
OpenVMS VAX RTL Mathematics (MTH$) Manual

Part Number: AA- PVXJA- TE

OpenVMS VAX RTL
Mathematics (MTH$) Manual
Order Number: AA-PVXJA-TE

May 1993

This manual documents the mathematics routines contained in the
MTH$ facility of the Open VMS Run-Time Library.

Revision/Update Information: This manual supersedes the Open VMS
VAX RTL Mathematics (MTH$)
Manual, Version 5.5.

Software Version: Open VMS VAX Version 6.0

Digital Equipment· Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Bookreader, Digital, Open VMS,
VAX, VAX Ada, VAX BASIC, VAX BLISS-32, VAX C, VAX COBOL, VAX COBOL-74, VAX CORAL,
VAX DATATRIEVE, VAX DIBOL, VAX DSM, VAX FORTRAN, VAX Pascal, VAX SCAN, VMS, and
the DIGITAL logo.

ZK6117

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Introduction to MTH$
1.1
1.2
1.3
1.4
1.5
1.6

1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7

Entry Point Names
Calling Conventions
Algorithms .. .
Condition Handling
Complex Numbers .. .
Mathematics Routines Not Documented in the MTH$ Reference
Section
Examples of Calls to Run-Time Library Mathematics Routines

BASIC Example
COBOL Example .. .
FORTRAN Examples
MACRO Examples
Pascal Examples .. .
PL/I Examples .. .
Ada Example

2 Vector Routines in MTH$

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.4

BLAS - Basic Linear Algebra Subroutines Level 1
Using BLAS Level 1

Memory Overlap
Round-Off Effects
Underflow and Overflow
Notational Definitions

FOLR - First Order Linear Recurrence Routines
FOLR Routine Name Format
Calling a FOLR Routine

Vector Versions of Existing Scalar Routines
Exceptions .
Underflow Detection
Vector Routine Name Format
Calling a Vector Math Routine

Fast-Vector Math Routines
Exception Handling
Special Restrictions On Input Arguments
Accuracy .. .
Performance .. .

1-1
1-2
1-3
1-3
1-3

1-4
1-9
1-9
1-9

1-10
1-11
1-14
1-15
1-16

2-1
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-9

2-11
2-12
2-13
2-13
2-13

iii

iv

Scalar MTH$ Reference Section

MTH$xACOS . MTH-3
MTH$xACOSD . MTH-6
MTH$xASIN . MTH-9
MTH$xASIND . MTH-11
MTH$xATAN... MTH-13
MTH$xATAND . MTH-15
MTH$xATAN2 . MTH-17
MTH$xATAND2 ... MTH-19
MTH$xATANH. MTH-21
MTH$CxABS . MTH-23
MTH$CCOS . MTH-26
MTH$CxCOS . MTH-28
MTH$CEXP . MTH-30
MTH$CxEXP . MTH-32
MTH$CLOG . MTH-34
MTH$CxLOG . MTH-36
MTH$CMPLX . MTH-39
MTH$xCMPLX . MTH-41
MTH$CONJG . MTH-43
MTH$xCONJG. MTH-44
MTH$xCOS . MTH-46
MTH$xCOSD . MTH-48
MTH$xCOSH . MTH-50
MTH$CSIN . MTH-52
MTH$CxSIN . MTH-53
MTH$CSQRT . MTH-56
MTH$CxSQRT . MTH-58
MTH$CVT_x_x. MTH-61
MTH$CVT_xA_xA . MTH-63
MTH$xEXP . MTH-65
MTH$HACOS . MTH-68
MTH$HACOSD . MTH-70
MTH$HASIN ·............................... MTH-72
MTH$HASIND. MTH-74
MTH$HATAN . MTH-76
MTH$HATAND . MTH-78
MTH$HATAN2 . MTH-80
MTH$HATAND2 .. MTH-82
MTH$HATANH . MTH-84
MTH$HCOS . MTH-86
MTH$HCOSD . MTH-87
MTH$HCOSH . MTH-88
MTH$HEXP . MTH-90
MTH$HLOG . MTH-92
MTH$HLOG2 . MTH-94

MTH$HLOG 10 . MTH-96
MTH$HSIN . MTH-98
MTH$HSIND . MTH-99
MTH$HSINH ... MTH-101
MTH$HSQRT . MTH-103
MTH$HTAN .. MTH-105
MTH$HTAND . MTH-107
MTH$HTANH ; . MTH-109
MTH$xIMAG . MTH-111
MTH$xLOG . MTH-113
MTH$xLOG2 . MTH-115
MTH$xLOG 10 . MTH-117
MTH$RANDOM . MTH-119
MTH$xREAL ... MTH-121
MTH$xSIN. MTH-123
MTH$xSINCOS ... MTH-125
MTH$xSINCOSD . MTH-128
MTH$xSIND . MTH-131
MTH$xSINH . MTH-133
MTH$xSQRT . MTH-136
MTH$xTAN . MTH-138
MTH$xTAND . MTH-140
MTH$xTANH . MTH-142
MTH$UMAX . MTH-144
MTH$UMIN .. MTH-145

Vector MTH$ Reference Section

BLAS1$VlxAMAX ... MTH-149
BLAS1$VxASUM .. MTH-152
BLAS1$V:xAXPY . MTH-155
BLAS1$VxCOPY .. MTH-160
BLAS1$VxDOTx . MTH-165
BLAS1$VxNRM2 .. MTH-170
BLAS1$VxROT . MTH-173
BLAS1$VxROTG . MTH-178
BLAS1$VxSCAL .. MTH-182
BLAS1$VxSWAP .. MTH-186
MTH$VxFOLRy_MA_V15 MTH-190
MTH$VxFOLRy_z_V8 .. MTH-194
MTH$VxFOLRLy_MA_V5 MTH-198
MTH$VxFOLRLy_z_V2 MTH-202

v

A Additional MTH$ Routines

B Vector MTH$ Routine Entry Points

Index

Tables

1-1

2-1
2-2
2-3
2-4
2-5
2-6
A-1
8-1

vi

Additional Mathematics Routines
Functions of BLAS Level 1
Determining the FOLR Routine You Need
Vector Routine Format - Underflow Signaling Enabled
Vector Routine Format - Underflow Signaling Disabled
Fast-Vector Math Routines
Input Argument Restrictions
Additional MTH$ Routines
Vector MTH$ Routines

1-4

2-3
2-7
2-8
2-8

2-12
2-13
A-1
8-1

Preface

This manual provides users of the Open VMS operating system with detailed
usage and reference information on mathematics routines supplied in the MTH$
facility of the Run-Time Library.

Run-Time Library routines can be used only in programs written in languages
that produce native code for the VAX hardware. At present, these languages
include VAX MACRO and the following compiled high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAXDIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN

Interpreted languages that can also access Run-Time Library routines include
VAX DSM and VAX DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who want to
call Run-Time Library routines.

Document Structure
This manual contains two tutorial chapters, two reference sections, and two
appendixes:

• Chapter 1 is an introductory chapter that provides guidelines on using the
MTH$ scalar routines.

• Chapter 2 provides guidelines on using the MTH$ vector routines.

• The Scalar MTH$ Reference Section provides detailed reference information
on each scalar mathematics routine contained in the MTH$ facility of
the Run-Time Library. The routines in this section are the same as those
provided in VMS Version 5.5.

• The Vector MTH$ Reference Section provides detailed reference information
on the BLAS Level 1 (Basic Linear Algebra Subroutines) and FOLR (First
Order Linear Recurrence) routines.

Reference information is presented using the documentation format described
in the Open VMS Programming Interfaces: Calling a System Routine. Routine
descriptions are in alphabetical order by routine name.

• Appendix A lists supported MTH$ routines not included with the routines in
the Scalar MTH$ Reference Section, because they are rarely used.

• Appendix B contains all of the vector MTH$ routines that you can call from
VAX MACRO in one table.

Associated Documents
The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed is presented in
Open VMS Programming Interfaces: Calling a System Routine. A description of
Open VMS features and functionality available through calls to the MTH$ Run
Time Library appears in Open VMS Programming Concepts Manual. Descriptions
of the other RTL facilities and their corresponding routines are presented in the
following books:

• DPML, Digital Portable Mathematics Library

• Open VMS RTL DECtalk (DTK$) Manual

• Open VMS RTL Library (LIB$) Manual

• Open VMS RTL General Purpose (OTS$) Manual

• Open VMS RTL Parallel Processing (PPL$) Manual

• Open VMS RTL Screen Management (SMG$) Manual

• Open VMS RTL String Manipulation (STR$) Manual

Application programmers using any language can refer to the Guide to Creating
Open VMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user's guide provided with your
Open VMS language software.

For a complete list and description of the manuals in the Open VMS
documentation set, see Overview of Open VMS Documentation.

Conventions

\/iii

In this manual, every use of Open VMS VAX means the Open VMS VAX operating
system.

The following conventions are also used in this manual:

Ctrllx

PFlx

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl, then press and release
another key or a pointing device button.

GOLDx

()

[]

{}

boldface text

italic text

UPPERCASE TEXT

numbers

A sequence such as GOLD x indicates that you must first press
and release the key defined GOLD, then press and release
another key. GOLD key sequences can also have a slash(/),
dash (-),or underscore(_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. Non decimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

jy

1
~ntroduction to MTH$

The Run-Time Library mathematics routines may be called to perform a wide
variety of computations including the following:

• Floating-point trigonometric function evaluation

• Exponentiation

• Complex function evaluation

• Complex exponentiation

• Miscellaneous function evaluation

The OTS$ facility provides additional language-independent arithmetic support
routines.

This introduction to Run-Time Library mathematics routines includes examples
of how to call mathematics routines from BASIC, COBOL, FORTRAN, MACRO,
Pascal, PL/I, and Ada.

1.1 Entry Point Names
The names of the mathematics routines are formed by adding the MTH$ prefix to
the function names.

When function arguments and returned values are of the same data type, the
first letter of the name indicates this data type. When function arguments and
returned values are of different data types, the first letter indicates the data
type of the returned value, and the second letter indicates the data type of the
argument(s).

The letters used as data type prefixes are listed below.

Letter Data Type

I Word

J Longword

D D_floating

G G_floating

H H_floating

c F _floating complex

CD D_floating complex

CG G_floating complex

Generally, F-floating data types have no letter designation. For example,
MTH$SIN returns an F-floating value of the sine of an F-floating argument and
MTH$DSIN returns a D-floating value of the sine of a D-floating argument.

1-1

Introduction to MTH$
1.1 Entry Point Names

However, in some of the miscellaneous functions, F-floating data types are
referenced by the letter designation A.

1.2 Calling Conventions

1-?

For calling conventions specific to the MTH$ vector routines, refer to Chapter 2.

All calls to mathematics routines, as described in the FORMAT section of
each routine, accept arguments passed by reference. JSB entry points accept
arguments passed by value.

All mathematics routines return values in RO or RO/Rl except those routines for
which the values cannot fit in 64 bits. D-floating complex, G-floating complex,
and H-floating values are data structures which are larger than 64 bits. Routines
returning values that cannot fit in registers RO/Rl return their function values
into the first argument in the argument list.

The notation JSB MTH$NAME_Rn, where n is the highest register number
referenced, indicates that an equivalent JSB entry point is available. Registers
RO:Rn are not preserved.

Routines with JSB entry points accept a single argument in RO:Rm, where m,
which is defined in the following table, is dependent on the data type.

Data Type m

F _floating 0

D_floating 1

G_floating 1

H_floating 3

A routine returning one value returns it to registers RO:Rm.

When a routine returns two values (for example, MTH$SINCOS), the first value
is returned in RO:Rm and the second value is returned in (R<m+l>:R<2*m+l>).

Note that for routines returning a single value, n>=m. For routines returning
two values, n>=2*m + 1.

In general, CALL entry points for mathematics routines do the following:

• Disable floating-point underflow

• Enable integer overflow

• Cause no floating-point overflow or other arithmetic traps or faults

• Preserve all other enabled operations across the CALL

JSB entry points execute in the context of the caller with the enable operations
as set by the caller. Since the routines do not cause arithmetic traps or faults,
their operation is not affected by the setting of the arithmetic trap enables, except
as noted.

For more detailed information on CALL and JSB entry points, refer to the
Open VMS Programming Interfaces: Calling a System Routine.

1.3 Algorithms

Introduction to MTH$
1.3 Algorithms

For those mathematics routines having corresponding algorithms, the complete
algorithm can be found in the Description section of the routine description
appearing in the MTH$ Reference Section of this manual.

1.4 Condition Handling
Error conditions are indicated by using the VAX signaling mechanism. The VAX
signaling mechanism signals all conditions in mathematics routines as SEVERE
by calling LIB$SIGNAL. When a SEVERE error is signaled, the default handler
causes the image to exit after printing an error message. A user-established
condition handler can be written to cause execution to continue at the point of the
error by returning SS$_CONTINUE. A mathematics routine returns to its caller
after the contents of RO/Rl have been restored from the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. Thus, the user-established handler should
correct CHF$L_MCH_SAVRO/Rl to the desired function value to be returned to
the caller of the mathematics routine.

D-floating complex, G-floating complex, and H-floating values cannot be corrected
with a user-established condition handler, because R2/R3 is not available in the
mechanism argument vector.

Note that it is more reliable to correct RO and Rl to resemble RO and Rl of a
double-precision floating-point value. A double-precision floating-point value
correction works for both single- and double-precision values.

If the correction is not performed, the floating-point reserved operand -0.0 is
returned. A floating-point reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Accessing the floating-point reserved
operand will cause a reserved operand fault. See the Open VMS RTL Library
(LIB$) Manual for a complete description of how to write user condition handlers
for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program (JSB
or CALL) has enabled floating underflow faults or traps.

All mathematics routines access input arguments and the real and imaginary
parts of complex numbers using floating-point instructions. Therefore, a reserved
operand fault can occur in any mathematics routine.

1.5 Complex Numbers
A complex number y is defined as an ordered pair of real numbers r and i, where
r is the real part and i is the imaginary part of the complex number.

y=(r,i)

Open VMS supports three floating-point complex types: F-floating complex,
D-floating complex, and G-floating complex. There is no H-floating complex data
type.

Run-Time Library mathematics routines that use complex arguments require a
pointer to a structure containing two x-floating values to be passed by reference
for each argument. The first x-floating value contains r, the real part of the
complex number. The second x-floating value contains i, the imaginary part of
the complex number. Similarly, Run-Time Library mathematics routines that
return complex function values return two x-floating values. Some Language
Independent Support (OTS$) routines also calculate complex functions.

Introduction to MTH$
1.5 Complex Numbers

Note that complex functions have no JSB entry points.

1.6 Mathematics Routines Not Documented in the MTH$ Reference
Section

The mathematics routines in Table 1-1 are not found in the reference section of
this manual. Instead, their entry points and argument information are listed in
Appendix A of this manual.

A reserved operand fault can occur for any floating-point input argument in
any mathematics routine. Other condition values signaled by each mathematics
routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

Entry Point

Absolute Value Routines

MTH$ABS

MTH$DABS

MTH$GABS

MTH$HABS

MTH$IIABS

MTH$JIABS

Function

F-floating absolute value

D-floating absolute value

G-floating absolute value

H-floating absolute value1

Word absolute value2

Longword absolute value2

Bitwise AND Operator Routines

MTH$IIAND

MTH$JIAND

Bitwise AND of two word arguments

Bitwise AND of two longword arguments

F-floating Conversion Routines

MTH$DBLE

MTH$GDBLE

MTH$IIFIX

MTH$JIFIX

Convert F-floating to D-floating (exact)

Convert F-floating to G-floating (exact)

Convert F-floating to word (truncated)2

Convert F-floating to longword (truncated)2

1 Returns value to the first argument; value exceeds 64 bits.
2Integer overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Floating-Point Positive Difference Routines

MTH$DIM

MTH$DDIM

MTH$GDIM

MTH$HDIM

MTH$IIDIM

MTH$JIDIM

Positive difference of two F-fioating arguments3

Positive difference of two D-fioating arguments3

Positive difference of two G-fioating arguments3

Positive difference of two H-fioating arguments1
•
3

Positive difference of two word arguments2

Positive difference of two longword arguments2

Bitwise Exclusive OR Operator Routines

MTH$IIEOR

MTH$JIEOR

Bitwise exclusive OR of two word arguments

Bitwise exclusive OR of two longword arguments

Integer to Floating-Point Conversion Routines

MTH$FLOATI

MTH$DFLOTI

MTH$GFLOTI

MTH$FLOATJ

MTH$DFLOTJ

MTH$GFLOTJ

Convert word to F-fioating (exact)

Convert word to D-fioating (exact)

Convert word to G-fioating (exact)

Convert longword to F-fioating (rounded)

Convert longword to D-fioating (exact)

Convert longword to G-fioating (exact)

Conversion to Greatest Floating-Point Integer Routines

MTH$FLOOR

MTH$DFLOOR

MTH$GFLOOR

MTH$HFLOOR

Convert F-fioating to greatest F-fioating integer

Convert D-fioating to greatest D-fioating integer

Convert G-fioating to greatest G-fioating integer

Convert H-fioating to greatest H-fioating integer1

1 Returns value to the first argument; value exceeds 64 bits.
2Integer overflow exceptions can occur.
3Floating-point overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Floating-Point Truncation Routines

MTH$AINT

MTH$IINT

MTH$JINT

MTH$DINT

MTH$IIDINT

MTH$JIDINT

MTH$GINT

MTH$IIGINT

MTH$JIGINT

MTH$HINT

MTH$IIHINT

MTH$JIHINT

Convert F-fl.oating to truncated F-fl.oating

Convert F-fl.oating to truncated word2

Convert F-fl.oating to truncated longword2

Convert D-fl.oating to truncated D-fl.oating

Convert D-fl.oating to truncated word2

Convert D-fl.oating to truncated longword2

Convert G-fl.oating to truncated G-fl.oating

Convert G-fl.oating to truncated word2

Convert G-fl.oating to truncated longword2

Convert H-fl.oating to truncated H-fl.oating1

Convert H-fl.oating to truncated word2

Convert H-floating to truncated longword2

Bitwise Inclusive OR Operator Routines

MTH$IIOR

MTH$JIOR

Maximum Value Routines

MTH$AIMAXO

MTH$AJMAXO

MTH$IMAXO

MTH$JMAXO

MTH$AMAX1

MTH$DMAX1

MTH$GMAX1

MTH$HMAX1

MTH$IMAX1

MTH$JMAX1

Bitwise inclusive OR of two word arguments

Bitwise inclusive OR of two longword arguments

F-fl.oating maximum of n word arguments

F-fl.oating maximum of n longword arguments

Word maximum of n word arguments

Longword maximum of n longword arguments

F-fl.oating maximum of n F-fl.oating arguments

D-fl.oating maximum of n D-fl.oating arguments

G-fl.oating maximum of n G-fl.oating arguments

H-fl.oating maximum of n H-fl.oating arguments1

Word maximum of n F-fl.oating arguments2

Longword maximum of n F-fl.oating arguments2

1Returns value to the first argument; value exceeds 64 bits.
2Integer overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point

Minimum Value Routines

MTH$AIMINO

MTH$AJMINO

MTH$IMINO

MTH$JMINO

MTH$AMIN1

MTH$DMIN1

MTH$GMIN1

MTH$HMIN1

MTH$IMIN1

MTH$JMIN1

Remainder Routines

MTH$AMOD

MTH$DMOD

MTH$GMOD

MTH$HMOD

MTH$IMOD

MTH$JMOD

Function

F-floating minimum of n word arguments

F-floating minimum of n longword arguments

Word minimum of n word arguments

Longword minimum of n longword arguments

F-floating minimum of n F-floating arguments

D-floating minimum of n D-floating arguments

G-floating minimum of n G-floating arguments

H-floating minimum of n H-floating arguments1

Word minimum of n F-floating arguments2

Longword minimum of n F-floating arguments2

Remainder of two F-floating arguments, argl/arg236

Remainder of two D-floating arguments, argl/arg236

Remainder of two G-floating arguments, argl/arg23

Remainder of two H-floating arguments, argl/arg21
'
3

Remainder of two word arguments, argl/arg25

Remainder of two longword arguments, argl/arg25

Floating-Point Conversion to Nearest Value Routines

MTH$ANINT

MTH$1NINT

MTH$JNINT

MTH$DNINT

MTH$11DNNT

MTH$JIDNNT

MTH$GNINT

MTH$IIGNNT

MTH$JIGNNT

Convert F-floating to nearest F-floating integer

Convert F-floating to nearest word integer2

Convert F-floating to nearest longword integer2

Convert D-floating to nearest D-floating integer

Convert D-floating to nearest word integer2

Convert D-floating to nearest longword integer2

Convert G-floating to nearest G-floating integer

Convert G-floating to nearest word integer2

Convert G-floating to nearest longword integer2

1 Returns value to the first argument; value exceeds 64 bits.
2Integer overflow exceptions can occur.
3 Floating-point overflow exceptions can occur.
5Divide-by-zero exceptions can occur.
6Floating-point underflow exceptions are signaled.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point

MTH$HNINT

MTH$IIHNNT

MTH$JIHNNT

Function

Convert H-fl.oating to nearest H-fl.oating integer1

Convert H-fl.oating to nearest word integer2

Convert H-fl.oating to nearest longword integer2

Bitwise Complement Operator Routines

MTH$INOT

MTH$JNOT

Bitwise complement of word argument

Bitwise complement of longword argument

Floating-Point Multiplication Routines

MTH$DPROD

MTH$GPROD

D-fl.oating product of two F-fl.oating arguments3

G-fl.oating product of two F-fl.oating arguments

Bitwise Shift Operator Routines

MTH$IISHFT

MTH$JISHFT

Bitwise shift of word

Bitwise shift of longword

Floating-Point Sign Function Routines

MTH$SGN

MTH$SIGN

MTH$DSIGN

MTH$GSIGN

MTH$HSIGN

MTH$IISIGN

MTH$JISIGN

F- or D-fl.oating sign function

F-fl.oating transfer of sign of y to sign of x

D-fl.oating transfer of sign of y to sign of x

G-fl.oating transfer of sign of y to sign of x

H-fl.oating transfer of sign of y to sign of x1

Word transfer of sign of y to sign of x

Longword transfer of sign of y to sign of x

1 Returns value to the first argument; value exceeds 64 bits.
2Integer overflow exceptions can occur.
3Floating-point overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Conversion of Double to Single Floating-Point Routines

MTH$SNGL

MTH$SNGLG

Convert D-floating to F-floating (rounded)3

Convert G-floating to F-floating (rounded)3
,
4

3Floating-point overflow exceptions can occur.
4Floating-point underflow exceptions can occur.

1. 7 Examples of Calls to Run-Time Library Mathematics Routines
1.7.1 BASIC Example

The following BASIC program uses the H-floating data type. BASIC also supports
the D-floating, F-floating, and G-floating data types, but does not support the
complex data types.

10 !+
! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-

EXTERNAL SUB MTH$HEXP (HFLOAT, HFLOAT)

DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$ = '###.#################################'
X = '1.2345678901234567891234567892'H
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END

The output from this program is as follows:

MTH$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

1.7.2 COBOL Example
The following COBOL program uses the F-floating and D-floating data types.
COBOL does not support the G-floating and H-floating data types or the complex
data types.

This COBOL program calls MTH$EXP and MTH$DEXP.

1-Q

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING POINT.
*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT PT COMP-1.
01 ANSWER F COMP-1.
01 DOUBLE-PT COMP-2.
01 ANSWER-D COMP-2.
PROCEDURE-DIVISION.
PO.

MOVE 12.34 TO FLOAT PT.
MOVE 3.456 TO DOUBLE PT.

CALL 11 MTH$EXP 11 USING BY REFERENCE FLOAT PT GIVING ANSWER F.
DISPLAY 11 MTH$EXP of 11

, FLOAT PT CONVERSION, 11 is 11
, -

- ANSWER F CONVERSION.

CALL 11 MTH$DEXP 11 USING BY REFERENCE DOUBLE PT GIVING ANSWER D.
DISPLAY 11 MTH$DEXP of 11

, DOUBLE PT CONVERSION, 11 is 11
, -

- ANSWER D CONVERSION.
STOP RUN.

The output from this example program is as follows:

MTH$EXP of 1.234000E+Ol is 2.286620E+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917E+Ol

1.7.3 FORTRAN Examples

1-10

The first FORTRAN program below uses the G-floating data type. The second
FORTRAN program below uses the H-floating data type. The third FORTRAN
program below uses the F-floating complex data type. FORTRAN supports the
four floating data types and the three complex data types.

1. C+
C This FORTRAN program computes the log base 2 of x, log2(x) in
C G-floating double precision by using the RTL routine MTH$GLOG2.
c
c Declare X and Y and MTH$GLOG2 as double precision values.
c
c MTH$GLOG2 will return a double precision value to variable Y.
C-

REAL* 8 X, Y, MTH$GLOG2
x = 16.0
Y = MTH$GLOG2(X)
WRITE (6,1) X, Y

1 FORMAT(' MTH$GLOG2(' ,F4.1,') is ',F4.1)
END

The output generated by the preceding program is as follows:

MTH$GLOG2(16.0) is 4.0

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

2. C+
C This FORTRAN program computes the log base 2 of x, log2(x) in
C H-floating precision by using the RTL routine MTH$HLOG2.
c
C Declare X and Y and MTH$GLOG2 as REAL*l6 values.
c
C MTH$HLOG2 will return a REAL*l6 value to variable Y.
C-

REAL* 16 X, Y
x = 16.12345678901234567890123456789
CALL MTH$HLOG2(Y, X)
WRITE (6,1) X, Y

1 FORMAT(' MTH$HLOG2(' ,F30.27,') is ',F30.28)
END

The output generated by the preceding program is as follows:

MTH$HLOG2(16.123456789012345678901234568) is 4.0110891785623860194931388310

3. C+
c
c
c
c
c
c
c
C-

C+

This FORTRAN example raises a complex base to
a NONNEGATIVE integer power using OTS$POWCJ.

Declare Zl, Z2, Z3, and OTS$POWCJ as complex values.
Then OTS$POWCJ returns the complex result of
Zl**Z2: Z3 = OTS$POWCJ(Zl,Z2),
where Zl and Z2 are passed by value.

COMPLEX Zl,Z3,0TS$POWCJ
INTEGER Z2

C Generate a complex base.
C-

Zl = (2.0,3.0)
c+
C Generate an integer power.
C-

Z2 = 2

c+
C Compute the complex value of Zl**Z2.
C-

Z3 = OTS$POWCJ(%VAL(REAL(Zl)), %VAL(AIMAG(Zl)), %VAL(Z2))
TYPE 1,Zl,Z2,Z3

1 FORMAT(' The value of (' ,Fl0.8,' ,' ,Fll.8,')**' ,Il,' is
+ (1 ,Fll.8, 1

,
1 ,Fl2.8,').')

END

The output generated by the preceding FORTRAN program is as follows:

The value of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).

1.7.4 MACRO Examples
MACRO and BLISS support JSB entry points as well as CALLS and CALLG
entry points. Both MACRO and BLISS support the four floating data types and
the three complex data types.

The following MACRO programs show the use of the CALLS and CALLG
instructions, as well as JSB entry points.

1-11

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

1.

2.

1-12

;+

;-

.TITLE EXAMPLE JSB

This example calls MTH$DEXP by using a MACRO JSB command.
The JSB command expects RO/Rl to contain the quadword input value X.
The result of the JSB will be located in RO/Rl.

.EXTRN MTH$DEXP R6 ;MTH$DEXP is an external routine •

. PSECT DATA, PIC, EXE, NOWRT
X: .DOUBLE 2.0 ; X is 2.0

.ENTRY EXAMPLE JSB, "M<>
MOVQ X, RO - ; X is in registers RO and Rl
JSB G"MTH$DEXP R6 ; The result is returned in RO/Rl.
RET -
.END EXAMPLE JSB

This MACRO program generates the following output:

RO <-- 732541EC
Rl <-- ED6EC6A6

That is, MTH$DEXP(2) is 7.3890560989306502

;+

;-

.TITLE EXAMPLE CALLG

This example calls MTH$HEXP by using a MACRO CALLG command.
The CALLG command expects that the address of the return value
Y, the address of the input value X, and the argument count 2 be
stored in memory; this program stores this information in ARGUMENTS.
The result of the CALLG will be located in RO/Rl.

.EXTRN MTH$HEXP i MTH$HEXP is an external routine •

. PSECT DATA, PIC, EXE, WRT
ARGUMENTS:

X:
Y:

• LONG 2
.ADDRESS Y, X

.H FLOATING 2

.H-FLOATING 0

.ENTRY EXAMPLE G,
CALLG ARGUMENTS,
RET
.END EXAMPLE G

"M<>

The CALLG will use two arguments •
The first argument must be the address
receiving the computed value, while
the second argument is used to
compute exp (X) •

x = 2.0
Y is the result, initially set to 0.

G"MTH$HEXP i CALLG returns the value to Y.

The output generated by this MACRO program is as follows:

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

3.

4.

Introduction to MTH$
1.7 Examples of Calls to Run-Time Library Mathematics Routines

.TITLE EXAMPLE CALLS
;+

This example calls MTH$HEXP by using the MACRO CALLS command.
The CALLS command expects the SP to contain the H-f loating address of
the return value, the address of the input argument X, and the argument
count 2. The result of the CALLS will be located in registers RO-R3.

;-
.EXTRN MTH$HEXP ; MTH$HEXP is an external routine .
. PSECT DATA, PIC, EXE, WRT

Y: .H FLOATING 0 Y is the result, initially set to 0.
X: .H-FLOATING 2 X = 2

.ENTRY EXAMPLE S, AM<>
MOVAL X, -(SP) The address of X is in the SP.
MOVAL Y, -(SP) The address of Y is in the SP
CALLS Y, GAMTH$HEXP The value is returned to the address of Y.
RET
.END EXAMPLE S

The output generated by this program is as follows:

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

.TITLE COMPLEX EXl
;+

This example calls MTH$CLOG by using a MACRO CALLG command.
To compute the complex natural logarithm of z = (2.0,1.0) register
RO is loaded with 2.0, the real part of z, and register Rl is loaded
with 1.0, the imaginary part of Z. The CALLG to MTH$CLOG
returns the value of the natural logarithm of z in
registers RO and Rl. RO gets the real part of Z and Rl
gets the imaginary part .

. EXTRN MTH$CLOG

.PSECT DATA, PIC, EXE, NOWRT
ARGS: .LONG 1 The CALLG will use one argument .

. ADDRESS REAL The one argument that the CALLG
uses is the address of the argument
of MTH$CLOG.

REAL: .FLOAT 2 real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part z is 1.0

.ENTRY COMPLEX EXl, AM<>
CALLG ARGS, GAMTH$CLOG; MTH$CLOG returns the real part of the

complex natural logarithm in RO and
the imaginary part in Rl.

RET
.END COMPLEX EXl

This program generates the following output:

RO <--- 0210404E
Rl <--- 63383FED

That is, MTH$CLOG(2.0,l.O) is
(0.8047190,0.4636476)

1-13

Introduction to MTH$
1.7 Examples of Calls to Run-Time Library Mathematics Routines

5.
;+

;-

.TITLE COMPLEX EX2

This example calls MTH$CLOG by using a MACRO CALLS command.
To compute the complex natural logarithm of Z = (2.0,1.0) register
RO is loaded with 2.0, the real part of z, and register Rl is loaded
with 1.0, the imaginary part of z. The CALLS to MTH$CLOG
returns the value of the natural logarithm of Z in registers RO
and Rl. RO gets the real part of z and Rl gets the imaginary
part.

MTH$CLOG
DATA, PIC, EXE, NOWRT

REAL:
!MAG:

.EXTRN

.PSECT

.FLOAT

.FLOAT

.ENTRY
MO VAL

2 ; real part of z is 2.0
1 ; imaginary part Z is 1.0
COMPLEX EX2, AM<>
REAL, -(SP) SP <-- address of z. Real part of z is

in @(SP) and imaginary part is in
CALLS #1, GAMTH$CLOG @(SP)+4.

RET
.END COMPLEX EX2

MTH$CLOG return the real part of the
complex natural logarithm in RO and
the imaginary part in Rl.

This MACRO example program generates the following output:

RO <--- 0210404E
Rl <--- 63383FED

That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

1. 7 .5 Pascal Examples

1-14

The following Pascal programs use the D-fioating and H-fioating data types.
Pascal also supports the F-fioating and G-fioating data types. Pascal does not
support the complex data types, however.

1. {+}
{ Sample program to demonstrate a call to MTH$DEXP from PASCAL.
{-}

PROGRAM CALL_MTH$DEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR

{+}

x
y

DOUBLE := 3.456;
DOUBLE;

{ X,Y are D-floating unless overridden }
{ with /DOUBLE qualifier on compilation }

{ Declare the RTL routine used by this program.
{-}

[EXTERNAL,ASYNCHRONOUS) FUNCTION MTH$DEXP (VAR value DOUBLE) DOUBLE; EXTERN;

BEGIN
Y := MTH$DEXP (x);
WRITELN ('MTH$DEXP of ' X:5:3, ' is ' Y:20:16);

END.

The output generated by this Pascal program is as follows:

MTH$DEXP of 3.456 is 31.6899656462382318

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

2. {+}
{ Sample program to demonstrate a call to MTH$HEXP from PASCAL.
{-}

PROGRAM CALL_MTH$HEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR

{+}

x QUADRUPLE := 1.2345678901234567891234567892; { x is H-floating }
y QUADRUPLE; { y is H-floating }

{ Declare the RTL routine used by this program.
{-}

[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp QUADRUPLE;
value : QUADRUPLE); EXTERN;

BEGIN
MTH$HEXP (Y,X);
WRITELN ('MTH$HEXP of ' X:30:28, ' is ', Y:35:33);

END.

This Pascal program generates the following output:

MTH$DEXP of 3.456 is 31.6899656462382318

1.7.6 PL/I Examples
The following PL/I programs use the D-floating and H-floating data types to test
entry points. PL/I also supports the F-floating and G-floating data types. PL/I
does not support the complex data types, however.

1. /*
*
*
*
*/
TEST:

This program tests a MTH$D entry point

PROC OPTIONS (MAIN) ;

DCL (MTH$DEXP)
ENTRY (FLOAT(53)) RETURNS (FLOAT(53));

DCL OPERAND FLOAT(53);
DCL RESULT FLOAT(53);

/*** Begin test ***/
OPERAND = 3.456;
RESULT= MTH$DEXP(OPERAND);
PUT EDIT ('MTH$DEXP of ',OPERAND, ' is ',

RESULT)(A(12),F(5,3),A(4),F(20,15));

END TEST;

The output generated by this PL/I program is as follows:

MTH$DEXP of 3.456 is 31.689962805379165

1-15

*
*
*

Introduction to MTH$
1.7 Examples of Calls to Run-Time Library Mathematics Routines

2. /*
*
*
*
*

This program tests a MTH$H entry point.
Note that in the PL/I statement below, the /G-float switch
is needed to compile both G- and H-floating point MTH$ routines.

TEST: PROC OPTIONS (MAIN) ;

DCL (MTH$HEXP)
ENTRY (FLOAT (113), FLOAT (113))

DCL OPERAND FLOAT (113);
DCL RESULT FLOAT (113);

/*** Begin test ***/
OPERAND = 1.234578901234567891234567892;
CALL MTH$HEXP(RESULT,OPERAND);
PUT EDIT ('MTH$HEXP of ',OPERAND, ' is ',

RESULT) (A(l2),F(29,27),A(4),F(29,27));

END TEST;

To run this program, use the following DCL commands:

$ PLI/G FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

This program generates the following output:

MTH$HEXP of 1.234578901234567891234567892 is
3.436930928565989790506225633

1.7.7 Ada Example

1-16

The following Ada program demonstrates the use of MTH$ routines in a manner
that an actual program might use. The program performs the following steps:

• Reads a floating-point number from the terminal

• Calls MTH$SQRT to obtain the square root of the value read

• Calls MTH$JNINT to find the nearest integer of the square root

• Displays the result

This example runs on VAX Ada Version 2.0 or later.

-- This Ada program calls the MTH$SQRT and MTH$JNINT routines.

with FLOAT MATH LIB;
-- Package FLOAT MATH LIB is an instantiation of the generic package
-- MATH LIB for the FLOAT datatype. This package provides the most
-- common mathematical functions (SQRT, SIN, COS, etc.) in an easy
-- to use fashion. An added benefit is that the VAX Ada compiler
-- will use the faster JSB interface for these routines.

with MTH;
-- Package MTH defines all the MTH$ routines. It should be used when
-- package MATH LIB is not sufficient. All functions are defined here
-- as "valued procedures" for consistency.

with FLOAT TEXT IO, INTEGER TEXT IO, TEXT IO;
procedure ADA EXAMPLE is - - -

FLOAT VAL: FLOAT;
INT VAL: INTEGER;

begin -
-- Prompt for initial value.
TEXT IO.PUT ("Enter value: ");
FLOAT TEXT IO.GET (FLOAT VAL);
TEXT_IO.NEW_LINE; -

*
*
*
*/

Introduction to MTH$
1.7 Examples of Calls to Run-Time Library Mathematics Routines

-- Take the square root by using the SQRT routine from package
-- FLOAT MATH LIB. The compiler will use the JSB interface
-- to MTH$SQRT.
FLOAT_VAL := FLOAT_MATH_LIB.SQRT (FLOAT_VAL);

-- Find the nearest integer using MTH$JNINT. Argument names are
-- the same as those listed for MTH$JNINT in the reference
-- section of this manual.
MTH.JNINT (F_FLOATING => FLOAT_VAL, RESULT=> INT_VAL);

-- Write the result.
TEXT IO.PUT ("Result is: ");
INTEGER TEXT IO.PUT (INT_VAL);
TEXT Io:NEW LINE;

end ADA_EXAMPLET

To run this example program, use the following DCL commands:

$CREATE/DIR [.ADALIB]
$ACS CREATE LIB [.ADALIB]
$ACS SET LIB [.ADALIB]
$ ADA ADA EXAMPLE
$ ACS LINK ADA EXAMPLE
$ RUN ADA_EXAMPLE

The preceding Ada example generates the following output:

Enter value: 42.0
Result is: 6

2
Vector Routines in MTH$

This chapter discusses four sets of routines provided by the RTL MTH$ facility
that support vector processing. These routines are as follows:

• Basic Linear Algebra Subroutines (BLAS) Level 1

• First Order Linear Recurrence (FOLR) routines

• Vector versions of existing scalar routines

• Fast-Vector math routines

2.1 BLAS - Basic Linear Algebra Subroutines Level 1
The BLAS Level 1 routines perform operations on vectors, such as copying a
vector to another vector, swapping vectors, and so on. These routines help you
take advantage of the vector processing speed. BLAS Level 1 routines form an
integral part of many mathematical libraries such as LINPACK and EISPACK.
1 Because these routines usually occur in the innermost loops of user code, the
Run-Time Library provides versions of the BLAS Level 1 that are tuned to take
best advantage of the VAX vector processors.

Two versions of BLAS Level 1 are provided. To use either of these libraries, link
in the appropriate shareable image. The libraries are:

• Scalar BLAS - contained in the shareable image BLASlRTL

• Vector BLAS (routines that take advantage of vectorization) - contained in
the shareable image VBLASlRTL

Note

To call the scalar BLAS from a program that runs on scalar
hardware, specify the routine name preceded by BLAS1$ (for example,
BLAS1$xCOPY). To call the vector BLAS from a program that runs on
vector hardware, specify the routine name preceded by BLAS1$V (for
example, BLAS1$VxCOPY).

This manual describes both the scalar and vector versions of BLAS Level 1,
but for simplicity the vector prefix (BLAS1$V) is used exclusively. Remember
to remove the letter V from the routine prefix when you want to call the scalar
version.

1 For more information, see Basic Linear Algebra Subprograms for FORTRAN Usage in
ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

If you are a VAX FORTRAN programmer, do not specify BLAS vector
routines explicitly. Specify the FORTRAN intrinsic function name only.
The VAX FORTRAN-RPO compiler will then determine whether the vector
or scalar version of a BLAS routine should be used. The FORTRAN
/BLAS=([NO]INLINE,[NO]MAPPED) qualifier controls how the compiler
processes calls to BLAS Level 1. If /NOBLAS is specified, then all BLAS calls
are treated as ordinary external routines. The default of INLINE means that
calls to BLAS Level 1 routines will be treated as known language constructs, and
VAX object code will be generated to compute the corresponding operations at
the call site, rather than call a user-supplied routine. If the FORTRAN qualifier
NECTOR or /PARALLEL=AUTO is in effect, the generated code for the loops
may use vector instructions or be decomposed to run on multiple processors.
If MAPPED is specified, these calls will be treated as calls to the optimized
implementations of these routines in the BLAS1$ and BLAS1$V portions of the
MTH$ facility. For more information on the FORTRAN /BLAS qualifier, refer to
the VAX FORTRAN Performance Guide.

Ten families of routines form BLAS Level 1. (BLAS1$VxCOPY is one family
of routines, for example.) These routines operate at the vector-vector operation
level. This means that BLAS Level 1 perform operations on one or two vectors.
The level of complexity of the computations (in other words, the number of
operations being performed in a BLAS Level 1 routine) is of the order n (the
length of the vector).

Each family of routines in BLAS Level 1 contains routines coded in single
precision, double precision (D and G formats), single precision complex, and
double precision complex (D and G formats). BLAS Level 1 can be broadly
classified into three groups:

• BLAS1$VxCOPY, BLAS1$VxSWAP, BLAS1$VxSCAL and BLAS1$VxAX.PY:
These routines return vector output(s) for vector inputs. The results of all
these routines are independent of the order in which the elements of the
vector are processed. The scalar and vector versions of these routines return
the same results.

• BLAS1$VxDOT, BLAS1$VlxAMAX, BLAS1$VxASUM, and BLAS1$VxNRM2:
These routines are all reduction operations that return a scalar value. The
results of these routines (except BLAS1$VlxAMAX) are dependent upon the
order in which the elements of the vector are processed. The scalar and vector
versions of BLAS1$VxDOT, BLAS1$VxASUM, and BLAS1$VxNRM2 can
return different results. The scalar and vector versions of BLAS 1$VlxAMAX
return the same results.

• BLAS1$VxROTG and BLAS1$VxROT: These routines are used for a
particular application (plane rotations), unlike the routines in the previous
two categories. The results of BLAS1$VxROTG and BLAS1$VxROT are
independent of the order in which the elements of the vector are processed.
The scalar and vector versions of these routines return the same results.

Table 2-1 lists the functions and corresponding routines of BLAS Level 1.

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 Functions of BLAS Level 1

Function Routine Data Type

Copy a vector to BLAS1$VSCOPY Single

another vector BLAS1$VDCOPY Double CD-floating or G-floating)

BLAS1$VCCOPY Single complex

BLAS1$VZCOPY Double complex CD-floating or
G-floating)

Swap the elements BLAS1$VSSWAP Single

of two vectors BLAS1$VDSWAP Double CD-floating or G-floating)

BLAS1$VCSWAP Single complex

BLAS1$VZSWAP Double complex CD-floating or
G-floating)

Scale the elements BLAS1$VSSCAL Single

of a vector BLAS1$VDSCAL Double CD-floating)

BLAS1$VGSCAL Double CG-floating)

BLAS1$VCSCAL Single complex with complex
scale

BLAS1$VCSSCAL Single complex with real scale

BLAS1$VZSCAL Double complex with complex
scale CD-floating)

BLAS1$VWSCAL Double complex with complex
scale CG-floating)

BLAS1$VZDSCAL Double complex with real scale
CD-floating)

BLAS1$VWGSCAL Double complex with real scale
CG-floating)

Multiply a vector by a BLAS1$VSAXPY Single

scalar and add a vector BLAS1$VDAXPY Double CD-floating)

BLAS1$VGAXPY Double CG-floating)

BLAS1$VCAXPY Single complex

BLAS1$VZAXPY Double complex CD-floating)

BLAS1$VWAXPY Double complex CG-floating)

Obtain the index of the BLAS1$VISAMAX Single

first element of a vector BLAS1$VIDAMAX Double CD-floating)

having the largest BLAS1$VIGAMAX Double CG-floating)

absolute value BLAS1$VICAMAX Single complex

BLAS1$VIZAMAX Double complex CD-floating)

BLAS1$VIWAMAX Double complex CG-floating)

(continued on next page)

2-3

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

2-4

Table 2-1 (Cont.) Functions of BLAS Level 1

Function

Obtain the sum of the

absolute values of the

elements of a vector

Obtain the inner

product of two vectors

Obtain the Euclidean

norm of the vector

Generate the elements

for a Givens plane

rotation

Routine

BLAS1$VSASUM

BLAS1$VDASUM

BLAS1$VGASUM

BLAS1$VSCASUM

BLAS1$VDZASUM

BLAS1$VGWASUM

BLAS1$VSDOT

BLAS1$VDDOT

BLAS1$VGDOT

BLAS1$VCDOTU

BLAS1$VCDOTC

BLAS1$VZDOTU

BLAS1$VWDOTU

BLAS1$VZDOTC

BLAS1$VWDOTC

BLAS1$VSNRM2

BLAS1$VDNRM2

BLAS1$VGNRM2

BLAS1$VSCNRM2

BLAS1$VDZNRM2

BLAS1$VGWNRM2

BLAS1$VSROTG

BLAS1$VDROTG

BLAS1$VGROTG

BLAS1$VCROTG

BLAS1$VZROTG

BLAS1$VWROTG

Data Type

Single

Double CD-floating)

Double (G-floating)

Single complex

Double complex (D-floating)

Double complex (G-floating)

Single

Double CD-floating)

Double (G-floating)

Single complex unconjugated

Single complex conjugated

Double complex unconjugated
(D-floating)

Double complex unconjugated
(G-floating)

Double complex conjugated (D
floating)

Double complex conjugated (G
floating)

Single

Double CD-floating)

Double CG-floating)

Single complex

Double complex CD-floating)

Double complex CG-floating)

Single

Double CD-floating)

Double CG-floating)

Single complex

Double complex CD-floating)

Double complex CG-floating)

(continued on next page)

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 (Cont.) Functions of BLAS Level 1

Function

Apply a Givens plane

rotation

Routine

BLAS1$VSROT

BLAS1$VDROT

BLAS1$VGROT

BLAS1$VCSROT

BLAS1$VZDROT

BLAS1$VWGROT

Data Type

Single

Double (D-floating)

Double (G-floating)

Single complex

Double complex (D-floating)

Double complex (G-floating)

For a detailed description of these routines, refer to the Vector MTH$ Reference
Section of this manual.

2.1.1 Using BLAS Level 1
The following sections provide some guidelines for using BLAS Level 1.

2.1.1.1 Memory Overlap
The vector BLAS produces unpredictable results when any element of the input
argument shares a memory location with an element of the output argument. (An
exception is a special case found in the BLAS1$VxCOPY routines.)

The vector BLAS and the scalar BLAS can yield different results when the input
argument overlaps the output array.

2.1.1.2 Round-Off Effects
For some of the routines in BLAS Level 1, the final result is independent of
the order in which the operations are performed. However, in other cases (for
example, some of the reduction operations), efficiency dictates that the order of
operations on a vector machine be different from the natural order of operations.
Because round-off errors are dependent upon the order in which the operations
are performed, some of the routines will not return results that are bit-for-bit
identical to the results obtained by performing the operations in natural order.

Where performance can be increased by the use of a backup data type, this
has been done. This is the case for BLAS1$VSNRM2, BLAS1$VSCNRM2,
BLAS1$VSROTG, and BLAS1$VCROTG. The use of a backup data type can
also yield a gain in accuracy over the scalar BLAS.

2.1.1.3 Underflow and Overflow
In accordance with LINPACK convention, underflow, when it occurs, is replaced
by a zero. A system message informs you of overflow. Because the order of
operations for some routines is different from the natural order, overflow might
not occur at the same array element in both the scalar and vector versions of the
routines.

2.1.1.4 Notational Definitions
The vector BLAS (except the BLAS1$VxROTG routines) perform operations on
vectors. These vectors are defined in terms of three quantities:

• A vector length, specified as n

• An array or a starting element in an array, specified as x

• An increment or spacing parameter to indicate the distance in number of
array elements to skip between successive vector elements, specified as incx

2-5

Vector Routines in MTH$
2.1 BLAS- Basic Linear Algebra Subroutines Level 1

Suppose x is a real array of dimension ndim, n is its vector length, and incx is
the increment used to access the elements of a vector X. The elements of vector
X, Xi, i = 1, ... , n, are stored in x. If incx is greater than or equal to 0, then Xi is
stored in the following location:

x(l + (i - 1) * incx)

However, if incx is less than 0, then Xi is stored in the following location:

x(l + (n - i) * jincxj)

It therefore follows that the following condition must be satisfied:

ndim2::1 + (n - 1) * jincxj

A positive value for incx is referred to as forward indexing, and a negative
value is referred to as backward indexing. A value of zero implies that all of the
elements of the vector are at the same location, x1.

Suppose ndim = 20 and n = 5. In this case, incx = 2 implies that X1, X2, X3,
X4, and X5 are located in array elements x1, x3, x5, x7, and x9.

If, however, incx is negative, then X1, X2, X3, X4, and X5 are located in array
elements xg, x7, x5, x3, and x1. In other words, when incx is negative, the
subscript of x decreases as i increases.

For some of the routines in BLAS Level 1, incx = 0 is not permitted. In the cases
where a zero value for incx is permitted, it means that x1 is broadcast into each
element of the vector X of length n.

You can operate on vectors that are embedded in other vectors or matrices by
choosing a suitable starting point of the vector. For example, if A is an nl by n2
matrix, its j-th column is referenced with a length of nl, starting point A(lj), and
increment 1. Similarly, the i-th row is referenced with a length of n2, starting
point A(i,1), and increment nl.

2.2 FOLR - First Order Linear Recurrence Routines
The MTH$ FOLR routines provide a vectorized algorithm for the linear
recurrence relation. A linear recurrence uses the result of a previous pass
through a loop as an operand for subsequent passes through the loop and
prevents the vectorization of a loop.

The only error checking performed by the FOLR routines is for a reserved
operand.

There are four families of FOLR routines in the MTH$ facility. Each family
accepts each of four data types (longword integer, F-floating, D-floating, and
G-floating). However, all of the arrays you specify in a single FOLR call must be
of the same data type.

For a detailed description of these routines, refer to the Vector MTH$ Reference
Section of this manual.

2.2.1 FOLR Routine Name Format
The four families of FOLR routines are as follows:

• MTH$VxFOLRy_MA_V15

• MTH$VxFOLRy_z_V8

• MTH$VxFOLRLy_MA_V5

2-6

Vector Routines in MTH$
2.2 FOLR - First Order Linear Recurrence Routines

• MTH$VxFOLRLy_z_V2

where:

x J for longword integer, F for F-floating, D for D-floating, or G for G-floating

y P for a positive recursion element, or N for a negative recursion element

z M for multiplication, or A for addition

The FOLR entry points end with_ Vn, where n is an integer between 0 and
15 that denotes the vector registers that the FOLR routine uses. For example,
MTH$VxFOLRy _z_ V8 uses vector registers VO through V8.

To determine which group of routines you should use, match the task in the left
column in Table 2-2 that you need the routine to perform with the method of
storage that you need the routine to employ. The point where these two tasks
meet shows the FOLR routine you should call.

Table 2-2 Determining the FOLR Routine You Need

Tasks Save each iteration in an array Save only last result in a variable

Multiplication AND
addition

MTH$VxFOLRy _MA_ V15 MTH$VxFOLRLy _MA_ V5

Multiplication OR
addition

MTH$VxFOLRy _z_ V8

2.2.2 Calling a FOLR Routine

MTH$VxFOLRLy _z_ V2

Save the contents of VO through Vn before calling a FOLR routine if you need
it after the call. The variable n can be 2, 5, 8, or 15, depending on the FOLR
routine entry point. (The Open VMS Calling Standard specifies that a called
procedure may modify all of the vector registers. The FOLR routines modify only
the vector registers VO through Vn.)

The MTH$ FOLR routines assume that all of the arrays are of the same data
type.

2.3 Vector Versions of Existing Scalar Routines
Vector forms of many MTH$ routines are provided to support vectorized compiled
applications. Vector versions of key F-floating, D-floating, and G-floating scalar
routines employ vector hardware, while maintaining identical results with their
scalar counterparts. Many of the scalar algorithms have been redesigned to
ensure identical results and good performance for both the vector and scalar
versions of each routine. All vectorized routines return bit-for-bit identical results
as the scalar versions.

You can call the vector MTH$ routines directly if your program is written in
VAX MACRO. If you are a FORTRAN programmer, specify the FORTRAN
intrinsic function name only. The VAX FORTRAN-RPO compiler will then
determine whether the vector or scalar version of a routine should be used.

2.3.1 Exceptions
You should not attempt to recover from an MTH$ vector exception. After an
MTH$ vector exception, the vector routines cannot continue execution, and
nonexceptional values might not have been computed.

2-7

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

2.3.2 Underflow Detection
In general, if a vector instruction results in the detection of both a floating
overflow and a floating underflow, only the overflow will be signaled.

Some scalar routines check to see if a user has enabled underflow detection. For
each of those scalar routines, there are two corresponding vector routines:
one that always enables underflow checking and one that never enables
underflow checking. (In the latter case, underflows produce a result of zero.)
The VAX FORTRAN-RPO compiler always chooses the vector version that does
not signal underflows, unless the user specifies the appropriate VAX FORTRAN
HPO compiler switch (the /CHECK=UNDERFLOW qualifier). This ensures that
the check is performed but does not impair vector performance for those not
interested in underflow detection.

2.3.3 Vector Routine Name Format

2-8

Use one of the formats in Table 2-3 to call (from VAX MACRO) a vector math
routine that enables underflow signaling. (The E in the routine name means
enabled underflow signaling.)

Table 2-3 Vector Routine Format - Underflow Signaling Enabled

Format

MTH$VxSAMPLE_E_Ry _ Vz

MTH$VCxSAMPLE_E_Ry _ Vz

OTS$SAMPLEq_E_Ry_Vz

Type of Routine

Real valued math routine

Complex valued math routine

Power routine or complex multiply and divide

Use one of the formats in Table 2-4 to call (from VAX MACRO) a vector math
routine that does not enable underflow signaling.

Table 2-4 Vector Routine Format - Underflow Signaling Disabled

Format Type of Routine

MTH$VxSAMPLE_Ry _ Vz

MTH$VCxSAMPLE_Ry _ Vz

OTS$SAMPLEq_Ry _ Vz

Real valued math routine

Complex valued math routine

Power routine or complex multiply/divide

In the preceding formats, the following conventions are used:

x The letter A (or blank) for F-floating, D for D-floating, G for G-floating.

y A number between 0 and 11 (inclusive). Ry means that the scalar registers RO
through Ry will be used by the routine SAMPLE. You must save these registers.

z A number between 0 and 15 (inclusive). Vz means that the vector registers VO
through Vz will be used by the routine SAMPLE. You must save these registers.

q Two letters denoting the base and power data type, as follows:

RR F-floating base raised to an F-floating power

RJ F-floating base raised to a longword power

DD D-floating base raised to a D-floating power

DJ D-floating base raised to a longword power

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

GG G-fioating base raised to a G-fioating power

GJ G-fioating base raised to a longword power

JJ Longword base raised to a longword power

2.3.4 Calling a Vector Math Routine
You can call the vector MTH$ routines directly if your program is written in
VAX MACRO.

Note ~~~~~~~~~~~~~

If you are a VAX FORTRAN programmer, do not specify the MTH$ vector
routines explicitly. Specify the FORTRAN intrinsic function name only.
The VAX FORTRAN-RPO compiler will then determine whether the
vector or scalar version of a routine should be used.

In the following examples, keep in mind that vector real arguments are passed
in VO, Vl, and so on, and vector real results are returned in VO. On the other
hand, vector complex arguments are passed in VO and Vl, V2, and V3, and so on.
Vector complex results are returned in VO and Vl.

Argument

Vector real arguments

Vector complex arguments

Example 1

Argument Passed
Register

VO, Vl, ...

VO and Vl, V2 and V3, ...

Results Returned
Register

VO

VO and Vl

The following example shows how to call the vector version of MTH$EXP. Assume
that you do not want underflows to be signaled, and you need to use the current
contents of all vector and scalar registers after the invocation. Before you can call
the vector routine from VAX MACRO, perform the following steps.

1. Find EXP in the column of scalar names in Appendix B to determine:

• The full vector routine name: MTH$VEXP _R3_ V6

• How the routine is invoked (CALL or JSB): JSB

• The scalar registers that must be saved: RO through R3 (as specified by
R3 in MTH$VEXP _R3_ V6)

• The vector registers that must be saved: VO through V6 (as specified by
V6 in MTH$VEXP _R3_ V6)

• The vector register(s) used to hold the input argument(s): VO

• The vector register(s) used to hold the output argument(s): VO

• If there is a vector version that signals underflow (not needed in this
example)

2. Save the scalar registers RO, Rl, R2, and R3.

3. Save the vector registers VO, Vl, V2, V3, V 4, V5, and V6.

4. Save the vector mask register VMR.

5. Save the vector count register VCR.

2-9

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

2-10

6. Load the vector length register VLR.

7. Load the vector register VO with the argument for MTH$EXP.

S. JSB to MTH$VEXP _R3_ V6.

9. Store result in memory.

10. Restore all scalar and vector registers except for VO. (The results of the "call"
to MTH$VEXP _R3_V6 are stored in VO.)

The following MACRO program fragment shows this example. Assume that:

• VO through V6 and RO through R3 have been saved.

• R4 points to a vector of 60 input values.

• R6 points to the location where the results of MTH$VEXP _R3_ V6 will be
stored.

• R5 contains the stride in bytes.

Note that MTH$VEXP _R3_ V6 denotes an F-floating data type because there is
no letter between V and E in the routine name. (For further explanation, refer to
Section 2.3.3.) The stride (the number of array elements that are skipped) must
be a multiple of 4 because each F-floating value requires 4 bytes.

MTVLR
MOVL
VLDL
JSB
VSTL

#60
#4, RS
(R4), RS, VO
GAMTH$VEXP R3 V6
VO I (R6) I RS -

Example 2

Load VLR
Stride
Load VO with the actual arguments
JSB to MTH$VEXP
Store the results

The following example demonstrates how to call the vector version of
OTS$POWDD with a vector base raised to a scalar power. Before you can call the
vector routine from VAX MACRO, perform the following steps.

1. Find POWDD (V 8) in the column of scalar names in Appendix B to
determine:

• The full vector routine name: OTS$VPOWDD_Rl_ VS

• How the routine is invoked (CALL or JSB): CALL

• The scalar registers that must be saved: RO through Rl (as specified by
Rl in OTS$VPOWDD_Rl_ VS)

• The vector registers that must be saved: VO through VS (as specified by
VS in OTS$VPOWDD_Rl_ VS)

• The vector register(s) used to hold the input argument(s): VO, RO

• The vector register(s) used to hold the output argument(s): VO

• If there is a vector version that signals underflow (not needed in this
example)

2. Save the scalar registers RO and Rl.

3. Save the vector registers VO, Vl, V2, V3, V4, V5, V6, V7, and VS.

4. Save the vector mask register VMR.

5. Save the vector count register VCR.

6. Load the vector length register VLR.

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

7. Load the vector register VO and the scalar register RO with the arguments for
OTS$POWDD.

8. Call OTS$VPOWDD_Rl_ V8.

9. Store result in memory.

10. Restore all scalar and vector registers except for VO. (The results of the call
to OTS$VPOWDD_Rl_V8 are stored in VO.)

The following MACRO program fragment shows how to call OTS$VPOWDD_Rl_
V8 to compute the result of raising 60 values to the power P. Assume that:

• VO through V8 and RO and Rl have been saved.

• R4 points to the vector of 60 input base values.

• RO and Rl contain the D-floating value P.

• R6 points to the location where the results will be stored.

• R5 contains the stride.

Note that OTS$VPOWDD_Rl_ V8 raises a D-floating base to a D-floating power,
which you determine from the DD in the routine name. (For further explanation,
refer to Section 2.3.3.) The stride (the number of array elements that are skipped)
must be a multiple of 8 because each D-floating value requires 8 bytes.

MTVLR
MOVL
VLDQ
CALLS
VSTQ

; RO/Rl already contains the power
#60 i Load VLR
#8, RS ; Stride
(R4), RS, VO ; Load VO with the actual arguments
#0,GAOTS$VPOWDD Rl VB ; CALL OTS$VPOWDD
VO, (R6), RS - - ; Store the results

2.4 Fast-Vector Math Routines
This section describes the fast-vector math routines that offer significantly
higher performance at the cost of slightly reduced accuracy when compared with
corresponding standard vector math routines. Also note that some fast-vector
math routines have restricted argument domains.

When you specify the compile command qualifiers NECTOR and /MATH_
LIBRARY=FAST, VAX FORTRAN-RPO Version 1.2 selects the appropriate fast
vector math routine, if one exists. The default is /MATR_LIBRARY=ACCURATE.
You must specify the /G_FLOATING compile qualifier in conjunction with the
/MATR_LIBRARY =FAST and NECTOR qualifiers to access the G_floating
versions from VAX FORTRAN-RPO. See the VAX FORTRAN-RPO Vl.2 Release
Notes for more information.

You can call these routines from VAX MACRO using the standard calling method.
The math function names, together with corresponding entry points of the
fast-vector math routines, are listed in Table 2-5.

2-11

Vector Routines in MTH$
2.4 Fast-Vector Math Routines

Table 2-5 Fast-Vector Math Routines

Vector Vector
Input Output Vector Name

Function Name Data Type Call or JSB Registers Registers (Underflows Not Signaled)

ATAN F _ftoating JSB VO VO MTH$VYATAN_RO_ V3

DATAN D_floating JSB VO VO MTH$VYDATAN_RO_ V5

GATAN G_ftoating JSB VO VO MTH$VYGATAN_RO_ V5

ATAN2 F _ftoating JSB VO, Vl VO MTH$VVYATAN2_RO_ V5

DATAN2 D_ftoating JSB VO, Vl VO MTH$VVYDATAN2_RO_ V5

GATAN2 G_ftoating JSB VO, Vl VO MTH$VVYGATAN2_RO_ V5

cos F _ftoating JSB VO VO MTH$VYCOS_RO_ V3

DCOS D_ftoating JSB VO VO MTH$VYDCOS_RO_ V3

GCOS G_ftoating JSB VO VO MTH$VYGCOS_RO_ V3

EXP F _ftoating JSB VO VO MTH$VYEXP _RO_ V 4

DEXP D_ftoating JSB VO VO MTH$VYDEXP _RO_ V6

GEXP G_ftoating JSB VO VO MTH$VYGEXP _RO_ V6

LOG F _floating JSB VO VO MTH$VYALOG_RO_ V5

DLOG D_ftoating JSB VO VO MTH$VYDLOG_RO_ V5

GLOG G_ftoating JSB VO VO MTH$VYGLOG_RO_ V5

LOGlO F _ftoating JSB VO VO MTH$VYALOG 10_RO_ V5

DLOGlO D_ftoating JSB VO VO MTH$VYDLOG 10_RO_ V5

GLOGlO G_ftoating JSB VO VO MTH$VYGLOG 10_RO_ V5

SIN F _ftoating JSB VO VO MTH$VYSIN_RO_ V3

DSIN D_ftoating JSB VO VO MTH$VYDSIN_RO_ V3

GSIN G_ftoating JSB VO VO MTH$VYGSIN_RO_ V3

SQRT F _floating JSB VO VO MTH$VYSQRT_RO_ V 4

DSQRT D_ftoating JSB VO VO MTH$VYDSQRT_RO_ V4

GSQRT G_floating JSB VO VO MTH$VYGSQRT_RO_V4

TAN F _floating JSB VO VO MTH$VYTAN_RO_ V3

DTAN D_ftoating JSB VO VO MTH$VYDTAN_RO_ V3

GTAN G_floating JSB VO VO MTH$VYGTAN_RO_ V3

POWRR(X**Y) F _floating CALL VO,RO VO OTS$VYPOWRR_Rl_ V4

POWDD(X**Y) D_floating CALL VO,RO VO OTS$VYPOWDD_Rl_ V8

POWGG(X**Y) G_floating CALL VO,RO VO OTS$VYPOWGG_Rl_ V9

2.4.1 Exception Handling
The fast-vector math routines signal all errors except floating underflow. No
intermediate calculations result in exceptions. To optimize performance, the
following message signals all errors:

%SYSTEM-F-VARITH, vector arithmetic fault

2-12

Vector Routines in MTH$
2.4 Fast-Vector Math Routines

2.4.2 Special Restrictions On Input Arguments
The special restrictions listed in Table 2-6 apply only to fast-vector routines
SIN, COS, and TAN. The standard vector routines handle the full range of VAX
floating point numbers.

Table 2-6 Input Argument Restrictions

Function Name

SIN

cos
TAN

Input Argument Domain (in Radians)

-(-6746518783.0, 6746518783.0)

-(-6746518783.0, 6746518783.0)

-(-3373259391.5, 3373259391.5)

If the application program uses arguments outside of the listed domain, the
routine returns the following error message:

%SYSTEM-F-VARITH, vector arithmetic fault

If the application requires argument values beyond the listed limits, use the
corresponding standard vector math routine.

2.4.3 Accuracy
The fast-vector math routines do not guarantee the same results as those obtained
with the corresponding standard vector math routines. Calls to the fast-vector
routines generally yield results that are different from the scalar and original
vector MTH$ library routines. The typical maximum error is a 2-LSB (Least
Significant Bit) error for the F _floating routines and a 4-LSB error for the D_
floating and G_floating routines. This generally corresponds to a difference in
the 6th significant decimal digit for the F _floating routines, the 15th digit for
D_floating, and the 14th digit for G_floating.

2.4.4 Performance
The fast-vector math routines generally provide performance improvements over
the standard vector routines ranging from 15 to 300 percent, depending on the
routines called and input arguments to the routines. The overall performance
improvement using fast-vector math routines in a typical user application will
increase, but not at the same level as the routines themselves. You should do
performance and correctness testing of your application using both the fast-vector
and the standard vector math routines before deciding which to use for your
application.

2-13

Scalar MTH$ Reference Section

The Scalar MTH$ Reference Section provides detailed descriptions of the scalar
routines provided by the Open VMS RTL Mathematics (MTH$) Facility.

MTH$xACOS

MTH$xACOS-Arc Cosine of Angle Expressed in Radians

Format

JSB Entries

Returns

Arguments

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians
routine returns that angle (in radians).

MTH$ACOS cosine

MTH$DACOS cosine

MTH$GACOS cosine

Each of the above three formats accepts one of the floating-point types as input.

MTH$ACOS_R4

MTH$DACOS_R7

MTH$GACOS_R7

Each of the above three JSB entries accepts one of the floating-point types as
input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Angle in radians. The angle returned will have a value in the range

0 ::; angle ::; 7r

MTH$ACOS returns an F-floating number. MTH$DACOS returns a D-floating
number. MTH$GACOS returns a G-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$ACOS,
cosine specifies an F-floating number. For MTH$DACOS, cosine specifies a
D-floating number. For MTH$GACOS, cosine specifies a G-floating number.

MTH$xACOS

Description

The angle in radians whose cosine is Xis computed as:

Value of Cosine

0

1

-1

0<x<1

-1<x<0

1 < IXI

Value Returned

7r/2

0

7r

zATAN(zSQRT(l - X 2)/X), where zATAN and zSQRT are the
Math Library arc tangent and square root routines, respectively,
of the appropriate data type

zAT AN(zSQRT(l - X 2)/ X) + 7r

The error MTH$_INVARGMAT is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HACOS.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Examples

~ATU A

MTH$_INVARGMAT Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

1. 100 !+
! This BASIC program demonstrates the use of
! MTH$ACOS.
!-

EXTERNAL REAL FUNCTION MTH$ACOS
DECLARE REAL COS VALUE, ANGLE

300 INPUT "Cosine value between -1 and +1 "; cos VALUE
400 IF (COS VALUE < -1) OR (COS VALUE > 1) -

-THEN PRINT "Invalid-cosine value"
GOTO 300

500 ANGLE = MTH$ACOS(COS VALUE)
PRINT "The angle with-that cosine is "; ANGLE; "radians"

32767 END

MTH$xACOS

This BASIC program prompts for a cosine value and determines the angle
that has that cosine. The output generated by this program is as follows:

$ RUN ACOS
Cosine value between -1 and +1 ? .5
The angle with that cosine is 1.0472 radians

2. PROGRAM GETANGLE(INPUT,OUTPUT);

{+}
{ This PASCAL program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}

VAR
COS : REAL;

FUNCTION MTH$ACOS(COS REAL) REAL;
EXTERN;

BEGIN

END.

WRITE('Cosine value between -1 and +1: ');
READ (COS);
WRITELN('The angle with that cosine is ', MTH$ACOS(COS),
' radians');

This PASCAL program prompts for a cosine value and determines the angle
that has that cosine. The output generated by this program is as follows:

$ RUN ACOS
Cosine value between -1 and +1: .5
The angle with that cosine is 1.04720E+OO radians

MTH-Fi

MTH$xACOSD

MTH$xACOSD-Arc Cosine of Angle Expressed in Degrees

Format

JSB Entries

Returns

Arguments

MTH-6

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees
routine returns that angle (in degrees).

MTH$ACOSD cosine

MTH$DACOSD cosine

MTH$GACOSD cosine

Each of the above formats accepts one of the floating-point types as input.

MTH$ACOSD_R4

MTH$DACOSD_R7

MTH$GACOSD_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Angle in degrees. The angle returned will have a value in the range

0 :::; angle :::; 180

MTH$ACOSD returns an F-floating number. MTH$DACOSD returns a D-floating
number. MTH$GACOSD returns a G-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
F _floating, G_floating, D_floating
read only
by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$ACOSD,
cosine specifies an F-floating number. For MTH$DACOSD, cosine specifies a
D-floating number. For MTH$GACOSD, cosine specifies a G-floating number.

Description

MTH$xACOSD

The angle in degrees whose cosine is Xis computed as:

Value of Cosine Angle Returned

0 90

1 0

-1 180

0 < X < 1 zAT AN D(zSQRT(l - X2)/ X), where zATAND and zSQRT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

-1 < X < O zATAND(zSQRT(l - X 2)/X) + 180

1 < IXI The error MTH$_INVARGMAT is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HACOSD.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH$_INVARGMAT

PROGRAM ACOSD(INPUT,OUTPUT);

{+}

Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}

FUNCTION MTH$ACOSD(COS REAL): REAL; EXTERN;

VAR
COSINE : REAL;
RET_STATUS : REAL;

BEGIN
COSINE := 0.5;
RET STATUS := MTH$ACOSD(COSINE);
WRITELN('The angle, in degrees, is: ' RET_STATUS);

END.

MTH-7

MTH$xACOSD

The output generated by this PASCAL example program is as follows:

The angle, expressed in degrees, is: 6.00000E+Ol

MTH-8

MTH$xASIN

MTH$xASIN-Arc Sine in Radians

Format

JSB Entries

Returns

Arguments

Given the sine of an angle, the Arc Sine in Radians routine returns that angle (in
radians).

MTH$ASIN sine

MTH$DASIN sine

MTH$GASIN sine

Each of the above formats accepts one of the floating-point types as input.

MTH$ASIN_R4

MTH$DASIN_R7

MTH$GASI N_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Angle in radians. The angle returned will have a value in the range

-7r/2::; angle::; 7r/2

MTH$ASIN returns an F-floating number. MTH$DASIN returns a D-floating
number. MTH$GASIN returns a G-floating number.

sine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The absolute
value of sine must be less than or equal to 1. For MTH$ASIN, sine specifies an
F-floating number. For MTH$DASIN, sine specifies a D-floating number. For
MTH$GASIN, sine specifies a G-floating number.

MTH-9

MTH$xASIN

Description

The angle in radians whose sine is Xis computed as:

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Angle Returned

0

7r/2

-7r/2

zATAN(X/zSQRT(l - X 2)), where zATAN and zSQRT are
the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_INVARGMAT is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HASIN.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xASIN routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_INVARGMAT

MTH-10

Invalid argument. The absolute value of sine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH$xASIND

MTH$xASIND-Arc Sine in Degrees

Format

JSB Entries

Returns

Arguments

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle (in
degrees).

MTH$ASIND sine

MTH$DASIND sine

MTH$GASIND sine

Each of the above formats accepts one of the floating-point types as input.

MTH$ASIND_R4

MTH$DASIND_R7

MTH$GASIND_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Angle in degrees. The angle returned will have a value in the range

-90 ~ angle :s; 90

MTH$ASIND returns an F-floating number. MTH$DASIND returns a D-floating
number. MTH$GASIND returns a G-floating number.

sine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Sine of the angle whose value (in degrees) is to be returned. The sine argument
is the address of a floating-point number that is this sine. The absolute value
of sine must be less than or equal to 1. For MTH$ASIND, sine specifies an
F-floating number. For MTH$DASIND, sine specifies a D-floating number. For
MTH$GASIND, sine specifies a G-floating number.

MTH-11

MTH$xASIND

Description

The angle in degrees whose sine is X is computed as:

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Value Returned

0

90

-90

zATAN D(X/zSQRT(1 - X 2)), where zATAND and zSQRT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_INVARGMAT is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HASIND.

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH-12

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. The absolute value of sine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH$xATAN

MTH$xATAN-Arc Tangent in Radians

Format

JSB Entries

Returns

Arguments

Given the tangent of an angle, the Arc Tangent in Radians routine returns that
angle (in radians).

MTH$ATAN tangent

MTH$DATAN tangent

MTH$GATAN tangent

Each of the above formats accepts one of the floating-point types as input.

MTH$ATAN_R4

MTH$DATAN_R7

MTH$GATAN_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Angle in radians. The angle returned will have a value in the range

-7r /2 ~ angle ::::; 7r /2

MTH$ATAN returns an F-floating number. MTH$DATAN returns a D-floating
number. MTH$GATAN returns a G-floating number.

tangent
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The tangent of the angle whose value (in radians) is to be returned. The tangent
argument is the address of a floating-point number that is this tangent. For
MTH$ATAN, tangent specifies an F-floating number. For MTH$DATAN,
tangent specifies a D-floating number. For MTH$GATAN, tangent specifies a
G-floating number.

11.llTLJ -1 t)

MTH$xATAN

Description

In radians, the computation of the arc tangent function is based on the following
identities:

arctan(X) = X - X 3 /3 + X 5 /5 - x7 /7 + ...
arctan(X) = X + X * Q(X2),

where Q(Y) = -Y/3 + Y2 /5 - y3 /7 + ...
arctan(X) = X * P(X2),

where P(Y) = 1- Y/3 + Y2/5 - y3/7 + ...
arctan(X) = 7r/2 - arctan(l/X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

The angle in radians whose tangent is Xis computed as:

Value of X

o::;X::;3/32
3/32 < x::;u

11 < x
X< O

Angle Returned

X + X * Q(X2
)

ATAN(A) + V * (P(V 2)), where A and ATAN(A) are
chosen by table lookup and V = (X - A)/(1 +A* X)

7r/2 - W * (P(W 2)) where W = 1/X

-zAT AN(IXI)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAN.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xATAN routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-1.d.

MTH$xATAND

MTH$xATAND-Arc Tangent in Degrees

Format

JSB Entries

Returns

Arguments

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that
angle (in degrees).

MTH$ATAND tangent

MTH$DATAND tangent

MTH$GATAND tangent

Each of the above formats accepts one of the floating-point types as input.

MTH$ATAND_R4

MTH$DATAND_R7

MTH$GATAND_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_poin t
F _floating, D_floating, G_floating
write only
by value

Angle in degrees. The angle returned will have a value in the range

-90 ~ angle ~ 90

MTH$ATAND returns an F-floating number. MTH$DATAND returns a D-floating
number. MTH$GATAND returns a G-floating number.

tangent
Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating
read only
by reference

The tangent of the angle whose value (in degrees) is to be returned. The tangent
argument is the address of a floating-point number that is this tangent. For
MTH$ATAND, tangent specifies an F-floating number. For MTH$DATAND,
tangent specifies a D-floating number. For MTH$GATAND, tangent specifies a
G-floating number.

~ATl-l-1!=\

MTH$xATAND

Description

The computation of the arc tangent function is based on the following identities:

arctan(X) = (180/7r) * (X - X 3 /3 + X5 /5 - x7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2

),

where Q(Y) = 180/71" * [(1 - 64 * 71" /180)] - Y /3 + Y2 /5 - Y3 /7 + Y4 /9

arctan(X) = X * P(X2),

where P(Y) = 180/71" * [1 - Y/3 + y2/5 - y3 /7 + y4 /9 ...]

arctan(X) = 90 - arctan(l/ X)
arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))

The angle in degrees whose tangent is X is computed as:

Tangent

X<_5;3/32

3/32 < x::;11

11 < x
X< O

Angle Returned

64 * X + X * Q(X2
)

ATAND(A) + V * P(V2), where A and ATAND(A) are
chosen by table lookup and V = (X - A)/(1 +A* X)

90 - W * (P(W 2)), where W = 1/X

-zATAND(I X I)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAND.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xATAND routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-16

MTH$xATAN2

MTH$xATAN2-Arc Tangent in Radians with Two Arguments

Format

Returns

Arguments

Given sine and cosine, the Arc Tangent in Radians with Two Arguments routine
returns the angle (in radians) whose tangent is given by the quotient of sine and
cosine (sine/cosine).

MTH$ATAN2 sine ,cosine

MTH$DATAN2 sine ,cosine

MTH$GATAN2 sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating
write only
by value

Angle in radians. MTH$ATAN2 returns an F-floating number. MTH$DATAN2
returns a D-floating number. MTH$GATAN2 returns a G-floating number.

sine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Dividend. The sine argument is the address of a floating-point number that
is this dividend. For MTH$ATAN2, sine specifies an F-floating number. For
MTH$DATAN2, sine specifies a D-floating number. For MTH$GATAN2, sine
specifies a G-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Divisor. The cosine argument is-the address of a floating-point number that
is this divisor. For MTH$ATAN2, cosine specifies an F-floating number. For
MTH$DATAN2, cosine specifies a D-floating number. For MTH$GATAN2,
cosine specifies a G-floating number.

l\JITl-L17

MTH$xATAN2

Description

The angle in radians whose tangent is Y/X is computed as follows, where f is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = o or Y/X > 2U+l)

X > 0 and Y/X~ 2(/+l)

X < 0 and Y/X~ 2(/+l)

Angle Returned

7r /2 * (signY)

zATAN(Y/X)

7r * (signY) + zATAN(Y/X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAN2.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xATAN2 routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_INVARGMAT

MTH-1R

Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH$xATAND2

MTH$xATAND2-Arc Tangent in Degrees with Two Arguments

Format

Returns

Arguments

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments routine
returns the angle (in degrees) whose tangent is given by the quotient of sine and
cosine (sine/cosine).

MTH$ATAND2 sine ,cosine

MTH$DATAND2 sine ,cosine

MTH$GATAND2 sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage floating_point
type F _floating, D_floating, G_floating
access write only
mechanism by value

Angle (in degrees). MTH$ATAND2 returns an F-floating number.
MTH$DATAND2 returns a D-floating number. MTH$GATAND2 returns a
G-floating number.

sine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Dividend. The sine argument is the address of a floating-point number that
is this dividend. For MTH$ATAND2, sine specifies an F-floating number. For
MTH$DATAND2, sine specifies a D-floating number. For MTH$GATAND2, sine
specifies a G-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Divisor. The cosine argument is the address of a floating-point number that
is this divisor. For MTH$ATAND2, cosine specifies an F-floating number. For
MTH$DATAND2, cosine specifies a D-floating number. For MTH$GATAND2,
cosine specifies a G-fioating number.

MTH$xATAND2

Description

The angle in degrees whose tangent is YIX is computed below and where f is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2<J+l)

X > 0 and Y/X ~ 2<J+l)

X < 0 and Y/X ~ 2<J+l)

Angle Returned

90 * (signY)

zATAND(Y/X)

180 * (signY) + zATAN D(Y / X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAND2.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xATAND2 routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_INVARGMAT

l\ATU l)n

Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SA VRO/Rl.

MTH$xATANH

MTH$xATANH-Hyperbolic Arc Tangent

Format

Returns

Arguments

Description

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine
returns the hyperbolic arc tangent of that angle.

MTH$ATANH hyperbolic-tangent

MTH$DATANH hyperbolic-tangent

MTH$GATANH hyperbolic-tangent

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH$ATANH returns an
F-floating number. MTH$DATANH returns a D-floating number. MTH$GATANH
returns a G-floating number.

hyperbolic-tangent
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the
address of a floating-point number that is this hyperbolic tangent. For
MTH$ATANH, hyperbolic-tangent specifies an F-floating number. For
MTH$DATANH, hyperbolic-tangent specifies a D-floating number. For
MTH$GATANH, hyperbolic-tangent specifies a G-floating number.

The hyperbolic arc tangent function is computed as follows:

Value of x

IXI < 1

IXl2::1

Value Returned

zATAN H(X) = zLOG((1 + X)/(1 - X))/2
An invalid argument is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATANH.

MTH$xATANH

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

P.ATU 'l'l

Reserved operand. The MTH$xATANH routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument: IXl~l. LIB$SIGNAL copies
the floating-point reserved operand to the
mechanism argument vector CHF$L_MCH_
SAVRO/Rl. The result is the floating-point
reserved operand unless you have written a
condition handler to change CHF$L_MCH_
SAVRO/Rl.

MTH$CxABS

MTH$CxABS-Complex Absolute Value

Format

Returns

Arguments

Description

The Complex Absolute Value routine returns the absolute value of a complex
number (r,i).

MTH$CABS complex-number

MTH$CDABS complex-number

MTH$CGABS complex-number

Each of the above three formats accepts one of the three floating-point complex
types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The absolute value of a complex number. MTH$CABS returns an F-floating
number. MTH$CDABS returns a D-floating number. MTH$CGABS returns a
G-floating number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex, D_floating complex, G_floating complex
read only
by reference

A complex number (r,i), where rand i are both floating-point complex values.
The complex-number argument is the address of this complex number. For
MTH$CABS, complex-number specifies an F-floating complex number. For
MTH$CDABS, complex-number specifies a D-floating complex number. For
MTH$CGABS, complex-number specifies a G-floating complex number.

The complex absolute value is computed as follows, where MAX is the larger of
I r I and I i I , and MIN is the smaller of I r I and I i I .

result= MAX* SQRT((MIN/MAX) 2 + 1)

MTH$CxABS

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CxABS routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Examples

MTH$_FLOOVEMAT Floating-point overflow in Math Library when
both r and i are large.

1. c+
c
c
c
c
c
c
C-

C+

This FORTRAN example forms the absolute value of an
F-f loating complex number using MTH$CABS and the
FORTRAN random number generator RAN.

Declare Z as a complex value and MTH$CABS as a REAL*4 value.
MTH$CABS will return the absolute value of Z: Z_NEW = MTH$CABS(Z).

COMPLEX Z
COMPLEX CMPLX
REAL*4 Z NEW,MTH$CABS
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN generic CMPLX.
C-

Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
c imaginary part "i".
C-

C+

TYPE
TYPE
TYPE

*, ' The complex number z is' ,z
*, ' It has real part' ,REAL(Z),'and imaginary part' ,AIMAG(Z)
* , , ,

C Compute the complex absolute value of z.
C-

Z NEW = MTH$CABS(Z)
TYPE*, ' The complex absolute value of' ,z,' is' ,Z_NEW
END

This example uses an F-floating complex number for complex-number. The
output of this FORTRAN example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402

The complex absolute value of (0.8535407,0.2043402) is 0.8776597

MTH$CxABS

2. Ct
c
c
c
c
c
c
c
c
C-

Ct

This FORTRAN example forms the absolute
value of a G-f loating complex number using
MTH$CGABS and the FORTRAN random number
generator RAN.

Declare Z as a complex value and MTH$CGABS as a
REAL*8 value. MTH$CGABS will return the absolute
value of Z: Z_NEW = MTH$CGABS(Z).

COMPLEX*l6 Z
REAL*8 Z_NEW,MTH$CGABS

C Generate a random complex number with the FORTRAN
c generic CMPLX.
C-

Ct

z = (12.34567890123,45.536376385345)
TYPE *, ' The complex number z is' ,z
TYPE *, ' '

C Compute the complex absolute value of z.
C-

Z NEW = MTH$CGABS(Z)
TYPE*, ' The complex absolute value of' ,z,' is' ,Z_NEW
END

This FORTRAN example uses a G-floating complex number for complex
number. Because this example uses a G-floating number, it must be
compiled as follows:

$ FORTRAN/G MTHEX.FOR

Notice the difference in the precision of the output generated:

The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of (12.3456789012300,45.5363763853450) is

47.1802645376230

MTH-25

MTH$CCOS

MTH$CCOS-Cosine of a Complex Number (F-Floating Value)

Format

Returns

Arguments

Description

The Cosine of a Complex Number (F-Floating Value) routine returns the cosine of
a complex number as an F-floating value.

MTH$CCOS complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

The complex cosine of the complex input number. MTH$CCOS returns an
F-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex
read only
by reference

A complex number (r,i) where r and i are floating-point numbers. The complex
number argument is the address of this complex number. For MTH$CCOS,
complex-number specifies an F-floating complex number.

The complex cosine is calculated as follows:

result= (COS(r) * COSH(i),-SJN(r) *SIN H(i))

The routine descriptions for the D- and G-floating point versions of this routine
are listed alphabetically under MTH$CxCOS.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CCOS routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_FLOOVEMAT

MTH-26

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating values.

Example

MTH$CCOS

C+
C This FORTRAN example forms the complex
C cosine of an F-f loating complex number using
C MTH$CCOS and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS(Z)
C-

C+

COMPLEX Z,Z NEW,MTH$CCOS
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
c FORTRAN generic CMPLX.
C-

Z = CMPLX(RAN(M),RAN(M))

c+
C Z is a complex number (r,i) with real part "r" and
c imaginary part "i".
C-

TYPE *, ' The complex number z is' ,z
TYPE*, ' It has real part' ,REAL(Z),'and imaginary part' ,AIMAG(Z)
TYPE *I , ,

C+
C Compute the complex cosine value of z.
C-

Z NEW = MTH$CCOS(Z)
TYPE*, 'The complex cosine value of' ,z,' is' ,Z_NEW
END

This FORTRAN example demonstrates the use of MTH$CCOS, using the
MTH$CCOS entry point. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)

MTH-27

MTH$CxCOS

MTH$CxCOS-Cosine of a Complex Number

Format

Returns

Arguments

Description

MTH-28

The Cosine of a Complex Number routine returns the cosine of a complex number.

MTH$CDCOS complex-cosine ,complex-number

MTH$CGCOS complex-cosine ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-cosine
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
write only
by reference

Complex cosine of the complex-number. The complex cosine routines that have
D-floating and G-floating complex input values write the address of the complex
cosine into the complex-cosine argument. For MTH$CDCOS, the complex
cosine argument specifies a D-floating complex number. For MTH$CGCOS, the
complex-number argument specifies a G-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D _floating complex, G_floating complex
read only
by reference

A complex number (r,i) where r and i are floating-point numbers. The complex
number argument is the address of this complex number. For MTH$CDCOS,
complex-number specifies a D-floating complex number. For MTH$CGCOS,
complex-number specifies a G-floating complex number.

The complex cosine is calculated as follows:

result= (COS(r) * COSH(i), -SIN(r) *SIN H(i))

MTH$CxCOS

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CxCOS routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating and D-floating values, or greater
than 709.089 for G-floating values.

c+
C This FORTRAN example forms the complex
C cosine of a D-f loating complex number using
C MTH$CDCOS and the FORTRAN random number
C generator RAN.
c
C Declare z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z_NEW = MTH$CDCOS(Z)
C-

C+

COMPLEX*l6 Z,Z NEW,MTH$CDCOS
COMPLEX*l6 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-

Z = DCMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

C+

TYPE
TYPE

*, ' The complex number z is' ,z
* ,

C Compute the complex cosine value of z.
C-

Z NEW = MTH$CDCOS(I)
TYPE*, 'The complex cosine value of' ,z,' is' ,Z_NEW
END

This FORTRAN example program demonstrates the use of MTH$CxCOS, using
the MTH$CDCOS entry point. Notice the high precision of the output generated:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex cosine value of (0.8535407185554504,0.2043401598930359) is

(0.6710899028500762,-0.1550672019621661)

MTH-29

MTH$CEXP

MTH$CEXP-Complex Exponential (F-Floating Value)

Format

Returns

Arguments

Description

The Complex Exponential (F-Floating Value) routine returns the complex
exponential of a complex number as an F-floating value.

MTH$CEXP complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

Complex exponential of the complex input number. MTH$CEXP returns an
F-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex
read only
by reference

Complex number whose complex exponential is to be returned. This complex
number has the form (r,i), where r is the real part and i is the imaginary part.
The complex-number argument is the address of this complex number. For
MTH$CEXP, complex-number specifies an F-floating number.

The complex exponential is computed as follows:

complex - exponent= (EXP(r) * COS(i), EXP(r) * SJN(i))

The routine descriptions for the D- and G-floating point versions of this routine
are listed alphabetically under MTH$CxEXP.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CEXP routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_FLOOVEMAT

MTH-30

Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029
for F-floating values.

Example

MTH$CEXP

c+
c This FORTRAN example forms the complex exponential
C of an F~f loating complex number using MTH$CEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-

C+

COMPLEX Z,Z NEW,MTH$CEXP
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
c FORTRAN generic CMPLX.
C-

Z = CMPLX(RAN(M),RAN(M))

c+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
C-

C+

TYPE*, 'The complex number z is',z
TYPE*, ' It has real part' ,REAL(Z),'and imaginary part' ,AIMAG(Z)
TYPE *, I I

C Compute the complex exponential value of z.
C-

Z NEW = MTH$CEXP(Z)
TYPE*, 'The complex exponential value of' ,z,' is' ,Z_NEW
END

This FORTRAN program demonstrates the use of MTH$CEXP as a function call.
The output generated by this example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is

(2.299097,0.4764476)

MTH-31

MTH$CxEXP

MTH$CxEXP-Complex Exponential

Format

Returns

Arguments

Description

MTH-32

The Complex Exponential routine returns the complex exponential of a complex
number.

MTH$CDEXP complex-exponent ,complex-number

MTH$CGEXP complex-exponent ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-exponent
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
write only
by reference

Complex exponential of complex-number. The complex exponential routines
that have D-floating complex and G-floating complex input values write the
complex-exponent into this argument. For MTH$CDEXP, complex-exponent
argument specifies a D-floating complex number. For MTH$CGEXP, complex
exponent specifies a G-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
read only
by reference

Complex number whose complex exponential is to be returned. This complex
number has the form (r,i), where r is the real part and i is the imaginary
part. The complex-number argument is the address of this complex number.
For MTH$CDEXP, complex-number specifies a D-floating number. For
MTH$CGEXP, complex-number specifies a G-floating number.

The complex exponential is computed as follows:

complex - exponent= (EXP(r) * COS(i), EXP(r) * SIN(i))

MTH$CxEXP

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CxEXP routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029
for D-floating values, or greater than about
709.089 for G-floating values.

C+
C This FORTRAN example forms the complex exponential
C of a G-f loating complex number using MTH$CGEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP(Z_NEW,Z)
C-

C+

COMPLEX*l6 Z,Z NEW
COMPLEX*l6 MTH$GCMPLX
REAL*8 R, I
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C- generic CMPLX.
C-

C+

R = RAN(M)
I = RAN(M)
Z = MTH$GCMPLX(R,I)
TYPE *, ' The complex number z is' ,z
TYPE *I I I

C Compute the complex exponential value of z.
C-

CALL MTH$CGEXP(Z NEW,Z)
TYPE *, I The complex exponential value of' ,z, I is' ,Z_NEW
END

This FORTRAN example demonstrates how to access MTH$CGEXP as a
procedure call. Because G-floating numbers are used, this program must be
compiled using the command "FORTRAN/G filename".

Notice the high precision of the output generated:

The complex number z is (0.853540718555450,0.204340159893036)
The complex exponential value of (0.853540718555450,0.204340159893036) is

(2.29909677719458,0.476447678044977)

MTH-33

MTH$CLOG

MTH$CLOG-Complex Natural Logarithm (F-Floating Value)

Format

Returns

Arguments

Description

The Complex Natural Logarithm CF-Floating Value) routine returns the complex
natural logarithm of a complex number as an F-floating value.

MTH$CLOG complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

The complex natural logarithm of a complex number. MTH$CLOG returns an
F-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex
read only
by reference

Complex number whose complex natural logarithm is to be returned. This
complex number has the form (r,i), where r is the real part and i is the imaginary
part. The complex-number argument is the address of this complex number.
For MTH$CLOG, complex-number specifies an F-floating number.

The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

The routine descriptions for the D- and G-floating point versions of this routine
are listed alphabetically under MTH$CxLOG.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$CLOG routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-34

Example

MTH$CLOG

Examples of using MTH$CLOG from VAX MACRO (using both the CALLS and
the CALLG instructions) appear in the introductory section of this manual.

MTH-35

MTH$CxLOG

MTH$CxLOG-Complex Natural Logarithm

Format

Returns

Arguments

Description

MTH-36

The Complex Natural Logarithm routine returns the complex natural logarithm
of a complex number.

MTH$CDLOG complex-natural-log ,complex-number

MTH$CGLOG complex-natural-log ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-natural-log
Open VMS usage complex_number
type D_floating complex, G_floating complex
access write only
mechanism by reference

Natural logarithm of the complex number specified by complex-number. The
complex natural logarithm routines that have D-floating complex and G-floating
complex input values write the address of the complex natural logarithm into
complex-natural-log. For MTH$CDLOG, the complex-natural-log argument
specifies a D-floating complex number. For MTH$CGLOG, the complex-natural
log argument specifies a G-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
read only
by reference

Complex number whose complex natural logarithm is to be returned. This
complex number has the form (r,i), where r is the real part and i is the imaginary
part. The complex-number argument is the address of this complex number.
For MTH$CDLOG, complex-number specifies a D-floating number. For
MTH$CGLOG, complex-number specifies a G-floating number.

The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

MTH$CxLOG

Condition Value Signaled

MTH$_INVARGMAT Invalid argument: r = i = 0. LIB$SIGNAL
copies the floating-point reserved operand to
the mechanism argument vector CHF$L_MCH_
SAVRO/Rl. The result is the floating-point
reserved operand unless you have written a
condition handler to change CHF$L_MCH_
SAVRO/Rl.

Example

SS$_FLTOVF _F Floating point overflow can occur. This condition
value is signaled from MTH$CxABS when
MTH$CxABS overflows.

SS$_ROPRAND Reserved operand. The MTH$CxLOG routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

C+
C This FORTRAN example forms the complex logarithm
C of a D-f loating complex number by using MTH$CDLOG
c and the FORTRAN random number generator RAN.
c
C Declare z and MTH$CDLOG as complex values. Then MTH$CDLOG
c will return the logarithm of Z: CALL MTH$CDLOG(Z_NEW,Z).
c
C Declare Z,Z LOG, and MTH$DCMPLX as complex values,
C and R and I-as real values. MTH$DCMPLX takes two real
C arguments and returns one complex number.
c
C Given a complex number Z, MTH$CDLOG(Z) returns the
C complex natural logarithm of z.
C-

c+

COMPLEX*l6 Z,Z NEW,MTH$DCMPLX
REAL*B R, I -
R = 3.1425637846746565
I= 7.43678469887
Z = MTH$DCMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-

TYPE *, ' The complex number z is' ,z
TYPE *I I I

CALL MTH$CDLOG(Z NEW,Z)
TYPE*,' The complex logarithm of' ,z,' is' ,Z_NEW
END

MTH-37

MTH$CxLOG

MTH-38

This FORTRAN example program uses MTH$CDLOG by calling it as a procedure.
The output generated by this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is

(2.088587642177504,1.170985519274141)

MTH$CMPLX

MTH$CMPLX-Complex Number Made from F-Floating-Point

Format

Returns

Arguments

Description

The Complex Number Made from F-Floating-Point routine returns a complex
number from two floating-point input values.

MTH$CMPLX real-part ,imaginary-part

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

A complex number. MTH$CMPLX returns an F-floating complex number.

real-part
Open VMS usage
type
access
mechanism

floating_point
F _floating
read only
by reference

Real part of a complex number. The real-part argument is the address of a
floating-point number that contains this real part, r, of (r,i). For MTH$CMPLX,
real-part specifies an F-floating number.

imaginary-part
Open VMS usage
type
access
mechanism

floating_point
F _floating
read only
by reference

Imaginary part of a complex number. The imag-parg argument is the address
of a floating-point number that contains this imaginary part, i, of (r,i). For
MTH$CMPLX, imaginary-part specifies an F-floating number.

The MTH$CMPLX routines return a complex number from two F-floating input
values. The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$xCMPLX.

MTH-39

MTH$CMPLX

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$CMPLX routine
encountered a :floating-point reserved operand
due to incorrect user input. A :floating-point
reserved operand is a :floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH-40

C+
C This FORTRAN example forms two F-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c
C Declare z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
c
C Note, since CMPLX is a generic name in FORTRAN, it would be
C sufficient to use CMPLX.
C CMPLX must be declare to be of type COMPLEX*8.
c
C Z = CMPLX(R,I)
C-

c+

COMPLEX Z,MTH$CMPLX,CMPLX
REAL*4 R,I
INTEGER M
M = 1234567
R = RAN(M)
I = RAN(M)
Z = MTH$CMPLX(R,I)

C z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

TYPE*, ' The two input values are:' ,R,I
TYPE *, ' The complex number z is' ,z
z = CMPLX(RAN(M),RAN(M))
TYPE *I I I

TYPE *, I Using the FORTRAN generic CMPLX with random Rand I:'
TYPE *, ' The complex number z is' ,z
END

This FORTRAN example program demonstrates the use of MTH$CMPLX. The
output generated by this program is as follows:

The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the FORTRAN generic CMPLX with random R and I:
The complex number z is (0.5722565,0.1857677)

MTH$xCMPLX

MTH$xCMPLX-Complex Number Made from D- or
G-Floating-Point

Format

Returns

Arguments

The Complex Number Made from D- or G-Floating-Point routine returns a
complex number from two D- or G-floating input values.

MTH$DCMPLX complx ,real-part ,imaginary-part

MTH$GCMPLX complx ,real-part ,imaginary-part

Each of the above formats accepts one of floating-point complex types as input.

None.

comp Ix
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
write only
by reference

The floating-point complex value of a complex number. The complex
exponential functions that have D-floating complex and G-floating complex
input values write the address of this floating-point complex value into
complx. For MTH$DCMPLX, complx specifies a D-floating complex number.
For MTH$GCMPLX, complx specifies a G-floating complex number. For
MTH$CMPLX, complx is not used.

real-part
Open VMS usage
type
access
mechanism

floating_point
D_floating, G_floating
read only
by reference

Real part of a complex number. The real-part argument is the address of a
floating-point number that contains this real part, r, of (r,i). For MTH$DCMPLX,
real-part specifies a D-floating number. For MTH$GCMPLX, real-part specifies
a G-floating number.

imaginary-part
Open VMS usage
type
access
mechanism

floating_point
D_floating, G_floating
read only
by reference

Imaginary part of a complex number. The imag-parg argument is the
address of a floating-point number that contains this imaginary part, i, of
(r,i). For MTH$DCMPLX, imaginary-part specifies a D-floating number. For
MTH$GCMPLX, imaginary-part specifies a CT-floating number.

MTH-41

MTH$xCMPLX

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xCMPLX routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH-42

C+
C This FORTRAN example forms two D-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c
C Declare z and MTH$DCMPLX as complex values, and R
c and I as real values. MTH$DCMPLX takes two real
C D-f loating point values and returns one
C COMPLEX*l6 number.
c
C-

C+

COMPLEX*l6 Z
REAL*8 R,I
INTEGER M
M = 1234567
R = RAN(M)
I = RAN(M)
CALL MTH$DCMPLX(Z,R,I)

C Z is a complex number (r,i) with real part "r" and imaginary
c part "i".
C-

TYPE*, ' The two input values are:' ,R,I
TYPE *, ' The complex number z is' ,z
END

This FORTRAN example demonstrates how to make a procedure call to
MTH$DCMPLX. Notice the difference in the precision of the output generated.

The two input values are: 0.8535407185554504 0.2043401598930359
The complex number z is (0.8535407185554504,0.2043401598930359)

MTH$CONJG

MTH$CONJG-Conjugate of a Complex Number (F-Floating Value)

Format

Returns

Arguments

Description

The Conjugate of a Complex Number CF-Floating Value) routine returns the
complex conjugate (r,-i) of a complex number (r,i) as an F-floating value.

MTH$CONJG complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

Complex conjugate of a complex number. MTH$CONJG returns an F-floating
complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex
read only
by reference

A complex number (r,i), where rand i are floating-point numbers. The complex
number argument is the address of this floating-point complex number. For
MTH$CONJG, complex-number specifies an F-floating number.

The MTH$CONJG routine returns the complex conjugate (r,-i) of a complex
number (r,i) as an F-floating value. The routine descriptions for the D
and G-floating point versions of this routine are listed alphabetically under
MTH$xCONJG.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$CONJG routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

llATU A'l

MTH$xCONJG

MTH$xCONJG-Conjugate of a Complex Number

Format

Returns

Arguments

The Conjugate of a Complex Number routine returns the complex conjugate (r,-i)
of a complex number (r,i).

MTH$DCONJG complex-conjugate ,complex-number

MTH$GCONJG complex-conjugate ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-conjugate
Open VMS usage complex_number
type D_floating complex, G_floating complex
access write only
mechanism by reference

The complex conjugate (r,-i) of the complex number specified by complex
number. MTH$DCONJG and MTH$GCONJG write the address of this
complex conjugate into complex-conjugate. For MTH$DCONJG, the complex
conjugate argument specifies the address of a D-floating complex number. For
MTH$GCONJG, the complex-conjugate argument specifies the address of a
G-floating complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
read only
by reference

A complex number (r,i), where r and i are floating-point numbers. The complex
number argument is the address of this floating-point complex number.
For MTH$DCONJG, complex-number specifies a D-floating number. For
MTH$GCONJG, complex-number specifies a G-floating number.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xCONJG routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-44

Example

MTH$xCONJG

Ct
C This FORTRAN example forms the complex conjugate
C of a G-f loating complex number using MTH$GCONJG
C and the FORTRAN random number generator RAN.
c
C Declare z, Z NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
C-

C+

COMPLEX*l6 Z,Z NEW,MTH$GCONJG
COMPLEX*l6 MTH$GCMPLX
REAL*8 R,I,MTH$GREAL,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-

Ct

R = RAN(M)
I = RAN(M)
Z = MTH$GCMPLX(R,I)
TYPE *, ' The complex number z is' ,z
TYPE 1,MTH$GREAL(Z),MTH$GIMAG(Z)

1 FORMAT(' with real part ',F20.16,' and imaginary part' ,F20.16)
TYPE *I I ,

C Compute the complex absolute value of z.
C-

Z NEW = MTH$GCONJG(Z)
TYPE*, 'The complex conjugate value of' ,z,' is' ,Z_NEW
TYPE 1,MTH$GREAL(Z NEW),MTH$GIMAG(Z NEW)
END - -

This FORTRAN example demonstrates how to make a function call to
MTH$GCONJG. Because G-floating numbers are used, the examples must
be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
with real part 0.8535407185554504
and imaginary part 0.2043401598930359

The complex conjugate value of
(0.853540718555450,0.204340159893036) is
(0.853540718555450,-0.204340159893036)
with real part 0.8535407185554504
and imaginary part -0.2043401598930359

l\llTl-L.i:ii::

MTH$xCOS

MTH$xCOS-Cosine of Angle Expressed in Radians

Format

JSB Entries

Returns

Arguments

Description

The Cosine of Angle Expressed in Radians routine returns the cosine of a given
angle (in radians).

MTH$COS angle-in-radians

MTH$DCOS angle-in-radians

MTH$GCOS angle-in-radians

Each of the above formats accepts one of the floating-point types as input.

MTH$COS_R4

MTH$DCOS_R7

MTH$GCOS_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Cosine of the angle. MTH$COS returns an F-floating number. MTH$DCOS
returns a D-floating number. MTH$GCOS returns a G-floating number.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The angle in radians. The angle-in-radians argument is the address of a
floating-point number. For MTH$COS, angle-in-radians is an F-floating
number. For MTH$DCOS, angle-in-radians specifies a D-floating number. For
MTH$GCOS, angle-in-radians specifies a G-floating number.

See the MTH$xSINCOS routine for the algorithm used to compute the cosine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HCOS.

Condition Value Signaled

SS$_ROPRAND

MTH$xCOS

Reserved operand. The MTH$xCOS procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

llJITU 11"7

MTH$xCOSD

MTH$xCOSD-Cosine of Angle Expressed in Degrees

Format

JSB Entries

Returns

Arguments

Description

MTH-48

The Cosine of Angle Expressed in Degrees routine returns the cosine of a given
angle (in degrees).

MTH$COSD angle-in-degrees

MTH$DCOSD angle-in-degrees

MTH$GCOSD angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

MTH$COSD_R4

MTH$DCOSD_R7

MTH$GCOSD_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Cosine of the angle. MTH$COSD returns an F-floating number. MTH$DCOSD
returns a D-floating number. MTH$GCOSD returns a G-floating number.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating
point number. For MTH$COSD, angle-in-degrees specifies an F-floating
number. For MTH$DCOSD, angle-in-degrees specifies a D-floating number. For
MTH$GCOSD, angle-in-degrees specifies a G-floating number.

See the MTH$SINCOSD routine for the algorithm used to compute the cosine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HCOSD.

Condition Value Signaled

SS$_ROPRAND

MTH$xCOSD

Reserved operand. The MTH$xCOSD procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$xCOSH

MTH$xCOSH-Hyperbolic Cosine

Format

Returns

Arguments

Description

MTH-50

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

MTH$COSH floating-point-input-value

MTH$DCOSH floating-point-input-value

MTH$GCOSH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

floating_point Open VMS usage
type
access
mechanism

F _floating, D_floating, G_floating
write only
by value

The hyperbolic cosine of the input value floating-point-input-value.
MTH$COSH returns an F-floating number. MTH$DCOSH returns a D-fioating
number. MTH$GCOSH returns a G-fioating number.

floating-point-input-value
Open VMS usage floating_point
type F _floating, D_fioating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
this input value. For MTH$COSH, floating-point-input-value specifies an
F-floating number. For MTH$DCOSH, floating-point-input-value specifies a
D-floating number. For MTH$GCOSH, floating-point-input-value specifies a
G-floating number.

Computation of the hyperbolic cosine depends on the magnitude of the input
argument. The range of the function is partitioned using four data-type
dependent constants: a(z), b(z), and c(z). The subscript z indicates the data
type. The constants depend on the number of exponent bits (e) and the number of
fraction bits ({) associated with the data type (z).

The values of e and fare:

z

F

D

G

e

8

8

11

f

24
56

53

MTH$xCOSH

The values of the constants in terms of e and fare:

Variable Value

2(-/ /2) a(z)

b(z)

c(z)
CEILING[(!+ 1)/2 * ln(2)]
(2 e - l) * In (2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

IX I < a(z)

a(z) s I X I < .25

.25 s I X I < b(z)

b(z) ::::; I X I < c(z)

c(z) ::::; I x I

Value Returned

1

Computed using a power series expansion in IXl2

(zEXP(IXI) + 1/zEXP(IXl))/2
zEXP(IXl)/2
Overflow occurs

This routine description for the H-floating point value is listed alphabetically
under MTH$HCOSH.

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$xCOSH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value is
greater than about yyy; LIB$SIGNAL copies the
reserved operand to the signal mechanism vector.
The result is the reserved operand -0.0 unless a
condition handler changes the signal mechanism
vector.
The values of yyy are:

MTH$COSH-88.722
MTH$DCOSH-88. 722
MTH$GCOSH-709.782

MTH-Fi1

MTH$CSIN

MTH$CSIN-Sine of a Complex Number (F-Floating Value)

Format

Returns

Arguments

Description

The Sine of a Complex Number CF-Floating Value) routine returns the sine of a
complex number (r,i) as an F-floating value.

MTH$CSIN complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

Complex sine of the complex number. MTH$CSIN returns an F-floating complex
number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex
read only
by reference

A complex number (r,i), where r and i are floating-point numbers. The complex
numher argument is the address of this complex number. For MTH$CSIN,
complex-number specifies an F-floating complex number.

The complex sine is computed as follows:

complex - sine= (SIN(r) * COSH(i), COS(r) * SJNH(i))

The routine descriptions for the D- and G-floating point versions of this routine
are listed alphabetically under MTH$CxSIN.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CSIN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_FLOOVEMAT

MTH-52

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating values.

MTH$CxSIN

MTH$CxSIN-Sine of a Complex Number

Format

Returns

Arguments

Description

The Sine of a Complex Number routine returns the sine of a complex number (r,i).

MTH$CDSIN complex-sine ,complex-number

MTH$CGSIN complex-sine ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-sine
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
write only
by ref ere nee

Complex sine of the complex number. The complex sine routines with D-floating
complex and G-floating complex input values write the complex sine into this
complex-sine argument. For MTH$CDSIN, complex-sine specifies a D-floating
complex number. For MTH$CGSIN, complex-sine specifies a G-floating complex
number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
read only
by reference

A complex number (r,i), where r and i are floating-point numbers. The complex
number argument is the address of this complex number. For MTH$CDSIN,
complex-number specifies a D-floating complex number. For MTH$CGSIN,
complex-number specifies a G-floating complex number.

The complex sine is computed as follows:

complex - sine= (SIN(r) * COSH(i), COS(r) *SIN H(i))

MTH-S~

MTH$CxSIN

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CxSIN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

MTH-54

MTH$_FLOOVEMAT

C+

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for D-floating values, or greater than about
709.089 for G-floating values.

c This FORTRAN example forms the complex
c sine of a G-f loating complex number using
C MTH$CGSIN and the FORTRAN random number
C generator RAN.
c
c Declare Z and MTH$CGSIN as complex values.
C MTH$CGSIN will return the sine value
C of Z: CALL MTH$CGSIN(Z_NEW,Z)
C-

C+

COMPLEX*l6 Z,Z NEW
COMPLEX*l6 DCMPLX
REAL*8 R,I
INTEGER M
M = 1234567

c Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-

C+

R = RAN(M)
I = RAN(M)
Z = DCMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

C+

TYPE
TYPE

*, ' The complex number z is' ,z
* I

C Compute the complex sine value of z.
C-

CALL MTH$CGSIN(Z NEW,Z)
TYPE*, I The complex sine value of' ,z,' is' ,Z_NEW
END

This FORTRAN example demonstrates a procedure call to MTH$CGSIN. Because
this program uses G-floating numbers, it must be compiled with the statement
"FORTRAN/G filename".

MTH$CxSIN

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
The complex sine value of (0.853540718555450,0.204340159893036) is

(0.769400835484975,0.135253340912255)

MTH-55

MTH$CSQRT

MTH$CSQRT-Complex Square Root (F-Floating Value)

Format

Returns

Arguments

Description

MTH-56

The Complex Square Root CF-Floating Value) routine returns the complex square
root of a complex number (r,i).

MTH$CSQRT complex-number

Open VMS usage
type
access
mechanism

complex_number
F _floating complex
write only
by value

The complex square root of complex-number. MTH$CSQRT returns an F
fioating number.

complex-number
Open VMS usage complex_number
type F _floating complex
access read only
mechanism by reference

Complex number (r,i). The complex-number argument contains the address
of this complex number. For MTH$CSQRT, complex-number specifies an
F-fioating number.

The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + CABS(r, i))/2)

Q = i/(2 *ROOT)

Then, the complex result is given as follows:

r

Any

~o

<0

CSQRT((r,i))

(ROOT,Q)

(Q,ROOT)

(-Q,-ROOT)

The routine descriptions for the D- and G-fioating point versions of this routine
are listed alphabetically under MTH$CxSQRT.

Condition Value Signaled

SS$_FLTOVF _F

SS$_ROPRAND

MTH$CSQRT

Floating point overflow can occur.

Reserved operand. The MTH$CSQRT procedure
encountered a :floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a :floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-57

MTH$CxSQRT

MTH$CxSQRT-Complex Square Root

Format

Returns

Arguments

Description

MTH-58

The Complex Square Root routine returns the complex square root of a complex
number (r,i).

MTH$CDSQRT complex-square-root ,complex-number

MTH$CGSQRT complex-square-root ,complex-number

Each of the above formats accepts one of the floating-point complex types as
input.

None.

complex-square-root
Open VMS usage complex_number
type D_floating complex, G_floating complex
access write only
mechanism by reference

Complex square root of the complex number specified by complex-number.
The complex square root routines that have D-floating complex and G-floating
complex input values write the complex square root into complex-square
root. For MTH$CDSQRT, complex-square-root specifies a D-floating complex
number. For MTH$CGSQRT, complex-square-root specifies a G-floating
complex number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
D_floating complex, G_floating complex
read only
by reference

Complex number (r,i). The complex-number argument contains the address
of this complex number. For MTH$CDSQRT, complex-number specifies a D
floating number. For MTH$CGSQRT, complex-number specifies a G-floating
number.

The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + CABS(r, i))/2)

Q = i/(2 *ROOT)

MTH$CxSQRT

Then, the complex result is given as follows:

r CSQRT((r,i))

2:0 any (ROOT,Q)

<0 2:0 (Q,ROOT)

<0 <0 (-Q,-ROOT)

Condition Value Signaled

SS$_FLTOVF _F

SS$_ROPRAND

Floating point overflow can occur.

Reserved operand. The MTH$CxSQRT procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Example

C+
C This FORTRAN example forms the complex square
C root of a D-f loating complex number using
C MTH$CDSQRT and the FORTRAN random number
C generator RAN.
c
C Declare z and Z NEW as complex values. MTH$CDSQRT
C will return the-complex square root of
C Z: CALL MTH$CDSQRT(Z_NEW,Z).
C-

c+

COMPLEX*l6 Z,Z NEW
COMPLEX*l6 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-

Z = DCMPLX(RAN(M),RAN(M))

C+
C z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-

c+

TYPE
TYPE

*, ' The complex number z is' ,z
* , , ,

C Compute the complex complex square root of z.
c-

CALL MTH$CDSQRT(Z NEW,Z)
TYPE*, 'The complex square root of' ,z,' is' ,Z_NEW
END

MTH-59

MTH$CxSQRT

MTH-60

This FORTRAN example program demonstrates a procedure call to
MTH$CDSQRT. The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex square root of (0.8535407185554504,0.2043401598930359) is

(0.9303763973040062,0.1098158554350485)

MTH$CVT _x_x

MTH$CVT _x_x-Convert One Double-Precision Value

Format

Returns

ARGUMENT

Description

The Convert One Double-Precision Value routines convert one double-precision
value to the destination data type and return the result as a function value.
MTH$CVT_D_G converts a D-floating value to G-floating and MTH$CVT_G_D
converts a G-floating value to a D-floating value.

MTH$CVT _D_G floating-point-input-val

MTH$CVT _G_D floating-point-input-val

Open VMS usage floating_point
type G_floating, D _floating
access write only
mechanism by value

The converted value. MTH$CVT_D_G returns a G-floating value. MTH$CVT_G_
D returns a D-floating value.

floating-point-input-val
Open VMS usage floating_point
type D _floating, G_floating
access read only
mechanism by reference

The input value to be converted. The floating-point-input-val argument
is the address of this input value. For MTH$CVT_D_G, the floating-point
input-val argument specifies a D-floating number. For MTH$CVT_G_D, the
floating-point-input-val argument specifies a G-floating number.

These procedures are designed to function as hardware conversion instructions.
They fault on reserved operands. If floating-point overflow is detected, an error
is signaled. If floating-point underflow is detected and floating-point underflow is
enabled, an error is signaled.

MTH-n1

MTH$CVT _x_x

Condition Values Signaled

SS$_ROPRAND

MTH-62

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$CVT_x_x
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH$CVT _xA_xA

MTH$CVT _xA_xA-Convert an Array of Double-Precision Values

Format

Returns

Arguments

The Convert an Array of Double-Precision Values routines convert a contiguous
array of double-precision values to the destination data type and return the
results as an array. MTH$CVT_DA_GA converts D-floating values to G-floating
and MTH$CVT_GA_DA converts G-floating values to D-floating.

MTH$CVT _DA_GA floating-point-input-array ,floating-point-dest-array [,array-size]

MTH$CVT _GA_DA floating-point-input-array ,floating-point-dest-array [,array-size]

Open VMS usage HEADONLY

MTH$CVT_DA_GA and MTH$CVT_GA_DA return the address of the output
array to the floating-point-dest-array argument.

floating-point-in put-array
Open VMS usage :floating_point
type D_floating, G_:floating
access read only
mechanism by reference, array reference

Input array of values to be converted. The floating-point-input-array argument
is the address of an array of :floating-point numbers. For MTH$CVT_DA_GA,
floating-point-input-array specifies an array of D-:floating numbers. For
MTH$CVT_GA_DA, floating-point-input-array specifies an array of G-:floating
numbers.

floating-point-dest-array
Open VMS usage :floating_point
type G_floating, D_:floating
access write only
mechanism by reference, array reference

Output array of converted values. The floating-point-dest-array argument
is the address of an array of :floating-point numbers. For MTH$CVT_DA_
GA, floating-point-dest-array specifies an array of G-floating numbers. For
MTH$CVT_GA_DA, floating-point-dest-array specifies an array of D-floating
numbers.

array-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Number of array elements to be converted. The default value is 1. The array
size argument is the address of a longword containing this number of elements.

MTH-63

MTH$CVT _xA_xA

Description

These procedures are designed to function as hardware conversion instructions.
They fault on reserved operands. If floating-point overflow is detected, an error
is signaled. If floating-point underflow is detected and floating-point underflow is
enabled, an error is signaled.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CVT_xA_xA
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

MTH-64

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH$xEXP

MTH$xEXP-Exponential

Format

JSB Entries

Returns

Arguments

Description

The Exponential routine returns the exponential of the input value.

MTH$EXP floating-point-input-value

MTH$DEXP floating-point-input-value

MTH$GEXP floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

MTH$EXP_R4

MTH$DEXP_R6

MTH$GEXP_R6

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The exponential of floating-point-input-value. MTH$EXP returns an F-floating
number. MTH$DEXP returns a D-floating number. MTH$GEXP returns a
G-floating number.

floating-point-in put-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number. For MTH$EXP, floating-point-input-value specifies
an F-floating number. For MTH$DEXP, floating-point-input-value specifies
a D-floating number. For MTH$GEXP, floating-point-input-value specifies a
G-floating number.

The exponential of x is computed as:

Value of x

X > c(z)
x~ - c(z)

Value Returned

Overflow occurs

0

l\ATH-RFi

MTH$xEXP

Value of x

IXI < 2-(f+l)

Otherwise

Value Returned

where: Y = INTEGER(x * ln2(E)) V = FRAC(x * ln2(E)) * 16
U = INTEGER(V)/16 W = FRAC(V)/16 2W =polynomial approximation of
degree 4, 8, or 8 for z = F, D, or G.

See also the section on the hyperbolic cosine for definitions off and c(z).

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HEXP.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH-66

Floating-point overflow in Math Library:
floating-point-input-value is greater than
yyy; LIB$SIGNAL copies the reserved operand to
the signal mechanism vector. The result is the
reserved operand -0.0 unless a condition handler
changes the signal mechanism vector.
The values of yyy are approximately:

MTH$EXP-88.029
MTH$DEXP-88.029
MTH$GEXP-709.089

Floating-point underflow in Math Library:
floating-point-input-value is less than or
equal to yyy and the caller (CALL or JSB) has
set hardware floating-point underflow enable.
The result is set to 0.0. If the caller has not
enabled floating-point underflow (the default), a
result of 0.0 is returned but no error is signaled.
The values of yyy are approximately:

MTH$EXP- - 88. 722
MTH$DEXP- - 88.722
MTH$GEXP- - 709.774

Example

MTH$xEXP

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING POINT.
* * Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT PT COMP-1.
01 ANSWER F COMP-1.
01 DOUBLE-PT COMP-2.
01 ANSWER-D COMP-2.
PROCEDURE-DIVISION.
PO.

MOVE 12.34 TO FLOAT PT.
MOVE 3.456 TO DOUBLE PT.

CALL 11 MTH$EXP 11 USING BY REFERENCE FLOAT PT GIVING ANSWER F.
DISPLAY 11 MTH$EXP of 11

, FLOAT PT CONVERSION, 11 is 11
, -

- ANSWER F CONVERSION.

CALL 11 MTH$DEXP" USING BY REFERENCE DOUBLE PT GIVING ANSWER D.
DISPLAY 11 MTH$DEXP of 11

, DOUBLE PT CONVERSION, 11 is 11
, -

- ANSWER D CONVERSION .
STOP RUN.

This sample program demonstrates calls to MTH$EXP and MTH$DEXP from
COBOL.

The output generated by this program is as follows:

MTH$EXP of 1.234000E+Ol is 2.286620E+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917E+Ol

MTH-n7

MTH$HACOS

MTH$HACOS-Arc Cosine of Angle Expressed in Radians
(H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-68

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians
CH-Floating Value) routine returns that angle (in radians) in H-floating-point
precision.

MTH$HACOS h-radians ,cosine

MTH$HACOS_R8

None.

h-radians
Open VMS usage
type
·access
mechanism

floating_point
H_floating
write only
by reference

Angle (in radians) whose cosine is specified by cosine. The h-radians argument
is the address of an H-floating number that is this angle. MTH$HACOS writes
the address of the angle into h-radians.

cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$HACOS,
cosine specifies an H-floating number.

The angle in radians whose cosine is X is computed as:

Value of Cosine Value Returned

0 7r/2

1 0

-1 7r

Value of Cosine

0 < x < 1

-1 < x < 0

1 < IXI

Condition Values Signaled

SS$_ROPRAND

MTH$HACOS

Value Returned

zAT AN(zSQRT(l - X2)/ X), where zATAN and zSQRT are the
Math Library arc tangent and square root routines, respectively,
of the appropriate data type

zAT AN(zSQRT(l - X2)/ X) + n

The error MTH$_INVARGMAT is signaled

Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand
due to incorrect user input. A :floating-point
reserved operand is a :floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_INVARGMAT Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
:floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the :floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH-RQ

MTH$HACOSD

MTH$HACOSD-Arc Cosine of Angle Expressed in Degrees
(H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-70

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees
(H-Floating Value) routine returns that angle (in degrees) as an H-floating value.

MTH$HACOSD h-degrees ,cosine

MTH$HACOSD_R8

None.

h-degrees
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in degrees) whose cosine is specified by cosine. The h-degrees argument
is the address of an H-floating number that is this angle. MTH$HACOSD writes
the address of the angle into h-degrees.

cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$HACOSD,
cosine specifies an H-floating number.

The angle in degrees whose cosine is Xis computed as:

Value of Cosine Angle Returned

0 90

1 0

-1 180

0 < X < 1 zATAND(zSQRT(l - X2)/X), where zATAND and zSQRT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

MTH$HACOSD

Value of Cosine Angle Returned

-1 < X < O zATAND(zSQRT(1- X 2)/X) + 180

1 <\XI The error MTH$_INVARGMAT is signaled

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH-71

MTH$HASIN

MTH$HASIN-Arc Sine in Radians (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-72

Given the sine of an angle, the Arc Sine in Radians CH-Floating Value) routine
returns that angle (in radians) as an H-floating value.

MTH$HASIN h-radians ,sine

MTH$HASIN_R8

None.

h-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in radians) whose sine is specified by sine. The h-radians argument is
the address of an H-floating number that is this angle. MTH$HASIN writes the
address of the angle into h-radians.

sine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The absolute
value of sine must be less than or equal to 1. For MTH$HASIN, sine specifies
an H-floating number.

The angle in radians whose sine is Xis computed as:

Value of Sine

0

1

-1

0 < IXI < 1

i < 1x1

Angle Returned

0

7r/2

-7r/2

zATAN(X/zSQRT(l - X 2)), where zATAN and zSQRT are the
Math Library arc tangent and square root routines, respectively,
of the appropriate data type

The error MTH$_INVARGMAT is signaled

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH$HASIN

Reserved operand. The MTH$xASIN routine
encountered a :floating-point reserved operand
due to incorrect user input. A :floating-point
reserved operand is a :floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. The absolute value of sine
is greater than 1. LIB$SIGNAL copies the
:floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH-73

MTH$HASIND

MTH$HASIND-Arc Sine in Degrees (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-74

Given the sine of an angle, the Arc Sine in Degrees CH-Floating Value) routine
returns that angle (in degrees) as an H-fioating value.

MTH$HASIND h-degrees ,sine

MTH$HASIND_R8

None.

h-degrees
Open VMS usage
type
access
mechanism

fioating_point
H_fioating
write only
by reference

Angle (in degrees) whose sine is specified by sine. The h-degrees argument is
the address of an H-fioating number that is this angle. MTH$HASIND writes the
address of the angle into h-degrees.

sine
Open VMS usage
type
access
mechanism

floating_point
H_fioating
read only
by reference

Sine of the angle whose value (in degrees) is to be returned. The sine argument
is the address of a floating-point number that is this sine. The absolute value
of sine must be less than or equal to 1. For MTH$HASIND, sine specifies an
H-fioating number.

The angle in degrees whose sine is Xis computed as:

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Value Returned

0

90

-90

zATAN D(X/zSQRT(l - X 2)), where zATAND and zSQRT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_INVARGMAT is signaled

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH$HASIND

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. The absolute value of sine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.

MTH-75

MTH$HATAN

MTH$HATAN-Arc Tangent in Radians {H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-76

Given the tangent of an angle, the Arc Tangent in Radians (H-Floating Value)
routine returns that angle (in radians) as an H-floating value.

MTH$HATAN h-radians ,tangent

MTH$HATAN_R8

None.

h-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in radians) whose tangent is specified by tangent. The h-radians
argument is the address of an H-floating number that is this angle.
MTH$HATAN writes the address of the angle into h-radians.

tangent
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The tangent of the angle whose value (in radians) is to be returned. The tangent
argument is the address of a floating-point number that is this tangent. For
MTH$HATAN, tangent specifies an H-floating number.

In radians, the computation of the arc tangent function is based on the following
identities:

arctan(X) = X - X 3/3 + x5/5 - X 7 /7 + ...
arctan(X) = X + X * Q(X2),

where Q(Y) = -Y/3 + Y 2 /5 - y3 /7 + ...
arctan(X) = X * P(X2),

where P(Y) = 1 - Y /3 + Y 2 /5 - Y 3 /7 + ...
arctan(X) = rr /2 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

MTH$HATAN

The angle in radians whose tangent is X is computed as:

Value of X

O~X~3/32

3/32 < X~ll

11 < x
X< o

Condition Value Signaled

SS$_ROPRAND

Angle Returned

X + X * Q(X2)

ATAN(A) + V * (P(V2)), where A and ATAN(A) are
chosen by table lookup and V = (X - A)/(1 +A* X)
7r/2 - W * (P(W2)) where W = 1/X

-zAT AN(JXJ)

Reserved operand. The MTH$xATAN routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-77

MTH$HATAND

MTH$HATAND-Arc Tangent in Degrees (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-78

Given the tangent of an angle, the Arc Tangent in Degrees CH-Floating Value)
routine returns that angle (in degrees) as an H-floating point value.

MTH$HATAND h-degrees ,tangent

MTH$HATAND_R8

None.

h-degrees
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in degrees) whose tangent is specified by tangent. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HATAND writes the address of the angle into h-degrees.

tangent
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The tangent of the angle whose value (in degrees) is to be returned. The tangent
argument is the address of a floating-point number that is this tangent. For
MTH$HATAND, tangent specifies an H-floating number.

The computation of the arc tangent function is based on the following identities:

arctan(X) = 180/11" * (X - X 3 /3 + x5 /5 - x 7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2),

where Q(Y) = 180/11" * [(1- 64 * 11"/180) - Y/3+
y2 /5- y3 /7 + y4 /9 ...]

arctan(X) = X * P(X2),

where P(Y) = 180/11" * [1 - Y/3 + Y2 /5 - y3 /7+
y4/9 ...]

arctan(X) = 90 - arctan(l/ X)
arctan(X) = arctan(A) + arctan((X - A)/(l +A* X))

MTH$HATAND

The angle in degrees whose tangent is Xis computed as:

Tangent

X5:3/32

3/32 < X5:11

11 < x
X< O

Condition Value Signaled

SS$_ROPRAND

Angle Returned

64 * x + x * Q (x 2
)

ATAND(A) + V * P(V2), where A and ATAND(A) are
chosen by table lookup and V = (X - A)/(1 +A* X)
90 - W * (P(W2)), where W = 1/X

-zATAN D(IXI)

Reserved operand. The MTH$xATAND routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-79

MTH$HATAN2

MTH$HATAN2-Arc Tangent in Radians (H-Floating Value) with Two
Arguments

Format

Returns

Arguments

Description

MTH-80

Given sine and cosine, the Arc Tangent in Radians (H-Floating Value) with Two
Arguments routine returns the angle (in radians) as an H-floating value whose
tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH$HATAN2 h-radians ,sine ,cosine

None.

h-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in radians) whose tangent is specified by (sine/cosine). The h
radians argument is the address of an H-floating number that is this angle.
MTH$HATAN2 writes the address of the angle into h-radians.

sine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Dividend. The sine argument is the address of a floating-point number that is
this dividend. For MTH$HATAN2, sine specifies an H-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Divisor. The cosine argument is the address of a floating-point number that is
this divisor. For MTH$HATAN2, cosine specifies an H-floating number.

The angle in radians whose tangent is Y/X is computed as follows, where f is
defined in the description of MTH$zCOSH:

Value of Input Arguments

X =a or Y/X > 2U+l)

X > 0 and Y/X~ 2U+l)

Angle Returned

7r /2 * (signY)

zATAN(Y/X)

Value of Input Arguments

X < 0 and Y/X~ 2(/+l)

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH$HATAN2

Angle Returned

11" * (signY) + zATAN(Y/X)

Reserved operand. The MTH$HATAN2 routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH-81

MTH$HATAND2

MTH$HATAND2-Arc Tangent in Degrees (H-Floating Value) with Two
Arguments

Format

Returns

Arguments

Description

MTH-82

Given sine and cosine, the Arc Tangent in Degrees CH-Floating Value) with Two
Arguments routine returns the angle (in degrees) whose tangent is given by the
quotient of sine and cosine, (sine/cosine).

MTH$HATAND2 h-degrees ,sine ,cosine

None.

h-degrees
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Angle (in degrees) whose tangent is specified by (sine/cosine). The h
degrees argument is the address of an H-floating number that is this angle.
MTH$HATAND2 writes the address of the angle into h-degrees.

sine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Dividend. The sine argument is the address of a floating-point number that is
this dividend. For MTH$HATAND2, sine specifies an H-floating number.

cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Divisor. The cosine argument is the address of a floating-point number that is
this divisor. For MTH$HATAND2, cosine specifies an H-floating number.

The angle in degrees whose tangent is YIX is computed below. The value off is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2U+l)

X > O and Y/X::; 2U+l)

Angle Returned

90 * (signY)
zATAND(Y/X)

Value of Input Arguments

X < o and Y/ X~ 2U+l)

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH$HATAND2

Angle Returned

180 * (signY) + zATAN D(Y / X)

Reserved operand. The MTH$HATAND2 routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

l\llTl-LR".:l

MTH$HATANH

MTH$HATANH-Hyperbolic Arc Tangent (H-Floating Value)

Format

Returns

"-,

Arguments

Description

MTH-84

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent CH-Floating
Value) routine returns the hyperbolic arc tangent (as an H-floating Value) of that
angle.

MTH$HATANH h-atanh ,hyperbolic-tangent

None.

h-atanh
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolic
tangent. The h-atanh argument is the address of an H-floating number that is
this hyperbolic arc tangent. MTH$HATANH writes the address of the hyperbolic
arc tangent into h-atanh.

hyperbolic-tangent
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is
the address of a floating-point number that is this hyperbolic tangent. For
MTH$HATANH, hyperbolic-tangent specifies an H-floating number.

The hyperbolic arc tangent function is computed as follows:

Value of x

IXI < 1

IX kl

Value Returned

zATAN H(X) = zLOG((X + 1)/(X - 1))/2

An invalid argument is signaled

Condition Values Signaled

SS$_ROPRAND

MTH$_INVARGMAT

MTH$HATANH

Reserved operand. The MTH$xATANH routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Invalid argument: I X I ~ 1. LIB$SIGNAL
copies the floating-point reserved operand to
the mechanism argument vector CHF$L_MCH_
SAVRO/Rl. The result is the floating-point
reserved operand unless you have written a
condition handler to change CHF$L_MCH_
SAVRO/Rl.

MTH-85

MTH$HCOS

MTH$HCOS-Cosine of Angle Expressed in Radians {H-Floating
Value)

Format

JSB Entries

Returns

Arguments

Description

The Cosine of Angle Expressed in Radians (H-Floating Value) routine returns the
cosine of a given angle (in radians) as an H-floating value.

MTH$HCOS h-cosine ,angle-in-radians

MTH$HCOS_R5

None.

h-cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Cosine of the angle specified by angle-in-radians. The h-cosine argument is
the address of an H-floating number that is this cosine. MTH$HCOS writes the
address of the cosine into h-cosine.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The angle in radians. The angle-in-radians argument is the address of a
floating-point number. For MTH$HCOS, angle-in-radians specifies an H
floating number.

See the MTH$xSINCOS routine for the algorithm used to compute the cosine.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$HCOS procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-86

MTH$HCOSD

MTH$HCOSD-Cosine of Angle Expressed in Degrees (H-Floating
Value)

Format

JSB Entries

Returns

Arguments

Description

The Cosine of Angle Expressed in Degrees CH-Floating Value) routine returns the
cosine of a given angle (in degrees) as an H-fioating value.

MTH$HCOSD h-cosine ,angle-in-degrees

MTH$HCOSD_R5

None.

h-cosine
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Cosine of the angle specified by angle-in-degrees. The h-cosine argument is
the address of an H-floating number that is this cosine. MTH$HCOSD writes this
cosine into h-cosine.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
H_fioating
read only
by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating
point number. For MTH$HCOSD, angle-in-degrees specifies an H-floating
number.

See the MTH$SINCOSD routine for the algorithm used to compute the cosine.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$HCOSD procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-87

MTH$HCOSH

MTH$HCOSH-Hyperbolic Cosine (H-Floating Value)

Format

Returns

Arguments

Description

MTH-88

The Hyperbolic Cosine CH-Floating Value) routine returns the hyperbolic cosine of
the input value as an H-floating value.

MTH$HCOSH h-cosh ,floating-point-input-value

None.

h-cosh
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Hyperbolic cosine of the input value specified by floating-point-input-value.
The h-cosh argument is the address of an H-floating number that is this
hyperbolic cosine. MTH$HCOSH writes the address of the hyperbolic cosine into
h-cosh.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
this input value. For MTH$HCOSH, floating-point-input-value specifies an
H-floating number.

Computation of the hyperbolic cosine depends on the magnitude of the input
argument. The range of the function is partitioned using four data-type
dependent constants: a(z), b(z), and c(z). The subscript z indicates the data
type. The constants depend on the number of exponent bits (e) and the number of
fraction bits (f) associated with the data type (z).

The values of e and fare as follows:

e = 15

f = 113

MTH$HCOSH

The values of the constants in terms of e and fare:

Variable Value

2-f/2 a(z)

b(z)

c(z)
(! + 1) / 2 * In (2)
2e-l * ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

\X\ < a(z)
a(z)::;\X\ < .25
.25::;\X\ < b(z)
b(z)::;\X\ < c(z)
c(z)::;\X\

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

Value Returned

1

Computed using a power series expansion in \X\ 2

(zEXP(\X\) + 1/zEXP(\X\))/2
zEXP(\X\)/2
Overflow occurs

Reserved operand. The MTH$HCOSH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value is
greater than about yyy; LIB$SIGNAL copies the
reserved operand to the signal mechanism vector.
The result is the reserved operand -0.0 unless a
condition handler changes the signal mechanism
vector. The value of yyy is 11356.523.

MTH-89

MTH$HEXP

MTH$HEXP-Exponential {H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-90

The Exponential CH-Floating Value) routine returns the exponential of the input
value as an H-floating value.

MTH$HEXP h-exp ,floating-point-input-value

MTH$HEXP_R6

None.

h-exp
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Exponential of the input value specified by floating-point-input-value. The
h-exp argument is the address of an H-floating number that is this exponential.
MTH$HEXP writes the address of the exponential into h-exp.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number. For MTH$HEXP, floating-point-input-value specifies an
H-floating number.

The exponential of xis computed as:

Value of x

x > c(z)
x:::; - c(z)
lxl < 2-(f+l)

Otherwise

Value Returned

Overflow occurs

0

1

2Y * 2U * 2W

where: Y = INTEGER(x * ln2(E)) V = FRAC(x * ln2(E)) * 16
U = INTEGER(V)/16 W = FRAC(V)/16 2W =polynomial approximation of
degree 14 for z = H.

See also the section on the hyperbolic cosine for definitions off and c(z).

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$HEXP

Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in Math Library:
floating-point-input-value is greater than
yyy; LIB$SIGNAL copies the reserved operand
to the signal mechanism vector. The result is
the reserved operand -0.0 unless a condition
handler changes the signal mechanism vector.
The value of yyy is approximately 11355.830 for
MTH$HEXP.

Floating-point underflow in Math Library:
floating-point-input-value is less than or
equal to yyy and the caller (CALL or JSB) has
set hardware floating-point underflow enable.
The result is set to 0.0. If the caller has not
enabled floating-point underflow (the default), a
result of 0.0 is returned but no error is signaled.
The value of yyy is approximately -11356.523 for
MTH$HEXP.

MTH-91

MTH$HLOG

MTH$HLOG-Natural Logarithm (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-92

The Natural Logarithm CH-Floating Value) routine returns the natural (base e)
logarithm of the input argument as an H-floating value.

MTH$HLOG h-natlog ,floating-point-input-value

MTH$HLOG_R8

None.

h-natlog
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Natural logarithm of floating-point-input-value. The h-natlog argument is
the address of an H-floating number that is this natural logarithm. MTH$HLOG
writes the address of this natural logarithm into h-natlog.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number that is this value. For MTH$HLOG, floating-point-input
value specifies an H-floating number.

Computation of the natural logarithm routine is based on the following:

1. ln(X * Y) = ln(X) + ln(Y)

2. In (1 + X) = x - x 2 ;2 + x 3 / s - x 4 / 4 ...
for IX I < 1

3. In(X) = In(A) + 2 * (V + v3 /3 + v5 /5 + v 7 /7 ...)
where V = (X - A)/(X +A), A > O,
and p(y) = 2 * (1 + y/3 + y2 /5 ...)

For x = 2n * f, where n is an integer and f is in the interval of 0.5 to 1, define
the following quantities:

If n~1, thenN=n-1andF=2J

If n:::=;o, then N = n and F = f

MTH$HLOG

From (1) it follows that:

4. ln(X) = N * ln(2) + ln(F)

Based on the previous relationships, zLOG is computed as follows:

1. If \F - 1\ < 2-5,

zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2. Otherwise,
zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2

),

where V = (F - A)/(F +A) and A and zLOG(A)
are obtained by table look up.

Condition Values Signaled

SS$_ROPRAND

MTH$_LOGZERNEG

Reserved operand. The MTH$HLOG procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH-93

MTH$HLOG2

MTH$HLOG2-Base 2 Logarithm (H-Floating Value)

Format

Returns

Arguments

Description

The Base 2 Logarithm (H-Floating Value) routine returns the base 2 logarithm of
the input value specified by floating-point-input-value as an H-floating value.

MTH$HLOG2 h-log2 ,floating-point-input-value

None.

h-log2
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Base 2 logarithm of floating-point-input-value. The h-log2 argument is the
address of an H-floating number that is this base 2 logarithm. MTH$HLOG2
writes the address of this logarithm into h-log2.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this input value. For MTH$HLOG2, floating
point-input-value specifies an H-floating number.

The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HLOG2 procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-94

MTH$_LOGZERNEG

MTH$HLOG2

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH-95

MTH$HLOG10

MTH$HLOG10-Common Logarithm {H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

MTH-96

The Common Logarithm CH-Floating Value) routine returns the common (base 10)
logarithm of the input argument as an H-floating value.

MTH$HLOG10 h-log1 O ,floating-point-input-value

MTH$HLOG1 O_R8

None.

h-log10
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Common logarithm of the input value specified by floating-point-input-value.
The h-loglO argument is the address of an H-floating number that is this
common logarithm. MTH$HLOG 10 writes the address of the common logarithm
into h-loglO.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number. For MTH$HLOG 10, floating-point-input-value specifies
an H-floating number.

The common logarithm function is computed as follows:

zLOGIO(X) = zLOGIO(E) * zLOG(X)

Condition Values Signaled

SS$_ROPRAND

MTH$_LOGZERNEG

MTH$HLOG10

Reserved operand. The MTH$HLOG 10
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

l\llTl-LQ7

MTH$HSIN

MTH$HSIN-Sine of Angle Expressed in Radians (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

The Sine of Angle Expressed in Radians (H-Floating Value) routine returns the
sine of a given angle (in radians) as an H-floating value.

MTH$HSIN h-sine ,angle-in-radians

MTH$HSIN_R5

None.

h-sine
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

The sine of the angle specified by angle-in-radians. The h-sine argument is the
address of an H-floating number that is this sine. MTH$HSIN writes the address
of the sine into h-sine.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Angle (in radians). The angle-in-radians argument is the address of a floating
point number that is this angle. For MTH$HSIN, angle-in-radians specifies an
H-floating number.

See the MTH$SINCOS routine for the algorithm used to compute this sine.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$HSIN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$HSIND

MTH$HSIND-Sine of Angle Expressed in Degrees (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

The Sine of Angle Expressed in Degrees (H-Floating Value) routine returns the
sine of a given angle (in degrees) as an H-floating value.

MTH$HSIND h-sine ,angle-in-degrees

MTH$HSIND_R5

None.

h-sine
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Sine of the angle specified by angle-in-degrees. The h-sine argument is the
address of an H-floating number that is this sine. MTH$HSIND writes the
address of the angle into h-sine.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating
point number that is this angle. For MTH$HSIND, angle-in-degrees specifies
an H-floating number.

See MTH$SINCOSD for the algorithm used to compute the sine.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HSIND procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

l\1ffl-l_QQ

MTH$HSIND

MTH-100

MTH$_FLOUNDMAT Floating-point underflow in Math Library. The
absolute value of the input angle is less than
180/11" * 2-m (where m = 16,384 for H-floating).

MTH$HSINH

MTH$HSINH-Hyperbolic Sine {H-Floating Value)

Format

Returns

Arguments

Description

The Hyperbolic Sine CH-Floating Value) routine returns the hyperbolic sine of the
input value specified by floating-point-input-value as an H-floating value.

MTH$HSINH h-sinh ,floating-point-input-value

None.

h-sinh
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Hyperbolic sine of the input value specified by floating-point-input-value. The
h-sinh argument is the address of an H-floating number that is this hyperbolic
sine. MTH$HSINH writes the address of the hyperbolic sine into h-sinh.

floating-point-in put-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this value. For MTH$HSINH, floating-point
input-value specifies an H-floating number.

Computation of the hyperbolic sine function depends on the magnitude of the
input argument. The range of the function is partitioned using three data type
dependent constants: a(z), b(z), and c(z). The subscript z indicates the data type.
The constants depend on the number of exponent bits (e) and the number of
fraction bits ({) associated with the data type (z).

The values of e and fare as follows:

e = 15

f = 113

l\llTU_1f'1

MTH$HSINH

The values of the constants in terms of e and fare:

Variable Value

2<-J /2) a(z)

b(z)

c(z)
(f + 1)/2 * ln(2)
2e-l * ln(2)

Based on the above definitions, zSINH(X) is computed as follows:

Value of X

IXI < a(z)
a(z):::;IXI < 1.0

1.0:::; IXI < b(z)
b(z):::;IXI < c(z)
c(z):::;IXI

Value Returned

x
zSINH(X) is computed using a power series expansion in
1x12
(zEXP(X) - zEXP(-X))/2

SJGN(X) * zEXP(IXl)/2
Overflow occurs

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HSINH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_FLOOVEMAT

MTH-10?

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl. The value of
yyy is approximately 11356.523.

MTH$HSQRT

MTH$HSQRT-Square Root (H-Floating Value)

Format

JSB Entries

Returns

Arguments

Description

The Square Root CH-Floating Value) routine returns the square root of the input
value floating-point-input-value as an H-floating value.

MTH$HSQRT h-sqrt ,floating-point-input-value

MTH$HSQRT _RB

None.

h-sqrt
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Square root of the input value specified by floating-point-input-value. The
h-sqrt argument is the address of an H-floating number that is this square root.
MTH$HSQRT writes the address of the square root into h-sqrt.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

Input value. The floating-point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$HSQRT,
floating-point-input-value specifies an H-floating number.

The square root of X is computed as follows:

If X < 0, an error is signaled.

Let X = 2K * F

where:

K is the exponential part of the floating-point data

Fis the fractional part of the floating-point data

If K is even:
X = 2C2>1<P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2~F < 1, where P = K/2

MTH-103

MTH$HSQRT

If K is odd:
X = 2(2*P+l) * F = 2(2*P+2) * (F /2),

zSQRT(X) = 2<P+l) * zSQRT(F /2),

1/4~F /2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A= 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' =A* (F /2) + B, when K is odd:

A = O.D413CCC (hex)

B = 0.4C1E248 (hex)

Let K' = P, when K is even

Let K' = P+l, when K is odd

Let Y[O] = 2K' * F' be a straight line approximation within the given interval
using coefficients A and B which minimize the absolute error at the midpoint and
endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 5 for H-floating.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HSQRT procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_SQUROONEG

MTH-104

Square root of negative number. Argument
floating-point-input-value is less than 0.0.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVRO/Rl. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/Rl.

MTH$HTAN

MTH$HTAN-Tangent of Angle Expressed in Radians (H-Floating
Value)

Format

JSB Entries

Returns

Arguments

Description

The Tangent of Angle Expressed in Radians CH-Floating Value) routine returns
the tangent of a given angle (in radians) as an H-floating value.

MTH$HTAN h-tan ,angle-in-radians

MTH$HTAN_R5

None.

h-tan
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Tangent of the angle specified by angle-in-radians. The h-tan argument is the
address of an H-floating number that is this tangent. MTH$HTAN writes the
address of the tangent into h-tan.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The input angle (in radians). The angle-in-radians argument is the address of
a floating-point number that is this angle. For MTH$HTAN, angle-in-radians
specifies an H-floating number.

When the input argument is expressed in radians, the tangent function is
computed as follows:

1. If IX I < 2<- f / 2), then zT AN (X) = X (see the section on MTH$zCOSH for the
definition off)

2. Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0, signal overflow

b. Otherwise, zTAN(X) = zSIN(X)/zCOS(X)

MTH-105

MTH$HTAN

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH-106

Reserved operand. The MTH$HTAN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in math library.

MTH$HTAND

MTH$HTAND-Tangent of Angle Expressed in Degrees (H-Floating
Value)

Format

JSB Entries

Returns

Arguments

Description

The Tangent of Angle Expressed in Degrees CH-Floating Value) routine returns
the tangent of a given angle (in degrees) as an H-floating value.

MTH$HTAND h-tan ,angle-in-degrees

MTH$HTAND_R5

None.

h-tan
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Tangent of the angle specified by angle-in-degrees. The h-tan argument is the
address of an H-floating number that is this tangent. MTH$HTAND writes the
address of the tangent into h-tan.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
H_floating
read only
by reference

The input angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number which is this angle. For MTH$HTAND, angle-in-degrees
specifies an H-floating number.

When the input argument is expressed in degrees, the tangent function is
computed as follows:

1. If IXI < (180/11") * 2C-2/Ce-l)) and underflow signaling is enabled, underflow is
signaled (see the section on MTH$zCOSH for the definition of e).

2. Otherwise, if IXI < (180/11") * 2(-f/2), then zTAND(X) = (7r/180) * X. See the
description of MTH$zCOSH for the definition off.

3. Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = 0, signal overflow

b. Else, zTAN D(X) = zSIN D(X)/zCOSD(X)

MTH-107

MTH$HTAND

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH-108

Reserved operand. The MTH$HTAND procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in math library.

MTH$HTANH

MTH$HTANH-Compute the Hyperbolic Tangent (H-Floating Value)

Format

Returns

Arguments

Description

The Compute the Hyperbolic Tangent CH-Floating Value) routine returns the
hyperbolic tangent of the input value as an H-floating value.

MTH$HTANH h-tanh ,floating-point-input-value

None.

h-tanh
Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by reference

Hyperbolic tangent of the value specified by floating-point-input-value. The
h-tanh argument is the address of a H-floating number that is this hyperbolic
tangent. MTH$HTANH writes the address of the hyperbolic tangent into h-tanh.

floating-point-input-value
Open VMS usage floating_point
type H_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number that contains this input value. For MTH$HTANH,
floating-point-input-value specifies an H-floating number.

For MTH$HTANH, the hyperbolic tangent of X is computed using a value of 56
for g and a value of 40 for h. The hyperbolic tangent of Xis computed as follows:

Value of x

\X\::;2-g

2-g < \X\::;0.25

0.25 < \X\ < h
h:S; \X\

Hyperbolic Tangent Returned

x
zSIN H(X)/zCOSH(X)

(zEXP(2 * X) - 1)/(zEXP(2 * X) + 1)
sign(X) * 1

11.ATLJ -inn

MTH$HTANH

Condition Value Signaled

SS$_ROPRAND

MTH-110

Reserved operand. The MTH$HTANH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$xlMAG

MTH$xlMAG-lmaginary Part of a Complex Number

Format

Returns

ARGUMENT

The Imaginary Part of a Complex Number routine returns the imaginary part of
a complex number.

MTH$AIMAG complex-number

MTH$DIMAG complex-number

MTH$GIMAG complex-number

Each of the above three formats corresponds to one of the three floating-point
complex types.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Imaginary part of the input complex-number. MTH$AIMAG returns an F
floating number. MTH$DIMAG returns a D-floating number. MTH$GIMAG
returns a G-floating number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex, D_floating complex, G_floating complex
read only
by reference

The input complex number. The complex-number argument is the address
of this floating-point complex number. For MTH$AIMAG, complex-number
specifies an F-floating number. For MTH$DIMAG, complex-number specifies a
D-floating number. For MTH$GIMAG, complex-number specifies a G-floating
number.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xIMAG routine
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

l\ATl-l-111

MTH$xlMAG

Example

MTl-l-119

C+
C This FORTRAN example forms the imaginary part of
C a G-f loating complex number using MTH$GIMAG
C and the FORTRAN random number generator
C RAN.
c
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
c part of Z: Z_NEW = MTH$GIMAG(Z).
C-

c+

COMPLEX*l6 Z
COMPLEX*l6 DCMPLX
REAL*8 R,I,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-

c+

R = RAN(M)
I = RAN(M)
Z = DCMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

TYPE *, ' The complex number z is' ,z
TYPE *, ' It has imaginary part' ,MTH$GIMAG(Z)
END

This FORTRAN example demonstrates a procedure call to MTH$GIMAG.
Because this example uses G-floating numbers, it must be compiled with the
statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
It has imaginary part 0.2043401598930359

MTH$xLOG

MTH$xLOG-Natural Logarithm

Format

JSB Entries

Returns

Arguments

Description

The Natural Logarithm routine returns the natural (base e) logarithm of the
input argument.

MTH$ALOG floating-point-input-value

MTH$DLOG floating-point-input-value

MTH$GLOG floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

MTH$ALOG_R5

MTH$DLOG_R8

MTH$GLOG_R8

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating
write only
by value

The natural logarithm of floating-point-input-value. MTH$ALOG returns
an F-floating number. MTH$DLOG returns a D-floating number. MTH$GLOG
returns a G-floating number.

floating-point-input-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number that is this value. For MTH$ALOG, floating-point-input
value specifies an F-floating number. For MTH$DLOG, floating-point-input
value specifies a D-floating number. For MTH$GLOG, floating-point-input
value specifies a G-floating number.

Computation of the natural logarithm routine is based on the following:

1. ln(X * Y) = ln(X) + ln(Y)

2. In(l + X) = x - X2 /2 + x 3 /3 - x 4/4 ...
for IX I < 1

MTH-113

MTH$xLOG

3. In(X) = In(A) + 2 * (V + v3 /3 + v5 /5 + v 7 /7 ...)
= ln(A) + V * p(V2), where V = (X - A)/(X +A),
A> 0, and p(y) = 2 * (1 + y/3 + y2/5 ...)

For x = 2" * f, where n is an integer and f is in the interval of 0.5 to 1, define
the following quantities:

If n~1, then N = n - 1 and F = 2f

If n::;O, then N = n and F = f

From (1) above it follows that:

4. ln(X) = N * ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1. If IF - 1 I < 2-5, zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2. Otherwise, zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2),

where V = (F - A)/(F +A) and A and zLOG(A)
are obtained by table look up.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xLOG procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$_LOGZERNEG

MTH-114

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH$xLOG2

MTH$xLOG2-Base 2 Logarithm

Format

Returns

Arguments

Description

The Base 2 Logarithm routine returns the base 2 logarithm of the input value
specified by floating-point-input-value.

MTH$ALOG2 floating-point-input-value

MTH$DLOG2 floating-point-input-value

MTH$GLOG2 floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage floating_point
type F _floating, D_floating, G_floating
access write only
mechanism by value

The base 2 logarithm of floating-point-input-value. MTH$ALOG2 returns an
F-floating number. MTH$DLOG2 returns a D-floating number. MTH$GLOG2
returns a G-floating number.·

floating-point-input-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this input value. For MTH$ALOG2, floating
point-input-value specifies an F-floating number. For MTH$DLOG2, floating
point-input-value specifies a D-floating number. For MTH$GLOG2, floating
point-input-value specifies a G-floating number.

The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG2.

MTH-115

MTH$xLOG2

Condition Values Signaled

SS$_ROPRAND

MTH$_LOGZERNEG

MTH-116

Reserved operand. The MTH$xLOG2 procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH$xLOG10

MTH$xLOG10-Common Logarithm

Format

JSB Entries

Returns

Arguments

Description

The Common Logarithm routine returns the common (base 10) logarithm of the
input argument.

MTH$ALOG10 floating-point-input-value

MTH$DLOG10 floating-point-input-value

MTH$GLOG1 O floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

MTH$ALOG1 O_R5

MTH$DLOG1 O_R8

MTH$GLOG 1 O_R8

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The common logarithm of floating-point-input-value. MTH$ALOG 10
returns an F-floating number. MTH$DLOG10 returns a D-floating number.
MTH$GLOG 10 returns a G-floating number.

floating-point-input-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number. For MTH$ALOG 10, floating-point-input-value specifies
an F-floating number. For MTH$DLOG 10, floating-point-input-value specifies
a D-floating number. For MTH$GLOG 10, floating-point-input-value specifies a
G-floating number.

The common logarithm function is computed as follows:

zLOGlO(X) = zLOGlO(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG 10.

l\ATLJ ii7

MTH$xLOG10

Condition Values Signaled

SS$_ROPRAND

MTH$_LOGZERNEG

MTH-118

Reserved operand. The MTH$xLOG 10 procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. The result
is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/Rl.

MTH$RANDOM

MTH$RANDOM-Random Number Generator, Uniformly Distributed

Format

Returns

ARGUMENT

Description

The Random Number Generator, Uniformly Distributed routine is a general
random number generator.

MTH$RANDOM seed

Open VMS usage
type
access
mechanism

floating_point
F _floating
write only
by value

MTH$RANDOM returns an F-floating random number.

seed
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
modify
by reference

The integer seed, a 32-bit number whose high-order 24 bits are converted by
MTH$RANDOM to an F-floating random number. The seed argument is the
address of an unsigned longword that contains this integer seed. The seed is
modified by each call to MTH$RANDOM.

This routine must be called again to obtain the next pseudorandom number. The
seed is updated automatically.

The result is a floating-point number that is uniformly distributed between 0.0
inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized to
different values on separate runs in order to obtain different random sequences.
MTH$RANDOM uses the following method to update the seed passed as the
argument:

SEED= (69069 *SEED+ l)(modulo232)

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$RANDOM
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

I. ATI I -4 ... n.

MTH$RANDOM

Example

7 4 6
4 4 2
1 10 10
6 2 3
8 5 4
1 2 2
3 8 1

RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))

RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))

RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);

/* Get floating random time value */
TIME= FOR$SECNDS (OEO);

/* Convert to fixed */
SEED = TIME;

/* Generate 100 random numbers between 1 and 10 */
DO I = 1 TO 100;

RESULT= 1 +FIXED ((lOEO * MTH$RANDOM (SEED)),31);
PUT LIST (RESULT);
END;

END RAND;

This PL/I program demonstrates the use of MTH$RANDOM. The value returned
by FOR$SECNDS is used as the seed for the random-number generator to ensure
a different sequence each time the program is run. The random value returned is
scaled so as to represent values between 1 and 10.

Because this program generates random numbers, the output generated will be
different each time the program is executed. One example of the outut generated
by this program is as follows:

5 9 10 5 5 3 8 8 1 3 1 3 2
4 4 8 3 8 9 1 7 1 8 6 9 10
6 7 3 2 2 1 2 6 6 3 9 5 8
6 10 8 5 5 4 2 8 5 9 6 4 2
9 8 7 6 6 8 10 9 5 9 4 5 7
3 6 5 2 3 4 4 8 9 2 8 5 5
5

MTH$xREAL

MTH$xREAL-Real Part of a Complex Number

Format

Returns

ARGUMENT

The Real Part of a Complex Number routine returns the real part of a complex
number.

MTH$REAL complex-number

MTH$DREAL complex-number

MTH$GREAL complex-number

Each of the above three formats accepts one of the three floating-point complex
types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Real part of the complex number. MTH$REAL returns an F-floating number.
MTH$DREAL returns a D-floating number. MTH$GREAL returns a G-floating
number.

complex-number
Open VMS usage
type
access
mechanism

complex_number
F _floating complex, D_floating complex, G_floating complex
read only
by reference

The complex number whose real part is returned by MTH$REAL. The
complex-number argument is the address of this floating-point complex
number. For MTH$REAL, complex-number is an F-floating complex number.
For MTH$DREAL, complex-number is a D-floating complex number. For
MTH$GREAL, complex-number is a G-floating complex number.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xREAL procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-121

MTH$xREAL

Example

MTH-122

Ct
c This FORTRAN example forms the real
c part of an F-f loating complex number using
C MTH$REAL and the FORTRAN random number
c generator RAN.
c
C Declare Z as a complex value and MTH$REAL as a
c REAL*4 value. MTH$REAL will return the real
c part of Z: Z_NEW = MTH$REAL(Z).
C-

Ct

COMPLEX Z
COMPLEX CMPLX
REAL*4 MTH$REAL
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C generic CMPLX.
C-

Z = CMPLX(RAN(M),RAN(M))

Ct
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-

TYPE *, ' The complex number z is' ,z
TYPE *, ·' It has real part' , MTH$REAL (z)
END

This FORTRAN example demonstrates the use of MTH$REAL. The output of this
program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407

MTH$xSIN

MTH$xSIN-Sine of Angle Expressed in Radians

Format

JSB Entries

Returns

Arguments

Description

The Sine of Angle Expressed in Radians routine returns the sine of a given angle
(in radians).

MTH$SIN angle-in-radians

MTH$DSIN angle-in-radians

MTH$GSIN angle-in-radians

Each of the above formats accepts one of the floating-point types as input.

MTH$SIN_R4

MTH$DSIN_R7

MTH$GSIN_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Sine of the angle specified by angle-in-radians. MTH$SIN returns an F
fl.oating number. MTH$DSIN returns a D-fl.oating number. MTH$GSIN returns a
G-fl.oating number.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating
read only
by reference

Angle (in radians). The angle-in-radians argument is the address of a fl.oating
point number that is this angle. For MTH$SIN, angle-in-radians specifies an
F-fl.oating number. For MTH$DSIN, angle-in-radians specifies a D-fl.oating
number. For MTH$GSIN, angle-in-radians specifies a G-fl.oating number.

See the MTH$SINCOS routine for the algorithm used to compute this sine.

The routine description for the H-fl.oating point version of this routine is listed
alphabetically under MTH$HSIN.

MTH-123

MTH$xSIN

Condition Value Signaled

SS$_ROPRAND

MTH-124

Reserved operand. The MTH$xSIN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$xSINCOS

MTH$xSINCOS-Sine and Cosine of Angle Expressed in Radians

Format

JSB Entries

Returns

Arguments

The Sine and Cosine of Angle Expressed in Radians routine returns the sine and
cosine of a given angle (in radians).

MTH$SINCOS angle-in-radians ,sine ,cosine

MTH$DSINCOS angle-in-radians ,sine ,cosine

MTH$GSINCOS angle-in-radians ,sine ,cosine

MTH$HSINCOS angle-in-radians ,sine ,cosine

Each of the above four formats accepts one or'the four floating-point types as
input.

MTH$SINCOS_R5

MTH$DSINCOS_R7

MTH$GSINCOS_R7

MTH$HSINCOS_R7

Each of the above four JSB entries accepts one of the four floating-point types as
input.

MTH$SINCOS, MTH$DSINCOS, MTH$GSINCOS, and MTH$HSINCOS return
the sine and cosine of the input angle by reference in the sine and cosine
arguments.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating, H_floating
read only
by reference

Angle (in radians) whose sine and cosine are to be returned. The angle-in
radians argument is the address of a floating-point number that is this
angle. For MTH$SINCOS, angle-in-radians is an F-floating number. For
MTH$DSINCOS, angle-in-radians is a D-floating number. For MTH$GSINCOS,
angle-in-radians is a G-floating number. For MTH$HSINCOS, angle-in
radians is an H-floating number.

sine
Open VMS usage
type
access
mechanism

floating_poin t
F _floating, D_floating, G_floating, H_floating
write only
by reference

MTH-125

MTH$xSINCOS

Description

MTH-126

Sine of the angle specified by angle-in-radians. The sine argument is the
address of a floating-point number. MTH$SINCOS writes an F-floating
number into sine. MTH$DSINCOS writes a D-floating number into sine.
MTH$GSINCOS writes a G-floating number into sine. MTH$HSINCOS writes
an H-floating number into sine.

cosine
Open VMS usage
type

floating_point
F _floating, D_floating, G_floating, H_floating
write only access

mechanism by reference

Cosine of the angle specified by angle-in-radians. The cosine argument is
the address of a floating-point number. MTH$SINCOS writes an F-floating
number into cosine. MTH$DSINCOS writes a D-floating number into cosine.
MTH$GSINCOS writes a G-floating number into cosine. MTH$HSINCOS writes
an H-floating number into cosine.

All routines with JSB entry points accept a single argument in RO:Rm, where m,
which is defined below, is dependent on the data type.

Data Type m

F _floating 0

D_floating 1

G_floating 1

H_floating 3

In general, Run-Time Library routines with JSB entry points return one value
in RO:Rm. The MTH$SINCOS routine returns two values, however. The sine of
angle-in-radians is returned in RO:Rm and the cosine of angle-in-radians is
returned in (R<m+l>:R<2*m+l>).

In radians, the computation of zSIN(X) and zCOS(X) is based on the following
polynomial expansions:

sin(X) = X - X 3 /(3!) + X 5 /(5!) - x7 /(7!) ...
= X + X * P(X2), where
P(y) = y/(3!) + y2 /(5!) + y3 /(7!) ...

cos(X) = 1 - X 2 /(2!) + x4 /(4!) - X 6 /(6!) ...
= Q(X2), where
Q (y) = (1 - y / (2 !) + y2 / (4 !) + y3 / (6 !) ...)

1. If IXI < 2<-J /2),

then zSIN(X) = X and zCOS(X) = 1
(see the section on MTH$zCOSH for
the definition off)

2. lf2-1/2~1x1<7r/4,
then zSIN(X) = X + P(X2)
and zCOS(X) = Q(X2)

3. If 7r/4~IXJ and X > O,

a. Let J = INT(X/(1r/4))
and I = J modulo 8

b. If J is even, let Y = X - J * (7r/4)
otherwise, let Y = (J + 1) * (7r/4) - X

MTH$xSINCOS

With the above definitions, the following table relates zSIN(X) and
zCOS(X) to zSIN(Y) and zCOS(Y):

Value of I zSIN(X) zCOS(X)

0 zSIN(Y) zCOS(Y)

1 zCOS(Y) zSIN(Y)

2 zCOS(Y) -zSIN(Y)

3 zSIN(Y) -zCOS(Y)

4 -zSIN(Y) -zCOS(Y)

5 -zCOS(Y) -zSIN(Y)

6 -zCOS(Y) zSIN(Y)

7 -zSIN(Y) zCOS(Y)

c. zSIN(Y) and zCOS(Y) are computed as foliows:
zSIN(Y) = Y + P(Y2),
and zCOS(Y) = Q(Y2)

4. If 7r/4~JXJ and X < O,
then zSIN(X) = -zSJN(jXJ)
and zCOS(X) = zOOS(JXJ)

Condition Value Returned

SS$_ROPRAND Reserved operand. The MTH$xSINCOS
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

MTH-127

MTH$xSINCOSD

MTH$xSINCOSD-Sine and Cosine of Angle Expressed in Degrees

Format

JSB Entries

Returns

Arguments

MTH-128

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine and
cosine of a given angle (in degrees).

MTH$SINCOSD angle-in-degrees ,sine ,cosine

MTH$DSINCOSD angle-in-degrees ,sine ,cosine

MTH$GSINCOSD angle-in-degrees ,sine ,cosine

MTH$HSINCOSD angle-in-degrees ,sine ,cosine

Each of the above four formats accepts one of the four floating-point types as
input.

MTH$SINCOSD_R5

MTH$DSINCOSD_R7

MTH$GSINCOSD_R7

MTH$HSINCOSD_R7

Each of the above four JSB entries accepts one of the four floating-point types as
input.

MTH$SINCOSD, MTH$DSINCOSD, MTH$GSINCOSD, and MTH$HSINCOSD
return the sine and cosine of the input angle by reference in the sine and cosine
arguments.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating, H_floating
read only
by reference

Angle (in degrees) whose sine and cosine are returned by MTH$xSINCOSD.
The angle-in-degrees argument is the address of a floating-point number
that is this angle. For MTH$SINCOSD, angle-in-degrees is an F-floating
number. For MTH$DSINCOSD, angle-in-degrees is a D-floating number.
For MTH$GSINCOSD, angle-in-degrees is a G-floating number. For
MTH$HSINCOSD, angle-in-degrees is an H-floating number.

sine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating, H_floating
write only
by reference

Sine of the angle specified by angle-in-degrees. The sine argument is the
address of a floating-point number. MTH$SINCOSD writes an F-floating

Description

MTH$xSINCOSD

number into sine. MTH$DSINCOSD writes a D-floating number into sine.
MTH$GSINCOSD writes a G-floating number into sine. MTH$HSINCOSD
writes an H-floating number into sine.

cosine
Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, G_floating, H_floating
write only
by reference

Cosine of the angle specified by angle-in-degrees. The cosine argument is
the address of a floating-point number. MTH$SINCOSD writes an F-floating
number into cosine. MTH$DSINCOSD writes a D-floating number into cosine.
MTH$GSINCOSD writes a G-floating number into cosine. MTH$HSINCOSD
writes an H-floating number into cosine.

All routines with JSB entry points accept a single argument in RO:Rm, where m,
which is defined below, is dependent on the data type.

Data Type m

F _floating 0

D_floating 1

G_floating 1
H_floating 3

In general, Run-Time Library routines with JSB entry points return one value in
RO:Rm. The MTH$SINCOSD routine returns two values, however. The sine of
angle-in-degrees is returned in RO:Rm and the cosine of angle-in-degrees is
returned in (R<m+l>:R<2*m+l>).

In degrees, the computation of zSIND(X) and zCOSD(X) is based on the following
polynomial expansions:

SIN D(X) = (C * X) - (C * X) 3 /(3!)+
(c * XJ 5 I (5 !) - (c * X) 7 I (7 !) ...
= X/2 + X * P(X2), where
P(y) = -y/(3J) + y2 /(5!) - y3 /(7l) ...

COSD(X) = 1 - (C * X) 2 /~2l)+
(C * X) 4 /(4!) - (C * X) /(6!) ...
= Q(X2), where
Q(y) = 1 - y/(2!) + y2 /(4!) - y3 /(6!) ...
and C = 7r /180

1. If IXI < (180/7r) * r 2e-l and underflow signaling is enabled,
underflow is signaled for zSIND(X) and zSINCOSD(X).
See MTH$zCOSH for the definition of e.

otherwise:

2. If IXI < (180/7r) * 2(-f / 2),

then zSIN D(X) = (7r/l80) * X and zCOSD(X) = 1.
(See MTH$zCOSH for the definition off.)

MTH-129

MTH$xSINCOSD

3. If (180/11") * 2<-J / 2) :::; I X I < 45
then zSIN D(X) = X/26 + P(X2)
and zCOSD(X) = Q(X2)

4. If 45::::; IXI and X > O,

a. Let J = JNT(X/(45))and
I= J modulo 8

b. If J is even, let Y = X - J * 45;
otherwise, let Y = (J + 1) * 45 - X.
With the above definitions, the following table relates
zSIND(X) and zCOSD(X) to zSIND(Y) and zCOSD(Y):

Value of I zSIND(X) zCOSD(X)

0 zSIND(Y) zCOSD(Y)

1 zCOSD(Y) zSIND(Y)

2 zCOSD(Y) -zSIND(Y)

3 zSIND(Y) -zCOSD(Y)

4 -zSIND(Y) -zCOSD(Y)

5 -zCOSD(Y) -zSIND(Y)

6 -zCOSD(Y) zSIND(Y)

7 -zSIND(Y) zCOSD(Y)

c. zSIND(Y) and zCOSD(Y) are computed as follows:
zSJN D(Y) = Y/26 + P(Y2)
zCOSD(Y) = Q(Y2)

d. If 45::; IXI and X < O,
then zSIN D(X) = -zSIN D(IXI)
and zCOSD(X) = zCOSD(IXI)

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOUNDMAT

MTH-130

Reserved operand. The MTH$xSINCOSD
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by Digital.

Floating-point underflow in math library. The
absolute value of the input angle is less than
180/11" * 2-m (where m = 128 for F-floating and
D-floating, 1,024 for G-floating, and 16,384 for
H-floating).

MTH$xSIND

MTH$xSIND-Sine of Angle Expressed in Degrees

Format

JSB Entries

Returns

Arguments

Description

The Sine of Angle Expressed in Degrees routine returns the sine of a given angle
(in degrees).

MTH$SIND angle-in-degrees

MTH$DSIND angle-in-degrees

MTH$GSIND angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

MTH$SIND_R4

MTH$DSIND_R7

MTH$GSIND_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage floating_point
type F _floating, D_floating, G_floating
access write only
mechanism by value

The sine of the angle. MTH$SIND returns an F-floating number. MTH$DSIND
returns a D-floating number. MTH$GSIND returns a G-floating number.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating
point number that is this angle. For MTH$SIND, angle-in-degrees specifies an
F-floating number. For MTH$DSIND, angle-in-degrees specifies a D-floating
number. For MTH$GSIND, angle-in-degrees specifies a G-floating number.

See MTH$SINCOSD for the algorithm that is used to compute the sine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSIND.

MTH-131

MTH$xSIND

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOUNDMAT

MTH-132

Reserved operand. The MTH$SIND procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a.floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point underflow in math library. The
absolute value of the input angle is less than
180/?r * 2-m (where m = 128 for F-floating and
D-floating, and 1,024 for G-floating).

MTH$xSINH

MTH$xSINH-Hyperbolic Sine

Format

Returns

Arguments

Description

The Hyperbolic Sine routine returns the hyperbolic sine of the input value
specified by floating-point-input-value.

MTH$SINH floating-point-input-value

MTH$DSINH floating-point-input-value

MTH$GSINH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The hyperbolic sine of floating-point-input-value. MTH$SINH returns an
F-floating number. MTH$DSINH returns a D-floating number. MTH$GSINH
returns a G-floating number.

floating-point-in put-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address of a
floating-point number that is this value. For MTH$SINH, floating-point-input
value specifies an F-floating number. For MTH$DSINH, floating-point-input
value specifies a D-floating number. For MTH$GSINH, floating-point-input
value specifies a G-floating number.

Computation of the hyperbolic sine function depends on the magnitude of the
input argument. The range of the function is partitioned using four data type
dependent constants: a(z), b(z), and c(z). The subscript z indicates the data type.
The constants depend on the number of exponent bits (e) and the number of
fraction bits ({) associated with the data type (z).

MTH$xSINH

The values of e and fare:

z

F

D

G

e

8

8

11

f

24

56

53

The values of the constants in terms of e and fare:

Variable Value

2(-/ /2) a(z)

b(z)

c(z)
CEILING[(!+ 1)/2 * ln(2)]
(2(e-l) * ln(2))

Based on the above definitions, zSINH(X) is computed as follows:

Value of X

IX I < a(z)

a(z) ~ I X I < 1.0

1.0 ~ I X I < b(z)
b(z) ::; I X I < c(z)

c(z) ~ IX I

Value Returned

x
zSINH(X) is computed using a
power series expansion in IXl2

(zEXP(X) - zEXP(-X))/2

SIGN(X) * zEXP(IXl)/2
Overflow occurs

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSINH.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xSINH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH-1~.d.

MTH$_FLOOVEMAT

MTH$xSINH

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/Rl. The
result is the floating-point reserved operand
unless you have written a condition handler to
change CHF$L_MCH_SAVRO/Rl.
The values of yyy are approximately:

MTH$SINH-88. 722
MTH$DSINH-88.722
MTH$GSINH-709. 782

MTl-l-1~!=\

MTH$xSQRT

MTH$xSQRT-Square Root

Format

JSB Entries

Returns

Arguments

Description

MTH-136

The Square Root routine returns the square root of the input value floating
point-input-value.

MTH$SQRT floating-point-input-value

MTH$DSQRT floating-point-input-value

MTH$GSQRT floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

MTH$SQRT _R3

MTH$DSQRT _R5

MTH$GSQRT _R5

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The square root of floating-point-input-value. MTH$SQRT returns an F
floating number. MTH$DSQRT returns a D-floating number. MTH$GSQRT
returns a G-floating num?er.

floating-point-in put-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

Input value. The floating-point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$SQRT,
floating-point-input-value specifies an F-floating number. For MTH$DSQRT,
floating-point-input-value specifies a D-floating number. For MTH$GSQRT,
floating-point-input-value specifies a G-floating number.

The square root of Xis computed as follows:

If X < 0, an error is signaled.

Let X = 2K * F

where:

MTH$xSQRT

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:
x = 2<2>1<P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2~F < 1, where P = K/2

If K is odd:
X = 2<2*P+l) * F = 2(2>1<P+2) * (F /2),

zSQRT(X) = 2<P+l) * zSQRT(F /2),

1/4~F /2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A= 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' = A * (F /2) + B, when K is odd:

A= O.D413CCC (hex)

B = 0.4C1E248 (hex)

Let K' = P, when K is even

Let K' = P+l, when K is odd

Let Y[O] = 2K' * F 1 be a straight line approximation within the given interval
using coefficients A and B which minimize the absolute error at the midpoint and
endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 2, 3, or 3 for z = F-floating, D-floating, or G-floating, respectively.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSQRT.

Condition Values Signaled

SS$_ROPRAND

MTH$_SQUROONEG

Reserved operand. The MTH$xSQRT procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Square root of negative number. Argument
floating-point-input-value is less than 0.0.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVRO/Rl. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/Rl.

l\llT1-1-1r:t7

MTH$xTAN

MTH$xTAN-Tangent of Angle Expressed in Radians

Format

JSB Entries

Returns

Arguments

Description

MTH-138

The Tangent of Angle Expressed in Radians routine returns the tangent of a
given angle (in radians).

MTH$TAN angle-in-radians

MTH$DTAN angle-in-radians

MTH$GTAN angle-in-radians

Each of the above formats accepts one of the floating-point types as input.

MTH$TAN_R4

MTH$DTAN_R7

MTH$GTAN_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

The tangent of the angle specified by angle-in-radians. MTH$TAN returns
an F-floating number. MTH$DTAN returns a D-floating number. MTH$GTAN
returns a G-floating number.

angle-in-radians
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The input angle (in radians). The angle-in-radians argument is the address of
a floating-point number that is this angle. For MTH$TAN, angle-in-radians
specifies an F-floating number. For MTH$DTAN, angle-in-radians specifies a
D-floating number. For MTH$GTAN, angle-in-radians specifies a G-floating
number.

When the input argument is expressed in radians, the tangent function is
computed as follows:

1. If IXI < 2(-f/2), then zTAN(X) = X (see the section on MTH$zCOSH for the
definition off)

MTH$xTAN

2. Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0, signal overflow

b. Otherwise, zTAN(X) = zSJN(X)/zCOS(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTAN.

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$xTAN procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in Math Library.

l\JIT~-L1~Q

MTH$xTAND

MTH$xTAND-Tangent of Angle Expressed in Degrees

Format

JSB Entries

Returns

Arguments

Description

MTH-140

The Tangent of Angle Expressed in Degrees routine returns the tangent of a given
angle (in degrees).

MTH$TAND angle-in-degrees

MTH$DTAND angle-in-degrees

MTH$GTAND angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

MTH$TAND_R4

MTH$DTAND_R7

MTH$GTAND_R7

Each of the above JSB entries accepts one of the floating-point types as input.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
write only
by value

Tangent of the angle specified by angle-in-degrees. MTH$TAND returns an
F-floating number. MTH$DTAND returns a D-floating number. MTH$GTAND
returns a G-floating number.

angle-in-degrees
Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating
read only
by reference

The input angle (in degrees). The angle-in-degrees argument is the address of
a floating-point number which is this angle. For MTH$TAND, angle-in-degrees
specifies an F-floating number. For MTH$DTAND, angle-in-degrees specifies a
D-floating number. For MTH$GTAND, angle-in-degrees specifies a G-fioating
number.

When the input argument is expressed in degrees, the tangent function is
computed as follows:

1. If IXI < (180/71") * 2C-2/Ce-l)) and underflow signaling is enabled, underflow is
signaled (see the section on MTH$zCOSH for the definition of e).

2. Otherwise, if IXI < (180/71") * 2(-f/2), then zTAND(X) = (71"/180) * X. See the
description of MTH$zCOSH for the definition off.

MTH$xTAND

3. Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = O, signal overflow

b. Else, zTAND(X) = zSIND(X)/zCOSD(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTAND.

Condition Values Signaled

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$xTAND procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a ·
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

P.ATLJ -4 A-4

MTH$xTANH

MTH$xTANH-Compute the Hyperbolic Tangent

Format

Returns

Arguments

Description

l\ATl-l-1.!l?

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of
the input value.

MTH$TANH floating-point-input-value

MTH$DTANH floating-point-input-value

MTH$GTANH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Open VMS usage floating_point
type F _floating, D_floating, G_floating
access write only
mechanism by value

The hyperbolic tangent of floating-point-input-value. MTH$TANH returns an
F-floating number. MTH$DTANH returns a D-floating number. MTH$GTANH
returns a G-floating number. Unlike the other three routines, MTH$HTANH
returns the hyperbolic tangent by reference in the h-tanh argument.

floating-point-input-value
Open VMS usage floating_point
type F _floating, D_floating, G_floating
access read only
mechanism by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number that contains this input value. For MTH$TANH,
floating-point-input-value specifies an F-floating number. For MTH$DTANH,
floating-point-input-value specifies a D-floating number. For MTH$GTANH,
floating-point-input-value specifies a G-floating number.

In calculating the hyperbolic tangent of x, the values of g and h are:

z

F
D

G

g

12
28

26

h

10
21
20

MTH$xTANH

For MTH$TANH, MTH$DTANH, and MTH$GTANH the hyperbolic tangent of x
is then computed as follows:

Value of x

Jxj~2-g

2-g < IXI < 0.5

0.5~ IXI < 1.0

t.o < 1x1 < h

h~IXI

Hyperbolic Tangent Returned

x
xTAN H(X) = X + x3 * R(X2), where R(X2) is a rational
function of x2•

xTANH(X) = xTANH(xHI) + xTANH(xLO) * C/B

where C = 1 - xT AN H(xH I) * xT AN H(xH I),

B = 1 + xT AN H(xH I) * xT AN H(xLO),

xHI = 1/2 + N/16 + 1/32 for N=0,1, ... ,7,
and xLO = X- xHI.

xT AN H(X) = (xEXP(2 * X) - 1)/(xEXP(2 * X) + 1)
xT AN H(X) = sign(X) * 1

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTANH.

Condition Value Signaled

SS$_ROPRAND Reserved operand. The MTH$xTANH procedure
encountered a floating-point reserved operand
due to incorrect user input. A floating-point
reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating
point reserved operands are reserved for future
use by Digital.

MTH$UMAX

MTH$UMAX-Compute Unsigned Maximum

Format

Returns

Arguments

Description

The Compute Unsigned Maximum routine computes the unsigned longword
maximum of n unsigned longword arguments, where n is greater than or equal to
1.

MTH$UMAX argument [argument, ...]

Open VMS usage longword_ unsigned
type longword (unsigned)
access write only
mechanism by value

Maximum value returned by MTH$UMAX.

argument
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by reference

Argument whose maximum MTH$UMAX computes. Each argument argument
is an unsigned longword that contains one of these values.

argument
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by reference

Additional arguments whose maximum MTH$UMAX computes. Each argument
argument is an unsigned longword that contains one of these values.

MTH$UMAX is the unsigned version of MTH$JMAXO.

Condition Values Returned

None.

l\ATU_1AA

MTH$UMIN

MTH$UMIN-Compute Unsigned Minimum

Format

Returns

Arguments

Description

The Compute Unsigned Minimum routine computes the unsigned longword
minimum of n unsigned longword arguments, where n is greater than or equal to
1.

MTH$UMIN argument [argument, ...]

Open VMS usage longword_ unsigned
type longword (unsigned)
access write only
mechanism by value

Minimum value returned by MTH$UMIN.

argument
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Argument whose minimum MTH$UMIN computes. Each argument argument is
an unsigned longword that contains one of these values.

argument
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by reference

Additional arguments whose minimum MTH$UMIN computes. Each argument
argument is an unsigned longword that contains one of these values.

MTH$UMIN is the unsigned version of MTH$JMINO.

Condition Values Returned

None.

l\AT1-1-1LLi:;:

Vector MTH$ Reference Section

The Vector MTH$ Reference Section provides detailed descriptions of two sets
of vector routines provided by the Open VMS RTL Mathematics (MTH$) Facility,
BLAS Level 1 and FOLR. The BLAS Level 1 are the Basic Linear Algebraic
Subroutines designed by Lawson, Hanson, Kincaid, and Krogh (1978). The FOLR
(First Order Linear Recurrence) routines provide a vectorized algorithm for the
linear recurrence relation.

BLAS1 $VlxAMAX

BLAS1 $VlxAMAX-Obtain the Index of the First Element of a Vector
Having the Largest Absolute Value

Format

Returns

Arguments

The Obtain the Index of the First Element of a Vector Having the Largest
Absolute Value routines find the index of the first occurrence of a vector element
having the maximum absolute value.

BLAS1 $VISAMAX n ,x ,incx

BLAS1 $VIDAMAX n ,x ,incx

BLAS1 $VIGAMAX n ,x ,incx

BLAS1$VICAMAX n ,x ,incx

BLAS1 $VIZAMAX n ,x ,incx

BLAS1 $VIWAMAX n ,x ,incx

Use BLAS1$VISAMAX for single-precision real operations. Use
BLAS1$VIDAMAX for double-precision real CD-floating) operations and
BLAS1$VIGAMAX for double-precision real (G-floating) operations.

Use BLAS1$VICAMAX for single-precision complex operations. Use
BLAS1$VIZAMAX for double-precision complex CD-floating) operations and
BLAS1$VIWAMAX for double-precision complex CG-floating) operations.

Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
write only
by value

For the real versions of this routine, the function value is the index of the first
occurrence of a vector element having the maximum absolute value, as follows:

lxil =max {lxjl for j = 1, 2, ... , n}

For the complex versions of this routine, the function value is the index of the
first occurrence of a vector element having the largest sum of the absolute values
of the real and imaginary parts of the vector elements, as follows:

jRe(xi) I+ jlm(xi) I =max { jRe(xj) I+ jlm(xj) I for J. = 1, 2, ... , n}

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x. Then argument is the address of a signed
longword integer containing the number of elements. If you specify a negative
value or 0 for n, 0 is returned.

l\AT~-1.£1.Q

BLAS1 $VlxAMAX

MTl-l-1F\O

x
Open VMS usage
type

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only access

mechanism by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1+ (n-1) * lincxl

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VISAMAX
BLAS1$VIDAMAX
BLAS1$VIGAMAX
BLAS1$VICAMAX
BLAS1$VIZAMAX
BLAS1$VIWAMAX

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex
D-floating complex

G-floating complex

If n is less than or equal to 0, then imax is 0.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, Xi is referenced
as:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute value of
incx.

Description

Example

BLAS1 $VlxAMAX

BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX find the index, i,
of the first occurrence of a vector element having the maximum absolute value.
BLAS1$VICAMAX, BLAS1$VIZAMAX, and BLAS1$VIWAMAX find the index, i,
of the first occurrence of a vector element having the largest sum of the absolute
values of the real and imaginary parts of the vector elements.

Vector x contains n elements that are accessed from array x by stepping incx
elements at a time. The vector xis a real or complex single-precision or double
precision (D and G) n-element vector. The vector can be a row or a column of a
matrix. Both forward and backward indexing are permitted.

BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX determine the
smallest integer i of the n-element vector x such that:

lxil = max{lxjl for J. = 1,2, ... ,n}

BLAS1$VICAMAX, BLAS1$VIZAMAX, and BLAS1$VIWAMAX determine the
smallest integer i of the n-element vector x such that:

IRe(xi) I + IIm(xi) I = max { IRe(xj) I + IIm(xj) I for i = 1, 2, ... , n}

You can use the BLAS1$VIxAMAX routines to obtain the pivots in Gaussian
elimination.

The public-domain BLAS Level 1 IxAMAX routines require a positive value for
incx. The Run-Time Library BLAS Level 1 routines interpret a negative value
for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying
0 for incx has the effect of setting imax equal to 1 using vector operations.

c
C To obtain the index of the element with the maximum
C absolute value.
c

INTEGER IMAX,N,INCX
REAL X(40)
INCX = 2
N = 20
IMAX = BLAS1$VISAMAX(N,X,INCX)

l\JITl-L1 ~1

BLAS1 $VxASUM

BLAS1 $VxASUM-Obtain the Sum of the Absolute Values of the
Elements of a Vector

Format

Returns

Arguments

MTl-l-1F\?

The Obtain the Sum of the Absolute Values of the Elements of a Vector routines
determine the sum of the absolute values of the elements of the n-element vector
x.

BLAS1 $VSASUM n ,x ,incx

BLAS1 $VDASUM n ,x ,incx

BLAS1 $VGASUM n ,x ,incx

BLAS1 $VSCASUM n ,x ,incx

BLAS1 $VDZASUM n ,x ,incx

BLAS1 $VGWASUM n ,x ,incx

Use BLAS1$VSASUM for single-precision real operations. Use BLAS1$VDASUM
for double-precision real CD-floating) operations and BLAS1$VGASUM for double
precision real CG-floating) operations.

Use BLAS1$VSCASUM for single-precision complex operations. Use
BLAS1$VDZASUM for double-precision complex CD-floating) operations and
BLAS1$VGWASUM for double-precision complex CG-floating) operations.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D _floating, or G_floating real
write only
by value

The function value, called sum, is the sum of the absolute values of the elements
of the vector x. The data type of the function value is a real number; for the
BLAS1$VSCASUM, BLAS1$VDZASUM, and BLAS1$VGWASUM routines, the
data type of the function value is the real data type corresponding to the complex
argument data type.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x to be added. Then argument is the address of a
signed longword integer containing the number of elements.

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Description

BLAS1$VxASUM

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1 + (n - 1) * lincxl
where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSASUM

BLAS1$VDASUM

BLAS1$VGASUM

BLAS1$VSCASUM

BLAS1$VDZASUM

BLAS1$VGWASUM

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then sum is 0.0.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, x; is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute value of
incx.

BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM obtain the sum of
the absolute values of the elements of the n-element vector x. BLAS1$VSCASUM,
BLAS1$VDZASUM, and BLAS1$VGWASUM obtain the sum of the absolute
values of the real and imaginary parts of the elements of the n-element vector x.

Vector x contains n elements that are accessed from array x by stepping incx
elements at a time. The vector xis a real or complex single-precision or double
precision (D and G) n-element vector. The vector can be a row or a column of a
matrix. Both forward and backward indexing are permitted.

BLAS1 $VxASUM

Example

l\ATU_"fi:::A

BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM compute the sum of
the absolute values of the elements of x, which is expressed as follows:

2:?=1 lxil = lx1I + lx2I + · · · + lxnl
BLAS1$VSCASUM, BLAS1$VDZASUM, and BLAS1$VGWASUM compute the
sum of the absolute values of the real and imaginary parts of the elements of x,
which is expressed as follows:

2:f=1(lail + lbil) = (la1I + lb1I) + (la2I + lb2I) +···+(Ian I+ lbnl)
where lxil = (ai, bi)

and lail + lbil = lreall + limaginaryl
The public-domain BLAS Level 1 xASUM routines require a positive value for
incx. The Run-Time Library BLAS Level 1 routines interpret a negative value
for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying
0 for incx has the effect of computing n * I x1 I using vector operations.

Rounding in the summation occurs in a different order than in a sequential
evaluation of the sum, so the final result may differ from the result of a sequential
evaluation.

c
c To obtain the sum of the absolute values of the
c elements of vector x:
c

INTEGER N,INCX
REAL X(20),SUM
INCX = 1
N = 20
SUM = BLAS1$VSASUM(N,X,INCX)

BLAS1 $VxAXPY

BLAS1 $VxAXPY-Multiply a Vector by a Scalar and Add a Vector

Format

Returns

Arguments

The Multiply a Vector by a Scalar and Add a Vector routines compute ax+ y,
where a is a scalar number and x and y are n-element vectors.

BLAS1 $VSAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VDAXPY n ,a ,x ,incx ,y ,incy

BLAS1 $VGAXPY n ,a ,x ,incx ,y ,incy

BLAS1 $VCAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VZAXPY n ,a ,x ,incx ,y ,incy

BLAS1 $VWAXPY n ,a ,x ,incx ,y ,incy

Use BLAS1$VSAXPY for single-precision real operations. Use BLAS1$VDAXPY
for double-precision real CD-floating) operations and BLAS1$VGAXPY for double
precision real CG-floating) operations.

Use BLAS1$VCAXPY for single-precision complex operations. Use
BLAS1$VZAXPY for double-precision complex CD-floating) operations and
BLAS1$VWAXPY for double-precision complex CG-floating) operations.

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vectors x and y. Then argument is the address of a
signed longword integer containing the number of elements. If n is less than or
equal to 0, then y is unchanged.

a
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Scalar multiplier for the array x. The a argument is the address of a floating
point or floating-point complex number that is this multiplier. If a equals 0, then
y is unchanged. If a shares a memory location with any element of the vector y,
results are unpredictable. Specify the same data type for arguments a, x, and y.

BLAS1 $VxAXPY

l\ATLI i r::.c

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. The length of this array is at least

1 + (n - 1) * JincxJ

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSAXPY

BLAS1$VDAXPY

BLAS1$VGAXPY

BLAS1$VCAXPY

BLAS1$VZAXPY

BLAS1$VWAXPY

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If any element of x shares a memory location with an element of y, the results
are unpredictable.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, Xi is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is
referenced in:

x(l + (n - i) * JincxJ)

BLAS1 $VxAXPY

where:

x = array specified in x

n = number of vector elements specified in n

= element of the vector x

incx = increment argument for the array x specified in incx

y
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference, array reference

On entry, array containing the elements to be accessed. All elements of array
y are accessed only if the increment argument of y, called incy, is 1. They
argument is the address of a floating-point or floating-point complex number that
is this array. The length of this array is at least

1 + (n - 1) * lincyl

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSAXPY

BLAS1$VDAXPY

BLAS1$VGAXPY

BLAS1$VCAXPY

BLAS1$VZAXPY

BLAS1$VWAXPY

Data Type for y

F-floa ting real

D-floating real

G-floa ting real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then y is unchanged. If any element of x shares a
memory location with an element of y, the results are unpredictable.

On exit, y contains an array of length at least

1 + (n - 1) * lincyl

where:

n =
incy =

number of vector elements specified in n

increment argument for the array y specified in incy

After the call to BLAS1$VxAXPY, Yi is set equal to

Yi+ a* Xi·

MTH-157

BLAS1$VxAXPY

Description

MTH-158

where:

y = the vector y

= element of the vector x or y

a = scalar multiplier for the vector x specified in a

x = the vector x

incy
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array y. The incy argument is the address of a
signed longword integer containing the increment argument. If incy is greater
than or equal to 0, then y is referenced forward in array y; that is, Yi is referenced
in:

y(l + (i - 1) * incy)

where:

y array specified in y

= element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi is
referenced in:

y(l + (n - i) * lincyl)

where:

y = array specified in y

n = number of vector elements specified in n

= element of the vector y

incy = increment argument for the array y specified in incy

BLAS1$VxAXPY multiplies a vector x by a scalar, adds to a vector y, and stores
the result in the vector y. This is expressed as follows:

y~ax + y

where a is a scalar number and x and y are real or complex single-precision or
double-precision (D and G) n-element vectors. The vectors can be rows or columns
of a matrix. Both forward and backward indexing are permitted. Vectors x and y
contain n elements that are accessed from arrays x and y by stepping incx and
incy elements at a time.

The routine name determines the data type you should specify for arguments a,
x, and y. Specify the same data type for each of these arguments.

The algorithm does not provide a special case for incx = 0. Therefore, specifying
0 for incx has the effect of adding the constant a * x 1 to all elements of the vector
y using vector operations.

Example

c
C To compute y=y+2.0*x using SAXPY:
c

INTEGER N,INCX,INCY
REAL X(20), Y(20),A
INCX = 1
INCY = 1
A= 2.0
N = 20
CALL BLAS1$VSAXPY(N,A,X,INCX,Y,INCY)

BLAS1$VxAXPY

MTH-159

BLAS1 $VxCOPY

BLAS1 $VxCOPY-Copy a Vector

Format

Returns

Arguments

MTH-160

The Copy a Vector routines copy n elements of the vector x to the vector y.

BLAS1 $VSCOPY n ,x ,incx ,y ,incy

BLAS1 $VDCOPY n ,x ,incx ,y ,incy

BLAS1 $VCCOPY n ,x ,incx ,y ,incy

BLAS1 $VZCOPY n ,x ,incx ,y ,incy

Use BLAS1$VSCOPY for single-precision real operations and BLAS1$VDCOPY
for double-precision real (D or G) operations.

Use BLAS1$VCCOPY for single-precision complex operations and
BLAS1$VZCOPY for double-precision complex (Dor G) operations.

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x to be copied. Then argument is the address of
a signed longword integer containing the number of elements in vector x. If n is
less than or equal to 0, then y is unchanged.

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1 + (n - 1) * [incx[

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

BLAS1$VxCOPV

Specify the data type as follows:

Routine

BLAS1$VSCOPY

BLAS1$VDCOPY

BLAS1$VCCOPY

BLAS1$VZCOPY

incx
Open VMS usage
type
access
mechanism

Data Type for x

F-floating real

D-floa ting or G-floa ting real

F-floating complex

D-floating or G-floating complex

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, xi is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is
referenced in:

x(l + (n - i) * lincxl)

where:

x = array specified in x

n = number of vector elements specified in n

= element of the vector x

incx = increment argument for the array x specified in incx

y
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
write only
by reference, array reference

Array that receives the copied elements. All elements of array y receive the
copied elements only if the increment argument of y, called incy, is 1. They
argument is the address of a floating-point or floating-point complex number that
is this array. This argument is an array of length at least

1 + (n - 1) * lincyl

MTH-161

BLAS1$VxCOPY

MTH-162

where:

n =
incy =

number of vector elements specified in n

increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSCOPY

BLAS1$VDCOPY

BLAS1$VCCOPY

BLAS1$VZCOPY

Data Type for y

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then y is unchanged. If incx is equal to 0, then
each Yi is set to x1. If incy is equal to 0, then Yi is set to the last referenced
element of x. If any element of x shares a memory location with an element of y,
the results are unpredictable. (See the Description section for a special case that
does not cause unpredictable results when the same memory location is shared by
input and output.)

incy
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array y. The incy argument is the address of a
signed longword integer containing the increment argument. If incy is greater
than or equal to 0, then y is referenced forward in array y; that is, Yi is referenced
in:

y(l + (i - 1) * incy)

where:

y = array specified in y

= element of the vector y

If incy is less than 0, then y is referenced backward in array y; that is, Yi is
referenced in:

y(l + (n - i) * lincyl)

where:

y = array specified in y

n = number of vector elements specified in n

= element of the vector y

incy = increment argument for the array y specified in incy

Description

BLAS1 $VxCOPY

BLAS1$VSCOPY, BLAS1$VDCOPY, BLAS1$VCCOPY, and BLAS1$VZCOPY copy
n elements of the vector x to the vector y. Vector x contains n elements that are
accessed from array x by stepping incx elements at a time. Both x and y are real
or complex single-precision or double-precision (D and G) n-element vectors. The
vectors can be rows or columns of a matrix. Both forward and backward indexing
are permitted.

If you specify 0 for incx, BLAS1$VxCOPY initializes all elements of y to a
constant.

If you specify -incx for incy, the vector x is stored in reverse order in y. In this
case, the call format is as follows:

CALL BLAS1$VxCOPY (N,X,INCX,Y,-INCX)

It is possible to move the contents of a vector up or down within itself and not
cause unpredictable results even though the same memory location is shared
between input and output. To do this when i is greater thanj, call the routine
BLAS1$VxCOPY with incx = incy > 0 as follows:

CALL BLAS1$VxCOPY (N,X(I),INCX,X(J),INCX)

The preceding call to BLAS1$VxCOPY moves:

x(i), x(i + 1 * incx), ... x(i + (n - 1) * incx)

to

x(j), x(i + 1 * incx), ... x(i + (n - 1) * incx)

If i is less than j, specify a negative value for incx and incy in the call to
BLAS1$VxCOPY, as follows. The parts that do not overlap are unchanged.

CALL BLAS1$VxCOPY (N,X(I),-INCX,X(J),-INCX)

Note ~~~~~~~~~~~~~

BLAS1$VxCOPY does not perform floating operations on the input
data. Therefore, floating reserved operands are not detected by
BLAS1$VxCOPY.

MTH-163

BLAS1$VxCOPY

Example

MTH-164

c
c To copy a vector x to a vector y using BLAS1$VSCOPY:
c

c

INTEGER N,INCX,INCY
REAL x (2 0) I y (2 0)
INCX = 1
INCY = 1
N = 20
CALL BLAS1$VSCOPY(N,X,INCX,Y,INCY)

.c. To move the contents of X(1) ,X(3) ,X(5), •.• ,X(2N-1)
C to X(3),X(5), .•• ,X(2N+l) and leave x unchanged:
c

CALL BLAS1$VSCOPY(N,X,-2,X(3),-2))
c
c To move the contents of X(2),X(3), •.• ,X(l00) to
C X(l),X(2), ••• ,X(99)and.leave x(lOO) unchanged:
c

CALL BLAS1$VSCOPY(99,X(2),1,X,1))
c
C To move the contents of X(l),X(2),X(3), ••• ,X(N) to
C Y(N),Y(N-1), .•. ,Y
c

CALL BLAS1$VSCOPY(N,X,1,Y,-l))

BLAS1 $VxDOTx

BLAS1 $VxDOTx-Obtain the Inner Product of Two Vectors

Format

Returns

The Obtain the Inner Product of Two Vectors routines return the dot product of
two n-element vectors, x and y.

BLAS1$VSDOT n ,x ,incx ,y ,incy

BLAS1$VDDOT n ,x ,incx ,y ,incy

BLAS1 $VG DOT n ,x ,incx ,y ,incy

BLAS1 $VCDOTU n ,x ,incx ,y ,incy

BLAS1 $VCDOTC n ,x ,incx ,y ,incy

BLAS1 $VZDOTU n ,x ,incx ,y ,incy

BLAS1 $VWDOTU n ,x ,incx ,y ,incy

BLAS1 $VZDOTC n ,x ,incx ,y ,incy

BLAS1 $VWDOTC n ,x ,incx ,y ,incy

Use BLAS1$VSDOT to obtain the inner product of two single-precision real
vectors.

Use BLAS1$VDDOT to obtain the inner product of two double-precision (D
floating) real vectors. Use BLAS1$VGDOT to obtain the inner product of two
double-precision CG-floating) real vectors.

Use BLAS1$VCDOTU to obtain the inner product of two single-precision complex
vectors (unconjugated).

Use BLAS1$VCDOTC to obtain the inner product of two single-precision complex
vectors (conjugated).

Use BLAS1$VZDOTU to obtain the inner product of two double-precision (D
floating) complex vectors (unconjugated). Use BLAS1$VWDOTU to obtain the
inner product of two double-precision CG-floating) complex vectors (unconjugated).

Use BLAS1$VZDOTC to obtain the inner product of two double-precision (D
floating) complex vectors (conjugated). Use BLAS1$VWDOTC to obtain the inner
product of two double-precision CG-floating) complex vectors (conjugated).

Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
write only
by value

The function value, called dotpr, is the dot product of two n-element vectors, x

and y. Specify the same data type for dotpr and the argument x.

MTH-165

BLAS1 $VxDOTx

Arguments

MTH-166

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x. Then argument is the address of a signed
longword integer containing the number of elements. If you specify a value for n
that is less than or equal to 0, then the value of dotpr is 0.0.

x
Open VMS usage
type

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D _floating, G_floating complex
read only access

mechanism by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1 + (n - 1) * lincxl

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSDOT

BLAS1$VDDOT

BLAS1$VGDOT

BLAS1$VCDOTU and
BLAS1$VCDOTC

BLAS1$VZDOTU and
BLAS1$VZDOTC

BLAS1$VWDOTU and
BLAS1$VWDOTC

incx

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than 0, then xis referenced forward in array x; that is, Xi is referenced in:

x(l + (i - 1) * incx)

BLAS1 $VxDOTx

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, Xi is
referenced in:

x(l + (n - i) * lincxl)

where:

x = array specified in x

n = number of vector elements specified in n

= element of the vector x

incx = increment argument for the array x specified in incx

y
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Array containing the elements to be accessed. All elements of array y are
accessed only if the increment argument of y, called incy, is 1. The y argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1 + (n - 1) * lincyl

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSDOT

BLAS1$VDDOT

BLAS1$VGDOT

BLAS1$VCDOTU and
BLAS1$VCDOTC

BLAS1$VZDOTU and
BLAS1$VZDOTC

BLAS1$VWDOTU and
BLAS1$VWDOTC

Data Type for y

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

MTH-167

BLAS1$VxDOTx

Description

MTH-168

incy
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array y. The incy argument is the address of a
signed longword integer containing the increment argument. If incy is greater
than or equal to 0, then y is referenced forward in array y; that is, Yi is referenced
in:

y(l + (i - 1) * incy)

where:

y = array specified in y

= element of the vector y

incy increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi is
referenced in:

y(l + (n - i) * lincyl)

where:

y = array specified in y

n = number of vector elements specified in n

element of the vector y

incy = increment argument for the array y specified in incy

The unconjugated versions of this routine, BLAS1$VSDOT, BLAS1$VDDOT,
BLAS1$VGDOT, BLAS1$VCDOTU, BLAS1$VZDOTU, and BLAS1$VWDOTU
return the dot product of two n-element vectors, x and y, expressed as follows:

X · Y = XlYl + X2Y2 + · · · + XnYn

The conjugated versions of this routine, BLAS1$VCDOTC, BLAS1$VZDOTC, and
BLAS1$VWDOTC return the dot product of the conjugate of the first n-element
vector with a second n-element vector, as follows:

x · Y = X°1Y1 + X'2Y2 + · · · + XnYn

Vectors x and y contain n elements that are accessed from arrays x and y by
stepping incx and incy elements at a time. The vectors x and y can be rows or
columns of a matrix. Both forward and backward indexing are permitted.

The routine name determines the data type you should specify for arguments x
and y. Specify the same data type for these arguments.

Rounding in BLAS1$VxDOTx occurs in a different order than in a sequential
evaluation of the dot product. The final result may differ from the result of a
sequential evaluation.

Example

c
C To compute the dot product of two vectors, x and y,
c and return the result in DOTPR:
c

INTEGER INCX,INCY
REAL X(20),Y(20),DOTPR
INCX = 1
INCY = 1
N = 20
DOTPR = BLAS1$VSDOT(N,X,INCX,Y,INCY)

BLAS1 $VxDOTx

BLAS1$VxNRM2

BLAS1 $VxNRM2-0btain the Euclidean Norm of a Vector

Format

Returns

Arguments

The Obtain the Euclidean Norm of a Vector routines obtain the Euclidean norm
of an n-element vector x, expressed as follows:

V xi + x§ + ... + x~

BLAS1$VSNRM2 n ,x ,incx

BLAS1 $VDNRM2 n ,x ,incx

BLAS1 $VGNRM2 n ,x ,incx

BLAS1 $VSCNRM2 n ,x ,incx

BLAS1 $VDZNRM2 n ,x ,incx

BLAS1 $VGWNRM2 n ,x ,incx

Use BLAS1$VSNRM2 for single-precision real operations. Use BLAS1$VDNRM2
for double-precision real CD-floating) operations and BLAS1$VGNRM2 for double
precision real CG-floating) operations.

Use BLAS1$VSCNRM2 for single-precision complex operations. Use
BLAS1$VDZNRM2 for double-precision complex CD-floating) operations and
BLAS1$VGWNRM2 for double-precision complex CG-floating) operations.

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, or G_floating real
write only
by value

The function value, called e_norm, is the Euclidean norm of the vector x. The
data type of the function value is a real number; for the BLAS1$VSCNRM2,
BLAS1$VDZNRM2, and BLAS1$VGWNRM2 routines, the data type of the
function value is the real data type corresponding to the complex argument data
type.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x to be processed. Then argument is the address
of a signed longword integer containing the number of elements.

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
read only
by reference, array reference

Description

BLAS1$VxNRM2

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. This argument is an array of length at least

1 + (n - 1) * lincxl

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSNRM2

BLAS1$VDNRM2

BLAS1$VGNRM2

BLAS1$VSCNRM2

BLAS1$VDZNRM2

BLAS1$VGWNRM2

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then e_norm is 0.0.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, Xi is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute value of
incx.

BLAS1$VxNRM2 obtains the Euclidean norm of an n-element vector x, expressed
as follows:

. I 2 2 2 v Xl + X2 + . , . + Xn

Vector x contains n elements that are accessed from array x by stepping incx
elements at a time. The vector xis a real or complex single-precision or double
precision (D and G) n-element vector. The vector can be a row or a column of a
matrix. Both forward and backward indexing are permitted.

BLAS1$VxNRM2

Example

The public-domain BLAS Level 1 xNRM2 routines require a positive value for
incx. The Run-Time Library BLAS Level 1 routines interpret a negative value
for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying
0 for incx has the effect of using vector operations to set e_norm as follows:

e_norm = n°·5 * lx1 I

For BLAS1$VDNRM2, BLAS1$VGNRM2, BLAS1$VDZNRM2, and
BLAS1$VGWNRM2 (the double-precision routines), the elements of the vector
x are scaled to avoid intermediate overflow or underflow. BLAS1$VSNRM2 and
BLAS1$VSCNRM2 (the single-precision routines) use a backup data type to avoid
intermediate overflow or underflow.

Rounding in BLAS1$VxNRM2 occurs in a different order than in a sequential
evaluation of the Euclidean norm. The final result may differ from the result of a
sequential evaluation.

c
c To obtain the Euclidean norm of the vector x:
c

INTEGER INCX, N
REAL X(20),E NORM
INCX = 1 -
N = 20
E_NORM = BLAS1$VSNRM2(N,X,INCX)

BLAS1$VxROT

BLAS1 $VxROT-Apply a Givens Plane Rotation

Format

Returns

Arguments

The Apply a Givens Plane Rotation routines apply a Givens plane rotation to a
pair of n-element vectors x and y.

BLAS1$VSROT n ,x ,incx ,y ,incy ,c ,s

BLAS1 $VD ROT n ,x ,incx ,y ,incy ,c ,s

BLAS1$VGROT n ,x ,incx ,y ,incy ,c ,s

BLAS1 $VCSROT n ,x ,incx ,y ,incy ,c ,s

BLAS1 $VZDROT n ,x ,incx ,y ,incy ,c ,s

BLAS1 $VWGROT n ,x ,incx ,y ,incy ,c ,s

Use BLAS1$VSROT for single-precision real operations. Use BLAS1$VDROT
for double-precision real CD-floating) operations and BLAS1$VGROT for double
precision real CG-floating) operations.

Use BLAS1$VCSROT for single-precision complex operations. Use
BLAS1$VZDROT for double-precision complex CD-floating) operations and
BLAS1$VWGROT for double-precision complex CG-floating) operations.
BLAS1$VCSROT, BLAS1$VZDROT, and BLAS1$VWGROT are real rotations
applied to a complex vector.

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vectors x and y to be rotated. Then argument is the
address of a signed longword integer containing the number of elements to be
rotated. If n is less than or equal to 0, then x and y are unchanged.

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. On entry, this argument is an array of length at least

1 + (n - 1) * jincxl

BLAS1$VxROT

P.ATU -f"7A

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSROT

BLAS1$VDROT

BLAS1$VGROT

BLAS1$VCSROT

BLAS1$VZDROT

BLAS1$VWGROT

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0 and
s equals 0, then x and y are unchanged. If any element of x shares a memory
location with an element of y, then the results are unpredictable.

On exit, x contains the rotated vector x, as follows:

where:

x = array x specified in x

y = array y specified in y

= i = 1,2, ... ,n

c = rotation element generated by the BLAS1$VxROTG routines

s = rotation element generated by the BLAS1$VxROTG routines

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, Xi is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is
referenced in:

x(l + (n - i) * lincxl)

BLAS1$VxROT

where:

x =
n =

=
incx =
y

array specified in x

number of vector elements specified in n

element of the vector x

increment argument for the array x specified in incx

Open VMS usage
type

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex

access
mechanism

modify
by reference, array reference

Array containing the elements to be accessed. All elements of array y are
accessed only if the increment argument of y, called incy, is 1. The y argument
is the address of a floating-point or floating-point complex number that is this
array. On entry, this argument is an array of length at least

1 + (n - 1) * lincxl
where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSROT

BLAS1$VDROT

BLAS1$VGROT

BLAS1$VCSROT

BLAS1$VZDROT

BLAS1$VWGROT

Data Type for y

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0 and
s equals 0, then x and y are unchanged. If any element of x shares a memory
location with an element of y, then the results are unpredictable.

On exit, y contains the rotated vector y, as follows:

Yi+- - s * Xi + c * Yi

where:

x =
y =

=
c =
s =

array x specified in x

array y specified in y

i = 1,2, ... ,n

real rotation element (can be generated by the BLAS1$VxROTG routines)

complex rotation element (can be generated by the BLAS1$VxROTG
routines)

MTH-175

BLAS1$VxROT

MTH-176

incy
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array y. The incy argument is the address of a
signed longword integer containing the increment argument. If incy is greater
than or equal to 0, then y is referenced forward in array y; that is, Yi is referenced
in:

y(l + (i - 1) * incy)

where:

y = array specified in y

= element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi is
referenced in:

y(l + (n - i) * lincyl)

where:

y = array specified in y

n = number of vector elements specified in n

= element of the vector y

incy = increment argument for the array y specified in incy

c
Open VMS usage
type

floating_point

access
mechanism

F _floating, D_floating, or G_floating real
read only
by reference

First rotation element, which can be interpreted as the cosine of the angle of
rotation. The c argument is the address of a floating-point or floating-point
complex number that is this vector element. The c argument is the first rotation
element generated by the BLAS1$VxROTG routines.

Specify the data type (which is always real) as follows:

Routine

BLAS1$VSROT and
BLAS1$VCSROT

BLAS1$VDROT and
BLAS1$VZDROT

BLAS1$VGROT and
BLAS1$VWGROT

Data Type for c

F-floating real

D-floating real

G-floating real

Description

Example

BLAS1 $VxROT

s
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D _floating, G_floating complex
read only
by reference

Second rotation element, which can be interpreted as the sine of the angle of
rotation. The s argument is the address of a floating-point or floating-point
complex number that is this vector element. The s argument is the second
rotation element generated by the BLAS1$VxROTG routines.

Specify the same data type for arguments s and c.

BLAS1$VSROT, BLAS1$VDROT, and BLAS1$VGROT apply a real Givens
plane rotation to a pair of real vectors. BLAS1$VCSROT, BLAS1$VZDROT, and
BLAS1$VWGROT apply a real Givens plane rotation to a pair of complex vectors.
The vectors x and y are real or complex single-precision or double-precision (D
and G) vectors. The vectors can be rows or columns of a matrix. Both forward
and backward indexing are permitted. The routine name determines the data
type you should specify for arguments x and y. Specify the same data type for
each of these arguments.

The Givens plane rotation is applied ton elements, where the elements to be
rotated are contained in vectors x and y (i equals 1,2, ... ,n). These elements are
accessed from arrays x and y by stepping incx and incy elements at a time. The
cosine and sine of the angle of rotation are c and s, respectively. The arguments
c ands are usually generated by the BLAS Level 1 routine BLAS1$VxROTG,
using a = x and b = y:

The BLAS1$VxROT routines can be used to introduce zeros selectively into a
matrix.

c
C To rotate the first two rows of a matrix and zero
C out the element in the first column of the second row:
c

INTEGER INCX,N
REAL X(20,20),A,B,C,S
INCX = 20
N = 20
A= X(l,1)
B = X(2,l)
CALL BLAS1$VSROTG(A,B,C,S)
CALL BLAS1$VSROT(N,X,INCX,X(2,l),INCX,C,S)

llATU -177

BLAS1 $VxROTG

BLAS1 $VxROTG-Generate the Elements for a Givens Plane
Rotation

Format

Returns

Arguments

l\ATl-l-17R

The Generate the Elements for a Givens Plane Rotation routines construct a
Givens plane rotation that eliminates the second element of a two-element vector.

BLAS1 $VSROTG a,b ,c ,s

BLAS 1 $VDROTG a,b ,c ,s

BLAS1$VGROTG a,b ,c,s

BLAS1$VCROTG a,b ,c ,s

BLAS 1 $VZROTG a ,b ,c ,s

BLAS 1 $VWROTG a ,b ,c,s

Use BLAS1$VSROTG for single-precision real operations. Use BLAS1$VDROTG
for double-precision real (D-floating) operations and BLAS1$VGROTG for double
precision real (G-floating) operations.

Use BLAS1$VCROTG for single-precision complex operations. Use
BLAS1$VZROTG for double-precision complex (D-floating) operations and
BLAS1$VWROTG for double-precision complex (G-floating) operations.

None.

a
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference

On entry, first element of the input vector. On exit, rotated element r. The a
argument is the address of a floating-point or floating-point complex number that
is this vector element.

Specify the data type as follows:

Routine

BLAS1$VSROTG

BLAS1$VDROTG
BLAS1$VGROTG

BLAS1$VCROTG

BLAS1$VZROTG

BLAS1$VWROTG

Data Type for a

F-floating real

D-floating real

G-floating real
F-floating complex

D-floating complex

G-floating complex

BLAS1 $VxROTG

b
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference

On entry, second element of the input vector. On exit from BLAS1$VSROTG,
BLAS1$VDROTG, and BLAS1$VGROTG, reconstruction element z. (See the
Description section for more information about z.) The b argument is the address
of a floating-point or floating-point complex number that is this vector element.

Specify the data type as follows:

Routine

BLAS1$VSROTG

BLAS1$VDROTG

BLAS1$VGROTG

BLAS1$VCROTG

BLAS1$VZROTG

BLAS1$VWROTG

c
Open VMS usage
type
access
mechanism

Data Type for b

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

floating_point
F _floating, D_floating, or G_floating real
write only
by reference

First rotation element, which can be interpreted as the cosine of the angle of
rotation. The c argument is the address of a floating-point or floating-point
complex number that is this vector element.

Specify the data type (which is always real) as follows:

Routine

BLAS1$VSROTG and
BLAS1$VCROTG

BLAS1$VDROTG and
BLAS1$VZROTG

BLAS1$VGROTG and
BLAS1$VWROTG

s

Data Type for c

F-floating real

D-floating real

G-floating real

Open VMS usage
type

floating_point or complex_number

access
mechanism

F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
write only
by reference

P.ATU_i"7Q

BLAS1 $VxROTG

Description

l\ATl-L 1 Q()

Second rotation element, which can be interpreted as the sine of the angle of
rotation. The s argument is the address of a floating-point or floating-point
complex number that is this vector element.

Specify the data type as follows:

Routine

BLAS1$VSROTG

BLAS1$VDROTG

BLAS1$VGROTG

BLAS1$VCROTG

BLAS1$VZROTG

BLAS1$VWROTG

Data Type for s

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG construct
a real Givens plane rotation. BLAS1$VCROTG, BLAS1$VZROTG, and
BLAS1$VWROTG construct a complex Givens plane rotation. The Givens plane
rotation eliminates the second element of a two-element vector. The elements
of the vector are real or complex single-precision or double-precision (D and G)
numbers. The routine name determines the data type you should specify for
arguments a, b, and s. Specify the same data type for each of these arguments.

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use the
reconstruction element z to store the rotation elements for future use. There
is no counterpart to the term z for BLAS1$VCROTG, BLAS1$VZROTG, and
BLAS1$VWROTG.

The BLAS1$VxROTG routines can be used to introduce zeros selectively into a
matrix.

For BLAS1$VDROTG, BLAS1$VGROTG, BLAS1$VZROTG, and
BLAS1$VWROTG (the double-precision routines), the elements of the vector
are scaled to avoid intermediate overflow or underflow. BLAS1$VSROTG and
BLAS1$VCROTG (the single-precision routines) use a backup data type to avoid
intermediate underflow or overflow, which may cause the final result to differ
from the original FORTRAN routine.

BLAS1 $VSROTG, BLAS1 $VDROTG, and BLAS1 $VGROTG - Real Givens Plane
Rotation
Given the elements a and b of an input vector, BLAS1$VSROTG, and
BLAS1$VDROTG, BLAS1$VGROTG calculate the elements c ands of an
orthogonal matrix such that:

[~. :][~ l = [~ l

Example

BLAS1 $VxROTG

A real Givens plane rotation is constructed for values a and b by computing values
for r, c, s, and z, as follows:

r = pVa2 + b2

where:

p = SIGN(a) if !al > lbl

p = SIGN (b) if [a [~ [b I

c = ~ if r:fO

c=lifr=O

s = ~ if r:fO

s=Oifr=O

z = s if !al > lbl

z = ~if la[::;[b[and c:fO and r:fO

z = 1 if la[::; lb [and c = 0 and r:fO

z=Oifr=O

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use the
reconstruction element z to store the rotation elements for future use. The
quantities c and s are reconstructed from z as follows:

For lz I = 1, c = 0 and s = 1.0

For lzl < 1, c =~ands= z

For [zl > 1,' c = ~ and s = ~
The arguments c and s can be passed to the BLAS1$VxROT routines.

BLAS1 $VCROTG, BLAS1 $VZROTG, and BLAS1 $VWROTG - Complex Givens
Plane Rotation
Given the elements a and b of an input vector, BLAS1$VCROTG,
BLAS1$VZROTG, and BLAS1$VWROTG calculate the elements c ands of an
orthogonal matrix such that:

There are no BLAS Level 1 routines with which you can use complex c ands
arguments.

c
c To generate the rotation elements for a vector of
C elements a and b:
c

REAL A,B,C,S
CALL SROTG(A,B,C,S)

MTH-181

BLAS1 $VxSCAL

BLAS1 $VxSCAL-Scale the Elements of a Vector

Format

Returns

Arguments

MTH-182

The Scale the Elements of a Vector routines compute a* x where a is a scalar
number and x is an n-element vector.

BLAS1$VSSCAL n ,a ,x ,incx

BLAS1$VDSCAL n ,a ,x ,incx

BLAS1$VGSCAL n ,a ,x ,incx

BLAS1 $VCSCAL n ,a ,x ,incx

BLAS1$VCSSCAL n ,a ,x ,incx

BLAS1$VZSCAL n ,a ,x ,incx

BLAS1$VWSCAL n ,a ,x ,incx

BLAS1$VZDSCAL n ,a ,x ,incx

BLAS1$VWGSCAL n ,a ,x ,incx

Use BLAS1$VSSCAL to scale a real single-precision vector by a real single
precision scalar.

Use BLAS1$VDSCAL to scale a real double-precision (D-floating) vector by a
real double-precision (D-floating) scalar. Use BLAS1$VGSCAL to scale a real
double-precision (G-floating) vector by a real double-precision (G-floating) scalar.

Use BLAS1$VCSCAL to scale a complex single-precision vector by a complex
single-precision scalar. Use BLAS1$VCSSCAL to scale a complex single-precision
vector by a real single-precision scalar.

Use BLAS1$VZSCAL to scale a complex double-precision (D-floating) vector
by a complex double-precision (D-floating) scalar. Use BLAS1$VWSCAL to
scale a complex double-precision (G-floating) vector by a complex double
precision (G-floating) scalar. Use BLAS1$VZDSCAL to scale a complex double
precision (D-floating) vector by a real double-precision (D-floating) scalar. Use
BLAS1$VWGSCAL to scale a complex double-precision (G-floating) vector by a
real double-precision (G-floating) scalar.

None.

n
Open VMS usage longword_signed
type longword integer (signed)
access read only
mechanism by reference

Number of elements in vector x to be scaled. Then argument is the address of a
signed longword integer containing the number of elements to be scaled. If you
specify a value for n that is less than or equal to 0, then x is unchanged.

BLAS1 $VxSCAL

a
Open VMS usage floating_point or complex_number
type F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access read only
mechanism by reference

Scalar multiplier for the elements of vector x. The a argument is the address of a
floating-point or floating-point complex number that is this multiplier.

Specify the data type as follows:

Routine Data Type for a

BLAS1$VSSCAL and F-floating real
BLAS1$VCSSCAL
BLAS1$VDSCAL and D-floating real
BLAS1$VZDSCAL

BLAS1$VGSCAL and G-floating real
BLAS1$VWGSCAL
BLAS1$VCSCAL F-floating complex
BLAS1$VZSCAL D-floating complex

BLAS1$VWSCAL G-floating complex

If you specify 1.0 for a, then x is unchanged.

x
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a floating-point or floating-point complex number that is this
array. On entry, this argument is an array of length at least

1 + (n - 1) * JincxJ
where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1$VSSCAL

BLAS1$VDSCAL
BLAS1$VGSCAL

BLAS1$VCSCAL and
BLAS1$VCSSCAL

Data Type for x

F-floating real

D-floating real
G-floating real

F-floating complex

MTH-183

BLAS1 $VxSCAL

Description

MTH-184

Routine

BLAS1$VZSCAL and
BLAS1$VZDSCAL

BLAS1$VWSCAL and
BLAS1$VWGSCAL

Data Type for x

D-fioating complex

G-fioating complex

· On exit, x is an array of length at least

1 + (n - 1) * lincxl

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

After the call to BLAS1$VxSCAL, xi is replaced by a* xi. If a shares a memory
location with any element of the vector x, results are unpredictable.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is ~he address of a
signed longword integer containing the increment argument. If incx is greater
than 0, then xis referenced forward in array x; that is, xi is referenced in:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute value of
incx. If incx equals 0, the results are unpredictable.

BLAS1$VxSCAL computes a * x where a is a scalar number and x is an n-element
vector. The computation is expressed as follows:

Vector x contains n elements that are accessed from array x by stepping incx
elements at a time. The vector x can be a row or a column of a matrix. Both
forward and backward indexing are permitted.

The public-domain BLAS Level 1 xSCAL routines require a positive value for
incx. The Run-Time Library BLAS Level 1 routines interpret a negative value
for incx as the absolute value of incx.

The algorithm does not provide a special case for a= 0. Therefore, specifying
0 for a has the effect of setting to zero all elements of the vector x using vector
operations.

Example

c
C To scale a vector x by 2.0 using SSCAL:
c

INTEGER INCX,N
REAL X(20) ,A
INCX = 1
A = 2
N = 20
CALL BLAS1$VSSCAL(N,A,X,INCX)

BLAS1 $VxSCAL

MTH-185

BLAS1$VxSWAP

BLAS1 $VxSWAP-Swap the Elements of Two Vectors

Format

Returns

Arguments

MTH-186

The Swap the Elements of Two Vectors routines swap n elements of the vector x
with the vector y.

BLAS1$VSSWAP n ,x ,incx ,y ,incy

BLAS1$VDSWAP n ,x ,incx ,y ,incy

BLAS1 $VCSWAP n ,x ,incx ,y ,incy

BLAS1 $VZSWAP n ,x ,incx ,y ,incy

Use BLAS1$VSSWAP for single-precision real operations and BLAS1$VDSWAP
for double-precision real (D or G) operations.

Use BLAS1$VCSWAP for single-precision complex operations and
BLAS1$VZSWAP for double-precision complex (Dor G) operations.

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Number of elements in vector x to be swapped. Then argument is the address of
a signed longword integer containing the number of elements to be swapped.

x
Open VMS usage
type

access
mechanism

:floating_point or complex_number
F _fioating, D_:floating, G_fioating real or F _fioating,
D_fioating, G_:floating complex
modify
by reference, array reference

Array containing the elements to be accessed. All elements of array x are
accessed only if the increment argument of x, called incx, is 1. The x argument
is the address of a :floating-point or :floating-point complex number that is this
array. On entry, this argument is an array of length at least

1 + (n - 1) * lincxl

where:

n = number of vector elements specified in n

zncx = increment argument for the array x specified in incx

BLAS1$VxSWAP

Specify the data type as follows:

Routine

BLAS1$VSSWAP

BLAS1$VDSWAP

BLAS1$VCSWAP

BLAS1$VZSWAP

Data Type for x

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element of x
shares a memory location with an element of y, the results are unpredictable.

On exit, x is an array of length at least

1 + (n - 1) * lincxl

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

After the call to BLAS1$VxSWAP, n elements of the array specified by x are
interchanged with n elements of the array specified by y.

incx
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array x. The incx argument is the address of a
signed longword integer containing the increment argument. If incx is greater
than or equal to 0, then xis referenced forward in array x; that is, Xi is referenced
in:

x(l + (i - 1) * incx)

where:

x = array specified in x

= element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then xis referenced backward in array x; that is, xi is
referenced in:

x(l + (n - i) * lincxl)

where:

x =
n =

=
incx =

array specified in x

number of vector elements specified in n

element of the vector x

increment argument for the array x specified in incx

MTH-187

BLAS1$VxSWAP

MTH-188

y
Open VMS usage
type

access
mechanism

floating_point or complex_number
F _floating, D_floating, G_floating real or F _floating,
D_floating, G_floating complex
modify
by reference, array reference

Array containing the elements to be accessed. All elements of array y are
accessed only if the increment argument of y, called incy, is 1. The y argument
is the address of a floating-point or floating-point complex number that is this
array. On entry, this argument is an array of length at least

1 + (n - 1) * lincyl

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSSWAP

BLAS1$VDSWAP

BLAS1$VCSWAP

BLAS1$VZSWAP

Data Type for y

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element of x
shares a memory location with an element of y, the results are unpredictable.

On exit, y is an array of length at least

1 + (n - 1) * lincyl

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

After the call to BLAS1$VxSWAP, n elements of the array specified by x are
interchanged with n elements of the array specified by y.

incy
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array y. The incy argument is the address of a
signed longword integer containing the increment argument. If incy is greater
than or equal to 0, then y is referenced forward in array y; that is, Yi is referenced
in:

yq + (i - 1) * incy)

Description

Example

BLAS1$VxSWAP

where:

y = array specified in y

= element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi. is
referenced in:

y(l + (n - i) * lincyl)

where:

y = array specified in y

n = number of vector elements specified in n

element of the vector y

incy = increment argument for the array y specified in incy

BLAS1$VSSWAP, BLAS1$VDSWAP, BLAS1$VCSWAP, and BLAS1$VZSWAP
swap n elements of the vector x with the vector y. Vectors x and y contain n
elements that are accessed from arrays x and y by stepping incx and incy
elements at a time. Both x and y are real or complex single-precision or double
precision (D and G) n-element vectors. The vectors can be rows or columns of a
matrix. Both forward and backward indexing are permitted.

You can use the routine BLAS1$VxSWAP to invert the storage of elements of a
vector within itself. If incx is greater than 0, then xi can be moved from location

x(l + (i - 1) * incx) to x(l + (n - i) * incx)

The following code fragment inverts the storage of elements of a vector within
itself:

NN = N/2
LHALF = l+(N-NN)*INCX
CALL BLAS1$VxSWAP(NN,X,INCX,X(LHALF),-INCX)

BLAS1$VxSWAP does not check for a reserved operand.

c
C To swap the contents of vectors x and y:
c

c

INTEGER INCX,INCY,N
REAL X(20),Y(20)
INCX = 1
INCY = 1
N = 20
CALL BLAS1$VSSWAP(N,X,INCX,Y,INCY)

C To invert the order of storage of the elements of x within
c itself; that is, to move x(l), ... ,x(lOO) to x(lOO), ••. ,x(l):
c

INCX = 1
INCY = -1
N = 50
CALL BLAS1$VSSWAP(N,X,INCX,X(Sl),INCY)

MTH-189

MTH$VxFOLRy_MA_V15

MTH$VxFOLRy_MA_V15-First Order Linear Recurrence
Multiplication and Addition

Format

Returns

Arguments

MTH-190

The First Order Linear Recurrence - Multiplication and Addition routines
provide a vectorized algorithm for the linear recurrence relation that includes
both multiplication and addition operations.

MTH$VJFOLRP _MA_ V15 n,a,inca,b,incb,c,incc

MTH$VFFOLRP _MA_ V15 n,a,inca,b,incb,c,incc

MTH$VDFOLRP _MA_ V15 n,a,inca,b,incb,c,incc

MTH$VGFOLRP _MA_ V15 n,a,inca,b,incb,c,incc

MTH$VJFOLRN_MA_ V15 n,a,inca,b,incb,c,incc

MTH$VFFOLRN_MA_ V15 n,a,inca,b,incb,c,incc

MTH$VDFOLRN_MA_ V15 n,a,inca,b,incb,c,incc

MTH$VGFOLRN_MA_ V15 n,a,inca,b,incb,c,incc

To obtain one of the preceding formats, substitute the following for x and yin
MTH$VxFOLRy _MA_ V15:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

a
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating, or G_floating
read only
by reference, array reference

Array of length at least

1 + (n - 1) * inca

where:

n = length of the linear recurrence specified in n

MTH$VxFOLRy_MA_V15

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this
array.

inca
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array a. The inca argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inca.

b
longword_signed or floating_point Open VMS usage

type
access
mechanism

longword integer (signed), F _floating, D_floating, or G_floating
read only
by reference, array reference

Array of length at least

1 + (n - 1) * incb

where:

n length of the linear recurrence specified in n

incb = increment argument for the array h specified in inch

The h argument is the address of a longword integer or floating-point number
that is this array.

incb
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array h. The inch argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inch.

c
longword_signed or floating_point Open VMS usage

type
access

longword integer (signed), F _floating, D_floating, or G_floating
modify

mechanism by reference, array reference

Array of length at least

1 + n * incc

where:

n = length of the linear recurrence specified in n

incc = increment argument for the array c specified in incc

The c argument is the address of a longword integer or floating-point number
that is this array.

l\llTl-L101

MTH$VxFOLRy _MA_ V15

Description

MTH-192

incc
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array c. The incc argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for incc. Do not specify 0 for incc.

MTH$VxFOLRy _MA_ V15 is a group of routines that provides a vectorized
algorithm for computing the following linear recurrence relation:

C (I + 1) = + /-C (I) * A (I) + B (I)

Note ~~~~~~~~~~~~~

Save the contents of vector registers VO through V15 before you call this
routine.

Call this routine to utilize vector hardware when computing the recurrence. As
an example, the call from VAX FORTRAN is as follows:

Kl = ••••
K2 = ••••
K3 = ••••
CALL MTH$VxFOLRy_MA_Vl5(N,A(Kl),INCA,B(K2),INCB,C(K3),INCC)

The preceding FORTRAN call replaces the following loop:

Kl = ••••
K2 = ••••
K3 = .•..
DO I = 1, N
C(K3+I*INCC) = {+/-}C(K3+(I-l)*INCC) * A(Kl+(I-l)*INCA)

+ B(K2+(I-l)*INCB)
END DO

The arrays used in a FOLR expression must be of the same data type in order to
be vectorized and user callable. The MTH$ FOLR routines assume that all of the
arrays are of the same data type.

This group of routines, MTH$VxFOLRy _MA_ V15 (and also MTH$VxFOLRy _
z_ V8) save the result of each iteration of the linear recurrence relation in an
array. This is different from the behavior of MTH$VxFOLRLy _MA_ V5 and
MTH$VxFOLRLy _z_ V2, which return only the result of the last iteration of the
linear recurrence relation.

For the output array (c), the increment argument (incc) cannot be 0. However,
you can specify 0 for the input increment arguments (inca and inch). In that
case, the input will be treated as a scalar value and broadcast to a vector input
with all vector elements equal to the scalar value.

In MTH$VxFOLRy_MA_V15, array c can overlap array a and array b, or both,
as long as the address of array element ex is not also the address of an element
of a or b that will be referenced at a future time in the recurrence relation. For
example, in the following code fragment you must ensure that the address of
c(l + i * incc) does not equal the address of either a(i * inca) or b(k * incb) for

Examples

l~i~n and j?.i + 1.

DO I = 1,N

MTH$VxFOLRy_MA_V15

C(l+I*INCC) = C(l+(I-l)*INCC) * A(l+(I-l)*INCA) + B(l+(I-l)*INCB)
END DO

1. c
C The following FORTRAN loop computes
C a linear recurrence.
c

c

INTEGER I
DIMENSION A(200), B(50), C(50)
EQUIVALENCE (B,C)

C(4) = .•.•
DO I = 5, 50
C(I) = C((I-1)) * A(I*3) + B(I)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c

2. c

DIMENSION A(200), B(50), C(50)
EQUIVALENCE (B,C)

C(4) = ••••
CALL MTH$VFFOLRP_MA_Vl5(46, A(15), 3, B(5), 1, C(4), 1)

c The following FORTRAN loop computes
C a linear recurrence.
c

c

INTEGER K,N,INCA,INCB,INCC,I
DIMENSION A(30), B(6), C(50)
K = 44
N = 6
INCA = 5
INCB = 1
INCC = 1
DO I = 1, N
C(K+I*INCC) = -C(K+(I-l)*INCC) * A(I*INCA) + B(I*INCB)
END DO

c The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c

INTEGER K,N,INCA,INCB,INCC
DIMENSION A(30), B(6), C(50)
K = 44
N = 6
INCA = 5
INCB = 1
INCC = 1
CALL MTH$VFFOLRN_MA_Vl5(N, A(INCA), INCA, B(INCB), INCB, C(K), INCC)

MTH$VxFOLRy_z_V8

MTH$VxFOLRy_z_V8-First Order Linear Recurrence -
Multiplication or Addition

Format

Returns

Arguments

ll.ATl-L10A

The First Order Linear Recurrence - Multiplication or Addition routines provide
a vectorized algorithm for the linear recurrence relation that includes either a
multiplication or an addition operation, but not both.

MTH$VJFOLRP_M_V8 n,a,inca,b,incb

MTH$VFFOLRP_M_V8 n,a,inca,b,incb

MTH$VDFOLRP_M_V8 n,a,inca,b,incb

MTH$VGFOLRP_M_V8 n,a,inca,b,incb

MTH$VJFOLRN_M_V8 n,a,inca,b,incb

MTH$VFFOLRN_M_V8 n,a,inca,b,incb

MTH$VDFOLRN_M_V8 n,a,inca,b,incb

MTH$VGFOLRN_M_V8 n,a,inca,b,incb

MTH$VJFOLRP_A_V8 n,a,inca,b,incb

MTH$VFFOLRP_A_V8 n,a,inca,b,incb

MTH$VDFOLRP_A_V8 n,a,inca,b,incb

MTH$VGFOLRP_A_V8 n,a,inca,b,incb

MTH$VJFOLRN_A_V8 n,a,inca,b,incb

MTH$VFFOLRN_A_V8 n,a,inca,b,incb

MTH$VDFOLRN_A_V8 n,a,inca,b,incb

MTH$VGFOLRN_A_V8 n,a,inca,b,incb

To obtain one of the preceding formats, substitute the following for x, y, and z in
MTH$VxFOLRy _z_ V8:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

z M for multiplication, A for addition

None.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

MTH$VxFOLRy _z_ V8

a
longword_signed or floating_point Open VMS usage

type
access
mechanism

longword integer (signed), F _floating, D_floating, or G_floating
read only
by reference, array reference

Array of length at least

1+ (n-1) *inca

where:

n = length of the linear recurrence specified in n

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this
array.

inca
Open VMS us.age
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array a. The inca argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inca.

b
longword_signed or floating_point Open VMS usage

type
access
mechanism

longword integer (signed), F _floating, D_floating, or G_floating
modify
by reference, array reference

Array of length at least

1+(n-1)*incb

where:

n = length of the linear recurrence specified in n

incb = increment argument for the array b specified in inch

The h argument is the address of a longword integer or floating-point number
that is this array.

incb
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array h. The inch argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inch.

11.A"T"LJ -I nr::-

MTH$VxFOLRy _z_ V8

Description

l\ATLI -1 oa

MTH$VxFOLRy _z_ VS is a group of routines that provide a vectorized algorithm
for computing one of the following linear recurrence relations:

B (J) = +I - B (I - 1) * A (1)

or

B(I) = +/-B(J - 1) +A(!)

For the first relation, specify M for z in the routine name to denote multiplication;
for the second relation, specify A for z in the routine name to denote addition.

Note

Save the contents of vector registers VO through VS before you call this
routine.

Call this routine to utilize vector hardware when computing the recurrence. As
an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRy_z_V8(N,A(Kl),INCA,B(K2),INCB)

The preceding FORTRAN call replaces the following loop:

Kl = .•..
K2 = •••.
DO I = 1, N
B(K2+I*INCB) = {+/-}B(K2+(I-l)*INCB) {+/*} A(Kl+(I-l)*INCA)
END DO

The arrays used in a FOLR expression must be of the same data type in order to
be vectorized and user callable. The MTH$ FOLR routines assume that all of the
arrays are of the same data type.

This group of routines, MTH$VxFOLRy_z_VS (and also MTH$VxFOLRy_MA_
V15) save the result of each iteration of the linear recurrence relation in an
array. This is different from the behavior of MTH$VxFOLRLy _MA_ V5 and
MTH$VxFOLRLy _z_ V2, which return only the result of the last iteration of the
linear recurrence relation.

For the output array (b), the increment argument (inch) cannot be 0. However,
you can specify 0 for the input increment argument (inca). In that case, the
input will be treated as a scalar and broadcast to a vector input with all vector
elements equal to the scalar value.

Examples

MTH$VxFOLRy _z_ V8

1. c
C The following FORTRAN loop computes
C a linear recurrence.
c
C D FLOAT

c

INTEGER N,INCA,INCB,I
DIMENSION A(30), B(l3)
N = 6
INCA = 5
INCB = 2
DO I = 1, N
B(l+I*INCB) -B(l+(I-l)*INCB) * A(I*INCA)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

2. c

INTEGER N,INCA,INCB
REAL*8 A(30), B(13)
N = 6
INCA = 5
INCB = 2
CALL MTH$VDFOLRN_M_V8(N, A(INCA), INCA, B(l), INCB)

C The following FORTRAN loop computes
C a linear recurrence.
c
C G FLOAT

c

INTEGER N,INCA,INCB
DIMENSION A(30), B(l3)
N = 5
INCA = 5
INCB = 2
DO I = 2, N
B(l+I*INCB) = B((I-l)*INCB) + A(I*INCA)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C G FLOAT

INTEGER N,INCA,INCB
REAL*8 A(30), B(l3)
N = 5
INCA = 5
INCB = 2
CALL MTH$VGFOLRP_A_V8(N, A(INCA), INCA, B(INCB), INCB)

II.AILI -4 r\"'7

MTH$VxFOLRLy_MA_V5

MTH$VxFOLRLy_MA_V5-First Order Linear Recurrence -
Multiplication and Addition - Last Value

Format

Returns

Arguments

l\JITl-L1QA

The First Order Linear Recurrence - Multiplication and Addition - Last
Value routines provide a vectorized algorithm for the linear recurrence relation
that includes both multiplication and addition operations. Only the last value
computed is stored.

MTH$VJFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VFFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VDFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VGFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VJFOLRLN_MA_V5 n,a,inca,b,incb,t

MTH$VFFOLRLN_MA_V5 n,a,inca,b,incb,t

MTH$VDFOLRLN_MA_V5 n,a,inca,b,incb,t

MTH$VGFOLRLN_MA_V5 n,a,inca,b,incb,t

To obtain one of the preceding formats, substitute the following for x and y in
MTH$VxFOLRLy _MA_ V5:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D _floating or G_floating
write only
by value

The function value is the result of the last iteration of the linear recurrence
relation. The function value is returned in RO or RO and Rl.

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

a
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D _floating, or G_floating
read only
by reference, array reference

MTH$VxFOLRLy_MA_V5

Array of length at least

1+ (n-1) *inca

where:

n = length of the linear recurrence specified in n

mca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this
array.

inca
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array a. The inca argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inca.

b
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating, or G_floating
read only
by reference, array reference

Array of length at least

1+ (n-1) *incb

where:

n = length of the linear recurrence specified in n
incb = increment argument for the array b specified in inch

The h argument is the address of a longword integer or floating-point number
that is this array.

incb
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array h. The inch argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inch.

t
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating, or G_floating
modify
by reference

Variable containing the starting value for the recurrence; overwritten with the
value computed by the last iteration of the linear recurrence relation. The t
argument is the address of a longword integer or floating-point number that is
this value.

MTH-199

MTH$VxFOLRLy_MA_ V5

Description

Examples

MTH-200

MTH$VxFOLRLy _MA_ V5 is a group of routines that provide a vectorized
algorithm for computing the following linear recurrence relation. (The Ton the
right side of the equation is the result of the previous iteration of the loop.)

T = +/-T * A(I) + B(I)

Note ___________ _

Save the contents of vector registers VO through V5 before you call this
routine.

Call this routine to utilize vector hardware when computing the recurrence. As
an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRy_MA_VS(N,A(Kl),INCA,B(K2),INCB,T)

The preceding FORTRAN call replaces the following loop:

Kl = ••.
K2 = .••
DO I = 1, N
T = {+/-}T * A(Kl+(I-l)*INCA) + B(Kl+(I-l)*INCB)
END DO

The arrays used in a FOLR expression must be of the same data type in order to
be vectorized and user callable. The MTH$ FOLR routines assume that all of the
arrays are of the same data type.

This group of routines, MTH$VxFOLRLy _MA_ V5 (and also MTH$VxFOLRLy _
z_ V2) returns only the result of the last iteration of the linear recurrence
relation. This is different from the behavior of MTH$VxFOLRy _MA_ V15 (and
also MTH$VxFOLRy_z_ V8), which save the result of each iteration of the linear
recurrence relation in an array.

If you specify 0 for the input increment arguments (inca and inch), the input will
be treated as a scalar and broadcast to a vector input with all vector elements
equal to the scalar value.

1. c
C The following FORTRAN loop computes
c a linear recurrence.
c
C G FLOAT

INTEGER N,INCA,INCB,I
REAL*8 A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
DO I = 1, N
T = -T * A(I*INCA) + B(I*INCB)
END DO

MTH$VxFOLRLy_MA_V5

c
c The following call from FORTRAN to a FOLR
c routine replaces the preceding loop.
c
C G FLOAT

2. c

INTEGER N,INCA,INCB
DIMENSION A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
T = MTH$VGFOLRLN_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

C The following FORTRAN loop computes
C a linear recurrence.
c
C G FLOAT

c

INTEGER N,INCA,INCB,I
REAL*8 A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
DO I = 1, N
T = T * A(I*INCA) + B(I*INCB)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C G FLOAT

INTEGER N,INCA,INCB
DIMENSION A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
T = MTH$VGFOLRLP_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

MTH-201

MTH$VxFOLRLy _z_ V2

MTH$VxFOLRLy_z_V2-First Order Linear Recurrence -
Multiplication or Addition - Last Value

Format

Returns

MTH-202

The First Order Linear Recurrence - Multiplication or Addition - Last Value
routines provide a vectorized algorithm for the linear recurrence relation that
includes either a multiplication or an addition operation. Only the last value
computed is stored.

MTH$VJFOLRLP_M_V2 n,a,inca,t

MTH$VFFOLRLP_M_V2 n,a,inca,t

MTH$VDFOLRLP_M_V2 n,a,inca,t

MTH$VGFOLRLP_M_V2 n,a,inca,t

MTH$VJFOLRLN_M_V2 n,a,inca,t

MTH$VFFOLRLN_M_V2 n,a,inca,t

MTH$VDFOLRLN_M_V2 n,a,inca,t

MTH$VGFOLRLN_M_V2 n,a,inca,t

MTH$VJFOLRLP_A_V2 n,a,inca,t

MTH$VFFOLRLP_A_V2 n,a,inca,t

MTH$VDFOLRLP_A_V2 n,a,inca,t

MTH$VGFOLRLP_A_V2 n,a,inca,t

MTH$VJFOLRLN_A_V2 n,a,inca,t

MTH$VFFOLRLN_A_V2 n,a,inca,t

MTH$VDFOLRLN_A_V2 n,a,inca,t

MTH$VGFOLRLN_A_V2 n,a,inca,t

To obtain one of the preceding formats, substitute the following for x, y, and z in
MTH$VxFOLRLy _z_ V2:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

z M for multiplication, A for addition

Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating or G_floating
write only
by value

The function value is the result of the last iteration of the linear recurrence
relation. The function value is returned in RO or RO and Rl.

Arguments

n
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

MTH$VxFOLRLy _z_ V2

Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

a
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating, or G_floating
read only
by reference, array reference

Array of length at least

n * inca

where:

n = length of the linear recurrence specified in n

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this
array.

in ca
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by reference

Increment argument for the array a. The inca argument is the address of a
signed longword integer containing the increment argument. For contiguous
elements, specify 1 for inca.

t
Open VMS usage
type
access
mechanism

longword_signed or floating_point
longword integer (signed), F _floating, D_floating, or G_floating
modify
by reference

Variable containing the starting value for the recurrence; overwritten with the
value computed by the last iteration of the linear recurrence relation. The t
argument is the address of a longword integer or floating-point number that is
this value.

MTH$VxFOLRLy _z_ V2

Description

MTH$VxFOLRLy _z_ V2 is a group of routines that provide a vectorized algorithm
for computing one of the following linear recurrence relations. (The T on the right
side of the following equations is the result of the previous iteration of the loop.)

T = +/-T *A(!)

or

T = +/-T + A(I)

For the first relation, specify M for z in the routine name to denote multiplication;
for the second relation, specify A for z in the routine name to denote addition.

Note

Save the contents of vector registers VO, Vl, and V2 before you call this
routine.

Call this routine to utilize vector hardware when computing the recurrence. As
an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRLy_z_V2(N,A(Kl),INCA,T)

The preceding FORTRAN call replaces the following loop:

Kl = ••• ,
DO I = 1, N
T = {+/-}T {+/*} A(Kl+(I-l)*INCA)
END DO

The arrays used in a FOLR expression must be of the same data type in order to
be vectorized and user callable. The MTH$ FOLR routines assume that all of the
arrays are of the same data type.

This group of routines, MTH$VxFOLRLy _z_ V2 (and also MTH$VxFOLRLy _
MA_ V5) return only the result of the last iteration of the linear recurrence
relation. This is different from the behavior of MTH$VxFOLRy _MA_ V15 (and
also MTH$VxFOLRy _z_ V8), which save the result of each iteration of the linear
recurrence relation in an array.

If you specify 0 for the input increment argument (inca), the input will be treated
as a scalar and broadcast to a vector input with all vector elements equal to the
scalar value.

Examples

1. c
C The following FORTRAN loop computes
C a linear recurrence.
c
C D FLOAT

c

INTEGER I,N
REAL*8 A(200), T
T = 78.9847562
N = 20
DO I = 4, N
T = -T * A(I*lO)
END DO

c The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

INTEGER N

2. c

REAL*8 A(200), T
T = 78.9847562
N = 20
T = MTH$VDFOLRLN_M_V2(N-3, A(40), 10, T)

C The following FORTRAN loop computes
C a linear recurrence.
c
C D FLOAT

c

INTEGER I,N
REAL*8 A(200), T
T = 78.9847562
N = 20
DO I = 4, N
T = T + A(I*lO)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

INTEGER N
REAL*8 A(200), T
T = 78.9847562
N = 20
T = MTH$VDFOLRLP_A_V2(N-3, A(40), 10, T)

MTH$VxFOLRLy _z_ V2

A
Additional MTH$ Routines

The following supported MTH$ routines are not included with the routines in
the Scalar MTH$ Reference Section because they are rarely used. The majority
of these routines serve to satisfy external references when intrinsic functions
in FORTRAN and other languages are passed as parameters. Otherwise, the
functions are performed by inline code.

Table A-1 lists all of the entry point and argument information for the MTH$
routines not documented in the Scalar MTH$ Reference Section of this manual.

Table A-1 Additional MTH$ Routines

Routine Name

MTH$ABS
Format:

Returns:

f·floating:

MTH$DABS
Format:

Returns:

d-floating:

MTH$GABS
Format:

Returns:

g-floating:

MTH$HABS
Format:

Returns:

h-abs-val:

h-floating:

Entry Point Information

F-fioating Absolute Value Routine

MTH$ABS f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

D-fioating Absolute Value Routine

MTH$DABS d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-fioating Absolute Value Routine

MTH$GABS g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-fioating Absolute Value Routine

MTH$HABS h-abs-val, h-floating

None

floating_point, H_floating, write only, by
reference

floating_point, H_floating, read only, by
reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$IIABS

Format:

Returns:

word:

MTH$JIABS

Format:

Returns:

longword:

MTH$IIAND

Format:

Returns:

wordl:

word2:

MTH$JIAND

Format:

Returns:

longword!:

longWord2:

MTH$DBLE

Format:

Returns:

f-floating:

MTH$GDBLE

Format:

Returns:

f-floating:

Entry Point Information

Word Absolute Value Routine

MTH$IIABS word

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by
reference

Longword Absolute Value Routine

MTH$JIABS longword

longword_signed, longword (signed), write only,
by value

longword_signed, longword (signed), read only,
by reference

Bitwise AND of Two Word Parameters Routine

MTH$1~ wordl, word2

word_unsigned, word (unsigned), write only, by
value

word_unsigned, word (unsigned), read only, by
reference

word_unsigned, word (unsigned), read only, by
reference

Bitwise AND of Two Longword Parameters
Routine

MTH$JIAND longword!, longword2

longword_unsigned, longword (unsigned), write
only, by value

longword_unsigned, longword (unsigned), read
only, by reference

longword_unsigned, longword (unsigned), read
only, by reference

Convert F-floating to D-floating (Exact) Routine

MTH$DBLE f-floating

floating_point, D_floating, write only, by value

floating_point, F _floating, read only, by reference

Convert F-fioating to G-floating (Exact) Routine

MTH$GDBLE f-floating

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$DIM Positive Difference of Two F-floating Parameters
Routine

Format: MTH$DIM f-floatingl, f-floating2

Returns: floating_point, F _floating, write only, by value

f-floatingl: floating_point, F _floating, read only, by reference

f-floating2: floating_point, F _floating, read only, by reference

MTH$DDIM Positive Difference of Two D-floating Parameters
Routine

Format: MTH$DDIM d-floatingl, d-floating2

Returns: floating_point, D_floating, write only, by value

d-floatingl: floating_point, D_floating, read only, by reference

d-floating2: floating_point, D_floating, read only, by reference

MTH$GDIM Positive Difference of Two G-floating Parameters
Routine

Format: MTH$GDIM g-floatingl, g-floating2

Returns: floating_point, G_floating, write only, by value

g-floatingl: floating_point, G_floating, read only, by reference

g-floating2: floating_point, G_floating, read only, by reference

MTH$HDIM Positive Difference of Two H-floating Parameters
Routine

Format: MTH$HDIM h-floating, h-floatingl, h-floating2

Returns: None

h-floating: floating_point, H_floating, write only, by
reference

h-floatingl: floating_point, H_floating, read only, by
reference

h-floating2: floating_point, H_floating, read only, by
reference

MTH$IIDIM Positive Difference of Two Word Parameters
Routine

Format: MTH$IIDIM wordl, word2

Returns: word_signed, word (signed), write only, by value

wordl: word_signed, word (signed), read only, by
reference

word2: word_signed, word (signed), read only, by
reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$JIDIM Positive Difference of Two Longword Parameters
Routine

Format: MTH$JIDIM longwordl, longword2

Returns: longword_signed, longword (signed), write only,
by value

longwordl: longword_signed, longword (signed), read only,
by reference

longword2: longword_signed, longword (signed), read only,
by reference

MTH$IIEOR Bitwise Exclusive OR of Two Word Parameters
Routine

Format: MTH$IIEOR wordl, word2

Returns: word_unsigned, word (unsigned), write only, by
value

wordl: word_unsigned, word (unsigned), read only, by
reference

word2: word_unsigned, word (unsigned), read only, by
reference

MTH$JIEOR Bitwise Exclusive OR of Two Longword
Parameters Routine

Format: MTH$JIEOR longwordl, longword2

Returns: longword_unsigned, longword (unsigned), write
only, by value

longword!: longword_unsigned, longword (unsigned), read
only, by reference

longword2: longword_unsigned, longword (unsigned), read
only, by reference

MTH$IIFIX Convert F-fioating to Word (Truncated) Routine

Format: MTH$IIFIX f-floating

Returns: word_signed, word (signed), write only, by value

f-ftoating: floating_point, F _floating, read only, by reference

MTH$JIFIX Convert F-fioating to Longword (Truncated)
Routine

Format: MTH$JIFIX f-floating

Returns: longword_signed, longword (signed), write only,
by value

f-floating: floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$FLOATI Convert Word to F-floating (Exact) Routine

Format: MTH$FLOATI word

Returns: floating_point, F _floating, write only, by value

word: word_signed, word (signed), read only, by
reference

MTH$DFLOTI Convert Word to D-floating (Exact) Routine

Format: MTH$DFLOTI word

Returns: floating_point, D_floating, write only, by value

word: word_signed, word (signed), read only, by
reference

MTH$GFLOTI Convert Word to G-floating (Exact) Routine

Format: MTH$GFLOTI word

Returns: floating_point, G_floating, write only, by value

word: word_signed, word (signed), read only, by
reference

MTH$FLOATJ Convert Longword to F-floating (Rounded)
Routine

Format: MTH$FLOATJ longword

Returns: floating_point, F _floating, write only, by value

longword: longword_signed, longword (signed), read only,
by reference

MTH$DFLOTJ Convert Longword to D-floating (Exact) Routine

Format: MTH$DFLOTJ longword

Returns: floating_point, D_floating, write only, by value

longword: longword_signed, longword (signed), read only,
by reference

MTH$GFLOTJ Convert Longword to G-floating (Exact) Routine

Format: MTH$GFLOTJ longword

Returns: floating_point, G_floating, write only, by value

longword: longword_signed, longword (signed), read only,
by reference

(continued on next page)

A-5

Additional MTH$ Routines

A-6

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$FLOOR Convert F-floating to Greatest F-floating Integer
Routine

Format: MTH$FLOOR f-floating

JSB: MTH$FLOOR_Rl f-floating

Returns: floating_point, F _floating, write only, by value

f-floating: floating_point, F _floating, read only, by reference

MTH$DFLOOR Convert D-fioating to Greatest D-fioating Integer
Routine

Format: MTH$DFLOOR cl-floating

JSB: MTH$DFLOOR_R3 cl-floating

Returns: floating_point, D_floating, write only, by value

d-floating: floating_point, D_floating, read only, by reference

MTH$GFLOOR Convert G-floating to Greatest G-floating Integer
Routine

Format: MTH$GFLOOR g-floating

JSB: MTH$GFLOOR_R3 g-floating

Returns: floating_point, G_floating, write only, by value

g-floating: floating_point, G_floating, read only, by reference

MTH$HFLOOR Convert H-floating to Greatest H-floating Integer
Routine

Format: MTH$HFLOOR max-h-float, h-floating

JSB: MTH$HFLOOR_R7 h-floating

Returns: None

max-h-float: floating_point, H_floating, write only, by
reference

h-floating: floating_point, H_floating, read only, by
reference

MTH$AINT Convert F-floating to Truncated F-fioating
Routine

Format: MTH$AINT f-floating

JSB: MTH$AINT_R2 f-floating

Returns: floating_point, F _floating, write only, by value

f-floating: floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$DINT

Format:

JSB:

Returns:

d-fioating:

MTH$IIDINT

Format:

Returns:

d-fioating:

MTH$JIDINT

Format:

Returns:

d-fioating:

MTH$GINT

Format:

JSB:

Returns:

g-fioating:

MTH$IIGINT

Format:

Returns:

g-fioating:

MTH$JIGINT

Format:

Returns:

g-fioating:

Entry Point Information

Convert D-floating to Truncated D-floating
Routine

MTH$DINT d-floating

MTH$DINT_R4 d-floating

floating_point, D_floating, write only, by value

floating_point, D _floating, read only, by reference

Convert D-floating to Word (Truncated) Routine

MTH$IIDINT d-floating

word_signed, word (signed), write only, by value

floating_point, D _floating, read only, by reference

Convert D-floating to Longword (Truncated)
Routine

MTH$JIDINT d-floating

longword_signed, longword (signed), write only,
by value

floating_point, D_floating, read only, by reference

Convert G-floating to Truncated G-floating
Routine

MTH$GINT g-floating

MTH$GINT_R4 g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

Convert G-fioating to Word (Truncated) Routine

MTH$IIGINT g-floating

word_signed, word (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert G-fioating to Longword (Truncated)
Routine

MTH$JIGINT g-floating

longword_signed, longword (signed), write only,
by value

floating_point, G_floating, read only, by reference

(continued on next page)

A-7

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$HINT

MTH$IIHINT

MTH$JIHINT

MTH$IINT

MTH$JINT

A-8

Format:

JSB:

Returns:

trunc-h-flt:

h-floating:

Format:

Returns:

h-floating:

Format:

Returns:

h-floating:

Format:

Returns:

f-floating:

Format:

Returns:

f-floating:

Entry Point Information

Convert H-floating to Truncated H-floating
Routine

MTH$HINT trunc-h-flt, h-floating

MTH$HINT_R8 h-floating

None

floating_point, H_floating, write only, by
reference

floating_point, H_floating, read only, by
reference

Convert H-floating to Word (Truncated) Routine

MTH$IIHINT h-floating

word_signed, word (signed), write only, by value

floating_point, H_floating, read only, by
reference

Convert H-floating to Longword (Truncated)
Routine

MTH$JIHINT h-floating

longword_signed, longword (signed), write only,
by value

floating_point, H_floating, read only, by
reference

Convert F-floating to Word (Truncated) Routine

MTH$IINT f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to Longword (Truncated)
Routine

MTH$JINT f-floating

longword_signed, longword (signed), write only,
by value

floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$IIOR Bitwise Inclusive OR of Two Word Parameters
Routine

Format: MTH$110R wordl, word2

Returns: word_unsigned, word (unsigned), write only, by
value

wordl: word_unsigned, word (unsigned), read only, by
reference

word2: word_unsigned, word (unsigned), read only, by
reference

MTH$JIOR Bitwise Inclusive OR of Two Longword
Parameters Routine

Format: MTH$JIOR longwordl, longword2

Returns: longword_unsigned, longword (unsigned), write
only, by value

longwordl: longword_unsigned, longword (unsigned), read
only, by reference

longword2: longword_unsigned, longword (unsigned), read
only, by reference

MTH$AIMAXO F-fioating Maximum of N Word Parameters
Routine

Format: MTH$AIMAXO word, ...

Returns: floating_point, F _floating, write only, by value

word: word_signed, word (signed), read only, by
reference

MTH$AJMAXO F-fioating Maximum of N Longword Parameters

MTH$IMAXO

Routine

Format: MTH$AJMAXO longword, ...

Returns: floating_point, F _floating, write only, by value

longword: longword_signed, longword (signed), read only,
by reference

Format:

Returns:

word:

Word Maximum of N Word Parameters Routine

MTH$1MAXO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by
reference

(continued on next page)

A_Q

Additional MTH$ Routines

A-10

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$JMAXO Longword Maximum of N Longword Parameters
Routine

Format: MTH$JMAXO longword, ...

Returns: longword_signed, longword (signed), write only,
by value

longword: longword_signed, longword (signed), read only,
by reference

MTH$AMAX1 F-floating Maximum of NF-floating Parameters
Routine

Format: MTH$AMAX1 f-floating, ...

Returns: floating_point, F _floating, write only, by value

f-floating: floating_point, F _floating, read only, by reference

MTH$DMAX1 D-floating Maximum of ND-floating Parameters
Routine

Format: MTH$DMAX1 cl-floating, ...

Returns: floating_point, D_floating, write only, by value

d-floating: floating_point, D_floating, read only, by reference

MTH$GMAX1 G-floating Maximum of NG-floating Parameters
Routine

Format: MTH$GMAX1 g-floating, ...

Returns: floating_point, G_floating, write only, by value

g-floating: floating_point, G_floating, read only, by reference

MTH$HMAX1 H-floating Maximum of NH-floating Parameters
Routine

Format: MTH$HMAX1 h-float-max, h-floating, ...

Returns: None

h-float-max: floating_point, H_floating, write only, by
reference

h-floating: floating_point, H_floating, read only, by
reference

MTH$IMAX1 Word Maximum of NF-floating Parameters
Routine

Format: MTH$IMAX1 f-floating, ...

Returns: word_signed, word (signed), write only, by value

f-floating: floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JMAX1

Format:

Returns:

f-floating:

MTH$AIMINO

Format:

Returns:

word:

MTH$AJMINO

Format:

Returns:

longword:

MTH$IMINO

Format:

Returns:

word:

MTH$JMINO

Format:

Returns:

longword:

MTH$AMIN1

Format:

Returns:

f-floating:

Entry Point Information

Longword Maximum of NF-floating Parameters
Routine

MTH$JMAX1 f-floating, ...

longword_signed, longword (signed), write only,
by value

floating_point, F _floating, read only, by reference

F-floating Minimum of N Word Parameters
Routine

MTH$AIMINO word, ...

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by
reference

F-floating Minimum of N Longword Parameters
Routine

MTH$AJMINO longword, ...

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only,
by reference

Word Minimum of N Word Parameters Routine

MTH$IMINO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by
reference

Longword Minimum of N Longword Parameters
Routine

MTH$JMINO longword, ...

longword_signed, longword (signed), write only,
by value

longword_signed, longword (signed), read only,
by reference

F-floating Minimum of NF-floating Parameters
Routine

MTH$AMIN1 f-floating, ...

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

(continued on next page)

l_11

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$DMIN1 D-floating Minimum of ND-floating Parameters
Routine

Format: MTH$DMIN1 d-floating, ...

Returns: floating_point, D_floating, write only, by value

d-floating: floating_point, D_floating, read only, by reference

MTH$GMIN1 G-floating Minimum of NG-floating Parameters
Routine

Format: MTH$GMIN1 g-floating, ...

Returns: floating_point, G_floating, write only, by value

g-floating: floating_point, G_floating, read only, by reference

MTH$HMIN1 H-floating Minimum of NH-floating Parameters
Routine

Format: MTH$HMIN1 h-float-max, h-floating, ...

Returns: None

h-float-max: floating_point, H_floating, write only, by
reference

h-floating: floating_point, H_floating, read only, by
reference

MTH$IMIN1 Word Minimum of N F-floating Parameters
Routine

Format: MTH$IMIN1 f-floating, ...

Returns: word_signed, word (signed), write only, by value

f-floating: floating_point, F _floating, read only, by reference

MTH$JMIN1 Longword Minimum of NF-floating Parameters
Routine

Format: MTH$JMIN1 f-floating, ...

Returns: longword_signed, longword (signed), write only,
by value

f-floating: floating_point, F _floating, read only, by reference

MTH$AMOD Remainder from Division of 'llvo F-floating
Parameters Routine

Format: MTH$AMOD dividend, divisor

Returns: floating_point, F _floating, write only, by value

dividend: floating_point, F _floating, read only, by reference

divisor: floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$DMOD

Format:

Returns:

dividend:

divisor:

MTH$GMOD

Format:

Returns:

dividend:

divisor:

MTH$HMOD

Format:

Returns:

h-mod:

dividend:

divisor:

MTH$IMOD

Format:

Returns:

dividend:

divisor:

MTH$JMOD

Format:

Returns:

dividend:

divisor:

Entry Point Information

Remainder from Division of Two D-floating
Parameters Routine

MTH$DMOD dividend, divisor

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

fl.oating_point, D_floating, read only, by reference

Remainder from Division of Two G-floating
Parameters Routine

MTH$GMOD dividend, divisor

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

Remainder from Division of Two H-floating
Parameters Routine

MTH$HMOD h-mod, dividend, divisor

None

floating_point, H_floating, write only, by
reference

floating_point, H_floating, read only, by
reference

fl.oating_point, H_fl.oating, read only, by
reference

Remainder from Division of Two Word
Parameters Routine

MTH$IMOD dividend, divisor

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by
reference

word_signed, word (signed), read only, by
reference

Remainder of Two Longword Parameters Routine

MTH$JMOD dividend, divisor

longword_signed, longword (signed), write only,
by value

longword_signed, longword (signed), read only,
by reference

longword_signed, longword (signed), read only,
by reference

(continued on next page)

A-13

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name Entry Point Information

MTH$ANINT Convert F-floating to Nearest F-floating Integer
Routine

Format: MTH$ANINT f-floating

Returns: floating_point, F _floating, write only, by value

f-floating: floating_point, F _floating, read only, by reference

MTH$DNINT Convert D-floating to Nearest D-floating Integer
Routine

Format: MTH$DNINT cl-floating

Returns: floating_point, D_floating, write only, by value

d-floating: floating_point, D_floating, read only, by reference

MTH$IIDNNT Convert D-floating to Nearest Word Integer
Routine

Format: MTH$IIDNNT cl-floating

Returns: word_signed, word (signed), write only, by value

d-floating: floating_point, D_floating, read only, by reference

MTH$JIDNNT Convert D-floating to Nearest Longword Integer
Routine

Format: MTH$JIDNNT cl-floating

Returns: longword_signed, longword (signed), write only,
by value

d-floating: floating_point, D_floating, read only, by reference

MTH$GNINT Convert G-floating to Nearest G-floating Integer
Routine

Format: MTH$GNINT g-floating

Returns: floating_point, G_floating, write only, by value

g-floating: floating_point, G_floating, read only, by reference

MTH$IIGNNT Convert G-floating to Nearest Word Integer
Routine

Format: MTH$IIGNNT g-floating

Returns: word_signed, word (signed), write only, by value

g-floating: floating_point, G_floating, read only, by reference

(continued on next page)

A-14

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JIGNNT

Format:

Returns:

g-fl.oating:

MTH$HNINT

Format:

Returns:

nearst-h-flt:

h-floating:

MTH$IIHNNT

Format:

Returns:

h-fl.oating:

MTH$JIHNNT

Format:

Returns:

h-floating:

MTH$ININT

Format:

Returns:

f-fl.oating:

MTH$JNINT

Format:

Returns:

f-floating:

Entry Point Information

Convert G-floating to Nearest Longword Integer
Routine

MTH$JIGNNT g-floating

longword_signed, longword (signed), write only,
by value

floating_point, G_floating, read only, by reference

Convert H-floating to Nearest H-floating Integer
Routine

MTH$HNINT nearst-h-flt, h-floating

None

floating_point, H_floating, write only, by
reference

floating_point, H_floating, read only, by
reference

Convert H-floating to Nearest Word Integer
Routine

MTH$IIHNNT h-floating

word_signed, word (signed), write only, by value

floating_point, H_floating, read only, by
reference

Convert H-floating to Nearest Longword Integer
Routine

MTH$JIHNNT h-floating

longword_signed, longword (signed), write only,
by value

floating_point, H_floating, read only, by
reference

Convert F-floating to Nearest Word Integer
Routine

MTH$ININT f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to Nearest Longword Integer
Routine

MTH$JNINT f-floating

longword_signed, longword (signed), write only,
by value

floating_point, F _floating, read only, by reference

(continued on next page)

A-15

Additional MTH$ Routines

Table A-1 {Cont.) Additional MTH$ Routines

Routine Name

MTH$INOT

MTH$JNOT

MTH$DPROD

MTH$GPROD

MTH$SGN

MTH$SGN

A-16

Format:

Returns:

word:

Format:

Returns:

longword:

Format:

Returns:

f-floatingl:

f-floating2:

Format:

Returns:

f-floatingl:

f-floating2:

Format:

Returns:

f-floating:

Format:

Returns:

d-floating:

Entry Point Information

Bitwise Complement of Word Parameter Routine

MTH$INOT word

word_unsigned, word (unsigned), write only, by
value

word_unsigned, word (unsigned), read only, by
reference

Bitwise Complement of Longword Parameter
Routine

MTH$JNOT longword

longword_unsigned, longword (unsigned), write
only, by value

longword_unsigned, longword (unsigned), read
only, by reference

D-fioating Product of Two F-fioating Parameters
Routine

MTH$DPROD f-floatingl, f-floating2

floating_point, D_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

G-fioating Product of Two F-fioating Parameters
Routine

MTH$GPROD f-floatingl, f-floating2

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

F-fioating Sign Function

MTH$SGN f-floating

longword_signed, longword (signed), write only,
by reference

floating_point, F _floating, read only, by reference

D-fioating Sign Function

MTH$SGN cl-floating

longword_signed, longword (signed), write only,
by reference

floating_point, D_floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$IISHFT

Format:

Returns:

word:

shift-cnt:

MTH$JISHFT

Format:

Returns:

longword:

shift-cnt:

MTH$SIGN

Format:

Returns:

f-float-x:

f-float-y:

MTH$DSIGN

Format:

Returns:

d-float-x:

d-float-y:

MTH$GSIGN

Format:

Returns:

g-float-x:

g-float-y:

Entry Point Information

Bitwise Shift of Word Routine

MTH$IISHFT word, shift-cnt

word_unsigned, word (unsigned), write only, by
value

word_unsigned, word (unsigned), read only, by
reference

word_signed, word (signed), read only, by
reference

Bitwise Shift of Longword Routine

MTH$JISHFT longword, shift-cnt

longword_unsigned, longword (unsigned), write
only, by value

longword_unsigned, longword (unsigned), read
only, by reference

longword_signed, longword (signed), read only,
by reference

F-floating Transfer of Sign of Y to Sign of X
Routine

MTH$SIGN f-float-x, f-float-y

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

D-floating Transfer of Sign of Y to Sign of X
Routine

MTH$DSIGN d-float-x, d-float-y

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

floating_point, D_floating, read only, by reference

G-floating Transfer of Sign of Y to Sign of X
Routine

MTH$GSIGN g-float-x, g-float-y

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

(continued on next page)

A-17

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$HSIGN

MTH$IISIGN

MTH$JISIGN

MTH$SNGL

MTH$SNGLG

A-18

Format:

Returns:

h-result:

h-float-x:

h-float-y:

Format:

Returns:

word-x:

word-y:

Format:

Returns:

longwrd-x:

longwrd-y:

Format:

Returns:

d-floating:

Format:

Returns:

g-floating:

Entry Point Information

H-fioating Transfer of Sign of Y to Sign of X
Routine

MTH$HSIGN h-result, h-float-x, h-float-y

None

floating_point, H_floating, write only, by
reference

floating_point, H_floating, read only, by
reference

floating_point, H_floating, read only, by
reference

Word Transfer of Sign of Y to Sign of X Routine

MTH$IISIGN word-x, word-y

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by
reference

word_signed, word (signed), read only, by
reference

Longword Transfer of Sign of Y to Sign of X
Routine

MTH$JISIGN longwrd-x, longwrd-y

longword_signed, longword (signed), write only,
by reference

longword_signed, longword (signed), read only,
by reference

longword_signed, longword (signed), read only,
by reference

Convert D-fioating to F-fioating (Rounded)
Routine

MTH$SNGL cl-floating

floating_point, F _floating, write only, by value

floating_point, D_floating, read only, by reference

Convert G-fioating to F-fioating (Rounded)
Routine

MTH$SNGLG g-floating

floating_point, F _floating, write only, by value

floating_point, G_floating, read only, by reference

B
Vector MTH$ Routine Entry Points

Table B-1 contains all of the vector MTH$ routines that you can call from
VAX MACRO. Be sure to read Section 2.3.3 and Section 2.3.4 before using the
information in this table.

Table B-1 Vector MTH$ Routines

Call Vector
Scalar or Vector Input Output Vector Name Vector Name
Name JSB Registers Registers (Underflows Not Signaled) (Underflows Signaled)

AINT JSB VO VO MTH$VAINT_RO_ Vl

DINT JSB VO VO MTH$VDINT_R3_ V3

GINT JSB VO VO MTH$VGINT_R3_ V3

DPROD Call VO,Vl VO MTH$VVDPROD_Rl_ Vl

GPROD Call VO,Vl VO MTH$VVGPROD_Rl_ Vl

ACOS JSB VO VO MTH$VACOS_R6_ V7

DACOS JSB VO VO MTH$VDACOS_R2_ V7

GACOS JSB VO VO MTH$VGACOS_R2_ V7

ACOSD JSB VO VO MTH$VACOSD_R6_v7

DACOSD JSB VO VO MTH$VDACOSD_R2_ V7

GACOSD JSB VO VO MTH$VGACOS_R2_ V7

ASIN JSB VO VO MTH$VASIN_R2_ V6

DAS IN JSB VO VO MTH$VDASIN_R2_ V6

GAS IN JSB VO VO MTH$VGASIN_R2_ V6

AS IND JSB VO VO MTH$VASIND_R2_ V6

DAS IND JSB VO VO MTH$VDASIND_R2_ V6

GAS IND JSB VO VO MTH$VGASIND_R2_ V6

ATAN JSB VO VO MTH$VATAN_RO_ V4

DATAN JSB VO VO MTH$VDATAN_RO_ V6

GATAN JSB VO VO MTH$VGATAN_RO_ V6

ATAND JSB VO VO MTH$VATAND_RO_ V4

DATAND JSB VO VO MTH$VDATAND_RO_ V6

GATAND JSB VO VO MTH$VGATAND_RO_ V6

ATAN2 JSB VO,Vl VO MTH$VVATAN2_R4_ V7

DATAN2 JSB VO,Vl VO MTH$VVDATAN2_R4_ V9

(continued on next page)

Vector MTH$ Routine Entry Points

Table 8-1 (Cont.) Vector MTH$ Routines

Call Vector
Scalar or Vector Input Output Vector Name Vector Name
Name JSB Registers Registers (Underflows Not Signaled) (Underflows Signaled)

GATAN2 JSB VO,Vl VO MTH$VVGATAN2_R4_ V9

ATAND2 JSB VO,Vl VO MTH$VVATAND2_R4_ V7

DATAND2 JSB VO,Vl VO MTH$VVDATAND2_R4_ V9

GATAND2 JSB VO,Vl VO MTH$VVGATAND2_R4_ V9

CABS Call VO,Vl VO MTH$VCABS_Rl_ V5

CD ABS Call VO,Vl VO MTH$VCDABS_Rl_v6

CG ABS Call VO,Vl VO MTH$VCGABS_Rl_v6

ccos Call VO,Vl VO,Vl MTH$VCCOS_Rl_ Vll

CDCOS Call VO,Vl VO,Vl MTH$VCDCOS_Rl_ Vll

CGCOS Call VO,Vl VO,Vl MTH$VCGCOS_Rl_ Vll

cos JSB VO VO MTH$VCOS_R4_v7

DCOS JSB VO VO MTH$VDCOS_R4_ VS

GCOS JSB VO VO MTH$VGCOS_R4_ VS

COSD JSB VO VO MTH$VCOSD_R4_v6

DCOSD JSB VO VO MTH$VDCOSD_R4_v6

GCOSD JSB VO VO MTH$VGCOSD_R4_v6

CEXP Call VO,Vl VO,Vl MTH$VCEXP _Rl_ VS

CD EXP Call VO,Vl VO,Vl MTH$VCDEXP _Rl_ VlO

CG EXP Call VO,Vl VO,Vl MTH$VCGEXP _Rl_ VlO

CLOG Call VO,Vl VO,Vl MTH$VCLOG_Rl_ VS

CD LOG Call VO,Vl VO,Vl MTH$VCDLOG_Rl_ V10

CG LOG Call VO,Vl VO,Vl MTH$VCGLOG_Rl_ V10

AMOD JSB VO,RO VO MTH$VAMOD_R4_ V5 MTH$VAMOD_E_R4_ V5

DMOD JSB VO,RO VO MTH$VDMOD_R7 _v6 MTH$VDMOD_E_R7 _ V6

GMOD JSB VO,RO VO MTH$VGMOD_R7 _v6 MTH$VGMOD_E_R7 _ V6

CSIN Call VO,Vl VO,Vl MTH$VCSIN_Rl_ Vll

CDS IN Call VO,Vl VO,Vl MTH$VCDSIN_Rl_ Vll

CGSIN Call VO,Vl VO,Vl MTH$VCGSIN_Rl_ Vll

CSQRT Call VO,Vl VO,Vl MTH$VCSQRT_Rl_ V7

CD SQRT Call VO,Vl VO,Vl MTH$VCDSQRT_Rl_ VS

CGSQRT Call VO,Vl VO,Vl MTH$VCGSQRT_Rl_ VS

COSH JSB VO VO MTH$VCOSH_R5_ VS

DCOSH JSB VO VO MTH$VDCOSH_R5_ VS

GCOSH JSB VO VO MTH$VGCOSH_R5_ V8

EXP JSB VO VO MTH$VEXP _R3_v6 MTH$VEXP _E_R3_v6

DEXP JSB VO VO MTH$VDEXP _R3_v6 MTH$VDEXP _E_R3_v6

(continued on next page)

B-2

Vector MTH$ Routine Entry Points

Table 8-1 (Cont.) Vector MTH$ Routines

Call Vector
Scalar or Vector Input Output Vector Name Vector Name
Name JSB Registers Registers (Underflows Not Signaled) (Underflows Signaled)

GEXP JSB VO VO MTH$VGEXP _R3_ V6 MTH$VGEXP _E_R3_ V6

ALOG JSB VO VO MTH$VALOG_R3_ V5

DLOG JSB VO VO MTH$VDLOG_R3_ V7

GLOG JSB VO VO MTH$VGLOG_R3_ V7

ALOGlO JSB VO VO MTH$VALOG 10_R3_ V5

DLOGlO JSB VO VO MTH$VDLOG 10_R3_ V7

GLOGlO JSB VO VO MTH$VGLOG 10_R3_ V7

ALOG2 JSB VO VO MTH$VALOG2_R3_ V5

DLOG2 JSB VO VO MTH$VDLOG2_R3_ V7

GLOG2 JSB VO VO MTH$VGLOG2_R3_ V7

RANDOM JSB VO VO MTH$VRANDOM_R2_ VO

SIN JSB VO VO MTH$VSIN_R4_ V6

DSIN JSB VO VO MTH$VDSIN_R4_ V8

GSIN JSB VO VO MTH$VGSIN_R4_ V8

SIND JSB VO VO MTH$VSIND_R4_ V6 MTH$VSIND_E_R6_ V6

DSIND JSB VO VO MTH$VDSIND_R4_ V6 MTH$VDSIND_E_R6_ V6

GS IND JSB VO VO MTH$VGSIND_R4_ V6 MTH$VGSIND_E_R6_ V6

SIN COS JSB VO VO,Vl MTH$VSINCOS_R4_v7

DSINCOS JSB VO VO,Vl MTH$VDSINCOS_R4_ V8

GSINCOS JSB VO VO,Vl MTH$VGSINCOS_R4_ V8

SINCOSD JSB VO VO,Vl MTH$VSINCOSD_R4_ V6 MTH$VSINCOSD_E_R6_ V6

DSINCOSD JSB VO VO,Vl MTH$VDSINCOSD_R4_ V7 MTH$VDSINCOSD_E_R6_ V7

GSINCOSD JSB VO VO,Vl MTH$VGSINCOSD_R4_ V7 MTH$VGSINCOSD_E_R6_ V7

SINH JSB VO VO MTH$VSINH_R5_v9

DSINH JSB VO VO MTH$VDSINH_R5_ V9

GSINH JSB VO VO MTH$VGSINH_R5_ V9

SQRT JSB VO VO MTH$VSQRT_R2_ V4

DSQRT JSB VO VO MTH$VDSQRT_R2_ V5

GSQRT JSB VO VO MTH$VGSQRT_R2_ V5

TAN JSB VO VO MTH$VTAN_R4_ V5

DTAN JSB VO VO MTH$VDTAN_R4_ V5

GTAN JSB VO VO MTH$VGTAN_R4_ V5

TAND JSB VO VO MTH$VTAND_R4_ V5 MTH$VTAND_E_R4_ V5

DTAND JSB VO VO MTH$VDTAND_R4_ V5 MTH$VDTAND_E_R4_ V5

GTAND JSB VO VO MTH$VGTAND_R4_ V5 MTH$VGTAND_E_R4_ V5

TANH JSB VO VO MTH$VTANH_R3_ VlO

(continued on next page)

Vector MTH$ Routine Entry Points

Table 8-1 (Cont.) Vector MTH$ Routines

Call Vector
Scalar or Vector Input Output Vector Name Vector Name
Name JSB Registers Registers (Underflows Not Signaled) (Underflows Signaled)

DTANH JSB VO VO MTH$VDTANH_R3_ V10

GTANH JSB VO VO MTH$VGTANH_R3_ VlO

DIVC Call VO,Vl,V2,V3 VO,Vl OTS$VVDIVC_Rl_V6

DIV CD Call VO,Vl,V2,V3 VO,Vl OTS$VVDIVCD_R1_v7

DIV CG Call VO,Vl,V2,V3 VO,Vl OTS$VVDIVCG_Rl_ V7

MULC Call VO,Vl,V2,V3 VO,Vl OTS$VVMULC_Rl_ V4

MULCD Call VO,Vl,V2,V3 VO,Vl OTS$VVMULCD_Rl_ V 4

MULCG Call VO,Vl,V2,V3 VO,Vl OTS$VVMULCG_Rl_ V4

POWJJ Call VO,RO VO OTS$VPOWJJ_Rl_ Vl

POWRJ Call VO,RO VO OTS$VPOWRJ_Rl_ V2 OTS$VPOWRJ_E_Rl_ V2

POWDJ Call VO,RO VO OTS$VPOWDJ_Rl_ V2 OTS$VPOWDJ_E_R1_v2

POWGJ Call VO,RO VO OTS$VPOWGJ_Rl_ V2 OTS$VPOWGJ_E_Rl_ V2

POWRR Call VO,RO VO OTS$VPOWRR_Rl_ V4 OTS$VPOWRR_E_Rl_ V 4

POWDD Call VO,RO VO OTS$VPOWDD_Rl_ V8 OTS$VPOWDD_E_Rl_ V8

POWGG Call VO,RO VO OTS$VPOWGG_Rl_ V9 OTS$VPOWGG_E_Rl_ V9

R--LI

A
Absolute value, 1-4

· of complex number, MTH-23
Additional routines

list of, 1-4 to 1-9
Algorithm, 1-3
Arc cosine

in degrees, MTH-6, MTH-70
in radians, MTH-3, MTH-68

Arc sine
in degrees, MTH-11, MTH-74
in radians, MTH-9, MTH-72

Arc tangent
hyperbolic, MTH-21, MTH-84
in degrees, MTH-15, MTH-19, MTH-78,

MTH-82
in radians, MTH-13, MTH-17, MTH-76,

MTH-80
Arrays

conversion of, MTH-63

8
Backward indexing, 2-6
Bitwise AND operator, 1-4
Bitwise complement operator, 1-8
Bitwise exclusive OR operator, 1-5
Bitwise inclusive OR operator, 1-6
Bitwise shift, 1-8
BLAS

definition of, 2-1
BLAS Level 1

BLAS1$VlxAMAX, MTH-149
BLAS1$VxASUM, MTH-152
BLAS1$VxAXPY, MTH-155
BLAS1$VxCOPY, MTH-160
BLAS1$VxDOT, MTH-165
BLAS1$VxNRM2, MTH-170
BLAS1$VxROT, MTH-173
BLAS1$VxROTG, MTH-178
BLAS1$VxSCAL, MTH-182
BLAS1$VxSWAP, MTH-186

Index

c
Calling convention, 1-2
Complex numbers, 1-3, MTH-56, MTH-58,

MTH-111, MTH-121
absolute value of, MTH-23
complex exponential of, MTH-30, MTH-32
conjugate of, MTH-43, MTH-44
cosine of, MTH-26, MTH-28
made from floating-point, MTH-39, MTH-41
natural logarithm of, MTH-34, MTH-36
sine of, MTH-52, MTH-53

Condition handling, 1-3
Conjugate of complex number, MTH-43, MTH-44
Conversion of double to single floating-point value,

1-9
Conversion to greatest floating-point integer, 1-5
Copying

vector, MTH-160
Cosind

in radians, MTH-125
Cosine

D

hyperbolic, MTH-50, MTH-88
in degrees, MTH-48, MTH-87, MTH-128
in radians, MTH-46, MTH-86
of complex number, MTH-26, MTH-28

Double-precision value
converting, MTH-61
converting an array of, MTH-63

E
Entry point name, 1-1
Error checking

in FOLR routines, 2-6
Euclidean norm

of a vector, MTH-170
Exceptions

recovering from, 2-7
Exponential, MTH-65, MTH-90

of complex number, MTH-30, MTH-32

F
F-floating conversion, 1-4
First Order Linear Recurrence, MTH-190,

MTH-194, MTH-198, MTH-202
Floating-point

conversion to nearest value, 1-7
multiplication, 1-8
positive difference, 1-5
sign function, 1-8

FOLR
definition of, 2-6

FOLR routines, MTH-190, MTH-194, MTH-198,
MTH-202

error checking, 2-6
naming conventions, 2-6

FORTRAN
/BLAS qualifier, 2-2

Forward indexing, 2-6

G
Givens plane rotation

H

applying to a vector, MTH-173
generating the elements for, MTH-178

Hyperbolic arc tangent, MTH-21, MTH-84
Hyperbolic cosine, MTH-50, MTH-88
Hyperbolic sine, MTH-101, MTH-133
Hyperbolic tangent, MTH-109, MTH-142

Index
of a vector, MTH-149

Indexing
backward, 2-6
forward, 2-6

Inner product
of a vector, MTH-165

Integer to floating-point conversion, 1-5

J
JSB entry point, 1-2

L
Linear recurrence

definition of, 2-6
Logarithm

base 2, MTH-94, MTH-115
common, MTH-96, MTH-117
natural, MTH-92, MTH-113
natural complex, MTH-34, MTH-36

...... _.., __ ~

M
Mathematics routine

additional routines, A-1 to A-18
Maximum value, 1-6
Minimum value, 1-7
MTH$ACOS, MTH-3
MTH$ACOSD, MTH-6
MTH$AIMAG, MTH-111
MTH$ALOG, MTH-113
MTH$ALOG10, MTH-117
MTH$ALOG2, MTH-115
MTH$ASIN, MTH-9
MTH$ASIND, MTH-11
MTH$ATAN, MTH-13
MTH$ATAN2, MTH-17
MTH$ATAND, MTH-15
MTH$ATAND2, MTH-19
MTH$ATANH, MTH-21
MTH$CABS, MTH-23
MTH$CCOS, MTH-26
MTH$CDABS, MTH-23
MTH$CDCOS, MTH-28
MTH$CDEXP, MTH-32
MTH$CDLOG, MTH-36
MTH$CDSIN, MTH-53
MTH$CDSQRT, MTH-58
MTH$CEXP, MTH-30
MTH$CGABS, MTH-23
MTH$CGCOS, MTH-28
MTH$CGEXP, MTH-32
MTH$CGLOG, MTH-36
MTH$CGSIN, MTH-53
MTH$CGSQRT, MTH-58
MTH$CLOG, MTH-34
MTH$CMPLX, MTH-39
MTH$CONJG, MTH-43
MTH$COS, MTH-46
MTH$COSD, MTH-48
MTH$COSH, MTH-50
MTH$CSIN, MTH-52
MTH$CSQRT, MTH-56
MTH$CVT_DA_GA, MTH-63
MTH$CVT_D_G, MTH-61
MTH$CVT_GA_DA, MTH-63
MTH$CVT_G_D, MTH-61
MTH$DACOS, MTH-3
MTH$DACOSD, MTH-6
MTH$DASIN, MTH-9
MTH$DASIND, MTH-11
MTH$DATAN, MTH-13
MTH$DATAN2, MTH-17
MTH$DATAND, MTH-15
MTH$DATAND2, MTH-19
MTH$DATANH, MTH-21

MTH$DCMPLX, MTH--41
MTH$DCONJG, MTH-44
MTH$DCOS, MTH-46
MTH$DCOSD, MTH-48
MTH$DCOSH, MTH-50
MTH$DEXP, MTH-65
MTH$DIMAG, MTH-111
MTH$DLOG, MTH-113
MTH$DLOG10, MTH-117
MTH$DLOG2, MTH-115
MTH$DREAL, MTH-121
MTH$DSIN, MTH-123
MTH$DSINCOS, MTH-125
MTH$DSINCOSD, MTH-128
MTH$DSIND, MTH-131
MTH$DSINH, MTH-133
MTH$DSQRT, MTH-136
MTH$DTAN, MTH-138
MTH$DTAND, MTH-140
MTH$DTANH, MTH-142
MTH$EXP, MTH-65
MTH$GACOS, MTH-3
MTH$GACOSD, MTH-6
MTH$GASIN, MTH-9
MTH$GASIND, MTH-11
MTH$GATAN, MTH-13
MTH$GATAN2, MTH-17
MTH$GATAND, MTH-15
MTH$GATAND2, MTH-19
MTH$GATANH, MTH-21
MTH$GCMPLX, MTH-41
MTH$GCONJG, MTH-44
MTH$GCOS, MTH-46
MTH$GCOSD, MTH-48
MTH$GCOSH, MTH-50
MTH$GEXP, MTH-65
MTH$GIMAG, MTH-111
MTH$GLOG, MTH-113
MTH$GLOG10, MTH-117
MTH$GLOG2, MTH-115
MTH$GREAL, MTH-121
MTH$GSIN, MTH-123
MTH$GSINCOS, MTH-125
MTH$GSINCOSD, MTH-128
MTH$GSIND, MTH-131
MTH$GSINH, MTH-133
MTH$GSQRT, MTH-136
MTH$GTAN, MTH-138
MTH$GTAND, MTH-140
MTH$GTANH, MTH-142
MTH$HACOS, MTH-68
MTH$HACOSD, MTH-70
MTH$HASIN, MTH-72
MTH$HASIND, MTH-74
MTH$HATAN, MTH-76
MTH$HATAN2, MTH-80

MTH$HATAND, MTH-78
MTH$HATAND2, MTH-82
MTH$HATANH, MTH-84
MTH$HCOS, MTH-86
MTH$HCOSD, MTH-87
MTH$HCOSH, MTH-88
MTH$HEXP, MTH-90
MTH$HLOG, MTH-92
MTH$HLOG 10, MTH-96
MTH$HLOG2, MTH-94
MTH$HSIN, MTH-98
MTH$HSINCOS, MTH-125
MTH$HSINCOSD, MTH-128
MTH$HSIND, MTH-99
MTH$HSINH, MTH-101
MTH$HSQRT, MTH-103
MTH$HTAN, MTH-105
MTH$HTAND, MTH-107
MTH$HTANH, MTH-109
MTH$RANDOM, MTH-119
MTH$REAL, MTH-121
MTH$SIN, MTH-123
MTH$SINCOS, MTH-125
MTH$SINCOSD, MTH-128
MTH$SIND, MTH-131
MTH$SINH, MTH-133
MTH$SQRT, MTH-136
MTH$TAN, MTH-138
MTH$TAND, MTH-140
MTH$TANH, MTH-142
MTH$UMAX, MTH-144
MTH$UMIN, MTH-145
MTH$VxFOLRLy _MA_ V5, MTH-198
MTH$VxFOLRLy _z_ V2, MTH-202
MTH$VxFOLRy_MA_V15, MTH-190
MTH$VxFOLRy_z_V8, MTH-194
Multiplying

vector, MTH-155

N
Naming conventions

FOLR routines, 2-6
vector routines, 2-8

Norm
Euclidean

of a vector, MTH-170

0
Overflow detection, 2-8

lndex-3

p
Plane rotation

applying Givens plane rotation to a vector,
MTH-173

generating the elements for a Givens plane
rotation, MTH-178

Product
of a vector, MTH-165

R
Random number generator, MTH-119
Recurrence

linear
definition of, 2-6

Remainder, 1-7
Rotation

applying to a vector, MTH-173

s
Scaling

vector, MTH-182
Sine

hyperbolic, MTH-101, MTH-133
in degrees, MTH-99, MTH-128, MTH-131
in radians, MTH-98, MTH-123, MTH-125
of complex number, MTH-52, MTH-53

Square root, MTH-103, MTH-136
Sum of absolute values

of a vector, MTH-152
Swapping

vector, MTH-186

T
Tangent, MTH-105, MTH-107, MTH-138,

MTH-140
hyperbolic, MTH-109, MTH-142

Truncation of floating-point value, 1-6

u
Underflow detection, 2-8

v
VAX FORTRAN

/BLAS qualifier, 2-2
VAX FORTRAN-RPO compiler, 2-2, 2-9
Vectorization of a loop

preventing, MTH-190, MTH-194, MTH-198,
MTH-202

Vectorizing FORTRAN compiler, 2-7

lndex-4

Vector routines
table of entry points, B-1 to B-4

Vectors
applying Givens plane rotation, MTH-173
copying, MTH-160
generating the elements for a Givens plane

rotation, MTH-178
multiplying, MTH-155
obtaining

the Euclidean norm of, MTH-170
the index of, MTH-149
the inner product of, MTH-165
the sum of the absolute values of,

MTH-152
scaling, MTH-182
swapping, MTH-186

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

NOTES

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8. bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada·

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DEC direct
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

. Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 87 4-3023

DTN: 234-4325
(508) 351-4325
FAX: (508) 351-4467

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 01473

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments OpenVMS VAX RTL
Mathematics (MTH$) Manual

AA-PVXJA-TE

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear- Fold Here ---

