a global
section that you created using the PPL$CREATE_SHARED_MEMORY routine.
An Open VMS global section is a section of memory potentially available to all
processes in the system.

A temporary global section is implicitly deleted when the last process unmaps
from it. Permanent global sections must be explicitly deleted by calling this
routine; however, a permanent global section is not actually deleted until the last
process unmaps from it.

After a process calls this routine to delete a permanent global section, no other
processes can map that global section. If a process subsequently specifies the
global section name in a call to PPL$CREATE_SHARED_MEMORY, that routine
creates a new global section with the same name. The new global section is not
shared with processes that mapped the old global section of the same name before
PPL$DELETE_SHARED_MEMORY was called.

You can use the flags argument to specify that the contents of the global section
are written to disk before the section is deleted, or to identify the global section
as having a nonunique name, or both.

If the global section is mapped in another process when you call this routine,
PPL$DELETE_SHARED_MEMORY unmaps from the global section. When all
processes have unmapped from the section or have been deleted, PPL$DELETE_
SHARED_MEMORY deletes the global section.

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.
Invalid argument.

PPL$CREATE_APPLICATION has not been
called.

Wrong number of arguments.

Any error returned by the system service $DELTVA.

PPL-45

PPL$DELETE_SPIN_LOCK

PPL$DELETE_SPIN_LOCK-Delete a Spin Lock

Format

Returns

Arguments

Description

The Delete a Spin Lock routine deletes a spin lock and releases any storage
associated with it.

PPL$DELETE_SPIN_LOCK [lock-id] [,lock-name]

Open VMS usage
type
access
mechanism

lock-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the lock. The optional lock-id argument is the address of an
unsigned longword containing the lock identifier.

lock-name
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Name of the lock. The optional lock-name argument is the address of a
descriptor pointing to a character string containing the lock name.

PPL$DELETE_SPIN_LOCK deletes a specified spin lock and releases any storage
associated with it. You can specify a spin lock by its name or by its identifier.
Unnamed spin locks must be deleted by specifying lock-id.

You cannot delete a spin lock if it is currently held by any process in the
application. If you attempt to delete a currently held spin lock, PPL$ returns the
PPL$_ELEINUSE error. None of the participants in the application can perform
further operations on the spin lock after you call PPL$DELETE_SPIN_LOCK.

Condition Values Returned

PPL-46

PPL$_NORMAL

PPL$_ELEINUSE

PPL$_INVARG

Normal successful comp~etion.

The specified element is currently in use and
cannot be deleted.

Invalid argument.

PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_NOSUCHELE
PPL$_ WRONUMARG

PPL$DELETE_SPIN_LOCK

Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

PPL-47

PPL$DELETE_VM_ZONE

PPL$DELETE_ VM_ZONE-Delete a Virtual Memory Zone

Format

Returns

Arguments

Description

PPL-48

The Delete a Virtual Memory Zone routine deletes a storage zone and returns all
pages owned by the zone to the application-wide page pool.

PPL$DELETE_ VM_ZONE [zone-id] [,zone-name]

Open VMS usage
type
access
mechanism

zone-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the zone. The optional zone-id argument is the address of an
unsigned longword containing the zone identifier.

zone-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the zone. The optional zone-name argument is the address of a
descriptor pointing to a character string containing the zone name.

PPL$DELETE_ VM_ZONE deletes a specified storage zone and returns all pages
owned by the zone to the application-wide page pool. The zone can be specified by
its name or identifier. If the zone does not have a name associated with it, specify
zone-id to delete the zone. For more information on deleting virtual memory
zones, refer to the description of LIB$DELETE_ VM_ZONE in the Open VMS RTL
Library (LIB$) Manual.

You must ensure that all participants in the application are no longer using any
of the memory in the zone before you call PPL$DELETE_ VM_ZONE. None of the
participants in the application can perform any further operations on the zone
after you call PPL$DELETE_ VM_ZONE.

Condition Values Returned

PPL$_NORMAL
PPL$_INVELENAM

PPL$_NOINIT

PPL$_NOSUCHELE

PPL$_ WRONUMARG

PPL$DELETE_VM_ZONE

Normal successful completion.
Invalid element name or illegal character string.
PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

Any condition value returned by LIB$DELETE_ VM_ZONE.

PPL-49

PPL$DELETE_ WORK_ITEM

PPL$DELETE_WORK_ITEM-Delete a Work Queue Item

Format

Returns

Arguments

PPL-50

The Delete a Work Queue Item routine deletes a work item from a work queue.

PPL$DELETE_WORK_ITEM queue-id ,work-item [,flags]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

The queue identifier. The queue-id argument is the address of an unsigned
longword containing the identifier.

work-item
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
read only
by value

The value of the item to be deleted from the queue. The work-item argument is
the address of an unsigned longword containing this value.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for deleting items from a work queue. The optional flags
argument is the address of a longword bit mask containing the flag. Valid values
are as follows:

PPL$M_DELETEALL

PPL$M_ TAILFIRST

Delete all items in the specified queue whose
value matches work-item. By default, only the
first item encountered is deleted.

Begin searching at the end of the queue and
move toward the beginning. By default, the
search begins at the beginning of the queue and
moves toward the end.

Description

PPL$DELETE_ WORK_ITEM

PPL$DELETE_ WORK_ITEM searches a specified work queue for an item whose
value matches work-item. By default, this routine searches the queue from
beginning to end. If the flag PPL$M_ TAILFIRST is specified, the queue is
searched from the end to the beginning. When the first matching work item is
found, it is deleted and the routine returns with a success status. However, if
the PPL$M_DELETEALL flag is set, PPL$DELETE_ WORK_ITEM continues
searching and deleting matching items until it reaches the opposite end of the
queue.

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOMATCH

PPL$_ WRONUMARG

Normal successful completion.

Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

No match for the specified element found.

Wrong number of arguments.

PPL-51

PPL$DELETE_ WORK_QUEUE

PPL$DELETE_WORK_QUEUE-Delete a Work Queue

Format

Returns

Arguments

PPL-52

The Delete a Work Queue routine deletes the specified work queue, and releases
any storage associated with it.

PPL$DELETE_WORK_QUEUE [queue-id] [,queue-name] [,flags]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

The work queue identifier. The optional queue-id argument is the address of an
unsigned longword containing the identifier.

queue-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the work queue. The optional queue-name argument is the address of
a descriptor pointing to a character string containing the work queue name.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for deleting a work queue. The optional flags argument is the
address of a longword bit mask containing the flag. The valid value is as follows:

PPL$M_FORCEDEL Delete the work queue regardless of whether it is
empty. By default, PPL$ returns the error PPL$_
ELEINUSE if you attempt to delete a work queue
at which proceses are blocked or that contains work
items.

Description

PPL$DELETE_WORK_QUEUE

PPL$DELETE_WORK_QUEUE deletes the specified work queue and releases
any internal storage associated with that queue. A work queue may be specified
either by queue-name or queue-id. Unnamed queues must be deleted by
specifying the queue-id.

If another participant is waiting for a work item to be placed in the work queue,
it is awakened. None of the participants in the application can do any further
operations on the work queue after you call PPL$DELETE_ WORK_QUEUE.

A work queue must be empty before it can be deleted (unless you specify the
PPL$M_FORCEDEL flag). If you attempt to delete a work queue at which
processes are blocked or that contains work items, PPL$ will return the PPL$_
ELEINUSE error. You can force deletion of a work queue that is not empty by
specifying the PPL$M_FORCEDEL flag. The PPL$_DELETED status is then
returned, indicating that the work queue was deleted.

If you force a work queue to be deleted, the PPL$ facility makes no assumptions
about the contents of the work items. If your items consist of pointers to pieces of
shared memory, it is your responsibility to deallocate all work items in the work
queue before deleting the work queue.

Condition Values Returned

PPL$_NORMAL

PPL$_DELETED

PPL$_ELEINUSE

PPL$_INVELEID

PPL$_INVELENAM

PPL$_NOINIT

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Normal successful completion.

Successful completion. The specified element was
forcibly deleted.

The specified element is currently in use and
may not be deleted.

Invalid element identifier.

Invalid element name or illegal character string.

PPL$CREATE_APPLICATION has not been
called.

The element you specified does not exist.

Wrong number of arguments.

PPL-53

PPL$DISABLE_EVENT

PPL$DISABLE_EVENT-Disable Asynchronous Notification of an
Event

Format

Returns

Arguments

Description

The Disable Asynchronous Notification of an Event routine disables delivery to a
process of notification of an event by either AST or signal.

PPL$DISABLE_EVENT event-id

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

PPL$DISABLE_EVENT disables delivery of event notification to the calling
process by AST or signal, or both. This routine has no effect on other processes
that have called PPL$AWAIT_EVENT and are waiting for an event to occur.

There may be some delay between the time that this routine is called and the
time that the event is actually disabled., The calling program should be prepared
to handle event notification up until the time that this routine returns.

Condition Values Returned

PPL-54

PPL$_NORMAL

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

Wrong number of arguments.

PPL$ENABLE_EVENT_AST

PPL$ENABLE_EVENT _AST-Enable AST Notification of an Event

Format

Returns

Arguments

The Enable AST Notification of an Event routine specifies the address of an AST
routine (and optionally an argument to that routine) to be delivered when an
event occurs.

PPL$ENABLE_EVENT _AST event-id ,astadr [,astprm]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

astadr
Open VMS usage
type
access
mechanism

ast_procedure
procedure value
call without stack unwinding
by reference

AST routine. The astadr argument is a procedure value of the user's AST
routine. This routine is called on the user's behalf when the event state becomes
occurred.

astprm
Open VMS usage
type
access
mechanism

user_arg
unspecified
read only
by value

AST value passed as the argument to the specified AST routine. The astprm
argument is the address of a vector of unsigned longwords containing this
optional value. If this argument is not specified, PPL$_EVENT_OCCURRED
is the astprm for a user-created event. The astprm argument has special
restrictions when used in conjunction with the PPL$ event routines.

• For user-defined events, the AST-argument must point to a vector of two
unsigned longwords. The first longword is a "context" reserved for the user;
it is not read or modified by PPL$. The second longword receives the value
specified by the event-param argument in the call to PPL$TRIGGER_
EVENT that results in the delivery of this AST.

PPL-55

PPL$ENABLE_EVENT_AST

Description

PPL-56

• For PPL$-defined events (those not created by the user), the astprm
argument must point to a vector of four unsigned longwords. The vector
accommodates the following:

The user's "context" longword

The longword to receive the event's distinguishing condition value

The parameters to the PPL$-defined event (the "trigger" parameter)

Because each of the predefined events takes two arguments, the vector that
astprm points to must be four longwords in length.

PPL$ENABLE_EVENT _AST requests the delivery of a specified AST when a
corresponding trigger sets the event state to occurred. (Generally, a trigger is
issued when a participant calls PPL$TRIGGER_EVENT. However, the PPL$
facility triggers predefined events automatically.) Refer to Section 4.3. 7 for more
information about triggering an event.

An asynchronous system trap (AST) is an Open VMS mechanism for providing a
software interrupt when an external event occurs. When you call this routine,
follow all standard Open VMS conventions for using ASTs.

If the event state is already occurred when you call this routine, the AST is
delivered immediately and, if there are no other pending triggers, the event state
is reset to not_occurred. If the state of the event is not_occurred when you call
this routine, your request for an AST to notify the caller of an event's occurrence
is placed in a queue and is processed once the event actually occurs. Note that
the caller continues execution immediately after the AST request is placed in the
queue. (Event notification is a one-time occurrence. You must call this routine
each time you want to reenable event notification after an event occurs.)

If you do not specify a value for the astprm argument, PPL$_EVENT_
OCCURRED is passed as the astprm argument when the event occurs. If
astprm is specified, it must conform to the requirements described in the
astprm argument description.

For user-defined events, you can supply a value for the event-param argument
in the call to PPL$TRIGGER_EVENT that causes the delivery of this AST. If you
specify an event-param, it appears in this routine as the second longword in the
astprm array.

PPL$ predefines the conditions PPL$_ABNORMAL_EXIT and PPL$_NORMAL_
EXIT, corresponding to the PPL$-defined event constants PPL$K_ABNORMAL_
EXIT and PPL$K_NORMAL_EXIT. You can use one of these event constants as
the event-id in a call to PPL$ENABLE_EVENT_AST if you want to be notified
when a participant exits. Each predefined event has two additional parameters:
the participant-index and the exit-status of the terminating participant.
When a normal or abnormal exit occurs, PPL$ triggers the corresponding event
automatically. Refer to PPL$CREATE_EVENT for more information about
predefined events.

For a given event, any calls to this routine from a given participant after the first
call overwrite the information previously specified. In general, you should only
call it once for each event for each participant.

Condition Values Returned

PPL$_NORMAL

PPL$_INSVIRMEM

PPL$_INVARG
PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

PPL$ENABLE_EVENT_AST

Normal successful completion.

Insufficient virtual memory available.

Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL-57

PPL$ENABLE_EVENT _SIGNAL

PPL$ENABLE_EVENT _SIGNAL-Enable Signal Notification of an
Event

Format

Returns

Arguments

Description

PPL-58

The Enable Signal Notification of an Event routine specifies a condition value to
be signaled when the event occurs.

PPL$ENABLE_EVENT _SIGNAL event-id [,signal-value]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

signal-value
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
read only
by value

Optional user-defined value to be signaled when the event occurs. The signal
value argument is an unsigned longword containing this value.

PPL$ENABLE_EVENT_SIGNAL requests the delivery of a specified condition
value when a trigger sets the event state to occurred. (Generally, a trigger is
issued when a participant calls PPL$TRIGGER_EVENT. However, the PPL$
facility triggers predefined events automatically.) Refer to Section 4.3. 7 for more
information about triggering an event.

If the event state is already occurred when you call this routine, the signal is
delivered immediately and, if there are no other pending triggers, the event state
is reset to not_occurred. If the state of the event is not_occurred when you call
this routine, your request for a signal to notify the caller of an event's occurrence
is placed in a queue, and is processed once the corresponding event is triggered.
Note that the caller continues execution immediately after the signal request is
placed in the queue. (Event notification is a 'one-time occurrence. You must call
this routine each time you want to re-enable event notification after an event
occurs.)

PPL$ENABLE_EVENT _SIGNAL

If you specify the signal-value argument, that value is the first condition
signaled in the signal vector when the event occurs. If you do not specify signal
value, PPL$_EVENT_OCCURRED is signaled. If the event-param argument
is specified in the call to PPL$TRIGGER_EVENT that causes the delivery of this
signal, that argument appears as the second condition value in the signal vector.
Figure PPL-1 illustrates the structure of a signal vector for a user-defined event.

Figure PPL-1 Signal Vector for a User-Defined Event

n

condition-value

param-count (0)

condition-value

param-count (0)

PC

PSL

n

CHF$L_SIG_ARGS

CHF$L_SIG_NAME

ZK-6498-GE

PPL$ predefines the conditions PPL$_ABNORMAL_EXIT and PPL$_NORMAL_
EXIT, corresponding to the PPL$-defined event constants, PPL$K_ABNORMAL_
EXIT and PPL$K_NORMAL_EXIT. You use one of these event constants as the
event-id in a call to PPL$_ENABLE_EVENT_SIGNAL if you want to be notified
when a participant exits. Each predefined event has two additional parameters:
the participant-index and the exit-status of the terminating participant.
When a normal or abnormal exit occurs, PPL$ triggers the corresponding event
automatically. Refer to PPL$CREATE_EVENT for more information about
predefined events. Figure PPL-2 illustrates the structure of a signal vector for a
PPL$-defined event.

PPL-59

PPL$ENABLE_EVENT _SIGNAL

PPL-60

Figure PPL-2 Signal Vector for a PPL$-Defined Event

n

condition-value

param-count (0)

condition-value

param-count (2)

participant-index

exit-status

PC

PSL

n

CHF$L_SIG_ARGS

CHF$L_SIG_NAME

ZK-6499-GE

For more information about signal vectors, refer to the Open VMS Calling
Standard.

For a given event, any calls to this routine from a given participant after the
first call overwrite the information previously specified. You should only call this
routine once for each event for .each participant.

PPL$ENABLE_EVENT_SIGNAL provides for cross-process asynchronous
signaling. This is a powerful mechanism, and it must be used only in carefully
controlled environments.

Asynchronous exceptions are those that are not a direct result of the execution
of the code, but rather are caused by some concurrent and not directly related
event. For example, an AST interrupts a MOVC instruction and the AST routine
attempts to reference an invalid address, resulting in an access violation. The
signaled exception is an ACCVIO, and it is not related to the interrupted MOVC
instruction. Occurrences of asynchronous exceptions have previously been quite
uncommon, and the majority of existing code expects to terminate upon receipt of
such an exception. The PPL$ENABLE_EVENT_SIGNAL service introduces the
means for use of asynchronous signals as a communications mechanism.

Delivery of an asynchronous signal to an arbitrary layered environment can
result in unwinding code that is totally unprepared for it, resulting in corrupted
data. For example, any RTL routine or the code of a layered product might
be interrupted by such an exception. Code that executes in multiple threads
under one process context is particularly vulnerable-for example, Ada tasking.
Delivery of an asynchronous exception interrupts the task that is executing at the
time, and will result in task termination. Do not use this routine in environments
that support multitasking within a process.

To avoid the potential program data corruptions and unintended alterations of
control flow implied by unexpected unwinding of an unprepared code section,
use this asynchronous signaling capability only when the code that can be
interrupted is your own. Also note that you can accomplish the same tasks

PPL$ENABLE_EVENT _SIGNAL

in a less dangerous way-using the standard AST facilities-by using the
PPL$ENABLE_EVENT_AST routine.

Condition Values Returned

PPL$_NORMAL
PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.
Insufficient virtual memory available.

Invalid argument.

Invalid element identifier.

Invalid element type.
PPL$CREATE_APPLICATION has not been
called.

Wrong number of arguments.

PPL-61

PPL$FIND_OBJECT _ID

PPL$FIND_OBJECT _ID-Find Object Identification

Format

Returns

Arguments

Description

PPL-62

Given the name of a spin lock, semaphore, barrier, event, work queue, or shared
memory zone, the Find Object Identification routine returns the identifier of the
object associated with the name you specify.

PPL$FIND_OBJECT _ID object-id ,object-name

Open VMS usage
type
access
mechanism

object-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
modify
by reference

Object identifier to be returned. The object-id argument is the address of an
unsigned longword that receives the associated identifier.

object-name
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Name of the object for which to return the associated identifier. The object
name argument is the address of a descriptor pointing to a character string
containing the (user-defined) name of the object.

Given the name of a spin lock, semaphore, barrier, event, work queue, or shared
memory zone, PPL$FIND_OBJECT_ID returns the identifier of the object
associated with the name you specify. An object is any synchronization element
(spin lock, semaphore, barrier, event, or work queue) or shared memory zone
previously created and named in a call to one of the following routines:

PPL$CREATE_BARRIER
PPL$CREATE_EVENT
PPL$CREATE_SEMAPHORE
PPL$CREATE_SPIN_LOCK
PPL$CREATE_ VM_ZONE
PPL$CREATE_ WORK_QUEUE

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_INVELENAM

PPL$_NOSUCHELE

PPL$_ WRONUMARG

PPL$FIND_OBJECT _ID

Normal successful completion.

Invalid argument.

Invalid element name, or illegal character string.

The element you specified does not exist.

Wrong number of arguments.

PPL-63

PPL$FLUSH_SHARED_MEMORY

PPL$FLUSH_SHARED_MEMORY-Flush Shared Memory

Format

Returns

Arguments

PPL-64

The Flush Shared Memory routine writes (flushes) to disk the contents of a global
section that you created using the PPL$CREATE_SHARED_MEMORY routine.
Only pages that have been modified are flushed to disk.

PPL$FLUSH_SHARED_MEMORY section-name [,memory-area] [,flags]

Open VMS usage
type
access
mechanism

section-name
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
read only
by descriptor

Name of the global section whose contents are to be written to disk. The section
name argument is the address of a descriptor pointing to a character string
containing the global section name.

memory-area
Open VMS usage
type
access
mechanism

vector_longword_unsigned
longword (unsigned)
read only
by reference, array reference

The area of memory into which the specified global section is mapped. The
memory-area argument is the address of a two-longword array containing,
in order, the length (in bytes) and the starting virtual address for the area of
memory.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Bit mask specifying actions to perform before flushing the global section. The
flags argument is the address of a longword bit mask containing the flag. The
valid value for flags is as follows:

Description

PPL$M_NOUNI

PPL$FLUSH_SHARED_MEMORY

Identifies the global section as having a nonunique name.
By default, PPL$CREATE_SHARED_MEMORY gives the
specified global section a name unique to the application
by using PPL$UNIQUE_NAME. If you specified this
value to give the global section a nonunique name when
you called PPL$CREATE_SHARED_MEMORY, you must
also specify it when you call PPL$FLUSH_SHARED_
MEMORY.

PPL$FLUSH_SHARED_MEMORY writes (flushes) to disk the contents of a
global section that was created using the PPL$CREATE_SHARED_MEMORY
routine. (An Open VMS global section is a data structure or shareable image
section potentially available to all processes in the system.) If you specified a file
name in the call to PPL$CREATE_SHARED_MEMORY, the shared memory is
written to that file when you call PPL$FLUSH_SHARED_MEMORY. The shared
memory name is used as a related file name. Only pages that have been modified
are flushed to disk. When one participant calls this routine, all other participants
flush their modified pages as well.

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_INVDESC

PPL$_NOINIT

Normal successful completion.

Invalid argument.

Invalid descriptor.

PPL$CREATE_APPLICATION has not been
called.

PPL$_NOSECEX The section that you specified does not exist.

PPL$_ WRONUMARG Wrong number of arguments.

Any error returned by the system service $UPDSEC.

PPL-65

PPL$GET _INDEX

PPL$GET _INDEX-Get Index of a Participant

Format

Returns

Arguments

Description

The Get Index of a Participant routine returns an index that is unique within the
application. A value of zero signifies the participant that formed the application.
The other participants in the application always return an index greater than
zero.

PPL$GET _INDEX participant-index

Open VMS usage
type
access
mechanism

participant-index
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
write only
by reference

The index of the caller within this application. The participant-index argument
is the address of an unsigned longword that contains this index. This index is
assigned at process creation time and is unique for each participant.

PPL$GET_INDEX returns the unique index of the calling participant within
the application. The index of the participant that formed the application is
always zero. The index of each subordinate is assigned in the order in which it is
spawned or joins the application (by a call to PPL$CREATE_APPLICATION). For
example, the first subordinate spawned by or joining the application is assigned
an index of 1, the second 2, and so on.

Condition Values Returned

PPL$_NORMAL Normal successful completion.

PPL-66

PPL$1NCREMENT _SEMAPHORE

PPL$1NCREMENT _SEMAPHORE-Increment a Semaphore

Format

Returns

Arguments

Description

The Increment a Semaphore routine increments the value of the semaphore by 1,
analogous to the signal protocol. If any other participants are blocked on a call to
PPL$DECREMENT_SEMAPHORE for this semaphore, one is removed from the
queue and awakened. The semaphore must have been created by PPL$CREATE_
SEMAPHORE.

PPL$1NCREMENT _SEMAPHORE semaphore-id

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

PPL$INCREMENT_SEMAPHORE increments the value of the semaphore by 1,
analogous to the signal protocol. In addition, if any participants are blocked on
a call to PPL$DECREMENT_SEMAPHORE for this semaphore, one is removed
from the queue and awakened.

Condition Values Returned

PPL$_NORMAL

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_SEMALRMAX

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

The semaphore is already at its maximum value.

Wrong number of arguments.

PPL-67

PPL$1NDEX_ TO_PID

PPL$1NDEX_ TO_PID-Convert Participant Index to OpenVMS PIO

Format

Returns

Arguments

Description

PPL-68

The Convert Participant Index to Open VMS PID routine returns the Open VMS
PID of the process associated with the specified index.

PPL$1NDEX_ TO_PID participant-index ,pid

Open VMS usage
type
access
mechanism

participant-index
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

Index of the caller within this application. The participant-index argument
is the address of an unsigned longword that contains this index. Participant
index is assigned at process creation time and is unique for each participant.

pid
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

PID (process identifier) of the Open VMS process associated with the specified
participant-index. The pid argument is the address of an unsigned longword that
receives this PID.

PPL$INDEX_TO_PID returns the Open VMS PID of the process associated with
the specified participant index.

The return status PPL$_NO_SUCH_PARTY indicates that the specified process
participated in the current application but presently is not a member (because it
called PPL$TERMINATE or exited). The value returned in pid is the PID of the
process when it was a participant. If PPL$_NO_SUCH_PARTY is returned, this
PID may be no longer valid.

The return status PPL$_INVARG indicates that the process with the specified
PID was never a participant in the current application.

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_NO _SUCH_PARTY

PPL$_ WRONUMARG

PPL$1NDEX_ TO_PID

Normal successful completion.

Invalid argument.

The participant specified does not exist in this
application.

Wrong number of arguments.

PPL-69

PPL$1NSERT _ WORK_ITEM

PPL$1NSERT _ WORK_ITEM-lnsert a Work Queue Item

Format

Returns

Arguments

PPL-70

The Insert a Work Queue Item routine inserts a work item into the specified work
queue.

PPL$1NSERT _WORK_ITEM queue-id ,work-item [,flags] [,priority]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

The queue identifier. The queue-id argument is the address of an unsigned
longword containing the identifier.

work-item
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
read only
by value

A value to be entered into the queue. The work-item argument is an unsigned
longword containing this value. The content of work-item is completely
arbitrary. You may want to place single longword values into work-item
(for example, the number of a function or task to be performed). You can also
use work-item to pass a pointer to a data block. (This data block must reside
in memory created by PPL$CREATE_SHARED_MEMORY or allocated from a
shared memory zone created by PPL$CREATE_ VM_ZONE.)

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for inserting a work item into a work queue. The optional flags
argument is the address of a longword bit mask containing the flag. The valid
value is as follows:

Description

PPL$M_ATHEAD

priority
Open VMS usage
type
access
mechanism

PPL$1NSERT _ WORK_ITEM

Insert item as the first of those items with the same
priority (in other words, at the head of the priority). By
default, items are inserted after other items of the same
priority.

longword_signed
longword (signed)
read only
by reference

Specifies the priority of the item being inserted. The optional priority argument
is an unsigned longword containing the priority value for the item to be inserted.
If unspecified, the default value is zero. A high numerical value indicates a high
priority.

PPL$INSERT_ WORK_ITEM inserts the value specified by work-item into the
specified work queue. If another process is waiting for an item to be placed into
the queue, that process is awakened and will remove the newly inserted item
after the call to PPL$INSERT_ WORK_ITEM.

By default, the item is inserted into the queue after any items with a higher or
equal numerical priority and before any items with a lower priority. If you specify
the flag PPL$M_ATHEAD, the item is inserted before any other items of an equal
priority.

If an application always uses the default (zero) for priority, the result is a simple
FIFO (first in, first out) queue. PPL$ inserts new items at the end of the queue
by default, or at the beginning of the queue if PPL$M_ATHEAD is specified.

Condition Values Returned

PPL$_NORMAL

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Insufficient virtual memory available.

Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

Wrong number of arguments.

PPL-71

PPL$PID_ TO_INDEX

PPL$PID_ TO_INDEX-Convert OpenVMS PIO to Participant Index

Format

Returns

Arguments

Description

PPL-72

The Convert Open VMS PID to Participant Index routine returns the PPL$
defined participant index of the process associated with the specified Open VMS
PID.

PPL$PID_ TO_INDEX pid ,participant-index

Open VMS usage
type
access
mechanism

pid
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

PID (process identifier) of the Open VMS process or subprocess whose participant
index is to be obtained. The pid argument is the address of an unsigned longword
that contains this PID.

participant-index
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Participant index of the process or subprocess associated with the specified
Open VMS PID. The participant-index argument is the address of an unsigned
longword that receives this index. Participant-index is assigned by the PPL$
facility at process creation time and is unique for each participant.

PPL$PID_TO_INDEX returns the participant index of the Open VMS process
specified by the input Open VMS PID.

The return status PPL$_NO_SUCH_PARTY indicates that the specified process
participated in the current application but presently is not a member (because it
called PPL$TERMINATE or exited). The value returned in participant-index is
the index of the process when it was a participant.

The return status PPL$_INVARG indicates that the process with the specified
PID was never a participant in the current application.

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_NO_SUCH_PARTY

PPL$_ WRONUMARG

PPL$PID_ TO_INDEX

Normal successful completion.

Invalid argument.

The participant specified does not exist in this
application.

Wrong number of arguments.

PPL-73

PPL$READ_BARRIER

PPL$READ_BARRIER-Read a Barrier

Format

Returns

Arguments

Description

PPL-74

The Read a Barrier routine returns the specified barrier's current quorum and
the number of participants currently waiting (blocked) at the barrier. The barrier
must have been created by PPL$CREATE_BARRIER.

PPL$READ_BARRIER barrier-id ,quorum ,waiters

Open VMS usage
type
access
mechanism

barrier-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the specified event. The barrier-id argument is the address of an
unsigned longword containing the identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

quorum
Open VMS usage
type
access
mechanism

word_signed
word (signed)
write only
by reference

Number of participants required to terminate a wait for this barrier. The
quorum argument is the address of a signed word containing the quorum
value. This argument returns the current quorum value that you set with
PPL$CREATE_BARRIER, PPL$SET_QUORUM, or PPL$ADJUST_QUORUM.

waiters
Open VMS usage
type
access
mechanism

word_signed
word (signed)
write only
by reference

Number of participants currently waiting at this barrier. The waiters argument
is the address of a signed word containing the number of waiting participants.

PPL$READ_BARRIER returns the specified barrier's current quorum and the
number of participants currently waiting (blocked) at the barrier. (Note that calls
by other participants to the PPL$ barrier routines may affect the values returned
by this routine. In effect, the values you receive for this routine may be outdated
before you receive them.)

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_NOSUCHELE
PPL$_ WRONUMARG

PPL$READ_BARRIER

Normal successful completion.

Invalid argument.
Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

PPL-75

PPL$READ_EVENT

PPL$READ_EVENT-Read an Event State

Format

Returns

Arguments

Description

The Read an Event State routine returns the current state of the specified event.
The state can be occurred or not_occurred.

PPL$READ_EVENT event-id ,occurred

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the specified event. The event-id argument is the address of an
unsigned longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

occurred
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Receives the state of the specified event. The occurred argument is the address
of an unsigned longword that receives the event state. This argument returns a
value of true if the current state of the event is occurred, and returns false if the
current state of the event is not_occurred.

PPL$READ_EVENT returns the current state of the specified event. The state
can be occurred or not_occurred. (Note that calls by other participants to the
PPL$ event routines may affect the state returned by this routine. In effect, the
state returned by this routine may be outdated before you receive it.)

Condition Values Returned

PPL-76

PPL$_NORMAL

PPL$_INVARG
PPL$_INVELEID

PPL$_INVELETYP

Normal successful completion.

Invalid argument.
Invalid element identifier.

Invalid element type.

PPL$_NOINIT

PPL$_NOSUCHELE

PPL$_ WRONUMARG

PPL$READ_EVENT

PPL$CREATE_APPLICATION has not been
called.
The element you specified does not exist.
Wrong number of arguments.

PPL-77

PPL$READ_SEMAPHORE

PPL$READ_SEMAPHORE-Read Semaphore Values

Format

Returns

Arguments

PPL-78

The Read Semaphore Values routine returns the current or maximum values,
or both, of the specified counting semaphore. The semaphore must have been
created by PPL$CREATE_SEMAPHORE.

PPL$READ_SEMAPHORE semaphore-id [,semaphore-value]
[,semaphore-maximum]

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the specified semaphore. The semaphore-id argument is the
address of an unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

semaphore-value
Open VMS usage
type
access
mechanism

word_signed
word (signed)
write only
by reference

Receives information about the specified semaphore. The optional semaphore
value argument is the address of a signed word containing the current value of
the semaphore or the number of blocked processes. If positive, semaphore-value
contains the number of available resources associated with this semaphore; if
negative, it contains the number of waiting processes. If the value returned is
zero, there are no available resources and no waiting processes.

semaphore-maximum
Open VMS usage word_signed
type word (signed)
access write only
mechanism by reference

Maximum value of the semaphore. The semaphore-maximum argument is
the address of a signed word containing the maximum value of the semaphore
specified by semaphore-id.

Description

PPL$READ_SEMAPHORE

PPL$READ_SEMAPHORE returns the current value of the specified
semaphore or the number of processes waiting for the semaphore. PPL$READ_
SEMAPHORE also returns the maximum value of the semaphore. If no values
are requested, a status code of PPL$_NORMAL is returned. (Note that calls
by other participants to the PPL$ semaphore routines may affect the values
returned by this routine. In effect, the values returned by this routine may be
outdated before you receive them.)

Condition Values Returned

PPL$_NORMAL

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOSUCHELE
PPL$_ WRONUMARG

Normal successful completion.

Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

The element you specified does not exist.
Wrong number of arguments.

PPL-79

PPL$READ_SPIN_LOCK

PPL$READ_SPIN_LOCK-Read a Spin Lock State

Format

Returns

Arguments

Description

The Read a Spin Lock State routine returns the current state of a spin lock. The
state can be seized or not_seized.

PPL$READ_SPIN_LOCK lock-id ,seized

Open VMS usage
type
access
mechanism

lock-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the specified spin lock. The lock-id argument is the address of an
unsigned longword containing the identifier.

seized
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Receives the state of the specified spin lock. The seized argument is the address
of an unsigned longword that receives the spin lock state. This argument returns
a value of true if the current state of the spin lock is seized, and it returns a value
of false if the current state of the spin lock is not_seized.

PPL$READ_SPIN_LOCK returns the current state of the specified spin lock. The
state can be seized or not_seized. Calls by other participants to the PPL$ spin
lock routines can affect the state returned by this routine. In effect, the state
returned by this routine may be outdated before you receive it.

Condition Values Returned

PPL-80

PPL$_NORMAL

PPL$_INVELEID

PPL$_INVELETYP
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.

Invalid element type.
PPL$CREATE_APPLICATION was not called.

Wrong number of arguments.

PPL$READ_WORK_QUEUE

PPL$READ_WORK_QUEUE-Read a Work Queue

Format

Returns

Arguments

Description

The Read a Work Queue routine returns information about a work queue.

PPL$READ_WORK_QUEUE queue-id [,queue-value]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

The queue identifier. The queue-id argument is the address of an unsigned
longword containing the identifier.

queue-value
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Receives information about the specified work queue. If positive, queue-value
contains the number of items currently in the work queue; if negative, it contains
the number of processes currently blocked (waiting for an item to be placed in the
queue). If the value returned is zero, there are no work items in the queue and
no blocked processes. The optional queue-value argument is the address of a
signed longword that receives the number of work items or blocked processes.

For a specified queue-id, PPL$READ _WORK_ QUEUE returns one of the
following:

• The number of items presently in the specified work queue

• The number of processes currently waiting for items to be inserted into the
work queue

Calls by other participants to the PPL$ work queue routines may affect the
values returned by this routine. In effect, the values returned by this routine
may be outdated before you receive them.

PPL-81

PPL$READ_WORK_QUEUE

Condition Values Returned

PPL-82

PPL$_NORMAL
PPL$_INVARG
PPL$_INVELEID
PPL$_INVELETYP
PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.
Invalid argument.

Invalid element identifier.
Invalid element type.
PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$RELEASE_SPIN_LOCK

PPL$RELEASE_SPIN_LOCK-Release Spin Lock

Format

Returns

Arguments

Description

The Release Spin Lock routine relinquishes the spin lock by clearing the bit
representing the lock. The lock must have been created by PPL$CREATE_SPIN_
LOCK.

PPL$RELEASE_SPIN_LOCK lock-id

Open VMS usage
type
access
mechanism

lock-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the specified lock. The lock-id argument is the address of an
unsigned longword containing the lock identifier.

Lock-id is returned by PPL$CREATE_SPIN_LOCK.

PPL$RELEASE_SPIN_LOCK relinquishes the spin lock by clearing the bit
representing the lock.

If there are other participants waiting in a spin loop to obtain this lock, this
routine allows one of the waiting participants in the spin loop to get the lock.

This form of lock is recommended for use only in a dedicated parallel processing
environment, and only when fairness is not important. A spin lock is not
recommended for use in a general time-sharing environment because the spin
consumes CPU resources.

Condition Values Returned

PPL$_NORMAL

PPL$_INVELEID

PPL$_INVELETYP

PPL$_LOCNOTEST

PPL$_NOINIT

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.

Invalid element type.

The lock was not established.

PPL$CREATE_APPLICATION has not been
called.

The element you specified does not exist.

Wrong number of arguments.

PPL-83

PPL$REMOVE_ WORK_ITEM

PPL$REMOVE_WORK_ITEM-Remove a Work Queue Item

Format

Returns

Arguments

PPL-84

The Remove a Work Queue Item routine removes the next item in order from a
work queue.

PPL$REMOVE_WORK_ITEM queue-id ,work-item [,flags] [,spin]

Open VMS usage
type
access
mechanism

queue-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

The queue identifier. The queue-id argument is the address of an unsigned
longword containing the identifier.

work-item
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
write only
by reference

Receives the value of the item that is removed from the work queue. The work
item argument is the address of an unsigned longword that receives the value of
the item that is removed from the work queue.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for removing an item from the work queue. The optional flags
argument is the address of a longword bit mask containing the flag. Valid values
are as follows:

PPL$M_NON_BLOCKING If the specified work queue is empty, return
immediately with the PPL$_NOT_AVAILABLE
status indicating that no items are available to
be removed from the work queue. By default, if
the work queue is empty the process hibernates
until there is an item available to be removed
from the work queue.

Description

PPL$M_FROMTAIL

PPL$M_SPIN_ WAIT

PPL$M_SPIN_COUNTED

spin

PPL$REMOVE_WORK_ITEM

Remove item from the end (or tail) of the work
queue. By default, this routine removes an item
from the beginning (or head) of the work queue.

Indicates that the caller is never to block, but
rather to always spin while waiting at this
barrier.

Indicates that the caller wishes to spin for a
given amount of instructions and then to block.
The default is block immediately, do not spin at
all.

Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

This value must be specified when using the PPL$M_SPIN_COUNTED flag and
represents a relative time that a process will spin before blocking.

PPL$REMOVE_ WORK_ITEM removes the next item from the beginning of
the specified queue. Because the queue is sorted by priority, this is the item
with the highest priority. If the queue is empty, the process hibernates until an
item is placed in the queue by another process. When an item is placed in the
queue, the process awakens and proceeds normally. If the queue is empty and
PPL$REMOVE_ WORK_ITEM is called with the PPL$M_NON_BLOCKING flag
set, the routine returns immediately with the PPL$_NOT_AVAILABLE status,
indicating that an item was not removed from the queue.

If a process is hibernating (awaiting an item to be placed into the queue) and
the queue is deleted, the process is awakened and PPL$REMOVE_ WORK_ITEM
returns the PPL$_DELETED status indicating that the queue was deleted and no
item was removed.

Condition Values Returned

PPL$_NORMAL

PPL$_DELETED

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_NOT _AVAILABLE

PPL$_ WRONUMARG

Normal successful completion.

Successful completion. The specified element was
forcibly deleted.

Invalid argument.

Invalid element identifier.

Invalid element type.

PPL$CREATE_APPLICATION has not been
called.

Operation cannot be performed immediately;
therefore, it is not performed.

Wrong number of arguments.

PPL-85

PPL$RESET_EVENT

PPL$RESET _EVENT-Reset an Event

Format

Returns

Arguments

Description

The Reset an Event routine resets an event's state to not_occurred.

PPL$RESET _EVENT event-id

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

PPL$RESET_EVENT resets the event state associated with a specified event to
not_occurred. Any pending triggers are removed from the queue.

Condition Values Returned

PPL-86

PPL$_NORMAL

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$SEIZE_SPIN_LOCK

PPL$SEIZE_SPIN_LOCK-Seize Spin Lock

Format

Returns

Arguments

Description

The Seize Spin Lock routine retrieves a simple (spin) lock by waiting in a spin
loop until the lock is free. The lock must have been created by PPL$CREATE_
SPIN_LOCK.

PPL$SEIZE_SPIN_LOCK lock-id [,flags]

Open VMS usage
type
access
mechanism

lock-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the lock to be seized. The lock-id argument is the address of an
unsigned longword containing the lock identifier.

Lock-id is returned by PPL$CREATE_SPIN_LOCK.

flags
Open VMS usage
type
access
mechanism

mask_ longword
longword (unsigned)
read only
by reference

Bit mask specifying options for seizing the lock. The flags argument is a
longword bit mask containing the flag. The valid value for flags is as follows:

PPL$M_NON_BLOCKING The lock is seized if and only if it can be done
without causing the caller to wait (spin). (This
can be useful in situations where the cost of
waiting for a resource is not desirable, or if
the caller merely intends to request immediate
access to any one of a number of resources.)

PPL$SEIZE_SPIN_LOCK acquires a spin lock by waiting in a spin loop until the
lock is free. If you specify PPL$M_NON_BLOCKING for the flags argument, the
caller does not wait in the spin loop if the lock cannot be immediately obtained.
In that case the status code PPL$_NOT_AVAILABLE is returned.

You have exclusive access to the spin lock after you acquire it by calling this
routine. Call PPL$RELEASE_SPIN_LOCK to free the lock when you no longer
need it.

PPL-87

PPL$SEIZE_SPIN_LOCK

This form of lock is recommended for use only in a dedicated parallel processing
environment, and only when fairness is not important. A spin lock is not
recommended for use in a general time-sharing environment because the spin
consumes CPU resources.

Condition Values Returned

PPL-88

PPL$_NORMAL

PPL$_INVELETYP

PPL$_NOSUCHLOC
PPL$_NOT _AVAILABLE

PPL$_ WRONUMARG

Normal successful completion.

Invalid element type for requested operation.

A lock with the specified ID does not exist.

Operation cannot be performed immediately;
therefore it is not performed.

Wrong number of arguments.

PPL$SET _QUORUM

PPL$SET _QUORUM-Set Barrier Quorum

Format

Returns

Arguments

Description

The Set Barrier Quorum routine dynamically sets a value for the specified
barrier's quorum.

PPL$SET _QUORUM barrier-id ,quorum

Open VMS usage
type
access
mechanism

barrier-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the barrier. The barrier-id argument is the address of the barrier
identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

quorum
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by reference

The number of participants required to terminate an active wait for this barrier.
The quorum argument is the address of a signed word containing the quorum
number. For example, a quorum value of 3 indicates that the first two callers
of PPL$WAIT_AT_BARRIER specifying this barrier-id are blocked until a third
participant calls PPL$WAIT_AT_BARRIER. At that point, all three are released
for further processing. If you specify zero for quorum, the quorum is set to the
number of processes currently in the application. The value of quorum must be
positive or zero.

PPL$SET_QUORUM allows the user to dynamically set the value of a barrier's
quorum. A barrier's quorum is the number of participants required to call
PPL$WAIT_AT_BARRIER (and thereby be blocked) before all blocked participants
are unblocked to pass the barrier and continue processing. This allows you to
reuse a barrier for different work items with various numbers of participants.
The barrier must have been created by PPL$CREATE_BARRIER.

Note that PPL$SET_QUORUM must be called while no participants have called
PPL$WAIT_AT_BARRIER (in other words, while there are no participants
waiting at the barrier).

PPL-89

PPL$SET _QUORUM

Condition Values Returned

PPL-90

PPL$_NORMAL

PPL$_INVARG

PPL$_INVELEID
PPL$_INVELETYP

PPL$_NOINIT

PPL$_IN_BARRIER_ WAIT

PPL$_ WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
One or more participants is waiting at the
barrier; therefore, the quorum is not modified.

Wrong number of arguments.

PPL$SET _SEMAPHORE_MAXIMUM

PPL$SET_SEMAPHORE_MAXIMUM-Set a Semaphore Maximum

Format

Returns

Arguments

Description

The Set a Semaphore Maximum routine dynamically sets the maximum value of
a semaphore.

PPL$SET _SEMAPHORE_MAXIMUM semaphore-id ,semaphore-maximum

Open VMS usage
type
access
mechanism

semaphore-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

semaphore-maximum
Open VMS usage word_signed
type word (signed)
access read only
mechanism by reference

New maximum value of the semaphore. The semaphore-maximum argument is
the address of a signed word containing the maximum value. This value must be
nonnegative.

PPL$SET_SEMAPHORE_MAXIMUM allows you to dynamically set the
maximum value of a specified semaphore. This allows semaphores to be reused
easily for different purposes with various numbers of resources. The semaphore
must have been created by PPL$CREATE_SEMAPHORE.

Call this routine only when the semaphore's current value is equal to its
maximum (in other words, there are no participants using resources protected by
the semaphore). If this routine is called when the current value is not equal to
the maximum, PPL$ returns the PPL$_ELEINUSE error.

Calling PPL$SET_SEMAPHORE_MAXIMUM changes the semaphore's current
value to the new maximum value that you specify in semaphore-maximum.

PPL-91

PPL$SET _SEMAPHORE_MAXIMUM

· Condition Values Returned

PPL-92

PPL$_NORMAL

PPL$_ELEINUSE

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_ WRONUMARG

Normal successful completion.

The specified element is currently in use and
cannot be deleted.
Invalid argument.

Invalid element identifier.

Invalid element type.

Wrong number of arguments.

PPL$SPAWN

PPL$SPAWN-lnitiate Parallel Execution

Format

Returns

Arguments

The Initiate Parallel Execution routine executes code in parallel with the caller by
creating one or more subordinate threads of execution (Open VMS subprocesses).

PPL$SPAWN copies [,program-name] [,children-ids] [,flags] [,std-input-file]
[,std-output-file]

Open VMS usage
type
access
mechanism

copies
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
modify
by reference

Number of subordinates of the specified program to be executed concurrently.
The copies argument is the address of an unsigned longword containing this
number. Its value must be positive. If you specify a value greater than 1 for the
copies argument, each copy created will have the same subprocess information
(for example, standard input and output files). If you want to specify different
information for each subprocess, call PPL$SPAWN once for each subprocess.

On output, this parameter contains the number of subordinates actually created.
This value differs from the requested number if an individual spawn attempt
fails, for example, because of insufficient quotas.

program-name
Open VMS usage
type
access
mechanism

logical_name
character string
read only
by descriptor, fixed-length

Name of the program (image) to be invoked. The program-name argument
is the address of a descriptor pointing to a character string containing the
file specification of the image. Program-name must have no more than 63
characters. If program-name contains a logical name, the equivalence name
must be in a logical name table that the created subordinate can access. If you
do not specify a program-name, the default is to execute in parallel the image
being run by the caller.

PPL-93

PPL$SPAWN

PPL-94

children-ids
Open VMS usage
type
access
mechanism

vector_longword_unsigned
longword (unsigned)
write only
by reference, array reference

Identifiers of each of the newly created subordinates. The children-ids argument
is the address of a vector of longwords into which is written the index within the
executing application of each subordinate successfully initiated by this call.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Bit mask specifying options for creating processes. The flags argument is a
longword bit mask containing the flags. Valid values for flags are as follows:

PPL$M_INIT_SYNCH

PPL$M_NOCLISYM

PPL$M_NOCONTROL

PPL$M_NODEBUG

PPL$M_NOKEYPAD

PPL$M_NOLOGNAM

PPL$M_NOTIFY

If set, the caller of this routine and all subordinates
created by this call are synchronized to continue
processing only after each and every subordinate
created by this call has called PPL$CREATE_
APPLICATION. (See the Description section for more
information.) A failure of the created subordinate
after it successfully starts but before its call to
PPL$CREATE_APPLICATION can cause difficulties
with the use of this flag value.

If set, the created processes do not inherit CLI
symbols from the calling process. The default action
is for created processes to inherit all currently defined
CLI symbols.

If set, prompt strings are not prefixed by carriage
return!line feeds. The default action is to prefix any
prompt string specified with a carriage return!line
feed.

Prevents the startup of the Open VMS Debugger, even
if the debugger was linked with the image.

If set, created processes inherit the current keypad
symbols and state from the calling process. The
default action is that created proce~ses do not inherit
keypad symbols and state.

If set, created processes do not inherit process logical
names from the calling process. The default is for
created processes to inherit all currently defined
process logical names.

If set, a message is broadcast to SYS$0UTPUT as
each process terminates. This flag is ignored if the
process is not interactive (for example, run in batch).

Description

std-input-file
Open VMS usage
type
access
mechanism

logical-name
character string
read only
by descriptor

PPL$SPAWN

File name of the file to serve as the standard input file in the created
subordinates. The std-input-file argument is the address of a descriptor pointing
to a character string containing the file name. If you do not specify a value for
this argument, the subordinate inherits the creating participant's standard input
file (SYS$INPUT).

std-output-file
Open VMS usage
type
access
mechanism

logical-name
character string
read only
by descriptor

File name of the file to serve as the standard output file in the created
subordinates. The std-output-file argument is the address of a descriptor
pointing to a character string containing the file name. If you do not specify
a value for this argument, the subordinate inherits the creating participant's
standard output file (SYS$0UTPUT).

PPL$SPAWN executes code in parallel with the caller by creating one or more
subordinate threads of execution (Open VMS subprocesses). This routine initiates
the parallel execution of the specified code on the same node as the caller.

By default, the parent (caller) immediately continues processing in its own
context, and each child (subordinate) proceeds immediately following its creation.
(Note that here "immediately" means "subject only to systemwide scheduling
constraints.") The PPL$M_INIT_SYNCH flag arranges that processing in the
parent and the subordinates continues only when each and every child created
by this operation has called PPL$CREATE_APPLICATION. (Note that this
initialization is also performed automatically by PPL$ at the first call to a
PPL$ routine; see PPL$CREATE_APPLICATION for more information.) This
synchronization is achieved by blocking the parent in the call to PPL$SPAWN,
and blocking each child in its PPL$CREATE_APPLICATION call, until the last
child executes this call. Then all participants are released for further execution.

The subordinates created by this call execute the code you specify in the
program-name argument. If you do not specify an image name in this
argument, the image being executed by the current process is used in the
creation of the subordinate. Subordinates do not inherit any process logical
names if PPL$M_NOLOGNAM is specified for the flags argument. If you specify
PPL$M_NOLOGNAM, subordinates should not depend upon process logical
names defined in the parent.

This routine creates one or more Open VMS subprocesses, each of which is related
to its creator in a tree-like fashion. Each has the same UIC as the parent.
Each receives a portion of the creator's resource quotas. If subprocesses exist
when their creator is deleted, they are automatically deleted, and resources
are reclaimed according to Open VMS defined semantics. In addition, this
routine arranges that process logical names are inherited from parent to (each)
subordinate.

PPL-95

PPL$SPAWN

Condition Values, Returned

PPL$_NORMAL
PPL$_CREATED_SOME

PPL$_INVNUMCHI

PPL$_ WRONUMARG

Normal successful completion.

Not all of the requested processes were spawned.
Invalid number of processes; cannot be less than
one.
Wrong number of arguments.

Any error returned by LIB$SPAWN.

PPL-96

PPL$STOP

PPL$STOP-Stop a Participant

Format

Returns

Arguments

Description

The Stop a Participant routine terminates the execution of the specified
participant in this application.

PPL$STOP participant-index

Open VMS usage
type
access
mechanism

participant-index

cond_value
longword (unsigned)
write only
by value

Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by reference

PPL$-defined index of the participant to be terminated. The participant-index
argument is the address of an unsigned longword containing the index.

Participant-index is obtained by a call to PPL$SPAWN or PPL$GET_INDEX.

PPL$STOP terminates the execution of the specified participant in this
application. This will also result in the termination of all subordinates of the
specified participant.

Call this routine only if you want to stop a participant before it completes its
execution.

Condition Values Returned

PPL$_NORMAL Normal successful completion.

Any error returned by $FORCEX.

PPL-97

PPL$TERMINATE

PPL$TERMINATE-Abort PPL$ Participation

Format

Returns

Arguments

Description

The Abort PPL$ Participation routine ends the caller's participation in the
application "prematurely"-that is, at some time before the caller actually
completes its execution.

PPL$TERMINATE [flags]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

flags
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by reference

Bit mask specifying options for terminating access to PPL$. The flags argument
is the address of a longword bit mask containing the flag. The flags argument
accepts the following value:

PPL$M_STOP _CHILDREN Terminates all subordinates created by the
caller in addition to terminating the caller itself.
(PPL$ makes no effort to delete subordinates at
process termination in the absence of a call to
this routine specifying this flag value, but note
that an Open VMS subprocess is deleted when
the parent terminates.)

The PPL$TERMINATE routine informs the PPL$ facility that the caller is no
longer part of the parallel application, and will make no further requests for
PPL$ services.

Normally, you need not call this routine. PPL$ automatically performs cleanup
operations when the participant completes its execution.

Condition Values Returned

PPL$_NORMAL Normal successful completion.

Any error returned by $FORCEX or LIB$FREE_ VM.

PPL-98

PPL$TRIGGER_EVENT

PPL$TRIGGER_EVENT-Trigger an Event

Format

Returns

Arguments

The Trigger an Event routine causes the event's state to become occurred. You
control whether all pending actions for the event are processed (made to occur),
or just one is processed. A pending action can be an AST, a signal (condition), or
a wakeup.

PPL$TRIGGER_EVENT event-id [,event-param] [,flags]

Open VMS usage
type
access
mechanism

event-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

event-pa ram
Open VMS usage
type
access
mechanism

user_arg
longword (unsigned)
read only
by value

An arbitrary value to be passed to all requests processed for the event as a
result of the trigger, or, if there are no queued event notification requests for this
event, to the first caller to enable event notification. The event-param argument
is the address of an unsigned longword containing this value. The value of
event-param is received by the output argument of PPL$AWAIT_EVENT.

If a participant enables delivery of an AST by calling PPL$ENABLE_EVENT_
AST, this argument appears in the second longword of the vector specified by
the astprm argument. If a participant enables delivery of a signal by calling
PPL$ENABLE_EVENT_SIGNAL, this argument appears as the third longword
in the signal vector when the condition is raised.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Specifies options for triggering an event. The flags argument is the address of a
longword bit mask containing the flag. The valid value for flags is as follows:

PPL-99

PPL$TRIGGER_EVENT

Description

PPL$M_NOTIFY _ONE Processes exactly one enabled event notification.
By default, all pending actions are processed
when the event state becomes occurred.

PPL$TRIGGER_EVENT sets the event state to occurred and processes the queue
of requested operations. (The caller controls whether all pending actions for
the event are processed, or just one action is processed, by use of the PPL$M_
NOTIFY_ONE flag.) A pending action can be an AST, a signal (condition), or a
wakeup, as established by corresponding calls to PPL$ENABLE_EVENT_AST,
PPL$ENABLE_EVENT_SIGNAL, and/or PPL$AWAIT_EVENT.

PPL$TRIGGER_EVENT initiates the appropriate action, which is finally
performed in the context of the participant that enabled the notification. If
no participant has enabled notification of the event, the event state remains
occurred. Triggers are then queued and processed in the order in which they
occur, as processes request notification. If one or more participants have enabled
notification of the event, the notification resets the state to not_occurred.
PPL$TRIGGER_EVENT performs these steps as one atomic action; in other
words, once this routine begins executing, it completes without interruption from
other event operations.

Refer to Section 4.3. 7 for more information about triggering an event.

Condition Values Returned

PPL-100

PPL$_NORMAL

PPL$_INSVIRMEM

PPL$_INVARG

PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Insufficient virtual memory available.

Invalid argument.

Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

PPL$UNIQUE_NAME

PPL$UNIQUE_NAME-Produce a Unique Name

Format

Returns

Arguments

The Produce a Unique Name routine returns an application-unique name. A
system-unique string specific to the calling application is appended to the string
specified by the user. The resulting name is identical for all participants in the
application, but different from those for all other applications on that system.

PPL$UNIQUE_NAME name-string ,resultant-string [,resultant-length] [,flags]

Open VMS usage
type
access
mechanism

name-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
read only
by descriptor

The user-supplied string to be appended by the 'TOP' processes' PID. When
combined, they will provide a name unique to this application.

resultant-string
Open VMS usage
type
access
mechanism

char_string
character string
write only
by descriptor

Resulting unique name. The resultant-string argument is the address of a
descriptor pointing to a character string containing this name. Resultant-string
consists of the name-string string and an appended system-unique string.

resultant-length
Open VMS usage
type
access
mechanism

word_unsigned
word (unsigned)
write only
by reference

Length of the unique name returned as the resultant-string. The resultant
length argument is the address of an unsigned word containing this length.

flags
Open VMS usage
type
access
mechanism

word_unsigned
longword (unsigned)
write only
by reference

PPL-101

PPL$UNIQUE_NAME

Description

Specifies whether the supplied name should be unique to the application, to the
calling process, or to this particular call. The default is application-unique. The
valid values for flags are as follows:

PPL$M_PROC_UNIQUE

PPL$M_CALL_UNIQUE

Indicates that the caller wishes the returned
name to be unique to the calling process.

Indicates that the caller wishes the returned
name to be unique to this particular call.

PPL$UNIQUE_NAME returns an application-unique name that consists of a
system-unique string appended to a string you specify. The resulting unique
name is consistent within the application but different from any other name
within another application. This means that for a given input string, the
resultant name is identical when requested by any participant.

This unique name is useful, for example, when an application creates a scratch
file that must not interfere with other users who are also running their own copy
of the same application.

Condition Values Returned

PPL-102

PPL$_NORMAL

PPL$_INVARG

PPL$_INVDESC

PPL$_ WRONUMARG

Normal successful completion.

Invalid argument.

Invalid descriptor.
Wrong number of arguments.

PPL$WAIT _AT _BARRIER

PPL$WAIT _AT _BARRIER-Synchronize at a Barrier

Format

Returns

Arguments

The Synchronize at a Barrier routine causes the caller to wait at the specified
barrier. The barrier is in effect from the time the first participant calls
PPL$WAIT_AT_BARRIER until each member of the quorum has issued the
call. At that time, the wait concludes and all are released for further execution.

PPL$WAIT _AT _BARRIER barrier-id ,flags ,spin

Open VMS usage
type
access
mechanism

barrier-id
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

identifier
longword (unsigned)
read only
by reference

Identifier of the barrier. The barrier-id argument is the address of an unsigned
longword containing the barrier identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

flags
Open VMS usage
type
access
mechanism

identifier
longword (unsigned)
read only
by reference

Specifies options for the wait_at_barrier operation. The flags argument is the
value of a longword bit mask containing the flag. The bit, when set, specifies the
corresponding option. Valid values for flags are as follows:

PPL$M_SPIN_ WAIT

PPL$M_SPIN_COUNTED

Indicates that the caller is never to block, but
rather to always spin while waiting at this
barrier.

Indicates that the caller wishes to spin for a
given amount of instructions and then to block.

The default is block immediately, do not spin at all.

spin
Open VMS usage identifier
type long (unsigned)
access read only
mechanism by reference

This value must be specified when using the PPL$M_SPIN_COUNTED flag and
represents a relative time that a process will spin before blocking.

PPL-103

PPL$WAIT _AT _BARRIER

Description

PPL$WAIT_AT_BARRIER causes the caller to wait at the specified barrier
until the quorum required for conclusion of the barrier wait arrives at the
synchronization point. As each participant calls this routine, it is blocked and
awaits the arrival of the remaining unblocked participants. When the final
unblocked participant calls PPL$WAIT_AT_BARRIER, the wait concludes and all
are freed to continue their execution. The caller is blocked by the PPL$ facility's
call to the system service $HIBER.

The number of participants required to constitute a quorum can be defined by
calls to the PPL$CREATE_BARRIER, PPL$SET_QUORUM, and PPL$ADJUST_
QUORUM routines.

Note that a call to PPL$ADJUST_QUORUM can result in conclusion of a barrier
wait.

Condition Values Returned

PPL-104

PPL$_NORMAL
PPL$_INVELEID

PPL$_INVELETYP

PPL$_NOINIT

PPL$_ WRONUMARG

Normal successful completion.

Invalid element identifier.
Invalid element type.

PPL$CREATE_APPLICATION has not been
called.
Wrong number of arguments.

A
Abnormal termination of subordinate

notification of, 2-3
ADA

special considerations 5-6
Applications '

characteristics of parallel, 1-3
creating, 2-1
deleting, 2-1, 2-2
item~ to consider when developing, 5-1
nammg, 2-4

AST (asynchronous system trap)
disabling, 5-5
enabling an event, 4-6

Automatic initialization, 2-1

B
Barrier synchronization

advantages and disadvantages, 5-6
PPL$ routines for, 4-2 to 4-4

Barriers
adjusting a quorum for, 4-4
creating, 4-2
definition, 4-2
deleting, 4-3
reading, 4-3
setting a quorum for, 4-4
waiting at, 4-3

Binary semaphores, 4-9
operations on, 4-10

BLISS
example in, 6-3

Blocked
definition, 1-2

c
c

example in, 6-14
Coarse granularity, 5-1
Considerations when developing a parallel

processing application, 5-1
Counting semaphores, 4-9

operations on, 4-10

Index

Critical sections
definition, 1-2

D
Data dependence, 5-2 to 5-3

antidependence, 5-2
control dependence, 5-2
output dependence, 5-2
true dependence, 5-2

Deadlock, 5-4
avoidance, 5-4
detection and recovery, 5-4
prevention, 5-4

DECC
example in, 6-14

DEC Fortran
example in, 6-9

Decomposition, 5-1
DECthreads

special considerations, 5-6
Deleting a PPL$ application, 2-2
Deleting a subordinate, 2-3
Detached processes

definition, 1-2
Developing a parallel processing application

items to consider, 5-1

E
Element identifiers

sharing, 5-8
Elements

definition, 1-2
retrieving information about 4-1
synchronization, 4-1 '

Error creating shared memory
reasons for, 3-2

Event synchronization
advantages and disadvantages, 5-6
PPL$ routines for, 4-5 to 4-8

Events
awaiting, 4-7
creating, 4-5
definition, 4-5
deleting, 4-6
disabling, 4-7

lndex-1

Events (cont'd)
notification for abnormal exit, 4-8
notification for normal exit, 4-8
predefined, 4-8
reading, 4-8
resetting, 4-8
triggering, 4-7

Example programs
in DEC C, 6-14
in DEC Fortran, 6-9
in VAX BLISS, 6-3

Exits

F

abnormal, 4-8
normal, 4-8

Fine granularity, 5-1
First in first out (FIFO) queue, 4-15, 4-16
FORTRAN

example in, 6-9
special considerations, 5-6

G
Geometric model of performance, 5-9 to 5-11
Global sections, 3-1
Granularity, 5-1

Identifiers
sharing, 5-8

Information
retrieving about subordinate, 2-3 to 2-4

Initialization
automatic, 2-1

Insufficient virtual memory error
reasons for, PPL-10

L
Locks

See also Spin locks

M
Master/slave software models, 1-3 to 1-4

characteristics of, 1-3
queuing models, 1-3
self-scheduling models, 1-3, 1-4
true models, 1-3

Memory
See Shared memory
See Virtual memory zone
reasons for insufficient virtual memory error,

PPL-10

lndex-2

Multiprocessing software models
master/slave, 1-3 to 1-4
pipelining, 1-4
work queue processing, 1-4 to 1-5

Multiprogramming, 1-1
timesharing, 1-1

Mutual exclusion
definition, 1-2
semaphore, 4-9

N
Naming

application-wide, 2-4
Naming PPL$ components, 5-5
N otifica ti on

0

of abnormal exit, 4-8
of normal exit, 4-8

Objects
definition, 1-2
retrieving information about, 4-1

p
Parallel processing, 1-1
Participants

definition, 1-2
Performance measurements, 5-9

geometric model, 5-9 to 5-11
PPL$ADJUST_QUORUM routine, 4-4, PPL-3
PPL$ADJUST_SEMAPHORE_MAXIMUM routine,

4-12, PPL-5
PPL$AWAIT_EVENT routine, 4-7, PPL-7
PPL$CREATE_APPLICATION routine, 2-1,

PPL-9
PPL$CREATE_BARRIER routine, 4-2, PPL-13
PPL$CREATE_EVENT routine, 4-5, PPL-15
PPL$CREATE_SEMAPHORE routine, 4-11,

PPL-19
PPL$CREATE_SHARED_MEMORY routine, 3-1,

PPL-22
PPL$CREATE_SPIN_LOCK routine, 4-13,

PPL-26
PPL$CREATE_ VM_ZONE routine, 3-3, PPL-28
PPL$CREATE_ WORK_QUEUE routine, 4-15,

PPL-33
PPL$DECREMENT_SEMAPHORE routine, 4-11,

PPL-35
PPL$DELETE_APPLICATION routine, 2-2,

PPL-37
PPL$DELETE_BARRIER routine, 4-3, PPL-38
PPL$DELETE_EVENT routine, 4-6, PPL-40

PPL$DELETE_SEMAPHORE routine, 4-11,
PPL-42

PPL$DELETE_SHARED_MEMORY routine, 3-3,
PPL-44

PPL$DELETE_SPIN_LOCK routine, 4-14,
PPL-46

PPL$DELETE_ VM_ZONE routine, 3-4, PPL-48
PPL$DELETE_ WORK_ITEM routine, 4-17,

PPL-50
PPL$DELETE_ WORK_QUEUE routine, 4-15,

PPL-52
PPL$DISABLE_EVENT routine, 4-7, PPL-54
PPL$ENABLE_EVENT_AST routine, 4-6,

PPL-55
PPL$ENABLE_EVENT_SIGNAL routine, 4-6,

PPL-58
PPL$FIND_OBJECT_ID routine, 4-1, PPL-62
PPL$FLUSH_SHARED_MEMORY routine, 3-3,

PPL-64
PPL$GET_INDEX routine, 2-3, PPL-66
PPL$INCREMENT_SEMAPHORE routine, 4-12,

PPL-67
PPL$INDEX_TO_PID routine, 2-3, PPL-68
PPL$INSERT_ WORK_ITEM routine, 4-16,

PPL-70
PPL$PID_TO_INDEX routine, 2-3, PPL-72
PPL$READ_BARRIER routine, 4-3, PPL-74
PPL$READ_EVENT routine, 4-8, PPL-76
PPL$READ_SEMAPHORE routine, 4-12, PPL-78
PPL$READ_SPIN_LOCK routine, 4-14, PPL-80
PPL$READ_WORK_QUEUE routine, 4-16,

PPL-81
PPL$RELEASE_SPIN_LOCK routine, 4-14,

PPL-83
PPL$REMOVE_ WORK_ITEM routine, 4-16,

PPL-84
PPL$RESET_EVENT routine, 4-8, PPL-86
PPL$SEIZE_SPIN_LOCK routine, 4-14, PPL-87
PPL$SET_QUORUM routine, 4-4, PPL-89
PPL$SET_SEMAPHORE_MAXIMUM routine,

4-13, PPL-91
PPL$SPAWN routine, 2-3, PPL-93
PPL$STOP routine, 2-3, PPL-97
PPL$TERMINATE routine, 2-2, PPL-98
PPL$TRIGGER_EVENT routine, 4-7, PPL-99
PPL$UNIQUE_NAME routine, 2-4, PPL-101
PPL$WAIT_AT_BARRIER routine, 4-3, PPL-103
PPL$_INSVIRMEM routine

reasons for error, PPL-10
Priority

of work queue, 4-15
Privileges

PRMGBL, 1-5
SYSGBL, 1-5
SYSLCK, 1-5

Processes
deadlock, 5-4
definition, 1-2

Q
Queues

See also Work queues
Quorum

adjusting, 4-4
setting, 4-4

Quotas

s

AST limit, 1-6
enqueue, 1-6
global section, 1-6
subprocess, 1-6

Semaphore synchronization
advantages and disadvantages, 5-7
PPL$ routines for, 4-10 to 4-13

Semaphores, 4-9
adjusting maximum value, 4-12
binary, 4-9
counting, 4-9
creating, 4-11
decrementing, 4-11
deleting, 4-11
incrementing, 4-12
reading, 4-12
setting maximum value, 4-13

Shared memory, 3-1 to 3-3
creating, 3-1
definition, 1-2
deleting, 3-3
flushing to disk, 3-3
possible error when creating, 3-2

Signal primitive operation, 4-10
Signals

enabling an event, 4-6
Size

allocating pages for PPL$ data structures,
PPL-10

Software models
pipelining, 1-4

Space
allocating for PPL$, PPL-10

Spawning a subordinate, 2-3
Spin lock synchronization

advantages and disadvantages, 5-8
PPL$ routines for, 4-13 to 4-14

Spin locks
creating, 4-13
definition, 4-13
deleting, 4-14
reading, 4-14
releasing, 4-14
seizing, 4-14

lndex-3

Subordinates
creation of, 2-3
definition, 1-2
deletion of, 2-3
notification of abnormal termination, 2-3
retrieving information about, 2-3 to 2-4

Subprocesses
definition, 1-2

Synchronization, 4-1
binary semaphore, 4-9
counting semaphore, 4-9
critical section, 4-9
deadlock, 5-4
element, 4-1
semaphore, 4-9

operations on, 4-10
Synchronization elements

comparing use of, 5-6
definition, 1-2
retrieving information about, 4-1

SYS$HIBER
use of, 5-5

SYS$WAKE
use of, 5-5

System parameters
global section, 1-6

T
Terminating access to PPL$, 2-2
Termination of subordinate abnormally

notification of, 2-3

v
VAX BLISS

example in, 6-3
Virtual memory zones

creating, 3-3
deleting, 3-4

w
Wait primitive operation, 4-10
WAKE system service

use of, 5-5
Work items

deleting, 4-17
inserting, 4-16
removing, 4-16

Work queue processing software models, 1-4 to
1-5

Work queue synchronization
advantages and disadvantages, 5-8
PPL$ routines for, 4-14 to 4-17

Work queues
creating, 4-15
definition, 4-14

lndex-4

Work queues (cont'd)
deleting, 4-15

z

deleting work item from, 4-17
first in first out, 4-15, 4-16
inserting an item into, 4-16
reading, 4-16
removing work item from, 4-16

Zones
See Virtual memory zone

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

5

NOTES

6

NOTES

7

NOTES

8

NOTES

9

NOTES

10

NOTES

11

NOTES

12

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DEC direct
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 874-3023

DTN: 234-4325
(508) 351-4325
FAX: (508) 351-4467

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 01473

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments OpenVMS RTL Parallel Processing
(PPL$) Manual
AA-PV6JA-TK

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here ---

