
mamaama OpenVMS Programming Environment Manual

Part Number: AA-PV66B-TK

OpenVMS Programming
Environment Manual
Order Number: AA-PV66B-TK

March 1994

This manual describes the Open VMS programming environment and
shows how Digital products and tools can be integrated into the software
development process.

Revision/Update Information: This manual supersedes the Open VMS
Programming Environment Manual,
Open VMS AXP Version 1.5 and
Open VMS VAX Version 6.0.

Software Version: Open VMS AXP Version 6.1
Open VMS VAX Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
CDA, CDD/Repository, DEC ACA Services, DEC ACCESSWORKS, DEC Ada, DECADMIRE, DEC
C++, DEC COBOL, DEC DBMS, DECdtm, DECforms, DEC Fortran, DEC GKS, DECimage,
DEClinks, DECmail, DECmigrate, DECnet, DEC OPS5, DEC PHIGS, DEC PU!, DECquery,
DEC RALLY, DEC Rdb, DEC RdbAccess, DECrpc, DECset, DECtalk, DEC Test Manager, DECtp,
DECthreads, DECTPU, DEC VUIT, DECwindows, Digital, DNA, EDT, ObjectBroker, OpenVMS,
OpenVMS RMS, PATHWORKS, RdbNMS, SQL Access Services, ULTRIX, VAX, VAX BASIC, VAX. C,
VAXcluster, VAX COBOL, VAX DOCUMENT, VAX DIBOL, VAX MACRO, VAX Pascal, VAX.station,
VMS, VT, XUI, and the DIGITAL logo.

The following are third-party trademarks:

AppleShare, AppleTalk, and Macintosh are registered trademarks of Apple Computer, Inc.

Display PostScript and PostScript are registered trademarks of Adobe Systems, Inc.

IBM and OS/2 are registered trademarks of International Business Machines Corporation.

IEEE is a registered trademark and POSIX is a registered certification mark of the Institute of
Electrical and Electronics Engineers.

Internet is a registered trademark of Internet, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

MCI is a registered trademark of MCI Communications Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

MIT is a registered trademark of Massachusetts Institute of Technology.

Motif, OSF, and OSF/1 are registered trademarks of the Open Software Foundation, Inc.

MS-DOS is a registered trademark, and Windows and Windows NT are trademarks of Microsoft
Corporation.

NetWare is a registered trademark of Novell, Inc.

ORACLE is a registered trademark of Oracle Corporation.

SCO is a trademark of Santa Cruz Operations, Inc.

SPARCstation is a trademark, and NFS and SUN are registered trademarks of Sun Microsystems,
Inc.

UNIX is a registered trademark licensed exclusively by X/Open Co. Ltd.

X Window System is a common law trademark of the Massachusetts Institute of Technology.

All other trademarks and registered trademarks are the property of their respective holders.

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

ZK5842

Send Us Your Comments
We welcome your comments on this or any other Open VMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO. MTS. DEC. COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZK03-4/U08

• A completed Reader's Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. 'l\vo Reader's Comments forms are located at the back of each
printed Open VMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZK03-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TX.T. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . ix

1 Introduction to the OpenVMS Programming Environment

1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.6
1.7

Built-in and Optional Open VMS Programming Tools
Open VMS Support for Portable and Interoperable Applications
Open VMS Support for Distributed Applications
Open VMS Support for Object-Oriented Design
Database and Transaction Processing Support

Database Support
Transaction Processing Support

Specialized Development Environments
Migration Tools and Documentation

2 Portable and Interoperable Application Support
2.1
2.2
2.3
2.3.1
2.4
2.5
2.6
2.6.1
2.6.2
2.6.3

Application Portability and Interoperability
Open VMS Support of Standards
DECwindows Motif Programming Support

Linking and Navigation Capabilities with DE Clinks
POSIX Programming Support
Database Interfaces with SQL
Industry Standard 2D and 3D Graphics Support

DEC Open3D (AXP Only)
DEC PHIGS .. .
DEC GKS (AXP Only)

3 Distributed Computing Support

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.2

Distributed Computing
Open VMS Networking Support for Distributed Computing
Open VMS Client/Server Capabilities

Open VMS Client/Server Configurations
VMScluster Servers and Open VMS Clients
Client/Server Features of DECwindows Motif
Open VMS Servers with PC Clients
PATHWORKS Configurations

Distributed Application Support
Support for the OSF Distributed Computing Environment
ObjectBroker

1-1
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5

2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-5
3-5
3-5
3-6

v

4 User Interface Tools for OpenVMS Applications
4.1
4.2
4.3
4.4

DIGITAL Command Language
Command Definition Utility
Message Utility .. .
DECforms .. .

4-1
4-1
4-2
4-2

5 Editors

5.1
5.1.1
5.2
5.3
5.4

DEC Text Processing Utility
EVE .. ···········

EDT Editor
DEC Language-Sensitive Editor/Source Code Analyzer
SUMSLP Utility ·

5-1
5-2
5-2
5-2
5-3

6 Tools for Managing Program Files
6.1
6.2

DEC Code Management System
DEC Module Management System

6-1
6-2

7 Compilers, Interpreters, and Assemblers
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.12.1
7.12.2
7.12.3
7.13
7.14
7.15

Common Language Environment
Summary of Language Features
Ada ... ·
APL
BASIC
BLISS-32
c
C++
COBOL .. .
DIBOL
Fortran .. .
MACRO

VAX MACRO
VAX MACR0-32 Compiler for Open VMS AXP
MACR0-64 Assembler for Open VMS AXP

OPS5 .. .
Pascal
PL/I

7-1
7-2
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-8
7-8
7-8
7-9

7-10

8 Linker and Librarian

8.1 Linker Input and Output . 8-1
8.2 Linker Command Summary . 8-2
8.3 Using the LIBRARIAN with the Linker........................... 8-3
8.4 Additional Linker Features . 8-3
8.5 Librarian Utility . 8-3
8.5.1 Library fypes . 8-4
8.5.2 Using the LIBRARY Command . 8-4
8.5.3 Sharing Code Using Text Libraries . 8-4

vi

9 Debugging and Testing Tools

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.2
9.3
9.4 -
9.5
9.6
9.7

Open VMS Debugger
Programming Language Support
User-Interface Options
Functional Features of the Command Interface :
Convenience Features of the Command Interface
Convenience Features of the DECwindows Interface

Open VMS Delta/XDelta Debugger
Open VMS AXP System-Code Debugger (AXP Only)
System Dump Analyzer
Crash Log Utility Extractor
DEC Performance and Coverage Analyzer
DEC Test Manager

10 Using Callable System Routines

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.2
10.2.1
10.2.2
10.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4

Deciding Which Routines to Use
1/0 Operations ·
Security Procedures
File Management .. .
Memory Management
Screen Management
Math Operations Specific to Open VMS
Digital Portable Mathematics Library (AXP Only)
Event Synchronization

RTL Routines
Organization of the Run-Time Library
Features of the RTL

System Services .
Utility Routines .. .
Open VMS Record Management Services

RMS File Control Blocks
RMS Record Control Blocks
RMS Macros .. .
Open VMS Record Management Services Utilities

11 Additional Programming Utilities

9-1
9-2
9-3
9-3
9-5
9-6
9-8
9-8
9-9

9-10
9-11
9-12

10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-4
10-4

10-15
10-16
10-16
10-16
10-17
10-18

11.1 Patch Utility (VAX Only) . 11-1
11.2 National Character Set Utility.. 11-2

Index

Figures

1-1
2-1
3-1

8-1

Software Development Phases and Tools
Graphics Applications Development Support
Open VMS Services to Personal Computer Clients in a PATHWORKS
Configuration
Position of the Linker in Program Development

1-3
2-5

3-4
8-2

vii

Tables

1-1
1-2

viii

1-3
2-1

4-1
7-1
8-1
9-1
9-2
9-3
10-1
10-2
10-3
10-4
10-5

Open VMS Software Development Tools
More Information on Products That Support Object-Oriented Design

Examples of DEC Rdb Products and Related Products
Selected Standards Supported by Open VMS VAX and Open VMS
AXP .. .
More Information on DCL Commands and Their Use
Compilers, Interpreters, and Assemblers
fypes of Libraries .
Debugging and Testing Tools
Language Support on Open VMS VAX and Open VMS AXP
CLUE Differences Between Open VMS VAX and Open VMS AXP
Run-Time Library Facilities
Functional Groups of System Services
Summary of System Services
Utility Routine Summary
User Control Blocks

1-2

1-4
1-4

2-2
4-1
7-2
8-4
9-1
9-2

9-11
10-3
10-5
10-7

10-15
10-17

Preface

Intended Audience
This manual is intended for programmers who want to become familiar with the
Open VMS operating system programming environment. The information in this
manual applies to Open VMS operating systems running on both VAX and AXP
platforms. Unless otherwise noted, the environments function the same way.

Document Structure
This manual introduces the programming tools supported by the Open VMS
operating system. It does not cover programming concepts, nor is it intended to
be a complete description of any one programming language or tool (see the list of
related documentation in the Associated Documents section).

This book is organized as follows:

• Chapter 1 provides an overview of the Open VMS software development tools.

• Chapter 2 discusses Open VMS support of portable and interoperable
applications.

• Chapter 3 describes Open VMS support of distributed computing, including
distributed applications.

• Chapter 4 discusses user interface tools for Open VMS applications only. Tools
for creating portable user interfaces are described in Chapter 3.

• Chapter 5 describes available tools for creating source files.

• Chapter 6 describes available tools for managing source files, objects, and
images.

• Chapter 7 describes language compilers, interpreters, and assemblers.

• Chapter 8 covers the linker and librarian utilities.

• Chapter 9 describes features of debugging and testing tools.

• Chapter 10 provides an overview of callable system routines.

• Chapter 11 describes additional programming utilities.

Associated Documents
To find out more about using the programming tools described in this manual,
refer to the following documents:

• Open VMS Compatibility Between VAX and AXP

• Open VMS Programming Concepts Manual

• Open VMS Programming Interfaces: Calling a System Routine

ix

• Open VMS Calling Standard

• Open VMS Command Definition, Librarian, and Message Utilities Manual

• Open VMS Debugger Manual

• Open VMS Delta I XDelta Debugger Manual

• Open VMS AXP Device Support: Developer's Guide

• Open VMS Linker Utility Manual

• Open VMS National Character Set Utility Manual

• Open VMS VAX Patch Utility Manual

• Open VMS VAX System Dump Analyzer Utility Manual

• Open VMS AXP System Dump Analyzer Utility Manual

• Open VMS SUMSLP Utility Manual

• Open VMS System Services Reference Manual

• Open VMS Utility Routines Manual

• The documentation set for your programming language or optional products

Conventions

x

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

1£i•

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

boldface text

italic text

UPPERCASE TEXT

Horizontal ellipsis points in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xi

1
Introduction to the OpenVMS Programming

Environment

The Open VMS operating system provides a rich and varied environment for
developing software application programs. Programming software that is
included in the Open VMS operating system and a wide range of optional tools
offer a comprehensive environment for building software applications. By
using the right tool for the right job, programmers at all levels can enhance
productivity, improve software quality, and manage complex programming tasks.

This book can help you choose the right tool for the programming task at hand.
It briefly describes the features of Open VMS tools and points to other manuals
for additional information about using them.

This chapter provides introductions to:

• Built-in and optional Open VMS programming tools

• Portable and interoperable applications support

• Distributed computing support, including the client/server style

• Object-oriented design support

• Database and transaction processing support

• Specialized development environments

• Migration tools for moving Open VMS VAX applications to Open VMS AXP

1.1 Built-in and Optional OpenVMS Programming Tools
Open VMS programming tools are available for performing the following tasks:

• Creating source files

• Managing software development tasks

• Compiling, linking, and debugging programs

• Accessing libraries of prewritten and debugged routines

Some Open VMS programming tools are built into the operating system while
others are optional tools that are separately orderable. Tools built into the
Open VMS operating system include text processors, assemblers, linkers,
debuggers, utilities, run-time libraries, system services, and other callable system
routines. Optional tools include compilers, interpreters, and project management
tools.

1-1

Introduction to the OpenVMS Programming Environment
1.1 Built-in and Optional OpenVMS Programming Tools

1-2

Table 1-1 lists the software development tools supported by the Open VMS
operating system, shows whether they are built-in or optional, and provides
pointers to their descriptions in this manual.

Table 1-1 OpenVMS Software Development Tools

Built-in or Where
Task Name Optional Described

Creating source files DEC Text Processing Utility Built-in Chapter 5

EVE editor Built-in

EDT editor Built-in

TECO editor Built-in

vi editor (POSIX) Optional

DEC Language-Sensitive Optional
Editor/Source Code Analyzer
(LSE/SCA)

Managing code and DEC Code Management Optional Chapter 6
modules System (CMS)

DEC Module Management Optional
System (MMS)

Creating object files Compilers and interpreters1 Optional Chapter 7

tVAX MACRO assembler Built-in

*MACR0-64 assembler Optional

Linking Linker utility Built-in Chapter 8

Librarian utility Built-in

Debugging and testing Symbolic debugger Built-in Chapter 9
programs

Delta/XDelta Debugger Built-in

*Open VMS AXP System-Code Built-in
Debugger

System Dump Analyzer (SDA) Built-in

DEC Performance and Optional
Coverage Analyzer (PCA)

DEC Language-Sensitive Optional
Editor/Source Code Analyzer
(LSE/SCA)

DEC Test Manager Optional

Using callable system Run-time libraries Built-in Chapter 10
routines

System services Built-in

Utility routines Built-in

Record Management Services Built-in
(Open VMS RMS)

1 Except the VAX MACR0-32 Compiler for Open VMS AXP which is a built-in compiler
tVAX only
*AXP only

Many tools can be used in more than one phase of the software development
process. For example, you can use text editors throughout the development

Introduction to the OpenVMS Programming Environment
1.1 Built-in and Optional OpenVMS Programming Tools

process to create and modify source files. Figure 1-1 shows how some
development tools work in more than one phase of the software development
life cycle.

Figure 1-1 Software Development Phases and Tools

Requirements and
Specifications phase

Design phase

Implementation phase

Testing phase

se l Maintenance ph~

EDT, DECTPU, LSE/SCA
_l J

DEC Code Management System

I]
2;; >i.'

~

I]
DEC Module Management System

Compilers, Linker
_L J

Debuggers

I]

I]
RTL Routines, System Services, Utility Routines, RMS

DEC Performance and Coverage Analyzer
_l J

DEC Test Manager

I]

II:E - Occasional Use

- - Primary Use

ZK-5274A-GE

1.2 OpenVMS Support for Portable and Interoperable Applications
The Open VMS operating system and related optional products support software
that conforms to international standards for an open environment. These
industry-accepted open standards specify interfaces and services that enable the
creation of portable and interoperable applications. For more information on
developing portable and interoperable applications, see Chapter 2.

1.3 OpenVMS Support for Distributed Applications
A distributed application must be able to coordinate its activities over a dispersed
operating environment, two or more systems or processors, each with its own
autonomous operating environment. The Open VMS operating system supports
the development of distributed applications through its support of the Open
Systems Foundation Distributed Computing Environment (OSF DCE) and
various networking products, such as DECnet for Open VMS, DECnet/OSI,
PATHWORKS, and DEC TCP/IP Services for Open VMS. Chapter 3 provides an
overview of the Digital products available for distributed programming.

1-3

Introduction to the OpenVMS Programming Environment
1.4 OpenVMS Support for Object-Oriented Design

1.4 OpenVMS Support for Object-Oriented Design
The Open VMS operating system supports the object-oriented design of
applications through its support of the C++ programming language and such
Digital application-development products as ObjectBroker (formerly named DEC
ACA Services) and DEC Forte. These products support object-oriented design but
are not limited to that style. A major feature of ObjectBroker is that it facilitates
the development of distributed applications. For more information about these
products, see the references listed in Table 1-2.

Table 1-2 More Information on Products That Support Object-Oriented Design

For more information on ...

ObjectBroker

C++

DEC Forte

Refer to ...

Section 3.4.2

Section 7.8

Section 1.6

1.5 Database and Transaction Processing Support
Open VMS systems support many Digital database and transaction processing
(TP) products and similar products from other vendors.

1.5.1 Database Support

1-4

The Record Management Services (RMS), a subsystem of Open VMS, is a
collection of routines that give programmers a device-independ~nt method
for storing, retrieving, and modifying data. RMS routines are described in
Section 10.5.

In addition to supporting many third-party database management systems,
Open VMS supports two Digital database management systems: DEC Rdb and
DEC DBMS. DEC Rdb is a relational database management system and can
be used for distributed database applications. DEC Rdb includes the Standard
Query Language (SQL) and SQL Services.

Examples of the DEC Rdb product family and related products are shown in
Table 1-3.

Table 1-3 Examples of DEC Rdb Products and Related Products

Product

DEC RdbAccess for RMS

DEC RdbAccess for
ORACLE on Open VMS

DECquery for MS-DOS

DEC RALLY

Description

Enables transparent read and write access to Open VMS RMS
files

, Enables read-only access to ORACLE databases on local or
remote Open VMS systems

Enables PC users, who do not know SQL, to query a database

Provides a fourth-generation language environment for
generating Rdb applications

DEC DBMS is a general-purpose, high-performance database management
system. It is designed to handle high transaction volumes and is CODASYL­
compliant.

Introduction to the OpenVMS Programming Environment
1.5 Database and Transaction Processing Support

Besides DEC Rdb and DEC DBMS, Digital also offers DEC ACCESSWORKS.
DEC ACCESSWORKS enables application programs, running on various desktop
computers, to access information in many database systems over PATHWORKS
network connections. The database systems from which DEC ACCESSWORKS
can retrieve information include the following:

• DEC Rdb

• RMS

• DEC DBMS

• ORACLE

• IBM DB2

• VSAM

• IMS

For more information about these products, see the Open VMS Software Overview.

1.5.2 Transaction Processing Support
Open VMS supports several Digital transaction processing products. DECtp is
a transaction processing system that provides control and management of TP
applications. DEC RTS (Reliable Transaction Monitor) is a distributed software
message routing system that supports TP applications. ACMS is an application
control and management system for developing, controlling, and maintaining
transaction processing applications.

For more information about these products, see the Open VMS Software Overview.

1.6 Specialized Development Environments
Digital offers sev-eral products that provide specialized development
environments, such as DECADMIRE and DEC Forte. DECADMIRE enables
developers to generate ACMS, DECforms, or DEC Rdb applications. DEC Forte
is designed to address and manage the complexities of client/server computing .. It
provides tools for screen design, an object fourth-generation language, an object
repository, an interpretive mode for testing, and graphical debugging.

For more information about these products, see the Open VMS Software Overview.

1.7 Migration Tools and Documentation
Programs that run on Open VMS VAX can be converted to run on Open VMS
AXP systems by recompiling and relinking them, by translating them, or by a
combination of the two methods. A VAX MACRO compiler is provided with the
Open VMS AX.P operating system for compiling VAX MACRO programs into AX.P
executable programs. The DEC compilers, such as DEC C and DEC Fortran,
provide special options for recompiling VAX C and VAX FORTRAN applications
to run on Open VMS AX.P.

DECmigrate for Open VMS AX.P, an optional product, is primarily used to
translate Open VMS VAX images to run on Open VMS AX.P. The major component
of this product, the translator, is named the VAX Environment Software
Translator (VEST). DECmigrate for Open VMS AX.P can also be used to analyze
code to determine how easy or difficult it would be to migrate it.

1-5

Introduction to the OpenVMS Programming Environment
1. 7 Migration Tools and Documentation

1-6

In addition to these software products, documentation, training, and migration
services are available. For more information, see the Open VMS Compatibility
Between VAX and AXP manual.

2
Portable and Interoperable Application Support

You can use Open VMS programming tools to design portable applications, that is,
applications that can be easily moved from one computer system to another. An
example of a portable application is one that runs on an Open VMS AXP system
with POSIX for Open VMS AXP installed and also runs on a Sun SPARCstation.
(POSIX is the acronym for Portable Operating System Interface for UNIX.)

You can also use Open VMS programming tools to design interoperable
applications, that is, applications that can work with applications from other
vendors, sharing data and other resources.

This chapter presents an introduction to the following topics:

• Application portability and interoperability

• Open VMS support of standards

• DECwindows Motif programming support

• POSIX programming support

• Database interface with Structured Query Language (SQL)

• Industry standard 2D and 3D graphics support

For more information about these topics, see the Open VMS Software Overview.

2.1 Application Portability and Interoperability
To achieve portability and interoperability, applications must be developed using
programming interfaces, programming languages, routines, and tools that are
supported by formal standards. Modular programming techniques can contribute
to portability and interoperability. Platform-specific features such as run-time
services, file formats, and uncommon language extensions must be avoided.

Furthermore, for applications to be portable, the target platforms must support
the same standards. In order for data to be portable and interoperable, the target
applications must support the same standards.

Portable applications written strictly to a suite of open specifications provide the
following benefits:

• Applications can be written once and run on other open platforms that
support the standards used in the applications.

• Applications are vendor independent.

• Application maintenance is less costly.

2-1

Portable and Interoperable Application Support
2.1 Application Portability and Interoperability

The following software specifications, supported by Open VMS, contribute
significantly to the creation of portable applications:

• Languages that conform to the American National Standards Institute (ANSI)
and the International Organization for Standardization (ISO) standards

• OSF/Motif graphical user interface

• Structured Query Language (SQ;L)

2.2 OpenVMS Support of Standards

2-2

Open VMS supports a broad spectrum of national and international standards,
draft standards, and specifications. Some of the most significant standards that
Open VMS VAX and OpenVMS AXP support are shown in Table 2-1. For a
comprehensive list of such standards, see the Open VMS Software Overview. For
a comprehensive list of the standards that each Digital product supports, see its
software product description (SPD). ·

Table 2-1 Selected Standards Supported by OpenVMS VAX and OpenVMS AXP

Technical Area

Languages

User Interfaces

Operating System
Interfaces

Database

Graphics Interfaces

Standards Body
/Originator

ANSI, MIL-STD., ISO

ANSI, ISO

ANSI, ISO

ANSI

ANSI, ISO

ANSI, ISO

ANSI, ISO

MIT X Consortium1

OSF2

IEEE3

X/Open Company Ltd.

IEEE, NIST5

X/Open Company Ltd.

ANSI, ISO

ISO

Distributed Applications OSF

1 Massachusetts Institute of Technology X Consortium
20pen Software Foundation
3Institute of Electrical and Electronics Engineers, Inc.
4X/Open Portability Guide Issue 3
5National Institute of Standards and Technology

Standard/Specification

Ada

BASIC

c
C++
COBOL

FORTRAN

Pascal

X Window System

OSF/Motif

POSIX P1003.2

XPG34 BASE

POSIX 1003.1, 1003.lb, FIPS 151-1

XPG3 BASE

SQL, CODASYL

ISO GKS

ISO GKS 3-D

ISO PHIGS

PEXlib

Distributed Computing
Environment (DCE)

(continued on next page)

Portable and Interoperable Application Support
2.2 OpenVMS Support of Standards

Table 2-1 (Cont.) Selected Standards Supported by OpenVMS VAX and
OpenVMS AXP

Technical Area

Networking and
Communication

Standards Body
/Originator

CCITT6
, ISO

ANSI

IEEE

ISO

CC ITT

ISO

ARPANET7

Sun Microsystems'
ONC8

Standard/Specification

X.400

SCSI

802

8802 (CSMNCD)

X.25

FTAM

TCP/IP

NFS

6International Telegraph and Telephone Consultative Committee

7 ARPANET Networking Group
80pen Network Computing Architecture (NFS published as RFC 1094)

2.3 DECwindows Motif Programming Support
The DECwindows Motif for Open VMS environment provides a consistent user
interface for developing software applications and includes an extensive set of
programming libraries and tools. You can use the following DECwindows Motif
software to build a graphical user interface:

• A user interface toolkit composed on graphical user interface objects (widgets
and gadgets); widgets provide advanced programming capabilities that permit
users to create graphic applications easily; gadgets, similar to widgets,
require less memory to create labels, buttons, and separators.

• A user interface language to describe visual aspects of objects (menus, labels,
and forms) and to specify changes resulting from user interaction.

• The OSF/Motif Window Manager, which allows users to customize the
interface.

The DECwindows Motif programming libraries provided include:

• Standard X Window System libraries such as Xlib and the Intrinsics

• Libraries needed to support the earlier base of XUI applications

• OSF/Motif toolkit support for developing applications using the Motif user
interface style

• Digital added-value libraries that give users capabilities beyond the standards

2-3

Portable and Interoperable Application Support
2.3 DECwindows Motif Programming Support

2.3.1 Linking and Navigation Capabilities with DEClinks
DEClinks services are included in the DECwindows Motif environment. They are
used for creating, managing, and traversing informational links between different
application-specific data. (DEClinks was formerly named LinkWorks.)

An application is said to be a hyperapplication if it participates in a
DECwindows DEClinks environment. Hyperapplications provide linking and
navigation capabilities to application end users through a new Link menu.

You can design new applications with DEClinks support or add DEClinks
support to existing applications. DEClinks services, with the DEClinks Manager
application, help organize information into a hyperinformation environment.

2.4 POSIX Programming Support

2-4

POSIX for Open VMS offers VAX and AXP users the capability to develop and
run open, portable applications on the Open VMS operating system. Applications
written to POSIX standards are portable across a wide range of UNIX and other
operating systems that support those same standards. Application developers
can develop and deploy their applications on any POSIX conformant system,
including VAX and AXP systems.

Most applications that strictly conform to the POSIX and X/Open standards and
draft standards can be developed on an Open VMS VAX system with POSIX for
Open VMS VAX or an Open VMS AXP system with POSIX for Open VMS AXP, and
then ported without modification to any other platform that supports the same
POSIX and X/Open standards and draft standards.

The converse is also true, that is, applications developed on platforms other than
Open VMS systems that strictly conform to the POSIX and X/Open standards and
draft standards can be ported and run on an Open VMS VAX or an Open VMS
AXP system on which Open VMS POSIX is installed. Open VMS POSIX conforms
to IEEE Standard 1003.1-1990,XPG-3, and FIPS 151-1. It is also compliant
with drafts of 1003.2 (POSIX shell interface) and 1003.4 (real-time programming
interface).

Open VMS POSIX application programs are written using the C language and
functions defined by the POSIX and X/Open standards and draft standards.

Open VMS POSIX supports the POSIX 1003.1 standard for C bindings, which
incorporates ANSI C and includes a series of system services. POSIX system
services supported by Open VMS POSIX include:

• Process creation, execution, and termination functions

• Process environment functions

• A series of POSIX functions that provide for file and directory operations

• 1/0 functions that include file 1/0 and creation of a pipe that serves as an
interprocess channel

• Terminal interface functions involving mapping of a set of control character
functions to sets of keys that are UNIX style or Open VMS style

• Header files used for POSIX applications

The Open VMS POSIX shell complies with a draft of POSIX 1003.2. The shell is
based on the Korn shell, and it includes common UNIX commands and utilities,
including make and c89 (the POSIX interface to the compiler and linker, which is
analogous to the cc command in UNIX).

Portable and Interoperable Application Support
2.4 POSIX Programming Support

Open VMS POSIX implements the POSIX 1003.4 draft standard, which defines
a set of real~time functions. For applications that have real-time computing
requirements, these extensions provide support for such functions as enhanced
interprocess communication, scheduling and memory management control, and
asynchronous 1/0 operations.

For more information about Open VMS POSIX programming interfaces, see
the Guide to Programming with VMS POSIX, the Guide to Programming with
POSIX for Open VMS AXP, and other documentation in the Open VMS POSIX
documentation set.

2.5 Database Interfaces with SQL
Applications need a standard way to interface with the variety of databases
available in open environments. The data language of choice for applications is
SQL, the ISO and ANSI language standard that Open VMS supports through
the DEC Rdb database product. Applications based on relational database
management systems can use SQL as the language for defining, updating, and
querying in the database.

2.6 Industry Standard 20 and 30 Graphics Support
Digital offers several optional products for developing two dimensional (2D)
and three dimensional (3D) graphics applications: DEC Open3D, DEC PHIGS
(Programmers Hierarchical Interactive Graphics System), and DEC GKS (Graphic
Kernel System), as shown in Figure 2-1.

Figure 2-1 Graphics Applications Development Support

DEC PHIGS

OpenVMSVAX
with

Graphics Option

DEC PHIGS

DECGKS

DEC3D

OpenVMSAXP
with

Graphics Option

/W!Ei~
ZK-6832A-G E

Each product is a subroutine library, packaged as a set of shareable images
against which an application program is linked. The shareable images are
activated at run-time as needed. DEC Open3D also provides drivers for the

2-5

Portable and Interoperable Application Support
2.6 Industry Standard 2D and 3D Graphics Support

graphics options on Open VMS AXP systems and is required for performing any
3D graphics operations on such systems.

2.6.1 DEC Open3D (AXP Only)

IJ3w DEC Open3D for Open VMS AXP provides support for the PXG family of graphic
accelerators on Digital's Alpha AXP workstations. It also provides an extensive
set of programming libraries for use by developers of new applications.

DEC Open3D is required to support any of the graphics options that are available
for Open VMS AXP, as shown in the following list:

• PXG

• ZLX-Ml

• ZLX-M2 (also known as PixelVision)

• ZLX-El (also known as HX+)

The ZLX-El is a 2D graphics option. Beginning with Open VMS AXP Version
6.1, support for this graphics option will be included with the operating
system, and DEC Open3D will no longer be required for 2D operations.

In conjunction with DECwindows Motif for Open VMS AXP, DEC Open3D for
Open VMS AXP provides a complete run-time environment for 2D and 3D
applications. DEC Open3D supports the MIT X Window System client/server
model for network transparent graphics and windowing. The Xll DECwindows
server provided with DEC Open3D will display output from client 2D applications
supporting the MIT X Window System Version 11 Release 5 (XllR5) and client
3D applications supporting the PEX 3D extension to the X Window System.

In addition to providing an X and PEX compliant server for PXG series graphics
accelerators, DEC Open3D includes Digital's implementation of PEXlib, a low­
level programming interface to the PEX protocol. PEXlib enables programmers
to develop and run applications on any platform supported by DEC Open3D
and display the results on graphics devices which support the PEX Version 5.1 .
protocol.

Together, DECwindows Motif and DEC Open3D provide a robust environment
for developers creating interactive applications that require both 2D and 3D
graphics.+

2.6.2 DEC PHIGS

2-6

DEC PHIGS for Open VMS VAX and DEC PHIGS for OpenVMS AXP are 3D
graphics support systems that control the definition, modification, and display
of hierarchical graphics data. They manage the organization and display of
graphical data stored in a conceptually centralized database.

DEC PHI GS for Open VMS VAX and DEC PHI GS for Open VMS AXP are device
independent. That is, a program developed with one of these products can
generate graphical output on different devices without modification to the source
code. These products are Digital's implementations of the 1988 ANSI/ISO PHIGS
standard for 3D device-independent graphics.

On Open VMS AXP systems, DEC Open3D is required for using DEC PHI GS.+

Portable and Interoperable Application Support
2.6 Industry Standard 20 and 30 Graphics Support

2.6.3 DEC GKS (AXP Only)

*I• DEC GKS for Open VMS AXP is a 3D graphics support system that provides
application programmers with a set of functions for interactive and noninteractive
computer graphics applications. You use the functions to define and display
computer-generated 3D graphics using a variety of computer graphics equipment.
As a development tool, it provides a base for portable, device-independent, 2D
and 3D graphics application development.

DEC GKS for Open VMS AXP implements the International Standard ISO 8805,
the Graphical Kernel System for Three Dimension (GKS-3D). It conforms to level
2c of ISO 8805.

DEC Open3D is required for using DEC GKS for Open VMS AXP.+

~~~~~~~~~~~~- Note ~~~~~~~~~~~~-

Although DEC GKS was supported on Open VMS VAX Version 6.0 and 
earlier versions, it is not supported on Open VMS VAX Version 6.1. 

2-7 





3 
Distributed Computing Support 

The Open VMS operating system supports distributed computing, including 
the development and execution of distributed applications, with many built-in 
services and many optional Digital products. 

This chapter presents an introduction to the following topics: 

• Distributed computing 

• Open VMS networking support for distributed computing 

• Open VMS client/server support, including that provided by PATHWORKS 
and DECwindows Motif 

• Distributed application support, including Digital DCE and ObjectBroker 

For more information about these topics, see the Open VMS Software Overview. 

3.1 Distributed Computing 
Distributed computing refers to the sharing of resources between two or more 
processors. The processors can be located in one computer, or, as more often 
the case, in separate computers. The resources to be shared include peripherals 
such as disks and printers, data, applications, and software to manage remote 
computers. 

A distributed computing system that connects all parts of an enterprise can 
function as though it were a single system. A user can have transparent access to 
the integrated resources of the enterprise. A predominant design for distributed 
computing is client/server computing, and a predominant form of client/server 
computing is the use of larger computers as servers to personal computers (PCs). 

3.2 OpenVMS Networking Support for Distributed Computing 
Open VMS networking support for distributed processing is provided by DECnet 
software and hardware and by the DEC TCP/IP Services for Open VMS product. 

The DECnet family of communication products (software and hardware) 
allows the Open VMS operating system to participate in the DECnet network. 
DECnet/OSI for Open VMS VAX and DECnet/OSI for Open VMS AXP are based 
on the Open Systems Interconnection (OSI) model. 

Users of DECnet/OSI for Open VMS can choose between OSI networking protocols 
and the Digital Network Architecture (DNA) networking protocols, which can run 
simultaneously. OSI protocols permit communication with other vendors' systems 
that support OSI. The DNA protocols are the traditional networking protocols 
that permit communication with other systems supporting compatible versions of 
the DNA protocols. 

3-1 



Distributed Computing Support 
3.2 OpenVMS Networking Support for Distributed Computing 

DECnet/OSI for Open VMS is compatible with DECnet for Open VMS, a Phase IV 
product. Nodes running DECnet/OSI for Open VMS and nodes running DECnet 
for Open VMS can communicate on the same network. 

Other DECnet products provide services for distributed processing over the 
network. These products include DECdts, a distributed time service; DECdns, a 
distributed name service; and DECdfs, a distributed file service. 

DEC TCP/IP Services for Open VMS enable TCP/IP connections and supply 
Network File System (NFS) server capabilities. TCP/IP is the protocol used by 
UNIX systems on the Internet. NFS permits UNIX clients to access Open VMS 
files and UNIX files stored on the Open VMS system. 

DEC TCP/IP Services for Open VMS permit an Open VMS system to become a full 
participant in TCP/IP networks. The product includes the following: 

• Set of industry-standard communication protocols (TCP, IP, FTP, Telnet, and 
other protocols) 

• Digital Remote Procedure Call (DECrpc) for Open VMS 

• NFS server software 

3.3 OpenVMS Client/Server Capabilities 
One style of distributed computing that permits resource sharing between 
different systems is client/server computing. In the client/server environment, 
portions of an application are distributed across the network between servers 
and clients. The server is any system that provides a service or resource 
to other systems. The client is a system requesting a service. This style of 
computing allows each portion of a distributed application to run in its own 
optimal environment. 

VMScluster software and Network Application Software (NAS) support 
client/server computing. VMScluster software enables client/server computing 
among Open VMS VAX and Open VMS AXP systems. NAS software supports 
client/server computing among Open VMS VAX, Open VMS AXP, and DEC 
OSF/1 AXP systems, and among Digital systems and other vendors' systems 
including UNIX, MS-DOS, Microsoft Windows, and Windows NT systems. 
PATHWORKS software, which is part of NAS, enables complex information­
sharing environments involving PC clients and operating system servers. For 
more information about PATHWORKS products, see Section 3.3.4. 

3.3.1 OpenVMS Client/Server Configurations 

3-2 

Open VMS systems support a wide variety of client/server configurations. 

A single Open VMS system or a VMScluster can function as a server. Open VMS 
servers can provide file access, printing, application services, communication 
services, and computing power as application engines to clients on desktop 
devices or in laboratories or factories. 

Clients requiring resources can be any of the following: 

• Personal computers 

• Workstations 

• Point-of-sale devices 



Distributed Computing Support 
3.3 OpenVMS Client/Server Capabilities 

• Open VMS systems 

• Other vendor systems that are running the client software 

User interfaces on client systems can be character-cell terminals or windowing 
desktops. 

Client/server configurations permit the enterprise-wide capabilities of Open VMS 
host systems to be integrated with the personal-computing capabilities of desktop 
systems. 

3.3.2 VMScluster Servers and OpenVMS Clients 
In any VMScluster system, users can share computing, disk and tape storage, and 
batch and print processing resources. Any node in the cluster can use clusterwide 
batch and print queues. VMScluster technology also allows cooperating Open VMS 
systems to share file and print resources over a LAN. This capability provides a 
mechanism for offering print and computing services to the network. 

In a VMScluster configuration, the mass storage control protocol server and the 
tape mass storage control protocol server make locally connected disks and tapes 
available across the cluster. 

A VMScluster system can serve files and databases to the LAN for use by 
cluster members. In addition, databases can be offered over a VMScluster using 
RdbNMS with Structured Query Language (SQL) Services. These services enable 
a client Open VMS system to issue SQL requests to a VMScluster system that 
serves its RdbNMS databases to the LAN. The RdbNMS request is processed 
on the database server and the resulting information is sent to the SQL Services 
client. 

3.3.3 Client/Server Features of DECwindows Motif 
DECwindows Motif, based on industry-standard OSF/MOTIF, lets users access 
application programs running on other machines in the network as if the 
applications were running locally. With the DECwindows software, multiple 
device-independent applications can run simultaneously in various separate 
workstation windows. Applications function as clients and the DECwindows 
program that responds to the applications is the DECwindows server. (The 
DECwindows Motif user interface is described in Section 2.3.) 

3.3.4 OpenVMS Servers with PC Clients 
The Open VMS operating system running on a VAX or AXP computer can act as 
an application, file, disk, and print server for large groups of personal computer 
clients through DECnet and TCP/IP networking connections. 

Servers and clients can also be connected using PATHWORKS products. You use 
PATHWORKS server software on an Open VMS system and PATHWORKS client 
software on personal computers. PATHWORKS supports a variety of personal 
computers including MS-DOS, Windows, OS/2, and the Macintosh operating 
system, as illustrated in Figure 3-1. PATHWORKS server software is also 
available for ULTRIX, SCO UNIX, and OS/2 operating systems. 

3-3 



Distributed Computing Support 
3.3 OpenVMS Client/Server Capabilities 

Figure 3-1 OpenVMS Services to Personal Computer Clients in a PATHWORKS Configuration 

.Database 
Services 

Application and 
Windowing Services 

Mail Services 

~ 
00·· ..... ~ ........ 

oD 

Print 
Services 

( 
_ __.p 

............ .. .......... ...... .. .... ---
Open VMS 

System Management 
and Network 

Services 

. _ .......... ··::: .. • W-O·R-KS--iiiiW..··· •••• •••••••••••• A 

.- PC Server ····ci Security 
Services 

3-4 

File and Disk 
Services 

Windows Client 

OS/2 Client 

I 

Macintosh Client 

ZK-5462A-G E 



Distributed Computing Support 
3.3 OpenVMS Client/Server Capabilities 

PATHWORKS enables PC users to share applications, data, and system resources 
such as printers, disks, CD-ROM readers, and network gateways, without losing 
the benefits of industry-standard personal computing. 

PATHWORKS for Open VMS enables the Open VMS server to provide the 
following kinds of services (shown in Figure 3-1) to PC clients: 

• File, disk, and print services 

• Database services 

• Electronic mail services 

• Application and windowing services 

• System management and network services 

• Security services 

3.3.5 PATHWORKS Configurations 
PATHWORKS configurations are flexible and can be changed easily. In most 
cases, PATHWORKS client software is originally stored on the server and 
downline loaded over the network to the PC when the PC is booted. The PC user 
can connect to a particular PATHWORKS server. PC clients can be connected to 
multiple servers at the same time. 

Configuration changes, such as the addition of new PATHWORKS clients and 
servers, do not cause disruption to the PC user environment. PC users can 
continue to use the applications they prefer. 

3.4 Distributed Application Support 
A distributed application consists of separate modules, running on different 
processors, that communicate with each other by passing data between modules 
or by sharing access to files or databases. The processors in the distributed 
configuration can be uniprocessor, multiprocessor, or VMScluster systems; 
systems from different vendors can be included in the same configuration. 

3.4.1 Support for the OSF Distributed Computing Environment 
The OSF Distributed Computing Environment (DCE) is a standard set of 
software services and interfaces that support the creation, use, and maintenance 
of distributed client/server applications. Digital has implemented a family of 
DCE products that include a certified set of DCE functions along with software 
for developing distributed applications. 

Digital's implementation of OSF DCE standards, 1 is adapted and enhanced for 
Open VMS as follows: 

• Simplified installation and configuration 

• Interface Definition Language (IDL) support for both C and Fortran languages 

• IDL development templates 

• A conversion utility for DCE RPC programs 

• The PC NSI Proxy Agent, which enables interoperability with Microsoft's PC 
RPC. 

1 OSF DCE Version 1.0.2 (without security replication) 

3-5 



Distributed Computing Support 
3.4 Distributed Application Support 

The DCE for Open VMS product family supports the following networking 
transports: TCP/IP, User Datagram Protocol (UDP), and DECnet Phase IV. 

The DCE for Open VMS products include: 

• DCE Runtime Services for Open VMS, required for all systems participating in 
the DCE cells. A DCE cell is the term used to describe the group of systems 
that participate in the distributed computing environment. The runtime 
services kit includes DCE client functions and DCE administration tools. 

• DCE Application Development Kit for Open VMS, required for those 
developing distributed applications but optional for other users. The kit 
provides users with an Interface Definition Language (IDL) for writing 
remote procedure calls. 

Digital is committed to support the following DCE products on Open VMS: 

• DCE Cell Directory Server (CDS), a central repository containing information 
about the location of resources in the DCE cell. The CDS server allows access 
to resources by a single name, ·regardless of physical location. One CDS 
server is required for each DCE cell. 

• DCE Security Server, which protects resources from illegal access by 
providing authentication and authorization services and provides for secure 
communications within and between DCE cells. One Security server is 
required for each DCE cell. 

3.4.2 ObjectBroker 

3-6 

ObjectBroker, formerly named DEC ACA Services, enables developers to use 
an object-oriented design to integrate independently-developed applications 
across heterogeneous environments. ObjectBroker facilitates the transition to 
client/server computing and reduces the cost of developing new client/server 
applications. ObjectBroker is available for Open VMS VAX and Open VMS AXP 
systems. 

ObjectBroker complies with the Object Management Group's (OMG) Common 
Object Request Broker Architecture (CORBA) and provides both dynamic and 
static interfaces for greater user flexibility. 

ObjectBroker extends the Microsoft Dynamic Data Exchange (DDE) 
communication protocol to allow Microsoft Windows applications on a networked 
PC to interact, using DDE, with applications running on ULTRIX, Open VMS, and 
SunOS. ULTRIX, Open VMS, and SunOS applications can function as DDE clients 
and servers. DDE support in ObjectBroker allows two Microsoft applications to 
communicate on different PCs. 



4 
User Interface Tools for OpenVMS Applications 

This chapter describes the Digital tools available for creating user interfaces for 
applications that run only on Open VMS systems. Digital tools for creating user 
interfaces for portable applications, including graphical user interface tools, are 
described in Chapter 2. 

The following tools are described in this chapter: 

• DIGITAL Command Language (DCL) 

• Command Definition utility 

• Message utility 

• DECforms 

4.1 DIGITAL Command Language 
DIGITAL Command Language (DCL) commands can be used to invoke program 
development software (compilers, editors, and linkers) and to run and control 
the execution of programs. DCL command procedures can be used to perform 
repetitive operations in software development. For more information, see the 
documentation listed in Table 4-1. 

Table 4-1 More Information on DCL Commands and Their Use 

For more information on ... 

DCL commands, qualifiers, and options 

How to use DCL Commands 

4.2 Command Definition Utility 

Refer to ... 

Open VMS DCL Dictionary 

Open VMS User's Manual 

The Command Definition utility (CDU) enables application developers to create 
commands with a syntax similar to Open VMS DCL commands that are executed 
at the DCL level. Using CDU, the developer can create applications with user 
interfaces similar to those of operating system applications. 

The Command Definition utility (CDU) creates, deletes, or changes command 
definitions in a command table. Command tables are data structures created by 
the CDU and used by the Command Language Interpreter (CLI) to parse and 
evaluate DCL commands. 

There are two types of command tables: system command tables used to parse 
system commands and process command tables used to parse process-specific 
commands. The CDU creates command tables from command definition files, 
from existing command tables, or from a combination of these sources. The new 
tables can be either executable code or object modules. 

4-1 



User Interface Tools for OpenVMS Applications 
4.2 Command Definition Utility 

You can modify your process command table, the system command table in 
SYS$LIBRARY, or create a new command table to be used with user-written 
applications. 

For more information about creating your own commands with CDU, refer to the 
Open VMS Command Definition, Librarian, and Message Utilities Manual. 

4.3 Message Utility 
The Message utility (MESSAGE) allows you to supplement Open VMS system 
messages with your own messages to signal any condition-error or success. Use 
an editor to create a message source file, which consists of message definition 
statements and directives that define the message text, the message code values, 
and the message symbol. With these directives, you can assign severity levels, 
specify message text, and define the facility to which the message relates. 

After compiling your message source file using the Message utility, you link 
the message object module with the program object module. By using message 
pointers, you can use different text for the same message. This option is 
particularly useful for multilingual applications. To use pointers, you create a 
nonexecutable message file that contains the message text and a pointer file that 
contains the symbols and pointer to the nonexecutable file. 

For complete information about creating your own messages, refer to the 
Open VMS Command Definition, Librarian, and Message Utilities Manual. 

You can also make descriptions of your messages available from the DCL prompt 
( $) by including message descriptions in the Help Message database. For 
information about linking your messages into the system and adding them to 
the Help Message database, see Open VMS System Messages: Companion Guide 
for Help Message Users. This manual provides complete information about using 
the Help Message utility to create and access online message descriptions; it also 
includes basic information about message formats, severity levels, and recovery 
procedures. 

4.4 DECforms 

4-2 

DECforms is a set of development tools and services for developing user 
interfaces. DECforms lets programmers create forms and menus quickly and 
efficiently. With DECforms, the form remains independent of both the application 
program and the display device. This permits either to be changed without 
affecting the other. 

DECforms also permits a single application to support multiple devices as well as 
multiple users who speak different languages. At run-time, DECforms manages 
communication among the form, the display device, and the application program. 
It selects the appropriate form and language independent of the application. 

DECforms is the industry's first implementation of the ANSI/ISO standard for 
a Forms Interface Management System (FIMS). When other vendors implement 
the FIMS standard, DECforms will be considered a tool for creating a portable 
interface. 



5 
Editors 

This chapter describes features of the following Digital editors: 

• DEC Text Processing Utility (DECTPU) and its Extensible Versatile Editor 
(EVE) 

• EDT editor 

• DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA) 

• SUMSLP utility 

In addition to the editors described in this chapter, another editor, the vi editor, 
is supplied with the POSIX interface. For information about the vi editor on 
Open VMS AXP, see the Guide to Programming with POSIX for Open VMS AXP 
and the POSIX for Open VMS AXP Reference Manual: Shell and Utilities. For 
information about the vi editor on Open VMS VAX, see the Guide to Programming 
with VMS POSIX and the VMS POSIX Reference Manual: Shell and Utilities. 

This broad selection of editors enables you to choose an editor that matches your 
preferences and the type of work you want to do. 

5.1 DEC Text Processing Utility 
DECTPU is a high-performance, text processor that you can use to create 
text-editing interfaces such as EVE. DECTPU has the following features: 

• A high-level procedure language with several data types, relational operators, 
error interception, looping, case language statements, and built-in procedures 

• A compiler for the DECTPU procedure language 

• An interpreter for the DECTPU procedure language 

• The EVE editing interface, which, in addition to the EVE keypad, provides 
EDT, VTlOO, WPS, and numeric keypad emulation 

With these tools, you can further customize the EVE editing interface or create 
your own editing interface designed for your programming needs. 

Special features offered with DECTPU include the following: 

• Multiple buffers 

• Multiple windows 

• Multiple subprocesses 

• Text processing in batch mode 

• Insert or overstrike text entry 

• Free or bound cursor motion 

• Learn sequences 

5-1 



Editors 
5.1 DEC Text Processing Utility 

5.1.1 EVE 

• Pattern matching 

• Key definition 

For more information about using DECTPU, refer to the Guide to the DEC Text 
Processing Utility and the DEC Text Processing Utility Reference Manual. 

For most uses, the EVE editing interface is preferable to EDT because of its 
features and customizable interface. The EVE editing interface is installed with 
DECTPU. 

EVE is easy to learn and easy to use. You can access most common editing 
functions by pressing a single key on the EVE keypad. You invoke EVE 
commands and special DECTPU features and advance functions by entering 
commands on the EVE command line. With EVE, you can customize your 
editing interface by using initialization files, command files, learn sequences, key 
definitions, and DECTPU built-in procedures. 

If you are an experienced EDT user, you can use the EVE command SET 
KEYPAD EDT to redefine the default EVE keypad bindings to emulate an EDT 
keypad. EDT keypad emulation in EVE provides most of the functions of the 
EDT keypad and binds these functions to the same keys that EDT uses. 

5.2 EDT Editor 
EDT is an interactive text editor that has the following capabilities: 

• Three types of editing modes: keypad mode for screen-oriented editing, line 
mode for line-number editing, and nokeypad mode for defining your own key 
sequences. You can use any mode you prefer and you can switch back and 
forth during a single editing session. 

• Journaling to protect your editing session in the event of a system 
interruption. 

• Multiple buffers. 

• Access to as many files as you need. 

• Startup command files to initialize the EDT editing environment to your own 
needs. 

• EDT macros to automate repetitive editing procedures. 

5.3 DEC Language-Sensitive Editor/Source Code Analyzer 

5-2 

The DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA) is a 
multilanguage, multiwindow, screen-oriented editor and a source code analyzer, 
designed for program development and maintenance. LSE/SCA is a component of 
DECset, an optional Digital product. Each DECset tool provides a DECwindows 
Motif user interface and a consistent look and feel across platforms. LSE/SCA 
works in concert with supported Open VMS languages and the Open VMS 
Debugger to provide a highly interactive, online environment for editing, 
compiling, debugging, and analyzing a program. 

LSE provides the following features: 

• Contains source code templates for the language constructs it supports 

• Tailors the editing sessions for supported languages and products 



Editors 
5.3 DEC Language-Sensitive Editor/Source Code Analyzer 

• Uses source code templates 

• Allows coding, compiling, reviewing, and correcting of compile-time errors 
without leaving the editing session 

• Provides interactive editing capabilities during a debugging session 

• Allows programmers to tailor the defined language environments or to define 
their own environment 

• Provides integrated access to the cross-referencing features of the DEC Source 
Code Analyzer (SCA) 

SCA allows interactive inquiries about program structure, including cross­
reference information, calling structure, and where and how often different 
program elements are used. It also performs static error checks (for example, 
checking the number and type of arguments passed). 

For more information about DEC LSE/SCA, see the Guide to DEC Language­
Sensitive Editor and DEC Source Code Analyzer. 

5.4 SUMSLP Utility 
The SUMSLP utility (SUMSLP) is a batch-oriented editor that is useful when 
you need to make several updates to a single file. To use it, you create a series 
of editing commands to add, delete, or update lines in the file. The editing 
commands are specific to SUMSLP and can be used only by SUMSLP. It can 
be useful if you are maintaining several copies of a single file, because it allows 
you to update the file by creating one update program and applying the update 
program to each copy of the file. 

SUMSLP requires at least the following input files: 

• The source file to be updated. Because you use line-oriented editing 
commands, you should generate a sequence-oriented listing. 

• The update file. This file contains SUMSLP command lines and the updated 
lines used to alter the input file. 

SUMSLP applies the edits specified in the SUMSLP update file to the input 
source file. The SUMSLP output file generated is the updated source file. 

The Open VMS SUMSLP Utility Manual describes each of the SUMSLP 
commands and how SUMSLP processes files. 

5-3 





6 
Tools for Managing Program Files 

This chapter describes the following tools for managing program files: 

• DEC Code Management System (CMS) 

• DEC Module Management System (MMS) 

Both of these tools are components of DECset. DECset is a multipurpose, 
multiplatform toolset with a DECwindows Motif user interface. This interface 
provides similar functions and a consistent look and feel across platforms. 
DECset supports software coding, testing, debugging, and maintenance activities 
for multiple languages. 

6.1 DEC Code Management System 
Code management is especially important on large projects with long life spans 
and several versions of the software. The DEC Code Management System (CMS) 
provides an efficient method for storing project files and tracking all changes to 
those files. 

CMS stores any kind of file, including files created by an editor, compiler, or a 
linker. You can use CMS to store documents (for example, plans, specifications, 
and status reports), object files, executable files, sixel files, or other records. 
(CMS cannot store directory files.) 

You can use CMS to do the following: 

• Keep track of files at every stage of development by showing who made 
changes, when, and why. 

• Allow programming development team members to work concurrently on the 
same file without losing the changes made by any team member. 

• Conserve disk space (CMS stores consecutive versions of files in a space­
efficient manner.) 

• Maintain a history of library activity. 

• Store files created by other software development tools, such as DEC Test 
Manager. 

• Mark an element generation for review to indicate that its contents should be 
reviewed by other users. 

• Automatically copy the latest generation of a CMS library into a reference 
copy area. 

6-1 



Tools for Managing Program Files 
6.1 DEC Code Management System 

CMS keeps your files in project libraries, which are Open VMS directories. These 
directories store your project's files, or elements, as well as history information. A 
CMS library provides a record of the following: 

• Transactions that created specific element generations. 

• Transactions related to the evolution of a specific element. 

• The entire transaction history of the library; that is, all actions that create, 
delete, or modify the library or its contents. 

6.2 DEC Module Management System 

6-2 

DEC Module Management System (MMS) automates and simplifies the building 
of software applications by providing a consistent way to build modular software 
applications. MMS software builds a system faster because it builds only the 
parts that require building. MMS consistently reproduces the same system each 
time it is built, thereby increasing the accuracy of the build. No time is wasted 
recompiling and linking modules that have not changed since the previous system 
build. Once set up, MMS can build small and large systems with one command. 



7 
Compilers, Interpreters, and Assemblers 

The Open VMS operating system supports a variety of language compilers, 
interpreters, and two assemblers, one for VAX computers and one for AXP 
computers. The compilers whose names begin with VAX are available for 
developing applications on Open VMS VAX systems. Most of the compilers whose 
names begin with DEC are available for developing applications on Open VMS 
VAX systems as well as Open VMS AXP systems. 

Most Open VMS programming languages use all of the resources of the Open VMS 
operating system, and all of them can access any of the callable routines (system 
services, utility routines, run-time library routines, and record management 
services). Most Open VMS languages are fully supported by the Open VMS 
Debugger. VAX APL and VAX DIBOL have their own debugger utility. Note that 
most Open VMS languages are optional software products. 

This chapter describes: 

• Common language environment 

• Compilers, interpreters, and assemblers available on Open VMS VAX and 
Open VMS AXP systems 

7.1 Common Language Environment 
The Open VMS operating system supports a common language environment that 
lets you develop mixed-language application programs and portable programs, 
including the use of distributed functions for client/server environments. For 
example, a program written in any of the programming languages supported by 
Open VMS can contain calls to procedures written in other supported languages. 

The common language environment applies to both VAX and AXP computers. 
For example, native AXP programs call native AXP programs written in other 
languages, and native VAX programs call native VAX programs written in other 
languages. The Open VMS calling standard simplifies migrating mixed-language 
applications between Open VMS VAX and Open VMS AXP systems. 

All languages supported by Open VMS adhere to the Open VMS calling standard, 
which describes the techniques used by all Open VMS languages for invoking 
routines and passing data between them. The standard also defines the 
mechanisms that ensure consistency in error and exception handling routines, 
regardless of the mix of programming languages in use. For more information 
about Open VMS data types and calling routines, see Open VMS Programming 
.Jnterfaces: Calling a System Routine. For complete information about the calling 
standard, see the Open VMS Calling Standard. 

7-1 



Compilers, Interpreters, and Assemblers 
7.2 Summary of Language Features 

7.2 Summary of Language Features 

7-2 

Table 7-1 lists the languages available for OpenVMS VAX and OpenVMS AXP 
and their main features. Compilers whose names begin with VAX are supported 
only on Open VMS VAX. Compilers whose names begin with DEC are supported 
on Open VMS VAX and Open VMS AXP unless noted otherwise. The sections that 
follow provide more detail about each one. 

Table 7-1 Compilers, Interpreters, and Assemblers 

Language Features 

DEC Ada Complete production-quality implementation of Ada 
language; fully conforms to ANSI and MIL-STD 
standards; has Ada validation 

VAX APL Interpreter with built-in editor, debugger, file system, 
communications facility 

VAX BASIC Supports a robust implementation of the BASIC 
language, containing most constructs found in 
traditional programming languages; can be used as 
either an interpreter or a compiler; fully supported by 
Open VMS Debugger; fully reentrant code 

DEC BASIC for Open VMS AXP Supports a robust implementation of the BASIC 
language, containing most constructs found in 
traditional programming languages; is an optimizing 
compiler which is highly compatible with VAX BASIC; 
no environment/interpreter support 

VAX BLISS-32 Provides advanced set of language features supporting 
development of modular software according to 
structured programming concepts; provides access 
to most VAX hardware features 

VAX C Full implementation of C programming language with 
added features for performance enhancement in the 
Open VMS environment 

DEC C for Open VMS AXP Compliant with ANSI-standard Systems-Programming 
Language C (document number: X3.159-1989) 

DEC C++ Includes class libraries, a new C run-time library, and 
support for the debugger and LSE/SCA 

DEC COBOL for Open VMS AXP Based upon the 1985 ANSI COBOL Standard X3.23-
1985 and is closely compatible with VAX COBOL 

VAX COBOL Compatible with ANSI-standard COBOL; supports an 
embedded data manipulation language interface to 
Digital's CODASYL-compliant Database Management 
System (DBMS) 

VAX DIBOL Designed for interactive data processing; includes 
a compiler, debugger, and utility programs for 
data handling, data storing, and interprogram 
communication 

DEC Fortran for OpenVMS VAX Supports ANSI-standard FORTRAN-77 with many 
industry-leading extensions; conforms to FIPS 
standards; has a high optimization compiler and 
takes full advantage of features of the Open VMS 
environment 

(continued on next page) 



7.3 Ada 

Compilers, Interpreters, and Assemblers 
7 .2 Summary of Language Features 

Table 7-1 (Cont.) Compilers, Interpreters, and Assemblers 

Language 

DEC Fortran for OpenVMS AXP 

VAX MACRO 

VAX MACR0-32 Compiler for 
OpenVMSAXP 

MACR0-64 for Open VMS AXP 

DEC OPS5 

DEC Pascal 

DEC PUI for Open VMS AXP 

VAXPUI 

Features 

Supports ANSI-standard FORTRAN-77, nearly all 
DEC Fortran for OpenVMS VAX extensions, and other 
language features including recursion 

Assembly language for programming the VAX 
computer under the Open VMS operating system; uses 
all Open VMS resources; supports large instruction set 
enabling complex programming statements · 

Available for porting existing VAX MACRO code to an 
AXP system 

The AXP assembly language that provides precise 
control over instructions and data 

A development environment (compiler, run-time 
library, and DECwindows Motif-based programming 
/debugging environment) for constructing high 
performance, forward chaining, rule-based applications 

Supports standard ANSI Pascal features and 
added features using character instruction sets and 
Open VMS virtual memory 

Includes a compile-time preprocessor that allows 
language extension and conditional compilation 

Includes a compile-time preprocessor that allows 
language extension and conditional compilation 

If you are planning to move applications between OpenVMS VAX and OpenVMS 
AXP, see the documents Open VMS Compatibility Between VAX and AXP and 
Migrating to an Open VMS AXP System: Recompiling and Relinking Applications. 
If you are planning move applications written in VAX MACRO, see Migrating to 
an Open VMS AXP System: Porting VAX MACRO Code. 

DEC Ada for the Open VMS operating system is a complete implementation of 
the Ada programming language, a language which facilitates a portable, modular 
design. It conforms fully to the ANSI/MIL standard and is validated by NIST and 
the Ada Validation Facility. DEC Ada features include the following: 

• The DEC Ada library manager allowing shared use of a compilation library, 
use of individual libraries as sublibraries of team libraries, and automatic 
recompilation of obsolete units. 

• Individual units (subprograms, tasks, packages, generic units) that can be 
compiled separately. 

• Strong typing to ensure the integrity of data types. Type checking is done at 
compile time. 

• Data abstraction to free your programmer from needing to know specifically 
how DEC Ada implements data types, executable statements, and so forth. 

• Ability to define system features (for example, memory size) that can limit 
program scope for each application. 

• Use of tasks within the language to support parallel processing. 

7-3 



Compilers, Interpreters, and Assemblers 
7.3 Ada 

•• 
7.4 APL 

7.5 BASIC 

• Ada defined exception handling to recover from error conditions. User-defined 
exception handling is also available. 

The DEC Ada Professional Development Option is available on Open VMS VAX 
systems and is licensed separately. This option provides smart recompilation and 
program library file-block caching to increase productivity.+ 

The VAX APL interpreter provides a built-in editor, debugger, system 
communications facility, and file system. It automatically reserves space for 
variables, formats input and output statements, and manipulates rows and 
columns of data without loops. It can call another VAX APL program and have 
data returned as a result. 

Digital offers two highly compatible versions of BASIC, VAX BASIC for 
developing BASIC programs on Open VMS VAX and DEC BASIC for 
developing BASIC programs on Open VMS AXP. Both products support a 
robust implementation of the BASIC language, containing most constructs 
found in other traditional programming languages and access to common record 
definitions stored in the CDD/Repository (formerly named the Common Data 
Dictionary). Both products are fully supported by the Open VMS operating system 
environment, including access to all utilities, the ability to invoke the callable 
system routines, and the ability to use object modules from other programming 
languages. 

VAX BASIC and DEC BASIC support the following extensions to the traditional 
BASIC language: 

• Multiple integer and floating-point data types, the packed decimal data type, 
and user defined records 

• Structured programming statements, such as SELECT/CASE, IFtrHEN 
/ELSE, FOR/WHILE/UNTIL loops, local (DEF) and external functions, and 
alphanumeric labels 

• Sequential, relative, and indexed I/O through RMS 

• Structured error handling 

• Support for the Open VMS Debugger 

• Lexical compiler directives 

VAX BASIC also provides an environment/intrepreter as well as a package of 
language statements for performing graphics operations.+ 

7 .6 BLISS-32 

7-4 

VAX BLISS-32 supports development of modular software according to structured 
programming concepts by providing an advanced set of language features. It 
provides access to most of the hardware features of a VAX system. 

VAX BLISS-32 programs include the following features that allow programs to be 
transported to other Digital computer systems: 

• High-level language constructs can be transferred from one machine to 
another with little or no alteration. 



7.7 c 

7.8 C++ 

Compilers, Interpreters, and Assemblers 
7.6 BLISS-32 

• Machine-specific functions can be separated from the common, mainline code 
via modularization, macros, and special Library and Require files (separate 
files that can be invoked from a BLISS program). 

• Machine-specific characters can be passed to BLISS data structures with the 
use of parameters. 

Digital offers two versions of C, VAX C and DEC C. VAX C is available on 
Open VMS VAX systems only. DEC C is available on Open VMS AXP systems and 
will soon be supported on Open VMS VAX systems as well. 

Both products are full implementations of the C language and both are fully 
supported by the Open VMS operating system. This support includes access to all 
utilities, the ability to invoke the callable system routines, and the ability to use 
object modules from other programming languages. 

DEC C is compliant with the ANSI-standard Systems-Programming Language C 
(document number: X3.159-1989). By using command-line qualifiers, DEC C is 
compatible with older dialects of C, including common usage C and VAX C. 

VAX C and DEC C provide the following features within the Open VMS operating 
system environment: 

• Set of structured control flow operators 

• Set of mathematical and logical operators 

• Data typing and conversions 

• Consistent data declarations and data references 

• Compiler optimized code, along with listing and cross-referenced storage map 

• Common set of run-time support routines for accomplishing common tasks 
such as 1/0 or math routines (many UNIX specific routines have been 
emulated) 

• New keywords for sharing data among program modules to allow for easy 
reference to VAX MACRO programs and Open VMS callable system routines 

• Set of predefined macros to assist in transporting code and performing simple 
tasks 

• Set of built-in functions to efficiently access processor instructions 

DEC C++, a language that supports an object-oriented program design, is 
supported on both Open VMS VAX and Open VMS AXP. DEC C++ supports the 
full language definition as specified in The Annotated C++ Reference Manual by 
Margaret Ellis and Bjarne Stroustrup (Addison-Wesley, 1990) excluding exception 
handling. Exception handling is an experimental language feature that is not 
currently implemented in DEC C++ but is considered for a future version. 

DEC C++ supports LSE/SCA templates· and LSE/SCA diagnostics and includes 
enhancements to the debugger support of the C++ language features, such as the 
Open VMS Debugger command and DECwindows interfaces. 

7-5 



Compilers, Interpreters, and Assemblers 
7.9 COBOL 

7.9 COBOL 

•• 

Digital offers two versions of COBOL, VAX COBOL for developing COBOL 
programs on Open VMS VAX and DEC COBOL for developing COBOL programs 
on Open VMS AXP. Both are compatible with the ANSI-standard COBOL and both 
allow access to common record definitions stored in the Common Data Dictionary. 
They are fully supported by the OpenVMS operating system environment, 
including access to all utilities and the ability to invoke the callable system 
routines and to use object modules from other language programs. 

VAX COBOL and DEC COBOL support the following features: 

• Full report-writing capabilities 

• Form and report creation on terminals, with screen handling 

• Complete sequential, relative, and indexed 1/0 

• All data types for ANSI COBOL, plus packed decimal, floating point, double 
floating point, and address data types 

• Structured programming statements such as EVALUATE for CASE-like 
statements, scope-delimited statements to reduce use of GOTO, and inline 
PERFORM statements 

VAX COBOL also supports an embedded data manipulation language (DML) 
interface to Digital's CODASYL-compliant Database Management System. DEC 
COBOL does not.+ 

7.10 DIBOL 
VAX DIBOL is designed specifically for interactive data processing. It includes a 
compiler, a debugger, and a set of utility programs that facilitate data handling, 
data storing, and interprogram communication. VAX DIBOL can invoke 
Open VMS Record Management Services (RMS), system services, utility routines, 
and run-time library routines. It can use object modules produced from any other 
VAX language program. 

The VAX DIBOL compiler produces a source file listing, symbol table, label 
table, error report, error listing, and cross-reference listing. The VAX DIBOL 
Debugger Tool (DDT) allows you to examine or change program data at run time, 
to set breakpoints, and to examine the flow of execution. The other utilities 
include a VAX DIBOL Message Manager that stores and retrieves messages for 
VAX DIBOL programs and the VAX DIBOL Message Status that allows you to 
examine and delete any messages currently being held by the Message Manager. 

7.11 Fortran 

7-6 

Digital offers DEC Fortran on both Open VMS VAX and Open VMS AXP systems. 
Both are fully supported by the Open VMS operating system programming 
environment. Both provide a highly efficient, optimizing compiler that offer the 
following features: 

• Full language support of ANSI-standard FORTRAN 77 as well as numerous 
FORTRAN 77 extensions. These extensions include record structures, 
recursion, extended-precision REAL*16 data, and other language features 
associated with VAX FORTRAN and DEC Fortran on other Digital platforms. 
Both also conform to FIPS-69-1, ISO 1539-1980(E) and MIL-STD 1753. 



••• 

Compilers, Interpreters, and Assemblers 
7 .11 Fortran 

• Numerous Open VMS features and layered products, including: 

All Open VMS (RMS) file formats 

Access to object files created by other Digital languages and support of 
the Open VMS calling standard 

Creation of shareable images usable by any program written in a native 
Digital language 

Invoking all callable system routines, including the use of the 
FORSYSDEF library definitions for calling system services 

Conversion of unformatted nonnative floating-point data to the selected 
memory format, including several big endian data formats 

Selection of the floating-point data type used in memory 

Support for the CDD/Repository 

Use of all Open VMS programming utilities 

DEC Fortran for Open VMS VAX Systems (previously called VAX FORTRAN) also 
provides parallel processing support (both automatic and directed).+ 

DEC Fortran for Open VMS AXP Systems also provides data alignment control 
and the use of IEEE and most VAX floating-point data types in memory.• 

7.12 MACRO 
The Open VMS operating system supports the following assembly language 
products: 

• VAXMACRO 

• MACR0-32 Compiler for Open VMS AXP 

• MACR0-64 Assembler for Open VMS AXP 

7.12.1 VAX MACRO 
VAX MACRO is an assembly language for programming a VAX computer under 
the Open VMS operating system. The instruction set includes approximately 130 
instructions and 70 directives, which enable complex programming statements. It 
can use all Open VMS resources. For example, it can invoke any callable system 
routine, use the Open VMS Debugger and other utilities, and call any object 
module written in another VAX language. 

General assembler directives can perform the following operations: 

• Store data or reserve memory for data storage 

• Control the alignment of parts of the program in memory 

• Specify the methods of accessing the sections of memory in which the program 
will be stored 

• Specify the entry point of the program or a part of the program 

• Specify the way in which symbols are referenced 

• Specify that a part of the program is to be assembled only under certain 
conditions 

• Control the format and content of the listing file 

7-7 



Compilers, Interpreters, and Assemblers 
7.12 MACRO 

• Display informational messages 

• Control the assembler options that are used to interpret the source program 

• Define. new opcodes 

VAX MACRO directives define macros and repeat blocks. With these directives, 
you can repeat identical or similar sequences of source statements and use string 
operators to manipulate and test the contents of source statements. 

7.12.2 VAX MACR0-32 Compiler for OpenVMS AXP 
The VAX MACR0-32 Compiler for Open VMS AXP is available for porting 
VAX MACRO code to an Open VMS AXP system. 

Digital recommends the use of mid- and high-level languages for developing new 
applications. The VAX MACR0-32 Compiler is provided only for porting existing 
VAX MACRO code to Open VMS AXP systems. 

For information about using this compiler, see Migrating to an Open VMS AXP 
System: Porting VAX MACRO Code. 

7.12.3 MACR0-64 Assembler for OpenVMS AXP 
MACR0-64 Assembler for Open VMS AXP (MACR0-64) is the assembly language 
for AXP systems that provides precise control over instructions and data. 
MACR0-64 supports a rich macro processing language that includes the following 
features: 

• Macro definition and expansion 

• Symbolic labels, assembly-time variables, relocatable expression processing, 
and 64-bit absolute expression processing 

• Lexical string symbols and lexical operators 

• Conditional assembly 

• Implicit base register support 

• Optional automatic data alignment 

• Optional code optimizations 

Included with MACR0-64 are a number of library macros that enable you to 
write MACR0-64 programs that conform with the Open VMS calling standard. 

7.13 OPS5 

7-8 

DEC OPS5 is a preferred tool for developing high-performance, commercial 
quality rule-based systems. Such systems are well suited to solve problems in the 
following areas: 

• Configuration 

• Selection 

• Diagnosis 

• Process monitoring and control 

• Scheduling 



Compilers, Interpreters, and Assemblers 
7.13 OPS5 

• Planning 

• Decision support 

• Rapid prototyping 

DEC OPS5 for Open VMS provides an upward compatible migration path for 
users of VAX OPS5 Version 3.0 or earlier versions. Applications written in DEC 
OPS5 can call routines written in other languages, and those routines can, in 
turn, call the DEC OPS5 run-time system. A main program written in another 
language can also call a DEC OPS5 application. 

The DEC OPS5 language is also available in source-compatible form on the RISC 
/ULTRIX and DEC OSF/1 platforms with some minor restrictions. For details, 
refer to the DEC OPS5 for RISC Software Product Description (SPD 39.31.xx). 

7.14 Pascal 
DEC Pascal can use all Open VMS operating system features, including the 
following: 

• Support for the Open VMS Debugger 

• Compilation of separate modules 

• Access to other object modules written in other languages 

• Access to all callable system routines 

• Access to CDD/Repository data declarations 

Along with the standard ANSI Pascal features, DEC Pascal incorporates the 
following features: 

• Exponentiation and concatenation operator 

• Hexadecimal, octal, and DOUBLE constants 

• Uppercase and lowercase letters treated identically, except in character and 
string constants 

• Dollar sign ( $ ) and underscore ( _) characters in identifiers 

• DOUBLE, SINGLE, QUADRUPLE, VARYING character strings and 
UNSIGNED data types 

• I/O, arithmetic, ordinal, boolean, transfer, dynamic allocation, character 
string manipulation, unsigned, and allocation size defined routines 

• READ (or READLN) of user-defined ordinal type and string 

• WRITE (or WRITELN) of user-defined scalar type or any data using binary, 
hexadecimal, or octal format 

• Conformant array parameters for processing arrays with potentially different 
bounds 

• Optional attribute specification on types, variables, routines, and compilation 
units to change many of the properties of a program 

7-9 



Compilers, Interpreters, and Assemblers 
7.15 PUI 

7.15 PUI 

•• 

7-10 

Digital offers two versions of PUI: VAX PUI for developing programs on 
Open VMS VAX and DEC PUI for developing programs on Open VMS AXP. They 
both incorporate the following features: 

• Compile-time preprocessor that allows language extension and conditional 
compilation 

• Several program control constructs (DO, IF-THEN-ELSE, BEGIN-END, 
LEVEL, SELECT-WHEN-OTHERWISE, and CALL) 

• AUTOMATIC initializations, AREA (user allocation), OFFSET, scalar 
assignment to arrays, the REFER structure, the ENTRY statement, and the 
TYPE and LIKE attributes 

• Optional access to the CDD/Repository and to the Language-Sensitive Editor 
component of LSE/SCA 

• Open VMS Debugger support 

• Access to callable system routines 

VAX PUI also offers optional access to the Source Code Analyzer component of 
LSE/SCA and the Program Design Facility.+ 



8 
Linker and Librarian 

After a program is compiled or assembled, it must be linked to produce an 
application that can run on an Open VMS VAX or Open VMS AXP system. The 
Open VMS Linker Utility (linker) performs the following major steps: 

• Resolves references to global symbols among the input modules 

• Allocates virtual memory for the image 

• Initializes the image 

You can supply linker options to the linker in an options file. The use of an 
options file eliminates the need to retype a long linker command every time you 
relink your module or application. 

You can use output from the linker to debug programs. Use the image map to 
locate an instruction that caused a run-time error, translate a number displayed 
by the debugger to its related symbol or address, and locate definitions of 
symbols. 

This chapter briefly describes the features of the linker and the Librarian utility. 
For complete information about using the linker, refer to the Open VMS Linker 
Utility Manual. 

8.1 Linker Input and Output 
Depending on the needs of your program, the linker can accept input from the 
following sources: 

• Object file-Any object module created after compiling or assembling a source 
program. 

• Shareable image file-A separate image that was already linked but which 
cannot be run as a separate file. 

• Symbol table file-A separate symbol table produced by a previous link 
operation. The symbol table contains global symbols and values of an image. 

• Library file-The linker accepts object module libraries and shareable image 
libraries. 

• Options file-Input file specifications and link options that cannot be defined 
at the DCL command level can be specified in this file. 

Primarily, the linker produces an executable image of the program. In addition, 
the linker has the capability to produce the following: 

• A shareable image-An image that can be used by other programs but cannot 
be executed independently. 

• A system image-An image that does not execute under the control of the 
operating system; rather it operates standalone on VAX or AXP hardware. 

8-1 



Linker and Librarian 
8.1 Linker Input and Output 

• An image map-A file containing additional program information including 
object module synopsis, module relocatable reference synopsis, image section 
synopsis, program section synopsis, symbols by name and value, image 
synopsis, and link run statistics. 

• A symbol table file-A file containing symbols and their values to be used by 
other programs being linked. 

Figure 8-1 illustrates the relationship of the linker to the language processor in 
the program development process. 

Figure 8-1 Position of the Linker in Program Development 

ACMS 

ZK-5070A-GE 

8.2 Linker Command Summary 

8-2 

You can use linker qualifiers to control linker operations in the following ways: 

• To produce an abbreviated image map 

• To generate a debug symbol table to give the debugger control when the 
image is run 

• To place the entire executable image in PO address space 

• To produce and protect shareable images 

• To create a system image 

• To include traceback information in the image 

• To search system default, shareable image default, and user-default libraries 
to resolve references 

For more information about using linker qualifiers, see the Open VMS Linker 
Utility Manual. 



Linker and Librarian 
8.3 Using the LIBRARIAN with the Linker 

8.3 Using the LIBRARIAN with the Linker 
You can use the Librarian utility (LIBRARIAN) to collect input-object modules 
and shareable images-for the linker. You can assign system-defined logical 
names to the libraries. Then, the linker automatically searches these libraries 
to resolve references. The library logical names are LNK$LIBRARY and 
LNK$LIBRARY_l through LNK$LIBRARY_999. When you associate libraries 
with these logical names, do not skip any logical names in the sequence. 

If you choose a name for your library other than the system-defined logical library 
names, you can link it to your program by specifying the qualifier LIBRARY in 
the LINK command. For example, you could store object modules in the library 
INCOME.OLE. To link it with the program INCOME.OBJ, enter the following 
command: 

$ LINK INCOME,INCOME.OLB/LIBRARY 

8.4 Additional Linker Features 
The linker also incorporates the following features: 

• Options file 

• Image map 

• Object language 

Use an options file to specify linker options and input file specifications. Linker 
options allow you to control aspects of a link operation, such as the starting 
virtual address of an image. Shareable images used as input files must be 
specified in an options file. In addition, options files can be useful to specify a set 
of frequently used input files or to specify input files in a LINK command that 
exceeds the maximum size of a DCL command. 

The image map contains information on the contents of the image and on the link 
process. You can use the map to locate link-time errors, view the image layout in 
virtual memory, keep track of global symbols, and so forth. 

8.5 Librarian Uti I ity 
Libraries are files you create to store frequently used modules of code or text. 
With the LIBRARIAN, you can create a library, maintain the modules in a library, 
or display information about a library and its modules. You use LIBRARIAN 
commands to manage modules within a library. You can use DCL commands to 
manage the entire library as one unit. For example, if you want to rename the 
library, use the DCL command RENAME. 

8-3 



Linker and Librarian 
8.5 Librarian Utility 

8.5.1 Library Types 
Table 8-1 lists the types of available libraries. 

Table 8-1 Types of Libraries 

File Type 

Library Library Module Contents 

Help HLB HLP Help text modules that provide 
users with information about a 
program 

Macro MLB MAR VAX MACRO definitions used 
as input to the assembler 

Object OLB OBJ Object modules of frequently 
called routines 

Shareable image OLB EXE Symbol tables of shareable 
images used as input to the 
linker 

Text TLB TXT Sequential record files used as 
input data to a program 

8.5.2 Using the LIBRARY Command 
The DCL command LIBRARY invokes the LIBRARIAN and accepts a number of 
command qualifiers. The LIBRARIAN manages library modules in the following 
ways: 

• Creates a new library and specifies the type 

• Adds, deletes, or replaces a module within the library 

• Copies a module from the library 

• Lists the modules in the library, with a history, with global symbols, or before 
or after a specified time 

• Enables a log of each library action 

You can create command procedures that manipulate libraries using the DCL 
command LIBRARY. 

8.5.3 Sharing Code Using Text Libraries 

8-4 

You can share code easily by creating text or macro libraries that all users can 
access. You can also share data by creating text libraries of data files that all 
users can access. 

For complete information on creating, managing, and using libraries, refer to the 
Open VMS Command Definition, Librarian, and Message Utilities Manual. 



9 
Debugging and Testing Tools 

This chapter describes the debuggers and testing tools supplied with the 
Open VMS operating system and some optional testing tools, as shown in 
Table 9-1. 

Table 9-1 Debugging and Testing Tools 

Name Built-in or Optional Where Described 

Open VMS Debugger Built-in 

Open VMS Delta/XDelta Debugger Built-in 

:j:Open VMS AXP System-Code Debugger Built-in 

System Dump Analyzer Built-in 

Crash Log Utility Extractor Built-in 

DEC Performance and Coverage Optional 
Analyzer 

DEC Test Manager Optional 

:j:Open VMS AXP 

Section 9.1 

Section 9.2 

Section 9.3 

Section 9.4 

Section 9.5 

Section 9.6 

Section 9.7 

DEC Performance Coverage Analyzer (PCA) and DEC Test Manager are 
components of DECset, an integrated programming tool set that supports 
software developers' coding, debugging, testing, and maintenance activities. 

The DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA), another 
optional testing tool and also a component of DECset, is described in Section 5.3. 

9.1 OpenVMS Debugger 
The Open VMS Debugger (debugger) is a symbolic debugger and is the preferred 
debugger for debugging user-mode code. It enables you to reference program 
locations using the symbols you defined in the program. You do not need to keep 
track of program addresses. To enter commands with the debugger, you can 
use the keypad, the command line, or an input file (to enter a lengthy series of 
commands). The debugger has a screen mode that allows you to view several 
lines of source code at one time, the commands you enter, and the output from 
the commands you enter. It also provides a robust error message facility. 

The debugger helps you locate run-time programming or logic errors, also known 
as bugs. You use the debugger with a program that has been compiled and linked 
successfully but does not run correctly. For example, the program might give 
incorrect output, go into an infinite loop, or terminate prematurely. 

9-1 



Debugging and Testing Tools 
9.1 OpenVMS Debugger 

You can locate errors with the debugger by observing and manipulating your 
program interactively as it executes. By entering debugger commands at the 
terminal, you can perform the following basic debugging techniques: 

• Display your program's source code, identifying where execution is currently 
paused 

• Browse through the source code to locate points of interest where you might 
test for certain conditions 

• Set breakpoints to suspend program execution at such points 

• Execute your program, including stepping one source line at a time. and 
restarting from· the beginning of the program 

• Trace the execution path of the program 

• Display the current value of a program variable 

• Monitor changes in variables and other program entities during program 
execution 

• Change the value of a variable and, in some cases, test the modification 
without editing the source code, recompiling, and relinking 

• Monitor exception conditions and language-specific events, and force events to 
occur 

These are the basic debugging techniques. After you are satisfied that you have 
found the error in the program, you can edit the source code and compile, link, 
and execute the corrected version. 

9.1.1 Programming Language Support 

9-2 

Most of the languages supported by the debugger are available on both Open VMS 
VAX and Open VMS AXP, as shown in Table 9-2. 

Table 9-2 Language Support on OpenVMS VAX and OpenVMS AXP 

On VAX and AXP 

Ada 

BASIC 

c 
C++ 

COBOL 

Fortran 

Pascal 

On VAX Only 

Bliss 

DIBOL 

On AXP Only 

MACR0-64 

:j:On OpenVMS AXP, VAX MACRO is supported by the MACR0-32 compiler, which converts 
VAX MACRO code into AXP machine language code. 

The debugger recognizes the syntax, data types, operators, expressions, scoping 
rules, and other constructs of a given language. You can change the debugging 
context from one language to another during a debugging session with the SET 
LANGUAGE command. 



9.1.2 User-Interface Options 

Debugging and Testing Tools 
9.1 OpenVMS Debugger 

The debugger has the following user-interface options to accommodate different 
needs and debugging styles: 

• DECwindows interface for workstations 

When using this interface, you interact with the debugger by manipulating a 
mouse and pointer to choose items from menus, click on buttons, select names 
in windows, and so on. This interface is the default interface. It provides the 
basic debugging and convenience features that you will probably need most of 
the time. 

• Command interface for terminals and workstations 

When using this interface, you interact with the debugger by entering 
commands at a prompt. In addition to general-purpose debugging features, 
the command interface provides special features not available through the 
default DECwindows interface (for example, changing the radix for the 
display of integer data). 

The DECwindows interface also has a command-entry prompt. You can use 
it as an alternative to the DECwindows interface for certain operations, 
including debugging tasks not available through the DECwindows interface. 

9.1.3 Functional Features of the Command Interface 
The functional features of the command interface are highlighted in the following 
paragraphs. 

Symbolic Debugging 
Because the Open VMS Debugger is a symbolic debugger, you can refer to program 
locations by the symbols you used for them in your program-the names of 
variables, routines, labels, and so on. You do not need to specify memory 
addresses or machine registers when referring to program locations, although 
you can, if you want. 

Support for All Data Types 
The debugger understands all compiler generated data types, such as integer, 
floating point, enumeration, record, array, and so on. It displays the values of 
program variables according to their declared type. 

Flexible Data Format 
The debugger permits a variety of data forms and types for entry and display. By 
default, the source language of the program determines the format used for the 
entry and display of data. You can also impose other formats. ·For example, by 
using a type or radix qualifier with the EXAMINE command, you can display the 
contents· of a program location in ASCII, word-integer, or floating-point format. 

Starting or Resuming Program Execution 
You start or resume program execution with the GO or STEP commands. The 
GO command causes the program to execute until a breakpoint is reached, a 
watch point is modified,· an exception is signaled, or the program terminates. The 
STEP command enables you to execute a specified number of lines or instructions, 
or up to the next instruction of a specified class. 

9-3 



Debugging and Testing Tools 
9.1 OpenVMS Debugger 

9-4 

Breakpoints 
By setting breakpoints with the SET BREAK command, you can suspend program 
execution at specified locations and check the current status of your program. 
Rather than specify a location, you can also suspend execution on certain classes 
of instructions or on every source line. Also you can suspend execution on certain 
kinds of events, such as exceptions and tasking (multithread) events. 

Tracepoints 
By setting tracepoints with the SET TRACE command, you can monitor the 
path of program execution through specified locations. When a tracepoint 
is triggered, the debugger reports that the tracepoint was reached and then 
continues execution. As with the SET BREAK command, you can also trace 
through classes of instructions and monitor events. 

Watchpoints 
By setting a watchpoint with the SET WATCH command, you can cause execution 
to stop whenever a particular variable or other memory location has been 
modified. When a watchpoint is triggered, the debugger suspends execution 
at that point and reports the old and new values of the variable. 

Manipulation of Variables and Program Locations 
With the EXAMINE command, you can determine the value of a variable or 
program location. The DEPOSIT command enables you to change that value. You 
can then continue execution to see the effect of the change, without having to 
recompile, relink, and rerun the program. 

Evaluation of Expressions 
With the EVALUATE command, you can compute the value of a source-language 
expression or an address expression. You specify expressions and operators in the 
syntax of the language to which the symbolic debugger is currently set. 

Control Structures 
You can use logical control structures (FOR, IF, REPEAT, WHILE) in commands 
to control the execution of other commands. 

Shareable Image Debugging 
You can debug shareable images (images that are not directly executable). 
The SET IMAGE command enables you to reference the symbols declared in 
a shareable image. 

Multiprocess Debugging 
You can debug multiprocess programs (programs that run in more than one 
process). The SHOW PROCESS and SET PROCESS commands enable you to 
display process information and control the execution of images in individual 
processes. 

Task Debugging 
You can debug tasking programs (also known as multithread programs). These 
programs use DECthreads or POSIX 1003.4a services, or use language-specific 
tasking services (for example, Ada tasking programs). The SHOW TASK and SET 
TASK commands enable you to display task information and control the execution 
of individual tasks. 



... Vector Debugging (VAX Only) 

Debugging and Testing Tools 
9.1 OpenVMS Debugger 

On VAX systems, you can debug vectorized programs, that is, programs that 
use VAX vector instructions. You can control and monitor execution at the 
vector instruction level, examine and deposit vector instructions, manipulate the 
contents of vector registers, use a mask to display specific vector elements, and 
control synchronization between the scalar and vector processors.• 

Terminal and Workstation Support 
The debugger supports all VT-series terminals and MicroVAX workstations. 

9.1.4 Convenience Features of the Command Interface 
The convenience features of the command interface are highlighted in the 
following paragraphs. 

Online Help 
Online help is always available during a debugging session. Online help contains 
information about all debugger commands and selected topics. 

Source Code Display 
You can display lines of source code for all supported languages during a 
debugging session. 

Screen Mode 
In screen mode, you can display and capture various kinds of information 
in scrollable windows that can be moved around the screen and resized. 
Automatically updated source, instruction, and register displays are available. 
You can selectively direct debugger input, output, and diagnostic messages to 
displays. You can also create DO displays that capture the output of specific 
command sequences. 

Running and Rerunning a Program 
With the RUN and RERUN commands, you can run a new program or rerun 
the same program from the current debugging session without first exiting 
and restarting the debugger. When you rerun a program you can choose to 
either activate or deactivate any previously set breakpoints, tracepoints, and 
watchpoints. 

Keypad Mode 
When you start the debugger, several commonly used debugger command 
sequences are assigned by default to the keys of the numeric keypad (if you have 
a VT52, VTlOO, or LK201 keyboard). Therefore, you can enter these commands 
with fewer keystrokes than if you were to type them at the keyboard. You can 
also create your own key definitions. 

Source Editing 
As you find errors during a debugging session, you can use the EDIT command 
to invoke any editor available on your system. You specify the editor you want 
with the SET EDITOR command. If you use the DEC Language-Sensitive Editor 
/Source Code Analyzer (LSE/SCA), the editing cursor is automatically positioned 
within the source file whose code appears in the screen-mode source display. 

Command Procedures 
You can direct the debugger to execute a command procedure (a file of debugger 
commands) to recreate a debugging session, to continue a previous session, or 
to avoid typing the same debugger commands many times during a debugging 
session. You can pass parameters to command procedures. 

9-5 



Debugging and Testing Tools 
9.1 OpenVMS Debugger 

Initialization Files 
You can create an initialization file containing commands to set your default 
debugging modes, screen display definitions, keypad key definitions, symbol 
definitions, and so on. When you invoke the debugger, those commands are 
executed automatically to tailor your debugging environment. 

Log Files 
You can record in a log file the commands you enter during a debugging session 
and the debugger's responses to those commands. You can use log files to keep 
track of your debugging efforts, or you can use them as command procedures in 
subsequent debugging sessions. 

Symbol Definitions 
You can define your own symbols to represent lengthy commands, address 
expressions, or values in abbreviated form. 

9.1.5 Convenience Features of the DECwindows Interface 

9-6 

The following paragraphs highlight some of the convenience features of the 
debugger's default DECwindows interface. 

Source-Code Display 
The debugger is a source-level debugger. The source-code display in the source 
window is automatically updated to show where program execution is paused 
currently. You can enable and disable the display of compiler-generated line 
numbers. 

A source browser feature lists the modules and routines of your program and lets 
you display source code in arbitrary modules and set breakpoints on routines. By 
double clicking on program names and module names, you can list the underlying 
hierarchy of modules and routines. 

Call-Stack Navigation 
A menu on the source window lists the sequence of routine calls currently on 
the call stack. By clicking on a routine name, you can set the context (scope) 
for source display, instruction display (in the instruction window), and symbol 
searches to any routine on the stack. 

Breakpoints 
You set, deactivate, and activate breakpoints by clicking on buttons next to the 
source lines in the source window. You can set conditional breakpoints or action 
breakpoints. The latter execute one or more debugger commands when the 
breakpoint triggers. The source window buttons and the Breakpoint View give a 
visual indication of activated, deactivated, and conditional breakpoints. 

Push Buttons 
Push buttons in the control panel control common operations: by clicking on a 
button, you can start execution, step to the next source line, display the value of 
a variable selected in a window, interrupt execution, and so on. 

You can add, modify, and remove buttons and the associated debugger commands. 

Displaying and Manipulating Data 
To display the value of a variable, you select its name from the source window 
and click on a button. 

The Monitor View automatically displays the updated values of specified variables 
whenever the debugger regains control from your program. 



Debugging and Testing Tools 
9.1 OpenVMS Debugger 

To display the values of the individual elements of an aggregate variable (such as 
an array), you double click on the name of the variable in the Monitor View. To 
assign a new value to a variable, you edit the currently displayed value. To set a 
watchpoint, you click on a button next to its name. 

To dereference a pointer variable (to display the value of the referenced object), 
you double click on the name of the pointer variable. 

Run/Rerun Program 
You can rerun the same program or run another program from the same 
debugging session without exiting the debugger. When rerunning a program, 
you can choose to save the current state (activated or deactivated) of breakpoints, 
tracepoints, and static watchpoints. The Run/Rerun feature is also available in 
the debugger's command interface. 

Instruction and Register Views 
The Instruction View shows the decoded instruction stream of your program-the 
code that is actually executing. This is useful if the program you are debugging 
has been optimized by the compiler so that the information in the source window 
does not exactly reflect the code that is executing. 

The Register View displays the current contents of all machine registers. You can 
edit the displayed values to deposit other values into the registers. 

Tasking Program Support 
The Task View displays information about the current state of all tasks of a 
tasking program (also called a multithread program). You can modify task 
characteristics to control task execution, priority, state transitions, and so on. 

Integration with Command Interface 
The debugger's DECwindows interface is layered on, and closely integrated with, 
the command-driven debugger: 

• When you use the DECwindows interface, the resulting commands are 
echoed in the message region so that you can correlate your input with the 
corresponding command line that the debugger processes. 

• When you enter commands at the prompt, they update the DECwindows 
views accordingly. 

Customization 
You can modify the following and other aspects of the debugger's DECwindows 
interface and save the current settings in a resource file to customize your 
debugger startup environment: 

• Configuration of windows and views 

• Control-panel button labels and associated debugger commands, including 
adding and removing buttons and commands 

• Character fonts for displayed text 

Online Help 
Online help is available for the debugger's DECwindows interface (context­
sensitive help) and its command interface. 

For more information about the debugger, see the Open VMS Debugger Manual. 

9-7 



Debugging and Testing Tools 
9.2 OpenVMS Delta/XDelta Debugger 

9.2 OpenVMS Delta/XDelta Debugger 
The OpenVMS Delta/XDelta Debugger (DELTA/XDELTA) is a primitive debugger. 
It is used to debug code that cannot be debugged with the symbolic debugger, that 
is, any code that executes at interrupt priority levels (IPLs) above IPLO or any 
code that executes in supervisor, executive, or kernel mode. Examples include 
user-written device drivers and the Open VMS operating system. 

Almost all the commands available on DELTA are also available on XDELTA. 
Furthermore, both DELTA and XDELTA use the same expressions. However, 
they are different in two ways: you use them to debug different kinds of code, 
and you invoke and exit from them in different ways. 

You can ·use DELTA to debug programs that execute at IPLO in any processor 
mode (user, supervisor, executive, and kernel). You can also debug user-mode 
programs with DELTA, but the debugger is more suitable. To run DELTA in a 
processor mode other than user mode, your process must have the privilege that 
allows DELTA to change to that mode-change-mode-to-executive (CMEXEC) or 
change-mode-to-kernel (CMKRNL) privilege. You cannot use DELTA to debug 
code that executes at an elevated IPL. 

You can use XDELTA to debug programs that execute in any processor mode and 
at any IPL. To use XDELTA, you must have system privileges, and you must 
include XDELTA when you boot the system. 

You can use DELTA/XDELTA commands to perform the following debugging 
tasks: 

• Open, display, and change the value of a particular location 

• Set, clear, and display breakpoints 

• Set display modes in byte, word, longword, or ASCII 

• Display instructions 

• Execute the program in a single step with the option to step over a subroutine 

• Set base registers 

• List the names and locations of all loaded modules of the executive 

For more information about using DELTA/XDELTA for debugging, see the 
Open VMS Delta I XDelta Debugger Manual. 

9.3 OpenVMS AXP System-Code Debugger {AXP Only) 

9-8 

Open VMS AXP supports a new symbolic debugger that can be used to debug 
nonpageable system code and device drivers running at any IPL. The Open VMS 
AXP System-Code Debugger lets you use the familiar Open VMS Debugger 
interface to observe and manipulate system code interactively as it executes. 

Using the Open VMS AXP System-Code Debugger, you can perform the following 
tasks: 

• Control the system software's execution--stop at points of interest, resume 
execution, intercept fatal exceptions, and so on 

• Trace the execution path of the system software 

• Monitor exception conditions 



Debugging and Testing Tools 
9.3 OpenVMS AXP System-Code Debugger (AXP Only) 

• Examine and modify the values of variables 

• In some cases, test the effect of modifications without having to edit the 
source code, recompile, and relink 

Because the Open VMS AXP System-Code Debugger is a symbolic debugger, you 
can specify variable names, routine names, and so on, precisely as they appear 
in the source code. Using the Open VMS AXP System-Code Debugger, you can 
display the source code where the software is executing and step through the 
source code, line by line. 

You can use this debugger to debug code with the following languages: 

• c 
• Bliss 

• VAXMACRO 

Note-----------­

A Bliss compiler is not available for Open VMS AXP. 

The Open VMS AXP System-Code Debugger recognizes the syntax, data typing, 
operators, expressions, scoping rules, and other constructs of a given language. 
If your program is written in more than one language, you can change the 
debugging context from one language to another during a debugging session. For 
information about how to use the Open VMS AXP System-Code Debugger and how 
it differs from the Open VMS Debugger, see the Open VMS AXP Device Support: 
Developer's Guide. For information about Open VMS Debugger commands, see the 
Open VMS Debugger Manual.+ 

9.4 System Dump Analyzer 
The System Dump Analyzer utility (SDA) helps you determine the cause of 
system failures. You invoke this utility specifying a system crash dump file, 
which is a copy of memory at the time of a system crash. SDA reads the 
dump file; then, it formats and displays the contents of the file. In addition to 
information contained in the dump file, SDA reads the system's symbol table file. 
You can specify that SDA read the symbols that define many of the system's data 
structures, including those in the I/O database. 

You can also use SDA to analyze a running system. To do this, you need change­
mode-to-kernel (CMKRNL) privilege. This option is useful for examining the 
stack and memory of a process stalled in a scheduler state. 

If you are examining a dump file, SDA displays the immediate cause of the crash. 
You can then use SDA to diagnose how the error occurred. For example, you can 
use SDA commands to locate the line of code that signaled the bugcheck and 
to find the line of code (usually on the stack) that caused the error. Then, you 
can examine device drivers, linker maps, and system maps to locate the module 
where the line of code came from. Once the module has been identified, you can 
examine the module code to pinpoint the problem. 

9-9 



Debugging and Testing Tools 
9.4 System Dump Analyzer 

You can locate the error using SDA commands that allow you to view the 
following pieces of information: 

• The location and contents of the four process stacks 

• On a VAX computer, the location and contents of the systemwide interrupt 
stack+ 

• The active processes and the values of the parameters used in swapping and 
scheduling these processes 

• The software and hardware context of any process 

• The value of a symbol and the contents of the location to which the symbol 
points 

• A formatted list of a block of memory 

• The list of system page table entries 

• The lookaside lists, the nonpaged dynamic storage pool, and the paged 
dynamic storage pool 

• All locks in the system 

• The names of the RMS data structures 

• All data structures associated with a device 

• The VMScluster or the system communications services cluster 

• The active connections between systems communication services processes 

• The dump file header 

• The response identifications 

The SDA commands also allow you to switch processes, direct output to a log 
file or terminal, scan memory locations, assign a value to a symbol, read global 
symbols to add them to the SDA symbol table, and repeat the execution of the 
last command. 

For more information about the System Dump Analyzer on AXP systems, see the 
Open VMS AXP System Dump Analyzer Utility Manual. For more information 
about the System Dump Analyzer on VAX systems, see the Open VMS VAX System 
Dump Analyzer Utility Manual. 

9.5 Crash Log Utility Extractor 

9-10 

The Crash Log Utility Extractor (CLUE) is a tool for recording a history of 
crash dumps and key parameters for each crash dump and for extracting and 
summarizing key information from each crash dump. Unlike crash dumps, which 
are overwritten with each system crash and are available only for the most recent 
crash, the crash history file on Open VMS VAX and the summary crash history 
file (with a separate listing file for each crash) on Open VMS AXP, are permanent 
records of system crashes. 

By examining the key parameters of a crash, you can identify and resolve the 
issues that caused it. 



Debugging and Testing Tools 
9.5 Crash Log Utility Extractor 

The implementation differences between Open VMS VAX and Open VMS 1AXP are 
shown in Table 9-3. 

Table 9-3 CLUE Differences Between OpenVMS VAX and OpenVMS AXP 

Attribute 

Access method 

History file 

Uses in addition 
to debugging 
crash dumps 

Where 
documented 

OpenVMS VAX 

Invoked as a separate utility. 

A cumulative file that contains a 
one-line summary and detailed 
information from the crash dump 
file for each crash. 

None. 

Open VMS System Manager's 
Manual and Open VMS System 
Management Utilities Reference 
Manual 

OpenVMS AXP 

Accessed through SDA. 

A cumulative file that contains only 
a one-line summary for each crash 
dump. The detailed information 
for each crash is put in a separate 
listing file. 

CLUE commands can be used 
interactively to examine a running 
system. 

Open VMS System Manager's 
Manual and Open VMS AXP 
System Dump Analyzer Utility 
Manual 

9.6 DEC Performance and Coverage Analyzer 
DEC Performance and Coverage Analyzer (PCA) is a component of DECset. Each 
DECset tool provides a DECwindows Motif user interface and a consistent look 
and feel across platforms. PCA is designed to help software engineers analyze 
and improve the runtime functioning of application programs. 

DEC PCA serves two functions: 

• Helps pinpoint execution bottlenecks and other performance problems so that 
users can modify their programs to run faster. 

• Provides test coverage analysis by measuring what program sections have or 
have not been executed by a specified set of test data. With this information, 
users can create new tests to exercise their programs more thoroughly. 

DEC PCA is fully symbolic and uses the Debug Symbol Table (DST) information 
in the user's program to access the symbolic names of program locations. 
Consequently, applications written in any of the Open VMS languages that 
produce DST information can be analyzed with DEC PCA. 

DEC PCA consists of two parts-the Collector and the Analyzer. The Collector 
gathers performance or test coverage data on a running user program and writes 
that data to a performance data file. The Analyzer-a separate, interactive 
program-then reads the performance data file and presents the results as 
performance histograms and tabular displays. 

DEC PCA can be used to collect and analyze the following kinds of data: 

• CPU sampling data-The program counter (PC) can be sampled to determine 
which sections of an application use the most CPU time during program 
execution. 

• Program counter sampling data-The program counter can be sampled at 
a specified interval (by default, every 10 milliseconds) to determine which 
sections of an application take the longest time to run. 

9-11 



Debugging and Testing Tools 
9.6 DEC Performance and Coverage Analyzer 

• Ada multitasking data-Many types of multitasking data can be gathered to 
determine which tasks consume the most resources. 

• Exact execution counts-Information about the exact number of times 
specified program locations are executed helps illuminate an application's 
dynamic functions. 

• Test coverage data-Information that reveals which code paths are or are not 
executed when an application is tested enables users to create more complete 
tests. 

• Event markers-Significant events in the execution of the program (for 
example, entering a routine) can be marked to permit later filtering of the 
data. 

For more information about DEC PCA, see the Guide to Performance and 
Coverage Analyzer for VMS Systems. 

9.7 DEC Test Manager 

9-12 

DEC Test Manager is a component of DECset. Like the other components of 
DECset, it provides a DECwindows Motif user interface and a consistent look and 
feel across platforms. It also provides a command-line user interface. 

DEC Test Manager is based on the concept of regression testing. Regression 
testing is a method of ensuring that a program being developed runs correctly 
and that new features added to the program do not affect the correct execution of 
previously tested features. 

In regression testing, users run established software tests and compare the actual 
test results with the results that were expected. If these actual results do not 
agree with the expected results, the software being tested may contain errors. If 
errors do exist, the software being tested is said to have regressed. 

DEC Test Manager automates regression testing of software during the 
development and maintenance phases by executing user-supplied tests and 
automatically comparing the results with expected test results. Programmers 
supply and select the tests they want to run. 

The use of DEC Test Manager by itself can improve programmer productivity and 
software reliability. You can organize, run, compare, and store test results 
efficiently. You can repeat tests and review results as often as needed. 
Integration of the DEC Test Manager with PCA and CMS provides a further 
enhanced testing environment with corresponding productivity gains. 

For more information about the DEC Test Manager, see the Guide to Test 
Manager for VMS Systems. . 



10 
Using Callable System Routines 

The Open VMS operating system includes the following callable system routines 
that perform various tasks: 

• Run-time library (RTL) routines 

• System services 

• Utility routines 

• Open VMS RMS (hereafter referred to as RMS) 

In this manual, a routine is a closed, ordered set of instructions that performs 
one or more specific tasks. Every routine has an entry point (the routine name), 
and optionally an argument list. Procedures and functions are specific types 
of routines: a procedure is a routine that does not return a value, whereas a 
function is a routine that returns a value by assigning that value to the function's 
identifier. 

This chapter briefly describes the routines and references appropriate manuals 
for more information. 

10.1 Deciding Which Routines to Use 
You can use system routines in programs to complete programming tasks such as: 

• 1/0 operations 

• Security procedures 

• File manipulation 

• Memory management 

• Screen management 

• Mathematics operations 

• Event synchronization 

• Utility usage 

The sections that follow suggest sets of routines to use for each of these general 
programming tasks. 

10.1.1 1/0 Operations 
For 1/0 operations, you can use RMS, RTL routines, or system services. Use 
RMS for device-independent 110, when you want more control over file access. 
Use RTL routines to get more functionality than language 1/0 statements. Use 
system services for device-dependent 1/0 when you want more control over the 
device. System services allow you to access devices not supported by RMS, to 
perform 1/0 operations not supported by a particular language, and to increase 
1/0 performance. 

10-1 



Using Callable System Routines 
10.1 Deciding Which Routines to Use 

10.1.2 Security Procedures 
For security procedures, use system services to maintain rights database, to 
use access control lists and process rights lists, to check access protection, and 
to provide security erase patterns. To assign protection to a particular file, use 
RMS. 

10.1.3 File Management 
For complex file manipulation, you would generally use RMS. RMS can create 
complex file organizations; reorganize files; extend disk space for files; and get, 
locate, insert, update, and delete records. There are RMS and RTL routines 
for simple file manipulation such as opening, reading, deleting, renaming, and 
closing files. 

10.1.4 Memory Management 
For memory management tasks, both RTL routines and system services can 
acquire and free virtual memory. RTL memory management routines call system 
services. RTL routines maintain a processwide pool of free pages that are 
automatically reused. If you call system services directly, the program must keep 
track of free pages. Direct calls to system services should be used when the size 
requirements exceed 1000 pages for one request. RTL routines working with 
such large requests may result in fragmenting the virtual address space. System 
services give you more control because you can specify a specific virtual address 
and unlock pages in memory. 

10.1.5 Screen Management 
For screen management, use RTL routines. The screen management routines 
allow you to build terminal-independent screen management functions. They do 
not rely on particular hardware devices; input is read from a virtual keyboard 
and output is sent to a virtual display. With SMG$ routines, complex screens can 
be built with several regions defined. The program can then work within a region 
without regard to its position on the screen. 

10.1.6 Math Operations Specific to Open VMS 
For math routines for Open VMS systems, RTL routines can complete simple 
arithmetic as well as the following functions: 

• Exponentiation 

• Complex exponentiation 

• Complex function evaluation 

• Floating-point trigonometric function evaluation 

• Absolute value 

• Numeric data conversions 

10.1. 7 Digital Portable Mathematics Library (AXP Only) 

l!D# 

10-2 

For math routines on AXP systems, the Digital Portable Mathematics Library 
(DPML) provides a wide variety of mathematical routines including: 

• Floating-point trigonometric function evaluation 

• Exponentiation, logarithmic, power function evaluation 

• Hyperbolic function evaluation 



Using Callable System Routines 
10.1 Deciding Which Routines to Use 

• Algebraic function evaluation 

• Complex function evaluation 

• Complex exponentiation 

• Miscellaneous function evaluation 

If you want to maintain compatibility with future libraries and create portable 
mathematical applications, Digital recommends that you use the DPML routines 
available through the high-level language of your choice (for example, FORTRAN 
or C) rather than using the call interface. This will guarantee the functioning 
of the routines across platforms. Because of the complex relationship between 
high-level languages and DPML routines, the behavior of direct calls to DPML 
routines may change in future releases. DPML routines also provide significantly 
higher performance and accuracy. 

For more information about using DPML routines, refer to Digital Portable 
Mathematics Library.+ 

10.1.8 Event Synchronization 
For event synchronization, use RTL routines or system services. Use RTL 
routines to synchronize events with event flags. Use system services to 
synchronize events with event flags, with a resource lock, and with an 
asynchronous system trap (AST). 

10.2 RTL Routines 
The Open VMS Common Run-Time Procedure Library (or the Run-Time Library) 
is a set of language-independent procedures that perform a wide variety of 
operations. These RTL routines follow the Open VMS Calling Standard; they 
are part of the Common Run-Time environment. The Common Run-Time 
environment lets a program contain routines written in different languages, 
so that you can call RTL routines from any language, thus increasing program 
flexibility. 

10.2.1 Organization of the Run-Time Library 
The routines of the Open VMS RTL are grouped according to the types of tasks 
they perform; these groups are referred to as facilities. Each group or facility has 
an associated prefix that is used in the routine name to identify that routine as a 
member of a particular facility. Table 10-1 lists all the RTL facility prefixes and 
the types of tasks each facility performs. 

Table 10-1 Run-Time Library Facilities 

Facility Prefix 

DTK$ 

LIB$ 

MTH$ 

Types of Tasks Performed 

DECtalk routines that are used to control Digital's DECtalk device 

Library routines that obtain records from devices, manipulate 
strings, convert data types for I/O, allocate resources, obtain system 
information, signal exceptions, establish condition handlers, enable 
detection of hardware exceptions, and process cross-reference data 

Mathematics routines that perform arithmetic, algebraic, and 
trigonometric calculations 

(continued on next page) 

10-3 



Using Callable System Routines 
10.2 RTL Routines 

Table 10-1 (Cont.) Run-Time Library Facilities 

Facility Prefix 

OTS$ 

PPL$ 

SMG$ 

STR$ 

Types of Tasks Performed 

General purpose routines that perform tasks such as data type 
conversions as part of a compiler's generated code, and also some 
mathematical functions 

Parallel processing routines that simplify subprocess creation, 
interprocess communication, and resource sharing for parallel 
applications 

Screen management routines that are used in designing, composing, 
and keeping track of complex images on a video screen 

String manipulation routines that perform such tasks as searching 
for substrings, concatenating strings, and prefixing and appending 
strings 

10.2.2 Features of the RTL 
The RTL provides the following features and capabilities: 

• RTL routines perform a wide range of general utility operations. You can call 
an RTL routine from any Open VMS language instead of writing your own 
code to perform the operation. 

Routines in the RTL are part of the Open VMS Common Run-Time 
environment; therefore, they can be called from any Open VMS language. 

• Because many of the routines are shared, they take up less space in memory. 

• When new versions of the RTL are installed, you do not need to revise your 
calling program, and generally do not need to relink. 

• All RTL routines are fully reentrant unless the description of the facility or 
the routine specifies otherwise. 

The term reentrant means that the routine executes correctly regardless of 
how many threads of execution are executing at the same time. Currently, 
reentrancy is supported only when those multiple threads are executing on 
the same processor. The term AST-reentrant means that a routine may be 
interrupted and reentered from itself or an AST-level thread of execution only. 
In particular, an AST-reentrant routine may not execute properly if more than 
one non-AST-level thread of execution is executing the routine at once. 

Because the Run-Time Library routines are reentrant (unless otherwise 
noted), they can be called from multiple threads of execution. For example, 
a routine may be called from both an AST-level thread and a non-AST-level 
thread of an image, as well as from the multiple tasks of an Ada program. 

10.3 System Services 

10-4 

System services are procedures that the operating system uses to control 
resources available to processes; to provide for communication among processes; 
and to perform basic operating system functions, such as the coordination of 
input/output operations. 

Although most system services are used primarily by the operating system on 
behalf of logged-in users, they are also available for general use and provide 
mechanisms that you can use in application programs. For example, when you 
log in to the operating system, the Create Process ($CREPRC) system service 
is called to create a process on your behalf. You may, in turn, write a program 



Using Callable System Routines 
10.3 System Services 

that calls the $CREPRC system service to create a subprocess to perform certain 
functions for an application. 

System services can be divided into functional groups. Table 10-2 lists each 
group of system services and its function. 

Table 10-2 Functional Groups of System Services 

Services Group 

AST 

:j:Cluster Event Notification 

Condition-Handling 

DECdtm 

Event Flag 

File Management 

:j:AXP specific 

Function 

Process execution can be interrupted by events (such 
as 1/0 completion) for the execution of designated 
subroutines. These software interrupts are called 
asynchronous system traps (ASTs) because they occur 
asynchronously to process execution. System services 
are provided so that a process can control the handling 
of ASTs. 

Cluster event notification services manage notification 
requests of cluster configuration events. 

Condition handlers are procedures that can be 
designated to receive control when a hardware or 
software exception condition occurs during image 
execution. Condition-handling services designate 
condition handlers for special purposes. 

DECdtm services provide for complete and consistent 
executions of distributed transactions. DECdtm 
services coordinate distributed transactions by using 
the two-phase commit protocol, and by implementing 
special logging and communication techniques. 
DECdtm services do the following: 

• Start transactions 

• End transactions 

• Abort transactions 

A process can use event flags to synchronize sequences 
of operations in a program. Event flag services clear, 
set, and read event flags, and place a process in a wait 
state pending the setting of an event flag or flags. 

File management services provide searching 
and parsing operations of file specifications and 
management of the default directory specification. 

(continued on next page) 

10-5 



Using Callable System Routines 
10.3 System Services 

Table 10-2 (Cont.) Functional Groups of System Services 

Services Group 

Input/Output 

Lock Management 

Logical Nam es 

Memory Management 

Process Control 

Process Information 

Security 

Timer and Time Conversion 

10-6 

Function 

1/0 services perform input and output operations 
directly, rather than through the file handling services 
of RMS. 1/0 services do the following: 

• Perform logical, physical, and virtual input and 
output operations 

• Format output lines converting binary numeric 
values to ASCII strings and substituting variable 
data in ASCII strings 

• Perform network operations 

• Send messages to system processes 

Lock management services let cooperating processes 
synchronize their access to shared resources .. 

Logical name services provide a generalized technique 
for maintaining and accessing character string logical 
name and equivalence name pairs. Logical names 
can provide device independence for system and 
application program input and output operations. 

Memory management services provide ways to use the 
virtual address space available to a program. Included 
are services that do the following: 

• Allow an image to increase or decrease the amount 
of virtual memory data available 

• Control the paging and swapping of virtual 
memory 

• Create and access files in memory that contain 
shareable code or data 

Process control services let you create, delete, and 
control the execution of processes. 

Process information services let you obtain information 
about processes. 

The security services provide various mechanisms 
that you can use to enhance the security of Open VMS 
operating systems. 

Timer services schedule program events for a 
particular time of the day or after a specified interval 
of time has elapsed. The time conversion services 
provide a way to obtain and format binary time values 
for use with the timer services. 



Using Callable System Routines 
10.3 System Services 

Table 10-3 summarizes the system services according to their functions. 

Table 10-3 Summary of System Services 

Service 

AST Services 

$DCLAST 

$SETAST 

$SETPRA 

$SYNCH 

Cluster Event Notification Services 

*$CLRCLUEVT 

*$SETCLUEVT 

*$TSTCLUEVT 

Condition-Handling Services 

$DCLCMH 

*$GOTO _UNWIND 

t$RELEASE_ VP 

t$RESTORE_ VP _EXCEPTION 

t$RESTORE_ VP _STATE 

t$SAVE_ VP _EXCEPTION 

$SETEXV 

$UNWIND 

DECdtm Services 

$ABORT_TRANS (and $ABORT_TRANSW) 

$END_TRANS (and $END_TRANSW) 

tVAX specific 
iAXP specific 

Function 

Queues an AST for the calling access mode or for a less 
privileged access mode. 

Enables or disables the delivery of asynchronous system 
traps (ASTs) for the access mode from which the service 
call is issued. 

Establishes a routine to receive control after a power 
recovery is detected. 

Checks the completion status of a system service that 
completes asynchronously. 

Removes one or more notification requests previously 
established by a call to $SETCLUEVT. 

Establishes a request for notification when a cluster 
configuration event occurs. 

Simulates the occurrence of a cluster configuration event 
to test the functionality of the notification AST. 

Specifies the address of a routine to receive control when 
a Change Mode to User or Change Mode to Supervisor 
instruction trap occurs. 

Unwinds the call stack. 

Terminates the current process's status as a vector 
consumer. 

Restores the saved exception state of the vector processor. 

Allows an AST routine or condition handler to restore the 
vector state of the mainline routine. 

Saves the pending exception state of the vector processor. 

Assigns a condition handler address to the primary, 
secondary, or last chance exception vectors, or removes 
a previously assigned handler address from any of these 
three vectors. 

Unwinds the procedure call stack. 

Ends a transaction by aborting it (and wait). 

Ends a transaction by attempting to commit it, and 
returns the outcome of the transaction (and wait). 

(continued on next page) 

10-7 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

DECdtm Services 

$START_TRANS (and $START_TRANSW) 

Event Flag Services 

$ASCEFC 

$CLREF 

$DACEFC 

$DLCEFC 

$READEF 

$SETEF 

$WAITFR 

$WFLAND 

$WFLOR 

File Management Services 

$FILES CAN 

$SE TD DIR 

1/0 Services 

$ALLOC 

$ASSIGN 

$BRKTH (and $BRKTHW) 

$CANCEL 

$CREMBX 

$DALLOC 

$DASSGN 

10-8 

Function 

Starts a new transaction (and wait). 

Associates a named common event flag cluster -yvith a 
process to execute the current image and to be assigned a 
process-local cluster number for use with other event flag 
services. 

Clears (sets to O) an event flag in a local or common event 
flag cluster. 

Releases the calling process's association with a common 
event flag cluster. 

Marks a permanent common event flag cluster for deletion. 

Returns the current status of all 32 event flags in a local 
or common event flag cluster and indicates whether the 
specified event flag is set or clear. 

Sets an event flag in a local or common event flag cluster. 

Tests a specific event flag and returns immediately if the 
flag is set. Otherwise, the process is placed in a wait state 
until the event flag is set. 

Allows a process to specify a set of event flags for which it 
wants to wait. 

Allows a process to specify a set of event flags for which it 
wants to wait. 

Searches a string for a file specification and parses the 
components of that file specification. 

Allows you to read and change the default directory string 
for the process. 

Allocates a device for exclusive use by a process and its 
subprocesses. 

Provides a process with an 1/0 channel so that input 
/output operations can be performed on a device, or 
establishes a logical link with a remote node on a network. 

Sends a message to one or more terminals (and wait). 

Cancels all pending 1/0 requests on a specified channel. 

Creates a virtual mailbox device named MBAn and assigns 
an 1/0 channel to it. 

Deallocates a previously allocated device. 

Deassigns (releases) an 1/0 channel previously acquired 
using the Assign 1/0 Channel ($ASSIGN) service. 

(continued on next page) 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

1/0 Services 

$DELMBX · 

$DEVICE_SCAN 

$DISMOU 

t$DNS (AND $DNSW) 

$FAO 

$FAOL 

$GETDVI (and $GETDVIW) 

$GETMSG 

$GETQUI (and $GETQUIW) 

$INIT_VOL 

$MOUNT 

$PUTMSG 

$QIO (and $QIOW) 

$RMSRUNDWN 

$SNDERR 

$SNDJBC (and $SNDJBCW) 

$SNDOPR 

tVAX specific 

Function 

Marks a permanent mailbox for deletion. 

Returns the names of all devices that match a specified set 
of search criteria. 

Dismounts a mounted volume or volume sets. 

Allows client applications to store resource names and 
addresses (and wait). 

Converts a binary value into an ASCII character string in 
decimal, hexadecimal, or octal notation and returns the 
character string in an output string, and inserts variable 
character string data into an output string. 

Provides an alternate method for specifying input 
parameters when calling the $FAQ system service. 

Returns information related to the primary and secondary 
device characteristics of an 1/0 device (and wait). 

Returns message text associated with a given message 
identification code into the caller's buffer. 

Returns information about queues and the jobs initiated 
from those queues (and wait). 

Formats a disk or magnetic tape volume and writes a label 
on the volume. 

Mounts a tape, disk volume, or volume set and specifies 
options for the mount operation. 

Writes informational and error messages to processes. 

Queues an 1/0 request to a channel associated with a 
device (and wait). 

Closes all files opened by Open VMS RMS for the image or 
process and halts 1/0 activity. 

Writes a user-specified message to the system error log 
file, preceding it with the date and time. 

Creates, stops, and manages queues and the batch and 
print jobs in those queues (and wait). 

Performs the following functions: 

• Sends a user request to operator terminals 

• Sends a user cancellation request to operator 
terminals 

• Sends an operator reply to a user terminal 

• Enables an operator terminal 

• Displays the status of an operator terminal 

• Initializes the operator log fil~ 

(continued on next page) 

10-9 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

Lock Management Services 

$DEQ 

$ENQ (and $ENQW) 

$GETLK.I (and $GETLK.IW) 

Logical Name Services 

$CRELNM 

$CRELNT 

$DELLNM 

$TRNLNM 

Memory Management Services 

$ADJSTK 

$ADJWSL 

$CRETVA 

$CRMPSC 

$DELTVA 

$DGBLSC 

$EXPREG 

$LCKPAG 

$LKWSET 

$MGBLSC 

10-10 

Function 

Dequeues (unlocks) granted locks; dequeues the sublocks 
of a lock; or cancels an ungranted lock request. 

Queues a new lock or lock conversion on a resource (and 
wait). 

Returns information about the lock database on a system 
(and wait). 

Creates a logical name and specifies its equivalence 
names. 

Creates a process-private or shareable logical name table. 

Deletes all logical names with the specified name at the 
specified access mode or outer access mode, or it deletes all 
the logical names with the specified access mode or outer 
access mode in a specified table. 

Returns information about a logical name. 

Modifies the stack pointer for a less privileged access 
mode. 

Adjusts a process's current working set limit by the 
specified number of pages (on VAX systems) or pagelets 
(on AXP systems) and returns the new value to the caller. 

Adds a range of demand-zero allocation pages (on VAX 
systems) or pagelets (on AXP systems) to a process's 
virtual address space for the execution of the current 
image. 

Allows a process to associate (map) a section of its address 
space with ( 1) a specified section of a file (a disk file 
section) or ( 2 ) specified physical addresses represented by 
page frame numbers (a page frame section). 

Deletes a range of addresses from a process's virtual 
address space. 

Marks an existing permanent global section for deletion. 

Adds a specified number of new virtual pages to a process's 
program region or control region for the execution of the 
current image. 

Locks a page or range of pages in memory. 

Locks a range of pages in the working set; if the pages are 
not already in the working set, it brings them in and locks 
them. 

Establishes a correspondence between pages (maps) in the 
virtual address space of the process and physical pages 
occupied by a global section. 

(continued on next page) 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

Memory Management Services 

$PURGWS 

$SETPRT 

$SETSTK 

$SETSWM 

$ULKPAG 

$ULWSET 

$UPDSEC(and$UPDSECW) 

Process Control Services 

$CANEXH 

$CANWAK 

$CREPRC 

$DCLEXH 

$DELPRC 

$EXIT 

$FORCEX 

$HIBER 

$PROCESS_SCAN 

$RESCHED 

$RESUME 

$SCHDWK 

Function 

Removes a specified range of pages from the current 
working set of the calling process to make room for pages 
required by a new program segment. 

Allows a process to change the protection on a page or 
range of pages. 

Allows a process to change the size of its supervisor, 
executive, and kernel stacks by altering the values in the 
stack limit and base arrays held in Pl (per-process) space. 

Allows a process to control whether it can be swapped out 
of the balance set. 

Unlocks pages that were previously locked in memory by 
the Lock Pages in Memory ($LCKPAG) service. 

Unlocks pages that were previously locked in the working 
set by the Lock Pages in Working Set ($LKWSET) service. 

Writes all modified pages in an active private or global 
section back into the section file on disk (and wait). 

Deletes an exit control block from the list of control blocks 
for the calling access mode. 

Removes all scheduled wakeup requests for a process from 
the timer queue, including those made by the caller or by 
other processes. 

Creates a subprocess or detached process on behalf of the 
calling process. 

Declares an exit handling routine that receives control 
when an image exits. 

Allows a process to delete itself or another process. 

Initiates image rundown when the current image in a 
process completes execution. 

Causes an Exit ($EXIT) service call to be issued on behalf 
of a specified process. 

Allows a process to make itself inactive but to remain 
known to the system so that it can be interrupted; for 
example, to receive ASTs. 

Creates and initializes a process context that is used by 
$GETJPI to scan processes on the local system or across 
the nodes in a VMScluster system. 

Requests reschedule of a process. 

Causes a process previously suspended by the Suspend 
Process ($SUSPND) service to resume execution or cancels 
the effect of a subsequent suspend request. 

Schedules the awakening (restarting) of a process that has 
placed itself in a state of hibernation with the Hibernate 
($HIBER) service. 

(continued on next page) 

10-11 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

Process Control Services 

$SETPRI 

$SETPRN 

$SETPRV 

$SETRWM 

$SETSHLV 

$SUSPND 

$WAKE 

Process Information Services 

+$CHECK_FEN 

$GETJPI (and $GETJPIW) 

$GETSYI (and $GETSYIW) 

+$GET_ALIGN_FAULT_DATA 

+$GET_ARITH_EXCEPTION 

+$GET_SYS_ALIGN_FAULT_DATA 

+$IEEE_SET_FP _CONTROL 

+$INIT_SYS_ALIGN_FAULT_REPORT 

+$PERM_DIS_ALIGN_FAULT_REPORT 

+$PERM_REPORT~ALIGN_FAULT 

+$START_ALIGN_FAULT_REPORT 

+$STOP _ALIGN_FAULT_REPORT 

+$STOP _SYS_ALIGN_FAULT_REPORT 

System Security Services 

$ADD_HOLDER 

$ADD_IDENT 

t$ADD_PROXY 

$ASCTOID 

$AUDIT_EVENT (and $AUDIT_EVENTW) 

tVAX specific 

*AXP specific 

10-12 

Function 

Changes the base priority of the process. 

Allows a process to establish or to change its own process 
name. 

Enables or disables specified privileges for the calling 
process. 

Allows a process to specify what action system services 
should take when system resources required for their 
execution are unavailable. 

Controls whether a process automatically unshelves files. 

Allows a process to suspend itself or another process. 

Activates a process that has placed itself in a state of 
hibernation with the Hibernate ($HIBER) service. 

Indicates whether floating point is enabled. 

Returns information about one or more processes on the 
system or across the VMScluster system (and wait). 

Returns information about a local Open VMS system or 
other Open VMS systems in a VMScluster (and wait). 

Obtains data from user image alignment fault buffer. 

Returns information about the exception context for a 
given arithmetic exception. 

Obtains data from system image alignment fault buffer. 

Modifies the IEEE floating-point control register and, 
optionally, returns the previous register value. 

Initializes system process alignment fault reporting. 

Disables user process alignment fault reporting. 

Initializes user process alignment fault reporting. 

Initializes user image alignment fault reporting. 

Disables user image alignment fault reporting. 

Disables systemwide alignment fault reporting. 

Adds holder record to rights database. 

Adds identifier to rights database. 

Adds a new proxy to, or modifies an existing proxy in, the 
proxy database. 

Translates identifier name to binary value. 

Appends an error message to the audit log file (and wait). 

(continued on next page) 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

System Security Services 

$CHECK_ACCESS 

$CHECK_PRIVILEGE(and$CHECK_ 
PRIVILEGEW) 

$CHKPRO 

$CMEXEC 

$CMKRNL 

$CREATE_RDB 

$CREATE_USER_PROFILE 

t$DELETE_INTRUSION 

t$DELETE_PROXY 

t$DISPLAY_PROXY 

$ERAPAT 

$FIND_HELD 

$FIND_HOLDER 

$FINISH_RDB 

$FORMAT_ACL 

$FORMAT_AUDIT 

$GETUAI 

$GET_SECURITY 

$GRANTID 

$HASH_PASSWORD 

$IDTOASC 

$MOD_HOLDER 

$MOD_IDENT 

$MTACCESS 

$PARSE_ACL 

$REM_HOLDER 

$REM_IDENT 

tVAX specific 

Function 

Invokes system access protection check on behalf of 
another user. 

Determines whether the caller has the specified privileges 
or identifiers (and wait). 

Invokes system access protection check. 

Changes the access mode of the calling process to 
executive mode. 

Changes the access mode of the calling process to kernel 
mode. 

Initializes a rights database. 

Returns and encoded security profile for a user. 

Searches for and deletes all records in the intrusion 
database matching the caller's specifications. 

Deletes an existing proxy or removes the default user 
or the local user from an existing proxy in the proxy 
database. 

Returns information about one or more existing proxies. 

Generates a security erase pattern. 

Returns identifiers held by a holder in rights database. 

Returns holders of an identifier in rights database. 

Deallocates record stream and clears context value when 
searching the rights database. 

Formats ACE into a text string. 

Converts a security auditing event message from binary to 
ASCII. 

Returns authorization information about a specified user. 

Returns information about security characteristics of a 
selected object. 

Adds identifier to process or system rights list. 

Applies a hash algorithm to an ASCII password string 
and returns a quadword hash value that represents the 
encrypted password. 

Translates identifier value to its identifier name. 

Modifies holder record in rights database. 

Modifies identifier record in rights database. 

Controls magnetic tape access. 

Converts text ACE into binary format. 

Deletes holder record from identifier's list of holders in 
rights database. 

Deletes identifier and all holders of that identifier from 
rights database. 

(continued on next page) 

10-13 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service 

System Security Services 

$REVOKID 

t$SCAN_INTRUSION 

$SETDFPROT 

$SETUAI 

$SET_RESOURCE_DOMAIN 

$SET_SECURITY 

t$SHOW _INTRUSION 

$SUBSYSTEM 

t$VERIFY_PROXY 

Timer and Time Conversion Services 

$ASCTIM 

$ASCUTC 

$BINTIM 

$BINUTC 

$CANTIM 

$GETTIM 

$GETUTC 

$NUMTIM 

$NUMUTC 

$SETIME 

$SETIMR 

t VAX specific 

10-14 

Function 

Removes identifier from process or system rights list. 

Scans the intrusion database for suspects or intruders 
during a login attempt, audits login failures and updates 
records, or adds new records to the intrusion database. 

Allows you to read and write the default file protection for 
the process. 

Modifies the user authorization file (UAF) record for a 
specified user. 

Controls association between calling process and resource 
domains. 

Modifies the security characteristics of a security object. 

Searches for and returns information about records in the 
intrusion database matching the caller's specifications. 

Saves or restores the process image rights for the current 
protected subsystem. 

Verifies that a proxy exists and returns a valid local user 
for the caller to use to create a local login. 

Converts an absolute or delta time from 64-bit system 
time format to an ASCII string. 

Converts an absolute time from 128-bit UTC format to an 
ASCII string. 

Converts an ASCII string to an absolute or delta time 
value in the system 64-bit time format suitable for 
input to the Set Timer ($SETIMR) or Schedule Wakeup 
($SCHDWK) service. 

Converts an ASCII string to an absolute time value in the 
128-bit UTC format. 

Cancels all or a selected subset of the Set Timer requests 
previously issued by the current image executing in a 
process. 

Returns the current system time in a 64-bit format. 

Returns the current time in 128-bit UTC format. 

Converts an absolute or delta time from 64-bit system 
time format to binary integer date and time values .. 

Converts an absolute 128-bit binary time into its numeric 
components. The numeric components are returned in 
local time. 

Changes the value of, or recalibrates, the system time. 

Sets the timer to expire at a specified time. 

(continued on next page) 



Using Callable System Routines 
10.3 System Services 

Table 10-3 (Cont.) Summary of System Services 

Service Function 

Timer and Time Conversion Services 

$TIM CON Converts Coordinated Universal Time (UTC) to 64-bit 
system format or 64-bit system format to UTC based on 
the value of the convert flag. 

10.4 Utility Routines 
Some Open VMS utilities can be invoked either at the DCL command level or 
through a callable interface. Other utilities have only a callable interface. A 
utility with a callable interface means that a program can invoke the utility, 
execute utility-specific functions, and exit the utility. Table 10-4 summarizes the 
utility routine groups. 

For complete information on the utility routines, and a routine-by-routine listing, 
refer to the Open VMS Utility Routines Manual. 

Table 10-4 Utility Routine Summary 

Routine Prefix 

ACL$ 

CLI$ 

CONV$ 

DCX$ 

EDT$ 

FDL$ 

LBR$ 

PSM$ 

SMB$ 

SOR$ 

TPU$ 

Utility/Facility 

Access Control List (ACL) Editor 

Command Definition utility 
(CDU) 

Convert and Convert/Reclaim 
(CONV) utility 

Data Compression/Expansion 
(DCX) facility 

EDT Editor 

File Definition Language utility 
(FDL) 

Librarian utility (LBR) 

Print Symbiont Modification 
(PSM) facility 

Symbiont/Job-Controller 
Interface (SMB) facility 

Sort/Merge (SOR) utility 

DEC Text Processing utility 
(DECTPU) 

Description 

Creates and maintains access control lists. ACLs 
control access to files, devices, global sections, logical 
name tables, or mailboxes. 

Processes command strings using information from 
a command table; use in conjunction with new 
commands created by CDU. 

Convert utility copies records from one or more 
files to an output file while changing format and 
file organization. Convert/Reclaim utility reclaims 
empty buckets so that new records can be written. 

Analyzes and compresses data records; expands data 
records that have been compressed. 

Invokes EDT and either edits a file from the 
program or allows interactive editing. 

Specifies RMS options for a file, creates a file, opens 
a file, closes a file, connects a file, allocates RMS 
control blocks, fills in control blocks, and deallocates 
control blocks. 

Maintains any type of library. 

Modifies the OpenVMS print symbiont (or, if 
necessary, can be used to create user-written 
symbiont). 

Provides the symbiont-job controller interface for 
user-written syrnbionts. 

Integrates a sort or merge operation into a program 
application. 

Invokes and uses DECTPU functions within a 
program written in any VAX programming language. 

10-15 



Using Callable System Routines 
10.5 Open VMS Record Management Services 

10.5 Open VMS Record Management Services 
OpenVMS Record Management Services (RMS) assists user programs in 
processing and managing files and their contents. RMS is a collection of routines 
that give programmers a device-independent method for storing, retrieving, and 
modifying data. RMS allows you to create a new file, access an existing file, 
extend disk space for a file, close a file, obtain file characteristics as well as to 
get, locate, insert, update, and delete records. 

Specifically, RMS provides the following: 

• Disk file organizations-sequential, relative, and indexed 

• Record formats-fixed length and variable length for each file organization 

• Record access modes-sequential, by key value, by relative record number, by 
record file address 

For information about using RMS, refer to the Open VMS Record Management 
Services Reference Manual. 

RMS supports unit-record devices such as terminals and printers, but it is 
designed primarily to provide a comprehensive software interface to mass-storage 
devices such as disk and magnetic tape drives. 

10.5.1 RMS File Control Blocks 
Control blocks are used to provide input to services and to accept output from 
services. 

The following control blocks support services that manipulate files: 

• File access block (FAB) 

The FAB control block includes file specification information, file 
characteristics (file organization, record type, allocation information, and so 
forth), and run-time access options (file processing information and addresses 
of other control blocks with additional information.) 

• Optional name block (NAM) 

The NAM control block includes supplemental information to the FAB. 

• Optional extended attribute block (XAB) 

The XAB control block includes file characteristics that supersede or 
supplement the FAB control block. 

10.5.2 RMS Record Control Blocks 

10-16 

To support services that manipulate with records, there are two record control 
blocks, as follows: 

• Record access block (RAB) 

The RAB control block includes the address of the related FAB control block, 
the address of input and output record buffers, general I/O buffer type and 
size, how the records will be accessed, and other record information. 

• Extended attribute block CXAB) 

The XAB control block includes record characteristics that can supersede or 
supplement information in the RAB control block. 



Using Callable System Routines 
10.5 OpenVMS Record Management Services 

10.5.3 RMS Macros 
RMS uses macros provided in the system macro library to perform the following 
tasks: 

• Initialize control blocks at assembly time (allocates space within the program 
image for the control block, defines the symbolic names for a control block, 
initializes certain control block fields with internally used values, initializes 
specified control block fields with user-specified values, and initializes certain 
fields with system-supplied default values). 

• Define control block symbolic names at assembly time (does not allocate or 
initialize the control block). 

• Set specified fields with user-specified values at run time. 

• Invoke services at run time. 

Table 10-5 lists each control block and its associated macros. 

Table 10-5 User Control Blocks 

Control Macro 
(Block) (Name) 

FAB 

$FAB 

$FABDEF 

$FAB_STORE 

NAM 

$NAM 

$NAMDEF 

$NAM_STORE 

RAB 

$RAB 

$RABDEF 

$RAB_STORE 

XABxxx1 

$XABxxx 

$XABxxxDEF 

1The xxx is a 3-character mnemonic. 

Function 

Describes a file and contains file-related 
information. 

Allocates storage for a FAB and initializes certain 
FAB fields; also defines symbolic offsets for a FAB. 

Defines symbolic offsets for a FAB. 

Moves specified values into a previously allocated 
and initialized FAB. 

Contains file specification information beyond that 
in the FAB. 

Allocates storage for a NAM and initializes certain 
NAM fields; also defines symbolic offsets for a NAM. 

Defines symbolic offsets for a NAM. 

Moves specified values into a previously specified 
and allocated NAM. 

Describes a record stream and contains record­
related information. 

Allocates storage for a RAB and initializes certain 
RAB fields; also defines symbolic offsets for a RAB. 

Defines symbolic offsets for a RAB. 

Moves specified values into a previously specified 
and allocated RAB. 

Contains file attribute information beyond that 
in the FAB. For XABTRM, contains information 
beyond that in the RAB. 

Allocates and initializes an XAB. 

Defines symbolic offsets for an XABxxx. 

(continued on next page) 

10-17 



Using Callable System Routines 
10.5 Open VMS Record Management Services 

Table 10-5 (Cont.) User Control Blocks 

Control 
(Block) 

Macro 
(Name) 

$XABxxx_STORE 

Function 

Moves specified values into a previously specified 
and allocated XABxxx. 

10.5.4 Open VMS Record Management Services Utilities 
The RMS utilities are as follows: 

10-18 

• Analyze/RMS_File utility CANALYZE/RMS_FILE) 

• Convert and Convert/Reclaim utilities (CONVERT and CONVERT/RECLAIM) 

• Create/FDL utility (CREATE/FDL) 

• Edit/FDL utility (EDIT/FDL) 

You can use these independently of RMS, or in conjunction with RMS, to build 
data files and to maintain files. 

ANALVZE/RMS_FILE 
With ANALYZE/RMS_FILE, you can analyze the internal structure of a RMS file 
in the following manner: 

• Examine the structure of a file, and interactively check the structure to assess 
if it is properly designed for the application 

• Generate a statistical report on the file's structure and use 

• Generate an FDL file from a data file 

• Generate a summary report on the file's structure and use 

The interactive feature of this utility includes several commands to traverse the 
structure of an RMS file and examine specific data buckets and bytes of a record. 
This utility can also check the file and generate a report listing any errors found 
in the file. 

ANALYZE/RMS_FILE commands help you move around the RMS file easily. You 
can move the structure pointer to the beginning and end of the file structure, up 
and down levels, to the first and last nodes, and to a specific bucket (or record) of 
an indexed or relative file. 

CONVERT and CONVERT/RECLAIM 
CONVERT copies one or more records from a file to another file, while changing 
the record format and file organization. CONVERT/RECLAIM reclaims empty 
bucket space in the file to allow new records to be written to it. 

CONVERT/RECLAIM works only with Prolog 3 indexed files. You should use 
CONVERT/RECLAIM when new records no longer need a primary key associated 
with the deleted record. 

In conjunction with changing record format and file organization, you can use 
CONVERT to complete the following functions: 

• Reformat indexed files where many records have been inserted and deleted. 
New record file addresses are established for the records. 

• Create a new output file with the same or different file characteristics. 

• Add new records to the end of an existing sequential file. 



Using Callable System Routines 
10.5 OpenVMS Record Management Services 

• Merge new records into an existing indexed file. 

• Convert carriage control to one of four formats (CARRIAGE_RETURN, 
FORTRAN, PRINT, and NONE). 

CONVERT/RECLAIM does not change file format or organization when it 
reclaims empty bucket space. It deletes the old pointers to a bucket and puts 
it on a list of free buckets. When new records that need a new bucket are added, 
RMS goes to the free bucket list and sets up pointers to a bucket from the list. 
CONVERT/RECLAIM preserves the file addresses of the records. 

For a complete description of using CONVERT and CONVERT/RECLAIM, refer 
to the Open VMS Record Management Utilities Reference Manual. 

Command qualifiers allow you to modify CONVERT in the following ways: 

• Append records to an existing file 

• Create a new file with or without using an FDL file 

• Access or insert records in an indexed file 

• Pad short records or truncate long records 

• Sort a file according to the primary key 

• Check all read and write operations 

CREATE/FOL and EDIT/FOL 
The File Definition Language (FDL) helps you define specifications for data files. 
FDL is used within the context of the File Definition Language facility, and 
consists of the utilities CREATE/FDL and EDIT/FDL. An FDL file consists of a 
collection of file attributes grouped into related sections. EDIT/FDL invokes the 
FDL editor to create a new FDL file. The types of attributes you specify are the 
following: 

• File processing operations specified using the following keywords: BLOCK_IO 
(enabling RMS read and write operations), DELETE, GET, PUT, RECORD_IO 
(enabling mixed record I/O and block I/0), TRUNCATE, UPDATE 

• Allocation of area and key analysis sections (for indexed files only) 

• Creation or manipulation of RMS specific areas in an indexed file 

• Application-dependent run-time attributes 

• Date and time for certain file characteristics 

• File processing and file-related characteristics 

• Key attributes 

• Secondary attributes that define records specified using the following 
keywords: BLOCK_SPAN, CARRIAGE_CONTROL, CONTROL_FIELD, 
FORMAT, and SIZE 

• Sharing of the data file 

• System identification information 

CREATE/FDL uses the specifications in an existing FDL file to create a new 
empty data file. The Open VMS Record Management Utilities Reference Manual 
describes how to use the FDL utility and lists each of the commands. 

10-19 



Using Callable System Routines 
10.5 Open VMS Record Management Services 

10-20 

With FDL commands, you can add, modify, or delete lines to a file; enable 
assistance with the design and optimization of a data file; specify the number 
of keys in an indexed file; specify the output file; divide an indexed file into a 
specified number of areas; and choose between smaller buffer and flatter files. 

For complete information about RMS, see the Open VMS Record Management 
Utilities Reference Manual. 



11 
Additional Programming Utilities 

In addition to the utilities already described in this manual, the Open VMS 
operating system also includes the following programming utilities that you can 
use to develop application programs: 

• Patch utility 

• National Character Set (NCS) utility 

This chapter briefly describes the features of these programming utilities and 
references the appropriate manuals for more information about how to use them. 

11.1 Patch Utility (VAX Only) 
On VAX systems, the Patch utility (PATCH) allows you to make changes to an 
image file in the form of patches. You can then run the new version of the image 
without having to recompile (or reassemble) and relink the program. You can 
enter PATCH commands interactively or use them in a command procedure to 
execute interactively or in batch mode. You can use PATCH with any language 
supported by the Open VMS operating system as long as the image was generated 
by the linker. 

The input image can be a shareable image, a device driver image, or any other 
executable image. Consider the following restrictions when you use PATCH: 

• You can specify only universal symbols when patching a shareable image. 

• You can use the default patch area to patch position-independent shareable 
images. 

• You must use a user-defined patch area to patch position-dependent images. 

PATCH does not alter the input image. It creates a copy of the image, makes 
changes to the copy, and leaves the original image unaltered. 

With the PATCH commands, you can modify the image as follows: 

• Add or delete instructions or data 

• Replace instructions or data 

• Allocate space for the patch area 

• Create a command procedure of PATCH commands 

• Assign an engineering change order-level to the changes 

• View the contents of a particular location 

• Display the modules in the image 

• Apply the patch to the image 

For more information about the Patch Utility, refer to the Open VMS VAX Patch 
Utility Manual.• 

11-1 



Additional Programming Utilities 
11 .2 National Character Set Utility 

11.2 National Character Set Utility 

11-2 

The National Character Set (NCS) utility allows you to define and use collating 
sequences and conversion functions. With collating sequences, you can alter the 
standard sorting sequence for a particular use (usually for a national character 
set). Using conversion functions, you can define case conversions or character 
representations that you subsequently use in the collating sequence. 

The collating sequences and conversions are stored in an NCS library that you 
manage using NCS. The command qualifiers allow you to create the library; 
insert, replace, and delete modules; list module information; and view specified 
modules. 

Eight NCS callable routines allow you to access the collating sequences and 
conversions stored in an NCS library from your program. 

For more information about using the NCS utility and its callable routines, refer 
to the Open VMS National Character Set Utility Manual. 



A 
ACA Services 

See ObjectBroker 
ACCESSWORKS, 1-4 
ACMS, 1-4 
Ada, 7-2, 7-3 
ANALYZE/RMS_File utility, 10-18 
APL, 7-4 
Applications 

distributed, 1-3, 3-1, 3-5, 7-1 
portable, 2-1 
POSIX for OpenVMS AXP, 2-2 
POSIX for Open VMS VAX, 2-2 

Arithmetic 
See also Condition-handling services 
using system routines, 10-2 

Assembly languages 
See MACRO 

AST 
system services, 10-5, 10-7 

AXP assembly language, 7-8 

B 
BASIC, 7-2, 7-4 
BLISS-32, 7-2, 7-4 

c 
c, 7-2, 7-5 
C++, 1-4, 7-2, 7-5 
Calling standard, 10-3 

programming, 7-1 
CDD/Repository, 7-4, 7-6, 7-7, 7-9, 7-10 
CDS (Cell Directory Server), 3-6 
CDU (Command Definition utility) 

See Command Definition utility 
Cell Directory Server 

See CDS 
Clients, 3-2 
Client/server computing, 3-2 

development environment support, 1-5 
graphics and windowing, 2-6 

Index 

CLUE (Crash Log Utility Extractor) 
See Crash Log Utility Extractor 

Cluster event notification 
system services, 10-5, 10-7 

CMS, 6-1 
COBOL, 7-2, 7-6 
Code Management System 

See CMS 
Command Definition utility (CDU), 4-1 
Common data dictionary 

See CDD/Repository 
Common language environment, 7-1 
Condition-handling 

system services, 10-5, 10-7 
Control blocks 

See Data structures 
See Open VMS RMS 

Convert utility (CONVERT), 10-18 
Convert/Reclaim utility (CONVERT/RECLAIM), 

10-18 
CORBA (Common Object Request Broker 

Architecture) 
ObjectBroker compliance, 3-6 

Crash Log Utility Extractor (CLUE), 9-10 
Create/FDL utility (CREATE/FDL), 10-19 

D 
2D graphics option, 2-6 
3D graphics option, 2-6 
Data structures 

FABs (file access blocks), 10-16 
NAMs (name blocks), 10-16 
RABs (record access blocks), 10-16 
XA.Bs (extended attribute blocks), 10-16 

Database support, 3-3 
distributed applications, 3-5 
SQL, 2-5 

DCE (Distributed Computing Environment), 3-5 
DCE Application Development Kit for Open VMS, 

3-6 
DCE CDS 

See CDS 
DCE cells, 3-6 

lndex-1 



DCE Runtime Services for Open VMS, 3-6 
DCE Security Server, 3-6 
DDE (Dynamic Data Exchange) protocol 

ObjectBroker, 3-6 
Debuggers, 9-1 to 9-9 
DEC ACCESSWORKS 

See ACCESSWORKS 
DEC Ada 

See Ada 
DEC COBOL 

See COBOL 
DEC Code Management System 

See CMS 
DEC Forte 

See Forte 
DEC Fortran 

See Fortran 
DEC Language-Sensitive Editor/Source Code 

Analyzer 
See LSE/SCA 

DEC Module Management System 
See MMS 

DEC OPS5 
See OPS5 

DEC Pascal 
See Pascal 

DEC PCA 
See PCA 

DEC Performance and Coverage Analyzer 
See PCA 

DEC PHIGS 
See PHIGS 

DEC PUI 
See PUI 

DEC RALLY 
See RALLY 

DEC Rdb 
See Rdb 

DEC RdbAccess for ORACLE on Open VMS 
See RdbAccess for ORACLE on Open VMS 

DEC RdbAccess for RMS 
See RdbAccess for RMS 

DEC RTS 
See RTS 

DEC SCA 
See LSE/SCA 

DEC Source Code Analyzer 
See LSE/SCA 

DEC TCP/IP Services for Open VMS 
See TCP/IP 

DEC Test Manager 
See Test Manager 

DEC Text Processing Utility (DECTPU) 
See DECTPU 

lndex-2 

DECADMIRE, 1-5 
DECdfs, 3-2 
DECdns, 3-2 
DECdtm 

system services, 10-5 
DECdts, 3-2 
DECforms/Rdb applications, 1-5 
DEClinks, 2-4 
DECmigrate for OpenVMS AXP, 1-5 
DECnet for Open VMS, 3-2 
DECnet/OSI for OpenVMS, 3-1 
DECquery for MS-DOS, 1-4 
DECrpc, 3-2 
DECset, 6-1, 9-1 
DECtp, 1-4 
DECTPU, 5-1 

EVE editor, 5-2 
DECwindows Motif 

client/server software, 3-3 
DEClinks, 2-4 
distributed features, 3-3 
programming libraries and tools, 2-3 
used with DEC Open3D, 2-6 

Delta/XDelta Debugger (DELTAIXDELTA), 9-8 
Device support 

debugging device drivers, 9-8 
DIBOL, 7-2, 7-6 
Digital Portable Mathematics Library 

See DPML 
Digital Remote Procedure Call 

See DECrpc 
Disk servers 

VMScluster, 3-3 
Distributed computing, 1-3, 3-1 
Distributed environment, 1-3, 3-1 
DNA protocol, 3-1 
Documentation comments, sending to Digital, iii 
DPML, 10-2 
Drivers 

debugging, 9-8 
Dump files 

E 

See also Crash Log Utility Extractor 
See also System Dump Analyzer utility 
analyzing, 9-9 

EDIT command, 9-5 
Edit/FDL utility (EDIT/FDL), 10-19 
Editors, 5-1, 5-2 
Environments 

client/server, 3-2 
common language, 7-1 
development, 1-5 
distributed, 1-3, 3-1 



EVE (Extensible Versatile Editor) 
keypad emulation 

EDT, 5-2 
Event flags 

system services, 10-5, 10-8 
Event synchronization, 10-3 
Extended attribute blocks 

See XABs 
Extensible Versatile Editor 

See EVE 

F 
FABs (file access blocks), 10-16 
FDL (File Definition Language), 10-19 

file, 10-19 
Feedback on documentation, sending to Digital, iii 
File access blocks 

See FABs 
File Definition Language 

See FDL 
File management, 6-1, 6-2, 10-2 

system services, 10-5 
Forte, 1-4, 1-5 
Fortran, 7-2, 7-6 
Functions 

definition, 10-1 

G 
GKS, 2-5, 2-7 
Graphics options, 2-6 

H 
Help library, 8-4 
Help Message utility (MSGHLP), 4-2 
HX+, 2-6 
Hyperinformation environment, 2-4 

1/0 operations 
device, 10-1 
file, 10-1 
system services, 10-6, 10-8 

IDL (Interface Definition Language), 3-6 
Image maps 

See Linker utility 
Industry standards 

Open VMS support, 2-2 
Input/output 

See 1/0 operations 
Integration 

multivendor, 3-2 

Interface Definition Language 
See IDL 

International standards 
Open VMS support, 2-2 

L 
Language-Sensitive Editor 

See LSE/SCA 
Librarian utility (LIBRARIAN) 

creating libraries, 8-3 
LIBRARY command, 8-4 
types of libraries, 8-4 

LIBRARY command, 8-4 
Linker utility (linker), 8-1 

command qualifier summary, 8-2 
image maps, 8-3 
input, 8-1 
object language, 8-3 
options file, 8-3 
output, 8-1 

Linking services, 2-4 
Link Works 

See DEClinks 
Lock management 

system services, 10-6, 10-10 
LSE/SCA, 5-2, 5-3, 9-5 

M 
MACRO 

MACR0-64, 7-3, 7-8 
VAX MACRO, 7-3, 7-7 
VAX MACR0-32 compiler, 1-5, 7-3, 7-8 

Macro libraries, 8-4 
Mathematical functions 

using system routines, 10-2 
Memory management 

system services, 10-6, 10-10 
using system routines, 10-2 
virtual memory, 10-2 

Message database, 4-2 
Message utility (MESSAGE), 4-2 
Migration 

compiler options, 1-5 
documentation, 1-5 
tools, 1-5 
VEST, 1-5 

MMS, 6-2 
Module Management System 

See MMS 
MSGHLP 

See Help Message utility 

lndex-3 



N 
Name blocks 

See NAMs 
Naming 

DCE Cell Directory Server, 3-6 
system services, 10-6, 10-10 

NAMs (name blocks), 10-16 
NAS 

multivendor integration, 3-2 
software products, 3-2 

National Character Set utility (NCS), 11-2 
NCS 

See National Character Set utility 
Network 

distributed, 3-1 
Network Application Support 

See NAS 
Network File System 

See NFS 
Network transports 

supported by DCE, 3-6 
NFS, 3-2 

0 
Object libraries, 8-4 
Object-oriented designs 

OpenVMS support, 1-4 
ObjectBroker, 1-4, 3-6 
Open3D, 2-6 
Open VMS AXP System-Code Debugger, 9-8 
Open VMS RMS, 10-16 to 10-18 

Analyze/RMS_File utility, 10-18 
control blocks, 10-15, 10-16 
CONVERT, 10-18 
CONVERT/RECLAIM, 10-18 
Create/.FDL utility, 10-19 
device support, 10-16 
Edit/FDL utility, 10-19 
macros, 10-17 

Open VMS systems 
client/server capabilities, 3-2 
servers, 3-3 
support for standards, 1-3, 2-2 

OPS5, 7-3, 7-8 
OSF Distributed Computing Environment (DCE) 

See DCE 
OSI protocol, 3-1 

p 
Pascal, 7-3, 7-9 
Patch utility (PATCH), 11-1 

lndex-4 

PATHWORKS, 1-4 
client/server environment, 3-2 
Macintosh clients, 3-3 
Open VMS servers, 3-3 
PC clients, 3-3 

PCA, 9-11 
PEX protocol, 2-6 
PEXlib, 2-6 
PHIGS, 2-6 
PixelVision, 2-6 
PL/I, 7-3, 7-10 
Portability 

application, 2-1 
POSIX applications, 2-2, 2-4 
using SQL in applications, 2-5 

PO SIX 
portable applications, 2-2 
programming, 2-4 
real-time functions, 2-5 
system services, 2-4 
use of ANSI C language, 2-4 

Procedures 
definition, 10-1 

Process control 
system services, 10-6, 10-11 

Process information 
system services, 10-6, 10-12 

Programming 
modular techniques, 2-1 
to standards, 2-1 

Protocols 
DDE, 3-6 
DNA, 3-1 
OSI, 3-1 
PEX, 2-6 
TCP/IP, 3-2 

Proxy Agent 
PC NSI, 3-5 

PXG, 2-6 

R 
RABs (record access blocks), 10-16 
RALLY, 1-4 
Rdb, 1-4 
RdbAccess for ORACLE on Open VMS, 1-4 
RdbAccess for RMS, 1-4 
Record access blocks 

See RABs 
Record management, 10-2 
Remote Procedure Call 

See DECrpc 
RMS 

See Open VMS RMS 
$RMSDEF macro 

See Open VMS RMS 



Routines 
definition, 10-3 
system, 10-1 

RTS, 1-4 
Run-time library routines 

capabilities of, 10-4 
definition, 10-3 

s 
SCA 

See LSE/SCA 
Screen management 

using system routines, 10-2 
SDA 

See System Dump Analyzer utility 
Security, 10-2 

DCE Security Server, 3-6 
services enabled by PATHWORKS, 3-5 
system services, 10-6, 10-12 

Servers, 3-2 
DCE Cell Directory, 3-6 
DCE Security, 3-6 
VMScluster, 3-3 

SET EDITOR command, 9-5 
Shareable image libraries, 8-4 
SHOW EDITOR command, 9-5 
SQL (Structured Query Language), 1-4, 2-2, 2-5 
Standards 

OpenVMS support, 1-3, 2-2 
SUMSLP utility (SUMSLP), 5-3 
Synchronization 

See Event Synchronization 
System Dump Analyzer utility (SDA), 9-9 to 9-10 

analyzing dump files, 9-9 
System routines, 10-1 
System services, 10-4 

AST, 10-5, 10-7 
cluster event notification, 10-5, 10-7 
condition handling, 10-5, 10-7 
DECdtm, 10-5, 10-7 
event flag, 10-5, 10-8 
file management, 10-5, 10-8 
I/O, 10-6, 10-8 
lock management, 10-6, 10-10 
logical name, 10-6, 10-10 
memory management, 10-6, 10-10 
process control, 10-6, 10-11 
process information, 10-6, 10-12 
security, 10-6, 10-12 
timer and time conversion, 10-6, 10-14 

T 
Tape servers 

VMScluster, 3-3 
TCP/IP 

Services for Open VMS, 3-2 
TCP/IP protocol, 3-2 
Test Manager, 9-12 
Text libraries, 8-4 
Text processing, 5-1 

EVE, 5-2 
Timer and time conversion 

system services, 10-6, 10-14 
TPU 

See DECTPU 

u 
Utility routines, 10-15 

v 
VAX APL interpreter 

See APL 
VAX BASIC interpreter 

See BASIC 
VAX BLISS-32 compiler 

See BLISS-32 
VAXC 

See C 
VAX COBOL 

See COBOL 
VAXDIBOL 

See DIBOL 
VAX Environment Software Translator (VEST), 

1-5 
VAX MACRO 

See MACRO 
VAXOPS5 

See OPS5 
VAX PL/I 

See PUI 
VEST 

See VAX Environment Software Translator 
VMScluster environments 

client/server capabilities, 3-2 
servers, 3-3 

x 
XABs (extended attribute blocks), 10-16 

lndex-5 



z 
ZLX-El, 2-6 
ZLX-Ml, 2-6 
ZLX-M2, 2-6 

lndex-6 



NOTES 



NOTES 

2 



NOTES 

3 



NOTES 

4 



NOTES 

5 



NOTES 

6 



NOTES 

7 



NOTES 

8 



NOTES 

9 



NOTES 

10 



NOTES 

11 



NOTES 

12 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825) 
and press 2 for technical assistance. 

Electronic Orders 
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a 
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no 
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an 
Electronic Store specialist. 

Telephone and Direct Mail Orders 

From 

U.S.A. 

Puerto Rico 

Canada 

International 

Internal Orders1 

(for software 
documentation) 

Internal Orders 
(for hardware 
documentation) 

Call 

DEC direct 
Phone: 800-DIGITAL 
(800-344-4825) 
Fax: (603) 884-5597 

Phone: (809) 781-0505 
Fax: (809) 7 49-8377 

Phone: 800-267-6215 
Fax: (613) 592-1946 

DTN: 264-3030 
(603) 884'-3030 
Fax: (603) 884-3960 

DTN: 264-3030 
(603) 884-3030 
Fax: (603) 884-3960 

Write 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, NH 03061 

Digital Equipment Caribbean, Inc. 
3 Digital Plaza, 1st Street 
Suite 200 
Metro Office Park 
San Juan, Puerto Rico 00920 

Digital Equipment of Canada Ltd. 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 
Attn: DECdirect Sales 

Local Digital subsidiary or 
approved distributor 

U.S. Software Supply Business 
Digital Equipment Corporation 
10 Cotton Road 
Nashua, NH 03063-1260 

U.S. Software Supply Business 
Digital Equipment Corporation 
10 Cotton Road 
Nashua, NH 03063-1260 

1Call to request an Internal Software Order Form (EN-01740-07). 





Reader's Comments 

Your comments and suggestions help us improve the quality of our publications. 

Thank you for your assistance. 

I rate this manual's: Excellent Good 

Accuracy (product works as manual says) D D 
Completeness (enough information) D D 
Clarity (easy to understand) D D 
Organization (structure of subject matter) D D 
Figures (useful) D D 
Examples (useful) D D 
Index (ability to find topic) D D 
Page layout (easy to find information) D D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

OpenVMS Programming 
Environment Manual 

AA-PV668-TK 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

For software manuals, please indicate which version of the software you are using: 

Nametritle 

Company 

Mailing Address 

Dept. 

Phone 

Date 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OpenVMS Documentation 
110 SPIT BROOK ROAD ZK03-4/U08 
NASHUA, NH 03062""'."2642 

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I 

No Postage 
Necessary 

if Mailed 
in the 

United States 

Do Not Tear - Fold Here -----------------------------------------------



Reader's Comments 

Your comments and suggestions help us improve the quality of our publications. 

Thank you for your assistance. 

I rate this manual's: Excellent Good 

Accuracy (product works as manual says) D D 
Completeness (enough information) D D 
Clarity (easy to understand) D D 
Organization (structure of subject matter) D D 
Figures (useful) D D 
Examples (useful) D D 
Index (ability to find topic) D D 
Page layout (easy to find information) D D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

OpenVMS Programming 
Environment Manual 

AA-PV668-TK 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

For software manuals, please indicate which version of the software you are using: 

Nametritle 

Company 

Mailing Address 

Dept. 

Phone 

Date 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OpenVMS Documentation 
110 SPIT BROOK ROAD ZK03-4/U08 

NASHUA, NH 03062-2642 

I I I 11111II1II1111II111ii1I11I1I1II111I11I11I1I1I1I1 I 

No Postage 
Necessary 
if Mailed 

in the 
United States 

-- Do Not Tear - Fold Here -----------------------------------------------


