
mamanma

OpenVMS System Services
Reference Manual: A-GETMSG

OpenVMS System Services
Reference Manual: A-GETMSG
Order Number: AA-QSBMA-TE

December 1995

This manual describes a set of routines that the Open VMS operating
system uses to control resources, to allow process communication, to
control 1/0, and to perform other such operating system functions.

This manual is in two parts. This first part contains the system services
from A through $GETMSG.

Revision/Update Information: This manual supersedes the Open VMS
System Services Reference Manual
for Open VMS AXP Version 6.1 and
Open VMS VAX Version 6.1~

Software Version: Open VMS Alpha Version 7.0
Open VMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC Fortran,
DECdns, DECdtn, DECnet, DECnet/OSI, DECwindows, Digital, HSC, MASSBUS, MicroVAX,
MicroVAX II, MSCP, OpenVMS, RA, StorageWorks, TA, TMSCP, TURBOchannel, ULTRIX, VAX,
VAX C, VAX DOCUMENT, VAXcluster, VMS, VMScluster, VT, and the DIGITAL logo.

ZK6243

The following are third-party trademarks:

Oracle is a registered trademark, and Oracle CODASYL DBMS and Oracle Rdb are trademarks of
Oracle Corporation.

OSI is a registered trademark of CA Management, Inc.

This document is available on CD-ROM.

Contents

Preface . vii

System Service Descriptions

$ABORT_TRANS .. SYS1-3
$ABORT_TRANS"'W' . SYS1-7
$ADD_HOLDER . SYS1-8
$ADD_IDENT .. SYS1-11
$ADD_PROXY .. SYS1-14
$ADJSTK . SYS 1-18
$ADJ"'W'SL ... SYS1-20
$ALLOC. SYS1-22
$ASCEFC . SYS 1-25
$ASCTIM . SYS1-29
$ASCTOID. SYS1-32
$ASCUTC . SYS1-35
$ASSIGN .. SYS1-38
$AUDIT_EVENT . SYS1-43
$AUDIT_EVENT"'W' . SYS1-61
$BINTIM . SYS1-62
$BINUTC .. SYS1-65
$BRKTHRU . SYS1-68
$BRKTHRU"'W' . SYS1-76
$CANCEL .. -. SYS1-77
$CANEXH . SYS1-79
$CANTIM . SYS1-80
$CAN"'W'AK ... ·. SYS1-82
$CHECK_ACCESS. SYS1-84
$CHECK_FEN (Alpha Only) SYS1-92
$CHECK_PRNILEGE . SYS1-93
$CHECK_PRNILEGE"'W' SYS1-98
$CHKPRO . SYS1-99
$CLRCLUEVT (Alpha Only) SYS1-107
$CLREF ... SYS1-109
$CMEXEC ... SYS1-110
$CMEXEC_64 (Alpha Only) SYS1-112
$CMKRNL ... SYS1-114
$CMKRNL_64 (Alpha Only) SYS1-116
$CPU_CAPABILITIES (Alpha Only) SYS1-118

iii

$CREATE_BUFOBJ_64 (Alpha Only) SYS1-122
$CREATE_GFILE (Alpha Only) SYS1-126
$CREATE_GPFILE (Alpha Only) SYS1-131
$CREATE_GPFN (Alpha Only) SYS1-135
$CREATE_RDB ... SYS1-139
$CREATE_REGION_64 (Alpha Only) SYS1-141
$CREATE_USER_PROFILE SYS1-145
$CRELNM ... SYS 1-149
$CRELNT ... SYS1-155
$CREMBX ... SYS1-161
$CREPRC ... SYS1-168
$CRETVA .. SYS1-185
$CRETVA_64 (Alpha Only) SYS1-188
$CRMPSC ... SYS1-192
$CRMPSC_FILE_64 (Alpha Only) SYS1-204
$CRMPSC_GFILE_64 (Alpha Only) SYS1-210
$CRMPSC_GPFILE_64 (Alpha Only) SYS1-218
$CRMPSC_GPFN_64 (Alpha Only) SYS1-225
$CRMPSC_PFN_64 (Alpha Only) SYS1-232
$DACEFC ... SYS1-236
$DALLOC ... SYS1-238
$DASSGN ... SYS 1-240
$DCLAST .. SYS 1-242
$DCLCMH ... SYS1-244
$DCLEXH ... SYS1-247
$DELETE_BUFOBJ (Alpha Only) SYS1-249
$DELETE_INTRUSION SYS1-250
$DELETE_PROXY ... SYS1-252
$DELETE_REGION_64 (Alpha Only) SYS1-255
$DELLNM ... SYS1-258
$DELMBX ... SYS1-261
$DELPRC ... SYS 1-263
$DELTVA .. SYS1-265
$DELTVA_64 (Alpha Only) SYS1-267
$DEQ ... SYS1-270
$DEVICE_SCAN .. SYS 1-275
$DGBLSC ... SYS1-279
$DISMOU ... SYS 1-282
$DISPLAY_PROXY .. SYS1-286
$DLCEFC ... SYS1-292
$DNS (VAX Only) .. SYS1-294
$DNSW (VAX Only) .. SYS1-321
$END_TRANS .. SYS1-322
$END_TRANSW : SYS1-327
$ENQ ... SYS1-328
$ENQW ... SYS1-340
$ERAPAT ; ... SYS1-341

iv

$EXIT .. SYS 1-344
$EXPREG ... SYS1-345
$EXPREG_64 (Alpha Only) SYS1-348·
$FAO/$FAOL ... SYS1-351
$FAOL_64 (Alpha Only) SYS1-371
$FILESCAN .. SYS1-372
$FIND _HELD .. SYS 1-378
$FIND_HOLDER .. SYS1-381
$FINISH_RDB .. SYS1-384
$FORCEX ... SYS 1-386
$FORMAT_ACL ... SYS1-389
$FORMAT_AUDIT ... SYS1-402
$GETDVI .. , ... SYS1-406
$GETDVIW .. SYS1-426
$GETJPI .. SYS1-427
$GETJPIW ... SYS1-448
$GETLKI .. SYS1-449
$GETLKIW , SYS1-461
$GETMSG ... SYS1-462

Index

Tables

SYS1-1
SYS1-2
SYS1-3
SYS1-4
SYS1-5
SYS1-6
SYS1-7
SYS1-8
SYS1-9

Description of $AUDIT_EVENT Types and Subtypes SYS1-47
User Privileges . SYS 1-169
Required and Optional Arguments for the $CRMPSC Service SYS1-198
$DNS Item Codes and Their Data Types SYS1-309
Abort Reason Codes SYS 1-323
Legal QUECVT Conversions SYS 1-334
$FAO Directives .. SYS1-355
$FAQ Output Field Lengths and Fill Characters SYS1-361
Attributes of an Identifier SYS1-436

v

Preface

Intended Audience
This manual is intended for system and application programmers who want to
call system services.

System Services Support for OpenVMS Alpha 64-bit Addressing

EMMI As of Version 7 .0, the Open VMS Alpha operating system provides support for
64-bit virtual memory addresses, which makes the 64-bit virtual address space
defined by the Alpha architecture available to the Open VMS Alpha operating
system and to application programs. In the 64-bit virtual address space, both
process-private and system virtual address space extend beyond 2 GB. By using
64-bit address features, programmers can create images that map and access
data beyond the previous limits of 32-bit virtual addresses.

New Open VMS system services are available, and many existing services have
been enhanced to manage 64-bit address space. The system services descriptions
in this manual indicate the services that accept 64-bit addresses. A list of
the Open VMS system services that accept 64-bit addresses is available in the
Open VMS Alpha Guide to 64-Bit Addressing.

This section briefly describes how 64-bit addressing support affects Open VMS
system services. For complete information about Open VMS Alpha 64-bit
addressing features, see the Open VMS Alpha Guide to 64-Bit Addressing.

64-Bit System Services Terminology
32-bit system service
A 32-bit system service is a system service that only supports 32-bit addresses
on any of its arguments that specify addresses. If passed by value on Open VMS
Alpha, a 32-bit virtual address is actually a 64-bit address that is sign-extended
from 32-bits.

64-bit friendly interface
A 64-bit friendly interface is an interface that can be called with all 64-bit
addresses. A 32-bit system service interface is 64-bit friendly if, without a change
in the interface, it needs no modification to handle 64-bit addresses. The internal
code that implements the system service might need modification, but the system
service interface will not.

64-bit system service
A 64-bit system service is a system service that is defined to accept all address
arguments as 64-bit addresses (not necessarily 32-bit sign-extended values). Also,
a 64-bit system service uses the entire 64 bits of all virtual addresses passed to it.

vii

_________ Use of the _64 Suffix ________ _

The 64-bit system services include the _64 suffix for services that accept
64-bit addresses by reference. For promoted services, this distinguishes
the 64-bit capable version from its 32-bit counterpart. For new services, it
is a visible reminder that a 64-bit wide address cell will be read/written.

Sign-Extension Checking
Open VMS system services that do not support 64-bit addresses and all user
written system services that are not explicitly enhanced to accept 64-bit addresses
will receive sign-extension checking. Any argument passed to these services that
is not properly sign-extended will cause the error status SS$_ARG_GTR_32_BITS
to be returned. +

Document Structure
The Open VMS System Services Reference Manual is a two-part manual. The first
part contains information on A through $GETMSG; the second part contains
information on $GETQUI through Z.

Related Documents
The Open VMS Programming Interfaces: Calling a System Routine manual
contains useful information for anyone who wants to call system services.

High-level language programmers can find additional information about calling
system services in the language reference manual and language user's guide
provided with the Open VMS language.

The following documents might also be useful:

• Open VMS Programming Concepts Manual

• Guide to Open VMS File Applications

• Open VMS Guide to System Security

• DECnet for Open VMS Networking Manual

• Open VMS Record Management Services Reference Manual

• Open VMS I I 0 User's Reference Manual

• Open VMS Alpha Guide to 64-Bit Addressing

• Open VMS Alpha Guide to Upgrading Privileged-Code Applications

For a complete list and description of the manuals in the Open VMS document
set, see the Overview of Open VMS Documentation.

How To Order Additional Documentation

viii

Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Location

U.S.A.

Puerto Rico

Canada

International

Internal Orders

Call

DECdirect
800-DIGITAL
800-344-4825

809-781-0505

800-267-6215

DTN: 264-4446
603-884-4446

Fax

Fax:800-234-2298

Fax:809-749-8300

Fax:613-592-1946

Fax:603-884-3960

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street, Suite 200
P.O. Box 11038
Metro Office Park
San Juan, Puerto Rico 00910-2138

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

ZK-7654A-GE

For additional information about Open VMS products and services, access the
Digital OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader's Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet

Fax

Mail

Conventions

openvmsdoc@zko.mts.dec.com

603 881-0120, Attention: Open VMS Documentation, ZK03-4/U08

Open VMS Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

In this manual, every use of Open VMS Alpha means the Open VMS Alpha
operating system, every use of Open VMS VAX means the Open VMS VAX
operating system, and every use of Open VMS means both the Open VMS Alpha
operating system and the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
Alpha or to Open VMS VAX:

The Alpha icon denotes the beginning of information
specific to Open VMS Alpha.

ix

x

•

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS Alpha or to Open VMS
VAX.

In this manual, every use of DECwindows and DECwindows Mo.tif refers to
DECwindows Motif for Open VMS software.

The following conventions are also used in this manual:

Ctrl/x

()

[]

{ }

boldface text

italic text

UPPERCASE TEXT

numbers

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. Non decimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources.

Condition values returned by system services may provide information; that is,
they do not indicate only whether the service completed successfully. The usual
condition value indicating success is SS$_NORMAL, but others are defined. For
example, the condition value SS$_BUFFEROVERF, which is returned when
a character string returned by a service is longer than the buffer provided to
receive it, is a success code. This condition value gives the program additional
information.

Warning returns and some error returns indicate that the service may have
performed some, but not all, of the requested function.

The particular condition values that each service can return are described in the
Condition Values Returned section of each individual service description.

Returns

Open VMS usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO.

System Service Descriptions
$ABORT_ TRANS

$ABORT_ TRANS
Abort Transaction

Format

Arguments

Ends a transaction by aborting it.

SYS$ABORT _TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason]]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the service completes. If this argument
is omitted, event flag 0 is set.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The flags argument is a longword bit
mask in which each bit corresponds to an option flag. The $DDTMDEF macro
defines symbolic names for these option flags. All undefined bits must be 0. If
this argument is omitted, no flags are set.

DDTM$M_SYNC, the only flag currently defined, is described in the following
table.

Flag

DDTM$M_SYNC

iosb

Description

Set this flag to specify that successful synchronous
completion is to be indicated by returning SS$_SYNCH.
When SS$_SYNCH is returned, the AST routine is not
called, the event flag is not set, and the 1/0 status block
is not filled in.

Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block in which the following information is returned:

• The completion status of the service, returned as a condition value. See the
Condition Values Returned section.

• An abort reason code that gives one reason why the transaction aborted, if
the completion status of the service is SS$_NORMAL.

SYS1-3

System Service Descriptions
$ABORT_ TRANS

SYS1-4

Note that if there are multiple reasons why the transaction aborted, the abort
reason code returned in the I/O status block may not be the same as the
abort reason code passed in the reason argument. The DECdtm transaction
manager returns one of the reasons in the I/O status block.

For example, if the call to $ABORT_TRANS gives DDTM$_ABORTED as the
reason and the transaction timeout expires at about the same time as the
call to $ABORT_TRANS, then either the DDTM$_TIMEOUT or DDTM$_
ABORTED reason code may be returned in the I/O status block.

The $DDTMMSGDEF macro defines symbolic names for abort reason codes.
Those currently defined are shown in Table SYSl-5.

The following diagram shows the structure of the I/O status block.

31 15 0

Reserved by Digital I Condition value

Abort reason code

ZK-3667A-GE

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST routine that is executed when the service completes, if SS$_NORMAL is
returned in RO. The astadr argument is the address of this routine. The routine
is executed in the access mode of the caller.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter that is passed to the AST routine specified by the astadr
argument. ·

tid
Open VMS usage: transaction_id
type: octaword (unsigned)
access: read only
mechanism: by reference

Identifier of the transaction to be aborted.

If this argument is omitted, $ABORT_TRANS aborts the default transaction of
the calling process.

Description

reason
Open VMS usage: cond_ value
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$ABORT_ TRANS

Code that gives the reason why the application is aborting the transaction.
The $DDTMMSGDEF macro defines symbolic names for abort reason codes.
Those currently defined are shown in Table SYSl-5. The default value for this
argument is DDTM$_ABORTED.

The Abort Transaction service ends a transaction by aborting it. The DECdtm
transaction manager instructs all the resource managers participating in the
transaction to abort the transaction operations so that none of those operations
ever takes any effect.

$ABORT_TRANS must be called from the process that started the transaction.

$ABORT_TRANS does not complete successfully until all quotas allocated for the
transaction by calls on the local node to DECdtm services have been returned.

$ABORT_TRANS will not complete successfully (that is, the event flag will not be
set, the AST routine will not be called, and the I/O status block will not be filled
in) while the calling process is either:

• In an access mode that is more privileged than the DECdtm calls made by
any resource manager participant in the transaction.

RMS Journaling calls DECdtm in executive mode. Oracle Rdb and Oracle
CODASYL DBMS call DECdtm in user mode.

• At AST level (in any access mode).

For example, if Oracle Rdb is a participant in the transaction, $ABORT_TRANS
will not complete successfully while the calling process is in supervisor, executive,
or kernel mode, or while the calling process is at AST level.

Required Access or Privileges
None

Required Quotas
ASTLM

Related Services
$ABORT_TRANSW, $END_TRANS, $END_TRANSW, $START_TRANS,
$START_TRANSW

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

If this was returned in RO, the request was
successfully queued. If it was returned in the I/O
status block, the service completed successfully.

The service completed successfully and
synchronously (returned only if the
DDTM$M_SYNC flag is set).

SYS1-5

System Service Descriptions
$ABORT_ TRANS

SYS1-6

SS$_ACCVIO
SS$_BADPARAM
SS$_BADREASON
SS$_CURTIDCHANGE

SS$_EXASTLM
SS$_ILLEFC
SS$_INSFARGS
SS$_INSFMEM

SS$_NOCURTID

SS$_NOLOG
SS$_NOSUCHTID

SS$_NOTORIGIN
SS$_TPDISABLED

SS$_ WRONGSTATE

An argument was not accessible by the caller.
The options flags were invalid.
The abort reason code was invalid.
The tid argument was omitted and a call to
change the default transaction of the calling
process was in progress.
The process AST limit (ASTLM) was exceeded.
The event flag number was invalid.
Not enough arguments were supplied.
There was insufficient system dynamic memory
for the operation.

An attempt was made to abort the default
transaction (the tid argument was omitted)
but the calling process did not have a default
transaction.
The local node did not have a transaction log.
A transaction with the specified transaction
identifier does not exist.
The calling process did not start the transaction.
The TP _SERVER process was not running on the
local node.
The calling process had already called either
$ABORT_TRANS or $END_TRANS to end the
transaction, and processing had not completed.

System Service Descriptions
$ABORT_ TRANSW

$ABORT_ TRAN SW
Abort Transaction and Wait

Format

Ends a transaction by aborting it.

· $ABORT_TRANSW always waits for the request to complete before returning to
the caller. Other than this, it is identical to $ABORT_TRANS.

Do not call $ABORT_TRANSW from AST level, or from an access mode that
is more privileged than the DECdtm calls made by any resource manager
participant in the transaction. If you do, the $ABORT_TRANSW service will
wait indefinitely.

SYS$ABORT _ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason]]

SYS1-7

System Service Descriptions
$ADD_HOLDER

$ADD_HOLDER
Add Holder Record to Rights Database

Format

Arguments

SYS1-8

Adds a specified holder record to a target identifier.

SYS$ADD_HOLDER id ,holder ,[attrib]

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Target identifier granted to the specified holder when $ADD_HOLDER completes
execution. The id argument is a longword containing the binary value of the
target identifier.

holder
Open VMS usage: rights_holder
type: . quadword (unsigned)
access: read only
mechanism: by reference

Holder identifier that is granted access to the target identifier when $ADD_
HOLDER completes execution. The holder argument is the address of a
quadword data structure that consists of a longword containing the holder's
UIC identifier followed by a longword containing a value of 0.

attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Attributes to be placed in the holder record when $ADD_HOLDER completes
execution. The attrib argument is a longword containing a bit mask specifying
the attributes. A holder is granted a specified attribute only if the target
identifier has the attribute.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
symbolic name for each bit position is listed in the following table.

Bit Position

KGB$V _DYNAMIC

Meaning When Set

Allows holders of the identifier to remove
it from or add it to the process rights
database by using the DCL command
SET RIGHTS_LIST.

Description

Bit Position

KGB$V _HOLDER_HIDDEN

KGB$V _NAME_HIDDEN

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

System Service Descriptions
$ADD_HOLDER

Meaning When Set

Prevents someone from getting a list of
users who hold an .identifier, unless they
own the identifier themselves.

Allows holders of an identifier to have it
translated-either from binary to ASCII
or vice versa-but prevents unauthorized
users from translating the identifier.

Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.
Allows holders of the identifier· to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

The Add Holder Record to Rights Database service registers the specified user as
a holder of the specified identifier with the rights database.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_DUPIDENT

SS$_INSFMEM

SS$_IVIDENT

The service completed successfully.

The holder argument cannot be read by the
caller.

The specified attributes contain invalid attribute
flags.

The specified holder already exists in the rights
database for this identifier.
The process dynamic memory is insufficient for
opening the rights database.
The specified identifier or holder is of an invalid
format, the specified holder is 0, or the specified
identifier and holder are equal.

SYS1-9

System Service Descriptions
$ADD_HOLDER

SYS1-10

SS$_NORIGHTSDB

SS$_NOSUCHID

RMS$_PRV

The rights database does not exist.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.
The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

System Service Descriptions
$ADD_IDENT

$ADD_IDENT
Add Identifier to Rights Database

Format

Arguments

Adds the specified identifier to the rights database.

SYS$ADD_IDENT name ,[id] ,[attrib] ,[resid]

name
Open VMS usage: char-string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Identifier name to be added to the rights database when $ADD_IDENT completes
execution. The name argument is the address of a character-string descriptor
pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including dollar
signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Identifier to be created when $ADD_IDENT completes execution. The id
argument is a longword containing the binary value of the identifier to be
created.

If the id argument is omitted, $ADD_IDENT selects a unique available value
from the general identifier space and returns it in resid, if it is specified.

attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Attributes placed in the identifier's record when $ADD_IDENT completes
execution. The· attrib argument is a longword containing a bit mask that
specifies the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
symbolic name for each bit position is listed in the following table.

SYS1-11

System Service Descriptions
$ADD_IDENT

Description

SYS1-12

Bit Position

KGB$V _DYNAMIC

KGB$V _HOLDER_HIDDEN

KGB$V _NAME_HIDDEN

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

res id
Open VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Meaning When Set

Allows holders of the identifier to remove
it from or add it to the process rights
database by using the DCL command
SET RIGHTS_LIST.

Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

Allows holders of an identifier to have it
translated-either from binary to ASCII
or vice versa-but prevents unauthorized
users from translating the identifier.

Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Aliows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.
Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

Identifier value assigned by the system when $ADD_IDENT completes execution.
The resid argument is the address of a longword in which the system-assigned
identifier value is written.

The Add Identifier to Rights Database service adds the specified identifier to the
rights database.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ASCTOID, $CREATE_RDB, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPIDENT

SS$_DUPLNAM

SS$_INSFMEM

SS$_IVIDENT

SS$_NORIGHTSDB

RMS$_PRV

System Service Descriptions
$ADD_IDENT

The service completed successfully.

The name argument cannot be read by the
caller, or the resid argument cannot be written
by the caller.

The specified attributes contain invalid attribute
flags.

The specified identifier already exists in the
rights database.
The specified identifier name already exists in
the rights database.

The process dynamic memory is insufficient for
opening the rights database.

The format of the specified identifier is invalid.

The rights database does not exist.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS1-13

System Service Descriptions
$ADD_PROXV

$ADD_PROXV
Add or Modify Proxy

Format

Arguments

SYS1-14

Adds a new proxy to, or modifies an existing proxy in, the proxy database.

SYS$ADD_PROXY rem_node ,rem_user ,local_user ,[flags]

rem_node
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote node name of the proxy to be added to or modified in the proxy database.
The rem_node argument is the address of a character-string descriptor pointing
to the remote node name string.

A remote node name consists of 1 to 1024 characters. No specific characters,
format, or case are required for a remote node name string. All node names are
converted to their DECnet for Open VMS full name unless the PRX$M_BYPASS_
EXPAND flag is set with the flags argument.

If you specify a single asterisk (*) for the rem_node argument, the user name
specified by the rem_user argument on all nodes is served by the proxy.

rem_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote user name of the proxy to be added to or modified in the proxy database.
The rem_user argument is the address of a character-string descriptor pointing
to the user name string.

A remote user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($), underscores (_), and brackets ([]). Any lowercase characters specified
are automatically converted to uppercase.

The rem_user argument can be specified in user identification code (UIC) format
([group, member]). Brackets are allowed only if the remote user name string
specifies a UIC. Group and member are character-string representations of octal
numbers with no leading zeros.

If you specify a single asterisk (*) for the rem_ user argument, all users from the
node specified by the rem_node argument are served by the same user names
specified by the local_user argument.

local_ user
Open VMS usage: char_string

System Service Descriptions
$ADD_PROXY

type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Local user name to add to the proxy record specified by the rem_node and rem_
user arguments in the proxy database as either the default user or local user.
The local_user argument is the address of a character-string descriptor pointing
to the local user name.

A local user name consists of 1 to 32 alphanumeric characters, including
dollar signs ($) and underscores (_). Any lowercase characters specified are
automatically converted to uppercase.

The user name specified by the local_user argument must be a user name known
to the local system.

If the PRX$M_DEFAULT flag is specified in the flags argument, the user name
specified by the local_user argument will be added to the proxy record in the
proxy database as the default user. If a default user already exists for the
specified proxy record, the default user is placed into the proxy's local user list
and is replaced by the user name specified by the local_user argument.

Proxy records can contain no more than 16 local users and 1 default user. To add
multiple users to a single proxy, you must call this service once for each local
user.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service and type of user the local_user argument
represents. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each flag option has a symbolic name. The $PRXDEF macro defines the following
symbolic names.

Symbolic Name

PRX$M_BYPASS_EXPAND

PRX$M_DEFAULT

Description

The service should not convert the node name
specified in the rem_node argument to its
corresponding DECnet for Open VMS full name.
If this flag is set, it is the caller's responsibility
to ensure that the fully expanded node name is
passed into the service.

The user name specified by the local_user
argument is the default user for the proxy. If
this flag is not specified, the user name specified
by the local_user argument is added to the
proxy record's local user list.

SYS1-15

System Service Descriptions
$ADD_PROXY

Description

Symbolic Name

PRX$M_IGNORE_RETURN

Description

The service should not wait for a return status
from the security server. No return status from
the server's function will be returned to the
caller.

The Add Proxy service adds a new proxy to, or modifies an existing proxy in, the
proxy database.

Required Access or Privileges
The caller must have either SYSPRV privilege or a UIC group less than or equal
to the MAXSYSGRP system parameter.

Required Quota
None

Related Services
$DELETE_PROXY, $DISPLAY_PROXY, $VERIFY_PROXY

Condition Values Returned

SYS1-16

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_BADBUFLEN

SS$_NOSYSPRV

The service completed successfully.

The rem_node, rem_user, local_user, or flags
argument cannot be read by the service.

An invalid flag was specified in the flags
argument.

The length of the rem_node, rem_user, or
local_user argument was out of range.

The caller does not have access to the proxy
database.

This service can also return any of the following messages passed from the
security server, or any Open VMS RMS error message encountered during
operations on the proxy database:
SECSRV$_ The default user specified is already the default.
ALREADYDEFAULT
SECSRV$_
BADLOCALUSERLEN

SECSRV$_
BADNODENAMELEN
SECSRV$_
BADREMUSERLEN

SECSRV$_
DUPLICATEUSER

SECSRV$_NOSUCHUSER

The local user name length is out of range.

The node name length is out of range.

The remote user name length is out of range.

The user name specified by the local_user
argument already exists in the proxy record's
local user list.

The user name specified in the local_user
argument is not known to the system.

SECSRV$_PROXYEXISTS

SECSRV$_
PROXYNOTACTIVE

SECSRV$_
SERVERNOTACTIVE

SECSRV$_
TOOMANYUSERS

SECSRV$_ USEREXISTS

System Service Descriptions
$ADD_PROXV

The specified proxy already exists.

Proxy processing is currently stopped. Try the
request again later.

The security server is not currently active. Try
the request again later.

The specified proxy already has 16 local users
and cannot accommodate any more.

The specified local user already exists in the
proxy's local user list, or is the proxy's default
user.

SYS1-17

System Service Descriptions
$ADJSTK

$ADJSTK
Adjust Outer Mode Stack Pointer

Format

Arguments

SYS1-18

Modifies the stack pointer for a less privileged access mode. The operating system
uses this service to modify a stack pointer for a less privileged access mode after
placing arguments on the stack.

SYS$ADJSTK [acmode] ,[adjust] ,newadr

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the stack pointer is to be adjusted. The acmode argument
is this longword value. If not specified, the default value 0 (kernel access mode)
is used.

adjust
Open VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Signed adjustment value used to modify the value specified by the newadr
argument. The adjust argument is a signed longword, which is the adjustment
value.

Only the low-order word of this argument is used. The value specified by the
low-order word is added to or subtracted from (depending on the sign) the value
specified by the newadr argument. The result is loaded into the stack pointer for
the specified access mode.

If the adjust argument is not specified or is specified as 0, the stack pointer is
loaded with the value specified by the newadr argument.

For additional information about the various combinations of values for adjust
and ne~adr, see the Description section.

newadr
Open VMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Value that adjust is to adjust. The newadr argument is the address of this
longword value.

The value specified by this argument is both read and written by $ADJSTK. The
$ADJSTK service reads the value specified and adjusts it by the value of the
adjust argument (if specified). After this adjustment is made, $ADJSTK writes

Description

System Service Descriptions
$ADJSTK

the adjusted value back into the longword specified by newadr and then loads
the stack pointer with the adjusted value.

If the value specified by newadr is 0, the current value of the stack pointer is
adjusted by the value specified by adjust. This new value is then written back
into newadr, and the stack pointer is modified.

For additional information about the various combinations of values for adjust
and newadr, see the Description section.

.The Adjust Outer Mode Stack Pointer service modifies the stack pointer for a less
privileged access mode. The operating system uses this service to modify a stack
pointer for a less privileged access mode after placing arguments on the stack.

Combinations of zero and nonzero values for the adjust and newadr arguments
provide the following results.

If the adjust
Argument
Specifies:

0

0

A value

A value

And the Value
Specified by
newadr Is:

0

An address

0

An address

The Stack
Pointer Is:

Not changed

Loaded with the address specified

Adjusted by the specified value

Loaded with the specified address,
adjusted by the specified value

In all cases, the updated stack pointer value is written into the value specified by
the newadr argument.

Required Access or Privileges
None

Required Quota
None

Related Services
$ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

The service completed successfully.

The value specified by newadr or a portion of
the new stack segment cannot be written by the
caller.

The specified access mode is equal to or more
privileged than the calling access mode.

SYS1-19

System Service Descriptions
$ADJWSL

$ADJWSL
Adjust Working Set Limit

Format

Arguments

Description

SYS1-20

Adjusts a process's current working set limit by the specified number of pages (on
VAX systems) or pagelets (on Alpha systems) and returns the new value to the
caller. The working set limit specifies the maximum number of process pages or
pagelets that can be resident in physical memory.

On Alpha systems, this service accepts 64-bit addresses.

SYS$ADJWSL [pagcnt] ,[wsetlm]

pagcnt
Open VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Signed adjustment value specifying the number of pages (on VAX systems) or
pagelets (on Alpha systems) to add to (if positive) or subtract from (if negative)
the current working set limit. The pagcnt argument is this signed longword
value.

Note that, on Alpha systems, the specified value is rounded up to an even
multiple of the CPU-specific page size.+

If pagcnt is not specified or is specified as 0, no adjustment is made and the
current working set limit is returned in the longword specified by the wsetlm
argument (if this argument is specified).

wsetlm
Open VMS usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Value of the working set limit, in pages (on VAX systems) or pagelets (on Alpha
systems), returned by $ADJWSL. The wsetlm argument is the 32-bit address (on
VAX systems) or the 32-bit or 64-bit address (on Alpha systems) of this longword
value. The wsetlm argument receives the newly adjusted value if pagcnt is
specified, and it receives the prior, unadjusted value if pagcnt is not specified.

The Adjust Working Set Limit service adjusts a process's current working set
limit by the specified number of pages (on VAX systems) or pagelets (rounded up
or down to a whole page count on Alpha systems) and returns the new value to
the caller. The working set limit specifies the maximum number of process pages
that can be resident in physical memory.

System Service Descriptions
$ADJWSL

If a program attempts to adjust the working set limit beyond the system-defined
upper and lower limits, no error condition is returned; instead, the working set
limit is adjusted to the maximum or minimum size allowed.

Required Access or Privileges
None

Required Quota
The initial value of a process's working set limit is controlled by the working set
default (WSDEFAULT) quota. The maximum value to which it can be increased
is controlled by the working set extent (WSEXTENT) quota; the minimum value
to which it can be decreased is limited by the system parameter MINWSCNT.

Related Services
$ADJSTK, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

The service completed successfully.
The longword specified by wsetlm cannot be
written by the caller.

SYS1-21

System Service Descriptions
$ALLOC

$ALLOC
Allocate Device

Format

Arguments

SYS1-22

Allocates a device for exclusive use by a process and its subprocesses. No other
process can allocate the device or assign channels to it until the image that called
$ALLOC exits or explicitly deallocates the device with the Deallocate Device
($DALLOC) service.

SYS$ALLOC devnam ,[phylen] ,[phybuf] ,[acmode] ,[flags]

devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Device name of the device to be allocated. The devnam argument is the address
of a character string descriptor pointing to the device name string.

The string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

phylen
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word into which $ALLOC writes the length of the device name string for the
device it has allocated. The phylen argument is the address of this word.

phybuf
Open VMS usage: device_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $ALLOC writes the device name string for the device it has
allocated. The phybuf argument is the address of a character string descriptor
pointing to this buffer.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the allocated device. The acmode argument is
a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only equal
or more privileged access modes can deallocate the device.

Description

flags
Open VMS· usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by .value

System Service Descriptions
$ALLOC

Longword of status flags indicating whether to interpret the devnam argument
as the type of device to be allocated. Only one flag exists, bit 0. When it is set,
the $ALLOC service allocates the first available device that has the type specified
in the devnam argument.

This feature is available for the following mass storage devices:

RA60 RASO RA81 RC25
RCF25 RK06 RK07 RLOl
RL02 RM03 RM05 RMBO
RP04 RP05 RP06 RP07
RXOl RX02 TA78 TA81
TSll TU16 TU58 TU77
TU78 TU80 TU81

The Allocate Device service allocates a device for exclusive use by a process and
its subprocesses. No other process can allocate the device or assign channels to it
until the image that called $ALLOC exits or explicitly deallocates the device with
the Deallocate Device ($DALLOC) service.

When a process calls the Assign I/O Channel ($ASSIGN) service to assign a
channel to a nonshareable, nonspooled device, such as a terminal or line printer,
the device is implicitly allocated to the process.

You can use this service only to allocate devices that either exist on the host
system or are made available to the host system in a VMScluster environment.

Required Access or Privileges
Read, write, or control access to the device is required.

Required Quota
None

Related Services
$ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_BUFFEROVF
The service completed successfully.

The service completed successfully. The physical
name returned overflowed the buffer provided,
and has been truncated.

· SYS1-23

System Service Descriptions
$ALLOC

SYS1-24

SS$_DEVALRALLOC

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVMOUNT

SS$_DEVOFFLINE

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_IVSTSFLG

SS$_NODEVAVL

SS$_NONLOCAL
SS$_NOPRIV

The service completed successfully. The device
was already allocated to the calling process.
The device name string, string descriptor, or
physical name buffer descriptor cannot be read
by the caller, or the physical name buffer cannot
be written by the caller.

The device is already allocated to another
process, or an attempt to allocate an unmounted
shareable device failed because other processes
had channels assigned to the device.

The specified device is currently mounted and
cannot be allocated, or the device is a mailbox.

The specified device is marked off line.

The device name string contains invalid
characters, or no device name string was
specified.

The device name string has a length of 0 or has
more than 63 characters.
The bits set in the longword of status flags are
invalid.
The specified device in a generic search exists
but is allocated to another user.

The device is on a remote node.

The requesting process attempted to allocate a
spooled device and does not have the required
privilege, or the device protection or access
control list (or both) denies access.

SS$_NOSUCHDEV The specified device does not exist in the host
system. This error is usually the result of a
typographical error.

88$_ TEMPLATEDEV The process attempted to allocate a template
device; a template device cannot be allocated.

The $ALLOC service can also return any condition value returned by $ENQ. For
a list of these condition values, see the description of $ENQ.

$ASCEFC

System Service Descriptions
$ASCEFC

Associate Common Event Flag Cluster

Format

Arguments

Associates a named common event flag cluster with a process to execute the
current image and to be assigned a process-local cluster number for use with
other event flag services. If the named cluster does not exist but the process has
suitable privilege, the service creates the cluster.

SYS$ASCEFC efn ,name ,[prot] ,[perm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag contained within the desired common event flag
cluster. The efn argument is a longword value specifying this number; however,
$ASCEFC uses only the low-order byte.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127. (Clusters 0 and 1 are process-local event flag clusters.)

To associate with common event flag cluster 2, specify any flag number in the
cluster (64 to 95); to associate with common event flag cluster 3, specify any event
flag number in the cluster (96 to 127).

name
Open VMS usage: ef_cluster_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the common event flag cluster with which to associate. The name
argument is the address of a character string descriptor pointing to this name
string.

The character string descriptor can be 1 to 15 bytes in length, and each byte may
be any 8-bit value.

Common event flag clusters are accessible only to processes having the same UIC
group number, and each such process must associate withthe cluster using the
same name (specified in the name argument). The operating system implicitly
associates the group UIC number with the name, making the name unique to a
UIC group.

SYS1-25

System Service Descriptions
$ASCEFC .

Description

SYS1-26

prot
Open VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Protection specifier that allows or disallows access to the common event flag
cluster for processes with the same UIC group number as the creating process.
The prot argument is a longword value, which is interpreted as Boolean.

The default value 0 specifies that any process with the same UIC group number
as the creating process may access the event flag cluster. The value 1 specifies
that only processes having the UIC of the creating process can access the event
flag cluster.

When the prot argument is 1, all access to the Group category is denied.

The process must have associate access when accessing an existing common event
flag cluster.

perm
Open VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Permanent specifier that marks a common event flag cluster as either permanent
or temporary. ·The perm argument is a longword value, which is interpreted as
Boolean.

The default value 0 specifies that the cluster is temporary. The value 1 specifies
that the cluster is permanent.

The Associate Common Event Flag Cluster service associates a named common
event flag cluster with a process for the execution of the current image and to
assign it a process-local cluster number for use with other event flag services. A
process needs associate access to call the $ASCEFC service.

When a process associates with a common event flag cluster, that cluster's
reference count is increased by 1. The reference count is decreased when a
process disassociates from the cluster, whether explicitly with the Disassociate
Common Event Flag Cluster ($DACEFC) serVice or implicitly at image exit.

Temporary clusters are automatically deleted when their reference count goes
to O; you must explicitly mark permanent clusters for deletion with the Delete
Common Event Flag Cluster ($DLCEFC) service.

When a new cluster is created, a security profile is created with the process UIC
as the owner of the common event flag cluster; the remaining characteristics are
taken from the COMMON_EVENT_CLUSTER.DEFAULT template profile.

Because the $ASCEFC service automatically creates the common event flag
cluster if it does not already exist, cooperating processes need not be concerned
with which process executes first to create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it regardless of the
order in which they call the service.

System Service Descriptions
$ASCEFC

The initial state for all event flags in a newly created common event flag cluster
is 0.

If a process has already associated a cluster number with a named common event
flag cluster and then issues another call to $ASCEFC with the same cluster
number, the service disassociates the number from its first assignment before
associating it with its second.

If you previously called any system service that will set an event flag (and the
event flag is contained within the cluster being reassigned), the event flag will be
set in the newly associated named cluster, not in the previously associated named
cluster.

Required Access or Privileges
The calling process must have PRMCEB privilege to create a permanent common
event flag cluster.

Required Quota
Creation of temporary common event flag clusters uses the quota of the process
for timer queue entries (TQELM); the creation of a permanent cluster does not
affect the quota. The quota is restored to the creator of the cluster when all
processes associated with the cluster have disassociated.

Related Services
$CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXPORTQUOTA

SS$_EXQUOTA

SS$_INSFMEM

SS$_ILLEFC

SS$_INTERLOCK

SS$_IVLOGNAM

The service completed successfully.

The cluster name string or string descriptor
cannot be read by the caller.
The process has exceeded the number of event
flag clusters with which processes on this port of
the multiport (shared) memory can associate.

The process has exceeded its timer queue
entry quota; this quota controls the creation
of temporary common event flag clusters.

The system dynamic memory is insufficient for
completing the service.
You specified an illegal event flag number. The
cluster number must be in the range of event
flags 64 through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

The cluster name string has a length of 0 or has
more than 15 characters.

SYS1-27

System Service Descriptions
$ASCEFC

SS$_NOPRIV

SS$_NOSHMBLOCK

tSS$_SHMNOTCNT

tVAX specific

SYS1-28

The process does not have the privilege to create
a permanent cluster; the process does not have
the privilege to create a common event flag
cluster in memory shared by multiple processors;
or the protection applied to an existing cluster by
its creator prohibits association.

The common event flag cluster has no shared
memory control block available.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

$ASCTIM

System Service Descriptions
$ASCTIM

Convert Binary Time to ASCII String

Format

Arguments

Converts an absolute or delta time from 64-bit system time format to an ASCII
string.

SYS$ASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

ti mien
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length (in bytes) of the ASCII string returned by $ASCTIM. The timlen
argument is the address of a word containing this length.

timbuf
Open VMS usage: time_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $ASCTIM writes the ASCII string. The timbuf argument is
the address of a character string descriptor pointing to the buffer.

The buffer length specified in the timbuf argument, together with the cvtflg
argument, controls what information is returned.

timadr
Open VMS usage: date_time
type: quadword
access: read only
mechanism: by reference

Time value that $ASCTIM is to convert. The timadr argument is the address
of this 64-bit time value. A positive time value represents an absolute time. A
negative time value represents a delta time. If you specify a delta time, it must
be less than 10,000 days.

If timadr is not specified or is specified as 0 (the default), $ASCTIM returns the
current date and time.

cvtflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Conversion indicator specifying which date and time fields $ASCTIM should
return. The cvtflg argument is a longword value, which is interpreted as
Boolean. The value 1 specifies that $ASCTIM should return only the hour,

SYS1-29

System Service Descriptions
$ASCTIM

Description

SYS1-30

minute, second, and hundredths-of-second fields. The default value 0 specifies
that $ASCTIM should return the full date and time.

The Convert Binary Time to ASCII String service converts an absolute or delta
time from 64-bit system time format to an ASCII string. The service executes at
the access mode of the caller and does not check whether address arguments are
accessible before it executes. Therefore, an access violation causes an exception
condition if the input time value cannot be read or the output buffer or buffer
length cannot be written.

This service returns the SS$_INSFARG (insufficient arguments) condition value
if one or both of the required arguments are not supplied.

The ASCII strings returned have the following formats:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

• Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Field

dd

mmm

yyyy

blank

hh

mm

SS

cc

dddd

Length
(Bytes}

2
1

3

1

4

n

2

1
2

1

2

1

2

4

Contents

Day of month

Hyphen

Month

Hyphen

Year

Blank

Hour

Colon

Minutes

Colon

Seconds

Period

Hundredths-of-
second

Number of days
(in 24-hr units)

Month abbreviations must be uppercase.

Range of Values

1-31

Required syntax

JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

Required syntax

1858-9999

Required syntax

00-23

Required syntax

00-59

Required syntax

00-59

Required syntax

00-99

000-9999

The hundredths-of-second field now represents a true fraction; for example, the
string .1 represents ten-hundredths of a second (one-tenth of a second); the string
.01 represents one-hundredth of a second.

Also, you can add a third digit to the hundredths-of-second field; this
thousandths-of-second digit is used to round the hundredths-of-second value.
Digits beyond the thousandths-of-second digits are ignored.

System Service Descriptions
$ASCTIM

The results of specifying some possible combinations for the values of the cvtftg
and timbuf arguments are as follows.

Buffer Length
Time Value Specified

Absolute 23
Absolute 12
Absolute 11

Delta 16
Delta . 11

Required Access or Privileges
None

Required Quota
None

Related Services

CVTFLG Information
Argument Returned

0 Date and time

0 Date

1 Time

0 Days and time

1 Time

$BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL

SS$_BUFFEROVF

SS$_INSFARG

SS$_IVTIME

The service completed successfully.
The buffer length specified in the timbuf
argument is too small.

One or both required arguments are missing.

The specified delta time is equal to or greater
than 10,000 days.

SYS1-31

System Service Descriptions
$ASCTOID

$ASCTOID
Translate Identifier Name to Identifier

Format

Arguments

SYS1-32

Translates the specified identifier name into its binary identifier value.

SYS$ASCTOID name ,[id] ,[attrib]

name
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Identifier name translated when $ASCTOID completes execution. The name
argument is the address of a character-string descriptor pointing to the identifier
name.

id
Open VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value resulting when $ASCTOID completes execution. The id argument
is the address of a longword in which the identifier value is written.

attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes associated with the identifier returned in id when $ASCTOID
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro $KGBDEF library. The
symbolic names for each bit position are listed in the following table.

Bit Position

KGB$V _DYNAMIC

Meaning When Set

Allows holders of the identifier to remove
it from or add it to the process rights
database by using the DCL command
SET RIGHTS_LIST.

Description

Bit Position

KGB$V _HOLDER_HIDDEN

KGB$V _NAME_HIDDEN

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

System Service Descriptions
$ASCTOID

Meaning When Set

Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves. Special
privilege is required to translate hidden
names.

Allows holders of an identifier to have it
translated-either from binary to ASCII
or vice versa-but prevents unauthorized
users from translating the identifier.
Special privilege is required to translate
hidden names.

Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Allows the holder to charge resources,
such as disk blocks, to the identifier.

Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

The Translate Identifier Name to Identifier service converts the specified
identifier name to its binary identifier value. Note that when you use wildcards
with this service, the records are returned alphabetically by identifier name.

Required Access or Privileges
None, unless the id is KGB$V_NAME_HIDDEN, in which case you must hold the
id or have access to the rights database.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $CREATE_RDB, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER, $MOD_
IDENT, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_MDENT

The service completed successfully.

The name argument cannot be read by the
caller, or the id or attrib arguments cannot be
written by the caller.
The process dynamic memory is insufficient for
opening the rights database.

The format of the specified identifier is invalid.

SYS1-33

System Service Descriptions
$ASCTOID

SYS1-34

SS$_NOSUCHID

SS$_NORIGHTSDB

The specified identifier name does not exist in the
rights database, or the identifier is hidden and
you do not have access to the rights database.

The rights database does not exist.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

$ASCUTC

System Service Descriptions
$ASCUTC

Convert UTC to ASCII

Format

Arguments

Converts an absolute time from 128-bit UTC format to an ASCII string.

SYS$ASCUTC [timlen] ,timbuf ,[utcadr] ,[cvtflg]

ti mien
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length (in bytes) of the ASCII string returned by $ASCUTC. The timlen
argument is the address of a word containing this length.

timbuf
Open VMS usage: time_name
type: character-coded string text
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $ASCUTC writes the ASCII string. The timbuf argument is
the address of a character string descriptor pointing to the buffer. The buffer
length specified in the timbuf argument, together with the cvtflg argument,
controls what information is returned._

utcadr
Open VMS usage: coordinated universal time
type: utc_date_time
access: read only
mechanism: by reference

Time value that $ASCUTC is to convert. The timadr argument is the address
of this 128-bit time value. Relative times are not permitted. If the timadr
argument is not specified, it defaults to 0 and $ASCUTC returns the current date
and time.

cvtflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Conversion indicator specifying which date and time fields $ASCUTC should
return. The cvtflg argument is a longword value that is interpreted as Boolean.
The value 1 specifies that $ASCUTC should return only the time, including hour,
minute, second, and hundredths-of-second fields. The default value 0 specifies
that $ASCUTC should return the full date and time.

SYS1-35

System Service Descriptions
$ASCUTC

Description

SYS1-36

The Convert UTC to ASCII service converts an absolute time from 128-bit UTC
format to an ASCII string. The service executes at the access mode of the caller
and does not check whether address arguments are accessible before it executes.
Therefore, an access violation causes an exception condition if the input time
value cannot be read or the output buffer or buffer length cannot be written.

The $ASCUTC service uses the time zone differential factor encoded in the
128-bit UTC to convert the UTC to an ASCII string.

This service does not check the length of the argument list, and therefore cannot
return the SS$_INSFARG condition value.

The ASCII strings returned have the following format:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time format.

Length
Field (Bytes) Contents Range of Values

dd 2 Day of month 1-31

1 Hyphen Required syntax

mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

1 Hyphen Required syntax

yyyy 4 Year 1858-9999

blank n Blank Required syntax

hh 2 Hour 00-23

1 Colon Required syntax

mm 2 Minutes 00-59

1 Colon Required syntax

SS 2 Seconds 00-59

1 Period Required syntax

cc 2 Hundredths-of- 00-99
second

The results of specifying some possible combinations for the values of the cvtflg
and timbuf arguments are as follows.

Time Value

Absolute

Absolute

Absolute

Buffer Length
Specified

23

12

11

Required Access or Privileges
None

CVTFLG Information
Argument Returned

0 Date and time

0 Date

1 Time

Required Quota
None

Related Services

System Service Descriptions
$ASCUTC

$BINUTC, $GETUTC, $NUMUTC, $TIMCON

Condition Values Returned

SS_$NORMAL
SS_$BUFFEROVF

SS_$INVTIME

The service completed successfully.
The buffer length specified in the ti~buf
argument is too small.
The UTC time supplied is too small to be
represented as a Smithsonian Time, or the
UTC time is not valid.

SYS1-37

System Service Descriptions
$ASSIGN

$ASSIGN
Assign 1/0 Channel

Format

Arguments

SYS1-38

Provides a process with an I/O channel so that input/output operations can be
performed on a device, or establishes a logical link with a remote node on a
network.

SYS$ASSIGN devnam ,chan ,[acmode] ,[mbxnam] ,[flags]

devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnam
argument is the address of a character string descriptor pointing to the device
name string.

If the device name contains a double colon (::), the system assigns a channel to
the first available network device (NET:) and performs an access function on the
network.

ch an
Open VMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference

Number of the channel that is assigned. The chan argument is the address of a
word into which $ASSIGN writes the channel number.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel. The acmode argument specifies
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol Access Mode Numeric Value

PSL$C_KERNEL Kernel 0

PSL$C_EXEC Executive 1

PSL$C_SUPER Supervisor 2

PSL$C_USER User 3

The specified access mode and the access mode of the caller are compared. The
less privileged (but the higher numeric valued) of the two access modes becomes

System Service Descriptions
$ASSIGN

the access mode associated with the assigned channel. 1/0 operations on the
channel can be performed only from equal and more privileged access modes. For
more information, see the section on access modes in the Open VMS Programming
Concepts Manual.

mbxnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Logical name of the mailbox to be associated with the device. The, mbxnam
argument is the address of a character string descriptor pointing to the logical
name string.

If you specify mbxnam as 0, no mailbox is associated with the device. This is the
default.

You must specify the mbxnam argument when performing a nontransparent,
task-to-task, network operation.

Only the owner of a device can associate a mailbox with the device; the owner of a
device is the process that has allocated the device, whether implicitly or explicitly.
Only one mailbox can be associated with a device at any one time.

For unshareable, nonspooled devices, an implicit $ALLOCATE is done. This
requires read, write, or control access to the device.

A mailbox cannot be associated with a device if the device has foreign (DEV$M_
FOR) or shareable (DEV$M_SHR) characteristics.

A mailbox is disassociated from a device when the channel that associated it is
deassigned.

If a mailbox is associated with a device, the device driver can send status
information to the mailbox. For example, if the device is a terminal, this
information might indicate dialup, hangup, or the reception of unsolicited input;
if the device is a network device, it might indicate that the network is connected
or perhaps that the line is down.

For details on the nature and format of the information returned to the mailbox,
refer to the Open VMS I I 0 User's Reference Manual.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

An optional device-specific argument. The flags argument is a longword bit
mask. For more information on the applicability of the flags argument for a
particular device, see the Open VMS I I 0 User's· Reference Manual.

SYS1-39

System Service Descriptions
$ASSIGN

Description

The Assign I/O Channel service provides a process with an I/O channel so
that input/output operations can be performed on a device. This service also
establishes a lo~cal link with a remote node on a network.

Channels remain assigned until they are explicitly deassigned with the Deassign
I/O Channel ($DASSGN) service or, if they are user-mode. channels, until the
image that assigned the channel exits.

The $ASSIGN service establishes a path to a device but does not check whether
the caller can actually perform input/output operations to the device. Privilege
and protection restrictions can be applied by the device drivers.

Required Access or Privileges
The calling process must have NETMBX privilege to perform network operations
and system dynamic memory is required if the target device is on a remote
system.

Required Quota
If the target of the assignment is on a remote node, the process needs sufficient
buffer quota to allocate a network control block.

Related Services
$ALLOC, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS1-40

SS$_NORMAL
SS$_REMOTE

SS$_ABORT

SS$_ACCVIO

SS$_CONNECFAIL

SS$_DEVACTIVE

SS$_DEVALLOC

SS$_DEVNOTMBX

SS$_DEVOFFLINE

SS$_EXQUOTA

The service completed successfully.
The service completed successfully. A logical link
is established with the target on a remote node.

A physical line went down during a network
connect operation.
The device or mailbox name string or string
descriptor cannot be read by the caller, or the
channel number cannot be written by the caller.

For network operations, the connection to a
network object timed out or failed.
You specified a mailbox name, but a mailbox is
already associated with the device.

The device is allocated to another process.

You specified a logical name for the associated
mailbox, but the logical name refers to a device
that is not a mailbox.

For network operations, the physical link is
shutting down.
The target of the assignment is on a remote node
and the process has insufficient buffer quota to
allocate a network control block.

SS$_FILALRACC

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_LINKEXIT

SS$_NOIOCHAN

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PROTOCOL

SS$_REJECT

System Service Descriptions
$ASSIGN

For network operations, a logical link already
exists on the channel.
The target of the assignment is on a remote node
and there is insufficient system dynamic memory
to complete the request.

For network operations, the access control
information was found to be invalid at the remote
node.
No device name was specified, the logical name
translation failed, or the device or mailbox name
string contains invalid characters. If the device
name is a target on a remote node, this status
code indicates that the Network Connect Block
has an invalid format.

The device or mailbox name string has a length
of 0 or has more than 63 characters.
For network operations, the network partner
task was started, but exited before confirming
the logical link (that is, $ASSIGN to SYS$NET).
No I/O channel is avai~able for assignment.

For network operations, no logical links are
available. The maximum number of logical links
as set for the NCP executor MAXIMUM LINKS
parameter was exceeded.
For network operations, the issuing task does not
have the required privilege to perform network
operatio~s or to confirm the specified logical link.
The specified device or mailbox does not exist,
or, for DECnet for Open VMS operations, the
network device driver is not loaded (for example,
the DECnet for Open VMS software is not
currently running on the local node).
The specified network node is nonexistent or
unavailable.

For network operations, the network object
number is unknown at the remote node; for
a TASK= connect, the named DCL command
procedure file cannot be found at the remote
node.
For network operations, the remote node could
not recognize the login information supplied with
the connection request.

For network operations, a network protocol
error occurred, most likely because of a network
software error.
The network connect was rejected by the network
software or by the partner at the remote node,
or the target image exited before the connect
confirm could be issued.

SYS1-41

System Servic;e Descriptions
$ASSIGN

SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TOOMUCHDATA

SS$_UNREACHABLE

SYS1-42

For network operations, the link could not be
established because system resources at the
remote node were insufficient.

For network operations, the local or remote node
is no longer accepting connections.

For network operations, the logical link
connection was terminated by a third party
(for example, the system manager).

For network operations, the task specified too
much optional or interrupt data.
For network operations, the remote node is
currently unreachable.

System Service Descriptions
$AUDIT _EVENT

$AUDIT _EVENT
Audit Event

Format

Arguments

Appends an event message to the system security audit log file or sends an alarm
to a security operator terminal.

SYS$AUDIT _EVENT [efn] ,[flags] ,itmlst ,[audsts] ,[astadr] ,[astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the audit completes. The efn argument
is a longword containing the number of the event flag; however, $AUDIT_EVENT
uses only the low-order byte. If efn is not specified, event flag 0 is used.

Upon request initiation, $AUDIT_EVENT clears the specified event flag.

flags
Open y-MS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the $AUDIT_EVENT system operation. The flags
argument is a longword bit mask, where each bit corresponds to an option.

Each flag option has a symbolic name. The $NSADEF macro defines the following
symbolic names.

Symbolic Name

NSA$M_ACL

NSA$M_FLUSH

NSA$M_INTERNAL

NSA$M_MANDATORY

Description

Specifies an event generated by an Alarm ACE
or Audit ACE. This flag is reserved to Digital.
Specifies that all messages in the audit server
buffer be written to the audit log file.

Specifies that the $AUDIT_EVENT call
originates in the context of a trusted computing
base (TCB) component. The auditing components
use this flag to indicate that internal auditing
failures should result in a SECAUDTCB
bugcheck. This flag is reserved to Digital.

Specifies that an audit is to be performed,
regardless of system alarm and audit settings.

SYS1-43

System Service Descriptions
$AUDIT_EVENT

SYS1-44

Symbolic Name

NSA$M_NOEVTCHECK

NSA$M_SERVER

itmlst
Open VMS usage: item_list_3

Description

Specifies that an audit is to be performed,
regardless of the system alarm or audit settings.
This flag is similar to the NSA$M_MANDATORY
bit but, unlike the NSA$M_MANDATORY bit,
this flag is not reflected in the NSA$W _FLAGS
field in the resulting audit record on disk.

Indicates that the call originates in a TCB server
process and that the event should be audited
regardless of the state of a process-specific
no-audit bit.
Trusted servers use this flag to override the
no-audit bit when they want to perform explicit
auditing on behalf of a client process. This flag is
reserved to Digital.

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying information to include in the audit record. The itmlst
argument is the address of a list of item descriptors. The list of item descriptors
is termin~ted by a longword of 0.

The item list for all calls to $AUDIT_EVENT must include the following item
codes:

• NSA$_EVENT_TYPE (see Table SYSl-1)

• NSA$_EVENT_SUBTYPE (see Table SYSl-1)

• At least one of the NSA$_ALARM_NAME item code or the NSA$_AUDIT_
NAME item code.

• If the event being reported is an object access (NSA$C_MSG_OBJ_ACCESS)
or an object delete (NSA$C_MSG_OBJ_DELETE), the NSA$_FINAL_
STATUS, NSA$_ACCESS_DESIRED, and NSA$_0BJECT_CLASS item
codes must be specified.

• If the event being reported is an object create (NSA$C_MSG_OBJ_CREATE),
the NSA$_FINAL_STATUS and NSA$_0BJECT_CLASS item codes must be
specified.

• If the event being reported is a privilege audit (NSA$C_MSG_PRVAUD),
the NSA$_PRIVS_USED or the NSA$_PRIVS_MISSING item code must be
specified.

• If the audit event being reported is a deaccess event (NSA$C_MSG_OBJ_
DEACCESS), the NSA$_0BJECT_CLASS item code must be specified.

The item list is a standard format item list. The following diagram depicts the
general structure of an item descriptor.

31 15

Item code I
Buffer address

System Service Descriptions
$AUDIT _EVENT

0

Buffer length

Return length address

ZK-5186A-G E

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buff er address

Return length address

Definition

A word specifying the length (in bytes) of the
buffer; the buffer supplies information to be used by
$AUDIT_EVENT. The required length of the buffer
varies, depending on the item code specified; each
item code description specifies the required length.

A word containing a symbolic code describing the
nature of the information currently in the buffer.
The location of the buffer is pointed to by the buffer
address field. Each item code has a symbolic name.
This section provides a detailed description of item
codes following the description of arguments.

A longword containing the address of the buffer that
specifies the information.

Not currently used; this field is reserved to Digital.
You must specify 0.

See the Item Codes section for a description of the $AUDIT_EVENT item codes.

audsts
Open VMS usage: cond_ value_type
type: longword (unsigned)
access: write only
mechanism: by reference

Longword condition value that receives the final completion status from the
operation. If a security audit is required, the final completion status represents
either the successful completion of the resulting security audit or any failing
status that occurred while the security audit was performed within the audit
server process.

The audsts argument is valid only when the service returns success and the
status is not SS$_EVTNOTENAB. In addition, the caller must either make use of
the astadr argument or use the $AUDIT_EVENTW service before attempting to
access audsts.

SYS1-45

System Service Descriptions
$AUDIT_EVENT

Item Codes

SYS1-46

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Asynchronous system trap (AST) routine to be executed after the audsts is
updated. The astadr argument, which is the address of a longword value, is the
procedure value of the AST routine.

The AST routine executes in the access mode of the caller of $AUDIT_EVENT.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Asynchronous system trap (AST) parameter passed to the AST service routine.
The astprm argument is a longword value containing the AST parameter.

This section provides a list of item codes that may be used to affect auditing.

NSA$_ALARM_NAME
NSA$_ALARM_NAME is a string of 1 to 32 characters specifying an alarm
journal name to receive the record. To direct an event to the system alarm journal
(that is, all enabled security operator terminals), use the string SECURITY.

NSA$_AUDIT _NAME
NSA$_AUDIT_NAME is a string of 1 to 65 characters specifying the journal file
to receive the audit record. To direct an event to the system audit journal, use
the string SECURITY.

NSA$_CHAIN
NSA$_CHAIN is a longword value specifying the item list to process immediately
after the current one. The buffer address field in the item descriptor specifies the
address of the next item list to be processed. Anything after NSA$_CHAIN is
ignored.

NSA$_EVENT _FACILITY
NSA$_EVENT_FACILITY is a word value specifying the facility generating the
event. All operating system events are audited as facility zero.

NSA$_EVENT_SUBTYPE
NSA$_EVENT_SUBTYPE is a longword value specifying an event message
subtype. See Table SYSl-1 for a list of valid event subtypes.

NSA$_EVENT _TYPE
NSA$_EVENT_TYPE is a longword value specifying an event message type. See
Table SYSl-1 for a list of valid event types.

System Service Descriptions
$AUDIT_EVENT

Table SVS1-1 Description of $AUDIT_EVENT Types and Subtypes

Symbol of Event Type

NSA$C_MSG_AUDIT

Subtype and Meaning
NSA$C_AUDIT_DISABLED
NSA$C_AUDIT_ENABLED
NSA$C_AUDIT_INITIATE
NSA$C_AUDIT_TERMINATE
NSA$C_AUDIT_LOG_FINAL
NSA$C_AUDIT_LOG_FIRST

NSA$C_MSG_BREAKIN
Subtype and Meaning

NSA$C_DETACHED
NSA$C_DIALUP
NSA$C_LOCAL
NSA$C_NETWORK
NSA$C_REMOTE

NSA$C_MSG_CONNECTION
Subtype and Meaning

NSA$C_CNX_ABORT
NSA$C_CNX_ACCEPT
NSA$C_CNX_DECNET_CREATE
NSA$C_CNX_DECNET_DELETE
NSA$C_CNX_DISCONNECT
NSA$C_ CNX_IPC_ CLOSE
NSA$C_ CNX_IPC_ OPEN
NSA$C_CNX_REJECT
NSA$C_CNX_REQUEST
NSA$C_CNX_INC_REQUEST .
NSA$C_CNX_INC_ACCEPT
NSA$C_CNX_INC_REJECT
NSA$C_CNX_INC_DISCONNECT
NSA$C_CNX_INC_ABORT

NSA$C_MSG_INSTALL
Subtype and Meaning

NSA$C_INSTALL_ADD
NSA$C_INSTALL_REMOVE

NSA$C_MSG_LOGFAIL

Meaning

Systemwide change to auditing

Audit events disabled
Audit events enabled
Audit server startup
Audit server shutdown
Final entry in audit log (forward link)
First entry in audit log (backward link)

Break-in attempt detected

Detached process
Dialup interactive process
Local interactive process
Network server process
Interactive process from another network node

Logical link connection or termination

Connection aborted
Connection accepted
DECnet for Open VMS logical link created
DECnet for Open VMS logical link disconnected
Connection disconnected
Interprocess communication association closed
Interprocess communication association opened
Connection rejected
Connection requested
Incoming connection requested
Incoming connection accepted
Incoming connection rejected
Incoming connection disconnected
Incoming connection aborted

Use of the Install utility (INSTALL)

Known image installed
Known image deleted

Login failure
(continued on next page)

SYS1-47

System Service Descriptions
$AUDIT_EVENT

Table SYS1-1 (Cont.) Description of $AUDIT_EVENT Types and Subtypes

Symbol of Event Type

Subtype and Meaning
NSA$C_BATCH
NSA$C_DETACHED
NSA$C_DIALUP
NSA$C_LOCAL
NSA$C_NETWORK
NSA$C_REMOTE
NSA$C_SUBPROCESS

NSA$C_MSG_LOGIN
Subtype and Meaning

See subtypes for NSA$C_MSG_
LOG FAIL

NSA$C_MSG_LOGOUT
Subtype and Meaning

See subtypes for NSA$C_MSG_
LOG FAIL

NSA$C_MSG_MOUNT
Subtype and Meaning

NSA$C_ VOL_DISMOUNT
NSA$C_ VOL_MOUNT

NSA$C_MSG_NCP
Subtype and Meaning

NSA$C_NCP _COMMAND

NSA$C_MSG_NETPROXY
Subtype and Meaning

NSA$C_NETPROXY_ADD
NSA$C_NETPROXY_DELETE
NSA$C_NETPROXY_MODIFY

NSA$C_MSG_OBJ_ACCESS
Subtype and Meaning

NSA$C_OBJ_ACCESS

NSA$C_MSG_OBJ_CREATE

Subtype and Meaning
NSA$C_OBJ_CREATE

SYS1-48

Meaning

Batch process
Detached process
Dialup interactive process
Local interactive process
Network server process

. Interactive process from another network node
Subprocess

Successful login

Successful logout

Volume mount or dismount

Volume dismount
Volume mount

Modification to network configuration database

Network Control Program (NCP) command issued

Modification to network proxy database

Record added to network proxy database
Record removed from network proxy database
Record modified in network proxy database

Object access attempted

Object access attempted

Object created

Object created

(continued on next page)

System Service Descriptions
$AUDIT _EVENT

Table SYS1-1 {Cont.) Description of $AUDIT _EVENT Types and Subtypes

Symbol of Event Type

NSA$C_MSG_OBJ_DEACCESS
Subtype and Meaning

NSA$C_OBJ_DEACCESS

NSA$C_MSG_OBJ_DELETE

Subtype and Meaning
NSA$C_OBJ_DELETE

NSA$C_MSG_PROCESS
Subtype and Meaning

NSA$C_PRC_CANWAK
NSA$C_PRC_CREPRC
NSA$C_PRC_DELPRC
NSA$C_PRC_FORCEX
NSA$C_PRC_GETJPI
NSA$C_PRC_GRANTID
NSA$C_PRC_RESUME
NSA$C_PRC_REVOKID
NSA$C_PRC_SCHDWK
NSA$C_PRC_SETPRI
NSA$C_PRC_SIGPRC
NSA$C_PRC_SUSPND
NSA$C_PRC_ WAKE
NSA$C_PRC_PRCTERM

NSA$C_MSG_PRVAUD
Subtype and Meaning

NSA$C_PRVAUD_FAILURE
NSA$C_PRVAUD_SUCCESS

NSA$C_MSG_RIGHTSDB

Subtype and Meaning
NSA$C_RDB_ADD_ID
NSA$C_RDB_CREATE
NSA$C_RDB_GRANT_ID
NSA$C_RDB_MOD_HOLDER
NSA$C_RDB_MOD_ID
NSA$C_RDB_REM_ID
NSA$C_RDB_REVOKE_ID

NSA$C_MSG_SYSGEN

Meaning

Object deaccessed

Object deaccessed

Object deleted

Object deleted

Process control system service issued

Process wakeup canceled
Process created
Process deleted
Process exit forced
Process information gathered
Process identifier granted
Process resumed
Process identifier revoked
Process wakeup scheduled
Process priority altered
Process exception issued
Process suspended
Process wakeup issued
Process termination notification requested

Attempt to use privilege

Unsuccessful use of privilege
Successful use of privilege

Modification to rights database

Identifier added to rights database
Rights database created
Identifier given to user
List of identifier holders modified
Identifier name or attributes modified
Identifier removed from rights database
Identifier revoked from user

Modification of a System Generation utility
(SYSGEN) parameter

(continued on next page)

SYS1-49

System Service Descriptions
$AUDIT _EVENT

Table SYS1-1 (Cont.) Description of $AUDIT_EVENT Types and Subtypes

Symbol of Event Type Meaning

Subtype and Meaning
NSA$C_SYSGEN_SET System Generation utility parameter modified

NSA$C_MSG_SYSTIME

Subtype and Meaning
NSA$C_SYSTIM_SET
NSA$C_SYSTIM_CAL

Modification to system time

System time set
System time calibrated

NSA$C_MSG_SYSUAF Modification to system user authorization file
(SYSUAF)

Subtype and Meaning
NSA$C_SYSUAF _ADD
NSA$C_SYSUAF_COPY
NSA$C_SYSUAF_DELETE
NSA$C_SYSUAF _MODIFY
NSA$C_SYSUAF_RENAME

Record added to system user authorization file
Record copied in system user authorization file
Record deleted from system user authorization file
Record modified in system user authorization file
Record renamed in system user authorization file

· SYS1-50

NSA$_FIELD_NAME
NSA$_FIELD_NAME is a string of 1 to 256 characters specifying the name of the
field being modified. This is used in combination with NSA$_0RIGINAL_DATA
and NSA$_NEW _DATA.

NSA$_MESSAGE
NSA$_MESSAGE specifies a system message code. The $FORMAT_AUDIT
service will use the $GETMSG service to translate the message into text. The
resulting text is inserted into the formatted audit message, with the "Event
information:" prefix. For example, the operating system uses this item code to
supply the privilege audit text associated with privilege audit events; this keeps
the audit records small. By default, the $GETMSG service can only translate
resident system messages. You can use the NSA$_MSGFILNAM item code to
specify the name of an application or site-specific message file.

NSA$_MSGFILNAM
NSA$_MSGFILNAM is a string of 1 to 255 characters specifying the message file
containing the translation for the message code in NSA$_MESSAGE. The default
file specification is SYS$MESSAGE:.EXE. By default, $FORMAT_AUDIT uses the
resident system message file.

NSA$_NEW_DATA
NSA$_NEW _DATA is a string of 1 to n characters specifying the contents of the
field named in NSA$_FIELD_NAME after the event occurred. NSA$_0RIGINAL_
DATA contains the field contents prior to the event.

NSA$_NOP
NSA$_NOP specifies that the item list entry should be ignored. This item code
allows you to build a static item list and then remove those entries that do not
apply to the current event.

NSA$_0RIGINAL_DATA

System Service Descriptions
$AUDIT _EVENT

NSA$_0RIGINAL_DATA is a string of 1 ton characters specifying the contents of
the field named in NSA$_FIELD_NAME before the event occurred. NSA$_NEW _
DATA contains the field contents folloWing the event.

NSA$_SENSITIVE_FIELD_NAME
NSA$_SENSITIVE_FIELD_NAME is a string of 1 to 256 characters specifying
the name of the field being modified. This is used in combination with NSA$_
SENSITIVE_ORIG_DATA and NSA$_SENSITIVE_NEW_DATA. Use NSA$_
SENSITIVE_FIELD_NAME to prevent sensitive information, such as passwords,
from being displayed in an alarm message. Sensitive information is written to
the audit log.

NSA$_SENSITIVE_NEW_DATA
NSA$_SENSITIVE_NEW _DATA is a string of 1 to n characters specifying the
contents of the field named in NSA$_SENSITIVE_FIELD_NAME after the event
occurred. NSA$_SENSITIVE_ORIG_DATA contains the field contents prior to
the event. Use NSA$_SENSITIVE_NEW _DATA to prevent sensitive information
from being displayed in an alarm message. Sensitive information is written to
the audit log.

NSA$_SENSITIVE_ORIG_DATA
NSA$_SENSITIVE_ORIG_DATA is a string of 1 ton characters specifying the
contents of the field named in NSA$_SENSITIVE_FIELD_NAME before the
event occurred. NSA$_SENSITIVE_NEW _DATA contains the field contents
following the event. Use NSA$_SENSITIVE_FIELD_NAME to prevent sensitive
information from being displayed in an alarm message. Sensitive information is
written to the audit log.

NSA$_SUPPRESS
NSA$_SUPPRESS is a longword bitmask directing $AUDIT_EVENT to ignore
the defaults for the following values and either omit the information from the
event record or use the value provided in another parameter. The bits in the
mask inhibit the use of default values for the following item codes:

NSA$V _ACCOUNT_NAME
NSA$V _FINAL_STATUS
NSA$V _IMAGE_NAME
NSA$V _PARENT_ID

NSA$V _PARENT_NAME
NSA$V_PARENT_OWNER
NSA$V_PARENT_
USE RN AME
NSA$V _PROCESS_ID

NAS$V _PROCESS_NAME
NSA$V_SUBJECT_CLASS
NSA$V_SUBJECT_OWNER
NSA$V _SYSTEM_ID

NSA$V _SYSTEM_OWNER
NSA$V _TERMINAL
NSA$V _TIME_STAMP

NSA$V _USERNAME

Use NSA$_SUPPRESS, for example, when auditing events from server processes
when the default values for many of these items need to explicitly reference the
client context rather than be defaulted from the environment of the server.

The following section provides a list of additional item codes that are valid as an
item descriptor in the itmlst argument.

SYS1-51

System Service Descriptions
$AUDIT_EVENT

SYS1-52

NSA$_ACCESS_DESIRED
NSA$_ACCESS_DESIRED is a longword value specifying the access request
mask as defined in $ARMDEF.

NSA$_ACCESS_MODE
NSA$_ACCESS_MODE is a byte value specifying an access mode associated with
the event.

NSA$_ACCOUNT
NSA$_ACCOUNT is a string of 1 to 32 characters specifying the account name
associated with the event.

NSA$_ASSOCIATION_NAME
NSA$_ASSOCIATION_NAME is a string of 1 to 256 characters specifying an
association name.

NSA$_COMMAND_LINE
NSA$_COMMAND_LINE is a string of 1 to 2048 characters specifying a
command line.

NSA$_CONNECTION_ID
NSA$_CONNECTION_ID is a longword value specifying a connection
identification.

NSA$_DECNET _LINK_ID
NSA$_DECNET_LINK_ID is a longword value specifying a DECnet for Open VMS
logical link identification.

NSA$_DECNET_OBJECT_NAME
NSA$_DECNET_OBJECT_NAME is a string of 1to16 characters specifying a
DECnet for Open VMS object name.

NSA$_DECNET_OBJECT_NUMBER
NSA$_DECNET_OBJECT_NUMBER is a longword value specifying a DECnet
for Open VMS object number.

NSA$_DEFAULT_USERNAME
NSA$_DEFAULT_USERNAME is a string of 1 to 32 characters specifying a
default local user name for incoming network proxy requests.

NSA$_DEVICE_NAME
NSA$_DEVICE_NAME is a string of 1 to 64 characters specifying the name of
the device where the volume resides.

NSA$_DIRECTORY _ENTRY
NSA$_DIRECTORY_ENTRY is a string of 1 to 256 characters specifying the
name of the directory entry associated with an XQP operation.

NSA$_DIRECTORY _ID
NSA$_DIRECTORY_ID is an array of three words specifying the directory file
identification.

NSA$_DISMOUNT _FLAGS
NSA$_DISMOUNT_FLAGS is a quadword value specifying the dismount flags,
which are defined by the $DMTDEF macro in STARLET.

NSA$_EFC_NAME

System Service Descriptions
$AUDIT _EVENT

NSA$_EFC_NAME is a string of 1 to 16 characters specifying the event flag
cluster name.

NSA$_FILE_ID
NSA$_FILE_ID is an array of three words specifying the file identification.

NSA$_FINAL_STATUS
NSA$_FINAL_STATUS is a longword value specifying the successful or
unsuccessful status that caused the auditing facility to be invoked.

NSA$_HOLDER_NAME
NSA$_HOLDER_NAME is a string of 1 to 32 characters specifying the name of
the user holding the identifier.

NSA$_HOLDER_OWNER
NSA$_HOLDER_OWNER is a longword value specifying the owner (UIC) of the
holder.

NSA$_1D_ATTRIBUTES
NSA$_ID_ATTRIBUTES is a longword value specifying the attributes of the
identifier, which are defined by the $KGBDEF macro in STARLET.

NSA$_1DENTIFIERS_USED
NSA$_IDENTIFIERS_USED is an array of longwords specifying the identifiers
(from the access control entry [ACE] granting access) that were used to gain
access to the object.

NSA$_1D_NAME
NSA$_ID_NAME is a string of 1 to 32 characters specifying the name of the
identifier.

NSA$_1D_NEW_ATTRIBUTES
NSA$_ID_NEW_ATTRIBUTES is a longword value specifying the new attributes
of the identifier, which are defined by the $KGBDEF macro in STARLET.

NSA$_1D_NEW_NAME
NSA$_ID_NEW_NAME is a string of 1 to 32 characters specifying the new name
of the identifier.

NSA$_1D_NEW_VALUE
NSA$_JD_NEW _VALUE is a longword value specifying the new value of the
identifier.

NSA$_1D_ VALUE
NSA$_ID_ VALUE is a longword value specifying the value of the identifier.

NSA$_1D_ VALUE_ASCll
NSA$_ID_ VALUE_ASCII is a longword specifying the value of the identifier.

NSA$_1MAGE_NAME
NSA$_IMAGE_NAME is a string of 1to1024 characters specifying the name of
the image being executed when the event took place.

NSA$_1NSTALL_FILE
NSA$_INSTALL_FILE is a string of 1 to 255 characters specifying the name of
the installed file.

SYS1-53

System Service Descriptions
$AUDIT_EVENT

SYS1-54

NSA$_1NSTALL_FLAGS
NSA$_INSTALL_FLAGS is a longword value specifying the INSTALL flags.
They correspond to qualifiers for the Install utility; for example, NSA$M_INS_
EXECUTE_ ONLY.

NSA$_LNM_PARENT_NAME
NSA$_LNM_PARENT_NAME is a string of 1 to 31 characters specifying the
name of the parent logical name table.

NSA$_LNM_TABLE_NAME
NSA$_LNM_TABLE_NAME is a string of 1 to 31 characters specifying the name
of the logical name table.

NSA$_LOCAL_USERNAME
NSA$_LOCAL_USERNAME is a string of 1 to 32 characters specifying user
names of the accounts available for incoming network proxy requests.

NSA$_LOGICAL_NAME
NSA$_LOGICAL_NAME is a string of 1 to 255 characters specifying the logical
name associated with the device.

NSA$_MAILBOX_UNIT
NSA$_MAILBOX_UNIT is a longword value specifying the mailbox unit number.

NSA$_MATCHING_ACE
NSA$_MATCHING_ACE is an array of bytes specifying the ACE granting or
denying access.

NSA$_MOUNT _FLAGS
NSA$_MOUNT_FLAGS is a longword value specifying mount flags that are
defined by the $MNTDEF macro in STARLET.

NSA$_NEW_IMAGE_NAME
NSA$_NEW _IMAGE_NAME is a string of 1 to 1024 characters specifying the
name of the new image.

NSA$_NEW_OWNER
NSA$_NEW _OWNER is a longword value specifying the new process owner
(UIC). .

NSA$_NEW_PRIORITY
NSA$_NEW _PRIORITY is a longword value specifying the new process priority.

NSA$_NEW_PRIVILEGES
NSA$_NEW _PRIVILEGES is a quadword privilege mask specifying the new
privileges. The $PRVDEF macro defines the list of available privileges.

NSA$_NEW_PROCESS_ID
NSA$_NEW _PROCESS_ID is a longword value specifying the new process
identification.

NSA$_NEW_PROCESS_NAME
NSA$_NEW _PROCESS_NAME is a string of 1 to 15 characters specifying the
name of the new process.

NSA$_NEW_PROCESS_OWNER

System Service Descriptions
$AUDIT _EVENT

NSA$_NEW _PROCESS_OWNER is a longword value specifying the owner (UIC)
of the new process.

NSA$_NEW_USERNAME
NSA$_NEW_USERNAME is a string of 1 to 32 characters specifying the new
user name.

NSA$_0BJECT_CLASS
NSA$_0BJECT_CLASS is a string of 1 to 23 characters specifying the security
object class associated with the event; for example, FILE.

NSA$_0BJECT _ID
NSA$_0BJECT_ID is an array of three words specifying the unique object
identification code, which is currently applicable only to files; therefore, it is the
file identification.

NSA$_0BJECT_MAX_CLASS
NSA$_0BJECT_MAX_CLASS is a 20-byte record specifying the maximum access
classification of the object.

NSA$_0BJECT_MIN_CLASS
NSA$_0BJECT_MIN_CLASS is a 20-byte record specifying the minimum access
classification of the object.

NSA$_0BJECT_NAME
NSA$_0BJECT_NAME is a string of 1 to 255 characters specifying an object's
name.

NSA$_0BJECT _NAME_2
NSA$_0BJECT_NAME_2 is a string of 1 to 255 characters specifying an
alternate object name; currently it applies to file-backed global sections where the
alternate name of a global section is the file name.

NSA$_0BJECT _OWNER
NSA$_0BJECT_OWNER is a longword value specifying the UIC or general
identifier of the process causing the auditable event.

NSA$_0BJECT _PROTECTION
NSA$_0BJECT_PROTECTION is a word, or an array of four longwords,
specifying the UIC-based protection of the object.

NSA$_0LD_PRIORITY
NSA$_0LD_PRIORITY is a longword value specifying the former process priority.

NSA$_0LD_PRIVILEGES
NSA$_0LD_PRIVILEGES is a quadword privilege mask specifying the former
privileges. The $PRVDEF macro defines the list of available privileges.

NSA$_PARAMS_INUSE
NSA$_PARAMS_INUSE is a string of 1 to 255 characters specifying the name of
the parameter file given to the SYSGEN command USE.

NSA$_PARAMS_ WRITE
NSA$_PARAMS_ WRITE is a string of 1 to 255 characters specifying the file name
for the SYSGEN command WRITE.

SYS1-55

System Service Descriptions
$AUDIT _EVENT

SYS1-56

NSA$_PARENT _ID
NSA$_PARENT_ID is a longword value specifying the process identification
(PID) of the parent process. It is used only when auditing events pertaining to a
subprocess.

NSA$_PARENT _NAME
NSA$_PARENT_NAME is a string of 1to15 characters specifying the parent's
process name. It is used only when auditing events pertaining to a subprocess.

NSA$_PARENT _OWNER
NSA$_PARENT_OWNER is longword value specifying the owner (UIC) of the
parent process. It is used only when auditing events pertaining to a subprocess.

NSA$_PARENT_USERNAME
NSA$_PARENT_USERNAME is a string of 1to32 characters specifying the user
name associated with the parent process. It is used only when auditing events
pertaining to a subprocess.

NSA$_PASSWORD
NSA$_PASSWORD is a string of 1 to 32 characters specifying the password used
in an unsuccessful break-in attempt. By default, system security alarms do not
include break-in passwords.

NSA$_PRIVILEGES
NSA$_PRIVILEGES is a quadword privilege mask specifying the privileges used
to gain access. The $PRVDEF macro defines the list of available privileges.

NSA$_PRIVS_MISSING
NSA$_PRNS_MISSING is a longword or a quadword privilege mask specifying
the privileges that are needed. The privileges are defined by a macro in
STARLET; see the $CHPDEF macro for definition as a longword mask and
see the $PRVDEF macro for definition as a quadword privilege mask.

NSA$_PRIVS_USED
NSA$_PRNS_USED is a longword or a quadword privilege mask specifying the
privileges used to gain access to the object. The privileges are defined by a macro
in STARLET; see the $CHPDEF macro for definition as a longword mask and see
the $PRVDEF macro for definition as a quadword privilege mask.

NSA$_PROCESS_ID
NSA$_PROCESS_ID is a longword value specifying the PID of the process
causing the auditable event.

NSA$_PROCESS_NAME
NSA$_PROCESS_NAME is a string of 1to15 characters specifying the process
name that caused the auditable event.

NSA$_REM_ASSOCIATION_NAME
NSA$_REM_ASSOCIATION_NAME is a string of 1 to 256 characters specifying
the interprocess communication (IPC) remote association name.

NSA$_REMOTE_LINK_ID
NSA$_REMOTE_LINK_ID is a longword value specifying the remote logical link
ID.

NSA$_REMOTE_NODE_FULLNAME

System Service Descriptions
$AUDIT _EVENT

NSA$_REMOTE_NODE_FULLNAME is a string of 1 to 255 characters specifying
the fully expanded DECnet for Open VMS node name of the remote process.

NSA$_REMOTE_NODE_ID
NSA$_REMOTE_NODE_ID is a string of 4 to 24 characters specifying the
DECnet for Open VMS node address of the remote process. A value 4 bytes in
length is a DECnet Phase IV node address. A value with length greater than 4
bytes is a DECnet/OSI NSAP address.

NSA$_REMOTE_NODENAME
NSA$_REMOTE_NODENAME is a string of 1 to 6 characters specifying the
DECnet for Open VMS node name of the remote process.

NSA$_REMOTE_USERNAME
NSA$_REMOTE_USERNAME is a string of 1 to 32 characters specifying the user
name of the remote process.

NSA$_REQUEST_NUMBER
NSA$_REQUEST_NUMBER is a longword value specifying the request number
associated with the system service call.

NSA$_RESOURCE_NAME
NSA$_RESOURCE_NAME is a string of 1 to 32 characters specifying the lock
resource name.

NSA$_SECTION_NAME
NSA$_SECTION_NAME is a string of 1 to 42 characters specifying the global
section name.

NSA$_SNAPSHOT _BOOTFILE
NSA$_SNAPSHOT_BOOTFILE is a string of 1 to 255 characters specifying the
name of the snapshot boot file, the saved system image file from which the system
just booted.

NSA$_SNAPSHOT _SAVE_FILNAM
NSA$_SNAPSHOT_SAVE_FILNAM is a string of 1 to 255 characters specifying
the name of the snapshot save file, which is the original location of the snapshot
file at the time that the system was saved.

NSA$_SNAPSHOT _TIME
NSA$_SNAPSHOT_TIME is a quadword value specifying the time the picture of
the configuration was taken and saved in the snapshot boot file.

NSA$_SOURCE_PROCESS_ID
NSA$_SOURCE_PROCESS_ID is a longword value specifying the process
identification of the process originating the request.

NSA$_SUBJECT_CLASS
NSA$_SUBJECT_CLASS is a 20-byte record specifying the current access class of
the process causing the auditable ev~nt.

NSA$_SUBJECT _OWNER
NSA$_SUBJECT_OWNER is a longword value specifying the owner (UIC) of the
process causing the event.

SYS1-57

System Service Descriptions
$AUDIT_EVENT

SYS1-58

NSA$_SVSTEM_ID
NSA$_SYSTEM_ID is a longword value specifying the SCS identification of the
cluster node where the event took place (SYSGEN parameter SCSSYSTEMID).

NSA$_SVSTEM_NAME
NSA$_SYSTEM_NAME is a string of 1 to 6 characters specifying the System
Communications Services (SCS) node name where the event took place (SYSGEN
parameter SCSNODE).

NSA$_SVSTEM_SERVICE_NAME
NSA$_SYSTEM_SERVICE_NAME is a string of 1 to 256 characters specifying
the name of the system service associated with the event.

NSA$_SVSTIM_NEW
NSA$_SYSTIM_NEW is a quadword value specifying the new system time.

NSA$_SVSTIM_OLD
NSA$_SYSTIM_OLD is a quadword value specifying the old system time.

NSA$_ TARGET _DEVICE_NAME
NSA$_TARGET_DEVICE_NAME is a string of 1 to 64 characters specifying the
target device name.

NSA$_TARGET_PROCESS_CLASS
NSA$_TARGET_PROCESS_CLASS is a 20-byte record specifying the target
process classification.

NSA$_ TARGET _PROCESS_ID
NSA$_TARGET_PROCESS_ID is a longword value specifying the target process
identifier (PID).

NSA$_TARGET_PROCESS_NAME
NSA$_TARGET_PROCESS_NAME is a string of 1 to 64 characters specifying the
target process name.

NSA$_ TARGET _PROCESS_OWNER
NSA$_TARGET_PROCESS_OWNER is a longword value specifying the target
owner (UIC).

NSA$_TARGET_USERNAME
NSA$_TARGET_USERNAME is a string of 1 to 32 characters specifying the
target process user name.

NSA$_ TERMINAL
NSA$_TERMINAL is a string of 1 to 256 characters specifying the name of the
terminal to which the process was connected when the auditable event occurred.

NSA$_ TIME_STAMP
NSA$_TIME_STAMP is a quadword value specifying the time when the event
occurred.

NSA$_ TRANSPORT _NAME
NSA$_TRANSPORT_NAME is a string of 1to256 characters specifying the name
of the transport: interprocess communication, DECnet for Open VMS, or System
Management Integrator (SMI), which handles requests from SYSMAN (ASCII
string).

Description

NSA$_UAF _ADD

System Service Descriptions
$AUDIT_EVENT

NSA$_UAF _ADD is a string of 1 to 32 characters specifying the name of the
authorization record being added.

NSA$_UAF _COPY
NSA$_UAF _COPY is a string of 1 to 32 characters specifying the new name of
the authorization record being copied from NSA$_UAF _SOURCE.

NSA$_UAF _DELETE
NSA$_UAF _DELETE is a string of 1 to 32 characters specifying the name of the
authorization record being removed.

NSA$_UAF _MODIFY
NSA$_UAF _MODIFY is a string of 1 to 32 characters specifying the name of the
authorization record being modified.

NSA$_UAF _RENAME
NSA$_ UAF _RENAME is a string of 1 to 32 characters specifying the name of the
authorization record being renamed.

NSA$_UAF _SOURCE
NSA$_UAF _SOURCE is a string of 1 to 32 characters specifying the user name
of the source record for an Authorize utility (AUTHORIZE) copy operation.

NSA$_USERNAME
NSA$_ USERNAME is a string of 1 to 32 characters specifying the user name of
the process causing the auditable event.

NSA$_ VOLUME_NAME
NSA$_ VOLUME_NAME is a string of 1 to 15 characters specifying a volume
name.

NSA$_ VOLUME_SET _NAME
NSA$_ VOLUME_SET_NAME is a string of 1 to 15 characters specifying a volume
set name.

The Audit Event service can be called by any program that enforces a security
policy in order to append an event message to the audit log file or send an alarm
to an operator terminal. For example, AUTHORIZE calls $AUDIT_EVENT
whenever a UAF record is altered and LOGINOUT calls the service whenever a
user logs in.

$AUDIT_EVENT takes the event message, checks the auditing database to
determine whether a class of event is being audited, and, if the event class is
enabled, creates an alarm or audit record.

$AUDIT_EVENT completes asynchronously; that is, it does not wait for final
status. For synchronous completion, use the $AUDIT_EVENTW service.

Required Access or Privileges
AUDIT

Required Quota

None

SYS1-59

System Service Descriptions
$AUDIT _EVENT

Related Services
$CHECK_ACCESS, $CHECK_PRIVILEGE, $CHKPRO

Condition Values Returned

SYS1-60

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFADR

SS$_BADBUFLEN

SS$_BADCHAIN

SS$_BADITMCOD

SS$_EVTNOTENAB

SS$_1NSFARG

SS$_INVAJLNAM

SS$_IVSTSFLG

SS$_NOAUDIT

SS$_0VRMAXAUD

SS$_SYNCH

The service completed successfully.
A parameter is not accessible.

The buffer address is invalid or not readable.

The specified buffer length is invalid or out of
range.

The address of the next item list to be processed,
as identified in the buffer address field, is either
not readable or points to itself.

The specified item code is invalid or out of range.
The event is not enabled.

A required item code or parameter is missing.

The alarm or audit journal name is invalid.

The specified system service flags are invalid.
The caller does not have the required privilege to
perform the audit.

There is insufficient memory to perform the
audit.
An audit was not required.

System Service Descriptions
$AUDIT _EVENTW

$AUDIT _EVENTW
Audit Event and Wait

Format

Determines whether a security-related event should be reported. If the event
should be reported, the service sends the event report to the audit server.

The $AUDIT_EVENTW service completes synchronously; that is, it returns only
after receiving an explicit confirmation from the audit server that the associated
audit, if enabled, has been performed.

SYS$AUDIT _EVENTW efn ,[flags] ,itmlst ,audsts ,[astadr] ,[astprm]

SYS1-61

System Service Descriptions
$BINTIM

$BINTIM
Convert ASCII String to Binary Time

Format

Arguments

Description

SYS1-62

Converts an ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule Wakeup
($SCHDWK) service.

SYS$BINTIM timbuf ,timadr

timbuf
Open VMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Buffer that holds the ASCII time to be converted. The timbuf argument specifies
the address of a character string descriptor pointing to the time string. The time
string specifies the absolute or delta time to be converted by $BINTIM. The Data
Type Table describes the time string.

timadr
Open VMS usage: date_ time
type: quadword
access: write only
mechanism: by reference

Time value that $BINTIM has converted. The timadr argument is the address of
the quadword system time, which receives the converted time.

The Convert ASCII String to Binary Time service converts an ASCII string to an
absolute or delta time value in the system 64-bit time format suitable for input to
the Set Timer ($SETIMR) or Schedule Wakeup ($SCHDWK) service. The service
executes at the access mode of the caller and does not check whether address
arguments are accessible before it executes. Therefore, an access violation causes
an exception condition if the input buffer or buffer descriptor cannot be read or
the output buffer cannot be written.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive enough arguments (for example, if you omit required
commas in the call), errors may result.

The required ASCII input strings have the following format:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

• Delta Time: dddd hh:mm:ss.cc

System Service Descriptions
$BINTIM

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Length
Field (Bytes) Contents Range of Values

dd 2 Day of month 1-31

1 Hyphen Required syntax

mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

1 Hyphen Required syntax

yyyy

blank

hh

4

n

2

Year 1858-9999

Blank Required syntax

Hour 00-23

1 Colon Required syntax
mm 2 Minutes 00-59

1 Colon Required syntax

SS 2 Seconds 00-59

1 Period Required syntax

cc 2 Hundredths of a 00-99
second

dddd 4 Number of days 000-9999
(in 24-hour units)

Note that month abbreviations must be uppercase and that the hundredths-of
second field represents a true fraction. For example, the string .1 represents
ten-hundredths of a second (one-tenth of a second) and the string .01 represents
one-hundredth of a second. Note also that you can add a third digit to the
hundredths-of-second field; this thousandths-of-second digit is used to round the
hundredths-of-second value. Digits beyond the thousandths-of-second digit are
ignored.

The following two syntax rules apply to specifying the ASCII input string:

• You can omit any of the date and time fields.

For absolute time values, the $BINTIM service supplies the current system
date and time for nonspecified fields. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens, blanks,
colons, periods). For example, the following string results in an absolute time
of 12:00 on the current day:

-- 12:00:00.00

For delta time values, the $BINTIM service uses a default value of 0
for unspecified hours, minutes, and seconds fields. Trailing fields can be
truncated. If you omit leading fields from the time value, you must specify
the punctuation (blanks, colons, periods). If the number of days in the delta
time is 0, you must specify a 0. For example, the following string results in a
delta time of 10 seconds:

0 :-:10

Note the space between the 0 in the day field and the two colons.

SYS1-63

System Service Descriptions
$BINTIM

• For both absolute and delta time values, there can be any number of leading
blanks, and any number of blanks between fields normally delimited by
blanks. However, there can be no embedded blanks within either the date or
time field.

Required Access or Privileges
.None

Required Quota
None

Related Services
$ASCTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

Example

SYS1-64

SS$_NORMAL

SS$_IVTIME
The service completed successfully.
The syntax of the specified ASCII string is
invalid, or the time component is out of range.

Column 1 of the following table lists legal input strings to the $BINTIM service;
column 2 lists the $BINTIM output of these strings translated through the
Convert Binary Time to ASCII String ($ASCTIM) system service. The current
date is assumed to be 30-DEC-1994 04:15:28.00.

Input to $BINTIM

-- :50

--1994 0:0:0.0
30-DEC-1994 12:32:1.1161

29-DEC-1994 16:35:0.0

0 ::.1

0 ::.06

5 3:18:32.068
20 12:

05

$ASCTIM Output String

30-DEC-1994 04:50:28.00

29-DEC-1994 00:00:00.00
30-DEC-1994 12:32:01.12

29-DEC-1994 16:35:00.00

0 00:00:00.10
0 00:00:00.06

5 03:18:32:07

20 12:00:00.00

0 05:00:00.00

$BINUTC

System Service Descriptions
$BINUTC

Convert ASCII String to UTC Binary Time

Format

Arguments

Description

Converts an ASCII string to an absolute time value in the 128-bit UTC format.

SYS$BINUTC timbuf ,utcadr

timbuf
Open VMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Buffer that holds the ASCII time to be converted. The timbuf argument specifies
the address of a character string descriptor pointing to a local time string. The
time string specifies the absolute time to be converted by $BINUTC.

utcadr
Open VMS usage: coordinated universal time
type: utc_date_time
access: write only
mechanism: by reference

Time value that $BINUTC has converted. The utcadr argument is the address
of a 16-byte location to receive the converted time.

The Convert ASCII String to UTC Binary Time service converts an ASCII string
to an absolute time in the 128-bit UTC format. The service executes at the access
mode of the caller and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an exception condition if
the input buffer or buffer descriptor cannot be read or the output buffer cannot be
written.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive enough arguments (for example, if you omit required
commas in the call), errors may result.

$BINUTC uses the time zone differential factor of the local system to encode the
128-bit UTC.

The required ASCII input strings have the following format:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time format.

SYS1-65

System Service Descriptions
$BINUTC

SYS1-66

Length
Field (Bytes) Contents Range of Values

dd 2 Day of month 1-31
1 Hyphen Required syntax

mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

1 Hyphen Required syntax

yyyy 4 Year 1858-9999
blank n Blank Required syntax

hh ·2 Hour 00-23
1 Colon Required syntax

mm 2 Minutes 00-59
1 Colon Required syntax

SS 2 Seconds 00-59
1 Period Required syntax

cc 2 Hundredths of a 00-99
second

Note that month abbreviations must be uppercase and that the hundredths-of
second field represents a true fraction. For example, the string .1 represents
ten-hundredths of a second (one-tenth of a second) and the string .01 represents
one-hundredth of a second. Note also that you can add a third digit to the
hundredths-of-second field; this thousandths-of-second digit is used to round the
hundredths-of-second value. Digits beyond the thousandths-of-second digit are
ignored.

The following two syntax rules apply to specifying the ASCII input string:

• You can omit any of the date and time fields.

For absolute time values, the $BINUTC service supplies the current system
date and time for nonspecified fields. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens, blanks,
colons, periods). For example, the following string results in an absolute time
of 12:00 on the current day:

-- 12:00:00.00

• For absolute time values, there can be any number of leading blanks, and
any number of blanks between fields normally delimited by blanks. However,
there can be no embedded blanks within either the date or time field.

Required Access or Privileges
None

Required Quota
None

Related Services
$ASCUTC, $GETUTC, $NUMUTC, $TIMCON

Condition Values Returned

SS$_NORMAL

SS$_IVTIME

System Service Descriptions
$BINUTC

The service completed successfully.

The syntax of the specified ASCII string is
invalid, the specified time is a delta time, or the
time component is out of range.

SYS1-67

System Service Descriptions
$BRKTHRU

$BRKTHRU
Breakthrough

Format

Arguments

SYS1-68

Sends a message to one or more terminals. The $BRKTHRU service completes
asynchronously; that is, it returns to the caller after queuing the message request,
without waiting for the message to be written to the specified terminals.

For synchronous completion, use the Breakthrough and Wait ($BRKTHRUW)
service. The $BRKTHRUW service is identical to the $BRKTHRU service in
every way except that $BRKTHRUW returns to the caller after the message is
written to the specified terminals.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

The $BRKTHRU service supersedes the Broadcast ($BRDCST) service. When
writing new programs, you should use $BRKTHRU instead of $BRDCST. When
updating old programs, you should change all uses of $BRDCST to $BRKTHRU.

SYS$BRKTHRU [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags] [,reqid]
[,timout] [,astadr] [,astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the message has been written to the
specified terminals. The efn argument is a longword containing this number;
however, $BRKTHRU uses only the low-order byte.

When the message request is queued, $BRKTHRU clears the specified event
flag (or event flag 0 if efn is not specified). Then, after the message is sent,
$BRKTHRU sets the specified event flag (or event flag 0).

msgbuf
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Message text to be sent to the specified terminals. The msgbuf argument is the
address of a descriptor pointing to this message text.

The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the system parameter MAXBUF and the caller's available process
space can affect the maximum length of the message text.

sendto

System Service Descriptions
$BRKTHRU

Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of a single device (terminal) or single user name to which the message is
to be sent. The sendto argument is the address of a descriptor pointing to this
name.

The sendto argument is used in conjunction with the sndtyp argument.
When sndtyp specifies BRK$C_DEVICE or BRK$C_USERNAME, the sendto
argument is required.

If you do not specify sndtyp or if sndtyp does not specify BRK$C_DEVICE
or BRK$C_USERNAME, you should not specify sendto; if sendto is specified,
$BRKTHRU ignores it.

sndtyp
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Terminal type to which $BRKTHRU is to send the message. The sndtyp
argument is a longword value specifying the terminal type.

Each terminal type has a symbolic name, which is defined by the $BRKDEF
macro. The following table describes each terminal type.

Terminal Type

BRK$C_ALLTERMS

BRK$C_ALLUSERS

BRK$C_DEVICE

BRK$C_USERNAME

iosb

Description

When specified, $BRKTHRU sends the message to all
terminals at which users are logged in and to all other
terminals that are connected to the system except
those with the AUTOBAUD characteristic set.

When specified, $BRKTHRU sends the message to all
users who are currently logged in to the system.
When specified, $BRKTHRU sends the message to
a single terminal; you must specify the name of the
terminal by using the sendto argument.

When specified, $BRKTHRU sends the message to a
user with a specified user name; you must specify the
user name by using the sendto argument.

Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of this quadword block.

SYS1-69

System Service Descriptions
$BRKTHRU

SYS1-70

When the iosb argument is specified, $BRKTHRU sets the quadword to 0 when
· it queues the message request. Then, after the message is sent to the specified
terminals, $BRKTHRU returns four informational items, one item per word, in
the quadword 1/0 status block.

These informational items indicate the status of the messages sent only to
terminals and mailboxes on the local node; these items do not include the status
of messages sent to terminals and mailboxes on other nodes in a VMScluster
system.

The following table shows each word of the quadword block and the informational
item it contains.

Word Informational Item

1 A condition value describing the final completion status.

2 A decimal number indicating the number of terminals and mailboxes to
which $BRKTHRU successfully sent the message.

3 A decimal number indicating the number of terminals to which
$BRKTHRU failed to send the message because the write to the
terminals timed out.

4 A decimal number indicating the number of terminals to which
$BRKTHRU failed to send the message because the terminals were
set to the NOBROADCAST characteristic (by using the DCL command
SET TERMINAL/NOBROADCAST).

careen
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Carriage control specifier indicating the carriage control sequence to follow the
message that $BRKTHRU sends to the terminals. The carcon argument is a
longword containing the carriage control specifier.

For a list of the carriage control specifiers that you can use in the carcon
argument, refer to the Open VMS I I 0 User's Reference Manual.

If you do not specify the carcon argument, $BRKTHRU uses a default value of
32, which represents a space in the ASCII character set. The message format
resulting from this default value is a line feed, the message text, and a carriage
return.

The carcon argument has no effect on message formatting specified by the
BRK$M_SCREEN flag in the flags argument. See the description of the flags
argument.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying options for the $BRKTHRU operation. The flags
argument is a longword value that is the logical OR of each desired flag option.

System Service Descriptions
$BRKTHRU

Each flag option has a symbolic name. The $BRKDEF macro defines the following
symbolic names.

Symbolic Name Description

BRK$V _ERASE_LINES When specified with the BRK$M_SCREEN flag,
BRK$V _ERASE_LINES causes a specified number of
lines to be cleared from the screen before the message
is displayed. When BRK$M_SCREEN is not also
specified, BRK$V _ERASE_LINES is ignored.
Unlike the other Boolean flags, BRK$V _ERASE_
LINES specifies a 1-byte integer in the range 0 to 24.
It occupies the first byte in the longword flag mask.
In coding the call to $BRKTHRU, specify the desired
integer value in the OR operation with any other
desired flags.

BRK$M_SCREEN When specified, $BRKTHRU sends screen-formatted
messages as well as messages formatted through
the use of the carcon argument. $BRKTHRU sends
screen-formatted messages to terminals with the
DEC_CRT characteristic, and it sends messages
formatted by carcon to those without the DEC_CRT
characteristic. You set the DEC_CRT characteristic
for the terminal by using the DCL command SET
TERMINAL/DEC_CRT.
A screen-formatted message is displayed at the top
of the terminal screen, and the cursor is repositioned
at the point it was prior to the broadcast message.
However, the BRK$V _ERASE_LINES and BRK$M_
BOTTOM flags also affect the display.

BRK$M_BOTTOM When BRK$M_BOTTOM is specified and BRK$M_
SCREEN is also specified, $BRKTHRU writes the
message to the bottom of the terminal screen instead
of the top. BRK$M_BOTTOM is ignored if the
BRK$M_SCREEN flag is not set.

BRK$M_NOREFRESH When BRK$M_NOREFRESH is specified,
$BRKTHRU, after writing the message to the screen,
does not redisplay the last line of a read operation
that was interrupted by the broadcast message. This
flag is useful only when the BRK$M_SCREEN flag is
not specified, because BRK$M_NOREFRESH is the
default for screen-formatted messages.

BRK$M_CLUSTER Specifying BRK$M_CLUSTER enables $BRKTHRU
to send the message to terminals or mailboxes on
other nodes in a VMScluster system. If BRK$M_
CLUSTER is not specified, $BRKTHRU sends
messages only to terminals or mailboxes on the
local node.

SYS1-71

System Service Descriptions
$BRKTHRU

SYS1-72

reqid
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Class requester identification, which identifies to $BRKTHRU the application
(or image) that is calling $BRKTHRU. The reqid argument is this longword
identification value.

The reqid argument is used by several images that send messages to terminals
and can be used by as many as 16 different user images as well.

When such an image calls $BRKTHRU, specifying reqid, $BRKTHRU notifies
the terminal that this image wants to write to the terminal. This makes it
possible for you to allow the image to write or prevent it from writing to the
terminal.

To prevent a particular image from writing to your terminal, you use the image's
name in the DCL command SET TERMINAL!NOBROADCAST=image-name.
Note that image-name in this DCL command is the same as the value of the
reqid argument that the image passed to $BRKTHRU.

For example, you can prevent the ~fail utility (which is an image) from writing to
the terminal by issuing the DCL command SET BROADCAST=NOMAIL.

The $BRKDEF macro defines class names that are used by several Open VMS
components. These components specify their class names by using the reqid
argument in calls to $BRKTHRU. The $BRKDEF macro also defines 16 class
names (BRK$C_USER1 through BRK$C_USER16) for the use of user images
that call $BRKTHRU. The class names and the components to which they
correspond are as follows.

Class Name

BRK$C_GENERAL

BRK$C_PHONE

BRK$C_MAIL

BRK$C_DCL

BRK$C_QUEUE

BRK$C_SHUTDOWN

Component

This class name is used by (1) the image invoked by
the DCL command REPLY and (2) the callers of the
$BRKTHRU service. This is the default if the reqid
argument is not specified.

This class name is used by the Open VMS Phone
utility.

This class name is used by the Open VMS Mail utility.

This class name is used by the DIGITAL Command
Language (DCL) interpreter for the Ctrl/T command,
which displays the process status.

This class name is used by the queue manager, which
manages print and batch jobs.
This class name is used by the system shutdown
image, which is invoked by the DCL command REPLY
IID=SHUTDOWN.

Class Name Component

System Service Descriptions
$BRKTHRU

BRK$C_URGENT This class name is used by the image invoked by the
DCL command REPLYIID=URGENT.

BRK$C_USER1
through BRK$C_
USER16

These class names can be used by user-written
images.

timout
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Timeout value, which is the number of seconds that must elapse before an
attempted write by $BRKTHRU to a terminal is considered to have failed. The
timout argument is this longword value (in seconds).

Because $BRKTHRU calls the $QIO service to perform write operations to the
terminal, the timeout value specifies the number of seconds allotted to $QIO to
perform a single write operation to the terminal.

If you do not specify the timout argument, $BRKTHRU uses a default value of 0
seconds, which specifies infinite time (no timeout occurs).

The value specified by timout can be 0 or any number greater than 4; the
numbers 1, 2, 3, and 4 are illegal.

When you press Ctrl/S or the No Scroll key, $BRKTHRU cannot send a message
to the terminal. In such a case, the value of timout is usually exceeded and the
attempted write to the terminal fails.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed after $BRKTHRU has sent the message to the
specified terminals. The astadr argument is the address of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of $BRKTHRU.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this longword parameter.

SYS1-73

System Service Descriptions
$BRKTHRU

Description

SYS1-74

The Breakthrough service sends a message to one or more terminals. The
$BRKTHRU service completes asynchronously; that is, 'it returns to the caller
after queuing the message request without waiting for the message to be written
to the specified terminals.

The $BRKTHRU service operates by assigning a channel (by using the $ASSIGN
service) to the terminal and then writing to the terminal (by using the $QIO
service). When calling $QIO, $BRKTHRU specifies the IO$_WRITEVBLK
function code, together with the IO$M_BREAKTHRU, IO$M_CANCTRLO, and
(optionally) I0$M_REFRESH function modifiers.

The current state of the terminal determines if and when the broadcast message
is displayed on the screen. For example:

• If the terminal is performing a read operation when $BRKTHRU sends the
message, the read operation is suspended, the message is displayed, and
then the line that was being read when the read operation was suspended is
redisplayed (equivalent to the action produced by CTRL/R).

• If the terminal is performing a write operation when $BRKTHRU sends
the message, the message is displayed after the current write operation has
completed.

• If the terminal has the NOBROADCAST characteristic set for all images, or
if you have disabled the receiving of messages from the image that is issuing
the $BRKTHRU call (see the description of the reqid argument), the message
is not displayed.

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

Required Access or Privileges
The calling process must have OPER privilege to send a message to more than
one terminal or to a terminal that is allocated to another user.

The calling process must have WORLD privilege to send a message to a specific
user by specifying the BRK$C_USERNAME symbolic code for the sndtyp
argument.

Required Quota
The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the system parameter MAXBUF and the caller's available process
buffered I/O byte count limit (BYTLM) quota must be sufficient to handle the
message.

Related Services
$ALLOC, $ASSIGN, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition· Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOTA

SS$_INSFMEM

SS$_NONLOCAL
SS$_NOOPER

SS$_NOSUCHDEV

System Service Descriptions
$BRKTHRU

The service completed successfully.

The message buffer, message buffer descriptor,
device name string, or device name string
descriptor cannot be read by the caller.
The message length exceeds 16,350 bytes; the
process's buffered 1/0 byte count limit (BYTLM)
quota is insufficient; the message length exceeds
the value specified by the system parameter
MAXBUF; the value of the TIMOUT parameter
is nonzero and less than 4 seconds; the value of
the REQID is outside the range 0 to 63; or the
value of the SNDTYP is not one of the legal ones
listed.
The process has exceeded its buffer space quota
and has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) service.
The system dynamic memory is insufficient
for completing the request and the process
has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.
The device is on a remote node.
The process does not have the necessary OPER
privilege.
The specified terminal does not exist, or it cannot
receive the message.

Condition Values Returned in the 1/0 Status Block

Any condition values returned by the $ASSIGN, $FAO, $GETDVI, $GETJPI, or
$QIO service.

SYS1-75

System Service Descriptions
$BRKTHRUW

$BRKTHRUW
Breakthrough and Wait

Format

SYS1-76

Sends a message to one or more terminals. The $BRKTHRUW service operates
synchronously; that is, it returns to the caller after the message has been sent to
the specified terminals.

For asynchronous operations, use the Breakthrough ($BRKTHRU) service;
$BRKTHRU returns to the caller after queuing the message request, without
waiting for the message to be delivered.

Aside from the preceding, $BRKTHRUW is identical to $BRKTHRU. For all
other information about the $BRKTHRUW service, refer to the description of
$BRKTHRU.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service.

The $BRKTHRU and $BRKTHRUW services supersede the Broadcast
($BRDCST) service. When writing new programs, you should use $BRKTHRU
or $BRKTHRUW instead of $BRDCST. When updating old programs, you should
change all uses of $BRDCST to $BRKTHRU or $BRKTHRUW. $BRDCST is now
an obsolete system service and is no longer being enhanced.

SYS$BRKTHRUW [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags] [,reqid]
[,timout] [,astadr] [,astprm]

$CANCEL

System Service Descriptions
$CANCEL

Cancel 1/0 on Channel

Format

Argument

Description

Cancels all pending 1/0 requests on a specified channel. In general, this includes
all 1/0 requests that are queued, as well as the request currently in progress.

SYS$CANCEL chan

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

1/0 channel on which 1/0 is to be canceled. The chan argument is a word
containing the channel number.

The Cancel 1/0 on Channel service cancels all pending 1/0 requests on a specified
channel. In general, this includes all 1/0 requests that are queued, as well as the
request currently in progress.

When you cancel a request currently in progress, the driver is notified
immediately. The actual cancellation might occur immediately, depending on
the logical state of the driver. When cancellation does occur, the following action
for 1/0 in progress, similar to that for queued requests, takes place:

1. The specified event flag is set.

2. The first word of the 1/0 status block, if specified, is set to SS$_ CANCEL if
the 1/0 request is queued, or to SS$_ABORT if the 1/0 is in progress.

3. The AST, if specified, is queued.

Proper synchronization between this service and the actual canceling of I/O
requests requires the issuing process to wait for 1/0 completion in the normal
manner and then note that the 1/0 has been canceled.

If the 1/0 operation is a virtual 1/0 operation involving a disk or tape ACP, the
1/0 cannot be canceled. In the case of a magnetic tape, however, cancellation
might occur if the device driver is hung.

Outstanding 1/0 requests are automatically canceled at image exit.

Required Access or Privileges
To cancel 1/0 on a channel, the access mode of the calling process must be equal
to or more privileged than the access mode that the process had when it originally
made the channel assignment.

Required Quota
The $CANCEL service requires system dynamic memory and uses the process's
buffered 1/0 limit (BIOLM) quota.

SYS1-77

System Service Descriptions
$CANCEL

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS1-78

SS$_NORMAL
SS$_EXQUOTA

SS$_INSFMEM

SS$_IVCHAN

SS$_NOPRIV

The service completed successfully.
The process has exceeded its buffered I/O limit
(BIOLM) quota.
The system dynamic memory is insufficient for
canceling the I/0.
You specified an invalid channel, that is, a
channel number of 0 or a number larger than the
number of channels available.
The specified channel is not assigned or was
assigned from a more privileged access mode.

$CANEXH

System Service Descriptions
$CANEXH

Cancel Exit Handler

Format

Argument

Deletes an exit control block from the list of control blocks for the calling access
mode. Exit control blocks are declared by the Declare Exit Handler ($DCLEXH)
service and are queued according to access mode in a last-in first-out order.

SYS$CANEXH [desblk]

desblk
Open VMS usage: exit_handler_block
type: longword (unsigned)
access: read only
mechanism: by reference

Control block describing the exit handler to be canceled. If you do not specify the
desblk argument or specify it as 0, all exit control blocks are canceled for the
current access mode. The desblk argument is the address of this control block.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block or the
first longword of a previous exit control block in
the list cannot be read by the caller, or the first
longword of the preceding control block cannot be
written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The specified exit handler does not exist.

SYS1-79

System Service Descriptions
$CANTIM

$CANTIM
Cancel Timer

Format

Arguments

Description

SYS1-80

Cancels all or a selected subset of the Set Timer requests previously issued by
the current image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) service. If you give the same
request identification to more than one timer request, all requests with that
request identification are canceled.

SYS$CANTIM [reqidt] ,[acmode]

reqidt
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Request identification of the timer requests to be canceled. If you specify it as 0
(the default), all timer requests are canceled. The reqidt argument is a longword
containing this identification.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the requests to be canceled. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines the following symbols
for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor
User

The most privileged access mode used is the access mode of the caller.

The Cancel Timer service cancels all or a selected subset of the Set Timer
requests previously issued by the current image executing in a process.
Cancellation is based on the request identification specified in the Set Timer
($SETIMR) service. If you give the same request identification to more than one
timer request, all requests with that request identification are canceled.

Outstanding timer requests are automatically canceled at image exit.

Required Access or Privileges

System Service Descriptions
$CANTIM

The calling process can cancel only timer requests that are issued by a process
whose access mode is equal to or less privileged than that of the calling process.

Required Quota
Canceled timer requests are restored to the process's quota for timer queue
entries (TQELM quota).

Related Services
$ASCTIM, $BINTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS1-81

System Service Descriptions
$CANWAK

$CANWAK
Cancel Wakeup

Format

Arguments

Description

SYS1-82

Removes all scheduled wakeup requests for a process from the timer queue,
including those made by the caller or by other processes. The Schedule Wakeup
($SCHDWK) service makes scheduled wakeup requests.

SYS$CANWAK [pidadr] ,[prcnam]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process for which wakeups are to be canceled.
The pidadr argument is the address of a longword specifying the PID. The
pidadr argument can refer to a process running on the local node or a process
running on another node in the VMScluster system.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the process for which wakeups are to be canceled. The prcnam
argument is the address of a character string descriptor pointing to the process
name string.

A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node in a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

The operating system interprets the UIC group number of the calling process
as part of the process name; the names of processes are unique to UIC groups.
Because of this, you can use the prcnam argument only on behalf of processes in
the same group as the calling process.

The Cancel Wakeup service removes from the timer queue all scheduled wakeup
requests for a process, including those made by the caller or by other processes.
The Schedule Wakeup ($SCHDWK) service makes scheduled wakeup requests.

If the longword at address pidadr is 0, the PID of the target process is returned.

If you specify neither the pidadr nor the prcnam argument, scheduled wakeup
requests for the calling process are canceled.

Pending wakeup requests issued by the current image are automatically canceled
at image exit.

System Service Descriptions
$CANWAK

This service cancels only wakeup requests that have been scheduled; it does not
cancel wakeup requests made with the Wake Process from Hibernation ($WAKE)
service.

Required Access or Privileges
Depending on the operation, the calling process might need one of the listed
privileges to use $CANWAK:

• You need GROUP privilege to cancel wakeups for processes in the same group
that do not have the same UIC.

• You need WORLD privilege to cancel wakeups for any process in the system.

Required Quota
Canceled wakeup requests are restored to the process's AST limit (ASTLM) quota.

Related Services
$ASCTIM, $BINTIM, $CANTIM, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.
The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running an incompatible
version of the operating system.
The process name string has a length of 0 or has
more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to cancel
wakeups for the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)
The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS1-83

System Service Descriptions
$CHECK_ACCESS

$CHECK_ACCESS
Check Access

Format

Arguments

SYS1-84

Determines on behalf of a third-party user whether a named user can access the
object specified.

SYS$CHECK_ACCESS [objtyp], [objnam], [usrnam], itmlst, [contxt], [clsnam],
[objpro], [usrpro]

objtyp
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Type of object being accessed. The objtyp argument is the address of a longword
containing a value specifying the type of object. The appropriate symbols are
listed in the following table and are defined in the system macro $ACLDEF
library.

Symbol

ACL$C_CAPABILITY

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL_SECTION

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL_NAME_TABLE

ACL$C_SYSTEM_GLOBAL_SECTION

Meaning

Object is a restricted resource; use the
reserved name VECTOR.

Object is a device.

Object is a Files-11 On-Disk Structure
Level 2 file.

Object is a group global section.

Object is a batch, print, or server
queue.
Object is a logical name table.
Object is a system global section.

For further information about these symbols, see the description of the clsnam
argument.

objnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the object being accessed. The objnam argument is the address of a
character-string descriptor pointing to the object name.

usrnam

System Service Descriptions
$CHECK_ACCESS

Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the user attempting access. The usrnam argument is the address
of a descriptor that points to a character string that contains the name of the
user attempting to gain access to the specified object. The user name string can
contain a maximum of 12 alphanumeric characters.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes describing how the object is to be accessed and information returned
after $CHECK_ACCESS performs the protection check (for instance, security
alarm information).

For each item code, you must include a set of four elements and end the list
with a longword containing the value 0 (CHP$_END), as shown in the following
diagram.

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Definition

A word containing a user-supplied integer specifying
the length (in bytes) of the associated buffer. The
length of the buffer needed depends upon the item
code specified in the item code field of the item
descriptor. If the value of buffer length is too small,
the service truncates the data.
A word containing a user-supplied symbolic code
specifying the item of information in the associated
buffer.

A longword containing the user-suppli~d address of
the buffer.

SYS1-85

System Service Descriptions
$CHECK_ACCESS

SYS1-86

Descriptor Field Definition

Return length address A longword containing the address of a word in
which $CHECK_ACCESS writes the number of
bytes written to the buffer pointed to by bufadr.
If the buffer pointed to by bufadr is used to pass
information to $CHECK_ACCESS, retlenadr is
ignored but must be included.

contxt
Open VMS usage: longword
type: longword (unsigned)
access: read-write
mechanism: by reference

Longword used to maintain the user authorization file (UAF) context. The contxt
argument is the address of a longword to receive a UAI context longword. On the
initial call, this longword should contain the value -1. On subsequent calls, the
value of the contxt argument from the previous call should be passed back in.

Using the contxt argument keeps the UAF open across all calls, thereby
improving the performance of the system on subsequent calls. To close the UAF,
you must run down the image.

The resulting contxt value from a $CHECK_ACCESS call may also be used as
the input contxt argument to the $GETUAI system service, and vice versa.

clsnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Object class name associated with the protected object. The clsnam argument
is the address of a descriptor pointing to the name of the object class associated
with the object specified by either the objnam or the objpro argument. The
clsnam and objtyp arguments are mutually exclusive. The clsnam argument is
the preferred argument to $CHECK_ACCESS. The following object class names
are valid:

CAPABILITY

COMMON_EVENT_CLUSTER

DEVICE

FILE

GROUP _GLOBAL_SECTION

LOGICAL_NAME_TABLE

obj pro
Open VMS usage: char_string

QUEUE

RESOURCE_DOMAIN

SECURITY_CLASS

SYSTEM_GLOBAL_SECTION

VOLUME

type: opaque byte stream or object handle
access: read only
mechanism: by descriptor

Buffer containing an object security profile or object handle. The objpro
argument is the address of a descriptor pointing to a buffer that contains an

Item Codes

System Service Descriptions
$CHECK_ACCESS

encoded object security profile or the address of a descriptor pointing to an object
handle.

Object handles vary according to the associated security object class. Currently,
the only supported object handles are for the file and device class objects where
the object handle is a word or longword channel.

The objpro and objnam arguments are mutually exclusive unless the objpro
argument is a simple object handle. The objpro and usrpro arguments are also
mutually exclusive unless the objpro argument is an object handle.

usrpro
Open VMS usage: char_string
type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing a user security profile. The usrpro argument is the address of
a descriptor pointing to a buffer that contains an encoded user security profile.

The $CREATE_ USER_PROFILE service may be used to construct a user security
profile. The usrpro and usrnam arguments are mutually exclusive. The objpro
and usrpro arguments are also mutually exclusive unless the objpro argument
is an object handle.

The item codes used with $CHECK_ACCESS are described in the following list
and are defined in the $CHPDEF system macro library.

CHP$_ACCESS
A longword bit mask that represents the desired access ($ARMDEF). Only those
bits set in CHP$_ACCESS are checked against the protection of the object to
determine whether access is granted.

The default for CHP$_ACCESS is read. Symbolic representations for the access
types associated with the built-in protected classes are found in the $ARMDEF
macro.

For example, ARM$M_MANAGE specifies- Manage access for the queue class
object. Access type names are object class specific and vary from class to class.
Because $CHECK_ACCESS performs only a bitwise comparison of access desired
to object protection, the original Read, Write, Execute, and Delete names may
also be used to specify the first four access types for any object class.

The following table shows the access types available and lists their common
interpretations. These symbols are defined in the $ARMDEF system macro
library. For more information, see the Open VMS Guide to System Security.·

SYS1-87

System Service Descriptions
$CHECK_ACCESS

SYS1-88

Access Type

ARM$M_READ

ARM$M_ WRITE

ARM$M_EXECUTE

ARM$M_DELETE

ARM$M_CONTROL

CHP$_ACMODE

Access Permitted

Allows holders to read an object, perform wildcard
directory lookups, display jobs in a queue, or use an
associated vector processor.

Allows holders to alter the contents of an object,
remove a directory entry, write or extend existing
files on a volume, or submit a job to a queue.

Allows holders to run an image or command
procedure, perform exact directory lookups, issue
physical 1/0 requests to a device, create new files on
a volume, or act as operator for a queue.
Allows holders to delete an object, perform logical 1/0
to a device, or delete a job in a queue.

Allows holders to display or alter the security
characteristics of an object.

A byte that defines the accessor's processor access mode ($PSLDEF). The
following access modes and their symbols are defined in the system macro library
($PSLDEF). Objects supported by the operating system do not consider access
mode in determining object access.

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

Access Mode

User

Supervisor

Executive

Kernel

If CHP$_ACMODE is not specified, access mode is not used to determine access.

CHP$_ALARMNAME
Address of a buffer to receive the alarm name from any Alarm ACE contained
in the object's ACL. Currently, if a matching Alarm ACE exists, the string
SECURITY will be returned. The string returned by CHP$_ALARMNAME
may be used as input to the $AUDIT_EVENT system service, using the NSA$_
ALARM_NAME item code.

CHP$_AUDIT _LIST
A list containing information to be added to any resulting security audit. The
bufadr argument points to the beginning of an $AUDIT_EVENT item list. See
the itmlst argument of the $AUDIT_EVENT system service for a list of valid
security auditing item codes. Note that the NSA$_EVENT_TYPE and NSA$_
EVENT _SUBTYPE items are ignored when auditing with $CHECK_ACCESS.
The CHP$V _AUDIT flag must be specified. ·

CHP$_AUDITNAME
Address of a buffer to receive the audit name from any Audit ACE contained
in the object's ACL. Currently, if a matching Audit ACE exists, the string
SECURITY will be returned. The string returned by CHP$_AUDITNAME may
be used as input to the $AUDIT_EVENT system service, using the NSA$_
AUDIT_NAME item code.

CHP$_FLAG

System Service Descriptions
$CHECK_ACCESS

A longword that controls various aspects of the protection check. The symbols in
the following table are offsets to the bits within the longword. You can also obtain
the values as masks with the appropriate bit set by using the prefix CHP$M
rather than CHP$V. These symbols are defined in the system macro library
($CHPDEF).

Symbol

CHP$V _ALTER

CHP$V _AUDIT
CHP$V_CREATE

CHP$V _DELETE
CHP$V _FLUSH

CHP$V _INTERNAL

CHP$V _MANDATORY

CHP$V _NOFAILAUD

CHP$V _NOSUCCAUD
CHP$V_OBSERVE

CHP$V _SERVER
CHP$V_USEREADALL

Access

Accessor desires write access to object.

Access audit requested.
Perform the audit as an object creation event.

Perform the audit as an object deletion event.

Force audit buffer flush.

Audit on behalf of the Trusted Computing Base
(TCB). Reserved to Digital.

Force the object access event to be audited.

Do not perform audits for failed access.

Do not perform audits for successful access.

Accessor desires read access to object.
Audit on behalf of a TCB server process.

Accessor is eligible for READALL privilege.

The default for CHP$_FLAG is CHP$V_OBSERVE.

The primary purpose of the CHP$V _OBSERVE and CHP$V _ALTER flags is as
latent support for a mandatory (lattice) security policy, such as that provided by
the Security Enhanced VMS (SEVMS) offering.

CHP$_MATCHEDACE
A variable-length data structure containing the first Identifier ACE in the ACL
that granted or denied access to the object. The $FORMAT_ACL system service
describes the format of an Identifier ACE.

CHP$_PRIVUSED
A longword mask of flags that represent the privileges used to gain access.

You can also obtain the values as masks with the appropriate bit set by using
the prefix CHP$M rather than CHP$V. The symbols are defined in the system
macro library ($CHPDEF). The following symbols are offsets to the bits within
the longword.

Symbol

CHP$V _SYSPRV

CHP$V_GRPPRV

CHP$V _BYPASS
CHP$V _READALL

CHP$V_OPER

CHP$V_GRPNAM

Meaning

SYSPRV was used to gain the requested access.

GRPPRV was used to gain the requested access.
BYPASS was used to gain the requested access.

READALL was used to gain the requested access.

OPER was used to gain the requested access.

GRPNAM was used to gain the requested access.

SYS1-89

System Service Descriptions
$CHECK_ACCESS

Description

SYS1-90

Symbol

CHP$V _SYSNAM
CHP$V _GROUP

CHP$V _WORLD

CHP$V _PRMCEB
CHP$V _UPGRADE

CHP$V _DOWNGRADE

Meaning

SYSNAM was used to gain the requested access.

GROUP was used to gain the requested access.

WORLD was used to gain the requested access.

PRMCEB was used to gain the requested access.
UPGRADE was used to gain the requested
access.

DOWNGRADE was used to gain the requested
access.

The Check Access service invokes the operating system control protection check
mechanism, $CHKPRO, to determine whether a named user is allowed the
described access to the named object. A file server, for example, might check the
access attributes of a user who attempts to access a file (the object).

If the user can access the object, $CHECK_ACCESS returns the SS$_NORMAL
status code; otherwise, $CHECK_ACCESS returns SS$_NOPRIY.

The arguments accepted by this service specify the name and class of object being
accessed, the name of the user requesting access to the object, the type of access
desired, and the type of information to be returned.

The caller may also request that an object access audit be performed if security
auditing has been enabled for the object class or if Audit ACEs are contained in
the object's ACL. Auditing ACEs include both Alarm ACEs and Audit ACEs. The
CHP$V _AUDIT flag requests an access audit. This requires that the caller be in
executive or kernel mode or possess the AUDIT privilege.

Normally, $CHECK_ACCESS generates an object access audit when an audit
is required. The caller may specify the CHP$V_CREATE flag to force an object
creation audit instead of an object access audit. Similarly, the CHP$V _DELETE
flag forces an object deletion audit. The CHP$_AUDIT_LIST item code may
be used to specify additional information to be included in any resulting audit
records.

With certain types of devices, $CHECK_ACCESS may return a false negative,
but never a false positive. This is due to additional LOG_IO and PHY_IO
privilege checking in the $QIO system service that may override an otherwise
unsuccessful access attempt. These privilege checks are not mirrored by the
$CHECK_ACCESS system service. The affected devices are those that are
non-file-structured or mounted foreign and also either spooled, file-oriented, or
shareable. For example, mailbox devices fall into this category because they are
non-file-structured and shareable. To accurately duplicate the result that would
be obtained if the user had issued a read or write against these devices, it may be
necessary to test for these additional privileges using the $CHECK_PRIVILEGE
system service. See the Open VMS I I 0 User's Reference Manual for further
information on access requirements for devices.

Required Access or Privileges
Access to SYSUAF.DAT and RIGHTSLIST.DAT is required. AUDIT privilege is
required when requesting a user mode audit.

Required Quota
None

Related Services

System Service Descriptions
$CHECK_ACCESS

$CHKPRO, $CREATE_USER_PROFILE, $FORMAT_ACL

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFARG

SS$_INSFMEM

SS$_NOAUDIT

SS$_NOCALLPRIV

SS$_NOCLASS

SS$_NOPRIV

SS$_UNSUPPORTED

The service completed successfully; the desired
access is granted.

The item list cannot be read by the caller, one
of the buffers specified in the item list cannot be
written by the caller, or one of the arguments
could not be read or written.
Invalid or conflicting combination of parameters.

Insufficient information to identify object or user.

Insufficient process memory to execute service.

Caller lacks privilege to request audit.

Caller lacks privilege to access authorization
database.
No matching object class was located.

The desired access is not granted.

Operations on remote object are not supported.

If CHP$V_AUDIT is specified, any error from the $AUDIT_EVENT system
service may also be returned.

SYS1-91

System Service Descriptions
$CHECK_FEN (Alpha Only)

$CHECK_FEN (Alpha ,Only)
Check Floating Point

Format

Arguments

Description

SYS1-92

On Alpha systems, indicates whether floating point is enabled for the current
image.

SYS$CHECK_FEN

None.

The Check Floating Point service returns a Boolean value in RO indicating
whether floating point is enabled for the current image.

The $CHECK_FEN service returns a value of 1 if the floating point is enabled for
the current image. A value of 0 is returned if the floating point is disabled.

Required Access or Privileges
None

Required Quota
None

System Service Descriptions
$CHECK_PRIVILEGE

$CHECK_PRIVILEGE
Check Privilege

Format

Arguments

Determines whether the caller has the specified privileges or identifier. In
addition to checking for a privilege or an identifier, $CHECK_PRIVILEGE
determines if the caller's use of privilege needs to be audited.

SYS$CHECK_PRIVILEGE [efn] ,prvadr ,[altprv] ,[flags] ,[itmlst] ,[audsts] ,[astadr]
,[astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the audit completes. The efn argument
is a longword containing the number of the event flag; however, $CHECK_
PRIVILEGE uses only the low-order byte. If"efn is not specified, event flag 0 is
used.

Upon request initiation, $CHECK_PRIVILEGE clears the specified event flag.

prvadr
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

The privilege or identifier to be checked. The prvadr argument is either the
address of a quadword bit array, where each bit corresponds to a privilege, or the
address of a quadword identifier.

When the array lists privileges, each bit has a symbolic name. The $PRVDEF
macro defines these names. You form the bit array by specifying the symbolic
name of each desired privilege in a logical OR operation. See the $SETPRV
system service for the symbolic name and description of each privilege.

If the caller passes an identifier, the caller must set the NSA$M_IDENTIFIER
bit in the flags long-Word. The identifier structure is defined by the $KGBDEF
macro. The identifier attributes (KGB$) are reserved for future use and should be
set to 0.

altprv
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Alternate privilege mask to check against. The altprv argument is the address of
a quadword privilege mask, where each bit corresponds to a privilege. This
argument and the flags NSA$M_AUTHPRIV, NSA$M_IDENTIFIER, and
NSA$M_PROCPRIV are mutually exclusive.

SYS1-93

System Service Descriptions
$CHECK_PRIVILEGE

SYS1-94

With this argument, $CHECK_PRIVILEGE uses the supplied set of privileges
instead of the current, active privileges. Each bit in the mask has a symbolic
name, defined by the $PRVDEF macro. You form the bit array by specifying
the symbolic name of each desired privilege in a logical OR operation. See the
$SETPRV system service for the symbolic name and description of each privilege.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags that specify options for the $CHECK_PRIVILEGE operation. The flags
argument is a longword bit mask, where each bit corresponds to an option.

Each flag option has a symbolic name. The $NSADEF macro defines the
following symbolic names. Be aware that the flags NSA$M_AUTHPRIY, NSA$M_
IDENTIFIER, and NSA$M_PROCPRIV are mutually exclusive; therefore, you
can specify only one of these flag options.

Symbolic Name

NSA$M_AUTHPRIV

NSA$M_FLUSH

NSA$M_IDENTIFIER

NSA$M_INTERNAL

NSA$M_MANDATORY

NSA$M_PROCPRIV

NSA$M_SERVER

itmlst
Open VMS usage: item_list_3

Description

Checks the authorized privileges of the process
instead of the current (active) privileges.

Specifies that all messages in the audit server
buffer be written to the audit log file.

Interprets the prvadr argument as the address
of an identifier instead of a privilege mask.

Specifies that the $CHECK_PRIVILEGE call
originates in the context of a trusted computing
base (TCB) component. The auditing components
use this flag to indicate that internal auditing
failures should result in a SECAUDTCB
bugcheck. This flag is reserved to Digital.

Specifies that an audit is to be performed,
regardless of system alarm and audit settings.

Checks the permanent privileges of the process,
instead of the privileges in the current (active)
mask.

Indicates that the call originates in a TCB server
process and that the event should be audited
regardless of the state of a process-specific
no-audit bit.
Trusted servers use this flag to override the
no-audit bit when they want to perform explicit
auditing on behalf of a client process. This flag is
reserved to Digital.

type: longword (unsigned)
access: read only
mechanism: by reference

System Service Descriptions
$CHECK_PRIVILEGE

Item list specifying additional security auditing information to be included in
any security audit that is generated by the service. The itmlst argument is
the address of a list of item descriptors, each of which describes an item of
information. The list of item descriptors is terminated by a longword of 0.

The item list is a standard format item list. The following diagram depicts the
format of a single item descriptor.

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

Definition

A word specifying the length of the buffer in bytes.
The buffer supplies information to be used by
$CHECK_PRIVILEGE. The required length of the
buffer varies, depending on the item code specified;
each item code description specifies the required
length.

A word containing a symbolic code describing the
nature of the information currently in the buffer
or to be returned in the buffer. The location of the
buffer is pointed to by the buffer address field. Each
item code has a symbolic name.

A longword containing the address of the buffer that
specifies or receives the information.

Not currently used; this field is reserved to Digital.
You should specify 0.

All item codes listed in the Item Codes section of the $AUDIT_EVENT service are
valid within the item list used by the $CHECK_PRIVILEGE service except for
the NSA$_EVENT_TYPE and NSA$_EVENT_SUBTYPE item codes, which are
supplied internally by the $0HECK_PRIVILEGE service.

$CHECK_PRIVILEGE should be called with an item list identifying the alarm
and audit journals, and does not need to use the NSA$_PRIVS_USED item code.
NSA$_PRIVS_USED is supplied automatically by the $CHECK_PRIVILEGE
service. Note that $CHECK_PRIVILEGE returns SS$_BADPARAM if you supply
either NSA$_EVENT_TYPE or NSA$_EVENT_SUBTYPE. These items are
supplied internally by $CHECK_PRIVILEGE.

audsts
Open VMS usage: cond_ value_type
type: longword (unsigned)
access: write only

SYS1-95

System Service Descriptions
$CHECK_PRIVILEGE

Description

SYS1-96

mechanism: by reference

Longword condition value that receives a final completion status from the
operation. If a security audit is required, the final completion status represents
either the successful completion of the resulting security audit or any failing
status that occurred while the security audit was performed within the AUDIT_
SERVER process.

The audsts argument is valid only when the service returns success and the
status is not SS$_EVTNOTENAB. In addition, the caller must either make
use of the astadr argument or use the $CHECK_PRIVILEGEW service before
attempting to access audsts.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Asynchronous system trap (AST) routine to be executed after the audsts
argument is written. The astadr argument, which is the address of a longword
value, is the procedure value of the AST routine.

The AST routine executes in the access mode of the caller of $CHECK_
PRIVILEGE.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Asynchronous system trap (AST) parameter passed to the AST service routine.
The astprm argument is a longword value containing the AST parameter.

The Check Privilege service determines whether a user has the privileges or
identifier that an operation requires. In addition, $CHECK_PRIVILEGE audits
the use of privilege if privilege auditing has been enabled by the site security
administrator. The caller does not need to determine whether privilege auditing
has been enabled.

Required Access or Privileges
AUDIT privilege is required.

Required Quota
None

Related Services
$AUDIT_EVENT, $SETPRV

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFADR

SS$_BADBUFLEN

SS$_BADCHAIN

SS$_BADITMCOD

SS$_BADPARAM

SS$_EVTNOTENAB

SS$_ILLEFC

SS$_INSFARG
SS$_INVAJLNAM

SS$_IVSTSFLG

SS$_NOAUDIT

SS$_NOPRIV

SS$_NO[privilege-name]

SS$_0VRMAXAUD

SS$_TOOMANYAJL
SS$_UNASEFC

System Service Descriptions
$CHECK_PRIVILEGE

The service completed successfully.

The specified parameter of the item list buffer is
not accessible.

The buffer address is invalid or not readable.
The specified buffer length is invalid or out of
range.

The address of the next item list to be processed,
as identified in the buffer address field, is either
not readable or points to itself.

The specified item code is invalid or out of range.

The specified list entry is invalid or out of range.

No audit required; privilege granted.
You specified an illegal event flag number.

The required item code is not present.

The alarm or audit journal name is invalid.

The specified system service flags are invalid.
The caller does not have the required privilege to
perform the audit.
The subject does not have the required privileges
or identifier.
The subject does not have a specific privilege.

There is insufficient memory to perform the
audit.
Too many alarm or audit journals were specified.
An unassociated event flag cluster was specified.

SYS1-97

System Service Descriptions
$CHECK_PRIVILEGEW

$CHECK_PRIVILEGEW
Check Privilege and Wait

Format

SYS1-98

Determines whether the caller has the specified privileges or identifier. In
addition to checking for a privilege or an identifier, the Check Privilege and
Wait service determines if the caller's use of privilege needs to be audited.

$CHECK_PRIVILEGEW completes synchronously; that is, it returns the final
status to the caller only after receiving an explicit confirmation from the audit
server that the associated audit, if enabled, has been performed.

SYS$CHECK_PRIVILEGEW efn ,prvadr ,[altprv] ,[flags] ,[itmlst] ,audsts ,[astadr]
,[astprm]

$CH KP RO

System Service Descriptions
$CHKPRO

Check Access Protection

Format

Argument

Determines whether an accessor with the specified rights and privileges can
access an object with the specified attributes.

SYS$CHKPRO itmlst ,[objpro] ,[usrpro]

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Protection attributes of the object and the rights and privileges of the accessor.
The itmlst argliment is the address of an item list of descriptors used to specify
the protection attributes of the object and the rights and privileges of the accessor.

The following diagram depicts the format of a single item descriptor.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Definition

A word containing a user-supplied integer specifying
the length (in bytes) of the associated buffer. The
length of the buffer needed depends on the item
code specified in the item code field of the item
descriptor. If the value of buffer length is too small,
the service truncates the data.
A word containing a user-supplied symbolic code
specifying the item of information in the associated
buffer. The item codes are defined in the $ACLDEF
system macro library.

A longword containing the user-supplied address of
the buffer.

SYS1-99

System Service Descriptions
$CH KP RO

Item Codes

SYS1-100

Descriptor Field

Return length address

Definition

A longword that normally contains the user-supplied
address of a word in which the service writes the
length in bytes of the information it returned. This
is not used by $CHKPRO and should contain a 0.

Specifying any particular protection attribute causes that protection check to be
made; any protection attribute not specified is not checked. Rights and privileges
specified are used as needed. If a protection check requires any right or privilege
not specified in the item list, the right or privilege of the caller's process is used.

obj pro
Open VMS usage: char_string
type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing an object security profile. The objpro argument is the address
of a descriptor pointing to a buffer that contains an encoded object security
profile. The objpro argument eliminates the need to supply all of the component
object protection attributes with the $CHKPRO item list. The objpro argument
is currently reserved to Digital.

usrpro
Open VMS usage: char_string
type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing a user security profile. The usrpro argument is the address
of a descriptor pointing to a buffer that contains an encoded user security
profile. The usrpro argument eliminates the need to supply all of the component
user security attributes with the $CHKPRO item list. The $CREATE_USER_
PROFILE service may be used to construct a user security profile. When the
usrpro argument is specified, any component user profile attributes specified in
the $CHKPRO item list replace those contained in the user security profile.

The item codes used with $CHKPRO are described in following list and are
defined in the $CHPDEF system macro library.

CHP$_ACCESS
A longword bit mask representing the type of access desired ($ARMDEF). Be
aware that the $CHKPRO service does not interpret the bits in the access mask;
instead, it compares them to the object's protection mask (CHP$_PROT). Any bits
not specified by CHP$_ACCESS or CHP$_PROT are assumed to be clear, which
grants access.

CHP$_ACL
A vector that points to an object's access control list. The buffer address, bufadr,
specifies a buffer containing one or more ACEs. The number that specifies the
length of the CHP$_ACL buffer, buflen, must be equal to the sum of all ACE
lengths. The format of the ACE structure depends on the value of the second
byte in the structure, which specifies the ACE type. The $FORMAT_ACL system
service description describes each ACE type and its format.

System Service Descriptions
$CH KP RO

You can specify the CHP$_ACL item multiple times to point to multiple segments
of an access control list. You can specify a maximum of 20 segments. The
segments are processed in the order specified.

CHP$_ACMODE
A byte that defines the accessor's processor access mode. The following access
modes and their symbols are defined in the $PSLDEF macro.

Symbol

PSL$C_USER

PSL$C_SUPER
PSL$C_EXEC

PSL$C_KERNEL

Access Mode

User

Supervisor
Executive

Kernel

If CHP$_ACMODE is not specified, access mode is not used to determine access.

CHP$_ADDRIGHTS
A vector that points to an additional rights list segment to be appended to the
existing rights list. Each entry of the rights list is a quadword data structure
consisting of a longword containing the identifier value, followed by a longword
containing a mask identifying the attributes of the holder. The $CHKPRO service
ignores the attributes.

A maximum of 11 rights descriptors is allowed. If you specify CHP$_
ADDRIGHTS without specifying CHP$_RIGHTS, the accessor's rights list
consists of the rights list specified by the CHP$_ADDRIGHTS item codes and the
rights list of the current process.

If you specify CHP$_RIGHTS and CHP$_ADDRIGHTS, you should be aware of
the following:

• CHP$_RIGHTS must come first.

• The accessor's UIC is the identifier of the first entry in the rights list specified
by the CHP$_RIGHTS item code.

• The accessor's rights list consists of the rights list specified by the CHP$_
RIGHTS item code and the CHP$_ADDRIGHTS item codes.

CHP$_ALARMNAME
Address of a buffer to receive the alarm name from any Alarm ACE contained in
the object's ACL. If the object does not have security alarms enabled, $CHKPRO
returns retlenadr as 0. If a matching Alarm ACE exists, the string SECURITY
will be returned.

CHP$_AUDIT _LIST
A security auditing item list containing additional information to be included in
any resulting security audit. The bufadr argument points to the beginning of
an $AUDIT_EVENT item list. See the itmlst argument of the $AUDIT_EVENT
system service for a list of valid security auditing item codes. Note that the
NSA$_EVENT_TYPE and NSA$_EVENT_SUBTYPE items are ignored when
auditing with $CHKPRO. The CHP$V _AUDIT flag must be specified.

SYS1-101

System Service Descriptions
$CHKPRO

SYS1-102

CHP$_AUDITNAME
Address of a buffer to receive the audit name from any Audit ACE contained in
the object's ACL. If the object does not have auditing enabled, $CHKPRO returns
retlenadr as 0. If a matching Audit ACE exists, the string SECURITY will be
returned.

CHP$_FLAGS
A longword that defines various aspects of the protection check. The symbols in
the following table are offsets to the bits within the longword. You can also obtain
the values as masks with the appropriate bit set by using the prefix CHP$M
rather than CHP$V. The following symbols are defined only in the system macro
library ($CHPDEF).

Symbol

CHP$V_ALTER

CHP$V _AUDIT

CHP$V_CREATE

CHP$V _DELETE

CHP$V _FLUSH

CHP$V _INTERNAL

CHP$V _MANDATORY

CHP$V _NOFAILAUD

CHP$V _NOSUCCAUD
CHP$V _OBSERVE

CHP$V _SERVER

CHP$V_USEREADALL

Access

Accessor desires write access to object.

Access audit requested.

Perform the audit as an object creation event.

Perform the audit as an object deletion event.

Force audit buffer flush.

Audit on behalf of the Trusted Computing Base
(TCB). Reserved to Digital.

Force the object access event to be audited.

Do not perform audits for failed access.

Do not perform audits for successful access.

Accessor desires read access to object.

Audit on behalf of a TCB server process.

Accessor is eligible for READALL privilege.

The default for CHP$_FLAG is CHP$M_OBSERVE and CHP$M_ALTER.

The primary purpose of the CHP$V_OBSERVE and CHP$V_ALTER flags is as
latent support for a mandatory (lattice) security policy, such as that provided by
the Security Enhanced VMS (SEVMS) offering.

CHP$_MATCHEDACE
This output item is a variable-length data structure containing the first Identifier
ACE in the object's ACL that allowed or denied the accessor to access the object.
See the $FORMAT_ACL system service for a description of an Identifier ACE
format.

CHP$_MODE
A byte that defines the object's owner access mode. The following access modes
of the object's owner and their symbols are defined in the system macro library
($PSLDEF).

Symbol

PSL$C_USER

PSL$C_SUPER

Access Mode

User

Supervisor

Symbol

PSL$C_EXEC

PSL$C_KERNEL

CHP$_MODES

Access Mode

Executive

Kernel

System Service Descriptions
$CHKPRO

A quadword that defines the object's access mode protection. You specify a 2-
bit access mode as shown in CHP$_MODE for each possible access type. The
following diagram illustrates the format of an access mode vector for bit numbers.

31 109876543210

ICIDIEIWIR

63 32

ZK-1943-GE

Each pair of bits in the access mode vector represents the access mode for the
particular type of access. For example, bits <6:7> represent the access mode
value used to check for delete access.

CHP$_0BJECT_CLASS
A character string containing the protected object class associated with the object.
The object class string is used to determine whether any security auditing is
enabled for the object access event. This item code is required when the CHP$_
AUDIT flag is specified.

CHP$_0BJECT _NAME
A character string containing the object name associated with the protection
check. The object name string is included in any resulting security audit. If an
object name string is not specified, the string "<not available>" is substituted in
any security audit for all protected object classes other than FILE. For FILE class
audits, it is assumed that the caller has supplied an object name by using the
auditing item list (NSA$_0BJECT_NAME).

CHP$_0WNER
A longword describing the object's owner identifier (UIC or general identifier).
This might be either a UIC format identifier or a general identifier.

Note

CHP$_0WNER is used in conjunction with the CHP$_PROT item code.

CHP$_PRIV
A quadword that defines an accessor's privilege mask. Each bit in the mask has
a symbolic name, defined by the $PRVDEF macro. You form the bit array by
specifying the symbolic name of each privilege in a logical OR operation. See the
$SETPRV system service for the symbolic name and description of each privilege.

CHP$_PRIVUSED
A longword mask of flags representing privileges used to gain the requested
access.

SYS1-103

System Service Descriptions
$CH KP RO

SYS1-1o4

You can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than CHP$V. The symbols are defined in the system macro
library ($CHPDEF). The following symbols are used as offsets to the bits within
the longword.

Symbol

CHP$V _SYSPRV
CHP$V_GRPPRV

CHP$V _BYPASS

CHP$V _READALL
CHP$V_OPER

CHP$V_GRPNAM

CHP$V _SYSNAM

CHP$V_GROUP
CHP$V _WORLD

CHP$V _PRMCEB

CHP$V _UPGRADE

CHP$V _DOWNGRADE

CHP$_PROT

Meaning

SYSPRV was used to gain the requested access.

GRPPRV was used to gain the requested access.

BYPASS was used to gain the requested access.
READALL was used to gain the requested access.

OPER was used to gain the requested access.

GRPNAM was used to gain the requested access.

SYSNAM was used to gain the requested access.

GROUP was used to gain the requested access.
WORLD was used to gain the requested access.

PRMCEB was used to gain the requested access.

UPGRADE was used to gain the requested
access.
DOWNGRADE was used to gain the requested
access.

A vector describing the object's SOGW protection mask. The following diagram
depicts the format for describing the object's protection.

15 11 7

World Group
I I

I I
...L ...L
T T

I I
...L ...L
I I

I I
...L ...L
T T

I I
I -• I I

I I
...L ...L
T T

I I
_J ...L
I I

j_ j_

3

Owner
I

I
...L

I
...L
T

I
...L
T

I
...L
I

I
...L
T

I
...L
I

j_

System
I

I
...L
T

I
...L -.
I

...L
T

I
...L
I

I
...L
T

I
I

j_

O Access Bits

0-3

4-7

8-11

12-15

16-19

20-23

24-27

28-31

ZK-1704-GE

The first word contains the first four protection bits for each field, the second
word the next four protection bits, and so on. If a bit is clear, access is granted.
By convention, the first five protection bits are (from right to left in each field
of the first word) read, write, execute, delete, and (in the low-order bit in each
field of the second word) control access. You can specify the CHP$_PROT item
in increments of words; if a short buffer is given, zeros are assumed for the
remainder.

Description

System Service Descriptions
$CHKPRO

The $CHKPRO service compares the low-order four bits of CHP$_ACCESS
against one of the 4-bit fields in the low-order word of CHP$_PROT, the next
four bits of CHP$_ACCESS against one of the 4-bit fields in the next word of
CHP$_PROT, and so on. The $CHKPRO service chooses a field of CHP$_PROT
based on the privileges specified for the accessor (CHP$_PRIV), the UICs of the
accessor (CHP$_RIGHTS or CHP$_ADDRIGHTS, or both), and the object's owner
(CHP$_0WNER).

You must also specify the identifier of the object's owner with CHP$_0WNER
when you use CHP$_PROT.

CHP$_RIGHTS
A vector that points to an accessor's rights list. The accessor's UIC is the
identifier of the first entry in the rights list. The accessor's rights list consists of
the rights list specified by CHP$_RIGHTS and, optionally, the rights list specified
by the CHP$_ADDRIGHTS item codes.

CHP$_UIC
A longword specifying the accessor's owner UIC. This item code may be used
to avoid having to pass an entire rights list segment via the CHP$_RIGHTS
item code. If CHP$_RIGHTS and then CHP$_UIC are specified, in that order,
$CHKPRO initializes the local rights list and then replaces just the owner UIC
with the value of CHP$_UIC.

The Check Access Protection service determines whether an accessor with the
specified rights and privileges can access an object with the specified attributes.
The service invokes the system's access protection check, which permits layered
products and other subsystems to build protected structures that are consistent
with the protection facilities provided by the base operating system. The service
also allows a privileged subsystem to perform protection checks on behalf of a
requester.

If the accessor can access the object, $CHKPRO returns the SS$_NORMAL status
code; otherwise, $CHKPRO returns SS$_NOPRIY.

The item list arguments accepted by this service permit you to specify the
protection of the object being accessed, the rights and privileges of the accessor,
and the type of access desired.

At minimum, the following item codes should be specified to perform a third-party
protection check:

CHP$_ACCESS
CHP$_0WNER
CHP$_PRIV
CHP$_PROT
CHP$_UIC

The default for information relating to the subject is to use the current process
information (for example, privileges). The default for missing object information
is a representation of 0.

The caller may also request that an object access audit be performed if security
auditing has been enabled for the object class or if auditing ACEs are contained
in the object's ACL. The CHP$V _AUDIT flag requests an access audit. This

SYS1-105

System Service Descriptions
$CH KP RO

requires that the caller be in executive or kernel mode or possess the AUDIT
privilege.

Normally, $CHKPRO generates an object access audit when an audit is required.
The caller may specify the CHP$V_CREATE flag to force an object creation audit
instead of an object access audit. Similarly, the CHP$V _DELETE flag forces an
object deletion audit. The CHP$_AUDIT_LIST item code may be used to specify
additional information to be included in any resulting audit records.

Required Access or Privileges
AUDIT privilege is required when requesting an audit.

Required Quota
None

Related Services
$AUDIT_EVENT, $CHECK_ACCESS, $CREATE_USER_PROFILE, $FORMAT_
ACL

Condition Values Returned

SYS1-106

SS$_NORMAL

SS$_ACCVIO

SS$_ACLFULL
SS$_BADPARAM

SS$_BUFFEROVF

SS$_IVACL

SS$_IVBUFLEN

SS$_NOAUDIT
SS$_NOPRIV

SS$_RIGHTSFULL

The service completed successfully; the desired
access is granted.

The item list cannot be read by the caller, or one
of the buffers specified in the item list cannot be
written by the caller.

More than 20 CHP$_ACL items were given.
The argument is invalid.

The output buffer is too small and the protection
check succeeded.
You supplied an invalid ACL segment with the
CHP$_ACL item.

The output buffer is too small and the protection
check failed.
Caller lacks privilege to request audit.
The desired access is not granted.

More than 11 CHP$_ADDRIGHTS items were
given.

System Service Descriptions
$CLRCLUEVT (Alpha Only)

$CLRCLUEVT (Alpha Only)
Clear Cluster Event

Format

Arguments

On Alpha systems, removes one or more notification requests previously
established by a call to SYS$SETCLUEVT.

SYS$CLRCLUEVT [handle] ,[acmode] ,[event]

handle
Open VMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification of the AST request to be canceled. The handle argument uniquely
identifies the request and is returned when the $SETCLUEVT service is called.

acmode
Open VMS usage: longword (unsigned)
type: read only
access: by value

Access mode of the cluster configuration event to be canceled. The acmode
argument is a longword containing the access mode.

Each access mode has a symbolic name. The $PSLDEF macro defines the
following symbols for the four access types.

Symbol

PSL$C_KERNEL

PSL$C_EXEC
PSL$C_SUPER

PSL$C_USER

event

Access Mode

Kernel

Executive
Supervisor

User

Open VMS usage: event_code
type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of cluster configuration event for which an AST is
no longer to be delivered. The event argument is a value indicating which type
of event is no longer of interest.

Each event type has a symbolic name. The $CLUEVTDEF macro defines the
following symbolic names.

SYS1-107

System Service Descriptions
$CLRCLUEVT (Alpha Only}

Description

Symbolic Name

CLUEVT$C_ADD

CLUEVT$C_REMOVE

Description

One or more Open VMS nodes have been added to
the VMScluster system.

One or more Open VMS nodes have been removed
from the VMScluster system.

The Clear Cluster Event service removes one or more notification requests
previously established by a call to the $SETCLUEVT service. $CLRCLUEVT
verifies that the parameters specify a valid request, and dequeues and deallocates
the request.

A valid request specifies either the handle argument or the event argument. If
the handle argument is specified, the acmode argument must match the value
recorded when $SETCLUEVT was called. If the event argument is specified,
all requests matching the access mode are canceled, provided that the access
mode is not greater than the caller's mode. If the access mode parameter is more
privileged than the mode of the caller, the mode of the caller will be used.

Required Access or Privileges
None

Required Quota
None

Related Services
$SETCLUEVT, $TSTCLUEVT

Condition Values Returned

SYS1-108

SS$_NORMAL

SS$_BADPARAM

SS$_NOSUCHOBJ

The service completed successfully.
There is an unsatisfactory combination of
event and handle parameters, or the event
was specified incorrectly.
No request was found that matches the
description supplied.

$CLREF

System Service Descriptions
$CLREF

Clear Event Flag

Format

Argument

Clears (sets to O) an event flag in a local or common event flag cluster.

SYS$CLREF efn

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be cleared. The efn argument is a longword
containing this number; however, $CLREF uses only the low-order byte.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS1-109

System Service Descriptions
$CM EXEC

$CM EXEC
Change to Executive Mode

Format

Arguments

mm•
Description

EMMI

SYS1-110

Changes the access mode of the calling process to executive mode.

SYS$CMEXEC routin ,[arglst]

routin
Open VMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Routine to be executed while the process is in executive mode. The routin
argument is the address of this routine.

arglst
Open VMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

Alpha systems require a pointer to a valid argument list or a value of 0 in
the arglst argument. This means that the arglst argument must contain an
accessible virtual address for an argument list, the first longword of which must
be a valid list size.+

The Change to Executive Mode service allows a process to change its access mode
to executive, execute a specified routine, and then return to the access mode in
effect before the call was issued.

The $CMEXEC service uses standard procedure calling conventions to pass
control to the specified routine.

On Alpha systems, to conform to the Open VMS calling standard, you must not
omit the arglst argument.+

On VAX systems, if no argument list is specified, the argument pointer (AP)
contains a 0. However, to conform to the Open VMS calling standard, you must
not omit the arglst argument.+

On Alpha and VAX systems, when you use the $CMEXEC service, the system
service dispatcher modifies the registers before entry into the target routine. The
specified routine must exit with a RET instruction and should place a status
value in RO before returning.

System Service Descriptions
$CM EXEC

All of the Change Mode system services are intended to allow for the execution
of a routine at an access mode more (not less) privileged than the access mode
from which the call is made. If $CMEXEC is called while a process is executing
in kernel mode, the routine specified by the routin argument executes in kernel
mode, not executive mode.

Required Access or Privileges
To call this service, the process must either have CMEXEC or CMKRNL privilege
or be currently executing in executive or kernel mode.

Required Quota
None

Related Services
None

Condition Values Returned

SS$_NOPRIV

All other values

The process does not have the privilege to change
mode to executive.

The routine executed returns all other values.

SYS1-111

System Service Descriptions
$CMEXEC_64 (Alpha Only)

$CMEXEC_64 (Alpha Only)
Change to Executive Mode with Quadword Argument List

· Format

Arguments

Description

SYS1-112

On Alpha systems, changes the access mode of the calling process to executive
mode.

This service accepts 64-bit addresses.

SYS$CMEXEC_64 routin_64 ,arglst_64

routin_64
Open VMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by 32-bit or 64-bit reference

Routine to be executed while the process is in executive mode. The routin_64
argument is the 32-bit or 64-bit address of this routine.

arglst_64
Open VMS usage: arg_list
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Argument list to be passed to the routine specified by the routin_64 argument.
The arglst_64 argument is the 32-bit or 64-bit address of this argument list.

Alpha systems require a pointer to a valid argument list or a value of 0 in the
arglst_64 argument. This means that the arglst_64 argument, if non-zero, must
contain an accessible virtual address for an argument list, the first quadword of
which must be a number between 0 and 255 specifying the number of quadwords
that follow it on the list.

The Change to Executive Mode with Quadword Argument List service allows a
process to change its access mode to executive, execute a specified routine, and
then return to the access mode in effect before the call was issued.

The $CMEXEC_64 service uses standard procedure calling conventions to pass
control to the specified routine.

When you use the $CMEXEC_64 service, the system modifies the registers
before entry into the target routine. The specified routine must exit with a RET
instruction.

All of the Change Mode system services are intended to allow for the execution of
a routine at an access mode more (not less) privileged than the access mode from
which the call is made. If $CMEXEC_64 is called while a process is executing in
kernel mode, the routine specified by the routin_64 argument executes in kernel
mode, not executive mode.

Required Access or Privileges

System Service Descriptions
$CMEXEC_64 (Alpha Only)

To call this service, the process must either have CMEXEC or CMKRNL privilege
or be currently executing in executive or kernel mode.

Required Quota
None.

Related Services
$CMEXEC, $CMKRNL, $CMKRNL_64

Condition Values Returned

SS$_NOCMEXEC

All other values

The process does not have the privilege to change
mode to executive.

The routine executed returns all other values.

SYS1-113

System Service Descriptions
$CM KR NL

$CMKRNL
Change to Kernel Mode

Format

Arguments

IJM'fl

Description

i;iM.fi

SYS1-114

Changes the access mode of the calling process to kernel mode. This service
allows a process to change its access mode to kernel, execute a specified routine,
and then return to the access mode in effect before the call was issued.

SYS$CMKRNL routin ,[arglst]

routin
Open VMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Routine to be executed while the process is in kernel mode. The routin argument
is the address of this routine.

arglst
Open VMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

Alpha systems require a pointer to a valid argument list or a value of 0 in
the arglst argument. This means that the arglst argument must contain an
accessible virtual address for an argument list, the first longword of which must
be a valid list size.+

The Change to Kernel Mode service allows a process to change its access mode to
kernel, execute a specified routine, and then return to the access mode in effect
before the call was issued.

The $CMKRNL service uses standard procedure calling conventions to pass
control to the specified routine.

On Alpha systems, to conform to the OpenVMS calling standard, you must not
omit the arglst argument.+

On VAX systems, if no argument list is specified, the argument pointer (AP)
contains a 0. However, to conform to the Open VMS calling standard, you must
not omit the arglst argument. Programs should not use registers R2 through Rll
to pass context between the calling and called procedures.+

On Alpha and VAX systems, when you use the $CMKRNL service, the system
service dispatcher modifies the registers before entry into the target routine. The
specified routine must exit with a RET instruction and should place a status
value in RO before returning.

System Service Descriptions
$CM KR NL

The system loads R4 with the address of the process control block (PCB).

Required Access or Privileges
To call the $CMKRNL service, a process must either have CMKRNL privilege or
be currently executing in executive or kernel mode.

Required Quota
None

Related Services
None

Condition Values Returned

SS$_NOPRIV

All other values

The process does not have the privilege to change
mode to kernel.

The routine executed returns all other values.

SYS1-115

System Service Descriptions
$CMKRNL_64 (Alpha Only)

$CMKRNL_64 (Alpha Only)
Change to Kernel Mode with Quadword Argument List

Format

Arguments

Description

SYS1-116

On Alpha systems, changes the access mode of the calling process to kernel
mode. This service allows a process to change its access mode to kernel, execute a
specified routine, and then return to the access mode in effect before the call was
issued.

This service accepts 64-bit addresses.

SYS$CMKRNL_64 routin_64 ,arglst_64

routin_64
Open VMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by 32-bit or 64-bit reference

Routine to be executed while the process is in kernel mode. The routin_64
argument is the 32-bit or 64-bit address of this routine.

arglst_64
Open VMS usage: arg_list
type: quadword (uns~gned)
access: read only
mechanism: by 32-bit or 64-bit reference

Quadword argument list to be passed to the routine specified by the routin_
64 argument. The routin_64 argument is the 32-bit or 64-bit address of this
routine.

Alpha systems require a pointer to a valid argument list or a value of 0 in the
arglst_64 argument. This means that the arglst_64 argument, if non-zero, must
contain an accessible virtual address for an argument list, the first quadword of
which must be a number between 0 and 255 specifying the number of quadwords
that follow it on the list.

The Change to Kernel Mode with Quadword Argument List service allows a
process to change its access mode to kernel, execute a specified routine, and then
return to the access mode in effect before the call was issued.

The $CMKRNL_64 service uses standard procedure calling conventions to pass
control to the specified routine.

When you use the $CMKRNL_64 service, the system modifies the registers before
entry into the target routine. The system loads R4 with the address of the process
control block (PCB). The specified routine (if programmed in MACR0-32) must
exit with a RET instruction.

Required Access or Privileges

System Service Descriptions
$CMKRNL_64 {Alpha Only)

To call the $CMKRNL_64 service, a process must either have CMKRNL privilege
or be currently executing in executive or kernel mode.

Required Quota
None.

Related Services
$CMEXEC, $CMEXEC_64, $CMKRNL

Condition Values Returned

SS$_NOCMKRNL

All other values

The process does not have the privilege to change
mode to kernel.
The routine executed returns all other values.

SYS1-117

System Service Descriptions
$CPU_CAPABILITIES (Alpha Only)

$CPU_CAPABILITIES (Alpha Only)
Modify CPU User Capabilities

Format

Arguments

SYS1-118

On Alpha systems, allows modification of the user capability set for a specified
CPU, or for the global user capability CPU default.

This service accepts 64-bit addresses.

SYS$CPU_CAPABILITIES cpu_id [,select_mask] [,modify_mask] [,prev_mask]
[,flags]

cpu_id
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Identifier of the CPU whose user capability mask is to be modified or returned.
The cpu_id argument is a longword containing this number, which is in the
supported range of individual CPUs from 0 to SYI$_MAX_CPUS -1.

Specifying the constant CAP$K_ALL_ACTIVE_CPUS applies the current
modification operation to all CPUs currently in the active set, and to the default
CPU initialization context in SCH$GL_DEFAULT_CPU_CAP. If the prev_mask
argument is also supplied, the previous default CPU initialization context in
SCH$GL_DEFAULT_CPU_CAP will be returned rather than any specific CPU
state.

To modify only the user capabilities in SCH$GL_DEFAULT_CPU_CAP, the
flags argument has a bit constant CAP$M_FLAG_DEFAULT_ONLY. When this
bit is set, all service operations are performed on the global cell rather than
on an individual CPU specified in the cpu_id argument. This bit does not
supersede the CAP$K_ALL_ACTIVE_CPUS constant, however. If both constants
are specified, CAP$K_ALL_ACTIVE_CPUS take precedence; nevertheless, the
operations to SCH$GL_DEFAULT_CPU are identical because that function is a
direct subset of the other.

select_mask
Open VMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying which bits of the specified CPU's user capability mask are to
be modified. The select_mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding user
capability is to be modified.

The individual user capability bits in select_mask can be referenced by their
symbolic constant names, CAP$M_USER1 through CAP$M_USER16. These
constants (not zero-relative) specify the position in the mask quadword that
corresponds to the bit name. Multiple capabilities can be selected by ORing
together the appropriate bits.

System Service Descriptions
$CPU_CAPABILITIES (Alpha Only)

The constant CAP$K_ALL_ USER, when specified in the select_mask argument,
selects all user capability bits.

modify_mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying the settings for those capabilities selected in the select_mask
argument. The modify _mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding user
capability is to be added to the specified CPU; when clear, the corresponding user
capability is to be removed from the specified CPU.

The bit constants CAP$M_ USER1 through CAP$M_ USER16 can be used to
modify the appropriate bit position in modify _mask. Multiple capabilities can be
modified by ORing together the appropriate bits.

To add a specific user capability to the specified CPU, that bit position must be
set in both select_mask and modify _mask. To remove a specific user capability
from the specified CPU, that bit position must be set in select_mask and clear in
modify _mask.

The symbolic constant CAP$K_ALL_USER_ADD, when specified in modify_
mask, indicates that all capabilities specified in select_mask are to be added
to the current user capability set. The constant CAP$K_ALL_USE.R_REMOVE
indicates that all capabilities specified are to be cleared from the set.

prev_mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Previous user capability mask for the specified CPU before execution of this
call to $CPU_CAPABILITIES. The prev_mask argument is the 32-bit or 64-bit
address of a quadword into which $CPU_CAPABILITIES writes a quadword bit
mask specifying the previous user capabilities.

If this argument is specified in conjunction with CAP$K_ALL_ACTIVE_CPUS
as the cpu_id selection constant or with CAP$M_FLAG_DEFAULT_ONLY, the
user capability portion of the default boot initialization state context SCH$GL_
DEFAULT_CPU_CAP will be returned.

flags
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Options selected for the user capability modification. The flags argument is
a quadword bit vector wherein a bit corresponds to an option. Only the bits
specified below are used; the remainder of the quadword bits are reserved and
must be 0.

SYS1-119

System Service Descriptions
$CPU_CAPABILITIES (Alpha Only)

Description

SYS1-120

Each option (bit) has a symbolic name, defined by the $CAPDEF macro. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option:

Symbolic Name

CAP$M_FLAG_DEFAULT_ONLY

CAP$M_FLAG_CHECK_CPU

Description

Indicates that the specified operations
are to be performed on the global context
cell instead of on a specific CPU. This bit
supersedes any individual CPU specified
in cpu_id but does not override the
all active set behavior (CAP$K_ALL_
ACTIVE_CPUS). Specifying this bit
constant applies this operation to the
default startup capabilities for all CPUs
booted for the first time.
Determines whether the kernel thread
can be left in a non-runnable state under
some circumstances. No operation of
this service will allow a transition from
a runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_ CHECK_
CPU is set or flags is not specified, the
kernel thread will be checked to ensure it
can safely run on one of the CPUs in the
active set. If CAP$M_FLAG_ CHECK_
CPU is not set, any state operations on
kernel threads already in a blocked state
will be allowed.

The Modify CPU User Capabilities system service, based on the arguments
select_mask and modify _mask, adds or removes user capabilities for the
specified cpu_id. If specified, the previous capability mask is returned in prev _
mask. With the modify_mask argument, multiple user capabilities for a CPU
can be added or removed in the same system service call.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify _mask is specified, then select_mask must be specified as an argument.
If modify _mask is not specified, then no modifications are made to the user
capability mask for the specified CPU. In this case, select_mask is ignored. If
prev _mask is not specified, then no previous mask is returned.

No service state changes that will place any currently runnable kernel thread
into a blocked state will be allowed.

If CAP$K_ALL_ACTIVE_CPUS is specified in cpu_id, the user capability
modifications are performed on all CPUs currently in the active set, as well as
the global initialization cell. If the bit constant CAP$M_FLAG_DEFAULT_ONLY
is set in the flags argument, the user capability modifications are made only to

System Service Descriptions
$CPU_CAPABILITIES (Alpha Only)

the global initialization cell, regardless of what individual CPU is specified in
cpu_id.

Required Access or Privileges
The caller must have both ALTPRI and WORLD privileges to call
SYS$CPU_CAPABILITIES to modify CPU user capabilities.

No privileges are required if SYS$CPU_CAPABILITIES is called only to retrieve
the current user capabilities mask from the specified CPU or global default.

I

Related Services
$PROCESS_ CAPABILITIES

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_NOPRIV
SS$_CPUCAP

SS$_INSFARG

The service completed successfully.
One of more arguments has an invalid value or
the specified CPU is not in the configuration.

The service cannot access the locations specified
by one or more arguments.

Insufficient privilege for attempted operation.
Attempted operation would place one or more
processes in an unrunnable state.

Fewer than the required number of arguments
were specified or no operation was specified.

SYS1-121

System Service Descriptions
$CREATE_BUFOBJ_64 {Alpha Only)

$CREATE_BUFOBJ_64 (Alpha Only)
CrE!ate Buffer Object

Format

Arguments

SYS1-122

On Alpha systems, creates a buffer object out of a range of pages.

This service accepts 64-bit addresses.

SYS$CREATE_BUFOBJ_64 start_va_64 ,length_64 ,acmode ,flags ,return_va_64
, return_length_64 ,buffer _handle_64

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

Starting virtual address of the pages to be included in the buffer object. The
specified virtual address will be rounded down to a CPU-specific page boundary.

The virtual address space must already exist.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be included in the buffer object. The
specified length will be rounded up to a CPU-specific page boundary such that it
includes all CPU-specific pages in the requested range.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel
1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

System Service Descriptions
$CREATE_BUFOBJ_64 (Alpha Only)

The most privileged access mode used is the access mode of the caller. For
the $CREATE_BUFOBJ_64 service to complete successfully, the resultant access
mode must be equal to or more privileged than the access mode already associated
with the pages in the specified input range.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the request options. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $CBODEF macro in
STARLET.MLB and CBODEF.H file in SYS$STARLET_C.TLB define a symbolic
name for each flag. The following table describes each flag that is valid for the
$CREATE_BUFOBJ_64 service:

Flag Value

CBO$M_RETSVA 1

CBO$M_SVA_32 4

return_ va_64
Open VMS usage: address

Description

If set, return the system virtual address in
the return_ va_64 argument instead of the
process virtual address range. (Valid for inner
mode callers only.)

If set, create the buffer object window in 32-bit
SO/Sl space. (By default, this service will
create the window in 64-bit S2 space.)

type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the pages in the buffer object. The
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range in the buffer object. The
return_length_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the length of the virtual address
range in bytes.

buffer _handle_64
Open VMS usage: handle
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which a
buffer handle is returned to be used when referencing the created buffer object.

SYS1-123

System Service Descriptions
$CREATE_BUFOBJ_64 (Alpha Only)

Description

The Create Buffer Object service creates a buffer object for use by the I/O
subsystem. The pages that constitute the buffer object are permanently locked
into physical memory (but not the process's working set) and double mapped into
system space. The net effect is:

• I/O can be initiated to or from the buffer without the need to probe or lock the
buffer pages.

•. The process is still fully swappable.

If the condition value SS$_ACCVIO is returned by this service, a value
cannot be returned in the memory locations pointed to by the return_ va_64,
return_length_64, and buffer_handle_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully made part of the
buffer object before the error occurred. If no pages were made part of the buffer
object, the return_va_64 argument will contain the value -1, and a value is not
returned in the memory location pointed to by the return_length_64 argument.

Required Privileges
No privileges are required if calling $CREATE_BUFOBJ_64 from an inner
mode. If calling from user mode, the process must hold the rights identifier
VMS$BUFFER_OBJECT_USER at the time of the call. This identifier is
normally granted by the system administrator via the AUTHORIZE utility.

Required Quota
No process quota is charged but the pages are charged against a systemwide
limit, system parameter MAXBOBMEM.

Related Services
$CRETVA_64, $DELETE_BUFOBJ, $EXPREG_64

Condition Values Returned

SYS1-124

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXBUFOBJLM

SS$_INSFMEM
SS$_INSFSPTS

SS$_NOBUFOBJID

SS$_NOPRIV

SS$_PAGNOTWRITE

The service completed successfully.
The return_ va_64, return_length_64, or
buffer_handle_64 argument cannot be written
by the caller.

Invalid flags options specified.
Buffer object cannot be created because it would
bring the total number of buffer object pages
above the systemwide limit MAXBOBMEM.

Insufficient dynamic memory.
Insufficient system page table entries.

The process attempted to create a buffer object
from user mode but was not holding required
rights identifier VMS$BUFFER_OBJECT_USER.

Valid flag options were specified but from user
mode.
A page within the address range is not writeable.

SS$_PAGOWNVIO

System Service Descriptions
$CREATE_BUFOBJ_64 (Alpha Only)

The pages could not put into the buffer object
because the access mode associated with the call
to $CREATE_BUFOBJ_64 was less privileged
than the access mode associated with the pages.

SYS1-125

System Service Descriptions
$CREATE_GFILE (Alpha Only)

$CREATE_GFILE {Alpha Only)
Create Permanent Global Disk Fil~ Section

Format

Arguments

SYS1-126

On Alpha systems, creates a permanent global disk file section to which processes
can map.

This service accepts 64-bit addresses.

SYS$CREATE_GFILE gs_name_64 ,ident_64 ,file_offset_64 ,length_64 ,chan
,acmode ,flags ,return_length_64 [,fault_cluster]

gs_name_64
Open VMS usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 64-bit virtual
address of a naturally aligned 32-bit .or 64-bit string descriptor pointing to this
name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.

Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

System Service Descriptions
$CREATE_GFILE (Alpha Only)

The version number is in the second longword and contains two fields: a minor
identification in the low-order 24 bits and a major identification in the high
order 8 bits. You can assign values for these fields by installation convention to
differentiate versions of global sections. If no version number is specified when a
section is created, processes that specify a version number when mapping cannot
access the global section.

file_offset_64
Open VMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Byte offset into the file that marks the beginning of the section. The
file_offset_64 argument is a quadword containing this number. If you do
not specify the file_offset_64 argument or specify it as 0, the section is created
beginning with the first byte in the file.

The file_offset_64 argument must be a multiple of virtual disk blocks.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global disk file section to be created. The length specified
must be 0 or a multiple of virtual disk blocks. If the length specified is 0 or
extends beyond end-of-file (EOF), the global disk file section is created up to and
including the virtual block number that contains EOF.

ch an
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument
is a longword containing this number. The access mode at which the channel was
opened must be equal to or less privileged than the access mode of the caller.

You can use the Open VMS Record Management Services (RMS) macro $OPEN
to access a file; the file options parameter in the file access block must indicate a
user file open (UFO keyword).

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

SYS1-127

System Service Descriptions
$CREATE_GFILE (Alpha Only)

SYS1-128

Value

0

1

2

3

flags

Symbolic Name

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of global section to be created as well as its
characteristics. The flags argument is a longword bit vector in which each bit
corresponds to a flag. The $SECDEF macro and the SECDEF.H file define a
symbolic name for each flag. You construct the flags argument by performing
a logical OR operation on the symbol names for all desired flags. The following
table describes each flag that is valid for the $CREATE_GFILE service:

Flag

SEC$M_CRF

SEC$M_DZRO

SEC$M_GBL

SEC$M_PERM

SEC$M_SYSGBL

SEC$M_WRT

Description

Pages are copy-on-reference. By default, pages are shared.

Pages are demand-zero pages. By default, they are not
zeroed when copied.
Note that SEC$M_DZRO and SEC$M_CRF cannot both
be set and that SEC$M_DZRO set and SEC$M_ WRT clear
is an invalid combination.

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

Pages form a system global section. By default, pages
form a group global section.

Pages form a read/write section. By default, pages form a
read-only section.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

retum_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the global section created. The return_length_64 argument is the
32-bit or 64-bit virtual address of a naturally aligned quadword into which the
service returns the length of the global section in bytes.

Description

fault_cluster
Open VMS usage: byte count
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$CREATE_GFILE (Alpha Only)

Page fault cluster in byte units indicating how many pages are to be brought into
memory when a page fault occurs for a single page. The fault cluster specified
will be rounded up to a multiple of CPU-specific pages.

If this argument is specified as 0, the system default page fault cluster will be
used. If this argument is specified as more than the maximum allowed for the
system, no error will be returned. The systemwide maximum will be used.

The Create Permanent Global Disk File Section service allows a process to create
a permanent global disk file section. Creating a global disk file section involves
defining all or part of a disk file as a section. The global section is created as
entire pages; however, the last page in the section might correspond to less
than a full page of virtual disk blocks. Only the number of virtual disk blocks
specified by the length_64 argument, or as many as exist in the disk file, will be
associated with the disk file section. Upon successful completion of this service,
the return_length_64 argument will contain the length of the global section
created in even multiples of virtual disk blocks.

The security profile of the file "is used to determine access to the global section.
For a global disk file section to allow write access to the file during the mapping
of the global section, the channel used to open the file must allow write access to
the file.

Required Privileges
In order to create a global section, the process must have the following privileges:

• SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section

Required Quota
None.

Related Services
$CRMPSC, $CRMPSC_GFILE_64, $DGBLSC, $MGBLSC, $MGBLSC_64

Condition Values Returned

SS$_CREATED

SS$_ACCVIO

SS$_CHANVIO

The service completed successfully. The specified
global section did not previously exist and has
been created.
The gs_name_64 argument or the
return_length_64 argument cannot be read
by the caller.
The specified channel was assigned from a more
privileged access mode.

SYS1-129

System Service Descriptions
$CREATE_GFILE (Alpha Only)

SS$_DUPLNAM

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_GPTFULL

SS$_GSDFULL

SS$_IVCHAN

SS$_IVCHNLSEC

SS$_MDENT

SS$_IVLOGNAM

SS$_IVLVEC

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_LEN_NOTBLKMULT

SS$_NOPRMGBL

SS$_NOSYSGBL

SS$_NOTFILEDEV

SS$_NOWRT

SS$_0FF _NOTBLKALGN

SS$_SECTBLFUL

SS$_TOOMANYLNAM

SYS1-130

A global section of the same name already exists;
a new global section was not created.
The file_offset_64 argument specified is beyond
the logical end-of-file.

Process has exceeded the byte count quota; the
system was unable to map the requested file.
There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.

An invalid channel number was specified; the
channel number specified was 0 or a channel
that is unassigned.
The channel number specified is currently active,
or there are no files opened on the specified
channel.
An invalid channel number was specified; the
channel number specified is larger than the
number of channels available.
The specified global section name has a length of
0 or has more than 43 characters.

The specified section was not installed using the
/PROTECT qualifier.

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.

The match control field of the global section
identification is invalid.
The length_64 argument is not a multiple of
virtual disk blocks.

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

The process does not have the privileges to create
or delete a system global section (SYSGBL).

The device is not a file-oriented, random-access,
or directory device.

The file is read-only, and the flag bit
SEC$M_CRF is not set.

The file_offset_64 argument is not a multiple of
virtual disk blocks.

There are no entries available in the system
global section table.
The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

System Service Descriptions
$CREATE_GPFILE {Alpha Only)

$CREATE_GPFILE (Alpha Only)
Create Permanent Global Page File

Format

Arguments

On Alpha systems, creates a permanent global page file section to which processes
can map.

This service accepts 64-bit addresses.

SYS$CREATE_GPFILE gs_name_64 ,ident_64 ,prot ,length_64 ,acmode ,flags

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

SYS1-131

System Service Descriptions
$CREATE_GPFILE (Alpha Only)

SYS1-132

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page file section. The mask contains four
4-bit fields. Bits are read from right to left in each field. The following diagram
depicts the mask:

+---------------+---------------+---------------+---------------+
I World I Group I Owner I System I

+---------------+---------------+---------------+---------------+
I D I E I w I R I D I E I w I R I D I E I w I R I D I E ·1 w I R I

+---------------+---------------+---------------+---------------+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user. Only read, write, and execute
access are meaningful for section protection. Delete access bits are ignored.
Read access also grants execute access for those situations where execute access
applies. If 0 is specified, read access and write access are granted to all users.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global page file section to be created. The length_64
argument must be specified as a multiple of the CPU-specific page size. A length
of 0 cannot be specified.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
.four access modes:

Description

Value

0

1

2

3

flags

Symbolic Name

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

System Service Descriptions
$CREATE_GPFILE (Alpha Only)

Access Mode

Kernel

Executive

Supervisor

User

Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of global section to be created as well as its
characteristics. The flags argument is a longword bit vector in which each bit
corresponds to a flag. The $SECDEF macro and the SECDEF.H file define a
symbolic name for each flag. You construct the flags argument by performing
a logical OR operation on the symbol names for all desired flags. The following
table describes the flags that are valid for the $CREATE_GPFILE service:

Flag

SEC$M_DZRO

SEC$M_GBL

SEC$M_PAGFIL

SEC$M_PERM

SEC$M_SYSGBL

SEC$M_WRT

Description

Pages are demand-zero pages.

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.
Pages form a global page-file section. SEC$M_PAGFIL
also implies SEC$M_ WRT and SEC$M_DZRO. By default,
this flag is always present in this service and cannot be
disabled.
Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

Pages form a system global section. By default, pages
form a group global section.
Pages form a read/write section. By default, this flag is
always present in this service and cannot be disabled.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set.

The Create Permanent Global Page File Section service allows a process to
create a permanent global page file section. Global page file sections contain
demand-zero allocation pages that are writable and backed up by the system page
file. All pages in the global page file section are shared by all processes that map
to the global section.

SYS1-133

System Service Descriptions
$CREATE_GPFILE (Alpha Only)

Required Privileges
In order to create a permanent global page file section, the process must have the
following privileges:

• SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section

Required Quota
The systemwide number of global page file pages is limited by the system
parameter GBLPAGFIL.

Related Services
$CRMPSC, $CRMPSC_GPFILE_64, $DGBLSC, $MGBLSC, $MGBLSC_64

Condition Values Returned

SS$_CREATED

SS$_ACCVIO

SS$_DUPLNAM

SS$_GPTFULL

SS$_GSDFULL

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_LEN_NOTPAGMULT

SS$_NOPRMGBL

SS$_NOSYSGBL

SS$_SECTBLFUL

SS$_TOOMANYLNAM

SYS1-134

The service completed successfully. The specified
global section did not previously exist and has
been created.

The gs_name_64 descriptor cannot be read by
the caller.

A global section of the same name already exists;
a new global section was not created.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.
The specified global section name has a length of
0 or has more than 43 characters.

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.

The match control field of the global section
identification is invalid.

The length_64 argument is not a multiple of
CPU-specific pages or was specified as 0.

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

The process does not have the privileges to create
or delete a system global section (SYSGBL).
There are no entries available in the system
global section table.

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

System Service Descriptions
$CREATE_GPFN (Alpha Only)

$CREATE_GPFN (Alpha Only)
Create Global Page Frame Section

Format

Arguments

On Alpha Systems, creates a permanent page frame section to which processes
can map.

This service accepts 64-bit addresses.

SYS$CREATE_GPFN gs_name_64 ,ident_64 ,prot ,start_pfn ,page_count ,acmode
,flags

gs_name_64
Open VMS usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.

Match if the major identifications are equal
and the minor identification of the mapper is

. less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

SYS1-135

System Service Descriptions
$CREATE_GPFN (Alpha Only)

SYS1-136

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page frame section.

The mask contains four 4-bit fields. Bits are read from right to left in each field.
The following diagram depicts the mask:

+---------------+---------------+---------------+---------------+
I World I Group I Owner I System I

+---------------+---------------+---------------+---------------+
I D I E I w I R I D I E I w I R I D I E I w I R I D I E I w I R I

+---------------+---------------+---------------+---------------+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user. Only read, write, and execute
access are meaningful for section protection. Delete access bits are ignored.
Read access also grants execute access for those situations where execute access
applies. If zero is specified, read access and write access are granted to all users.

start_pfn
Open VMS usage: page frame number
type: longword (unsigned)
access: read only
mechanism: by value

The CPU-specific page frame number where the section begins in memory.

page_count
OpenVMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Length of the page frame section in CPU-specific pages.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

Description

System Service Descriptions
$CREATE_GPFN (Alpha Only)

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the page frame section to be created.
The flags argument is a longword bit vector in which each bit corresponds to a
flag. The $SECDEF macro and the SECDEF.H file define a symbolic name for
each flag. You construct the flags argument by performing a logical OR operation
on the symbol names for all desired flags. The following table describes the flags
that are valid for the $CREATE_GPFN service:

Flag

SEC$M_GBL

SEC$M_PERM

SEC$M_PFNMAP

SEC$M_SYSGBL

SEC$M_WRT

Description

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.

Pages form a system global page frame section. By
default, pages form a group global page frame section.

Pages form a read/write section. By default, pages form a
read-only section.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

The Create Permanent Global Page Frame Section service allows a process to
create a global page frame section. All global page frame sections are permanent.
Pages mapped to a global page frame section are not included in or charged
against the process's working set; they are always valid. Do not lock these pages
in the working set by using $LKWSET_64; this can result in a machine check if
they are in I/O space.

SYS1-137

System Service Descriptions
$CREATE_GPFN {Alpha Only)

Required Privileges
In order to create a permanent global page frame section, the process must have
the following privileges:

• SYSGBL privilege to create a system global section. (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section.

• PFNMAP privilege to create a page frame section.

Required Quota
None.

Related Services
$CRMPSC, $CRMPSC_GPFN_64, $DGBLSC, $MGBLSC, $MGBLSC_GPFN_64

Condition Values Returned

SS$_CREATED

SS$_ACCVIO

SS$_DUPLNAM

SS$_GPTFULL

SS$_GSDFULL

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRMGBL

SS$_NOSYSGBL

SS$_TOOMANYLNAM

SYS1-138

The service completed successfully. The specified
global section did not previously exist and has
been created.
The gs_name_64 argument cannot be read by
the caller.

A global section of the same name already exists;
a new global section was not created.

There is no more room in the system global page
table to set up page table entries for the section.
There is no more room in the system space
allocated to maintain control information for
global sections.
The specified global section name has a length of
0 or has more than 43 characters.
An invalid flag, a reserved flag, or an invalid
combination of flags was specified.
The match control field of the global section
identification is invalid.

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

The process does not have the privileges to create
or delete a system global section (SYSGBL).

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

System Service Descriptions
$CREATE_RDB

$CREATE_RDB
Create Rights Database

Format

Argument

Description

Initializes a rights database.

SYS$CREATE_RDB [sysid]

sys id
Open VMS usage: system_access_id
type: quadword (unsigned)
access: read only
mechanism: by reference

System identification value associated with the rights database when $CREATE_
RDB completes execution. The sysid argument is the address of a quadword
containing the system identification value. If you omit sysid, the current system
time in 64-bit format is used.

The Create Rights Database service initializes a rights database. The database
name is the file equated to the logical name RIGHTSLIST, which must be defined
as a system logical name from executive mode. If the logical name does not
exist, the database is created in SYS$COMMON:[SYSEXE] with the file name
RIGHTSLIST.DAT. If the database already exists, $CREATE_RDB fails with the
error RMS$_FEX.

The rights database is created with an owner of [1,4] and a protection of (RWED,
RWED, R).

Required Access or Privileges
Write access to the directory in which the file is being created is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $FORMAT_ACL, $GRANTID, $IDTOASC,
$MOD_HOLDER, $MOD_IDENT, $PARSE_ACL, $REM_HOLDER, $REM_
IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO
The service completed successfully.

The sysid argument cannot be read by the caller.

SYS1-139

System Service Descriptions
$CREATE_RDB

SYS1-140

SS$_INSFMEM

RMS$_FEX

RMS$_PRV

The process dynamic memory is insufficient for
opening the rights database.
A rights database already exists. To create a new
one, you must explicitly delete or rename the old
one.
The user does not have write access to
SYS$SYSTEM.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

System Service Descriptions
$CREATE_REGION_64 (Alpha Only)

$CREATE_REGION_64 (Alpha Only)
Create Virtual Region

Format

Arguments

On Alpha systems, creates a virtual region within the process's private address
space. Virtual regions can be created only within the process's P2 address space.

This service accepts 64-bit addresses.

SYS$CREATE_REGION_64 length_64 ,region_prot ,flags ,return_region_id_64
,return_va_64 ,return_length_64 [,start_va_64]

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual region to be created. The length specified must be a
multiple of CPU-specific pages. This length is fixed at the time the region is
created.

region_prot
Open VMS usage: region_protection
type: longword (unsigned)
access: read only
mechanism: by value

Region protection associated with the call to $CREATE_REGION_64. The
region_prot argument is a longword containing the create and owner mode.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define the following symbols for valid combinations of create
and owner modes:

Symbol

VA$C_REGION_UCREATE_UOWN
VA$C_REGION_UCREATE_SOWN

VA$C_REGION_UCREATE_EOWN

VA$C_REGION_UCREATE_KOWN

VA$C_REGION_SCREATE_SOWN

VA$C_REGION_SCREATE_EOWN

VA$C_REGION_SCREATE_KOWN

Create and Owner Modes

User create mode and user owner mode

User create mode and supervisor owner
mode

User create mode and executive owner
mode

User create mode and kernel owner mode
Supervisor create mode and supervisor
owner mode

Supervisor create mode and executive
owner mode
Supervisor create mode and kernel owner
mode

SYS1-141

System Service Descriptions
$CREATE_REGION_64 (Alpha Only)

SYS1-142

Symbol

VA$C_REGION_ECREATE_EOWN

VA$C_REGION_ECREATE_KOWN

VA$C_REGION_KCREATE_KOWN

Create and Owner Modes

Executive create mode and executive
owner mode

Executive create mode and kernel owner
mode
Kernel create mode and kernel owner
mode

For both create and owner mode, the $CREATE_REGION_64 service uses
whichever of the following two access modes is least privileged:

• The access mode specified by the acmode argument.

• The access mode of the caller.

A subsequent call to any system service that created address space within a
region must be made from an access mode that is the same or more privileged
than the create mode associated with the region.

A subsequent call to $DELETE_REGION_64 to delete the region must be made
from an access mode that is the same or more privileged than the owner mode
associated with the region.

All regions created by $CREATE_REGION_64 are automatically deleted when
the image is run down on image exit.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the region to be created. The flags
argument is a longword bit vector in which each bit corresponds to a flag. The file
VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in STARLET.MLB
define a symbolic name for each flag. You construct the flags argument by
performing a logical OR operation on the symbol names for all desired flags.

The following table describes the flag that is valid for the $CREATE_REGION_64
service:

Flag

VA$M_DESCEND

Description

Created region is a descending region; that is,
allocation occurs toward decreasing virtual addresses.
If VA$M_DESCEND is not specified, the region allocation
occurs toward increasing virtual addresses.

All other bits in the flags argument are reserved for future use by Digital. The
condition value SS$_IVREGFLG is returned if any undefined bits are set.

return_region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Description

System Service Descriptions
$CREATE_REGION_64 (Alpha Only)

The region ID associated with the created region. The return_region_id_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the region ID.

return_ va_64
Open VMS usage: return address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the region. The return_ va_64 argument
is the 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the lowest virtual address of the region.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the region actually created. The return_length_64 argument is
the 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the region in bytes.

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting address for the created virtual region. The specified virtual address
must be a CPU-specific page-aligned address.

If the start_ va_64 argument is not specified or is specified as 0, the region can be
created anywhere within the P2 address space.

The Create Virtual Region service is a kernel mode service that can be called
from any mode. This service allows a process to create a virtual region within its
P2 private address space. Virtual regions in PO and Pl space are not supported.

The Create Virtual Region service creates the virtual region on a page-aligned
boundary.

The Create Virtual Region service returns the lowest virtual address within the
region whether the region expands toward higher or lower virtual addresses.

If the start_va_64 argument is not specified by the ·caller, no assumptions should
be made about the relative placement of the region within the overall process
address space.

If the returned value of the service is not a successful condition value,
a value cannot be returned in the memory locations pointed to by the
return_region_id_64, return_ va_64, or return_size_64 arguments.

Required Privileges
None

SYS1-143

System Service Descriptions
$CREATE_REGION_64 (Alpha Only)

Required Quota
None.

Related Services
$CRETVA_64, $CRMPSC_FILE_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_
64, $CRMPSC_GPFN_64, $CRMPSC_PFN_64, $DELETE_REGION_64,
$DELTVA_64, $EXPREG_64, $GET_REGION_INFO, $MGBLSC_64, $MGBLSC_
GPFN_64

Condition Values Returned

SYS1-144

SS$_NORMAL
SS$_ACCVIO

SS$_IVREGFLG

SS$_LEN_NOTPAGMULT

88$_ VASFULL

88$_ VA_IN_USE

88$_ VA_NOTPAGALGN

The service completed successfully.
The return_region_id_64 argument,
the return_ va_64 argument, or the
return_length_64 argument cannot be written
by the caller.
One or more of the reserved bits in the flags
argument is set.
The length_64 argument is not a multiple of
CPU-specific pages.
The process private address space is full or no
space is available in the process private address
space for a region of the specified size.
A page in the specified virtual address range
is within another virtual region or is otherwise
inaccessible.
The start_ va_64 argument is not CPU-specific
page-aligned.

System Service Descriptions
$CREATE_USER_PROFILE

$CREATE_USER_PROFILE
Create User Profile

Format

Arguments

Returns an encoded security profile for the specified user.

SYS$CREATE_USER_PROFILE usrnam ,[itmlst] ,[flags] ,usrpro ,usrprolen ,[contxt]

usrnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the user whose security profile is to be returned. The usrnam argument
is the address of a descriptor pointing to a text string containing the user name.
The user name string can contain a maximum of 12 alphanumeric characters.

For more information about user names, see the Open VMS Guide to System
Security.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying the portions of the user's security profile to be replaced or
augmented.

The item list is a standard format item list. The following figure depicts the
general format of an item descriptor. See the Item Codes section for a list of valid
item codes for $CREATE_USER_PROFILE.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

SYS1-145

System Service Descriptions
$CREATE_USER_PROFILE

SYS1-146

The following. table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

flags

Definition

A word containing a user-supplied integer specifying
the length (in bytes) of the buffer from which the
service is to read the information. The length of the
buffer needed depends upon the item code specified
in the item code field of the item descriptor.

A word containing a user-supplied symbolic code
specifying the item of information.

A longword containing the user-supplied address of
the buffer.

A longword that normally contains the user-supplied
address of a word in which the service writes the
length (in bytes) of the information it returned.
This is not used by $CREATE_USER_PROFILE and
should contain a 0.

Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The flags argument is used for controlling the behavior of the $CREATE_ USER_
PROFILE service. The following table describes each flag.

Symbol

CHP$M_DEFCLASS

CHP$M_DEFPRIV

CHP$M_NOACCESS

usrpro

Description

By default, $CREATE_ USER_PROFILE initializes the
security profile with the user's maximum authorized
classification. When this flag is set, the service
initializes the security profile from the user's default
classification instead. This flag is reserved to Digital.
By default, $CREATE_ USER_PROFILE initializes the
security profile with the user's authorized privilege
mask. When this flag is set, the service initializes the
security profile from the user's default privilege mask
instead.
Instructs the service not to access the user
authorization file (SYSUAF.DAT) or rights database
(RIGHTSLIST.DAT) to build the security profile. This
flag can be used as an optimization when all the
information necessary to build the security profile is
known to the caller.

OpenVMS usage: char_string
type: opaque byte stream
access: write only
mechanism: by descriptor

Item Codes

System Service Descriptions
$CREATE_USER_PROFILE

Buffer to receive the security profile. The usrpro argument is the address of a
buffer to receive the encoded security profile. If an address of 0 is specified,
$CREATE_ USER_PROFILE returns the size of the buffer needed in the
usrprolen argument.

usrprolen
Open VMS usage: word
type: word (unsigned)
access: read/write
mechanism: by reference

Word to receive the full size of the security profile. On input, the usrprolen
argument specifies the length of the buffer pointed to by the usrpro argument.
The usrprolen argument is the address of a word to which $CREATE_USER_
PROFILE writes the actual length of the security profile. If the caller specifies
a usrpro address of 0, $CREATE_USER_PROFILE returns the anticipated size,
in bytes, of the buffer needed to hold the user's security profile in the usrprolen
argument.

contxt
Open VMS usage: longword
type: longword (unsigned)
access: modify
mechanism: by reference

Longword used to maintain authorization file context. The contxt argument is
the address of a longword to receive a $GETUAI context value. On the initial
call, this longword should contain the value -1. On subsequent calls, the value of
the contxt argument from the previous call should be passed back in.

Using the contxt argument keeps the UAF open across all calls, thereby
improving the performance of the system on subsequent calls. To close the UAF,
you must run down the image.

The resulting context value from a $CREATE_USER_PROFILE call may also be
used as the input contxt argument to the $GETUAI system service, and vice
versa.

CHP$_ADDRIGHTS
A rights list segment containing additional identifiers to be appended to the
set of identifiers held by the user. A rights list segment is a list of quadword
identifier/attributes pairs, each containing a longword identifier value, followed by
a longword mask identifying the attributes of the holder. The buflen argument
should be set to the total size, in bytes, of the rights list segment. The bufadr
argument points to a descriptor that points to the first byte in the rights list
segment (that is, the first byte of the first identifier value).

This item code can be repeated to add up to 256 additional rights list segments.
If more than 256 identifiers are granted to the user, $CREATE_USER_PROFILE
returns SS$_INSFMEM.

CHP$_CLASS
The classification to be associated with the created security profile. This item
code is reserved to Digital.

SYS1-147

System Service Descriptions
$CREATE_USER_PROFILE

Description

CHP$_PRIV
A quadword privilege mask specifying the user's privileges. The $PRVDEF macro
defines the list of available privileges.

CHP$_UIC
A longword describing the user id~ntification code (UIC).

The Create User Profile service returns a security profile for a user. This profile
can be generated in two ways.

• If the caller does not specify the CHP$_NOACCESS flag in the flags
argument, $CREATE_ USER_PROFILE accesses the system authorization
database (SYSUAF.DAT) or the rights database (RIGHTSLIST.DAT) for the
specified user name and builds a representation of the privileges and rights
granted to that user. The security profile is returned as an opaque byte
stream.

$CREATE_USER_PROFILE returns a representation of the security
profile that the user would have when logged in at the highest authorized
classification with all authorized privileges enabled.

• When the caller specifies the CHP$M_NOACCESS flag in the flags
argument, $CREATE_USER_PROFILE creates a security profile without
accessing the user authorization file (SYSUAF.DAT) or the rights database
(RIGHTSLIST.DAT). When CHP$M_NOACCESS is specified, all of the
information is obtained from the item list. The caller must supply the CHP$_
PRIV and CHP$_UIC items. In addition, an address of 0 may be specified for
the usrnam argument.

In either case, the newly created security profile may be passed as input to the
$CHKPRO and $CHECK_ACCESS system services using the usrpro argument.

$CREATE_USER_PROFILE returns the set of identifiers associated with the
user's owner identifier. The CHP$_ADDRIGHTS item code can be used to add
additional identifiers to this set.

Required Access or Privileges
Access to SYSUAF.DAT and RIGHTSLIST.DAT is required unless you are
constructing the security profile for your own user name. ·

Required Quota
None

Related Services
$CHECK_ACCESS, $CHKPRO, $FIND_HELD, $FINISH_RDB, $GETUAI

Condition Values Returned

SYS1-148

SS$_NORMAL The service completed successfully.

SS$_ACCVIO Parameter or item list buffer not accessible.

SS$_BADPARAM Item code invalid.
SS$_INSFARG A required item code or parameter is missing.

SS$_INSFMEM Insufficient process memory to construct profile.

$CREATE_USER_PROFILE may also return any error returned by the $GETUAI
or $FIND_HELD services.

$CRELNM

System Service Descriptions
$CRELNM

Create Logical Name

Format

Arguments

Creates· a logical name and specifies its equivalence names.

SYS$CRELNM [attr] ,tabnam ,lognam ,[acmode] ,[itmlst]

attr
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes to be associated with the logical name. The attr argument is the
address of a longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the $LNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword
bit mask is the logical OR of all desired attributes. All undefined bits in the
longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name.

The attributes are as follows.

Attribute

LNM$M_CONFINE

LNM$M_NO_ALIAS

tabnam

Description

If set, the logical name is not copied from the process to
its spawned subprocesses. You .create a subprocess with
the DCL command SPAWN or the LIB$SPAWN Run
Time Library routine. If the logical name is placed into
a process-private table that has the CONFINE attribute,
the CONFINE attribute is automatically associated with
the logical name. This applies only to process-private
logical names.
If set, the logical name cannot be duplicated in this table
at an outer access mode. If another logical name with
the same name already exists in the table at an outer
access mode, it is deleted.

Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the table in which to create the logical name. The tabnam argument is
the address of a descriptor that points to the name of this table. This argument
is required.

SYS1-149

System Service Descriptions
$CRELNM

SYS1-150

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.
If tabnam translates to a list of logical name tables, the logical name is entered
into the first table in the list.

lognam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the logical name to be created. The lognam argument is the address
of a descriptor that points to the logical name string. Logical name strings of
logical names created within either the system or process directory table must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters. The maximum length of logical name strings
created within other tables is 255 characters with no restrictions on the types of
characters that can be used. This argument is required.

acmode
Open VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be associated with the logical name. The acmode argument is
the address of a byte that specifies the access mode.

The access mode associated with the logical name is determined by maximizing
the access mode of the caller with the access mode specified by the acmode
argument, which means that the less privileged of the two is used. Symbols for
the four access modes are defined by the $PSLDEF macro.

You cannot specify an access mode more privileged than that of the containing
table. However, if the caller.has SYSNAM privilege, then the specified access
mode is associated with the logical name regardless of the access mode of the
caller.

If you omit this argument or specify it as 0, the access mode of the caller is
associated with the logical name.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list describing the equivalence names to be defined for the logical name and
information to be returned to the caller. The itmlst argument is the address of a
list of item descriptors, each of which specifies information about an equivalence
name. The list of item descriptors is terminated by a longword of 0. The following
diagram depicts the format of a single item descriptor.

Item Codes

31 15

Item code I
Buffer address

Return length address

System Service Descriptions
$CRELNM

0

Buffer length

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

LNM$_ATTRIBUTES

Definition

A word specifying number of bytes in the buffer
pointed to by the buffer address field. The length
of the buffer needed depends upon the item code
specified in the item code field of the item descriptor.
If the value of buffer length is too small, the service
truncates the data.

A word containing a symbolic code that describes
the information in the buffer or the information to
be returned to the buff er, pointed to by the buff er
address field. The item codes are listed in the Item
Codes section.

A longword containing the address of the buffer that
receives or passes information.

A longword containing the address of a word
specifying the actual length in bytes of the
information returned by $CRELNM in the buffer
pointed to by the buffer address field. The return
length address field is used only when the item
code specified is LNM$_TABLE. Although this
field is ignored for all other item codes, it must
nevertheless be present as a placeholder in each
item descriptor.

When you specify LNM$_ATTRIBUTES, the buffer address field of the item
descriptor points to a longword bit mask that specifies the current translation
attributes for the logical name. The current translation attributes are applied to
all subsequently specified equivalence strings until another LNM$_ATTRIBUTES
item descriptor is encountered in the item list. The symbolic names for these
attributes are defined by the $LNMDEF macro. The symbolic name and
description of each attribute are as follows.

SYS1-151

System Service Descriptions
$CRELNM

Description

SYS1-152

Attribute Description

LNM$M_CONCEALED If set, Open VMS RMS interprets the equivalence name
as a device name or logical name with the LNM$M_
CONCEALED attribute.

LNM$M_TERMINAL If set, further iterative logical name translation on the
equivalence name is not to be performed.

LNM$_CHAIN
When you specify LNM$_CHAIN, the buffer address field of the item descriptor
points to another item list that $CRELNM is to process immediately after it has
processed the current item list.

If you specify the LNM$_CHAIN item code, it must be the last item code in the
current item list.

LNM$_STRING
When you specify LNM$_STRING, the buffer address field of the item descriptor
points to a buffer containing a user-specified equivalence name for the logical
name. The maximum length of the equivalence string is 255 characters.

When $CRELNM encounters an item descriptor with the item code LNM$_
STRING, it creates an equivalence name entry for the logical name using the
most recently specified values for LNM$_ATTRIBUTES. The equivalence name
entry includes the following information:

• Name specified by LNM$_STRING.

0 Next available index value. Each equivalence is assigned a unique value from
0 to 127.

• Attributes specified by the most recently encountered item descriptor with
item code LNM$_ATTRIBUTES (if these are present in the item list).

Therefore, you should construct the item list so that the LNM$_ATTRIBUTES
item codes immediately precede the LNM$_STRING item code or codes to which
they apply.

LNM$_TABLE
When you specify LNM$_TABLE, the buffer address field of the item descriptor
points to a buffer in which $CRELNM writes the name of the logical name table
in which it entered the logical name. The return length address field points to a
word that contains a buffer that specifies the length in bytes of the information
returned by $CRELNM. The maximum length of the name of a logical name table
is 31 characters.

This item code can appear anywhere in the item list.

The Create Logical Name service creates a logical name and specifies its
equivalence name. Note that logical names are case sensitive.

Required Access or Privileges

System Service Descriptions
$CRELNM

The calling process must have the following:

• Write access to shareable tables to create logical names in those tables

• GRPNAM privilege to enter a logical name into the group logical name table

• SYSNAM privilege to enter a logical name into the system logical name table

Required Quota
The quota for the specified logical name table must be sufficient for the creation
of the logical name.

Related Services
$CRELNT, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_SUPERSEDE

SS$_BUFFEROVF

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOTA

SS$_INSFMEM

SS$_IVLOGNAM

The service completed successfully; the logical
name has been created. ·

The service completed successfully; the logical
name has been created and a previously existing
logical name with the same name has been
deleted.

The service completed successfully; the buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name or logical name was
not specified.

An attempt was made to create a logical name
with the same name as an already existing
logical name, and the existing logical name was
created at a more privileged access mode and
with the LNM$M_NO _ALIAS attribute.

The quota associated with the specified logical
name table for the creation of the logical name is
insufficient.

The dynamic memory is insufficient for the
creation of the logical name.

The tabnam argument, the logn.am argument,
or the equivalence string specifies a string whose
length is not in the required range of 1 through
255 characters. The logn.am argument specifies
a string whose length is not in the required range
of 1 to 31 characters for directory table entries.

SYS1-153

System Service Descriptions
$CRELNM

SS$_IVLOGTAB

SS$_NOLOGTAB

SS$_NOPRIV

SYS1-154

The tabnam argument does not specify a logical
name table.
Either the specified logical name table does
not exist or the logical name translation of the
table name exceeded the allowable depth of 10
translations.
The caller lacks the necessary privilege to create
the logical name.

$CRELNT

System Service Descriptions
$CRELNT

Create Logical Name Table

Format

Arguments

Creates a process-private or shareable logical name table.

SYS$CRELNT [attr] ,[resnam] ,[reslen] ,[quota]
,[promsk] ,[tabnam] ,partab ,[acmode]

attr
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes to affect the creation of the logical name table and to be associated
with the newly created logical name table. The attr argument is the address of a
longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the $LNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword bit
mask is the logical OR of all desired attributes. All unused bits in the longword
must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name table or affect the creation of the new table.

The following table describes each attribute.

Attribute

LNM$M_CONFINE

Description

If set, the logical name table is not copied from the
process to its spawned subprocesses. You create a
subprocess with the DCL command SPAWN or the
Run-Time Library LIB$SPAWN routine. You can
specify this attribute only for process-private logical
name tables; it is ignored for shareable tables.
The state of this bit is also propagated from the parent
table to the newly created table and can be overridden
only if the parent table does not have the bit set.
Thus, if the parent table has the LNM$M_CONFINE
attribute, the newly created table will also have it,
no matter what is specified in the attr argument. On
the other hand, if the parent table does not have the
LNM$M_CONFINE attribute, the newly created table
can be given this attribute through the attr argument.
The process-private directory table LNM$PROCESS_
DIRECTORY does not have the LNM$M_CONFINE
attribute.

SYS1-155

System Service Descriptions
$CRELNT

SYS1-156

Attribute

LNM$M_ CREATE_IF

LNM$M_NO_ALIAS

resnam

Description

If set, a new logical name table is created only if the
specified table name is not already entered at the
specified access mode in the appropriate directory
table. If the table name exists, a new table is not
created and no modification is made to the existing
table name. This holds true even if the existing name
has differing attributes or quota values, or even if it is
not the name of a logical name table.
If LNM$M_ CREATE_IF is not set, the new logical ·
name table will supersede any existing table name
with the same access mode within the appropriate
directory table. Setting this attribute is useful when
two or more users want to create and use the same
table but do not want to synchronize its creation.

If set, the name of the logical name table cannot
be duplicated at an outer access mode within the
appropriate directory table. If this name already exists
at an outer access mode, it is deleted.

Open VMS usage: logical_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Name of the newly created logical name table, returned by $CRELNT. The
resnam argument is the address of a descriptor pointing to this name. The name
is a character string whose maximum length is 31 characters.

res I en
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the name of the newly created logical name table, returned by
$CRELNT. The reslen argument is the address of a word to receive this length.

quota
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum number of bytes of memory to be allocated for logical names contained
in this logical name table. The quota argument is the address of a longword
specifying this value.

If you specify no quota value, the logical name table has an infinite quota. Note
that a shareable table created with infinite quota permits users with write access
to that table to consume system dynamic memory without limit.

System Service Descriptions
$CRELNT

promsk
Open VMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

Protection mask to be associated with the newly created shareable logical name
table. The promsk argument is the address of a word that contains a value that
represents four 4-bit fields. Each field grants or denies the type of access, either
delete, create, write, or read, allowed for system, owner, group, and world users.
The following diagram depicts these protection bits.

World Group Owner System

DCWRDCWRDCWRDCWR
1514131211 10 9 8 7 6 5 4 3 2 1 0

ZK-5893A-GE

Create access is required to create a shareable table within another shareable
table.

Each field consists of four bits specifying protection for the logical name table.
The remaining bits in the protection mask are as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

If a bit is clear, access is granted.

The initial security profile for any shared logical name table is taken from the
logical name table template. The owner is then set to the process UIC and, if the
promsk argument is nonzero, that value replaces the protection mask.

tabnam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

The name of the new logical name table. The tabnam argument is the address
of a character string descriptor pointing to this name string. Table names are
contained in either the process or system directory table (LNM$PROCESS_
DIRECTORY or LNM$SYSTEM_DIRECTORY). Therefore, table names must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters.

If you do not specify this argument, a default name in the format LNM$xxxx
is used, where xxxx is a unique hexadecimal number. You also need SYSPRV
privilege to specify the name of a shareable logical name table.

SYS1-157

System Service Descriptions
$CRELNT

Description

SYS1-158

partab
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name string for the parent table name. The partab argument is the address
of a character string descriptor pointing to this name string. If the parent table
is shareable, then the newly created table is shareable and is entered into the
system directory LNM$SYSTEM_DIRECTORY. If the parent table is process
private, then the newly created table is process-private and is entered in the
process directory LNM$PROCESS_DIRECTORY. You need SYSPRV privilege
or write access to the system directory to create a named shareable table. This
argument is required.

acmode
Open VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be associated with the newly created logical name table. The
acmode argument is the address of a byte containing this access mode. The
$PSLDEF macro defines symbolic names for the four access modes.

If you do not specify the acmode argument or specify it as 0, the access mode of
the caller is associated with the newly created logical name table.

The access mode associated with the logical name table is determined by
maximizing the access mode of the caller with the access mode specified by
the acmode. The less privileged of the two access modes is used.

However, if the caller has SYSNAM privilege, then the sp_ecified access mode is
associated with the logical name table, regardless of the access mode of the caller.

Access modes associated with logical name tables govern logical name table
processing and provide a protection mechanism that prevents the deletion of
inner access mode logical name tables by nonprivileged users. You cannot specify
an access mode more privileged than that of the parent table.

A logical name table with supervisor mode access can contain supervisor mode
and user mode logical names and can be a parent to supervisor mode and user
mode logical name tables, but cannot contain executive or kernel mode logical
names or be a parent to executive or kernel mode logical name tables.

You need SYSNAM privilege to specify executive or kernel mode access for a
logical name table.

The Create Logical Name Table service creates a process-private or a shareable
logical name table.

The $CRELNT service uses the following system resources:

• System paged dynamic memory to create a shareable logical name table

• Process dynamic memory to create a process-private logical name table

System Service Descriptions
$CRELNT

The parent table governs whether the new table is process-private or shareable.
If the parent table is process-private, so is the new table; if the parent table is
shareable, so is the new table.

Note that logical names are case sensitive.

Required Access or Privileges
Create access to the parent table and write access to the system directory are
required.

You need the SYSNAM privilege to create a table at an access mode more
privileged than that of the calling process.

Required Quota
The parent table must have sufficient quota for the creation of the new table.

Related Services
$CRELNM, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_LNMCREATED

SS$_SUPERSEDE

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOTA

SS$_INSFMEM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGTAB

The service completed successfully; the logical
name table already exists.

The service completed successfully; the logical
name table was created.

The service completed successfully; the logical
name table was created and its logical name
superseded already existing logical names in the
directory table.
The service cannot access the locations specified
by one or more arguments.
One or more arguments have an invalid value, or
a parent logical name table was not specified.

You attempted to create a logical name table
with the same name as an already existing
name within the appropriate directory table,
and the existing name was created at a more
privileged access mode with the LNM$M_NO_
ALIAS attribute.
The parent table has insufficient quota for the
creation of the new table.
The dynamic memory is insufficient for the
creation of the table.

The partab argument specifies a string whose
length is not within the required range of 1 to 31
characters.
The tabnam argument is not alphanumeric or
specifies a string whose length is not within the
required range of 1 to 31 characters.
The parent logical name table does not exist.

SYS1-159

System Service Descriptions
$CRELNT

SS$_NOPRIV

SS$_PARENT _DEL

SS$_RESULTOVF

SYS1-160

The caller lacks the necessary privilege to create
the table.
The creation of the new table would have
resulted in the deletion of the parent table.

The table name buffer is not large enough to
contain the name of the new table.

$CREMBX

System Service Descriptions
$CR EM BX

Create Mailbox and Assign Channel

Format

Arguments

Creates a virtual mailbox device named MBAn and assigns an 1/0 channel to
it. The system provides the unit number n when it creates the mailbox. If a
logical name is specified and a mailbox with the specified name already exists,
the $CREMBX service assigns a channel to the existing mailbox.

SYS$CREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,[acmode] ,[lognam]
,[flags] ,[nullarg]

prmflg
Open VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the created mailbox is to be permanent or temporary.
The prmflg argument is a longword value. The value 1 specifies a permanent
mailbox; the value 0, which is the default, specifies a temporary mailbox. Any
other values result in an error.

ch an
Open VMS usage: channel
type: word
access: write only
mechanism: by reference

Channel number assigned by $CREMBX to the mailbox. The chan argument is
the address of a word into which $CREMBX writes the channel number.

maxmsg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Maximum size (in bytes) of a message that can be sent to the mailbox. The
maxmsg argument is a longword value containing this size. If you do not specify
maxmsg or specify it as 0, the operating system provides a default value.

bufquo
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of bytes of system dynamic memory that can be used to buffer messages
sent to the mailbox. The bufquo argument is a word value containing this
number. If you do not specify the bufquo argument or specify it as 0, the
operating system provides a default value.

SYS1-161

System Service Descriptions
$CR EM BX

SYS1-162

The maximum value that you can specify with the bufquo argument is 60000.
For a temporary mailbox, this value must be less than or equal to the process
buffer quota.

promsk
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection mask to be associated with the created mailbox. The promsk
argument is a longword value that is the combined value of the bits set in
the protection mask. Cleared bits grant access and set bits deny access to each of
the four classes of user: world, group, owner, and system. The following diagram
depicts these protection bits.

World Group Owner System

L PWRL PWRL PWRL PWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1707-GE

If you do not specify the promsk argument or specify it as 0, the mailbox
template is used.

The logical access bit must be clear for the class of user requiring access to the
mailbox. The access bit must be clear for all categories of user because logical
access is required to read or write to a mailbox; thus, setting or clearing the read
and write access bits is meaningless unless the logical access bit is also cleared.

The physical access bit is ignored for all categories of user.

Logical access also allows you to queue read or write attention ASTs.

a cm ode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel to which the mailbox is assigned.
The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the four access modes.

Symbol Access Mode Numeric Value

PSL$C_KERNEL Kernel 0

PSL$C_EXEC Executive 1

PSL$C_SUPER Supervisor 2

PSL$C_USER User 3

The most privileged access mode used is the access mode of the caller. The
specified access mode and the access mode of the caller are compared. The less
privileged (but the higher numeric valued) of the two access modes becomes the
access mode associated with the assigned channel. I/O operations on the channel
can be performed only from equal or more privileged access modes.

lognam
Open VMS usage: logical_name
type: character-coded text string
access: read only

System Service Descriptions
$CR EM BX

mechanism: by descriptor-fixed length string descriptor

Logical name to be assigned to the mailbox. The lognam argument is the address
of a character string descriptor pointing to the logical name string.

The equivalence name for the mailbox is MBAn. The equivalence name is marked
with the terminal attribute. Processes can use the logical name to assign other
I/O channels to the mailbox.

For permanent mailboxes, the $CREMBX service enters the specified logical
name, if any, in the LNM$PERMANENT_MAILBOX logical name table and,
for temporary mailboxes, into the LNM$TEMPORARY_MAILBOX logical name
table.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The flags argument is used for specifying options for the assign operation that
occurs in $CREMBX. The flags argument is a longword bit mask that enables
the user to specify that the channel assigned to the mailbox is a READ ONLY or
WRITE ONLY channel. If the flags argument is not specified, then the default
channel behavior is READ/WRITE. The $CMBDEF macro defines a symbolic
name for each flag bit. The following table describes each flag.

Flag

CMB$M_READONLY

CMB$M_ WRITEONLY

Description

When this flag is specified, $CREMBX assigns a read
only channel to the mailbox device. An attempt to
issue a QIO WRITE operation on the mailbox channel
results in an illegal I/O operation error.
When this flag is specified, $CREMBX assigns a write
only channel to the mailbox device. An attempt to
issue a QIO READ operation on the mailbox channel
results in an illegal I/O operation error.

For more information about the flags argument, see the Open VMS I I 0 User's
Reference Manual.

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

SYS1-163

System Service Descriptions
$CR EM BX

Description

SYS1-164

The Create Mailbox and Assign Channel service creates a virtual mailbox device
named MBAn and assigns an I/O channel to it. The system provides the unit
number n when it creates the mailbox. If a mailbox with the specified name
already exists, the $CREMBX service assigns a channel to the existing mailbox.

The $CREMBX service uses system dynamic memory to allocate a device
database for the mailbox and for an entry in the logical name table (if a logical
name is specified).

When a temporary mailbox is created, the process's buffered I/O byte count
(BYTLM) quota is reduced by the amount specified in the bufquo argument.
The size of the mailbox unit control block and the logical name (if specified) are
also subtracted from the quota. The quota is returned to the process when the
mailbox is deleted.

The initial security profile created for a mailbox is taken from the mailbox
template for the device class. The owner is then set to the process UIC and the
promsk argument r~places the protection mask.

After the process creates a mailbox, it and other processes can assign additional
channels to it by calling the Assign I/O Channel ($ASSIGN) or Create Mailbox
($CREMBX) service. If the mailbox already exists, the $CREMBX service assigns
a channel to that mailbox; in this way, cooperating processes need not consider
which process must execute first to create the mailbox.

A channel assigned to the mailbox READ ONLY is considered a READER. A
channel assigned to the mailbox WRITE ONLY is considered a WRITER. A
channel assigned to the mailbox READ/WRITE is considered both a WRITER and
READER.

A temporary mailbox is deleted when no more channels are assigned to it.
A permanent mailbox must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) service; its actual deletion occurs when no more channels
are assigned to it.

A mailbox is treated as a shareable device; it cannot, however, be mounted or
allocated.

The mailbox unit number is determined when the mailbox is created. A
process can obtain the unit number of the created mailbox by calling the Get
DeviceNolume Information ($GETDVI) service using the channel returned by
$CREMBX.

Mailboxes are assigned sequentially increasing numbers (from 1 to a maximum
of 9999) as they are created. When all unit numbers have been used, the system
starts numbering again at unit 1. Logical names or mailbox names should be
used to identify a mailbox between cooperating processes.

Default values for the maximum message size and the buffer quota (an
appropriate multiple of the message size) are determined for a specific
system during system generation. The SYSGEN parameter DEFMBXMXMSG
determines the maximum message size; the SYSGEN parameter
DEFMBXBUFQUO determines the buffer quota. For termination mailboxes,
the maximum message size must be at least as large as the termination message
(currently 84 bytes).

When you specify a logical name for a temporary mailbox, the $CREMBX service
enters the name into the LNM$TEMPORARY_MAILBOX logical name table.

System Service Descriptions
$CR EM BX

Normally, LNM$TEMPORARY_MAILBOX specifies LNM$JOB, the jobwide
logical name table; thus, only processes in the same job as the process that first
creates the mailbox can use the logical name to access the temporary mailbox.
If you want to use the temporary mailbox to enable communication between
processes in different jobs, you must redefine LNM$TEMPORARY_MAILBOX
in the process logical name directory table (LNM$PROCESS_DIRECTORY) to
specify a logical name table that those processes can access.

For instance, if you want to use the mailbox as a communication device for
processes in the same group, you must redefine LNM$TEMPORARY _MAILBOX
to specify LNM$GROUP, the group logical name table. The following DCL
command assigns temporary mailbox logical names to the group logical name
table:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$TEMPORARY_MAILBOX LNM$GROUP

When you specify a logical name for a permanent mailbox, the system enters
the name in the logical name table specified by the logical name table name
LNM$PERMANENT_MAILBOX, which normally specifies LNM$SYSTEM, the
system logical name table. If you want the logical name that you specify for
the mailbox to be entered in a logical name table other than the system logical
name table, you must redefine LNM$PERMANENT_MAILBOX to specify the
desired table. For more information about logical name tables, see the Open VMS
Programming Concepts Manual.

If you redefine either LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_
MAILBOX, be sure that the name of the new table appears in the logical
name table LNM$FILE_DEV. Open VMS RMS and the I/O system services
use LNM$FILE_DEV to translate I/O device names. If the logical name table
specified by either LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_
MAILBOX does not appear in LNM$FILE_DEV, the system will be unable to
translate the logical name of your mailbox and therefore will be unable to access
your mailbox as an I/O device.

If you redirect a logical name table to point to a process-private table, then the
following occurs:

• Other processes cannot access the mailbox by its name.

• If the creating process issues a second call to $CREMBX, a different mailbox
is created and a channel is assigned to the new mailbox. (If the creating
process issues a second call to $CREMBX using a shared logical name, a
second channel is assigned to the existing mailbox.)

• The logical name is not deleted when the mailbox disappears.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $CREMBX:

• TMPMBX privilege whenever the prmflg argument is specified as 0.
However, a process that has PRMMBX privilege will also meet this
requirement.

• PRMMBX privilege whenever the prmflg argument is specified as 1.

• SYSNAM privilege to place a logical name for a mailbox in the system logical
name table.

SYS1-165

System Service Descriptions
$CREMBX

• GRPNAM privilege to place a logical name for a mailbox in the group logical
name table.

Required Quota
The calling process must have sufficient buffer I/O byte count (BYTLM) quota to
allocate the mailbox UCB or to satisfy buffer requirements. When a temporary
mailbox is created, the process's buffered I/O byte count (BYTLM) quota is
reduced by the amount specified in the bufquo argument. The size of the mailbox
unit control block and the logical name (if specified) are also subtracted from the
quota. The quota is returned to the process when the mailbox is deleted.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS1-166

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXBYTLM

SS$_INSFMEM

SS$_INTERLOCK

SS$_IVLOGNAM

SS$_IVSTSFLG

SS$_NOIOCHAN

SS$_NOPRIV

SS$_NOSHMBLOCK

The service completed successfully.

The logical name string or string descriptor
cannot be read by the caller, or the channel
number cannot be written by the caller.

The bufquo argument specified a value greater
than approximately 65324, which is 65535 minus
the size of a mailbox unit control block (UCB).
The process has insufficient buffer I/O byte count
(BYTLM) quota to allocate the mailbox UCB or
to satisfy buffer requirements.

The system dynamic memory is insufficient for
completing the service.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.
The logical name string has a length of 0 or has
more than 255 characters.

The bit set in the prmflg argument is undefined;
this argument can have a value of 1 or 0.
No I/O channel is available for assignment.

The process does not have the privilege to create
a temporary mailbox, a permanent mailbox, a
mailbox in memory that is shared by multiple
processors, or a logical name.

No shared memory mailbox control block is
available for use to create a new mailbox.

SS$_0PINCOMPL

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

System Service Descriptions
$CREMBX

A duplicate unit number was encountered while
linking a shared memory mailbox UCB. If this
condition value is returned, submit an SPR to
Digital.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the string named
in the lognam argument exceeded the allowed
depth.

SYS1-167

System Service Descriptions
$CREPRC

$CREPRC
Create Process

Format

Arguments

SYS1-168

Creates on behalf of the calling process a subprocess or detached process on the
current node, or a detached process on another VMScluster node.

SYS$CREPRC [pidadr] ,[image] ,[input] ,[output] ,[error] ,[prvadr] ,[quota] ,[prcnam]
,[baspri] ,[uic] ,[mbxunt] ,[stsflg] ,[itmlst] ,[node]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: write. only
mechanism: by reference

Process identification (PID) of the newly created process. The pidadr argument
is the address of a longword into which $CREPRC writes the PID.

image
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the image to be activated in the newly created process. The image
argument is the address of a character string descriptor pointing to the file
specification of the image.

The image name can have a maximum of 63 characters. If the image name
contains a logical name, the logical name is translated in the created process and
must therefore be in a logical name table that it can access.

To create a process that will run under the control of a command language
interpreter CCLI), specify SYS$SYSTEM:LOGINOUT.EXE as the image name.

input
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table of the created process. The input argument is the address of a
character string descriptor pointing to the equivalence name string.

output
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

System Service Descriptions
$CREPRC

Equivalence name to be associated with the logical name SYS$0UTPUT in the
logical name table of the created process. The output argument is the address of
a character string descriptor pointing to the equivalence name string.

error
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$ERROR in the
logical name table of the created process. The error argument is the address of a
character string descriptor pointing to the equivalence name string.

Note that the error argument is ignored if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE; in this case, SYS$ERROR has the same
equivalence name as SYS$0UPUT.

prvadr
Open VMS usage: mask_privileges
type: quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be given to the created process. The prvadr argument is the
address of a quadword bit vector wherein each bit corresponds to a privilege;
setting a bit gives the privilege. If the prvadr argument is not specified, the
current privileges are used.

Each bit has a symbolic name; the $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege in a
logical OR operation. Table SYSl-2 gives the symbolic name and description of
each privilege.

Table SYS1-2 User Privileges

Privilege Symbolic Name Description

ACNT PRV$V_ACNT Create processes for which no
accounting is done

ALLSPOOL PRV$V _ALLSPOOL Allocate a spooled device

ALTPRI PRV$V _ALTPRI Set (alter) any process priority

AUDIT PRV$V _AUDIT Generate audit records

BUGCHK PRV$V _BUGCHK Make bugcheck error log
entries

BYPASS PRV$V _BYPASS Bypass UIC-based protection

CMEXEC PRV$V _CMEXEC Change mode to executive

CMKRNL PRV$V_CMKRNL Change mode to kernel

DETACH PRV$V _DETACH Create detached processes

DIAGNOSE PRV$V _DIAGNOSE Can diagnose devices

DOWNGRADE PRV$V _DOWNGRADE Can downgrade classification
(continued on next page)

SYS1-169

System Service Descriptions
$CREPRC

Table SYS1-2 (Cont.) User Privileges

Privilege

EX QUOTA
GROUP

GRPNAM

GRPPRV

IMPORT

LOG_IO

MOUNT
NETMBX
OPER
PFNMAP

PHY_IO

PRMCEB

PRMGBL

PRMMBX

PSWAPM
READ ALL

SECURITY

SETPRV
SHARE

SYSGBL
SYSLCK
SYSNAM

SYSPRV

TMPMBX
UPGRADE

VOLPRO
WORLD

Symbolic Name

PRV$V _EXQUOTA
PRV$V_GROUP
PRV$V_GRPNAM

PRV$V_GRPPRV

PRV$V _IMPORT

PRV$V_LOG_IO

PRV$V_MOUNT
PRV$V _NETMBX
PRV$V_OPER
PRV$V _PFNMAP

PRV$V _PHY _IO

PRV$V _PRMCEB

PRV$V _PRMGBL

PRV$V _PRMMBX
PRV$V _PSWAPM
PRV$V _READALL

PRV$V _SECURITY

PRV$V_SETPRV
PRV$V _SHARE

PRV$V _SYSGBL
PRV$V _SYSLCK
PRV$V _SYSNAM

PRV$V_SYSPRV

PRV$V _TMPMBX
PRV$V_UPGRADE

PRV$V_VOLPRO
PRV$V _WORLD

Description

Can exceed quotas
Group process control

Place name in group logical
name table

Group access via system
protection field
Mount a nonlabeled tape
volume
Perform logical I/O operations
Issue mount volume QIO
Create a network device
All operator privileges
Map to section by physical
page frame number

Perform physical I/O
operations
Create permanent common
event flag clusters
Create permanent global
sections
Create permanent mailboxes
Change process swap mode
Possess read access to
everything
Can perform security
functions
Set any process privileges
Can assign a channel to a
non-shared device
Create system global sections
Queue systemwide locks
Place name in system logical
name table
Access files and other
resources as if you have a
system UIC
Create temporary mailboxes
Can upgrade classification
Override volume protection
World process control

You need the user privilege SETPRV to grant a process any privileges other than
your own. If the caller does not have this privilege, the mask is minimized with

SYS1-170

System Service Descriptions
$CREPRC

the current privileges of the creating process; any privileges the creating process
does not have are not granted, but no error status code is returned.

quota
Open VMS usage: item_quota_list
type: longword (unsigned)
access: read only
mechanism: by reference

Process quotas to be established for the created process. These quotas limit the
created process's use of system resources. The quota argument is the address of
a list of quota descriptors, where each quota descriptor consists of a 1-byte quota
name followed by a longword that specifies the desired value for that quota. The
list of quota descriptors is terminated by the symbolic name PQL$_LISTEND.

If you do not specify the quota argument or specify it as 0, the operating system
supplies a default value for each quota.

For example, in MACRO you can specify a quota list, as follows:

QLIST: .BYTE
.LONG
.BYTE
.LONG
.BYTE

PQL$ PRCLM
2 -
PQL$ ASTLM
6 -
PQL$_LISTEND

Limit number of subprocesses
Max = 2 subprocesses
Limit number of asts
Max = 6 outstanding asts
End of quota list

The $PQLDEF macro defines symbolic names for quotas.

Individual Quota Descriptions A description of each quota follows. The
description of each quota lists its minimum value (a SYSGEN parameter), its
default value (a SYSGEN parameter), and whether it is deductible, nondeductible,
or pooled. These terms have the following meaning:

Minimum value

Default value

Deductible quota

Nondeductible quota

A process cannot be created with a quota less than this
minimum. Any quota value you specify is maximized
against this minimum. You obtain the minimum
value for a quota by running SYSGEN to display the
corresponding SYSGEN parameter.

If the quota list does not specify a value for a particular
quota, the system assigns the process this default value.
You obtain the default value by running SYSGEN to
display the corresponding SYSGEN parameter.

When you create a subprocess, the value for a deductible
quota is subtracted from the creating process's current
quota and is returned to the creating process when
the subprocess is deleted. There is currently only one
deductible quota, the CPU time limit. Note that quotas
are never deducted from the creating process when a
detached process is created.

Nondeductible quotas are established and maintained
separately for each process and subprocess.

SYS1-171

System Service Descriptions
$CREPRC

SYS1-172

Pooled quota Pooled quotas are established when a detached process
is created, and they are shared by that process and all
its descendent subprocesses. Charges against pooled
quota values are subtracted from the current available
totals as they are used and are added back to the total
when they are not being used.

To run SYSGEN to determine the minimum and default values of a quota, enter
the following sequence of commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SHOW/PQL

Minimum values are named PQL_Mxxxxx, where xxxxx are the characters of the
quota name that follow "PQL$_" in the quota name.

Default values are named PQL_Dxxxxx, where xxxxx are the characters of the
quota name that follow "PQL$_" in the quota name.

Individual Quotas

PQL$_ASTLM
AST limit. This quota restricts both the number of outstanding AST routines
specified in system service calls that accept an AST address and the number of
scheduled wakeup requests that can be issued.

Minimum: PQL_MASTLM
Default: PQL_DASTLM
Nondeductible

PQL$_BIOLM ·
Buffered 1/0 limit. This quota limits the number of outstanding system-buffered
1/0 operations. A buffered 1/0 operation is one that uses an intermediate buffer
from the system pool rather than a buffer specified in a process's $QIO request.

Minimum: PQL_MBIOLM
Default: PQL_DBIOLM
Nondeductible

PQL$_BYTLM
Buffered 1/0 byte count quota. This quota limits the amount of system space that
can be used to buffer 1/0 operations or to create temporary mailboxes.

Minimum: PQL_MBYTLM
Default: PQL_DBYTLM
Pooled

PQL$_CPULM
CPU time limit, specified in units of 10 milliseconds. This quota limits the total
amount of CPU time that a created process can use. When it has exhausted
its CPU time limit quota, the created process is deleted and the status code
SS$_EXCPUTIM is returned.

If you do not specify this quota and the created process is a detached process, the
detached process receives a default value of 0, that is, unlimited CPU time.

If you do not specify this quota and the created process is a subprocess, the
subprocess receives half the CPU time limit quota of the creating process.

System Service Descriptions
$CREPRC

If you specify this quota as 0, the created process has unlimited CPU time,
provided the creating process also has unlimited CPU time. If, however, the
creating process does not have unlimited CPU time, the created process receives
half the CPU time limit quota of the creating process.

The CPU time limit quota is a consumable quota; that is, the amount of CPU
time used by the created process is not returned to the creating process when the
created process is deleted.

Minimum: PQL_MCPULM
Default: PQL_DCPULM
Deductible

PQL$_DIOLM
Direct 1/0 quota. This quota limits the number of outstanding direct 1/0
operations. A direct 1/0 operation is one for which the system locks the pages
containing the associated 1/0 buffer in memory for the duration of the 1/0
operation.

Minimum: PQL_MDIOLM
Default: PQL_DDIOLM
Nondeductible

PQL$_ENQLM
Lock request quota. This quota limits the number of lock requests that a process
can queue.

Minimum: PQL_MENQLM
Default: PQL_DENQLM
Pooled

PQL$_FILLM
Open file quota. This quota limits the number of files that a process can have
open at one time.

Minimum: PQL_MFILLM
Default: PQL_DFILLM
Pooled

PQL$_JTQUOTA
Job table quota. This quota limits the number of bytes of system paged pool used
for the job logical name table. If the process being created is a subprocess, this
item is ignored. A value of 0 represents an unlimited number of bytes.

Minimum: PQL_MJTQUOTA
Default: PQL_DJTQUOTA
Nondeductible

PQL$_PGFLQUOTA
Paging file quota. This quota limits the number of pages (on VAX systems) or
pagelets (adjusted up or down to represent CPU-specific pages on Alpha systems)
that can be used to provide secondary storage in the paging file for the execution
of a process.

Minimum: PQL_MPGFLQUOTA
Default: PQL_DPGFLQUOTA
Pooled

SYS1-173

System Service Descriptions
$CREPRC

SYS1-174

PQL$_PRCLM
Subprocess ,quota. This quota limits the number of subprocesses a process can
create.

Minimum: PQL_MPRCLM
Default: PQL_DPRCLM
Pooled

PQL$_TQELM
Timer queue entry quota. This quota limits both the number of timer queue
requests a process can have outstanding and the creation of temporary common
event flag clusters.

Minimum: PQL_MTQELM
Default: PQL_DTQELM
Pooled

PQL$_WSDEFAULT
Default working set size. This quota defines the number of pages (on VAX
systems) or pagelets (adjusted up or down to represent CPU-specific pages on
Alpha systems) in the default working set for any image the process executes.
The working set size quota determines the maximum size you can specify for this
quota.

Minimum: PQL_MWSDEFAULT
Default: PQL_DWSDEFAULT
Nondeductible

PQL$_ WSEXTENT
Working set expansion quota. This quota limits the maximum size to which
an image can expand its working set size with the Adjust Working Set Limit
($ADJWSL) system service.

Minimum: PQL_MWSEXTENT
Default: PQL_DWSEXTENT
Nondeductible

PQL$_WSQUOTA
Working set size quota. This quota limits the maximum size to which an image
can lock pages in its working set with the Lock Pages in Memory ($LCKPAG)
system service.

Minimum: PQL_MWSQUOTA
Default: PQL_DWSQUOTA
Nondeductible

Use of the Quota List The values specified in the quota list are not necessarily
the quotas that are actually assigned to the created process. The $CREPRC
service performs the following steps to determine the quota values that are
assigned when you create a process on the same node:

1. It constructs a default quota list for the process being created, assigning it
the default values for all quotas. Default values are SYSGEN parameters and
so might vary from system to system.

2. It reads the specified quota list, if any, and updates the corresponding items
in the default list. If the quota list contains multiple entries for a quota, only
the last specification is used.

System Service Descriptions
$CREPRC

3. For each item in the updated quota list, it compares the quota value with
the minimum value required (also a SYSGEN parameter) and uses the larger
value. Then, the following occurs:

• If a subprocess is being created or if a detached process is being
created and the creating process does not have DETACH or CMKRNL
privilege, the resulting value is compared with the current value of the
corresponding quota of the creating process and the lesser value is used.

Then, if the quota is a deductible quota, that value is deducted from the
creating process's quota, and a check is performed to ensure that the
creating process will still have at least the minimum quota required. If
not, the condition value SS$_EXQUOTA is returned and the subprocess
or detached process is not created.

Pooled quota values are ignored.

• If a detached process is being created and the creating process has
DETACH or CMKRNL privilege, the resulting value is not compared with
the current value of the corresponding quota of the creating process and
the resulting value is not deducted from the creating process's quota.
A process with DETACH or CMKRNL privilege is allowed to create a
detached process with quota values larger than it has.

When you create a detached process on another VMScluster node, the quotas
assigned to the process are determined in the following way:

1. The $CREPRC service reads the specified quota list, if any. If it contains
multiple. entries for a quota, only the last specification is used. If the process
does not have DETACH or CMKRNL privilege, the service compares each
value in the list with the current value of the corresponding quota of the
creating process and uses the lesser value. It sends the resulting quota list to
the node on which the new process is to be created.

2. On that node, the $CREPRC service constructs a default quota list for the
process being created, assigning it default values for all quotas based on that
node's SYSGEN parameters.

3. It updates the default list with the corresponding values from the quota list.

4. For each item in the updated quota list, it compares the quota value with the
minimum value required based on that node's SYSGEN parameters and uses
the larger value.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name to be assigned to the created process. The prcnam argument is
the address of a character string descriptor pointing to a process name string.

If a subprocess is being created, the process name is implicitly qualified by the
UIC group number of the creating process. If a detached process is being created,
the process name is qualified by the group number specified in the uic argument.

SYS1-175

System Service Descriptions
$CREPRC

SYS1-176

baspri
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base priority to be assigned to the created process. The baspri argument is a
longword value. The Open VMS VAX range is 0 to 31, where 31 is the highest
priority and 0 is the lowest. Usual priorities are in the range 0 to 15, and real
time priorities are in the range 16 to 31. The Open VMS Alpha range is 0 to 63,
with real-time priorities in the range 32 to 63.

If you want a created process to have a higher priority than its creating process,
you must have ALTPRI privilege to raise the priority level. If the caller does
not have this privilege, the specified base priority is compared with the caller's
priority and the lower of the two values is used. A process with ALTPRI privilege
running on a VAX node can create a process with a priority greater than 31 on an
Alpha node.

If the baspri argument is not specified, the priority defaults to 2 for VAX MACRO
and VAX BLISS-32 and to 0 for all other languages.

uic
Open VMS usage:
type:
access:
mechanism:

uic
longword (unsigned)
read only
by value

User identification code (UIC) to be assigned to the created process. The uic
argument is a longword value containing the UIC.

If you do not specify the uic argument or specify it as 0 (the default), $CREPRC
creates a process and assigns it the UIC of the creating process.

If you specify a nonzero value for the uic argument, $CREPRC creates a detached
process. This value is interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0-15-member number
bits 16-31-group number

You need DETACH or CMKRNL privilege to create a detached process with a
UIC that is different from the UIC of the creating process.

If the image argument specifies the SYS$SYSTEM:LOGINOUT.EXE, the UIC
of the created process will be the UIC of the caller of $CREPRC, and the UIC
parameter is ignored. ·

mbxunt
Open VMS usage: word_ unsigned
type: word (unsigned)
access: read only
mechanism: by value

Unit number of a mailbox to receive a termination message when the created
process is deleted. The mbxunt argument is a word containing this number.

If you do not specify the mbxunt argument or specify it as 0 (the default), the
operating system sends no termination message when it deletes the process.

System Service Descriptions
$CREPRC

The Get DeviceNolume Information ($GETDVI) service can be used to obtain the
unit number of the mailbox.

If you specify the mbxunt argument, the mailbox is used when the created
process actually terminates. At that time, the $ASSIGN service is issued for the
mailbox in the context of the terminating process and an accounting message is
sent to the mailbox. If the mailbox no longer exists, cannot be assigned, or is full,
the error is treated as if no mailbox had been specified.

If you specify this argument when you create a process on another node, an
accounting message will be written to the mailbox when the process terminates.
If the node is removed from the cluster before the created process terminates, an
accounting message will be simulated. The simulated message will contain the
created process's PID and name and a final status of SS$_NODELEAVE, but will
lack execution statistics.

Note that two processes on different nodes cannot use the termination mailbox
for general interprocess communication.

The accounting message is sent before process rundown is initiated but after
the process name has been set to null. Thus, a significant interval of time can
occur between the sending of the accounting message and the final deletion of the
process.

To receive the accounting message, the caller must issue a read to the mailbox.
When the I/O completes, the second longword of the I/O status block, if one is
specified, contains the process identification of the deleted process if the process
was created on the same node. If it was created on a different VMScluster node,
the second longword of the I/O status block contains 0.

The $ACCDEF macro defines symbolic names for offsets of fields within the
accounting message. The offsets, their symbolic names, and the contents of each
field are shown in the following table. Unless stated otherwise, the length of the
field is 4 bytes.

Offset Symbolic Name Contents

0 ACC$W _MSGTYP MSG$_DELPROC (2 bytes)

2 Not used (2 bytes)

4 ACC$L_FINALSTS Exit status code

8 ACC$L_PID External process identification

12 Not used (4 bytes)

16 ACC$Q_TERMTIME Current time in system format at
process termination (8 bytes)

24 ACC$T_ACCOUNT Account name for process, blank
filled (8 bytes)

32 ACC$T_USERNAME User name, blank filled (12 bytes)

44 ACC$L_CPUTIM CPU time used by the process, in
10-millisecond units

48 ACC$L_PAGEFLTS Number of page faults incurred by
the process

52 ACC$L_PGFLPEAK Peak paging file usage

56 ACC$L_ WSPEAK Peak working set size

SYS1-177

System Service Descriptions
$CREPRC

SYS1-178

Offset Symbolic Name Contents

60 ACC$L_BIOCNT Count of buffered I/O operations
performed by the process

64 ACC$L_DIOCNT Count of direct I/O operations
performed by the process

68 ACC$L_ VOLUMES Count of volumes mounted by the
process

72 ACC$Q_LOGIN Time, in system format, that
process logged in (8 bytes)

80 ACC$L_OWNER Process identification of owner

The length of the termination message is equated to the constant ACC$K_
TERMLEN.

stsflg
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Options selected for the created process. The stsftg argument is a longword bit
vector wherein a bit corresponds to an option. Only bits 0 to 18 are used; the
others are reserved and must be 0.

Each option (bit) has a symbolic name, which the $PRCDEF macro defines. You
construct the stsflg argument by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

Symbolic Name

PRC$M_BATCH

PRC$M_DETACH
PRC$M_DISAWS

PRC$M_HIBER

PRC$M_IMGDMP

Description

Create a batch process. DETACH privilege is
required.

Create a detached process.
Disable system initiated working set adjustment.

Force process to hibernate before it executes the
image.

Enable image dump facility. If an image terminates
due to an unhandled condition, the image dump
facility writes the contents of the address space to a
file in your current default directory. The file name
is the same as the name of the terminated image.
The file type is .DMP.

Symbolic Name

PRC$M_INTER

PRC$M_NETWRK

PRC$M_NOACNT

PRC$M_NOPASSWORD

PRC$M_NOUAF

PRC$M_PSWAPM

PRC$M_SSFEXCU

PRC$M_SSRWAIT
PRC$M_SUBSYSTEM

PRC$M_TCB

Description

System Service Descriptions
$CREPRC

Create an interactive process. This option is
meaningful only if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE. The purpose of
this option is to provide you with information
about the process. When you specify this
option, it identifies the process as one that is in
communication with another user (an interactive
process). For example, if you use the DCL lexical
function F$MODE to make an inquiry about a
process that has specified the PRC$M_INTER
option, F$MODE returns the value INTERACTIVE.

Create a process that is a network connect object.
DETACH privilege required.

Do not perform accounting. ACNT privilege is
required.

Do not display the U sername: and Password:
prompts if the process is interactive and detached
and the image is SYS$SYSTEM:LOGINOUT.EXE.
If you specify this option in your call to $CREPRC,
the process created by the call is logged in under
the user name associated with the creating process.
If you do not specify this option for an interactive
process, SYS$SYSTEM:LOGINOUT.EXE prompts
you for the user name and password to be associated
with the process. The prompts are displayed at the
SYS$INPUT device.
Do not check authorization file if the
process is detached and the image is
SYS$SYSTEM:LOGINOUT.EXE. You should not
specify this option if a subprocess is being created.
In previous versions of the operating system, the
symbolic name of this option was PRC$M_LOGIN.
The symbolic name has been changed to more
accurately denote the effect of setting this bit. For
compatibility with existing user programs, you can
still specify this bit as PRC$M_LOGIN.
Inhibit process swapping. PSWAPM privilege is
required.

Enable system service failure exception mode.

Disable resource wait mode.
Inherit any protected subsystem identifiers. The
default is that the new process does not inherit
subsystem identifiers.

Mark a process as part of the Trusted Computing
Base (TCB). As such, it is expected to perform its
own auditing. DETACH privilege is required.

Note that options PRCM_BATCH, PRCM_INTER, PRCM_NOUAF, PRCM_
NETWRK, and PRC$M_NOPASSWORD are intended for use by Digital software.

SYS1-179

System Service Descriptions
$CREPRC

Description

SYS1-180

itmlst
Open VMS usage: reserved
type: longword (unsigned)

The itmlst argument is reserved to Digital.

node
Open VMS usage: SCS_nodename
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the VMScluster node on which the process is to be created. The node
argument is the address of a character string descriptor pointing to a 1- to 6-
character SCS node name string. If the argument is present but zero or if the
string is zero length, the process is created on the current node.

The Create Process service creates a subprocess or detached process on behalf of
the calling process. A subprocess can be created only on the current VMScluster
node. A detached process can be created on the current VMScluster node or on
the node specified with the node argument.

A detached process is a fully independent process. For example, the process that
the system creates when you log in is a detached process. A subprocess, on the
other hand, is related to its creating process in a treelike structure; it receives a
portion of the creating process's resource quotas and must terminate before the
creating process. Any subprocesses that still exist when their creator is being
deleted are automatically deleted.

The presence of the uic argument, node argument, or the PRC$M_DETACH flag
specifies that the created process is detached.

Creating a process is synchronous in that the process has actually been created
and its PID determined before control returns to the program that requested the
system service. Note, however, that the new process has not necessarily begun
to execute at that point. Some error conditions are not detected until the created
process executes. These conditions include an invalid or nonexistent image;
invalid SYS$INPUT, SYS$0UTPUT, or SYS$ERROR logical name equivalence;
inadequate quotas; or insufficient privilege to execute the requested image.

In creating a detached or subprocess, you can specify that the process run the
image SYS$SYSTEM:LOGINOUT.EXE. During interactive logins, LOGINOUT
performs the following functions:

1. It validates user name and password.

2. It reads the system authorization file record associated with that user and
redefines the process environment based on information from the record.

3. It maps a command language interpreter (CLI) into the process and passes
control to it.

The CLI reads a command from SYS$INPUT, processes it, and reads another
command. The presence of the CLI enables the process to execute multiple
images. It also enables an image running in the process to use run-time
library procedures, such as LIB$SPAWN, LIB$DO_COMMAND, and LIB$SET_
LOGICAL, that require a CLI.

System Service Descriptions
$CREPRC

Running in the context of a process you create through $CREPRC, LOGINOUT
can perform some or all of the preceding steps, depending on whether the
process is a subprocess or a detached process and on the values of PRC$M_
NOPASSWORD and PRC$M_NOUAF in the stsfig argument.

Certain characteristics of a created process can be specified explicitly through
$CREPRC system service arguments, while other characteristics are propagated
implicitly from the $CREPRC caller. Implicit characteristics include the following:

• Current default directory

• Creator's equivalence name for SYS$DISK

• User and account names

• Command language interpreter (CLI) name and command table file name

Note, however, that after the process has been created, if it runs LOGINOUT
and LOGINOUT redefines the process environment, those characteristics will be
overridden by information from the system authorization file.

Several process characteristics are relevant to the creation of a process an another
VMScluster node, in particular, process quotas, default directory, SYS$DISK
equivalence name, CLI name, and CLI command table name.

Quotas for a process created on another VMScluster node are calculated as
previously described in the section on the use of the quota list; namely, they are
based on explicit values passed by the creator and SYSGEN parameters on the
other VMScluster node. If the other node has its own authorization file with
node-specific quotas, you might want to specify in the $CREPRC request that the
process run LOGINOUT so that it can redefine the process environment based on
that node's quotas for the user.

Unless overridden by LOGINOUT, the new process will use its creator's default
disk and directory. If the disk is not mounted clusterwide, the created process
might need to redefine SYS$DISK with an equivalence name that specifies a disk
accessible from that node.

When you set the PRC$M_NOUAF flag in the stsfig argument and create
a process running LOGINOUT, LOGINOUT will attempt to map a CLI and
command table with the same file names as those running in your process. The
CLI and command table images must therefore have already been installed
by the system manager on the other node. Problems can arise when you are
using something other than the DCL CLI and its standard command tables.
For example, if you are running on a VAX node with MCR as your current CLI,
LOGINOUT will be unable to map that CLI on an Alpha node. The new process
will be created but then aborted by LOGINOUT.

A detached process is considered an interactive process only if (1) the process
is created with the PRC$M_INTER option specified and (2) SYS$INPUT is not
defined as a file-oriented device.

The $CREPRC service requires system dynamic memory.

Required Access or Privileges
The calling process must have the following:

• DETACH or CMKRNL privilege to create any of the following types of
process:

A detached process with a UIC that is different from the UIC of the
calling process

SYS1-181

System Service Descriptions
$CREPRC

A detached process with a larger value specified for some quota than is
authorized for the caller

A detached process on another node if the SYSGEN parameter
CWCREPRC_ENABLE has a value ofO

• DETACH privilege to create any of the following types of process:

A batch process

A network process

A trusted computing base process

• ALTPRI privilege to create a subprocess with a higher base priority than the
calling process

• SETPRV privilege to create a process with privileges that the calling process
does not have

• PSWAPM privilege to create a process with process swap mode disabled

• ACNT privilege to create a process with accounting functions disabled

• OPER privilege to create a detached process on another VMScluste1:' node on
which interactive logins have not yet been enabled

Required Quota
The number of subprocesses that a process can create is controlled by the
subprocess (PRCLM) quota; this quota is returned when a subprocess is deleted.

The number of detached processes on any one VMScluster node that a process
can create with the same user name is controlled by the MAXDETACH entry in
the user authorization file (UAF).

When a subprocess is created, the value of any deductible quota is subtracted
from the total value the creating process has available, and when the subprocess
is deleted, the unused portion of any deductible quota is added back to the
total available to the creating process. Any pooled quota value is shared by the
creating process and all its subprocesses.

Related Services
$CANEXH, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_ACCVIO

SS$_DUPLNAM

SYS1-182

The caller cannot read a specified input string
or string descriptor, the privilege list, or the
quota list; or the caller cannot write the process
identification.

The specified process name duplicates one
already specified within that group.

SS$_EXPRCLM

SS$_EXQUOTA

SS$_INCOMPAT

SS$_INSFMEM

SS$_INVARG

SS$_IVLOGNAM

SS$_IVQUOTAL

SS$_IVSTSFLG

SS$_NODELEAVE

SS$_NOPRIV

SS$_NORMAL

SS$_NOSLOT

SS$_NOSUCHNODE

SS$_REMRSRC

System Service Descriptions
$CREPRC

The creation of a detached process failed because
the creating process already reached its limit for
the creation of detached processes. This limit
is established by the MAXDETACH quota in
the user authorization file (UAF) of the creating
process.
At least one of the following conditions is true:

• The process has exceeded its quota for the
creation of subprocesses.

• A quota value specified for the creation of
a subprocess exceeds the creating process's
corresponding quota.

• The quota is deductible and the remaining
quota for the creating process would be less
than the minimum.

The remote node is running an incompatible
version of the operating system, namely, one that
does not support remote process creation.
The system dynamic memory is insufficient for
the requested operation.

An invalid argument was specified.

At least one of the following two conditions is
true:

• The specified process name, has a length of 0
or has more than 15 characters.

• The specified image name, input name,
output name, or error name has more than
255 characters.

The quota list is not in the proper format.

A reserved status flag was specified.

The specified node was removed from the
VMScluster during the $CREPRC service's
execution.
The caller violated one of the privilege
restrictions.

The service completed successfully.

No process control block is available; in other
words, the maximum number of processes that
can exist concurrently in the system has been
reached.

The specified node is not currently a member of
the cluster.
The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

SYS1-183

System Service Descriptions
$CREPRC

SS$_UNREACHABLE

SYS1-184

The remote node is a member of the cluster but
is not accepting requests. This is normal for a
brief period early in the system boot process.

System Service Descriptions
. $CRETVA

$CRETVA
Create Virtual Address Space

Format

Arguments

Ii®"'

Adds a range of demand-zero allocation pages (on VAX systems) or pagelets
(on Alpha systems) to a process's virtual address space for the execution of the
current image.

SYS$CRETVA inadr ,[retadr] ,[acmode]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a 2-longword array containing the starting and ending virtual
addresses of the pages to be created. If the starting and ending virtual addresses
are the same, a single page is created. The addresses are adjusted up or down
to fall on CPU-specific page boundaries. Only the virtual page number portion of
the virtual address is used; the low order byte-within-page bits are ignored.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Address of a 2-longword array to receive the starting and ending virtual addresses
of the pages created.

On Alpha systems, the retadr argument should be checked by programs for
actual allocation. Because the Alpha architecture defines more than one page
size, more space might be created than was specified in the retadr argument.+

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode and protection for the new pages. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the following
symbols for the four access modes.

SYS1-185

System Service Descriptions
$CRETVA

Description

SYS1-186

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel
Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller. The
protection of the pages is read/write for the resultant access mode and those more
privileged.

The Create Virtual Address Space service adds a range of demand-zero allocation
pages to a process's virtual address space for the execution of the current image.

Pages are created starting at the address contained in the first longword of
the location addressed by the inadr argument and ending with the second
longword. The ending address can be lower than the starting address. The
retadr argument indicates the byte addresses of the pages created.

If an error occurs while pages are being created, the retadr argument, if
specified, indicates the pages that were successfully created before the error
occurred. If no pages were created, both longwords of the retadr argument
contain the value -1.

If $CRETVA creates pages that already exist, the service deletes those pages if
they are not owned by a more privileged access mode than that of the caller. Any
such deleted pages are reinitialized as demand-zero pages. For this reason, it
is important to use the retadr argument to capture the address range actually
created. Because the Alpha architecture has a larger page size than the VAX
architecture, more space is potentially affected on Alpha systems.

Required Access or Privileges
None

Required Quota
The paging file quota (PGFLQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space.

Related Services
$ADJSTK, $ADJWSL, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, .$SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

The Expand Program/Control Region ($EXPREG) service also adds pages to a
process's virtual address space.

Note ~~~~~~~~~~~~~

Do not use the $CRETVA system service in conjunction with o_ther
user-written procedures or Digital-supplied procedures (including Run
Time Library procedures). This system service provides no means to
communicate a change in virtual address space with other routines.
Digital recommends that you use either $EXPREG or the Run-Time
Library procedure Allocate Virtual Memory (LIB$GET_ VM) to get
memory. You can find documentation on LIB$GET_VM in the Open VMS

System Service Descriptions
$CRETVA

RTL Library (LIB$) Manual. When using $DELTVA, you should take care
to delete only pages that you have specifically created.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_INSFWSL

SS$_NOPRIV

SS$_PAGOWNVIO

88$_ VASFULL

The service completed successfully.

The inadr argument cannot be read by the
caller, or the retadr argument cannot be written
by the caller.
The process has exceeded its paging file quota.

The process's working set limit is not large
enough to accommodate the increased size of the
virtual address space.
A page in the specified range is in the system
address space.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.
The process's virtual address space is full; no
space is available in the page tables for the
requested pages.

SYS1-187

System Service Descriptions
$CRETVA_64 (Alpha Only)

$CRETVA_64 (Alpha Only)
Create Virtual Address Space

Format

Arguments

SYS1-188

On Alpha systems, adds a range of demand-zero allocation pages to a process's
virtual address space for the execution of the current image. The new pages are
added at the virtual address specified by the caller.

This service accepts 64-bit addresses.

SYS$CRETVA_64 region_id_64 ,start_va_64 ,length_64 ,acmode ,flags
,return_va_64 ,return_length_64

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to create the virtual address range.
The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space.

The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl

VA$C_P2

Region

Program region
Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified. Also, given a particular virtual address, the region ID for the region
it is in can be obtained by calling the $GET_REGION_INFO system service
specifying the VA$_REGSUM_BY_VA function.

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting address for the created virtual address range. The specified virtual
address must be a CPU-specific page-aligned address.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$CRETVA_64 (Alpha Only)

Length of the virtual address space to be created. The length specified must be a
multiple of CPU-specific pages.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $CRETVA_64. The access mode
determines the owner mode of the pages as well as the read and write protection
on the pages. The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The $CRETVA_64 service uses whichever of the following access modes is least
privileged:

• The access mode specified by the acmode argument.

• The access mode of the caller.

The protection of the pages is read/write for the resultant access mode and those
more privileged.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask controlling the characteristics of the demand-zero pages created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $VADEF macro and the VADEF.H file define a symbolic name for each flag.
You construct the flags argument by performing a logical OR operation on the
symbol names for all desired flags.

The following table describes the flag that is valid for the $CRETVA_64 service:

SYS1-189

System Service Descriptions
$CRETVA_64 (Alpha Only)

Description

SYS1-190

Flag

VA$M_NO_OVERMAP

Description

Pages cannot overmap existing address space.
By default, pages can overmap existing address
space.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVVAFLG is returned if any
undefined bits are set.

return_ va_64
Open VMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the created virtual address range. The
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range created. The return_length_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range in bytes.

The Create Virtual Address Space service is a kernel mode service that can be
called from any mode. The service adds a range of demand-zero allocation pages,
starting at the virtual address specified by the start_ va_64 argument. The pages
are added to a process's virtual address space for the execution of the current
image. Expansion occurs at the next free available address within the specified
region if the range of addresses is beyond the next free available address.

The new pages, which were previously inaccessible to the process, are created as
demand-zero pages.

The returned address is always the lowest virtual address in the range of pages
created. The returned length is always an unsigned byte count indicating the
length of the range of pages created.

Successful return status from $CRETVA means that the specified address space
was created of the size specified in the length_64 argument.

If $CRETVA_64 creates pages that already exist, the service deletes those pages
if they are not owned by a more privileged access mode than that of the caller.
Any such deleted pages are reinitialized as demand-zero pages.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If an address within the specified address range is not within the bounds of the
specified region, the condition value SS$_PAGNOTINREG is returned.

System Service Descriptions
$CRETVA_64 (Alpha Only)

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully added before the
error occurred. If no pages were added, the return_ va_64 argument will contain
the value -1, and a value cannot be returned in the memory location pointed to by
the return_length_64 argument.

Required Privileges
None.

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

The process's paging file quota (PGFLQUOTA) must be sufficient to accommodate
the increased size of the virtual address space.

Related Services
$CREATE_BUFOBJ_64, $CREATE_REGION_64, $DELETE_REGION_64,
$DELTVA_64, $EXPREG_64, $LCKPAG_64, $LKWSET_64, $PURGE_WS,
$SETPRT_64, $ULKPAG_64, $ULWSET_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXPGFLQUOTA
SS$_INSFWSL

SS$_IVACMODE

SS$_IVREGID

SS$_IVVAFLG

SS$_LEN_NOTPAGMULT

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL
SS$_ VA_IN_USE

SS$_ VA_NOTPAGALGN

The service completed successfully.

The return_ va_64 or return_length_64
argument cannot be written by the caller.

The process has exceeded its paging file quota.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.
The caller's mode is less privileged than the
create mode associated with the region.

Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.

The length_64 argument is not a multiple of
CPU-specific pages.
A page in the specified range is not within the
specified region.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.
The specified virtual region is full.

A page in the specified range is already mapped
and the VA$M_NO_OVERLAP flag was set.

The start_va_64 argument is not CPU-specific
page-aligned.

SYS1-191

System Service Descriptions
$CRMPSC

$CRMPSC
Create and Map Section

Format

Arguments

SYS1-192

Allows a process to associate (map) a section of its address space with (1) a
specified section of a file (a disk file section) or (2) specified physical addresses
represented by page frame numbers (a page frame section). This service also
allows the process to create either type of section and to specify that the section
be available only to the creating process (private section) or to all processes that
map to it (global section).

SYS$CRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident] ,[relpag] ,[chan]
,[pagcnt] ,[vbn] ,[prot] ,[pfc]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longwoi·d array containing, in order,
the starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used to specify which pages are to be mapped;
the low-order byte-within-page bits are ignored for this purpose.

The interpretation of the inadr argument depends on the setting of
SEC$M_EXPREG in the flags argument and on whether you are using an
Alpha or a VAX system. The two system types are discussed separately in this
section.

On Alpha systems, if you do not set the SEC$M_EXPREG flag, the inadr
argument specifies the starting and ending virtual addresses of the region to
be mapped. Addresses in system space are not allowed. The addresses must be
aligned on CPU-specific pages; no rounding to CPU-specific pages occurs. The
lower address of the inadr argument must be on a CPU-specific page boundary
and the higher address of the inadr argument must be l less than a CPU-specific
boundary, thus forming a range from lowest to highest address bytes. You can
use the SYI$_PAGE_SIZE item code in the $GETSYI system service to set the
inadr argument to the proper values.

If, on the. other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (PO). or the control region (Pl).

____________ Caution

Mapping into the Pl region is generally discouraged, but, if done, must be
executed with extreme care. Since the user stack is mapped in Pl, it is
possible that references to the user stack may inadvertently read or write
the pages mapped with $CRMPSC.

System Service Descriptions
$CRMPSC

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, Pl is chosen. On Alpha systems, bit 31 (the most significant bit) of the first
inadr longword must be 0. To ensure compatibility between VAX and Alpha
systems when you choose a region, Digital recommends that you specify, for the
first inadr longword, any virtual address in the desired region.

In general, the inadr argument should be specified. However, it may be omitted
to request a special feature: for permanent global sections, you may omit the
inadr argument, or specify it as 0, to request that the section be created but
not mapped. Such a request will be granted regardless of the setting of the
SEC$M_EXPREG flag. However, to ensure compatibility between VAX and Alpha
systems, Digital recommends that the SEC$M_EXPREG flag be clear when the
inadr argument is omitted.+

On VAX systems, if you do not set the SEC$M_EXPREG flag, the inadr argument
specifies the starting and ending virtual addresses of the region to be mapped.
Addresses in system space are not allowed. If the starting and ending virtual
addresses are the same, a single page is mapped.

Note ~~~~~~~~~~~~~

If the SEC$M_EXPREG flag is not set, Digital recommends that the
inadr argument always specify the entire virtual address range, from
starting byte address to ending byte address. This ensures compatibility
between VAX and Alpha systems.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (PO) or the control region (Pl).

Caution

Mapping into the Pl region is generally discouraged, but, if done, must be
executed with extreme care. Since the user stack is mapped in Pl, it is
possible that references to the user stack may inadvertently read or write
the pages mapped with $CRMPSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, Pl is chosen. On VAX systems, bit 31 (the most significant bit) of the first
inadr longword is ignored. To ensure compatibility between VAX and Alpha
systems when you choose a region, Digital recommends that you specify, for the
first inadr longword, any virtual address in the desired region.

In general, the inadr argument should be specified. However, it may be omitted
to request a special feature: for permanent global sections, you can omit the
inadr argument, or specify it as 0, to request that the section be created but
not mapped. You must also ensure that SEC$M_EXPREG is not set in the
flags argument. Omitting the inadr argument with SEC$M_EXPREG set is
interpreted by VAX systems as a request to map with no region preference.

SYS1-193

System Service Descriptions
$CRMPSC

i§Mifi

SYS1-194

This latter combination of argument settings is strongly discouraged, as the
chosen region is indeterminate. To ensure compatibility between VAX and Alpha
systems, Digital recommends that the SEC$M_EXPREG flag be clear when the
inadr argument is omitted.+

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference

Starting and ending process virtual addresses into which the section was actually
mapped by $CRMPSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

On Alpha systems, the retadr argument returns starting and ending addresses
of the usable range of addresses. This may differ from the total amount mapped.
The retadr argument is required when the relpag argument is specified. If
the section being mapped does not completely fill the last page used to map the
section, the retadr argument indicates the highest address that actually maps
the section. If the relpag argument is used to specify an offset into the section,
the retadr argument reflects the offset. •

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the four access modes.

Symbol

PSL$C_KERNEL
PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive
Supervisor

User

The most privileged access mode used is the access mode of the caller.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of section to be created or mapped to, as well as
its characteristics. The flags argument is a longword bit vector wherein each bit
corresponds to a flag. The $SECDEF macro defines a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags. The following table describes each flag
and the default value that it supersedes.

t=lag

SEC$M_GBL

SEC$M_CRF

SEC$M_DZRO

SEC$M_EXPREG

SEC$M_WRT

SEC$M_PERM

SEC$M_PFNMAP

SEC$M_SYSGBL

SEC$M_PAGFIL

SEC$M_EXECUTE

SEC$M_NO_OVERMAP

iAipha specific

gsdnam

Description

System Service Descriptions
$CRMPSC

Pages form a global section. The default is private
section.

Pages are copy-on-reference. By default, pages are
shared.

Pages are demand-zero pages. By default, they are
not zeroed when copied. 'For page-file sections, the
default is demand zero.

Pages are mapped into the first available space. By
default, pages are mapped into the range specified
by the inadr argument.
See the inadr argument description for a complete
explanation of how to set the SEC$M_EXPREG flag.

Pages form a read/write section. By default, pages
form a read-only section. For page-file sections, the
default is writeable.

Pages are permanent. By default, pages are
temporary.

Pages form a page frame section. By default, pages
form a disk-file section. Pages mapped by SEC$M_
PFNMAP are not included in or charged against
the process's working set; they are always valid. Do
not lock these pages in the working set by using
$LKWSET; this can result in a machine check if
they are in I/O space.
ion Alpha systems, when the SEC$M_PFNMAP
flag is set, the pagcnt and relpag arguments are
interpreted in CPU-specific pages, not as pagelets.
Pages form a system global section. By default,
pages form a group global section.

Pages form a global page-file section. By default,
pages form a disk-file section. SEC$M_PAGFIL also
implies SEC$M_ WRT and SEC$M_DZRO.

Pages are mapped if the caller has execute access.
This flag takes effect only (1) when specified
from executive or kernel mode, (2) when the
SEC$M_GBL flag is also specified, and (3) when
SEC$M_ WRT is not specified. By default $CRMPSC
performs a read access check against the section.

Pages cannot overmap existing address space. Note
that, by default, pages can overmap existing address
space.

Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

SYS1-195

System Service Descriptions
$CRMPSC

SYS1-196

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

For group global sections, the operating system interprets the UIC group as part
of the global section name; thus, the names of global sections are unique to UIC
groups.

ident
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

The first longword specifies, in its low-order two bits, the matching criteria. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows.

Value/Name

0 SEC$K_MATALL

1 SEC$K_MATEQU
2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications match.
Match if the major identifications are equal and the
minor identification of the mapper is less than or
equal to the minor identification of the global section .

...

When a section is mapped at creation time, the match control field is ignored.

If you do not specify the ident argument or specify it as 0 (the default), the
version number and match control fields default to 0.

relpag
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the global section of the first page in the section to
be mapped. The relpag argument is a longword containing this page number.

11m.;1

System Service Descriptions
$CRMPSC

On Alpha systems, the relpag argument is interpreted as an index into the
section file, measured in pagelets for a file-backed section or in CPU-specific
pages for a PFN-mapped section.+

On Alpha and VAX systems, you use this argument only for global sections. If
you do not specify the relpag argument or specify it as 0 (the default), the global
section is mapped beginning with the first virtual block in the file.

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument
is a word containing this number.

The file must have been accessed with the Open VMS RMS macro $OPEN; the
file options parameter (FOP) in the FAB must indicate a user file open (UFO
keyword). The access mode at which the channel was opened must be equal to or
less privileged than the access mode of the caller.

pagcnt
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages (on VAX systems) or pagelets (on Alpha systems) in the section.
The pagcnt argument is a longword containing this number.

On Alpha systems, if the SEC$M_PFNMAP flag bit is set, the pagcnt argument
is interpreted as CPU-specific pages, not as pagelets. +

On Alpha and VAX systems, the specified page count is compared with the
number of blocks in the section file; if they are different, the lower value is used.
If you do not specify the page count or specify it as 0 (the default), the size of
the section file is used. However, for physical page frame sections, this argument
must not be 0.

vbn
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Virtual block number in the file that marks the beginning of the section. The vbn
arg:ument is a longword containing this number. If you do not specify the vbn
argument or specify it as 0 (the default), the section is created beginning with the
first virtual block in the file.

If you specified page frame number mapping (by setting the SEC$M_PFNMAP
flag), the vbn argument specifies the CPU-specific page frame number where the
section begins in memory.

SYS1-197

System Service Descriptions
$CRMPSC

SYS1-198

Table SYSl-3 shows which arguments are required and which are optional for
three different uses of the $CRMPSC service.

' Table SYS1-3 Required and Optional Arguments for the $CRMPSC Service

Create/Map Map Global1 Create/Map
Argument Global Section Section Private Section

inadr Optional2 Required Required

retadr Optional Optional Optional

acmode Optional Optional Optional

flags

SEC$M_GBL Required Ignored Not used
SEC$M_CRF3 Optional Not used Optional
SEC$M_DZR03 Optional Not used Optional

SEC$M_EXPREG Optional Optional Optional
SEC$M_PERM Optional2 Not used Not used
SEC$M_PFNMAP Optional Not used Optional

SEC$M_SYSGBL Optional Optional Not used
SEC$M_WRT Optional Optional Optional
SEC$M_PAGFIL Optional Not used Not used

gsdnam Required Required Not used

ident Optional Optional Not used

relpag3 Optional Optional Not used

chan3 Required Required

pagcnt Required Required

vbn3 Optional Optional

prot Optional Not used

pfc3 Optional Optional

1The Map Global Section ($MGBLSC) service maps an existing global section.
2See the description of inadr for the rules governing the omission of the argument.
3For physical page frame sections: vbn specifies the starting page frame number; chan must be O;
pfc is not used; and the SEC$M_CRF and SEC$M_DZRO flag bit settings are invalid. For page-file
sections, chan must be 0 and pfc not used.

--
Description

System Service Descriptions
$CRMPSC

prot
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page-file and PFN sections. For file-backed
sections, the protection is taken from the backing file and the prot argument is
ignored.

The mask contains four 4-bit fields. Bits are read from right to left in each field.
The following diagram depicts the mask.

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1706-GE

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user.

Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those
situations where execute access applies.

Protection is taken from the system or group global section template for page-file
or PFN global sections if the prot argument is not specified.

pf c
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster size indicating how many pages (on VAX systems) or pagelets
(on Alpha systems) are to be brought into memory when a page fault occurs for a
single page.

On Alpha systems, this argument is not used for page-file sections or physical
page frame sections. The pfc argument is rounded up to CPU-specific pages.
That is, at least 16 pagelets (on an Alpha system with an 8KB page size) will be
mapped for each physical page. The system cannot map less than one physical
page.+

On VAX systems, this argument is not used for page-file sections or physical page
frame sections.+

The Create and Map Section service allows a process to associate (map) a section
of its address space with (1) a specified section of a file (a disk file section) or
(2) specified physical addresses represented by page frame numbers (a page
frame section). This service also allows the process to create either type of section
and to specify that the section be available only to the creating process (private
section) or to all processes that map to it (global section).

SYS1-199

System Service Descriptions
$CRMPSC

SYS1-200

Creating a disk file section involves defining all or part of a disk file as a section.
Mapping a disk file section involves making a correspondence between virtual
blocks in the file and pages (on VAX systems) or pagelets (on Alpha systems)
in the caller's virtual address space. If the $CRMPSC service specifies a global
section that already exists, the service maps it.

Any section created is created as entire pages. See the memory management
section in the Open VMS Programming Concepts Manual.

Depending on the actual operation requested, certain arguments are required
or optional. Table SYSl-3 summarizes how the $CRMPSC service interprets
the arguments passed to it and under what circumstances it requires or ignores
arguments.

The $CRMPSC service returns the virtual addresses of the virtual address space
created in the retadr argument, if specified. The section is mapped from a low
address to a high address,. whether the section is mapped in the program or
control region.

If an error occurs during the mapping of a global section, the retadr argument,
if specified, indicates the pages that were successfully mapped when the error
occurred. If no pages were mapped, the value of the longwords is indeterminate.
In this case, either both longwords of the retadr argument will contain the value
-1, or the value of the longwords will be unaltered.

The SEC$M_PFNMAP flag setting identifies the memory for the section as
starting at the page frame number specified in the vbn argument and extending
for the number of CPU-specific pages specified in the pagcnt argument. Setting
the SEC$M_PFNMAP flag places restrictions on the following arguments.

Argument

ch an
pagcnt

vbn
pfc

SEC$M_CRF
SEC$M_DZRO

SEC$M_PERM

Restriction

Must be 0

Must be specified; cannot be 0

Specifies first page frame to be mapped

Does not apply

Must be 0
Must be 0
Must be 1 if the flags SEC$M_GBL or SEC$M_SYSGBL
are set

Setting the SEC$M_PAGFIL flag places the following restrictions on the following
flags.

Flag

SEC$M_CRF

SEC$M_DZRO

SEC$M_GBL

SEC$M_PFNMAP

SEC$M_WRT

Restriction

Must be 0

Assumed to be 0

Must be 1

Must be 0,

Assumed to be 0

The flags argument bits 4 through 13 and 18 through 31 must be 0.

System Service Descriptions
$CRMPSC

If the global section is mapped to a file (neither SEC$M_PAGFIL nor
SEC$M_PFNMAP is set), the security profile of the file is used to determine
access to the global section.

On VAX systems, by default, the initial security profile created for a page-file
or PFN global section is taken from the group global section template. If the
SEC$M_SYSGBL flag is set, the profile is taken from the system global section
template. The owner is then set to the process UIC. If the prot argument is
nonzero, it replaces the protection mask from the template.+

On Alpha and VAX systems, the flag bit SEC$M_ WRT applies only to the way in
which the newly created section is mapped. For a file to be made writable, the
channel used to open the file must allow write access to the file.

If the flag bit SEC$M_SYSGBL is set, the flag bit SEC$M_GBL must be set also.

Required Access or Privileges
If $CRMPSC specifies a global section and the SS$_NOPRIV condition value is
returned, the process does not have the required privilege to create that section.
In order to create global sections, the process must have the following privileges:

• SYSGBL privilege to create a system global section

• PRMGBL privilege to create a permanent global section

• PFNMAP privilege to create a page frame section

• SHMEM privilege to. create a global section in memory shared by multiple
processors (VAX only)

Note that you do not need PFNMAP privilege to map an existing page frame
section.

Required Quota
If the section pages are copy-on-reference, the process must have sufficient paging
file quota (PGFLQUOTA). The systemwide number of global page-file pages is
limited by the SYSGEN parameter GBLPAGFIL.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_CREATED

SS$_ACCVIO

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

The inadr argument, gsdnam argument, or
name descriptor cannot be read by the caller;
the inadr argument was omitted; or the retadr
argument cannot be written by the caller.

SYS1-201

System Service Descriptions
$CRMPSC

SYS1-202

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXGBLPAGFIL

SS$_EXQUOTA

SS$_GPTFULL

SS$_GSDFULL

SS$_ILLPAGCNT

SS$_INSFMEM

SS$_INSFWSL

SS$_IVCHAN

SS$_IVCHNLSEC
SS$_IVLOGNAM

SS$_IVLVEC

SS$_IVSECFLG

SS$_IVSECIDCTL

The starting virtual block number specified is
beyond the logical end-of-file, or the value in the
relpag argument is greater than or equal to the
actual size of the global section.

The process has exceeded the byte count quota;
the system was unable to map the requested file.
The process has exceeded the systemwide limit
on global page-file pages; no part of the section
was mapped.

The process exceeded its paging file quota while
creating copy-on-reference or page-file-backing
store pages.

There is no more room in the system global page
table to set up page table entries for the section.
There is no more room in the system space
allocated to maintain control information for
global sections.
The page count value is negative or is 0 for a
physical page frame section.
Not enough pages are available in the specified
shared memory to create the section.

The process's working set limit is not large
enough to accommodate the increased size of the
address space.

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than
the number of channels available.
The channel number specified is currently active.
The specified global section name has a length of
0 or has more than 43 characters.

The specified section was not installed using the
/PROTECT qualifier.
An invalid flag, a reserved flag, a flag requiring
a privilege you lack, or an invalid combination of
flags was specified.

The match control field of the global section
identification is invalid.

SS$_NOPRIV

SS$_NOTFILEDEV

SS$_NOWRT

SS$_PAGOWNVIO

SS$_SECTBLFUL

SS$_TOOMANYLNAM

SS$_ VA_IN_USE

SS$_ VASFULL

System Service Descriptions
$CRMPSC

The process does not have the privileges to
create a system global section (SYSGBL) or a
permanent group global section (PRMGBL).
The process does not have the privilege to create

· a section starting at a specific physical page
frame number (PFNMAP).
The process does not have the privilege to create
a global section in memory shared by multiple
processors (SHMEM).
A page in the input address range is in the
system address space.
The specified channel is not assigned or was
assigned from a more privileged access mode.

The device is not a file-oriented, random-access,
or directory device.
The section cannot be written to because the flag
bit SEC$M_ WRT is set, the file is read only, and
the flag bit SEC$M_CRF is not set.

A page in the specified input address range is
owned by a more privileged access mode.

There are no entries available in the system
global section table or in the process section
table.

The logical name translation of the gsdnam
argument exceeded the allowed depth.

A page in the specified input address range
is already mapped and the flag SEC$M_NO_
OVERMAP is set.
The process's virtual address space is full; no
space is available in the page tables for the pages
created to contain the mapped global section.

SYS1-203

System Service Descriptions
$CRMPSC_FILE_64 (Alpha Only)

$CRMPSC_FILE_64 (Alpha Only)
Create and Map Private Disk File Section

Format

Arguments

SYS1-204

On Alpha systems, allows a process to map a section of its address space to
a specified portion of a file. This service creates and maps a private disk file
section.

This service accepts· 64-bit addresses.

SYS$CRMPSC_FILE_64 region_id_64 ,file_offset_64 ,length_64 ,chan ,acmode
,flags ,return_va_64 ,return_length_64 [,fault_cluster
[,start_va_64]]

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the private disk file section.
The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO
VA$C_Pl
VA$C_P2

Region

Program region
Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

file_offset_64
Open VMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Byte offset into the file that marks the beginning of the section. The
file_offset_64 argument is a quadword containing this number. If you specify the
file_offset_64 argument as 0, the section is created beginning with the first byte
in the file.

The file_offset_64 argument must be a multiple of virtual disk blocks.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: value

System Service Descriptions
$CRMPSC_FILE_64 (Alpha Only)

Length, in bytes, of the private disk file section to be created and mapped to.
The length specified must be 0 or a multiple of virtual disk blocks. If the length
specified is 0 or extends beyond end-of-file (EOF), the disk file is mapped up to
and including the virtual block number that contains EOF.

ch an
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument
is a longword containing this number. The access mode at which the channel was
opened must be equal to or less privileged than the access mode of the caller.

Use the Open VMS Record Management Services (RMS) macro $OPEN to access
a file; the file options parameter in the file access block must indicate a user file
open (UFO keyword).

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the private section to be created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $SECDEF macro and the SECDEF.H file define a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags.

SYS1-205

System Service Descriptions
$CRMPSC_FILE_64 (Alpha Only)

SYS1-206

The following table describes each flag that is valid for the $CRMPSC_FILE_64
service:

Flag

SEC$M_CRF

SEC$M_DZRO

SEC$M_EXPREG

SEC$M_NO_
OVERMAP
SEC$M_WRT

Description

Pages are copy-on-reference.

Pages are demand-zero pages. By default, they are not
zeroed when copied.
Note that SEC$M_DZRO and SEC$M_CRF cannot both
be set and that SEC$M_DZRO set and SEC$M_ WRT clear
is an invalid combination.

Pages are mapped into the first available space at the
current end of the specified region.

Pages cannot overmap existing address space. By default,
pages can overmap existing address space.

Pages form a read/write section. By default, pages form a
read-only section.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the private disk file section was
mapped. The return_ va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference.

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the usable virtual address range mapped in
bytes. This length might differ from the total amount mapped. If the section
being mapped does not completely fill the last page used to map the section, the
return_ va_64 and return_length_64 arguments indicate the highest address
that actually maps the section.

fault_ cluster
Open VMS usage: byte count
type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster in byte units indicating how many pages are to be brought into
memory when a page fault occurs for a single page. The fault cluster specified
will be rounded up to a multiple of CPU-specific pages.

Description

System Service Descriptions
$CRMPSC_FILE_64 (Alpha Only}

If this argument is specified as 0, the process default page fault cluster will be
used. If this argument is specified as more than the maximum allowed for the
system, no condition value will be returned. The systemwide maximum will be
used.

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the private disk file section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVSECFLG is returned.

The Create and Map Private Disk File Section service allows a process to create
a map to a private disk file section. Creating a private disk file section involves
mapping all or part of a disk file as a section. The section is mapped from a low
address to a high address whether the section is mapped in a region that grows
from low to high addresses or from high to low addresses.

The flag SEC$M_ WRT applies only to the way in which the newly created section
is mapped. For a file to be made writable, the channel used to open the file must
allow write access to the file.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
None

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

The process must have sufficient byte count quota to satisfy the request.

If the section pages are copy-on-reference, the process must have sufficient paging
file quota (PGFLQUOTA).

Related Services
$CREATE_REGION_64, $CRMPSC, $CRMPSC_GFILE_64, $CRMPSC_
GPFILE_64, $CRMPSC_GPFN_64, $CRMPSC_PFN_64, $DELETE_REGION_
64, $DELTVA_64, $LCKPAG_64, $LKWSET_64, $PURGE_WS, $SETPRT_64,
$ULKPAG_64, $ULWSET_64, $UPDSEC_64, $UPDSEC_64W

SYS1-207

System Service Descriptions
$CRMPSC_FILE_64 (Alpha ORiy)

Condition Values Returned

SYS1-208

SS$_NORMAL

SS$_ACCVIO

SS$_CHANVIO

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXPGFLQUOTA

SS$_INSFWSL

SS$_IVCHAN

SS$_IVCHNLSEC

SS$_MDENT

SS$_IVLOGNAM

SS$_IVREGID
SS$_IVSECFLG

SS$_LEN_NOTBLKMULT

SS$_NOTFILEDEV

SS$_ OFF _NOTBLKALGN

SS$_NOWRT

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

The service completed successfully.

The return_va_64 argument or the
return_length_64 argument cannot be written
by the caller.
The specified channel was assigned from a more
privileged access mode.

The file_offset_64 argument specified is beyond
the logical end-of-file.
The process has exceeded the byte count quota;
the system was unable to map the requested file.

The process exceeded its paging file quota.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.
An invalid channel number was specified; the
channel number specified was 0 or a channel
that is unassigned.
The channel number specified is currently active,
or there are no files opened on the specified
channel.

An invalid channel number was specified; the
channel number specified is larger than the
number of channels available.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.
An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.

The length_64 argument is not a multiple of
virtual disk blocks.

The device is not a file-oriented, random-access,
or directory device.
The file_offset_64 argument is not a multiple of
virtual disk blocks.
The file is read-only, the flag bit SEC$M_ WRT
was set, and the flag bit SEC$M_CRF is not set.

A page in the specified range is not within the
specified region.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

SS$_ VA_IN_USE

SS$_ VA_NOTPAGALGN

System Service Descriptions
$CRMPSC_FILE_64 (Alpha Only)

A page in the specified input address
range is already mapped, and the flag
SEC$M_NO_OVERMAP is set.

The start_va_64 argument is not CPU-specific
page-aligned.

SYS1-209

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only}

$CRMPSC_GFILE_64 {Alpha Only)
Create and Map Global Disk File Section

Format

Arguments

SYS1-210

On Alpha systems, allows a process to create a global disk file section and to map
a section of its address space to the global section.

This service accepts 64-bit addresses.

SYS$CRMPSC_GFILE_64 gs_name_64 ,ident_64 ,file_offset_64 ,length_64
,chan ,region_id_64 ,section_offset_64 ,acmode ,flags
,return_va_64 ,return_length_64 [,fault_cluster
[,start_ va_64 [,map_length_64]]]

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.

Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

When a section is mapped at creation time, the match control field is ignored. If
you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

file_offset_64
Open VMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Byte offset into the file that marks the beginning of the section. The
file_offset_64 argument is a quadword containing this number. If you specify the
file_offset_64 argument as 0, the section is created beginning with the first byte
in the file.

The file offset specified must be a multiple of virtual disk blocks.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global disk file section to be created. The length specified
must be 0 or a multiple of virtual disk blocks. If the length specified is 0 or
extends beyond the end-of-file (EOF), the global disk file section is created up to
and including the virtual block number that contains EOF.

ch an
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument
is a longword containing this number. The access mode at which the channel was
opened must be equal to or less privileged than the access mode of the caller.

You can use the Open VMS Record Management Services (RMS) macro $OPEN
to access a file; the file options parameter in the file access block must indicate a
user file open (UFO keyword).

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 64 bit reference

The region ID associated with the region in which to map the global disk file
section. The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions in
PO, Pl, and P2 space. The following region IDs are defined:

SYS1-211

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

SYS1-212

Symbol

VA$C_PO
VA$C_Pl

VA$C_P2

Region

Program region

Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

section_offset_64
Open VMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section to start mapping into the process's virtual address
space. The offset specified must be a multiple of virtual disk blocks.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the global section to be created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The· $SECDEF mac:ro and the SECDEF.H file define a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags.

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

The following table describes each flag that is valid for the $CRMPSC_GFILE_64
service:

Flag

SEC$M_CRF

SEC$M_GBL

SEC$M_WRT

SEC$M_DZRO

SEC$M_EXPREG

SEC$M_NO_
OVERMAP
SEC$M_PERM

SEC$M_SYSGBL

Description

Pages are copy-on-reference.

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.
Pages form a read/write section. By default, pages form a
read-only section.

Pages are demand-zero pages. By default, they are not
zeroed when copied.
Note that SEC$M_DZRO and SEC$M_CRF cannot both
be set and that SEC$M_DZRO set and SEC$M_ WRT clear
is an invalid combination.

Pages are mapped into the first available space at the
current end of the specified region.

Pages cannot overmap existing address space. By default,
pages can overmap existing address space.
Pages are permanent. By default, pages are temporary.

Pages form a system global section. By default, pages
form a group global section.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the global disk file section was
mapped. The return_va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

Upon successful completion of this service, if the section_offset_64 argument
was specified, the virtual address returned in return_ va_64 reflects the offset
into the global section mapped such that the virtual address returned cannot
be aligned on a CPU-specific page boundary. The virtual address returned will
always be on an even virtual disk block boundary.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the virtual address range mapped in bytes.

Upon successful completion of this service, the value in the return_length_64
argument indicates the amount of created address space backed by the section
file.

SYS1-213

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

SYS1-214

If the number of disk blocks mapped does not represent an exact multiple of CPU
specific pages, the last page in the mapped address space will not be completely
mapped by the section file. In this case, modifying memory beyond the amount
indicated by return_length_64 can result in the loss of this data.

Unlike the return_length_64 argument for the $CREATE_GFILE service, upon
successful completion of this service, the return_length_64 argument does not
represent the total length of the global section created if the section_offset_64
argument was specified as non-zero. The value in the section_offset_64
argument plus the value in the return_length_64 argument is the total length
of the global disk file section created.

fault_ cluster
Open VMS usage: byte count
type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster in byte units indicating how many pages are to be brought into
memory when a page fault occurs for a single page. The fault cluster specified
will be rounded up to a multiple of CPU-specific pages.

If this argument is specified as 0, the system default page fault cluster will be
used. If this argument is specified as more than the maximum allowed for the
system, no error will be returned. The systemwide maximum will be used.

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the global disk file section. The
specified virtual address must be a CPU-specific page aligned address. If
the flag SEC$M_EXPREG is specified, this argument will not be used. If
SEC$M_EXPREG is clear and the start_ va_64 argument is not specified or is
specified as 0, the condition value SS$_IVSECFLG will be returned.

Always refer to the return_va_64 and return_length_64 arguments to
determine the usable range of virtual addresses mapped.

map_length_64
Open VMS usage: byte count
type: quadword unsigned
access: read only
mechanism: by value

Length of the global disk file section to be mapped. The length specified must
be a multiple of virtual disk blocks. If this argument is not specified as zero,
the global disk section is mapped up to and including the last disk block in the
section.

Description

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

The Create and Map Global Disk File Section service allows a process to create
and map to a global disk file section. Creating a global disk file section involves
defining all or part of a disk file as a section. The section is mapped from
a low address to a high address whether the section is mapped in a region
that grows from low to high addresses or from high to low addresses. If the
$CRMPSC_GFILE_64 service specifies a global disk file section that already
exists, the service maps it.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

The flag SEC$M_ WRT applies only to the way in which the newly created section
is mapped. For a file to be made writable, the channel used to open the file must
allow write access to the file.

Required Privileges
In order to create a global section, the process must have the following privileges:

• SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section

Required Quota
If the section pages are copy-on-reference, the process must have sufficient paging
file quota (PGFLQUOTA).

The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

Related Services
$CREATE_REGION_64, $CRMPSC, $CRMPSC_FILE_64, $CRMPSC_GPFILE_
64, $CRMPSC_GPFN_64, $CRMPSC_PFN_64, $DELETE_REGION_64,
$DELTVA_64, $DGBLSC, $LCKPAG_64, $LKWSET_64, $MGBLSC_64,
$PURGE_ WS, $SETPRT_64, $ULKPAG_64, $ULWSET_64, $UPDSEC_64,
$UPDSEC_64W

Condition Values Returned

SS$_NORMAL

SS$_CREATED

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

SYS1-215

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

SYS1-216

SS$_ACCVIO

SS$_CHANVIO

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXPGFLQUOTA

SS$_GBLSEC_MISMATCH

SS$_GPTFULL

SS$_GSDFULL

SS$_INSFWSL

SS$_IVACMODE

SS$_IVCHAN

SS$_IVCHNLSEC

SS$_IVIDENT

SS$_IVLOGNAM

SS$_IVREGID

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_LEN_NOTBLKMULT

SS$_NOPRMGBL

The gs_name_64 argument cannot b~
read by the caller, or the return_ va_64 or
return_length_64 argument cannot be written
by the caller.

The specified channel was assigned from a more
privileged access mode.
The file_offset_64 argument specified is beyond
the logical end-of-file.

The process has exceeded the byte count quota;
the system was unable to map the requested file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

Global section type mismatch. The specified
global section was found; however, it was not a
global disk file section.
There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.
The caller's mode is less privileged than the
create mode associated with the region.

An invalid channel number was specified; the
channel number specified was 0 or a channel
that is unassigned.
The channel number specified is currently active
or there are no files opened on the specified
channel.

An invalid channel number was specified; the
channel number specified is larger than the
number of channels available.

The specified global section name has a length of
0 or has more than 43 characters.
Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.
The match control field of the global section
identification is invalid.
The length_64 or the map_length_64 argument
is not a multiple of virtual disk blocks.

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

SS$_NOSYSGBL

SS$_NOTFILEDEV

SS$_NOWRT

SS$_0FF _NOTBLKALGN

SS$_0FFSET_TOO_BIG

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

SS$_SECTBLFUL

SS$_TOOMANYLNAM

SS$_ VA_IN_USE

SS$_ VA_NOTPAGALGN

System Service Descriptions
$CRMPSC_GFILE_64 (Alpha Only)

The process does not have the privileges to create
or delete a system global section (SYSGBL).

The device is not a file-oriented, random-access,
or directory device.

The file is read-only, and the flag bit
SEC$M_ CRF is not set.
The file_offset_64 or section_offset_64
argument is not virtual disk block aligned.

The section_offset_64 argument specified is
beyond the logical end-of-file.
A page in the specified range is not within the
specified region.

A page in the specified input address range is
owned by a more privileged access mode.
The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

There are no entries available in the system
global section table.
The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

A page in the specified input address
range is already mapped, and the flag
SEC$M_NO_OVERMAP is set.

The start_ va_64 argument is not CPU-specific
page-aligned.

SYS1-217

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only)

$CRMPSC_GPFILE_64 (Alpha Only)
Create and Map Global Page File Section

Format

Arguments

SYS1-218

On Alpha systems, allows a process to create a global page file section and to map
a section of its address space to the global section.

This service accepts 64-bit addresses.

SYS$CRMPSC_GPFILE_64 gs_name_64 ,ident_64 ,prot ,length_64 ,region_id_64
,section_offset_64 ,acmode ,flags ,return_va_64
,return_length_64 [,start_va_64 [,map_length_64]]

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64~bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name· string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

When a section is mapped at creation time, the match control field is ignored. If
you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only)

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page file section. The mask contains four
4-bit fields. Bits are read from right to left in each field. The following diagram
depicts the mask:

+---------------+---------------+---------------+---------------+
I World I Group I Owner I System I

+---------------+---------------+---------------+---------------+
I D I E I w I R I D I E I w I R I D I E I w I R I D I E I w I R I

+---------------+---------------+---------------+---------------+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user. Only read, write, and execute
access are meaningful for section protection. Delete access bits are ignored.
Read access also grants execute access for those situations where execute access
applies. If zero is specified, read access and write access are granted to all users.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global page file section to be created. The length specified
must be a multiple of CPU-specific pages. A length of 0 cannot be specified.

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the global page file section.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl

VA$C_P2

Region

Program region

Control region

64-bit program region

SYS1-219

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only}

SYS1-220

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

section_offset_64
OpenVMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section to start mapping into the process's virtual address
space. The offset specified must be a multiple of virtual disk blocks.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel
1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the global section to be created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $SECDEF macro and the SECDEF.H file define a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags.

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only)

The following table describes each flag that is valid for the
$CRMPSC_GPFILE_64 service:

Flag

SEC$M_DZRO

SEC$M_EXPREG

SEC$M_GBL

SEC$M_NO_
OVERMAP

SEC$M_PAGFIL

SEC$M_PERM

SEC$M_SYSGBL

SEC$M_WRT

Description

Pages are demand-zero pages. By default, this flag is
always present in this service and cannot be disabled.

Pages are mapped into the first available space at the
current end of the specified region. SEC$M_EXPREG
cannot be specified with the SEC$M_NO_OVERMAP flag.

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

Pages cannot overmap existing address space. By
default, pages can overmap existing address space.
SEC$M_NO_OVERMAP cannot be specified with the
SEC$M_EXPREG flag.

Pages form a global page-file section. By default, this flag
is always present in this service and cannot be disabled.

Pages are permanent. By default, pages are temporary.

Pages form a system global section. By default, pages
form a group global section.

Pages form a read/write section. By default, this flag is
always present in this service and cannot be disabled.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an invalid combination of flags is set.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the global page file section was
mapped. The return_va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

re tu rn_length_ 64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the virtual address range mapped in bytes.

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the global page file section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag

SYS1-221

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only)

Description

SYS1-222

SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_ va_64 and return_length_64 arguments to
determine the range of virtual addresses mapped.

map_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the global page file section to be mapped. The length specified must be
a multiple of CPU-specific pages. If this argument is not specified or is specified
as zero, the global file section is mapped up to and including the last page in that
section.

The Create and Map Global Page File Section service allows a process to create
a map to global page file section. Creating a global page file section involves
defining a global section backed up by the system page file. The section is
mapped from a low address to a high address whether the section is mapped in
a region that grows from low to high addresses or from high to low addresses. If
the $CRMPSC_GPFILE_64 service specifies a global section that already exists,
the service maps it.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
In order to create a global section, the process must have the following privileges:

• SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section

Required Quota
Since the section pages are copy-on-reference, the process must have sufficient
paging file quota (PGFLQUOTA).

The working set limit quota (WSQUOTA) of the process must be sufficient to
accommodate the increased size of the process page table required by the increase
in virtual address space when the section is mapped.

Related Services

System Service Descriptions
$CRMPSC_GPFILE_64 (Alpha Only)

$CREATE_GPFILE, $CREATE_REGION_64, $CRMPSC, $CRMPSC_FILE_64,
$CRMPSC_GFILE_64, $CRMPSC_GPFN_64, $CRMPSC_PFN_64, $DELETE_
REGION_64, $DELTVA_64, $DGBLSC, $LCKPAG_64, $LKWSET_64,
$MGBLSC_64, $PURGE_ WS, $SETPRT_64, $ULKPAG_64, $ULWSET_64,
$UPDSEC_64, $UPDSEC_64W

Condition Values Returned

SS$_NORMAL

SS$_CREATED

SS$_ACCVIO

SS$_EXBYTLM

SS$_EXGBLPAGFIL

SS$_EXPGFLQUOTA

SS$_GBLSEC_MISMATCH

SS$_GPTFULL

SS$_GSDFULL

SS$_INSFWSL

SS$_IVACMODE

SS$_IVLOGNAM

SS$_IVREGID
SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_LEN_NOTPAGMULT

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.
The gs_name_64 argument cannot be
read by the caller, or the return_ va_64 or
return_length_64 argument cannot be written
by the caller.

The process has exceeded the byte count quota.
The process has exceeded the system-wide limit
on global page file pages; no part of the section
was mapped.
The process exceeded its paging file quota,
creating copy-on-reference pages.

Global section type mismatch. The specified
global section was found; however, it is not a
global disk or page file section.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.
The process's working set limit is not large
enough to accommodate the increased virtual
address space.
The caller's mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.
An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.
The match control field of the global section
identification is invalid.
The length_64 argument is not a multiple of
CPU-specified pages or was specified as 0.

SYS1-223

System Service Descriptions
$CRMPSC_GPFILE_64 {Alpha Only)

SS$_NOPRMGBL

SS$_NOSYSGBL

SS$_NOWRTACC

SS$_0FF _NOTPAGALGN

SS$_0FFSET_TOO_BIG

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

SS$_SECTBLFUL

SS$_TOOMANYLNAM

SS$_ VA_IN_USE

SS$_ VA_NOTPAGALGN

SYS1-224

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

The process does not have the privileges to create
or delete a system global section (SYSGBL).

The specified global section is not copy-on
reference and does not allow write access.

The section_offset_64 argument is not CPU
specific page aligned if a map to a global page file
section was requested (SEC$M_PAGFIL is set in
the flags argument).

The section_offset_64 argument specified is
beyond the logical end-of-file.

A page in the specified range is not within the
specified region.
A page in the specified input address range is
owned by a more privileged access mode.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

There are no entries available in the system
global section table.

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

A page in the specified input address
range is already mapped, and the flag
SEC$M_NO_OVERMAP is set.

The start_ va_64 argument is not CPU-specific
page-aligned.

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only)

$CRMPSC_GPFN_64 (Alpha Only)
Create and Map Global Page Frame Section

Format

Arguments

On Alpha systems, allows a process to create a permanent global page frame
section and to map a section of its address space to the global page frame section.

This service accepts 64-bit addresses.

SYS$CRMPSC_GPFN_64 gs_name_64 ,ident_64 ,prot ,start_pfn ,page_count
,region_id_64 ,relative_page ,acmode ,flags
,return_va_64 ,return_length_64 [,start_va_64
[,map_page_count]]

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section.
The ident_64 argument is a quadword containing three fields. The
ident_64 argument is the 32-bit or 64-bit virtual address of a naturally aligned
quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.

Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

When a section is mapped at creation time, the match control field is ignored. If
you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

SYS1-225

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only)

SYS1-226

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot
Open VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page file section.

The mask contains four 4-bit fields. Bits are read from right to left in each field.
The following diagram depicts the mask:

+---------------+---------------+---------------+---------------+
I World I Group I Owner I System I

+---------------+---------------+---------------+---------------+
I D I E I w I R I D I E I w I R I D I E I w I R I D I E I w I R I

+---------------+---------------+---------------+---------------+
15 14. 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user. Only read, write, and execute
access are meaningful for section protection. Delete access bits are ignored.
Read access also grants execute access for those situations where execute access
applies. If zero is specified, read access and write access are granted to all users.

start_pfn
Open VMS usage: page frame number
type: longword (unsigned)
access: read only
mechanism: by value

The CPU-specific page frame number where the section begins.

page_count
Open VMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Length of the page frame section in CPU-specific pages.

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the global page frame section.
The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space.

The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl

VA$C_P2

Region

Program region

Control region

64-bit program region

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only)

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

relative_page
Open VMS usage: CPU-specific page number
type: longword (unsigned)
access: read only
mechanism: by value

Relative CPU-specific page number within the global section to start mapping.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the global section to be created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $SECDEF macro and the SECDEF.H file define a symbolic name for each

SYS1-227

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only}

SYS1-228

flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags.

The following table describes each flag that is valid for the $CRMPSC_GPFN_64
service:

Flag

SEC$M_EXPREG

SEC$M_GBL

SEC$M_PERM

SEC$M_PFNMAP

SEC$M_NO_
OVERMAP
SEC$M_SYSGBL

SEC$M_WRT

Description

Pages are mapped into the first available space at the
current end of the specified region.

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.
Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.
Pages cannot overmap existing address space. By default,
pages can overmap existing address space.
Pages form a system global section. By default, pages
form a group global section.
Pages form a read/write section. By default, pages form a
read-only section.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the global page frame section
was mapped. The return_ va_64 argument is the 32-bit or 64-bit address of a
naturally aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the virtual address range mapped in bytes.

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the global page frame section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or

Description

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only)

must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_ va_64 and return_length_64 arguments to
determine the range of virtual addresses mapped.

map_page_count
Open VMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Length of the global page frame section to be mapped in CPU-specific pages.

The Create and Map Global Page Frame Section service allows a process to create
and map to a global page frame section. Creating a global page frame section
involves defining certain physical page frame numbers (PFNs) as a section.

All global page frame sections are permanent. Pages mapped to a global page
frame section are not included in or charged against the process's working set;
they are always valid. Do not lock these pages in the working set by using
$LKWSET; this can result in a machine check if they are in I/O space.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
In order to create a global page frame section, the process must have the following
privileges:

• SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL
is set)

• PRMGBL privilege to create a permanent global section (if flag
SEC$M_PERM is set)

• PFNMAP privilege to create a page frame section

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

Related Services
$CREATE_GPFN, $CREATE_REGION_64, $CRMPSC, $CRMPSC_FILE_64,
$CRMPSC_GFILE_64, $CRMPSC_GPFILE_64, $CRMPSC_PFN_64, $DELETE_
REGION_64, $DELTVA_64, $DGBLSC, $MGBLSC_GPFN_64

SYS1-229

System Service Descriptions
$CRMPSC_GPFN_64 (Alpha Only)

Condition Values Returned

SYS1-230

SS$_NORMAL

SS$_CREATED

SS$_ACCVIO

SS$_EXBYTLM

SS$_GBLSEC_MISMATCH

SS$_GPTFULL

SS$_GSDFULL

SS$_ILLRELPAG

SS$_IVACMODE

SS$_IVLOGNAM

SS$_IVREGID

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPFNMAP

SS$_NOPRMGBL

SS$_NOWRTACC

SS$_NOSYSGBL

SS$_PAGNOTINREG

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

The gs_name_64 argument cannot be
read by the caller, or the return_va_64 or
return_length_64 argument cannot be written
by the caller.

The process has exceeded the byte count quota.

Global section type mismatch. The specified
global section was found; however, it was not a
global disk file section.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.

The specified relative page argument is either
larger than the highest page number within the
section or is not a valid 32-bit physical page
frame number. ·

The caller's mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.

The match control field of the global section
identification is invalid.

The process does not have the privilege to create
or delete a section starting at a specific physical
page frame number (PFNMAP).

The process does not have the privileges to
create or delete a permanent group global section
(PRMGBL).

The specified global section is not copy-on
reference and does not allow write access.

The process does not have the privileges to create
or delete a system global section (SYSGBL).
A page in the specified range is not within the
specified region.

SS$_REGISFULL

SS$_TOOMANYLNAM

88$_ VA_IN_USE

88$_ VA_NOTPAGALGN

System Service Descriptions
$CRMPSC_GPFN_64 {Alpha Only)

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.
The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

A page in the specified input address
range is already mapped, and the flag
SEC$M_NO_OVERMAP is set.

The start_ va_64 argument is not CPU-specific
page-aligned.

SYS1-231

System Service Descriptions
$CRMPSC_PFN_64 (Alpha Only)

$CRMPSC_PFN_64 (Alpha Only)
Create and Map Private Page Frame Section

Format

Arguments

SYS1-232

On Alpha systems, allows a process to map a section of its address space to
a specified physical address range represented by page frame numbers. This
service creates and maps a private page frame section.

This service accepts 64-bit addresses.

SYS$CRMPSC_PFN_64 region_id_64 ,start_pfn ,page_count ,acmode ,flags
,return_va_64 ,return_length_64 [,start_va_64]

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the private page frame
section. The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro
in STARLET.MLB define a symbolic name for each of the three default regions in
PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl

VA$C_P2

Region

Program region
Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

start_pfn
Open VMS usage: page frame number
type: longword (unsigned)
access: read only
mechanism: by value

The CPU-specific page frame number where the section begins in memory.

page_count
Open VMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Length of the page frame section in CPU-specific pages.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$CRMPSC_PFN_64 {Alpha Only)

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the private section to be created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $SECDEF macro and the SECDEF.H file define a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags.

The following table describes each flag that is valid for the $CRMPSC_PFN_64
service:

Flag

SEC$M_EXPREG

SEC$M_NO_
OVERMAP
SEC$M_PFNMAP

SEC$M_WRT

Description

Pages are mapped into the first available space at the
current end of the specified region.

Pages cannot overmap existing address space. By default,
pages can overmap existing address space.

Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.

Pages form a read/write section. By default, pages form a
read-only section.

SYS1-233

System Service Descriptions
$CRMPSC_PFN_64 (Alpha Only)

Description

SYS1-234

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an invalid combination of flags is set.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the private page frame section was
mapped. The return_ va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range mapped. The return_length_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range in bytes.

start_ va_ 64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the private page frame section. The
specified virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVESCFLG is returned.

The Create and Map Private Page Frame Section service allows a process to
create a map to a private page frame section. Creating a private page frame
section involves defining certain physical page numbers (PFNs) as a section. The
section is mapped from a low address to a high address whether the section is
mapped in a region that grows from low to high addresses or from high to low
addresses.

All global page frame sections are permanent. Pages mapped by SEC$M_
PFNMAP are not included in or charged against the process's working set; they
are always valid. Do not lock these pages in the working set by using $LKWSET_
64; this can result in a machine check if they are in I/O space.

If the condition value SS$_ACCVIO be returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

System Service Descriptions
$CRMPSC_PFN_64 {Alpha Only)

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
PFNMAP privilege is required to create a page frame section.

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

Related Services
$CREATE_REGION_64, $CRMPSC, $CRMPSC_FILE_64, $CRMPSC_GFILE_
64, $CRMPSC_GPFILE_64, $CRMPSC_GPFN_64, $DELETE_REGION_64,
$DELTVA_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFWSL

SS$_IVACMODE

SS$_IVREGID

SS$_IVSECFLG

SS$_NOPFNMAP

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

SS$_ VA_IN_USE

SS$_ VA_NOTPAGALGN

The service completed successfully.
The return_va_64 argument or the
return_length_64 argument cannot be written
by the caller.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.

The caller's mode is less privileged than the
create mode associated with the region.
Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.

The process does not have the privilege to create
a section starting at a specific physical page
frame number (PFNMAP).

A page in the specified range is not within the
specified region.
A page in the specified input address range is
owned by a more privileged access mode.
The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

A page in the specified input address
range is already mapped, and the flag
SEC$M_NO_OVERMAP is set.
The start_va_64 argument is not CPU-specific
page-aligned.

SYS1-235

System Service Descriptions
$DACEFC

$DACEFC
Disassociate Common Event Flag Cluster

Format

Argument

Description

Releases the calling process's association with a common event flag cluster.

SYS$DACEFC efn

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag in the common cluster to be disassociated. The efn
argument is a longword containing this number; however, $DACEFC uses only
the low-order byte. The number must be in the range of 64 through 95 for cluster
2, and 96 through 127 for cluster 3.

The Disassociate Common Event Flag Cluster service disassociates the calling
process from a common event flag cluster and decreases the count of processes
associated with the cluster accordingly. When the image associated with a cluster
exits, the system disassociates the cluster. When the count of processes associated
with a temporary cluster or with a permanent cluster that is marked for deletion
reaches 0, the cluster is automatically deleted.

If a process issues this service specifying an event flag cluster with which it is not
associated, the service completes. suc~essfully.

Required Access or Privileges
A calling process must have PRMCEB privilege to delete a permanent common
event flag cluster.

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

Condition Values Returned

SYS1-236

SS$_NORMAL

SS$_ILLEFC

The service completed successfully.

You specified an illegal event flag number. The
number must be in the range of event flags 64
through 127.

SS$_INTERLOCK

System Service Descriptions
$DACEFC

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

SYS1-237

System Service Descriptions
$DALLOC

$DALLOC
Deallocate Device

Format

Arguments

Description

SYS1-238

Deallocates a previously allocated device.

SYS$DALLOC [devnam] ,[acmode]

devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device to be deallocated. The devnam argument is the address of a
character string descriptor pointing to the device name string. The string might
be either a physical device name or ,a logical name. If it is a logical name, it must
translate to a physical device name.

If you do not specify a device name, all devices allocated by the process from
access modes equal to or less privileged than that specified are deallocated.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode from which the deallocation is to be performed. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
the following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER
PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

The Deallocate Device service deallocates a previously allocated device. The
issuing process relinquishes exclusive use of the device, thus allowing other
processes to assign or allocate that device. You can deallocate an allocated device
only from access modes equal to or more privileged than the access mode from
which the original allocation was made.

This service does not deallocate a device if, at the time of deallocation, the issuing
process has one or more I/O channels assigned to the device; in such a case, the
device remains allocated.

System Service Descriptions
$DALLOC

At image exit, the system automatically deallocates all devices that are allocated
at user mode.

If you attempt to deallocate a mailbox, success is returned but no operation is
performed.

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_DEVASSIGN

SS$_DEVNOTALLOC

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The device name string or string descriptor
cannot be read by the caller.

The device cannot be deallocated because the
process still has channels assigned to it.

The device is not allocated to the requesting
process.

You did not specify a device name string, or the
device name string contains invalid characters ..

The device name string has a length of 0 or has
more than 63 characters.
The device is on a remote node.

The device was allocated from a more privileged
access mode.

The specified device does not exist in the host
system.

SYS1-239

System Service Descriptions
$DASSGN

$DASSGN
Deassign 1/0 Channel

Format

Argument

Description

SYS1-240

Deassigns (releases) an I/O channel previously acquired using the Assign I/O
Channel ($ASSIGN) service.

SYS$DASSGN chan

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel to be deassigned. The chan argument is a word
containing this number.

The Deassign I/O Channel service deassigns (releases) an I/O channel that it
acquired using the Assign I/O Channel ($ASSIGN) service. You can deassign an
I/O channel only from an access mode equal to or more privileged than the access
mode from which the original channel assignment was made.

When you deassign a channel, any outstanding I/O requests on. the channel are
canceled. If a file is open on the specified channel, the file is closed.

If a mailbox was associated with the device when the channel was assigned, the
link to the mailbox is cleared.

If the I/O channel was assigned for a network operation, the network link is
disconnected.

If the specified channel is the last channel assigned to a device that has been
marked for dismounting, the device is dismounted.

I/O channels assigned from user mode are automatically deassigned at image
exit.

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_IVCHAN

SS$_NOPRIV

System Service Descriptions
$DASSGN

The service completed successfully.

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.
The specified channel is not assigned or was
assigned from a more privileged access mode.

SYS1-241

System Service Descriptions
$DCLAST

$DCLAST
Declare AST

Format

Arguments

Description

SYS1-242

Queues an AST for the calling access mode or for a less privileged access mode.

On ·Alpha systems, this service accepts 64-bit addresses.

SYS$DCLAST astadr ,[astprm] ,[acmode]

astadr
Open VMS usage:
type:
access:
mechanism:

ast_procedure
procedure value
call without stack unwinding
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

AST service routine to be executed. On Alpha systems, the astadr argument
is the 32-bit or 64-bit address of this routine. On VAX systems, the astadr
argument is the 32-bit address of this routine.

astprm
Open VMS usage:
type:

·access:
mechanism:

user_arg
quadword (unsigned)
read only
by 64-bit value (Alpha)
by 32-bit value (VAX)

AST parameter to be passed to the AST routine specified by the astadr argument.
On Alpha sytems, the astprm argument is a quadword value containing
this parameter. On VAX systems, the astprm argument is a longword value
containing this parameter.

a cm ode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the AST is to be declared. The most privileged access
mode used is the access mode of the caller. The resultant mode is the access
mode for which the AST is declared.

The Declare AST service queues an AST for the calling access mode or for a less
privileged access mode. For example, a routine executing in supervisor mode can
declare an AST for either supervisor or user mode.

The service does not validate the address of the AST service routine. If you
specify an illegal address (such as 0), an access violation occurs when the AST
sertjce routine is given control.

Required Access or Privileges
None

Required Quota

System Service Descriptions
$DCLAST

The $DCLAST service requires system dynamic memory and uses the AST limit
(ASTLM) quota of the process.

Related Services
$SETAST, $SETPRA

Condition Values Returned

SS$_NORMAL

SS$_EXQUOTA

SS$_INSFMEM

The service completed successfully.

The process has exceeded its AST limit (ASTLM)
quota.
The system dynamic memory is insufficient for
completing the service.

SYS1-243

System Service Descriptions
$DCLCMH

$DCLCMH
Declare Change Mode or Compatibility Mode Handler

iijMfoi

Format

Arguments

SYS1-244

On Alpha systems, specifies the address of a routine to receive control when a
Change Mode to User or Change Mode to Supervisor instruction trap occurs.+

On VAX systems, specifies the address of a routine to receive control when (1) a
Change Mode to User or Change Mode to Supervisor instruction trap occurs, or
(2) a compatibility mode fault occurs.+

SYS$DCLCMH addres ,[prvhnd] ,[type]

add res
Open VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Routine to receive control when a change mode trap or a compatibility mode fault
occurs. The addres argument is the exception handling code in the address space
of the calling process.

If you specify the addres argument as 0, $DCLCMH clears the previously
declared handler.

prvhnd
Open VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a previously declared handler. The prvhnd argument is the address
of a longword containing the address of the previously declared handler.

type
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Handler type indicator. The type argument is a longword value. The value 0
(the default) indicates that a change mode handler is to be declared for the access
mode at which the request is issued; the value 1 specifies that a compatibility
mode handler is to be declared.

Description

lviM.fi

System Service Descriptions
$DCLCMH

On Alpha systems, the Declare Change Mode or Compatibility Mode Handler
service calls the change mode handler as a normal procedure (that is, with a
standard procedure call). The change mode handler must exit by performing a
standard procedure return to the change mode dispatcher.

Arguments (for example, the change mode code) passed between the routine that
issued the change mode instruction and the change mode handler are strictly by
agreement between the two procedures.

The following MACRO code example shows a subroutine calling Change Mode to
User. The example is written for Alpha users porting from VAX systems .

CHG MD: . CALL ENTRY
CHMU -
RET

Call this subroutine from any program that requires a Change Mode to User
instruction to be invoked.+

On VAX systems, the $DCLCMH service specifies the address of a routine to
receive control when (1) a Change Mode to User or Change Mode to Supervisor
instruction trap occurs, or (2) a compatibility mode fault occurs. A change mode
handler provides users with a dispatching mechanism similar to that used for
system service calls. It allows a routine that executes in supervisor mode to be
called from user mode. You declare the change mode handler from supervisor
mode; then when the process executing in user mode issues a Change Mode to
Supervisor instruction, the change mode handler receives control and executes in
supervisor mode.

The top longword of the stack contains the zero-extended change mode code. The
change mode handler must exit by removing the change mode code from the stack
and issuing an REI instruction.

The operating system uses compatibility mode handlers to bypass normal
condition handling procedures when an image executing in compatibility
mode causes a compatibility mode exception. Before transferring control to
the compatibility mode handler, the system saves the compatibility exception
code, the registers RO through R6, and the PC and PSL in a 10-longword array
starting at the location CTL$AL_CMCNTX. Before the compatibility mode
handler exits, it must restore the saved registers RO through R6, push the saved
PC and PSL onto the stack, and exit by issuing an REI instruction.+

Required Access or Privileges
You can declare a change mode or compatibility mode handler only from user or
supervisor mode.

Required Quota
None

Related Services
$SETEXV, $SETSFM, $UNWIND

SYS1-245

System Service Descriptions
$DCLCMH

Condition Values Returned

SYS1-246

SS$_NORMAL

SS$_ACCVIO

:j:SS$_IVSSRQ

~Alpha specific

The service completed successfully.

The longword to receive the address of the
previous change mode handler cannot be written
by the caller.
The call to the service is invalid because it
attempted to declare a compatibility mode
handler on Alpha systems.

$DCLEXH

System Service Descriptions
$DCLEXH

Declare Exit Handler

Format

Argument

Description

Declares an exit handling routine that receives control when an image exits.

SYS$DCLEXH desblk

desblk
Open VMS usage: exit_handler_block
type: longword (unsigned)
access: write
mechanism: by reference

Exit handler control block. The desblk argument is the address of this control
block. This control block, which describes the exit handler, is depicted in the
following diagram.

31 0

Forward link (used by OpenVMS only)

Exit handler address

Must be zero I Arg count

Address condition value (written by OpenVMS)

Additional argument for the
exit handler; optional; one

""' argument per longword ,..._

T T
ZK-5184A-GE

The Declare Exit Handler service declares an exit handling routine that receives
control when an image exits. Image exit normally occurs when the image
currently executing in a process returns control to the operating system. Image
exit might also occur when you call the Exit ($EXIT) or Force Exit ($FORCEX)
service.

Exit handlers are described by exit control blocks. The operating system
maintains a separate list of these control blocks for user, supervisor, and executive
modes. The $DCLEXH service adds the description of an exit handler to the front
of one of these lists. The actual list to which the exit control block is added is
determined by the access mode of the caller.

At image exit, the exit handlers declared from user mode are called first; they are
called in the reverse order from which they were declared.

SYS1-247

System Service Descriptions
$DCLEXH

Each exit handler is executed only once; it must be redeclared before it can be
executed again. The exit handling routine is called as a normal procedure with
the argument list specified in the third through nth longwords of the exit control
block. The first argument is the address of a longword to receive a system status
code indicating the reason for exit; the system always fills in this longword before
calling the exit handler.

You can call this service only from user, supervisor, and executive modes.

Required Access or Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

The Cancel Exit Handler ($CANEXH) service removes an exit control block from
the list.

Condition Values Returned

SYS1-248

SS$_NORMAL

SS$_ACCVIO

SS$_IVSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block cannot
be written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The exit handler control block address was not
specified or was specified as 0.

System Service Descriptions
$DELETE_BUFOBJ (Alpha Only)-

$DELETE_BUFOBJ (Alpha Only)
Delete Buffer Object

Format

Arguments

Description

On Alpha systems, deletes a buffer object previously created by the $CREATE_
BUFOBJ_64 system service.

This service accepts 64-bit addresses.

SYS$DELETE_BUFOBJ buffer_handle_64

buffer_handle_64
Open VMS usage: handle
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The buffer object to be deleted. The buffer_handle_64 argument is the 32-bit
or 64-bit address of a 2-longword array previously returned by a $CREATE_
BUFOBJ_64 call.

The Delete Buffer Object system service deletes the buffer object identified by the
buffer_handle_64 argument. The associated memory is made free to be paged,
swapped, or deleted.

Buffer objects are also automatically deleted at image rundown.

Required Privileges
None

Required Quota
None

Related Services
$CREATE_BUFOBJ_64

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_NOPRIV

The service completed successfully.
The buffer_handle_64 argument cannot be read
by the caller.
The buffer_handle_64 argument is not a valid
buffer handle.

The buffer object was created by a more
privileged access mode than the caller's access
mode.

SYS1-249

System Service Descriptions
$DELETE_INTRUSION

$DELETE_INTRUSION
Delete Intrusion Records

Format

Arguments

SYS1-250

Searches for and deletes all records in the intrusion database matching the
caller's specifications.

SYS$DELETE_INTRUSION user_criteria ,[flags]

user _criteria
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Description of intruder or suspect. The user_criteria argument is the address of
a character-string descriptor pointing to a buffer containing the user criteria to
match an intrusion record's user specification in the intrusion database.

The user_criteria argument is a character string of 1to1058 bytes containing
characters to match the user specification on records in the intrusion database.

A user specification is any combination of the suspect's or intruder's source node
name, source user name, source DECnet for Open VMS address, local failed user
name, or local terminal. The user specification for an intrusion record is based on
the input to the $SCAN_INTRUSION ·service and the settings of the LGI system
parameter. For more information, see the Open VMS Guide to System Security.

Wildcards are allowed for the user_criteria argument. For example, if you
specify an asterisk (*)for the user_criteria argument, the service deletes all
records in the intrusion database.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service. The flags argument is a longword bit
mask wherein each bit corresponds to an option.

Each flag option has a symbolic name. The $CIADEF macro defines the following
valid name for the $DELETE_INTRUSION service.

Symbolic Name

CIA$M_IGNORE_RETURN

Description

The service should not wait for the return status
from the security server. No return status from
the server's function will be returned to the
caller.

Description

System Service Descriptions
$DELETE_INTRUSION

The Delete Intrusion service deletes from the intrusion database a set of records
matching the criteria you specify in the user_criteria argument. All records
matching the criteria you specify are deleted. You do not have to call the service
more than once to delete a set of records. .

For example, if you specify an asterisk (*)for the user_criteria argument, the
service deletes all records in the intrusion database with one call.

Required Access or Privileges
$DELETE_INTRUSION requires access to the intrusion database. You must
have SECURITY privilege to access the database.

Required Quota
None

Related Services
$SCAN_INTRUSION, $SHOW _INTRUSION

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADPARAM

SS$_NOSECURITY

The service completed succe.ssfully.
The user_criteria argument cannot be read.

The length of the user_criteria argument is out
of range.

An invalid flag was specified in the flags
argument.

The caller does not have SECURITY privilege.

This service can also return any of the following messages passed from the
security server:

SECSRV$_CIADBEMPTY
SECSRV$_
NOSUCHINTRUDER
SECSRV$_
SERVERNOTACTIVE

No records in the intrusion database.

No records matching the specified criteria were
found in the intrusion database.
The security server is not currently active. Try
the request again later.

SYS1-251

System Service Descriptions
$DELETE_PROXY

$DELETE_PROXY
Delete or Modify Proxy

Format

Arguments

SYS1-252

Deletes an existing proxy or removes the default user or a local user from an
existing proxy in the proxy database.

SYS$DELETE_PROXY rem_node ,rem_user ,[local_user] ,[flags]

rem_node
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote node name of the proxy to be deleted from or modified in the proxy
database. The rem_node argument is the address of a character-string
descriptor pointing to the remote node name string.

A remote node name consists of 1 to 1024 characters. No specific characters,
format, or case are required for a remote node name string. All node names are
converted to their DECnet for Open VMS full name unless the PRX$M_BYPASS_
EXPAND flat is set with the flags argument.

Asterisk (*) and percent sign (%) wildcards are allowed for the remote node
specification. If you specify wildcards for the rem_node argument, the security
server searches for an exact match to the specified remote node first. If it does
not find an exact match, the server performs the requested operations on all of
the matching proxies in the proxy database.

rem_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote user name of the proxy to be deleted from or modified in the proxy
database. The rem_user argument is the address of a character-string descriptor
pointing to the user name string.

A remote user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($), underscores (_), and brackets ([]). Any lowercase characters specified
are automatically converted to uppercase.

The rem_user argument can be specified in user identification code (UIC) format
([group, member]). Brackets are allowed only if the remote user name string
specifies a UIC. Group and member are character-string representations of octal
numbers with no leading zeros.

Asterisk (*) and percent sign (%) wildcards are allowed for the remote user
specification. If you specify wildcards for the rem_user argument, the server
searches for an exact match to the specified remote user first. If it does not
find an exact match, the server performs the requested operations on all of the
matching proxies in the proxy database.

Description

local_ user
OpenVMS usage: char_string

System Service Descriptions
$DELETE_PROXY

type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Local user name to delete from the proxy record specified by the rem_node and
rem_user arguments in the proxy database. The local_user argument is the
address of a character-string descriptor pointing to the local user name.

A local user name consists of 0 to 32 alphanumeric characters, including dollar
signs ($) and underscores (_). If the local_user argument is not specified or has
a length of 0, the server will delete the entire record or records specified by the
rem_node and rem_user arguments from the proxy database.

If the local_ user argument is specified, the server will delete only the user name
specified by the local_user argument from the record specified by the rem_node
and rem_user arguments. The local_user argument can specify either the
proxy's default user or a user name in the proxy's local users list.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service and type of user the local_ user argument
represents. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each flag option has a symbolic name. The $PRXDEF macro defines the following
symbolic names.

Symbolic Name

PRX$M_BYPASS_EXPAND

PRX$M_IGNORE_RETURN

PRX$M_EXACT

Description

The service should not convert the node name
specified in the rem_node argument to its
corresponding DECnet for Open VMS full name.
If this flag is set, it is the caller's responsibility
to ensure that the fully expanded node name is
passed into the service.

The service should not wait for a return status
from the security server. No return status from
the server's function will be returned to the
caller.

The service should match exactly the remote
node and remote user and ignore wildcards.

The Delete Proxy service deletes a proxy from, or modifies an existing proxy in,
the proxy database.

Required Access or Privileges
$DELETE_PROXY requires access to the proxy database. To achieve access, the
caller must have either SYSPRV privilege or a UIC group less than or equal to
the MAXSYSGRP system parameter.

SYS1-253

System Service Descriptions
$DELETE_PROXV

Required Quota
None

Related Services
$ADD_PROXY, $DISPLAY~PROXY, $VERIFY_PROXY

Condition Values Returned

SYS1-254

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADPARAM

SS$_NOSYSPRV

The service completed successfully.

The rem_node, rem_user, local_user, or flags
argument cannot be read by the service.

The length of the rem_node, rem_user, or
local_user argument was out of range.

An invalid flag was specified in the flags
argument.

The caller does not have access to the proxy
database.

This service can also return any of the following messages passed from the
security server:

SECSRV$_ The node name length is out of range.
BADNODENAMELEN

SECSRV$_ The remote user name length is out of range.
BADREMUSERLEN

SECSRV$_INVALIDDELETE You attempted to remove the last local user
with no default user remaining, or you tried to
remove the last default user with no local user
remaining. You must have at least one local user
or one default user.

SECSRV$_NOSUCHPROXY The proxy specified by the rem_node and rem_
user arguments does not exist in the proxy
database.

SECSRV$_NOSUCHUSER The specified local user does not exist in the
proxy's local user list, or is not the proxy's default
user.

SECSRV$_
PROXYNOTACTIVE

SECSRV$_
SERVERNOTACTIVE

Proxy processing is currently stopped. Try the
request again later.

The security server is not currently active. Try
the request again later.

System Service Descriptions
$DELETE_REGION_64 (Alpha Only)

$DELETE_REGION_64 {Alpha Only)
Delete a Virtual Region

Format

Arguments

On Alpha systems, deletes a virtual region within the process's address space,
including all created virtual addresses within the region.

This service accepts 64-bit addresses.

SYS$DELETE_REGION_64 region_id_64 ,acmode ,return_va_64 ,return_length_64

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to be deleted. The region ID specified
must be one returned by the $CREATE_REGION_64 service. You cannot specify
VAC_PO, VAC_Pl, or VA$C_P2.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $DELETE_REGION_64. The acmode
argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The caller
can delete pages only if those pages are owned by an access mode equal to or less
privileged than the access mode of the caller.

Once all pages are deleted within the region, the region can be deleted only if
the region is owned by an access mode equal to or less privileged than the access
mode of the caller.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only

SYS1-255

System Service Descriptions
$DELETE_REGION_64 (Alpha Only)

Description

SYS1-256

mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the pages that $DELETE_REGION_64
has successfully deleted. The return_va_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned quadword into which the service returns
the virtual address of the first page deleted. Virtual addresses are deleted from
low address to high address, regardless of the direction in which virtual addresses
expand for that region.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range that $DELETE_REGION_64 has
successfully deleted. The return_length_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned quadword into which the service returns
the length of the deleted virtual address range in bytes.

The Delete Virtual Region service is a kernel mode service that can be called from
any mode. The Delete Region service deletes the user-defined region specified by
the region_id_64 argument. You cannot delete the program (PO), control (Pl), or
64-bit program (P2) regions.

The Delete Virtual Region service also deletes all created virtual addresses within
the specified region before deleting the region itself.

If a page within the region is owned by an access mode more privileged than the
access mode of the caller, the condition value SS$_PAGOWNVIO will be returned.
The return_ va_64 and return_length_64 arguments contain the virtual address
range that was actually deleted by $DELETE_REGION_64. In this case, the
region is not deleted since there are still some pages mapped within the region.

To delete a virtual region, the caller's access mode must be at least as privileged
as the access mode associated with the region. If the caller is not privileged
enough to delete the region, the condition value SS$_REGOWNVIO will be
returned only if all pages were successfully deleted from within the region.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments. If the condition value SS$_ACCVIO is returned,
no pages have been deleted, and the region has not deleted.

If an error other than SS$_ACCVIO occurs, the returned address and returned
length indicate the pages that were successfully deleted before the error occurred.
If no pages were deleted, the return_va_64 argument will contain the value
-1, and a value cannot be returned in the memory location pointed to by the
return_length_64 argument.

Required Privileges
None

Required Quota
None.

Related Services

System Service Descriptions
$DELETE_REGION_64 (Alpha Only)

$CREATE_REGION_64, $CRETVA_64, $CRMPSC_FILE_64, $CRMPSC_
GFILE_64, $CRMPSC_GPFILE_64, $CRMPSC_GPFN_64, $CRMPSC_PFN_64,
$DELTVA_64, $EXPREG_64, $GET_REGION_INFO, $MGBLSC_64, $MGBLSC_
GPFN_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVREGID

SS$_REGOWNVIO

SS$_PAGOWNVIO

Successful completion. All pages within the
region have been deleted as well as the region
itself.
The return_va_64 argument or the
return_length_64 argument cannot be written
by the caller.

Invalid region ID specified. This condition value
is returned if PO, Pl, or P2 space is specified
since these regions cannot be deleted, or if no
region exists for the specified ID.
The region is owned by a more privileged access
mode than the access mode of the caller. All
pages within the region have been deleted;
however, the region has not been deleted.
A page within the specified region is owned by
a more privileged access mode than the access
mode of the caller.

SYS1-257

System Service Descriptions
$DELLNM

$DELLNM
Delete Logical Name

Format

Arguments

SYS1-258

Deletes all logical names with the specified name at the specified access mode
or outer access mode, or it deletes all the logical names with the specified access
mode or outer access mode in a specified table.

SYS$DELLNM tabnam ,[lognam] ,[acmode]

tabnam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of a logical name table or a list of tables to be searched for the logical name
to be deleted. The tabnam argument is the address of a descriptor that points to
the table name. This argument is required.

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.

If tabnam translates to the name of a list of tables, $DELLNM does the
following:

• If you specify the lognam argument, $DELLNM searches (in order) each
table in the list until it finds the first table that contains the specified logical
name. If the logical name is at the specified access mode, $DELLNM then
deletes occurrences of the logical name at the specified access mode and at
outer access modes within the table.

• If you do not specify the lognam argument, $DELLNM deletes all of the
logical names at the specified access mode or at outer access modes from the
first table in the list whose access mode is equal to or less privileged than the
caller's access mode.

lognam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Logical name to be deleted. The lognam argument is the address of a descriptor
that points to the logical name string.

acmode
Open VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Description

System Service Descriptions
$DELLNM

Access mode to be used in the delete operation. The acmode argument is the
address of a byte containing this access mode. The $PSLDEF macro defines
symbolic names for the four access modes.

You determine the access mode actually used in the delete operation by
maximizing the access mode of the caller with the access mode specified by
the acmode argument; that is, the less privileged of the two is used.

However, if you have SYSNAM privilege, the delete operation is executed at the
specified access mode regardless of the caller's access mode.

If you omit this argument or specify it as 0, the access mode of the caller is used
in the delete operation. The access mode used in the delete operation determines
which tables are used and which names are deleted.

The Delete Logical Name service deletes all logical names with the specified
name at the specified access mode or outer access mode, or it deletes all the
logical names with the specified access mode or outer access mode in a specified
table. If any logical names being deleted are also the names of logical name
tables, then all of the logical names contained within those tables and all of their
subtables are also deleted.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
access or rights privileges to use $DELLNM:

• Write access to the logical name table to delete a name

• Either delete access to the logical name table or write access to the directory
table that contains the table name to delete a shareable logical name table

• SYSNAM privilege to delete a logical name or table at an inner access mode

• GRPNAM or SYSPRV privilege to delete a logical name from a group table

• SYSNAM or SYSPRV privilege to delete a logical name from a system table

Required Quota
None

Related Services
$CRELNM, $CRELNT, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_IVLOGNAM

SS$_IVLOGTAB

The service completed successfully.
The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name was not specified.

The lognam argument specifies a string whose
length is not in the required range of 1 through
255 characters.

The tabnam argument does not specify a logical
name table.

SYS1-259

System Service Descriptions
$DELLNM

SYS1-260

SS$_NOLOGNAM

SS$_NOLOGTAB

SS$_NOPRIV

SS$_TOOMANYLNAM

•
The specified logical name table does not exist, or
a logical name with an access mode equal to or
less privileged than the caller's access mode does
not exist in the logical name table.
The specified logical name table does not exist.
The caller lacks the necessary privilege to delete
the logical name.
The logical name trar;islation of the table name
exceeded the allowable depth (10 translations).

System Service Descriptions
$DELMBX

$DELMBX
Delete Mailbox

Format

Argument

Description

Marks a permanent mailbox for deletion.

SYS$DELMBX chan

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel assigned to the mailbox that is to be deleted. The chan
argument is a word containing this number.

The Delete Mailbox service marks a permanent mailbox for deletion. The actual
deletion of the mailbox and of its associated logical name assignment occur when
no more I/O channels are assigned to the mailbox.

You can delete a mailbox only from an access mode equal to or more privileged
than the access mode from which the mailbox channel was assigned. Temporary
mailboxes are automatically deleted when their reference count goes to 0.

The $DELMBX service does not deassign the channel assigned by the caller,
if any. The caller must deassign the channel with the Deassign I/O Channel
($DASSGN) service.

Required Access or Privileges
You need PRMMBX privilege to delete a permanent mailbox.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_DEVNOTMBX
The service completed successfully.

The specified channel is not assigned to a
mailbox.

SYS1-261

System Service Descriptions
$DELMBX

SS$_IVCHAN

SS$_NOPRIV

SYS1-262

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

The specified channel is not assigned to a device;
the process does not have the privilege to delete
a permanent mailbox or a mailbox in memory
shared by multiple processors; or the access mode
of the caller is less privileged than the access
mode from which the channel was assigned.

System Service Descriptions
$DELPRC

$DELP RC
Delete Process

Format

Arguments

Description

Allows a process to delete itself or another process.

SYS$DELPRC [pidadr] ,[prcnam]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be deleted. The pidadr argument is
the address of a longword that contains the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the VMScluster system.

You must specify the pidadr argument to delete processes in other UIC groups.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: · read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process to be deleted. The prcnam is the address of a
character string· descriptor pointing to the process name string. A process
running on the local node can be identified with a 1- to 15-character string. To
identify a process on a particular node on a cluster, specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

You use the prcnam argument to delete only processes in the same UIC group
as the calling process, because process names are unique to UIC groups, and the
operating system uses the UIC group number of the calling process to interpret
the process name specified by the prcnam argument.

You must use the pidadr argument to delete processes in other groups.

The Delete Process service allows a process to delete itself or another process. If
you specify neither the pidadr nor the prcnam argument, $DELPRC deletes the
calling process; control is not returned. If the longword at address pidadr is 0,
the PID of the target process is returned. This system service requires system
dynamic memory.

When you delete a process or subprocess, a termination message is sent to its
creating process, provided the mailbox to receive the message still exists and
the creating process has access to the mailbox. The termination message is sent
before the final rundown is initiated; thus, the creating process might receive the
message before the process deletion is complete.

SYS1-263

System Service Descriptions
$DELPRC

Due to the complexity of the required rundown operations, a significant time
interval occurs between a delete request and the actual deletion of the process.
However, the $DELPRC service returns to the caller immediately after initiating
the rundown operation.

If you issue subsequent delete requests for a process currently being deleted, the
requests return immediately with a successful completion status.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DELPRC: .

• GROUP privilege to delete processes in the same group that do not have the
same UIC

• WORLD privilege to delete any process in the system

Required Quota
None. Deductible resource quotas granted to subprocesses are returned to the
creating process when the subprocesses are deleted.

Related Services
$CANEXH, $CREPRC, $DCLEXH, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SYS1-264

SS$_NORMAL
SS$_ACCVIO

SS$_INCOMPAT

SS$_INSFMEM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.
The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running an incompatible
version of the operating system.

The system dynamic memory is insufficient for
completing the operation.

The specified process does not exist, or an invalid
process identification was specified.

The caller does not have the privilege to delete
the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)
The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

$DELTVA

System Service Descriptions
$DELTVA

Delete Virtual Address Space

Format

Arguments

Deletes a range of addresses from a process's virtual address space. Upon
successful completion of the service, the deleted pages are inaccessible, and
references to them cause access violations.

SYS$DELTVA inadr ,[retadr] ,[acmode]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the pages to be deleted. The inad.r
argument is the address of a 2-longword array containing, in order, the starting
and the ending process virtual addresses. If the starting and ending virtual
addresses are the same, a single page is deleted. The addresses are adjusted up
or down to fall on CPU-specific page boundaries. Only the virtual page number
portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

The $DELTVA service deletes pages starting at the address contained in the
second longword of the inadr argument and ending at the address in the first
longword. Thus, if you use the same address array for both the Create Virtual
Address Space ($CRETVA) and the $DELTVA services, the pages are deleted in
the reverse order from which they were created.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $DELTVA has
deleted. The retadr argument is the address of a 2-longword array containing, in
order, the starting and ending process virtual addresses.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the service is to be performed. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

SYS1-265

System Service Descriptions
$DELTVA

Description

The Delete Virtual Address Space service deletes a range of addresses from a
process's virtual address space. Upon successful completion of the service, the
deleted pages are inaccessible, and references to them cause access violations. If
any of the pages in the specified range have already been deleted or do not exist,
the service continues as if the pages were successfully deleted.

If an error occurs while pages are being deleted, the retadr argument specifies
the pages that were successfully deleted before the error occurred. If no pages are
deleted, both longwords in the return address array contain the value -1.

Required Access or Privileges
None

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS1-266

SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully.
The input address array cannot be read by the
caller, or the return address array cannot be
written by the caller.
A page in the specified range is in the system
address space.
A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

System Service Descriptions
$DELTVA_64 (Alpha Only)

$DELTVA_64 (Alpha Only)
Delete Virtual Address Space

Format

Arguments

On Alpha systems, deletes a range of virtual addresses from a process's virtual
address space. Upon successful completion of the service, the deleted pages are
inaccessible, and references to them cause access violations.

This service accepts 64-bit addresses.

SYS$DELTVA_64 region_id_64 ,start_va_64 ,length_64 ,acmode ,return_va_64
,return_length_64

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region from which to address the VA space.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO
VA$C_Pl

VA$C_P2

Region

Program region
Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified. Also, the region ID that a virtual address is in can be obtained by
calling the $GET_REGION_INFO service, specifying the VA$_REGSUM_BY_VA
function.

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be deleted. The specified virtual
address must be a CPU-specific page-aligned address.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be deleted. The length specified must be a
multiple of CPU-specific pages.

SYS1-267

System Service Descriptions
$DELTVA_64 (Alpha Only)

Description

SYS1-268

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $DELTVA_64. The acmode argument is
a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the deleted virtual address range. The
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the $DELTVA_64 service returns the virtual
address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the $DELTVA_64 service returns the length of the virtual address range deleted
in bytes.

The Delete Virtual Address Space service is a kernel mode service that can be
called from any mode. This service deletes a range of addresses from a process's
virtual address space. Upon successful completion of the service, the deleted
pages are inaccessible, and references to them cause access violations. If any of
the pages in the specified range have already been deleted or do not exist,. the
service continues as if the pages were successfully deleted.

System Service Descriptions
$DELTVA_64 (Alpha Only)

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments. If a condition value other than SS$_ACCVIO
is returned, the returned address and returned length indicate the pages that
were successfully deleted before the error occurred. If no pages were deleted,
the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Required Privileges
None

Required Quota
None.

Related Services
$CREATE_REGION_64, $CRETVA_64, $CRMPSC_FILE_64, $CRMPSC_
GFILE_64, $CRMPSC_GPFILE_64, $CRMPSC_GPFN_64, $CRMPSC_PFN_
64, $DELETE_REGION_64, $EXPREG_64, $MGBLSC_64, $MGBLSC_GPFN_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVREGID

SS$_LEN_NOTPAGMULT

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_ VA_NOTPAGALGN

The service completed successfully.
The return_va_64 argument or the
return_length_64 argument cannot be written
by the caller.

Invalid region ID specified. This condition value
is returned if PO, Pl, or P2 space is specified
since these regions cannot be deleted, or if no
region exists for the specified ID.

The length_64 argument is not a multiple of
CPU-specific pages.

A page in the specified range is not within the
specified region.

A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

The start_va_64 argument is not a CPU~specific
page-aligned address.

SYS1-269

System Service Descriptions
$DEQ

$DEQ
Dequeue Lock Request

Format

Arguments

SYS1-270

Dequeues (unlocks) granted locks; dequeues the sublocks of a lock; or cancels an
ungranted lock request. The calling process must have previously acquired the
lock or queued the lock request by calling the Enqueue Lock Request ($ENQ)
service.

On Alpha systems, this service accepts 64-bit addresses.

SYS$DEQ [lkid] ,[valblk] ,[acmode] ,[flags]

I kid
Open VMS usage: lock_id
type: longword (unsigned)
access: read only
mechanism: by value

Lock identification of the lock to be dequeued. The lkid argument specifies this
lock identification.

Note that if you do not specify the lkid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

When you specify the LCK$M_DEQALL flag in the flags argument, different
values (or no value) for the lkid argument produce varying behavior~

• When you do not specify the lkid argument (or specify it as O) and you do
specify the LCK$M_DEQALL flag, $DEQ dequeues all locks held by the
process, at access modes equal to or less privileged than the effective access
mode, on all resources. The effective access mode is the least privileged of the
caller's access mode and the access mode specified in the acmode argument.

• When you specify the lkid argument as a nonzero value together with the
LCK$M_DEQALL flag, $DEQ dequeues all sublocks of the lock identified
by lkid; it does not dequeue the lock identified by lkid. For this operation,
$DEQ ignores the LCK$M_CANCEL flag if it is set. A sublock of a lock is
a lock that was created when the parid argument in the call to $ENQ was
specified, where parid is the lock ID of the parent lock.

If you omit the lkid argument (or specify it as 0) and the LCK$M_DEQALL
flag is not set, the $DEQ service returns the invalid lock ID condition value
(SS$_IVLOCKID).

valblk
Open VMS usage:
type:
access:
mechanism:

lock_ value_block
longword (unsigned)
modify
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Lock value block for the resource associated with the lock to be dequeued. The
valblk argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit

System Service Descriptions
$DEQ

(on VAX systems) of the 16-byte lock value block. When you specify the LCK$M_
DEQALL flag, you cannot use this argument.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database. Further, if
the lock value block in the lock database was marked as invalid, that condition is
cleared; the block becomes valid.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the lock to be dequeued. The acmode argument is a longword
containing the access mode.

The acmode argument is valid only if the LCK$M_DEQALL flag of the flags
argument is set. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER
PSL$C_USER

Access Mode

Kernel

Executive

Supervisor
User

When dequeuing locks, $DEQ maximizes the access mode of the caller and the
specified acmode argument. The maximized access mode is the less privileged
of the caller's access mode and the acmode argument. If you do not spedfy the
acmode argument, $DEQ uses the caller's access mode. Only those locks with
an access mode that is equal to or less than the maximized access mode are
dequeued.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the $DEQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

Note that if you do not specify the lkid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

A symbolic name for each flag bit is defined by the $LCKDEF macro. The
following table describes each flag.

SYS1-271

System Service Descriptions
$DEQ

SYS1-272

Flag

LCK$M_DEQALL

LCK$M_CANCEL

Description

When you specify this flag, $DEQ dequeues multiple
locks, depending on the value of the lkid argument.
Refer to the description of the lkid argument for details.
The acmode argument is ignored if the LCK$M_DQALL
flag is not set. If you specify LCK$M_DEQALL, the
LCK$M_CANCEL flag, if set, is ignored.
When you specify this flag, $DEQ attempts to cancel a
lock request that was queued by $ENQ. You can cancel
only a waiting request. When the request is canceled,
$DEQ returns the condition value SS$_NORMAL.
If you attempt to cancel a granted lock, the request
fails and $DEQ returns the condition value SS$_
CANCELGRANT. There are two types of waiting
requests that can be canceled:

• A request for a new lock

• A request to convert an existing lock

When canceling a new lock request, the following action
is taken:

• If a completion AST was requested, the AST is
queued for delivery and SS$_ABORT is stored in the
lock status block.

When canceling a request to convert an existing lock,
the conversion request is canceled. The existing granted
lock remains unchanged. The following specific actions
are taken:

• The blocking AST address specified for the existing
granted lock is queued for delivery if the granted
mode of the existing lock is blocking other waiting
requests.

• If a completion AST was specified by the conversion
request, the completion AST is queued for delivery
with SS$_CANCEL status stored in the lock status
block that was specified by the conversion request.

If you specify the LCK$M_DEQALL flag, the LCK$M_
CANCEL flag is ignored.

LCK$M_INVVALBLK When you specify this flag, $DEQ marks the lock
value block, which is maintained for the resource in
the lock database, as invalid. The lock value block
remains marked as invalid until it is again written
to. The Description section of the $ENQ service
provides additional information about lock value block
invalidation.
This flag is ignored if (1) the lock mode of the lock being
dequeued is not protected write or exclusive, or (2) you
specify the LCK$M_CANCEL flag.

Description

System Service Descriptions
$DEQ

The Dequeue Lock Request system service dequeues (unlocks) granted locks and
waiting lock requests. The calling process must have previously acquired the lock
or queued the lock request by calling the Enqueue Lock Request ($ENQ) service.

Action taken by the $DEQ service depends on the current state (granted or
waiting) and the type of lock request (new lock or conversion request) to be
dequeued.

When dequeuing a granted lock, the $DEQ service returns the condition value
SS$_NORMAL and the following specific action is taken:

• Any queued blocking ASTs that have not been delivered are removed from the
process's AST queues.

There are two types of waiting requests that can be dequeued:

• A request for a new lock

• A request to convert an existing lock

When dequeuing a new lock request, the $DEQ service returns the condition
value SS$_NORMAL and the following specific action is taken:

• If a completion AST was requested, the completion AST is queued for delivery
with SS$_ABORT stored in the lock status block.

When dequeuing a lock for which there is a conversion request waiting, the
existing lock and its conversion request are dequeued. The $DEQ service returns
the condition value SS$_NORMAL and the following specific actions are taken:

• If a blocking AST was queued to the process, it is removed from the process's
AST queue.

• If a completion AST was specified by the conversion request, the completion
AST is queued for delivery with SS$_ABORT status stored in the lock status
_block that was specified by the conversion request.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database.

If you specify the LCK$M_INVVALBLK flag in the flags argument and the lock
mode of the lock being dequeued is PW or EX, the lock value block in the lock
database is marked as invalid whether or not a lock value block was specified in
the valblk argument.

The $DEQ, $ENQ, $ENQW, and $GETLKI services together provide the user
interface to the lock management facility. For additional information about
lock management, refer to the descriptions of these other services and to the
Open VMS Programming Concepts Manual.

Required Access or Privileges
None

Required Quota
None

Related Services
$ENQ, $ENQW, $GETLKI, $GETLKIW

SYS1-273

System Service Descriptions
$DEQ

Condition Values Returned

SYS1-274

SS$_NORMAL

SS$_ACCVIO

SS$_CANCELGRANT

SS$_ILLRSDM

SS$_IVLOCKID

SS$_SUBLOCKS

The lock was dequeued successfully.

The value block specified by the valblk argument
cannot be accessed by the caller.
The LCK$M_CANCEL flag in the flags
argument was specified, but the lock request that
$DEQ was to cancel had already been granted.

An illegal attempt to modify a value block was
made.

An invalid or nonexistent lock identification
was specified or the process does not have the
privilege to dequeue a lock at the specified .. access
mode.

The lock has sublocks and cannot be dequeued.

System Service Descriptions
$DEVICE_ SCAN

$DEVICE_ SCAN
Scan for Devices

Format

Arguments

Returns the names of all devices that match a specified set of search criteria.

SYS$DEVICE_SCAN return_devnam ,retlen ,[search_devnam] ,[itmlst] ,[contxt]

return_devnam
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer to receive the device name. The return_devnam argument is the address
of a character string descriptor pointing to a buffer into which $DEVICE_SCAN
writes the name of the first or next device that matches the specified search
criteria. The maximum size of any device name is 64 bytes.

retlen
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the device name string returned by $DEVICE_SCAN. The retlen
argument is the address of a word into which $DEVICE_SCAN writes the length
of the device name string.

search_devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device for which $DEVICE_SCAN is to search. The search_devnam
argument accepts the standard wildcard characters, the asterisk(*), which
matches any sequence of characters, and the percent sign(%), which matches
any one character. If the search_devnam argument does not include a wildcard
character, an exact match is used for comparison. For example, to match all unit
0 DU devices on any controller, specify *DU%0. This string is compared to the
most complete device name (DVI$_ALLDEVNAM). Only uppercase characters are
accepted.

itmlst
Open VMS usage: item_list_3
type: longword_ unsigned
access: read only
mechanism: by reference

Item list specifying search criteria used to identify the device names for return by
$DEVICE_SCAN. The itmlst argument is the address of a list of item descriptors,

SYS1-275

System Service Descriptions
$DEVICE_ SCAN

Item Codes

SYS1-276

each of which describes one search criterion. The list of item descriptors is
terminated by a longword of 0.

The following diagram depicts the format of a single item descriptor.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

contxt

Definition

A word containing a user-supplied integer specifying
the length (in bytes) of the buffer from which
$DEVICE_SCAN is to read the information. The
length of the buffer needed depends upon the item
code specified in the item code field of the item
descriptor.

A word containing a user-specified symbolic code
specifying the item of information that $DEVICE_
SCAN is to return. The $DVSDEF macro defines
these codes. Each item code is described in the Item
Codes section.
A longword containing the address of the buffer
from which $DEVICE_SCAN is to read the
information.
A longword containing the user-supplied address of
the buffer from which $DEVICE_SCAN is to read
the information.

Open VMS usage: quadword_ unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

Value used to indicate the current position of a $DEVICE_SCAN search. The
contxt argument is the address of the quadword that receives this information.
On the initial call, the quadword should contain 0.

DVS$_DEVCLASS
An input value item code that specifies, as an unsigned longword, the device class
being searched. The $DCDEF macro defines these classes.

Description

System Service Descriptions
$DEVICE_ SCAN

The DVS$_DEVCLASS argument is a longword containing this number; however,
DVS$_DEVCLASS uses only the low-order byte of the longword.

DVS$_DEVTVPE
An input value item code that specifies, as an unsigned longword, the device type
for which $DEVICE_SCAN is going to search. The $DCDEF macro defines these
types.

The DVS$_DEVTYPE argument is a longword containing this number; however,
DVS$_DEVTYPE uses only the low-order qyte of the longword. DVS$_DEVTYPE
should be used in conjunction with $DVS_DEVCLASS to specify the device type
being searched for.

The Device Scan system service returns the names of all devices that match a
specified set of search criteria. The names returned by $DEVICE_SCAN can then
be passed to another service; for example, $GETDVI or $MOUNT.

The device names are returned for one process per call. A context value is used
to continue multiple calls to $DEVICE_SCAN.

$DEVICE_SCAN allows wildcard searches based on device names, device classes,
and device types. It also provides the ability to perform a wildcard search on
other device-related services.

$DEVICE_SCAN makes it possible to combine search criteria. For example, to
find only RA82 devices, use the following selection criteria:

DVS$_DEVCLASS = DC$_DISK and DVS$_DEVTYPE = DT$_RA82

To find all mailboxes with MB as part of the device name (excluding mailboxes
such as NLAO), use the following selection criteria:

DVS$_DEVCLASS = DC$_MAILBOX and DEVNAM = *MB*

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The search_devnam, itmlst, or contxt
argument cannot be read by the caller, or the
retlen, return_devnam, or contxt argument
cannot be written by the caller.

The contxt argument contains an invalid value,
or the item list contains an invalid item code.

SYS1-277

System Service Descriptions
$DEVICE_ SCAN

SS$_NOMOREDEV

SS$_NOSUCHDEV

SYS1-278

No more devices match the specified search
criteria.
The specified device does not exist on the host
system.

$DGBLSC

System Service Descriptions
$DGBLSC

Delete Global Section

Format

Arguments

Marks an existing permanent global section for deletion. The actual deletion of
the global section takes place when all processes that have mapped the global
section have deleted the mapped pages.

On Alpha systems, this service accepts 64-bit addresses.

SYS$DGBLSC [flags] ,gsdnam ,[ident]

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Mask indicating global section characteristics. The flags argument is a longword
value. A value of 0 (the default) specifies a group global section; a value of
SEC$M_SYSGBL specifies a system global section.

gsdnam
Open VMS usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Name of the global section to be deleted. The gsdnam argument is the address
of a character string descriptor pointing to this name string.

For group global sections, the operating system interprets the group UIC as part
of the global section name; thus, the names of global sections are unique to UIC
groups.

ident
Open VMS usage:
type:
access:
mechanism:

section_id
quadword (unsigned)
read only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Identification value specifying the version number of the global section to be
deleted and the matching criteria to be applied. The ident argument is the 32-bit
or 64-bit address (on Alpha systems) or the 32-bit address (on VAX systems) of a
quadword structure containing three fields.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification in
the high-order eight bits. Values for these fields can be assigned by installation
convention to differentiate versions of global sections. If you specify no version

SYS1-279

System Service Descriptions
$DGBLSC

Description

SYS1-280

number when creating a section, processes that specify a version number when
mapping cannot access the global section.

The first longword specifies, in its low-order three bits, the matching criteria.
The valid values, the symbolic names by which they can be specified, and their
meanings are listed in the following table.

Value

0

1

2

Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section

Match only if major and minor identifications
match

Match if the major identifications are equal and
the minor identification of the mapper is less
than or equal to the minor identification of the
global section

If you specify no address or specify it as 0 (the default), the version number and
match control fields default to 0.

The Delete Global Section service marks an existing permanent global section for
deletion. The actual deletion of the global section takes place when all processes
that have mapped the global section have deleted the mapped pages.

After a global section has been marked for deletion, any process that attempts to
map it receives the warning return status code SS$_NOSUCHSEC.

Temporary global sections are automatically deleted when the count of processes
using the section goes to 0.

On VAX systems, a section located in memory that is shared by multiple
processors can be marked for deletion only by a process running on the same
processor that created the section.+

Required Access or Privileges
Depending on the operation, the calling process might need one or more of the
following privileges:

• SYSGBL privilege to delete a system global section

•
•
•

PRMGBL privilege to delete a permanent global section

PFNMAP privilege to delete a page frame section

SHMEM privilege to delete a global section located in memory shared by
multiple processors

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

System Service Descriptions
$DGBLSC

The $DGBLSC service does not unmap a global section from a process's virtual
address space. To do this, the process should call the Delete Virtual Address
Space ($DELTVA or $DELTVA_64) service, which deletes the pages to which the
section is mapped.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INTERLOCK

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_NOTCREATOR

tSS$_SHMNOTCNCT

SS$_TOOMANYLNAM

tVAX specific

The service completed successfully.

The global section name or name descriptor or
the section identification field cannot be read by
the caller.
The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

The global section name has a length of 0 or has
more than 15 characters.

You set an invalid flag, reserved flag, or flag
requiring a user privilege.

The section identification match control field is
invalid.

The caller does not have the privilege to. delete a
system global section, does not have read/write
access to a group global section, or does not have
the privilege to delete a global section located in
memory that is shared by multiple processors.

The specified global section does not exist, or the
identifications do not match.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the gsdnam
string exceeded the allowed depth of 10.

SYS1-281

System Service Descriptions
$DISMOU

$DISMOU
Dismount Volume

Format

Arguments

SYS1-282

Dismounts a mounted volume or volume sets.

SYS$DISMOU devnam ,[flags]

devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Device name of the device to be dismounted. The devnam argument is the
address of a character string descriptor pointing to the device name string. The
string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

A longword bit vector specifying options for the dismount operation. The
flags argument is a longword bit vector wherein a bit, when set, selects the
corresponding option. Each bit has a symbolic name; these names are defined by
the $DMTDEF macro. The flags and their meanings are listed in the following
table.

Flag

DMT$M_ABORT

Meaning

The volume is to be dismounted even if the
caller did not mount the volume. If the volume
was mounted with MNT$M_SHARE specified,
$DISMOU dismounts the volume for all of the
users who mounted it.
To specify DMT$M_ABORT, the caller must:
(1) have GRPNAM privilege for a group
volume, (2) have SYSNAM privilege for a
system volume, or (3) either own the volume or
have VOLPRO privilege.

Description

Flag

DMT$M_CLUSTER

DMT$M_NOUNLOAD

DMT$M_OVR_CHECKS

DMT$M_UNIT

DMT$M_UNLOAD

Meaning

System Service Descriptions
$DIS MOU

The volume is to be dismounted clusterwide,
that is, from all nodes in the VMScluster
system. $DISMOU dismounts the volume from
the caller's node first and then from every other
node in the existing cluster.
DMT$M_CLUSTER dismounts only system or
group volumes. To dismount a group volume
clusterwide, the caller must have GRPNAM
privilege. To dismount a system volume
clusterwide, the caller must have SYSNAM
privilege.
DMT$M_CLUSTER has no effect if the system
is not a member of a cluster. DMT$M_
CLUSTER applies only to disks.

Specifies that the volume is not to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,
the volume is physically unloaded, unless
the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

Specifies that the volume should be dismounted
without checking for open files, spooled devices,
installed images, or installed swap and page
files.

The specified device, rather than the entire
volume set, is dismounted.
Specifies that the volume is to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,
the volume is physically unloaded, unless
the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

The Dismount Volume service dismounts a mounted volume or volume sets. To
dismount a private volume, the caller must own the volume.

When you issue the $DISMOU service, $DISMOU removes the volume from your
list of mounted volumes, deletes the logical name (if any) associated with the
volume, and decrements the mount count.

SYS1-283

System Service Descriptions
$DISMOU

SYS1-284

If the mount count does not equal 0 after being decremented, $DISMOU does not ·
mark the volume for dismounting (because the volume must have been mounted
shared). In this case, the total effect for the issuing process is that the process is
denied access to the volume and a logical name entry is deleted.

If the mount count equals 0 after being decremented, $DISMOU marks the
volume for dismounting. After marking the volume for dismounting, $DISMOU
waits until the volume is idle before dismounting it. A native volume is idle when
no user has an open file to the volume, and a foreign volume is idle when no
channels are assigned to the volume.

Native volumes are Files-11 structured disks or ANSI-structured tapes. Foreign
volumes are not Files-11 or ANSI structured media.

After a volume is dismounted, nonpaged pool is returned to the system. Paged
pool is also returned if you mounted the volume using the /GROUP or /SYSTEM
qualifier.

If a volume is part of a Files-11 volume set and the flag bit DMT$V _UNIT is not
set, the entire volume set is dismounted.

When a Files-11 volume has been marked for dismount, new channels can be
assigned to the volume, but no new files can be opened.

Note that the SS$_NORMAL status code indicates only that $DISMOU has
successfully performed one or more of the actions just described: decremented
the mount count, marked the volume for dismount, or dismounted the volume.
The only way to determine that the dismount has actually occurred is to check
the device characteristics using the Get DeviceNolume Information ($GETDVI)
service.

By specifying the DVI$_DEVCHAR item code in a call to $GETDVI, you can learn
whether a volume is mounted (it is if the DEV$V _MNT bit is set) or whether it is
marked for dismounting (it is if the DEV$M_DMT bit is set). If DEV$V _MNT is
clear or if DEV$M_DMT is set, the mount count is 0.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DISMOU:

• GRPNAM privilege to dismount a volume mounted with the /GROUP qualifier

• SYSNAM privilege to dismount a volume mounted with the /SYSTEM
qualifier

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVOFFLINE

SS$_DEVNOTMOUNT

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NOGRPNAM

SS$_NOIOCHAN

SS$_NONLOCAL

SS$_NOSUCHDEV
SS$_NOSYSNAM

SS$_NOTFILEDEV

System Service Descriptions
$DISMOU

The service completed successfully.

The device name descriptor cannot be read or
does not describe a readable device name.

The device is allocated to another process and
cannot be dismounted by the caller.

The specified device is not available.

The specified device is not mounted.
The device name string is not valid.

The device logical name has a length of 0 or is
longer than the allowable logical name length.

GRPNAM privilege is required to dismount a
volume mounted for groupwide access.

No I/O channel is available. To use $DISMOU, a
channel must be assigned to the volume.

The device is on a remote node.

The specified device does not exist.
SYSNAM privilege is required to dismount a
volume mounted for systemwide access.

The specified device is not file structured.

SYS1-285

System Service Descriptions
$DISPLAY _PROXY

$DISPLAY _PROXY
Display Proxy Information

Format

Arguments

SYS1-286

Returns information about one or more existing proxies.

SYS$DISPLAY _PROXY rem_node ,rem_user ,buffer_sizes ,proxy_node
,proxy_user ,default_user ,local_users ,flags ,[context]

rem_node
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote node name of the proxy about which information is being requested. The
rem_node argument is the address of a character-string descriptor pointing to
the remote node name string.

A remote node name consists of 1 to 1024 characters. No specific characters,
format, or case are required for a remote node name string. All node names are
converted to their DECnet for Open VMS full name unless the PRX$M_BYPASS_
EXPAND flag is set with the flags argument.

Asterisk (*) and percent sign (%) wildcards are allowed for the remote node
specification. If you specify wildcards for the rem_node argument, the server
searches the entire proxy database for matches to the remote node and remote
user you specified. If a match is found, information about the matched proxy is
returned. See the Description section for information about retrieving information
about multiple proxies.

rem_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote user name of the proxy about which information is being requested. The
rem_user argument is the address of a character-string descriptor pointing to
the user name string.

A remote user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($), underscores (_), and brackets ([]). Any lowercase characters specified
are automatically converted to uppercase.

The rem_user argument can be specified in user identification code (UIC) format
([group, member]). Brackets are allowed only if the remote user name string
specifies a UIC. Group and member are character-string representations of octal
numbers with no leading zeros.

Asterisk (*) and percent sign (%) wildcards are allowed for the remote user
specification. If you specify wildcards for the rem_user argument, the server
searches the entire proxy database for matches to the remote node and remote
user you specified. If a match is found, information about the matched proxy is

System Service Descriptions
$DISPLAY _PROXY

returned. See the Description section for information about retrieving information
about multiple proxies.

buffer_sizes
Open VMS usage: return length block
type: array of 4 words (unsigned)
access: write only
mechanism: by reference

Array of return lengths for various input buffers. The buffer_sizes argument is
the address of an array of four words with the following format.

31 0

Proxy node length Proxy user length

Default user length Local users count

ZK-6169A-GE

The following table defines the buffer_sizes fields.

Descriptor Field

Proxy user length

Proxy node length

Local users count

Default user length

' proxy _node

Definition

Return length (in bytes) of the rem_user argument.
The proxy user length field contains a value in the
range of 0 to 32. A value of 0 in this field indicates
that the service has failed or that there was no
match for the user specified by the rem_user
argument.

Return length (in bytes) of the rem_node
argument. A value of 0 in this field indicates that
the service has failed or that there was no match for
the node specified by the rem_node argument. The
proxy node length field contains values in the range
of 0 to 1024.
Number of local users associated with the matched
proxy. The local users count field contains a value
in the range of 0 to 16. A value of 0 indicates that
the matched proxy had no local users.
Return length (in bytes) of the default_user
argument. The default user length field contains
a value in the range of 0 to 32. A value of 0 in this
field indicates that the matched proxy did not have
a default user.

Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

SYS1-287

. System Service Descriptions
$DISPLAY _PROXY

SYS1-288

Node name of a proxy matching the remote node name specified by the rem_node
argument and the remote user name specified by the rem_user argument. The
proxy _node argument is the address of a character-string descriptor pointing to
a buffer to receive the proxy node name.

The descriptor's buffer must be 1024 bytes long to receive a node name. The
length of the returned node name is specified by the proxy node length field
returned in the buffer specified by the buffer_sizes argument.

proxy_user
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

User name of a proxy matching the remote node name specified by the rem_node
argument and the remote user name specified by the rem_user argument. The
proxy _user argument is a character-string descriptor pointing to a buffer to
receive the remote user name of a proxy.

The descriptor's buffer must be 32 bytes long to receive a user name. The length
of the returned user name is specified by the proxy user length field returned in
the buffer specified by the buffer_sizes argument.

default_ user
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Default user of a proxy matching the node name specified by the rem_node
argument and the remote user name specified by the rem_user argument. The
default_user argument is the address of a character-string descriptor pointing to
a buffer to receive the default user name.

The descriptor's buffer must be 32 bytes long to receive a user name. The length
of the returned user name is specified in the default user length field in the buffer
specified by the buffer_sizes argument.

local_ users
Open VMS usage: buffer
type: array of 0 to 16 user name buffers
access: write only
mechanism: by reference

Array C?f local user names associated with a proxy matching the remote node
name specified by the rem_node argument and the remote user name specified
by the rem_user argument. The local_users argument is the address of a buffer
to receive an array of local user names.

System Service Descriptions
$DISPLAY _PROXY

Each element in the array is a 36-byte block with the following format.

31 0

Unused l User name length

Username (32 bytes)

ZK-6170A-GE

The following table defines the local_users fields.

Descriptor Field

User name length

Username

Definition

Length (in bytes) of the associated username string.
The length can be in the range of 1 to 32 bytes.

A fixed 32-byte blank padded character string
containing a local user name associated with the
matched proxy.

The buffer specified by the local_users argument must be able to contain up to
16 user name buffers. Therefore, the buffer length must be 576 bytes.

The number of elements returned in the buffer is specified in the local users
count field returned in the buffer specified by the buffer_sizes argument.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service and type of user the local_user argument
represents. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each flag option has a symbolic name. The $PRXDEF macro defines the following
symbolic name.

Symbolic Name

PRX$M_BYPASS_EXPAND

Description

The service should not convert the node name
specified in the rem_node argument to its
corresponding DECnet for Open VMS full name.
If this flag is set, it is the caller's responsibility
to ensure that the fully expanded node name is
passed into the service.

SYS1-289

System Service Descriptions
$DISPLAY _PROXY

Description

SYS1-290

Symbolic Name

PRX$M_EXACT

context
Open VMS usage: context

Description

The service should match exactly the remote
node and remote user and ignore wildcards.

type: longword (unsigned)
access: write only
mechanism: by reference

Context information to keep between related calls to the $DISPLAY_PROXY
service. The context argument is the address of a longword to receive a context
from the $DISPLAY_PROXY service.

The initial value contained in the longword pointed to by the context argument
must be 0. The contents of the unsigned longword must not be changed after the
service has set its value. If the contents of the buffer pointed to by the context
argument are changed between calls to the $DISPLAY _PROXY service, the
service will return SS$_BADCONTEXT. If the contents of the context argument
are changed between calls to the $DISPLAY_PROXY service, you can change the
value of the context argument back to 0 to start the search over again.

Contexts become invalid after one-half hour of non-use. This means that if you
call the $DISPLAY_PROXY service with a wildcard rem_node or rem_user, and
do not call the service to get the next matching record within one-half hour, the
context becomes invalid. If the context has become invalid, you must start your
search of the proxy database over from its beginning by resetting the context to 0.

The Display Proxy service returns to the caller all information about a specified
proxy in the proxy database.

Wildcards can be specified for the rem_node and rem_user arguments. Because
$DISPLAY_PROXY can return information about only one matching proxy at
a time, you must call this service repeatedly with the context argument to
retrieve information about all matching proxies. $DISPLAY_PROXY returns
SS$_NOMOREITEMS when information about all of the matching proxies has
been returned. No proxy information is returned from the call that returns the
SS$_NOMOREITEMS status.

Required Access or Privileges
The caller must have SYSPRV privilege or a UIC group less than or equal to the
MAXSYSGRP system parameter.

Required Quota
None

Related Services
$ADD_PROXY, $DELETE_PROXY, $VERIFY_PROXY

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADCONTEXT

SS$_NOMOREITEMS

SS$_NOREADALL

System Service Descriptions
$DISPLAY _PROXY

The service completed successfully.

The rem_node or rem_user argument cannot
be read by the service; or the buffer_sizes,
proxy_node, proxy_user, default_user, or
local_users argument cannot be written by the
service; or the context argument cannot be read
or written by the service. ·

The length of the rem_node, rem_user, proxy_
node, proxy_user, default_user, or local_
users argument was out of range.

The context argument did not contain a 0
on the first call to the service, or the context
argument's value changed between consecutive
calls to the service.

Information about all proxies matching the
specification of the rem_node and rem_user
arguments has been returned by the service.
The caller does not have access to the proxy
database.

This service can also return any of the following messages passed from the
security server, or any Open VMS RMS error message encountered during
operations on the proxy database:

SECSRV$_ The node name length is out of range.
BADNODENAMELEN

SECSRV$_ The remote user name length is out of range.
BADREMUSERLEN

SECSRV$_NOSUCHPROXY The proxy specified by the rem_node and rem_
user arguments does not exist in the proxy
database.

SECSRV$_NOSUCHUSER

SECSRV$_
PROXYNOTACTIVE
SECSRV$_
SERVERNOTACTIVE

The specified local user does not exist in the
proxy's local user list, or is not the proxy's default
user.

Proxy processing is currently stopped. Try the
request again later.

The security server is not currently active. Try
the request again later.

SYS1-291

System Service Descriptions
$DLCEFC

$DLCEFC
Delete Common Event Flag Cluster

Format

Argument

Description

Marks a permanent common event flag cluster for deletion.

SYS$DLCEFC name

name
Open VMS usage: ef_cluster_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the common event flag cluster to be deleted. The name argument is the
address of a character string descriptor pointing to the name of the cluster.

The names of event flag clusters are unique to UIC groups, and the UIC group
number of the calling process is part of the- name.

The Delete Common Event Flag Cluster service marks a permanent common
event flag cluster for deletion. The cluster is actually deleted when no more
processes are associated with it. The $DLCEFC service does not disassociate
a process from a common event flag cluster; the Disassociate Common Event
Flag Cluster ($DACEFC) service does this. However, the system disassociates a
process from an event flag cluster at image exit.

If the cluster has already been deleted or does not exist, the $DLCEFC service
returns the status code SS$_NORMAL.

Required Access or Privileges
Delete access is required.

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

Condition Values Returned

SYS1-292

SS$_NORMAL

SS$_1VLOGNAM

The service completed successfully.

The cluster name string has a length of 0 or has
more than 15 characters.

SS$_NOPRIV

System Service Descriptions
$DLCEFC

The process does not have the privilege to delete
a permanent common event flag cluster, or the
process does not have the privilege to delete a
common event flag cluster in memory shared by
multiple processors.

SYS1-293

System Service Descriptions
$DNS (VAX Only}

$DNS {VAX Only)
Distributed Name Service Clerk

Format

Arguments

SYS1-294

On VAX systems, the DIGITAL Distributed Name Service (DECdns) clerk allows
client applications to store resource names and addresses.

The $DNS system service completes asynchronously; that is, it returns to the
client immediately after making a name service call. The status returned to
the client call indicates whether a request was successfully queued to the name
service.

The DIGITAL Distributed Name Service Clerk Wait ($DNSW) system service is
the synchronous equivalent of $DNS. $DNSW is identical to $DNS in every way
except that $DNSW returns to the caller after the operation completes.

SYS$DNS [efn] ,func ,itmlst ,[dnsb] ,[astadr] ,[astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $DNS completes. The efn argument is a
longword containing this number. The efn argument is optional; if not specified,
event flag 0 is set.

When $DNS begins execution, it clears the event flag. Even if the service
encounters an error and completes without queuing a name service request, the
specified event flag is set.

func
Open VMS usage: function_ code
type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying the action that $DNS is to perform. The func argument
is a longword containing this function code.

A single call to $DNS can specify one function code. Most function codes require
or allow for additional information to be passed in the call with the itmlst
argument.

itmlst
Open VMS usage: item_list_3
type: ·longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list.
The item list consists of one or more item descriptors, each of which is three

System Service Descriptions
$DNS (VAX Only)

longwords. The descriptors can be in any order in the item list. Each item
descriptor specifies an item code. Item codes are specified as either input
or output parameters. Input parameters modify functions, set context, or
describe the information to be returned. Output parameters return the requested
information. The item list is terminated by a longword of 0.

The item list is a standard format item list. The following figure depicts the
general structure of an item descriptor.

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

dnsb

Definition

A word specifying the length of the buffer; the buffer
either supplies information to be used by $DNS or
receives information from $DNS. The required
length of the buffer varies, depending on the item
code specified. Each item code description specifies
the required length.

A word containing a symbolic code describing the
nature of the information currently in the buffer
or to be returned in the buffer. The location of the
buffer is pointed to by the buffer address field.

A longword containing the address of the buffer that
specifies or receives the information.

A longword containing the address of a word
specifying the actual length (in bytes) of the
information returned by $DNS. The information
resides in a buffer identified by the buffer address
field. The field applies to output item list entries
only and must be 0 for input entries. If the return
length address is 0, it is ignored.

Open VMS usage: dns_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

Status block to receive the final completion status of the $DNS operation. The
dnsb argument is the address of the quadword $DNS status block.

SYS1-295

System Service Descriptions
$DNS (VAX Only)

SYS1-296

The following figure depicts the structure of a $DNS status block.

31 0

return status

qualifying status

ZK-1080A-GE

The following table defines the status block fields.

Status Block Field

Return status

Qualifying status

Definition

Set on completion of a DECdns clerk request to
indicate the success or failure of the operation.
Check the qualifying status word for additional
information about a request marked as successful.

This field consists of two flags that provide
additional information about a successful request to
the DECdns server.

The two qualifying status flags, DNS$V _DNSB_INOUTDIRECT and DNS$V _
DNSB_OUTLINKED, are defined as follows:

• DNS$V_DNSB_INOUTDIRECT-Indicates whether the members were found
in the top-level group or in one of the subgroups. The values are defined as
follows:

1: The member was found in the top-level group.
0: The member was found in one of the subgroups of the top-level group.

• DNS$V_DNSB_OUTLINKED-If set, indicates that one or more soft links
were encountered while resolving the name specified in a call.

Functions that access the DECdns server return a qualifying status. Name
conversion functions do not return qualifying status.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Asynchronous system trap (AST) routine to be executed when I/O completes. The
astadr argument is the address of the AST routine.

The AST routine executes in the access mode of the caller of $DNS.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Asynchronous system trap parameter passed to the AST service routine. The
astprm argument is a longword value containing the AST parameter.

System Service Descriptions
$DNS (VAX Only)

Function Codes

DNS$_ADD_REPLICA
This request adds a directory replica in the specified clearinghouse. Specify
the item code DNS$_REPLICATYPE as either a secondary directory (DNS$K_
SECONDARY) or a read-only directory (DNS$K_READONLY).

You must have control access to the directory being replicated and write access to
the new replica's clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY
DNS$_REPLICATYPE

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ALLOW_CH
This request permits a directory to store clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_CREATE_DIRECTORY
This request creates a master directory in the specified clearinghouse.

You must have write or control access to the parent directory and write access to
the master replica's clearinghouse.

You must specify the following input value item code:

DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_WAIT

You can specify the following output value item code:

DNS$_0UTCTS

DNS$_CREATE_LINK
This request creates a soft link to a directory, object, soft link, or clearinghouse
in the namespace. Specify the target to which the soft link points in the DNS$_
TARGETNAME item code. Use the DNS$_RESOLVE_NAME function code to
check the existence of the target.

SYS1-297

System Service Descriptions
$DNS (VAX Only)

SYS1-298

You must have write or control access to the directory in which the soft link is
being created.

You must specify the following input value item codes:

DNS$_LINKNAME
DNS$_TARGETNAME

You can specify the following input value item codes:

DNS$_CONF
DNS$_EXPIRETIME
DNS$_EXTENDTIME
DNS$_WAIT

You can specify the following output value item code:

DNS$_0UTCTS

DNS$_CREATE_OBJECT
This request creates an object in the namespace. Initially, the object has
the attributes of DNSCTS, DNSUTS, DNS$Class, DNS$Class Version, and
DNS$ACS. The name service creates the DNSCTS, DNSUTS, and DNS$ACS
attributes. The client application supplies the DNS$Class and DNS$ClassVersion
attributes. You can add attributes using the DNS$_MODIFY_ATTRIBUTE
function.

The DECdns clerk cannot guarantee that an object has been created. Another
DNS$_CREATE_OBJECT request could supersede the object created by your
call. To verify an object creation, wait until the directory is skulked and then
check to see if the requested object is present. If the value of the directory's
DNS$ALLUPTO attribute is greater than the DNS$CTS of the object, your object
has been successfully created.

If specified, DNS$_0UTCTS holds the creation timestamp of the newly created
object.

This function code returns the following:

SS$_NORMAL
DNS$_ENTRYEXISTS
DNS$_INVALID_OBJECTNAME
DNS$_1NVALID_CLASSNAME
Any condition listed in the section Condition Values Returned

You must have write access to the directory where the object will reside.

You must specify the following input value item codes:

DNS$_CLASS
DNS$_0BJECTNAME
DNS$_ VERSION

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

You can specify the following output value item code:

DNS$_0UTCTS

System Service Descriptions
$DNS {VAX Only)

DNS$_DELETE_DIRECTORY
This request removes a directory from the namespace.

You must have delete access to the directory being deleted and write, control, or
delete access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_DELETE_OBJECT
This request removes the specified object from the namespace.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_OBJECTNAME
Any condition listed in the section Condition Values Returned

You must have delete access to the object.

You must specify the following input value item code:

DNS$_0BJECTNAME

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns. the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_DISALLOW_CH
This request prevents a directory from storing clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory, and read or control access to
any child directories.

You must specify the following input value item code:

DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_ENUMERATE_ATTRIBUTES
This request returns a set of attribute names in DNS$_0UTATTRIBUTESET
that are associated with the directory, object, soft link, or clearinghouse. Specify
the entry type in the DNS$_LOOKINGFOR item code. The function returns
either DNS$K_SET or DNS$K_SINGLE along with the set of attribute names.

To manipulate the attribute names returned by this call, you should use the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine.

SYS1-299

System Service Descriptions
$DNS {VAX Only)

SYS1-300

The DECdns clerk enumerates attributes in alphabetical order. A return status
of DNS$_MOREDATA implies that not all attributes have been enumerated.
You should make further calls, setting DNS$_CONTEXTVARNAME to the last
attribute in the set returned, until the procedure returns SS$_NORMAL.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_1NVALID_ENTRYNAME
DNS$_1NVALID_CONTEXTNAME
Any condition listed in the section Condition Values Returned

You must have read access to the directory, object, soft link, or clearinghouse.

You must specify the following input value item codes:

DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item code:

DNS$_0UTATTRIBUTESET

You can specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT

You can specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_CHILDREN
This request takes as input a directory name with an optional simple name that
uses a wildcard. The DECdns clerk matches the input against child directory
entries in the specified directory.

The DECdns clerk returns a set of simple names of child directories in the target
directory that match the name with the wildcard. A null set is returned when
there is no match or the directory has no child directories.

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST_SET_VALUE run-time routine. The value returned
is a simple name.

The clerk enumerates child directories' in alphabetical order. If the call returns
DNS$_MOREDATA, not all child directories have been enumerated and the
client should make further calls, setting DNS$_CONTEXTVARNAME to the last
child directory in the set returned, until the procedure returns SS$_NORMAL.
Subsequent calls return the child directories, starting with the directory specified
in DNS$_CONTEXTVARNAME and continuing in alphabetical order.

System Service Descriptions
$DNS (VAX Only)

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You must have read access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTCHILDREN

You can specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT
DNS$_ WILDCARD

You can specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_OBJECTS
This request takes as input the directory name, a simple name that can use a
wildcard, and a class name that uses a wildcard. The DECdns clerk matches
these against objects in the directory. If a wildcard and class filter are not
specified, all objects in the directory are returned.

The function returns (in DNS$_0UTOBJECTS) a set of simple names of object
entries in the directory that match the name with the wildcard. The function also
returns the class of the object entries, if specified with DNS$_RETURNCLASS. If
no object entries match the wildcard or the directory contains no object entries, a
null set is returned.

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST_SET_ VALUE run-time routine. The value returned
is a simple name structure.

The clerk enumerates objects in alphabetical order. If the call returns DNS$_
MOREDATA, not all objects have been enumerated and the client should make
further calls, setting DNS$_CONTEXTVARNAME to the last object in the
set returned, until the procedure returns SS$_NORMAL. If the class filter is
specified, only those objects of the specified classes are returned.

SYS1-301

System Service Descriptions
$DNS {VAX Only}

SYS1-302

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME
DNS$_INVALID_CLASSNAME

You must have read access to the directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTOBJECTS

You can specify the following input value item codes:

DNS$_CLASSFILTER
DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_RETURNCLASS
DNS$_WAIT
DNS$_ WILDCARD

You can specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_SOFTLINKS
This request takes as input the name of a directory and a wildcarded simple
name. The DECdns clerk matches these against soft links in the directory. It
returns (in DNS$_0UTSOFTLINKS) a set consisting of simple names of soft links
in the directory that match the wildcarded name. If no soft link entries match
the wildcard or the directory contains no soft links, a null set is returned.

If no wildcard is specified, then all soft links in the directory are returned.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_
SET_ VALUE run-time library routine. The value returned is a simple name.

The clerk enumerates soft links in alphabetical order. If the call returns DNS$_
MOREDATA, not all matching soft links have been enumerated and. the client
should make further calls, setting DNS$_CONTEXTVARNAME to the last soft
link in the set returned, until the procedure returns SS$_NORMAL.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You must have read access to the directory.

System Service Descriptions
$DNS (VAX Only)

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTSOFTLINKS

You can specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT
DNS$_ WILDCARD

You can specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_FULL_ OPAQUE_ TO _STRING
This request converts a full name in opaque format to its equivalent in string
format. To prevent the namespace nickname from being included in the string
name, set the byte referred to by DNS$_SUPPRESS_NSNAME to 1.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMFULLNAME

You must specify the following output value item code:

DNS$_TOSTRINGNAME

You can specify the following input value item code:

DNS$_SUPPRESS_NSNAME

DNS$_MODIFY _ATTRIBUTE
This request applies one update to the specified entry in the namespace. The
update operations are as follows:

• Add or remove an attribute.

• Add or remove an attribute value from either a single-valued attribute or a
set-valued attribute.

To add a value to a single-valued or set-valued attribute, specify a value in
the DNS$_MODVALUE item code. If you do not specify a value for a single
valued attribute, you receive the error DNS$_INVALIDUPDATE. Single-valued
attributes cannot exist without a value.

If you do not specify a value for a set-valued attribute, the clerk creates the
attribute with an empty set.

To delete an attribute value, use the DNS$_MODVALUE item code to remove
the specified value from an attribute set. If you do not specify the item code, the
name service removes the attribute and all its values.

SYS1-303

System Service Descriptions
$DNS (VAX Only)

SYS1-304

This function code returns the following:

SS$_NORMAL
DNS$_ WRONGATTRIBUTETYPE
DNS$_INVALIDUPDATE
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have write or delete access to the directory, object, soft link, or
clearinghouse whose attribute is being modified, depending on whether the
operation adds or removes the attribute.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ATTRIBUTETYPE
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_MODOPERATION

You can specify the following input value item codes:

DNS$_CONF
DNS$_MODVALUE
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_NEW_EPOCH
This request reconstructs an entire replica set of a directory and synchronizes the
copies to recover as much of the original directory state as possible. The function
can also be used to change a replica type for configuration management purposes.

This request takes as input the full name of a clearinghouse (DNS$_
CLEARINGHOUSE) and directory (DNS$_DIRECTORY). Specify, optionally,
the full names of clearinghouses in which to store secondary and read-only
replicas (DNS$_SECCHSET and DNS$_READCHSET).

You must have control access to the parent directory and write access to each
clearinghouse for which the replica type will be changed from its current value to
a new value.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_READCHSET
DNS$_SECCHSET

DNS$_PARSE_FULLNAME_STRING
This request takes a full name in string format and converts it to its equivalent
in opaque format. If you specify the DNS$_NEXTCHAR_PTR item code, the
clerk examines the name specified in DNS$_FROMSTRINGNAME for invalid
characters. The buffer returns the address of the character in the name that
immediately follows a valid DECdns name.

System Service Descriptions
$DNS (VAX Only)

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSTRINGNAME

You must specify the following output value item code:

DNS$_TOFULLNAME

You can specify the following input value item code:

DNS$_NEXTCHAR_PTR

DNS$_PARSE_SIMPLENAME_STRING
This request takes a simple name in string format and converts it to its
equivalent in opaque format. If you specify the DNS$_NEXTCHAR_PTR item
code, the clerk examines the name specified in DNS$_FROMSTRINGNAME for
invalid characters. The buffer returns the address of the character in that name
that immediately follows a valid DECdns name.

This function code return the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSTRINGNAME

You must specify the following output value item code:

DNS$_TOSIMPLENAME

You can specify the following input value item code:

DNS$_NEXTCHAR_PTR

DNS$_READ_ATTRIBUTE
This request returns (in DNS$_0UTVALSET) a set whose members are the
values of the specified attribute.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_
SET_ VALUE run-time library routine. The run-time library routine returns the
value of a single-valued attribute or the first value from a set-valued attribute.
The contents of DNS$_0UTVALSET are passed to DNS$REMOVE_FIRST_SET_
VALUE, and the routine returns the value of the attribute.

The attribute values are returned in the order in which they were created. If the
call returns DNS$_MOREDATA, not all of the set members have been returned.
The client application can make further calls, setting DNS$_CONTEXTVARTIME
to the timestamp of the last attribute in the set returned, until the procedure
returns SS$_NORMAL.

If the client sets the DNS$_MAYBEMORE item code to 1, the name service
attempts to make subsequent DNS$_READ_ATTRIBUTE calls for the same value
more efficient.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA

SYS1-305

System Service Descriptions
$DNS (VAX Only)

SYS1-306

DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have read access to the object whose attribute is to be read.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item r;:ode:

DNS$_0UTVALSET

You can specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARTIME
DNS$_MAYBEMORE
DNS$_WAIT

You can specify the following output value item code:

DNS$_CONTEXTVARTIME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_REMOVE_LINK
This request deletes a soft link from the namespace. Only the soft link is deleted.
Any DECdns name that is referenced by the soft link remains unaffected by the
operation.

You must have delete access to the soft link, or delete or control access to its·
parent directory.

You must specify the following input value item code:

DNS$_LINKNAME

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_REMOVE_REPLICA
This request removes the specified replica of a directory.

You must have control access to the replica being removed and write access to the
replica's clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

System Service Descriptions
$DNS (VAX Only)

DNS$_RESOLVE_NAME
This request follows a chain of soft links to its target. The function returns the
full name of the target.

Applications that maintain their own databases of opaque DECdns names should
use DNS$_RESOLVE_NAME any time they receive the qualifying status DNS$V _
DNSB_OUTLINKED. The qualifying status indicates that a soft link was followed
to make the request to the DECdns server. After receiving the resolved name,
the application should store it, so future references to the name do not incur the
overhead of following a soft link.

If the application provides a name that does not contain any soft links, DNS$_
NOTLINKED status is returned. If the target of any of the chain of soft links
followed does not exist, the DNS$_DANGLINGLINK status is returned. To obtain
the target of any particular soft link, use the DNS$_READ _ATTRIBUTE function
with DNS$_LOOKINGFOR set to DNS$K_SOFTLINK and request the attribute
DNS$LINKTARGET. This can be useful in discovering which link in a chain does
not point to an existing target. If the DECdns clerk detects a loop, it returns
DNS$_POSSIBLECYCLE status.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_LINKNAME
DNS$_NOTLINKED
DNS$_POSSIBLECYCLE

You must have read access to each of the soft links in the chain.

You must specify the following input value item code:

DNS$_LINKNAME

You must specify the following output value item code:

DNS$_0UTNAME

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_SIMPLE_ OPAQUE_ TO _STRING
This request takes a simple name in opaque format a:t;ld converts it to its
equivalent in string format.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSIMPLENAME

You must specify the following output value item code:

DNS$_TOSTRINGNAME

SYS1-307

System Service Descriptions
$DNS (VAX Only)

SYS1-308

DNS$_SKULK
This request attempts to ensure that all replicas of the specified directory have
absorbed all updates applied to any replica prior to the time the skulk began.
Successful update of the replica set requires all replicas to be available for an
extended time.

You must have control access to the directory being skulked.

You must specify the following input value item code:

DNS$_DIRECTORY

CNS$_ TEST _ATTRIBUTE
This request tests an object for the presence of a particular attribute value. This
function returns DNS$_TRUE in the $DNS status block if the specified attribute
has one of the following characteristics:

• It is a single-valued attribute and its value matches the specified value.

• It is a set-valued attribute and the attribute contains the specified value as
one of its members.

If the attribute is not present or if the specified attribute does not exist, the
function returns DNS$_FALSE in the $DNS status block.

This function code returns the following:

DNS$_INVALID_ENTRYNAME
DNS$_1NVALID_ATTRIBUTENAME

You must have test or read access to the directory, object, soft link, or
clearinghouse whose attribute is to be tested.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_VALUE

You can specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_TEST_GROUP
This request tests a group object for a particular member. It returns DNS$_
TRUE in the $DNS status block if the specified member is a member of the
specified group (or a subgroup thereof), and DNS$_FALSE otherwise. If the clerk
searches a subgroup and one or more of the subgroups is unavailable, the clerk
returns the status encountered in trying to access that group.

The DNS$_INOUTDIRECT argument, on input, controls the scope of the search.
If you set this item code to 1, the clerk searches only the top-level group. If you
set it to 0, the clerk searches all of the subgroups. On output, the clerk returns
a 1 in the DNS$V _DNSB_INOUTDIRECT qualifying status if the member
was found in the top-level group; it returns a 0 if the member was found in a
subgroup.

Item Codes

System Service Descriptions
$DNS {VAX Only)

This function code returns the following:

SS$_NORMAL
DNS$_NOTAGROUP
DNS$_INVALID_GROUPNAME
DNS$_INVALID_MEMBERNAME

You must have test or read access to each of the groups being tested or control
access to their respective directories.

You must specify the following input value item codes:

DNS$_GROUP
DNS$_MEMBER

You can specify the following input value item codes:

DNS$_CONF
DNS$_INOUTDIRECT
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_INOUTDIRECT
DNS$V _DNSB_OUTLINKED

Table SYSl-4 provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the item codes and their data
types. Complete descriptions of each item code are provided after the table.

Table SYS1-4 $DNS Item Codes and Their Data Types

Item Code

DNS$_ATTRIBUTENAME

DNS$_ATTRIBUTETYPE

DNS$_CLASS

DNS$_CLASSFILTER

DNS$_CLEARINGHOUSE

DNS$_CONF

DNS$_CONTEXTVARNAME

DNS$_CONTEXTVARTIME
DNS$_DIRECTORY

Data Type

An opaque simple name, which is limited to
31 ISO Latin-1 characters.

A single byte, indicating whether the attribute
is a set (DNSK$_SET) or a single value
(DNS$K_SINGLE), followed by an opaque
simple name.

An opaque simple name, limited to 31 ISO
Latin-1 characters.
An opaque simple name that can contain a
wild card.

An opaque simple name of a clearinghouse.

The confidence setting, which is a 1-byte
field with the value DNSK_LOW, DNSK_
MEDIUM, or DNS$K_HIGH.

An opaque simple name.
A creation timestamp (CTS).

An opaque full name of a directory.
(continued on next page)

SYS1-309

System Service Descriptions
$DNS {VAX Only)

Table SVS1-4 {Cont.) $DNS Item Codes and Their Data Types

SYS1-310

Item Code

DNS$_ENTRY

DNS$_EXPIRETIME
DNS$_EXTENDTIME
DNS$_FROMF:ULLNAME
DNS$_FROMSIMPLENAME
DNS$_FROMSTRINGNAME

DNS$_GROUP
DNS$_INOUTDIRECT

DNS$_LINKNAME
DNS$_LOOKINGFOR

DNS$_MAYBEMORE

DNS$_MEMBER

DNS$_MODOPERATION

DNS$_MODVALUE

DNS$_NEXTCHAR_PTR

DNS$_0BJECTNAME
DNS$_0UTATTRIBUTESET

DNS$_0UTCHILDREN

DNS$_0UTCTS
DNS$_0UTNAME

Data Type

An opaque full name of a directory, soft link,
group, or clearinghouse.

A quadword absolute time representation.
A quadword relative time representation.
An opaque full name.

~opaque simple name.
A full or simple name consisting of a string
of 180-1 Latin characters. The length of the
name is length stored separately in an item
list.
An opaque full name.
A 1-byte Boolean field. Valid values are 0 and
1.

An opaque full name of a soft link.
A 1-byte field. Valid values are DNS$K_
OBJECT, DNS$K_SOFTLINK, DNS$K_
CHILDDIRECTORY, DNS$K_DIRECTORY, or
DNS$K_CLEARINGHOUSE.
A 1-byte Boolean field. Valid values are
DNS$_FALSE and DNS$_TRUE.
A single byte, indicating whether the
member is a principal (DNS$K_GRPMEM_
NOT_GROUP) or another group (DNS$K_
GRPMEM_IS_GROUP), followed by the
opaque full name of the member.
A value indicating that an attribute is
being added (DNS$K_PRESENT) or deleted
(DNS$K_ABSENT).

The structure of this value is dependent on
the application.

The address of an invalid character following
a valid full or simple name.
An opaque full name.
DNS$K_SET or DNS$K_SINGLE in the first
byte followed by a single or set of attribute
names.
A set of opaque simple names of the child
directories found in the parent directory.
A timestamp.
An opaque full name.

(continued on next page)

System Service Descriptions
$DNS (VAX Only)

Table SYS1-4 (Cont.) $DNS Item Codes and Their Data Types

Item Code

DNS$_0UTOBJECTS

DNS$_0UTSOFTLINKS

DNS$_0UTVALSET

DNS$_READCHSET

DNS$_REPLICATYPE

DNS$_RETURNCLASS

DNS$_SECCHSET

DNS$_SUPPRESS_NSNAME

DNS$_TARGETNAME

DNS$_TOFULLNAME

DNS$_TOSIMPLENAME

DNS$_TOSTRINGNAME

DNS$_VALUE

DNS$_ VERSION

DNS$_WAIT

DNS$_ WILDCARD

Data Type

A set of opaque simple names. Optionally,
each simple name can be followed by the
value of the DNS$Class attribute.

A set of opaque simple names of the soft links
for an object.

A set of attribute values.

An opaque full name of a read-only directory.

The type of directory replica. Valid values are
secondary replica (DNS$K_SECONDARY) and
read-only replica (DNS$K_READONLY).

A flag indicating that the value of DNS$Class
is returned in DNS$_0UTOBJECTS.

An opaque full name of a secondary directory.

A 1-byte value: a value of DNS$_TRUE
suppresses the namespace name, and a value
of DNS$_FALSE returns the namespace
name.

The opaque full name of an entry in the
namespace to which a soft link will point.

The opaque full name of an object.
The maximum output of DNS$PARSE_
FULLNAME_STRING is 402 bytes.

An opaque simple name. It can be no longer
than 257 bytes.

A name string of IS0-1 Latin characters. The
name length is stored separately in an item
list.

An attribute value in string format.

A 2-byte field: the first byte contains the
major version number, the second contains the
minor version number.

A quadword time representation.

An opaque simple name containing a wildcard
character.

This section describes each item code.

DNS$_ATTRIBUTENAME
The DNS$_ATTRIBUTENAME item code specifies the opaque simple name of an
attribute. An attribute name cannot be longer than 31 characters.

DNS$_ATTRIBUTETYPE
The DNS$_ATTRIBUTETYPE item code specifies whether an attribute is set
valued (DNS$K_SET) or single valued (DNS$K_SINGLE).

SYS1-311

System Service Descriptions
$DNS (VAX Only)

SYS1-312

DNS$_CLASS
The DNS$_CLASS item code specifies the DNS$Class attribute of an object for
the $DNS function DNS$_CREATE_OBJECT. DNS$_CLASS is an opaque simple
name.

DNS$_CLASSFILTER
DNS$_CLASSFILTER specifies a filter that limits the scope of an enumeration
to those objects belonging to a certain class or group of classes. DNS$_
CLASSFILTER is used by the $DNS function DNS$_ENUMERATE_OBJECTS.
DNS$_CLASSFILTER is an opaque simple name, which can contain a wildcard
(either the asterisk or question mark).

DNS$_CLASSFILTER is optional. A wildcard simple name using an asterisk (*)
is used by default, meaning that objects of all classes are enumerated.

·oNS$_CLEARINGHOUSE
DNS$_CLEARINGHOUSE specifies the clearinghouse in which the directory will
be added or removed. DNS$_CLEARINGHOUSE is an opaque full name.

DNS$_CONF
DNS$_CONF specifies for $DNS whether to use the clerk's cache or a DECdns
server to complete the request. DNS$_CONF is 1 byte long and can take one of
the following values.

Confidence Level

DNS$K_LOW

DNS$K_MEDIUM

DNS$K_HIGH

Description

On read requests, services the DECdns request from the
clerk's cache. On create or modify requests, services the
request from a master or secondary directory.

Bypasses any cached information and services the
request directly from a DECdns server.
Services the request from the master directory.

DNS$_CONF is optional; if it is not specified, the DECdns clerk assumes a value
of DNS$K_LOW.

DNS$_CONTEXTVARNAME
DNS$_CONTEXTVARNAME specifies and returns a context for the enumeration
functions. On input, specify null to set the initial context. On output, DNS$_
CONTEXTVARNAME returns the opaque simple name of the last item
enumerated.

DNS$_CONTEXTVARNAME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart an enumeration where it left off, specify the last
value returned in DNS$_CONTEXTVARNAME.

DNS$_CONTEXTVARTIME
DNS$_CONTEXTVARTIME specifies and returns a timestamp for the DNS$_
READ_ATTRIBUTE function. On input, specify a timestamp to set up the
context for reading attributes. On output, DNS$_CONTEXTVARNAME returns
the timestamp of the last item read.

System Service Descriptions
$DNS (VAX Only)

DNS$_CONTEXTVARTIME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart a read operation where it left off, specify the last
value returned in DNS$CONTEXTVARTIME.

DNS$_DIRECTORY
DNS$_DIRECTORY specifies the directory in which the child directories, soft
links, or objects to be enumerated reside. DNS$_DIRECTORY is an opaque full
name.

DNS$_ENTRY
DNS$_ENTRY specifies the opaque full name of an object, soft link, directory, or
clearinghouse in the namespace.

DNS$_EXPIRETIME
DNS$_EXPIRETIME specifies the absolute time when the soft link will expire.
The clerk deletes the soft link at the expiration time. If this item code is a null
value, the clerk neither checks nor deletes the link.

DNS$_EXTENDTIME
DNS$_EXTENDTIME specifies an extension factor to be added to the absolute
time if the soft link still exists. A new expiration time is created by adding the
expiration time and the extend time together.

DNS$_FROMFULLNAME
DNS$_FROMFULLNAME specifies for the DNS$_FULL_OPAQUE_TO_STRING
function the opaque full name that is to be converted into string format.

DNS$_FROMSIMPLENAME
DNS$_FROMSIMPLENAME specifies for the DNS$_SIMPLE_OPAQUE_TO_
STRING function the opaque simple name that is to be converted into string
format.

DNS$_FROMSTRINGNAME
DNS$_FROMSTRINGNAME specifies a simple or full name in string format for
the parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING that is to be converted to opaque format.

DNS$_GROUP
DNS$_GROUP specifies for the DNS$_TEST_GROUP function the opaque full
name of the group that is to be tested. DNS$_GROUP must be the name of a
group object.

DNS$_1NOUTDIRECT
DNS$_1NOUTDIRECT specifies a value that controls the scope of a test for group
membership.

Value Definition

1 Tests the top-level group specified by the DNS$_GROUP item (the
default).

0 Tests all subgroups of the group named in DNS$_GROUP.

DNS$_INOUTDIRECT is a single-byte value.

SYS1-313

System Service Descriptions
$DNS (VAX Only)

SYS1-314

DNS$_LINKNAME
DNS$_LINKNAME specifies the opaque full name of a soft link.

DNS$_LOOKINGFOR
DNS$_LOOKINGFOR specifies the type of entry in the namespace on which the
call is to operate. DNS$_LOOKINGFOR can take one of the following values:

• DNS$K_DIRECTORY

• DNS$K_OBJECT

• DNS$K_CHILDDIRECTORY

• DNS$K_SOFTLINK

e DNS$K_CLEARINGHOUSE

DNS$_MAYBEMORE
DNS$_MAYBEMORE is used with the DNS$_READ_ATTRIBUTE function
to indicate that the results of the read operation are to be cached. This is a
single-byte item.

When this item is set to 1, the clerk returns all of the entry's attributes in the
return buffer. The clerk caches all of this information to make later lookups of
attribute information for the same entry quicker and more efficient.

If you do not specify this item, only the requested information is returned.

DNS$_MEMBER
DNS$_MEMBER specifies for the DNS$_TEST_GROUP function of $DNS the
opaque full name of a member that is to be tested for inclusion within a given
group.

DNS$_MODOPERATION
DNS$_MODOPERATION specifies for the DNS$_MODIFY_ATTRIBUTE function
the type of operation that is to take place. There are two types of modifications:
adding an attribute or deleting an attribute. To add an attribute, specify DNS$K_
PRESENT. To delete an attribute, specify DNS$K_ABSENT.

DNS$_MODVALUE
DNS$_MODVALUE specifies for the DNS$_MODIFY_ATTRIBUTE function the
value that is to be added to or deleted from an attribute. The structure of this
value is dependent on the application.

DNS$_MODVALUE is an optional argument that affects the overall operation of
the DNS$_MODIFY_ATTRIBUTE function. Note that the DNS$_MODVALUE
item code must be specified to add a single-valued attribute. You can specify a
null value for a set-valued attribute. (See the DNS$_MODIFY _ATTRIBUTE item
code description for more information.)

DNS$_NEXTCHAR_PTR
DNS$_NEXTCHAR_PTR is an optional item code that can be used with the
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING to return the address of an invalid character that
immediately follows a valid DECdns name. This option is most useful when
applications are parsing command line strings.

Without this item code, the parse functions return an error if any portion of the
name string is invalid.

DNS$_0BJECTNAME

System Service Descriptions
$DNS (VAX Only)

DNS$_0BJECTNAME specifies the opaque full name of an object.

DNS$_0UTATTRIBUTESET
DNS$_0UTATTRIBUTESET returns a set of enumerated attribute names. This
item code is used with the DNS$_ENUMERATE_ATTRIBUTES functions. The
item code returns either DNS$K_SET or DNS$K_SINGLE along with the set of
attribute names.

The names returned in this set can be extracted from the buffer with the
DNS$REMOVE_FIRST_SET_ VALUE routine. The resulting values are contained
in the $DNSATTRSPECDEF structure. This 1-byte structure indicates whether
an attribute is set-valued or single-valued followed by an opaque simple name.

DNS$_0UTCHILDREN
DNS$_0UTCHILDREN returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_CHILDREN function.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. These values are
the opaque simple names of the child directories found in the parent directory.

DNS$_0UTCTS
DNS$_0UTCTS returns the timestamp (CTS) that the specified entry received
when it was created. This item code is optional and can be used by the $DNS
create functions.

DNS$_0UTNAME
DNS$_ OUTNAME returns the opaque full name of the target pointed to by a soft
link. This item code is used with the DNS$_RESOLVE_NAME function.

DNS$_0UTOBJECTS
DNS$_0UTOBJECTS returns the set of opaque simple names enumerated by the
DNS$_ENUMERATE_OBJECTS function.

Each object name is followed by the object's class if you specify the DNS$_
RETURNCLASS item code on input. The object's class is the value of the
DNS$Class attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The resulting
values are the opaque simple names of the objects found in the directory.

DNS$_0UTSOFTLINKS
DNS$_0UTSOFTLINKS returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_SOFTLINKS function.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The resulting
values are the opaque simple names of the soft links found in the directory.

DNS$_0UTVALSET
DNS$_0UTVALSET returns for the DNS$_READ_ATTRIBUTE function a set of
values for the given attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The extracted
values are the values of the attribute.

SYS1-315

System Service Descriptions
$DNS (VAX Only)

SYS1-316

DNS$_READCHSET
DNS$_READCHSET specifies the names of clearinghouses that contain read-only
replicas of the directory being reconstructed with DNS$_NEW _EPOCH.

DNS$_REPLICATYPE
DNS$_REPLICATYPE specifies the type of directory replica being added in the
specified clearinghouse. You can add a secondary replica (DNS$K_SECONDARY)
or a read-only replica (DNS$K_READONLY).

DNS$_RETURNCLASS
DNS$_RETURNCLASS specifies that the class of object entries enumerated with
the DNS$_ENUMERATE_OBJECTS function should be returned along with the
object names in the DNS$_0UTOBJECTS item code. The object's class is the
value of the DNS$Class attribute.

DNS$_SECCHSET
DNS$_SECCHSET specifies the names of cl~aringhouses that contain secondary
replicas of the directory being reconstructed with DNS$_NEW _EPOCH.

DNS$_SUPPRESS_NSNAME
DNS$_SUPPRESS_NSNAME specifies that the leading namespace name should
not be returned in the converted full name string. This item code is used by the
DNS$_FULL_OPAQUE_TO_STRING function. This is an optional single-byte
value.

A value of 1 suppresses the leading namespace name in the resulting full name
string.

DNS$_ TARGETNAME
DNS$_TARGETNAME specifies the name of an existing entry in the namespace
to which the soft link will point. This item code is used by the DNS$_CREATE_
LINK function.

DNS$_ TOFULLNAME
DNS$_TOFULLNAME returns for the DNS$_PARSE_FULLNAME_STRING
function the address of a buffer that contains the resulting opaque full name.

DNS$_ TOSIMPLENAME
DNS$_TOSIMPLENAME specifies for the DNS$_PARSE_SIMPLENAME_
STRING function the address of a buffer that will contain the resulting opaque
simple name.

DNS$_ TOSTRINGNAME
DNS$_TOSTRINGNAME returns the string name resulting from one of the
conversion functions: DNS$_FULL_OPAQUE_TO_STRING or DNS$_SIMPLE_
OPAQUE_TO_STRING. DNS$_TOSTRINGNAME has the following structure:

[NS_name:] [.] Namestring [.Namestring]

• NS_name, if present, is a local system representation of the NSCTS, the
unique identifier of the DECdns server. The DECdns clerk supplies a
namespace name (node-name_NS) if the value is omitted.

• Namestring represents a simple name component. Multiple simple names are
separated by periods.

Description

System Service Descriptions
$DNS {VAX Only)

DNS$_VALUE
DNS$_VALUE specifies for the DNS$_TEST_ATTRIBUTE function the value that
is to be tested. This item contains the address of a buffer holding the value.

DNS$_ VERSION
DNS$_ VERSION specifies the DNS$ClassVersion attribute for the DNS$_
CREATE_OBJECT function. This is a 2-byte structure: the first byte contains
the major version number, the second contains the minor version number.

DNS$_WAIT
DNS$_ WAIT enables the client to specify a timeout value to wait for a
call to complete. If the timeout expires, the call returns either DNS$K_
TIMEOUTNOTDONE or DNS$K_TIMEOUTMAYBEDONE, depending on
whether the namespace was updated by the incomplete operation.

The parameter is optional; if it is not specified, a default timeout value of 30
seconds is assumed.

DNS$_WILDCARD
DNS$_ WILDCARD is an optional item code that specifies to the enumeration
functions of $DNS the opaque simple name used to limit the scope of the
enumeration. (The simple name does not have to use a wildcard.) Only those
simple names that match the wildcard are returned by the enumeration.

Table SYSl-4 provides a summary of the data types for $DNS item codes. The
data types define the encoding of each item list element.

The $DNS system service provides a low-level interface between an application
(client) and DECdns. The DECdns clerk interface is used to create, delete, modify,
and retrieve DECdns names in a namespace.

A single system service call supports the DECdns clerk. It has two main
parameters:

• A function code identifying the particular service to perform

• An item list specifying all the parameters for the required function

The use of this item list is similar to that of other system services that use a
single item list for both input and output operations.

The $DNS system service performs DECnet for Open VMS 1/0 on behalf of the
DECdns client. It requires system dynamic memory to construct a database to
queue the 1/0 request and may require additional memory on a device-dependent
basis.

In addition to the system services, DECdns provides a set of callable run-time
library routines. You can use the clerk run-time library routines to manipulate
output from the system service and to write data that can be specified in a system
service function code.

For further information, see the Open VMS Programming Concepts Manual.

Required Access or Privileges
None

SYS1-317

System Service Descriptions
$DNS (VAX Only)

Required Quota

• The buffered 1/0 byte count (BYTLM) quota for the process

• The quota for buffered 1/0 limit (BIOLM) or direct 1/0 limit (DIOLM) for the
process

• The AST limit (ASTLM) quota, if an AST service routine is specified, for the
process

Related Services
. $DNSW

Condition Values Returned

SS$_NORMAL
SS$_BADPARAM

Normal completion of the request.

Either an item code in the item list is out of
range or the item list contains more than the
maximum allowable number of items.

Condition Values Returned in the $DNS Status Block

SYS1-318

DNS$_ACCESSDENIED

DNS$_BADCLOCK

DNS$_BADEPOCH

DNS$_BADITEMBUFFER

DNS$_CACHELOCKED

DNS$_CLEARINGHOUSEDOWN

DNS$_CLERKBUG

DNS$_CONFLICTINGARGUMENTS

DNS$_DANGLINGLINK

DNS$_DATACORRUPTION

DNS$_ENTRYEXISTS

DNS$_FALSE

DNS$_1NVALIDARGUMENT

Caller does not have required access
to the entry in question. This error is
returned only if the client has some
access to the entry. Otherwise, the
unknown entry status is returned.
The clock at the name server has a
value outside the permissible range.

Copies of directories are not
synchronized.
Invalid output item buffer detected.
(This normally indicates that the
buffer has been modified during the
call.)

Global client cache locked.

Clearinghouse is not available.

Internal clerk error detected.

Two or more optional arguments
conflict; they cannot be specified in
the same function code.

Soft link points to nonexistent target.

An error occurred in accessing the
data stored at a clearinghouse. The
clearinghouse may be corrupted.

An entry with the same full name
already exists in the namespace.

Unsuccessful test operation.
A syntactically incorrect, out of
range, or otherwise inappropriate
argument was specified in the call.

DNS$_INVALID_ATTRIBUTENAME

DNS$_INVALID_CLASSNAME

DNS$_INVALID_
CLEARINGHOUSENAME
DNS$_INVALID_CONTEXTNAME

DNS$_INVALID_DIRECTORYNAME

DNS$_INVALID_ENTRYNAME

DNS$_INVALIDFUNCTION

DNS$_INVALID_GROUPNAME

DNS$_INVALIDITEM

DNS$_INVALID_LINKNAME

DNS$_1NVALID_MEMBERNAME

DNS$_INVALIDNAME

DNS$_INVALID_NSNAME

DNS$_INVALID_OBJECTNAME

DNS$_INVALID_TARGETNAME

DNS$_INVALIDUPDATE

DNS$_INVALID_ WILDCARDNAME

DNS$_LOGICAL_ERROR

DNS$_MISSINGITEM

DNS$_MOREDATA

DNS$_NAMESERVERBUG

DNS$_NOCACHE
DNS$_NOCOMMUNICATION

System Service Descriptions
$DNS (VAX Only)

The name given for function is not a
valid DECdns attribute name.

The name given for function is not a
valid DECdns class name.
The name given for function is not a
valid DECdns clearinghouse name.
The name given for function is not a
valid DECdns context name.

The name given for function is not a
valid DECdns directory name.
The name given for function is not a
valid DECdns entry name.

Invalid function specified.

The name given for function is not a
valid DECdns group name.

Invalid item code was specified in the
item list.

The name given for function is not a
valid DECdns soft link name.

The name given for function is not a
valid DECdns member name.

A name containing invalid characters
was specified in the call.
N amespace name given in name
string is not a valid DECdns name.

The name given for function is not a
valid DECdns object name.
The name given for function is not a
valid DECdns target name.

An update was attempted to an
attribute that cannot be directly
modified by the client.

The name given for function is not a
valid DECdns wildcard name.
Error translating logical name in
given string.

Required item code is missing from
the item list.
More output data to be returned.

A name server encountered an
implementation bug. Please submit
an SPR.
Client cache file not initialized.

No communication was possible
with any name server capable of
processing the request. Check NCP
event 353.5 for the DECnet error.

SYS1-319

System Service Descriptions
$DNS (VAX Only)

SYS1-320

DNS$_NONSNAME

DNS$_NONSRESOURCES

DNS$_NOTAGROUP

DNS$_NOTIMPLEMENTED

DNS$_NOTLINKED

DNS$_NOTNAMESERVER

DNS$_NOTSUPPORTED

DNS$_POSSIBLECYCLE

DNS$_RESOURCEERROR

DNS$_TIMEOUTMAYBEDONE

DNS$_TIMEOUTNOTDONE

DNS$_TRUE

DNS$_UNKNOWNCLEARINGHOUSE

DNS$_UNKNOWNENTRY

DNS$_UNTRUSTEDCH

DNS$_ WRONGATTRIBUTETYPE

Unknown namespace name specified.

The call could not be performed due
to lack of memory or communication
resources at the local node to process
the request.

The full name given is not the name
of a group.

This function is defined by the
architecture as optional and is not
available in this implementation.
A soft link is not contained in the
name.

The node contacted by the clerk
does not have a DECdns server
running. This can happen when the
application supplies the clerk with
inaccurate replica information.

This version of the architecture does
not support the requested function.

Loop detected in soft link or group.

Failure to obtain system resource.

The operation did not complete in
the time allotted. Modifications may
or may not have been made to the
names pace.

The operation did not complete in the
time allotted. No modifications have
been performed even if the operation
requested them.

Successful test operation.

The clearinghouse does not exist.

Either the requested entry does not
exist or the client does not have
access to the entry.

A DECdns server is not included in
the object's access control set.
The caller specified an attribute type
that did not match the actual type of
the attribute.

System Service Descriptions
$DNSW (VAX Only)

$DNSW (VAX Only)
Distributed Name Service Clerk and Wait

Format

On VAX systems, the DECdns clerk is the client interface to the DIGITAL
Distributed Name Service.

The $DNSW service completes synchronously; that is, it returns to the caller after
the operation completes.

For asynchronous completion, use the $DNS service, which returns to the caller
immediately after making a name service call. The return status to the client call
indicates whether a request was successfully queued to the name service.

In all other respects, $DNSW is identical to $DNS. Refer to the $DNS description
for complete information about the $DNSW service.

SYS$DNSW [efn] ,func ,itmlst [,dnsb] [,astadr] [,astprm]

SYS1-321

System Service Descriptions
$END_ TRANS

$END_ TRANS
End Transaction

Format

Arguments

SYS1-322

Ends a transaction by attempting to commit it, and returns the outcome of the
transaction.

SYS$END_ TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the service completes. If this argument
is omitted, event flag 0 is set.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The flags argument is a longword bit
mask in which each bit corresponds to an option flag. The $DDTMDEF macro
defines symbolic names for these option flags. The flag currently defined is shown
in the following table. All undefined bits must be 0. If this argument is omitted,
no flag is set. ·

Flag Description

DDTM$M_SYNC Set this flag to specify that successful synchronous
completion is to be indicated by returning SS$_SYNCH.
When SS$_SYNCH is returned, the AST routine is not
called, the event flag is not set, and the I/O status block
is not filled in.

iosb
Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block in which the following information is returned:

• The completion status of the service. This is returned as a condition value.
See the Condition Values Returned section.

• The outcome of the transaction.

If the service returns SS$_NORMAL, the outcome of the transaction is
commit. If the service returns SS$_ABORT, the outcome of the transaction is
abort.

System Service Descriptions
$END_ TRANS

• An abort reason code that gives one reason why the transaction aborted, if
the completion status of the service is SS$_ABORT.

The $DDTMMSGDEF macro defines symbolic names for these abort reason codes;
those currently defined are shown in Table SYSl-5.

Table SYS1-5 Abort Reason Codes

Symbolic Name

DDTM$_ABORTED

DDTM$_COMM_FAIL
DDTM$_INTEGRITY

DDTM$_LOG_FAIL

DDTM$_PART_SERIAL

DDTM$_PART_TIMEOUT

DDTM$_SEG_FAIL

DDTM$_SERIALIZATION

DDTM$_SYNC_FAIL

DDTM$_TIMEOUT

DDTM$_UNKNOWN

DDTM$_ VETOED

Description

The application aborted the transaction.

A communications link failed.

A resource manager integrity constraint check
failed.
A write operation to the transaction log failed.

A resource manager serialization check failed.

The timeout specified by a resource manager
expired.

A process or image terminated.

A DECdtm transaction manager serialization
check failed.
The transaction was not globally
synchronized.

The timeout specified on $START_TRANS
expired.

The reason is unknown.

A resource manager was unable to commit the
transaction.

The following diagram shows the structure of the I/O status block.

31 15 0

Reserved by Digital l Condition value

Abort reason code

ZK-3667 A-GE

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST routine that is executed when the· service completes. The astadr argument
is the address of this routine. The routine is executed in the access mode of the
caller.

SYS1-323

System Service Descriptions
$END_ TRANS

Description

SYS1-324

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter that is passed to the AST routine specified by the astadr
argument.

tid
Open VMS usage: transaction_id
type: octaword (unsigned)
access: read only
mechanism: by reference

Identifier of the transaction to be ended.

If this argument is omitted, $END_TRANS ends the default transaction of the
calling process.

The End Transaction service ends a transaction by attempting to commit it, and
returns the outcome of the transaction.

$END_TRANS initiates the commit protocol to determine whether the outcome of
the transaction is commit or abort.

Caution

Do not call $END_TRANS while any transaction operations are still in
progress. If there are any of these operations in progress when $END_
TRANS is called, an unintended set of operations could be committed,
invalidating the data managed by the resource managers participating in
the transaction.

$END_TRANS returns the outcome of the transaction. If it completes
successfully, the outcome of the transaction is commit. If it returns the SS$_
ABORT error, the outcome is abort, and the I/O status block contains one reason
why the transaction aborted.

$END_TRANS must be called from the process that started the transaction.
The access mode of the caller must be the same as or more privileged than that
specified in the call to $START_TRANS that started the transaction.

$END_TRANS does not complete either successfully or with the SS$_ABORT
error until all quotas allocated for the transaction by calls on the local node to
DECdtm services have been returned.

$END_TRANS will not complete successfully (that is, the event flag will not be
set, the AST routine will not be called, and the I/O status block will not be filled
in) while the calling process is either:

• In an access mode that is more privileged than the DECdtm calls made by
any resource manager participant in the transaction.

RMS Journaling calls DECdtm in executive mode. Oracle Rdb and Oracle
CODASYL DBMS call DECdtm in user mode.

System Service Descriptions
$END_ TRANS

• At AST level (in any access mode).

For example, if Oracle Rdb is a participant in the transaction, $END_TRANS will
not complete successfully while the calling process is in supervisor, executive, or
kernel mode, or while the calling process is at AST level.

Required Access or Privileges
None

Required Quotas
ASTLM

Related Services
$ABORT_TRANS, $ABORT_TRANSW, $END_TRANSW, $START_TRANS,
$START_TRANSW

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

SS$_ABORT

SS$_ACCVIO

SS$_BADPARAM

SS$_CURTIDCHANGE

SS$_EXASTLM

SS$_ILLEFC
SS$_INSFARGS

SS$_INSFMEM

SS$_NOCURTID

SS$_NOLOG

SS$_NOSUCHTID

SS$_NOTORIGIN

SS$_TPDISABLED

SS$_ WRONGACMODE

If this was returned in RO, the request was
successfully queued. If it was returned in the I/O
status block, the service completed successfully.

The service completed successfully and
synchronously (returned only if the
DDTM$M_SYNC flag is set).

The transaction aborted (see the abort reason
code returned in the I/O status block for one
reason why the transaction aborted).

An argument was not accessible by the caller.

The options flags were invalid.

The tid argument was omitted and a call to
change the default transaction of the calling
process was in progress.

The process AST limit (ASTLM) was exceeded.

The event flag number was invalid.

Not enough arguments were supplied.

There was insufficient system dynamic memory
for the operation.

An attempt was made to end the default
transaction (the tid argument was omitted),
but the calling process did not have a default
transaction.

The local node did not have a transaction log.

A transaction with the specified transaction
identifier does not exist.

The calling process did not start the transaction.

The TP _SERVER process was not running on the
local node.
The access mode of the caller was less privileged
than the mode specified in the call to $START_
TRANS.

SYS1-325

System Service Descriptions
$END_ TRANS

SS$_ WRONGSTATE

SYS1-326

The calling process had already called either
$ABORT_TRANS or $END_TRANS to end the
transaction, and processing had not completed.

System Service Descriptions
$END_TRANSW

$END_TRANSW
End Transaction and Wait

Format

Ends a transaction by attempting to commit it, and returns the outcome of the
transaction.

$END_TRANSW always waits for the request to complete before returning to the
caller. Other than this, it is identical to $END_TRANS.

Do not call $END_TRANSW from AST level; or from an access mode that is more
privileged than the DECdtm calls made by any resource manager participant in
the transaction. If you do, the $END_TRANSW service will wait indefinitely.

SYS$END_ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

SYS1-327

System Service Descriptions
$ENQ

$ENQ
Enqueue Lock Request

Format

Arguments

SYS1-328

, Queues a new lock or lock conversion on a resource.

The $ENQ, $ENQW, $DEQ (Dequeue Lock Request), and $GETLKI (Get Lock
Information) services together provide the user interface to the Lock Management
facility. Refer to the descriptions of these other services for additional information
about lock management.

On Alpha systems, this service accepts 64-bit addresses.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$ENQ [efn] ,lkmode ,lksb ,[flags] ,[resnam] ,[parid] ,[astadr] ,[astprm] ,[blkast]
,[acmode] ,[rsdm_id] ,[nullarg]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the request has been granted or
canceled. Cancellation occurs if you use $DEQ with the cancel modifier or if the
waiting request is chosen to break a deadlock. The efn argument is a longword
containing this number; however, $ENQ uses only the low-order byte.

Upon request initiation, $ENQ clears the specified event flag (or event flag 0
if efn was not specified). Then, when the lock request is granted, the specified
event flag (or event flag O) is set unless you specified the LCK$M_SYNCSTS flag
in the flags argument.

lkmode
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Lock mode requested. The lkmode argument is a longword specifying this lock
mode.

Each lock mode has a symbolic name. The $LCKDEF macro defines these
symbolic names. The following table gives the symbolic name and description for
each lock mode.

Lock Mode

LCK$K_NLMODE

LCK$K_CRMODE

Description

System Service Descriptions
$ENQ

Null mode. This mode grants no access to the resource
but serves rather as a placeholder and indicator of future
interest in the resource. The null mode does not inhibit
locking at other lock modes; further, it prevents the
deletion of the resource and lock value block, which would
otherwise occur if the locks held at the other lock modes
were dequeued.
Concurrent read. This mode grants the caller read access
to the resource while permitting write access to the
resource by other users. This mode·is used to read data
from a resource in an unprotected manner, because other
users can modify that data as it is being read. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

LCK$K_CWMODE Concurrent write. This mode grants the caller write
access to the resource while permitting write access to the
resource by other users. This mode is used to write data
to a resource in an unprotected fashion, because other
users can simultaneously write data to the resource. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

lksb
Open VMS usage:
type:
access:
mechanism:

Protected read. This mode grants the caller read access
to the resource while permitting only read access to the
resource by other users. Write access is not allowed. This
is the traditional share lock.

Protected write. This mode grants the caller write access
to the resource while permitting only read access to
the resource by other users; the other users must have
specified concurrent read mode access. No other writers
are allowed access to the resource. This is the traditional
update lock.

Exclusive. The exclusive mode grants the caller write
access to the resource and allows no access to the resource
by other users. This is the traditional exclusive lock.

lock_status_block
longword (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Lock status· block in which $ENQ writes the final completion status of the
operation. The lksb argument is the 32-bit or 64-bit address (on Alpha systems)
or the 32-bit address (on VAX systems) of the 8-byte lock status block.

The lock status block can optionally contain a 16-byte lock value block. When you
specify the LCK$M_ VALBLK flag in the flags argument, the lock status block
contains a lock value block; in this case, the 16-byte lock value block appears
beginning at the first byte following the eighth byte of the lock status block,
bringing the total length of the lock status block to 24 bytes.

SYS1-329

System Service Descriptions
$ENQ

SYS1-330

The following diagram shows the format of the lock status block and the optional
lock value block.

31 15 0

Reserved l Condition value

Lock identification

16-byte lock value block
(Used only when the LCK$M_ VALBLK flag is set)

ZK-1708-GE

The following table defines the status block fields.

Status Block Field

Condition value

Reserved

Lock identification

Definition

A word in which $ENQ writes a condition value
describing the final disposition of the lock request;
for example, whether the lock was granted,
converted, and so on. The condition values returned
in this field are described in the Condition Values
Returned in the Lock Status Block section, which
appears following the list of condition values
returned in RO.

A word reserved to Digital.

A longword containing the identification of the lock.
For a new lock, $ENQ writes the lock identification
of the requested lock into this longword when the
lock request is queued.
For a lock conversion on an existing lock, you must
supply the lock identification of the existing lock in
this field.

Status Block Field

Lock value block

Definition

System Service Descriptions
$ENQ

A user-defined, 16-byte structure containing
information about the resource. This information is
interpreted only by the user program.
When a process acquires a lock on a resource, the
lock management facility provides that process
with a process-private copy of the lock value block
associated with the resource, provided that process
has specified the LCK$M_ VALBLK flag in the flags
argument. The copy provided to the process is
a copy of the lock value block stored in the lock
manager's database.
The copy of the lock value block maintained in
the lock database is updated in the following way:
whenever a process either (1) dequeues a lock at
protected write (PW) or exclusive (EX) mode or (2)
converts a lock at one of these modes to the same
lock mode, the operating system stores the caller's
lock value block in the lock database, provided the
caller has specified the LCK$M_ VALBLK flag.

Callers of $ENQ are provided with copies of the updated lock value block from
the lock database in the following way: when $ENQ grants a new lock to the
caller or converts the caller's existing lock to the same lock mode or a higher lock
mode, $ENQ copies the lock value block from the lock database to the caller's lock
value block, provided the caller has specified the LCK$M_ VALBLK flag.

The Description section describes events that can cause the lock value block to
become invalid.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the $ENQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

The $LCKDEF macro defines a symbolic name for each flag bit. The following
table describes each flag.

Flag

LCK$M_NOQUEUE

Description

When this flag is specified, $ENQ does not queue
the lock request unless the lock can be granted
immediately. By default, $ENQ always queues the
request.
If you specify LCK$M_NOQUEUE in a lock conversion
operation and the conversion cannot be granted
immediately, the lock remains in the original lock
mode.

SYS1-331

System Service Descriptions
$ENQ

Flag

LCK$M_SYNCSTS

LCK$M_SYSTEM

LCK$M_ VALBLK

LCK$M_CONVERT

LCK$M_NODLCKWT

SYS1-332

Description

When you specify this flag, $ENQ returns the
successful condition value SS$_SYNCH in RO if the
lock request is granted immediately; in this case, no
completion AST is delivered and no event flag is set.
If the lock request is queued successfully but cannot
be granted immediately, $ENQ returns the condition
value SS$_NORMAL in RO; then when the request is
granted, $ENQ sets the event flag and queues an AST
if the astadr argument was specified.

When you specify this flag, the resource name is
interpreted as systemwide. By default, resource names
are qualified by the UIC group number of the creating
process. This flag is ignored in lock conversions.

When you specify this flag, the lock status block
contains a lock value block. See the description of
the lksb argument for more information.

When you specify this flag, $ENQ performs a lock
conversion. In this case, the caller must supply (in
the second longword of the lock status block) the lock
identification of the lock to be converted.

By specifying this flag, a process indicates to the
lock management services that it is not blocked
from execution while waiting for the lock request to
complete. For example, a lock request might be left
outstanding on the waiting queue as a signaling device
between processes.
This flag helps to prevent false deadlocks by providing
the lock management services with additional
information about the process issuing the lock request.
When you set this flag, the lock management services
do not consider this lock when trying to detect deadlock
conditions.

A process should specify the LCK$M_NODLCKWT flag
only in a call to the $ENQ system service. The $ENQW
system service waits for the lock request to be granted
before returning to the caller; therefore, specifying the
LCK$M_NODLCKWT flag in a call to the $ENQW
system service defeats the purpose of the flag and can
result in a genuine deadlock being ignored.
The lock management services make use of the
LCK$M_NODLCKWT flag only when the lock specified
by the call to $ENQ is in either the waiting or the
conversion queue.
Improper use of the LCK$M_NODLCKWT flag can
result in the lock management services ignoring
genuine deadlocks.

Flag Description

System Service Descriptions
$ENQ

LCK$M_NODLCKBLK By specifying this flag, a process indicates to the lock
management services that, if this lock is blocking
another lock request, the process intends to give up
this lock on demand. When you specify this flag, the
lock management services do not consider this lock as
blocking other locks when trying to detect deadlock
conditions.
A process typically specifies the LCK$M_NODLCKBLK
flag only when it also specifies a blocking AST. Blocking
ASTs notify processes with granted locks that another
process with an incompatible lock mode has been
queued to access the same resource. Use of blocking
ASTs can cause false deadlocks, because the lock
management services detect a blocking condition, even
though a blocking AST has been specified; however,
the blocking condition will disappear as soon as the
process holding the lock executes, receives the blocking
AST, and dequeues the lock. Specifying the LCK$M_
NODLCKBLK flag prevents this type of false deadlock.
To enable blocking ASTs, the blkast argument of the
$ENQ system service must contain the address of a
blocking AST service routine. If the process specifies
the LCK$M_NODLCKBLK flag, the blocking AST
service routine should either dequeue the lock or
convert it to a lower lock mode without issuing any
new lock requests. If the blocking AST routine does
otherwise, a genuine deadlock could be ignored.
The lock management services make use of the
LCK$M_NODLCKBLK flag only when the lock
specified by the call to $ENQ has been granted.
Improper use of the LCK$M_NODLCKBLK flag can
result in the lock management services ignoring
genuine deadlocks.

SYS1-333

System Service Descriptions
$ENQ

Flag

LCK$M_NOQUOTA

LCK$M_CVTSYS

LCK$M_EXPEDITE

LCK$M_QUECVT

Description

This flag is reserved to Digital. When you set this
flag, the calling process is not charged Enqueue Limit
(ENQLM) quota for this new lock. The calling process
must be running in executive or kernel mode to set this
flag. This flag is ignored for lock conversions.
This flag is reserved to Digital. When you set this
flag, the lock is converted from a process-owned lock
to a system-owned lock. The calling process must be
running in executive or kernel mode to set this flag.
This flag is valid only for new lock requests. Specifying
this flag allows a request to be granted immediately,
provided the requested mode when granted would not
block any currently queued requests in the Tesource
conversion and wait queues. Currently, this flag
is valid only for NLMODE requests. If this flag is
specified for any other lock mode, the request will fail
and an error of SS$_UNSUPPORTED will be returned.

This flag is valid only for conversion operations. A
conversion request with the LCK$M_QUECVT flag
set will be forced to wait behind any already queued
con versions.
The conversion request is granted immediately, if there
are no already queued conversions.
The QUECVT behavior is valid only for a subset of all
possible conversions. Table SYSl-6 defines the legal
set of conversion requests for LCK$M_QUECVT. Illegal
conversion requests are failed with SS$_BADPARAM
returned.

Table SYS1-6 Legal QUECVT Conversions

SYS1-334

Lock Mode
at Which
Lock Is Held NL

NL No

CR No
cw No
PR No
PW No
EX No

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock ·

resnam

CR

Yes

No

No

No

No

No

Lock Mode to Which Lock Is Converted

cw PR PW EX

Yes Yes Yes Yes

Yes Yes Yes Yes
No Yes Yes Yes

Yes No Yes Yes

No No No Yes

No No No No

System Service Descriptions
$ENQ

Open VMS usage:
type:

char_string
character-coded text string
read only access:

mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Name of the resource to be locked by this lock. The resnam argument is the 32-
bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX systems) of
a character string descriptor pointing to this name. The name string can be from
1 to 31 bytes in length.

If you are creating a new lock, the resnam argument should be specified because
the default value for the resnam argument produces an error when it is used to
create a lock. The resnam argument is ignored for lock conversions.

parid
Open VMS usage: lock_id
type: longword (unsigned)
access: read only
mechanism: by value

Lock identification of the parent lock. The parid argument is a longword
containing this identification value.

If you do not specify this argument or specify it as 0, $ENQ assumes that the
lock does not have a parent lock. This argument is optional for new locks and is
ignored for lock conversions.

astadr
Open VMS usage:
type:
access:
mechanism:

ast_procedure
procedure value
call without stack unwinding
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

AST service routine to be executed when the lock is either granted or converted.
The astadr argument is the 32-bit or 64-bit address (on Alpha systems) or the
32-bit address (on VAX systems) of this routine. The AST is also delivered when
the lock or conversion request is canceled. Cancellation occurs if you use $DEQ
with the cancel modifier or if the waiting request is chosen to break a deadlock.

If you specify the astadr argument, the AST routine executes at the same access
mode as the caller of $ENQ.

astprm
Open VMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this quadword parameter.

blkast
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

SYS1-335

System Service Descriptions
$ENQ

SYS1-336

mechanism: by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Blocking AST routine to be called whenever this lock is granted and is blocking
any other lock requests. The blkast argument is the 32-bit or 64-bit address (on
Alpha systems) or the 32-bit address (on VAX systems) of this routine. Locks that
are converting to a new mode, but that are not yet granted in the new mode, do
not receive blocking ASTs.

You can pass a parameter to this routine by using the astprm argument.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the resource name. The acmode argument
indicates the least privileged access mode from which locks can be queued on the
resource.

This argument does not affect the access mode associated with the lock or its
blocking and completion ASTs. The acmode argument is a longword containing
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The $ENQ service associates an access mode with the lock in the following way:

• If you specified a parent lock (with the parid argument), $ENQ uses the
access mode associated with the parent lock and ignores both the acmode
argument and the caller's access mode.

• If the lock has no parent lock (you did not specify the parid argument or
specified it as 0), $ENQ uses the least privileged of the caller's access mode
and the access mode specified by the acmode argument. If you do not specify
the acmode argument, $ENQ uses the caller's access mode.

rsdm_id
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Resource domain identification. The rsdm_id argument is a longword specifying
the resource domain association through which a new lock is to be taken. This
argument is ignored for lock conversions and sublocks (parid is nonzero). Valid
resource domain identifiers are returned from the $SET_RESOURCE_DOMAIN
service, or by the constants RSDM$K_SYSTEM_RSDM_ID or RSDM$K_
PROCESS_RSDM_ID, which are defined by the $RSDMDEF macro in STARLET.

Description

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

System Service Descriptions
$ENQ

The Enqueue Lock Request service queues a new lock or lock conversion on
a resource. The $ENQ service completes asynchronously; that is, it returns
to the caller after queuing the lock request without waiting for the lock to be
either granted or converted. For synchronous completion, use the Enqueue Lock
Request and Wait ($ENQW) service. The $ENQW service is identical to the
$ENQ service in every way except that $ENQW returns to the caller when the
lock is either granted or converted.

The $ENQ service uses system dynamic memory for the creation of the lock and
resource blocks.

When $ENQ queues a lock request, it returns the status of the request in RO
and writes the lock identification of the lock in the lock status block. Then,
when the lock request is granted, $ENQ writes the final completion status in the
lock status block, sets the event flag, and calls the AST routine if this has been
requested.

When $ENQW queues a lock request, it returns status in RO and in the lock
status block when the lock has been either granted or converted. Where
applicable, it simultaneously sets the event flag and calls the AST routine.

Invalidation of the Lock Value Block In some situations, the lock value block
can become invalid. In these situations, $ENQ warns the caller by returning the
condition value SS$_ VALNOTVALID in the lock status block, provided the caller
has specified the flag LCK$M_ VALBLK in the flags argument.

The SS$_VALNOTVALID condition value is a warning message, not an error
message. Therefore, the $ENQ service grants the requested lock and returns this
warning on all subsequent calls to $ENQ until either a new lock value block is
written to the lock database or the resource is deleted. Resource deletion occurs
when no locks are associated with the resource.

The following events can cause the lock value block to become invalid:

• If any process holding a protected write or exclusive mode lock on a resource
is terminated abnormally, the lock value block becomes invalid.

• If a node in a VMScluster system fails and a process on that node was holding
(or might have been holding) a protected write or exclusive mode lock on the
resource, the lock value block becomes invalid.

• If a process holding a protected write or exclusive mode lock on the resource
calls the Dequeue Lock Request ($DEQ) service to dequeue this lock and
specifies the flag LCK$M_INVVALBLK in the flags argument, the lock value
block maintained in the lock database is marked invalid.

SYS1-337

System Service Descriptions
$ENQ

Required Access or Privileges
To queue a lock on a systemwide resource, the calling process must either have
SYSLCK privilege or be executing in executive or kernel mode.

To specify a parent lock when queuing a lock, the access mode of the caller must
be equal to, or less privileged than, the access mode associated with the parent
lock.

To queue a lock conversion, the access mode associated with the lock being
converted must be equal to, or less privileged than, the access mode of the calling
process.

Required Quota

• Enqueue limit (ENQLM) quota

• AST limit (ASTLM) quota in lock conversion requests that you specify either
the astadr or blkast argument

Related Services
$DEQ, $ENQW, $GETLKI, $GETLKIW, $SET_RESOURCE_DOMAIN

Condition Values Returned

SYS1-338

SS$_NORMAL

SS$_SYNCH

SS$_ACCVIO

SS$_BADPARAM

SS$_CVTUNGRANT

SS$_EXDEPTH
SS$_EXENQLM

SS$_INSFMEM

SS$_IVBUFLEN

SS$_IVLOCKID

SS$_NOLOCKID

The service completed successfully; the lock
request was successfully queued.

The service completed successfully; the LCK$M_
SYNCSTS flag in the flags argument was
specified, and $ENQ was able to giant the lock
request immediately.

The lock status block or the resource name
cannot be read.
You specified an invalid lock mode in the lkmode
argument.

You attempted a lock conversion on a lock that is
not currently granted.

The limit of levels of sublocks has been exceeded.

The process has exceeded its enqueue limit
(ENQLM) quota.

The system dynamic memory is insufficient for
creating the necessary data structures.

The length of the resource name was either 0 or
greater than 31.

You specified an invalid or nonexistent lock
identification, or the lock identified by the lock
identification has an associated access mode that
is more privileged than the caller's, or the access
mode of the parent was less privileged than that
of the caller.

No lock identification was available for the lock
request.

SS$_NOSYSLCK

SS$_NOTQUEUED

SS$_PARNOTGRANT

System Service Descriptions
$ENQ

The LCK$M_SYSTEM flag in the flags argument
was specified, but the caller lacks the necessary
SYSLCK privilege.

The lock request was not queued; the LCK$M_
NOQUEUE flag in the flags argument was
specified, and $ENQ was not able to grant the
lock request immediately.

The parent lock specified in the parid argument
was not granted.

Condition Values Returned in the Lock Status Block

SS$_NORMAL

SS$_ABORT

SS$_CANCEL

SS$_DEADLOCK
SS$_ VALNOTVALID

The service completed successfully; the lock was
successfully granted or converted.
The lock was dequeued (by the $DEQ service)
before $ENQ could grant the lock.
The lock conversion request has been canceled
and the lock has been regranted at its previous
lock mode. This condition value is returned when
$ENQ queues a lock conversion request, the
request has not been granted yet (it is in the
conversion queue), and, in the interim, the $DEQ
service is called (with the LCK$M_CANCEL flag
specified) to cancel this lock conversion request.
If the lock is granted before $DEQ can cancel the
conversion request, the call to $DEQ returns the
condition value SS$_CANCELGRANT, and the
call to $ENQ returns SS$_NORMAL.

A deadlock was detected.
The lock value block is marked invalid. This
warning message is returned only if the caller
has specified the flag LCK$M_ VALBLK in the
flags argument. Note that the lock has been
successfully granted despite the return of this
warning message. Refer to the Description
section for a complete discussion of lock value
block invalidation.

SYS1-339

System Service Descriptions
$ENQW

$ENQW
Enqueue Lock Request and Wait

Format

SYS1-340

The Enqueue Lock Request and Wait service queues a lock on a resource. The
$ENQW service completes synchronously; that is, it returns to the caller when
the lock has been either granted or converted. For asynchronous completion,
use the Enqueue -Lock Request ($ENQ) service; $ENQ returns to the caller after
queuing the lock request, without waiting for the lock to be either granted or
converted. In all other respects, $ENQW is identical to $ENQ. Refer to the $ENQ
description for all other information about the $ENQW service.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service.

The $ENQ, $ENQW, $DEQ, and $GETLKI services together provide the user
interface to the Lock Management facility.

On Alpha systems, this service accepts 64-bit addresses.

SYS$ENQW [efn] ,lkmode ,lksb ,[flags] ,[resnam] ,[parid] ,[astadr] ,[astprm] ,[blkast]
,[acmode] ,[rsdm_id]

$ERAPAT

System Service Descriptions
$ERAPAT

Get Security Erase Pattern

Format

Arguments

Generates a security erase pattern.

SYS$ERAPAT [type] ,[count] ,[patadr]

type
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of storage to be written over with the erase pattern. The type argument is
a longword containing the type of storage. The three storage types, together with
their symbolic names, are defined by the $ERADEF macro and are listed in the
following table.

Storage Type

Main memory

Disk

Tape

count

Symbolic Name

ERA$K_MEMORY

ERA$K_DISK

ERA$K_TAPE

Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of times that $ERAPAT has been called in a single security erase
operation. The count argument is a longword containing the iteration count.

You should call the $ERAPAT service initially with the count argument set to
1, the second time with the count argument set to 2, and so on, until the status
code SS$_NOTRAN is returned.

patadr
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Security erase pattern to be written. The patadr argument is the address of a
longword into which the security erase pattern is to be written.

SYS1-341

System Service Descriptions
$ERAPAT

Description

SYS1-342

The Get Security Erase Pattern service generates a security erase pattern that
can be written into memory areas containing outdated but sensitive data to make
it unreadable. This service is used primarily by the operating system, but it can
also be used by users who want to perform security erase operations on foreign
disks.

You should call the $ERAPAT service iteratively until the completion status
SS$_NOTRAN is returned.

The following example demonstrates how to use the $ERAPAT service to perform
a security erase to a disk. Note that, after each call to $ERAPAT, a test for the
status SS$_NOTRAN is made. If SS$_NOTRAN has not been returned, $QIO is
called to write the pattern returned by $ERAPAT onto the disk. After this write,
$ERAPAT is called again and the cycle is repeated until the code SS$_NOTRAN
is returned, at which point the security erase procedure is complete.

#include <ssdef .h>
#include <eradef .h>
#include <starlet.h>

/*
** This function takes a pointer to an array of integers and the
** number of elements in the array, and erases the memory used
** by the array. The function returns SS$ NORMAL upon success,
** or the error code from $ERAPAT for any failures.
*/

int ERASE MEMORY(int *ptr, int items)
{ -

}

int loop, /* Loop counter for erasing buffer */
status, /* Status of system calls */
pattern, /* Place to store erase pattern */
count = 1; /* Count parameter for $ERAPAT */

/*Get pattern from $ERAPAT, erase memory, repeat •.• */
status= sys$erapat(ERA$K MEMORY, count++, &pattern);
while (status == SS$ NORMAL)
{ -

for (loop = O; loop < items; loop++)
ptr[loop] = pattern;

status= sys$erapat(ERA$K_MEMORY, count++, &pattern);
}

if (status == SS$ NOTRAN)
status = SS$_NORMAL;

return (status);

/* Check for expected status */
/* Change to SS$_NORMAL if all's well */

/* Return success of failure indication */

Required Access or Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_NOTRAN

SS$_ACCVIO

SS$_BADPARAM

System Service Descriptions
$ERAPAT

The service completed successfully; proceed with
the next erase step.

The service completed successfully; security erase
completed.

The patadr argument cannot be written by the
caller.

The type argument or count argument is
invalid.

SYS1-343

System Service Descriptions
$EXIT

$EXIT
Exit

Format

Argument

Description

SYS1-344

Initiates image rundown when the current image in a process completes
execution. Control normally returns to the command interpreter.

SYS$EXIT [code]

code
Open VMS usage: cond_ value
type: longword (unsigned)
access: read only
mechanism: by value

Longword value to be saved in the process header as the completion status of the
current image. If you do not specify this argument in a macro call, a value of 1 is
passed as the completion code for VAX MACRO and VAX BLISS-32, and a value
of 0 is passed for other languages. You can test this value at the command level
to provide conditional command execution.

The $EXIT service is unlike all other system services in that it does not return
status codes in RO or anywhere else. The $EXIT service does not return control
to the caller; it performs an exit to the command interpreter or causes the process
to terminate if no command interpreter is present.

Required Access or Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

$EXP REG

System Service Descriptions
$EXPREG

Expand Program/Control Region

Format

Arguments

''®"'

Adds a specified number of new virtual pages to a process's program region or
control region for the execution of the current image. Expansion occurs at the
current end of that region's virtual address space.

SYS$EXPREG pagcnt ,[retadr] ,[acmode] ,[region]

pa gent
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages (on VAX systems) or pagelets (on Alpha systems) to add to
the current end of the program or control region. The pagcnt argument is a
longword value containing this number.

On Alpha systems, the specified value is rounded up to an even multiple of the
CPU-specific page size.+

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $EXPREG has
actually added. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the newly added pages. The acmode argument
is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller.

The newly added pages are given the following protection: (1) read and write
access for access modes equal to or more privileged than the access mode used in
the call, and (2) no access for access modes less privileged than that used in the
call.

region
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

SYS1-345

System Service Descriptions
$EXPREG

Description

Number specifying which program region is to be expanded. The region
argument is a longword value. A value of 0 (the default) specifies that the
program region (PO region) is to be expanded. A value of 1 specifies that the
control region (Pl region) is to be expanded.

The Expand Program/Control Region service adds a specified number of new
virtual pages to a process's program region or control region for the execution of
the current image. Expansion occurs at the current end of that region's virtual
address space.

The new pages, which were previously inaccessible to the process, are created as
demand-zero pages.

Because the bottom of the user stack is normally located at the end of the control
region, expanding the control region is equivalent to expanding the user stack.
The effect is to increase the available stack space by the specified amount .

. The starting address returned is always the first available page in the designated
region; therefore, the ending address is smaller than the starting address when
the control region is expanded and is larger than the starting address when the
program region is expanded.

If an error occurs while pages are being added, the retadr argument (if specified)
indicates the pages that were successfully added before the error occurred. If no
pages were added, both longwords of the retadr argument contain the value -1.

Required Access or Privileges
None

Required Quota
The process's paging file quota (PGFLQUOTA) must be sufficient to accommodate
the increased size of the virtual address space.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Typically, the information returned in the location addressed by the retadr
argument (if specified) can be used as the input range to the Delete Virtual
Address Space ($DELTVA) service.

Condition Values Returned

SYS1-346

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLPAGCNT

The service completed successfully.

The return address array cannot be written by
the caller.
The process exceeded its paging file quota.

The specified page count was less than 1.

SS$_INSFWSL

SS$_ VASFULL

System Service Descriptions
$EXP REG

The process's working set limit is not large
enough to accommodate the increased virtual
address space.

The process's virtual address space is full. No
space is available in the process page table for
the requested regions.

SYS1-347

System Service Descriptions
$EXPREG_64 (Alpha Only)

$EXPREG_64 (Alpha Only)
Expand Virtual Address Space

Format

Arguments

SYS1-348

On Alpha systems, adds a specified number of demand-zero allocation pages to a
process's virtual address space for the execution of the current image. Expansion
occurs at the next free available address within the specified region.

This service accepts 64-bit addresses.

SYS$EXPREG_64 region_id_64 ,length_64 ,acmode ,flags ,return_va_64
,return_length_64

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the virtual address range to be expanded. The file
VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in STARLET.MLB
define a symbolic name for each of the three default regions in PO, Pl, and P2
space. The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl
VA$C_P2

Region

Program region

Control region
64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be created. The length specified must be a
multiple of CPU-specific pages.

acmode
Open VMS usage: access_mode

. type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $EXPREG_64. The access mode
determines the owner mode of the pages as well as the read and write protection
on the pages. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

Description

System Service Descriptions
$EXPREG_64 (Alpha Only)

The $EXPREG_64 service uses whichever of the following two access modes is
least privileged:

• The access mode specified by the acmode argument

• The access mode of the caller. The protection of the pages is read/write for
· the resultant access mode and those more privileged.

Address space cannot be created within a region that has a create mode
associated with it that is more privileged than the caller's mode. The condition
value SS$_IVACMODE is returned if the caller is less privileged than the create
mode for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask controlling the characteristics of the demand-zero pages created. The
flags argument is a longword bit vector in which each bit corresponds to a flag.
The $VADEF macro and the VADEF.H file define a symbolic name for each flag.
You construct the flags argument by performing a logical OR operation on the
symbol names for all desired flags.

All bits in the flags argument are reserved for future use by Digital and should
be specified as 0. The condition value SS$_IVVAFLG is returned if any bits are
set.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of a created virtual address range. The
return_va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the service returns the length of the virtual address range created in bytes.

The Expand Virtual Address Space service is a kernel mode service that can
be called from any mode. This service adds a range of demand-zero allocation
pages to a process's virtual address space for the execution of the current image.
Expansion occurs at the next free available address within the specified region.
The new pages, which were previously inaccessible to the process, are created as
demand-zero pages. The returned address is always the lowest virtual address in
the range of pages created. The returned length is always an unsigned byte count
indicating the length of the range of pages created.

SYS1-349

System Service Descriptions
$EXPREG_64 (Alpha Only)

Successful return status from $EXPREG_64 Expand Virtual Address service
means that the specified region's virtual address space was expanded by the
number of bytes specified in the length_64 argument.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments. If a condition value other than SS$_ACCVIO
is returned, the returned address and returned length indicate the pages that
were successfully added before the error occurred. If no pages were added, the
return_va_64 argument will contain the value -1, and a value cannot be returned
in the memory location pointed to by the return_length_64 argument.

Required Privileges
None

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

The process's paging file quota (PGFLQUOTA) must be sufficient to accommodate
the increased size of the virtual address space.

Related Services
$CREATE_BUFOBJ_64, $CREATE_REGION_64, $CRETVA_64, $DELETE_
REGION_64, $DELTVA_64, $LCKPAG_64, $LKWSET_64, $PURGE_ WS,
$SETPRT_64, $ULKPAG_64, $ULWSET_64

Condition Values Returned

SYS1-350

SS$_NORMAL

SS$_ACCVIO

SS$_EXPGFLQUOTA

SS$_1NSFWSL

SS$_IVACMODE

SS$_IVREGID
SS$_IVVAFLG

SS$_REGISFULL
SS$_LEN_NOTPAGMULT

The service completed successfully.

The return_ va_64 argument or the
return_length_64 argument cannot be written
by the caller.

The process exceeded its paging file quota.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.

The caller's mode is less privileged than the
create mode associated with the region.

An invalid region ID was specified.
An invalid flag, a reserved flag, or an invalid
combination of flags and arguments was
specified.
The specified virtual region is full.
The length_64 argument is not a multiple of
CPU-specific pages.

System Service Descriptions
$FAO/$FAOL

$FAO/$FAOL
Formatted ASCII Output Services

Format

Arguments

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter service provides an alternate
method for specifying input parameters when calling the $FAQ system service.

The formats for both services are shown in the Format section.

On Alpha systems, this service accepts 64-bit addresses.

SYS$FAO ctrstr ,[outlen] ,outbuf ,[p1] ... [pn]

SYS$FAOL ctrstr ,[outlen] ,outbuf ,[prmlst]

ctrstr
Open VMS usage:

·type:
access:

char _string
character-coded text string
read only

mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Control string passed to $FAQ that contains the text to be output together with
one or more $FAQ directives. $FAQ directives are used to specify repeat counts
or the output field length, or both, and they are preceded by an exclamation point
(!). The ctrstr argument is the 32-bit or 64-bit address (on Alpha systems) or
the 32-bit address (on VAX systems) of a character string descriptor pointing
to the control string. The formatting of the $FAQ directives is described in the
Description section.

There is no restriction on the length of the control string or on the number of
$FAQ directives it can contain. However, if an exclamation point must appear
in the output string, it must be represented in the control string by a double
exclamation point (!!). A single exclamation point in the control string indicates
to $FAQ that the next characters are to be interpreted as FAO directives.

When $FAQ processes the control string, it writes to the output buffer each
character that is not part of an $FAQ directive.

If the $FAQ directive is valid, $FAQ processes it. If the directive requires a
parameter, $FAQ processes the next consecutive parameter in the specified
parameter list. If the $FAQ directive is not valid, $FAO terminates and returns a
condition value in RO.

· Table SYSl-7 lists and describes the $FAQ directives. Table SYSl-8 shows the
$FAO output field lengths and their fill characters.

SYS1-351

System Service Descriptions
$FAO/$FAOL

SYS1-352

The $FAQ service reads parameters from the argument list specified in the
call; these arguments have the names pl, p2, p3, and so on, up to p20. Each
argument specifies one parameter. Because $FAO accepts a maximum of 20
parameters in a single call, you must use $FAOL if the number of parameters
exceeds 20. The $FAOL service accepts any number of parameters used with the
prmlst argument.

outlen
Open VMS usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Length in bytes of the fully formatted output string returned by $FAO. The
outlen argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of a word containing this value.

outbuf
Open VMS usage:
type:
access:
mechanism:

char_string
character-coded text string
write only
by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Output buffer into which $FAO writes the fully formatted output string. The
outbuf argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of a character string descriptor pointing to the output
buffer. The maximum number of bytes written is limited to 64K.

p1 to pn
Open VMS usage: varying_arg
type: quadword (signed)
access: read only
mechanism: by value

$FAO directive parameters. The pl argument is a quadword containing the
parameter needed by the first $FAO directive encountered in the control string,
the p2 argument is a quadword containing the parameter needed for the second
$FAO directive, and so on for the remaining arguments up to p20. If an $FAO
directive does not require a parameter, that $FAO directive is processed without
reading a parameter from the argument list.

Depending on the directive, a parameter can be a value to be converted, a
32-bit or 64-bit address of a string to be inserted into the output string, or a
length or argument count. Each directive in the control string might require a
corresponding parameter or parameters.

prmlst
Open VMS usage:
type:
access:
mechanism:

vector_longword_unsigned
longword (unsigned)
read only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Description

System Service Descriptions
$FAO/$FAOL

List of $FAO directive parameters to be passed to $FAOL. The prmlst argument
is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a list of longwords wherein each longword is a parameter. The $FAOL
service processes these parameters sequentially as it encounters, in the control
string, $FAO directives that require parameters.

The parameter list can be a data structure that already exists in a program and
from which certain values are to be extracted.

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter ($FAOL) service provides an
alternate way to specify input parameters for a call to the $FAO system service.
The formats for both $FAO and $FAOL are shown in the Format section.

The $FAO_S macro form uses a PUSHL instruction for all parameters (pl
through p20) passed to the service; if you specify a symbolic address, it must be
preceded with a number sign (#) or loaded into a register.

You can specify a maximum of 20 parameters on the $FAO macro. If more than
20 parameters are required, use the $FAOL macro.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive a sufficient number of arguments (for example, if you
omit required commas in the call), you might not get the desired result.

$FAO Directives $FAO directives can appear anywhere in the control string.
The general format of an $FAO directive is as follows:

!DD

The exclamation point (!) specifies that the following characters are to be
interpreted as an $FAO directive, and the characters DD represent a 1- or
2-character $FAO directive.

Note

When the characters of the $FAO directive are alphabetic, they must be
uppercase.

An $FAO directive can optionally specify the following:

• A repeat count. The format is as follows:

!n(DD)

In this case n is a decimal value specifying the number of times that $FAO is
to repeat the directive. If the directive requires a parameter or parameters,
$FAO uses successive parameters from the parameter list for each repetition
of the directive; it does not use the same parameters for each repetition. The
parentheses are required syntax.

SYS1-353

System Service Descriptions
$FAO/$FAOL

SYS1-354

• An output field length. The format is as follows:

!mDD

In this case mis a decimal value specifying the length of the field (within
the output string) into which $FAO is to write the output resulting from the
directive. The length is expressed as a number of characters.

• Both a repeat count and output field length. In this case the format is as
follows:

!n(mDD)

You can specify repeat counts and output field lengths as variables by using a
number sign (#) in place of an absolute numeric value.

• If you specify a number sign for a repeat count, the next parameter passed to
$FAO must contain the count.

• If you specify a number sign for an output field length, the next parameter
must contain the length value.

• If you specify a number sign for both the output field length and for the
repeat count, only one length parameter is required; each output string will
have the specified length.

• If you specify a number sign for the repeat count, the output field length, or
both, the parameters specifying the count, length, or both must precede other
parameters required by the directive.

Numeric FAO output directives (B, W, L, Q, I, A, H, J) can include the indirect
directive@. This immediately precedes the directive (@DD), and indicates that
the next parameter is the address of the value instead of the value itself. This
directive must be used with any directive that can produce a quadword output
when using $FAOL; otherwise, $FAOL creates a 64-bit sign-extended value. This
includes the Q, A, I, H, and J directives.

• The indirect directive can be used with repeat counts and output field lengths.
In .this case the format is as follows:

!n(m@DD)

To ensure that addresses and integers are displayed properly on the system, use
the following conventions when using the $FAO and $FAOL system services:

• Identify longword data as !xL (where xis 0, X, Z, U, or 8).

• Identify quadword data as !xQ for $FAO and $FAOL_64 or !@xQ for $FAOL
(where x is 0, X, Z, U, or 8). Omitting the indirect directive for $FAOL can
result in a 64-bit sign-extended value being created.

• If the size of an address is determined by operating system software (32 bits
on VAX and 64-bits on Alpha systems), identify the address as !xA for $FAO
and $FAOL_64 or !@xA for $FAOL (where xis 0, X, Z, U, or 8).

• If the size of an address is determined by the hardware architecture (32
bits on VAX, but 64 bits on Alpha, identify the address as !xH for $FAO and
$FAOL_64 or !@xH for $FAOL (where x is 0, X, Z, U, or 8). Omitting the
indirect directive for $FAOL can result in a 64-bit sign-extended value being
created.

System Service Descriptions
$FAO/$FAOL

• If the size of an integer is determined by operating system software (32 bits
on both VAX and Alpha systems), identify the integer as !xl for $FAQ and
$FAOL_64 or !@xI for $FAOL (where xis 0, X, Z, U, or S).

• If the size of an integer is determined by the hardware architecture (32 bits
on VAX, but 64 bits on Alpha), identify the address as !xJ for $FAO and
$FAOL_64 or !@xJ for $FAOL (where x is 0, X, Z, U, or S). Omitting the
indirect directive for $FAOL can result in a 64-bit sign-extended value being
created.

Table SYSl-7 lists $FAQ directives.

Table SYS1-7 $FAO Directives

Directive Description

Directives for Character String Substitution

!AC

!AD

!AF

!AS

!AZ

Inserts a counted ASCII string. It requires one parameter: the
address of the string to be inserted. The first byte of the string
must contain the length (in characters) of the string.

Inserts an ASCII string. It requires two parameters: the length
of the string and the address of the string. Each of these
parameters is a separate argument.

Inserts an ASCII string and replaces all nonprintable ASCII codes
with periods (.). It requires two parameters: the length of the
string and the address of the string. Each of these parameters is
a separate argument.

Inserts an ASCID string. It requires one parameter: the
address of a character string descriptor pointing to the string.
$FAO assumes that the descriptor is a CLASS_S (static) string
descriptor. Other descriptor types might give incorrect results.
Inserts a zero-terminated (ASCIZ) string. It requires one
parameter: the address of a zero-terminated string.

Directives for Zero-Filled Numeric Conversion

!OB

!OW

!OL

Converts a byte value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order byte of the longword
parameter.
Converts a word value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value's octal equivalent. It requires one parameter: the value to
be converted.

(continued on next page)

SYS1-355

System Service Descriptions
$FAO/$FAOL

SYS1-356

Table SYS1-7 (Cont.) $FAQ Directives

Directive Description

Directives for Zero-Filled Numeric Conversion

!OQ

!OA

!01

!OH

!OJ

!XB

!XW

!XL

!XQ

Converts a quadword to the ASCII representation of its octal
equivalent. Must use the indirect directive @ to output the
quadword value for $FAOL; otherwise, a 64-bit sign-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted.

Converts an address to the ASCII representation of its octal
equivalent. Must use the indirect directive @to output the
quadword value for $FAOL; otherwise, a 32-bit sign-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted.1

Converts an integer to the ASCII representation of its octal
equivalent. Must use the indirect directive @to output the
quadword value for $FAOL; otherwise, a 32-bit sign-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted.1

Converts an address to the ASCII representation of its octal
equivalent. Must use the indirect directive @to output the
quadword value for $FAOL; otherwise, a 64-bit sign-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted. 2

Converts an integer to the ASCII representation of its octal
equivalent. Must use the indirect directive @to output the
quadword value for $FAOL; otherwise, a 64-bit sign-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted. 2

Converts a byte value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to
be converted. $FAO uses only the low-order byte of the longword
parameter.
Converts a word value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to
be converted. $FAO uses only the low-order word of the longword
parameter.
Converts a longword value to the ASCII representation of the
value's hexadecimal equivalent. It requires one parameter: the
value to be converted.

Converts a quadword to the ASCII representation of its
hexadecimal equivalent. Must use the indirect directive @
to output the quadword value for $FAOL; otherwise, a 64-bit
sign-extended value is written to the output buffer.

1 Determined by the operating system. On VAX and Alpha systems, this is 32 bits.
2Determined by the hardware architecture. On VAX systems, this is 32 bits; on Alpha systems, this is
64 bits.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SYS1-7 (Cont.) $FAO Directives

Directive Description

Directives for Zero-Filled Numeric Conversion

!XA

!XI

!XH

!XJ

!ZB

!ZW

!ZL

!ZQ

!ZA

Converts an address. to the ASCII representation of its
hexadecimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 32-bit sign
extended value is written to the output buffer. It receives one
parameter: the address of the value to be converted.1

Converts an integer to the ASCII representation of its
hexadecimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 32-bit sign
extended value is written to the output buffer. It receives one
parameter: the address of the value to be converted.1

Converts an address to the ASCII representation of its
hexadecimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 64-bit sign
extended value is written to the output buffer. It receives one
parameter: the address of the value to be converted. 2

Converts an integer to the ASCII representation of its
hexadecimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 64-bit sign
extended value is written to the output buffer. It receives one
parameter: the address of the value to be converted. 2

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter. ·

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be conyerted. $FAO uses only the low-order word of the
longword parameter.

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Converts an unsigned quadword to the ASCII representation
of its decimal equivalent. Must use the indirect directive @ to
output the quadword value for $FAOL; otherwise, a 64-bit zero
extended value is written to the output buffer. It receives one
parameter: the address of the value to be converted.

Converts an unsigned address to the ASCII representation of
its decimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 32-bit value
is written to the output buffer. It receives one parameter: the
address of the value to be converted.1

1 Determined by the operating system. On VAX and Alpha systems, this is 32 bits.
2Determined by the hardware architecture. On VAX systems, this is 32 bits; on Alpha systems, this is
64 bits.

(continued on next page)

SYS1-357

System Service Descriptions
$FAO/$FAOL

SYS1-358

Table SYS1-7 (Cont.) $FAQ Directives

Directive Description

Directives for Zero-Filled Numeric Conversion

!ZI

!ZH

!ZJ

Converts an unsigned integer to the ASCII representation its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAOL; otherwise, a 32-bit value is
written to the output buffer. It receives one parameter: the
address of the value to be converted. 1

Converts an unsigned address to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAOL; otherwise, a 64-bit zero-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted. 2

Converts an unsigned integer to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAOL; otherwise, a 64-bit zero-extended
value is written to the output buffer. It receives one parameter:
the address of the value to be converted. 2

Directives for Blank-Filled Numeric Conversion

!UB

!UW

!UL

!UQ

!UA

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter.

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.
Converts an unsigned quadword to the ASCII representation
of its decimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 64-bit value
is written to the output buffer. It receives one parameter: the
address of the value to be converted.1

Converts an unsigned address to the ASCII representation of
its decimal equivalent. Must use the indirect directive @to
output the quadword value for $FAOL; otherwise, a 32-bit value
is written to the output buffer. It receives one parameter: the
address of the value to be converted. 1

1 Determined by the operating system. On VAX and Alpha systems, this is 32 bits.
2Determined by the hardware architecture. On VAX systems, this is 32 bits; on Alpha systems, this is
64 bits.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SYS1-7 (Cont.) $FAO Directives

Directive Description

Directives for Blank-Filled Numeric Conversion

!UI

!UH

!UJ

!SB

!SW

!SL

!SQ

!SA

!SI

Converts an unsigned integer to the ASCII representation of
its decimal equivalent. Must use the indirect directive @ to
output the quadword value for $FAQL; otherwise, a 32-bit value
is written to the output buffer.It receives one parameter: the
address of the value to be converted. I

Converts an unsigned address to the ASCII representation of
its decimal equivalent. Must use the indirect directive @to
output the quadword value for $FAQL; otherwise, a 64-bit value
is written to the output buffer. It receives one parameter: the
address of the value to be converted. 2

Converts an unsigned integer to the ASCII representation of
its decimal equivalent. Must use the indirect directive @ to
output the quadword value for $FAQL; otherwise, a 64-bit value
is written to the output buffer. It receives one parameter: the
address of the value to be converted.2

Converts a signed byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order byte of the
longword parameter.

Converts a signed word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order word of the
longword parameter.

Converts a signed longword value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted.

Converts a signed quadword to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAQL; otherwise, a 32-bit value is
written to the output buffer. It receives one parameter: the
address of the value to be converted.

Converts a signed address to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAQL; otherwise, a 32-bit value is
written to the output buffer. It receives one parameter: the
address of the value to be converted. I

Converts a signed integer to the ASCII representation of its
equivalent.Must use the indirect directive @ to output the
quadword value for $FAQL; otherwise, a 32-bit value is written to
the output buffer. It receives one parameter: the address of the
value to be converted. I

1Determined by the operating system. On VAX and Alpha systems, this is 32 bits.
2Determined by the hardware architecture. On VAX systems, this is 32 bits; on Alpha systems, this is
64 bits.

(continued on next page)

SYS1-359

System Service Descriptions
$FAO/$FAOL

SYS1-360

Table SYS1-7 {Cont.) $FAQ Directives

Directive Description

Directives for Blank-Filled Numeric Conversion

!SH

!SJ

Converts a signed address to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
the quadword value for $FAOL; otherwise, a 32-bit value is
written to the output buffer. It receives one parameter: the
address of the value to be converted.2

Converts a signed integer to the ASCII representation of its
decimal equivalent. Must use the indirect directive@ to output
t}l.e quadword value for $FAOL; otherwise, a 32-bit value is
written to the output buffer. It receives one parameter: the
address of the value to be converted. 2

Directives for Output String Formatting

!/

!_
!A

!!
!%S

!%T

!%U

!%I

!%D

!n%C

Inserts a new line, that is, a carriage return and line feed. It
takes no parameters.

Inserts a tab. It takes no parameters.
Inserts a form feed. It takes no parameters.

Inserts an exclamation point. It takes no parameters.

Inserts the letter S if the most recently converted numeric value
is not 1. An uppercase Sis inserted if the character before the
!%S directive is an uppercase character; a lowercases is inserted
if the character is lowercase.

Inserts the system time. It takes one parameter: the address of
a quadword time value to be converted to ASCII. If you specify 0,
the current system time is inserted.

Converts a longword integer UIC to a standard UIC specification
in the format [xxx,yyy], where xxx is the group number and yyy is
the member number. It takes one parameter: a longword integer.
The directive inserts the surrounding brackets ([])and comma
(,).

Converts a longword to the appropriate alphanumeric identifier.
If the longword represents a UIC, surrounding brackets ([])and
comma (,) are added as necessary. If no identifier exists and the
longword represents a UIC, the longword is formatted as in !%U.
Otherwise it is formatted as in !XL with a preceding !%X added
to the formatted result.

Inserts the system date and time. It takes one parameter: the
address of a quadword time value to be converted to ASCII. If you
specify 0, the current system date and time is inserted.

Inserts a character string when the most recently evaluated
argument has the value n. (Recommended for use with
multilingual products.)

2Determined by the hardware architecture. On VAX systems, this is 32 bits; on Alpha systems, this is
64 bits.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SYS1-7 (Cont.) $FAO Directives

Directive Description

Directives for Output String Formatting

!%E

!%F

!n<
!>

!n*c

Inserts a character string when the value of the most recently
evaluated argument does not match any preceding !n%C
directives. (Recommended for use with multilingual products.)

Makes the end of a plurals statement.

See description of next directive (!>).

This directive and the preceding one (!n<) are used together
to define an output field width of n characters within which all
data and directives to the right of !n< and to the left of!> are
left-justified and blank-filled. It takes no parameters.

Repeats the character c in the output string n times.

Directives for Parameter Interpretation

!-

!+

Causes $FAO to reuse the most recently used parameter in the
list. It takes no parameters.

Causes $FAO to skip the next parameter in the list. It takes no
parameters.

Table SYSl-8 shows the $FAO output field lengths and their fill characters.

Table SYS1-8 $FAQ Output Field Lengths and Fill Characters

Action When Explicit
Action When Explicit Output Field Length

Conversion/Substitution Default Length of Output Output Field Length Is Is Shorter Than
Type Field Longer Than Default Default

Hexadecimal ASCII result is right- ASCII result is
Byte 2 (zero-filled) justified and blank- truncated on the
Word 4 (zero-filled) filled to the specified left.
Longword 8 (zero-filled) length.
Quadword 16 (zero-filled)

Octal Hexadecimal or octal
Byte 3 (zero-filled) output is always zero-
Word 6 (zero-filled) filled to the default
Longword 11 (zero-filled) output field length,
Quadword 22 (zero-filled) then blank-filled to

specified length.
Signed or unsigned As many characters as ASCII result is right- Signed and
decimal necessary justified and blank- unsigned decimal

filled to the specified output fields and
length. completely filled

with asterisks (*).
(continued on next page)

SYS1-361

System Service Descriptions
$FAO/$FAOL

Table SYS1-8 (Cont.) $FAQ Output Field Lengths and Fill Characters

Conversion/Substitution
Type

Default Length of Output
Field

Action When Explicit
Output Field Length Is
Longer Than Default

Action When Explicit
Output Field Length
Is Shorter Than
Default

Unsigned zero-filled
decimal

As many characters as
necessary

ASCII result is right
justified and zero-filled
to the specified length.

ASCII string
substitution

Length of input
character string

Required Access or Privileges
None

Required Quota
None

Related Services

ASCII string is left
justified and blank
filled to the specified
length.

ASCII string is
truncated on the
right.

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_BUFFEROVF

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_0VERMAXARG

The service completed successfully. The
formatted output string overflowed the output
buffer and has been truncated.

The service completed successfully.
The ctrstr, pl through pn, or prmlst arguments
cannot be read, or the outlen argument cannot
be written (it can specify 0).

You specified an invalid directive in the $FAO
control string.
,Maximum parameter count exceeded.

$FAO Control String Examples

SYS1-362

Each of the following examples shows an $FAO control string with several
directives, parameters defined as input for the directives, and the calls to
$FAQ to format the output strings.

Each example is accompanied by notes. These notes show the output string
created by the call to $FAQ and describe in more detail some considerations
for using directives. The sample output strings show the underscore character
(_) for each space in all places where $FAQ output contains multiple spaces.

Each ·of the first 10 examples (numbered 1 through 10) refers to the following
output fields but does not include these fields within the examples.

System Service Descriptions
$FAO/$FAOL

int status, /* Status of system calls */

char
outlen;
out_buffer[80];

/* Length of output string from $FAO */
/* Buffer for $FAO output */

$DESCRIPTOR(out_desc, out_buffer); /*Descriptor for out_buffer */

Each of the 10 examples also assumes the caller of each example will check
the returned status, and write the output string produced by $FAQ if no error
occurred. The following code fragment shows how the example call may be
made, and the resultant string output to the user's terminal.

#include <stdio.h>
#include <stsdef .h>
#include <lib$routines.h>

status= example();

/* Immediately signal (and quit) if error occurred */
if ((status & STS$M_SUCCESS) == 0) lib$signal(status);

/* FAO directive succeeded, output resultant string */
out buffer[outlen] = '\0'; /*add string terminator to buffer*/
puts(out_buffer); /*output the result*/

The final example (numbered 11) shows a segment of a DEC Fortran for
Open VMS program used to output an ASCII string.

1. /* SYS$FAO example - illustrating !AC, !AS, !AD, and !/ directives */
#include <descrip.h>
#include <starlet.h>

/*MACRO and typedef for counted ASCII strings .•. */
typedef struct {char len, str[25];} ASCIC;
#define ASCIC_STRING(name, string) ASCIC name = {sizeof (string) - 1, string}

int example()
{

char *nod= "Nod"; /*Normal "C" string */
const int nodlen = sizeof(nod) - 1; /* Length of "Nod" without '\0' */
static ASCIC STRING(winken, "Winken");
static $DESCiIPTOR(blinken, 11 Blinken 11

);

static $DESCRIPTOR(fao_desc, "!/Sailors: !AC !AS !AD");

return (sys$fao(&fao desc, /* Control string for $FAO */
&outien, /* Pointer for length of output string */
&out desc, /* Descriptor for output buffer */
&winken, /* Pl - Counted ASCII string */
&blinken, /* P2 - ASCII string descriptor */
nodlen, /* P3 - Length of ASCII string */
nod)); /* P4 - ASCII string*/

$FAO writes the following string into the output buffer:

<CR><KEY>(LF\TEXT)Sailors: Winken Blinken Nod

The !/directive provides a carriage-return/line-feed character (shown as
<CR><KEY>(LF\ TEXT)) for terminal output.

The !AC directive requires the address of a counted ASCII string (pl
argument).

The !AS directive requires the address of a character string descriptor (p2
argument).

SYS1-363

System Service Descriptions
$FAO/$FAOL

SYS1-364

The !AD directive requires two parameters: the length of the string to be
substituted (p3 argument) and its address (p4 argument).

2. /*
** SYS$FAO example - illustrating !! and !AS directives,
** repeat count, and output field length
*/
#include <descrip.h>
#include <starlet.h>

int example ()
{

}

static $DESCRIPTOR(jones, "Jones");
static $DESCRIPTOR(harris, "Harris");
static $DESCRIPTOR(wilson, "Wilson");
static $DESCRIPTOR(fao_desc, "Unable to locate !3(8AS)!!");

return(sys$fao(&fao desc, /* Control string for $FAO */
&outlen, /* Pointer for length of output string */
&out desc, /* Descriptor for output buffer */
&jones, /* Pl - ASCII string descriptor */
&harris, /* P2 - ASCII string descriptor */
&wilson)); /* P3 - ASCII string descriptor*/

$FAQ writes the following string into the output buffer:

Unable to locate Jones Harris Wilson

The !3(8AS) directive contains a repeat count: three parameters (addresses of
character string descriptors) are required. $FAQ left-justifies each string into
a field of eight characters (the output field length specified).

The double exclamation point directive (! !) supplies a literal exclamation
point (!)in the output.

If the directive were specified without an output field length, that is, if
the directive were specified as !3(AS), the three output fields would be
concatenated, as follows:

Unable to locate JonesHarrisWilson!

3. /* SYS$FAO example - illustrating !UL, !XL, and !SL directives */
#include <descrip.h>
#include <starlet.h>

int example()
{

int vall = 200,
val2 = 300,
val3 = -400;

static $DESCRIPTOR(fao desc,

/* Values */
/* for *I
/* $FAO */

"Values ! UL (Decimal) ! XL (Hex) ! SL (Signed) ") ;

return(sys$fao(&fao desc,
&outlen,
&out desc,
vall;
val2,
val3));

/* Control string for $FAO */
/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Pl - longword value */
/* P2 - longword value */
/* P3 - longword value */

System Service Descriptions
$FAO/$FAOL

$FAO writes the following string to the output buffer:

Values 200 (Decimal) 0000012C (Hex) -400 (Signed)

The longword value 200 is converted to decimal, the value 300 is converted to
hexadecimal, and the value -400 is converted to signed decimal. The ASCII
results of each conversion are placed in the appropriate position in the output
string.

Note that the hexadecimal output string has eight characters and is zero-filled
to the left. This is the default output length for hexadecimal longwords.

4. /* SYS$FAQL example - illustrating !UL, !XL, and !SL directives */
#include <descrip.h>
#include <starlet.h>

int example()
{

static int values[3] = {200, 300, -400}; /* Parameters for $FAQL */
static $DESCRIPTOR(fao desc,

"Values ! UL (Decimal) ! XL (Hex) ! SL (Signed)") ;

/* Control string for $FAQ */ return(sys$faol(&fao desc,
&outien,
&out desc,
values));

/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Parameter list - longwords */

$FAOL writes the following string to the output buffer:

Values 200 (Decimal) 0000012C (Hex) -400 (Signed)

The results are the same as the results of Example 3. However, unlike the
$FAO directive, which requires each parameter on the call to be specified, the
$FAOL directive points to a list of consecutive longwords, which $FAO reads
as parameters.

5. /* SYS$FAQL example - illustrating !UB, !XB, and !SB directives */
#include <descrip.h>
#include <starlet.h>

int example()
{

static int values[3] = {200, 300, -400}; /* Parameters for $FAQL */
static $DESCRIPTQR(fao desc,

"Values ! UB (Decimal) ! XB (Hex) ! SB (Signed)");

/* Control string for $FAQ */ return(sys$faol(&fao desc,
&outien,
&out desc,
values));

/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Parameter list - longwords */

$FAO writes the following output string:

Values 200 (Decimal) 2C (Hex) 112 (Signed)

The input parameters are the same as those for Example 4. However, the
control string (fao_desc) specifies that byte values are to be converted. $FAO
uses the low-order byte of each longword parameter passed to it. The high
order three bytes are not evaluated. Compare these results with the results
of Example 4.

SYS1-365

System Service Descriptions
$FAO/$FAOL

SYS1-366

6. /*
** SYS$FAO example - illustrating !XW, !ZW, and !- directives,
** repeat count, and output field length
*/ -
#include <descrip.h>
#include <starlet.h>

int example()
{

static $DESCRIPTOR(fao desc,
"Hex: ! 2 (6XW) zero-filled Decimal: ! 2 (-) ! 2 (7ZW)");

}

return(sys$fao(&fao desc,
&outlen,
&out desc, .
10000,
9999));

/* Control string for $FAO */
/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Pl - longword value */
/* P2 - longword value */

$FAQ writes the following string to the output buffer:

Hex: 2710 270F zero-filled Decimal: 00100000009999

Each of the directives !2(6:XW) and !2(7ZW) contains repeat counts and output
lengths. First, $FAQ performs the !XW directive twice, using the low-order
word of the numeric parameters passed. The output length specified is two
characters longer than the default output field width of hexadecimal word
conversion, so two spaces are placed between the resulting ASCII strings.

The!- directive causes $FAQ to back up over the parameter list. A repeat
count is specified with the directive so that $FAQ skips back over two
parameters; then, it uses the same two parameters for the !ZW directive. The
!ZW directive causes the output string to be zero-filled to the specified length
(in this example, seven characters). Thus, there are no spaces between the
output fields.

7. /*
** SYS$FAOL example - illustrating !AS, !UB, !%S, and !- directives,
** and variable repeat count
*/
#include <descrip.h>
#include <starlet.h>

/* Layout of argument list for examples */
typedef struct {void *desc; /* ASCII string descriptor */

int arg[4]; /*Longword arguments */
} LIST;

$DESCRIPTOR(fao_desc, "!AS received !UB argument!%S: !-1#(4UB)");

int example a()
{ -

static $DESCRIPTOR(orion, "ORION");
static LIST

list a = {&orion,
3,
10,
123,
210};

return(sys$faol(&fao desc,
&outlen,
&out desc,
&list_ a));

/* Address of descriptor */
/* Number of arguments */
/* Argument 1 */
/* Argument 2 */
/* Argument 3 */

/* Control string for $FAO */
/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Parameter list */

int example b()
{ -

System Service Descriptions
$FAO/$FAOL

static $DESCRIPTOR(lyra, "LYRA");
static LIST

list b = {&lyra,
1,
255};

/* ASCII descriptor cast as an (int) */
/* Number of arguments */
/* Argument 1 */

/* Control string for $FAO */ return(sys$faol(&fao desc,
&outien,
&out desc,
&list_b));

/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Parameter list */

In example A, $FAQ writes the following string to the output buffer:

ORION received 3 arguments: 10 123 210

In example B, $FAQ writes the following string to the output buffer:

LYRA received 1 argument:~255

In each of the examples, the parameter list argument points to a different
parameter list; each list contains, in the first longword, the address of a
character string descriptor. The second longword begins an argument list,
with the number of arguments remaining in the list. The control string
uses this second longword twice: first to output the value contained in the
longword, and then to provide the repeat count to output the number of
arguments in the list (the !- directive indicates that $FAQ should reuse the
parameter).

The !%8 directive provides a conditional plural. When the last value
converted has a value not equal to 1, $FAQ outputs the characters; if
the value is a 1 (as in Example B), $FAQ does not output the characters.
$FAQ outputs the plural character in lowercase since the preceding character
was in lowercase.

The output field length defines a width of four characters for each byte value
converted, to provide spacing between the output fields.

8. /*
** SYS$FAO example - illustrating !n*c (repeat character)
** and !%D (date/time) directives
*/
#include <descrip.h>
#include <starlet.h>

int example()
{

static $DESCRIPTOR(fao_desc, "!5*> The time is now: !%D");

/* Control string for $FAO */ return(sys$fao(&fao desc,
&outien,
&out desc,
0));-

/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Pl - time value, O = current time */

}

$FAQ writes the following string to the output buffer:

>>>>> The time is now: dd-mmm-yyyy hh:mm:ss.cc

SYS1-367

System Service Descriptions
$FAO/$FAOL

SYS1-368

where:

dd
mmm

is the day of the month
is the month

yyyy is the year

hh:mm:ss.cc is the time in hours, minutes, seconds, and hundredths of
a second

The !5*> directive requests $FAO to write five greater-than (>) characters
into the output string. Because there is a space after the directive, $FAO also
writes a space after the greater-than characters on output.

The !%D directive requires the address of a quadword time value, which
must be in the system time format. However, when the address of the time
value is specified as 0, $FAO uses the current date and time. For a detailed
description of the ASCII date and time string returned, see the discussion of
the Convert Binary Time to ASCII String ($ASCTIM) system service.

9. /*
** SYS$FAO example - illustrating !%D and !%T (with output field lengths),
** and !n directive with variable repeat count
*/
#include <descrip.h>
#include <starlet.h>

int example()
{

}

static $DESCRIPTOR(fao_desc,

return(sys$fao(&fao desc,
&outlen,
&out desc,
o, -
5,
0)) i

"Date: !11%D!#*_Tirne: !5%T");

/* Control string for $FAO */
/* Pointer for length of output string */
/* Descriptor for output buffer */
/* Pl - time value, 0 = current time */
/* P2 - Number of underscores */
/* P3 - time value, 0 = current time */

$FAO writes the following string to the output buffer:

Date: dd-mmm-yyyy __ Time: hh:mm

An output length of 11 bytes is specified with the !%D directive so that $FAO
truncates the time from the date and time string, and outputs only the date.

The !#*_directive requests that the underscore character(_) be repeated the
number of times specified by the next parameter. Because p2 is specified as
5, five underscores are written into the output string.

The !%T directive normally returns the full system time. The !5%T directive
provides an output length for the time; only the hours and minutes fields of
the time string are written into the output buffer.

10. /*
** SYS$FAO example - illustrating !<and !> (define field width),
** !AC, and !UL directives
*/
#include <descrip.h>
#include <starlet.h>

/*MACRO and typedef for counted ASCII strings ••• */
typedef struct {char len, str[25];} ASCIC;
#define ASCIC_STRING(name, string) ASCIC name = {sizeof (string) - 1, string}

$DESCRIPTOR(fao_desc, "! 32<Variable: !AC Value: !UL! >Total:! 7UL");

int example a()
{ -

int val a = 334,
tot=a = 6554;

System Service Descriptions
$FAO/$FAOL

/* Current value for variable */
/* Current total for variable */

static ASCIC_STRING(var_a, "Inventory"); /* Counted ASCII string */

/* Control string for $FAO */ return(sys$fao(&fao desc,
&outien,
&out_desc,
&var a,
val a,
tot= a));

/* Pointer for length of output string */
/* Descriptor for output buffer */

}

int example b()
{ -

int val b = 280,
tot=b = 10750;

/* Pl - Variable name */
/* P2 - Value for variable */
/* P3 - Total for variable */

/* Current value for variable */
/* Current total for variable */

static ASCIC_STRING(var_b, "Sales"); /* Counted ASCII string */

/* Control string for $FAO */ return(sys$fao(&fao desc,
&outien,
&out desc,
&var-b,
val b,
tot=b));

/* Pointer for length of output string */
/* Descriptor for·output buffer */

}

/* Pl - Variable name */
/* P2 - Value for variable */
/* P3 - Total for variable */

In example A, $FAQ writes the following string to the output buffer:

Variable: Inventory Value: 334~Total: ___ 6554

In example B, $FAQ writes the following string to the output buffer:

Variable: Sales Value: 280 Total: 10750

The !25< directive requests an output field width of 25 characters; the end
of the field is delimited by the !> directive. Within the field defined are two
directives, !AC and !UL. The strings substituted by these directives can vary
in length, but the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (p2
argument) and right-justifies the result in a 7-character output field.

11. INTEGER STATUS,
2 SYS$FAO,
2 SYS$FAOL

Resultant string
CHARACTER*80 OUTSTRING
INTEGER*2 LEN
! Array for directives in $FAOL
INTEGER*4 PARAMS(2)

! File name and error number
CHARACTER*80 FILE
INTEGER*4 FILE LEN,
2 ERROR
! Descriptor for $FAOL
INTEGER*4 DESCR(2)

! These variables would generally be set following an error
FILE= '[BOELITZ]TESTING.DAT'
FILE LEN = 18
ERROR = 25

SYS1-369

System Service Descriptions
$FAO/$FAOL

SYS1-370

! Call $FAO
STATUS = SYS$FAO
2
2
2
2

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
FILE(l:FILE LEN),
%VAL(ERROR))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

TYPE *,'From SYS$FAO:'
TYPE *,OUTSTRING (l:LEN)

! Set up descriptor for filename
DESCR(l) = FILE LEN ! Length
DESCR(2) = %LOC(FILE) ! Address
! Set up array for directives
PARAMS(l) = %LOC(DESCR) ! File name
PARAMS (2) = ERROR ! Error number
! Call $FAOL
STATUS = SYS$FAOL
2
2

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
PARAMS) 2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

TYPE *,'From SYS$FAOL:'
TYPE *,OUTSTRING (l:LEN)

END

This example shows a segment of a DEC Fortran for Open VMS program used
to output the following string:

FILE [BOELITZ]TESTING.DAT ABORTED AT ERROR 25

System Service Descriptions
$FAOL_64 (Alpha Only)

$FAOL_64 {Alpha Only)
Formatted ASCI Output with List Parameter for 64-Bit Virtual
Addresses

Format

Arguments

On Alpha systems, (1) converts a binary value into an ASCII character string in
decimal, hexadecimal, or octal notation and returns the character string in an
output string, and (2) inserts variable character string data into an output string.

$FAOL_64 interprets the parameter list as a list of quadwords rather than a list
of longwords. In all other respects, $FAOL_64 is identical to $FAOL. For all other
information about the $FAOL_64 service, refer to the description of $FAO/$FAOL
in this manual.

This service accepts 64-bit addresses.

SYS$FAOL_64 ctrstr_64 [,outlen_64 [,outbuf_64 [,quad_prmlst_64]]]

ctrstr_64
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

The 32-bit or 64-bit address of the control string (64-bit or 32-bit string
descriptor).

outlen_64
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit address of the quadword that contains the output length, in
bytes, of the fully formatted output string.

outbuf_64
Open VMS usage: char_string
type: character-coded text. string
access: write only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

The 32-bit or 64-bit address of a character string descriptor that points to the
output buffer into which $FAOL_64 writes the fully formatted output string.

quad_prmlst_64
Open VMS usage: vectpr_quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit address of a quadword-aligned array of quadword FAO
arguments.

SYS1-371

System Service Descriptions
$FILESCAN

$FILESCAN·
Scan String for File Specification

Format

Arguments

SYS1-372

Searches a string for a file specification and parses the components of that file
specification.

SYS$FILESCAN srcstr ,valuelst ,[fldflags] ,[auxout] ,[retlen]

srcstr
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

String to be searched for the file specification. The srcstr argument is the
address of a descriptor pointing to this string.

valuelst
Open VMS usage: item_list_2
type: longword (unsigned)
access: modify
mechanism: by reference

Item list specifying which components of the file specification are to be returned
by $FILESCAN. The components are the full node specification, primary node
name, primary node's access control, secondary node information, device,
directory, file name, file type, and version number. The itmlst argument is
the address of a list of item descriptors wherein each item descriptor specifies one
component. The list of item descriptors is terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31 15 0

Item code l Component length

Component address

ZK-5185A-GE

System Service Descriptions
$FILESCAN

The following table defines the item descriptor fields.

Descriptor Field

Component length

Item code

Component address

fldflags

Definition

A word in which $FILESCAN writes the length
(in characters) of the requested component. If
$FILESCAN does not locate the component,
it returns the value 0 in this field and in the
component address field and returns the SS$_
NORMAL condition value.

A user-supplied, word-length symbolic code that
specifies the component desired. The $FSCNDEF
macro defines the item codes.

A longword in which $FILESCAN writes the
starting address of the component. This address
points to a location in the input string itself.
If $FILESCAN does not locate the component,
it returns the value 0 in this field and in the
component length field, and returns the SS$_
NORMAL condition value. If an auxiliary output
buffer was provided, this address points to a location
in the auxiliary output buffer, rather than to a
location in the input string.

Open VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Longword flag mask in which $FILESCAN sets a bit for each file specification
component found in the input string. The fldflags argument is the address of
this longword flag mask.

The $FSCNDEF macro defines a symbolic name for each significant flag bit. The
following table shows the file specification component that corresponds to the
symbolic name of each flag bit.

Symbolic Name

FSCN$V _DEVICE

FSCN$V _DIRECTORY

FSCN$V _NAME

FSCN$V_NODE
FSCN$V _NODE_ACS

FSCN$V _NODE_
PRIMARY
FSCN$V _NODE_
SECONDARY

Corresponding Component

Device name

Directory name

File name

Node name
Access control string of primary node

Primary (first) node name

Secondary (additional) node information

SYS1-373

System Service Descriptions
$FILESCAN

Symbolic Name

FSCN$V _ROOT

FSCN$V_TYPE

FSCN$V _VERSION

Corresponding Component

Root directory name string

File type

Version number

The fldflags argument is optional. When you want to know which components of
a file specification are present in a string but do not need to know the contents or
length of these components, specify fldflags instead of valuelst.

aux out
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Auxiliary output buffer. The auxout argument is the address of a character
string descriptor pointing to the auxiliary buffer.

When you specify an auxiliary output buffer, $FILESCAN copies the entire source
. string, with quotation information reduced and simplified for only the primary

node, into the auxiliary output buffer.

When the auxiliary output buffer is provided, all addresses returned in the item
list point to locations in the auxiliary output buffer.

retlen
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the auxiliary buffer. The retlen argument is the address of a word into
which $FILESCAN writes the length of the auxiliary buffer name string.

Item Codes

SYS1-374

FSCN$_DEVICE
When you specify FSCN$_DEVICE, $FILESCAN returns the length and starting
address of the device name. The device name includes the single colon (:).

FSCN$_DIRECTORY
When you specify FSCN$_DIRECTORY, $FILESCAN returns the length and
starting address of the directory name. The directory name includes the brackets
([]) or angle brackets (< >).

FSCN$_FILESPEC
When you specify FSCN$_FILESPEC, $FILESCAN returns the length and
starting address of the full file specification. The full file specification contains
the node, device, directory, name, type, and version.

FSCN$_NAME
When you specify FSCN$_NAME, $FILESCAN returns the length and starting
address of the file name. The file name includes no syntactical elements.

Description

System Service Descriptions
$FILESCAN

$FILESCAN also returns the length and starting address of a quoted file
specification following a node specification (as in the specification NODE::"FILE
SPEC"). The beginning and ending quotation marks are included.

FSCN$_NODE
When you specify FSCN$_NODE, $FILESCAN returns the length and starting
address of the full node specification. The full node specification includes the
primary node name, the primary node's access control string, any secondary node
information, and the final double colon (::).

FSCN$_NODE_ACS
When you specify FSCN$_NODE_ACS, $FILESCAN returns the length and
starting address of the primary access control string. If multiple nodes are
specified, the primary access control string represents the control information (if
present) for the first node specified. The primary access control string does not
contain the double colon (::), but does contain the double quotes.

FSCN$_NODE_PRIMARY
When you specify FSCN$_NODE_PRIMARY, $FILESCAN returns the length and
starting address of the primary node name. If multiple nodes are specified, the
primary node name represents the first node specification. The node name does
not include the double colon (::)or any access control information. If an auxiliary
output buffer is specified, quotation information is reduced and simplified for only
the primary node.

FSCN$_NODE_SECONDARY
When you specify FSCN$_NODE_SECONDARY, $FILESCAN returns the length
and starting address of any secondary node information. The secondary node
string contains any node information referring to additional nodes, including the
final double colon (::), as well as any access control strings (if present) for the
additional nodes.

FSCN$_ROOT
When you specify FSCN$_ROOT, $FILESCAN returns the length and starting
address of the root directory string. The root directory name string includes the
brackets ([]) or angle brackets (< >).

FSCN$_TYPE
When you specify FSCN$_TYPE, $FILESCAN returns the length and starting
address of the file type. The file type includes the preceding period (.).

FSCN$_ VERSION
When you specify FSCN$_VERSION, $FILESCAN returns the length and
starting address of the file version number. The file version number includes the
preceding period (;)or semicolon (;) delimiter.

The Scan String for File Specification service searches a string for a file
specification and parses the components of that file specification. When
$FILESCAN locates a partial file specification (for example, DISK:[FOO]), it
returns the length and starting address of those components that were requested
in the item list and were found in the string. If a component was requested in
the item list but not found in the string, $FILESCAN returns a length of 0 and
starting address of 0 to the component length and component address fields of the
item descriptor for that component.

SYS1-375

System Service Descriptions
$FILESCAN

SYS1-376

The information returned about all of the individual components describes the
entire contiguous file specification string. For example, to extract only the file
name and file type from a full file specification string, you can add the length
of these two components and use the address of the first component (file name).
However, the specific node name and node control strings extracted using
the FSCN$_NODE_PRIMARY and FSCN$_NODE_ACS item codes cannot be
recombined because the double colon (::)is not included in either string.

If an auxiliary output buffer is provided, $FILESCAN copies the entire source
string, removing and reducing quotation marks from the primacy node name.

The $FILESCAN service does not perform comprehensive syntax checking.
Specifically, it does not check that a component has a valid length.

However, $FILESCAN does check for the following information:

• The component must have required syntactical elements; for example, a
directory component must be enclosed in brackets ([]), and a node name
must be followed by an unquoted double colon (::).

• The component must not contain invalid characters. Invalid characters are
specific to each component. For example, a comma (,) is a valid character in
a directory component but not in a file type component.

• Spaces, tabs, and carriage returns are permitted within quoted strings, but
are invalid anywhere else.

• If a node name contains a space, tab, double quote ("), or double colon (::),
then the node name must be quoted.

The node component of a file specification contains one or more node
specifications. A node specification is a node name, followed by an optional
access control string, followed by a double colon (::). A node name is either a
standard name or a quoted name. If the node name contains quotation marks,
the quotes must be doubled ("") and the entire name quoted. For example, the
node abc"def' would be represented as "abc"" def""'. An access control string is
a quoted string containing a user name, an optional password, and an optional
account name.

Invalid characters are treated as terminators. For example, if $FILESCAN
encounters a space within a file name component, it assumes that the space
terminates the full file specification string.

For node names, a space, tab, double quote ("), and comma (,) are treated as
terminators and must be quoted if they are part of the node name. In addition,
the double colon (::)and the trailing colon (for example, NODE:) are treated as
terminators and must also be quoted if they are part of the node name.

The $FILESCAN service recognizes the DEC Multinational alphabetical
characters (such as a) as alphanumeric characters.

The $FILESCAN service does not (1) assume default values for unspecified file
specification components, (2) perform logical name translation on components,
(3) perform wildcard processing, or (4) perform directory lookups.

Required Access or Privileges
None

Required Quota
None

Related Services

System Service Descriptions
$FILESCAN

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $1NIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The service could not read the string pointed to
by the srcstr argument; or it could not write
to an item descriptor in the item list specified
by the valuelst argument; or it could not write
to the specified auxiliary output buffer; or the
retlen argument could not be written

The item list contains an invalid item code.

SYS1-377

System Service Descriptions
$FIND_HELD

$FIND_HELD
Find Identifiers Held by User

Format

Arguments

SYS1-378

Returns the identifiers held by a specified holder.

SYS$FIND_HELD holder ,[id] ,[attrib] ,[contxt]

holder
Open VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Holder whose identifiers are to be found when $FIND_HELD completes execution.
The holder argument is the address of a quadword data structure containing the
holder identifier. This quadword data structure consists of a longword containing
the holderUIC, followed by a longword containing the value 0.

id
Open VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value found when $FIND_HELD completes execution. The id argument
is the address of a longword containing the identifier value with which the holder
is associated.

attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes associated with the holder returned in id when $FIND_HELD
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the'prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
following are the symbols for each bit position.

Bit Position

KGB$V _DYNAMIC

Meaning When Set

Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

Description

Bit Position

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

contxt
Open VMS usage: context

Meaning When Set

System Service Descriptions
$FIND_HELD

Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

Allows the holder to charge resources, such as disk
blocks, to the identifier.
Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

type: longword (unsigned)
access: modify
mechanism: by reference

Context value used when repeatedly calling $FIND_HELD. The contxt argument
is the address of a longword used while searching for all identifiers. The context
value must be initialized to 0, and the resulting context of each call to $FIND_
HELD must be presented to each subsequent call. After contxt is passed to
$FIND_HELD, you must not modify its value.

The Find Identifiers Held by User service returns a list of the identifiers that
another identifier holds. Use the $FIND_HELD service to construct the process
rights when a user logs in (unless that process has read access to the rights
database). To determine all the identifiers held by the specified holder, call
$FIND_HELD repeatedly until it returns the status code SS$_NOSUCHID. When
SS$_NOSUCHID is returned, $FIND_HELD has returned all the identifiers,
cleared the context value, and deallocated the record stream.

If you complete your calls to $FIND_HELD before SS$_NOSUCHID is returned,
use $FINISH_RDB to clear the context value and deallocate the record stream.

Note that, when you use wildcards with this service, the records are returned in
the order that they were originally written because the first record is located on
the basis of the holder ID. Thus, all the target records have the same holder ID
or, in other words, they have duplicate keys, which leads to retrieval in the order
in which they were written.

Required Access or Privileges
Read access to the rights database is required to obtain information about
identifiers held by other users.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HOLDER,
$FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$REM_HOLDER, $REM_IDENT, $REVOKID

SYS1-379

System Service Descriptions
$FIND_HELD

Condition Values Returned

SYS1-380

SS$_NORMAL

SS$_ACCVIO

SS$_IVCHAN

SS$_INSFMEM

SS$_MDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The id argument cannot be written by the
service, or the holder, attrib, or contxt
argument cannot be read by the service.
The contents of the contxt longword are not
valid.

The process dynamic memory is insufficient for
opening the rights database.
The format of the specified holder identifier is
invalid.

No more rights database context streams are
available.
The specified holder identifier does not exist, or
no further identifiers are held by the specified
holder.

You do not have read access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS, ·
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

System Service Descriptions
$FIND_HOLDER

$FIND_HOLDER
Find Holder of Identifier

Format

Arguments

Returns the holder of a specified identifier.

SYS$FIND_HOLDER id ,[holder] ,[attrib] ,[contxt]

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value whose holders are found by $FIND_HOLDER. The id
argument is a longword containing the binary identifier value.

holder
Open VMS usage: rights_holder
type: quadword (unsigned)
access: write only
mechanism: by reference

Holder identifier returned when $FIND_HOLDER completes execution. The
holder argument is the address of a quadword containing the holder identifier.
The first longword contains the UIC of the holder with the high-order word
containing the group number and the low-order word containing the member
number. The second longword contains the value 0.

attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Mask of attributes associated with the holder record specified by holder. The
attrib argument is the address of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
following are the symbols for each bit position.

Bit Position

KGB$V _DYNAMIC

Meaning When Set

Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST. For more information on SET
RIGHTS_LIST, see the Open VMS DCL Dictionary.

SYS1-381

System Service Descriptions
$FIND_HOLDER

Description

SYS1-382

Bit Position

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

contxt

Meaning When Set.

Makes any rights of the identifier null and void. This
attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

Allows the holder of an identifier to charge disk space
to the identifier. It is used only for file objects.
Allows holders of an identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

Open VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context value used while searching for all the holders of the specified identifier
when executing $FIND_HOLDER. The contxt argument is the address of
a longword containing the context value. When calling $FIND_HOLDER
repeatedly, contxt must be set initially to 0 and the resulting context of each
call to $FIND_HOLDER must be presented to each subsequent call. After the
argument is passed to $FIND_HOLDER, you must not modify its value.

The Find Holder of Identifier service returns the holder of the specified identifier.
To determine all the holders of the specified identifier, you call SYS$FIND _
HOLDER repeatedly until it returns the status code SS$_NOSUCHID, which
indicates that $FIND_HOLDER has returned all identifiers, cleared the context
longword, and deallocated the record stream. If you complete your calls to
$FIND_HOLDER before SS$_NOSUCHID is returned, you use the $FINISH_
RDB service to clear the context value and deallocate the record stream.

Note that when you use wildcards with this service, the records are returned in
the order in which they were originally written. (This action results from the fact
that the first record is located on the basis of the identifier. Thus, all the target
records have the same identifier or, in other words, they have duplicate keys,
which leads to retrieval in the order in which they were written.)

Required Access or Privileges
Read access to the rights database is required to obtain information about
identifiers marked HOLDER_HIDDEN.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$REM_HOLDER, $REM_IDENT, $REVOKID

Conditic:m Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_1VCHAN

SS$_INSFMEM

SS$_1VIDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

System Service Descriptions
$FIND_HOLDER

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot
be written by the caller.
The contents of the contxt longword are not
valid.
The process dynamic memory is insufficient for
opening the rights database.
The specified identifier or holder identifier is of
invalid format.

No more rights database context streams are
available.
The specified identifier does not exist in the
rights database, or no further holders exist for
the specified identifier.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can· also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS1-383

System Service Descriptions
$FINISH_RDB

$FINISH_RDB
Terminate Rights Database Context

Format

Argument

Description

Deallocates the record stream and clears the context value used with $FIND_
HELD, $FIND_HOLDER, or $IDTOASC.

SYS$FINISH_RDB contxt

contxt
Open VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context value to be cleared when $FINISH_RDB completes execution. The
contxt argument is a longword containing the address of the context value.

The Terminate Rights Database Context service clears the context longword
and deallocates the record stream associated with a sequence of rights database
lookups performed by the $IDTOASC, $FIND_HOLDER, and $FIND_HELD
services.

If you repeatedly call $IDTOASC, $FIND_HOLDER, or $FIND_HELD until
SS$_NOSUCHID is returned, you do not need to call $FINISH_RDB because the
record stream has already been deallocated and the context longword has already
been cleared.

Required Access or Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS1-384

SS$_NORMAL
SS$_ACCVIO

SS$_IVCHAN

The service completed successfully.
The contxt argument cannot be written by the
caller.
The contents of the contxt longword are not
valid.

System Service Descriptions
$FINISH_RDB

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS1-385

System Service Descriptions
$FORCEX

$FORCEX
Force Exit

Format

Arguments

SYS1-386

Causes an Exit ($EXIT) service call to be issued on behalf of a specified process.

SYS$FORCEX [pidadr] ,[prcnam] ,[code]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be forced to exit. The pidadr
argument is the address of a longword containing the PID. The pidadr argument
can refer to a process running on the local node or a process running on another
node in the VMScluster system.

The pidadr argument is optional but must be specified if the process that is to be
forced to exit is not in the same UIC group as the calling process.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process that is to be forced to exit. The prcnam argument is
the address of a character string descriptor pointing to the process name string.
A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node in a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

The prcnam argument can be used only on behalf of processes in the same
UIC group as the calling process. To force processes in other groups to exit, you
must specify the pidadr argument. This restriction exists because the operating
system interprets the UIC group number of the calling process as part of the
specified process name; the names of processes are unique to UIC groups.

code
OperiVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Completion code value to be used as the exit parameter. The code argument is
a longword containing this value. If you do not specify the code argument, the
value 0 is passed as the completion code.

Description

System Service Descriptions
$FORCEX

The Force Exit service causes an Exit service call to be issued on behalf of a
specified process.

If you specify neither the pidadr nor the prcnam argument, the caller is forced
to exit and control is not returned.

If the longword at address pidadr is 0, the PID of the target process is returned.

The Force Exit system service requires system dynamic memory.

The image executing in the target process follows normal exit procedures. For
example, if any exit handlers have been specified, they gain control before the
actual exit occurs. Use the Delete Process ($DELPRC) service if you do not want
a normal exit.

When a forced.exit is requested for a process, a user-mode AST is queued for the
target process. The AST routine causes the $EXIT service call to be issued by the
target process. Because the AST mechanism is used, user mode ASTs must be
enabled for the target process, or no exit occurs until ASTs are reenabled. Thus,
for example, a suspended process cannot be stopped by $FORCEX. The process
that calls $FORCEX receives no notification that the exit is not being performed.

If an exit handler resumes normal processing, the process will not exit. In
particular, if the program is written in Ada and there is a task within the
program that will not terminate, the program will not exit.

The $FORCEX service completes successfully if a force exit request is already in
effect for the target process but the exit is not yet completed.

Required Access or Privileges
Depending on the operation, the calling process may need a certain privilege to
use $FORCEX:

• You need GROUP privilege to force an exit for a process in the same group
that does not have the same UIC as the calling process.

• You need WORLD privilege to force an exit for any process in the system.

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.
The remote node is running an incompatible
version of the operating system.

SYS1-387

System Service Descriptions
$FORCEX

SS$_INSFMEM

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

SYS1-388

The system dynamic memory is insufficient for
the operation.

The process name string has a length equal to 0
or greater than 15.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to force
an exit for the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.
The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$FORMAT_ACL

$FORMAT _ACL
Format Access Control List Entry

Format

Arguments

Formats the specified access control entry (ACE) into a text string.

SYS$FORMAT _ACL aclent ,[acllen] ,aclstr ,[width] ,[trmdsc] ,[indent] ,[accnam]
,[nullarg]

aclent
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Description of the ACE formatted when $FORMAT_ACL completes execution.
The aclent argument is the address of a descriptor pointing to a buffer containing
the description of the input ACE. The first byte of the buffer contains the length
of the ACE; the second byte contains a value that identifies the type of ACE,
which in turn determines the ACE format.

For more information about the ACE format, see the Description section.

acllen
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string resulting when $FORMAT_ACL completes execution.
The acllen argument is the address of a word containing the number of
characters written to aclstr.

aclstr
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Formatted ACE resulting when $FORMAT_ACL completes its execution. The
aclstr argument is the address of a string descriptor pointing to a buffer
containing the output string.

width
Open VMS usage: word_ unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum width of the formatted ACE resulting when $FORMAT_ACL completes
its execution. The width argument is the address of a word containing the
maximum width of the formatted ACE. If this argument is omitted or contains

SYS1-389

System Service Descriptions
$FORMAT _ACL

SYS1-390

the value 0, an infinite length display line is assumed. When the width is
exceeded, the character specified by trmdsc is inserted.

trmdsc
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Line termination characters used in the formatted ACE. The trmdsc argument
is the address of a descriptor pointing to a character string containing the
termination characters that are inserted for each formatted ACE when the width
has been exceeded.

indent
Open VMS usage: word_ unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of blank characters beginning each line of the formatted ACE. The
indent argument is the address of a word containing the number of blank
characters that you want inserted at the beginning of each formatted ACE.

accnam
Open VMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when executing the $FORMAT_ACL. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on.

You can call LIB$GET_ACCNAM to retrieve the access name table for the class
of object whose ACL is to be formatted. If you omit accnam, the following names
are used.

Bit Name

Bit 0 READ

Bit 1 WRITE

Bit 2 EXECUTE

Bit 3 DELETE

Bit 4 CONTROL

Bit 5 BIT_5

Bit 6 BIT_6

Bit 31 BIT_31

Description

nullarg
Open VMS usage: null_arg
type: · longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$FORMAT _ACL

Placeholding argument reserved to Digital.

The Format Access Control List Entry service formats the specified access control
entry (ACE) into text string representation. There are seven types of ACE:

• Alarm ACE

• Application ACE

• Audit ACE

• Creator ACE

• Default Protection ACE

• Identifier ACE

• Subsystem ACE

The format for each of the ACE types is described in the following sections and
the byte offsets and type values for each ACE type are defined in the $ACEDEF
system macro library.

Alarm ACE
The access Alarm ACE generates a security alarm. Its format is as follows.

Flags I Type I Length

Access

Alarm name

ZK-1710-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W _FLAGS

Description

Byte containing the length in bytes of
the ACE buffer

Byte containing the type value
ACE$C_ALARM

Word containing Alarm ACE
information and ACE type
independent information

SYS1-391

System Service Descriptions
$FORMAT _ACL

SYS1-392

Field Symbol Name Description

Access ACE$L_ACCESS Longword containing a mask
indicating the access modes to be
watched

Alarm name ACE$T_AUDITNAME Character string containing the alarm
name

The flag field contains information specific to Alarm ACEs and information
applicable to all types of ACEs. The following symbols are bit offsets to the Alarm
ACE information.

Bit Position

ACE$V _SUCCESS

ACE$V _FAILURE

Meaning When Set

Indicates that the alarm is raised when access is
successful
Indicates that the alarm is raised when access fails

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit Position

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the access mask. You can
also obtain the symbol values as masks with the appropriate bit set using the
prefix ACE$M rather than ACE$V.

Bit

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

ACE$V _DELETE

ACE$V _CONTROL

Application ACE

Meaning When Set

Read access is monitored.
Write access is monitored.

Execute access is monitored.

Delete access is monitored.
Modification of the access field is monitored.

The Application ACE contains application-dependent information. Its format is
as follows.

Flags I Type

System Service Descriptions
$FORMAT_ACL

J Length

Application Mask

t Application Information

ZK-1711-GE

The following table describes the ACE fields and lists the symbol name for each.

Field

Length

Type

Flags

Application mask

Application
information

Symbol Name Description

ACE$B_SIZE Byte containing the length in
bytes of the ACE buffer.

ACE$B_TYPE Byte containing the type value
ACE$C_INFO.

ACE$W _FLAGS Word containing Application
ACE information and ACE
type-independent information.

ACE$L_INFO_FLAGS Longword containing a mask
defined and used by the
application.

ACE$T_INFO_START Variable-length data structure
defined and used by the
application. The length of this
data is implied by the length
field.

The flag field contains information specific to Application ACEs and information
applicable to all types of ACEs. The following symbol is a bit offset to the
Application ACE information.

Bit

ACE$V _INFO_TYPE

Meaning When Set

Four-bit field containing a value indicating whether
the application is a CSS application (ACE$C_CSS) or
a customer application (ACE$C_CUST).

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit

ACE$V _DEFAULT

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.

SYS1-393

System Service Descriptions
$FORMAT _A CL

SYS1-394

Bit Meaning When Set

ACE$V _HIDDEN This bit is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

Audit ACE
The Audit ACE sets a security audit. Its format is as follows.

Flags I Type J Length

Access

Alarm name

ZK-1710-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

Length ACE$B_SIZE Byte containing the length in bytes of
the ACE buffer

Type ACE$B_TYPE Byte containing the type value
ACE$C_AUDIT

Flags ACE$W _FLAGS Word containing Audit ACE
information and ACE type-
independent information

Access ACE$L_ACCESS Longword containing a mask
indicating the access modes to be
watched

Alarm name ACE$T_AUDITNAME Character string containing the alarm
name

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit Position

ACE$V _DEFAULT

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contafos this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.

Bit Position

ACE$V _HIDDEN

System Service Descriptions
$FORMAT _ACL

Meaning When Set

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the access mask. You can
also obtain the symbol values as masks with the appropriate bit set using the
prefix ACE$M rather than ACE$V.

Bit

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE
ACE$V _DELETE

ACE$V _CONTROL

Creator ACE

Meaning When Set

Read access is monitored.

Write access is monitored.
Execute access is monitored.

Delete access is monitored.

Modification of the access field is monitored.

The Creator ACE controls access to an object based on creators. Its format is as
follows.

Flags Type Length

Access

ZK-5488A-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

Length ACE$B_SIZE Byte containing the length in bytes of
the ACE buffer.

Type ACE$B_TYPE Byte containing the type value
ACE$C_NEW _OWNER.

Flags ACE$W _FLAGS Word containing Creator ACE
information and ACE type-
independent information.

Access ACE$L_ACCESS Longword containing a mask
indicating the access modes to be
granted to the creator of the file.

The following symbols are bit offsets to ACE information that is independent of
ACE type.

SYS1-395

System Service Descriptions
$FORMAT _ACL

SYS1-396

Bit

ACE$V_NOPROPAGATE

ACE$V _PROTECTED

Meaning When Set

This ACE is not propagated among versions of the
same file.
This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit Position Meaning When Set

ACE$V_READ
ACE$V _WRITE
ACE$V _EXECUTE
ACE$V _DELETE
ACE$V _CONTROL

Read access is granted.
Write access is granted.
Execute access is granted.
Delete access is granted.
Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

Default Protection ACE
The Default Protection ACE specifies the UIC-based protection for all files created
in the directory. You can use this type of ACE only in the ACL of a directory file.
Its format is as follows.

Flags l Type l Length

Spare

System

Owner

Group

World

ZK-1712-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

Length ACE$B_SIZE Byte containing the length in bytes of the
ACE buffer.

Type ACE$B_TYPE Byte containing the type value ACE$C_
DIRDEF.

Flags ACE$W _FLAGS Word containing ACE type-independent
information.

Spare ACE$L_SPARE1 Longword that is reserved for future use
and must be 0.

Field Symbol Name

System Service Descriptions
$FORMAT _ACL

Description

System ACE$L_SYS_PROT Longword containing a mask indicating the
access mode granted to system users. Each
bit represents one type of access.

Owner ACE$L_OWN_PROT Longword containing a mask indicating the
access mode granted to the owner. Each bit
represents one type of access.

Group ACE$L_GRP _PROT Longword containing a mask indicating the
access mode granted to group users. Each
bit represents one type of access.

World ACE$L_ WOR_PROT Longword containing a mask indicating the
access mode granted to the world. Each bit
represents one type of access.

The flag field contains information applicable to all types of ACEs. The following
symbols are bit offsets to ACE information that is independent of ACE type.

Bit Position

ACE$V _HIDDEN

Meaning When Set

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The system interprets the bits within the access mask as shown in the following
table. The following symbol values are offsets to bits within the mask indicating
the access mode granted in the system, owner, group, and world fields.

Bit Position

ACE$V_READ

ACE$V _WRITE
ACE$V _EXECUTE

ACE$V_DELETE

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefiX ACE$M rather than ACE$V.

Identifier ACE
The Identifier ACE controls access to an object based on identifiers. Its format is
as follows.

SYS1-397

System Service Descriptions
$FORMAT _ACL

SYS1-398

Flags l Type l Length

Access

Reserved

Reserved

~ ~

Identifier

Identifier

,.. ..
""" T T

ZK-1713-GE

The following table describes the ACE fields and lists the symbol name for each.

Field

Length

Type

Flags

Access

Reserved

Identifier

Symbol Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W _FLAGS

ACE$L_ACCESS

ACE$V _RESERVED

ACE$L_KEY

Description

Byte containing the length in bytes of
the ACE buffer.
Byte containing the type value
ACE$C_KEYID.
Word containing Identifier ACE
information and ACE type
independent information.

Longword containing a mask
indicating the access mode granted to
the specified identifiers.
Longwords containing application
specific information. The number of
reserved longwords is specified in the
flags field.
Longwords containing identifiers.
The number of longwords is implied
by ACE$B_SIZE. If an accessor holds
all of the listed identifiers, the ACE
is said to match the accessor, and the
access specified in ACE$L_ACCESS
is granted.

The flags field coritains information specific to Identifier ACEs and information
applicable to all types of ACEs. The following symbol is a bit offset to Identifier
ACE information.

System Service Descriptions
$FORMAT _ACL

Bit Meaning When Set

ACE$V _RESERVED Four-bit field containing the number of longwords to
reserve for application-dependent data. The number must
be between 0 and 15. The reserved longwords, if any,
immediately precede the identifiers.

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.
This bit is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit Position

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE
ACE$V_DELETE

ACE$V _CONTROL

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.
Delete access is granted.

Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

Subsystem ACE
The Subsystem ACE maintains protected subsystems. Its format is as follows.

SYS1-399

System Service Descriptions
$FORMAT _ACL

SYS1-400

Flags 1 Type l Length

Spare

~ ~

Identifier

Attributes

~ ""' T T
ZK-5489A-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W _FLAGS

Spare ACE$L_SPARE1

Identifier/ Attributes ACE$Q_IMAGE_IDS

Description

Byte containing the length in
bytes of the ACE buffer.

Byte containing the type value
ACE$C_SUBSYSTEM_IDS.

Word containing Subsystem
ACE information and ACE
type-independent information.

Longword that is reserved for
future use and must be 0.

Longword identifier value
and its associated longword
attributes.

A Subsystem ACE can contain multiple identifier/attribute pairs. In this case,
the Subsystem ACE is an array of identifiers and attributes starting at ACE$Q_
IMAGE_IDS. Beginning at this offset, KGB$L_IDENTIFIER and KGB$L_
ATTRIBUTES are used to address each of the separate longwords.

The number of identifier/attribute pairs is computed by subtracting ACE$C_
LENGTH from ACE$W _SIZE and dividing by KGB$S_IDENTIFIER.

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit

ACE$V_NOPROPAGATE

ACE$V _PROTECTED

Meaning When Set

This ACE is not propagated among versions of the
same file.

This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

System Service Descriptions
$FORMAT _ACL

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit Position

ACE$V_READ
ACE$V _WRITE
ACE$V _EXECUTE
ACE$V_DELETE
ACE$V _CONTROL

Meaning When Set

Read access is granted.

Write access is granted.
Execute access is granted.
Delete access is granted.
Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

Required Access or Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $CREATE_USER_
PROFILE, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB, $FORMAT_AUDIT,
$GET_SECURITY, $GRANTID, $HASH_PASSWORD, $IDTOASC, $MOD_
HOLDER, $MOD_IDENT, $REM_HOLDER, $REM_IDENT, $REVOKID, $SET_
RESOURCE_DOMAIN, $SET_SECURITY

Condition Values Returned

SS$_BUFFEROVF

SS$_NORMAL
SS$_ACCVIO

The service completed successfully. The output
string has overflowed the buffer and has been
truncated.
The service completed successfully.
The ACL entry or its descriptor cannot be read
by the caller, or the string descriptor cannot
be read by the caller, or the length word or the
string buffer cannot be written by the caller.

SYS1-401

System Service Descriptions
$FORMAT _AUDIT

$FORMAT _AUDIT
Format Security Audit Event Message

Format

Arguments

SYS1-402

Converts a security auditing event message from binary format to ASCII text.

SYS$FORMAT _AUDIT [fmttyp] ,audmsg ,[outlen] ,[outbuf] ,[width] ,[trmdsc] ,[routin]
,[fmtflg]

fmttyp
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Format for the message. The fmttyp argument is a value indicating whether the
security audit message should be in brief format, which is one line of information,
or full format. The default is full format. See the Open VMS System Manager's
Manual for examples of formatted output.

The following table defines the brief and full formats.

Value

NSA$C_FORMAT_STYLE_BRIEF

NSA$C_FORMAT_STYLE_FULL

audmsg
Open VMS usage: char_string

Meaning

Use a brief format for the message.

Use a full format for the message.

type: byte stream (unsigned)
access: read only
mechanism: by reference

Security auditing message to format. The audmsg argument is the address of
a character descriptor pointing to a buffer containing the message that requires
formatting.

outlen
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the formatted security audit message. The outlen argument is the
address of the word receiving the final length of the ASCII message.

outbuf
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

System Service Descriptions
$FORMAT _AUDIT

Buffer holding the formatted message. The outbuf argument is the address of a
descriptor pointing to the buffer receiving the message.

width
Open VMS usage: word_ unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum width of the formatted message. The width argument is the address
of a word containing the line width value. The default is 80 columns.

The width argument does not work consistently. In most cases, if you specify
both the width argument and the full format style (NSA$C_FORMAT_STYLE_
FULL), $FORMAT_AUDIT ignores the width argument. The minimum width is
80 columns; lower values do not limit the width to less than 80. If you specify a
width greater than 80 columns, most lines are not joined to use the full width.

In most cases, you should avoid using the width argument.

trmdsc
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Line termination characters used in a full format message. The trmdsc
argument is the address of a descriptor pointing to the line termination
characters to insert within a line segment whenever the width is reached.

routin
Open VMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Routine that writes a formatted line to the output buffer. The routin argument
is the address of a routine called each time a line segment is formatted. The
argument passed to the routine is the address of a character string descriptor for
the line segment.

When an application wants event messages in the brief format, $FORMAT_
AUDIT calls the routine twice to format the first event message. The first time it
is called, the routine passes a string containing the column titles. for the message.
The second and subsequent calls to the routine pass the formatted event message.
By using this routine argument, a caller can gain control at various points in the
processing of an audit event message.

fmtflg
Open VMS usage: longword (unsigned)
type: mask_longword
access: read only
mechanism: by value

Determines the formatting of certain kinds of audit messages. The fmtflg
argument is a mask specifying whether sensitive information should be displayed
or column titles built for messages in brief format. For example, the operating

SYS1-403

System Service Descriptions
$FORMAT _AUDIT

Description

system uses bit 0 to suppress plaintext passwords from security alarm messages.
The following table describes the significant bits.

Bit

0

1

Value

1

0

1

Description

Do not format sensitive information.

Format sensitive information.

Build a column title for messages in brief format. (You must
specify a fmttyp of brief and a routin argument.)

0 Do not build column titles.

The Format Audit service converts a security auditing event message from binary
format to ASCII text and can filter sensitive information. $FORMAT_AUDIT
allows the caller to format a message in a multiple-line format or a single-line
format and tailor the information for a display device of a specific width.

$FORMAT_AUDIT is intended for utilities that need to format the security
auditing event messages received from the audit server listener mailbox or the
system security audit log file.

Required Access or Privileges
None

Required Quota
$FORMAT_AUDIT can cause a process to exceed its page-file quota
(PGFLQUOTA) if it has to format a long auditing event message. The caller
of $FORMAT_AUDIT can also receive quota violations from services that
$FORMAT_AUDIT uses, such as $IDTOASC, $FAO, and $GETMSG.

Related Services
$AUDIT_EVENT

Condition Values Returned

SYS1-404

SS$_NORMAL

SS$_MSGNOTFND

SS$_ACCVIO

SS$_BADPARAM

SS$_BUFFEROVF

SS$_INSFMEM

The service completed successfully.

The service completed successfully; however,
the message code cannot be found and a default
message has been returned.

The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

The item list contains an invalid identifier.

The service completed successfully; however, the
formatted output string overflowed the output
buffer and has been truncated.

The process dynamic memory is insufficient for
opening the rights database.

SS$_IVCHAN

SS$_IVIDENT
SS$_NOSUCHID

System Service Descriptions
$FORMAT _AUDIT

The format of the specified identifier is not valid.
This condition value returned is not directly
returned by $FORMAT_AUDIT. It is indirectly
returned when $FORMAT_AUDIT in turn calls
another service, such as an identifier translation
or binary time translation service.

The format of the specified identifier is invalid.
The specified identifier name does not exist in the
rights database. This condition value returned is
not directly returned by $FORMAT_AUDIT. It is
indirectly returned when $FORMAT_AUDIT in
turn calls another service, such as an identifier
translation or binary time translation service.

SYS1-405

System Service Descriptions
$GETDVI

$GETDVI
Get DeviceNolume Information

Format

Arguments

SYS1-406

Returns information related to the primary and secondary device characteristics
of an I/O device.

For synchronous completion, use the Get DeviceNolume Information and Wait
($GETDVIW) service. The $GETDVIW service is identical to the $GETDVI
service in every way except that $GETDVIW returns to the caller with the
requested information.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$GETDVI [efn] ,[chan] ,[devnam] ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETDVI returns the requested
information. The efn argument is a longword containing this number; however,
$GETDVI uses only the low-order byte.

Upon request initiation, $GETDVI clears the specified event flag (or event flag 0 if
efn was not specified). Then, when $GETDVI returns the requested information,
it sets the specified event flag (or event flag 0).

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel assigned to the device about which information is
desired. The chan argument is a word containing this number.

To identify a device to $GETDVI, you can specify either the chan or devnam
argument, but you should not specify both. If you specify both arguments, the
chan argument is used.

If you specify neither chan nor devnam, $GETDVI uses a default value of 0 for
chan.

devnam
Open VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

System Service Descriptions
$GETDVI

The name of the device about which $GETDVI is to return information. The
devnam argument is the address of a character string descriptor pointing to this
name string.

The device name string may be either a physical device name or a logical name.
If the first character in the string is an underscore (_), the string is considered
a physical device name; otherwise, the string is considered a logical name and
logical name translation is performed until either a physical device name is found
or the system default number of translations has been performed.

If the device name string contains a colon (:), the colon and the characters that
follow it are ignored.

To identify a device to $GETDVI, you can specify either the chan or devnam.
argument, but you should not specify both. If both arguments are specified, the
chan argument is used.

If you specify neither chan nor devnam, $GETDVI uses a default value of 0 for
chan.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the device is to be returned. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated
by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Definition

A word containing a user-supplied integer specifying
the length (in bytes) of the buffer in which
$GETDVI is to write the information. The length
of the buffer needed depends upon the item code
specified in the item code field of the item descriptor.
If the value of buffer length is too long, $GETDVI
truncates the data.

SYS1-407

System Service Descriptions
$GETDVI

SYS1-408

Descriptor Field

Item code

Buffer address

Return length address

iosb

Definition

A word containing a user-supplied symbolic code
specifying the item of information that $GETDVI
is to return. The $DVIDEF macro defines these
codes. Each item code is described in the Item
Codes section.
A longword containing the user-supplied address
of the buffer in which $GETDVI is to write the
information.

A longword containing the user-supplied address
of a word in which $GETDVI is to write the
information.

Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of the quadword I/O status block.

When you specify the iosb argument, $GETDVI sets the quadword to 0 upon
request initiation. Upon request completion, a condition value is returned to the
first longword; the second longword is reserved to Digital.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETDVI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETDVI, you must check the condition values returned
in both RO and the I/O status block.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETDVI completes. The astadr
argument is the address of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $GETDVI service. '

Item Codes

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$GETDVI

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

nullarg
Open VMS usage: null_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

Placeholding argument reserved to Digital.

DVl$_ACPPID
When you specify DVI$_ACPPID, $GETDVI returns the ACP process ID as a
4-byte hexadecimal number.

DVl$_ACPTYPE
When you specify DVI$_ACPTYPE, $GETDVI returns the ACP type code as a
4-byte hexadecimal number. The following symbols define each of the ACP type
codes that $GETDVI can return.

Symbol

DVI$C_ACP _Fll Vl

DVI$C_ACP _Fll V2
DVI$C_ACP _MTA

DVI$C_ACP _NET

DVI$C_ACP _REM

DVl$_ALLDEVNAM

Description

Files-11 Level 1

Files-11 Level 2
Magnetic tape

Networks

Remote 1/0

When you specify DVI$_ALLDEVNAM, $GETDVI returns the allocation-class
device name, which is a 64-byte hexadecimal string. The allocation-class device
name uniquely identifies each device that is currently connected to any node in a
VMScluster system or to a single-node system. This item code generates a single
unique name for a device even if the device is dual ported.

One use for the allocation-class device name might be in an application wherein
processes need to coordinate their access to devices (not volumes) using the lock
manager. In this case, the program would make the device a resource to be locked
by the lock manager, specifying as the resource name the following concatenated
components: (1) a user facility prefix followed by an underscore character and
(2) the allocation-class device name of the device.

Note that the name returned by the DVI$_DEVLOCKNAM item code should be
used to coordinate access to volumes.

SYS1-409

System Service Descriptions
$GETDVI

SYS1-410

DVl$_ALLOCLASS
When you specify DVI$_ALLOCLASS, $GETDVI returns the allocation class of
the host as a longword integer between 0 and 255. An allocation class is a unique
number between 0 and 255 that the system manager assigns to a pair of hosts
and the dual-pathed devices that the hosts make available to other nodes in the
cluster.

The allocation class provides a way for you to access dual-pathed devices through
either of the hosts that act as servers to the cluster. In this way, if one host of
an· allocation class set is not available, you can gain access to a device specified
by that allocation class through the other host of the allocation class. You do not
have to be concerned about which host of the allocation class provides access to
the device. Specifically, the device name string has the following format:

$allocation_class$device_name

For a detailed discussion of allocation classes, refer to VMScluster Systems for
Open VMS.

DVl$_ALT_HOST_AVAIL
When you specify DVI$_ALT_HOST_AVAIL, $GETDVI returns a longword that is
interpreted as Boolean. A value of 1 indicates that the host serving the alternate
path is available; a value of 0 indicates that it is not available.

The host is the node that makes the device available to other nodes in the
VMScluster system. A host node can be either a VAX system with an MSCP
server or an HSC50 controller.

A dual-pathed device is one that is made available to the cluster by two hosts.
Each of the hosts provides access (serves a path) to the device for users. One host
serves the primary path; the other host serves the alternate path. The primary
path is the path that the system creates through the first available host.

You should not be concerned with which host provides access to the device. When
accessing a device, you specify the allocation class of the desired device, not the
name of the host that serves it.

If the host serving the primary path fails, the system automatically creates a
path to the device through the alternate host.

DVl$_ALT _HOST _NAME
When you specify DVI$_ALT_HOST_NAME, $GETDVI returns the name of the
host serving the alternate path as a 64-byte zero-filled string.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code. ·

DVl$_ALT _HOST_ TYPE
When you specify DVI$_ALT_HOST_TYPE, $GETDVI returns, as a 4-byte string,
the hardware type of the host serving the alternate path. Each hardware type
has a symbolic name.

f!iM.fii

System Service Descriptions
$GETDVI

The following table shows each symbolic name and the host it denotes on VAX
systems.

Name

VAX

HS50
HS70

Host

Any VAX family processor

HSC50
HSC70+

The following table shows each symbolic name and the host it denotes on Alpha
systems.

Name

Alpha

HS50

HS70

Host

Any Alpha family processor

HSC50

HSC70+

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DV1$_ALT_HOST_AVAIL item
code.

DVl$_CLUSTER
When you specify DVI$_CLUSTER, $GETDVI returns the volume cluster size as
a 4-byte decimal number. This item code is applicable only to disks.

DVl$_CYLINDERS
When you specify DV1$_CYLINDERS, $GETDVI returns the number of cylinders
on the volume as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_DEVBUFSIZ
When you specify DVI$_DEVBUFSIZ, $GETDVI returns the device buffer size
(for example, the width of a terminal or the block size of a tape) as a 4-byte
decimal number.

DVl$_DEVCHAR
When you specify DV1$_DEVCHAR, $GETDVI returns device-independent
characteristics as a 4-byte bit vector. Each characteristic is represented by a bit.
When $GETDVI sets a bit, the device has the corresponding characteristic. Each
bit in the vector has a symbolic name. The $DEVDEF macro defines the following
symbolic names.

Symbol

DEV$V_REC

DEV$V_CCL
DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

Description

Device is record oriented.

Device is a carriage control device.

Device is a terminal.

Device is directory structured.

Device is single-directory structured.

SYS1-411

System Service Descriptions
$GETDVI

SYS1-412

Symbol

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

DEV$V_FOD

DEV$V_DUA
DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT
DEV$V_MBX

DEV$V_DMT

DEV$V_ELG
DEV$V_ALL

DEV$V_FOR
DEV$V_SWL

DEV$V_IDV
DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK
DEV$V_WCK

Description

· Device is sequential and block oriented.

Device is being spooled.

Device is an operator.

Disk contains Revector Cache Table (RCT). This bit is set
for every DAA disk.

Device is a network device.

Device is files oriented.

Device is dual ported.
Device is shareable.

Device is a generic device.

Device is available for use.

Device is mounted.
Device is a mailbox.

Device is marked for dismount.

Device has error logging enabled.

Device is allocated.
Device is mounted foreign.

Device is software write locked.
Device can provide input.
Device can provide output.

Device allows random access.
Device is a real-time device.

Device has read-checking enabled.
Device has write-checking enabled.

Note that each device characteristic has its own individual $GETDVI item
code with the format DVI$_xxxx, where xxxx are the characters following the
underscore character in the symbolic name for that device characteristic.

For example, when you specify the item code DVI$_REC, $GETDVI returns a
longword value that is interpreted as Boolean. If the value is 0, the device is
not record oriented; if the value is 1, it is record oriented. This information is
identical to that returned in the DEV$V _REC bit of the longword vector specified
by the DVI$_DEVCHAR item code.

The buffer must specify a longword for all of these device-characteristic item
codes.

DVl$_DEVCHAR2
When you specify DVI$_DEVCHAR2, $GETDVI returns additional device
independent characteristics as a 4-byte bit vector. Each bit in the vector, when
set, corresponds to a symbolic name. The $DEVDEF macro defines the following
symbolic names.

Symbol

DEV$V_CLU

DEV$V_DET

DEV$V_RTT

DEV$V_CDP
DEV$V_2P

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

DEV$V_RED
DEV$V_NNM

DEV$V_WBC

DEV$V_WTC

DEV$V_HOC
DEV$V_LOC

DEV$V_DFS

DEV$V_DAP

DEV$V_NLT

DEV$V_SEX

DEV$V_SHD

DEV$V_VRT
DEV$V_LDR

DEV$V_NOLB

DEV$V_NOCLU

DEV$V_VMEM
DEV$V_SCSI

DEV$V_WLG

DEV$V_NOFE

DVl$_DEVCLASS

Description

System Service Descriptions
$GETDVI

Device is available clusterwide.

Device is detached terminal.

Device has remote terminal UCB extension.

Dual-pathed device with two UCBs.
Two paths are known to this device.
Device accessed using MSCP (disk or tape). Before
using this bit to differentiate between types of disk and
tape devices, be sure that no other more appropriate
differentiation mechanism exists.

Device is a shadow set member.

Device is served by the MSCP server.

Device is redirected terminal.

Device has node$ prefix.

Device supports write-back caching.

Device supports write-through caching.

Device supports host caching.
Device accessible by local (non-emulated) controller.

Device is DFS-served.

Device is DAP accessed.

Device is not-last-track; that is, it has no bad block.
Information is on its last track.

Device (tape) supports serious exception handling.

Device is a member of a host-based shadow set.

Device is a shadow set virtual unit.
Loader present (tapes).

Device ignores server load balancing requests.

Device will never be available clusterwide.

Virtual member of a constituent set.

Device is an SCSI device.
Device has write-logging capability.

Device does not support forced error.

When you specify DVI$_DEVCLASS, $GETDVI returns the device class as a
4-byte decimal number. Each class has a corresponding symbol. The $DCDEF
macro defines these symbols. The following table describes each device class
symbol.

Symbol

DC$_DISK
DC$_TAPE

DC$_SCOM

Description

Disk device
Tape device

Synchronous communications device

SYS1-413

System Service Descriptions
$GETDVI

SYS1-414

Symbol

DC$_ CARD
DC$_TERM

DC$_LP

DC$_REALTIME
DC$_MAILBOX

DC$_MISC

DVl$_DEVDEPEND

Description

Card reader

Terminal

Line printer

Real-time

Mailbox

Miscellaneous device

When you specify DVI$_DEVDEPEND, $GETDVI returns device-dependent
characteristics as a 4-byte bit vector. To determine what information is returned
for a particular device, refer to the Open VMS I I 0 User's Reference Manual.

Note that, for terminals only, individual $GETDVI item codes are provided for
most of the informational items returned in the DVI$_DEVDEPEND longword bit
vector. The names of these item codes have the format DVI$_TT_xxxx, where xxxx
is the characteristic name. The same characteristic name follows the underscore
character in the symbolic name for each bit (defined by the $TTDEF macro) in
the DVI$_DEVDEPEND longword. For example, the DVI$_TT_NOECHO item
code returns the same information as that returned in the DVI$_DEVDEPEND
bit whose symbolic name is TT$V_NOECHO.

Each such item code requires that the buffer specify a longword value, which is
interpreted as Boolean. A value of 0 indicates that the terminal does not have
that characteristic; a value of 1 indicates that ,it does.

The list of these terminal-specific item codes follows this list of item codes.

DV1$_DEVDEPEND2
When you specify DVI$_DEVDEPEND2, $GETDVI returns additional device
dependent characteristics as a 4-byte bit vector. Refer to the Open VMS I I 0
User's Reference Manual to determine what information is returned for a
particular device.

Note that, for terminals only, individual $GETDVI item codes are provided for
most of the informational items returned in the DVI$_DEVDEPEND2 longword
bit vector. As with DVI$_DEVDEPEND, the same characteristic name appears
in the item code as appears in the symbolic name defined for each bit in the
DVI$_DEVDEPEND2 longword, except that in the case of DVI$_DEVDEPEND2,
the symbolic names for bits are defined by the $TT2DEF macro.

The list of these terminal-specific item codes follows this list of item codes.

DVl$_DEVICE_ TYPE_NAME
On Alpha systems, when you specify DVI$_DEVICE_TYPE_NAME, $GETDVI
returns a string identifying the type of the device about which information was
requested.+

DV1$_DEVLOCKNAM
When you specify DVI$_DEVLOCKNAM, $GETDVI returns the device lock name,
which is a 64-byte hexadecimal string. The device lock name uniquely identifies
each volume or volume set in a VMScluster system or in a single-node system.
This item code is applicable only to disks.

System Service Descriptions
$GETDVI

The item code is applicable to all disk volumes and volume sets: mounted, not
mounted, mounted shared, mounted private, or mounted foreign.

The device lock name is assigned to a volume when it is first mounted, and you
cannot change this name, even if the volume name itself is changed. This allows
any process on any node in a VMScluster system to access a uniquely identified
volume.

One use for the device lock name might be in an application wherein processes
need to coordinate their access to files using the lock manager. In this case,
the program would make the file a resource to be locked by the lock manager,
specifying as the resource name the following concatenated components: (1) a
user facility prefix followed by an underscore character, (2) the device lock name
of the volume on which the file resides, and (3) the file ID of the file.

DVl$_DEVNAM
When you specify DVI$_DEVNAM, $GETDVI returns the device name as a
64-byte, zero-filled string. The node name is also returned.

DVl$_DEVSTS
When you specify DVI$_DEVSTS, $GETDVI returns device-dependent status
information as a 4-byte bit vector. The $UCBDEF macro defines symbols for the
status bits. For this device-dependent information, refer to the Open VMS I I 0
User's Reference Manual.

DVl$_DEVTYPE
When you specify DVI$_DEVTYPE, $GETDVI returns the device type as a 4-byte
decimal number. The $DCDEF macro defines symbols for the device types.

DVl$_DFS_ACCESS
When you specify DVI$_DFS_ACCESS, $GETDVI returns a Boolean value
indicating whether a device is a DFS served disk. A value of 0 indicates that the
device is a DFS served disk; a value of 1 indicates that the device is not.

This information allows you to determine if a function works on remote disk
devices with DFS. Access control lists (ACLs), for example, cannot be set or
displayed on local disk devices with DFS.

DVl$_DISPLAY _DEVNAM
When you specify DVI$_DISPLAY_DEVNAM, $GETDVI returns the preferred
device name for user displays as a 256-byte zero-filled string. The DVI$_
DISPLAY_DEVNAM item code is not recommended for use with the $ASSIGN
service. Use the DVI$_ALLDEVNAM item code to return an allocation class
device name that is usable as input to a program.

DVl$_ERRCNT
When you specify DVI$_ERRCNT, $GETDVI returns the device's error count as a
4-byte decimal number.

DVl$_FREEBLOCKS
When you specify DVI$_FREEBLOCKS, $GETDVI returns the number of free
blocks on a disk as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_FULLDEVNAM
When you specify DVI$_FULLDEVNAM, $GETDVI returns the node name and
device name as a 64-byte, zero-filled string.

SYS1-415

System Service Descriptions
$GETDVI

SYS1-416

The DVI$_FULLDEVNAM item code is useful in a VMScluster environment
because, unlike DVI$_DEVNAM, DVI$_FULLDEVNAM returns the name of the
node on which the device resides.

One use for the DVI$_FULLDEVNAM item code might be to retrieve the name
of a device in order to have that name displayed on a terminal. However, you
should not use this name as a resource name as input to the lock manager; use
the name returned by the DVI$_DEVLOCKNAM item code for locking volumes
and the name returned by DVI$_ALLDEVNAM for locking devices.

DV1$_HOST _AVAIL
When you specify DVI$_HOST_AVAIL, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the host serving the primary
path is availab_le; a value of 0 indicates that it is not available.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST _COUNT
When you specify DVI$_HOST_COUNT, $GETDVI returns, as a longword
integer, the number of hosts that make the device available to other nodes in the
VMScluster system. One or two hosts, but no more, can make a device available
to other nodes in the cluster.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST _NAME
When you specify DVI$_HOST_NAME, $GETDVI returns the name of the host
serving the primary path as a 64-byte, zero-filled string.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST _TYPE
When you specify DVI$_HOST _TYPE, $GETDVI returns, as a 4-byte string, the
type of host serving the primary path. Each hardware type has a symbolic name.

The following table shows each symbolic name and the host it denotes on VAX
systems.

Name

VAX

HS50
HS70

Host

Any VAX family processor

HSC50

HSC70+

em;;;

System Service Descriptions
$GETDVI

The following table shows each symbolic name and the host it denotes on Alpha
systems.

Name

Alpha

HS50
HS70

Host

Any Alpha family processor

HSC50

HSC70+

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_LOCKID
When you specify DVI$_LOCKID, $GETDVI returns the lock ID of the lock on a
disk. The lock manager locks a disk if it is available to all nodes in a VMScluster
system and it is either allocated or mounted. A disk is available to all nodes in
a VMScluster system if, for example, it is served by an HSC controller or MSCP
server or if it is a dual-ported MASSBUS disk.

The buffer must specify a longword into which $GETDVI is to return the 4-byte
hexadecimal lock ID.

DVl$_LOGVOLNAM
When you specify DVI$_LOGVOLNAM, $GETDVI returns the logical name of the
volume or volume set as a 64-byte string.

DVl$_MAXBLOCK
When you specify DVI$_MAXBLOCK, $GETDVI returns the maximum number
of blocks on the volume as a 4-byte decimal number. This item code is applicable
only to disks.

DVl$_MAXFILES
When you specify DVI$_MAXFILES, $GETDVI returns the maximum number of
files on the volume as a 4-byte decimal number. This item code is applicable only
to disks.

DV1$_MEDIA_ID
When you specify DVI$_MEDIA_ID, $GETDVI returns the nondecoded media ID
as a longword. This item code is applicable only to disks and tapes.

DVl$_MEDIA_NAME
When you specify DVI$_MEDIA_NAME, $GETDVI returns the name of the
volume type (for example, RK07 or TA 78) as a 64-byte, zero-filled string. This
item code is applicable only to disks and tapes.

DV1$_MEDIA_ TYPE
When you specify DVI$_MEDIA_TYPE, $GETDVI returns the device name prefix
of the volume (for example, DM for an RK07 device or MU for a TA 78 device) as a
64-byte, zero-filled string. This item code is applicable only to disks and tapes.

DVl$_MOUNTCNT
When you specify DVI$_MOUNTCNT, $GETDVI returns the mount count for the
volume as a 4-byte decimal number.

SYS1-417

System Service Descriptions
$GETDVI

SYS1-418

DVl$_MSCP _UNIT_NUMBER
When you specify DVI$_MSCP_UNIT_NUMBER, $GETDVI returns the internal
coded value for MSCP unit numbers as a longword integer. This item code is
reserved to Digital.

DVl$_NEXTDEVNAM
When you specify DVI$_NEXTDEVNAM, $GETDVI returns the device name of
the next volume in the volume set as a 64-byte, zero-filled string. The node name
is also returned. This item code is applicable only to disks.

DVl$_0PCNT
When you specify DVI$_0PCNT, $GETDVI returns the operation count for the
volume as a 4-byte decimal number.

DVl$_0WNUIC
When you specify DVI$_0WNUIC, $GETDVI returns the user identification code
(UIC) of the owner of the device as a standard 4-byte UIC.

DV1$_PID
When you specify DVI$_PID, $GETDVI returns the process identification (PID) of
the owner of the device as a 4-byte hexadecimal number.

DVl$_RECSIZ
When you specify DVI$_RECSIZ, $GETDVI returns the blocked record size as a
4-byte decimal number.

DVl$_REFCNT
When you specify DVI$_REFCNT, $GETDVI returns the number of channels
assigned to the device as a 4-byte decimal number.

DVl$_REMOTE_DEVICE
When you specify DVI$_REMOTE_DEVICE, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the device is a remote
device; a value of 0 indicates that it is not a remote device. A remote device is
a device that is not directly connected to the local node, but instead is visible
through the VMScluster system.

DVl$_ROOTDEVNAM
When you specify DVI$_ROOTDEVNAM, $GETDVI returns the device name of
the root volume in the volume set as a 64-byte, zero-filled string. This item code
is applicable only to disks.

DVl$_SECTORS
When you specify DVI$...:.SECTORS, $GETDVI returns the number of sectors per
track as a 4-byte decimal number. This item code is applicable only to disks.

DVl$_SERIALNUM
When you specify DVI$_SERIALNUM, $GETDVI returns the serial number of
the volume as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_SERVED_DEVICE
When you specify DVI$_SERVED_DEVICE, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the device is a served
device; a value of 0 indicates that it is not a served deVice. A served device is one
whose local node makes it available to other nodes in the VMScluster system.

DVl$_SHDW_CATCHUP _COPYING

System Service Descriptions
$GETDVI

When you specify DVI$_SHDW_CATCHUP_COPYING, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates that the device
is the target of a full copy operation.

DVl$_SHDW_FAILED_MEMBER
When you specify DVI$_SHDW_FAILED_MEMBER, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates that the
device is a member that has been removed from the shadow set by the remote
server. The DVI$_SHDW_FAILED_MEMBER item code is for use only with
VAX Volume Shadowing (phase I).

DVl$_SHDW_MASTER
When you specify DVI$_SHDW _MASTER, $GETDVI returns a longword, which
is interpreted as Boolean. The value 1 indicates that the device is a virtual unit.

DVl$_SHDW_MASTER_NAME
When you specify DVI$_SHOW _MASTER_NAME and the specified device is a
shadow set member, $GETDVI returns the device name of the virtual unit that
represents the shadow set of which the specified device is a member. $GETDVI
returns a null string if the specified device is not a member or is itself a virtual
unit.

Shadow set members must have a nonzero allocation class to operate in
a VMScluster system. See Volume Shadowing for Open VMS for more
information.

Because the shadow set virtual unit name can include up to 64 characters, the
buffer length field of the item descriptor should specify 64 (bytes).

DVl$_SHDW_MEMBER
When you specify DVI$_SHDW _MEMBER, $GETDVI returns a longword, which
is interpreted as Boolean. The value 1 indicates that the device is a shadow set
member.

DVl$_SHDW_MERGE_COPYING
When you specify DVI$_SHDW_MERGE_COPYING, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates that the
device is a merge member of the shadow set.

DVl$_SHDW_NEXT_MBR_NAME
When you specify DVI$_SHDW_NEXT_MBR_NAME, $GETDVI returns the
device name of the next member in the shadow set. If you specify a virtual unit,
$GETDVI returns the shadow set member device names in random order. If
you specify the name of a device that is neither a virtual unit nor a member,
$GETDVI returns a null string.

$GETDVI returns the device name of the next member in the shadow set even if
the remote server has removed the next member from the shadow set.

SYS1-419

System Service Descriptions
$GETDVI

SYS1-420

When the shadow set members have a nonzero allocation class, the device name
returned by $GETDVI contains the allocation class; the name has the form
$allocation-class$device. For example, if a shadow set has an allocation class of
255 and the device name is DUSlO, $GETDVI returns the string 255DUS10.

Note ___________ _

Shadow set members must have a nonzero allocation class to operate in
a VMScluster system. See Volume Shadowing for Open VMS for more
information.

Because a device name can include up to 64 characters, the buffer length field of
the item descriptor should specify 64 (bytes).

DVl$_STS
When you specify DVI$_STS, $GETDVI returns the device unit status as a 4-byte
bit vector. Each bit in the vector, when set, corresponds to a symbolic name that
is defined by the $UCBDEF macro. The following table describes each name.

Symbol

UCB$V_TIM

UCB$V_INT

UCB$V _ERLOGIP

UCB$V_CANCEL
UCB$V_ONLINE

UCB$V _POWER

UCB$V_TIMOUT

UCB$V _INTTYPE
UCB$V_BSY

UCB$V _MOUNTING

UCB$V _DEADMO
UCB$V_VALID

UCB$V _UNLOAD
UCB$V _TEMPLATE

UCB$V _MNTVERIP

UCB$V _ WRONGVOL

UCB$V _DELETEUCB

DVl$_ TRACKS

Description

Timeout is enabled.

Interrupt is expected.
Error log is in progress on unit.

I/O on unit is canceled.
Unit is on line.

Power failed while unit busy.

Unit timed out.

Receiver interrupt.
Unit is busy.

Device is being mounted.

Deallocate at dismount.
Volume is software valid.

Unload volume at dismount.

Template UCB from which other UCBs for this device
type are made.
Mount verification is in progress.

Wrong volume detected during mount verification.

Delete this UCB when reference count equals 0.

When you specify DVI$_TRACKS, $GETDVI returns the number of tracks per
cylinder as a 4-byte decimal number. This item code is applicable only to disks.

DVI$_ TRANSCNT
When you specify DVI$_TRANSCNT, $GETDVI returns the transaction count for
the volume as a 4-byte decimal numl:Jer.

DV1$_ TT _ACCPORNAM

System Service Descriptions
$GETDVI

When you specify DVI$_ TT_ACCPORNAM, $GETDVI returns the name of the
remote access port associated with a channel number or with a physical or virtual
terminal device number. If you specify a device that is not a remote terminal or
a remote type that does not support this feature, $GETDVI returns a null string.
The $GETDVI service returns the access port name as a 64-byte zero-filled string.

The $GETDVI service returns the name in the format of the remote system.
If the remote system is a LAT terminal server, $GETDVI returns the name as
server _name I port_name. The names are separated by the slash (/) character. If
the remote system is an X.29 terminal, the name is returned as network.remote_
DTE.

When writing applications, you should use the string returned by DVI$_
ACCPORNAM, instead of the physical device name, to identify remote terminals.

DVl$_TT_CHARSET
When you specify DVI$TT_CHARSET, $GETDVI returns, as a 4-byte bit vector,
the character sets supported by the terminal. Each bit in the vector, when set,
corresponds to the name of a coded character set. The $TTCDEF macro defines
the following coded character sets.

Symbol

TTC$V_HANGUL

TTC$V _HANYU
TTC$V _HANZI

TTC$V_KANA

TTC$V _KANJI

TTC$V_THAI

DVl$_ TT _CS_HANGUL

Description

DEC Korean

DEC Hanyu
DEC Hanzi

DEC Kana

DEC Kanji

DEC Thai

When you specify DVI$_TT_CS_HANGUL, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the device supports the
DEC Korean coded character set; a value of 0 indicates that the device does not
support the DEC Korean coded character set.

DV1$_ TT _CS_HANYU
When you specify DVI$_TT_CS_HANYU, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the device supports the DEC
Hanyu coded character set; a value of 0 indicates that the device does not support
the DEC Hanyu coded character set.

DV1$_ TT _CS_HANZI
When you spedfy DVI$_TT_CS_HANZI, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the device supports the DEC
Hanzi coded character set; a value of 0 indicates that the device does not support
the DEC Hanzi coded character set.

DV1$_ TT _CS_KANA
When you specify DVI$_TT_CS_KANA, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the device supports the DEC
Kana coded character set; a value of 0 indicates that the device does not support
the DEC Kana coded character set.

SYS1-421

System Service Descriptions
$GETDVI

SYS1-422

DVl$_ TT _CS_KANJI
When you specify DVI$_TT_CS_KANJI, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the device supports the DEC
Kanji coded character set; a value of 0 indicates that the device does not support
the DEC Kanji coded character set.

DVl$_ TT _CS_ THAI
When you specify DVI$_TT_CS_THAI, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the device supports the DEC
Thai coded character set; a value of 0 indicates that the device does not support
the DEC Thai coded character set.

DVl$_ TT _PHYDEVNAM
When you specify DVI$_TT_PHYDEVNAM, $GETDVI returns a string containing
the physical device name of a terminal. If the caller specifies a disconnected
virtual terminal or a device that is not a terminal, $GETDVI returns a null
string. $GETDVI returns the physical device name as a 64-byte zero-filled string.

DVl$_UNIT
When you specify DVI$_UNIT, $GETDVI returns the unit number as a 4-byte
decimal number.

DVI$_ VOLCOUNT
When you specify DVI$_ VOLCOUNT, $GETDVI returns the number of volumes
in the volume set as a 4-byte decimal number. This item code is applicable only
to disks.

DVl$_ VOLNAM
When you specify DVI$_ VOLNAM, $GETDVI returns the volume name as a
12-byte zero-filled string.

DVl$_VOLNUMBER
When you specify DVI$_ VOLNUMBER, $GETDVI returns the volume number
of this volume in the volume set as a 4-byte decimal number. This item code is
applicable only to disks.

DVl$_VOLSETMEM
When you specify DVI$_ VOLSETMEM, $GETDVI returns a longword value,
which is interpreted as Boolean. A value of 1 indicates that the device is part of a
volume set; a value of 0 indicates that it is not. This item code is applicable only
to disks.

DVl$_VPROT
When you specify DVI$_ VPROT, $GETDVI returns the volume protection mask
as a standard 4-byte protection mask.

DVl$_ TT _xxxx
DVI$_TT_xxxx is the format for a series of item codes that return information
about terminals. This information consists of terminal characteristics. The xxxx
portion of the item code name specifies a single terminal characteristic.

Each of these item codes requires that the buffer specify a longword into which
$GETDVI will write a 0 or 1: 0 if the terminal does not have the specified
characteristic, and 1 if the terminal does have it. The one exception is the DVI$_
TT_PAGE item code, which when specified causes $GETDVI to return a decimal
longword value that is the page size of the terminal.

System Service Descriptions
$GETDVI

You can also obtain this terminal-specific information by using the DVI$_
DEVDEPEND and DVI$_DEVDEPEND2 item codes. Each of these two item
codes specifies a longword bit vector wherein each bit corresponds to a terminal
characteristic; $GETDVI sets the corresponding bit for each characteristic
possessed by the terminal.

Following is a list of the item codes that return information about terminal
characteristics. For information about these characteristics, refer to the
description of the F$GETDVI lexical function in the Open VMS DCL Dictionary.

DVI$_TT_NOECHO
DVI$_TT_HOSTSYNC
DVI$_TT_ESCAPE

DVI$_TT_MECHTAB
DVI$_TT_LFFILL

DVI$_TT_CRFILL
DVI$_TT_EIGHTBIT
DVI$_TT_READSYNC
DVI$_TT_NOBRDCST
DVI$_TT_MODEM
DVI$_TT_LOCALECHO
DVI$_TT_PAGE

DVI$_TT_MODHANGUP
DVI$_TT_DMA
DVI$_TT_ANSICRT
DVI$_TT_AVO
DVI$_TT_BLOCK
DVI$_TT_EDITING

DVI$_TT_DIALUP
DVI$_TT_FALLBACK
DVI$_TT_PASTHRU
DVI$_TT_PRINTER

DVI$_TT_DRCS
DVI$_TT_DECCRT2
DVI$_TT_DECCRT3
DVI$_TT_DECCRT4

DV1$_yyyy

DVI$_TT_NOTYPEAHD
DVI$_TT_TTSYNC
DVI$_TT_LOWER
DVI$_TT_WRAP
DVI$_TT_SCOPE

DVI$_TT_SETSPEED
DVI$_TT_MBXDSABL
DVI$_TT_MECHFORM
DVI$_TT_HALFDUP
DVI$_TT_OPER
DVI$_TT_AUTOBAUD
DVI$_TT_HANGUP
DVI$_TT_BRDCSTMBX

DVI$_TT_ALTYPEAHD
DVI$_TT_REGIS
DVI$_TT_EDIT
DVI$_TT_DECCRT
DVI$_TT_INSERT

DVI$_TT_SECURE
DVI$_TT_DISCONNECT
DVI$_TT_SIXEL
DVI$_TT_APP _KEYPAD
DVI$_TT_SYSPWD

DVI$_yyyy is the format for a series of item codes that return device-independent
characteristics of a device. There is an item code for each device characteristic
returned in the longword bit vector specified by the DVI$_DEVCHAR item code.

In the description of the DVI$_DEVCHAR item code is a list of symbol names in
which each symbol represents a device characteristic. To construct the $GETDVI
item code for each device characteristic, substitute for yyyy that portion of the
symbol name that follows the underscore character. For example, the DVI$_REC
item code returns the same information as the DEV$V_REC bit in the DVI$_
DEVCHAR longword bit vector.

SYS1-423

System Service Descriptions
$GETDVI

Description

SYS1-424

The buffer for each of these item codes must specify a longword value, which
is interpreted as Boolean. The $GETDVI service writes the value 1 into the
longword if the device has the specified characteristic and the value 0 if it does
not.

The Get DeviceNolume Information service returns primary and secondary device
characteristics information about an I/O device. You can use the chan argument
only if (1) the channel has already been assigned, and (2) the caller's access
mode is equal to or more privileged than the access mode from which the original
channel assignment was made. ·

The caller of $GETDVI does not need to have a channel assigned to the device
about which information is desired.

The $GETDVI service returns information about both primary device
characteristics and secondary device characteristics. By default, $GETDVI
returns information about the primary device characteristics only.

To obtain information about secondary device characteristics, you must logically
OR the item code specifying the information desired with the code DVI$C_
SECONDARY.

You can obtain information about primary and secondary devices in a single call
to $GETDVI.

In most cases, the two sets of characteristics (primary and secondary) returned
by $GETDVI are identical. However, the two sets provide different information in
the following cases:

• If the device has an associated mailbox, the primary characteristics are those
of the assigned device and the secondary characteristics are those of the
associated mailbox.

• If the device is a spooled device, the primary characteristics are those of the
intermediate device (such as the disk) and the secondary characteristics are
those of the spooled device (such as the printer).

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

Unless otherwise stated in the description of the item code, $GETDVI returns
information about the local node only.

Required Access or Privileges
None

Required Quota
Sufficient AST quota.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_NCHAN

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

System Service Descriptions
$GETDVI

The service completed successfully.

The device name string descriptor, device name
string, or itmlst argument cannot be read; or
the buffer or return length longword cannot be
written by the caller.

The item list contains an invalid item code, or
the buffer address field in an item descriptor
specifies less than four bytes for the return
length information.

The process has exceeded its AST limit quota.

You specified an invalid channel number, that
is, a channel number larger than the number of
channels.
The device name string contains invalid
characters, or neither the devnam nor chan
argument was specified.

The device name string has a length of 0 or has
more than 63 characters.

The device is on a remote system.

The specified channel is not assigned or was
assigned from a more privileged access mode.
The specified device does not exist on the host
system.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO.

SYS1-425

System Service Descriptions
$GETDVIW

$GETDVIW
Get DeviceNolume Information and Wait

Format

SYS1-426

The Get DeviceNolume Information and Wait service returns information
about an I/O device; this information consists of primary and secondary device
characteristics.

The $GETDVIW service completes synchronously; that is, it returns to the caller
with the requested information. Digital recommends that you use an IOSB with
this service. An IOSB prevents the service from completing prematurely. In
addition, the IOSB contains additional status information.

For asynchronous completion, use the Get DeviceNolume Information ($GETDVI)
service; $GETDVI returns to the caller after queuing the information request,
without waiting for the information to be returned. In all other respects,
$GETDVIW is identical to $GETDVI. For all other information about the
$GETDVIW service, refer to the description of $GETDVI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$GETDVIW [efn] ,[chan] ,[devnam] ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

$GETJPI

System Service Descriptions
$GETJPI

Get Job/Process Information

Format

Arguments

Returns information about one or more processes on the system or across the
VMScluster system.

The $GETJPI service completes asynchronously. For synchronous completion, use
the Get Job/Process Information and Wait ($GETJPIW) service.

SYS$GET JPI [efn] ,[pidadr] ,[prcnam] ,itmlst ,[iosb] ,[astadr] ,[astprm]

efn
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETJPI returns the requested
information. The efn argument is a longword containing this number; however,
$GETJPI uses only the low-order byte.

Upon request initiation, $GETJPI clears the specified event flag (or event flag 0 if
efn was not specified). Then, when $GETJPI returns the requested information,
it sets the specified event flag (or event flag 0).

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process about which $GETJPI is to return
information. The pidadr argument is the address of a longword containing the
PID. The pidadr argument can refer to a process running on the local node or a
process running on another node in the cluster.

If you give pidadr the value -1, $GETJPI assumes a wildcard operation and
returns the requested information for each process on the system that it has the
privilege to access, one process per call. To perform a wildcard operation, you
must call $GETJPI in a loop, testing for the condition value SS$_NOMOREPROC
after each call and exiting from the loop when SS$_NOMOREPROC is returned.

If you use $GETJPI with $PROCESS_SCAN you can perform wildcard searches
across the cluster. In addition, with $PROCESS_SCAN you can search for specific
processes based on many different selection criteria.

You cannot abbreviate a PID. All significant digits of a PID must be specified;
only leading zeros can be omitted.

SYS1-427

System Service Descriptions
$GETJPI

SYS1-428

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the process about which $GETJPI is to return information. The prcnam
argument is the address of a character string descriptor pointing to this name
string.

A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a cluster, you must specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

A local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

You may use the prcnam argument only if the process identified by prcnam has
the same UIC group number as the calling process. If the process has a different
group number, $GETJPI returns no information. To obtain information about
processes in other groups, you must use the pidadr argument.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to be
returned. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0

Item code J Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

iosb

Definition

System Service Descriptions
$GETJPI

A word containing a user-supplied integer specifying
the length (in bytes) of the buffer in which $GETJPI
is to write the information. The length of the buffer
needed depends upon the item code specified in the
item code field of the item descriptor. If the value
of buffer length is too small, $GETJPI truncates the
data.
A word containing a user-supplied symbolic code
specifying the item of information that $GETJPI is
to return. The $JPIDEF macro defines these codes.
Each item code is described in the Item Codes
section.
A longword containing the user-supplied address
of the buffer in which $GETJPI is to write the
information.

A longword containing the user-supplied address
of a word in which $GETJPI writes the length (in
bytes) of the information it actually returned.

Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of the quadword I/O status block.

When you specify the iosb argument, $GETJPI sets the quadword to 0 upon
request initiation. Upon request completion, a condition value is returned to the
first longword; the second longword is reserved for future use.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the

. $GETJPI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETJPI, you must check the condition values returned
in both RO and the I/O status block.

SYS1-429

System Service Descriptions
$GETJPI

Item Codes

SYS1-430

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETJPI completes. The astadr
argument is the address of this routine.

If you specify astadr, the AST routine executes at the same access ~ode as the
caller of the $GETJPI service.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

JPl$_ACCOUNT
When you specify JPl$_ACCOUNT, $GETJPI returns the account name of the
process, which is an 8-byte string, filled with trailing blanks if necessary.

JPl$_APTCNT
When you specify JPI$_APTCNT, $GETJPI returns, in pages (on VAX systems) or
pagelets (on Alpha systems), the active page table count of the process, which is a
longword integer value.

JPl$_ASTACT
When you specify JPI$_ASTACT, $GETJPI returns the names of the access modes
having active ASTs. This information is returned in a longword bit vector. When
bit 0 is set, an active kernel mode AST exists; bit 1, an executive mode AST; bit
2, a supervisor mode AST; and bit 3, a user mode AST.

JPl$_ASTCNT
When you specify JPl$_ASTCNT, $GETJPI returns a count of the remaining AST
quota, which is a longword integer value.

JPl$_ASTEN
When you specify JPl$_ASTEN, $GETJPI returns the names of the access modes
having ASTs enabled. This information is returned in a longword bit vector.
When bit 0 is set, kernel mode has ASTs enabled; bit 1, executive mode; bit 2,
supervisor mode; and bit 3, user mode.

JPl$_ASTLM
When you specify JPl$_ASTLM, $GETJPI returns the AST limit quota of the
process, which is a longword integer value.

JPl$_AUTHPRI
When you specify JPl$_AUTHPRI, $GETJPI returns the authorized base priority
of the process, which is a longword integer value. The authorized base priority is
the highest priority a process without ALTPRI privilege can attain by means of
the $SETPRI service.

JPl$_AUTHPRIV

System Service Descriptions
$GETJPI

When you specify JPI$_AUTHPRIV, $GETJPI returns the privileges that the
process is authorized to enable. These privileges are returned in a quadword
privilege mask and are defined by the $PRVDEF macro.

JPl$_BIOCNT
When you specify JPI$_BIOCNT, $GETJPI returns a count of the remaining
buffered 1/0 quota, which is a longword integer value.

JPl$_BIOLM
When you specify JPl$_BIOLM, $GETJPI returns the buffered 1/0 limit quota of
the process, which is a longword integer value.

JPl$_BUFIO
When you specify JPl$_BUFIO, $GETJPI returns a count of the buffered 1/0
operations of the process, which is a longword integer value.

JPl$_BYTCNT
When you specify JPI$_BYTCNT, $GET JPI returns the remaining buffered 1/0
byte count quota of the process, which is a longword integer value.

JPl$_BYTLM
When you specify JPI$_BYTLM, $GETJPI returns the buffered 1/0 byte count
limit quota of the process, which is a longword integer value.

JPl$_CHAIN
When you specify JPI$_CHAIN, $GETJPI processes another item list immediately
after processing the current one. The buffer address field in the item descriptor
specifies the address of the next item list to be processed. You must specify the
JPl$_CHAIN item code last in the item list.

JPl$_CLINAME
When you specify JPI$_CLINAME, $GETJPI returns the name of the command
language interpreter that the process is currently using. Because the CLI name
can include up to 39 characters, the buffer length field in the item descriptor
should specify 39 bytes.

JPl$_CPU_ID
When you specify JPI$_CPU_ID, $GETJPI returns, as a longword integer, the ID
of the CPU on which the process is running or on which it last ran. This value is
returned as -1 if the system is not a multiprocessor.

JPl$_CPULIM
When you specify JPI$_CPULIM, $GETJPI returns the CPU time limit of the
process, which is a longword integer value.

JPl$_CPUTIM
When you specify JPI$_CPUTIM, $GETJPI returns the process's accumulated
CPU time in 10-millisecond ticks, which is a longword integer value.

JPl$_CREPRC_FLAGS
When you specify JPI$_CREPRC_FLAGS, $GETJPI returns the flags specified by
the stsflg argument in the $CREPRC call that created the process. The flags are
returned as a longword bit vector.

SYS1-431

System Service Descriptions
$GETJPI

SYS1-432

JPl$_CURPRIV
When you specify JPI$_CURPRiv, $GETJPI returns the current privileges of
the process. These privileges are returned in a quadword privilege mask and are
defined by the $PRVDEF macro. ·

JPl$_DFMBC
When you specify JPI$_DFMBC, $GETJPI returns the default multibuffer count
for a process as a longword integer value.

JPl$_DFPFC
When you specify JPI$_DFPFC, $GETJPI returns the default page fault cluster
size of the process, which is a longword integer value measured in pages (on VAX
systems) or pagelets (on Alpha systems).

JPl$_DFWSCNT
When you specify JPI$_DFWSCNT, $GETJPI returns, in pages (on VAX systems)
or pagelets (on Alpha systems), the default working set size of the process, which
is a longword integer value.

JPl$_DIOCNT
When you specify JPI$_DIOCNT, $GETJPI returns the remaining direct I/O
quota of the process, which is a longword integer value.

JPl$_DIOLM
When you specify JPI$_DIOLM, $GETJPI returns the direct I/O quota limit of
the process, which is a longword integer value.

JPl$_DIRIO
When you specify JPI$_DIRIO, $GETJPI returns a count of the direct I/O
operations of the process, which is a longword integer value.

JPl$_EFCS
When you specify JPI$_EFCS, $GETJPI returns the state of the process's local
event flags 0 through 31 as a longword bit vector.

JPl$_EFCU
When you specify JPI$_EFCU, $GETJPI returns the state of the process's local
event flags 32 through 63 as a longword bit vector.

JPl$_EFWM
When you specify JPI$_EFWM, $GETJPI returns the event flag wait mask of the
process, which is a longword bit vector.

JPl$_ENQCNT
When you specify JPI$_ENQCNT, $GETJPI returns the remaining lock request
quota of the process, which is a longword integer value.

JPl$_ENQLM
When you specify JPI$_ENQLM, $GETJPI returns the lock request quota of the
process, which is a longword integer value.

JPl$_EXCVEC
When you specify JPI$_EXCVEC, $GETJPI returns the address of a list of
exception vectors for the process. Each exception vector in the list is a longword.
There are eight vectors in the list: these are, in order, a primary and a secondary

System Service Descriptions
$GETJPI

vector for kernel mode access, for executive mode access, for supervisor mode
access, and for user mode access.

The $GETJPI service cannot return this information for any process other than
the calling process; if you specify this item code and the process is not the calling
process, $GETJPI returns the value 0 in the buffer.

JPl$_FAST_VP _SWITCH
When you specify JPI$_FAST_ VP _SWITCH, $GETJPI returns an unsigned
longword containing the number of times this process has issued a vector
instruction that resulted in an inactive vector processor being enabled without
the expense of a vector context switch. In other words, this count reflects those
instances where the process has reenabled a vector processor on which the
process's vector context has remained intact.

JPl$_FILCNT
When you specify JPI$_FILCNT, $GETJPI returns the remaining open file quota
of the process, which is a longword integer value.

JPl$_FILLM
When you specify JPI$_FILLM, $GETJPI returns the open file limit quota of the
process, which is a longword value.

JPl$_FINALEXC
When you specify JPI$_FINALEXC, $GETJPI returns the address of a list of final
exception vectors for the process. Each exception vector in the list is a longword.
There are four vectors in the list, one for each access mode, in this order: kernel,
executive, supervisor, and user.

The $GETJPI service cannot return this information for any process other than
the calling process; if you specify this item code and the process is not the calling
process, $GETJPI returns the value 0 in the buffer.

JPl$_FREPOVA
When you specify JPI$_FREPOVA, $GETJPI returns the address of the first free
page at the end of the program region (PO space) of the process.

JPl$_FREP1 VA
When you specify JPI$_FREP1VA, $GETJPI returns the address of the first free
page at the end of the control region (Pl space) of the process.

JPl$_FREPTECNT
When you specify JPI$_FREPTECNT, $GETJPI returns the number of pages (on
VAX systems) or pagelets (on Alpha systems) that the process has available for
virtual memory expansion.

On VAX systems, the value returned is a longword integer. On Alpha systems,
the value returned requires a quadword of storage. If the buffer size supplied is
not equal to 8 bytes, and the number of free pagelets exceeds the maximum value
that can be represented in a longword, $GETJPI returns the largest positive
32-bit integer: 2147483647.

JPl$_GET JPl_CONTROL_FLAGS
The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the
$GETJPI item list, provides additional control over $GETJPI. Therefore, .
$GETJPI may be unable to retrieve all the data requested in an item list because
JPI$_GETJPI_CONTROL_FLAGS requests that $GETJPI not perform certain

SYS1-433

System Service Descriptions
$GETJPI

SYS1-434

actions that may be necessary to collect the data. For example, a $GETJPI
control flag may instruct the calling program not to retrieve a process that has
been swapped out of the balance set.

If $GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
$GETJPI received a data item, examine the data length to be sure that it is not
0. To ensure the verification, be sure to specify the return length for each item in
the $GETJPI item list when any of the JPl$_GETJPI_CONTROL_FLAGS flags is
used.

Unlike other $GETJPI item codes, the JPl$_GETJPI_CONTROL_FLAGS item is
an input item. The item list entry should specify a longword buffer. The desired
control flags should be set in this buffer.

Since the JPl$_GETJPI_CONTROL_FLAGS item code tells $GETJPI how to
interpret the item list, it must be the first entry in the $GETJPI item list. The
error code SS$_BADPARAM is returned if it is not the first item in the list.

The JPl$_GETJPI_CONTROL_FLAGS item code includes the following flags.

Flag

JPl$M_NO_TARGET_
INSWAP

Description

Does not retrieve a process that has been swapped
out of the balance set. This control flag is used to
avoid adding the load of swapping processes into a
system. By using this control flag and requesting
information from a process that has been swapped
out, the following occurs:

• Any data stored in the virtual address space of
the process is not accessible.

• Any data stored in the process header (PHD)
may not be accessible.

• Any data stored in resident data structures,
such as the process control block (PCB) or the
job information block (JIB), is accessible.

You must examine the return length of an item to
verify that the item was retrieved.

Flag

JPI$M_NO_TARGET_AST

JPI$M_IGNORE_TARGET_
STATUS

JPl$_GPGCNT

Description

System Service Descriptions
$GETJPI

Does not deliver a kernel mode AST to the
target process. This control flag is used to avoid
executing a target process to retrieve information.
By using this control flag and not delivering an
AST to a target process, the following occurs:

• Any data stored in the virtual address space of
the process is not accessible.

• Any data stored in system data structures,
such as the process header (PHD), the process
control block (PCB), or the job information
block (JIB), is accessible.

You must examine the return length of an item to
verify that the item was retrieved.
The use of this control flag also implies that
$GETJPI does not swap in a process, because
$GETJPI would only bring a process into memory
to deliver an AST to that process.
Attempts to retrieve as much information as
possible, even though the process might be
suspended or is being deleted. This control flag
is used to retrieve all possible information from a
process.

When you specify JPl$_GPGCNT, $GETJPI returns, in pages (on VAX systems)
or pagelets (on Alpha systems), the process's global page count in the working set,·
which is a longword integer value.

JPl$_GRP
When you specify JPI$_GRP, $GETJPI returns, as a longword integer value, the
group number of the process's UIC.

JPl$_1MAGECOUNT
When you specify JPl$_IMAGECOUNT, $GETJPI returns, as a longword integer
value, the number of images that have been run down for the process.

JPl$_1MAGE_RIGHTS
When you specify JPl$_IMAGE_RIGHTS, $GETJPI returns the binary content
of the image rights list as an array of quadword identifiers. Each entry consists
of a longword identifier value and longword identifier attributes, as shown in
Table SYSl-9. The image rights list is a set of identifiers associated with a
protected subsystem image. When a process runs a protected subsystem, the
subsystem rights are automatically added to the process's image rights list.
These identifiers are subsequently removed during image rundown. Allocate a
buffer that is sufficient to hold the image rights list, because $GETJPI returns
only as much of the list as will fit in the buffer.

SYS1-435

System Service Descriptions
$GETJPI

SYS1-436

Table SYS1-9 Attributes of an Identifier

Symbolic Name

KGB$M_DYNAMIC

tKGB$M_NOACCESS

KGB$M_RESOURCE
tKGB$M_SUBSYSTEM

tVAX specific

JPl$_1MAGNAME

Description

Identifier can be enabled or disabled.

Rights of the identifier are null and void.

Resources can be charged to the identifier.
Identifier can be used to create protected
subsystems.

When you specify JPI$_IMAGNAME, $GETJPI returns, as a character string, the
directory specification and the image file name.

JPl$_1MAGPRIV
When you specify JPI$_IMAGPRIV, $GETJPI returns a quadword mask of the
privileges with which the current image was installed. If the current image was
not installed, $GETJPI returns the value 0 in the buffer.

JPl$_JOBPRCCNT .
When you specify JPI$_JOBPRCCNT, $GETJPI returns the total number of
subprocesses owned by the job, which is a longword integer value.

JPl$_JOBTYPE
When you specify JPI$_JOBTYPE, $GETJPI returns the execution mode of
the process at the root of the job tree, which is a longword integer value. The
symbolic name and value for each execution mode are listed in the following
table. The $JPIDEF macro defines the symbolic names.

Mode Name Value

JPI$K_DETACHED 0

JPI$K_NETWORK 1
JPI$K_BATCH 2

JPI$K_LOCAL 3
JPI$K_DIALUP 4

JPI$K_REMOTE 5

JPl$_LAST _LOGIN_I
When you specify JPI$_LAST_LOGIN_I, $GETJPI returns, as a quadword
absolute time value, the date of the last successful interactive login prior to the
current session. It returns a quadword of 0 when processes have not executed the
LOGINOUT image.

JPl$_LAST _LOGIN_N
When you specify JPI$_LAST_LOGIN_N, $GETJPI returns, as a quadword
absolute time value, the date of the last successful noninteractive login prior to
the current session. It returns a quadword of 0 when processes ha~e not executed
the LOGINOUT image.

JPl$_LOGIN_FAILURES

System Service Descriptions
$GETJPI

When you specify JPI$_LOGIN_FAILURES, $GETJPI returns the number of
login failures that occurred prior to the current session. It returns a longword of
0 when processes have not executed the LOGINOUT image.

JPl$_LOGIN_FLAGS
When you specify JPI$_LOGIN_FLAGS, $GETJPI returns a longword bitmask
containing information related to the login sequence. It returns a longword of 0
when processes have not executed the LOGINOUT image. The following bits are
defined.

Symbolic Name

JPI$M_NEW _MAIL_AT_LOGIN

JPI$M_PASSWORD_CHANGED

JPI$M_PASSWORD_EXPIRED

JPI$M_PASSWORD_ WARNING

JPI$M_PASSWORD2_CHANGED

JPI$M_PASSWORD2_EXPIRED

JPI$M_PASSWORD2_ WARNING

JPl$_LOGINTIM

Description

User had new mail messages waiting
at login.

User changed the primary password
during login.

User's primary password expired
during login.

System gave the user a warning
at login that the account's primary
password would expire within 5 days.

Account's secondary password was
changed during login.

Account's secondary password expired
during login.

System gave the user a warning at
login that the account's secondary
password would expire within 5 days.

When you specify JPI$_LOGINTIM, $GETJPI returns the time at which the
process was created, which is a standard 64-bit absolute time.

JPl$_MASTER_PID .
When you specify JPI$_MASTER_PID, $GETJPI returns the process
identification (PID) of the master process in the job. The PID is a longword
hexadecimal value.

JPl$_MAXDETACH
When you specify JPI$_MAXDETACH, $GETJPI returns the maximum number
of detached processes allowed for the user who owns the process specified in the
call to $GETJPI. This limit is set in the UAF record of the user. The number is
returned as a word decimal value. A value of 0 means that there is no limit on
the number of detached processes for that user name.

JPl$_MAXJOBS
When you specify JPI$_MAXJOBS, $GETJPI returns the maximum number of
active processes allowed for the user who owns the process specified in the call to
$GETJPI. This limit is set in the UAF record of the user. The number is returned
as a word decimal value. A value of 0 means that there is no limit on the number
of active processes for that user name.

SYS1-437

System Service Descriptions
$GETJPI

SYS1-438

JPl$_MEM
When you specify JPI$_MEM, $GETJPI returns the member number of the
process's UIC, which is a longword integer value.

JPl$_MODE
When you specify JPI$_MODE, $GETJPI returns the mode of the process, which
is a longword integer value. The symbolic name and value for each mode are
listed in the following table; the $JPIDEF macro defines the symbolic names.

Mode Name· Value

JPI$K_OTHER 0

JPI$K_NETWORK 1
JPI$K_BATCH 2

JPI$K_INTERACTIVE 3

JPl$_MSGMASK
When you specify JPI$_MSGMASK, $GET JPI returns the default message mask
of the process, which is a longword bit mask.

JPl$_NODENAME
When you specify JPI$_NODENAME, $GETJPI returns, as a character string,
the name of the VMScluster node on which the process is running.

JP1$_NODE_CSID
When you specify JPI$_NODE_CSID, $GETJPI returns, as a longword
hexadecimal integer, the cluster ID of the VMScluster node on which the process
is running.

JPl$_NODE_ VERSION
When you specify JPI$_NODE_VERSION, $GETJPI returns, as a character
string, the operating system version number of the VMScluster node on which the
process is running.

JPl$_0WNER
When you specify JPI$_0WNER, $GETJPI returns the process identification
(PID) of the process that created the specified process. The PID is a longword
hexadecimal value.

JPl$_PAGEFLTS
When you specify JPI$_PAGEFLTS, $GETJPI returns the total number of page
faults incurred by the process. This is a longword integer value.

JPl$_PAGFILCNT
When you specify JPI$_PAGFILCNT, $GETJPI returns the remaining paging file
quota of the process, which is a longword integer value, measured in pages (on
VAX systems) or pagelets (on Alpha systems).

JPl$_PAGFILLOC
When you specify JPI$_PAGFILLOC, $GETJPI returns the current paging file
assignment of the process. The fourth byte of the returned longword value is the
index of the system page file to which the process is currently assigned.

''®"'

eM.iji

JiM'fil

JPl$_PGFLQUOTA

System Service Descriptions
$GETJPI

When you specify JPI$_PGFLQUOTA, $GETJPI returns the paging file quota
(maximum virtual page count) of the process, which is a longword integer value,
measured in pages (on VAX systems) or pagelets (on Alpha systems).

JPl$_PHDFLAGS
When you specify JPI$_PHDFLAGS, $GETJPI returns the process header flags
as a longword bit vector.

JPl$_PID
When you specify JPI$_PID, $GETJPI returns the process identification (PID) of
the process. The PID is a longword hexadecimal value.

JPl$_PO_FIRST _FREE_ VA_64
On Alpha systems, this item code returns the 64-bit virtual address of the first
free page at the end of the program region (PO space) of the process.

Because this number is a quadword, the buffer length field in the item descriptor
should specify 8 (bytes).+

JPl$_P1_FIRST _FREE_ VA_64
On Alpha systems, this item code returns the 64-bit virtual address of the first
free page at the end of the control region (Pl space) of the process.

Because this number is a quadword, the buffer length field in the item descriptor
should specify 8 (bytes).+

JPl$_P2_FIRST _FREE_ VA_64
On Alpha systems, this item code returns the 64-bit virtual address of the first
free page at the end of P2 space of the process.

Because this number is a quadword, the buffer length field in the item descriptor
should specify 8 (bytes).•

JPl$_PPGCNT
When you specify JPI$_PPGCNT, $GETJPI returns the number of pages (on VAX
systems) or pagelets (on Alpha systems) the process has in the working set. This
is a longword integer value.

JPl$_PRCCNT
When you specify JPI$_PRCCNT, $GETJPI returns, as a longword integer value,
the number of subprocesses created by the process. The number returned by
JPI$_PRCCNT does not include any subprocesses created by subprocesses of the
process named in the procnam argument.

JPl$_PRCLM
When you specify JPI$_PRCLM, $GETJPI returns the subprocess quota of the
process, which is a longword integer value.

JPl$_PRCNAM
When you specify JPI$_PRCNAM, $GETJPI returns, as a character string, the
name of the process. Because the process name can include up to 15 characters,
the buffer length field of the item descriptor should specify at least 15 bytes.

JPl$_PRI
When you specify JPI$_PRI, $GETJPI returns the current priority of the process,
which is a longword integer value.

SYS1-439

System Service Descriptions
$GETJPI

SYS1-440

JPl$_PRIB
When you specify JPI$_PRIB, $GETJPI returns the base priority of the process,
which is a longword integer value.

JPl$_PROCESS_RIGHTS
When you specify JPI$_PROCESS_RIGHTS, $GETJPI returns the binary content
of the process rights list as an array of quadword identifiers. Each entry consists
of a longword identifier value and longword identifier attributes, as shown in
Table SYSl-9. Allocate a buffer that is sufficient to hold the process rights list
because $GETJPI returns only as much of the list as will fit in the buffer.

JPl$_PROC_INDEX
When you specify JPI$_PROC_INDEX, $GETJPI returns, as a longword integer
value, the process index number of the process. The process index number is
a number between 1 and the SYSGEN parameter MAlphaROCESSCNT, which
identifies the process. Although process index numbers are reassigned to different
processes over time, at any one instant, each process in the system has a unique
process index number.

You can use the process index number as an index into system global sections.
Because the process index number is unique for each process, its use as an index
into system global sections guarantees no collisions with other system processes
accessing those sections.

The process index is intended to serve users who formerly used the low-order
word of the PID as an index number.

JPl$_PROCPRIV
When you specify JPI$_PROCPRiv, $GETJPI returns the default privileges of the
process in a quadword bit mask.

JPl$_RIGHTSLIST
When you specify JPI$_RIGHTSLIST, $GETJPI returns, as an array of quadword
identifiers, all identifiers applicable to the process. This includes the process
rights list (JPI$_PROCESS_RIGHTS) and the system rights list (JPI$_SYSTEM_
RIGHTS). Each entry consists of a longword identifier value and longword
identifier attributes, shown in Table SYSl-9. Allocate a buffer that is sufficient
to hold the rights list because $GET JPI returns only as much of the list as will fit
in the buff er.

JPl$_RIGHTS_SIZE
When you specify JPI$_RIGHTS_SIZE, $GETJPI returns the number of bytes
required to buffer the rights list. The rights list includes both the system rights
list and the process rights list. Because the space requirements for the rights list
can change between the time you request the size of the rights list and the time
you fetch the rights list with JPI$_RIGHTSLIST, you might want to allocate a
buffer that is 10 percent larger than this item indicates.

JPl$_SCHED_POLICY
On Alpha systems, when you specify JPI$_SCHED_POLICY, $GETJPI returns
the current scheduling policy of the specified process. Definitions of the policy
values are in the $JPIDEF macro. The buffer length of the item descriptor should
specify 4 (bytes).+

JPl$_SHRFILLM

System Service Descriptions
$GETJPI

When you specify JPI$_SHRFILLM, $GETJPI returns the maximum number of
open shared files allowed for the job to which the process specified in the call to
$GETJPI belongs. This limit is set in the UAF record of the user who owns the
process. The number is returned as a word decimal value. A value of 0 means
that there is no limit on the number of open shared files for that job.

JPl$_SITESPEC
When you specify JPI$_SITESPEC, $GETJPI returns the per-process, site-specific
longword, which is a longword integer value.

JPl$_SLOW_VP _SWITCH
When you specify JPI$_SLOW _VP _SWITCH, $GETJPI returns an unsigned
longword containing the number of times this process has issued a vector
instruction that resulted in an inactive vector processor being enabled with a full
vector context switch. This vector context switch involves the saving of the vector
context of the process that last used the vector processor and the restoration of
the vector context of the current process.

JPl$_STATE
When you specify JPI$_STATE, $GETJPI returns the state of the process, which
is a longword integer value. Each state has a symbolic representation. If the
process is currently executing, its state is always SCH$K_CUR. The $STATEDEF
macro defines the following symbols, which identify the various possible states.

State

SCH$C_CEF

SCH$C_COM

SCH$C_COMO
SCH$C_CUR

SCH$C_COLPG

SCH$C_FPG

SCH$C_HIB
SCH$C_HIBO

SCH$C_LEF

SCH$C_LEFO

SCH$C_MWAIT
SCH$C_PFW

SCH$C_SUSP

SCH$C_SUSPO

JPl$_STS

Description

Common event flag wait

Computable

Computable, out of balance set
Current process

Collided page wait

Free page wait

Hibernate wait
Hibernate wait, out of balance set

.Local event flag wait

Local event flag wait, out of balance set

Mutex and miscellaneous resource wait
Page fault wait

Suspended

Suspended, out of balance set

When you specify JPI$_STS, $GETJPI returns the first longword of the process
status flags, which are contained in a longword bit vector. The $PCBDEF macro
defines the following symbols for these flags.

Symbol Description

PCB$V _ASTPEN AST pending

SYS1-441

System Service Descriptions
$GETJPI

SYS1-442

Symbol

PCB$V _BATCH

PCB$V _DELPEN

PCB$V _DISAWS

PCB$V _FORCPEN
PCB$V _HARDAFF

PCB$V _HIBER

PCB$V_INQUAN

PCB$V _INTER
PCB$V_LOGIN

PCB$V _NETWRK

PCB$V _NOACNT

PCB$V _NODELET
PCB$V _PHDRES
PCB$V _PREEMPTED

PCB$V _PSWAPM
PCB$V _PWRAST

PCB$V _RECOVER

PCB$V_RES
PCB$V _RESPEN

PCB$V _SECAUDIT

PCB$V _SOFTSUSP

PCB$V _SSFEXC
PCB$V _SSFEXCE

PCB$V _SSFEXCS

PCB$V _SSFEXCU

PCB$V _SSRWAIT
PCB$V _SUSPEN
PCB$V _ WAKEPEN

PCB$V_WALL

JPl$_STS2

Description

Process is a batch job

Delete pending

Disable automatic working set adjustment

Force exit pending

Process bound to a particular CPU

Hibernate after initial image activate
Initial quantum in progress

Process is an interactive job
Log in without reading authorization file

Process is a network connect object

No accounting for process

No delete
Process header resident

Kernel mode suspend has overridden supervisor mode
suspend

Process swap mode (l=noswap)
Power fail AST

Process can recover locks

Resident, in balance set
Resume pending, skip suspend

Mandatory security auditing

Process is in supervisor mode suspend
System service exception enable (kernel)
System service exception enable (exec)

System service exception enable (super)

System service exception enable (user)

System service resource wait disable
Suspend pending

Wake pending, skip hibernate

Wait for all events in mask

When you specify JPI$_STS2, $GETJPI returns the second longword of the
process status flags, which are contained in a longword bit vector. The $PCBDEF
macro defines the following symbol for these flags.

Symbol Description

PCB$V _NOUNSHELVE Process does not automatically unshelve files.

JPl$_SWPFILLOC
When you specify JPI$_SWPFILLOC, $GETJPI returns the location of the
process's swapping file, which is a longword hexadecimal value. If the number
returned is positive, the fourth byte of this value identifies a specific swapping
file, and the lower three bytes contain the VBN within the swapping file. If

System Service Descriptions
$GET JPI

the number returned is 0 or negative, the swap file location information is not
currently available for the process.

JPl$_SYSTEM_RIGHTS
When you specify JPI$_SYSTEM_RIGHTS, $GETJPI returns the system rights
list as an array of quadword identifiers. Each entry consists of a longword
identifier value and longword identifier attributes, shown in Table SYSl-9.
Allocate a buffer that is sufficient to hold the system rights list because $GETJPI
only returns as much of the list as will fit in the buffer.

JPl$_ TABLENAME
When you specify JPI$_TABLENAME, $GETJPI returns the file specification of
the process's current command language interpreter (CLI) table. Because the file
specification can include up to 255 characters, the buffer length field in the item
descriptor should specify 255 bytes.

JPl$_ TERMINAL
When you specify JPI$_TERMINAL, $GETJPI returns, for interactive users,
the process's login terminal name as a character string. Because the terminal
name can include up to 8 characters, the buffer length field in the item descriptor
should specify at least 8 bytes. Trailing zeros are written to the output buffer if
necessary.

JPl$_TMBU
When you specify JPI$_TMBU, $GETJPI returns the termination mailbox unit
number, which is a longword integer value.

JPl$_TQCNT
When you specify JPI$_TQCNT, $GETJPI returns the remaining timer queue
entry quota of the process, which is a longword integer value.

JPl$_TQLM
When you specify JPI$_TQLM, $GETJPI returns the process's limit on timer
queue entries, which is a longword integer value.

JPl$_ TT _ACCPORNAM
When you specify JPI$_TT_ACCPORNAM, $GETJPI returns the access port
name for the terminal associated with the process. (The terminal name is
returned by JPI$_TERMINAL.) If the terminal is on a terminal server, this item
returns the terminal server name and the name of the line port on the server. If
the terminal is a DECnet for Open VMS remote terminal, this item returns the
source system node name and the user name on the source system. Otherwise, it
returns a null string.

JPl$_ TT _PHYDEVNAM
When you specify JPI$_TT_PHYDEVNAM, $GETJPI returns the physical
device name of the terminal associated with the process. This name is the
same as JPI$_TERMINAL unless virtual terminals are enabled, in which case
JPI$_TERMINAL returns the name of the virtual terminal and JPI$_TT_
PHYDEVNAM returns the name of the physical terminal. If JPI$_TERMINAL
is null or if the virtual terminal is disconnected from the physical terminal,
JPI$_TT_PHYDEVNAM returns a null string.

SYS1-443

System Service Descriptions
$GETJPI

SYS1-444

JPl$_UAF _FLAGS
When you specify JPI$_UAF _FLAGS, $GETJPI returns the UAF flags from
the UAF record of the user who owns the process. The flags are returned as
a longword bit vector. For a list of the symbolic names of these flags, see the
UAI$_FLAGS item code under the $GETUAI system service.

JPl$_UIC
When you specify JPI$_UIC, $GETJPI returns the UIC of the process in the
standard longword format.

JPl$_USERNAME
When you specify JPI$_USERNAME, $GETJPI returns the user name of the
process as a 12-byte string. If the name is less than 12 bytes, $GETJPI fills out
the 12 bytes with trailing blanks and always returns 12 as the string length.

JPl$_ VIRTPEAK
When you specify JPI$_ VIRTPEAK, $GETJPI returns the peak virtual address
size-in pages for VAX or pagelets for Alpha-of the process.

On VAX systems, the value returned is a longword integer. On Alpha systems,
the value returned requires a quadword of storage. If the buffer size supplied
is not equal to 8 bytes, and the virtual peak exceeds the maximum value that
can be represented in a longword, $GETJPI returns the largest positive 32-bit
integer: 2147483647.

JPl$_ VOLUMES
When you specify JP!$_ VOLUMES, $GETJPI returns the number of volumes
that the process currently has mounted, which is a longword integer value.

JPl$_ VP _CONSUMER
When you specify JP!$_ VP _CONSUMER, $GETJPI returns a byte, the low-order
bit of which, when set, indicates that the process is a vector consumer.

JPl$_ VP _CPUTIM
When you specify JP!$_ VP _CPUTIM, $GETJPI returns an unsigned longword
that contains the total amount of time the process has accumulated as a vector
consumer.

JPl$_WSAUTH
When you specify JPI$_ WSAUTH, $GETJPI returns the maximum authorized
working set size, in pages (on VAX systems) or pagelets (on Alpha systems), of the
process. This is a longword integer value.

JPl$_WSAUTHEXT
When you specify JPI$_ WSAUTHEXT, $GETJPI returns, in pages (on VAX
systems) or pagelets (on Alpha systems), the maximum authorized working set
extent of the process as a longword integer value.

JPl$_WSEXTENT
When you specify JPI$_WSEXTENT, $GETJPI returns, in pages (on VAX
systems) or pagelets (on Alpha systems), the current working set extent of the
process as a longword integer value.

JPl$_WSPEAK
When you specify JPI$_WSPEAK, $GETJPI returns, in pages (on VAX systems)
or pagelets (on Alpha systems), the peak working set size of the process as a
longword integer value.

Description

JPl$_WSQUOTA

System Service Descriptions
$GETJPI

When you specify JPI$_WSQUOTA, $GETJPI returns, in pages (on VAX systems)
or pagelets (on Alpha systems), the working set size quota of the process as a
longword integer value.

JPl$_WSSIZE
When you specify JPI$_WSSIZE, $GETJPI returns, in pages (on VAX systems)
or pagelets (on Alpha systems), the current working set size of the process as a
longword integer value.

The Get Job/Process Information service returns information about one or more
processes on the system or across the cluster. Using $GETJPI with $PROCESS_
SCAN, you can perform selective or clusterwide searches.

Getting information about another process is an asynchronous operation because
the information might be contained in the other process's virtual address space,
and the process might have a lower priority or might be currently swapped out of
the balance set. To allow your program to overlap other functions with the time
needed to schedule the other process for execution or swap it into the balance
set, $GETJPI returns immediately after it has queued its information-gathering
request to the other process.

Required Access or Privileges
The calling process must have GROUP privilege to obtain information about other
processes with the same group UIC number as the calling process. The calling
process must have WORLD privilege to obtain information about other processes
on the system that are not in the same group as the calling process.

Required Quota
None

Related Services
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NOMOREPROC

SS$_NONEXPR

The service completed successfully.

The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

The item list contains an invalid identifier.

The remote node is running an incompatible
version of the operating system.
The process name string has a length of 0 or has
more than 15 characters.

In a wildcard operation, $GETJPI found no more
processes.
The specified process does not exist, or an invalid
process identification was specified.

SYS1-445

System Service Descriptions
$GETJPI

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_SUSPENDED

SS$_UNREACHABLE

The process does not have the privilege to obtain
information about the specified process.
The specified node is not currently a member of
the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The specified process is suspended or in a
miscellaneous wait state, and the requested
information cannot be obtained.

The remote node is a member of the cluster but
is not accepting requests. This is normal for a
brief period early in the system boot process.

Condition Values Returned in the 1/0 Status Block

Example

SYS1-446

Same as those returned in RO.

#include <stdio.h>
#include <ssdef .h>
#include <stsdef .h>
#include <jpidef .h>
#include <descrip.h>
#include <starlet.h>

typedef struct {short buflen, /* Length of output buffer */

int
char

itmcode; /* Item code */
void *buffer; /* Buffer address */
void *retlen; /* Return length address */
} ITMLST; /* Layout of item-list elements */

retpid;
username[l6],
procname[l6],
imagename[BO];

/* PIO returned by $GETJPI */
/* Username for retpid */
/* Process name for retpid */
/* Image running under retpid */

/* descriptors: */
$OESCRIPTOR(user desc, username);
$OESCRIPTOR(proc-desc, procname);
$OESCRIPTOR(image_desc, imagename);

/*Initialize $GETJPI item list ... */
ITMLST

main()
{

item list[S]
- {12,

{15,
{79,
{ 4,
{ o,

= {
JPI$ USERNAME,
JPI$-PRCNAM,
JPI$-IMAGNAME,
JPI$-PID,
0, -

username,
procname,
imagename,
&retpid,
o,

&user desc.dsc$w length},
&proc-desc.dsc$w-length},
&image desc.dsc$w length},
O}, - -
O} };

int status,
count = O,
pid = -1;

/* Status of system calls */
/* Count of matching processes */
/* Wildcard PIO for $GETJPI */

/*initial wildcard $GETJPI ... */
status= sys$getjpiw(O, &pid, O, item_list, O, O, O);

}

System Service Descriptions
$GETJPI

/*Loop for all processes on this node */
while (status != SS$ NOMOREPROC)
{ -

}

if (status & STS$M_SUCCESS)
{

/* add string terminator to process name */
procname[proc_desc.dsc$w_length] = '\0';

/* print header if this is the first */
if (count == 0)

printf(" PID Process name

/*count process and print process data .•• */
count++;

Image\n");

printf("%08X %-15s %s\n", retpid, procname,· irnagename);
}
/* Skip process if suspended or no privilege to see process */
/* Return any other error */
else if ((status !=SS$ NOPRIV) && (status != SS$_SUSPENDED))

return (status); -

/* Find next process */
status= sys$getjpiw(O, &pid, O, itern_list, O, 0, O);

return (SS$_NORMAL);

This example shows a segment of a program used to obtain the PID, process
name, and current image being executed for every process for which the caller
has the privilege to obtain information.

SYS1-447

System Service Descriptions
$GETJPIW

$GETJPIW
Get Job/Process Information and Wait

Format

SYS1-448

The Get Job/Process Information and Wait service returns information about one
or more processes on the system.

The $GETJPIW service completes synchronously; that is, it returns to the caller
with the requested information. Digital recommends that you use an IOSB with
this service. An IOSB prevents the service from completing prematurely. In
addition, the IOSB contains status information.

For asynchronous completion, use the Get Job/Process Information ($GETJPI)
service; $GETJPI returns to the caller after queuing the information request,
without waiting for the information to be returned.

In all other respects, $GETJPIW is identical to $GETJPI. For all other
information about the $GETJPIW service, refer to the description of $GETJPI in
this manual.

SYS$GET JPIW [efn] ,[pidadr] ,[prcnam] ,itmlst ,[iosb] ,[astadr] ,[astprm]

$GETLKI

System Service Descriptions
$GETLKI

Get Lock Information

Format

Arguments

Returns information about the lock database on a system.

The $GETLKI service completes asynchronously; for synchronous completion, use
the Get Lock Information and Wait ($GETLKIW) service.

The $GETLKI, $GETLKIW, $ENQ, $ENQW, and $DEQ services together provide
the user interface to the Lock Management facility.

SYS$GETLKI [efn] ,lkidadr ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETLKI completes. The efn argument
is a longword containing this number; however, $GETLKI uses only the low-order
byte. If you do not specify efn, $GETLKI sets event flag 0.

lkidadr
Open VMS usage: lock_id
type: longword (unsigned)
access: modify
mechanism: by reference

Lock identification (lock ID) for the lock about which information is to be
returned. The lock ID is the second longword in the lock status block, which was
created when the lock was granted. The lkidadr argument is the address of this
longword.

If the value specified by lkidadr is 0 or -1, $GETLKI assumes a wildcard
operation and returns information about each lock to which the calling process
has access, one lock per call.

To use the $GETLKI service, you must have read/write access to th~ lock ID.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying the lock information that $GETLKI is to return. The itmlst
argument is the address of a list of item descriptors, each of which describes an
item of information. The list of item descriptors is terminated by a longword of 0.

SYS1-449

System Service Descriptions
$GETLKI

Descriptor Field

Buffer length

Item code

Buffer address

The following diagram depicts the format of a single item descriptor.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Definition

A word containing a user-supplied integer specifying the length (in
bytes) of the buffer in which $GETLKI is to write the information.
The length of the buffer needed depends upon the item code specified
in the item code field of the item descriptor. If the value of the buffer
length field is too small, $GETLKI truncates the data and returns the
success condition value SS$_NORMAL.

A word containing a user-specified symbolic code the· item of
information that $GETLKI is to return. The $LKIDEF macro defines
these codes. Each item code is described in the list of $GETLKI item
codes that follows the argument descriptions.

A longword containing a user-supplied address of the buffer in which
$GETLKI is to write the information.

Return length address A longword containing the user-supplied address of a longword in
which $GETLKI writes return length information. This longword
contains the following three bit fields.

Bits 0 to 15

SYS1-450

In this field $GETLKI writes the length in bytes of
the data actually written to the buffer specified by
the buffer address field in the item aescriptor.

Descriptor Field Definition

Bits 16 to 30

Bit 31

iosb

System Service Descriptions
$GETLKI

$GETLK.I uses this field only when the item
code field of the item descriptor specifies LK.I$_
BLOCKEDBY, LK.I$_BLOCKING;, or LK.I$_LOCKS,
each of which requests information about a list of
locks. $GETLK.I writes in this field the length in
bytes of the information returned for a single lock on
the list.
You can divide this length into the total length
returned for all locks (bits 0 to 15) to determine the
number of locks located by that item code request.

$GETLK.I sets this bit if the user-supplied buffer
length argument specifies too small a buffer to
contain the information returned. Note that in such
a case $GETLK.I will return the SS$_NORMAL
condition value in RO. Therefore, to locate any faulty
item descriptor, you need to check the state of bit 31
in the longword specified by the return length field of
each item descriptor.

Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of a quadword.

When $GETLK.I is called, it sets the I/O status block to 0. When $GETLK.I
completes, it writes a condition value to the first longword in the quadword. The
remaining two words in the quadword are unused.

Although this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETLK.I service. The condition value returned in RO gives you information
about 'the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETLK.I, you must check the condition values returned
in both RO and the 1/0 status block.

SYS1-451

System Service Descriptions
$GETLKI

Item Codes

SYS1-452

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the service completes. The astadr
argument is the address of this routine.

If you specify this argument, the AST routine executes at the same access mode
as the caller of the $GETLKI service.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

LKl$_BLOCKEDBY
When you specify LKI$_BLOCKEDBY, $GETLKI returns information about all
locks that are currently blocked by the lock specified by lkidadr. The $GETLKI
service returns eight items of information about each blocked lock.

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)

Process ID (PID) of the process that took out the
blocked lock (4 bytes)

VMScluster system identifier (CSID) of the node
maintaining the resource that is locked by the blocked
lock (4 bytes)

Lock mode requested for the blocked lock; this lock
mode was specified by the lkmode argument in the
call to $ENQ (1 byte)
Lock mode granted to the blocked lock; this lock mode
is written to the lock value block (1 byte)

Symbolic Name

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

System Service Descriptions
$GETLKI

Name of the queue on which the blocked lock
currently resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

VMScluster system identifier (CSID) of the system
where the lock was requested (4 bytes)

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each blocked
lock.

The length of the information returned for each blocked lock is returned in bits
16 to 30 of the longword specified by the return length address field in the item
descriptor, while the total length of information returned for all blocked locks is
returned in bits 0 to 15. Therefore, to determine the number of blocked locks, you
divide the value of bits 16 to 30 into the value of bits 0 to 15.

LKl$_BLOCKING
When you specify LKI$_BLOCKING, $GETLKI returns information about all
locks that are currently blocking the lock specified by lkidadr. The $GETLKI
service returns eight items of information about each blocking lock.

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)

Process ID (PID) of the process that took out the
blocking lock (4 bytes)

VMScluster system identifier (CSID) of the node
maintaining the resource that is locked by the
blocking lock (4 bytes)

Lock mode requested for the blocking lock; this lock
mode was specified by the lkmode argument in the
call to $ENQ (1 byte)

Lock mode granted to the blocking lock; this lock
mode is written to the lock value block (1 byte)

Name of the queue on which the blocking lock
currently resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

VMScluster system identifier (CSID) of the system
where the lock was requested (4 bytes)

SYS1-453

System Service Descriptions
$GETLKI

SYS1-454

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each blocking
lock.

The length of the information returned for each blocking lock is returned in bits
16 to 30 of the longword specified by the return length address field in the item
descriptor, while the total length of information returned for all blocking locks is
returned in bits 0 to 15. Therefore, to determine the number of blocking locks,
you divide the value of bits 16 to 30 into the value of bits 0 to 15.

LKl$_CSID
When you specify LKI$_CSID, $GETLKI returns the Cluster System ID (CSID)
of the system where the process owning the lock resides. LKI$_CSID returns the
CSID of the node where the $GETLKI system service is issued when the resource
is mastered on that node. When the processor is not part of a cluster, LKI$_CSID
returns 0.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_ CVTCOUNT
When you specify LKI$_CVTCOUNT, $GETLKI returns the total number of locks
that are currently on the conversion queue of the resource associated with the
lock. These locks are granted at one mode and are waiting to be converted to
another.

The buffer length field in the item descriptor should specify 4 (bytes).

LK1$_GRANTCOUNT
When you specify LKI$_GRANTCOUNT, $GETLKI returns the total number of
locks that are currently on the grant queue of the resource associated with the
lock. Note that the total number of granted locks on the resource is equal to the
sum of LKI$_CVTCOUNT and LKI$_GRANTCOUNT.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_LCKREFCNT
When you specify LKI$_LCKREFCNT, $GETLKI returns the number of locks
that have this lock as a parent lock. When these locks were created, the parid
argument in the call to $ENQ or $ENQW specified the lock ID of this lock.

The buffer length field in the item descriptor should specify 4 (bytes).

LK1$_LKID
When you specify LKI$_LKID, $GETLKI returns the lock ID of the lock on the
system where the process owning the lock resides. The lock ID returned by this
item code is meaningful only on the system specified in the value returned by the
LKI$_CSID item code.

The buffer length field in the itein descriptor should specify 4 (bytes).

LKl$_LOCKID
When you specify LKI$_LOCKID, $GETLKI returns the lock ID of the current
lock. The current lock is the one specified by the lkidadr argument unless
lkidadr is specified as -1 or 0, which indicates a wildcard operation. Thus, this

System Service Descriptions
$GETLKI

item code is usually specified only in wildcard operations where it is useful to
know the lock IDs of the locks that $GETLKI has discoverea in the wildcard
operation.

The lock ID is a longword value, so the buffer length field in the item descriptor
should specify 4 (bytes).

LKl$_LOCKS
When you specify LKI$_LOCKS, $GETLKI returns information about all locks on
the resource associated with the lock specified by lkidadr.

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)
Process ID (PID) of the process that took out the lock
(4 bytes)

VMScluster system identifier (CSID) of the node
maintaining the resource that is locked by the lock (4
bytes)

Lock mode requested for the lock; this lock mode
was specified by the lkmode argument in the call to
$ENQ (1 byte)

Lock mode granted to the lock; this lock mode is
written to the lock value block (1 byte)

Name of the queue on which the lock currently
resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

VMScluster system identifier (CSID) of the system
where the lock was requested (4 bytes)

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each lock.

The length of the information returned for each lock is returned in bits 16 to 30
of the longword specified by the return length address field in the item descriptor,
while the total length of information returned for all locks is returned in bits 0 to
15. Therefore, to determine the number of locks, you divide the value of bits 16
to 30 into the value of bits 0 to 15.

LKl$_MSTCSID
When you specify LKI$_MSTCSID, $GETLKI returns the Cluster System ID
(CSID) of the node currently mastering the resource that is associated with the
specified lock. Although the resource can be locked by processes on any node in
the cluster, the resource itself is maintained on a single node. You can use the

SYS1-455

System Service Descriptions
$GETLKI

SYS1-456

DCL command SHOW CLUSTER or the $GETSYI service to determine which
node in the VMScluster is identified by the CSID that $GETLKI returns.

Because the processor mastering the lock can change at any time, multiple calls
to $GETLKI for the same lock can produce different values for this item code.
LKI$_MSTCSID returns the CSID of the node where the $GETLKI system
service is issued when the resource is mastered on that node. When the processor
where the $GETLKI was issued is not part of a VMScluster, this item code
returns 0.

The buffer length field in the item descriptor should specify 4 (bytes).

LK1$_MSTLKID
When you specify LKI$_MSTLKID, $GETLKI returns the lock ID for the current
master copy of the lock. Although the resource can be locked by processes on any
node in the cluster, the resource itself is maintained on a single node. Because
lock IDs are unique to each processor on a cluster, the lock ID returned by
this item code has meaning only on the processor that is specified in the value
returned by the LKI$_MSTCSID item code.

Because the processor mastering the lock can change at any time, multiple calls
to $GETLKI for the same lock can produce different values for this item code.
When the lock is mastered on the node where the $GETLKI system service is
issued, or when the node is not a member of a cluster, this item code returns the
same information as LKI$_LKID.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_NAMSPACE
When you specify LKI$_NAMSPACE, $GETLKI returns information about the
resource name space. This information is contained in a longword consisting·
of four bit fields; therefore, the buffer length field in the item descriptor should
specify 4 (bytes).

Each of the four bit fields can be referred to by its symbolic name; the $LKIDEF
macro defines the symbolic names. The following table lists, in order, the
symbolic name of each bit field.

Symbolic Name

LKI$W_GROUP

Description

In this field (bits 0 to 15) $GETLKI writes the UIC group
number of the process that took out the first lock on the
resource, thereby creating the resource name. This process
issued a call to $ENQ or $ENQW specifying the name of the
resource in the resnam argument.
However, if this process specified the LCK$_SYSTEM
flag in the call to $ENQ or $ENQW, the resource name is
systemwide. In this case, the UIC group number of the
process is not associated with the resource name.
Consequently, this field (bits 0 to 15) is significant only if the
resource name is not systemwide. $GETLKI sets bit 31 if the
resource name is systemwide.

Symbolic Name

LKI$B_RMOD

LKI$B_STATUS

LKI$V _SYSNAM

LKl$_PARENT

Description

System Service Descriptions
$GETLKI

In this field (bits 16 to 23) $GETLKI writes the access mode
associated with the first lock taken out on the resource.

This field (bits 24 to 30) is not used. $GETLKI sets it to 0.

This field (bit 31) indicates whether the resource name is
systemwide. $GETLKI sets this bit if the resource name is
systemwide and clears it if the resource name is qualified by
the creating process's UIC group number. The state of this
bit determines the interpretation of bits 0 to 15.

When you specify LKI$_PARENT, $GETLKI returns the lock ID of the parent
lock for the lock, if a parent lock was specified in the call to $ENQ or $ENQW. If
the lock does not have a parent lock, $GETLKI returns the value 0.

Because the parent lock ID is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_PID
When you specify LKI$_PID, $GETLKI returns the process identification (process
ID) of the process that owns the lock.

The process ID is a longword value, so the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_RESNAM
When you specify LKI$_RESNAM, $GETLKI returns the resource name string
and its length, which must be from 1 to 31 bytes. The resource name string was
specified in the resnam argument in the initial call to $ENQ or $ENQW.

The $GETLKI service returns the length of the string in the return length
address field in the item descriptor. However, in the call to $GETLKI, you do
not know how long the string is. Therefore, to avoid buffer overflow, you should
specify the maximum length (31 bytes) in the buffer length field in the item
descriptor.

LKl$_RSBREFCNT
When you specify LKI$_RSBREFCNT, $GETLKI returns the number of
subresources of the resource associated with the lock. A subresource has the
resource as a parent resource. Note, however, that the number of subresources
can differ from the number of sublocks of the lock, because any number of
processes can lock the resource. If any of these processes then locks another
resource, and in doing so specifies the lock ID of the lock on the first resource as a
parent lock, then the second resource becomes a subresource of the first resource.

Thus, the number of sublocks on a lock is limited to the number of sublocks that
a single process takes out, whereas the number of subresources on a resource is
determined by (potentially) multiple processes.

The subresource reference count is a longword value, so the buffer length field in
the item descriptor should specify 4 (bytes).

LKl$_STATE
When you specify LKI$_STATE, $GETLKI returns the current state of the lock.
The current state of the lock is described by the following three 1-byte items (in
the order specified): (1) the lock mode requested (in the call to $ENQ or $ENQW)

SYS1-457

System Service Descriptions
$GETLKI

Description

SYS1-458

for the lock, (2) the lock mode granted (by $ENQ or $ENQW) for the lock, and
(3) the name of the queue on which the lock currently resides.

The buffer length field in the item descriptor should specify 3 (bytes). The
$LKIDEF macro defines the following symbolic names that refer to the three
1-byte items in the buffer.

Symbolic Name

LKI$B_STATE_RQMODE

LKI$B_STATE_GRMODE
LKI$B_STATE_ QUEUE

Description

Lock mode requested

Lock mode granted

Name of queue on which the lock resides

The values that $GETLKI can write into each 1-byte item have symbolic names;
these symbolic names specify the six lock modes and the three types of queue in
which a lock can reside. The Description section describes these names.

LKl$_VALBLK
When you specify LKI$_ VALBLK, $GETLKI returns the lock value block of the
locked resource. This lock value block is the master copy that the lock manager
maintains for the resource, not the process-private copy.

Because the lock value block is 16 bytes, the buffer length field in the item
descriptor should specify 16.

LKl$_WAITCOUNT
When you specify LKI$_ WAITCOUNT, $GETLKI returns the total number of
locks that are currently on the wait queue of the resource associated with the
lock. These locks are waiting to be granted.

The buffer length field in the item descriptor should specify 4 (bytes).

The Get Lock Information service returns information about the lock database on
a system.

The access mode of the calling process must be equal to or more privileged than
the access mode at which the lock was initially granted.

When locking on a resource is clusterwide, a single master copy of the resource is
maintained on the node that owns the process that created the resource by taking
out the first lock on it. When a process on another node locks that same resource,
a local copy of the resource is copied to the node and the lock is identified by a
lock ID that is unique to that node.

In a cluster environment, however, you cannot use $GETLKI to obtain directly
information about locks on other nodes in the cluster; that is, you cannot specify
in a call to $GETLKI the lock ID of a lock held by a process on another node. The
$GETLKI service interprets the lkidadr argument as the lock ID of a lock on
the caller's node, even though the resource associated with a lock might have its
master copy on the caller's node. ·

However, because a process on another node in the cluster can have a lock on
the same resource as the caller of $GETLKI, the caller, in obtaining information
about the resource, can indirectly obtain some information about locks on the
resource that are held by processes on other nodes. One example of information
indirectly obtained about a resource is the contents of lock queues; these queues

System Service Descriptions
$GETLKI

contain information about all locks on the resource, and some of these locks can
be held by processes on other nodes. .

Another example of information more directly obtained is the remote lock ID of a
lock held by a process on another node. Specifically, if the caller of $GETLKI on
node A specifies a lock (by means of lkidadr) and that lock is held by a process on
node B, $GETLKI will return the lock ID of the lock from node B's lock database
if the LKI$_REMLKID item code is specified in the call.

Item codes LKI$_BLOCKEDBY, LKI$_BLOCKING, LKI$_LOCKS, and LKI$_
STATE specify that $GETLKI return various items of information; some of these
items are the names of lock modes or the names of lock queues. The $LCKDEF
macro defines the following symbolic names.

Symbolic Name

LCK$K_NLMODE

LCK$K_CRMODE
LCK$K_CWMODE

LCK$K_PRMODE
LCK$K_PWMODE
LCK$K_EXMODE

Symbolic Name

LKI$C_GRANTED

LKI$C_CONVERT

LKI$C_ WAITING

Lock Mode

Null mode
Concurrent read mode

Concurrent write mode

Protected read mode

Protected write mode
Exclusive mode

Queue Name

Granted queue, holding locks that have been granted

Converting queue, holding locks that are currently being
converted to another lock mode
Waiting queue, holding locks that are neither granted
nor converting (for example, a blocked lock)

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $GETLKI:

• For locks held by other processes, you need to have joined the resource
domain for lock access or hold WORLD privileges. You need WORLD privilege
to obtain information about locks held by processes in other groups.

• To obtain information about system locks, either you need SYSLCK privilege
or the process must be executing in executive or kernel access mode.

Required Quota
The caller must have sufficient ASTLM or BYTLM quota.

Related Services
$DEQ, $ENQ, $ENQW, $GETLKIW, $SET_RESOURCE_DOMAIN

SYS1-459.

System Service Descriptions
$GETLKI

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOTA

SS$_1NSFMEM

SS$_IVLOCKID

SS$_IVMODE

SS$_NOMORELOCK

SS$_NOSYSLCK

SS$_NOWORLD

The service completed successfully.

The item list cannot be read; the areas specified
by the buffer address and return length address
fields in the item descriptor cannot be written; or
the location specified by the lkidadr argument
cannot be written.

You specified an invalid item code.

The caller has insufficient ASTLM or BYTLM
quota.
The nonpaged dynamic memory is insufficient for
the operation.

The lkidadr argument specified an invalid lock
ID.
A more privileged access mode is required.

The caller requested a wildcard operation by
specifying a value of 0 or -1 for the lkidadr
argument, and $GETLKI has exhausted the
locks about which it can return information to
the caller; or no lkidadr argument is specified.
This is an alternate success status.
The caller attempted to acquire information
about a systemwide lock and did not have the
required SYSLCK privilege.

The caller attempted to acquire information
about a lock held by a process in another group
and did not have the required WORLD privilege.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO.

SYS1-460

System Service Descriptions
$GETLKIW

$GETLKIW
Get Lock Information and Wait

Format

The Get Lock Information and Wait service returns information about the lock
database on a system.

The $GETLKIW service completes synchronously; that is, it returns to the caller
with the requested information.

For asynchronous completion, use the Get Lock Information ($GETLKI) service;
$GETLKI returns to the caller after queuing the information request, without
waiting for the information to be returned.

In all other respects, $GETLKIW is identical to $GETLKI. For all other
information about the $GETLKIW service, refer to the description of $GETLKI in
this manual.

The $GETLKI, $GETLKIW, $ENQ, $ENQW, and $DEQ services together provide
the user interface to the Lock Management facility. Refer to the descriptions of
these other services for additional information about lock management.

SYS$GETLKIW [efn] ,lkidadr ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

SYS1-461

System Service Descriptions
$GETMSG

$GETMSG
Get Message

Format

Arguments

SYS1-462

Returns message text associated with a given message identification code into the
caller's buffer. The message can be from the system message file or a user-defined
message.

On Alpha systems, this service accepts 64-bit addresses.

SYS$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

msgid
Open VMS usage: cond_ value
type: longword (unsigned)
access: read only
mechanism: by value

Identification of the message to be retrieved. The msgid argument is a longword
value containing the message identification. Each message has a unique
identification, contained in bits 3 through 27 of system longword condition
values.

ms glen
Open VMS usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Length of the message string returned by $GETMSG. The msglen argument is
the 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a word into which $GETMSG writes this length.

bufadr
Open VMS usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Buffer to receive the message string. The bufadr argument is the 32-bit or 64-bit
address (on Alpha systems) or the 32-bit address (on VAX systems) of a character
string descriptor pointing to the buffer into which $GETMSG writes the message
string. The maximum size of any message string is 256 bytes.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Description

System Service Descriptions
$GETMSG

Message components to be returned. The flags argument is a longword bit vector
wherein a bit, when set, specifies that the message component is to be returned.
The following table describes the significant bits.

Bit Value Description

0 1 Include text of message
0 Do not include text of message

1 1 Include message identifier

0 Do not include message identifier

2 1 Include severity indicator

0 Do not include severity indicator

3 1 Include facility name

0 Do not include facility name

If you omit this argument in a VAX MACRO or BLISS-32 service call, it defaults
to a value of 15; that is, all flags are set and all components of the message are
returned. If you omit this argument in a Fortran service call, it defaults to a
value of O; the value 0 causes $GETMSG to use the process default flags.

outadr
Open VMS usage:
type:
access:
mechanism:

vector_byte_unsigned
byte (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Optional information to be returned by $GETMSG. The outadr argument is
the 32~bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a 4-byte array into which $GETMSG writes the following information.

Byte Contents

0 Reserved
1 Count of FAQ arguments associated with message

2 User-specified value in message, if any

3 Reserved

The Get Message service locates and returns message text associated with a
given message identification code into the caller's buffer. The message can be
from the system message file or a user-defined message. The operating system
uses this service to retrieve messages based on unique message identifications
and to prepare to output the messages.

The message identifications correspond to the symbolic names for condition
values returned by system components; for example, SS$_code from system
services, RMS$_code for RMS messages, and so on.

When you set all bits in the flags argument, $GETMSG returns a string in the
following format:

facility-severity-ident, message-text

SYS1-463

System Service Descriptions
$GETMSG

where:

facility
severity

Identifies the component of the operating system
Is the severity code (the low-order three bits of the condition
value)

ident Is the unique message identifier

message-text Is the text of the message

For example, if you specify the MSGID=#SS$_DUPLNAM argument, the
. $GETMSG service returns the following string:

%SYSTEM-F-DUPLNAM, duplicate process name

You can define your own messages with the Message utility. See the Open VMS
System Management Utilities Reference Manual for additional information.

The message text associated with a particular 32-bit message identification can
be retrieved from one of several places. This service takes the following steps to
locate the message text:

1. All message sections linked into the currently executing image are searched
for the associated information.

2. If the information is not found, the process-permanent message file is
searched. (You can specify the process-permanent message file by using the
SET MESSAGE command.)

3. If the information is not found, the systemwide message file is searched.

4. If the information is not found, the SS$_MSGNOTFND condition value is
returned in RO and a message in the following form is returned to the caller's
buffer:

%facility-severity-NONAME, message=xxxxxxxx[hex], (facility=n, message=n[dec])

Required Access or Privileges
·None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS1-464

SS$_NORMAL

SS$_BUFFEROVF

SS$_INSFARG

SS$_MSGNOTFND

The service completed successfully.
The service completed successfully. The string
returned overflowed the buffer provided and has
been truncated.

The call arguments are insufficient.

The service completed successfully; however, the
message code cannot be found, and a default
message has been returned.

Example

#include <stdio.h>
#include <ssdef .h>
#include <stsdef .h>
#include <descrip.h>
#include <starlet.h>

int status,
msg flag = OxOOOl,
msg-code = SS$ DUPLNAM,
outien; -

char out buffer[256],
msg=info[4];

$DESCRIPTQR(out_desc, out_buffer);

main()
{

status sys$getmsg(msg code,
&outlen,
&out desc,
msg flag,
msg=info);

if ((status & STS$M_SUCCESS) != 0)
{

System Service Descriptions
$GETMSG

/* Status of system calls */
/* Text only */
/* Message code to retrieve */
/* Length of output string from $FAQ */

/* Buffer for $FAQ output */
/* Buffer for message information */

/* VMS Descriptor for out buffer */

/* Error message number */
/* Length of retrived message */
/* Descriptor for output buffer */
/* Message options flag */
/* Return information area */

/* $GETMSG directive succeeded, output resultant string */
out buffer[outlen] = '\0'; /*add string terminator to buffer*/
puts(out_buffer); /* output the result */

}
return (status);

}

This example shows a segment of a program used to obtain only the text portion
of the message associated with the system message code SS$_DUPLNAM. The
$GETMSG service returns the following string:

duplicate process name

SYS1-465

A
Aborting a transaction, SYS 1-3
$ABORT_TRANS system service, SYSl-3
$ABORT_TRANSW system service, SYSl-7
Absolute time

as input to $BINTIM, SYSl-62
as input to $BINUTC, SYSl-65
converting to numeric, SYS2-194

Access
checking, SYSl-84

Access modes
changing to executive, SYSl-110, SYSl-112
changing to kernel, SYSl-114, SYSl-116

Access protection
checking, SYSl-99

Accounting messages
format of, SYSl-177

ACII character set
converting strings to binary, SYSl-62

ACLs (access control lists)
formatting, SYSl-389

Adding holder records to rights database, SYSl-8
Adding identifiers to rights database, SYSl-11
Address space

creating virtual, SYSl-188
$ADD_HOLDER system service, SYSl-8
$ADD_IDENT system service, SYSl-11
$ADD_PROXY system service, SYSl-14
$ADJSTK system service, SYSl-18
$ADJWSL system service, SYSl-20
Alignment fault data

getting for system process, SYS2-97
getting for user image, SYS2-85

Alignment fault reporting
disabling for user image, SYS2-440
disabling for user process, SYS2-201
enabling for user process, SYS2-202
initializing for system process, SYS2-115
starting for user image, SYS2-432

Allocating devices, SYSl-22
Allocation classes, SYSl-410
$ALLOC system service, SYSl-22
Arithmetic exceptions

getting information about, SYS2-87
$ASCEFC system service, SYSl-25

Index

ASCII character set
converting strings to UTC, SYSl-65

ASCII output
formatting character string, SYSl-351

ASCII strings
conyerting to binary, SYSl-62
converting to UTC, SYSl-65

$ASCTIM system service, SYSl-29
$ASCTOID system service, SYSl-32
$ASCUTC system service, SYS1-35
Assigning an I/O channel, SYSl-38
$ASSIGN system service, SYSl-38
ASTLM (AST limit) quota

effect of canceling wakeup on, SYSl-82
ASTs (asynchronous system traps)

declaring, SYSl-242
disabling, SYS2-281
enabling, SYS2-281
setting for power recovery, SYS2-301
setting timer for, SYS2-294

Asynchronous system traps
See ASTs

Audit event messages
converting, SYSl-402

Auditing events, SYSl-43, SYSl-61
$AUDIT_EVENT system service, SYSl-43
$AUDIT_EVENTW system service, SYSl-61
Automatic unshelving ·

B

controlling, SYS2-321
determining, SYSl-442

Binary time
converting to ASCII string, SYSl-29
converting to numeric time, SYS2-194,

SYS2-196
Binary values

converting to ASCII string, SYSl-351
$BINTIM system service, SYSl-62
$BINUTC system service, SYSl-65
64-bit virtual addressing

system services support, vii
$BRKTHRU system service, SYSl-68
$BRKTHRUW system service, SYSl-76
Buffer object

creating, SYSl-122

lndex-1

Buffer objects
deleting, SYSl-249

BYTLM quota
using with $GETJPI buffers, SYS2-217

c
Call frames

removing from stack, SYS2-468
Call stacks

unwinding, SYS2-99
Canceling

exit handlers, SYSl-79
I/O requests, SYSl-77
timer requests, SYS 1-80
wakeup requests, SYSl-82

$CANCEL system service, SYSl-77
$CANEXH system service, SYSl-79
$CANTIM system service, SYSl-80
$CANWAK system service, SYSl-82
Change mode handlers

declaring, SYSl-244
Channels

canceling I/O, SYSl-77
$CHECK_ACCESS system service, SYSl-84
$CHECK_FEN system service

on Alpha systems only, SYSl-92
$CHECK_PRIVILEGE system service, SYSl-93
$CHECK_PRIVILEGEW system service, SYSl-98
$CHKPRO system service, SYSl-99
Class scheduler processes, SYS2-279
Clearing an event flag, SYSl-109
$CLRCLUEVT system service

on Alpha systems only, SYSl-107
$CLREF system service, SYSl-109
Cluster events

clearing request for notification of, SYSl-107
requesting notification of, SYS2-282

$CMEXEC system service, SYSl-110
$CMEXEC_64 system service, SYSl-112
$CMKRNL system service, SYSl-114
$CMKRNL_64 system service, SYSl-116
Common event flag clusters

disassociating, SYSl-236
Compatibility mode handlers

declaring, SYSl-244
Control region

adding page to, SYSl-345
deleting page from, SYSl-265

Converting
ASCII string to binary time, SYSl-62
ASCII string to UTC format, SYSl-65
audit event message, SYSl-402
binary time to ASCII string, SYSl-29
binary time to numeric time, SYS2-194
64-bit system time to UTC time, SYS2-449
UTC format to ASCII, SYSl...;.35
UTC time to numeric time, SYS2-196

lndex-2

CPU affinity set ·
modifying, SYS2-204

CPU user capability set
modifying, SYSl-118

$CPU_CAPABILITIES system service, SYSl-118
$CREATE_BUFOBJ_64 system service, SYSl-122

description, SYSl-124
$CREATE_GFILE system service, SYSl-126

description, SYSl-129
$CREATE_GPFILE system service, SYSl-131

description, SYSl-133
$CREATE_GPFN system service, SYSl-135

description, SYSl-137
$CREATE_RDB system service, SYSl-139
$CREATE_REGION_64 system service, SYSl-141

description, SYSl-143
$CREATE_USER_PROFILE system service,

SYSl-145
Creating

disk file sections, SYSl-192
logical names, SYSl-149
logical name tables, SYSl-155
mailboxes, SYSl-161
processes, SYSl-168
rights databases, SYSl-139
user profiles, SYSl-145
virtual address space, SYSl-185

$CRELNM system service, SYSl-149
$CRELNT system service, SYSl-155
$CREMBX system service, SYSl-161
$CREPRC system service, SYSl-168
$CRETVA system service, SYSl-185

See also $EXPREG system service
$CRETVA_64 system service, SYSl-188

description, SYSl-190
$CRMPSC system service, SYSl-192
$CRMPSC_FILE_64 system service, SYSl-204

description, SYSl-207
$CRMPSC_GFILE_64 system service, SYSl-210

description, SYSl-215
$CRMPSC_GPFILE_64 system service, SYSl-218

description, SYSl-222
$CRMPSC_GPFN_64 system service, SYSl-225

description, SYSl-229
$CRMPSC_PFN_64 system service, SYSl-232

description, SYSl-234

D
$DACEFC system service, SYSl-236
$DALLOC system service, SYSl-238
$DASSGN system service, SYSl-240
$DCLAST system service, SYSl-242
$DCLCMH system service,. SYSl-244
$DCLEXH system service, SYSl-247

Deallocating devices, SYSl-238
Deassigning an 1/0 channel, SYSl-240
DECdns names

converting, SYSl-303, SYSl-304, SYSl-305,
SYSl-307

converting full name, SYSl-303
DECdns objects

creating, SYSl-298
deleting, SYSl-299
enumerating, SYSl-301

Declaring an AST (asynchronous system trap),
SYSl-242

Default directories
setting, SYS2-285

Default file protection
setting, SYS2-287

Default form, SYS2-382
$DELETE_BUFOBJ system service, SYSl-249

description, SYSl-249
$DELETE_INTRUSION system service,

SYSl-250
$DELETE_PROXY system service, SYSl-252
$DELETE_REGION_64 system service,

SYSl-255
description, SYSl-256

Deleting
DECdns objects, SYSl-299
event flag clusters, SYSl-292
global sections, SYSl-279
intrusion records, SYSl-250
logical names, SYSl-258
mailboxes, SYSl-261
processes, SYSl-263
proxies, SYSl-252
virtual address space, SYSl-265

$DELLNM system service, SYSl-258
$DELMBX system service, SYSl-261
$DELPRC system service, SYSl-263
Delta time

as input to $BINTIM, SYSl-62
converting to numeric, SYS2-194

$DELTVA system service, SYSl-265
$DELTVA_64 system service, SYSl-267

description, SYSl-268
$DEQ system service, SYSl-270
Dequeuing lock requests, SYSl-270
Detached processes

creating, SYSl-180
Devices

allocating, SYSl-22
deallocating, SYSl-238
dual-pathed, SYSl-410
getting information asynchronously, SYSl-406
getting information synchronously, SYSl-426
lock name, SYSl-414
scanning of across the cluster, SYSl-275
served, SYS 1-418

$DEVICE_SCAN system service, SYSl-275
$DGBLSC system service, SYSl-279
Disk file sections

creating, SYSl-192
mapping, SYSl-192

Disks
initializing from within a program, SYS2-118

Dismounting a volume, SYSl-282
$DISMOU system service, SYSl-282
$DISPLAY_PROXY system service, SYSl-286
$DLCEFC system service, SYSl-292
$DNS system service

on VAX systems only, SYSl-294
$DNSW system service

on VAX systems only, SYSl-321

E
$END_TRANS system service, SYSl-322
$END_TRANSW system service, SYSl-327
$ENQ system service, SYSl-328
$ENQW system service, SYSl-340
Equivalence names

specifying, SYSl-149
$ERAPAT system service, SYSl-341
Error logger

sending message to, SYS2-358
Event flag clusters

associating with a process, SYSl-25
deleting, SYSl-292
disassociating, SYSl-236
getting current status, SYS2-246

Event flags, SYSl-294
clearing, SYSl-109
getting current status, SYS2-246
setting, SYS2-289
waiting for entire set of, SYS2-490
waiting for one of set, SYS2-492
waiting for setting of, SYS2-487

Events
auditing, SYSl-43, SYSl-61

Exception vectors
setting, SYS2-290

Executive mode
changing to, SYSl-110, SYSl-112

Exit handlers
canceling, SYSl-79
control block, SYSl-247

deleting, SYSl-79
declaring, SYSl-247

Exits
forcing, SYSl-386

$EXIT system service, SYSl-344
issuing for specified process, SYSl-386

Expanding program/control region, SYSl-345
$EXPREG system service, SYSl-345

lndex-3

$EXPREG_64 system service, SYSl-348
description, SYSl-349

F
$FAQL system service, SYSl-351
$FAQL_64 system service, SYSl-371
$FAQ system service, SYSl-351
$FAQ system service directives

format of, · SYSl-353
table of, SYSl-355

Files
getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46

$FILESCAN system service, SYSl-372
File specifications

parsing components of, SYSl-372
searching string for, SYSl-372

$FIND_HELD system service, SYSl-378
$FIND_HQLDER system service, SYSl-381
$FINISH_RDB system service, SYSl-384
Floating point

checking, SYSl-92
$FQRCEX system service, SYSl-386

See also $DELPRC and $EXIT
Forcing an exit, SYSl-386
Formatting

ACL entry, SYSl-389
security audit messages, SYSl-402

$FQRMAT_ACL system service, SYSl-389
$FQRMAT_AUDIT system service, SYSl-402
Forms

getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46

Full names
converting to string, SYSl-303

G
$GETDVI system service, SYSl-406
$GETDVIW system service, SYSl-426
$GETJPI system service, SYSl-427
$GETJPIW system service, SYSl-448
$GETLKI system service, SYSl-449
$GETLKIW system service, SYSl-461
$GETMSG system service, SYSl-462
$GETQUI system service, SYS2-3
$GETQUIW system service, SYS2-46
$GETSYI system service, SYS2-51
$GETSYIW system service, SYS2-70
$GETTIM system service, SYS2-71
$GETUAI system service, SYS2-72
$GETUTC system service, SYS2-84
$GET_ALIGN_FAULT_DATA system service

on Alpha systems only, SYS2-85
$GET_ARITH_EXCEPTION system service

on Alpha systems only, SYS2-87

lndex-4

$GET_REGIQN_INFQ system service, SYS2-4 7
description, SYS2-50

$GET_SECURITY system service, SYS2-89
$GET_SYS_ALIGN_FAULT_DATA system service

on Alpha systems only, SYS2-97
Global disk file section

creating, SYSl-126
creating and mapping, SYSl-210
mapping, SYS2-157

Global page file
Create, SYSl-131

Global page file section
creating and mapping, SYSl-218
mapping, SYS2-157

Global page frame section
creating and mapping, SYSl-225
mapping, SYS2-163

Global section file
updating on disk (asynchronously), SYS2-475
updating on disk (synchronously), SYS2-481

Global sections
creating, SYSl-192
deleting, SYSl-279
mapping, SYSl-192, SYS2-151

$GQTQ_ UNWIND system service
on Alpha systems only, SYS2-99

$GRANTID system service, SYS2-101

H
$HASH_PASSWQRD system service, SYS2-105
$HIBER system service, SYS2-108

See also $WAKE
Holder records

adding to rights database, SYSl-8
modifying in rights database, SYS2-169
removing from rights database, SYS2-249

Holders of an identifier
finding, SYSl-381

Host
checking availability of, SYSl-410

I/Q channels
assigning, SYSl-38
deassigning, SYSl-240

I/Q devices
getting information asynchronously, SYSl-406
getting information synchronously, SYSl-426

I/Q requests
canceling, SYSl-77
queuing asynchronously, SYS2-239
queuing synchronously, SYS2-245

Identifier names
translating to identifier, SYSl-32

Identifiers
adding record to rights list, SYS2-101
finding, SYSl-378
modifying in rights database, SYS2-172
removing from rights database, SYS2-251
revoking from process, SYS2-260
translating value to identifier name, SYS2-110

$IDTOASC system service, SYS2-110
IEEE floating-point control register

setting, SYS2-113
$IEEE_SET_FP _CONTROL system service

on Alpha systems only, SYS2-113
Image exit, SYSl-344
Image rundown

forcing, SYSl-386
Initializing a volume

from within a program, SYS2-118
$INIT_SYS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-115

$INIT_ VOL system service, SYS2-118
Intrusion records

deleting, SYSl-250
Intrusions

returning information about, SYS2-351
scanning for, SYS2-268

$IOSETUP system service, SYS2-136
$IO_CLEANUP system service, SYS2-131

description, SYS2-131
$IO_PERFORM system service, SYS2-132

description, SYS2-133
$IO _SETUP system service

description, SYS2-137

J
Job controllers

asynchronous, SYS2-359
synchronous, SYS2--417

Jobs

K

getting information asynchronously, SYSl--427,
SYS2-3

getting information synchronously, SYSl--448,
SYS2--46

Kernel mode
changing to, SYSl-114, SYSl-116

L
$LCKPAG system service, SYS2-139
$LCKPAG_64 system service, SYS2-142

description, SYS2-143
$LKWSET system service, SYS2-145

$LKWSET_64 system service, SYS2-148
description, SYS2-149

Lock database
in a VMScluster, SYSl--458

Lock requests
dequeuing, SYSl-270
queuing asynchronously, SYSl-328
queuing synchronously, SYSl-340

Locks
getting information asynchronously, SYSl--449
getting information synchronously, SYSl--461

Logical names
creating, SYSl-149
deleting, SYSl-258
getting information about, SYS2--451
translating, SYS2--451

Logical name tables
creating, SYSl-155
deleting, SYSl-258

M
Magnetic tapes

initializing from within a program, SYS2-118
Mailboxes

assigning channel to, SYSl-161
creating, SYSl-161
deleting permanent, SYSl-164, SYSl-261
deleting temporary, SYSl-164

Mapping disk file sections, SYSl-192
Memory

locking page into, SYS2-139
unlocking page from, SYS2--458

Messages
converting security message from binary to

ASCII, SYSl--402
filtering sensitive information, SYSl-402
formatting and outputting, SYS2-231
obtaining text of, SYSl--462
sending to error logger, SYS2-358
sending to one or more terminals, SYSl-68,

SYSl-76
sending to operator, SYS2--418
writing to terminal, SYSl-68, SYSl-76

Message symbols, SYS2-236
$MGBLSC system service, SYS2-151
$MGBLSC_64 system service, SYS2-157

description, SYS2-161
$MGBLSC_GPFN_64 system service, SYS2-163

description, SYS2-166
$MOD_HOLDER system service, SYS2-169
$MOD_IDENT system service, SYS2-172
$MOUNT system service, SYS2-176
$MTACCESS system service, SYS2-191

lndex-5

N
Notification ASTs

testing functionality of, SYS2-456
$NUMTIM system service, SYS2-194
$NUMUTC system service, SYS2-196

0
Obsolete system services, A-1
Opaque names ·

converting to string, SYSl-303
Operators

sending messages to, SYS2-418

p
Page frame section

creating, SYSl-135
Page protection

setting, SYS2-311
Pages

locking into memory, SYS2-139
locking into working set, SYS2-145
removing from working set, SYS2-227
setting protection, SYS2-308
unlocking from memory, SYS2-458
unlocking from working set, SYS2-463

$PARSE_ACL system service, SYS2-198
Passwords

returning hash value, SYS2-105
$PERFORMW system service, SYS2-135
$PERM_DIS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-201

$PERM_REPORT_ALIGN_FAULT system service
on Alpha systems only, SYS2-202

PID numbers
using with $GETJPI to return information

about a process, SYSl-427
Power recovery

setting AST for, SYS2-301
Priority setting, SYS2-303
Private disk file section

create and map, SYSl-204
Private page frame

create and map, SYSl-232
Privileges

checking, SYSl-93
setting for process, SYS2-314

Processes
affecting scheduling of, SYS2-276
creating, SYSl-168
deleting, SYSl-263
getting information asynchronously, SYSl-427
getting information synchronously, SYSl-448
hibernating, SYS2-108

lndex-6

Processes (cont'd)
locating a subset of, SYS2-214
rescheduling, SYS2-253
resuming after suspension, SYS2-258
scanning, SYS2-214
scheduling wakeup for, SYS2-273
setting default protection for, SYS2-287
setting name of, SYS2-307
setting priority of, SYS2-303
setting privileges, SYS2-314
setting stack limits, SYS2-323
setting swap mode for, SYS2-325
suspending, SYS2-444
waiting for entire set of event flags, SYS2-490
waiting for event flag to be set, SYS2-487
waiting for one of set of event flags, SYS2-492
waking, SYS2-488
writing messages to, SYS2-231

Process identification numbers
See PID numbers

Process names
setting, SYS2-307
specifying processes by, SYS2-220
specifying processes with node name,

SYS2-219
Process scan, SYS2-214
Process scheduling

affecting, SYS2-276
Process user capability set

modifying, SYS2-209
$PROCESS_AFFINITY system service, SYS2-204
$PROCESS_CAPABILITIES system service,

SYS2-209
$PROCESS_SCAN system service, SYS2-214
Program regions

adding page to, SYSl-345
deleting page from, SYSl-265

Protection
of queues, SYS2-409
setting for page, SYS2-308

Proxies
adding, SYSl-14
deleting, SYSl-252
displaying, SYSl-286
modifying, SYSl-14, SYSl-252
verifying, SYS2-482

$PURGE_ WS system service, SYS2-229
description, SYS2-229

$PURGWS system service, SYS2-227
See also $ADJWSL

$PUTMSG system service, SYS2-231

Q
$QIO system service, SYS2-239
$QIOW system service, SYS2-245
Queues

R

creating and managing asynchronously,
SYS2-359

creating and managing synchronously,
SYS2-417

getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46
protection, SYS2-409
types of, SYS2-406

$READEF system service, SYS2-246
Region

creating a virtual, SYSl-141
Regions

deleting, SYSl-255
$RELEASE_ VP system service

on VAX systems only, SYS2-248
$REM_HOLDER system service, SYS2-249
$REM_IDENT system service, SYS2-251
$RESCHED system service, SYS2-253
Resource wait mode

setting, SYS2-319
$RESTORE_ VP _EXCEPTION system service

on VAX systems only, SYS2-254
$RESTORE_ VP _STATE system service

on VAX systems only, SYS2-256
$RESUME system service, SYS2-258
$REVOKID system service, SYS2-260
Rights database context

terminating, SYSl-384
Rights databases

creating, SYSl-139
$RMSRUNDWN system service, SYS2-264

s
$SAVE_ VP _EXCEPTION system service

on VAX systems only, SYS2-266
Scanning

for devices, SYSl-275
intrusion database, SYS2-268
processes, SYS2-214

$SCAN_INTRUSION system service, SYS2-268
$SCHDWK system service, SYS2-273
$SCHED system service, SYS2-276
Section files

updating asynchronously, SYS2-4 70
updating synchronously, SYS2-480

Sections
creating, SYSl-192
deleting global, SYSl-279

Sections (cont'd)
mapping, SYSl-192
writing modifications to disk, SYS2-4 70,

SYS2-480
Security

auditing events, SYSl-43, SYSl-61
checking privileges, SYSl-93, SYSl-98
converting message from binary to ASCII,

SYSl-402
filtering sensitive message information,

SYSl-402
getting erase patterns, SYSl-341
hashing passwords, SYS2-105
modifying characteristics of an object,

SYS2-344
retrieving information about objects, SYS2-89

Security characteristics
modifying for an object, SYS2-344
retrieving for an object, SYS2-89

Sending a message to one or more terminals,
SYSl-68, SYSl-76

$SETAST system service, SYS2-281
$SETCLUEVT system service

on Alpha systems only, SYS2-282
$SETDDIR system service, SYS2-285
$SETDFPROT system service, SYS2-287
$SETEF system service, SYS2-289
$SETEXV system service, SYS2-290
$SETIME system service, SYS2-292
$SETIMR system service, SYS2-294
$SETPRA system service, SYS2-301
$SETPRI system service, SYS2-303
$SETPRN system service, SYS2-307
$SETPRT system service, SYS2-308
$SETPRT_64 system service, SYS2-311

description, SYS2-312
$SETPRV system service, SYS2-314
$SETRWM system service, SYS2-319
$SETSHLV system service, SYS2-321
$SETSTK system service, SYS2-323
$SETSWM system service, SYS2-325
Setting the resource wait mode, SYS2-319
$SETUAI system service, SYS2-327
$SET_IMPLICIT_AFFINITY, SYS2-297
$SET_RESOURCE_DOMAIN system service,

SYS2-339
$SET_SECURITY system service, SYS2-344
Shelving

See also Automatic unshelving
$SHOW _INTRUSION system service, SYS2-351
$SIGNAL_ARRAY system service, SYS2-356
Simple names

converting to opaque, SYSl-305
$SNDERR system service, SYS2-358
$SNDJBC system service, SYS2-359

lndex-7

$SNDJBCW system service, SYS2-417
$SNDOPR system service, SYS2-418
Stack limit

changing size of, SYS2-323
Stack pointer

adjusting, SYSl-18
$START_ALIGN_FAULT_REPORT system service

on Alpah systems only, SYS2-432
$START_TRANS system service, SYS2-435
$START_TRANSW system service, SYS2-439
$STOP _ALIGN_FAULT_REPORT system service

on Alpha systems only, SYS2-440
$STOP _SYS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-441

Strings
formatting output, SYSl-351
searching for file specification in, SYSl-372

Subprocesses
creating, SYSl-180

$SUBSYSTEM system service, SYS2-442
$SUSPND system service, SYS2-444
$SYNCH system service, SYS2-44 7
SYS$NUMUTC system service, SYS2-196
SYS$SYSTEM:LOGINOUT.EXE file

using as image to create new processes,
SYSl-168,SYSl-180

System alignment fault reporting
disabling for user image, SYS2-441

Systems
getting information asynchronously, SYS2-51
getting information synchronously, SYS2-70

System services, SYS2-131, SYS2-132,
SYS2-135,SYS2-136

Abort Transaction, SYS 1-3
Abort Transaction and Wait, SYSl-7
Add Holder Record to Rights Database,

SYSl-8
Add Identifier to Rights Database, SYSl-11
Add Proxy, SYSl-14
Adjust Outer Mode Stack Pointer, SYSl-18
Adjust Working Set Limit, SYSl-20
Affect Process Scheduling, SYS2-276
Allocate Device, SYSl-22
Assign 1/0 Channel, SYSl-38
Associate Common Event Flag Cluster,

SYSl-25
Audit Event, SYSl-43
Audit Event and Wait, SYSl-61
Breakthrough, SYSl-68
Breakthrough and Wait, SYSl-76
Cancel Exit Handler, SYSl-79
Cancel 1/0 on Channel, SYSl-77
Cancel Timer, SYS 1-80
Cancel Wakeup, SYSl-82
Change to Executive Mode, SYSl-110

with quadword argument list, SYSl-112
Change to Kernel Mode, SYSl-114, SYSl-116

lndex-8

System services (cont'd)
Check Access, SYSl-84
Check Access Protection, SYS 1-99
Check Floating Point (Alpha only), SYSl-92
checking completion status of, SYS2-44 7
Check Privilege, SYSl-93
Check Privilege and Wait, SYSl-98
Clear Cluster Event (Alpha only), SYSl-107
Clear Event Flag, SYSl-109
Convert ASCII String to Binary Time,

SYSl-62
Convert ASCII String to UTC Binary Time,

SYSl-65
Convert Binary Time to ASCII String,

SYSl-29
Convert Binary Time to Numeric Time,

SYS2-194
Convert UTC Time to Numeric Components,

SYS2-196
Convert UTC to ASCII, SYSl-35
Create and Map a Global Disk File Section,

SYSl-210
Create and Map Global Page File Section,

SYSl-218
Create and Map Global Page Frame Section,

SYSl-225
Create and Map Private Disk File Section,

SYSl-204
Create and Map Private Page Frame Section,

SYSl-232
Create and Map Section, SYSl-192
Create Global Page Frame Section, SYSl-135
Create Logical Name, SYSl-149
Create Logical Name Table, SYSl-155
Create Mailbox and Assign Channel, SYSl-161
Create Permanent Global Disk File Section,

SYSl-126
Create Permanent Global Page File, SYSl-131
Create Process, SYSl-168
Create Rights Database, SYSl-139
Create User Profile, SYSl-145
Create Virtual Address Space, SYSl-185,

SYSl-188
Create Virtual Region, SYSl-141
Deallocate Device, SYSl-238
Deassign 1/0 Channel, SYSl-240
Declare AST, SYSl-242
Declare Change Mode or Compatibility Mode

Handler, SYSl-244
Declare Exit Handler, SYSl-247
Delete a Virtual Region, SYSl-255
Delete Buffer Object, SYSl-249
Delete Common Event Flag Cluster, SYSl-292
Delete Global Section, SYSl-279
Delete Intrusion Records, SYSl-250
Delete Logical Name, SYSl-258
Delete Mailbox, SYSl-261
Delete or Modify Proxy, SYSl-252

System services (cont'd)
Delete Process, SYSl-263
Delete Virtual Address Space, SYSl-265,

SYSl-267
Dequeue Lock Request, SYSl-270
Disable Alignment Fault Reporting (Alpha

only), SYS2-201
Disassociate Common Event Flag Cluster,

SYSl-236
Dismount Volume, SYSl-282
Display Proxy Information, SYSl-286
Distributed Name Service (DNS) Clerk (VAX

only), SYSl-294, SYSl-321
End Transaction, SYSl-322
End Transaction and Wait, SYSl-327
Enqueue Lock Request, SYSl-328
Enqueue Lock Request and Wait, SYSl-340
Exit, SYSl-344
Expand Program/Control Region, SYSl-345
Expand Virtual Address Space, SYS 1-348
Find Holder ofldentifier, SYSl-381
Find Identifiers Held by User, SYSl-378
Force Exit, SYSl-386
Format Access Control List Entry, SYSl-389
Format Security Audit Event Message,

SYSl-402
Formatted ASCII Output Services, SYSl-351
Formatted ASCI Output with List Parameter

for 64-Bit Memory, SYSl-371
Get Alignment Fault Data (Alpha only),

SYS2-85
Get Arithmetic Exception Information (Alpha

only), SYS2-87
Get DeviceNolume Information, SYSl-406
Get DeviceNolume Information and Wait,

SYSl-426
Get Information About a Specified Virtual

Region, SYS2-4 7
Get Job/Process Information, SYSl-427
Get Job/Process Information and Wait,

SYSl-448
Get Lock Information, SYS 1-449
Get Lock Information and Wait, SYSl-461
Get Message, SYSl-462
Get Queue Information, SYS2-3
Get Queue Information and Wait, SYS2-46
Get Security Characteristics, SYS2-89
Get Security Erase Pattern, SYSl-341
Get System Alignment Fault Data (Alpha only),

SYS2-97
Get Systemwide Information, SYS2-51
Get Systemwide Information and Wait,

SYS2-70
Get Time, SYS2-71
Get User Authorization Information, SYS2-72
Get UTC Time, SYS2-84
Grant Identifier to Process, SYS2-101
Hash Password, SYS2-105

System services (cont'd)
Hibernate, SYS2-108
Initialize System Alignment Fault Reporting

(Alpha only), SYS2-115
Initialize Volume, SYS2-118
Lock Pages in Memory, SYS2-139, SYS2-142
Lock Pages in Working Set, SYS2-145,

SYS2-148
Magnetic Tape Accessibility, SYS2-191
Map Global Disk or Page File Section,

SYS2-157
Map Global Page Frame Section, SYS2-163
Map Global Section, SYS2-151
Modify CPU User Capabilities, SYSl-118
Modify Holder Record in Rights Database,

SYS2-169
Modify Identifier in Rights Database,

SYS2-172
Modify Process Affinity, SYS2-204
Modify Process Implicit Affinity, SYS2-297
Modify Process User Capabilities, SYS2-209
Mount Volume, SYS2-l 76
obsolete, A-1
Parse Access Control List Entry, SYS2-198
Process Scan, SYS2-214
Purge Working Set, SYS2-227, SYS2-229
Put Message, SYS2-231
Queue 1/0 Request, SYS2-239
Queue 1/0 Request and Wait, SYS2-245
Read Event Flags, SYS2-246
Release Vector Processor (VAX only), SYS2-248
Remove Holder Record from Rights Database,

SYS2-249
Remove Identifier from Rights Database,

SYS2-251
Report Alignment Fault (Alpha only),

SYS2-202
Reschedule Process, SYS2-253
Restore Vector Processor Exception State (VAX

only), SYS2-254
Restore Vector State (VAX only), SYS2-256
Resume Process, SYS2-258
Revoke Identifier from Process, SYS2-260
RMS Rundown, SYS2-264
Save Vector Processor Exception State (VAX

only), SYS2-266
Scan for Devices, SYSl-275
Scan Intrusion Database, SYS2-268
Scan String for File Specification, SYSl-372
Schedule Wakeup, SYS2-273
Send Message to Error Logger, SYS2-358
Send Message to Operator, SYS2-418
Send to Job Controller, SYS2-359
Send to Job Controller and Wait, SYS2-417
Set AST Enable, SYS2~281
Set Automatic Unshelving, SYS2-321
Set Cluster Event (Alpha only), SYS2-282
Set Default Directory, SYS2-285

lndex-9

System services (cont'd)
Set Default File Protection, SYS2-287
Set Event Flag, SYS2-289
Set Exception Vector, SYS2-290
Set IEEE Floating-Point Control Register

(Alpha only), SYS2-113
Set Power Recovery AST, SYS2-301
Set Priority; SYS2-303
Set Privileges, SYS2-314
Set Process Name, SYS2-307
Set Process Swap Mode, SYS2-325
Set Protection on Pages, SYS2-308, SYS2-311
Set Resource Domain, SYS2-339
Set Resource Wait Mode, SYS2-319
Set Security, SYS2-344
Set Stack Limits, SYS2-323
Set System Time, SYS2-292
Set Timer, SYS2-294
Set User Authorization Information, SYS2-327
Show Intrusion Information, SYS2-351
Signal Array, SYS2-356
Start Alignment Fault Reporting (Alpha only),

SYS2-432
Start Transaction, SYS2-435
Start Transaction and Wait, SYS2-439
Stop Alignment Fault Reporting (Alpha only),

SYS2-440
Stop System Alignment Fault Reporting (Alpha

only), SYS2-441
Subsystem, SYS2-442
Suspend Process, SYS2-444
Synchronize, SYS2-44 7
Terminate Rights Database Context, SYSl-384
Test Cluster Event (Alpha only), SYS2-456
Time Converter, SYS2-449
Translate Identifier Name to Identifier,

SYSl-32
Translate Identifier to Identifier Name,

SYS2-110
Translate Logical Name, SYS2-451
Unlock Pages from Memory, SYS2-458,

SYS2-460
Unlock Pages from Working Set, SYS2-463
Unlock Pages in Working Set, SYS2-465
Unwind Call Stack, SYS2-468
Unwind Call Stack (Alpha only), SYS2-99
Update Global Section File on Disk, SYS2-475
Update Global Section File on Disk and Wait,

SYS2-481
Update Section File on Disk, SYS2-470
Update Section File on Disk and Wait,

SYS2-480
Verify Proxy, SYS2-482
Wait for Logical AND of Event Flags,

SYS2-490
Wait for Logical OR of Event Flags, SYS2-492
Wait for Single Event Flag, SYS2-487
Wake Process from Hibernation, SYS2-488

lndex-10

System Services
Create Buffer Object, SYSl-122

System time

T

See also Time
converting 64-bit time to UTC time, SYS2-449
setting, SYS2-292

Tapes
initializing from within a program, SYS2-118

Termination messages
format of, SYSl-177

$TIMCON system service, SYS2-449
Time

converting 64-bit system format to UTC,
SYS2-449

converting binary to ASCII string, SYSl-29
converting binary to numeric, SYS2-194
converting UTC to 64-bit system format,

SYS2-449
converting UTC to ASCII, SYSl-35
converting UTC to numeric components,

SYS2-196
getting current system, SYS2-71
setting system, SYS2-292

Timer requests
canceling, SYSl-80

Timers
setting, SYS2-294

TQELM (timer queue entry limit)
See TQELM process limit

TQELM process limit
effect of canceling timer request, SYS 1-80

Transactions
aborting asynchronously, SYSl-3
aborting synchronously, SYS 1-7
default, SYS2-437
ending asynchronously, SYSl-322
ending synchronously, SYSl-327
starting asynchronously, SYS2-435
starting synchronously, SYS2-439

Translating identifier name to identifier, SYSl-32
$TRNLNM system service, SYS2-451
$TSTCLUEVT system service

on Alpha systems only, SYS2-456

u
UAFs (user authorization files)

getting information about, SYS2-72
modifying, SYS2-327

$ULKPAG system service, SYS2-458
$ULKPAG_64 system service, SYS2-460

description, SYS2-461

$ULWSET system service, SYS2-463
$ULWSET_64 system service, SYS2-465

description, SYS2-466
Unlocking pages from memory, SYS2-460 ,
Unlocking pages in the working set, SYS2-465
$UNWIND system service, SYS2-468
$UPDSEC system service, SYS2-4 70
$UPDSECW system service, SYS2-480
$UPDSEC_64 system service, SYS2-475

description, SYS2-4 78
$UPDSEC_64W system service, SYS2-481
User profiles

creating, SYSl-145
UTC Coordinated Universal Time

converting format to ASCII, SYSl-35
UTC format

v

converting to ASCII, SYSl-35
converting to numeric components, SYS2-196
getting, SYS2-84

Vector processors
releasing, SYS2-248
restoring the exception state of, SYS2-254
saving the exception state of, SYS2-266

Vector state
restoring, SYS2-256

$VERIFY_PROXY system service, SYS2-482
Virtual address space

adding page to, SYSl-185, SYSl-345
creating, SYSl-185
deleting page from, SYSl-265

Virtual Address Space
expanding, SYSl-348

Virtual address space, deleting, SYSl-267
Virtual 1/0

canceling requests for, SYSl-77
Virtual region

getting information about, SYS2-4 7
Volumes

dismounting, SYSl-282
getting information asynchronously, SYSl-406
getting information synchronously, SYSl-426
initializing from within a program, SYS2-118
mounting, SYS2-176

w
$WAITFR system service, SYS2-487
$WAKE system service, SYS2-488

See also $HIBER
Wakeup requests

canceling, SYSl-82
$WFLAND system service, SYS2-490
$WFLOR system service, SYS2-492

Wildcard operations, SYSl-427
Wildcard searches

obtaining information about processes,
SYS2-214

Working set
purging, SYS2-229

Working sets
adjusting limit, SYSl-20
locking page into, SYS2-145
purging, SYS2-227
unlocking page from, SYS2-463

lndex-11

NOTES

