
DEC 7000/10000 AXP
KN7AACPU
Technical Manual
Order Number EK~KN7AA-TM.001

The KN7 AA is an Alpha AXP CPU module desi01ed for the I.SB Rlatform. It
is based on the DECchip 21064 microprocessor and is used in the DEC 7000
and DEC 10000 RISC systems. It supports up to seven MS7 AA m.emory mqd
ules in a uniprocessor configuration and one IOP module per sy.sjAmi. A
multiprocessor system can be configured by either loading additional modules
in empty backplane slots or replacing a memory module with a ,CPU module.

digttal equipment corporation
maynard, massachusetts

First Printing, July 1993

The information in this document is subject to change without notice and should not be construed as a com
mitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only
in accordance with the t.erms of such license. No responsibility is assumed for the use or reliability of soft..
ware or equipment that is not supplied by Digital Equipment Corporation or its affiliat.ed companies.

Copyright© 1993 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

Alpha.AXP
.AXP
DEC
DECchip
DEC LANcontroller
DECnet

DECUS
DWMVA
Open VMS
ULTRIX
UNIBUS
VAX

VAXBI
VAXELN
VMSclust.er
XMI
TheAXPlogo

@•di

OSF/l is a registered trademark of the Open Software Foundation, Inc.

FCC NOTICE: The equipment described in this manual generat.es, uses, and may emit radio frequency en
ergy. The equipment has been type t.est.ed and found to comply with the limits for a Class A computing de
vice pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such radio frequency int.erference when operated in a commercial environment. Operation of this
equipment in a residential area may cause int.erference, in which case the user at bis own expense may be
required to take measures to correct the int.erference.

Contents·

Preface ... xi

Chapter 1 KN7 AA CPU Module Overview
1.1 Module Hard.ware ... 1-2
1.1.1 DECcb.ip 21064 ... 1-2
1.1.2 Backup Cache (B-Cache) .. 1-3
1.1.3 LSB Interface (LEVI) .. 1-3

Chapter 2 Address Space
2.1 Memory Space Map ... 2-1
2.2 1/0 Space Map ... 2-2
2.2.1 LSB CSR Map ... 2-2
2.2.2 Gbus Map .. 2-3
2.2.3 Broadcast Space .. 2-4

Chapter 3 Alpha AXP Architecture Overview
3.1 Data Types .. ~ 3-1
3.2 Instructions ... 3-2
3.2.1 Instru.ction Format Classes .. 3-2
3.2.2 Instru.ction Set Characteristics .. 3-3
3.3 Architecturally Defined Open VMS AXP IPRs .. 3-4

Chapter 4 DECchip 21064 Overview
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.4

Functional Units ... 4-2
Ibox .. 4-2

Branch Prediction Logic .. 4-3
Instru.ction Translation Buffers .. 4-3
Interrupt Logic ... 4-4
Performance Counters ... 4-5

Ebox ... 4-6
Abox ... 4-6

Data. Translation Buffer .. 4-6
Bus Interface Unit .. 4-7
Load Silos ... 4-7
Write Buffer .. 4-8

Fbox ... 4-9

IU

Iv

4.1.4.1
4.1.4.2
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2

Operation .. 4-9
IEEE Floating-Point Conformance ... 4-10

Internal Cache .. 4-11
Pipeline Organization ... 4-11

Sta tic and Dynamic Stages .. 4-13
Aborts .. 4-13
Nonissue Conditions ... 4-14

Scheduling and Issuing Rllles .. 4-14
Instruction Class Definition ... 4-14
Producer-Consumer Latency ... 4-15
Instruction Issue Rules .. 4-17
Dual-Issue Table ... 4-18

P .ALcode Instructions .. 4-19
Required P Al.,code Instru.ctions .. 4-19
P ALcode Instructions That Require Recognition ... 4-20
Architecturally Reserved P ALcode Instructions ... 4-20

Exceptions and Interrupts' .. 4-21
Exceptions ... 4-21
Interrupts .. 4-22

Internal Processor Registers .. 4-23
IPR Access ... 4-23
IPR Descriptions ... 4-27
TB_TAG--Translation Buffer Tag Register .. 4-29
ITB_PTE-Instru.ction Translation Buffer PrE Register ...•....•..•.•.......••.••....•••. 4-30
ICCSR-Instruction Cache ControVStatus Register .. 4-31
ITB_PI'E_TEMP-Instru.ction Translation Buffer PI'E_TEMP Register 4-36
EXC_ADDR-Exception Address Register ... 4-37
SL_RCV'---Serial Line Receive Register ... 4-39
PS-Processor Status Register ... 4-40
EXC_SlJM-Excepti.on Summary Register ... 4-41
P AL_BASE-PALcode Base Address Register ... 4-43
lilRR-Hardware Interrupt Request Register ... 4-44
SIRR-Software Interrupt Request Register .. 4-46
ASTRR-Asyncbronous Trap Request Register ... 4-4 7
lilER-Hardware Interrupt Enable Register ... 4-48
SIER-Software Interrupt Enable Register .. 4-50
ASTER-AST Interrupt Enable Register .. 4-51
SL_ CLR-Interrupt Clear Serial Line Register ... 4-52
SL_:x:L\IIT---Serial I..ine Transmit Register ... 4-53
TB_CTL-Translation Buffer Control Register ... 4-54
DTB_PTE-Data Translation Buffer PTE Register ... 4-55
DTB_PTE_TEMP-Data Translation Buffer PTE_TEMP Register 4-56
:M:MCSR-Memory Management CSR Register ... 4-57
BIU_ADDR-BIU Address Register .. 4-58
BIU_STAT-BIU Status Register ... 4-59
DC_STAT-D-Cache Status Register .. 4-62
FILL_ADDR-Fill Address Register ... 4-63
ABO:x._CTL-.Ahox Control Register .. 4=64
ALT_MODE-Altemate Processor Mode Register ... ,. 4-66
CC--Cycle Counter Register ... 4-67
CC_CTL-Cycle Counter Control Register ... 4-68
BIU _ CTL--BIU Control Register .. 4-69
FILL_SYND--Fill Syndrome Register ... 4-72
BC_TAG--B-Cache Tag Register .. 4-74

Chapter 5 Cache Memory
5.1 P-Cache .. 5-2
5.2 B-Cache .. 5-2
5.3 B-Cache States .. 5-2
5.4 B-Cache State Changes .. 5-3
5.5 Write Policy ... 5-6
5.6 Cache Backm.aps ~ ... 5-6
5.6.1 P-Map .. 5-6
5.6.2 B-Map .. 5-6
5.7 Victim Bllffer ... 5-7
5.8 B-Cache Operating Modes .. 5-7
5.9 Cache Initialization ... 5-8

Chapter 6 LSB Bus Interface
6.1 LEVI Address Path ... 6-2
6.2 LEVI Data Path .. 6-3
6.3 LEVI Controllers ... 6-4
6.3.1 LEVI Processor Controller ... 6-4
6.3.2 LEVI Data Controller ... 6-4
6.3.3 LSB Controller .. 6-5
6.4 Interfacing Rules ... 6-6
6.4.1 Dual-Ported Access Syn.chronization ... 6-6
6.4.2 LSB .Arbitration .. 6-6
6.5 Address Space Mapping .. 6-7
6.6 LEVI Transactions .. 6-7
6.6.1 Processor-Initiated Transactions ... 6-7
6.6.2 LSB-Initiated Transactions ... 6-8
6.6.3 Transaction Ordering ... 6-9

Chapter 7 Console Overview
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.5.1
7.1.5.2
7.1.6
7.2
7.3

CPU Console Hardware .. 7-1
Serial ROM ... 7-2
Serial Port ... 7-2
FEPROMs ... 7-3
EEPROM ... 7-3
UARTs ... 7-3

Ctrl/P Character Detection and Halt Protection .. 7-4
UART Register Addressing ... 7-4

Watch Chip ... 7-4
Console Program Invocation ... 7-4
Console Registers .. 7-5

Gbus$WHAMI .. 7-7
Gbus$LEDs ... 7-9
Gbus$PMask .. 7-10
Gbus$Intr .. 7-12
Gbus$Halt ... 7-14
Gbus$LSBRST .. 7-16
Gbus$Misc ... 7-17
Gbus$RMode ... 7-19
Gbus$LTagRW .. 7-20

v

Chapter 8 1/0 Operations
8.1 Mailbox Data Structure .. 8-1
8.2 Mailbox Operation .. 8-2
8.3 Device Interrupt Handling ... 8-3
8.4 1/0 Operation Registers .. 8-4

LMBOX-IBB Mailbox Register ... 8-5

Chapter 9 CPU Module Registers
9.1 Register Mapping .. 9-2
9.2 Register Descriptions ... 9-4

LDEV-Device Register .. 9-5
LBER---Bus Error Register ... ~ 9-6
LCNR---Configuration Register ... 9-9
LMMR0-7-Memory Mapping Registers ... 9-10
LBESR0-3-Bus Error Syndrome Registers ... 9-12
LBECR0,1-Bus Error Command Registers .. 9-14
LIOINTR--I/O Interrupt Register .. 9-16
LIPINTR-Interprocessor Interrupt Register ... 9-18
I.MODE-Mode Register ... 9-20
LMERR---Module Error Register ... 9-24
LLOCK-Lock Address Register ... 9-26
LDIAG-Diagnostic Control Register ... 9-27
LTAGA-Tag Address Register .. 9-30
LTAGW-Tag Write Data Register .. 9-31
LCON0,1-Console Communication Registers .. 9-33
LPERF-Performance Counter Control Register .. 9-34
LCNTR0,1-Performance Counter Registers ... 9-42
LMISSADDR-Last Miss Address Register .. 9-43

Chapter 10 Privileged Architecture Library Code
10.1
10.2
10.3
10.3.1
10.3.2
10.4
10.5
10.5.1
10.5.1.1
10.5.1.2
10.6
10.6.1
10.6.2
10.6.3

PALcode ... 10-1
P ALmode Environment .. 10-2
Invoking PALcode ... 10-2

Categories of Hardware-Initiated P.ALcode .. 10-3
CALL_P AL Instruction .. 10-3

PALcode Entry Points ... 10-4
P ALmode Restrictions .. 10-7

TB Miss Flows .. 10-13
ITB Miss ... 10-13
DTB Miss .. 10-14

Implementation of Architecturally Reserved Opcodes ... 10-15
HW _MFPR and HW _MTPR Instructions ... 10-16
HW_LD and HW_ST Instructions,,,,.,, ... 10-16
HW _REI Instruction .. 10-17

Chapter 11 Open VMS AXP System Support
11.1 Open VMS Memory Management ... 11-1
11.1.1 Virtual Address Space .. 11-2
11.1.2 Physical Address Space .. 11-3

vi

11.1.3
11.1.4
11.1.5
11.1.6
11.1.6.1
11.1.6.2
11.1.6.3
11.1.7
11.1.7.1
11.1.7.2
11.1.8
11.1.9
11.1.10
11.2
11.2.1
11.2.2
11.2.3

Memory Management Control ... 11-3
Page Table Entries ... 11-3
Changes to Page Table Entries .. 11-5
Memory Protection ... 11-6

Processor Access Modes ... 11-7
Protection Code .. 11-7
Access Violation Fault ... 11-7

Address Translation ... 11-7
Physical Access for Page Table Entries .. 11-7
Virtual Access for Page Table Entries .. 11-9

Translation Buffer .. 11-10
Address Space NlllD.bers ... 11-10
Memory Management Faults ... 11-11

Open'VMS AXP Process Structure ... 11-12
Hardware Privileged Process Context ... 11-12
.Asynchronous System Traps (AST) ... 11-14
Process Context Switching ... 11-14

Chapter 12 DEC OSF/1 AXP System Support
12.1
12.1.1
12.1.1.1
12.1.1.2
12.1.2
12.1.3
12.1.4
12.1.5
12.1.5.1
12.1.5.2
12.1.5.3
12.1.6
12.1.6.1
12.1.6.2
12.1.7
12.1.8
12.1.9
12.2

DEC OSF/1 AXP Memory Management .. 12-1
Virtual Address Spaces .. 12-2

Segment SegO and Segl Virtual Address Format 12-2
Kseg Virtual Address Format ... 12-3

Physical Address Space .. 12-3
Memory Management Control ... 12-4
Page Table Entries ... 12-4
Memory Protection ... 12-6

Processor Access Modes ... 12-6
Protection Code .. 12-6
Access Violation Fault ... 12-6

Address Translation for SegO and Segl .. 12-6
Physical Access for SegO and Segl PT.Es .. 12-7
Virtual Access for SegO or Segl PrEs ... 12-8

Translation Buffer .. 12-8
Address Space N lllD.bers ... 12-9
Memory Management Faults ... 12-9

DEC OSF/1 AXP Process Structure .. 12-10

Chapter 13 Initialization
13.1
13.2
13.2.1
13.2.2
13.2.3
13.3
13.3.1
13.3.2
13.3.3

Initialization Overview ... 13-1
Self-Test ... 13-1

SROM Operation .. 13-2
CPU Module Self-Test .. 13-2
Additional Power-Up Testing .. 13-2

Console Entry ... 13-2
Boot Processor Arbitration ... 13-3
Boot Processor System Setup ... 13-3
Operating System Startup ... 13-3

vii

Chapter 14 Error Handling
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.5.1
14.3.5.2

Machine Check Overview ... 14-2
DECchip 21064 Actions on Errors ... 14-2

Response to Single Errors .. 14-3
Response to Multiple Errors .. 14-5

P ALcode Error Handling .. 14-6
Error Log Packets ... 14-6
Error Parse Trees ... 14-10
Events Reported Through 670 Machine Checks ... 14-11
Events Reported Through 660 Machine Checks ... 14-46
Events Reported Through Entry 630 ... 14-66

DECchip 21064 Revision 2.1 ... 14-66
DECchip 21064-C Revision 3.0 .. 14-66

Examples

10-1 Code for a Delay of Three Cycles .. 10-7
10-2 Reading PAL_TEMP After a Write to PAL_TEMP ... 10-8
10-3 Reading the EX.C_ADDR IPR ... 10-8
10-4 Using Result oflnteger Operation as Source of HW _MTPR DTBIS 10-9
10-5 Clearing the ITB and DTB ... 10-10
10-6 Write to ITB Ignored Following REI .. 10-10
10-7 Conditions for Avoiding Asynchronous Exceptions ... 10-11
10-8 Delay aetween HW _MFPR DTB_PTE and HW _MFPR DTB_PTE_TEMP 10-11
10-9 Delay Between HW _MFPR ITB_PrE and HW _MFPR ITB_PrE_TEMP 10-12
14-1 Error Isolation Using a Parse Tree .. 14-10

Figures

1-1 Block Diagram of a DEC 7000 or DEC 10000 System .. 1-1
1-2 KN7 AA CPU Module Block Diagram .. 1-2
2-1 KN7 AA Address Space .. 2-1
2-2 110 (Noncacheable) Space Map .. 2-2
2-3 Gbus Space Map .. 2-4
3-1 Alpha .AXP Instruction Formats .. 3-2
4-1 Block Diagram of the DECchip 21064 .. 4-2
4-2 Integer Operate Pipeline .. 4-12
4-3 Memory Reference Pipeline .. 4-12
4-4 Floating-Point Operate Pipeline .. 4-12
4-5 Producer-Consumer Latency Matrix .. 4-16
4-6 HW _MFPR and HW _MTPR Instruction Format .. 4-23
5-1 KN7AA CPU Module Cache Organization .. 5-1
6-1 LEVI Block Diagram ... 6-2
8-1 Mailbox Data. Structure .. 8-1
8-2 Mailbox Pointer Structure .. 8-3
10-1 HW _MFPR and HW _MTPR Instruction Format .. 10-16
10-2 HW_LD and HW_ST Instruction Format .. 10-17
10-3 HW_REI Instruction Format .. 10-18
11-1 Virtual Address Format .. 11-2
11-2 Page Table Entry .. 11-3
11-3 Hardware Privileged Context Block .. 11-13
12-1 Virtual Address Format .. 12-2
12-2 Kseg Virtual Address Form.at ... 12-3
12-3 Page Table Entry (PTE) .. 12-4

viii

12-4 Process Control Block (PCB) .. 12-11
14-1 670/660 Machine Check EITor Log Packet Format ... 14-7
14-2 670/660 Stack Frame .. 14-8
14-3 630 Error Log Packet Format ... 14-9
14-4 630 Stack Frame .. 14-9
14-5 Processor Machine Check 670 Parse Tree ... 14-12
14-6 System Machine Check 660 Parse Tree ... 14-4 7
14-7 P~e 630 Parse Tree ... 14-67

Tables

1 DEC 7000/10000 Documentation ... ~ xiv
2-1 :KN'7 AA LSB Node Base Addresses .. 2-3
3-1 Alpha .AXP Open VMS Internal Processor Registers ... 3-5
4-1 Producer-Consumer Classes ... 4-15
4-2 Opcode Summary (with Instruction Issue Bus) .. 4-19
4-3 Required PAkode Instructions·····-··-··················· .. 4-20
4-4 PALcode Instructions That Require Recognition .. 4-20
4-5 PALmode Instructions Specific to the DECchip 21064 ... 4-21
4-6 :KN'7AA Interrupts .. 4-22
4-7 DECchip 21064 Internal Processor Registers ... 4-24
4-8 DECchip 21064 IPR Reset State .. 4-26
4-9 TB_TAG IPR Bit Definitions .. 4-29
4-10 ICCSR IPR Bit Definitions ... 4-32
4-11 EXC_ADDR IPR Bit Definitions .. 4-37
4-12 SL_RCV IPR Bit Definitions .. 4-39
4-13 EXC_SUM IPR Bit Definitions .. 4-42
4-14 P AL_BASE IPR Bit Definitions ... 4-43
4-15 HIRR IPR Bit Definitions ... 4-45
4-16 HIER IPR Bit Definitions ... 4-49
4-17 SL_CLR IPR Bit Definitions ... 4-52
4-18 TB_CTL IPR Bit Definitions .. 4-54
4-19 :JMldCSR IPR Bit Definitions .. 4-57
4-20 BIU_ADDR IPR Bit Definitions ... 4-58
4-21 BIU_STAT IPR Bit Definitions .. 4-60
4-22 DC_STAT IPR Bit Definitions .. 4-62
4-23 FILL_ADDR IPR Bit Definitions ... 4-63
4-24 ABX_CTL IPR Bit Definitions .. 4-64
4-25 ALT_MODE IPR Bit Definitions .. 4-66
4-26 BIU_CTL IPR Bit Definitions .. 4-69
4-27 FILL_S'YND IPR Bit Definitions .. 4-72
4-28 Syndromes for Single-Bit EITors .. 4-73
4-29 BC_TAG IPR Bit Definitions .. 4-75
5-1 B-Cache States .. 5-3
5-2 Effect of Processor Action on B-Cache Line ... 5-4
5-3 Effect of LSB Bus Action on B-Cache Line .. 5-5
5-4 :KN'7 AA CPU Module Response to Incoming Addresses ... 5-5
5-5 Selection of the B-Cache Operating Mode ... 5-7
6-1 LSB Command Field Encodings ... 6-7
6-2 Processor-LEVI Actions During Transactions ... 6-9
7-1 Gbus Components ... 7-2
7-2 Console Registers ... 7-5
7-3 Gbus$WHAMI Register Bit Definitions .. 7-7
7-4 Gbus$LEDs Register Bit Definitions ... 7-9
7-5 Gbus$PMask Register Bit Definitions ... 7-10

Ix

7-6 Gbus$Intr Register Bit Definitions .. 7-12
7-7 Gbus$Halt Register Bit Definitions ... 7-14
7-8 Gbus$Misc Register Bit Definitions ... 7-17
8-1 Mailbox Data Structure .. 8-2
8-2 Mailbox Pointer Structure .. 8-3
8-3 lrn'7 AA CPU Interrupts ... 8-4
8-4 LMBOX Register Bit Definitions ... 8-6
9-1 LSB Node Space Base Addresses ... 9-2
9-2 CPU Module Registers .. 9-3
9-3 LDEV Register Bit Definitions ... 9-6
9-4 LBER Register Bit Definitions ... 9-7
9-5 LCNR Register Bit Definitions ... 9-9
9-6 Ll\tlMR Register Bit Definitions ... 9-10
9-7 LBESR Register Bit Definitions ... 9-12
9-8 Syndromes for Single-Bit EITors .. 9-13
9-9 LBECR Register Bit Definitions .. 9-14
9-10 LIOINTR Register Bit Definitions ... 9-16
9-11 LSB Interrupt Mapping .. 9-17
9-12 LIPINTR Register Bit Definitions ... 9-18
9-13 LMODE Register Pass 1 and Pass 2 LEVI Bit Definitions 9-21
9-14 LMODE Register Pass 3 LEVI Bit Definitions ... 9-22
9-15 LMERR Register Bit Definitions .. 9-24
9-16 LLock Register Bit Definitions ... 9-26
9-17 LDIAG Register Bit Definitions ... 9-27
9-18 LTAGA Register Bit Definitions .. 9-30
9-19 LTAGW Register Bit Definitions ... 9-31
9-20 LCON Register Bit Definitions .. 9-33
9-21 LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions .. 9-35
9-22 LPERF Register Pass 3 LEVI Bit Definitions ... 9-38
9-23 LCNTR Register Bit Definitions .. 9-42
9-24 LMISSADDR Register Pass 1 and Pass 2 LEVI Bit Definitions 9-43
9-25 LMISSADDR Register Pass 3 LEVI Bit Definitions ... 9-44
10-1 P Akode Entry" Points ... 10-5
10-2 D-Stream EITor P ALcode Entey Points ... 10-6
10-3 HW _MTPR Restrictions .. 10-9
10-4 HW _MTPR Cycle Delay .. 10-13
10-6 HW _MFPR and HW _MTPR Field Descriptions .. 10-16
10-6 HW_LD and HW_ST Instruction Field Descriptions .. 10-17
10-7 HW_REI Instruction Field Descriptions .. 10-18
11-1 Virtual Address Options ... 11-3
11-2 Page Table Entry" Bit De::fi.!'itions .. 11-4
12-1 Virtual Address Space Segments ... 12-2
12-2 Virt"Ual Address Options ... 12-3
12-3 Page Table Entry Bit Definitions .. 12-4
12-4 Memory Management Fault Type Codes ... 12-10
14-1 Error Entry Points to the PALcode Service Routines ... 14-1
14-2 Registers That Report Error Conditions .. 14-11

x

Preface

Intended Audience

This manual discusses the processor module of Digital's Alpha AXP com
puter systems designed for the LSB platform. It is intended for developers
of system software and for Digital service personnel. It discusses the func
tions and operations of the KN7 AA CPU module at register level. The
manual assumes programming knowledge at machine language level and
familiarity with the Open VMS AXP and DEC OSF/1 AXP operating sys
tems.

Document Structure

The material is presented in 14 chapters.

Chapter 1, KN7AA CPU Module Overview, presents an overall intro
duction to the KN7 AA CPU module.

Chapter 2, Address Space, discusses the address space, memory and 1/0,
supported by the DECchip 21064.

Chapter 3, Alpha AXP Architecture Overview, discusses data types
and instructions of the Alpha AXP architecture to prepare the user for the
rest of the document.

Chapter4, DECchip 21064 Overview, describes the organization ofthe
central processor of the KN7 AA CPU module. It discusses such topics as
functional units, internal cache, instruction pipeline, exceptions and inter
rupts, and internal processor registers.

Chapter 5, Cache Memory, describes the elements and operations of the
two-level cache hierarchy, which includes the primary cache and the
backup cache.

Chapter 6, LSB Bus Interface, describes the functions and operations of
the LEVI gate a?Tays that provide the CPU module interface to the LSB
bus. It discusses processor-initiated and LSB bus-initiated transactions,
LEVI address and data paths, and the LEVI controllers.

Chapter 7, Console Overview, gives a brief description of the various ele
ments that comprise the console. It also describes the Gbus registers,
which perform console control, diagnostic, and interrupt-related functions.

Chapter 8, 1/0 Operations, describes the mailbox data structure, the op
eration of the mailbox, interrupt handling, and 1/0 registers.

Chapter 9, CPU Module Registers, lists the LSB required and CPU
specific registers, and provides bit-level functional descriptions of each
register.

xi

Chapter 10, Privileged.Architecture Library Code, describes the es
sentials of the PALcode and discusses the PALmode environment.

Chapter 11, Open VMS AXP System Support, discusses memory man
agement performed by the Open VMS AXP operating system and gives the
structure of a process within the Open VMS AXP environment.

Chapter 12, DEC OSF/1 AXP System Support, discusses memory man
agement performed by the DEC OSF/1 AXP operating system and gives
the structure of a process within the DEC OSF/1 AXP environment.

Chapter 13, Initialization, gives an overview of the CPU module initiali
zation, describes the methods and process of initialization, system configu
ration, and bootstrapping of the operating system.

Chapter 14, Error Handling, describes how the KN7 AA module handles
various types of errors. It discusses the three categories of errors from the
viewpoint of error handling routines: processor-detected hard errors,
module-detected and processor-recognized hard errors, and processor
corrected soft errors. Error isolation parse trees and individual fault dis
cussions are intended to assist the error routine programmer.

Conventions Used in This Document

xii

Unpredictable Results and Undefined Operations

Results of operations termed UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruc
tion within implementations. Software must never use UNPREDICT
ABLE results.

Operations termed UNDEFINED may vary from moment to moment, im
plementation to implementation, and instruction to instruction within im
plementations. UNDEFINED operations may halt the processor or cause
it to lose information. However, they do not cause the processor to hang,
that is, reach a state from which there is no transition to a normal state of
instruction execution. Nonprivileged software cannot invoke UNDE
FINED operations.

Register and Bit Designations

Certain conventions are followed in register descriptions and in references
to bits and bit fields:

• Registers are referred to with their mnemonics, such as LCNR regis
ter. The full name of a register (for example, Module Error Regis
ter) is spelled out only at the top of the register description page, or
when the register is first introduced.

• Bits and fields are enclosed in angle brackets. For example, bit <31>;
bits <31:16>. For cla.-rity of reference, bits are usually specified by
their numbers or names enclosed in angle brackets adjacent to the reg
ister mnemonic, such as LMERR<3:0> or LMERR<PMAPPE>,
which are equivalent designations.

• When the value of a bit position is given explicitly in a register dia
gram, the information conveyed is as follows:

Bit Value

0

1

x

Meaning

Reads as zero; ignored on writes.

Reads as one; ignored on writes.

Does not exist in hardware. The value of the bit is UN
PREDICTABLE on reads and ignored on writes.

• Acronyms are used in register description tables to indicate the access
type of the bit(s). The entry in the Type column of a register descrip
tion table may include the initialization values of the bits. For exam
ple, entry "R/W, O" indicates a read/write bit that is initialized to zero.

Acronym

RC

R

RO
w

WlC

WlS

Access Type

Read to clear. The value is written by hardware and re
mains unchanged until read by software or P ALcode.

Read only. May be read by software, PALcode, or hard
ware. Written by hardware. Software or P.ALcode
writes are ignored.

Read/write. May be read and written by software,
PALcode, or hardware.

Reads as zero. Read only. Writes are ignored.

Write only. May be written by software or P.ALcode. It
is read by hardware. Reads by software or P ALcode re
turn an unpredictable value.

Write 1 to clear. The value may be read by software or
PALcode. Software or P ALcode writes of 1 to the posi
tion cause hardware to clear the bit. Software or
P ALcode writes of 0 do not modify the state of the bit.

Write 1 to set. May be read and written by software,
P ALcode, or hardware. Set by software or P .ALcode
with a write of 1.

MBZ. Fields in registers or data structures noted as must be zero (MBZ)
must never be filled by software with a nonzero value. If the processor en
counters a nonzero value in an MBZ field, an illegal Operand exception oc
curs.

SBZ. Fields in registers or data structures noted as should be zero (SBZ)
should be filled by software with a zero value. A nonzero value in an SBZ
field produces UNPREDICTABLE results and may produce extraneous
instruction-issue delays.

RAZ. Fields in registers or data structures noted as read as zero (RAZ)
return a value of zero when read.

IGN. Fields (in registers or data structures) noted as Ignore (IGN) are ig
nored when written.

xDI

Documentation Titles

Table 1 lists the books in the DEC 7000/10000 documentation set.

Table 1 DEC 7000/ 10000 Documentation

Tdle

Installation Kit

Site Preparation Guide

Installation Guide

Hardware User Information Kit

Operations Manual

Basic Troubleshooting

Service Information Kit-DEC 7000

Platform Service Manual

System Service Manual

Pocket Service Guide

Advanced Troubleshooting

Reference Manuals

Console Reference Manual

KN7AA CPU Technical Manual

MS7.AA Memory Technical Manual

1/0 System Technical Manual

Platform Technical Manual

Upgrade Manuals

KN'7.AA CPU Installation Card

MS7.AA Memory Installation Card

KZMSA Adapter Installation Guide

DWLAA Futurebus+ PIU Installation Guide

DWLMA XMI PIU Installation Guide

DWMBB V AXBI Installation Guide

H7237 Battery PIU Installation Guide

H7263 Power Regulator Installation Card

BA654 DSSI Disk PIU Installation Guide

I BA655 SCSI Disk and Tape PIU Installation Guide

Removable Media Installation Guide

xiv

7000 Systems
Order Number

EK-7000B-DK

EK-7000B-SP

EK-700EB-IN

EK-7001B-DK

EK-7000B-OP

EK-7000B-TS

EK-7002B-DK

EK-7000A-SV

EK-7002B-SV

EK-7700A-PG

EK-7701A-TS

EK-70COB-TM

EK-KN7.AA-TM

EK-MS7.AA-TM

EK-70IOA-TM

EK-7000A-TM

EK-KN7AA-IN

EK-MS7AA-IN

EK-KXM:SX-IN

EK-DWLAA-IN

EK-DWLMA-IN

EK-DWMBB-IN

EK-H7237-IN

EK-H7263-IN

EK-BA654-IN

EK-BA655-IN

EK-TFRRD-IN'

10000 Systems
Order Number

EK-lOOOB-DK

EK-lOOOB-SP

EK-lOOEB-IN

EK-lOOlB-DK

EK-lOOOB-OP

EK-lOOOB-TS

EK-1002B-DK

EK-lOOOA-SV

EK-1002A-SV

EK-llOOA-PG

EK-1101A-TS

Table 1 DEC 7000/ 10000 Documentation (Continued)

Tlfle

Related Documentation

DECchip 21064-AA, -BA Microprocessor Hardware
Reference Manual

A/,pha Architec'ture Reference Manual

7000 Systems
Order Number

EC-N0079-72

EY-L520E-DP

10000 Systems
Order Number

Figure 1-1

Chapter 1

KN7AA CPU Module Overview

The KN7 AA CPU module is a high performance, dual-instruction issue,
RISC (reduced instruction set computer) central processor unit designed
around the 64-bit DECchip 21064 microprocessor and is intended for use in
midrange compute servers. It operates at a peak clock rate of 200 MHz
and communicates with main memory and 1/0 subsystems by way of the
LSB bus. Figure 1-1 shows how the KN7AA CPU module fits in an Alpha
AXP computer system that uses the LSB bus.

Block Diagram of a DEC 7000 or DEC 10000 System

Memory

LSB

IOP
~--t l/OBus
.--- Adapter ..__ _ _.. BXB-0054C-92

The CPU module is an Alpha AXP architecture implementation that runs
optimized versions of Open VMS .AXP and DEC OSF/1 AXP. It operates in
multiple as well as single processor configurations.

All backplane slots except slot 8, which is dedicated to the IOP module, can
accept CPU or memory modules. It is strongly recommended, however,
that the first CPU module be placed in slot 0 for optimum performance.

KN7 AA CPU Module OVervlew 1-1

1. 1 Module Hardware

Figure 1-2

The KN7 AA CPU module is comprised of three major sections:

• CPU chip (DECchip 21064)

• Backup cache (B-cache)

• LSB interface (LEVI)

Figure 1-2 shows the major sections of the CPU module, which includes on
board ROMs that permit booting from supported devices and provide self
test diagnostics on power-up.

KN7 AA CPU Module Block Diagram

LSB Bus

E
l
I
I

LEVI

ii I UART I
8-Stat ,~g i ~ IEEROMI

B-Tag I I SROM r:::::l
. ~

B-Data I t '
ROM

DECchip 21064
BXB-0372A·93

1. 1. 1 DE Cc hip 21064

The DECchip 21064 processor is a single-chip, super-scalar, super
pipelined processor with dual-instruction issue. Features include:

• Internal 8-Kbyte data cache (D-cache) and 8-Kbyte instruction cache
(I-cache)

• Pipelined floating-point unit

• Demand-paged memory management unit consisting of:

- A 12-entry I-stream translation buffer with eight entries for 8-
Kbyte pages and four entries for 4 Mbyte pages

- A 32-entry D-stream translation buffer with each entry able to map
a single 8-Kbyte, 64 Kbyte, 512 Kbyte, or 4-Mbyte page (see discus
sions of granularity hint in Sections 11.1.4 and 12.1.4).

• Parity and ECC support

• Chip and module level test support

1-2 KN7 AA CPU Module Overview

• Cache and memory subsystem interface (EDAL interface)

The macroinstruction pipelined design of the DECchip 21064 allows sig
nificant parallel processing. The DECchip 21064 pipelines macroinstruc
tion decode and operand fetch with macroinstruction execution. When the
macropipeline is operating smoothly, the instruction unit (lbox), which
parses instructions and fetches operands, is running several macroins
tructions ahead of the execution unit (Ebox). Branch predictions allow
compilers to generate optimized code flow. Outstanding writes to registers
or memory locations are kept in a scoreboard to ensure that data is not
read before it has been written.

The DECchip 21064 uses a set of subroutines, called Privileged Architec
ture Library code (PALcode), that is specific to a particular Alpha AXP op
erating system implementation and hardware platform. These subrou
tines provide operating system primitives for context switching, interrupts,
exceptions, and memory management. The subroutines can be invoked by
hardware or CALL_P AL instructions. P ALcode is written in standard ma
chine code with some implementation-specific extensions that provide di
rect access to low-level hardware functions. P.ALcode supports optimiza
tion for multiple operating systems, flexible memory management
implementations, and multi-instruction atomic sequences.

1. 1.2 Backup Cache CB-Cache)

The external backup cache (B-cache) is a 4-Mbyte superset of the primary
cache (P-cache). It is a physically addressed, direct mapped, write back,
mixed I-stream and D-stream cache with a block and fill size of 64 bytes.
It consists of three sets of RAMs:

B-data
B-tag
B-stat

Each block of data (B-data) has a tag (B-tag) and three status bits (B-stat)
associated with it. The status bits are Valid, Dirty, and Shared.

1. 1.3 LSB Interface (LEVI)

The interface to the LSB bus is called LEVI, which consists of two chips:
LEVI-A and LEVI-B. LEVI-A contains most LSB required registers, im
plements all command execution, LSB arbitration, and B-cache manipula
tion functions. It also contains a P-cache backmap (P-map) to allow the
CPU to do invalidate filtering and to make intelligent update vs. invalidate
decisions in response to LSB write traffic. LEVI-A uses an external RAM
structure to implement a back.map of the B-cache to filter bus traffic from
the B-cache while still maintaining cache coherence.

LEVI-B completes the 128-bit data path between the DECchip 21064 and
the LSB bus. A 14-bit communication bus between LEVI-A and LEVI-B
provides a path that allows look-aside ECC checking on incoming memory
traffic.

KN7 AA CPU Module overview 1-3

Figure 2-1

Chapter 2

Address Space

The DECchip 21064 allows for 34 bits of physical address space. The
KN7 AA module defines which portion of this space is cacheable or
noncacheable. Cacheable address space is commonly referred to as mem
ory space and noncacheable space as 1/0 space. The KN7 AA module segre
gates 1/0 space into LSB CSR space, local Gbus space, and broadcast
space. Figure 2-1 shows the portion ofLSB address space accessible to the
DECchip 21064 processor.

KN7 AA Address Space

0 00000000

3 DFFF FFFF
3 EOOO 0000

3 EFFF FFFF
3 FOOO 0000

3 FFFF FFFF

Memory
15.5 Gbytes

Reserved

1/0 256 Mbytes

BXB-01998-93

2. 1 Memory Space Map

All of memory in an LSB system is accessed as 64-byie blocks. The
KN'7 AA module maps DECchip 21064 address bits <33:5> to LSB address
bits <33:5>. LSB address bits <39:34> are always zero during nonCSR
LSB command cycles generated by the KN'7 AA module.

Address Space 2-1

2.2 1/0 Space Map

The KN7 AA module maps the 1/0 space into the highest 256 Mbytes of the
34-bit DECchip 21064 physical address space. When DECchip 21064 ad
dress bits <33:28> are all ones, the KN7 AA module defines these accesses
to be noncached. Figure 2-2 shows the KN7 AA 1/0 space map.

Figure 2-2 1/0 (Noncacheable) Space Map

21064
Byte Address
3 FOOOOOOO ------------------

3 F7FF FFFF
3 F8000000

3 F83F FFFF
3 F8400000

3 F87F FFFF

3 F9COOOOO

3 F9FF FFFF
3 FAOOOOOO

3 FA3F FFFF
3 FA400000

3 FOFF FFFF
3 FEOOOOOO

3 FE3F FFFF
3 FE400000

3 FFFF FFFF

128MB of Gbus Space

LSB Node 0 CSRs (64K CSR Locations)

LSB Node 1 CSRs (64K CSR Locations)

LSB Node 7 CSRs (64K CSR Locations)

IOP: LSB Node 8 CSRs (64K CSR Locations)

Reserved

LSB Broadcast Space (64K CSR Locations)

Reserved

BXB-0663-93

2.2. 1 LSB CSR Map

2-2 Address Space

All LSB-visible CSRs are defined to be 32 bits wide and aligned on 64-byte
boundaries. LSB CSRs are accessed using the Read CSR and Write CSR
commands. Bits D <22:1> of the address field in an LSB CSR read/write
command cycle are used to specify all LSB CSRs (l..SB bits D <33:23> and
D <0> are always zero during CSR command cycles).

The KN7 AA module maps the 128-Mbyte LSB CSR space into the next to
the highest 128 Mbytes of the DECchip 21064 34-bit physical address
space. When DECchip 21064 address bits <33:27> are all ones, the
KN7 AA module uses LSB CSR commands with DECchip 21064 physical
address bits <27:6> mapped to LSB command cycle D <22:1>. D <34:23>
and D <0> are driven with zeros by the KN"7 AA module during CSR com
mand cycles. Table 2-1 shows the base addresses of the nodes on the LSB
bus.

Table 2-1 KN7 AA LSB Node Base Addresses

Node Number Module 21064 Base Address

0 CPU 3 FBOOOOOO
1 CPU/Memory 3 F840 0000
2 CPU/Memory 3 F880 0000
3 CPU/Memory 3 FBCO 0000
4 CPU/Memory 3 F9000000
5 CPU/Memory 3 F9400000
6 CPU/Memory 3 F980 0000
7 CPU/Memory 3 F9CO 0000
8 I/O 3 FAOO 0000

2.2.2 Gbus Map

The KN7AA module allocates the first 128 Mbytes of the LSB 1/0 space for
local (Gbus) use. This region is called private space. References to this re
gion are serviced by resources local to the module and, therefore, are never
accessed with LSB CSR or memory comm.ands.

The KN7 AA module provides access to ROM, EEROM, the console UARTs,
and the watch chip through the Gbus. All Gbus addresses are located on
64-byte boundaries. Figure 2-3 shows the allocation of the Gbus space seg
ments.

Address Space 2-3

Figure 2-3 Gbus Space Map

21064
Byte Address
3 FOOO 0000

3 F07FFFFF
3 F080 0000

3 FOFFFFFF
3 F100 0000

3 F17FFFFF
3 F180 0000

3 F1FFFFFF
3 F200 0000

3 F27FFFFF
3 F280 0000

3 F2FFFFFF
3 F300 0000

3 F37FFFFF
3 F380 0000

3 F3FF FFFF
3 F400 0000

3 F47FFFFF
3 F480 0000

3 F4FF FFFF
3 FSOO 0000

3 F57F FFFF
3 F580 0000

3 FSFF FFFF
3 F600 0000

3 F67F FFFF
3 F680 0000

3 F6FF FFFF
3 F700 0000

3 F77F FFFF
3 F780 0000

3 F7FFFFFF

FPROMO: 128Kb

FPROM1: 128Kb

FPROM2: 128Kb

FPROM3: 128Kb

FPROM4: 128Kb
SROM: 32Kb from 3 F260 0000 to 3 F27F FFFF

FPROM5: 128Kb

FPROM6: 128Kb

EEPROM: 8Kb

DUARTO

DUART1

DUART2

Reserved

Watch Chip

Reserved

Miscellaneous Registers

Reserved

BXB-0662-93

2.2.3 Broadcast Space

2-4 Address Space

Broadcast space is used for write-only registers that are " ... ~tten in all
nodes in a single bus transaction. This region is used to implement inter
rupts on the LSB. The base address of the broadcast space is 3 FEOO 0000.

3.1 Data Types

Chapter 3

Alpha AXP Architecture Overview

The Alpha AXP architecture is a 64-bit load/store RISC architecture de
signed with particular emphasis on clock speed, multiple instruction issue,
and multiple processors. The architecture has the following characteris
tics:

• All registers are 64 bits in length, and all operations are performed be-
tween 64-bit registers.

• All instructions are 32 bits in length.

• There are 32 integer registers and 32 floating-point registers.

• Memory operations are either loads or stores.

• Memory is accessed by 64-bit virtual byte addresses in conformity with
the little-endian format of the LSB bus.

This chapter presents an overview of the Alpha .AXP architecture. It fo
cuses on only two of the elements that make up the architecture: data
types and instructions. The information given in this chapter is meant to
provide insight to the material discussed in this document. The program
mer should refer to the AJ,pha Architecture Reference Manual for a thor
ough discussion of the topics covered in this chapter.

The Alpha AXP architecture provides hardware support to the following
subset of data types:

Byte
Word
Longword
Quadword
D_floating (not fully supported by Alpha AXP hardware)
F _floating (32-bit)
G_floating (64-bit)
S_floating (IEEE single, 32-bit)
T_floating (IEEE double, 64-bit)

The remaining data types (octaword, H_floating, D_floating (except
load/store and convert to/from G_floating), variable-length bit field, charac
ter string, trailing numeric string, leading separate numeric string, and
packed decimal string) can be emulated by P ALcode. Hardware-supported
data types are discussed in detail in the Al,pha Architecture Reference Man
ual.

Alpha AXP Architecture Overview 3-1

3.2 Instructions

The Alpha AXP architecture supports the following types of instructions:

Memory integer load /store
Control
Integer arithmetic
Logical and shift
Byte manipulation
Floating-point
Memory format floating-point
Branch format floating-point
Floating-point operate form.at
Miscellaneous
VAX compatibility

These instruction types can be grouped under four instruction format
classes that contain 0, l, 2, or 3 register fields~ All formats have a 6-bit
opcode. The next section gives brief descriptions of the Alpha instruction
classes. Refer to the AJ,pha Architecture Reference Manual for a thorough
discussion of instructions supported by the Alpha AXP architecture.

3.2. 1 Instruction Format Classes

Figure 3-1

31

OPCODE

OPCODE

OPCODE

OPCODE

The Alpha AXP architecture supports the following four instruction for
mats:

• PALcode

• Branch

• Load/Store (Memory)

• Operate

Figure 3-1 shows the formats for the four classes of Alpha instructions.

Alpha AXP Instruction Formats

26 25 21 20 16 15 5 4

NUMBER

RA DISP

RA RB DISP or FUNCTION

RA RB FUNCTION I RC

o FORMAT:

PALcode

Branch

Memory

Operate

BXB-0665-93

P ALcode instructions specify, in the function code field, complex opera
tions to be performed.

3-2 Alpha AXP Architecture Overview

Conditional branch instructions test register Ra and specify a signed
21-bit PC-relative longword target displacement. Subroutine calls put the
return address in register Ra.

Load and store instructions move longwords or quadwords between
register Ra and memory, using Rb plus a signed 16-bit displacement as the
memory address.

Operate instructions for floating-point and integer operations are both
represented in Figure 3-1 by the operate format illustration and are as fol
lows:

• Floating operations use Ra and Rb as source registers and write the re
sult in register Re. There is an 11-bit extended opcode in the function
field.

• Integer operations use register Ra and register Rb or an 8-bit literal as
the source operand and write the result in register Re. Integer operate
instructions can use the Rb field and part of the function field to spec
ify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

3.2.2 Instruction Set Characteristics

The Alpha AXP instruction set has the following characteristics:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (RO through R31), each 64 bits wide.
R31 reads as zero and writes to R31 are ignored.

• There are 32 floating-point registers CFO through F31), each 64 bits
wide. F31 reads as zero and writes to F31 are ignored.

• All integer data manipulation is between integer registers, with up to
two variable register source operands (one may be an 8-bit literal) and
one register destination operand.

• All floating-point data manipulation is between floating-point regis
ters, with up to two variable register source operands and one register
destination operand.

• All memory reference instructions are of the load/store type that move
data between registers and memory.

• There are no branch condition codes. Branch instructions test an inte
ger or floating-point register value, which may be the result of a previ
ous compare.

• Integer and logical instructions operate in quadwords.

• Floating-point instructions operate on G_floating, F _floating, IEEE
double, and IEEE single operands. D_floating "format compatibility,"
in which binary files of D _floating numbers may be processed, but
without the last 3 bits of fraction precision, is also provided.

• A minimal number of VAX compatibility instructions are included.

Alpha AXP Architecture Overview 3-3

3.3 Architecturally Defined OpenVMS AXP IPRs

The Alpha .AXP architecture defines Open VMS internal processor registers
(IPRs) that can be accessed by software. These registers are read and writ
ten with Move From Processor Register (MFPR) and Move To Processor
Register (MTPR) instructions. Many of these registers will be referred to
throughout discussions in this document. All architecturally required
IPRs are discussed in the Alpha Architec'ture Reference Manual. Table 3-1
lists the Alpha AXP Open VMS IPRs (not to be confused with the DECchip
21064 IPRs).

3-4 Alpha f:V<P Architecture Overview

Table 3-1 Alpha AXP OpenVMS Internal Processor Registers

Name Mnemonic

Address Space Number Register ASN

AST Enable Register AS TEN

AST Summary Register ASTSR

Data Align Trap Fixup Register DATFX

Floating-Point Enable Register FEN

Interprocessor Interrupt Request Register IPIR

Interrupt Priority Level Register IPL

Machine Check EITor Summary Register MCES

Performance Monitor Register PERFMON

Privileged Context Block Base Register PCBB

Processor Base Register PRBR

Page Table Base Register PTBR

System Control Block Base Register SCBB

Software Interrupt Request Register SIRR

Software Interrupt Summary Register SISR

TB Check Register TBCHK

TB Invalidate All Register TBIA

TB Invalidate All Process Register TBIAP

TB Invalidate Single Register TBIS

TB Invalidate Single Data Register TBISD

TB Invalidate Single Instruction Register TBISI

Kernel Stack Pointer KSP

Executive Stack Pointer ESP

Supervisor Stack Pointer SSP

User Stack Pointer USP

Virtual Page Table Base Register VPTB

Who-Am-I Register WHAMI

1 Access Types:

R-Access by MFPR only
WW-Access by MTPR or MFPR
WW*-Access by_M_'I'PR or MFPR. Read and write by MTPR
W-Access by MTPR only

Access'

R

RIW*

RIW*

w
RIW

w
RIW*

RIW

W*

R

RIW

R

RIW

w
R

R

w
w
w
w
w
None

RIW

RIW

RIW

RIW

R

W*-Read and write access EY MTPR
None-Not accessible by MTPR or MFPR. Accessed by PALcode routines as needed.

Alpha AXP Architecture Overview 3-5

Chapter4

DECchip 21064 Overview

The implementation of the Alpha AXP architecture is defined by a combi
nation of the DECchip 21064 hardware and the Privileged Architecture Li
brary code (PALcode). This chapter presents an overview of the DECchip
21064 micro-architecture-; The PALcode is discussed in Chapter 8. Sec
tions in this chapter include:

• Functional Units

• Internal Cache

• Pipeline Organization

• Scheduling and Issuing Rules

• P ALcode Instructions

• Exceptions and Interrupts

• Internal Processor Registers

For more information on some of these topics, consult the DECchip 21064-
AA, -BA Microprocessor Hardware Reference Manual and the Alpha Archi
tecture Reference Manual.

Figure 4-1 shows a block diagram of the DECchip 21064.

DECchlp 21064 Overview 4-1

Figure 4-1 Block Diagram of the DECchip 21064

I-Cache

--- =-->
Ebox I box Fbox

Data Bus !128 bits) >
IRF FRF

Abox

D-Cache

- - BXB-0447-93

4.1 Functional Units

4.1.1 lbox

Instructions are processed in four functional units or boxes in the DECchip
21064:

• lbox (central control unit)

• Ebox (integer execution unit)

• Abox (address generation, load/store and bus interface unit)

• Fbox (floating-point unit)

The functional units operate independently of each other. Each unit can
accept at most one instruction per cycle; however, if code is correctly sched
uled, the DECchip 21064 can issue two instructions to two independent
units in a single cycle.

The primary function of the lbox is to issue instructions to the Ebox, Abox,
and Fbox. The lbox implements the following major elements to provide
this function:

• Branch prediction logic

• Instruction translation buffers (ITB)

• Interrupt logic

4-2 DECchtp 21064 overview

4.1.1.1

• Performance counters

The lbox decodes two instructions in parallel and checks that the required
resources are available for both instructions. If resources are available,
then both instructions are issued. The Ibox does not issue instructions out
of order. If the resources are available for the second instruction, but not
for the first instruction, then the lbox issues neither. If the Ibox issues
only the first of a pair of instructions, the lbox does not advance another
instruction to attempt dual issue again. Dual issue is only attempted on
aligned quadword pairs.

Branch Prediction Logic

The DECchip 21064 offers a choice of branch prediction strategies
selectable through the ICCSR IPR. The I-cache records the outcome of
branch instructions in a single history bit provided for each instruction lo
cation in the I-cache. This information can be used as the prediction for the
next execution of the branch instruction. The prediction for the first execu
tion of a branch instruction is based on the sign of the displacement field
within the branch instruction itself.

• If the sign bit is negative, the instruction prefetcher predicts the con
ditional branches to be taken.

• If the sign is positive, the instruction prefetcher predicts the condi
tional branches not to be taken.

• Alternatively, if the history table is disabled, branches can be predicted
based on the sign of the displacement field at all times.

The DECchip 21064 provides a four-entry subroutine return stack that is
controlled by the hint bits in the BSR, HW _REI, and jump to subroutine
instructions (JMP, JSR, RET, or JSR_COROUTINE). The chip also pro
vides a means of disabling all branch prediction hardware.

4. 1. 1.2 Instruction Translation Buffers

The lbox contains two instruction translation buffers (ITB).

• An eight-entry, fully associative translation buffer that caches re
cently used I-stream page table entries for 8-Kbyte pages.

• A four-entry, fully associative translation buffer that supports the larg
est granularity hint option (512 * 8-Kbyte pages) as described further
in this manual and more extensively in the AJ,pha Architecture Refer
ence Manual.

The instruction translation buffers-hereafter referred to as the small
page ITB and large-page !TB-use a not-last-used (NLU) replacement al
gorithm.

In addition, the ITB includes support for an extension called the super
page, which can be enabled by the MAP bit in the ICCSR IPR. Superpage
mappings provide one-to-one virtual PC<33:13> to physical PC<33:13>
translation when virtual address bits <42:41> = 2. When translating
through the superpage, the PI'E<ASM> bit used in the I-cache is always
set. Access to the superpage mapping is only allowed while executing in
kernel mode.

DECchlp 21064 Overview 4-3

PALcode fills and maintains the ITBs. The operating system, through
P ALcode, is responsible for ensuring that virtual addresses can only be
mapped through a single ITB entry (in the large page, small page, or
superpage) at the same time.

The lbox presents the 43-bit virtual program counter (VPC) to the ITB
each cycle while not executing in PALmode. If the PrE associated with the
VPC is cached in the ITB, then the lbox uses the PFN and protection bits
for the page that contains the VPC to complete the address translation and
access checks.

Each PTE entry in the ITB contains an address space match (ASM) bit.
The DECchip 21064 ITB supports a single address space number (ASN)
through the PTE<ASM> bit. Writes to the ITBASM IPR invalidate all en
tries that do not have their ABM bit set. This provides a simple method of
preserving entries that map operating system regions while invalidating
all others.

The ITB's tag aITay is updated simultaneously from the TB_TAG IPR
when the ITB_PTE IPR is written. Reads of the ITB_PrE IPR require two
instructions. The first instruction sends the PTE data to the
ITB_PrE_TEMP IPR and the second instruction, reading from the
ITB_PrE_TEMP IPR, returns the PTE entry to the register file. Reading
or writing the ITB_PTE IPR increments the TB entry pointer correspond
ing to the large/small page selection indicated by the TB_CTL, which al
lows reading the entire set of ITB_PTE IPR entries.

4. 1. 1.3 Interrupt Logic

The DECchip 21064 supports three sources of intenupts:

• Hardware-Six level-sensitive hardware interrupts sourced by the in
terrupt request pins

• Software-Fifteen software interrupts sourced by an on-chip IPR
(SIRR)

• Asynchronous system trap (AST)-Four AST interrupts sourced by a
second internal IPR (ASTRR)

All interrupts are independently maskable by on-chip enable registers to
support a software controlled mechanism for prioritization. In addition,
AST interrupts are qualified by the current processor mode and the cur
rent state of SIER<2>.

By providing distinct enable bits for each independent interrupt source, a
software controlled interrupt priority scheme can be implemented by
PALcode or the operating system with maximum flexibility. For example,
the DECchip 21064 can support a six-level interrupt priority scheme
through the six hardware interrupt request pins. This is done by defining
a distinct state of the Hardware Interrupt Enable IPR (HIER) for each in
terrupt priority level (IPL). The state of the HIER determines the current
interrupt priority. The lowest interrupt priority level is produced by ena
bling all six interrupts (setting bits <6:1>). The next is produced by ena
bling five interrupts (setting bits <6:2>), and so on, to the highest inter
rupt priority level, which is produced by enabling only a single interrupt
(setting only bit <6> and clearing bits <5:1>). When all interrupt enable
bits are cleared, the processor cannot be interrupted from the HIRR IPR.
Each state (<6:1>, <6:2>, <6:3>, <6:4>, <6:5>, <6>) represents an individ-

4-4 DECchlp 21064 Overview

ual IPL. If these are the only states allowed in the HIER IPR, a six-level
hardware interrupt priority scheme can be controlled entirely by PALcode.

The scheme is extensible to provide multiple interrupt sources at the same
interrupt priority level by grouping enable bits. Groups of enable bits must
be set and cleared together to support multiple interrupts of equal priority
level. This method reduces the total available number of distinct levels.

Since enable bits are provided for all hardware, software, and AST inter
rupt requests, a priority scheme can span all sources of processor inter
rupts. The only exception to this rule is the following restriction on AST
interrupt requests:

Four AST interrupts are provided, one for each processor operating mode
kernel, executive, supervisor, and user. AST interrupt requests are quali
fied such that AST requests corresponding to a given mode are blocked
whenever the processor is in a higher mode regardless of the s'late of the
AST Interrupt Enable Register. In addition, all AST interrupt reques'ts are
qualified in the DECchip 21064 with SIER<2>.

When the processor receives an interrupt request that is enabled, hard
ware reports or delivers an interrupt to the exception logic if the processor
is not currently executing P ALcode. Before vectoring to the interrupt serv
ice P ALcode dispatch address, the pipeline is completely drained and all
outstanding data cache fills are completed. The restart address is saved
in the Exception Address IPR (EXC_ADDR) and the processor enters
PALmode. The cause of the interrupt may be determined by examining
the state of the interrupt request registers.

Hardware interrupt requests are level-sensitive and, therefore, may be re
moved before an interrupt is serviced. If they are removed before the inter
rupt request register is read, the register will return a zero value.

4. 1. 1.4 Performance Counters

The DECchip 21064 contains a performance recording feature. The imple
mentation of this feature provides a mechanism to count various hardware
events and cause an interrupt upon counter overflow. Interrupts are trig
gered six cycles after the event, and therefore, the exception program
counter may not reflect the exact instruction causing counter overflow.
Two counters are provided to allow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. Counter inputs
include:

• Issues

• Non-Issues

• Total cycles

• Pipe dry

• Pipe freeze

• Mispredicts and cache misses

• Counts for various instruction classifications

In addition, the DECchip 21064 provides one chip pin input to each
counter to measure external events at a rate determined by the selected
system clock speed.

DECchlp 21064 Overview 4-5

4.1.2 Ebox

4.1.3 Abox

The Ebox contains the 64-bit integer execution data path, which consists of
the following elements:

• Adder

• Logic box

• Barrel shifter

• Byte zapper

• Bypassers

• Integer multiplier

The integer multiplier retires four bits per cycle. The Ebox also contains
the 32-entry 64-bit integer register file (IRF in Figure 4-1). The register
file has four read ports and two write ports that allow reading operands
from and writing operands (results) to the integer execution data path.

The Abox contains four main elements:

• Data translation buffer

• Bus interface unit (BIU)

• Load silos

• Write buffer

4.1.3.1 Data Translation Buffer

The 32-entry, fully associative, data translation buffer (DTB) caches re
cently used D-stream page table entries and supports all four variants of
the granularity hint option, as described in the A/,pha Architecture Refer
ence Manual. Superpage mapping modes, selected through ABOX_CTL
<5:4>, provide virtual to physical address translation for two regions of the
virtual address space. The first mode enables superpage mapping when
virtual address bits <42:41> = 2. In this mode, the entire physical address
space is mapped multiple times to one quadrant of the virtual address
space defined by VA <42:41> = 2. The second mode maps a 30-bit region of
the total physical address space defined by PA <33:30> = 0 into a single
corresponding region of virtual space defined by VA<42:30> = lFFE (hex).
Superpage translation is only allowed in kernel mode. The operating sys
tem, through PALcode, should ensure that translation buffer entries, in
cluding those in the superpage regions, do not map overlapping virtual ad
dress regions at the same time.

The DECchip 21064 DTB supports a single address space number (ASN)
with the PrE<ASM> bit. Each PTE entry in the DTB contains an address
space match (ASM) bit. Writes to the DTBASM IPR invalidate all entries
that do not have their ASM bit set. This provides a simple method of pre
serving entries that map operating system regions while invalidating all
others.

For load and store instructions, the effective 43-bit virtual address is pre
sented to the DTB. If the PTE of the supplied virtual address is cached in

4-6 DECchlp 21064 Overview

the DTB, the PFN and protection bits for the page that contains the ad
dress are used by the Abox to complete the address translation and access
checks.

The DTB is filled and maintained by P ALcode. Note that the DTB can be
filled in kernel mode by setting ICCSR<lIWE>.

The DTB's tag array is updated simultaneously from the TB_TAG IPR
when the DTB_PTE is written. Reads of the DTB_PrE require two instruc
tions. The first instruction sends the PrE data to the Data Translation
Buffer Page Table Entry Temporary IPR (DTB_PTE_TEMP). The second
instruction, reading from the DTB_PTE_TEMP IPR, returns the PTE en
try to the register file. Reading or writing the DTB_PTE increments the
TB entry pointer of the DTB, which allows reading the entire set of
DTB_PTE entries.

4. 1.3.2 Bus Interface Unit

The bus interface unit (BIU) controls the interface to the DECchip 21064
EDAL interface. The BIU responds to three classes of CPU-generated re
quests:

• D-cache fills

• I-cache fills

• Write buffer-sourced commands

The BIU resolves simultaneous internal requests using a fixed priority
scheme in which D-cache fill requests are given highest priority, followed
by I-cache fill requests. Write buffer requests have the lowest priority.

The BIU contains logic to directly access an external cache to service inter
nal cache fill requests and writes from the write buffer. The BIU services
reads and writes that do not hit in the external cache with help from exter
nal logic.

Internal data transfers between the CPU and the BIU are made through a
64-bit bidirectional bus. Since the internal cache fill block size is 32 bytes,
cache fill operations result in four data transfers across this bus from the
BIU to the appropriate cache. Also, because each write buffer entry is 32
bytes wide, write transactions may result in four data transfers from the
write buffer to the BIU.

4. 1.3.3 Load Silos

The Abox contains a memory reference pipeline that can accept a new load
or store instruction every cycle until a D-cache fill is required. Since the
D-cache lines are only allocated on load misses, the Abox can accept a new
instruction every cycle until a load miss occurs. When a load miss occurs,
the lbox stops issuing all instructions that use the load port of the register
file or are otherwise handled by the Abox. This includes LDx, STx,
HW _MTPR, HW _MFPR, FETCH, FETCH_M, RPCC, RS, RC, and MB. It
also includes all memory format branch instructions, J.MP, JSR,
JSR_ COROUTINE, and RET. However, a JSR with a destination ofR31
may be issued.

Because the result of each D-cache lookup is known late in the pipeline
(stage 6) and instructions are issued in pipe stage 3, there can be two in-

DECchlp 21064 Overview 4-7

structions in the Abox pipeline behind a load instruction that misses the
D-cache. These two instructions are handled as follows:

• Loads that hit the D-cache are allowed to complete - hit under miss.

• Load misses are placed in a silo and replayed in order after the first
load miss completes.

• Store instructions are presented to the D-cache at their normal time
with respect to the pipeline. They are siloed and presented to the write
buffer in order with respect to load misses.

To improve performance, the lbox is allowed to restart the execution of
Abox-directed instructions before the last pending D-cache fill is complete.
D-cache fill transactions result in four data transfers from the BIU to the
D-cache. These transfers can each be separated by one or more cycles de
pending on the characteristics of the external cache and memory subsys
tems. The BIU attempts to send the quadword of the fill block that the
CPU originally requested in the first of these four transfers (it is always
able to accomplish this for reads that hit in the external cache). Therefore,
the pending load instruction that requested the D-cache fill can complete
before the D-cache fill finishes. D-cache fill data accumulates one quad
word at a time into a "pending fill" latch, rather than being written into
the cache array as it is received from the BIU. When the load miss silo is
empty and the requested quadword for the last outstanding load miss is re
ceived, the Ibox resumes execution of Abox-directed instructions despite
the still-pending D-cache fill. When the entire cache line has been received
from the BIU, it is written into the D-cache data array whenever the array
is not busy with a load or a store.

4. 1.3.4 Write Buffer

The Abox contains a write buffer for two purposes:

• To minimize the number of CPU stall cycles by providing a high
bandwidth (but finite) resource for receiving store data. This is re
quired since the DECchip 21064 can generate store data at the peak
rate of one quadword every CPU cycle, which is greater than the rate
at which the external cache subsystem can accept the data.

• To attempt to aggregate-store data into aligned 32-byte cache blocks to
maximize the rate at which data may be written from the DECchip
21064 into the external cache (B-cache).

The write-merging operation of the write buffer may result in the order of
off-chip writes being different from the order in which their corresponding
store instructions were executed. Further, the write buffer may collapse
multiple stores to the same location into a single off-chip write transaction.
If strict write ordering is required, or it is desired that multiple stores to
the same location result in multiple off-chip write sequences, software
must insert a memory barrier instruction between the store instructions of
interest.

In addition to store instructions, MB, STQ_C, STL_C, FETCH, and
FETCH_M instructions are also written into the write buffer and sent off
chip. Unlike stores, however, these write buffer-directed instructions are
never merged into a write buffer entry with other instructions.

The write buffer has four entries, each of which has storage for up to 32
bytes. The buffer has a "head" pointer and "tail" pointer. The buffer puts

4-8 DECchlp 21064 Overview

4.1.4 Fbox

new commands into empty tail entries and takes commands out of
nonempty head entries. The head pointer increments when an entry is
unloaded to the BIU, and the tail pointer increments when new data is put
into the tail entry. The head and tail pointers only point to the same entry
when the buffer has zero or four nonempty entries.

Suppose for a moment that no writes ever merge with existing nonempty
entries. In this case the ordering of writes with respect to other writes will
be maintained. The write buffer never reorders writes except to merge
them into nonempty entries. Once a write merges into a nonempty slot, its
"programmed" order is lost with respect to both writes in the same slot and
writes in other slots.

The write buffer attempts to send its head entry off-chip by requesting the
BIU when one of the following conditions is met:

• The write buffer contains at least two valid entries.

• The write buffer contains. one valid entry and at least 256 CPU cycles
have elapsed since the execution of the last write buffer-directed in
struction.

• The write buffer contains an MB instruction.

• The write buffer contains an STQ_C or STL_C instruction.

• A load miss is pending to an address currently valid in the write buffer
that requires the write buffer to be flushed. The write buffer is com
pletely flushed regardless of which entry matches the address.

The Fbox is on-chip, pipelined, and capable of executing instructions in
both Digital and IEEE floating-point formats. IEEE floating-point data
types S_floating and T_floating are supported with all rounding modes ex
cept round to +!- infinity, which can be provided in software. F _floating
and G_floating Digital floating-point data types are supported fully. Sup
port for D_floating format is limited.

4.1.4.1 Operation

The Fbox contains:

• A 32-entry, 64-bit floating-point register file (FRF in Figure 4-1)

• A user-accessible control register, FPCR, containing:

- Round mode controls

- Exception flag inform.a ti on

The Fbox can accept an instruction every cycle, with the exception of
floating-point divide instructions. The latency for data-dependent, non
divide instructions is six cycles.

For divide instructions, the Fbox does not compute the inexact flag. Conse
quently, the INE exception flag in the FPCR register is never set for IEEE
floating-point divide using the inexact enable (/I) qualifier. To deliver
IEEE-conforming exception behavior to the user, DECchip 21064 FPU
hardware always traps on DIVS/SI and DIVT/SI instructions. The intent is
for the arithmetic exception handler in either PALcode or the operating

DECchlp 21064 overview 4-9

system to identify the source of the trap, compute the inexact flag, and de
liver the appropriate exception to the user. The exception associated with
DIV/SI and DIVT/SI is imprecise. Software must follow the rules specified
by the Alpha AXP architecture associated with the software completion
modifier to ensure that the trap handler can deliver correct behavior to the
user.

4. 1.4.2 IEEE Floating-Point Conformance

The DECchip 21064 supports the IEEE floating-point operations as de
fined by the Alpha .AXP architecture. Support for a complete implementa
tion of the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Standard 754-1985) is provided by a combination of hard
ware and software as described in the Alpha Architec'ture Reference Man
ual. The DECchip 21064 supports IEEE floating conformance as follows:

• When operating without the /Underflow qualifier, the DECchip 21064
replaces underflow results with exact zero even if the correct result
would have been negative zero as defined in the IEEE Standard. This
is an Alpha AXP architecture value-added behavior for improved per
formance over either hardware or software Denormal handling. When
strict IEEE compliance is required, the /Underflow modifier is neces
sary and the software must provide the correct result (including nega
tive zero).

• The DECchip 21064 supports Infinity operands only when used in the
CMPT instruction. Other instructions using Infinity operands cause
Invalid Operation (INV) arithmetic traps.

• NaN, Denormal, or Infinity (except when used in CMPT) input oper
ands produce Invalid Operation (INV) arithmetic traps when used with
arithmetic operation instructions. CPYSE/CPYSN, FCMOV instruc
tions, and MF _FPCRIMT_FPCR are not arithmetic operations, and
will pass NaN, Denormal, and Infinity values without initiating arith
metic traps. Input operand traps take precedence over arithmetic re
sult traps.

• The DECchip 21064 does not produce a NaN, Denormal, or Infinity re
sult.

• The DECchip 21064 supports IEEE normal and chopped rounding
modes in hardware. Instructions designating plus infinity and minus
infinity rounding modes cause precise exceptions to the OPCDEC
PALcode entry point. This implies that the EXC_ADDR IPR will be
loaded with the address of the faulting instruction and all following
instructions will be aborted.

• The DIVS and DIVT with /Inexact modifier instructions report an In
exact (INE) arithmetic trap on all results of operations that do not in
volve NaN, Infinity, or Denormal input operands. Operations using
NaN, Infinity, and Denormal input operands generate Invalid Opera
tion (INV) arithmetic traps.

• Floating-point exceptions generated by the DECchip 21064 are re
corded in two places.

- The FPCR register, as defined in the Alpha AXP architecture and
accessible by the MT/MF _FPCR instructions, records the occur
rence of all exceptions that are detected (except SWC), whether or

4-10 DECchlp 21064 Overview

not the coITesponding trap is enabled (through the instruction
modifiers). This register can only be cleared through an explicit
clear command (MT_FPCR) so that the exception information it re
cords is a summary of all exceptions that have occurred since the
last clear.

- In addition, if an exception is detected and the coITesponding trap
is enabled, the DECchip 21064 will record the condition in the
EXC_SUM IPR and initiate an arithmetic trap. As a special case,
in order to support Inexact exception behavior with the DIVS/I and
DIVT/I instructions, the FPCR will not record an Inexact exception,
although the DECchip 21064 will always set the INE bit in the
EXC_SUM register during these instructions. This behavior allows
software emulation of the division instruction with accurate report
ing of potential Inexact exceptions.

4.2 Internal Cache-

The DECchip 21064 includes two on-chip caches, a data cache (D-cache)
and an instruction cache (I-cache). These two internal caches are refeITed
to as P-cache in this document.

The D-cache has a size of 8 Kbytes. It is a write-through, direct-mapped,
read allocate physical cache and has 32-byte blocks. System components
can keep the D-cache coherent with memory by using the invalidate bus.

The I-cache is an 8-Kbyte, direct-mapped physical cache. An I-cache block,
or line, contains 32 bytes of I-stream data with associated tag, as well as a
six-bit ASN field, a one-bit ASM field, and an eight-bit branch history field.
The I-cache does not contain hardware for maintaining coherency with
memory and is unaffected by the invalidate bus.

The DECchip 21064 also contains a single-entry I-cache stream buffer
that, together with its supporting logic, reduces the performance penalty
due to I-cache misses incurred during in-line instruction processing.
Stream buffer prefetch requests never cross physical page boundaries, but
instead wrap around to the first block of the current page.

4.3 Pipeline Organization

The DECchip 21064 has a seven-stage pipeline for integer operate and
memory reference instructions. Floating-point operate instructions pro
gress through a ten-stage pipeline. The lbox maintains state for all pipe
line stages to track outstanding register writes and determine I-cache ac
cess results {hit/miss).

Figures 4-2, 4-3, and 4-4 show the integer operate, memory reference, and
the floating-point operate pipelines for the Ibox, Ebox, Abox, and Fbox.
The first four cycles are executed in the Ibox; the last stages are box spe
cific. There are bypassers in all the boxes that allow the results of one in
struction to be used as operands of a following instruction without having
to be written to the register file.

DECchlp 21064 Overview 4-11

Figure 4-2

Figure 4-3

Figure 4-4

Integer Operate Pipeline

I [OJ I [1J I (2J I [3J I [4J I [SJ I [6] I
IF SW 10 11 A1 A2. WR

I L Integer register write / I-cache
L_ hit/miss

Computation cycle 2 / ITB look-up
·---- Computation cycle 1 / lbox

computes new PC

Register file(s) access/ Issue check
Decode
Swap Dual Issue Instruction I Branch prediction
Instruction Fetch BXB-0619-93

Memory Reference Pipeline

I [OJ I [1J I [2] I [3J I [4] I [5] I [6] I
IF SW 10 11 AC TB HM

I L D-cache hit/miss and load data
L_ register file write

OTB look-up
•---- Abox calculates the effective

D-stream address

Register file(s) access/Issue check
Decode
Swap Dual Issue Instruction /Branch prediction
Instruction Fetch

Floating-Point Operate Pipeline

I 101 I
111

I [2] I 131 I
141

I 151 I 1
61

I [7] I 181 I 191 I IF SW 10 11 F1 F2 F3 F4 FS FWR

Floating-point calculate pipeline

Floating-point register file write _1

Register file(s) access/Issue check
Decode

BXB-0620-93

Swap Dual Issue Instruction /Branch predidion
Instruction Fetch

BXB-OS21-93

4-12 DECchlp 21064 Overview

4.3. l Static and Dynamic Stages

4.3.2 Aborts

The DECchip 21064 integer pipeline divides instruction processing into
four static and three dynamic stages of execution. The DECchip 21064
floating-point pipeline maintains the first four static stages and adds six
dynamic stages of execution. The first four stages consist of:

• Instruction fetch

• Swap

• Decode

• Issue logic

These stages are static because instructions can remain valid in the same
pipeline stage for multiple cycles while waiting for a resource, or stalling
for other reasons.

Dynamic stages always advance state and are unaffected by any stall (also
referred to as freeze) in the pipeline. A pipeline freeze may occur while
zero instructions issue, or while one instruction of a pair issues and the
second is held at the issue stage. A pipeline freeze implies that a valid in
struction or instructions are present to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions are allowed to con
tinue through any pipeline toward completion. Instructions cannot be held
in a given pipe stage after they are issued. It is up to the issue stage to
ensure that all resource conflicts are resolved before an instruction is al
lowed to continue. The only means of stopping instructions after the issue
stage is a chip-internal abort condition.

Aborts can result from a number of causes. In general, they are grouped
into two classes:

• Exceptions (including interrupts)

• Nonexceptions

There is one basic difference between the two classes: exceptions require
that the pipeline be drained of all outstanding instructions before restart
ing the pipeline at a redirected address. In both exceptions and non
exceptions, the pipeline must be flushed of all instructions that were
fetched after the instruction that caused the abort condition. This includes
stopping one instruction of a dual-issued pair in the case of an abort condi
tion on the first instruction of the pair.

The non-exception case, however, does not need to drain the pipeline of all
outstanding instructions ahead of the aborting instruction. The pipeline
can be immediately restarted at a redirected address. Examples of non
exception abort conditions are branch mispredictions, subroutine
call/return mispredictions, and instruction cache misses. Data cache
misses do not produce abort conditions but can cause pipeline freezes.

If an exception occurs, the processor aborts all instructions issued after the
excepting instruction as described. Due to the nature of some error condi
tions, this can occur as late as the write cycle. Next, the address of the
excepting instruction is latched in the EXC_ADDR IPR. When the pipeline

DECchlp 21064 Overview 4-13

is fully drained, the processor begins instruction execution at the address
given by the P ALcode dispatch. The pipeline is considered drained when:

• All outstanding writes to both the integer and floating-point register
file have completed and arithmetic traps have been reported.

• All outstanding instructions have successfully completed memory man
agement and access protection traps.

4.3.3 Nonissue Conditions

There are two basic reasons for nonissue conditions:

• A pipeline freeze when a valid instruction or pair of instructions are
prepared to issue but cannot due to a resource conflict. This type of
non-issue cycle can be minimized through code scheduling.

• Pipeline bubbles when there is no valid instruction in the pipeline to
issue. Pipeline bubbles exist due to abort conditions as described in
Section 4.3.2. In addition, a single pipeline bubble is produced when
ever a branch-type instruction is predicted to be taken, including sub
routine calls and returns. Pipeline bubbles are reduced directly by the
hardware through bubble squashing, but can also be effectively mini
mized through careful coding practices. Bubble squashing involves the
ability of the first four pipeline stages to advance whenever a bubble is
detected in the pipeline stage immediately ahead of it while the pipe
line is otherwise frozen.

4.4 Scheduling and Issuing Rules

The following sections cover scheduling and issuing rules.

4.4.1 Instruction Class Definition

The scheduling and dual issue rules covered in this section are only per
formance related. There are no functional dependencies related to schedul
ing or dual issuing. The scheduling and issuing rules are defined in terms
of producer-consumer instruction classes. Table 4-1 lists all the instruc
tion classes and indicates the functional box that executes the particular
class of instructions.

4-14 DECchlp 21064 Overview

Table4-1 Producer-Consumer Classes

Class Name Box Instruction List

LD Abox All loads (HW _MFPR, RPCC, RS, RC, STC - producers only:
FETCH - consumer only).

ST Abox All stores (HW _MTPR)

IBR Ebox Integer conditional branches

FBR Fbox Floating-point conditional branches

JSR Ebox Jump to subroutine instructions JMP, JSR, RET, or
JSR_COROUTINE (BSR, BR producer only)

IADDLOG Ebox ADDL ADDIJV ADDQ ADDQ!V SUBL SUBL'V SUBQ SUBQN
S4ADDL S4ADDQ SSADDL SSADDQ S4SUBL S4SUBQ SSSUBL
SSSUBQ LDA LDAH AND BIS XOR BIC ORNOT EQV

smFTCM Ebox SLL SRL SRA EXTQL EXTLL EXTWL EXTBL EXTQH EXTLH
EXTWH MSKQL MSKLL MSKWL MSKBL MSKQH MSKLH
MSKWH INSQL INSLL INSWL INSBL INSQH INSLH INSWH
ZAP ZAPNOT CMOVEQ CMOVNE CMOVLT CMOVLE CMOVGT
CMOVGE CMOVLBS CMOVLBC

ICMP Ebox CMPEQ CMPLT CMPLE CMPULT CMPULE CMPBGE

!MULL Ebox MULLMULL'V

IMULQ Ebox MULQ MULQN UMULH

FPOP Fbox Floating-point operates except divide

FDIV Fbox Floating-point divide

4.4.2 Producer-Consumer Latency

Figure 4-5 shows in a matrix form the issue rules that the DECchip 21064
enforces regarding producer-ci:>nsumer latencies. Each row and column in
the matrix is a class of Alpha .AXP instructions. A 1 in the producer
consumer latency matrix indicates one cycle oflatency. A one cycle latency
means that if instruction B uses the results of instruction A, then instruc
tion B can be issued one cycle after instruction A is issued.

When determining latency for a given instruction sequence, first identify
the class of each instruction. The following example lists the classes in the
comment field:

ADDQ
SRA

SUBQ
STQ

Rl, R2, R3
R3, R4, RS
RS, R6, R7
R7, D (RlO)

IADDLOG class
SHIFT class
IADDLOG class
ST class

The SRA instruction consumes the result (R3) produced by the ADDQ in
struction. The latency associated with an iadd-shift producer-consumer
pair as specified by the matrix is one. That means that if the ADDQ was
issued in cycle n, the SRA could be issued in cycle n+ 1.

DECchlp 21064 Overview 4-15

The SUBQ instruction consumes the result (RS) produced by the SRA in
struction. The latency associated with a shift-iadd producer-consumer
pair, as specified by the matrix, is two. That means that if the SRA was
issued in cycle n, the SUBQ could be issued in cycle n+2. The Ibox injects
one no-op cycle in the pipeline for this case.

The final case has the STQ instruction consuming the result (R7) produced
by the SUBQ instruction. The latency associated with an iadd-st producer
consumer pair, when the result of the iadd is the store data, is zero. This
means that the SUBQ and STQ instruction pair can be dual-issued if
prefetched in the same quadword.

Figure 4-5 Producer-Consumer Latency Matrix

llll.ftMP.iitfi
:~-1

LD
f) ST

IBR
JSR

IADDLOG
SHIFTCM

ICMP
IMUL

FBR
FPOP
FDIV

~ JSR IADDLOG SHIFTCM ICMP IMULL IMULQ FPOP FIDV FDIV

..... ~ -........, ~ -........... """~ I' , ~ r-..... , "'"''-0'~ ~'"'~'"''-...: ~ ... fL. ,.gao
3 3 2 2 2 21 23 x x x
3 3 210 210 210 21/20 23122 A/4 A/32 A/61
3 3 1 2 1 21 23 x x x
3 3 2 2 2 21• 23• x x x

3 3 1 2 2 21• 23• x x x
3 3 1 2 2 21• 23• x x x
3 3 1 2 2 21• 23• x x x
3 3 1 2 2 21/19 23/21 x x x

3 x x x x x x 6 34 63
3 x x x x x x 6 34 63
3 x x x x x x 6 34130 63159

BXB-0448-93

Notes to Figure 4-5:

G For loads, a D-cache hit is assumed. The latency for a D-cache miss
is dependent on the system configuration.

8 For some producer classes, two latencies, X/Y, are given with ST con
sumer class. The X represents the latency for the base address of
store; the Y represents the latency for store data. Floating-point re
sults cannot be used as the base address for load or store operations.

8 For IMUL followed by IMUL, two latencies are given. The first rep
resents the latency with data dependency; in other words, the sec
ond IMUL uses the result from the first. The second is the multiply
latency without data dependencies.

O For FDIV followed by FDIV, two latencies are given. The first repre
sents the latency with data dependency; the second FDIV uses the
result from the first. The second is division iatency without data de
pendencies.

X in Figure 4-5 indicates an impossible state, or a state not encountered
under normal circumstances. For example, a floating-point branch would
not follow an integer compare.

4-16 DECchlp 21064 Overview

Producer-producer latencies, also known as write-after write-conflicts, are
restricted only by the register write order. For most instructions, this is
dictated by issue order; however, IMUL, FDIV, and LD instructions may
require more time than other instructions to complete and, therefore, must
stall following instructions that write the same destination register to pre
serve write ordering. In general, only cases involving an intervening
producer-consumer conflict are of interest. They can occur commonly in a
dual-issue situation when a register is reused. In these cases, producer
consumer latencies are equal to or greater than the required producer
producer latency as determined by write ordering and therefore dictate the
overall latency. .An example of this case is shown in the code:

LDQ R2,D (RO) R2 destination
ADDQ R2,R3,R4 wr-rd conflict stalls execution

waiting for R2
LDQ R2,D (Rl) wr-wr conflict may dual-issue when

addq issues

4.4.3 Instruction Issue Rules

The following conditions prevent instruction issue:

• No instruction can be issued until all of its source and destination reg
isters are clean; in other words, all outstanding writes to the destina
tion register are guaranteed to complete in issue order and there are
no outstanding writes to the source registers or those writes can be by
passed.

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, or BSR,
BR, JSR (with destination other than R31) can be issued after an MB
instruction until the MB has been acknowledged on the external EDAL
interface.

• No IMUL instructions can be issued if the integer multiplier is busy.

• No SffiFT, IADDLOG, ICMP, or ICMOV instruction can be issued ex
actly three cycles before an integer multiplication completes.

• No integer or floating-point conditional branch instruction can be is
sued in the cycle immediately following a JSR, JMP, RET,
JSR_ COROUTINE, or HW _REI instruction.

• No TRAPB instruction can be issued as the second instruction of a
dual-issue pair.

• No LD instructions can be issued in the two cycles immediately follow
ing an STC.

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW _:MXPR or BSR,
BR, JSR (with destination other than R31) instruction can be issued
when the Abox is busy due to a load miss or write buffer overflow. For
more information, see Section 4.1.3.3.

• No FDIV instruction can be issued if the floating-point divider is busy.

• No floating-point operate instruction can be issued exactly five or ex
actly six cycles before a floating-point divide completes.

DECchlp 21064 overview 4-17

4.4.4 Dual-Issue Table

Table 4-2 can be used to determine instruction pairs that can issue in a
single cycle. Instructions are dispatched using two internal data paths or
buses. For more information about instructions and their opcodes and
definitions, refer to the Alpha Archi'tecture Reference Manual. The buses
are referred to in Table 4-2 as IBO, IBl, and IBx.

Any instruction identified with IBO in the table can be issued in the same
cycle as any instruction identified with IBl. An instruction that is identi
fied as IBx may be issued with either IBO or IBl.

Dual-issue is attempted if the input operands are available as defined by
the producer-consumer latency matrix (Figure 4-5) and the following re
quirements are met:

• Two instructions must be contained within an aligned quadword.

• The instructions must not both-be-in the group labeled as IBO.

• The instructions must not both be in the group labeled as IBl.

• No more than one of JSR, integer conditonal branch, BSR, HW _REI,
BR, or floating-point branch can be issued in the same cycle.

• No more than one ofload, store, HW _MTPR, HW _MFPR, MISC,
TRAPB, HW _REI, BSR, BR, or JSR can be issued in the same cycle.

NOTE: Producer-consumer la'tenci,es of zero indicate that dependent operations be
tween these two instruction classes can dual issue. For example, ADDQ Rl,
R2, R3, an.d STQ R3, D(R4).

4-18 DECchlp 21064 Overview

Table 4-2 Opcode Summary (with Instruction Issue Bus)

00 08 10 18 20 28 30 38

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
IBl LBO IBO IBl IBx IBx IBl IBl

119 RSVD LDAH INTL* HW_MFPR LDG LDQ FBEQ BEQ
IBl mo IBO IBl IBx I Bx IBO IBl

2/A RSVD RSVD INTS* JSR LDS LDL_L FBLT BLT
IBl IBl IBO IBl mx mx IBO IBl

3/B RSVD LDQ_U INTM* HW_LD LDT LDQ_L FBLE BLE
IBl mx IBO IBl IBx IBx IBO IBl

4/C RSVD RSVD RSVD RSVD STF STL BSR BLBS
IBl IBl IBl IBl IBO IBl IBl IBl

5/D RSVD RSVD FLTV* HW_MTPR STG STQ FBNE BNE
IBl IBl IBl IBl IBO IBl IBO IBl

6/E RSVD RSVD FLTI* HW_REI STS STL_C FBGE BGE
IBl IBl IBl IBl IBO IBl IBO IBl

7/F RSVD STQ_U FLTL* HW_ST STT STQ_C FBGT BGT
IBl IBl IBl IBl IBO IBl IBO IBl

Key to Opcode Summary

FLTI*-IEEE floating-point instruction opcodes
FL TL*-Floating-point operat.e instruction opcodes
FLTV*-V AX :floating-point instruction opcodes
INTA*-Integer aritnmetic instructi~
INTL*-Integer logical instruction o es
INTM*-Integer multiply instruction opcodes
INTS*-Int.eger shift instruction opcodes
JSR*--Jump instruction opcodes
MISC*-Miscellaneous instruction o~odes
PAL*-PALcode instruction (CALL_ :AL) opcodes
RSVD*-Reserved for Digit.al

4.5 PALcode Instructions

Five opcodes are provided by the Alpha AXP architecture as implement
ation-specific privileged instructions. These instructions are defined inde
pendently for each Alpha AXP hardware implementation to provide
P ALcode software routines with access to specific hardware state and func
tions. All PALcode instructions are described in the Al,pha Archi'tecture
Reference Manual.

4.5.1 Required PALcode Instructions

The PALcode instructions listed in Table 4-3 must be supported by all Al
pha .AXP implementations.

DECchlp 21064 Overview 4-19

Table 4-3 Required PALcode Instructions

Mnemonic
OpenVMSAXP OSF/1 AXP Type Operation

HALT Halt Privileged Halt processor

IMB imb Unprivileged I-stream memory barrier

DRAINA draina Privileged Drains aborts

SWPPAL swppal Privileged Swap PALcode

4.5.2 PALcoc:te Instructions That Require Recognition

The PALcode instructions listed in Table 4-4 must be recognized by mne
monic and opcode in all operating system implementations, but the effect
of each instruction is dependent on the implementation.

Table 4-4 PALcode Instructions That Require Recognition

Mnemonic
OpenVMSAXP OSF/1 AXP Name

BPr bpt Breakpoint trap

BUGCHK bugchk Bugcheck trap

GENTRAP gen trap Generate trap

RD UNIQUE rdunique Read unique value

WR UNIQUE wrunique Write unique value

4.5.3 Architecturally Reserved PALcode Instructions

The instructions shown in Table 4-5 are implementation dependent and
are specific to the DECchip 21064. These instructions are executed in the
PALcode environment. They produce OPCDEC exceptions (see Table 10-1)
if executed while not in the PALcode environment. These instructions are
mapped using the architecturally reserved opcodes (P.AL19, PALlB,
P.ALlD, PALlE, P.ALlF). They can only be used while executing chip
specific P ALcode.

4-20 DECchlp 21064 overview

Table4-5 PALmode Instructions Specific to the DECchip 21064

Mnemonic

HW_MTPR

HW_MFPR

HW_LD

HW_ST

HW_REI

Operation

· Move data to processor register

Move data from processor register

Load data from memory

Store data in memory

Return from PALmode exception

NOTE: PALcode uses the HW_LD and HW_STinsf:ructwns 'to access memory out
side the. realm of normalAJ,pha.AXP memory management.

4.6 Exceptions and Interrupts

4.6. 1 Exceptions

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is typically handled by the current process, while an
interrupt is caused by some activity outside the current process and typi
cally transfers control outside the process.

The DECchip 21064 processor services 32 interrupt priority levels (IPLs)
divided into 16 software levels (0 to 15) and 16 hardware levels (16 to 31).
User programs and most operating system software nms at IPL 0 which
may be thought of as process IPL. Higher IPLs have higher priority.

The system control block (SCB) specifies the entry points for exception and
interrupt service routines. The block is 8 K.bytes long, and must be page
aligned. The physical address of its first byte is specified by the value in
the System Control Block Base (SCBB) IPR. The operating system or con
sole software must initialize the SCB before any interrupts are enabled.

The SCB consists of 512 entries, each 16 bytes long. The first 8 bytes of an
entry, the vector, specify the operating system virtual address of the serv
ice routine associated with that entry. The second 8 bytes, the parameter,
are an arbitrary quadword value to be passed to the service routine. Refer
to the AJ,pha Architecture Reference Manual for details on the system con
trol block and SCB entries.

The Alpha architecture defines three types of exceptions:

• Faults
A fault is an exception condition that occurs during an instruction and
leaves the registers and memory in a consistent state such that elimi
nation of the fault condition and subsequent reexecution of the instruc
tion will give correct results. The PC saved in the exception stack
frame is the address of the faulting instruction. An REI to the PC will
reexecute the faulting instruction.

• Arithmetic Trap
An arithmetic trap is an exception condition that occurs at the comple
tion of the operation that caused the exception. Since several instruc-

DECchlp 21064 overview 4-21

4.6.2 Interrupts

tion of the operation that caused the exception. Since several instruc
tions may be in various stages of execution at any time, it is possible
for multiple arithmetic traps to occur simultaneously. The PC that is
saved in the exception stack frame is that of the next instruction that
would have been issued if the trapping condition(s) had not 0CCU1Ted.
A CALL_PAL REI to this PC will not reexecute the trapping instruc
tion(s), nor will it reexecute any intervening instructions; it will sim
ply continue execution from the point at which the trap was taken.

• Synchronous Trap
A synchronous trap is an exception condition that occurs at the comple
tion of the operation that caused the exception, and no subsequent in-

. struction is issued before the trap occurs.

The KN7AA module uses the provided hardware interrupts as shown in
Table 4-6. The handling of interrupts from the LSB, interval timer, and
UARTs is accomplished with both hardware and PALcode.

Table4-6 KN7AA Interrupts

Open VMS
IPL16 IPL 10

lF
31

18-lE
24-30

17
23

16
22

15
21

14
20

10-13
16-19

01-0F
01-15

1 Not applicable.

OSF I 1 Condition

7 Ctrl/P detection
Node halt (LCNR<NHALT>)
Machine check (LSB ERR or KN7AA-detected error)

N/A1 Unused

6 LSB level 3 interrupt

5 Internal timer
Interprocessor interrupt
LSB level 2 interrupts

4 LSB level 1 interrupts

3 KN7AA console UARTs
LSB level 0 interrupts
Processor-corrected errors2

NIA Unused

0-2 Software interrupt asserted

irq_h
Signal

5
5
4

3

2
2
2

1

0
0
x

x

2 Only DECchip 21064-BA (rev 3) chips generate internal inte~ts at IPL 20. Rev 2 DECchip 21064 chips do not
correct correctable errors. These chips generate hard errors at IPL 31 instead.

4-22 DECchlp 21064 Overview

The Alpha AXP processor IPL is defined by the processor state managed by
PALcode. The contents of the ffiER, SIER, and ASTER DECchip 21064
IPRs defines the processor IPL. It is the responsibility of PALcode to man
age the contents of these registers to conform to the processor IPL defined
by the Alpha AXP architecture. The P ALcode gets entered whenever the
processor IPL is low enough (ffiER, SIER, and ASTER contain appropriate
values) and one of the six interrupt signals is asserted.

4. 7 Internal Processor Registers

The DECchip 21064 contains a number of registers referred to throughout
this document as IPRs (internal processor registers). The IPRs are used by
the DECchip hardware and the P ALcode to implement functions required
by the Alpha AXP architecture. Detailed descriptions are provided for only
those IPRs whose functions are defined at bit level.

4.7. l IPR Access

Figure 4-6

PALcode initializes the ICCSR<HWE> to zero. This means that the IPRs
are not visible to the user software. They are accessible only in P ALmode
by using the HW _MFPR or HW _MTPR instruction (see Figure 4-6). These
instructions select the IPR group and reference an IPR within the group.
It is possible to access IPRs in different groups with a single instruction by
setting their respective bits (PAL, ABX, and IBX) in the HW _MFPR or
HW _MTPR instruction, provided the IPRs from the different groups share
the same index. Setting the PAL, ABX, and IBX fields to zero generates a
no-op.

HW_MFPR and HW_MTPR Instruction Format

31 26 25 21 20 16 15 8 7 6 5 4 0

OPCODE RA RB IGN I I I I INDEX

PAL

~ ABX
IBX

BXB-0618-92

Refer to Section 10.6 for the field descriptions of the HW_MFPR and
HW _MTPR instructions.

NOTE: There are 'two registers per processor that are associated with the LDQ_L I
LDL_L and STQ_C I STL_C instructions: the lock_flag single-bit register
and the locked_physical_ address register. The use of these registers is de
scribed in the AJ,pha Architecture Reference Manual. These registers are re
quired by the Alpha AXP architecture but are not implemented by the
DECchip 21064. They must be implemented in the application.

Table 4-7 lists the DECchip 21064 IPRs. It also indicates the access type
and the index of each IPR.

DECchlp 21064 Overview 4-23

Table4-7 DECchip 21064 Internal Processor Registers

Name Mnemonic Access Index

Ibox

Translation Buffer Tag Register1 TB_TAG w 0

Instruction Translation Buffer Pl'E Register1 ITB_Pl'E R/W 1

Instruction Cache Control/Status Register ICCSR R/W 2

Instruction Translation Buffer Pl'E_TEMP Register1 ITB_PI'E_TEMP R 3

Exception Address Register EXC_ADDR R/W 4

Serial Line Receive Register SL_RCV R 5

Instruction Translation Buffer ZAP Register1 I TB ZAP w 6

Instruction Translation Buffer ASM Register1 ITBASM w 7

Instru.ction Translation Buffer IS Register1 ITBIS w 8

Processor Status Register PS R/W 9

Exception Summary Register EXC_SUM R/W 10

PALcode Base Address Register PAL_BASE R/W 11

Hardware Interrupt Request Register IDRR R 12

Software Interrupt Request Register SIRR R/W 13

Asynchronous Trap Request Register ASTRR R/W 14

Hardware Interrupt Enable Register IDER R/W 16

Software Interrupt Enable Register SIER R/W 17

AST Interrupt Enable Register ASTER R/W 18

Serial Line Interrupt Clear Register SL_CLR w 19

Serial Line Transmit Register SL_XMIT w 22

1 Used in PALmode only.

4-24 DECchlp 21064 Overview

Table4-7 DECchip 21064 Internal Processor Registers (Continued)

Name Mnemonic Access Index

Abox

Translation Buffer Control Register TB_CTL w 0

Data Translation Buffer PTE Register DTB_PTE RJW 2

Data Translation Buffer PTE_TEMP Register DTB_PTE_TEMP R 3

Memory Management CSR Register MM CSR R 4

Virtual Address Register VA R 5

Data Translation Buffer ZAP Register DTBZAP w 6

Data Translation Buffer .ASM Register DT.ASM w 7

Data Translation Buffer IS Register DTBIS w 8

BIU Address Register BIU_ADDR R 9

BIU Status Register BIU_STAT R 10

D-Cache Status Register DC_STAT R 12

Fill Address Register FILL_ADDR R 13

Abox Control Register ABOX_CTL w 14

Alternate Processor Mode Register ALT_MODE w 15

Cycle Counter Register cc w 16

Cycle Counter Control Register CC_CTL w 17

BIU Control Register BIU_CTL w 18

Fill Syndrome Register FILL_SYND R 19

B-Cache Tag Register BC_TAG R 20

Flush IC Register FLUSH_IC w 21

Flush IC_.ASM Register FLUSH_IC_ASM w 23

PAL

P ALcode Temporary Registers PAL_ TEMP RJW 31-00

1 Used in PALmode only.

Table 4-8 shows the reset states of the DECchip 21064 IPRs and indicates
the registers that need to be initialized by power-up P ALcode.

DECchlp 21064 overview 4-25

Table 4-8 DECchip 21064 IPR Reset State

IPR

TB_TAG

ITB_PTE

ICeSR

ITB_PTE_TEMP

EXC_ADDR

SL_RCV

ITBZAP

ITBASM

ITBIS

PS

EXC_SUM

PAL_BASE

lilRR

SIRR

I ASTRR

lilER

SIER

ASTER

SL_CLR

SL_XMIT

TB_CTL

DTB_PTE

DTB_PTE_TEMP

Reset State

Undefined

Undefined

Cleared except
ASN, PCO, PCl

Undefined

Undefined

Undefined

Not applicable

Not applicable

Not applicable

Undefined

Undefined

Clear

Not applicable

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Comment

Floating-point disabled, single-issue mode, pipe mode
enabled, JSR predictions disabled, branch predictions
disabled, branch history table disabled, performance
counters reset to zero, Perf CntO: Total Issues/2, Perf
Cntl: D-cache Misses, superpage disabled

PALcode must do an ITBZAP on reset before writing
the ITB (must do HW _MTPR to ITBZAP IR).

PALcode must set processor status.

PALcode must clear the Exception Summary IPR and
the exception write mask by doing 64 reads.

Cleared on reset.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize. Appears on external pin.

PALcode must select between SP/LP DTB prior to any
TB fill.

1 The B-cache parameters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all
undeterminect on reset. These parameters must be initialized before enabling the B-cache.

4-26 DECchlp 21064 Overview

Table 4-8 DECchlp 21064 IPR Reset State (Continued)

IPR

MM CSR

VA

DTBZAP

DTASM

DTBIS

BIU_ADDR

BIU_STAT

DC_STAT

FILL_ADDR

ABOX_CTL

ALT_MODE

cc
CC_CTL

BIU_CTL

FILL_SYND

BC_ TAG

PAL_ TEMP

Reset State

Undefined

Undefined

Not applicable

Not applicable

Not applicable

Not applicable

Undefined

Undefined

Undefined

Cleared

Undefined

Undefined

Undefined

Cleared

Undefined

Undefined

Undefined

Comment

Unlocked on reset.

Unlocked on reset.

PALcode must do an ITBZAP on reset. See ITBZAP.

Potentially locked.

Potentially locked.

Potentially locked.

<11:0> <- AxQlOO Write buffer enabled, machine
checks disabled, correctable read interrupts disabled,
I-cache stream buffer disabled, superpages 1 and 2
disabled, endian mode disabled, D-cache disabled,
forced hit mode off.

Cycle counter is disabled on reset.

B-cache disabled, parity mode undefined, chip enable
asserts during RAM write cycles, B-cache forced-hit
mode disabled. BC_PA_DIS field cleared. BAD_TCP
cleared. BAD _DP cleared.

Potentially locked.

Potentially locked.

1 The B-cache parameters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all
undetermined on reset. These parameters must be initialized before enabling the B-cache.

4.7.2 IPR Descriptions

This section provides detailed descriptions of the DECchip 21064 IPRs.
The list of the DECchip 21064 IPRs includes IPRs that do not carry func
tional fields and some pseudoregisters. These IPRs are the following:

• Virtual Address Register (VA)
When D-stream faults or DTB misses occur, the effective virtual ad
dress associated with the fault or miss is latched in the read-only VA
IPR. The VA and MM:CSR registers are locked against further updates
until the software reads the VA IPR. The VA IPR is unlocked after re
set. PALcode must explicitly unlock this register whenever its entry
point is higher in priority than a DTB miss.

DECchlp 21064 overview 4-27

• Instruction Translation Buffer ZAP Register (ITBZAP)
A write to this IPR invalidates all 12 instruction translation buffer
(ITB) entries. It also resets both the NLU pointers to their initial state.
The ITBZAP IPR is only written to in PALmode.

• Instruction Translation Buffer ASM Register (ITBASM)
A write to this IPR invalidates all ITB entries in which the <.ASM> bit
is equal to zero. The ITBASM IPR is only written to in P .ALmode.

• Instruction Translation Buffer IS Register (ITBIS)
A write to the ITBIS IPR invalidates all 12 ITB entries. It also resets
both the NLU pointers to their initial state. The ITBIS IPR is only
written to in PALmode.

• Data Translation Buffer ZAP Register (DTBZAP)
The DTBZAP is a pseudoregister. Any write to this register invali
dates all 32 DTB entries. It also resets the NLU pointer to its initial
state.

• Data Translation Buffer ABM Register (DTBASM)
The DTB.ASM is a pseudoregister. Any write to this register invali
dates all 32 DTB entries in which the .ASM bit is zero.

• Data Translation Buffer Invalidate Single Register (DTBIS)
Any write to this pseudoregister will invalidate the DTB entry, which
maps the virtual address held in the integer register. The integer reg
ister is identified by the Rb field of the HW _MTPR instruction, used to
perform the write.

• Flush Instruction Cache Register (FLUSH_IC)
Any write to this pseudoregister flushes the entire instruction cache.

• Flush Instruction Cache ASM Register (FLUSH_IC_ASM)
Any write to this pseudoregister invalidates all I-cache blocks in which
the .ASM bit is clear.

• PAL_TEMPIPRs
These 32 registers provide temporary storage for P.ALcode. They are
accessed by way of the HW _MTPR and HW _MFPR instructions.

The descriptions of the rest of the DECchip 21064 IPRs follow.

4-28 DECchlp 21064 Overview

TB_TAG-Translation Buffer Tag Register

Index
Access

lboxO
w

The TB_TAG IPR holds the tag for the next translation buffer up
date operation in the instruction translation buffer (ITB) or the
data translation buffer (DTB). The tag is written to a temporary
register and not transferred to the ITB or DTB until the Instruc
tion Translation Buffer Page Table Entry (ITB_PTE) or the Data
Translation Buffer Page Table Entry (DTB_PTE) IPR is written.
The entry to be written is chosen at the time of the ITB_PTE or
DTB_PTE write operation by a not-last-used (NLU) algorithm, im
plemented in hardware.

Small Page Format:
6 4 4

3 2
1 1
3 2

0
0 3

IGN VA<42:13> IGN

TB_CTL<GH> = 11 Format (ITB only):
6 4 4 2 2 0

0 3 3 2 2 1

IGN VA<42:22> IGN

Table 4-9 TB_TAG IPR Bit Definitions

Name Bit(s) Type

VA <42:13> w

VA <42:22> w

BXB-0283-93

Function

Virtual Address. Bits extracted from the vir
tual address to form the tags for the small pages
(8 Kbytes) of the ITB.

Virtual Address. Bits extracted from the vir
tual address to form the tags for the large pages
(4 Mbytes) of the ITB.

DECchlp 21064 overview 4-29

ITB_PTE-lnstruction Translation Buffer PTE Register

Index
Access

Write Format:
6
3

IGN

Read Format:
6
3

5 5
3 2

lbox 1
R/W

The ITB_PTE IPR represents 12 page table entries split into two
distinct arrays. The first eight PTEs provide small page (8 Kbytes)
translations while the remaining four provide large page (4
Mbytes) translations. The entry to be written is selected by a not
last-used algorithm implemented in hardware for each array inde
pendently, and the status of the TB_CTL IPR. Writes to the
ITB_PTE IPR use the memory format bit positions as described in
the Alpha Architecture Reference Manual, with the exception that
some fields are ignored.

Refer to the chapter discussing the appropriate operating system
support in this manual for the bit definitions of the PTE.

3 3 111000 0 0 0 0
2 1 210987 5 '3 0

PFN<33:13> IGN I I I I l1GN 11 IGN I
URE

~ SRE
ERE
KRE
ASM

3 3 3 111100 0
5 '3 321098 0

RAZ
11

PFN<33:13>
11111

RAZ

ASM-1 URE

~ SRE
ERE
KRE

BXB-0284 -93

4-30 DECchlp 21064 Overview

ICCSR-lnstruction Cache Control/Status Register

Address
Access

Write Format :

lbox2
R/W

The ICCSR IPR contains various lbos hardware enables. The only
architecturally defined bit in this register is the floating-point en
able (FPE), which enables floating-point instructions. When
cleared, all floating-point instructions generate FEN esceptions.
Most bits of this IPR are cleared by hardware at reset. Fields that
are not cleared at reset include ASN, PCO, and PCl.

NOTE: The hardware enable bit allows the PALcode instructions to execute
in kernel mode. This bit is intended for diagnostic or operating system al
ternative PALcode routines only. It does not allow access to the ITB IPRs if
not running in PALmode.

6 55 "'' ,,,,333333 33 11 00 000000
3 32 76 321098765, 21 21 87 5•3210

JSE
BPE

IGN 111 11

~~~~~~~ I I II 
MBZ 

RSVD 
PCO 
MBZ-------
PC1 ____ _____. 

Read Format: PIPE ----
s 
3 

RAZ 

333 22 2222211111 11 
5•3 87 •321098765 32 

11 ~~ IRsvol 11111111 

0 0 
9 8 

0 0 0 0 
3 2 1 0 

I RAZ II II 
RSVD J 

Ll 
PC1J11 
PCO _J 

PC=0<3:0> 
PC MUX1 <2:0> 

JSE 
BPE 
PIPE--- BXB-0286-92 

DECchlp 21064 Overview 4-31 



Table 4-10 ICCSR IPR Bit Definitions 

Name Bit(S) Type Function 

ASN W<52:47> R/W,O Address Space Number. The ASN field is used with 
R<33:28> the I-cache to further qualify cache entries and avoid 

some cache flushes. The ASN is written to the I-cache 
during fill operations and compared with the I-stream 
data on fetch operations. Mismatches invalidate the 
fetch without affecting the I-cache. 

FPE W<42> R/W,O Floating-Point Enable. If set, floating-point instruc-
R<23> tions can be issued. If clear, floating-point instructions 

cause FEN exceptions. 

MAP W<41> R/W,O Map. If set, it allows superpage I-stream memory 
R<22> mapping of virtual PC <33:13> directly to physical PC 

<33:13> essentially bypassing ITB for virtual PC ad-
dresses containing virtual PC <42:41> = 2. Superpage 
mapping is allowed in kernel mode only. The I-cache 
ASM bit is always set. If clear, superpage mapping is 
disabled. 

HWE W<40> R/W,0 Hardware Enable. If set, it allows the five PALRES 
R<21> instructions (see the AJ,pha Archi'tecture Reference 

Manual) to be issued in kernel mode. If cleared, at-
tempts to execute PALRES instructions while not in 
PALmode result in OPCDEC exceptions. 

DI W<39> R/W,O Dual Issue. If set, dual-instruction issue is enabled. 
R<20> If cleared, instructions can only single issue. 

BHE W<38> R/W,O Branch History Enable. Used with BPE to select 
R<19> branch prediction. 

BPE BHE Prediction 

0 x Not taken 
1 0 Sign of displacement 
1 1 Branch history table 

JSE W<37> R/W,O Jump Subroutine Enable. If set, it enables the JSR 
R<18> stack to push a return address. If cleared, JSR stack is 

disabled. 

BPE W<36> R/W,O Branch Prediction Enable. Used with BHE to se-
R<17> lect branch prediction. See description of BHE above. 

PIPE W<38> R/W,O Pipeline. If clear, it causes all hardware interlocked 
R<19> instructions to drain the machine and waits for the 

write buffer to empty before issuing the next instruc5 

tion. Examples of instructions that do not cause the 
pipe to drain include HW _MTPR, HW _REI, conditional 
branches, and instructions that have a destination reg-
ister of R3 l. If set, pipeline proceeds normally. 

4-32 DECchlp 21064 overview 



Table 4-10 ICCSR IPR Bit Definitions (Continued) 

Name 

PCMUXl 

BH(S) Type 

W<34:32> R/W, 0 
R<15:13> 

Function 

Performance Counter Mux 1. 

MUXl 

000 

001 

010 

011 

100 

101 

Input 

D-cache miss 

I-cache miss 

Dual issues 

Branch 
mis predicts 

FP instru.c-
tions 

Integer oper
ate 

Comment 

Counts total D-cache 
misses. 

Counts total I-cache 
misses. 

Counts cycles of dual is
sue. 

Counts both conditional 
branch mispredictions 
and JSR or HW _REI 
mispredictions. Condi
tional branch mispre
dictions cost 4 cycles and 
others cost 5 cycles of 
pipeline delay. 

Counts total floating
point operate instruc
tions; that is, no FP 
branch, load, or store. 

Counts integer operate 
instructions including 
LDA and LDAH with 
destination other than 
R31. 

110 Store instru.c- Counts total store in-
tions structions. 

111 PERF _CNT_H Counts external events 
= 1 supplied to a pin at a se

lected system clock cycle 
interval. 

DECchlp 21064 Overview 4-33 



Table 4-10 ICCSR IPR Bit Definitions· (Continued) 

Name BH(s) Type Function l 
PCMUXO W<ll:8> R'W,O Performance Counter Mux 0. 

R<12:9> 
MUXO Input Comment 
ooox Total Issues/2 Counts total issues di-

vided by 2; dual issue in-
crements count by 1. 

oorx Pipeline Dry Counts cycles where 
nothing issued due to 
lack of valid I-stream 
data. Causes include I-
cache fill, misprediction, 
branch delay slots, and 
pipeline drain for excep-
tion. 

OlOX Load Instruc- Counts all Load instruc-
ti.ans tions. 

OllX Pipeline Frozen Counts cycles where 
nothing issued due to re-
source conflict. 

lOOX Branch Instruc- Counts all conditional 
ti.one branches, unconditional 

branches, JSR, and 
HW _REI instructions. 

1011 PALmode Counts cycles while exe-
cuting in PALmode. 

1010 Total cycles Counts total cycles. 

llOX Total Non- Counts total non_issues 
issues/2 divided by 2; that is, no 

issue increments count 
by 1. 

lllX PERF_CNT_H Counts external events 
=0 supplied to a pin at a se-

lected system clock cycle 
interval. 

PCl W<O> WW Performance Counter 1. If clear, it enables performance 
R<2> counter 1 interrupt request after 212 events counted. If set, 

it enables performance counter 1 interrupt request after 28 

events counted. 

PCO W<3> R/WO Performance Counter O. If clear, it enables performance 
R<l> counter 0 intenupt request after 216 events counted. If set, 

it enables performance counter 0 interrupt request after 
212 events counted. 

4-34 DECchlp 21064 overview 



Performance Counters 

The performance counters are reset to zero upon power-up. Otherwise they 
are never cleared. The counters are intended as a means of counting events 
over a long period of time, relative to the event frequency. They provide no 
means of extracting intermediate counter values. 

Since the counters continuously accumulate selected events, despite inter
rupts being enabled, the first interrupt after selecting a new counter input 
has an error bound as large as the selected overflow range. Some inputs 
can overcount events occurring simultaneously with D-stream errors that 
abort the actual event very late in the pipeline. 

For example, when counting load instructions, attempts to execute a load 
resulting in a TB miss exception will increment the performance counter 
after the first aborted execution attempt and again after the TB fill routine 
when the load instruction reissues and completes. 

Performance counter interrupts.are reported six cycles after the event that 
caused the counter to overflow. Additional delay can occur before an inter
rupt is serviced if the processor is executing PALcode that always disables 
interrupts. Events occurring during the interval between counter overflow 
and interrupt service are counted toward the next interrupt. 

Only in the case of a complete counter wrap-around while interrupts are 
disabled will an interrupt be missed. 

The six cycles before an interrupt is triggered implies that a maximum of 
12 instructions may have completed before the start of the interrupt serv
ice routine. 

When counting I-cache misses, no intervening instructions can complete 
and the exception PC contains the address of the last I-cache miss. Branch 
mispredictions allow a maximum of only two instructions to complete be
fore start of the interrupt service routine. 

DECchlp 21064 overview 4-35 



ITB_PTE_TEMP-lnstruction Translation Buffer PTE_TEMP 
Register 

Index 
Access 

6 
3 

lbox3 
R 

The ITB_PTE_TEMP IPR is a holding register for ITB_PTE read 
da~ Reads of ITB_PTE require two instructions to return data to 
the register file. The two instructions are as follows: 

1. Read the ITB_PI'E IPR data to the ITB_PI'E_TEMP IPR. 

2. Read the ITB_PTE_TEMP IPR data to the integer register file. 

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both 
read and write. A read of the ITB_PTE to the ITB_PTE_TEMP 
should be followed closely by a read of the ITB_PTE_TEMP to the 
register file. Refer to the PTE descriptions in Chapters 9 and 10 for 
the bit definitions of this register. 

3 3 3 1 1 1 1 0 0 0 
5 4 3 321098 0 

RAZ 
11 

PFN<33:13> 
11111 

RAZ 

ASM_J URE 

~ SRE 
ERE 
KRE BXB-0285-92 

4-36 DECchlp 21064 Overview 



EXC_ADDR-~xception Address Register 

Index 
Access 

6 
3 

lbox4 
R/W 

The EXC_ADDR IPR is a read/write register used to restart the sys
tem after exceptions or interrupts. 

0 0 0 
2 1 0 

111 
IGN _JI 
PAL 

BXB-0288-93 

Table 4-11 EXC_ADDR IPR Bit Definitions 

Name Bit(s) 

PC <63:2> 

PAL 

Type 

R/W 

R/W 

Function 

Program Counter. Contains bits <63:2> of the PC. 
This field is written by hardware following an exception 
to provide a return address for P ALcode. 

P ALmode. If set, the value in EXC_ADDR<63:2>_ is cor
rect. When clear, the HW _REI instruction executes a 
jump to native (nonPALmode) mode, enabling address 
translation. 

EXC_ADDR IPR Usage 

The instruction pointed to by the EXC_ADDR IPR did not complete its exe
cution. The EXC_ADDR IPR is written by hardware after an exception to 
provide a return address for P ALcode. The HW _REI instruction executes a 
jump to the address contained in the EXC_ADDR IPR. EXC_ADDR<O> is 
used to indicate PALmode to the hardware. 

CALL_PAL exceptions load the EXC_ADDR with the PC of the instruction 
following the CALL_P AL. This function allows CALL_P AL service routines 
to return without needing to increment the value in the EXC_ADDR IPR. 

This feature requires careful treatment in PALcode. Arithmetic traps and 
machine check exceptions can prompt CALL_PAL exceptions resulting in 
an incorrect value being saved in the EXC_ADDR IPR. In the cases of an 

DECchlp 21064 Overview 4-37 



arithmetic trap or machine check exception (only in these cases), 
EXC_ADDR<l> takes on special meaning. P ALcode servicing these two 
exceptions must: 

• Interpret a zero in EXC_ADDR<l> as indicating that the PC in 
EXC_ADDR<63:2> is too large by a value of 4 bytes and subtract 4 be
fore executing an HW _REI from this address. 

• Interpret a one in EXC_ADDR<l> as indicating that the PC in 
EXC_ADDR<63:2> is co?Tect and clear EXC_ADDR<l>. 

All other P ALcode entry points except reset can expect EXC_ADDR<l> to 
be zero. 

The logic allows the following code sequence to conditionally subtract 4 
from the address in the EXC_ADDR register without the use of an addi
tional register. This code sequence must be present in arithmetic trap and 
machine check flows only. 

HW MFPR Rx, EXC ADDR read EXC ADDR into GPR 
SUBQ Rx, 2, Rx subtract 2 causing borrow 

if bit <1>=0 
BIC Rx, 2, Rx clear bit [l] 
HW_MTPR Rx, EXC ADDR write back to EXC ADDR 

NOTE: Using the HW_MTPR instruction to update the EXC_ADDR register while 
in the native mode is res'tricted to bit <0> being equal to zero. The combina
tion of the native mode and EXC _ADDR<O> being equal to one causes UN
DEFINED behavior. This combination is on/,y possible through the use of 
ICCSR<llWE>. 

4-38 DECchlp 21064 overview 



SL_RCV-Serial Line Receive Register 

Index 
Access 

6 
3 

lbox5 
R 

The SL_RCV IPR contains a single read-only bit (RCV) which is 
used with the interrupt control registers, the sRomD_h signal, and 
the sRom.Clk_h signal to provide an on-chip serial line function. 

RAZ 

0 0 0 0 
4 3 2 0 

RCV _J 

BXB-0289-93 

Table 4-12 SL_RCV IPR Bit Definitions 

Name Bit(S) Type 

RCV R 

Function 

Serial Line Receive. This bit is functionally connected to 
the sRomD_h pin after the I-cache is loaded from the exter
nal SROM. Using a software timing loop, RCV can be read 
to receive external data one bit at a time. 

A serial line interrupt is requested on detection of any tran
sition on the receive line that sets the.SL_REQ bit in the 
BIRR IPR. The serial line interrupt can be disabled by 
clearing ffiER<SL_EN>. 

DECchlp 21064 Overview 4-39 



PS-Processor Status Register 

Index 
Access 

Write Format: 
6 
3 

Read Format: 
6 
3 

lbox9 
R/W 

The PS IPR contains only the current mode bits of the architectur· 
ally defined PS. Refer to the Alpha Architecture Reference Manual 
for the functional descriptions of the current mode bits. 

RAZ 

IGN 

3 3 3 
5" 3 

11 

CM1 __J 

RAZ 

0 0 0 0 0 
5" 3 2 0 

CM1 I I 
CMO 

0 0 0 
2 1 0 

111 

CMO 'I 
RAZ 

BXB-0290-92 

4-40 DECchlp 21064 overview 



EXC_SUM-Exception Summary Register 

Index 
Access 

6 
3 

lbox 10 
R/W 

The EXC_SUM IPR records the various types of arithmetic traps 
that occurred since the last time the EXC_SUM was written 
(cleared). When the result of an arithmetic operation produces an 
arithmetic trap, the corresponding EXC_SUM bit is set. 

The register containing the result of the operation is recorded in 
the Exception Register Write Mask parameter (see the Alpha Ar· 
ckitecture Reference Manual), as a single bit in a 64-bit field speci
fying registers F31-FO and-131-IO. The EXC_SUM IPR provides a 
one-bit window to the Exception Register Write Mask parameter. 
This is vinole only through the EXC_SUM IPR. 

Each read to the EXC_SUM shifts one bit in order F31-FO then 
131-10. The read also clears the corresponding bit. The EXC_SUM 
must be read 64 times to extract the complete mask and clear the 
entire register. If no integer traps are present QOV=O), only the 
first 32 bits of the corresponding register in the floating-point reg
ister file need to be read and cleared. 

Any write to EXC_SUM clears bits <8:2> and does not affect the 
write mask bit. 

The write mask parameter bit clears three cycles after a read. 
Code intended to read the parameter must allow at least three cy
cles between reads. This allows the clear and shift operations to 
complete in order to ensure reading successive bits. 

RAZ 

3 3 3 
4 3 2 

II 
MSK _j 

RAZ 

0000000000 
9876543210 

1111 1111 I 

J~~ ~~111 
INV 

swc 
RAZ-----

BXB-0291-93 

DECchlp 21064 Overview 4-41 



Table 4-13 EXC_SUM IPR Bit Definitions 

Name Bit(S) Type 

MSK <33> RC 

IOV· <8> WA 

INE <7> WA 

UNF <6> WA 

FOV <5> WA 

DZE <4> WA 

INV <3> WA 

swc <2> WA 

4-42 DECchlp 21064 Overview 

Function 

Mask. Exception Register Write Mask parameter window. 

Integer Overfl.ow. When set, indicates Fbox convert to in
teger overflow or integer arithmetic overflow. 

Inexact Error. When set, indicates floating inexact eITor. 

Underflow. When set, indicates floating-point underflow. 

Floating-Point Overflow. When set, indicates floating
point overflow. 

Divide by Zero. When set, indicates divide by zero. 

Invalid. When set, indicates invalid operation. 

Software Completion. When set, indicates software com
pletion possible. The bit is set after a floating-point instruc
tion containing the /S modifier completes with an arithmetic 
trap and all previous floating-point instructions that 
trapped since the last HW _MTPR EXC_SUM also contained 
the IS modifier. The SWC bit is cleared whenever a floating
point instruction without the IS modifier completes with an 
arithmetic trap. The bit remains cleared regardless of addi
tional arithmetic traps until the register is written by way of 
an HW _MTPR instruction. The SWC bit is always cleared 
upon any HW _MTPR write to the EXC_SUM IPR. 



PAL_BASE-PALcode Base Address Register 

Index 
Access 

6 
3 

lbox 11 
R/W 

The P AL_BASE IPR contains the base address for P ALcode. This 
register is cleared by the hardware at reset. It establishes the ref· 
erence (base) address to which an offset is added to determine the 
entry point to the P ALcode. 

IGN/RAZ 

3 3 
4 3 

PAL_BASE<33:14> 

1 1 
4 3 

IGN/RAZ 

0 
0 

BXB-00292-93 

Table 4-14 PAL_BASE IPR Bit Definitions 

Name Bit(S) Type 

PAL_BASE <33:14> RIW 

Function 

PALcode Base Address. Contains the PALcode base ad
dress. 

DECchlp 21064 Overview 4-43 



HIRR-Hardware Interrupt Request Register 

Index 
Access 

Read Format: 
6 
3 

lbox 12 
R 

The BIRR IPR provides a record of all currently outstanding inter
rupt requests and s11mmary bits at the time of the read. For each 
bit of the HIRR<5:0>, there is a corresponding bit of the Hardware 
Interrupt Enable IPR (HJER) that must be set to enable that inter
rupt. 

In addition to returning the status of the hardware interrupt re
quests, a read of the BIRR returns the state of the software inter· 
rupt and AST requests. 

NOTE: A read of the HIRR can return a value of zero if the hardware in'ler
rupt was released before the read (passive release). 

The register guarantees that the HWR bit reftects the status as 
shown by the BIRR bits. All interrupt requests are blocked while 
executing in P ALmode. 

3 3 2 2 , , , , 0 0 0 000000 
3 2 g 8 4 3 2 0 g 8 7 543210 

RAZ SIRR[15:1] 
11 111 111111 

L USEK ASTRR(3:0) 

~ SLR 
HIRR(2:0] 

PCO 
PC1 

HIRR(5:3] 
CRR 
ATR 

SWR 
HWR 
RAZ 

BXB-0293-93 

4-44 DECchlp 21064 Overview 



Table4-15 HIRR IPR Bit Definitions 

Name BH(s) Type Function 

ASTRR[3:0] <32:29> R AST Request. Corresponds to ABT requests 3 through 
0 (USEK). When a bit is set, the corresponding inter-
rupt request is posted. The four bits are expanded as fol-
lows: 

ASTRR Operating Mode 

3 UAR: User~ request 
2 SAR: Supervisor AST request 
1 EAR: Executive~ request 
0 KAR: Kernel AST request 

SIRR[15:1] <28:14> R Software Interrupt Request. Corresponds to soft-
ware interrupt requests 15 through 1. When a bit is set, 
the corresponding interrupt request is posted. 

SLR <13> R Serial Line Interrupt Request. When set, a serial 
line interrupt request is posted. See also SL_RCV, 
SL_XMIT, and SL_CLR. 

HIRR[5:0] <12:10> R Hardware Interrupt Request. Reflects the state of 
<7:5> signals Irq_h [5:0]. Any bit set in the HIRR field indi-

cates an interrupt request on the conesponding Irq_h 
line. 

PCO <9> R Performance Counter 0 Interrupt Request. When 
set, indicates that an interrupt request is posted by PCO. 

PCl <8> R Performance Counter 1 Interrupt Request. When 
set, indicates that an interrupt request is posted by PCl. 

CRR <4> R Correctable Read. When set, indicates that a 
correctable read error interrupt request is posted. This 
interrupt is cleared by way of the SL_ CLR IPR. 

ATR <3> R Asynchronous Trap Request. Is set if any ABT re-
quest and corresponding enable is set. This bit also re-
quires that the processor mode be equal to or higher than 
the request mode. SIER[2] must be asserted to allow 
AST interrupt requests. 

SWR <2> R Software. Is set if any software interrupt request and 
corresponding enable is set. 

HWR <l> R Hardware. Is set if any hardware interrupt request 
and corresponding enable is set. 

DECchlp 21064 OVervlew 4-45 



SIRR-Software Interrupt Request Register 

Index 
Access 

Write Format: 
6 
3 

IGN 

Read Format: 
6 
3 

lbox 13 
R/W 

The SmR IPR is used to control software interrupt requests. For 
each bit of the Sm.R there is a corresponding bit of the Software 
Interrupt Enable IPR (SIER) that must be set to request an inter
rupt. Reads of the Sm.R return the complete set of interrupt re
quest registers and summary bits. All intermpt requests are 
blocked while executing in P ALm.ode. See Table 4-15 for the 
SmR IPR bit definitions. 

4 4 3 3 
8 7 3 2 

SIRR[15:1] 

3 3 2 2 
3 2 9 8 

RAZ 

L 

0 
0 

IGN 

SIRR[15:1] 

USEK ASTRR[3:0] 
SLR 

HIRR[2:0] 
PCO 
PC1 

111 1000 000000 
432 0987 543210 

11 111 

HIRR(5:3>\] 
CRR 
ATR 

SWR 
HWR 

111111 

RAZ __ ___. 

BXB-0294-93 

4-46 DECchlp 21064 Overview 



ASTRR-Asynchronous Trap Request Register 

Index 
Access 

Write Format: 
6 
3 

IGN 

UAR 
SAR 

Read Format: 
6 
3 

lbox 14 
R/W 

The ASTRR IPR contains bits to request AST interrupts in each of 
the processor modes. To generate an AST interrupt, the corre
sponding enable bit in the ASTER IPR must be set. Also, the proc
essor must be in the selected processor mode or higher privilege as 
described by the current value of the PS CM bits. AST interrupts 
are enabled if SIER[2] is asserted. This provides a mechanism to 
lock out AST requests over certain IPL levels. 

All interrupt requests-are blocked while executing in P ALmode. 
Reads of the ASTRR IPR return the complete set of interrupt re
quest registers and summary bits. See Table 4-15 for the ASTRR 
IPR bit definitions. 

5 5 5 4 .... 
210987 

11111 

RAZ 

KAR 
EAR 

3 3 2 2 
3 2 9 8 

L 

IGN 

SIRR[15:1] 

USEK ASTRR[3:0] 
SLR 

HIRR[2:0] 
PCO 
PC1 

1 1 1 1 0 0 0 
4 3 2 0 9 8 7 

II 111 

~ 
HIRR[5:3] 

CRR 
ATR 

SWR 
HWR 
RAZ 

0 
0 

000000 
543210 

111111 

BXB-0295-93 

DECchlp 21064 overview 4-47 



HIER-Hardware Interrupt Enable Register 

Index 
Access 

Write Format: 
6 
3 

Read Format: 
6 
3 

lbox 16 
R/W 

The H1ER IPR is used to enable corresponding bits of the BIRR re
questing interrupt. The PCO, PCl, SLE, and CRE bits of this regis
ter enable: 

1. Performance counter interrupts 
2. Serial line interrupts 
3. Correctable read error interrupts 

There is a one-to-one correspondence between the interrupt re
quests and enable bits. As with the reads of the interrupt request 
registers, reads of the HIER IPR return the complete set of inter
rupt enable registers. See Table 4-15 for details. 

3 3 3 1 1 1 0 0 0 0 0 0 0 
3 2 1 6 s 4 9 8 7 3 2 1 0 

IGN II IGN 11 7J~7 .11 IGN 11 I 
SLE _j PC1 _j PCO_j CRE~ 

IGN 

333322 , 1 1 1000 000000 
321098 432 0987 543210 

RAZ 111 II SIER[15:1] 11 111 II RAZ I 
UAE 

~ 
SLE 

~ SAE HIER(2:0] 
EAE PCO 
KAE PC1 

HIER[5:3) 
CRE 

BXB-0296-93 

4-48 DECchlp 21064 Overview 



Table 4-16 HIER IPR Bit Definitions 

Name 

SLE 

ASTRR[3:0] 

SIER[15:1] 

PCl 

HIER[5:0] 

PCO 

CRE 

Bit(S) 

W<32> 
R<13> 

<32:29> 

Type Function 

PJW Serial Line Interrupt Enable. If set, enables the se
rial line interrupts. See also SL_RCV, SL_XMIT, and 
SL_CLR. 

R AST Interrupt Enable. Corresponds to AST inter
rupt enable bits 3 through 0 (USEK). If a bit is set in 
this field, the corresponding interrupt is enabled. The 
four bits are expanded as follows: 

ASTRR(3:0) Operating Mode 

3 UAE: User AST interrupt enable 
2 SAE: Supervisor AST interrupt enable 
1 EAE: Executive AST interrupt enable 
O KAE: Kernel AST interrupt enable 

<28:14> R Software Interrupt Enable. Corresponds to software 
interrupt requests 15 through 1. Any bit set in this 
field indicates that the coITesponding software inter
rupt is enabled. 

W<15> PJW 
R<8> 

W<14:9> RJW 
R<12:10> 
R<7:5> 

W<B> RJW 
R<9> 

W<2> RJW 
R<4> 

Performance Counter 1 Interrupt Enable. When 
set, enables PCl interrupts. 

Hardware Interrupt Enable. Interrupt enable bits 
for signals Irq_h[5:0]. Any bit set in this field enables 
the corresponding hardware interrupt. 

Performance Counter 0 Interrupt Enable. When 
set, enables PCO interrupts. 

Correctable Read Error Interrupt Enable. If set, 
enables the interrupt. The interrupt request is cleared 
by way of the SL_CLR. 

DECchlp 21064 overview 4-49 



SIER-Software Interrupt Enable Register 

Index 
Access 

Write Format: 
6 
3 

IGN 

Read Format: 
6 
3 

lbox 17 
R/W 

The SIER IPR is used to enable corresponding bits of the smR re
questing interrupts. There is a one-to-one correspondence be
tween the interrupt requests and enable bits. As with the reads of 
the interrupt request registers, reads of the SJER return the com
plete set of interrupt enable registers. 

Refer ·to Table 4-16 for bit definitions of the SIER. 

4 4 3 3 0 
8 7 3 2 0 

SIER[15:1] IGN 

333322 1 1 1 1 0 0 0 000000 
321098 4 3 2 0 9 8 7 543210 

RAZ 
11111 

SIER[15:1] 
11 II I II RAZ I 

UAE 

~ 
SLE 

~ SAE HIER[2:0] 
EAE PCO 
KAE PC1 

HIER(5:3] 
CRE 

BXB-0297-93 

4-50 DECchlp 21064 Overview 



ASTER-AST Interrupt Enable Register 

Index 
Access 

Write Format: 
6 
3 

IGN 

UAE 
SAE 

Read Format: 
6 
3 

lbox 18 
R/W 

The ASTER IPR is used to enable corresponding bits of the ASTRR 
requesting interrupts. There is a one-to-one correspondence be
tween the interrupt requests and enable bits. As with the reads of 
the interrupt request registers, reads of the ASTER return the 
complete set of interrupt enable registers. 

Refer to Table 4-16 for bit definitions of the ASTER. 

555444 
210987 

11111 

RAZ 

KAE 
EAE 

333322 
321098 

11111 
UAE 

~ SAE 
EAE 
KAE 

IGN 

SIER<15:1> 

SLE 
HIER<2:0> 

PCO 
PC1 

HIER<5:3> 
CRE 

1 1 1 1 0 0 0 
4 3 2 0 9 8 7 

II 111 

~ 

0 
0 

000000 
543210 

II RAZ I 

BXB-0298-93 

DECchlp 21064 Overview 4-51 



SL_CLR-lnterrupt Clear Serial Line Register 

Index 
Access 

6 
3 

lbox 19 
w 

The SL_CLR IPR is a write-only register that clears: 

1. Serial line interrupt requests 

2. Performance counter interrupt requests 

3. CRD interrupt requests 

The indicated bit must be written with a zero to clear the selected 
interrupt source. 

IGN 

3 3 3 
3 2 1 

11 

SLC _J 

IGN 

111 000 0000 
654 987 3210 

11 IGN II IGN 11 I 

PC1 _J PCO _J CRD _J I 
IGN =:_J 
BXB-0287-93 

Table 4-17 SL_CLR IPR Bit Definitions 

Name Bit(S) Type Function 

SLC <32> woe Serial Line Clear. Clears the serial line interrupt request. 

PCl <15> woe Performance Counter 1. Clears the performance counter 
1 interrupt request. 

PeO <8> woe Performance Counter O. Clears the performance counter 
0 interrupt request. 

CRD <2> woe Correctable Read. Clears the correctable read error in-
terrupt request. 

4-52 DECchlp 21064 Overview 



SL_XMIT-Serial Line Transmit Register 

Index 
Access 

6 
3 

lbox 22 
w 

The SL_XMIT IPR contains a single write-only bit. This bit is used 
with the interrupt control registers, the sRomD_h signal, and the 
sRomClk_h signal to provide an on-chip serial line function. The 
TMT bit is functionally connected to the sRomClk_h signal after 
the I-cache is loaded from the external SROM. Writing the TMT 
bit can be used to transmit data off chip, one bit at a time, under a 
software timing loop. 

0 0 0 0 
5 4 3 0 

IGN 

TMT __J 

BXB-0299-93 

DECchlp 21064 Overview 4-53 



TB_CTL-Translation Buffer Control Register 

Index 
Access 

AboxO 
w 

The TB_CTL IPR controls the granularity of the translation buffer. 

e 
3 

IGN 

0 0 0 0 
7 6 5 ' 

GH __J 

0 
0 

BXB-0600-93 

Table 4-18 TB_CTL IPR Bit Definitions 

I Name Bit(s) Type 

GH <6:5> R/W 

4-54 DECchlp 21064 Overview 

Function 

Granularity Hint. Selects between the DECchip 21064 
TB page mapping sizes when writing or reading the ITB 
and the DTB. There are two sizes in the ITB and four 
sizes in the DTB. 

TB_CTL<6:5> ITB Page Size OTB Page Size 

00 SK.bytes SK.bytes 
01 SK.bytes 8*8Kbytes 
10 SK.bytes 64*8Kbytes 
11 512*S Kbytes 512*S Kbytes 



DTB_PTE-Data Translation Buffer PTE Register 

Index 
Access 

6 
3 

IGN 

5 5 
3 2 

Abox2 
R/W 

The DTB_PTE IPR represents the 32-entry DTB. The entry to be 
written is chosen by a not-last-used (NLU) algorithm implemented 
in the hardware. Writes to the DTB_PrE IPR use the memory for
mat bit positions as described in the Alpha Architecture Reference 
Manual, with the exception that some fields are ignored. The 
valid bit is not represented in hardware. 

Refer to the chapter discussing the appropriate operating system 
support in this.manual.for.the bit-definitions of the PTE. 

PFN<33:13> 

3 3 
2 1 

IGN 

UWE 
SWE 
EWE 
KWE 

1111111000 000000 
6543210987 543210 

I I I l I I I I l1GNI 1111 f 

SRE FOW 
ERE FOR 
KRE IGN 

BXB-0601-93 

DECchlp 21064 Overview 4-55 



DTB_PTE_TEMP-Data Translation Buffer PTE_TEMP 
Register 

Index 
Access 

8 
3 

Abox3 
R 

The DTB_PTE_TEMP IPR is a holding register for the DTB_PTE 
read data. Reads of the DTB_PTE require two instructions to re
turn the data to the register file. The two instructions are as fol· 
lows: 

1. Read the DTB_PTE register data to the DTB_PTE_TEMP. 

2. Read the DTB_PTE_TEMP·register data to the integer register 
file. 

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both 
read and write. A read of the ITB_PTE to the ITB_PTE_TEMP 
should be followed closely by a read of the ITB_PTE_TEMP to 
the register file. 

Refer to Chapter 9 (Open VMS AXP System Support) or Chapter 10 
(DEC OSF/l AXP System Support) for the bit definitions of the 
PTE. 

RAZ 

3 3 3 
5 .. 3 

11 

ASM _J 

PFN<33:13> 

111100000000 0 
321098785432 0 

1111111111 IRAZl 

~=i ~ lj 
KRE ~ 

UWE 
SWE 
EWE 

I LFOR 
LFow 

KWE__I 
BXB-0602-93 

4-56 DECchlp 21064 overview 



MMCSR-Memory Management CSR Register 

Index 
Access 

6 
3 

Table 4-19 

Name 

OPCODE 

RA 

FOW 

FOR 

ACV 

WR 

Abox4 
R 

The MMCSR IPR saves information about D-stream faults. The VA 
and MMCSR IPRs are locked against further updates until the soft
ware reads the VA. P ALcode must explicitly unlock this register 
whenever its entry point is higher in priority than a DTB miss. 
The MMCSR bits are only modified by the hardware when the reg
ister is not locked, and a memory management error or a DTB miss 
occurs. The MMCSR IPR is unlocked after reset. 

RAZ 

1 1 
54 

0 0 
9 8 

00000 
4 3 2 1 0 

jopcooej RA 11111 

~~~ _J~ 11 
ACV~
WR
BXB-0603-93

MMCSR IPR Bit Definitions

Bit(S) Type Function

<14:9> R Opcode. Contains the Opcode field of the faulting in-
struction.

<8:4> R Register A. The RA field of the faulting instruction.

<3> R Fault on Write. Set if the reference was a write and the
PTE's FOW bit was set.

<2> R Fault on ReacL Set if the reference was a read and the
PTE's FOR bit was set.

<1> R Access Violation. Set if reference caused an access vio-
la ti on.

<0> R Write. Set if reference that caused error was a write.

DECchlp 21064 overview 4-57

BIU_ADDR-BIU Address Register

Index
Access

6
3

Abox9
R

The BIU_ADDR IPR contains the physical address associated with
errors reported by BIU_STAT<7:0>. Its contents are meaningful
only when one of BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR are set. Reads of the BIU_ADDR register unlock both
BW_ADDR and BIU_STAT<7:0>.

RAZ

3 3
4 3

Address

0 0 0 0 0
5 4 2 1 0

I I
R~ I I

BXB-0613-93

Table 4-20 BIU_ADDR IPR Bit Definitions

Name Blt(s) Type

ADDRESS <33:5> R

RB/LL <4:2> R

4-58 DECchlp 21064 Overview

Function

Address. Reflects the states of adr_h signals [33:5] asso
ciated with the EDAL interface transaction that resulted
in the eITor indicated in BIU_STAT<7:0>.

Read_Block or Load_Locked. If the BIU_CMD field of
the BIU_STAT IPR indicates that the transaction that re
ceived the error was Read_Block or Load_Locked, then the
state of RB/LL is UNPREDICTABLE. If the BIU_CMD
field of the BIU_S11A.T IPR encodes any EDAL interface
command other than Read_Block or Load_Locked, then
RB/LL reads as zeros.

BIU_STAT-BIU Status Register

Index
Access

g
3

AboxlO
R

Bits <6:0> of the BIU_STAT IPR are locked against further updates
when one of the following bits is set:

BIU_HERR
BIU_SERR
BC_TPERR
BC_TCPERR

The address associated with the error is latched and locked in the
BIU_ADDR IPR. BIU_STAT<7:0> and BIU_ADDR are unlocked
when the BIU_ADDR register is read. When FILL_ECC or
FILL_DPERR is set, BIU_STAT<13:8> are locked against further
updates. The address associated with the error is latched and
locked in the FILL_ADDR IPR. BIU_STAT <14:8> and FILL_ADDR
are unlocked when the FILL_ADDR IPR is read.

This register is not unlocked or cleared by reset and needs to be
explicitly cleared by P ALcode.

RAZ

1111110000 00000
5432109876 43210

II 111111 11111

Fii1~~~ _J~ I IJ
FILL IRD ~

FILL_DPERR
FILL_CRD
FILL_ECC

FATAL1
BIU_CMD _ ___,

BC_TCPERR
BC_TPERR
BIU_SERR
BIU_HERR

BXB-0608-93

DECchlp 21064 overview 4-59

Table 4-21 BIU_STAT IPR Bit Definitions

Name

FATAL2

FILL_QW

FILL_IRD

FILL_DPERR

FILL_CRD

FILL_ECC

FATAL!

BIU_CMD

Bit(s) Type Function

<14> R Fatal 2. When set, indicates that a primary cache fill op
eration resulted in either a multi-bit ECC error or in a
parity eITor while FILL_ECC or FILL_DPERR was al
ready set.

<13:12> R Fill Quadword. Identifies the quadword within the
hexword primary cache fill block that caused the error.
This field is only meaningful when either FILL_ECC or
FILL_DPERR is set. FILL_QW can be used together with
FILL_ADDR<33:5> to get the complete physical address of
the bad quadword.

<11> R Fill I-Cache Read. When set, indicates that the error
that caused FILL_ECC or FILL_DPERR to be set ocCUITed
during an I-cache fill. When clear, indicates that the error
occurred during a D-cache fill. This bit is only meaningful
when either FILL_ECC or FILL_DPERR is set.

<10> R Fill Data Parity Error. When set, indicates that the
BIU received data with a parity error from outside the
CPU chip while performing either a D-cache or I-cache fill.
FILL_DPERR is only meaningful when the CPU chip is in
parity mode, as opposed to ECC mode.

<9> R Fill Correctable Read. When set, indicates that the in
formation latched in BIU_STAT <13:8>, FILL_ADDR IPR,
and FILL_SYND IPR relates to an errored quadword that
does not contain multi-bit errors in either of its component
longwords. This bit is only meaningful when FILL_ECC is
set.

<8> R Fill ECC Error. When set, indicates that P-cache fill
data received from outside the CPU chip contained an
ECC eITor.

<7> R Fatal I. When set, indicates that an external cycle was
terminated with the cAck_h pins indicating
HARD_ERROR, or that a B-cache tag probe encountered
bad parity in the tag address RAM or the tag control RAM
while one ofBIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR was already set.

<6:4> R BIU Command.. Latches the cycle type on the cReq_h
pins when a BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR error occurs.

4-60 DECchlp 21064 Overview

Table 4-21 BIU_STAT IPR Bit Definitions (Continued)

Name Bit(S) Type

BC_TCPERR <3> R

BC_TPERR <2> R

BIU_SERR <1> R

BIU_HERR <0> R

Function

B-Cache Tag Control Parity Error. When set, indi
cates that an external cache tag probe encountered bad
parity in the tag control RAM.

B-Cache Tag Parity Error. When set, indicates that
an external cache tag probe encountered bad parity in the
tag address RAM.

BIU Soft Error. When set, indicates that an external
cycle was terminated with the cAck_h pins indicating
SOFr_ERROR.

BIU Hard Error. When set, indicates that an external
cycle was terminated with the cAck_h pins indicating
HARD_ERROR.

DECchlp 21064 Overview 4-61

DC_STAT-D-Cache Status Register

Index
Access

6
3

Aboxl2
R

The DC_STAT IPR is intended for use by diagnostics. For chip re
visions less than 3, PALcode must first issue the following instruc
tion before issuing the load or store whose D-cache lookup result is
to be recorded into DC_HIT:

HW_MTPR R31, 4B (hex)

For pass 3 chips, software need not execute the HW _MTPR instruc
tion before using DC_STAT. Also, the field marked Unpredictable
reads zero in the pass 3 chips.

1 1 0 0 0 0
54 432 0

RAZ Unpredictable 11

DC HIT I I
CHIP_ID

BXB-0607-93

Table 4-22 DC_STAT IPR Bit Definitions

Name Bit Cs) Type

DC_mT R

CHIP_ID <2:0> R

4-62 DECchlp 21064 Overview

Function

D-Cache Hit. Indicates whether the last load or store in
struction processed by the Abox hit (DC_HIT set) or
missed (DC_HIT clear) the D-cache. Loads that miss the
D-cache can be completed without requiring external
reads.

Chip Identification. This field has a value of 111 (bin)
for Revision 3 DECchip 21064 processors. Any other value
in this field indicates a lower revision level.

FILL_ADDR-Fill Address Register

Index
Access

6
3

Aboxl3
R

The FJLL_ADDR IPR stores the physical address associated with
errors reported by BIU_STAT<14:8>. The contents of this IPR are
meaningful only when FILL_ECC or FILL_DPERR is set. Reads of
the FILL_ADDR unlock FilL_ADDR, BIU_STAT<14:8>, and
FILL_SYNDROME.

RAZ

3 3
'3

Address

0 0 0 0 0
5 4 2 1 0

I I
PAI~~

BXB-0612-93

Table 4-23 FILL_ADDR IPR Bit Definitions

Name Bit(s) Type

ADDRESS <33:5> R

PA/UNP <4:2> R

Function

Address. Identifies the 32-byte cache block that the CPU
was attempting to read when the error occurred.

Physical Address or Unpredictable. If the FILL_IRD
bit of the BIU_STAT IPR is clear, it indicates that the er
ror occurred during a D-stream cache fill. At such times,
P.A/UNP contains bits <4:2> of the physical address gener
ated by the load instruction that triggered the cache fill. If
FILL_IRD is set, then the state of PA/UNP is UNPRE
DICTABLE.

DECchlp 21064 Overview 4-63

ABOX_CTL-Abox Control Register

Index
Access

6
3

Aboxl4
w

The ABX_CTL IPR controls the Abox functions. PALcode writes to
this register at initialization and keeps an image of the register
which appears in error log entries and is readable by the user.

MBZ

111 0 00000000
2109 76543210

11 IMeaj 1111111

D~~~ ~ ~
EMD_EN

SPE_2
SPE_1

IC_SBUF_EN
CRD_EN

MC HK_ EN
WB_DIS

BXB-0604-93

Table 4-24 ABX_CTL IPR Bit Definitions

Name Bit(S) Type

DC_FHIT <11> w,o

DC_EN w,o

EMD_EN W,O

4-64 DECchlp 21064 Overview

Function

D-Cache Force Hit. When set, this bit forces all D
stream references to hit in the D-cache. This bit takes
precedence over DC_EN. That is, when DC_FHIT is set
and DC_EN is clear, all D-stream references hit in the D
cache.

D-Cache Enable. When clear, this bit disables and
flushes the D-cache. When set, this bit enables the D
cache.

Endian Mode Enable. Used to provide limited hard
ware support for big endian data formats. When set, this
bit inverts the physical address bit <2> for all D-stream
references. The chip endian mode is only selected during
PALcode initialization.

Table 4-24 ABX_Cn IPR Bit Definitions (Continued)

Name Bit(S) Type Function

SPE_2 <5> W,O Superpage Enable 2. When set, enables one-to-one
superpage mapping of the D-stream virtual addresses
with VA <33:13> directly to physical addresses PA
<33:13>, if virtual address bits VA <42:41> = 2. Virtual
address bits VA <40:34> are ignored in this translation.
Access is only allowed in kernel mode.

SPE_l <4> w,o Superpage Enable 1. When set, enables one-to-one
superpage mapping of the D-stream virtual addresses

·with VA <42:30> = lFFE to the physical addresses with
PA <33:30> = 0. Access is only allowed in kernel mode.

IC_SBUF_EN <3> w,o I-Cache Stream Buffer Enable. When set, enables op-
eration of a single-entry I-cache stream buffer.

CRD_EN <2> w,o Correctable Read Interrupt Enable. When set, the
Abox generates an inteITUpt request whenever an EDAL
interface transaction is terminated with a cAck_h code of
SOFT_ERROR.

MCHK_EN <1> w,o Machine Check Enable. When set, the Abox generates
a machine check when errors (that are not correctable by
the hardware) are encountered. When cleared, uncorrect-
able errors do not cause a machine check. However, the
BIU_STAT, DC_STAT, BIU_ADDR, and FILL_ADDR
IPRs are updated and locked when the errors occur.

WB_DIS <0> W,O Write Buffer Unload Disable. When set, prevents the
write buffer from sending write data to the BIU. This bit
should only be set by diagnostics.

DECchlp 21064 Overview 4-65

ALT_MODE-Alternate Processor Mode Register

Index
Access

6
3

Aboxl5
w

The ALT_MODE IPR stores information that specifies the alternate
processor mode.

0 0 0 0 0
5 4 3 2 0

IGN

AM _J

BXB-0605-93

Table 4-25 ALT_MODE IPR Bit Definitions

Name Bit(s) Type

AM <4:3> w

4-66 DECchlp 21064 Overview

Function

Alternate Mode. Specifies the alternate processor mode
used by HW _LD and HW _ST instructions that have their
ALT bit (<14>) set. The alternate modes are selected as
follows:

AM
00
01
10
11

Processor Mode

Kernel
Executive
Supervisor
User

CC-Cycle Counter Register

Index
Access

Read Format:
6
3

Write Format:
6
3

Aboxl6
w

The DECchip 21064 supports a cycle counter, as described in the
Alpha Architecture Reference Manual. When enabled, the CC IPR
increments once each CPU cycle. The HW _MTPR Rn, CC writes
the CC<63:32> with the value held in the Rn<63:32>; bits <31:0> are
not changed.

This IPR is read by the RPCC instruction and is written to by the
HW _MTPR Rn, CC instruction as defined in the Alpha Architecture
Reference Manual.

Offset

Offset

3 3
2 1

3 3
2 1

Counter

IGN

0
0

0
0

BXB-0614-93

DECchlp 21064 Overview 4-67

CC_CTL-Cycle Counter Control Register

Index
Access

6
3

Aboxl7
w

The CC_CTL JPR is used to write to the CC JPR. The HW_MTPR
Rn, CC_CTL instruction writes the CC<31:0> with the value held in
Rn <31:0>; bits <63:32> bits are not changed. The CC<3:0> must be
written with zero. IfRn.<32> is set, then the counter is enabled;
otherwise, the counter is disabled.

3 3 3 0
3 2 1 0

IGN
11

Counter

EN J BXB-0615-93

4-68 DECchlp 21064 Overview

BIU_CTL-BIU Control Register

Index
Access

6
3

Abox18
w

The BIU_CTL IPR is a write-only register that controls the operat.
ing parameters of the BIU interface and the B-cache. P ALcode
writes to this register at initialization and keeps an image of the
register which appears in error log entries and is readable by the
user.

3 3 3 3 3
7 6 2 1 0

MBZ II 11

BAD_DP

~ BC_PA_DIS
BAD_ TCP
BC_SIZE

2 2
8 7

111 00 00000
321 87 43210

BC_WE_CTL<15:1> 11 11111

MBZ~_J~ BC_WR_SPD =..__j
BC_RD_SPD

BC_FHIT -
OE

ECC -
BC_EN ---

BXB-0606-93

Table 4-26 BIU_CTL IPR Bit Definitions

Name Bit(s) Type

BAD_DP w,o

BC_PA_DIS <35:32> w, 0

Function

Bad Data Parity. When set, causes the DECchip
21064 to invert the value placed on bits <0, 7, 14, 21> of
the check_h [27:0] field during off-chip writes. This pro
duces bad parity when the DECchip 21064 is in parity
mode and bad check bit codes when in ECC mode.

B-Cache Physical Address Disable. This 4-bit field is
used to prevent the CPU chip from using the B-cache to
service reads and writes based upon the quadrant of
physical address space that they reference. The corre
spondence between this bit field and the physical

DECchlp 21064 Overview 4-69

Table 4-26 BIU_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type

BAD_TCP <31> W,O

BC_SIZE <30:28> W,O

BC_WE_CTL <27:13> W, 0

4-70 DECchlp 21064 Overview

Function

address space is as follows:

BIU_Cn Bits Physical Address

<35> PA <33:32> = 3
<34> PA <33:32> = 2
<33> PA <33:32> = 1
<32> PA <33:32> = 0

When a read or write reference is presented to the BIU,
the values ofBC_PA_DIS, BC_EN, and the physical ad-
dress bits <33:32> determine whether an attempt is to
be made to use the B-cache to satisfy the reference. If
the B-cache is not to be used for a given reference, the
BIU does not probe the tag store and makes the appro-
priate system request immediately. The value of
BC_PA_DIS has no impact on which portions of the
physical address space may be cached in the P-cache.
System components control this by way of the dRAck_h
field of the EDAL interface.

Bad Tag Control Parity. When set, causes the
DECchip 21064 to write bad parity into the tag control
RAM whenever DECchip 21064 does a fast B-cache
write.

B-Cache Size. This field is used to indicate the size of
the B-cache as follows:

BC_SIZE

000
001
010
011
100
101
110

Size of B-Cache

128 Kbytes
256 Kbytes
512Kbytes

1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

B-Cache Write Enable ControL This field is used to
control the timing of the write enable and chip enable
signals during writes into the data and tag control
RAMs. It consists of 15 bits, where each bit determines
the value placed on the write enable and chip enable sig
nals during a given CPU cycle of the RAM write access. I
When a given bit of the BC_WE_CTL is set, the write en-1
able and chip enable signals are asserted during the cor
responding CPU cycle of the RAM access. BIU_CTL-
<13> corresponds to the second cycle of the write access,

Table 4-26 BIU_CTL IPR Bit Definitions (Continued)

Name Bit(S) Type Function

BIU_CTL<l4> to the third CPU cycle, and so on. The
write enable signals will never be asserted in the first
CPU cycle of a RAM write access. Unused bits in this
field must be written with zeros.

BC_WR_SPD <11:8> w,o B-Cache Write Speed. Indicates to the BIU the write
cycle time of the RAMs used to implement the off-chip B-
cache, measured in CPU cycles. It should be written
with a value equal to one less than the write cycle time
of the B-cache RAMs.

The access times for writes must be in the range of 16 to
2 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 1.

BC_RD_SPD <7:4> w,o B-Cache Read Speed. Indicates to the BIU the read
access time of the RAMs used to implement the off-chip
B-cache, measured in CPU cycles. It should be written
with a value equal to one less than the read access time
of the B-cache RAMs.

The access times for reads must be in the range of 16 to
4 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 3.

BC_FHIT <3> w,o B-Cache Force Hit. When this bit is set and the
BC_EN bit is also set, all EDAL interface Read_Block
and Write_Block transactions are forced to hit in the B-
cache. Tag and tag control parity are ignored. The
BC_EN takes precedence over BC_FHIT. When BC_EN
is cleared and BC_FmT is set, no tag probes occur and
external requests are directed to the cReq_h pins.

NOTE: The BC_PA_DIS field takes precedence over
BC_FHIT.

OE <2> w,o Output Enable. When set, the DECchip 21064 does
not assert its chip enable signals during RAM write cy-
cles, thus allowing the corresponding pins to be con-
nected to the output enable pins of the cache RAMs.

ECC <1> w,o Error Checking and Correction. When set, the
DECchip 21064 generates/expects ECC on the check_h
pins. When cleared, the DECchip 21064 gener-
ates/expects parity on four of the check_h signals.

BC_EN <0> w,o B-Cache Enable. When cleared, the B-cache is dis-
abled. When the B-cache is disabled, the BIU does not
probe the B-cache tag store for read/write references; it
launches a request on cReq_h immediately.

DECchlp 21064 Overview 4-71

FILL_SYND-Fill Syndrome Register

Index
Access

6
3

Aboxl9
R

The FILL_SYND IPR stores the syndrome bits. If the DECcbip
21064 is in ECC mode and an ECC error is recognized during a P
cache fill operation, the syndrome bits associated with the bad
quadword are locked in the FILL_SYND IPR. A syndrome value of
zero means that no errors were found in the associated longword.
The FILL_SYND IPR is unlocked when the FILL_ADDR IPR is
read. Table 4-28 lists the syndromes associated with correctable
single-bit errors.

If the processor is in parity mode and a parity error is recognized
during a P-cache fill operation, the FJLL_SYND IPR indicates
which of the longwords in the quadword got bad parity.

RAZ

1 1
4 3

0 0
7 6

0
0

Hl<6:0> I L0<6:0> I
BXB-0609-93

Table 4-27 FILL_SVND IPR Bit Definitions

Bit(s) Type

<13:7> R

L0<6:0> <6:0> R

4-72 DECchlp 21064 Overview

Function

High <6:0>. Contains the syndrome associated with the
upper longword of the quadword. If the processor is oper
ating in parity mode, bit <0> (FILL_SYND<7>) of this
field is set to indicate that the upper longword was cor
rupted. Bits <6: 1> (FILL_SYND<l3:8>) read as zeros in
parity mode.

Low <6:0>. Contains the syndrome associated with the
lower longword of the quadword. If the processor is oper
ating in parity mode, bit <0> (FILL_SYND<O>) of this
field is set to indicate that the lower longword was cor
rupted. Bits <6:1> (FILL_SYND<6:1>) read as zeros in
parity mode.

Table 4-28 Syndromes for Single-Bit Errors

Data Bit Syndrome (Hex) Check Bit Syndrome (Hex)

<0> 4F 0 01
<1> 4A 1 02
<2> 52 2 04
<3> 54 3 08
<4> 57 4 10
<5> 58 5 20
<6> 5B 6 40
<7> 5D
<8> 23
<9> 25
<10> 26
<11> 29
<12> 2A
<13> 2C
<14> 31
<15> 34
<16> OE
<17> OB
<18> 13
<19> 15
<20> 16
<21> 19
<22> 1A
<23> lC
<24> 62
<25> 64
<26> 67
<27> 68
<28> 6B
<29> 6D
<30> 70
<31> 75

DECchlp 21064 Overview 4-73

BC_TAG-B-Cache Tag Register

Index
Access

6
3

Abox20
R

The BC_TAG IPR is loaded with the results of every B-cache tag
probe, unless locked. When a tag, tag control parity, or primary
fill data error (parity or ECC) occurs, BC_ TAG is locked against
further updates. PALcode may read the LSB of this register by us
ing the HW _MFPR instruction. Each time an HW _MFPR from
BC_TAG completes, the contents of BC_TAG are shifted one bit po
sition to the right, so that the entire register can be read using a
sequence of HW _MFPRs. P ALcode can unlock the BC_TAG with
an HW _MTPR to BC_TAG. Successive HW _MFPRs from the
BC_TAG must be separated by at least one null cycle.·

RAZ

222211111111110000000000
3210987654'32109876543210

11
TAG<33:17> 111111

TAGADR_P _I

i~~i~=~ :=J 111
TAGCTL_D
TAGCTL_P

HIT

BXB-0610-93

4-74 DECchlp 21064 Overview

Table 4-29 BC_TAG IPR Bit Definitions

Name Bit(S) Type Function

TAGADR_P <22> R Tag Address Parity. Reflects the state of the
tagAdrP _h signal of the DECchip 21064 when a tag, tag
control, or data parity error occurs.

TAG<33:17> <21:5> R Tag. Contains the tag that is being probed CUITently.

NOTE: Unused bits in the TAG fiel,d are always clear,
based on the size of the B-cache, as determined by
BIU _CTL<.BC_SIZE>.

TAGCTL_V <4> R Tag Control Valid. Reflects the state of the tagCtlV_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs.

TAGCTL_S <3> R Tag-Control Shared. Reflects the state of the tag-
CtlS_h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs.

TAGCTL_D <2> R Tag Control Dirty. Reflects the state of the tagCtlD_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs.

TAGCTL_P <1> R Tag Control Parity. Reflects the state of the tag-
CtlP _h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs.

HIT <0> R Hit. When set, indicates that there was a tag match
when a tag, tag control, or data parity error occurred.

DECchlp 21064 Overview 4-75

Figure 5-1

Chapter 5

Cache Memory

The KN7AA CPU module features a two-level cache memory. The first
level is implemented on the DECchip 21064 and is referred to as the pri
mary cache (P-cache). The second level resides on the module, external to
the DECchip 21064; and is referred to as the backup cache (B-cache).
Both caches are accessed with physical addresses. Memory access is per
formed hierarchically. Instruction and data are first sought from the P
cache, then the B-cache, and finally from memory/another CPU. Figure
5-1 shows the KN7AA CPU module cache organization.

KN7 AA CPU Module Cache Organization

LSB Bus

·'t-''V. .. ~'~'''"""V."'"'-"'R. ~,.:."<:'. .. 1'.'Yfl'h,..,.;, ;,._ ;;o;,.,.~-;.-.-.;."'ii:'.,'.• • .,.;,;... ;.o. .. ;:-.. .. ~·;.·.,.il',.-.. «v.--;.-:.-;..;.-.-..•h.•;:>.•:.t>.-.. .. ~il'ih.·.-.-.................. ·:.·:.· .. :

~ LSB Address LEVI l~

L.
8-Stat I~
8-Tag I I
~Dam l~~~~~----1

i~ r ~

B-Map

~· • :«<-.°<"-'~~'"«--'''~:-:-:...:-:-:-:-.. ... :-:-:•:-:·:•:•:•:-:•.:o:•:-:·:·:·:·:-:o:·:·:•:·:·:·:·:·:·:·:·:·:·:·:·:·:-:0:·:·:-:•:•:-:-:·:·:·:·:·:·:·:·:•:-.:-:•:•x-..-.,:.:-..-.:-. ... :-:•n•:•:·:o:-:0:•.:-:-:·:-:-:·:·:·:•:·:--:·:-:·:-:·:·:·:•:•:0 : 0:·:·:·:0:·:·:-:·:·;•:·:•:•:·:·;-:::

I ~ TB •I D-Cache f1 Data ~I I & From Ebox & lbox 4 To reg file :--+ j

~ i ___ I-Cache Instruction ~~ .:,=:·-:: I "' T 0 lbuf ~ 21 064 !
::... "Yo. ~... ~ ~"lil\._~..._..._-.,z....._.._.«v.....,__~ V~..._..._._,.. •• ._.:.-.,.__ •• ._""'OS •• .._..._.......,..._ •• -.._.._~.__,.;.y...•.•.•.-.-.-.·.-. ~._._ ••• ~·.•0•~•.Vh'"•'"•''._._._ .. ~._-.,. •••••• -.. -. ... ~.-.·.-.•.-.-.•.-..•.•.-. -. •• •.•0-..-.•~

BXB-0210-93

Cache Memory 5-1

5.1 P-Cache

5.2 B-Cache

The P-cache consists of an 8-Kbyte instruction cache {I-cache) and an 8-
Kbyte write-through data cache (D-cache). The I-cache and the D-cache
are physically addressed, direct-mapped caches with 32-byte blocks. The
I-cache is used to service requests from the Ibox. The D-cache is used to
service requests from the DECchip 21064 load/store unit.

The P-cache is a subset of the B-cache at all times.

The B-cache is implemented in three RAM structures: B-tag, B-data, and
B-stat, located between the DECchip 21064 and the LSB interface.

The B-cache stores 4 Mbytes of data. It is organized as direct-mapped,
with a block (line) size of 64 bytes to match the LSB bus. For each block,
the following information is stored:

• Tag: Consists of bits <33:22> of the physical address

• Tag parity bit: Reflects even parity over the field

• Valid bit (V): Indicates whether the line can be considered

• Shared bit (S): Indicates whether this line might be resident in an
other cache in the system

• Dirty bit (D): Indicates whether the line has been written to by this
CPU and has more recent data than memory.

• Status parity bit: Reflects even parity over the V, S, and D bits.

The B-cache organization groups the status bits in a single 64K X 4 RAM
(B-stat) and allows these bits to be updated without changing the value of
the tag. This in turn allows the CPU to set the Dirty bit on write hits to
nonshared blocks. In general, the tag field is only loaded by the LSB inter
face, and the status and data stores are loaded by both the processor and
the LSB interface.

5.3 B-Cache States

5-2 Cache Memory

The B-cache state is defined by the three status bits: Valid, Shared, and
Dirty. Table 5-1 shows the legal combinations of the status bits.

From the perspective of the DECchip 21064, a tag probe for a read is suc
cessful if the tag matches the address and the V bit is set. A tag probe for a
write is successful if the tag matches the address, the V bit is set, and the
S bit is clear.

Table 5-1

B-Stat
V S D

0 x x
1 0 0

1 0 1

1 1 0

1 1 1

B-Cache States

State of Cache Line Assuming Tag Match

Valid miss.

Valid for read or write. This cache line contains the only cached copy of the
block. The copy in memory is identical to this block.

Valid for read or write. This cache line contains the only cached copy of the
block. The contents of the block have been modified more recently than the
copy in memory.

Valid for read or write but writes must be broadcast on the bus. This cache
line may also be present in the cache of another CPU. The copy in memory is
identical to this block.

Valid for read or write but writes must be broadcast on the bus. This cache
line may also be present in the cache of another CPU. The contents of the
block have been modified more recently than the copy in memory.

5.4 B-Cache State Changes

The state of any given cache line in the B-cache is affected by both proces
sor actions and actions of other nodes on the LSB bus.

Table 5-2 shows what effect processor actions have on the state of a given
B-cache line and the resulting/required bus traffic. Table 5-3 shows what
effect bus actions have on the state of a given B-cache line, and the result
ing/required module action. In these tables, Match means that the tag
stored at the index matches the supplied address and the <V> bit is set for
the index. Dirty means that the <l» and <V> bits are set for the index.
Invalid means that the <V> bit is not set.

LSB writes always clean (make non-dirty) the cache line in both the initi
ating node and all nodes that choose to take the update. They also update
the appropriate location in main memory.

The KN7 AA CPU module decides whether to take an update or not as a
function of the state of the P-cache backmap (P-map, Section 5.6.1). If the
LSB interface determines that the block referenced by an LSB write com
mand is resident in the P-cache, the relevant block is updated in the B
cache with the LSB write data and also invalidated in the P-cache. If the
LSB interface determines that the block referenced by an LSB write com
mand is not resident in the P-cache (therefore not "interesting"), but is
resident in the B-cache, it invalidates the relevant block in the B-cache.

Cache Memory 5-3

Table 5-2 Effect of Processor Action on B-Cache Line

Processor
Tag Probe Result 1

LSB Next Cache
Request Action on LSB Response State

Read Invalid Read Shared Shared, Dirty

Read Invalid Read Shared Shared, Dirty

Write Invalid Read Shared Shared, Dirty

Write Invalid Read, Write Shared Shared, Dirty

Read Match AND Dirty Read Shared Shared, Dirty

Read Match AND Dirty Read Shared Shared, Dirty

Write Match AND Dirty Read Shared Shared, Dirty

Write Match AND Dirty Read, Write Shared Shared, Dirty

Read Match AND Dirty Read, Wr-Victim Shared Shared, Dirty

Read Match AND Dirty Read, Wr-Victim Shared Shared, Dirty

Write Match AND Dirty Read, Wr-Victim Shared Shared, Dirty

Write Match AND Dirty Read, Write, Wr- Shared Shared, Dirty
Victim

Read Match None None No change

Write Match AND Shared None None Shared, Dirty

Write Match AND Shared Write Shared Shared, Dirty

Write Match AND Shared Write Shared Shared, Dirty

1 An overscore on a cache block status bit indicates the complement of the state. For example, Sha.red =Not Shared.

5-4 Cache Memory

For diagnostic and system perlormance measurement purposes, the
KN7 AA module implements two alternate behavior modes in response to
LSB writes. LMODE<WMODE> allows selection of either the normal
mode as described, using the P-map, or forces all LSB writes to cause a B
cache invalidate/update.

Table 5-3 Effect of LSB Bus Action on 8-Cache Line

LSB Module Next Cache
Operation Tag Probe Result 1 Response State Comment

Read Match OR Invalid Shared, Dirty No change

Write Match OR Invalid Share<h Dirty No change

Read Match AND Dirty Share<h Dirty Share<h Dirty

Read Match AND Dirty Share<h Dirty Shared, Dirty This module must
supply the data.

Write Match AND line is Shared, Dirty Share<h Dirty This module takes
interesting the update.

Write Match AND line is Shared, Dirty Invalid This module takes

uninteresting the invalidate.

1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

Table 5-4

LSB
Operation

Read

Write

Read

Write

Read

Write

The KN7AA CPU module also compares incoming LSB addresses to those
found in the LLOCK register, LVICT register, and LWPEND register (see
Chapter 6). The behavior of the KN7 AA CPU module in these cases is
shown in Table 5-4.

KN7 AA CPU Module Response to Incoming Addresses

Address Register
Matched Module Response Action

LLOCK register Shared No action

LLOCK register Dirty Clear LLOCK<31>

L VICT register Shared, Dirty Supply data from victim buffer

LVICT register Shared, Dirty Invalidate victim buffer; remove

bus request

LWPEND register Shared No action

LWPEND register Shared, Dirty Accept update to B-cache

1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared= Not Shared.

Cache Memory 5-5

5.5 Write Policy

The KN7AA module performs LSB write operations as follows:

• Victims
If a given cache line is valid and dirty and the tag does not match the
address for the given processor request, the line must be written back
to memory. To enhance performance, this victim is written back to
memory after the refill. The victim data must be removed from the B
cache data store and held in a victim buffer (see Section 5. 7) for later
transmission on the LSB bus. While a block is in a victim buffer, the
KN7 AA must respond to all reads and writes that reference the block
(see Table 5-4).

• Shared Blocks
If the response to a tag probe for a processor write is shared, the write
must be broadcast on the LSB bus.

5.6 Cache Backmaps

5.6.1 P-Map

5.6.2 B-Map

5-6 Cache Memory

The KN7 AA CPU module implements two backmaps (or duplicate tag
stores) that keep track of the contents of the P-cache and the B-cache.
They are referred to as P-map and B-map. The backmaps are cycled with
every bus transaction to allow the Kl'r7 AA CPU module to properly re
spond to a given bus command/address.

The P-map is located in the LEVI gate arrays and consists of four identical
structures, each 64 entries deep. Each P-map entry contains a value that is
equal to the difference between the B-cache tag (address bits <33:22>) and
the P-cache tag (address bits <31:12>), valid bit, and an even parity bit.
Thus, the P-map is 12 bits wide: Address bits <21:12>, V, and P. The P
map is loaded by the DECchip 21064 during B-cache D-stream read hits
and by the LSB interface during B-cache D-stream read misses. The LSB
interface control can read the P-map whenever an LSB write hits in the
B-map.

The KN7 AA CPU module enforces inclusion, which ensures that the valid
contents of the P-cache are always a subset of the valid contents of the B
cache. Therefore, the KN7 AA CPU module must invalidate P-cache lines
whenever the given block becomes invalid in the B-cache. This occurs on
refills (either a dirty victim or a nonshared victim) and on updates.

When an update occurs on the LSB bus, and the given address yields a tag
match and the entry is valid in the P-map~ the B-cache takes the update
and the CPU module invalidates the corresponding entry in the P-cache.

The B-map is located on the module and is a structure 64K entries deep.
Each entry consists of the B-cache tag (address bits <33:22>), valid bit, and
even parity bit. The B-map is written by the LSB interface at the same
time that the B-cache tag is written (within the context ofB-cache manipu
lation, due to either processor action or bus action). The B-map is read on
every LSB bus command/address cycle. The contents of the B-map inform

the KN7AA CPU control logic when to request the B-cache to form an ap
propriate bus response. The processor does not read or write the B-map.
The I.SB interlace only reads and writes the B-map in the LSB time do
main.

5. 7 Victim Buffer

The KN7 AA CPU module implements a victim buffer to hold the contents
of a victimized block in the B-cache. A victim block is a B-cache line that is
valid and dirty but has a tag mismatch for a processor request. The proces
sor tag probe yields a miss and the appropriate block is fetched from mem
ory. However, the block in the B-cache at this index must be written back
to memory since it is dirty. The KN7AA CPU module posts the miss refill
to the bus before actually perlorming the victim write.

A single victim block and victim address pair is stored in the LEVI chips
for later transmission on the bus. While the victim buffer contains a valid
victim, the KN7 AA CPU module treats this block like a second set in the
B-cache, compares all bus addresses to the victim address, and responds to
bus reads and writes as required by the bus protocol (see Table 5-4).

The KN7AA CPU module has a single victim buffer. It therefore does not
process a second B-cache miss before writing the victim block to memory.

5.8 B-Cache Operating Modes

Table 5-5

The backup cache has two modes of operation:

• B-cache on

• B-cache force hit

The operating modes are controlled by two bits in the BIU_CTL register:
BC_ENB (bit <0>) and BC_FIIlT (bit <3>).

Table 5-5 shows how the operating mode of the B-cache is selected.

Selection of the B-Cache Operating Mode

BIU_CR<3>

0

1

BIU_CR<O>

1

1

Operating Mode

B-cacheon

Force hit

The On state is the normal operating mode of the B-cache. It is selected by
setting BIU_CTL<O> and clearing BIU_CTL<3>.

NOTE: In reality, the B-cache is never off. If BIU_CTL<O> is cleared, the proces
sor bypasses the B-cache and goes directly to the LSB. This function should
be used only by diagnostics.

The B-cache force hit mode is selected by setting BC_FHIT (BIU_CTL<3>)
when the B-cache is enabled. When this bit is set, all memory space reads
and writes to the B-cache, both I-stream and D-stream, are forced to hit.
The tag store state is not changed. The data RAMs are accessed as if the

Cache Memory 5-7

tag store access produced a dirty-valid hit. In a multiprocessor environ
ment, the B-cache must be flushed of all dirty blocks before force hit mode
is selected.

Force hit mode is intended to be used only for testing and initialization.
Tag store parity and data RAM ECC errors are detected in this mode.

5.9 Cache Initialization

On power-up or following a reset, the processor microcode and the console
firm.ware initialize the P-cache and the B-cache. In the initialized state,
the P-cache is enabled for I-stream and D-stream operations, and the B
cache is on.

CAUTION: The cache subsystem is initialized to a det:ermined state. So'ftware must
never turn the B-cache off once the system is up and running. Turning the
B-cache off during nonnal operation places the system in an UNDETER
MINED state.

5-8 Cache Memory

Chapter 6

LSB Bus Interface

The CPU module connects to the LSB bus through LEVI, the LSB inter
face, which is implemented in two gate array chips, LEVI-A and LEVI-B.
LEVI controls all the tags, maps, and data RAMs on the CPU module. It
contains the P-map; which maps the processor P-cache.

LEVI performs the following major tasks:

• Translates CPU, memory, and I/O space references to the appropriate
LSB transactions.

• Supports control of writebacks to memory and cache fills from memory
in reponse to processor actions.

• Supports control of cache invalidates, cache updates, and cache block
transfers to the LSB bus in response to LSB actions.

• Initiates reads and writes to the CPU node private address space (the
Gbus on the CPU module).

• Supports LSB required interrupt logic.

• Implements all LSB required registers.

This chapter discusses the role of LEVI in transactions between the CPU
module and other modules on the LSB bus. Sections include:

• LEVI Address Path

• LEVI Data Path

• LEVI Controllers

• Interfacing Rules

• Address Space Mapping

• LEVI Transactions

Figure 6-1 shows a block diagram of the LEVI chips.

LSB Bus Interface 6-1

Figure 6-1 LEVI Block Diagram

LEVl-B

BXB-0364A-93

6. 1 LEVI Address Path

6-2 LSB Bus Interface

The LEVI address path (see Figure 6-1) is implemented in the LEVI-A
chip. It consists of the following major elements:

• P-Map
The P-map consists of four 64 X 16 dual-ported RAMs maintained ex
clusively by LEVI. Each entry in the P-map represents a P-cache block
in the processor. LEVI writes to the P-map during processor read bits
to the B-cache. One use of the P-map is deciding whether to update or
invalidate a B-cache block during LSB writes from another node. If
the LSB write hits in the P-map, the update is taken; otherwise LEVI
invalidates the B-cache. Another use is to invalidate P-cache blocks
that are being displaced by B-cache fills.

• LVICT Register
LEVI keeps the address of the last victimized B-cache block and a valid
bit in the LVICT register. Once the LSB Victim Write takes place, the
Valid bit is cleared. Should another LSB (non-Victim) write match the
address in the LVICTregister, LEVI invalidates its own LVICT regis
ter (see Table 5-4).

• LLOCK Register
The address is latched and LLOCK<31> is set when the processor is
sues an LDxL instruction. LLOCK<31> is cleared after a successful
STxC instruction. LSB reads that hit in the LLOCK register cause
LEVI to respond "Shared" so that all subsequent writes to the address

are visible on the LSB bus. LSB writes that hit in the LLOCK register
cause LEVI to clear the LLOCK<31> (see Table 5-4).

• LWPEND Register
This register contains the address of the pending write and a valid bit.
Ifan LSB Write hits the LWPEND register, LEVI-A takes the update
even if the write missed in the P-map to assure that the write about to
be issued has the latest data (see Table 5-4).

6.2 LEVI Data Path

The LEVI data path, like the LSB bus and CPU module data paths, is 156
bits wide: 128 bits of data and 28 bits of ECC (7 bits for each longword).
Note that LEVI treats the data and ECC bits identically since there is no
ECC correction between the B-cache and the LSB bus.

An array of buffers in the LEVI data path serve to store data and synchro
nize data movement within LEVL The buffers are implemented in both
LEVI chips, as shown in Figure 6-1. The main buffer elements on the
LEVI data path are the following:

• Fill Buffer
The fill buffer works with the LEVI buffer on the module to receive,
and possibly hold, four octawords of LSB data headed for the B-cache.
The data pipeline shifts from the gate array time domain to the clock
forwarded module time domain in the fill buffer. The fill buffer also
merges write buffer data with LSB data following B-cache write
misses.

• GetBuffer
The get buffer also works with the LEVI buffer; it captures B-cache
blocks headed for the LSB bus. The data pipeline shifts back from the·
module to the gate array time domain in the get buffer.

• Write Buffer
The write buffer captures two octawords of write data from the proces
sor in three situations:

B-cache write misses
B-cache write hits to shared blocks
CSR writes

The write buffer also receives a write data mask (LEVI-A gets four of
eight bits; LEVI-B gets all eight bits) and ADDR<5> from the proces
sor. The mask and address bits indicate which longwords are to be
merged with B-cache data.

• Stall Buffer
The stall buffer holds four octawords of B-cache data for broadcast onto
the LSB bus. It also merges write buffer data with B-cache data dur
ing writes to shared blocks and processor CSR writes.

• Victim Buffer
The victim buffer holds B-cache blocks victimized by cache fills. The
buffer holds only a single cache block so transactions that cause other
victims are held off until the current victim reaches the LSB bus.

LSB Bus Interface 6-3

6.3 LEVI Controllers

The control functions on the LEVI transactions are implemented in three
controllers in the LEVI chips:

• LEVI processor controller (LPC)

• LEVI data controller (LDC)

• LSB controller (LC)

6.3. 1 LEVI Processor Controller

The LPC provides the control interface between the processor and LEVI.
It fields requests from the processor and initiates LEVI responses. Major
functions include:

• Load.Lock/StoreCond
The LPC first probes the cache; misses generate requests to the LSB
controller for LSB transactions.

• GbusRead
The LPC asks the LSB controller for a CSR read and does extra hand
shaking on the Gbus. It appears on the LSB as a private command
(not a CSR read).

• GbusWrite
The LPC controls the write to the LEVI write buffer, then handshakes
with the Gbus and acknowledges the processor. No LSB transaction is
requested.

• Processor Read Fill
After a processor read miss and after LEVI has received the missed
data from the LSB bus, the LPC loads the processor with the two
octawords it has waited for. The LEVI data controller (LDC) briefly in
terrupts the B-cache fill after the first octaword write to allow the proc
essor to load two octawords from the LEVI buffer. The LDC then com
pletes the final three octaword writes.

• Processor Write Data
The LPC controls the processor writes to the write buffer on LEVI
when the processor cannot write directly to the B-cache.

• P-Cache Invalidates
Whenever LEVI invalidates P-map entries, the LPC invalidates the
corresponding P-cache entries in the processor.

The LPC runs in the processor time domain.

6.3.2 LEVI Data Controller

6-4 LSB Bus Interface

The LDC directs data traffic moving between the LSB and the B-cache
based on requests from the LC. Each transaction described below moves
one B-cache block. The LDC is involved in the following transactions:

• GetRAM
GetRAM moves one B-cache block to the LSB by way of the stall buffer.
The LSB controller (LC) requests this transfer when another node has
issued a read to a block and the local (and only valid) copy is dirty.

• GetWBRAM
GetWBRAM is used on processor writes to shared B-cache blocks and
processor CSR writes. The fetched B-cache block is conditionally
merged with the contents of the write buffer (based on the values of
the write data mask and ADDR<5>) before being driven onto the LSB
by way of the stall buffer.

• GetVic
GetVic is used to route B-cache blocks that are victimized by B-cache
fills to the victim buffer. Note that blocks in the victim buffer must
await an LSB slot; blocks in the stall buffer have already had their
LSB slots allocated (by the LC).

• FillRAM
FillRAM moves one block directly from the LSB to the B-cache. The
LC requests this to take an update to a shared block or to complete the
first read of a processor write miss to a shared B-cache block.

• FillProcRAM
FillProcRAM is requested following processor read misses. The LDC
moves data from the LSB to the fill buffer and the LEVI buffer on the
module. The data pipeline is frozen briefly after the first octaword
write to the B-cache to allow the LPC to load the first two octawords
into the processor (in its own time domain) by way of the LEVI buffer.
The LPC then releases the processor but retains control of the B-cache
so that the LDC can write the remaining three octawords to the
B-cache.

• FillProc
FillProc services processor CSR reads. This transaction is identical to
FillProcRAM discussed above except that writes to the B-cache are
suppressed. (CSR data is not cached.)

• FillWBRAM
FillWBRAM merges processor write data in the Write buffer with the
incomingLSB data and writes the result into the B-cache. Merging is
based on the values of the write data mask and ADDR<5>. The LC re
quests this transaction following processor write misses to blocks that
are not shared.

The LDC uses clock forwarding on the CPU module for data transfers be
tween LEVI and the B-cache.

6.3.3 LSB Controller

The LC is the central controller of the LEVI chipset. It receives requests
from the LPC and issues requests to the LPC, LDC, and the LSB arbiter.
The LC responds to both processor-initiated and LSB-initiated transac
tions. Specifically, the LC performs the following functions:

• Controls the address path and LEVI access to the B-map, B-stat, and
B-tag RAMs on the CPU module.

• Schedules all LEVI and CPU module operations except B-cache hits
and Gbus transactions. Requests from the LC to the LPC and LDC
move data around the module, the gate arrays, and the LSB bus.

• Asserts the LSB address and control signals (CNF, ERR) according to
LSB protocol. LSB SHARED and DIRTY are asserted based on the re-

LSB Bus Interface 6-5

sults of B-tag and B-stat lookup. LSB STALL is asserted when re
quired by internal conflicts.

• The LC also controls B-cache access from the processor or LEVI with
the LSynch signal (Section 6.4.1).

The LC schedules transfers of data between the LEVI and the CPU module
during dedicated LSB cycles.

6.4 Interfacing Rules

Logic on the CPU module synchronizes dual-ported accesses to the B-cache
and the P-map, since these components are accessed by both the processor
and LEVI. LSB arbitration rules govern node accesses to the LSB bus.

All cache data is longword ECC protected (seven bits per longword). LEVI
does look-aside ECC error detection but no ECC error correction.

The LEVI chips calculate ECC for each longword and compare it against
the received ECC. Any difference between calculated and received ECC in
dicates an error, which is signaled to the system. The ECC for longword 0
and a partial ECC syndrome for longword 1 are passed each cycle from
LEVI-B to LEVI-A.

6.4.1 Dual-Ported Access Synchronization

Dual-ported B-cache and P-map accesses are synchronized with the
LSynch semaphore. LSynch is also used to synchronize access to the CPU
module data path during Gbus references.

Whenever LSynch is deasserted (default state), the processor can read or
write the B-stat, B-tag, and B-data RAMs directly.

NOTE: The B-map RAMs are never accessed by the processor.

During LoadLock and StoreCond requests, whenever LSynch is
deasserted, the LPC can read or write the B-stat, B-tag, and B-data RAMs
directly.

During RBlock and WBlock requests to Gbus addresses, whenever LSynch
is deasserted, the LPC can transfer data between the processor and the
Gbus buffer on the CPU module. LEVI has priority to assert LSynch and
access the B-cache to service LSB transactions, since the LSB is non
pended. LEVI also accesses the B-cache to complete processor transactions
that miss the B-cache. When the LC asserts LSynch, the processor and the
LPC suspend B-stat/B-tag references (tag probes), P-map updates
(PMapWE), and B-data references within a fixed number ofLSB cycles.
The LEVI is then free to access any resource within the CPU module until
it deasserts LSynch at the completion of the LSB-related access.

6.4.2 LSB Arbitration

6-6 LSB Bus Interface

LEVI watches all LSB traffic to adhere to the arbitration rules. Specifi
cally, read, write, or victim transactions from any node that reference a
common memory bank cannot occur more frequently than once every three
transactions (or once every 15 LSB cycles). CSR transactions are also lim
ited in the same manner.

6.5 Address Space Mapping

Table 6-1

The LEVI chips define which portion of the address space is cacheable or
noncacheable. Cacheable address space is memory space and noncacheable
address space is I/O space. The LEVI chips further separate I/O space into
LSB bus CSR space and local Gbus space.

The LEVI interface ensures that processor references to memory result in
an LSB bus read or write command, while references to 1/0 space result in
an LSB read CSR, write CSR command, or private command.

Table 6-1 gives the encodings of commands that LEVI can send to the LSB
bus.

LSB Command Field Encodings

LSB 0<37:35>

000
001
010
011
100
101
110
111

Command

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private

6.6 LEVI Transactions

As the CPU module's interface to the LSB bus, LEVI responds to transac
tions initiated from two sources:

• Processor (CPU chip)

• LSB bus (other nodes)

These transactions require that both the processor and LEVI have access
to the B-cache on the CPU module and the P-map in LEVI. The dual
ported accesses to these components are synchronized with the LSynch
semaphore (Section 6.4.1). The two LEVI chips operate in both the proces
sor and the LSB bus time domains.

6.6.1 Processor-Initiated Transactions

LEVI responds to the following processor requests:

• Read/Write Hit
During a D-stream read hit, LEVI updates its P-map. It takes no other
action.

• Block Read/Write
LEVI captures B-stat and B-tag data, arbitrates for the LSB bus, is
sues the read/write command code on the bus, receives/drives data on
the bus, and updates all tags, maps, and B-stat bits.

LSB Bus Interface 6-7

• LoadLock/StoreCond
LEVI waits for LSynch to deassert, if necessary, then probes the B-tag.
On an LDxL (LoadLock) command that hits in the B-cache, LEVI com
pletes the read request and sets LLOCK<31>. If the LDxL is a B
cache miss, LEVI issues an LSB bus read command and sets
LLOCK<31>. On an STxC (StoreCond) request from the processor,
LEVI checks LLOCK<31>. If this bit is set, (success) and the B-cache
tag lookup results in a hit, LEVI immediately completes the write and
clears LLOCK<31>. If the tag probe results in a miss, and
LLOCK<31> is set, LEVI issues an LSB bus write command. On an
STxC, ifLLOCK<31> is clear, LEVI returns failed status to the proces
sor.

• Gbus Read/Write
LEVI waits for LSynch to deassert, if necessary. For Gbus reads,
LEVI-A arbitrates for the LSB bus, issues a private command, for
wards data from the Gbus to the processor by way of the LSB bus.
Gbus writes slip through LEVI fo the Gbus without an LSB transac
tion.

The processor can be engaged in only one external operation at a time.
This means that once the processor makes a transaction request to LEVI,
it remains idle until released by LEVI.

6.6.2 LSB-lnitiated Transactions

6-8 LSB Bus Interface

LEVI responds to transactions initiated by other nodes on the LSB. These
transactions include:

• Read
LEVI checks each read address against the B-map. If there is a match,
LEVI then checks the B-stat RAMs. It returns B-cache data if the
Dirty bit is set. LEVI returns a victimized block, which is sitting in the
victim buffer, ifthe block's address matches the read address.

• Write
When the write address matches that of a valid block in the B-map,
LEVI reacts as follows. If the address also hits in the P-map, LEVI
takes the update and invalidates the P-cache block in the processor.
Otherwise, the B-cache block is simply invalidated. Note that this be
havior can be altered with the LMODE register.

• Victim Write
LEVI ignores victim writes from other nodes.

• CSR Read/Write
Only registers in the LSB node space can be read or written from the
LSB. Gbus registers cannot be accessed from the LSB. Note that
LEVI can also respond to its own processor-generated CSR transac
tions on the bus.

• Private
Private transactions are used to return Gbus data to the processor, to
allow access to the B-tag, B-stat, B-map, and P-map structures directly
by the processor, and to resolve STxC boundary conditions. LEVI does
not respond to private commands from other modules.

LEVI is pipelined to track up to three interleaved LSB transactions.

6.6.3 Transaction Ordering

Table 6-2

The processor controller (LEVI PC, Section 6.3.1) and the LSB controller
(LEVI LC, Section 6.3.3) work together to guarantee strict ordering of
transactions issued on the LSB. Processor and LEVI actions proceed in
stages as shown in Table 6-2.

Processor-LEVI Actions During Transactions

Processor Action

Pl. The processor issues a request
with address Al.

P2. The processor can issue a new
request with address A2 any time
after Ll completes.

LEVI Action

In response to Pl, LEVI performs
the following actions:

Ll. LEVI initiates an LSB trans
action with address Al.

L2. If Pl was a WBlock and Ll
was an LSB Read that received a
shared response, LEVI issues an
LSB Write with address Al.

L3. If Ll was an LSB Read and
the B-cache block being displaced
had the Dirty bit set, LEVI issues
an LSB Write Victim command.

In response to P2, LEVI performs
the following action:

IA. LEVI initiates an LSB trans
action with address A2.

LSB Bus Interface 6-9

Chapter 7

Console Overview

The KN7 AA CPU module supports the LSB system console with combined
hardware/software elements that control the system at power-up, on reset,
or on CPU halts. This chapter describes the console hardware that re
sides on the CPU -module. Sections include:

• CPU Console Hardware

• Console Program Invocation

• Console Registers

The console user interface and commands are discussed in the Console Ref
erence Manual.

7. 1 CPU Console Hardware

The KN7 AA CPU module provides hardware to support the console func
tions. This hardware includes:

• A serial ROM (read-only memory) for first-level console program stor
age

• A set of FEPROMs (fl.ash programmable ROMs) for second-level con
sole program storage

• An EEPROM (electrically erasable/programmable ROM) for miscella
neous parameter/log storage

• A set ofUARTs (universal asynchronous receivers/transmitters) that
allow the console program to communicate serially with one console
terminal and the system power supplies

• A watch chip that provides a programmable internal timer and a
battery-backed-up time-of-year (TOY) clock for use by operating sys
tem software

• A set of parallel 1/0 ports for functions such as LED status indicators
and node identification

• A serial 1/0 port for manufacturing diagnostic use

The CPU module provides access to ROM, EEPROM, console UARTs, the
watch chip, and other functions through the 8-bit Gbus.

All Gbus component registers and memory stores are located in node pri
vate space, which means that their addresses are constant and are inde
pendent of slot identification. Table 7-1 gives the address ranges allocated
to the Gbus components.

Console Overview 7-1

Every Gbus memory store byte or register byte is located on a 64-byte,
naturally aligned boundary. For example, the first byte ofFEPROM stor
age is located at byte address 3 FOOO 0000; the second byte is at 3 FOOO
0040. Also note that a single 128-Kbyte FEPROM consumes 8 Mbytes of
address space. This addressing restriction implies that processor code can
not be executed from this address space.

Table 7-1 Gbus Components

7.1.1 Serial ROM

7. 1. 2 Serial Port

7-2 Console Overview

Component Address

Console ROM 3 FOOO 0000 to 3 F37F FFCO

Console EEPROM 3 F380 0000 to 3 F3FF FFCO

UART registers 3 F400 0000 to 3 FSOO OOCO

Watch registers 3 F600 0000 to 3 F600 OFCO

Gbus$WHAMI 3 F700 0000

Gbus$LEDs 3 F700 0040

Gbus$PMask 3 F700 0080

Gbus$Intr 3 F700 OOCO

Gbus$Halt 3 F700 0100

Gbus$LSBRST 3 F700 0140

Gbus$Misc 3 F700 0180

Gbus$RMode 3 F780 0000

Gbus$LTagRW 3 F780 0100

After power-up, node reset, or system reset, but before any instructions are
executed, the DECchip 21064 automatically loads its internal I-cache
through the serial 110 port from an external, 8-Kbyte serial ROM (SROM).

The SROM contains the first level of console/diagnostic/bootstrap code (se
rial ROM code). This code initializes all programmable features of the
DECchip 21064, diagnosing any faults detected along the bootstrap path
and bootstrapping code execution out to the second level of console /diag
nostic/ bootstrap code (the main console program). The first level bootstrap
copies the main console program code from FEPROM storage to the B
cache and transfers control flow to the B-cache. Once the serial ROM is
loaded into the B-cache, the same serial 1/0 port becomes available for use
by software as a diagnostic interface.

The DECchip 21064 provides an initialization and diagnostic interface in
the form of a serial 1/0 port. The serial 1/0 port is a full duplex connection

7. 1.3 FEPROMs

7. 1.4 EEPROM

7.1.5 UARTs

between the CPU chip and a module connector. The port is accessed and
controlled through internal processor registers.

The serial I/O port drives a LED indicator, which may flash as data is
transmitted over the serial port, but is otherwise available to diagnostic
code as a status indicator.

The console program is stored in a set of 128K X 8 FEPROM chips. This
code does not appear in a structure of contiguous locations in the proces
sor's address space. Specifically, each byte of FEPROM storage appears on
a 64-byte naturally aligned boundary. This implies that the console pro
gram cannot execute directly out of FEPROM, but instead must be copied
into a more compact contiguous space in cacheable memory and executed
from there. This process of copying the code store and transferring control
flow is known as the first-level bootstrap and is performed by the serial
ROM code, as explained in Section 7.1.1.

The FEPROMs can be programmed online without assistance from an ex
ternal programming device. The FEPROMs cannot be patched; they can
only be erased and programmed as a whole.

A single SK X 8 EEPROM is used for miscellaneous parameter and log
storage. This store does not appear in. a contiguous address space. Each
byte of EEPROM storage appears on a 64-byte boundary.

The EEPROM can be written to byte-by-byte online, without assistance
from an external programming device.

The CPU module has six serial communication lines but uses only three.
The communication lines are named and assigned as follows:

• UARTOA is connected to the LSB local console terminal line LOC_RXI
LOC_TX (computer room terminal for field service).

• UARTlB is connected to the LSB power supply status lines PS_RX and
PS_TX.

• UART2A is dedicated to Ctrl/P character detection. Its receive line can
tap receive characters off LOC_RX, OP _RX, or RD_RX as selected by
the Gbus$PMask register. Its transmit line is unused. UART2A ena
ables IPL 15 inteITUpts. If no serial lines are selected for console op
eration (the processor is halt-protected), then all receive characters re
sult in an IPL 15 interrupt. For UART2A to detect Ctr1'P characters,
all control settings must be programmed to match the console terminal
UART.

• UARTOB, UARTlA, and UART2B are unused.

The LSB console serial lines are connected to all CPU slots. After power
up or system initialization, the CPU modules arbitrate for use of the com
mon console lines; the winner is allowed to drive them. The default con
figuration of the serial lines at power-up is as follows:

Console Overview 7-3

Baud rate set to 9600
No parity
One stop bit
8-bit characters

One physical component (DUART) implements two UARTs, hence the
naming of the UARTs as UARTOA, UARTOB, and so on, where the number
indicates the physical component and the letter indicates the individual
UART within the component. Control of these UARTs is accomplished
through a set of registers in each UART. These registers are listed in Ta
ble 7-2.

7. 1.5. 1 Ctrl/P Character Detection and Halt Protection

UART2A is dedicated to detecting Ctrl/P characters received from the con
sole terminal.

UART2A intercepts a copy of all UART receive characters from the console
terminal line and compares for Ctrl/P. Ctrl/P characters result in an IPL
lF interrupt (halt) posted to the processor (reflected in the Gbus$Halt reg
ister). Note that the IPL lF intetTUpt is in addition to the IPL 15 inter
rupt.

7.1.5.2 UART Register Addressing

7. 1.6 Watch Chip

Each UART in a DUART component is controlled independently through
its own set of registers (some registers are shared between two UARTs
within a DUART). All UART registers are either read only (for status and
data receive) or write only (for control and data transmit). Read registers
and write registers share common addresses, that is, reading and writing a
single address accesses two separate registers.

For each UART there are two read registers and two write registers that
are directly accessible in the processor's address space: RRO, WRO, RR8,
and WR8. RRO and WRO are the main status and control registers for the
UART. RR8 and WR8 are the data receive and transmit registers.

For each UART there are a number of other control and status registers
that are indirectly accessible through RRO and WRO. These registers are
accessed by writing the correct index value into WRO and then reading
RRO or writing WRO. After the second read/write operation occurs, the in
dex value is automatically reset back to zero.

A watch chip resides on the Gbus and provides a battery-backed-up time
of-year clock and 50 bytes of battery-backed-up RAM. The chip contains a
built-in crystal oscillator, an internal timer, and a 10-year lithium battery.

7 .2 Console Program Invocation

7-4 Console Overview

The DECchip 21064 operates in console mode when the CPU module en
counters one of the following conditions:

• System reset through power-up, control panel reset, or reset through
the Gbus$LSBRST register

• Module reset performed by setting NRST (LCNR<30>)

• Module halted by setting NHALT (LCNR<29>)

• Ctrl/P character received from the console terminal

7 .3 Console Registers

Table 7-2 lists the console registers with their addresses and indicates the
components in which they are implemented.

A number of console/diagnostic/interrupt related registers listed in Table
7-2 are referred to with a prefix of Gbus$. These registers provide the fol
lowing control and status functions:

• Node identification

• LED status indicators

• Interru.pt status summaries

• Console terminal selection

• Halt protection

• System reset

This section provides descriptions of individual Gbus registers. The re
maining console registers are listed in Table 7-2 for reference only. All
Gbus registers are eight bits wide.

Table 7-2 Console Registers

Register

UARTxx$WR01

UARTxx$WR1
UARTxx$WR2
UARTxx$WR3
UARTxx$WR4
UARTxx$WR5
UARTxx$WR6
UARTxx$WR7
1 UART Base Addresses:

xx= OB; BASE= 3 F400 0000
xx = OA; BASE = 3 F400 0080
xx= lB; BASE= 3 F480 0000
xx = 1A; BASE = 3 F480 0080
xx= 2B; BASE= 3 F500 0000
xx = 2A; BASE = 3 F500 0080

Address

UART:x:x_BASE1

IndexOOOl
IndexOOlO
Index 0011
IndexOlOO
Index0101
IndexOllO
IndexOlll

Implementation

DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip

Console Overview 7-5

Table 7-2 Console Registers (Continued)

Register

UARTxx$WR8
UARTxx$WR9
UARTxx$WR10
UARTxx$WR11
UARTxx$WR12
UARTxx$WR13
UARTxx$WR14
UARTxx$WR15
UARTxx$RRO
UARTxx$RR1
UARTxx$RR2
UARTxx$RR3
UARTxx$RR8
UARTxx$RR10
UARTxx$RR13
UARTxx$RR15
Watch$Seconds
Watch$Minutes
Watch$Hours
Watch$Day_of_Month
Watch$Month
Watch$Year
Watch$CSRA
Watch$CSRB
Watch$CSRC
Watch$CSRD
Backup RAM (50 bytes)
Gbus$WHAMI
Gbus$LEDs
Gbus$PMask
Gbus$Intr
Gbus$Halt
Gbus$LSBRST
Gbus$Misc
Gbus$RMode
Gbus$LTagRW

1 UART Baee Addressee:

xx= OB; BASE= 3 F400 0000
xx= OA; BASE= 3 F400 0080
n: = lB; BASE = 3 F480 0000
xx = lA; BASE = 3 F480 0080
xx= 2B; BASE = 3 F500 0000
n: = 2A; BASE = 3 F500 0080

7-6 Console Overview

Address

UARTxx_BASE+40H
Index 1001
Index 1010
Index 1011
Index 1100
Index 1101
Index 1110
Index 1111
UARTxx_BASE
IndexOOOl
IndexOOlO
IndexOOll
UARTxx_BASE+40H
Index 1010
Index 1101
Index 1111
3 F600 0000
3 F600 0080
3 F6000100
3 F600 OlCO
3F6000200
3 F6000240
3F6000280
3F60002CO
3 F6000300
3 F6000340
3 F600 0380 to 3 F600 OFCO
3 F7000000
3F7000040
3F7000080
3 F70000CO
3F7000100
3 F7000140
3 F7000180
3 F7800000
3 F780 0100

Implementation

DUARTchip
DUARTchip
DUARTcbip
DUARTcbip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
DUARTchip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
LEVI

Gbus$WHAMI

Address
Access

3 F700 0000
RO

The Gbus$WHAMI register provides information on system con
figuration and reflects the status of certain back.plane signals.

7 6 5 4 3 2 0

I I I I I I I

I~ NID
MFG
LSB_BAD
LSB_CONWIN
RSVD
REQ_MODE

BXB-0243A-93

Table 7-3 Gbus$WHAMI Register Bit Definitions

Name Bit(S) Type

REQ_MODE RO

Function

Request Mode. Indicates the maximum number of
CPU modules that this CPU module supports in a sys
tem.

Gbus$WHAMI
<7> CPUs Allowed in LSB Slots

0 0-3
1 0-7

Console OVervlew 7-7

Table 7-3 Gbus$WHAMI Register Bit Definitions (Continued)

Name

LSB_CONWIN

LSB.:..BAD

MFG
NID

Bit(S)

7-8 Console overview

Type

RO

RO

RO

RO

Function

LSB CONWIN. Reflects the inverted state of the
LSB_CONWIN L backplane signal. When set, indi
cates that Gbus$LEDs<l> is clear (asserted) in one
or more CPU modules.

LSB Bad. Reflects the inverted state of the
LSB_BAD L backplane signal. When set, indicates
that LSB_BAD Lis driven by one or more CPU mod
ules.

Manufacturing Status. Used by manufacturing.

Node ID. Identifies the CPU module by the slot
(0-7) where it resides.

Gbus$LEDs

Address
Access

Table 7-4

Name

LEDs_L

RUN_L

CONWIN_L

STP_L

3 F700 0040
R/W

The Gbus$LEDs register is used for lighting a series of LEDs on the
module to aid in debug and to indicate self-test status. Writing a
zero to a bit in this register lights the corresponding LED.

76543210

I I I I I I I I I

~
LED4_L
LED5_L
LEDS_L
LED7_L

STP_L
CONWIN_L
RUN_L
LED3_L

BXB-0240-92

Gbus$LEDs Register Bit Definitions

Bit(S) Type

<7:3> R/W

R/W

R/W

R/W

Function

LEDs Low. When a bit in this field is set, the associ
ated LED signal is asserted low.

RUN Low. When set, the associated LED signal is as
serted low. The state of this bit also indicates whether
the currently running software is the operating system
(and not the diagnostic/console program).

CONWINLow. When set, the associated LED signal
is asserted low. Also drives the backplane signal
LSB_CONWIN L. The state of this signal can be read
through the Gbus$WHAMI register.

Self-Test Passed Low. When set, the associated LED
signal is asserted low.

Console Overview 7-9

Gbus$PMask

Address
Access

3 F700 0080
R/W

The Gbus$PMask register controls halts to the processor.

7 4 3 2 1 0

RSVD I I I I
HALT_EN
SEL_CONS_TERM
PHALT_EN

BXB-0242-92

Table 7-5 Gbus$PMask Register Bit Definitions

I Name

RSVD

PHALT_EN

Bit(s)

<7:4>

<3>

7-1 O Console overview

Type

R/W, 1

R/W, 1

Function

Reserved. Initialized to ones.

Ctrl/P Halt Enable. When set, enables Ctrl/P
characters received by the UART selected in the Se
lect Console Terminal field of this register to halt
the processor. The Halt Enable bit of this register
must also be set for a Ctrl!P character to generate a
halt.

Table 7-5 Gbus$PMask Register Bit Definitions (Continued)

Name Bit Cs)

SEL_CONS_TERM <2:1>

HALT_EN

Type Function

R/W, 1 Select Console Terminal. Selects one of three
console terminals for Ctrl/P character detection.

Gbus$PMask
<2:1>

00

01

10

11

Console Terminal
Selected

UARTOA (local terminal)

UARTOB (Reserved)

UARTlA (remote diagnostic
control)

UART2A placed into module
level loopback mode. In this
mode, the UART2A receive
line is driven by the UART2A
transmit line. PHALT_EN
(bit <3> of this register) must
be zero (Ctrl/P halts disabled)
while modifying
SEL_CONS_TERM to avoid
erroneous halts.

R/W, 1 Halt Enable. When set, enables halts to the
processor, including halts generated by
LCNR<NHAL T> or by detection of a Ctrl/P char
acter received by a UART selected in the Select
Console Terminal field of this register. When
clear, all halts to the processor are disabled.
PHALT_EN must also be set for Ctrl/P characters
to generate a halt.

Console Overview 7-11

Gbus$1ntr

Address
Access

3 F700 OOCO
R/W

The Gbus$Intr register stores interrupt snmmary information.
Specifically, it provides a means to determine the source of IPL 14,
IPL 15, and IPL 16 interrupts to the processor.

7 6 5 4 3 2 1 0

I I I I 0 I I I I I

~
RSVD

-- LSB2
....__ ___ IP

.__ ___ INTIM

DUARTO_INT
DUART1_1NT
LSBO
LSB1

BXB-0244-92

Table 7-6 Gbus$1ntr Register Bit Definitions

Name Bit(S)

INTIM

IP

LSB2

RSVD <4>

7-12 Console Overview

Type

RO,O

WlC,O

RO,O

RO

Function

Interval Timer. When set, indicates that the watch
chip is asserting its interval timer output.

Interprocessor. When set, indicates that the LEVI
A chip has detected a write to the LIPINTR register
with data selecting this node.

LSB 2. When set. indicates that the LEVI-A chip has
an LSB level 2 interrupt pending.

Reserved. Reads as zero.

Table 7-6 Gbus$1ntr Register Bit Definitions (Continued)

Name Bit(s)

LSBl

LSBO

DUARTl_INT <1>

DUARTO_INT

Type

RO,O

RO,O

RO,O

RO,O

Function

LSB 1. When set, indicates that the LEVI-A chip
has an LSB level 1 interrupt pending.

LSB 0. When set, indicates that the LEVI-A chip
has an LSB level 0 interrupt pending.

DUARTl lntermpt. When set, indicates that
either UARTlA or UARTlB is requesting an inter
rupt for the processor. This bit is cleared when all
possible DUARTl interrupt sources are cleared.

DUARTO lntermpt. When set, indicates that
either UARTOA or UARTOB is requesting an inter
rupt for the processor. This bit is cleared when all
possible DUARTO interrupt sources are cleared.

Console Overview 7-13

Gbus$Halt

Address
Access

3 F700 0100
R/W

The Gbus$Halt register summarizes halt and power conditions.

7 6 5 4 3 2 1 0

1°1 I I I I I 1°1

~ RSVD
NHALT
LSB_SEC
LDC_PWR_OK

PWR_MODA_OK
PWR_MODB_OK
Ctrl/P _HALT
RSVD

BXB-0241-92

Table 7-7 Gbus$Halt Register Bit Definitions

Name Bit(S) Type

RSVD <7> RO

Ctrl/P _HALT <6> WlC,O

PWR_MODB_OK <5> RO

PWR_MODA_OK <4> RO

7-14 Console Overview

Function

Reserved. Reads as zero.

Ctrl/P Halt. Set when a Ctrl/P character is received
by the UART selected in the Gbus$PMask register.

Power Module B Okay. Set when Power Module B
of the I/O PIUs (plug-in unit) is working properly.
Cleared when Module B fails.

Power Module A Okay. Set when Power Module A
of the 1/0 PIUs (plug-in unit) is working properly.
Cleared when Module A fails.

Table 7-7 Gbus$Halt Register Bit Definitions (Continued)

Name Bit(s) Type Function

LDC_PWR_OK <3> RO LDC Power Okay. Is set when all local disk con-
verters (LDC) in the platform are working properly.
Cleared when no LDCs are installed or when one or
more of the LDCs fails.

LSB_SEC <2> RO LSB Secure. Reflects the inverted state of the
backplane signal LSB_SECURE L. When set, indi-
cates that the control panel keyswitch is in the Se-
cure position and that Ctrl/P halts to the processor
are disabled by hardware.

NHALT <1> RO Node Halt. Reflects the state ofLCNR<NHALT>.

RSVD <0> RO Reserved. Reads as zero.

Console Overview 7-1 S

Gbus$LSBRST

Address
Access

3 F700 0140
R/W

The Gbus$LSBRST register is used for initiating a system reset se
quence. When the CPU chip writes any value to this register, the
LSB RESET signal is asserted for 512 LSB cycles.

7 0

BXB-0264-92

7-16 Console Overview

Gbus$Misc

Address
Access

3 F700 0180
R/W

The Gbus$Misc register controls various system functions.

7 3 2 1 0

RSVD I I I
EX PS EL
BAD

BXB-0239-92

Table 7-8 Gbus$Misc Register Bit Definitions

Name

RSVD

BAD

Bit(s) Type

<7:3> RO, 1

<2> R/W, 1

Function

Reserved. Initialized to ones.

Bad. When set, causes the module to drive LSB BAD which,
in turn, lights the control panel fault LED. The state of this
bit does not affect the Self-Test-Passed LED on the module or
the STP bits in the Gbus$LEDs and LCNR registers. This bit
allows software to assert LSB BAD on behalf of another sys
tem component. To determine if any module is driving LSB
BAD, software should read Gbus$WHAMl<LSB_BAD>, not
Gbus$Misc<BAD>.

Console Overview 7-17

Table 7-8 Gbus$Misc Register Bit Definitions (Continued)

Name Bit(S) Type

EXPSEL <1:0> RJW,l

7-18 Console Overview

Function

Expander Select. Selects which cabinet the power supply
UART lines are logically connected to, and therefore, which of
three 48V regulators are connected to the power supply lines.

Gbus$Misc
< 1 :0> Power Supply Connection

00 PS lines logically connected to main CPU
cabinet.

01 PS lines logically connected to right ex
pander cabinet.

10 PS lines logically connected to left ex
pander cabinet.

11 PS transmit line is looped back to PS re
ceive line.

Gbus$RMode

Address
Access

3 F780 0000
R/W

The Gbus$RMode register is a write-only register. A write to it
sets LDIAG<FRIGN> and logically disconnects the CPU module
from the LSB bus. This register is intended for use as a backup
system should there be a problem with the LSB interface and
writes to the LDIAG register be unsuccessful (writes to the LDIAG
register require a successful LSB transaction while writes to Gbus
space are completed without any LSB access). Note that software
should write to the LDIAG register as a first choice and use the
Gbus$RMode register only if the write to the LDIAG register fails.

7 0

BXB-0264-92

Console Overview 7-19

Gbus$LTagRW

Address
Access

3 F780 0100
R/W

The Gbus$LTagRW register, when used with LTAGA, LTAGW, and
LDIAG registers, allows software to read and write the B-cache, B
map, and P-map tags. See descriptions of the LTAGA, LTAGW, and
LDIAG registers in Chapter 9.

7 0

BXB-0264-92

7-20 Console Overview

Chapter 8

1/0 Operations

1/0 operations handled by the KN'7 AA CPU module include 1/0 reads,
1/0 writes, and device interrupts. The DECcbip 21064 uses four
hardcoded SCB vectors for all device interrupts. Interrupt service rou
tines at the four SCB veetors are required to determine the source of the
interrupt and invoke the appropriate service routine.

From the perspective of I/O operations, registers are divided into two
groups: local registers and remote registers. Registers that reside on the
KN7 AA CPU module and the LSB bus are local registers. Those that re
side on I/O buses are remote registers. Local registers are directly acces
sible to software; remote registers are not. Access to remote registers is
achieved by means of the mailbox protocol. The LMBOX register is pro
vided to assist software in the mailbox protocol.

8. 1 Mailbox Data Structure

Figure 8-1

Remote control and status registers (CSRs) are accessed through 64-byte
naturally aligned mailbox data structures located in main memory. Read
requests are posted in mailboxes. Data is returned in memory with
status in the following quadword. Mailboxes are allocated and managed
by the operating system software. Figure 8-1 shows a mailbox data struc
ture.

Mailbox Data Structure

63 56 55 48 47 40 39 32 31 30 29 2 1 0

ONO SBZ I HOSE I SBZ I MASK JwJe1 CMD

<:NI 1 RBADR <63:0>

ON2 WDATA <63:0>

ON3 MBZ

ON4 UNPREDICTABLE l RDATA <31:0>

ONS STATUS UH
ON6 UNPREDICTABLE

ON7 UNPREDICTABLE

BXB-0174 A-92

1/0 Operations 8-1

Table 8-1 describes the mailbox data structure. Refer to the DEC 7000
AXP System IV AX 7000 I I 0 Sys'tem Technical Manual for a detailed de-
scription of the mailbox protocol.

Table 8-1 Mailbox Data Structure

Quad-
Field Bit(S) Type word Function

HOSE <55:48> R/W 0 Hose. Used to determine which remote bus the
command is meant for.

MASK <39:32> R/W 0 Mask. Contains the byte mask. The 110 mod-
ule does not use this field.

CMD <29:0> R/W 0 Command. Contains the command. Value is
1/0 bus adapter specific.

RBADR <63:0> R/W 1 Remote Broadcast Address. Contains the ad-
dress to be broadcast on the remote bus.

WDATA <63:0> R/W 2 Write Data. Contains the write data to be
broadcast on the remote bus.

RDATA <31:0> R/W 4 Read Data. Contains read data returned from
the remote bus.

STATUS <63:2> R/W 5 Status. Contains status information provided
by the remote bus.

ERR <1> R/W 5 Error. When set, indicates that a mailbox op-
eration failed.

DON <0> R/W 5 Done. Status bit set by the 1/0 module when a
mailbox operation is complete.

8.2 Mailbox Operation

8-2 1/0 Operations

The 1/0 module services mailbox requests by means of four mailbox pointer
CSRs (LMBPR registers; see Section 8.4) located in the 1/0 module's node
space. There is one LMBPR address for each CPU node. Software sees
only one LMBPR register address, but the CPU module replaces the least
significant two bits of the address (that is, D<2:1>) with the least signifi
cant two bits of the node ID (that is, NID<l:O>). If a given LMBPR regis
ter is in use when it is written to, the I/O module does not acknowledge it
and CNF is not asserted. Processors use the lack of CNF assertion on
writes to the LMBPR register to indicate a busy status. The write is
retried later under software control.

To perform a write to the LMBPR register, microcode must know the ad
dress of the LMBPR register and the address of the mailbox data structure
to be loaded into the LMBPR register. Another memory structure needs to
be created to pass this information to microcode. This structure is called
the Mailbox Pointer and consists of two longwords. Figure 8-2 shows the
mailbox pointer structure. Table 8-2 gives the bit definitions of the
mailbox pointer structure.

Figure 8-2

Table 8-2

Name

MB_ADDR

Mailbox Pointer Structure

31 6 5 0

LMBPR_ADDR

MB_ADDR MBZ

Mailbox Pointer Structure

Bit(S) Type

<31:6> WO

BXB-0176-92

Function

Mailbox Address. Contains the physical ad
dress of the mailbox data structure. Since this
structure is aligned on a 64-byte boundary, bits
<5:0> of the address must be zero.

LMBPR_ADDR <31:0> WO LMBPR Address. Contains the virtual address
of the LMBPR register.

When software has created the mailbox data structure and the mailbox
pointer structure, it can start the 1/0 operation. An MTPR to the LMBOX
register (Section 8.4) initiates the I/O operation. Microcode reads the
MB_ADDR field out of the mailbox pointer structure and then writes the
value to the LMBPR register using the address provided in the mailbox
pointer structure. An ED.AL store conditional command is used to per
form the write. Microcode then checks the Zero Condition Code bit
(PSL<2>) in the BIU _STAT register to determine if the write passed or
failed. If the write passed, PSL<2> is set; otherwise, PSL<2> is cleared.
Software can loop on the MTPR to the LMBOX register until the write
passes.

After the 1/0 module has accepted the write to LMBPR, it performs the 1/0
operation. Software can now poll the status bit in the mailbox data struc
ture until the 1/0 operation is complete. When the 1/0 operation has com
pleted, DON in the mailbox data structure (see Table 8-1) is set. If an er
ror occurred during the transaction, LBER<E> (see Chapter 9) is also set.
If the operation was an 1/0 write, no further action is required. If the op
eration was an 1/0 read, software can now fetch the returned data from the
RDATA field in the mailbox data structure.

8.3 Device Interrupt Handling

The KN7 AA module uses the device interrupts as shown in Table 8-3. In
terrupts from the LSB and the UARTs (device interrupts) are handled by
both hardware and software. After an interrupt has been posted to the
CPU chip through one of the four IRQ lines, the CPU chip passes control to
the operating system through four dedicated SCB entry points. Table 8-3
shows the device interrupt sources and their matching SCB entry points.

1/0 Operations 8-3

Table 8-3 KN7AA CPU Interrupts

DECchip
Interrupt 21064 IRQ SCB
Level (Hex> Interrupt Condition Pin Vector

17 LSB level 3 inteITUpts 3 DC
16 Interprocessor interrupt 2 DB
16 LSB level 2 inteITUpts 2 DB
15 Console UARTs 1 D4
15 LSB level 1 inteITUpts 1 D4
14 LSB level 0 inteITUpts 0 DO

For IPL 16 and IPL 17 interrupts, software reads the Gbus$Intr register to
determine if the interrupt is.posted by an LSB 1/0 device, another proces
sor in the system, or a UART. If an interprocessor or a UART inteITUpt
has been received, software can directly pass control to the appropriate
service routine. For LSB 1/0 interrupts, software must get the device in
terru.pt vector from the 1/0 module.

8.4 1/0 Operation Registers

8-4 1/0 Operations

Two registers are used for 1/0 operations:

• Mailbox Pointer CSR (LMBPR)

• Mailbox Register (LMBOX)

The LMBPR register resides on the IOP module and is described in the
DEC 7000 AXP Sys'tem /VAX 7000 I I 0 System Technical Manual. The de
scription of the LMBOX register follows.

LMBOX-LSB Mailbox Register

Address
Access

31

BB+ 00
R/W

The LMBOX register contains the physical address of the mailbox
pointer structure.

0

MBXREG

BXB-0175-92

Table 8-4 LMBOX Register Bit Definitions

Name Bit(s)

MBXREG <31:0>

Type

WO

Function

Mailbox Register. Contains the physical address of
the mailbox pointer structure.

1/0 Operations 8-5

Chapter 9

CPU Module Registers

The KN7AA CPU module, like the memory and 1/0 modules on the LSB
bus, contains two groups of registers:

• LSB required registers

• CPU-specific registers

LSB required registers are used for internode communication over the LSB
bus. CPU-specific registers are used to perform functions specific to the
CPU module.

CPU Module Registers 9-1

9.1 Register Mapping

Table 9-1

All CPU module registers reside in node space. The only exceptions to this
rule are the two interrupt registers, LIOINTR and LIPINTR, which reside
in LSB broadcast space.

CPU module registers are mapped to the node space as offsets to a base
address (BB). The base address is implemented in hardware and depends
on the node ID, which is determined by the LSB backplane slot occupied
by the module. Table 9-1 gives the physical base addresses of nodes on the
LSB bus.

LSB Node Space Base Addresses

Node ID

0
1
2
3
4
5
6
7
8

Module

CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
I/O

Physical Base Address CBB)
(Byte)

3 F800 0000
3 F840 0000
3 F880 0000
3F8COOOOO
3F9000000
3 F940 0000
3 F980 0000
3F9COOOOO
3 FAOO 0000

Table 9-2 lists the CPU module registers and gives the address of each reg
ister as an offset from a selected node space base address.

NOTE: Two CPU registers listed in Table 9-2, UOINTR and LIPINTR, are located
in LSB broadcast space, the base address of which is 3 FEOO 0000.

9-2 CPU Module Registers

Table 9-2 CPU Module Registers

Register Name

LSB Required

Device Register
Bus Error Register
Configuration Register
Memory Mapping Register 0
Memory Mapping Register 1
Memory Mapping Register 2
Memory Mapping Register 3
Memory Mapping Register 4
Memory Mapping Register 5
Memory Mapping Register 6
Memory Mapping Register 7
Bus Error Syndrome Register 0
Bus Error Syndrome Register 1
Bus Error Syndrome Register 2
Bus Error Syndrome Register 3
Bus Error Command Register 0
Bus Error Command Register 1
1/0 Interrupt Register
Interprocessor Interrupt Register

CPU-Specific

Mode Register
Module Error Register
Lock Address Register
Diagnostic Control Register
Tag Address Register
Tag Write Data Register
Console Communication Register 0
Console Communication Register 1
Performance Counter Control Register
Performance Counter 0 Register
Performance Counter 1 Register
Last Miss Address Register

Mnemonic

LDEV
LBER
LCNR
LMMRO
LMMRl
LMMR2
LMMR3
LMM:R4
LMMR5
LMMR6
LMMR7
LBESRO
LBESRl
LBESR2
LBESR3
LBECRO
LBECRl
LIOINTR
LIPINTR

LMODE
LMERR
LLOCK
LDIAG
LTAGA
LTAGW
LCONO
LCONl
LPERF
LCNTRO
LCNTRl
LMISSADDR

1 BB is the node space base address of the CPU module in hex.

2 BSB is the broadcast space base address, which is 3 FEOO 0000.

Address
(Byte Offset)

BB1 + 0000
BB+ 0040
BB+ 0080
BB +0200
BB +0240
BB +0280
BB +02CO
BB +0300
BB +0340
BB +0380
BB +03CO
BB +0600
BB +0640
BB+0680
BB +06CO
BB +0700
BB+ 0740
BSB2 +0000
BSB +0040

BB +OCOO
BB +OC40
BB +OC80
BB +ODOO
BB +OD40
BB +OD80
BB +OEOO
BB +OE40
BB +OFOO
BB +OF40
BB +OF80
BB +OFCO

CPU Module Registers 9-3

9.2 Register Descriptions

LSB required registers have the following characteristics:

• All writes are 32 bits wide. Byte or word operations are not supported.

• Writes directed to a read-only register may be accepted and acknowl
edged, but no action is taken, and the content of the register is not af
fected.

CPU-specific registers appear in the LSB CSR space.

9-4 CPU Module Registers

LDEV-Device Register

Address
Access

BB+ 0000
R/W

The LDEV register is loaded during initialization with information
that identifies a node.

31

DREV

Table 9-3 LDEV Register Bit Definitions

Name Bit(s) Type

DREV <31:16> R/W,O

DTYPE <15:0> R/W,O

16 15 0

DTYPE

BXB-01 00-92

Function

Device Revision. Identifies the revision level
of an LSB node. For the KN7 AA CPU module,
the value of this field is zero.

Device Type. Identifies the type of node. For
the KN7 AA CPU module, the value of this field
is set to 8001 (hex).

CPU Module Registers 9-5

LBER-Bus Error Register

Address
Access

31

BB+ 0040
R/W

The LBER register stores the error bits that are flagged when an
LSB node detects errors in the LSB operating environment and
logs the failing commander ID. The status of this register remains
locked until software resets the error bit(s).

19 18 17 16 15 14 13 12 11 10 D 8 7 6 5 4 3 2 1 0

RSVD I
NSES <18> _J~~
CTCE <17> =_j
DTCE <16>

DIE <15>
SHE <14>
CAE<13>-

NXAE <12> __ ____,
CNFE<11>

STE<10>
TOE <9> -

CDPE2 <8> --
COPE <7>
CPE2 <6>
CPE <5> -
CE2 <4> __ _.

CE <3>
UCE2 <2>

UCE <1> _ __,
E <0> __ ____,

BXB-0101-92

9-6 CPU Module Registers

Table 9-4

Name

RSVD

NSES

CTCE

DTCE

DIE

SHE

CAE

NXAE

CNFE

STE

TDE

LBER Register Bit Definitions

Bit(s) Type Function

<31:19> RO Reserved. Read as zero.

<18> R, 0 Node-Specific Error Summary. Set when an error
condition is reported in the LMERR register.

<17> WlC, 0 Control Transmit Check Error. Set when an LSB con-
trol line is driven incorrectly by the CPU module. When
CTCE is set, ERR is asserted by the CPU module for one
cycle.

<16> WlC, 0 Data Transmit Check Error. Set when the CPU mod-
ule detects an error while driving the D<127 :0> and
ECC<27:0> lines during a data or command cycle. When
DTCE is set, ERR is asserted by the CPU module for one
cycle.

<15> WlC, 0 Dirty Error. Set if the CPU module receives an asserted
DIRTY signal during a cycle when DIRTY signals are not
allowed. When DIE is set, ERR is asserted by the CPU
module for one cycle.

<14> WlC, 0 Shared Error. Set if the CPU module receives an as-
serted SHARED signal during a cycle when SHARED sig
nals are not allowed. When SHE is set, ERR is asserted
by the CPU module for one cycle.

<13> WlC, 0 Command/Address Error. Set if the CPU module re-
ceives an asserted CA signal during a cycle when CA sig
nals are not allowed. When CAE is set, ERR is asserted
by the CPU module and error registers are locked.

<12> WlC, 0 Nonexistent Address Error. Set when the CPU mod-
ule does not receive confirmation for a command it sent on
the LSB. When NXAE is set, ERR is asserted by the CPU
module for one cycle.

<11> WlC, 0 CNF Error. Set if the CPU module receives a confirma-
tion signal during a cycle that does not permit confirma
tion. When CNFE is set, ERR is asserted by the CPU
module for one cycle.

<10> WlC, 0 STALL Error. Set when the CPU module receives a
STALL signal during a cycle that does not permit stalls.
When STE is set, ERR is asserted by the CPU module for
one cycle.

<9> WlC, 0 Transmitter During Error. Set if a CE, UCE, CPE, or
CDPE error occurs during a cycle when the CPU module
was driving D<127:0>. When TDE is set, ERR is as
serted by the CPU module for one cycle.

CPU Module Registers 9-7

Table 9-4 LBER Register Bit Definitions (Continued)

Name Bit(s)

CDPE2

CDPE <7

CPE2

CPE

CE2

CE

UCE2

UCE

E

9-8 CPU Module Registers

Type Function

WlC, 0 Second CSR Data Parity EITor. Set when a second
parity error occurs while CDPE is set on a CSR data cycle.

WlC, 0 CSR Data Parity Error. If a parity error occurs during
a CSR data cycle, the CPU module sets CDPE, asserts
ERR for one cycle, and locks the error registers.

WlC, 0 Second Command Parity Error. Set when a second
parity error occurs on a command cycle while CPE is set.

WlC, 0 Command Parity EITor. If a parity error occurs on a
command cycle, the CPU module sets CPE, asserts ERR
for one cycle, and locks the error registers.

WlC, 0 Second Correctable Data Error. Set when a second
correctable ECC error occurs on a data cycle while CE is
set.

WlC, 0 CoITectable Data Error. If the CPU module detects an
ECC error on the LSB, it sets CE, asserts ERR for one cy
cle, and locks the eITOr registers.

WlC, 0 Second Uncorrectable Data Error. Set when the
CPU module detects a second uncorrectable data error
while UCE is set.

WlC, 0 UncoITectable Data Error. If the CPU module detects
an uncorrectable ECC error on the LSB during a data cy
cle, it sets UCE, asserts ERR for one cycle, and locks the
error registers.

WlC, 0 Error. Set whenever the CPU module detects assertion
of ERR on the LSB.

LCNR-Configuration Register

Address
Access

Table 9-5

Name

STF

NRST

NHALT

RSTSTAT

RSVD
CEEN

BB+ 0080
R/W

The LCNR register contains I.SB configuration setup and status in
formation.

31 30 29 28 27 1 0

I 11 I I RSVD
11

~
RSTSTAT

CEEN _j

NHALT
NRST
STF

BXB-0102-92

LCNR Register Bit Definitions

Bit(S)

<31>

<28>

<27:1>

Type Function

WlC, 1 Self-Test Fail. When set, indicates that this node has
not yet completed self-test.

W, 0 Node Reset. When set, the node enters console mode
and undergoes a reset sequence.

R/W, 0 Node Halt. When set, a CPU node enters console
mode.

WlC, 0 Reset Status. When set, provides an indication to con
sole software that a given CPU node should not attempt
to become the boot processor, but should rather join an
already running system. This bit is set when NRST
(LCNR<30>) is set. It is cleared with a write of one, at
system power-up, or with an LSB RESET command.
This bit is not cleared in a reset sequence caused by set
ting NRST.

RO Reserved. Read as zero.

R/W, 0 Correctable Error Detection Enable. When set, en
ables detection of correctable errors.

CPU Module Registers 9-9

LMMR0-7-Memory Mapping Registers

Address
Access

31

BB + 0200 to BB + 03CO
R/W

Eight LMMR registers define the memory configuration for all
memory modules installed in the system. They are copies of the
equivalent AMR registers in memory modules installed in the sys
tem. Each LMMR register is associated with the LSB module
whose node ID matches the three lower bits of the LMMR address.
Thus, LMMRO is associated with node 0, LMMRl is associated with
node 1, and so on. LMMR registers are loaded during system in
itialization when the memory modules are initialized and config
ured.

17 16 11 10 9 8 5 4 3 2 1 0

MODULE_ADDR RSVD I I I

NBA~~~ __ I 11

EN ·

BXB-0104-92

Table 9-6 LMMR Register Bit Definitions

Name Bit(s) Type

MODULE_ADDR <31:17> R/W

RSVD <16:11> RO

9-10 CPU Module Registers

Function

Module Address. Specifies the most significant
bits of the base address of the memory region
spanned by the memory module associated with
this register (LMM:RO-LMMR7). These bits cor
respond to bits <39:25> of the byte address or
D<34:20> of the command cycle.

Reserved. Read as zero.

Table 9-6 LMMR Register Bit Definitions (Continued)

Name Bit(s) Type

NBANKS <10:9>

AW <8:5> PJW

IA <4:3> PJW

INT <2:1>

EN PJW

Function

Number of Banks. Specifies the number of in
dividual memory banks (1, 2, 4, or 8) contained
on the memory module associated with this reg
ister (LMMR0-7). The value of this field deter
mines how many bits of the memory address (0,
1, 2, or 3) are inserted into the bank number.

LMMR
<10:9>

00
01
10
11

Banks per
Module

1
2
4
8

Bits in Bank
Number

0
1
2
3

Address Width. Specifies the number of valid
bits in MODULE_ADDR (LMM:R<31:17>), start
ing from the MSB. The remaining bits ofMOD
ULE_ADDR are ignored.

Interleave Address. Specifies which inter
leave, within a group of interleaved modules, is
served by the module associated with this regis
ter (LMM:R0-7).

Interleave. Specifies the number of memory
modules interleaved with this module (1, 2, or 4).
This value determines the number of bits in the
INT field (0, 1, or 2, starting from the LSB) that
are compared to the LSBs of the memory ad
dress.

LMMR
<2:1>

00
01
10
11

Modules
Interleaved

1
2
4
Reserved

Address Bits
Compared

0
1
2
Reserved

Enable. When set, indicates that the module
associated with this register (LMMR0-7) is in
stalled, and it is a memory module.

CPU Module Registers 9-11

LBESR0-3-Bus Error Syndrome Registers

Address
Access

Table 9-7

Name

RSVD
SYND_O

SYND_l

SYND_2

SYND_3

31

BB + 0600 06CO
R

The LBESR registers contain the syndrome computed from the
LSB Data and ECC fields received during the cycle when an error
was detected. The syndrome is the bit.by-bit difference between
the ECC check code generated from the received data and the ECC
field received over the bus. The LBESR registers lock only on the
first occurrence of an ECC error (LBER<CE> or LBER<UCE>).
Subsequent ECC errors set LBER<CE2> or LBER<UCE2> until
software clears those error bits.

7 6 0

RSVD SYND_O

RSVD SYND_1

RSVD SYND_2

RSVD SYND_3

BXB-0105-92

LBESR Register Bit Definitions

Bit(S) Type Function

<31:7> RO Reserved. Read as zero.

<6:0> R Syndrome 0. Syndrome computed from D<31:0>
and ECC<6:0> during error cycle.

<6:0> R Syndrome 1. Syndrome computed from D<63:32>
and ECC<l3:7> during error cycle.

<6:0> R Syndrome 2. Syndrome computed from D<95:33>
and ECC<20: 14> during error cycle.

<6:0> R Syndrome 3. Syndrome computed from D<127:96>
and ECC<27:21> during error cycle.

9-12 CPU Module Registers

Table 9-8

Syndrome Values

A syndrome of zero indicates no ECC error for the given longword. Table
9-8 gives the syndromes for all single-bit errors. Any non-zero syndrome
not listed in Table 9-8 indicates a double-bit error.

Syndromes for Single-Bit Errors

Syndrome Syndrome
Bit CH ex) Bit (Hex)

Data«>> 4F Data<20> 16
Data<l> 4A Data<21> 19
Data<2> 52 Data<22> 1A
Data<3> 54 Data<23> lC
Data<4> 57 Data<24> 62
Data<5> 58 Data<25> 64
Data<6> 5D Data<26> 67
Data<7> 23 Data<27> 68
Data<8> 25 Data<28> 6B
Data<9> 26 Data<29> 6D
Data<lO> 29 Data<30> 70
Data<ll> 2A Data<31> 75
Data<12> 2C ECC<O> 01
Data<13> 31 ECC<l> 02
Data<14> 34 ECC<2> 04
Data<15> OE ECC<3> 08
Data<16> OB ECC<4> 10
Data<17> 13 ECC<5> 20
Data<18> 15 ECC<6> 40
Data<19>

CPU Module Registers 9-13

LBECRO, 1-Bus Error Command Registers

Address
Access

31

BB+ 0700 and BB+ 0740
R

The LBECR registers save the contents of the LSB command and
address fields during the command cycle when an error is de
tected. The following errors detected by the CPU module lock the
LBECR registers:

LSB uncorrectable ECC error (LBER<l>)
LSB correctable ECC error (LBER<3>)
LSB command parity error (LBER<5>)
LSB CSR data parity error, (LBER<7>)
LSB nonexistent address error (LBER<12>)
LSB arbitration drop error (LMERR.<10>
LEVI P-map parity error (LMERR.<3:0>)
LEVI B-cache tag parity error (LMERR.<4>)
LEVI B-cache status parity error (LMERR.<5>)
LEVI B-map parity error (LMERR.<6>)

20 19 18 17 16 15 14 11 10 7 6 5 3 2 0

CA <31:0>

RSVD 11 11 CID I CID3 IP! CMD I CA

BXB-0106A-92

Table 9-9 LBECR Register Bit Definitions

Name Bit(s) Type

CA <31:0> R

RSVD <31:20> RO

9-14 CPU Module Registers

Function

Command/Address. Contents of D<31:0> during the
command cycle.

Reserved. Read as zero.

Table 9-9 LBECR Register Bit Definitions (Continued)

Name

DCYCLE

DIRTY

SHARED

CNF

CID

CID3

p

CMD

CA

Bit(s) Type

<19:18> R

<17> R

<16> R

<15> R

<14:11> R

<10:7> R

<6> R

<5:3> R

<2:0> R

Function

Data Cycle. Indicates which data cycle had data error.

LBECR <19:18>

00
01
10
11

Data Cycle in Error

0
1
2
3

Dirty. Set when DIRTY is asserted for the current com
mand.

Shared. Set when SHARED is asserted for the current
command.

Confirmation. Set when CNF is asserted for the cur
rent command.

Commander ID. Contents of REQ<3:0> during com
mand cycle.

Commander ID 3. This field is the duplicate of CID
(bits <14:11>). It reads the same as CID. In some early
versions of the KN7 AA module, CID3 reads as zero.

Parity. Contents of D<38> during command cycle.

Command. Contents of D<37 :35> during command cy
cle. CMD is decoded as follows:

Command

000
001
010
011
100
101
110
111

Function

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private

Command/Acl.dress. Contents of D<34:32> during com
mand cycle.

CPU Module Registers 9-1 S

LIOINTR-1/0 Interrupt Register

Address
Access

31

BSB + 0000
R/W

The LIOINTR register is used by the LSB 1/0 module to signal in
terrupts -from the LSB 1/0 system to processors.

NOTE: A maximum of four processors can receive in'lerrupts regardless of
the sys'tem configuration. In a multiprocessor sys'tem with more than four
CPU modules, only CPUO to CPU3 can receive interrupts.

1s 1s 12 11 e 1 4 3 0

RSVD

BXB-0109-92

Table 9-10 LIOINTR Register Bit Definitions

I Name

RSVD

CPU3

CPU2

CPUl

CPUO

Bit(S) Type Function

<31:16> RO Reserved. Read as zero.

<15:12> WlS CPUS 1/0 Interrupt. When a bit is set-in this
field, an interrupt is posted to CPU3.

<11:8> WlS CPU2 1/0 Interrupt. When a bit is set in this
field, an interrupt is posted to CPU2.

<7:4> WlS CPUl 1/0 Interrupt. When a bit is set in this
field, an interrupt is posted to CPUl.

<3:0> WlS CPUO 1/0 Interrupt. When a bit is set in this
field, an interrupt is posted to CPUO.

Interrupt Mapping

Each interrupt target is assigned four bits of interrupt in the LIOINTR
register corresponding to the four 1/0 interrupt levels. A given CPU only
looks at the four bits that correspond to its target assignment. This allows
interrupts to be targeted to a single CPU or up to four CPUs, depending on
the data supplied in the bus CSR write transaction from the 1/0 module.

This register appears in LSB broadcast space. Writes that address this lo
cation are accepted without regard to node ID. Thus, all CPUs accept

9· 16 CPU Module Registers

writes to the register. The register bits are write one to set (WlS). Multi
ple writes with a value of one to a given bit in this register post an equal
number of interrupts to the targeted CPU. Reads to this location are unde
fined. Any given CPU implements only four bits of this register.

Table 9-11 shows the mapping ofLSB interrupt levels to DECchip 21064
interrupt levels.

Table 9-11 LSB Interrupt Mapping

LSB Interrupt Level

3

2

1

0

DECchip 21064 IPL (Dec)

IPL23

IPL22

IPL21

IPL20

When any of the four interrupt-pending bits is set, the LEVI gate array
correspondingly asserts the 101NTR<3:0> signals. The CPU module then
uses these signals to assert the appropriate interrupt request to the
DECchip 21064. The LEVI-A gate array also watches for LSB CSR reads
to the LILID0-3 registers in the IOP module. When an LSB CSR read for
LILIDO is asserted on the LSB bus, the LEVI-A gate array correspondingly
deasserts IOINTR<O>. The LEVI-A gate array performs the same function
on LILID3, LILID2, and LILIDl.

NOTE: At 1.east one CPU module must reside in slots 0 to 3.

CPU Module Registers 9-17

LIPINTR-lnterprocessor Interrupt Register

Address
Access

31

BSB + 0040
R/W

The LJPINTR register is used by the CPU modules to signal
interprocessor interrupts.

16 15

RSVD MASK

0

BXB-0120-92

Table 9-12 LIPINTR Register Bit Definitions

Name

RSVD

MASK

Bit(s) Type Function

<31:16> RO Reserved. Read as zero.

<15:0> WlS, 0 Interprocessor Interrupt Mask. When a
given bit is set, an interprocessor interrupt is
posted to a specific processor. Bits are mapped
to specific CPUs within a multiprocessor system
as follows:

LIPINTR Bits DECchip 21064 CPU

<15:8> Not used.

<7> CPU7

<6> CPUS

<5> CPUS

<4> CPU4

<3> CPU3

<2> CPU2

<1> CPUl

<0> CPUO

9-18 CPU Module Registers

Interprocessor Interrupt

When a processor wishes to post an interrupt to another processor, it sim
ply writes to the LIPINTR register to set the relevant bit. The bits in
LIPINTR<7 :0> are write one to set (WlS).

This register appears in LSB broadcast space. Writes that address this lo
cation are accepted without regard to node ID. Thus, all CPUs accept
writes to the register. Reads to this location are undefined.

The contents ofLIPINTR<7:0> are qualified by the node ID. lfa given
CPU node is selected, the LEVI-A gate array asserts the IPINTR signal for
one processor external clock. The CPU module ORs this signal and issues
the appropriate interrupt request to the DECchip 21064.

CPU Module Registers 9-19

LMODE-Mode Register

Address
Access

BB+ OCOO
R/W

The LMODE register contains mode setup for an operational CPU
module (as opposed to the LDIAG register which provides mode
setup for a CPU module while running diagnostics).

NOTE: Pass 1 or 2 and Pass 3 LEVI bit definiti.ons of the LMODE register
are given in separate tables. See bits <19:16> for the LEVI revision.

LEVI Pass 1 or 2

31

LEVI Pass 3
31

17 16 15 11 10 9 8 7 6 5 4 3 2 1 0

RSVD 11 RSVD 11 I

LEVI_ REV ~LR_LOCK J j
STCOND_TO

LOCK_MODE
PMODE

WMODE
BSIZE

20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD

LEVI_ REV
RSVD

LOCK_IN
REQ_MODE

I I I I I I

RSVD I I
CLR_LOCK

STCOND_TO
LOCK_ MODE

LOCK_ ALL
PMODE

WMODE
BSIZE

I 11

BXB-0626-93

9-20 CPU Module Registers

Table 9-13 LMODE Register Pass 1 and Pass 2 LEVI Bit Definitions

Name

.RSVD

LEVI_REV

RSVD

CLR_LOCK

STCOND_TO

LOCK_MODE

PM ODE

WM ODE

BSIZE

Bit(S)

<31:17>

<16>

<15:11>

<10>

<9:S>

<7:6>

<5:4>

<3:2>

<1:0>

Type

RO

R,X

RO
w,o

R/W,O

PJW,O

Function

Reserved.. Read as zero.

LEVI Revision. When clear, indicates pass 1 LEVI
A. When set, indicates pass 2 LEVI-A. See Table
9-14 for pass 1, pass 2, and pass 3 LEVI_A codes.

Reserved. Read as zero.

Clear Lock. When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved state
irrespective of the state of LOCK_ TIME, and so on.

Store Conditional Timeout. Unused on the
KN7 AA module. Should be written with zeros.

Lock Mode. Unused on the KN7AAmodule. Should
be written with zeros.

R/W, 0 P-Cache Mode. Allows LEVI to work with CPU
chips with varying internal cache organizations. The
value of this field for the KN7AA module is 01 (bin),
which denotes an SK D-cache and an SK I-cache.

PJW, 0 Write Mode. Selects the behavior of LEVI in re
sponse to LSB writes.

R/W,O

LMODE
<3:2> LEVI Behavior

00 Use results of P-map lookup to determine
invalidate/update.

01 Invalidate the B-cache.

10 Update the B-cache.

11 LEVI behavior undefined.

B-Cache Size. Tells LEVI about the size of the B
cache.

LMODE
< l :O> 8-Cache Size

00 4Mbytes
O 1 LEVI behavior undefined.
10 LEVI behavior undefined.
11 LEVI behavior undefined.

CPU Module Registers 9-21

Table 9-14 LMODE Register Pass 3 LEVI Bit Definitions

Name

RSVD

LEVI_REV

RSVD

LOCK_.IN

REQ_MODE

RSVD

CLR_LOCK

STCOND_TO

Bit(s) Type

<31:20> RO

<19:16> R,X

RO

R/W,O

<13:12> R/W, 0

<11> RO

<10> w,o

<9:8> PJW,O

9-22 CPU Module Registers

Function

Reserved. Read as zero.

LEVI Revision. Indicate revision of LEVI-A

LMODE
<19:16>

0000
0001
0011
.All else

LEVI Revision

Pass 1 LEVI-A
Pass 2 LEVI-A
Pass 3 LEVI-A
Reserved

Reserved. Reads as zero.

Lock In. When set, LEVI-A asserts LSB
LOCKOUT if LEVI-A signal R_CRD is asserted.
This bit should be set along with
LMODE<LOCK_ALL>. The use of LOCK.._IN is
intended for system debug only and should nor
mally be cleared.

Request Mode. Determine the CPU module con
figurations by controlling the number of LSB REQ
lines used by LEVI-A for arbitration. This field
should allow no more than are allowed by
Gbus$WHAMI<REQ_MODE>.

LMODE
<13:12> CPUs Allowed in LSB Slots

00
11
All else

Oto3
Oto7
Reserved

Reserved. Read as zero.

Clear Lock. When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved
state irrespective of the state ofLOCK_TIME, and
soon.

Store Conditional Timeout. Unused on the
KN7AA module. Should be written with zeros.

Table 9-14 LMODE Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type

LOCK_MODE R/W,O

LOCK_ALL R/W,O

PM ODE <5:4> R/W,O

WM ODE R/W,O

BSIZE <1:0> R/W,O

Function

Lock Mode. Unused on the KN7AA module.
Should be written with zero.

Lock All. When set, prevents all LSB transac
tions (except secondary and victim writes) ifLSB
LOCKOUT is asserted by another node. This bit
should be set along with LMODE<LOCK_IN>.
The use of LOCK_ALL is intended for debug only.
This bit should normally be cleared.

P-Cache Mode. Allows LEVI to work with CPU
chips with varying internal cache organizations.
The value of this field for the KN7AA module is 01
(bin), which denotes an SK D-cache and an SK I
cache.

Write Mode. Selects the behavior of LEVI in re
sponse to LSB writes.

LMODE
<3:2> LEVI Behavior

00 Use results of P-map lookup to deter-
mine invalidate/update.

01 Invalidate the B-cache.

10 Update the B-cache.

11 LEVI behavior undefined.

B-Cache Size. Tells LEVI about the size of the
B-cache.

LMODE
< 1 :O> B-Cache Size

00 4Mbytes
01 lMbyte
10 16Mbytes
11 LEVI behavior undefined.

CPU Module Registers 9-23

LMERR-Module Error Register

Address
Access

31

BB+ OC40
R/W

The LMERR register provides module-specific error information.
If any bits are set in this register, NSES (LBER.<18>) is also set.

,, 10 9 8 7 ti 5 4 3

RSVD 11111111

ARBDROP _J I 'J
ARBCOL ~

BDATADBE
BDATASBE

BMAPPE
BSTATPE

BTAGPE
PMAPPE

0

BXB-0122-92

Table 9-15 LMERR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:11> RO Reserved. Read as zero.

ARBDROP <10> WlC,O Arbitration Drop. Set when the LEVI arbitration
logic detects an LSB cycle in which a node has
failed to assert a command after having gained ac-
cess to the LSB bus. When ARBDROP is set, the
LSB command and address are latched in the
LBECR register.

ARB COL <9> WlC,O Arbitration Collision. Set when the LEVI arbi-
tration logic detects an attempt to arbitrate for the
LSB bus in an illegal time slot.

9-24 CPU Module Registers

Table 9-15 LMERR Register Bit Definitions (Continued)

Name Bit(S) Type Function

BDATADBE <8> WlC,O B-Cache Data Double-Bit Error. When set,
indicates that the LEVI chips have detected a
double-bit ECC error when unloading the B-
cache RAMs. This bit is set when data being
transmitted on the LSB bus incurs a double-bit
error. The address and the associated ECC syn-
drome are latched in the LBECR and LBESR
registers, respectively.

BDATASBE <7> WlC,O B-Cache Data Single-Bit Error. When set,
indicates that the LEVI chips have detected a
single-bit ECC error when unloading the B-data
RA.Ms.. This bit is set when data being trans-
mitted on the LSB bus incurs a single-bit error.
The address and the associated ECC syndrome
are latched in the LBECR and LBESR registers,
respectively.

BMAPPE <6> WlC,O B-Map Parity Error. When set, indicates that
the LEVI-A chip has detected bad parity when
reading the B-map RAMs. The associated ad-
dress is latched in the LBECR register.

BSTATPE <5> WlC,O B-Cache Status Store Parity Error. When
set, indicates that the LEVI-A chip has detected
bad parity when reading the B-stat RAM. The
associated address is latched in the LBECR reg-
ister for LSB probes. For LEVI probes due to
processor misses (LDx_L and so on),
BIU_STAT<O> is set and the address is latched
in the FILL_ADDR register.

BTAGPE <4> WlC,O B-Cache Tag Store Parity Error. When set,
indicates that the LEVI chips have detected bad
parity when reading the B-tag RAMs. The asso-
ciated address is latched in the LBECR register
for LSB probes. For LEVI probes due to proces-
sor misses (LDx_L and so on), BIU _STAT <0> is
set and the address is latched in the
FILL_ADDR register.

PMAPPE <3:0> WlC,O P-Map Parity Error. A bit is set in this field if
the LEVI-A chip detects bad parity when read-
ing one of the four internal P-map RAM struc-
tures. The associated address is latched in the
LBECR register.

CPU Module Registers 9-25

LLOCK-Lock Address Register

Address
Access

Table 9-16

I Name

LOCK

RSVD

LADR

RSVD

BB+ OCBO
R

The LLOCK register contains the physical address and lock bit of
the most recently executed LDxL instruction that referenced mem
ory space.

31 30 29 21

I I
I L RSVD
~LOCK

LADA

1 0

Rsvo---J

BXS-0126-92

Llock Register Bit Definitions

Bit(s) Type Function

<31> WlC,O Lock. When set, indicates that the LLOCK register
contains a valid address used in the most recent
memoey space LDx_L instruction executed by the
processor and that no LSB writes that reference the
same 64-byte LSB block have occurred. This bit is
used to determine the response to a subsequent
STx_C instruction. Software can clear this bit ex-
plicitly with an LSB write to the 64-byte block refer-
enced in LLOCK<28:1>.

<30:29> RO Reserved. Read as zero.

<28:1> R,O Lock Address. Lock address bits <33:6>.

<0> RO Reserved. Reads as zero.

9·26 CPU Module Registers

LDIAG-Diagnostic Control Register

Address
Access

31

BB+ ODOO
R/W

The LDIAG register allows a diagnostic program to manipulate
various sections of the CPU module for complete testing.

RSVD

11 10 8 7 6 5 4 3 2 1 0

I I I I I I I I I
TAG_SEL ~; : i. j l

FRIGN __ I i I I
FBDP :I' I i

I !: FBCP I : I
FDBE I I
FSBE

FSHARE
FDIRTY

PMAP_DIS
BXB-0121-92

Table 9-17 LDIAG Register Bit Definitions

Name

RSVD

TAG_SEL

Bit Cs)

<31:11>

<10:8>

Type

RO

R/W,O

Function

Reserved. Read as zero.

Tag Select. Specifies which tag store is to be
read/written when Gbus$LtagRW is accessed.

LDIAG< 10:8>

100
010
001

Tag Store Selected

B-cache
B-map
P-map

When LDIAG is being used to read a tag, only one
bit in TAG_SEL is allowed to be set. If more than
one bit is set in TAG_SEL when Gbus$LtagRW is
written, all specified tags are written.

CPU Module Registers 9-27

Table 9-17 LDIAG Register Bit Definitions (Continued)

Name Bit(s) Type Function

FRIGN <7> R/W, 1 Force LSB Ignore. When set, forces the
LEVI gate arrays to ignore all LSB bus traffic
except transactions initiated by this node.
When FRIGN transitions from set to clear, the
LEVI gate array sets LSB ERR to allow all
LSB arbitration to resync.

FBDP <6> R/W,O Force Bad Data Parity. When set, forces the
LEVI-A gate array to assert bad parity on the
LSB during CSR data cycles.

FBCP <5> R/W,O Force Bad Command Parity. When set,
forces the LEVI-A gate array to assert bad par-
ity on the LSB during CSR command cycles.

FDBE <4> R/W, 0 Force Double-Bit Error. Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with double-bit ECC er-
rors. When set, LEVI inverts every ECC bit for
each longword loaded into the B-cache from the
LSB bus. This bit is only relevant when the
LEVI gate arrays are loading the B-cache data
store (:fills).

FSBE <3> R/W, 0 Force Single-Bit Error. Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with single-bit ECC er-
rors. When set, LEVI inverts one ECC
bit for each longword loaded into the B-cache
from the LSB bus. This bit is only relevant
when the LEVI gate arrays are loading the B-
cache data store (:fills).

FSHARE <2> R/W, 0 Force Share. When set, the LEVI-A chip re-
sponds to all LSB memory transactions from
other nodes with assertion of SHARED.

FDIRTY <1> R/W, 0 Force Dirty. When set, the LEVI-A chip re-
sponds to all LSB memory space read transac-
tions that hit in the B-map with assertion of
DIRTY and supplies the data from the B-cache
to thel.SB.

PMAP_DIS <0> R/W, 0 P-Map Disable. On LEVI-A pass 3 chips,
when set, disables the P-map and causes LEVI-
A to behave as if all lockups hit in the P-map.
This bit is don't care for earlier revisions of
LEVI-A. It should be written with zero.

9-28 CPU Module Registers

Diagnostic Notes

The following notes offer additional information for performing diagnostics
on the CPU module.

• How to Make the B-Cache Emulate Main Memory
The CPU module can be made to present its cache as main memory to
the LSB environment by setting BIU_CTL<F'HIT>, LDIAG<FDIRTY>,
and LMODE<WMODE>=lO (bin). The selection of this mode is possi
ble under the following two conditions: (1) Only a single CPU module
is placed in this mode; (2) No memory module is present in the system.

• How to Read/Write Tags
The combinations of LDIAG, LTAGA, LTAGW, and Gbus$LtagRW reg
isters allow diagnostic programs or error recovery programs to read or
write any tag store on the CPU module. LDIAG<TAG_SEL> selects
the tag store of interest; LTAGA selects the location in the tag store;
LTAGW supplies the value to be written into the tag; and
Gbus$LtagRW provides the mechanism. The use of the Gbus register
allows LEVI to perform the tag access without the need for any special
setup (that is, FRIGN). Even though the Gbus registers are specified
to be a byte in length, reads from Gbus$LtagRW return a full longword
of data, since no physical Gbus location is actually being read. Gbus
address space is used for convenience only.

Writing Tags
1. Write LDIAG<TAG_SEL> to select the tag store.
2. Write LTAGA to select the location.
3. Write LTAGW to specify the value to be written.
4. Write Gbus$LtagRW with any random data. This action triggers

LEVI to perform the tag write as set up.

Reading Tags
1. Write LDIAG<TAG_SEL> to select the tag store.
2. Write LTAGA to select the location.
3. Read Gbus$LtagRW. This action triggers LEVI to perform the

tag read as set up. The data returned is the value from the se
lected tag location in the format specified by the LTAGW register.

CPU Module Registers 9-29

LTAGA-Tag Address Register

Address
Access

31

BB+ 0040
R/W

The LTAGA register provides a means by which a diagnostic pro
gram can specify the location to be accessed in the CPU cache data
and tag RAM structures.

19 18 0

RSVD TAG...;;ADDR

BXB-0123-92

Table 9-18 LTAGA Register Bit Definitions

Name

RSVD

TAG_ADDR

Bit(s) Type Function

<31:19> RO Reserved. Read as zero.

<18:0> R/W, 0 Tag Address. Specifies the location (tag address
bits <23:5>) to be accessed in the tag store se
lected by LDIAG<TAG_SEL>.

9-30 CPU Module Registers

LTAGW-Tag Write Data Register

Address
Access

BB+ OD80
R/W

The LTAGW register provides a means by which a diagnostic pro
gram can specify the value to be loaded into the CPU caches and
tag RAM structures.

31 30 29 28 27 26 25 24 23

I I I I I I I I I

W
I L~;ip

BMAPP
PMAPP
VALID

"---- SHARED
DIRTY

RSVD

0

TAG_DATA

BXB-0124-92

Table 9-19 LTAGW Register Bit Definitions

Name Bit(S) Type Function

RSVD <31> RO Reserved. Reads as zero.

DIRTY <30> PJW,O Dirty. Loaded into the Dirty field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

SHARED <29> PJW,O Shared. Loaded into the Shared field (if any) of the B-
stat store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

VALID <28> PJW,O Valid. Loaded into the Valid field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

PMAPP <27> PJW,O P-Map Parity. Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written. PMAPP covers tag data bits <23:10> and the
valid bit (even parity).

CPU Module Registers 9-31

Table 9-19 LTAGW Register Bit Definitions (Continued)

Name

BMAPP

BSTATP

BTAGP

TAG_DATA

Bit(S)

<25>

Type Function

R/W, 0 B-Map Parity. Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written. BMAPP covers tag data bits <33:22> and the
valid bit (even parity).

R/W, 0 B-Stat Parity. Specifies the value to be loaded in the B
stat parity location when the Gbus$LtagRW register is
written. BSTATP covers the Shared, Dirty, and Valid
bits.

R/W, 0 B-Tag Parity. Specifies the value to be loaded in the B
tag parity location when the Gbus$LtagRW register is
written. BTAGP covers tag data bits <33:22> (even par
ity).

<23:0> R/W, 0 Tag Data. Loaded into the tag store specified in
LDIAG<TAG_SEL> when the Gbus$LtagRW register is
written. Mapping is performed as follows:

LTAGW<23:0>

<23:12>
<23:12>
<13:0>

Tag

<33:22>
<33:22>
<23:10>

RAM Structure

B-cache tag
B-map tag
P-map tag

9-32 CPU Module Registers

LCONO, 1-Console Communication Registers

Address
Access

31

BB + OEOO and BB + OE40
R/W

The LCON register provides a nonmemory communication location
for the KN7AA console firmware. The value contained in this regis
ter has no direct effect on any CPU module hardware.

0

.,._ _________________ c_o_N_~c_o __ M ___ oA_T_A_o_· __________________ ..,.1'
1 CON_COM_DATA1 .

BXB-0129-92

Table 9-20 LCON Register Bit Definitions

Name Bit(S) Type Function

CON_COM_DATAO <31:0> ww,o Console Communication Data 0. Data
stored in the LCONO register.

CON_COM_DATAl <31:0> ww,o Console Communication Data 1. Data
stored in the LCONl register.

CPU Module Registers 9-33

LPERF-Performance Counter Control Register

Address
Access

BB+ OFOO
R/W

The LPERF register defines how the LEVI performance registers
(LCNTRO, LCNTRl, and LMISSADDR) behave. Each counter reg
ister has an event select fiel~ control bits, and an overflow bit.
Some of the events to be counted are subject to the node ID mask.
The LMISSADDR register loads miss addresses based on the value
of the Miss Ad.dress Frequency field

NOTE: Pass 1 or 2 and Pass 3 LEVI bit definitions of the LMISSADDR
register are given in separate 'tables. See LMODE<LEVl_REV> for the
LEVI revision.

LEVI Pass 1 or 2
31 24 23 22 21 20 16 15 14 13 12 8 7 4 3 2 1 0

N_MASK I I I I LC1_SEL I I I

LC1_HLT J=blj J
LC1_RUN ~

RSVD
LCO_HLT

LCO_RUN
RSVD

I LCO_SEL I MBZ I I I I
MA_FREQ J=blj
LC1_0VFL
LCO_OVFL

LEVI Pass3
31

N_MASK<7:0>

LC1_HLT
LC1_RUN

RSVD

24 23 22 21 20 16 15 14 13 12 87 543210

I I I I LC1_SEL I I I I LCO_SEL I RSVD I I I I I
j~ LCO_HLT~ j ~ LCO_RUN =._j

RSVD

N_MASK<8>
MA_FREQ
LC1_0VFL
LCO_OVFL

BXB-063~93

9-34 CPU Module Registers

Table 9-21

Name

N_MASK

LCl_HLT

LCl_RUN

RSVD

LCl_SEL

LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions

Bit(S) Type

<31:24> PJW,O

<23> w,o
<22> w,o
<21> RO

<20:16> PJW,O

Function

Node Mask. When a bit is set in this field, LSB reads,
LSB writes, or victim writes are counted for the associated
node. The bits are in one-to-one correspondence, so that bit
<31> is associated with node 7, bit <30> with node 6, and
so on, except for bit <24>, which is associated with node 0
and the IOP. More than one bit may be set, allowing trans-
actions from multiple nodes to be counted. This field ap-
plies to both LCNTR registers.

LCNTRl Halt. Write one to disable LCNTRl counting.

LCNTRl Run. Write one to enable LCNTRl counting.

Reserved. Reads as zero.

LCNTRl Select. Selects event for the LCNTRl register.

LPERF
<20:16>1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
Other

Event to Count in LCNTR 1

Misses due to reads
Misses due to writes
Misses due to shared blocks
LDL_X instructions
STC_X failures
LSB B-map hits
Bank conflict delays -LSB cycles
Arbitration losses
Victim buffer hits -wrapped only
CSR reads
CSR writes
LMBPR writes
LSB interrupts
Gbusreads
Gbuswrites
LSB reads -subject to node mask
LSB writes -subject to node mask
Victim writes -subject to node mask
Stall cycles
Total memory latency
Carry out from LCNTRO
Reserved

1 When counting victim buffer bits, LCl_SEL = 01000 counts only hits
for which LEVI has to swap (or -wrap) the first and second hexwords to
satisfy the read request in the proper order. LCO_SEL = 01000 counts
all (wrapped or un-wrapped) hits.

CPU Module Registers 9-35

Table 9-21 LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LCO_HLT <15> w,o LCNTRO Halt. Writing one disables LCNTRO counting.

LCO_RUN <14> w,o LCNTRORun. Writing one enables LCNTRO counting.

RSVD <13> RO Reserved. Reads as zero.

LCO_SEL <12:8> R/W,O LCNTRO Select. Selects event for the LCNTRO register.

LPERF
<12:8> l Event to Count in LCNTRO

00000 Misses due to reads
00001 Misses due to writes
00010 Misses due to shared blocks
00011 LDL_X instructions
00100 STC_X failures
00101 LSB B-map hits
00110 Bank conflict delays -LSB cycles
00111 Arbitration losses
01000 Victim buffer hits -wrapped or unwrapped
01001 CSR reads
01010 CSR writes
01011 LMBPR writes
01100 LSB intenupts
01101 Gbusreads
01110 Gbus writes
01111 LSB reads -subject to node mask
10000 LSB writes -subject to node mask
10001 Victim writes -subject to node mask
10010 Stall cycles
10011 Total memory latency
10100 Carry out from LCNTRl
Other Reserved

l When cou.n~ctim buffer hits, LCl_SEL = 01000 counts only
hits for which has to swap (or wraJ; the first and second
hexwords to satisfy the read request in e proper order. LCO_SEL =
01000 counts all (wrapped or unwrapped) hits.

RSVD <7:4> RO Reserved. Read as zero.

9-36 CPU Module Registers

Table 9-21 LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions (Continued)

Name BH(s) Type Function

MA_FREQ <3:2> RJW,O Miss Address Frequency. Determines how often the
LMISSADDR register loads the last miss address.

LPERF
<3:2> Miss Frequency

00 Load every 32nd miss address
01 Load every 64th miss address
10 Load every 128th miss address
11 Load every 256th miss address

LCl_OVFL <1> R,O LCNTRl Overflow. Records overflow from the LCNTRl
register. Clears when the LCNTRl register is reset.

LCO_OVFL <0> R,O LCNTRO Overflow. Records overflow from the LCNTRO
register. Clears when the LCNTRO register is reset.

CPU Module Registers 9-3 7

Table 9-22 LPERF Register Pass 3 LEVI Bit Definitions

Name

N_MASK

LCl_HLT

LCl_RUN

RSVD

LCl_SEL

Bit(s) Type

<31:24> R/W, 0

<23> w,o
<22> w,o
<21> RO

<20:16> R/W, 0

9·38 CPU Module Registers

Function

Node Mask. When a bit is set in this field, LSB reads,
LSB writes, or victim writes are counted for the associated
node. The bits are in one-to-one correspondence, so that bit
<31> is associated with node 7, bit <30> with node 6, and bit
<24> for node 0. The IOP module (node 8) is associated with
LPERF<4>. More than one bit may be set, allowing trans
actions from multiple nodes to be counted. This field applies
to both LCNTR registers.

LCNTRl Halt. Write one to disable LCNTRl counting.

LCNTRl Run. Write one to enable LCNTRl counting.

Reserved. Reads·as zero.

LCNTRl Select. Selects event for the LCNTRl register.

LPERF
<20:16>1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100

Event to Count in LCNTR 1

Our node LSB read due to RB lock (miss)
Our node LSB R/W due to WBlock (miss/shd)
Our node LSB write due to WBlock (shared)
Our node LDxL requests (hit or miss)
Our node STxC failures (hit, miss, or shared)
Another node write this B-map hit
Bank conflict delays-complex
Arbitration losses-complex
Other node LSB read, this VB bit (wrapped)
Our node LSB READ_ CSR
Our node LSB WRT_CSR
Our node LSB WRT_CSR to LMBPR (mailbx)
Any node WRT_CSR to broadcast space
Our node RBlock to Gbus space
Our node WBlock to Gbus space
LSB reads -subject to N_MASK<8:0>
LSB writes -subject to N_MASK<8:0>
Victim writes -subject to N_MASK<8:0>
LSB cycles with STALL asserted
Totalmemorylatency---complex
Carry out from LCNTRO

1 When counting victim buffer hits. LCl_SEL = 01000 counts only hits
for which LEVTbas to swap for wrap) the first and second hexwords to
satisfy the read request in the proper order. LCO_SEL = 01000 counts
all (wrapped or un~apped) hits.

J

Table 9-22 LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(S) Type Function

LPERF
<20:16> Event to Count in LCNTR 11

10101 All LSB cmds (subject to N_MASK<8:0>)
10110 LSB cycles without STALL asserted
10111 LSB cycles (all)
11000 Mem-space RBlk assert time (RBlk latency)
11001 Mem-space WBlk assert time (WBlk latency)
11010 Mem-space LDxL assert time (LDxL latency)
11011 Mem-space STxC assert time (STxC latency)
11100 Our node LSB READ due to LDxL (miss)
11101 Our node LSB RJW due to STxC (miss o shrd)
11110 Our node STxC requests (hit, miss, shrd, fail)
11111 Our node MB requests (Barrier)

1 When coun~ctim. buffer bits, LCl_SEL = 01000 counts only
bits for which has to swap (or wraJ{ the first and second
he:xwords to satisfy the read request in e proper order. LCO_SEL =
01000 counts all (wrapped or unwrapped) bits.

LCO_HLT <15> w,o LCNTRO Halt. Writing one disables LCNTRO counting.

LCO_RUN <14> w,o LCNTRORun. Writing one enables LCNTRO counting.

RSVD <13> RO Reserved. Reads as zero.

CPU Module Registers 9-39

Table 9-22 LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name BH(s) Type

LCO_SEL <12:8> R/W,O

,,,,_

9·40 CPU Module Registers

Function

LCNTRO Select. Selects event for the LCNTRO register.

LPERF
<12:8> l Event to Count in LCNTRO

00000 Our node LSB read due to RBlock (miss)
00001 Our node LSB R/W due to WBlock (miss/shd)
00010 Our node LSB write due to WBlock (shared)
00011 Our node LDxL requests (hit or miss)
00100 Our node STxC failures (hit, miss, or shared)
00101 Another node write this B-map hit
00110 Bank conflict delays-complex
00111 Arbitration losses-complex
01000 Other node LSB read, this VB hit
01001 Our node LSB READ_CSR
01010 Our node LSB WRT_CSR
01011 Our node LSB WRT_CSR to LMBPR
01100 (mailbx)
01101 Any node WRT_CSR to broadcast space
01110 Our node RBlock to Gbus space
01111 Our node WBlock to Gbus space
10000 LSB reads -from any node
10001 LSB writes -from any node
10010 Victim writes -from any node
10011 LSB cycles with STALL asserted
10100 Total memory latency-complex
10101 Carry out from LCNTRl
10110 All LSB cmds (from any node)
10111 LSB cycles without STALL asserted
11000 LSB cycles (all)
11001 Mem-space RBlk assert time (RBlk. latency)
11010 Mem-space WBlk assert time (WBlk. latency)
11011 Mem-space LDxL assert time (LDxL latency)
11100 Mem-space STxC assert time (STxC latency)
11101 Our node LSB READ due to LDxL (miss)
11110 Our node LSB R/W due to STxC (miss or shd)
11111 Our node STxC requests (hit, miss, shrd, fail)

Our node MB requests (Barrier)

1 When counting victim buffer hits, LCl_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order. LCO_SEL =
01000 counts all (wrapped or unwrapped) hits.

Table 9-22 LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

RSVD <7:5> RO Reserved. Read as zero.

N_MASK <4> PJW,O Node Mask<8>. When set, LCNTRl counts node masked
events from node 8, the IOP. This bit is an ex.tension of
the N_MASK field (LPERF <34:24>).

MA_FREQ <3:2> RJW,O Miss Address Frequency. Determines how often the
LMISSADDR register loads the last miss address.

LPERF
<3:2> Miss Frequency

00 Load every 32nd miss address
01 Load- every 64th miss address
10 Load every miss address
11 Load every 256th miss address

LCl_OVFL <1> R,O LCNTRl Overflow. Records overflow from the LCNTRl
register. Clears when the LCNTRl register is reset.

LCO_OVFL <0> R, 0 LCNTRO Overflow. Records overflow from the LCNTRO
register. Clears when the LCNTRO register is reset.

CPU Module Registers 9-41

LCNTRO, 1-Performance Counter Registers

Address
Access

31

BB + OF40 and BB + OF80
R

The LCNTR registers count events selected by the Select (LCO_SEL
and LCl_SEL) and N_MASK fields of the LPERF register. Each
register is a 32-bit counter with an associated overflow bit
(LP-ERF<O> for LCNTRO and LPERF<l> for LCNTRl). With the
correct values of the Select fields, the LCNTR registers can be cas
caded to form a single 64-bit register. The two counters are en
abled and disabled independently through their associated LPERF
control bits. The LCNTR registers can be read while the counters
are stopped or nmning~ The registers can also be stopped and re
started without resetting to zero. A write to an LCNTR register re
sets the counter and the associated overflow bit in the LPERF reg
ister, and sets the counter to the stopped state. Writes to LCNTR
registers are ignored.

0

EV_COUNTO

EV_COUNT1

BXB-0228-92

Table 9-23 LCNTR Register Bit Definitions

Name Bit(S)

EV_COUNI'O <31:0>

EV_COUNTl <31:0>

9-42 CPU Module Registers

Type

R,O

R,O

Function

Event Count O. Number of events (selected
through LPERF<LCO_SEL>) that occurred while
LCNTRO was enabled. Writes ignored.

Event Count 1. Number of events (selected
through LPERF<LCl_SEL>) that occurred while
LCNTRl was enabled. Writes ignored.

LMISSADDR-Last Miss Address Register

Address
Access

BB+ OFCO
R/W

The LMISSADDR register captures every nth B-cache miss address
determined by LPERF<MA_FREQ>. The miss may be due to a
read, a write, or a shared block..

NOTE: Pass 1 or 2 and Pass 3 LEVI bit definitions of tlie LMISSADDR
regis'ter are given in separate 'tables. See LMODE<LEVI_REV> for the
LEVI revision.

LEVI Pass 1 or 2
31 20 28

MISS_ADDR

L RSVD

LEVI Pass3
31 30 29 28

I I I MISS_ADDR<33:5>

0

0

MISS_CMD
NEW_SAMPLE BXB-0633-93

Table 9-24 LMISSADDR Register Pass 1 and Pass 2 LEVI Bit Definitions

Name

RSVD
MISS_ADDR

Bit(s) Type Function

<31:29> RO Reserved. Read as zero.

<28:0> R/W, 0 Missed Address. Block address of one of the last n
B-cache misses. LPERF<MA_FREQ> determines the
value ofn:

CPU Module Registers 9-43

Table 9-25 LMISSADDR Register Pass 3 LEVI Bit Definitions

Name Bit(S) Type Function

NEW_SAMPLE <31> RO New Sample. Set every time a new address is
loaded into the LMISSADDR register; cleared after
the register is read.

MISS_CMD <30:29> R Miss Command. Indicates how the B-cache miss
was generated.

LMISSADDR
<30:29> Miss Command

00 I-stream read miss: LSB read due
to an I-stream RBlock or LDxL.

01 D-stream read miss: LSB read due
to a D-stream RBlock or LDxL.

10 Write miss: LSB read due to
WBlock or STxC.

11 Write to shared block: LSB write
due to WBlock or STxC.

MISS_ADDR <28:0> R Block address of one of the last n B-cache misses.
LPERF<MA_FREQ> determines the value of n.

9-44 CPU Module Registers

10. 1 PALcode

Chapter 10

Privileged Architecture Library Code

This chapter describes the DECchip 21064 privileged architecture library
code (PALcode). It covers the following topics:

• PALcode

• PALmode Environment

• Invoking PALcode

• PALcode Entry Points

• PALmode Restrictions

• Implementation of Architecturally Reserved Opcodes

The Alpha .AXP architecture defines an innovative feature called PALcode
that allows many different physical implementations to coexist, each one
adhering to the same programming interface specification. P ALcode has
characteristics that make it appear to be a combination of microcode, ROM
BIOS, and system service routines, though the analogy to any of these
other items is not exact. PALcode exists for several major reasons:

• There are some necessary support functions that are too complex to
implement directly in a processor chip's hardware, yet cannot be han
dled by a normal operating system software routine. Routines to fill
the translation buffer, acknowledge interrupts, and dispatch excep
tions are some examples. In some architectures, these functions are
handled by microcode, but the Alpha .AXP architecture is careful not to
mandate the use of microcode for reasonable chip implementations.

• There are functions that must run atomically, yet involve long se
quences of instructions that may need complete access to all the under
lying computer hardware. An texample of this is the sequence that re
turns from an exception or interrupt.

• There are some instructions that are necessary for backward compati
bility or ease of programming; however, these are not used often
enough to dedicate them to hardware, or are so complex that they
would jeopardize the overall performance of the computer. For exam
ple, an instruction that does a VAX-style interlocked memory access
might be familiar to someone used to programming on a CISC ma
chine, but is not included in the Alpha AXP architecture. Another ex
ample is the emulation of an instruction that has no direct hardware
support in a particular chip implementation.

Privileged Architecture Library Code 10-1

In each of these cases, PALcode routines are used to provide the function.
The routines are nothing more than programs invoked at specified times,
and read in as I-stream code in the same way that all other Alpha AXP
code is read. Once invoked, however, PALcode runs in a special mode.

10.2 PALmode Environment

PALcode runs in a special environment called PALmode, defined as fol
lows:

• I-stream memory mapping is disabled. Because the PALcode is used to
implement translation buffer fill routines, I-stream mapping clearly
cannot be enabled.

• The program has privileged access to all of the computer hardware.
Most of the functions handled by P ALcode are privileged and need con
trol of the lowest levels of the system.

• Interrupts are disabled. If a long sequence of instructions needs to be
executed atomically, inteITUpts cannot be allowed.

One important aspect of P ALcode is that it uses normal Alpha AXP in
structions for most of its operations; that is, the same instruction set that
nonprivileged Alpha AXP programmers use. There are a few extra instruc
tions that are available only in PALmode which will cause an OPCDEC ex
ception (see Table <pal_entry_points>) if attempted while not in PALmode.
The Alpha AXP architecture allows some flexibility in what these special
PALmode instructions do. On the DECchip 21064 the special PALmode
only instructions perform the following functions:

• Read or write internal processor registers (HW _MFPR, HW _MTPR)

• Perform memory load or store operations without invoking the normal
memory management routines (HW _LD, HW _ST)

• Return from an exception or interrupt (HW_REI).

Refer to Section 10.6 for detailed information on these special PALmode in
structions.

When executing in PALmode, there are certain restrictions for using the
privileged instructions because PALmode gives the programmer complete
access to many of the internal details of the DECchip 21064.

CAUTION: It is possible to cause unintended side effects by writing what appears to be
perfectl,y acceptable PALcode. As such, PALcode is not something that
many users will want to change.

Refer to Section 10.5 for additional information on P ALmode restrictions.

10.3 Invoking PALcode

PALcode is invoked at specific entry points, under certain well-defined con
ditions. PA.Lcode can be thought of as a series of callable routines, with
each routine indexed as an offset from a base address. The base address of
the PALcode is programmable (stored in the PAL_BASE IPR) and is nor
mally set by the system reset code.

When an event occurs that needs to invoke PALcode, the DECchip 21064
first drains the pipeline. The current PC is loaded into the EXC_ADDR

10-2 Prfvlleged Archttecture Library Code

IPR, and the appropriate PALcode routine is dispatched. These operations
occur under direct control of the chip hardware. The machine is now op
eratng in PALmode. 'When the HW _REI instruction is executed at the end
of the PALcode routine, the hardware executes a jump to the address con
tained in the EX_ADDR IPR. The least significant bit is used to indicate
PALmode to the hardware. Generally, upon return from a PALcode rou
tine, the least significant bit is clear, in which case the hardware will load
the new PC, enables interrupts, enables memory mapping, and dispatches
back to the user.

10.3. l Categories of Hardware-Initiated PALcode

The most basic use of PALcode is to handle complex hardware events.
PALcode is called automatically when the particular hardware event is
sensed. This use of PALcode is similar to other architectures' use of
microcode. There are several major categories of hardware-initiated
PALcode: .

• When the DECchip 21064 is reset, it enters PALmode and executes
the RESET PALcode. The system remains in PALmode until an
HW _REI instruction is executed and EXC_ADDR<O> is cleared. It
then continues execution in non-PALmode (native mode), as just de
scribed. It is during this initial RESET P ALcode execution that the
rest of the low level system initialization is performed, including any
modification to the P AL_BASE IPR.

• When a system hardware error is detected by the DECchip 21064, the
DECchip invokes one of several P ALcode routines, depending upon the
type of error. Errors such as machine checks, exceptions, reserved or
privileged instruction decode, and data fetch errors are handled in this
manner.

• When the DECchip 21064 senses an interrupt, it dispatches the ac
knowledgment of the interrupt to a P ALcode routine that does the nec
essary information gathering, then handles the situation appropriately
for the given interrupt.

• When a D-stream or I-stream translation buffer miss occurs, one of
several PALcode routines is called to perform the TB fill. The memory
management algorithms or even the existence of a virtual to physical
page mapping is flexible. In the simplest case, this could be an auto
matic one-to-one translation from virtual to physical address. On a
normal operating system these routines would consult page tables and
perform the translation and fill based upon the PrE contents.

These elements are all very basic hardware-related functions, and would
be difficult to implement efficiently using normal operating system service
routines.

10.3.2 CALL_PAL Instruction

The other mechanism used to invoke P ALcode is the CALL_P AL instruc
tion. This is a special instruction that dispatches to P ALcode at a specific
entry point using the same set of steps as the hardware-activated
P ALcode. That is, the pipeline is drained, the PC is saved, and the appro
priate dispatch to an offset from the P ALcode base is performed. The only
difference is that the dispatch is controlled by the program through an in-

Privileged Architecture Library Code 10-3

struction, rather than through a hardware event or error. Also,
PAL_CALL instructions place PC+ 4 in the EXC_ADDR IPR.

The CALL_P AL instruction format includes a single parameter, the func
tion field, that defines which CALL_PAL routine to invoke. Only a subset
of all the possible CALL_PAL function values are supported with hardware
dispatches in the DECchip 21064. These dispatches are described in Sec
tion 10.4. CALL_PAL routines can perform different functions for differ
ent operating systems running on the DECchip 21064. Unlike the basic
hardware-generated PALcode, the CALL_PAL operations are largely op
tional and based upon what the system implementation needs.

There is a subtle difference between the two basic uses of P ALcode:
hardware-dispatched and CALL_P AL-dispatched. The hardware-invoked
P ALcode functions are necessary in some form for almost any useful com
puter system. For example, when the DECchip 21064 detects a serious
system error, it will dispatch to the machine check (MCHK) PALcode entry
point. The exact PALcode that resides at this entry point can do whatever
is reasonable, based upon system needs.

The CALL_P AL instruction is totally under the control of the executing
program for dispatch. If the program never executes one of the instruc
tions that is included in the CALL_PAL list, then none of that PALcode
will ever be run. Even here, the PALcode that does run once invoked, is
executing in P ALmode and is under the same restrictions as the hardware
activated P ALcode.

The DECchip 21064 supports hardware dispatch for both privileged and
nonprivileged CALL_PAL instructions. That is, some of the functions that
are passed to the CALL_P AL instruction are considered special. The des
ignation of privileged or nonprivileged refers to whether the user can call
that particular CALL_PAL, and not the mode that it eventually runs in.
Without exception, every CALL_PAL instruction will dispatch to PALcode
that runs in P ALmode. Only kernel users can call privileged CALL_P AL
instructions.

The difference between privileged and non privileged CALL_P AL instruc
tions is that the form.er can only be executed in kernel mode. Otherwise,
they are vectored to offset 13EO (OPCDEC) from the PAL_BASE IPR.

These are both CALL_PAL instructions, dispatched in exactly the same
way, and when executed enter PALmode, do their function, and return to
the user. The only difference is that before execution, a check is made to
determine if the user is in the correct mode. If a nonkernel mode user at
tempts to execute a privileged CALL_PAL instruction, an OPCDEC
PALcode routine is run instead of the CALL_PAL function. In addition, if
a CALL_PAL function code that is not supported by the DECchip 21064
hardware dispatch is attempted, an OPCDEC exception is taken.

10.4 PALcode Entry Points

PALcode entry points are prioritized. Table <pal_entry_points> lists the
entry points from the highest priority (first row, RESET) to the lowest.
The table indicates only the entry point offset, bits <13:0>. The high-order
bits of the new PC (bits <33:14>) are provided by the PAL_BASE IPR. The
value in this IPR at power-up is zero.

NOTE: PALcode at entry points of higher priority than DTB_MISS must unlock
possible MMCSR IPR and VA IPR locks.

10-4 Prlvlleged Architecture Library Code

Table 10-1 PALcode Entry Points

Entry Name

RESET

MCHK

ARI TH

INTERRUPT

D-stream errors

ITBMISS

ITB_ACV

CALL_PAL

OPCDEC

FEN

Offset From
PAL_BASE IPR

0000

0020

0060

OOEO

OlEO, OSEO
09EO, llEO

03EO

03EO

2000, 2040, 2080,
20CO through 3FCO

13EO

17EO

Cause

Uncorrected hardware error.

Arithmetic exception.

Inclwles corrected hardware error.

See Table 10-2.

ITB miss.

I-stream access violation.

128 locations based on instruction 7, 5 .. 0. See the
next table entry.

Reserved or privileged opcode. Reserved opcodes
are listed in Table 4-2 and marked RSVD. The
privileged opcodes include both the HW _x instruc
tions and the privileged CAL_PALL instructions.
Any attempt to issue a privileged instruction while
the processor is not in kernel mode (PS<CMl:CMO>
is not equal to zero) causes a trap to the OPCDEC
exception.

Floating-point operation attempted with:

1. FP instructions disabled by way of
ICCSR<FPE>

2. FP IEEE round to +/-infinity

3. FP IEEE with datatype field other than S,T,Q

PALcode functions are implemented by way of the CALL_PAL instruction.
CALL_PAL instructions cause exceptions in the hardware. As with all ex
ceptions, the EXC_ADDR IPR is loaded by hardware with a possible re
turn address.

CALL_PAL exceptions do not load the EXC_ADDR IPR with the address of
the CALL_PAL instruction. They load the EXC_ADDR IPR with the ad
dress of the instruction following the CALL_P AL. P ALcode supporting the
desired PALmode function need not increment the EXC_ADDR IPR before
executing an HW _REI instruction to return to native mode. This feature
requires special handling in the arithmetic trap and machine check
PALcode flows. See the description of the EXC_ADDR IPR for more com
plete information.

To improve speed of execution, a limited number of CALL_PAL instruc
tions are directly supported in hardware with dispatches to specific ad
dress offsets.

Privileged Architecture Library Code 10-5

Table 10-2

BAO_ VA

1

1

0

0

0

0

The DECchip 21064 provides the first 64 privileged and 64 wiprivileged
CALL_PAL instructions with regions of64 bytes. This produces hardware
PALcode entry points described as follows:

Privileged CALL_PAL Instructions [00000000:0000003F]

Offset(Hex) = 2000 + ([5:0] shift left 6)

Unprivileged CALL_PAL Instructions [00000080:000000BF]

Offset(Hex) = 3000 + ([5:0] shift left 6)

The CALL_PAL instructions that do not fall within the ranges [0000:003F]
and [OOBO:OOBF] result in an OPCDEC exception.

CALL_PAL instructions that fall within the range [00000000:0000003F]
while the DECchip 21064 is not executing in kernel mode will result in an
OPCDEC exception.

The hardware recognizes four classes of D-stream memory management
errors.

• Bad virtual address (incorrect sign extension)

• DTB_MISS

• Alignment error

• ACV, FOR, FOW

The following errors get mapped into four P ALcode entry points:

• UNALIGN

• DTB_MISS PALmode

• DTB_MISS native mode

• D_FAULT

Table 10-2 shows the priorities of these entry points with respect to each
other. A particular D-stream memory reference may generate errors that
fall into more than one of the four error classes that the hardware recog-
nizes.

D-Stream Error PALcode Entry Points

OTB_MISS UNALIGN PAL Other Offset (Hex)

x 1 x x llEO UNALIGN

x 0 x x OlEO D_FAULT

1 x 1 x 09EO DTB_MISS PAL

1 x 0 x 08EO DTB_MISS Native

0 1 x x llEO UNALIGN

0 0 x 1 OlEO D_FAULT

10-6 Prlvlleged Architecture Library Code

10.5 PALmode Restrictions

Many of the P ALmode restrictions involve waiting n cycles before using
the results of a P ALcode instruction. Inserting n instructions between the
two time-sensitive instructions is the typical method of waiting for n cy
cles. Because the DECchip 21064 can dual-issue instructions, it is possible
to write code that requires 2*n + 1 instructions to wait n cycles. Due to the
resource requirements of individual instructions and the DECchip 21064
hardware design, multiple copies of the same instruction cannot be dual is
sued. This is used in some of the following examples. Explanations of
P ALmode restrictions follow:

• AB a general rule, HW _MTPR instructions require at least four cycles
to update the selected IPR. At least three cycles of delay must be in
serted before using the result of the register update.

The following instructions will pipeline correctly and do not require
software timing except for accesses of the TB IPRs:

- Multiple reads

- Multiple writes

- Read followed by write

These cycles can be guaranteed by either including seven instructions,
which do not use the IPR in transition, or proving through the dual
issue rules and/or state of the machine, that at least three cycles of de
lay will occur. Multiple copies ofa HW_MTPR instruction (used as a
no-op instruction) can be used to pad cycles after the original
HW _MTPR. Multiple copies of the same instruction will never dual is
sue. Because of this, the maximum number of instructions necessary
to ensure at least three cycles of delay is three, as shown in Example
10-1.

Example 10-1 Code for a Delay of Three Cycles

HW_MTPR Rx, HIER
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR Ry, HIER

Write to HIER
NOP mxpr instruction
NOP mxpr instruction
NOP mxpr instruction
Read from HIER

The HW _REI instruction uses the ITB if the EXC_ADDR IPR contains
a nonPALmode VPC (VPC<O> = 0). By the previous rule, it is implied
that at least 3 cycles of delay must be included after writing the ITB
before executing a HW _REI instruction to exit PALmode.

Privileged Architecture Library Code 10-7

The following are exceptions to the general rule:

- HW _MFPR instructions reading a PAL_TEMP IPR can never occur
exactly two cycles after an HW _MTPR instruction writing a
PAL_TEMP IPR. The solution results in code shown in Example
10-2.

Example 10-2 Reading PAL_TEMP After a Write to PAL_TEMP

HW_MTPR Rx, PAL_RO
HW_.MFPR R31, 0
HW_MFPR R31, 0
HW_.MFPR R31, 0
HW_.MFPR Ry, PAL_RO

Write PAL temp [O]
NOP mxpr instruction
NOP mxpr instruction
NOP mxpr instruction
Read PAL temp [0]

This code guarantees three cycles of delay after the write before the
read. It is also possible to make use of the cycle immediately follow
ing an HW _MTPR instruction to execute an HW _MFPR instruction
to the same (accomplishing a swap) or a different PAL_TEMP IPR.
The swap operation only occurs if the HW _MFPR instruction imme
diately follows the HW _MTPR. This timing requires great care and
knowledge of the pipeline to ensure that the second instruction does
not st.all for one or more cycles. Use of the slot to accomplish a read
from a different PAL_TEMP IPR requires that the second instruc
tion will not stall for exactly one cycle. This is much easier to in
sure. An HW _MFPR instruction can stall for a single cycle as a re
sult of a write-after-write conflict.

- The EXC_ADDR IPR can be read by an HW _REI instruction only
two cycles after the HW _MTPR. This is equivalent to one interven
ing cycle of delay. This translates to code shown in Example 10-3.

Example 10-3 Reading the EXC_ADDR IPR

HW MTPR Rx, EXC_ADDR ; Write EXC_ADDR
HW MFPR R31, 0 NOP cannot dual issue with either
HW REI ; Return

• An HW _MTPR operation to the DTBIS IPR cannot be sourced from by
passed path. All data being moved to the DTBIS IPR must be sourced
directly from the register file. One way to ensure this is to provide at
least three cycles of delay before using the result of any integer opera
tion (except MUL) as the source of an HW _MTPR DTBIS. This is
shown in Example 10-4.

NOTE: Not:e: MTJL should not be used as a source of DTBIS data.

10-8 Prlvlleged Architecture Library Code

Example 10-4 Using Result of Integer Operation as Source of HW _MTPR DTBIS

ADDQ Rl,R2,R3
ADDQ R31,R31,R31

ADDQ R31,R31,R31
ADDQ R31,R31,R31
ADDQ R31,R31,R31

HW_MTPR R3,DTBIS

Source for DTBIS address
Cannot dual issue with above,
1st cycle of delay
2nd cycle of delay
3rd cycle of delay
May dual issue with below, else
4th cycle of delay
R3 must be in register file, no
bypass possible

• At least one cycle of delay must occur after an HW _MTPR TB_CTL be
fore an HW _MTPR ITB_PTE or an HW _MFPR ITB_PTE. This must
be done to allow setup of the ITB large page or small page decode.

• The first cycle (the first one or two instructions) at all PALcode entry
points cannot execute a conditional branch instruction or any other in
struction that uses the JSR stack hardware. This includes the follow
ing instructions:

-JSR

-JMP

-RET

- JSR_COROUTINE

-BSR

- HW_REI

- All box opcode except BR

• Table 10-3 lists the number of cycles required after an HW _MTPR in
struction before a subsequent HW _REI instruction for the specified
IPRs. These cycles can be ensured by inserting one HW _MFPR R31,0
instruction or other appropriate instruction(s) for each cycle of delay
required after the HW _MTPR.

Table 10-3 HW _MTPR Restrictions

IPR

DTBIS, ASM, ZAP

ITBIS, ASM, ZAP

xIER

xIRR

ICCSR<FPE>

PS

Cycles Between HW_MTPR and HW_REI

0

2

3

3

4

4

• When loading the CC IPR, bits <3:0> must be loaded with zero. Load
ing nonzero values in these bits can cause an inaccurate count.

Prtvlleged Architecture Library Code 10-9

• An HW _MTPR DTBIS cannot be combined with an HW _MTPR ITBIS
instruction. The hardware will not clear the ITB if both the Ibox and
Abox IPRs are simultaneously selected. Two instructions are needed to
clear each TB individually, as shown in Example 10-5.

Example 10-5 Clearing the ITB and OTB

HW_MTPR Rx,ITBIS
HW_MTPR Ry,DTBIS

• Three cycles of delay are required between:

- HW _MTPR xIER and HW _MFPR xIRR

- HW _MTPR xIRR and HW _MFPR xIRR

- MTPS and LD or ST

- MTPS and HW _MFPR xIRR

- HW_MTPRALT_MODE and HW_LDIHW_ST ALT_MODE

• The following operations are disabled in the cycle immediately follow
ing an HW _REI instruction:

- HW_MxPRITB_TAG

- HW_MxPR ITB_PrE

- HW_MxPR ITB_PTE_TEMP

This rule implies that it is not a good idea to ever allow exceptions
while updating the ITB. The ITB IPR will not be written if:

- An exception interrupts flow of the ITB miss routine and attempts
to REI back.

- The return address begins with an HW _MxPR instruction to an
ITB IPR.

- The REI is predicted correctly to avoid any delay between the two
instructions.

Example 10-6 shows the code for this operation.

Example 10-6 Write to ITB Ignored Following REI

HW REI
HW_MTPR Rl,ITB_TAG

return from interrupt
attempts to execute very next
cycle, instr ignored

• The following registers can only be accessed in P ALmode:

- ITB_TAG

- ITB_PrE

- ITB_PrE_TEMP

If the instruction HW _MTPR or HW _MFPR is applied to these IPRs
while not in P ALmode, the instruction will be ignored even if
ICCSR<HWE> is set.

10-10 Prtvlleged Architecture Library Code

• When writing the PAL_BASE IPR, exceptions cannot occur. An excep
tion occurring simultaneously with a write to the P AL_BASE IPR can
leave the register in a metastable state. All asynchronous exceptions
but reset can be avoided under conditions shown in Example 10-7.

Example 10-7 Conditions for Avoiding Asynchronous Exceptions

PALmode blocks all interrupts
machine checks disabled blocks I/O error exceptions

(by way of the ABOX_CTL reg or MB isolation)
Not under trap shadow avoids arithmetic traps

The trap shadow is defined as:

less than 3 cycles after a non-mul integer operate that
may overflow

less than 22 cycles after a MULL/V instruction
less than 24 cycles after a MULQ/V instruction
less than 6 cycles after a non-div fp operation that may

causea trap
less than 34 cycles after a DIVF or DIVS that may cause a

trap
less than 63 cycles after a DIVG or DIVT that may cause a

trap

• The sequence HW _MTPR PI'E, HW _MTPR TAG is not allowed. At
least two null cycles must occur between HW _MTPR P1'E and
HW _MTPR TAG.

• The MCHK exception service routine must check the EXC_SUM IPR
for simultaneous arithmetic errors. Arithmetic traps will not trigger
exceptions a second time after returning from exception service for the
machine check.

• Three cycles of delay must be inserted between HW _MFPR DTB_PTE
and HW_MFPR DTB_PTE_TEMP as shown in Example 10-8.

Example 10-8 Delay Between HW_MFPR DTB_PTE and HW_MFPR DTB_PTE_TEMP

HW MFPR Rx,DTB_PTE reads DTB PTE into DTB PTE TEMP
; IPR

HW MFPR R31,0 1st cycle of delay
HW MFPR R31,0 2nd cycle of delay
HW MFPR R31,0 3rd cycle of delay
HW MFPR Ry,DTB_PTE_TEMP read DTB PTE TEMP into register

file Ry

• Three cycles of delay must be inserted between HW_MFPR ITB_PTE
and HW_MFPR ITB_PTE_TE:rv.rP, as shown in Example 10-9.

PrMleged Architecture Library Code 10-11

Example 10-9 Delay Between HW_MFPR ITB_PTE and HW_MFPR ITB_PTE_TEMP

HW_.MFPR Rx,DTB_PTE

HW_MFPR R31,0
HW_MFPR R31,0
HW_MFPR R31,0
HW_MFPR Ry,DTB_PTE_TEMl?

reads DTB PTE into DTB PTE TEMP
IPR
1st cycle of delay
2nd cycle of delay
3rd cycle of delay
read DTB_PTE_TEMl? into register
file Ry

• The content of the destination register for HW _MFPR Rx, DTB_PI'E or
- HW_MFPR Rx, ITB_PI'E is UNPREDICTABLE.

• Two HW _MFPR DTB_PTE instructions cannot be issued in consecu
tive cycles. This implies that more than one instruction can be neces
sary between the HW _MFPR instructions if dual issue is possible.
Similar restrictions· apply to the ITB~PTE IPR.

• Reading the EXC_SUM and BC_TAG IPRs require special timing. Re
fer to Chapter 3 for specific information.

• DMM errors occUrrlng one cycle before HW _MxPR instructions to the
ITB_PrE will not stop the TB pointer from incrementing to the next
TB entry even though the HW _MxPR instruction will be aborted by
the DMM error. This restriction only affects performance and not func
tionality.

• PALcode that writes multiple ITB entries must write the entry that
maps the address contained in the EXC_ADDR IPR last.

• HW _STC instructions cannot be followed, for two cycles, by any load
instruction that may miss in the D-cache.

• Updates to the ASN field of the ICCSR IPR require at least 10 cycles of
delay before entering native mode that can reference the ASN during
I-cache access. If the ASN field is updated in kernel mode by way of
the HWE bit of the ICCSR IPR, it is sufficient that all I-stream refer
ences during this time be made to pages with the ASM bit set to avoid
use of the ASN.

• HW _MTPR instructions that update the TB_CTL IPR cannot follow an
HW _MTPR instruction that updates the DTB_PTE or ITB_PTE IPR by
one cycle.

• The HW _MTPR instructions that update the following IPRs require
delays as shown in Table 10-4:

- ICCSR (ASN field)

- FLUSH_IC

- FLUSH_IC_ASM

The purpose of the delay is to ensure that the update occurs before the
first instruction fetch in native mode, since the pipeline may currently
contain instructions that were fetched before the update (which would
remain valid during a pipeline stall). It is necessary that at least one
instruction be issued during each cycle of the delay to ensure that the
pipeline is cleared of all instructions fetched prior to the update.

10-12 Prtvlleged Architecture Library Code

If the update is performed in kernel mode through the use of the HWE
bit of the ICCSR, it is sufficient that all I-stream references during this
time be made to pages with the ASM bit set to avoid use of the ASN.

Table 10-4 HW_MTPR Cycle Delay

IPR

ICCSR (ASN field only)

FLUSH_IC

FLUSH_IC_ASM

Cycle Delay

8

9

9

• Machine check exceptions taken while in PALmode can load the
EXC_ADDR IPR with a restart address one instruction earlier than
the correct restart address. Some HW _MxPR instructions may have
already completed execution even if the restart address indicates the
HW _MxPR as the return instruction. Reexecution of some HW _MxPR
instructions can alter the machine state TB pointers, EXC_ADDR IPR
mask.

The mechanism used to stop instruction flow during machine check ex
ceptions causes the machine check exception to appear as a D-stream
fault on the following instruction in the hardware pipeline. In the
event that the following instruction is a HW _MxPR, a D-stream fault
will not abort execution in all cases. The EXC_ADDR will be loaded
with the address of the HW _MxPR instruction as if it were aborted.
An HW _REI to this restart address will incorrectly reexecute this in
struction.

Machine check service routines should check for MxPR instructions at
the return address before continuing.

10.5. 1 TB Miss Flows

l 0.5. 1. 1 ITB Miss

This section describes hardware-specific details to aid the P ALcode pro
grammer in writing ITB and DTB fill routines. These flows highlight the
trade-offs and restrictions between P ALcode and hardware. The P ALcode
source that is released with the DECchip 21064 should be consulted before
any new flows are written. The discussions assume a working knowledge
of the Alpha AXP memory management architecture (see Chapters 11 and
12).

When the lbox encounters an ITB miss it:

1. Latches the VPC of the target instruction-stream reference in the
EXC_ADDR IPR.

2. Flushes the pipeline of any instructions following the instruction
which caused the ITB miss.

3. Waits for any other instructions that may be in progress to complete.

4. Enters PALmode.

PrMleged Architecture Library Code 10-13

10.5. 1.2 OTB Miss

5. Jumps to the ITB miss PALcode entry point.

The recommended PALcode sequence for translating the address and fill
ing the ITB is as follows:

1. Create some scratch area in the integer register file by writing the
contents of a few integer registers to the PAL_ TEMP register file.

2. Read the target virtual address from the EXC_ADDR IPR.

3. Fetch the PTE (this can take multiple reads) using a physical-mode
HW _LD instruction. If this PTE's valid bit is clear, report TNV or ACV
as appropriate.

4. The AJ,pha Architec'ture Reference Manual states that translation buff
ers cannot contain invalid PTEs; the PrE's valid bit must be explicitly
checked by PALcode. Since the ITB's PrE RAM does not hold the
FOE bit, the PALcode must also explicitly check this condition. If the
PrE's valid bit is set and FOE bit is clear, PALcode can fill an ITB en
try.

5. Write the original virtual address to the TB_TAG IPR using
HW _MTPR. This writes the TAG into a PAL_TEMP IPR and not the
actual tag field in the ITB.

6. Write the Pl'E to the TB_CTL to select between the large page or
small page TB regions. Wait at least one cycle before executing the
next step.

7. Write the Pl'E to the ITB_PTE IPR using HW _MTPR. This
HW _MTPR causes both the TAG and PTE fields in the ITB to be writ
ten.

NOTE: It is not necessary to delay issuing 'the HW_MTPR to the
ITB_PTE after the MTPR to the ITB_TAG is issued.

8. Restore the contents of any modified integer registers to their original
state using the HW _MFPR instruction.

9. Restart the instruction stream using the HW _REI instruction.

When the Abox encounters a DTB miss, it:

1. Latches the referenced virtual address in the VA IPR and other infor
mation about the reference in the MMCSR IPR.

Locks the VA and :Ml.\.fCSR IPR against further modifications.

Latches the PC of the instruction that generated the reference in the
EXC_ADDR IPR.

2. Drains the machine as described in Section 10.5.1.1.

3. Jumps to the DTB miss PALcode entry point.

Unlike ITB misses, DTB misses can occur while the CPU is executing in
PALmode. The recommended PALcode sequence for translating the ad
dress and filling the DTB is as follows:

1. Create some scratch area in the integer register file by writing the
contents of a few integer registers to the PAL_ TEMP register file.

10-14 PrlvDeged Architecture Library Code

2. Read the requested virtual address from the VA IPR. The act of read
ing this register unlocks the VA and M?dCSR IPRs. The :MMCSR IPR
is updated only when D-stream memory management errors occur. It
will retain information about the instruction that generated the DTB
miss. This can be useful later.

3. Fetch the PTE. This operation can require multiple reads. If the
Valid bit of the PTE is clear, a Translation Not Valid (TNV) or Access
Violation (ACV) must be reported unless the instruction which caused
the DTB miss was FETCH or FETCH_M. This can be checked by way
of the opcode field of the :MMCSR IPR. If the value in this field is 18
(hex), then a FETCH or FETCH_M instruction caused this DTB miss.
As mandated in the Al,pha Architecture Reference Manual, the subse
quent TNV or ACV should not be reported. Therefore, PALcode
should:

a. Read the value in EX.C_.ADDR IPR

b. Increment the value by four

c. Write the value back to EXC_ADDR IPR

4. Write the register that holds the contents of the PTE to the DTB_CTL.
This has the effect of selecting one of the four possible granularity
hint sizes.

5. Write the original virtual address to the TB_TAG IPR. This writes the
TAG into a PAL_TEMP IPR and not the actual tag field in the DTB.

6. Write the PTE to the DTB_PTE IPR. This HW_MTPR causes both the
TAG and PTE fields in the DTB to be 'Written.

NOTE: It is not necessary to delay issuing the HW_MTPR to the
DTB_PTE after the MTPR to the DTB_TAG is issued.

7. Restore the contents of any modified integer registers.

8. Restart the instruction stream using the HW _REI instruction.

10.6 Implementation of Architecturally Reserved Opcodes

P ALcode uses the Alpha AXP instruction set for most of its operations.
The DECchip 21064 maps the architecturally reserved opcodes (PAL19,
PALlB, PALlD, PALlE, and PALlF) to:

• A move-to and a move-from processor register (HW _MTPR,
HW_MFPR)

• A special load and store (HW _LD, HW _ST)

• A return from PALmode exception or interrupt (HW _REI)

These instructions produce an OPCDEC exception (see Table 10-1) if exe
cuted while not in the PALmode environment. If ICCSR<lIWE> is set,
these instructions can be executed in kernel mode.

Register checking and bypassing logic is provided for PALcode instructions
as it is for nonP ALcode instructions when using general purpose registers.

NOTE: Explicit software timing is required for accessing the hardware-specific
IP Rs and the P AL_TEMPs. These constraints are descri'bed in Section
10.5.

Privileged Architecture Library Code 10-15

10.6. l HW _MFPR and HW _MTPR Instructions

The IPR specified by the PAL, ABX, IBX, and index field is written/read
with the data from the specified integer register.

CAUTION: Writing I reading IPRs can produce side effects.

Figure 10-1

Table 10-5

Field

OPCODE

RA/RB

PAL

ABX

IBX

Coding restrictions (see Section 10.5) are associated with accessing various
registers. Separate bits are used to access the following:

AboxIPRs
lboxIPRs
PAL_TEMPs

It is possible for an HW_MTPR instruction to write multiple registers in
parallel if they both have the same index.

Figure 10-1 shows the format of the HW _MFPR and HW _MTPR instruc
tions. Table 10-5 describes the HW _MFPR and HW _MTPR instruction
fields.

HW_MFPR and HW_MTPR·lnstruction Format

31 26 25 21 20 16 15 8 7 6 5 4 0

OPCODE RA RB IGN I I I I INDEX

PAL

~ ABX
IBX

BXB-0618-92

HW_MFPR and HW_MTPR Field Descriptions

Function

Is either 25 (HW _MFPR) or 29 (HW _MTPR).

Contain the source (HW _MTPR) or destination (HW .:..MFPR) IPR number. The
RA and RB fields must always be identical.

If set, this HW _MFPR or HW _MTPR instruction is referencing a PAL tempo
rary register, PAL_TEMP.

If set, this HW _MFPR or HW _MTPR instruction is referencing a register in the
Abox.

If set, this HW _MFPR or HW _MTPR instruction is referencing a register in the
lbox.

10.6.2 HW_LD and HW_ST Instructions

PALcode uses the HW _LD and HW _ST instructions to access memory out
side the realm of normal Alpha AXP memory management. The effective
address of these instructions is calculated as follows:

addr <- (SEXT(DISP) +RB) AND NOT (QW I 11 (bin))

10-16 Prlvlleged Architecture library Code

Figure 10-2 shows the format of the HW _LD and HW _ST instructions. Ta
ble 10-6 describes the fields of the HW _LD and HW _ST instruction fields.

Figure 10-2 HW _LD and HW _ST Instruction Format

Table 10-6

Field

OPCODE

RA/RB

PHY

ALT

RWC

QW

DISP

31 26 25 21 20 16 15 14 13 12 11 0

OPCODE RA RB 11111 DISP

BXB-061 SA-93

HW_LD and HW_ST Instruction Field Descriptions

Function

ls either 27 (HW _LD) or 31 (HW _ST).

Contain register numbers, interpreted in the normal fashion for loads and
stores.

If clear, the effective address of the HW _LD or HW _ST is a virtual address. If
set, then the effective address of the HW _LD or HW _ST is a physical address.

For virtual-mode HW _LD and HW _ST instructions, this bit selects the processor
mode bits that are used for memory management checks. If ALT is clear, the
current mode bits of the PS IPR are used; if ALT is set, the mode bits in the
ALT_MODE IPR are used.

Physical-mode load-lock and store-conditional variants of the HW _LD and
HW_ST instructions may be created by setting both the PHY and ALT bits.

The RWC (read-with-write check) bit, if set, enables both read and write access
checks on virtual HW _LD instructions.

The quadword bit specifies the data length. If it is set, the length is quadword.
Ifit is clear, the length is longword.

The DISP field holds a 12-bit signed byte displacement.

10.6.3 HW _REI Instruction

The HW _REI instruction uses the address in the Ibox EXC_ADDR IPR to
determine the new virtual program counter (VPC). Bit <0> of the
EXC_ADDR IPR indicates the state of the P ALmode bit on the completion
of the HW _REI. If EXC_ADDR<O> is set, then the processor remains in
PALmode. This allows PALcode to transition from PALmode to non
PALmode. The HW _REI instruction can also be used to jump from
PALmode to PALmode. This allows PAL instruction flows to take advan
tage of the D-stream mapping hardware in the DECchip 21064, including
traps.

Prtvlleged Architecture Library Code 10-17

Figure 10-3 shows the format of the HW _REI instruction. Table 10-7 de
scribes the HW _LD and HW _ST instruction fields.

Figure 10-3 HW _REI Instruction Format

Table 10-7

Field

OPCODE

RA/RB

31 26 25 21 20 16 15 14 13 0

OPCODE RA RB 11 lol IGN

BXB-06188-93

HW_REI Instruction Field Descriptions

Function

Contains 30.

Contain register numbers, which should be R31. Otherwise, a stall will occur.

Positions <15,14> in the HW _REI instruction contain the branch predic
tion hint bits. The DECchip 21064 pushes the contents of the EXC_ADDR
IPR on the JSR prediction stack. Bit <15> must be set to pop the stack to
avoid misalignment.

The next address and PALmode bit are calculated as follows:

VPC <- EXC_ADDR AND {NOT 3}
PAI.mode <- EXC_ADDR[O]

10-18 Privileged Archttecture Library Code

Chapter 11

OpenVMS AXP System Support

This chapter discusses memory management performed by the Open VMS
AXP operating system and gives the structure of a process within the
Open VMS AXP environment. Consult the Alpha Architecture Reference
Manual (hereafter referred to as AARM in this chapter) for a thorough dis
cussion of these topics.

11. 1 OpenVMS Memory Management

Memory management is the control of the allocation and use of physical
memory. It is implemented by a combination of hardware and software.
Typically, in a multiprogramming system, several processes may reside in
physical memory at the same time. Open VMS Alpha uses memory protec
tion and multiple address spaces to ensure that one process will not affect
either other processes or the operating system.

To improve further software reliability, four hierarchical access modes
provide memory access control. They are, from most to least privileged:
kernel, executive, supervisor, and user. Protection is specified at the indi
vidual page level, where a page may be inaccessible, read only, or read/
write for each of the four access modes. Accessible pages can be restricted
to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. How
ever, before these virtual addresses,can be used to access memory, they
must be translated into physical addresses. Memory management soft
ware maintains tables of mapping information (page tables) that keep
track of where each virtual page is located in physical memory. The proces
sor uses this mapping information when it translates virtual addresses to
physical addresses.

Therefore, memory management provides both memory protection and
memory mapping mechanisms. The Open Vl\18 Alpha memory manage
ment architecture is designed to meet several goals:

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller
than the virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table
overhead.

• Contribute to software reliability.

Open VMS AXP System Support 11-1

• Provide independent read and write access protection.

11. 1. 1 Virtual Address Space

A virtual address is a 64-bit unsigned integer specifying a byte location
within the virtual address space. Implementations support subsets of the
address space in one of four sizes (43, 47, 51, or 55 bits) as a function of
page size. The minimal virtual address size supported is 43 bits. If an im
plementation supports less than 64-bit virtual addresses, it must check
that all the VA<63:vaSize> bits are equal to VA<VaSize-1>. This gives
two disjoint ranges for valid virtual addresses. For example, for a 43-bit
virtual address space valid virtual address ranges are 0 to 3FF FFFF
FFFF and FFFF FCOO 0000 0000 to FFFF FFFF FFFF FFFF. Accesses to
virtual addresses outside the valid virtual address ranges for an imple
mentation cause an access violation exception.

The virtual address space is broken into pages, which are the units of relo
cation, sharing, and protection. The page size ranges from 8 Kbytes to 64
Kbytes. System software should, therefore, allocate regions with differing
protection on 64-Kbyte virtual address boundaries to ensure image com
patibility across all Alpha implementations.

Memory management provides the mechanism. to map the active part of
the virtual address space to the available physical address space. The op
erating system controls the virtual-to-physical address mapping tables and
saves the inactive parts of the virtual address space on external storage
media.

The processor generates a 64-bit virtual address for each instruction and
operand in memory. The virtual address consists of three level-number
fields, and a byte_within_page field. Figure 11-1 shows the virtual address
format.

Figure 11-1 Virtual Address Format

6 0
3 0

Sext(Level 1 <Level Size -1 >) Level 1 Level 2 Level 3 byte_within_page

BXB-0627-93

The byte_ within_page field can be either 13, 14, 15, or 16 bits depending
on a particular implementation. Thus, the allowable page sizes are 8
Kbytes, 16 Kbytes, 32 Kbytes, and 64 Kbytes. Each level-number field con
tains 0-n bits, where n is, for ex.ample, 9 with an 8-Kbyte page size. The
level-number fields are the same size for a given implementation.

The level-number fields are a function of the page size; all page table en
tries at any given level do not exceed one page. The PFN field in the PTE
is always 32 bits wide. Thus, as the page size grows, the virtual and physi
cal address size also grows.

11-2 OpenVMS AXP System Support

Table 11-1 Virtual Address Options

Page Size Byte Offset Level Size Virtual Physical
CK bytes) (Bits) (Bits) Address (Bits) Address (Bits)

8 13 10 43 45

16 14 11 47 46

32 15 12 51 47

64 16 13 55 48

11.1.2 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to imple
ment a smaller physical address space by not implementing some number
of high order bits. The two most significant implemented physical address
bits select a caching policy or implementation dependent type of address
space. Implementations will use these bits as appropriate for their sys
tems. For example, in a workstation with a 30-bit physical address space,
bit <29> might select between memory and non-memory like regions, and
bit <28> could enable or disable caching.

11. 1.3 Memory Management Control

Memory management is always enabled. Implementations must provide
an environment for PALcode to service exceptions and to initialize and
boot the processor. For example, PALcode might run with I-stream map
ping disabled and use the privileged CALL_P AL LDQP and STQP instruc
tions to access data stored in physical addresses.

11. 1.4 Page Table Entries

The processor uses a quadword PTE (Figure 11-2) to translate virtual ad
dresses to physical addresses.- A PTE contains hardware and software con
trol information and the physical page frame number (PFN). Fields in the
page table entry are interpreted as shown in Table 11-2.

Figure 11-2 Page Table Entry

6
3

PFN

3 3
2 1

SW

11111110000000000
6543"2109876543210

BXB-0632-93

OpenVMS AX.P System support 11-3

Table 11-2 Page Table Entry Bit Definitions

Name

PFN

RSVD

UWE

SWE

EWE

KWE

URE

SRE

ERE

KRE

RSVD

Bit(s)

<63:32>

<31:16>

<15>

<14>

<13>

<12>

Function

Page Frame Number. The PFN field always points to a page bowid
ary. If <V> is set, the PFN is concatenated with VA<byte_within_page>
to obtain the physical address; see Section 11.1. 7. If <V> is clear, this
field may be used by software.

Reserved To be used by software.

User Write Enable. Enables writes from user mode. If this bit is a 0
and a STORE is attempted while in user mode, an access violation oc
curs. This bit is valid even when <V>=O.

NOTE: If a wri'te enable bit is set and the corresponding read enable bit
is not, the operation of the processor is UNDEFINED.

Supervisor Write Enable. Enables writes from supervisor mode. If
this bit is a 0 and a STORE is attempted while in supervisor mode, an
access violation occurs. This bit is valid even when <V>=O.

Executive Write Enable. Enables writes from executive mode. If
this bit is a 0 and a STORE is attempted while in executive mode, an
access violation occurs. This bit is valid even when <V>=O.

Kernel Write Enable. Enables writes from kernel mode. If this bit is
a 0 and a STORE is attempted while in kernel mode, an access violation
occurs. This bit is valid even when <V>=O.

User Read Enable. Enables reads from user mode. If this bit is a 0
and a LOAD or instruction fetch is attempted while in user mode, an ac
cess violation occurs. This bit is valid even when <V>=O.

Supervisor Read Enable. Enables reads from supervisor mode. If
this bit is a 0 and a LOAD or instruction fetch is attempted while in su
pervisor mode, an access violation occurs. This bit is valid even when
<V>=O.

Executive Read Enable. Enables reads from executive mode. If this
bit is a 0 and a LOAD or instruction fetch is attempted while in execu
tive mode, an access violation occurs. This bit is valid even when
<V>=O.

Kernel Read Enable. Enables reads from kernel mode. H this bit is a
0 and a LO.AD or instruction fetch is attempted while in kernel mode, a..71
access violation occurs. This bit is valid even when <V>=O.

Reserved To be used by Digital in the future.

NOTE: This reserved bit wiU be used by future hardware sys'tems and
should not be used by software even if PTE<V> is clear.

11-4 OpenVMS AXP System Support

Table 11-2 Page Table Entry Bit Definitions (Continued)

Name Bit(s)

GH <6:5>

ASM <4>

FOE

FOW

FOR <1>

v

Function

Granularity Hint. Software may set these bits to a non-zero value to
supply a hint to translation buffer implementations that a block of pages
can be treated as a single larger page:

• The block is an aligned group of sN pages, where N is the value of
PTE<6:5>, for example, a group of l, 8, 64, or 512 pages starting at a
virtual address with page_size + 3*N low-order zeros.

• The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping, and the high 32-3*N PFN
bits are all equal.

• Within the block, all PTEs have the same values for bits <15:0>,
that is, protection; fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB
entry instead of 8, 64, or 512 separate TB entries.

Note that it is UNPREDICTABLE which PTE values within the block
are used if the granularity bits are set inconsistently.

NOTE: A granulari'ty hint might be appropriate for a large memory
struct:ure such as a frame buffer or nonpaged pool that in fact is mapped
into contiguous virtual pages with identical protection, fault, and valid
bits.

Address Space Match. When set, this PTE matches all Address Space
Numbers. For a given VA, ASM must be set consistently in all proc
esses, otherwise the address mapping is UNPREDICTABLE.

Fault On Execute. When set, a fault on execute exception occurs on
an attempt to execute an instruction in the page.

Fault On Write. When set, a fault on write exception occurs on an at
tempt to write any location in the page.

Fault On Read. When set, a fault on read exception occurs on an at
tempt to read any location in the page.

Valid. Indicates the validity of the the PFN field. When <V> is set,
the PFN field is valid for use by hardware. If <V> is clear, the PFN field
is reserved for use by software~ <V> does not affect the validity of
PTE<15:1>.

11. 1.5 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management
functions. For example, the operating system may set or clear the valid
bit, change the PFN field as pages are moved to and from external storage
media, or modify the software bits. The processor hardware never changes
PTEs.

Software must guarantee that each PTE is always consistent within itself.
Changing a PTE one field at a time may give incorrect system operation,
for example, setting PTE<V> with one instruction before establislring

OpenVMS P+X.P System SUpport 11-5

PTEkPFN> with another. Execution of an interrupt service routine be
tween the two instructions could use an address that would map using the
inconsistent PTE. Software can solve this problem by building a complete
new PTE in a register and then moving the new PrE to the page table us
ing a Store Quadword instruction (STQ).

Multiprocessing makes the problem more complicated. Another processor
could be reading (or even changing) the same PTE that the first processor
is changing. Such concurrent access must produce consistent results.
Software must use some form of software synchronization to modify PI'Es
that are already valid. Once a processor has modified a valid PTE, it is
possible that other processors in a multiprocessor system may have old
copies of that PTE in their translation buffer. Software must inform other
processors of changes to PTEs.

Software may write new values into invalid PTEs using STQ instructions.
Hardware must ensure that aligned quadword reads and writes are atomic
operations. The following procedure must be used to change any of the
PTE bits <15:0> of a shared valid PTE (PTE<0>=1) such that an access
that was allowed before the change is not allowed after the change.

1. The PTE<O> is cleared without changing any of the PTE bits <63:32>
and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed.
The VA used in the TBIS must assume that the PTE granularity hint
bits are zero.

3. After all processors have done the TBIS, the new Pl'E may be written
changing any or all fields.

NOTE: This procedure allows 'the QUEUE ins'tructions that have probed to check
that all can comple'te, to service a TB miss. The QUEUE instruction will
use the PTE even though 'the V bit is dear, if during its initial probe flow
the V bit was set.

11. 1.6 Memory Protection

Memory protection is the function of validating whether a particular type
of access is allowed to a specific page from a particular access mode. Ar,
cess to each page is controlled by a protection code that specifies, for each
access mode, whether read or write references are allowed.

The processor uses the following to determine whether an intended access
is allowed:

• The virtual address used to index page tables

• The intended access type (read data, write data, or instruction fetch)

• The current access mode from the Processor Status

If the access is allowed and the address can be mapped (the PTE is valid),
the result is the physical address coITesponding to the specified virtual ad
dress.

For protection checks, the intended access is read for data loads and in
struction fetch, and write for data stores.

If an operand is an address operand, then no reference is made to memory.
Hence, the page need not be accessible nor mapped to a physical page.

11-6 OpenVMS /4:XP System Support

11. 1.6. 1 Processor Access Modes

There are four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a running process is stored in the Current Mode bits of
the Processor Status (PS). Refer to the AA.RM for details.

11. 1.6.2 Protection Code

Every page in the virtual address space is protected according to its use. A
program may be prevented from reading or writing portions of its address
space. Associated with each page is a protection code that describes the
accessibility of the page for each processor mode. The code allows a choice
of read or write protection for each processor mode.

• Each mode's access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE; see Table 11-2.

The Open VMS Alpha architecture allows a page to be designated as exe
cute only by setting the read enable bit for the access mode and by setting
the fault on read and write bits in the PrE.

11. 1.6.3 Access Violation Fault

An access violation fault occurs if an illegal access is attempted, as deter
mined by the current processor mode and the page's protection field.

11. 1. 7 Address Translation

The page tables can be accessed from physical memory or (to reduce over
head) through a mapping to a linear region of the virtual address space .
.All implementations must support the virtual access method and are ex
pected to use it as the primary access method to enhance performance.

11. 1. 7. 1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a three
level page table structure. The Page Table Base Register (PI'BR) contains
the physical PFN of the highest level (Level 1) page table. Bits <levell> of
the virtual address are used to index into the first level page table to ob
tain the physical PFN of the base of the second level (Level 2) page table.
Bits <level2> of the virtual address are used to index into the second level
page table to obtain the physical PFN of the base of the third level (Level
3) page table. Bits <level3> of the virtual address are used to index the
third level page table to obtain the physical PFN of the page being refer-

Open VMS IV<P System support 11-7

enced. The PFN is concatenated with VA <byte_within_page> to obtain
the physical address of the location being accessed.

If part of any page table resides in 1/0 space or in nonexistent memory, the
operation of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ig
nored; the protection code in the third-level PTE is used to determine ac
cessibility.

If a first-level or second-level PTE is invalid, an access violation occurs if
the PrE<lffiE> equals zero. An access violation on a first-level or second
level PTE implies that all lower-level page tables mapped by that PTE do
not exist.

NOTE: This mapping scheme does not require multiple contiguous physical pages.
There are no length registers. With a page sue of 8 Kbytes, 3 pages (24
Kbytes) map 8 Mbytes of virtual address space; 1026 pages (approximately
8 Mbytes) map an 8-Gbyte address space; and 1,049,601 pages (approxi
mately 8 Gbytes) map the entire 8 Tbyte (2'43-byte) address space.

The algorithm to generate a physical address from a virtual address fol
lows:

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT (VA<VA_SIZE-1>} THEN
{initiate access violation fault}

! Read Physical

levell_pte ~ ({PTBR * page_size} + {8 *
VA<levell_number>})

IF levell_pte<V> EQ 0 THEN

IF levell_pte<KRE> EQ 0 THEN
{initiate access violation fault}

ELSE
{initiate translation not valid fault}

Read Physical

level2_pte ~
({levell_pte<PFN> * page_size} + {8 *

VA<level2_number>})

IF level2_pte<V> EQ 0 THEN
IF level2_pte<KRE> EQ 0 THEN

{initiate access violation fault}
ELSE

{initiate translation not valid fault}

Read Physical

level3_pte ~
({level2_pte<PFN> * page_size} + {8 *

VA<level3_number>})

IF {{{level3_pte<UWE> EQ 0} AND {write access}
{PS<CM> EQ 3}} OR

{{level3_pte<URE> EQ 0} AND {read access}
{PS<CM> EQ 3}} OR

{{level3_pte<SWE> EQ 0} AND {write access}
{PS<CM> EQ 2}} OR

11-8 OpenVMS AAP System Support

AND

AND

AND

{{level3_pte<SRE> EQ 0} AND {read access} AND
{PS<CM> EQ 2}} OR

{{level3_pte<EWE> EQ 0} AND {write access} AND
{PS<CM> EQ l}} OR

{{level3_pte<ERE> EQ 0} AND {read access} AND
{PS<CM> EQ l}} OR

{{level3_pte<KWE> EQ 0} AND {write access} AND
{PS<CM> EQ 0}} OR

{{level3_pte<KRE> EQ 0} AND {read access} AND
{PS<CM> EQ 0}}}

THEN
{initiate access violation fault}

ELSE
IF level3_pte<V> EQ 0 THEN

{initiate translation not valid fault}

IF {level3_pte<FOW> EQ l} AND { write access} THEN
{initiate Fault On Write fault}

IF {level3_pte<FOR> EQ l} AND { read access} THEN
{initiate Fault On Read fault}

IF {level3_pte<FOE> EQ l} AND { execute access} THEN
{initiate Fault On Execute fault}

Physical_Address ~
{level3_pte<PFN> * page_size} OR

VA<byte_within_page>

11. 1. 7 .2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address translation in a three
level page table structure, the page tables are mapped into a linear region
of the virtual address space. The virtual address of the base of the page ta
ble structure is set on a systemwide basis and is contained in the VPTB.

When a native mode DTB or ITB Miss occurs, the TBMISS flows attempt
to load the level 3 page table entry using a single virtual mode load in
struction.

The algorithm involving the manipulation of the missing VA is:

tmp ~ left_shift(VA, {64 - {{lg(PageSize) *4} -9 }})
tm.p ~

right_shift(tmp,{64 - {{lg(PageSize)*4} -9} +
lg(PageSize) -3})

tm.p ~ VPTB OR tmp
tmp<2:0> ~ 0

At this point, tmp contains the VA of the level 3 PTE. An LDQ from that
VA will result in the acquisition of the PTE needed to satisfy the initial
TBMISS condition.

However, in the PALcode environment, ifa TBMISS occurs during an at
tempt to fetch the level 3 Pl'E, then it is necessary to use the longer se
quence of three dependent loads.

The AARM describes the VPTB used to contain the virtual address of the
base of the page table structure.

The mapping of the page tables necessary for the correct function of the al
gorithm is done as follows:

OpenVMS ~p System support 11-9

1. Select a 23*lg(page_size/S)+3 byte-aligned region (an address with
3*lg(page_size/8)+3 low order zeros) in the virtual address space. This
value will be written into the VPI'B.

2. Create a level 1 PTE to map the page tables as follows:

Levell PTE ~ 0 ! Init all fields to 0
Levell PTE<63:32> ~ PFN of Levell Pagetable

Set PFN to PFN of levell pagetable
Levell PTE<8> ~ 1 Kernel Read Enable (KRE)
Levell PTE<O> ~ 1 ! Valid bit

3. Write the created level 1 PTE into the level 1 page table entry that
coITesponds to the VPTB value.

4. Set all level 1 and level 2 valid PTEs to allow kernel read access.

5. Write the VPTB with the selected base value.

NOTE: No validity checks need be made on the value stored in the VPTB in a run
ning sys'tem. Therefore, if the VPTB con'tains an invalid address, the opera
tion is UNDEFINED.·

11. 1.8 Translation Buffer

To save actual memory references when repeatedly referencing the same
pages, hardware implementations include a translation buffer to remem
ber successful virtual address translations and page states.

When the process context is changed, a new value is loaded into the Ad
dress Space Number (ASN) with a Swap Privileged Context instruction
(CALL_PAL SWPCTX). This causes address translations for pages with
PTE<ASM> clear to be invalidated on a processor that does not implement
address space numbers. Additionally, when the software changes any part
(except for the Software field) of a valid PTE, it must also move a virtual
address within the corresponding page to the TBIS register (see AARM)
with the MTPR instruction.

NOTE: Some implemen'tations may invalida'te the entire translation buffer on an
MTPR to TBIS. In general, implementations may invalida'te more than the
required translations in the TB.

The entire translation buffer can be invalidated by doing a write to the
TBIA (CALL_PAL MTPR_TBIA, and all ASM::O entries can be invalidated
by doing a write to TBIAP (CALL_PAL MTPR_TBIAP). SeeAARM.

The translation buffer must not store invalid PTEs. Therefore, software is
not required to invalidate translation buffer entries when making changes
for PTEs that are already invalid.

The TBCHK (see AARM) is available for inteITogating the presence of a
valid translation in the translation buffer.

11.1.9 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address
space numbers (process tags) to reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch
occurs. The supported ASN range is 0 .. MAX_ASN.

11-10 OpenVMS AXP System Support

NOTE: If an ASN outside the range O .. MAX_ASN is assigned to a process, the op
eration of 'the processor is UNDEFINED.

The ASN for the current process is loaded by software in the ASN (see
.AARM) with a Swap Privileged Context instruction. ASN s are processor
specific and the hardware makes no attempt to maintain coherency across
multiple processors. In a multiprocessor system, software is responsible for
ensuring the consistency of TB entries for processes that might be resched
uled on different processors.

NOTE: System software should not assume that the number of ASNs is a power of
two. This allows, for example, hardware to use N TB 'tag bits to encode
~ -3 ASN values, one value for ASM =1 PTEs, and one for invalid. There
are several possible ways of using ASNs, and, in a multiprocessor system,
there are several complications. Consider the case where a process that exe
cuted on processor-I is rescheduled on processor-2. If a page is deleted or
its protection is changed, the TB in processor-1 has stale data. One solu
tion would be to send an interprocessor interrupt to all the processors on
which this process could have run and cause them to invalidate the
changed PTE. This results in significant overhead in a system with several
processors. Another solution would be to have software invalidate all TB en
tries for a process on a new processor before it can begin execution if the
process executed on another processor during its previous execution. This
ensures the deletion of possibly stale TB en-tries on the new processor. A
third solution woul.d assign a new ASN whenever a process is run on a
processor that is not the same as the last processor on which it ran.

11. 1. 10 Memory Management Faults

Five types of faults are associated with memory access and protection:

• Access Violation (ACV)
Taken when the protection field of the third-level PrE that maps the
data indicates that the intended page reference would be illegal in the
specified access mode. An ACV fault is also taken if <KRE> is zero in
an invalid first or second level PTE.

• Fault On Read (FOR)
Occurs when a read is attempted with PTE<l'OR> set.

• Fault On Write (FOW)
Occurs when a write is attempted with PTE<l'OW> set.

• Fault On Execute (FOE)
Occurs when instruction execution is attempted with Pl'E<FOE> set.

• Translation Not Valid (TNV)
Taken when a read or write reference is attempted through an invalid
PTE in a first-, second-, or third-level page table.

Refer to the AARM for a detailed description of these faults.

Note that these five faults have distinct vectors in the system control
block.

The ACV fault takes precedence over the TNV, FOR, FOW, and FOE
faults.

The TNV fault takes precedence over the FOR, FOW, and FOE faults.

OpenVMS AAP System Support 11·11

The faults FOR and FOW can occur simultaneously in the CALL_PAL
queue instructions, in which case the order that the exceptions are taken is
UNPREDICTABLE.

11.2 OpenVMS AXP Process Structure

A process is the basic entity that is scheduled for execution by the proces
sor. A process represents a single thread of execution and consists of an
address space and both hardware and software context.

The hardware context of a process is defined by:

• 31 integer registers and 31 floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• 4 stack pointers

• AST Enable and AST Summary Registers CASTEN and ASTSR)

• Page Table Base Register (PrBR)

• Address Space Number (ASN)

• Floating-Point Enable Register (FEN)

• Process Cycle Counter (PCC)

• Process Unique Value

• Data Alignment Trap (DAT)

• Performance Monitor Enable Register (PME)

NOTE: Consult the AARM for de'tailed discussions of the parameters appearing in
the hardware context of a process.

The software context of a process is defined by operating system software
and is system dependent.

A process may share the same address space with other processes or have
an address space ofits own. There is, however, no separate address space
for system software, and therefore, the operating system must be mapped
into the address space of each process.

Saving the hardware context of the current process in memory followed by
loading the hardware context for a new process is termed context switch
ing. Context switching occurs as one process after another is scheduled by
the operating system for execution.

11.2. 1 Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part which is
context switched with the Swap Privileged Context instruction (SWPCTX),
and a nonprivileged part, which is context switched by operating system
software.

When a process is not executing, its privileged context is stored in a 128
byte naturally aligned memory structure called the Hardware Privileged
Context Block (see Figure 11-3).

11-12 OpenVMS AXP System Support

Figure 11-3 Hardware Privileged Context Block

I 8 I
3 2 1

m

3 3
2 1

Kernel Stack Pointer (KSP)

Executive Stack Pointer (ESP)

Supervisor Stack Pointer (SSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

1,
'ti

l

00 00 00
17 ,, 10

:HWPCB

:+16

ASN

I~~I 'ESJ :+48

l
l Process Cycle Counter (PCC)

Process Unique Value :+72

P Alcode Scratch Area of 6 Quadwords :+80

BXB-0630-93

The Hardware Privileged Context Block (HWPCB) for the current process
is specified by the PCBB.

The Swap Privileged Context instruction (SWPCTX) saves the privileged
context of the current process into the HWPCB specified by the PCBB,
loads a new value into the PCBB, and then loads the privileged context of
the new process into the appropriate hardware registers.

The new value loaded into the PCBB, as well as the contents of the Privi
leged Context Block, must satisfy certain constraints or an UNDEFINED
operation results:

• The physical address loaded into the PCBB must be 128-byte aligned
and describes 16 contiguous quadwords that are in a memory-like re
gion.

• The value of the PrBR must be the PFN of an existent page that is in a
memory-like region.

It is the responsibility of the operating system to save and load the non
privileged part of the hardware context.

The SWPCTX instruction returns ownership of the CUITent HWPCB to op
erating system software and passes ownership of the new HWPCB from
the operating system to the processor. Any attempt to write a HWPCB
while ownership resides with the processor has UNDEFINED results. If
the HWPCB is read while ownership resides with the processor, it is UN
PREDICTABLE whether the original or an updated value of a field is read.
The processor is free to update an HWPCB field at any time. The decision
as to whether or not a field is updated is made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by
PALcode.

The FEN bit reflects the setting of the FEN.

OpenVMS AXP System SUpport 11-13

The DAT bit controls whether data alignment traps that are fixed up in
PALcode are reported to the operating system. If the bit is clear, the trap
is reported. If the bit is set, after the fixup, return is to the user.

Setting the PME bit alerts any performance hardware or software in the
system to monitor the performance of this process.

The Process Unique value is that value used in support of multi thread im
plementations. The value is stored in the HWPCB when the process is not
active. When the process is active, the value may be cached in hardware
internal storage or kept in the HWPCB only.

11.2.2 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of
events that are not synchronized with its execution but must be dealt with
in the context of the process with minimum delay.

ASTs interrupt process execution and are controlled by the ASTEN and
ASTSR registers.

The ASTEN containe. an enable bit for each of the four processor access
modes. When the bit corresponding to an access mode is set, ASTs for that
mode are enabled. The AST enable bit for an access mode may be changed
by executing a Swap AST Enable instruction (SW ASTEN) or by executing
an MTPR instruction specifying ASTEN (MTPR ASTEN).

The ASTSR contains a pending bit for each of the four processor access
modes. When the bit corresponding to an access mode is set, an AST is
pending for that mode.

Kernel mode software may request an AST for a particular access mode by
executing an MTPR instruction specifying ASTSR (MTPR ASTSR).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>,
and PS<IPL>. If PS<IPL> is less than 2, and there is an AST pending and
enabled for an access mode that is less than or equal to PS<CM> (that is,
an equal or more privileged access mode), an AST is initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are
not allowed to interrupt execution in a more privileged access mode.

11.2.3 Process Context Switching

Process context switching occurs as one process after another is scheduled
for execution by operating system software. Context switching requires the
hardware context of one process to be saved in memory followed by the
loading of the hardware context for another process into the hardware reg
isters.

The privileged hardware context is swapped with the CALL_PAL Swap
Privileged Context instruction (SWPCTX). Other hardware context must
be saved and restored by operating system software.

The sequence in which process context is changed is important since the
SWPCTX instruction changes the environment in which the context
switching software itself is executing. Also, although not enforced by hard
ware, it is advisable to execute the actual context switching software in an
environment that cannot be context switched (that is, at an IPL high
enough that rescheduling cannot occur).

11-14 Open VMS AXP System Support

The SWPCTX instruction is the only method provided for loading certain
internal processor registers. The SWPCTX instruction always saves the
privileged context of the old process and loads the privileged context of a
new process. Therefore, a valid HWPCB must be available to save the
privileged context of the old process as well as load the privileged context
of the new process.

OpenVMS AXP System Support 11-15

Chapter 12

DEC OSF/l AXP System Support

This chapter discusses memory management performed by the DEC OSF/1
AXP operating system and gives the structure of a process within the DEC
OSF/1 AXP environment. Consult the Al,pha Architecture Reference Man
ual (hereafter referred to as AARM in this chapter) for a thorough discus
sion of these topics.

12.1 DEC OSF/1 AXP Memory Management

Memory management is the control of the allocation and use of physical
memory. It is implemented by a combination of hardware and software.
Typically, in a multiprogramming system, several processes may reside in
physical memory at the same time. DEC OSF/1 AXP uses memory protec
tion and multiple address spaces to ensure that one process will not affect
either other processes or the operating system.

To improve further software reliability, the DEC OSF/1 AXP operating
system provides two hierarchical access modes: kernel and user. Protec
tion is specified at the individual page level, where a page may be inacces
sible, read only, or read/write for the user mode. Accessible pages can be
restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. How
ever, before these virtual addresses can be used to access memory, they
must be translated into physical addresses. Memory management soft
ware maintains tables of mapping information (page tables) that keep
track of where each virtual page is located in physical memory. The proces
sor uses this mapping information when it translates virtual addresses to
physical addresses.

Therefore, memory management provides both memory protection and
memory mapping mechanisms. The DEC OSF/1 AXP memory manage
ment architecture is designed to meet several goals:

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller
than the virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table
overhead.

• Contribute to software reliability.

• Provide independent read and write access protection.

DEC OSF/l AXP System Support 12-1

12. 1. 1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location
within the virtual address space. Implementations support the address
space in one of four sizes (43, 47, 51, or 55 bits) as a function of page size.
The minimal supported virtual address size is 43 bits. If an implementa
tion supports less than 64-bit virtual addresses, it must check that all the
VA<63:vaSize> bits are equal to VA<VaSize-1>). This gives two disjoint
ranges for valid virtual addresses. For example, for a 43-bit virtual address
space, valid virtual address ranges are 0 to 3FF FFFF FFFF and FFFF
FCOO 0000 0000 to FFFF FFFF FFFF FFFF. Access to virtual addresses
outside of an implementation's valid virtual address range cause an access
violation fault.

The virtual address space is divided into three segments. The two bits VA
<VaSize-l:vaSize-2> select a segment as shown in Table 12-1.

Table 12-1 Virtual Address Space Segments

VA<VaSize-1 :vaSize-2> Name Mapping Access Control

Ox

10

11

segO Mapped via TB Programmed in PTE

kseg PA<--sext(V A<VaSize-3:0>) Kernel read/write

segl Mapped via TB Programmed in PTE

For kseg, the relocation, sharing, and protection are fixed. For segO and
segl, the virtual address space is broken into pages, which are the units of
relocation, sharing, and protection. The page size ranges from 8 Kbytes to
64 Kbytes. Therefore, system software should allocate regions with differ
ing protection on 64-Kbyte virtual address boundaries to ensure image
compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of
the virtual address space to the available physical address space. The oper
ating system controls the virtual-to-physical address mapping tables and
saves the inactive (but used) parts of the virtual address space on external
storage media.

12. 1. 1. 1 Segment Sego and Seg 1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and
operand in memory. A segO or segl virtual address consists of three level
number fields and a·byte_within_page field, as shown in Figure 12-1.

Figure 12-1 Virtual Address Format

6 0
3 0

Sext(Level 1 <Level Size -3>) Levef 1 Level2 Level3 byte_ within_page

BXB-0628-93

12-2 DEC OSF/1 AXP System Support

The byte_ within_page field can be either 13, 14, 15, or 16 bits depending
on a particular implementation. Thus, the allowable page sizes are 8, 16,
32, and 64 Khytes. Each level-number field is 0-n bits long, where, for ex
ample, n is 9 for an SK page size. Level-number fields are the same size
for a given implementation.

The level-number fields are a function of the page size; all page table en
tries at any given level do not exceed one page. The PFN field in the PrE is
always 32 bits wide. Thus, as the page size grows the virtual and physical
address size also grows.

In Table 12-2 the physical address column is the maximum physical ad
dress supported by the smaller of segO/segl or kseg, as indicated.

Table 12-2 Virtual Address Options

Page Size Byte Offset Level Size Virtual Address Physical Address Physical Address
(Kbytes) (Bits) (Bits) (Bits) (Bits) Limited by

8 13 10 43 41 kseg
16 14 11 47 45 kseg
32 15 12 51 47 segO/segl
64 16 13 55 48 segO/segl

12. 1. 1. 2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and
operand in memory. A kseg virtual address consists of segment select field
with a value of 10 (bin) and a physical address field. The segment select
field is the two bits VA<VaSize-l:vaSize-2>. The physical address field is
VA<VaSize-3:0>. The kseg virtual address format is shown in Figure 12-2.

Figure 12-2 Kseg Virtual Address Format

6
3

Sext (segment_ select <1>) Segment Select= 10 (bin) Physical Address

BXB-0629-93

12. 1.2 Physical Address Space

Physical addresses are at most vaSize-2 bits. This allows all of physical
memory to be accessed via kseg. A processor may choose to implement a
smaller physical address space by not implementing some number of high
order bits. The two most significant implemented physical address bits se
lect a caching policy or implementation-dependent type of address space.
Implementations will use these bits as appropriate for their systems. For
example, in a workstation with a 30-bit physical address space, bit <29>
might select between memory and non-memory like regions, and bit <28>
could enable or disable caching.

DEC OSF/1 AXP System SUpport 12-3

12. 1.3 Memory Management Control

Memory management is always enabled. Implementations must provide
an environment for PALcode to service exceptions and to initialize and
boot the processor. For example, PALcode might run with I-stream map
ping disabled.

12. 1.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate segO
and segl virtual addresses to physical addresses. A PTE contains hard
ware and software control information and the physical page frame num
ber (PFN). A PTE is a quadword with fields as shown in Figure 12-3. Ta
ble :J.:Z-3 gives. the definitions of the PrE fields.

Figure 12-3 Page Table Entry (PTE)

6
3

PFN

3 3
2 1

SW

11111110000000000
65,321098765,3210

RSV0-1~
RSV1 ·
RSV2

BXB-0632A-93

Table 12-3 Page Table Entry Bit Definitions

I Name
PFN

SW

RSVO

UWE

KWE

RSV!

URE

KRE

RSV2

Bit(s) Function

<63:32> Page Frame Number. The PFN field always points to a page bound
ary. If Vis set, the PFN is concatenated with the
VA<byte_ within_page> to obtain the physical address.

<31:16> Software. Reserved for software.

<15:14> Reserved O. Reserved for hardware; SBZ.

<13> User Write Enable. Enables writes from user mode. If this bit is a 0
and a STORE is attempted while in user mode, an access violation oc
curs. This bit is valid even when <V>::O.

<12> Kernel Write Enable. Enables writes from kernel mode. If this bit is
a 0 and a STORE is attempted while in kernel mode, an access violation
occurs. This bit is valid even when <V>=O.

<11:10> Reserved 1. Reserved for hardware; SBZ.

<9> User Read Enable. Enables reads from user mode. If this bit is a 0
and a LOAD or instruction fetch is attempted while in user mode, an ac
cess violation occurs. This bit is valid even when <V>=O.

<8> Kernel Read Enable. Enables reads from kernel mode. If this bit is a
0 and a LOAD or instruction fetch is attempted while in kernel mode, an
access violation occurs. This bit is valid even when <V>=O.

<7> Reserved 2. Reserved for hardware; SBZ.

12-4 DEC OSF/1 AXP System Support

Table 12-3 Page Table Entry Bit Definitions (Continued)

Name Bit Cs)

GB <6:5>

ASM

FOE

FOW

FOR

v

Function

Granularity Hint. Software may set these bits to a nonzero value to
supply a hint to translation buffer implementations that a block of pages
can be treated as a single larger page:

1. The block is an aligned group of SN pages, where N is the value of
PI'E<6:5>, e.g., a group of 1, 8, 64, or 512 pages starting at a virtual
address with page_size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping and the high 32-3*N PFN
bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>, i.e.,
protection, fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB
entry, instead of8, 64, or 512 separate TB entries.

Address Space Match. When set, this PTE matches all ASNs. For a
given VA, ASM must be set consistently in all processes, otherwise the
address mapping is UNPREDICTABLE.

Fault On Execute. When set, a fault on execute exception occurs on
an attempt to execute an instruction in the page.

Fault On Write. When set, a fault on write exception occurs on an at
tempt to write any location in the page.

Fault On Read. When set, a fault on read exception occurs on an at
tempt to read any location in the page.

Valid. Indicates the validity of the the PFN field. When <V> is set,
the PFN field is valid for use by hardware. When Vis clear, the PFN
field is reserved for use by software. <V> does not affect the validity of
PTE<15:1>.

The operating system changes PI'Es as part of its memory management
functions. For example, the operating system may set or clear the V bit,
change the PFN field as pages are moved to and from external storage me
dia, or modify the software bits. The processor hardware never changes
PTEs.

Software must guarantee that each PTE is always consistent within itself.
Changing a PTE one field at a time can cause incorrect system operation,
such as setting PTE<V> with one instruction before establishing
PTE<PFN> with another. Execution of an interrupt service routine be
tween the two instructions could use an address that would map using the
inconsistent PTE. Software can solve this problem by building a complete
new PTE in a register and then moving the new PTE to the page table by
using an STQ instruction.

Multiprocessing makes the problem more complicated. Another processor
could be reading (or even changing) the same PTE that the first processor
is changing. Such concurrent access must produce consistent results. Soft
ware must use some form of software synchronization to modify PTEs that

DEC OSF/l AXP System Support 12-5

are already valid. Whenever a processor modifies a valid PTE, it is possible
that other processors in a multiprocessor system may have old copies of
that PTE in their translation buffer. Software must inform other proces
sors of changes to PTEs. Hardware must ensure that aligned quadword
reads and writes are atomic operations. Hardware must not cache invalid
PTEs (PTEs with <V>=O) in translation buffers.

12. 1.5 Memory Protection

Memory protection is the function of validating whether a particular type
of access is allowed to a specific page from a particular access mode. Ac
cess to each page is controlled by a protection code that specifies, for each
access mode, whether read or write references are allowed. The processor
uses the following to determine whether an intended access is allowed:

• The virtual address, which is used either to select kseg mapping or
provide the index into the pag~. tables.

• The intended access type (read or write).

• The current access mode base on processor mode.

For protection checks, the intended access is read for data loads and in
struction fetches, and write for data stores.

12. 1.5. 1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a
running process is stored in PS<MODE>.

12. 1.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A
program may be prevented from reading or writing portions of its address
space. Associated with each page is a protection code that describes the
accessibility of the page for each processor mode.

For segO and segl, the code allows a choice of read or write protection for
each processor mode. For each mode, access can be read/write, read only,
or no access. Read and write accessibility and the protection for each mode
are specified independently.

For k.seg, the protection code is kernei readiwrite, user no access.

12. 1.5.3 Access Violation Fault

An access violation memory management fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page's
protection.

12. 1.6 Address Translation for Sego and Seg 1

The page tables can be accessed from physical memory, or (to reduce over
head) can be mapped to a linear region of the virtual address space. The
following sections describe both access methods.

12-6 DEC OSF/1 AAP System Support

12. 1.6. 1 Physical Access for Sego and Seg 1 PTEs

SegO and segl address translation can be performed by accessing entries in
a three-level page table structure. The PrBR (see AARMJ contains the
physical PFN of the highest level (Level 1) page table. Bits <levell> of the
virtual address are used to index into the first level page table to obtain
the physical PFN of the base of the second level (Level 2) page table. Bits
<level2> of the virtual address are used to index into the second level page
table to obtain the physical PFN of the base of the third level (Level 3)
page table. Bits <level3> of the virtual address are used to index the third
level page table to obtain the physical PFN of the page being referenced.
The PFN is concatenated with VA<byte_ within_page> to obtain the physi
cal address of the location being accessed.

If part of any page table does not reside in a memory-like region, or does
reside in nonexistent memory, the operation of the processor is UNDE
FINED.

If the first level or second level PTE is valid, the protection bits are ig
nored; the protection code in the third level PTE is used to determine ac
cessibility. If a first level or second level PTE is invalid, an access
violation fault occurs if PTE<KRE>=O. An access violation fault on a first
level or second level PTE implies that all lower level page tables mapped
by that PTE do not exist.

The algorithm to generate a physical address from a segO or segl virtual
address follows:

IF {SEXT(VA<vaSize-1:0>) neq VA} THEN
{ initiate access-violation fault}

levell_PTE ~ ({PTBR * page_size} + {8 * VA<levell>}
! Read physical
IF levell_PTE<v> EQ 0 THEN

IF levell PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
initiate translation-not-valid fault}

level2 PTE ~ ({levell PTE<PFN> * page_size} + {8 *
VA<level2>}) ! Read physical

IF level2_PTE<v> EQ 0 THEN
IF level2 PTE<KRE> eq 0 THEN

{ initiate access-violation fault}

ELSE
initiate translation-not-valid fault}

level3 PTE ~ ({level2_PTE<PFN> * page_size} + {8 *
VA<level3>}) ! Read physical

IF {{{level3_PTE<UWE> eq 0} AND {write access} AND
{ps<mode> EQ 1} } OR

{{level3_PTE<URE> eq 0} AND {read access} AND
{ps<mode> EQ 1} } OR

{{level3_PTE<KWE> eq 0} AND {write access} AND
{ps<mode> EQ 0} } OR

{{level3_PTE<KRE> eq 0} AND {read access} AND
{ps<mode> EQ 0} } }

THEN

DEC OSF/1 AAP System Support 12-7

{initiate memory-management fault}
ELSE

IF level3_PTE<v> EQ 0 THEN
{initiate memory-management fault}

IF level3_PTE<FOW> eq l} AND {write access} THEN
{initiate memory-management fault}

IF level3_PTE<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF level3_PTE<FOE> eq l} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ~ {level3_PTE<PFN> * page_size} OR
VA<byte_within_page>

12. 1.6.2 Virtual Access for Sego or Seg 1 PTEs

The page tables can be mapped into a linear region of the virtual address
space, reducing the overhead for segO and segl PTE accesses. The map
ping is done as follows:

1. Select a ~*lg(pageSize/S)+3 byte-aligned region (an address with
3*lg(pageSize/8)+3 low-order zeros) in the segO or segl address space.
Set the virtual page table pointer (VPTPTR) with a write virtual page
table pointer instruction (wrvptptr) to the selected value.

2. Create a levell PTE to map the page tables as follows:

levell PTE = 0
levell PTE<63:32>

! Initialize all fields to 0
pfn_of _Level_l_pagetable

! Set the PFN to the PFN of
the level one pagetable
levell PTE<8> 1 Set the kernel read enable
bit
levell PTE<O> 1 Set the valid bit

3. Set the levell page table entry that corresponds to the VPrB to the
createdlevell_PTE.

4. Set all level 1 and level 2 valid PTEs to allow kernel read access. With
this setup in place, the algorithm to fetch a segO or segl PTE is:

tmp ~ left_shift (va, {64 - {{lg(pageSize) *4} - 9}})
tmp ~ right_shift (tmp, {64 - {{lg(pageSize) *4} - 9}
+ lg(pageSize) - 3})
tmp ~ VPTB OR tmp
tmp<2:0> ~ 0
level3_PTE ~ (tmp) Load PTE using its virtual

address

The virtual access method is used by PALcode for most TB fills.

12. 1. 7 Translation Buffer

To save actual memory references when repeatedly referencing the same
pages, hardware implementations include a translation buffer to remem
ber successful virtual address translations and page states. When the proc-

12-8 DEC OSF/111\XP System Support

ess context is changed, a new value is loaded into the ASN with a swap
process context (swpctx) instruction. This causes address translations for
pages with PTE<ASM> clear to be invalidated on a processor that does not
implement address space numbers.

Additionally, when the software changes any part (except the software
field) of a valid PTE, it must also execute a CALL_P.AL tbi instruction.
The entire translation buffer can be invalidated by tbia, and all .ASM=O en
tries can be invalidated by tbiap. The translation buffer must not store in
valid PTEs. Therefore, the software is not required to invalidate transla
tion buffer entries when making changes for PTEs that are already
invalid.

12.1.8 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address
space numbers (process. tags). to. reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch
occurs.

The ASN for the current process is loaded by software in the ASN with an
swpctx instruction. ASNs are processor specific and the hardware makes
no attempt to maintain coherency across multiple processors. In a
multiprocessor system, software is responsible for ensuring the consistency
of TB entries for processes that might be rescheduled on different proces
sors.

NOTE: Sys'tem software should not assume that the number of ASNs is a power of
two. This allows, for example, hardware to use N TB tag bits to encode ZV
-3 ASN values, one value for ASM=l PTEs, and one for invalid. There are
several possible ways of using ASNs. There are several complications in a
multiprocessor system. Consider the case where a process that executed on
processor-1 is rescheduled on processor-2. If a page is deleted or its protec
tum is changed, the TB in processor-1 has stale data. One solution would
be to send an interprocessor interrupt to all the processors on which this
process could have run and cause them ro invalU:la;te the changed PTE.
This results in significant overhead in a system with several processors. An
other solution would be to have software invalidate all TB en-tries for a
process on a new processor before it can begin execution if the process exe
cuted on another processor during its previous execution. This ensures tlie
deletion of possibly stale TB entries on the new processor. A third solution
would assign a new ASN whenever a process is run on a processor that is
not the same as the last processor on which it ran.

12. 1. 9 Memory Management Faults

On a memory-management fault, the fault code CMMCSR) is passed in al
to specify the type of fault encountered, as shown in Table 12-4.

DEC OSF/1 IV(P System Support 12-9

Table 12-4 Memory Management Fault Type Codes

Fault

Translation not valid
Access violation
Fault on read
Fault on execute
Fault on write

Faults are taken as follows:

MMCSRValue

0
1
2
3
4

• A translation-not-valid fault is taken when a read or write reference is
attempted through an invalid PTE in a first, second, or third level page
table.

• An access violation fault is taken on a reference to a segO or segl ad
dress when the protection field of the third level PTE that maps the
data indicates that the intended page reference would be illegal in the
specified access mode. An access violation fault is also taken if <.KRE>
is a zero in an invalid first or second level PI'E. An access violation
fault is generated for any access to a kseg address when the mode is
user (PS<MODE>=l).

• A fault on read (FOR) occurs when a read is attempted with
Pl'E<F'OR> set.

• A fault on execute (FOE) occurs when an instruction fetch is attempted
with PTE<FOE> set.

• A fault on write (FOW) occurs when a write is attempted with
Pl'E<F'OW> set.

12.2 DEC OSF/1 AXP Process Structure

A process is a single thread of execution. It is the basic entity that can be
scheduled and is executed by the processor. A process consists of an ad
dress space and both software and hardware context. The hardware con
text of a process is defined by the the following:

• 30 integer registers (excluding R31 and SP)

• 31 floating-point registers (excluding F31)

• Program Counter (PC)

• User stack pointer (USP) and kernel stack pointer (KSP) per process

• Processor Status (PS)

• Address Space Number (ASN)

• Process Cycle Counter (PCC)

• Page Table Base Register (PTBR)

• Process Unique value

NOTE: Consult the AARM for detailed discussions of the parameters appearing in
the hardware context of a process.

12-10 DEC OSF I l AXP System Support

While a process is executing, some of its hardware context is being updated
in the internal registers. When a process is not being executed, its hard
ware context is stored in memory in a software structure termed the proc
ess control block (PCB). Saving the process context in the PCB and load
ing new values from another PCB for a new context is termed context
switching. Context switching occurs as one process after another is sched
uled for execution.

The PCB holds the state of a process, as shown in Figure 12-4.

Figure 12-4 Process Control Block (PCB)

6
3

3 3
2 1

Kernel Stack Pointer (KSP)

User Stack Pointer (USP}

0 0
1 0

:+00

:+08

Page Table Base Register (PTBR) :+16

Address Space Number (ASN) I Cycle Counter (PCC) :+24

Process Unique Value :+32

i :+40

Reserved to Digital :+48

Reserved to Digital :+56

BXB-0631-93

The contents of the PCB are loaded and saved by the swpctx instruction.
The PCB must be quadword aligned and should be 64-byte aligned for best
performance. Kernel mode code can read the PTBR, the .ASN, and the FEN
for the current process from the PCB. Kernel mode code must use the
rdusp/wrusp instructions to access the USP. The PCC must be read with
the rpcc instruction. The unique value can be accessed with the
rdunique/wrunique instruction.

DEC OSF/1 AXP System support 12-11

Chapter 13

Initialization

The KN7 AA CPU module can be initialized in three ways:

• Power-Up Sequence. When the LSB system is powered up, the CPU
module generates a local reset signal.

• System Reset. Whenever the LSB RESET signal is asserted, the
CPU module is initialized. LSB RESET can be asserted by any node or
from the control panel keyswitch through CCL_RESET.

• Node Reset. A single CPU module can be reset by setting
LCNR<NRST>.

The processor chip (DECchip 21064) can be reset independently of the
other components on the CPU module through the serial 1/0 port.

13. 1 Initialization Overview

13.2 Self-Test

A CPU reset causes the console code to first invoke the on-board self-test
sequence. Self-test begins by testing a very small portion of the CPU logic
and gradually expands the scope of testing until all hardware functions of
the module have been verified.

Action subsequent to the completion of the CPU module self-test depends
on the state ofLCNR<RSTSTAT>. If the state of this bit indicates a
power-up or system reset, CPU module self-test is followed by CPU-based
testing of other system components.

Once all appropriate testing has been completed, the KN7 AA console pro
gram determines a primary processor. The primary processor is then re
sponsible for displaying the results of all testing, configuring the LSB sys
tem (memory, registers, and so on), and creating the software data
structures necessary to communicate between processors and the operat
ing system. The console program then enters its input loop.

If the CPU module reset was caused by a node reset, no additional system
components are tested. CPU registers are set to their :firmware-initialized
state, but no other LSB system configuration is performed. There is no
change in the primary processor, and the console program enters its input
loop.

CPU self-test is a layered process that is called as the first part of the con
sole entry sequence. It starts with a simple load of code from the serial

Initialization 13-1

ROM (SROM) into the P-cache and augments itself through additional
ROM-resident code that is copied to the B-cache and nms from the B
cache. The process completes by returning a GO/NOGO status to the con
sole entry sequence. The following subsections summarize the various
stages in the CPU self-test. A complete description and flowchart of self
test sequences can be found in the Advanced Troubleshooting manuals.

13.2. 1 SROM Operation

Following the deassertion of reset to the DECchip 21064, the contents of
the SROM are loaded into the internal cache, the PC is pointed to location
zero and instruction execution is started. This code performs the following:

• A quick internal test of the processor chip

• Tests the external B-cache tag, status, and data store R.AM:s and asso
ciated control

• Determines that access to the Gbus resources is operational

• Copies the balance of CPU self-test and the CPU console program from
the Gbus ROMs to the B-cache and, following a checksum. verification,
transfers control to it.

At any point in this process, the SROM code can signal failures through
the Gbus$LEDs register.

13.2.2 CPU Module Self-Test

Following the transfer of control from the SROM code to the main body of
CPU self-test in the B-cache, the CPU module is tested thoroughly. High
lights include:

• Test of all Gbus resources including the UARTs and the watch chip

• LEVI tests including LSB transfers

• Tests of all RAM structures

13.2.3 Additional Power-Up Testing

If the CPU module self-test completes successfully, additional power-up
testing is next performed to verify untested system components. Addi
tional testing performed by all processors includes:

• Tests of the processor/memory LSB interface

• Tests of CPU multiprocessor logic

• Tests of the LSB 1/0 port module

The boot processor then performs tests on interfaces to the 1/0 port.

13.3 Console Entry

13-2 lntHallzatlon

When the power-up test sequence is complete, the console code entry se
quence continues. This section briefly describes the system-level initializa
tion functions that are required to start the operating system, which are
performed by the console code following self-test.

13.3. 1 Boot Processor Arbitration

The console program determines the boot processor. A boot processor must
also be determined on an interim basis, between phases of power-up test
sequence, for the purpose of printing out test results.

The boot processor is selected dynamically. Any processor in a multi
processor system can become the boot processor. By default, the CPU with
the lowest LSB node number that has passed all of its power-up tests thus
far, and is eligible, is selected as the boot processor.

If all processors fail self-test, or if all processors have been disabled
through console commands from becoming boot processors, then no boot
processor is assigned. In this case, a unique code is placed on the LEDs,
and all processors monitor the console terminal lines waiting for a se
quence to be typed by the operator, which would force one of the processors
to become the boot processor.

The console set ·cpu 'Command can be used to change the boot processor
once the console is running. Refer to the Console Reference Manual for fur
ther information on the set cpu command.

13.3.2 Boot Processor System Setup

Following configuration of memory, the console creates data structures in
memory that are required to communicate between processors and with
the operating system. These data structures include:

• Hardware restart parameter block (HWRPB)

• A physical memory descriptor

• A bitmap of good and bad pages of physical memory

• Console routines block (CRB)

• Console terminal block (CTB)

13.3.3 Operating System Startup

The KN7 AA console program's primary role in operating system startup is
to load and transfer control to the primary bootstrap program. The
method the console generally uses to load the primary bootstrap program
is called bootblock booting. To begin the boot, the console reads the first
logical block (LBN 0) on a disk. This is the bootblock, which contains infor
mation that points to the location of the primary bootstrap program on the
disk. Using the same routines that read the bootblock, the console then
uses this information to load the primary bootstrap program.

When booting from a network the console must request the bootstrap im
age from an external server.

Once control is passed to the primary bootstrap, the console program's only
remaining role is to allow access to console terminal routines and 1/0 rou
tines. The console terminal routines allow the operating system software
to send/receive characters to/from the console terminal. The 1/0 routines
allow the primary bootstrap program to utilize the console boot drivers to
load the secondary bootstrap or operating system software.

Initialization 13-3

Chapter 14

Error Handling

Errors detected by or reported to the KN7 AA processor can occur any
where in the system. If errors occur during data movement within the
DECchip 21064 or its environment, they are detected by the DECchip
21064. Errors that occur during data movement external to the DECchip
21064 (B-cache, LEVI interface, and other nodes) are detected by the LEVI
interface and reported to the DECchip 21064.

The errors result in machine checks and are referred to error service rou
tines in the PALcode. The system control block (SCB) specifies the entry
points for the error service routines. The handler for machine checks exe
cutes in kernel mode, on the kernel stack, at IPL 31 (dee). Table 14-1 lists
the error types and indicates their respective PALcode entry points.

Table 14-1 Error Entry Points to the PALcode Service Routines

Error Type

Processor Machine Check

System Machine Check

Processor Correctable Machine Check1

PALcode Entry Point
(Byte Offset, Hex>

670

660

630

1 The recovery method for this error is dependent on the DECchip 21064 revision num-
ber. .

This chapter covers the following topics:

• Machine Check Overview

• DECchip 21064 Actions on Errors

• P ALcode Error Handling

The chapter discusses error conditions caused by failures at the hardware
level. It also presents parse trees for all machine check errors to help the
programmer isolate the error to a particular fault. However, it is not the
goal of this chapter to present an exhaustive discussion of error conditions.
For further information on error handling, exceptions, interrupts, and ma
chine checks, refer to the A/,pha Architecture Reference Manual. Consult
also the DEC 7000 AXP System Advanced Troubleshooting manual for in
formation on software error flags.

Error Handling 14-1

14.1 Machine Check Overview

The machine check exception is an indication of a serious system error.
Under certain conditions the error may be recoverable. Recoverability is a
function of the PALcode, the saved error state, and type of error.

Machine checks occur because of one of the following classes of errors:
B-cache probes, CPU fill ECC errors, or external LSB control related errors
occurring synchronous to the outstanding DECchip 21064 EDAL (pin bus)
request.

Notification of such errors happens in one of two ways. The probe and fill
errors are internally generated machine checks done within the DECchip
21064. The external LSB control error notification is done by the LEVI in
terface using the cAck_h hard error response lines back to the outstanding
DECchip 21064 command/request.

14.2 DECchip 21064 Actions on Errors

14-2 Error Handling

This section summarizes hardware flows for various error conditions han
dled by the DECchip 21064. When these errors occur during in-chip opera
tions, they are detected by the DECchip 21064. If they occur in off-chip in
teractions, they may be recognized by the DECchip 21064. These errors
may or may not be corrected by hardware.

The DECchip 21064 reports corrected hardware errors through the
~skable corrected-read interrupt. ABOX_CTLcCRD_EN> controls
whether error hardware generates an interrupt request for corrected er
rors. HIER<CRE> is used to mask pending corrected-read interrupt re
quests. Corrected-read interrupts are masked when the CPU is in
PALmode.

The DECchip 21064 reports uncorrected hardware errors by generating a
machine check trap to PALcode. ABOx_CTL <MCHK....EN> controls
whether machine checks are generated by uncorrectable hardware errors.
The DECchip 21064-recognized hardware errors occur during interactions
between the DECchip 21064 BIU and off-chip hardware. These errors fall
into three categories:

• Uncorrectable hardware errors recognized by system components while
processing requests generated by the DECchip 21064, and communi
cated to the DECchip.21064 EDAL interface command acknowledge
field (cAck_h [2:0]).

• B-cache tag probe errors recognized by the DECchip 21064 during
DECchip 21064-controlled access of the B-cache.

- Tag address parity errors

- Tag control parity errors

• P-cache fill data errors recognized by the DECchip 21064. These er
rors could occur during the DECchip 21064 controlled reads of the
B-cache or during external read transactions between the DECchip
21064 and system components.

Errors may be recognized by system level components outside the context
of the DECchip 21064-generated requests. These errors and their han
dling depend upon the system implementation and are discussed in Sec
tion 14.3.

14.2.1 Response to Single Errors

For the purpose of illustration, this section describes the response by the
DECchip 21064 to an error when its internal status registers are not al
ready locked by some previous event.

Single-Bit I-Stream ECC Error

• CoITUpted data put into I-cache; block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_ECC, FILL_IRD, and FILL_CRD set

• FILL_ADDR <33:5> & BIU_STAT<F1LL_QW> give bad QW's address

• FILL_SYND contains syndrome bits associated with failing QW

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_TAG holds results ofB-cache tag probe ifB-cache was enabled for
this transaction

Single-Bit D-Stream ECC Error

• CoITUpted data put into register file; D-cache invalidated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_ECC set; FILL_IRD clear; FILL_ CRD set

• FILL_ADDR <33:5> & BIU_STAT<FILL_QW> give bad QW's address

• FILL_ADDR <4:2> contain PA bits<4:2> of location which the failing
load instruction attempted to read

• FILL_SYND contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_TAG holds results ofB-cache tag probe ifB-cache was enabled for
this transaction

Double-Bit I-Stream ECC Error

• Corrupted data put into I-cache; block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_DPERR set; FILL_IRD set; FILL_CRD clear

• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW's address

• FILL_SYND identifies corrupted J.ongword(s)

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_TAG holds results ofB-cache tag probe ifB-cache was enabled for
this transaction

Double-Bit D-Stream ECC Error

• CoITUpted data put into register file; D-cache invalidated

• Machine check if enabled by ABOX_ CTL<MCHK_EN>

Error Handling 14-3

14-4 Error Handling

• BIU_STAT: FILL_DPERR set; FILL_IRD clear; FILL_CRD clear

• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW's address

• FILL_ADDR<4:2> contain PA bits<4:2> oflocation which the failing
load instruction attempted to read

• FILL_SYND identifies corrupted longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_ TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

BIU: Tag Address Parity Error

• Recognized at end of tag probe sequence

• Lookup uses predicted parity so transaction misses the B-cache

• BC_ TAG holds results of B-cache tag probe

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT<BC_TPERR> set

• BIU_ADDR holds address

BIU: Tag Control Parity Error

• Recognized at end of tag probe sequence

• Transaction forced to miss B-cache

• BC_ TAG holds results of B-cache tag probe

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT<BC_TCPERR> set

• BIU_ADDR holds address

BIU: System External Transaction Terminated with CACK_SERR

• CRD interrupt posted if enabled by ABOX_CTL<CRD_EN>

• BIU_STAT: BIU_SERR set; BIU_CMD holds cReq_h <2:0>

• BIU_ADDR holds address

BIU: System Transaction Terminated with CACK_HERR

• Machine check if enabled by ABOX_ CTL<MCHK_EN>

• BIU_STAT<BIU_HERR> set; BIU_CMD holds cReq_h <2:0>

• BIU_ADDR holds address

BIU: I-Stream Parity Error (parity mode only)

• Data put into I-cache wichanged; block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_DPERR; set, FILL_ffiD set; FILL_CRD clear

• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW's address

• FILL_SYND identifies failing longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_TAG holds results ofB-cache tag probe ifB-cache was enabled for
this transaction

BIU: D-Stream Parity Error (parity mode only)

• Data put into D-cache unchanged, bl~ck gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_DPERR set; FILL_IRD clear

• FILL_ADDR <33:5> & BIU_STAT<FILL_QW> give bad QW's address

• FILL_ADDR<4:2> contain PA bits<4:2> oflocation which the failing
load instruction attempted to read

• FILL_SYND identifies failing longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked; contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

14.2.2 Response to Multiple Errors

This section describes the DECchip 21064 response to multiple hardware
eITors, that is, to eITOrs that occur after an initial eITor and before execu
tion of the PALcode exception handler associated with that initial eITor.

The DECchip 21064 error reporting hardware consists of two sets of inde
pendent error reporting registers.

• BIU_STAT<7:0> and BIU_ADDR contain information about the follow
ing hardware eITors:

- Correctable or uncoITectable errors reported with cAck_h <2:0> by
system components

- Tag probe parity eITors in the tag address or tag control fields

• BIU_STAT<l4:8>, FILL_ADDR, and FILL_SYND contain eITor infor-
mation about data fill eITors.

The BC_TAG register contains information that can relate to any of the er
ror conditions listed above.

Both sets of error registers can contain information about either corrected
or uncorrected hardware errors. When a hardware error occurs, informa
tion about that error is loaded into the appropriate set of error registers,
and those registers are locked against further updates until PALcode ex
plicitly unlocks them. If a second error occurs between the time that an
initial eITor occurs and the time that software unlocks the associated error
reporting registers, information about the second is lost.

When the DECchip 21064 recognizes the second etTor, it still posts the re
quired corrected-read interrupt or machine check; however it does not
overwrite information previously locked in an error reporting register. If
the second hardware error is not correctable and the error reporting regis-

Error Handling 14-5

ter normally associated with this second error is already locked, the
DECchip 21064 will set a bit to indicate that information about an uncor
rectable hardware error was lost. Both sets of error registers have a bit to
report these fatal errors.

For example, BIU_STAT<F'ATALl> is set by hardware to indicate that a
tag probe parity error or HARD_ERROR-terminated external transaction
occurred while BIU_STAT<6:0>, BIU_ADDR, and BC_TAG were already
locked due to some previous error. Ifa SOFT_ERROR-terminated trans
action occurs while these registers are locked, FATAL! is not set, however.
Similarly, BIU_STAT<F'ATAL2> is set by hardware to indicate that a pri~
mary cache fill received either a parity or single- or double-bit ECC error
while BIU_STAT <13:8>, FILL_ADDR, FILL_SYND, and BC_TAG were
already locked.

14.3 PALcode Error Handling

A PALcode error handling routine is invoked when a machine check is
taken by the processor or other system components. This section discusses
what these error routines are and offers guidance to the operating system

. programmer in trying to diagnose the fault. It covers the following topics:

• Error log packets

• Processor machine check 670 errors

• System machine check 660 errors

• Processor correctable machine check.630 errors

Parse trees accompanying the discussions help the programmer isolate er
rors to particular system faults.

14.3. 1 Error Log Packets

14-6 Error Handling

Error information is entered by PALcode in the form frames. This section
provides the error log formats for various P.ALcode entry points and stack
frames for Open VMS AXP and DEC OSF/1 AXP machine checks.

When a machine check/interrupt occurs, the PALcode gathers information
to be included in the stack frame. Upon entry to the service routine, R4
points to the frame.

Subpackets may be appended to eITor log packets to provide additional in
formation to help isolate a particular fault. The following subpackets are
associated with error types discussed in this chapter:

• Processor Machine Check 670

DLIST-Disabled Resource List
LSB-LSB Bus Snapshot
LMA-LSB Memory
Log Adapter-LSB Adapter

• System Machine Check 660

DLIST-Disabled Resource List
LSB-LSB Bus Snapshot
LMA-LSB Memory
Log Adapter-LSB Adapter

• Processor Correctable Machine Check 630

DLIST-Disabled Resource List
LSB-LSB Bus Snapshot
LMA-LSB Memory

Figure 14-1 shows the format of the 670/660 machine check error log
packet.

Figure 14-1 670/660 Machine Check Error Log Packet Format

6 0
3 0

Errorlog Header
(##bytes)

Software Error Flags
(24 bytes)

Common KN7 AA Header Area
(64 bytes)

KN7 AA Machine Check Frame
(472 bytes Open VMS, 488 bytes OSF/1)

LMMR Registers

PALcode Revision

Machine Check Error Counters
(96 bytes)

BXB-0635-93

Figure 14-2 shows the stack frame of the 670/660 machine check.

:00

.. :

:00

:00

: m

:00

:m

:00

:m

Error Handftng 14-7

Figure 14-2 670/660 Stack Frame

fil l Byte Count

Sys$$offset = [1 AO] Proc$$offset = [11 O]

Machine Check Frame Revision Reason Mask

PAL Temps<1:31>

EXC_ADDR

EXC_SUM

EXC_MASK

ICCSR

PAL_BASE

HIER

HIRR

MM_ CSR

DC_STAT

DC_ADDR

ABOX_CTL

BIU_STAT

BIU_ADDR

BIU_CTL

FILL_ SYNDROME

FILL_ ADDA

VA

BC_TAG

GBUS$: WHAMI <55:48>, PMASK <39:32>, INTR <23:16>, HALD <7-!J>

LBER LDEV

LMERR LCNR

LBESR1 LB ES RO

LBESR3 LBESR2

LBECR1 LBECRO

LLOCK LMODE

8
Offset

0

:+ 8

:+ 10

:+ 18

:+110

:+118

:+120

:+128

:+130

:+138

:+140

:+148

:+150

:+158

:+160

:+168

:+170

:+178

:+180

:+188

:+190

:+198

:+1AO

:+1A8

:+180

:+188

:+1CO

:+1C8

:+100

BXB-0639A-93

Figure 14-3 shows the format of the 630 machine check error log packet.
Figure 14-4 shows the stack frame of the 630 error log packet.

14-8 Error Handling

Figure 14-3 630 Error Log Packet Format

6
3

3 3
2 1

Errorlog Header
(##bytes)

Software Error Flags
(24 bytes)

Common KN7 AA Header Area
(64 bytes)

11
65

0
0

:00

:00

:nn

:00

:nn

:00

630 Machine Check Stack Frame
(88 bytes)

PALcode Revision

Reserved I
Machine Check Error Counters

Figure 14-4 630 Stack Frame

6 6
3 2

fil
Sys$$offset = [058]

Machine Check Frame Revision

(96 bytes)

3 3
2 1

BIU_STAT

BIU_ADDR

BIU_CTL

FILL_SYND

FILL_ADDR

BC_TAG

DC_STAT

DC_ADDR

I

1 1
6 5

I

WHAMI

BXB-0636-93

Byte Count

:nn

:00

:nn

0
0

Proc$$offset = (018]

Reason Mask

BXB-0637-93

Error Handllng 14-9

14.3.2 Error Parse Trees

Parse trees (sorting diagrams) are used to represent how an error condi
tion is examined by a deductive method. The parse tree indicates which
registers and bits need to be checked to isolate and identify the error.

The technique is illustrated in Example 14-1, which shows a portion of a
parse tree and assumes that LBER<NSES> is set (an error is detected).

Example 14-1 Error Isolation Using a Parse Tree

14-1 O Error Handling

MCHK
660

Select all ...

BIU STAT.FILL ECC <8>
~ - -

BIU STAT.FILL IRD<11>
I- - -

BC TAG.HIT <0> -
Select one ...

I-stream ECC error

Should be a 630 or 670
8-cache reference

Not BC TAG.HIT <0> _
·-------=--------------------------------------~~~

Not BIU STAT.FILL IRD <11 > 0-stream ECC error
'- - -

BC TAG.HIT <0> ... Should be a 630 or 670

Not BC TAG.HIT <0>
- B-cache reference

1--.__;;~:..;..;...;.;:...;.....:.;..:,__;; _______________________ -;~~

.J:,BER.NSES <18> Select all ...

1-L_M_E_R_R_._A_R_B_D_R_O.;...P_<_1_0_> ________ ~:: ARB drop on write

1-L_M_E_R_R_ . .;..A_R_B_C_O_L_<9 __ > __________ ~.... ARB collision on write -LMERR.BMAPPE <6>
1-----------------------------------~ !' LEVI B map parity error (crash)
LMERR.PMAPPE <3:0>
1-------------~:::. LEVI D map parity error (crash)

LMERR.BDATASBE <7> LEVI read of B-cache correctable
1--- error

LBECR1 .CA <37:35> = Read (000) and
LBECR1 .CID = Not this node LEVI read of 8-cache correctable

~ error from LSB REQ (Dirty blk)

LBECR1 .CA <37:35> .. Victim Write (011) and
LBECR1 .CID <14:11> = This_node... LEVI LSB victim write

- correctable error (victim block)
LBECR1 .CA <37:35> = Write (001) and
LBECR1 .CID <14:11> = This_node.... LEVI LSB write correctable error

Else -... - Inconsistent

BXB-0399-92

Many error conditions can cause LBER<NSES> to be set. To determine
the exact cause of the error, follow the arrows that branch out of
LBER<NSES>. This requires reading the LMERR register. If any one of
bits <10>, <9>, <6>, or a single bit in the field <3:0> is set in this register,
the source of the error is determined and no further inquiry is needed.
However, if LMERR <7> is set, reading of the LBECRl register is re
quired. In this case, the states of bits LBECRl<CA> and LBCRl<CID>
are used to derive the source of error, as shown in the diagram. If no bit-

Table 14-2

state combination that isolates a particular single-bit eITor is found, then
an inconsistent error is indicated.

Table 14-2 lists the registers that report e1Tor conditions.

Registers That Report Error Conditions

Register Location Address

BIU_STAT DECchip 21064 Abox 10

DC_STAT DECchip 21064 Abox 12

filRR DECchip 21064 Ibox 12

LBER CPU module BB1 0040

LMERR CPU module BB OC40

LBECRl CPU module BB 0740

MERA Memory module BB 2140

IOP_LBECRl IOPmodule A000740

1BB is the node address of the module in hex.

14.3.3 Events Reported Through 670 Machine Checks

This section classifies and describes the errors that cause a 670 machine
check. Figure 14-5 is the parse tree associated with the 670 machine
check. Following the parse tree is a description of each type of eITOr and,
when possible, a suggested recovery method.

Error Handling 14-11

Figure 14-5 Processor Machine Check 670 Parse Tree

14-12 Error Handling

MCHK
670

L...=B.:..:IU::-:::S:..:T.:.A::.:T.:.:.F...:.A..:..T:...A_L_1_<_7_> _____ ~- Bus interface unit second error

!

BIU_STAT.FATAL2 <14>

DC_STAT <2:0> • 000

DC_STAT <2:0> a 111

BIU_STAT.BC_TPERR <2>
BIU_STAT.BIU_CMD = rblock (100

BIU_STAT.BIU_CMD = wblock (101)

Cache fill second error

DECehip 21064 rev. 2.1

DECehip 21064 rev. 3.0

Select one ...

DECehip 21064 read B-tag
address parity error

DECehip 21064 write B-tag
address parity error

i..:E:::l:::se:_ __________ ..,.. BIU inconsistent error

BIU STAT.BC TCPERR <3>
- BIU_STAT.BIU_CMD-= rblock (100)

BIU_STAT.BIU _CMD c: wblock (101)

Else

BIU_STAT.FILL_ECC <8>
BIU_STAT.FILL_IRD <11 >

Select one ...

DECehip 21064 read B-tag
control parity error

DECehip 21064 Write B-tag
control parity error

BIU inconsistent error

Select one ...

I-stream ECC error

LB~C~-~T~A=G~.H~IT~<~O~> __________________ ~@)

LN~o~t~B=C=_T~A~G=·~H~IT_<~O~> ________________ ~(@

Not BIU_STAT.FILL_IRD <11 > 0-stream ECC error

~B~C:::-:.:,:TA:.:G=·:.:HIT:.:_:<0::>~---------1~ @

<D
~No~t~B~C~-~TA~G=·~H~IT~<=O~>----------------~(ID

BXB-0414-92

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

1 MCHK 670 Continued
:I

BIU STAT.SIU HERR cO> and
BIU-STAT.BIU-CMD = readblock <100>

t-;;;.; - -

LBER.NSES <18>
""'"""" LMERR.ARBDROP <10> --..

LMERR.ARBCOL <9> ---None of above ---
LBER.E <O> or
LBECR1 .CID <14:11 > • This_CPU ..,..._

LBER.SHE <14> and
LBER.DIE <15> --.. LBER.STE <10> or LBER.CNFc <11 >
LBER.CAE <13> -..
LBER.NXAE <12>
~ LBECR.CA <37:35> •CSR Re~

LBECR.CA <37:35> • Read ---LBECR.CA <37:35> • Private :. ..
LBER.CPE2 <6> ...
LBER.CPE <5> ...
LBER.CTCE <17> ...
LBER.UCE2 <2>

Select one ...

Read ARB drop

Read ARB coftision

Inconsistent error (NSES)

SelectaU .•.

LSB cache protocol error

or

LSB synchronization failure
LSB nonexistent memory

NXM to LSB VO space
NXM to LSB memory

NXM to sel 1/0 space

Multiple LSB command parity errors

LSB command parity error

LBER.CDPE and LBECR1 .CA• C~

LBER.CDPE and LBECR1 .CA= P~at

LSB control transmit check error

Multiple uncorrectable ECC errors

R~~~ CSR parity error
e -LBER.CE2 <4>

..3111.. -Else ---. -

CSR read to se1
Multiple~ngleECCerrors

Inconsistent (LSB)
LBER.E <0> ----,~

Previous system error latched

BXB--0415-92

Error Handing 14-13

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

1 MCHK 670 Continued

BIU STAT.BILI HERR <0> and
BIU-STAT .SIU-CMD = Writeblock <101>
~ - -

LBER.NSES <18> and
LBECR.CA <37:35> • Read and
~ECR1 .CID <14:11 > -This_CPU

LMERR.ARBDROP <10> --LMERR.ARBCOL <9> --None of above --
LBER.NSES <18> and
LBECR.CA <37:35> • Write and
~ECR1 .CID <14:11 >=This_ CPU

LMERR.ARBDROP <10> --LMERR.ARBCOL <9> --None of above ..
LBER.E <0> and
LBECR.CA <37:35> • Read and
~ECR1 .CID <14:11 >=This_ CPU

LBER.SHE <14> or
LBER.DIE <15> ... -
LBER.STE <10> or
LBER.CNFE <11 > or
LBER.CAE <13> --LBER.NXAE <12> --

'f' '
, w

<D®@

14-14 Error Handling

Select one ...

Read ARB drop

Read ARB collision

Inconsistent error (NSES)

Select one ...

Write ARB drop

Write ARB collision

Inconsistent error (NSES)

Select all ...

LSB cache protocol error

LSB synchronization failure

Read LSB nonexistent memory

BXB-0416-92

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

m MCHK 670 Continued

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>
Else

LBER.C «>> and
LBECR.CA <37:35 •Write and
LBECR1 .CID <14:11 >•This_ CPU

1--

LBER.SHE <14> or
LBER~DIE <15>

LBER.STE <10> or
LBER.CNFE <11 > or
LBER.CAE <13>

LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>
LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>
Else

lf '~

----------_._ ----

---.. -
----------... ---
.... -

Multiple LSB command parity
errors

LSB read command parity error
LSB read control transmit check

error
Multiple uncorrectable ECC errors

Multiple single ECC errors

Inconsistent (LSB)

B-cache contains shared data

Select all...

LSB cache protocol error

LSB synchronization failure

Write LSB nonexistent memory
Multiple LSB command parity

errors
LSB write command parity error

LSB write control transmit check
error

Multiple uncorrectable ECC errors

Multiple single ECC errors

Inconsistent (LSB)

BXB-0417-92

Error Handing 14-15

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

(D@ MCHK 670 Continued

LBER.E <0> and
LBECR.CA • CSR Write and
LBECR1 .CID <14:11 >·This_ CPU

LBER.SHE <14> or

1/0 cycle

Select one ...

i_:L::B::E::R.:·::D.::IE:.<..:.1.:..:5:.:.> ______ -Jll_ LSB cache protocol error

LBER.STE <10> or
LBER.CNFE <11 > or

i..:L::B::E::R.::·.=C:..:A=E_<.:..:.1..:.3.:....> _____ ---:i..,.... LSB synchronization failure

LBER.CPE <5> Write CSR command parity error

~L~B~E=R~·=C=D~P=E~<~7~> ______ _,~ WriteCSRdataparityerror

LBER.NXAE <12> Write CSR nonexistent memory

Else Inconsistent (LSB)

LBER.E <0> Previous system error latched

BIU STAT.SIU HERR <0> and
e1u=:sTAT.e1u:=cMo = Loadlock <110>

LBER.NSES <18>
LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BTAGPE <4>

LMERR.BSTA TPE <5>

None of above

Select one ...

Read ARB drop

Read ARB collision
LEVI B-cache tag parity error

(lookup}
LEVI B-cache status parity error

(lookup)
Inconsistent (NSES)

<D@

14-16 Error Handling

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

MCHK 670 Continued

LBER.E <0> and
LBECR.CA • Read and
LBECR1 .CID <14:11 >•This_ CPU

LBER.SHE <14> or
LBER.DIE <15>

LBER.STE <10> or
LBER.CNFE <11 > or
LBER.CAE <13>
LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>

Else

LBER.E<O>

BIU STAT.BIU HERR <0> and
BIU=STAT.BIU=CMD = Storecond <111>

LBER.NSES <18>
LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BTAGPE <4>

LMERR.BSTATPE <5>

None of above

CD®

Getting memory data

SelectaU •..

LSB cache protocol error

LSB synchronization failure

NXM to LSB memory

Multiple LSB cmd parity errors

LSB command parity error

LSB control transmit check error

Multiple uncorrectable ECC errors

Multiple single ECO errors

Inconsistent (LSB)

Previous system error latched

Select one ...

Select all ...

Read ARB drop

Read ARB collision
LEVI B-eache tag parity error

(lookup)
LEVI B-cache status parity error

(lookup)
Inconsistent (NSES)

BXB-0419-92

Error Handing 14-17

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

(!)@ MCHK 670 Continued

1'
LBER.E <0> and
LBECR.CA <37:35> -= Write and
LBECR1 .CID <14:11 >=This_ CPU

1--
LBER.SHE <14> or
LBER.DIE <15>

LBER.STE <10> or
LBER.CNFE <11 > or
LBER.CAE <13>

LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>

Else

LBER.E<O>

Else

14-18 Error Handling

---..
~

~ -
---.. ---
-'!Ill.. ---
~ -
~ ---

---.. -

Shared cache state

Select a/I ...

LSB cache protocol error

LSB synchronization failure

LSB nonexistent memory

Multiple LSB crnd parity errors

LSB command parity error

LSB control transmit check error

Multiple uncorrectable ECC errors

Multiple single ECC errors

Inconsistent (LSB)

Previous system error latched

Failure not understood
BXB-0420-92

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

@ B-cache hit I-stream (from BC_TAG.HIT «»)
Select one ...

HIRR.CRR <4>*

Etse

I-stream read B-cache single-bit
ECC error

I-stream read B-cache double-bit
ECC error

@ LSB reference I-stream (from Not BC_ TAG.HIT <0>) ,,
Select one ...

HIRR.CRR <4>*
1---

LBER.CE <3>
1-

Not LBECR1 .DIRTY <17>

LBECR1 .DIRTY <17>

Else

LBER.UCE <1>
I-

... -
-
--

I-stream LSB Read single bit ECC
error, memory reference

I-stream other CPU B-cache
reference

I-stream rend EDAL single-bit
error

Select one ...

1-M_E_RA_.U_C_E_R_<_1_> _________ ~ I-stream read memory double-bit
- error (forced bad LSB ECC)

Other CPU LMERR.BDATADBE <8> _ --
Else --

Else

I-stream read - other CPU
8-cache writeback double-bit
ECC error

I-stream read LSB double-bit
error

I-stream read EDAL double-bit
error

*For a PASS2 DECchip 21064; PASS3 takes a 630 machine check.

BXB-0421-92

Error Handllng 14-19

Figure 14-5 Processor Machine Check 670 Parse Tree (Continued)

C B-caehe hit 0-stream (from BC_ TAG.HIT<<»)

Se/ectone ...

HIRR.CRR <4>*

Else
0-stream read B-cache single-bit

ECC error

0-stream read B-cache double-bit
ECC error

@ LSB reference 0-stream (from Not BC_TAG.HIT <0>) ,,
Se/ectone •..

1---

LBER.CE <3>
t--

Not LBECR1 .DIRTY <17>

LBECR1 .DIRTY <17>

Else

LBER.UCE <1>
1-

MERA.UCER <1 >

... -

-

Other CPU LMERR.BDATADBE <8> ... -
Else --

0-stream memory read ECC error

D-stream other CPU B-cache
reference

D-stream read EDAL single-bit
error

Select one ...

0-stream read memo_ry double-bit
error (forced bad LSB ECC)

0-stream read - other CPU
B-cache writebac:k doubt.bit
ECCerror

D-stream read LSB double-bit
error

i....E_l_se _____________ ~... D-stream read EDAL double-bit
error

• For a PASS2 DECchlp 21064; PASS3 takes a 630 machine check.

BXB-0422-92

14-20 Error Handling

BIU Second Error

Description: This bit sets when an external cycle is terminated with the
cAck_h pins indicating hard error or when a B-cache tag probe encounters
bad parity in the tag address or control RAM while an error bit which locks
the BIU_STAT register was already set. Having this bit set indicates that
the system state for the second error was lost.

Recovery procedure: Since system state has been lost for at least one of
these fill errors recovery is not possible.

Restart condition: None. Terminate the session.

Error logging: Since this is just an additional status bit, no error logging is
suggested here. Do the error logging according to the first error that was
latched. Set software flag bit 95.

Cache Fill Second Error

Description: The meaning of this error bit is different, based on the revi
sion of the DECchip 21064. If the DECchip 21064 is rev 2.1, the occurrence
of this error indicates that multiple primary cache fill errors have oc
curred. Any fill error after the first will be lost. Recovery is not possible.
If the DECchip 21064 is rev 3.0, the occurrence of this bit means that a
multi-bit ECC error has been detected during a CPU chip cache fill.

Recovery procedure: Since system state has been lost for at least one fill,
error recovery is not possible.

Restart condition: None. Terminate the session.

Error logging: No error logging is suggested here. Set software flag bit 94.
The correct error logging of each case will be handled later on in the parse
tree.

DECchip 21064 Read B-Tag Address Parity Error

Description: During a CPU B-cache lookup, the CPU detected an address
parity error within the tag. BC_TAG holds the results of the probe. The
physical address is latched in the BIU_ADDR register.

Recovery procedure: Software can attempt to recover the correct tag and
parity by looking at the same index into the B-map. The correct tag can
then be loaded via the LTAGW register. However, this is not advisable
and software should terminate the session.

Restart condition: Crash the system.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 1. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

DECchip 21064 Write B-Tag Address Parity Error

Description: During a CPU B-cache lookup, the CPU detected an address
parity error within the tag. BC_Tag holds the results of the probe. The
physical address is latched in the BIU_ADDR register.

Recovery procedure: Software can attempt to recover the correct tag and
parity by looking at the same index into the B-map. The correct tag can

Error Handing 14-21

14-22 Error Handling

then be loaded via the LTAGW register. However, this is not advisable
and software should terminate the session.

Restart condition: Crash the system.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 2. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

BIU Inconsistent Error

Description: During a CPU B-cache look.up, the CPU detected either an
address parity error or control parity error within the tag. However, with
this error, the BIU_CMD was not a type that should be doing a probe.

Recovery procedure: None.

Restart condition: None. System state appears corrupt. Terminate the
session.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 3.

DECchip 21064 Read B-Tag Control Parity Error

Description: During a CPU B-cache look.up for a DECchip 21064 read, the
CPU detected a control parity error within the tag. BC_Tag holds the re
sults of the probe. The physical address is latched in the BIU_ADDR regis
ter.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 4. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

DECchip 21064 Write B-Tag Control Parity Error

Description: During a CPU B-cache look.up for a DECchip 21064 write, the
CPU detected a control parity error Within the tag. BC_Tag holds the re
sults of the probe. The physical address is latched in the BIU_ADDR regis
ter.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 5. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

I-Stream Read B-Cache Single-Bit ECC Error

Description: During an I-stream reference with a B-cache hit, the
DECchip 21064 detected a correctable ECC error. The failing syndrome is

latched in the FILL_SYND register. With a pass 2 DECchip 21064, this
error will be fatal. No correction is accomplished. With a pass 3 DECchip
21064, you will have taken the 630 error path and would not be here.
These error parse branches are in the machine check parse flow because
the DEC 7000 system initially shipped with the rev 2 DECchip 21064.

Recovery procedure: None.

Restart condition: Restart if corrected by PALcode or hardware. Termi
nate the user or system.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 6.

I-Stream Read B-Cache Double-Bit ECC Error

Description: During an I-stream Reference with a B-cache hit, the
DECchip 21064 detected an uncorrectable ECC error. The failing syn
drome is latched in the FILL_SYND register. This is a double-bit error,
and no correction can be performed.

Recovery procedure: None.

Restart condition: Terminate the session.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 7.

I-Stream LSB Read Single-Bit ECC Error, Memory Reference

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No correc
tion is accomplished. With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064.

From parsing the error, it was found that the bus cycle associated with this
error had a CE error. Also, the dirty bit in LBECRl was clear which im
plies that a memory supplied the data. Operating system software should
look and figure out which memory controller is associated with the latched
address and append a memory controller subpacket from the associated
memory.

Recovery procedure: None.

Restart condition: Restart if correded by PALcode or hardware. Termi
nate the user or session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket and an LMA subpacket will be required. Set software flag bit 8,
96 (LSB), and 97 (LMA) suhpacket present bits.

Additional parsing: Memory address correlation.

Error Handling 14-23

14-24 Error Handling

I-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC eITOr. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No correc
tion is accomplished. With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064. Note that this error was caused
by a B-cache single-bit error that was sourced from another CPU node.
The other CPU will be attempting to parse this error via its 660 error han
dler.

Recovery procedure: None.

Restart condition: Restart if co?Tected by PALcode. Terminate the session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required._ Set software flag bit 9 and 96 (LSB).

Additional parsing: BDATASBE flow.

I-Stream Read EDAL Single-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC eITOr. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No correc
tion is ac~mplished. With a pass 3 DECchip 21064, you will have taken
the 630 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064. Note that this error was caused by
the ED.AL data path. Note there were no LSB errors on this data transfer.

Recovery procedure: None.

Restart condition: Terminate the session.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 11.

I-Stream Read Memory Double-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. This eITor was caused by a memory RAM double
bit eITor.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required. Set soft
ware flag bit 12 and 97, the LMA subpacket present bit.

Additional parsing: Memory address correlation.

I-Stream Read Other CPU B-Cache Double-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected an
unco?Tectable ECC error. The failing syndrome is latched in the

FILL_SYND register. This is fatal to the user or system as determined by
the operating system. Note that this error was caused by another CPU's
B-cache double-bit error. The other CPU will be attempting to parse this
error via its 660 error handler.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bit 13 and 96 (LSB
subpacket).

Additional parsing: BDATADBE flow.

I-Stream Read LSB Double-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. Note that this error was caused by the LSB.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bit 14 and 96 (LSB
subpacket).

Additional parsing: Memory address correlation.

I-Stream Read EDAL Double-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The LSB was the source of the data. However,
the data was correct (no errors) off of the LSB. Because of this, it is as
sumed the EDAL data path b!Oke the data. The failing syndrome is
latched in the FILL_SYND register. This is fatal to the user or system as
determined by the operating system.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 15.

D-Stream Read B-Cache Single-Bit ECC Error

Description: During a D-stream. reference with a B-cache hit, the DECchip
21064 detected a correctable ECC error. The failing syndrome is latched in
the FILL_SYND register. With a pass 2 DECchip 21064, this error will be
fatal. No correction is accomplished. With a pass 3 DECchip 21064, you
will have taken the 630 error path and would not be here. These error
parse branches are left in the machine check parse flow because the DEC
7000 system initially shipped with the rev 2 DECchip 21064.

Recovery procedure: None.

Restart condition: Terminate the session.

Error HandUng 14-25

lA-26 Error Handllng

Error logging: For this error, the basic machine check entry will do. All
eITor state associated with this error resides on this CPU module. Set soft
ware flag bit 16.

D-Stream Read B-Cache Double-Bit ECC Error

Description: During a D-stream. reference with a B-cache hit, the DECchip
21064 detected an uncoITectable ECC error. The failing syndrome is
latched in the FILL_SYND register. Note that this is a double-bit error,
and no correction can be performed.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 17.

D-Stream LSB Read Single-Bit ECC Error, Memory Reference

Description: During a D-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No coITec
tion is accomplished. With a pass 3 DECchip 21064, you will have taken
the 660 eITor path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064. Note that this error was caused
by an LSB single-bit error in which a memory was the source.

Recovery procedure: None.

Restart condition: Terminate the session.

Error logging: For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required. Set soft
ware flag bit 18 and 97, the LMA subpacket present bit. ·

Additional parsing: Memory address correlation.

D-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description: During a D-stream. reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No coITec
tion is accomplished. With a pass 3 DECchip 21064, you will have taken
the 660 e?Tor path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064. Note that this error was caused by
another CPU's B-cache. The other CPU will be attempting to parse this
eITor via its 660 error handler.

Recovery procedure: None.

Restart condition: Terminate the session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bit 19 and 96, the LSB
subpacket present bit.

Additional parsing: BDATASBE flow.

D-Stream Read EDAL Single-Bit Error

Description: During a D-streain reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. With a pass 2 DECchip 21064, this error will be fatal. No correc
tion is accomplished. With a pass 3 DECchip 21064, you will have taken
the 630 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064. Note that this error was caused
by the EDAL data path. There were no LSB errors.

Recovery procedure: None.

Restart condition: Restart if corrected by PALcode or hardware. Termi
nate the user or system.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 21.

D-Stream Read Memory Double-Bit ECC Error

Description: During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. This error was caused by a memory RAM double-bit
error.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required. Set soft
ware flag bit 22 and 97, the LMA subpacket present bit.

Additional parsing: Memory address correlation.

D-Stream Read Other CPU B-Cache Double-Bit ECC Error

Description: During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. Note that this error was caused by a B-cache
double-bit error which was sourced from another CPU node. The other
CPU will be attempting to parse this error via its 660 error handler.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bit 23 and 96, the LSB
subpacket present bit.

D-Stream Read LSB Double-Bit ECC Error

Description: During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. Note that this error was caused by the LSB.

Error Handling 14-27

14-28 Error Handling

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bit 24 and 96, the LSB
subpacket present bit.

Additional parsing: Memory address coITelation.

D-Stream Read EDAL Double-Bit ECC Error

Description: During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error. The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system. Note that this error was caused by the EDAL data
path. The source of the data was the LSB but the UCE bit was not set, so
the data came off the LSB with no etTor.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 25.

Read Arbitration Drop

Description: During a CPU readblock command, the LEVI arbitrated for
the bus, assumed someone else won based on the requesting nodes, and
then saw that the bus did not have a command address cycle asserted.
This is a fatal eITor condition.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 40
(NSES), and 41 (arbdrop).

Read Arbitration Collision

Description: An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to go get read data to do a B-cache fill in an at
tempt to satisfy a read request from the CPU. Arbitration collision is con
sidered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 40
(NSES), and 42 (arbcol).

Inconsistent Error-NSES

Description: During a DECchip 21064 readblock command, the Node
Speci:fic EITor bit in the LBER register was set. However, no supporting
eITor bits were set to further isolate the cause of the eITor. This is an in
consistent state that is considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 40
(NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description: During an outstanding CPU readblock request, the LEVI de
tected an ilbranchal assertion of either Shared or Dirty by another CPU
node. This is considered fatal to the system. Cache state is probably cor
rupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 48
(LSB ERR Read), 31(DECchip21064 readblock), and 51/52 (Shared/Dirty)
if appropriate.

LSB Synchronization Failure

Description: During an outstanding CPU readblock request, the LEVI de
tected either a stall error, confirmation error, or command/address error.
These errors imply that LSB synchronization was lost. These errors prob
ably signify that some other internal node errors have occurred elsewhere
in the system. These are considered fatal errors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 31 (readblock), 48
(LSB ERR read), and 53/54/55. (stall, confirmation, command/address) if
appropriate.

NXM to LSB 1/0 Space

Description: During an outstanding DECchip 21064 readblock command,
the LEVI detected that the LSB request did not get a confirmation. This
results in an NXM. The command on the LSB was a CSR read so this read
was actually going to an LSB 1/0 address. Use the latched address in the
LBECSR register to determine which 1/0 address the request was sent to.

Recovery procedure: Clear error bits.

Restart condition: Restart the read if the address was to an existent piece
of hardware.

Error logging: For this error, a basic machine check with an LSB
subpacket will do. If the 1/0 address was to the IOP, then provide a log
adapter subpacket also. Set software flag bits 96 (LSB), 31 (DECchip
21064 readblock), 4 7 (LSB ERR Read CSR), 56 (NXM CSR Read). If the
IOP is the target address, then set software flag bit 98 (log adapter pre
sent) bit also.

Additional parsing: 110 address parse.

Error HandRng 14-29

14-30 Error Handling

NXM to LSB Memory

Description: During an outstanding DECchip 21064 readblock command,
the LEVI detected that the LSB request did not get a confirmation. This
results in an NXM. The command on the LSB was a read, so this was go
ing to an LSB MEM address. Use the latched address in the LBECSR reg
ister to determine if this is a valid address. If the address is valid, it would
appear that a memory is at fault. If the address is not valid, this would
lean toward either a software problem or a hardware address generation
problem.

Recovery procedure: None

Restart condition: If expected, continue, else crash the system.

Error logging: The basic machine check, LSB subpacket and LMA
subpacket will be provided. Set software :flag bits 96 (LSB subpacket), 97
(LMA subpack.et), 31 (DECchip,21064 readblock), 48 (LSB ERR read), 57
(NXM-mem read).

Additional parsing: Memory address correlation.

NXM to SeH 1/0 Space

Description: This CPU executed an 1/0 space read to its own 1/0 space.
These transactions use the LSB. In this case the read did not get confir
mation on the LSB.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error a basic machine check entry will do. Set soft
ware flag bits 31 (DECchip 21064 readblock), 46 (LSB ERR, private), 58
(NXM, private space).

Multiple LSB Command Parity Errors

Description: This branch of the parse tree is for information purposes only.
It just shows that multiple command parity errors have occurred.

Recovery procedure: None.

Restart condition: None.

Error logging: For this branch, just set software flag bit 59 which indi
cates that this error has occurred.

LSB Command Parity Errors

Description: An LSB command parity error was detected on a bus cycle
during which this CPU was the commander. This results in a cAck_h hard
error being sent to the DECchip 21064, which causes a machine check
through 670.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), 31 (DECchip 21064
readblock).

LSB Control TransmH Check Error

Description: This module detected that an LSB control line(s) it was driv
ing did not match with what it had seen on the LSB bus. This is a fatal
condition. Cache coherence could be lost.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check and an LSB snapshot is required.
Set software flag bits 96 (LSB subpacket), 48 (LSB ERR, read), 31
(DECchip 21064 readblock), and 61 (CTCE).

Multiple Uncorrectable ECC Errors

Description: Multiple double-bit ECC errors have been detected on the
LSB bus. The error state for all errors occurring after the first is lost.
This is fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: Set software bit 62. Other branches of the parse tree will
describe what logging to do and also what other appropriate software bits
to set.

CSR Data Parity Error

Description: During a read to an LSB-based 1/0 register, the data cycle
contained a parity error. This error could have occurred when referencing
another LSB node or to the node doing the read. In the first case, the LSB
command would be a CSR read. In the latter case, the LSB command
would be private.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error; log the basic machine check, an LSB snap
shot and either an LMA subpacket or log adapter subpacket depending on
where the 1/0 address pointed to. If it was to another CPU, the LSB snap
shot will be sufficient. Set software flags 96 (LSB), 63 (CDPE), 31
(DECchip 21064 read), and 47 (LSB Read CSR) or 46 (LSB private) de
pending on the LSB cycle type. If the 1/0 address was to the IOP (node 8)
set software flag 98 Gog adapter subpacket). If the 1/0 address is a mem
ory, log an LMA subpacket and set software flag 97 (L:MA subpacket).

Additional parsing: 110 address correlation.

Multiple Single-Bit ECC Errors

Description: Multiple single-bit LSB ECC errors have been detected on the
LSB bus. These could be caused by a variety of error conditions. The error
state for all errors occurring after the first is lost. For systems with a rev 2
DECchip 21064, this is fatal because the source and destination of the er
ror cannot be determined for the subsequent errors. For systems with rev
3 DECchip 21064s, CE2 is NOT fatal. All recipients of the data perform
correction, thus all data with single-bit errors will have been corrected.

Error Handling 14-31

14-32 Error Handling

The system still loses the information for error state determination but can
resume operation because all data is corrected by hardware.

Recovery procedure: None.

Restart condition: None.

Error logging: Error logging will be done by another parse tree branch.
Just set software flag bit 64 if this branch is true.

Inconsistent Error-LSB

Description: Attempting to parse the possible error conditions for a ma-
. chine check while the DECchip 21064 has an outstanding readblock. It

was found that no error cases were present that should have caused the
system to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bit 70 (incon
sistent error), 31 (readblock), and 48 (LSB ERR, read).

Previous System Error Latched

Description: When parsing the reasons for a machine check, it was found
that the latched LSB bus state did not correspond to the CPU detecting the
machine check. It is assumed that a previous LSB error has latched all
the bus registers. Multiple errors must have occurred.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB snapshot. Set soft
ware flag bits 96 (LSB), 31 (DECchip 21064 readblock), and 69 (previous
system error).

Read Arbitration Drop

Description: An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to get read data to do a B-cache fill to satisfy a write
request from the CPU. Arbitration drop is considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
48 (LSB ERR, read), 40 (NSES), and 41 (arbdrop).

Read Arbitration Collision

Description: An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to get read data to do a B-cache fill to satisfy a
write request from the CPU. Arbitration collision is considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECehip 21064 writebloek),
48 (LSB ERR, read), 40 (NSES), and 42 (arbcol).

Inconsistent Error-NSES

Description: During the LEVI sourcing data from the LSB to satisfy a
DECchip 21064 writeblock, the NSES bit was set indicating that an inter
nal KN7 AA error was detected. However, no supporting error bits were
set to indicate this condition. This is an inconsistent error condition and is
fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
48 (LSB ERR, read), 40 (NSES), and 45 (inconsistent).

Write Arbitration Drop

Description: An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to write data to the LSB to satisfy a write request
from the CPU. Arbitration drop is considered fatal. Note that this write
was going to the LSB because the B-cache contained shared data.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine cheek along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpaek.et), 32 (DECchip 21064 writebloek),
49 (LSB ERR, write), 40 (NSES), and 41 (arbdrop).

Write Arbitration Collision

Description: An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to write data to the LSB to satisfy a write re
quest from the CPU . .Arbitration collision is considered fatal. Note that
this write was going to the LSB because the B-cache contained shared
data.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writebloek),
49 (LSB ERR, write), 40 (NSES). and 42 (arbcol).

Inconsistent Error-NSES

Description: During the LEVI attempting to write data to the LSB to sat
isfy a DECchip 21064 writeblock, the NSES bit was set indicating that an
internal KN7 AA error was detected. However, no supporting error bits
were set to indicate this condition. This is an inconsistent error condition
and is fatal. Note that this write was going onto the LSB because the B
cache contained shared data.

Error Handling 14-33

14-34 Error Handling

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
49 (LSB ERR, write), 40 (NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description: During an outstanding CPU writeblock request, the LEVI,
when attempting to read LSB data, detected an assertion of either Shared
or Dirty by another node. This is considered fatal to the system. Cache
state is probably corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 48
(LSB ERR, read), 32 (writeblock), and 51152 (Shared/Dirty error) if appro
priate.

LSB Synchronization Failure

Description: During an outstanding CPU writeblock request, the LEVI de
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB read. These errors imply loss
of LSB synchronization. They probably signify that some other internal
node errors have occurred elsewhere in the system. These are considered
fatal errors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064
writeblock), 48 (LSB ERR, read), and 53/54/55 (stall, confirmation, com
mand/address) if appropriate.

Read LSB Nonexistent Memory

Description: During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB read request did not get a confirmation.
This results in an NXM. The command on the LSB was a read so this read
was actually going to an LSB MEM address. Use the latched address in
the LBECSR register to determine if this is a valid address. If the address
is valid, it would appear that a memory is at fault. If the address is not
valid, this would lean toward either a software problem or a hardware ad
dress generation problem. If the address is within memory range, include
the memory registers for the associated memory controller.

Recovery procedure: None.

Restart condition: If expected, continue, else crash the system.

Error logging: The basic machine check, LSB subpacket and LMA
subpacket will be provided. Set software flag bits 96 (LSB subpacket), 97

(LMA subpack.et), 32 (DECchip 21064 writeblock), 48 (LSB ERR, read),
and 57 (NXM-mem read).

Additional parsing: Memory address correlation.

LSB Command Parity Errors

Description: An LSB command parity error was detected on a bus cycle in
which this CPU was the commander. This condition results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), and 32 (DECchip
21064 writeblock.).

LSB Control Transmit Check Error

Description: This module detected that an LSB control line(s) it was driv
ing did not match with what it had seen on the LSB bus. This is a fatal
condition. Cache coherence could be lost.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check and an LSB snapshot is required.
Set software flag bits 96 (LSB), 48 (LSB ERR, read), 32 (DECchip 21064
writeblock), and 61 (CTCE).

lnconsistent-LSB

Description: Attempting to parse the possible error conditions for a ma
chine check while the DECchip 21064 has an outstanding writeblock, it
was found that no error cases were present which would have caused the
system to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bit 32
(DECchip 21064 writeblock), 48 (LSB ERR, read), and 70 (inconsistent er
ror).

LSB Cache Protocol Error

Description: During an outstanding CPU writeblock request, the LEVI
when attempting to write LSB data detected an assertion of either Shared
or Dirty by another node. This is considered fatal to the system. Cache
state is probably corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 49

Error Handling 14-35

14-36 Error Handling

(LSB ERR, write), 32 (writeblock), and 51/52 (Shared/Dirty error) based on
the bit(s) set.

LSB Synchronization Failure

Description: During an outstanding CPU writeblock request, the LEVI de
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB write. These errors imply
loss of LSB synchronization. They probably signify that some other inter
nal node errors have occUITed elsewhere in the system. These are consid
ered fatal errors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 32 (writeblock), 49
(LSB ERR, write), and 53/54/55 (stall, confirmation, command/address) if
appropriate.

Write LSB Nonexistent Memory

Description: During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB write request did not get a confirmation.
This condition results in an NXM. The command on the LSB was a write,
so this was actually going to an LSB MEM address. Use the latched ad
dress in the LBECSR register to determine if this is a valid address. If
the address is valid, it would appear that a memory is at fault. If the ad
dress is not valid, this would lean toward either a software problem or a
hardware problem. If the address is within memory range, include the
memory registers for the associated memory controller.

Recovery procedure: None.

Restart condition: None.

Error logging: The basic machine check, LSB subpacket and LMA
subpacket will be provided. Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 32 (DECchip 21064 writeblock), 49 (LSB ERR, write),
and 66 (NXM-mem write).

Additional Parsing: Memory address correlation.

LSB Command Parity Errors

Description: An LSB command parity error was detected on an LSB bus
write cycle in which this CPU was the commander. This results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 49 (LSB ERR, write), and 32 (DECchip
21064 writeblock).

LSB Control Transmit Check Error

Description: This module detected that an LSB control line(s) it was driv
ing did not match with what it had seen on the LSB bus. This is a fatal
condition. Cache, coherence could be lost.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check and an LSB snapshot is required.
Set software flag bits 96 (LSB), 49 (LSB ERR, write), 32 (DECchip 21064
writeblock), and 61 (CTCE).

lnconsistent-LSB

Description: Attempting to parse the possible error conditions for a ma
chine check while the DECchip 21064 has an outstanding writeblock, it
was found that no error cases were present which would have caused the
system to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bits 32
(DECchip 21064 writeblock), 49 (LSB ERR, write), and 70 (inconsistent er
ror).

LSB Cache Protocol Error

Description: During an outstanding CPU writeblock request, the LEVI,
when attempting to do a write CSR, detected an ilbranchal assertion of
either Shared or Dirty by another node. This is considered fatal to the sys
tem. Cache state is probably corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 50
(LSB ERR, write CSR), 32 (writeblock), and 51152 (Shared/Dirty error)
based on the bit(s) set.

LSB Synchronization Failure

Description: During an outstanding CPU writeblock request, the LEVI de
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB write CSR. These errors im
ply loss ofLSB synchronization. They probably signify that some other in
ternal node errors have occurred elsewhere in the system. These are con
sidered fatal errors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 32 (writeblock), 50
(LSB ERR, write CSR), and 53/54/55 (stall, confirmation, command/
address) if appropriate.

Error Handling 14-37

14-38 Error Handling

LSB Command Parity Errors

Description: An LSB command parity error was detected on an LSB bus
write CSR cycle in which this CPU was the commander. This results in a
CACK HERR being sent to the DECchip 21064, which causes a machine
check through 670.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 50 (LSB ERR, write CSR), and 32 (DECchip
21064 writeblock).

Write CSR Data Parity Error

Description: During a CSR write to an LSB based 1/0 register, the data
cycle contained a parity error. This error can only occur when writing CSR
data to another LSB node. If the CPU was writing CSR data to itself, it
would have used a backdoor method which would not use the LSB bus.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, log the basic machine check, an LSB snap
shot and either an LMA subpacket or log adapter subpacket depending on
where the 1/0 address pointed to. Ifit was to another CPU, the LSB snap
shot will be sufficient. Set software flags 96 (LSB), 63 (CDPE), 32
(DECchip 21064 writeblock), and 50 (LSB write CSR).

CSR Write LSB Nonexistent Address

Description: During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB CSR write request did not get a confirma
tion. This condition results in an NXM. The command on the LSB was a
CSR write so this was actually going to an LSB 110 address. Use the
latched address in the LBECSR register to determine if this is a valid 1/0
address. If the address is valid, it would appear that the associated node
at that 1/0 address failed to respond. If the address is not valid, this would
lean toward either a software problem or a hardware address generation
problem. If the address belongs to a known node, log the appropriate addi
tional error log subpacket (that is, if a memory, log an LMA, if IOP, log a
log adapter, for a CPU, the LSB subpacket will do just fine).

Recovery procedure: None.

Restart condition: None.

Error logging: The basic machine check, LSB subpacket and either a log
adapter or an L.'l\AA. subpacket will be provided based on what type of node
the latched 1/0 address pointed to. Set software flag bits 96 (LSB
subpacket), 32 (DECchip 21064 writeblock), 50 (LSB ERR, write CSR), and
97 (LMA subpacket) or 98 (log adapter) based on type of node.

lnconsistent-LSB

Description: In an attempt to parse the possible error conditions for a ma
chine check while the DECchip 21064 has an outstanding writeblock to an

LSB I/O address, it was found that no error cases were present which
would have caused the system to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bit 32
(DECchip 21064 writeblock), 50 (LSB ERR, write CSR), and 70 (inconsis
tent error).

Previous System Error Latched

Description: When parsing the reasons for a machine check while the CPU
had an outstanding writeblock request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check. It is
assumed that a previous LSB error has latched all the bus registers. Mul
tiple errors must have occurred.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB snapshot. Set soft
ware flag bits 96 (LSB), 32 (DECchip 21064 writeblock), and 69 (previous
system error).

Read Arbitration Drop

Description: An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to get read data to do a B-cache fill to satisfy a
loadlock request from the CPU. Arbitration drop is considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064 loadlock), 40
(NSES), and 41 (arbdrop).

Read Arbitration Collision

Description: An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to get read data to do a B-cache fill to satisfy a
loadlock request from the CPU. Arbitration collision is considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064 loadlock), 40
(NSES) and 42 (arbcol).

LEVI 8-Cache Tag Parity Error on Lookup

Description: During a CPU-requested loadlock command, the LEVI at
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache. The LEVI detected a parity error while checking the TAG
address information in the RAMs. This is fatal. B-cache state could be
corrupt.

Error HandUng 14-39

14-40 Error Handling

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check will do. All error information re
quired to do diagnosis resides on this CPU. Set software flag bits 33
(DECchip 21064 loadlock) and 43 (BTAGPE).

LEVI 8-Cache Status Parity Error on Lookup

Description: During a CPU-requested loadlock command, the LEVI at
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache. The LEVI detected a parity error while checking the status
information in the RAMs. This error is fatal. B-cache state could be cor
rupt.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check will do. All error information re
quired to do diagnosis resides on this CPU. Set software flag bits 33
(DECchip 21064 loadlock) and 44 (BSTATPE).

Inconsistent Error-NSES

Description: During the LEVI sourcing data from the LSB to satisfy a
DECchip 21064 load.lock command, the NSES bit was set indicating detec
tion of an internal KN7 AA error. However, there were no supporting error
bits set to indicate this condition. This is an inconsistent error condition.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 load.lock), 40
(NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description: During an outstanding CPU loadlock request, the LEVI,
when attempting to read LSB data, detected an assertion of either Shared
or Dirty by another node. This is considered fatal to the system. Cache
state is probably corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 48
(LSB ERR, read), 33 (loadlock), and 51/52 (Shared/Dirty error) if appropri
ate.

LSB Synchronization Failure

Description: During an outstanding CPU loadlock request, the LEVI de
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB read. These errors imply loss
of LSB synchronization. They probably signify that some other internal

node errors have occurred elsewhere in the system. These are considered
fatal eITors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064
loadlock), 48 (LSB ERR, read), and 53/54155 (stall, confirmation, com
mand/address) if appropriate.

Read LSB Nonexistent Memory

Description: During an outstanding DECchip 21064 loadlock command,
the LEVI detected that the LSB read request did not get a confirmation.
This condition results in an NXM. The command on the LSB was a read,
so this was going to an LSB MEM address. Use the latched address in the
LBECSR register to determine if this is a valid address. If the address is
valid, it would appear that a memory is at fault. If the address is not
valid, this would lean toward either a software problem or a hardware ad
dress generation problem. If the address is within memory range, include
the memory registers for the associated memory controller.

Recovery procedure: None.

Restart condition: If expected, continue, else crash the system.

Error logging: The basic machine check, LSB subpacket and LMA
subpacket will be provided. Set software flag bits 96 (LSB subpacket), 97
(LMA. subpacket), 33 (DECchip 21064 loadlock), 48 (LSB ERR, read), and
57 (NXM-mem read).

Additional parsing: Memory address coITelation.

LSB Command Parity Errors

Description: An LSB command parity error was detected on a bus cycle in
which this CPU was the commander. This results in CACK HERR being
sent to the DECchip 21064, which causes a machine check through 670.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), and 33 (DECchip
21064 loadlock).

LSB Control Transmit Check Error

Description: This module detected that an LSB control line(s) it was driv
ing did not match with what it had seen on the LSB bus. This is a fatal
condition. Cache coherence could be lost.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check and an LSB snapshot is required.
Set software flag bits 96 (LSB), 48 (LSB ERR, read), 33 (DECchip 21064
loadlock), and 61 (CTCE).

Error Handling · 14-41

14-42 Error Handling

lnconsistent-LSB

Description: In an attempt to parse the possible eITor conditions for a ma
chine check while the DECchip 21064 has an outstanding loadlock, it was
found that no error cases were present which would have caused the sys
tem to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bits 33
(DECchip 21064 loadlock), 48 (LSB ERR, read), and 70 (inconsistent error).

Previous System Error Latched

Description: When parsing the reasons for a machine check while the CPU
had an outstanding load.lock request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check. It is
assumed that a previous LSB error has latched all the bus registers. Mul
tiple eITors must have occurred.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB snapshot. Set soft
ware flag bits 96 (LSB), 33 (DECchip 21064 loadlock), and 69 (previous
system error).

Read Arbitration Drop

Description: An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to arbitrate for the LSB to do an LSB write to satisfy
a store conditional request from the CPU. Arbitration drop is considered
fatal. Note that this write was going to the LSB bus because the B-cache
state for the requested data was set at Shared.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 41 (arbdrop).

React Arbitration Collision

Description: An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to satisfy a loadlock request from the CPU. Arb
itration collision is considered fatal. Note that the LEVI was attempting to
do an LSB write because the B-cache state of the requested data was
Shared.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 42 (arbcol).

LEVI 8-Cache Tag Parity Error on Lookup

Description: During a CPU-requested StoreCond command, the LEVI at
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache and the cache state it was in. The LEVI detected a parity
error while checking the tag address information in the RAMs. This is fa
tal B-cache state could be corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check will do. All error information re
quired to do diagnosis resides on this CPU. Set software flag bits 34
(DECchip 21064 StoreCond), and 43 (BTAGPE).

LEVI 8-Cache Status Parity Error on Lookup

Description: During a CPU-requested StoreCond command, the LEVI at
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache and also the cache state it was in. The LEVI detected a par
ity error while checking the status information in the RAMs. This is fatal.
B-cache state could be corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check will do. All error information re
quired to do diagnosis resides on this CPU. Set software flag bits 34
(DECchip 21064 StoreCond) and 44 (BSTATPE).

Inconsistent Error-NSES

Description: During the LEVI sourcing data to satisfy a DECchip 21064
StoreCond command, the NSES bit was set indicating that an internal
KN7AA error was detected. However, there were no supporting error bits
set to indicate this condition. This is an inconsistent error condition.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 45 (inconsistent).

LS8 Cache Protocol Error

Description: During an outstanding CPU StoreCond request, the LEVI,
when attempting to write LSB data, detected an assertion of either Shared
or Dirty by another node. This is considered fatal to the system. Cache
state is probably corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check along with an LSB
subpacket will be sufficient. Set software flag bits 96 (LSB subpacket), 49

Error Handling 14-43

14-44 Error Handling

(LSB ERR write), 34 (StoreCond), and 51/52 (Shared/Dirty error) based on
the bit(s) set.

LSB Synchronization Failure

Description: During an outstanding DECchip 21064 CPU StoreCond re
quest, the LEVI detected either a stall error, confirmation error, or com
mand/address error while the LEVI was attempting to do an LSB write.
These errors imply loss of LSB synchronization. They probably signify
that some other internal node errors have occurred elsewhere in the sys
tem. These are considered fatal errors.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error, a basic machine check with an LSB snapshot
will be fine. Set software flag bits 96 (LSB subpacket), 34 (StoreCond), 49
(LSB ERR, write), and 53/54/55 (stall, confirmation, command/address) if
appropriate.

Write LSB Nonexistent Memory

Description: During an outstanding DECchip 21064 StoreCond command,
the LEVI detected that the LSB write request did not get a confirmation.
This results in an NXM. The command on the LSB was a write, so this
was going to an LSB MEM address. Use the latched address in the
LBECSR register to determine if this is a valid address. If the address is
valid, it would appear that a memory is at fault. If the address is not
valid, this would lean toward either a software problem or a hardware ad
dress generation problem. If the address is within memory range, include
the memory registers for the associated memory controller. Note that this
DECchip 21064 store conditional request produced an LSB write because
the cache state was Shared.

Recovery procedure: None.

Restart condition: None.

Error logging: The basic machine check, LSB subpacket and LMA
subpacket will be provided. Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 34 (DECchip 21064 StoreCond), 49 (LSB ERR, write),
and 66 (NXM-mem write).

Additional parsing: Memory address correlation.

LSB Command Parity Errors

Description: An LSB command parity error was detected on an LSB bus
write cycle in which this CPU was the commander. This results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670. This LSB request resulted from a DECchip 21064 store condi
tional command in which the LEVI determined the B-cache state was set
to Shared. This is fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB subpacket. Set soft
ware flags 96 (LSB), 60 (CPE), 49 (LSB ERR, write), and 34 (StoreCond).

LSB Control Transmit Check Error

Description: This module detected that an LSB control line(s) it was driv
ing did not match with what it had seen on the LSB bus. This is a fatal
condition. Cache coherence could be lost.

Recovery procedure: None.

Restart condition: None.

Error logging: A basic machine check and an LSB snapshot is required.
Set software flag bits 96 (LSB), 49 (LSB ERR, write), 34 (DECchip 21064
StoreCond), and 61 (CTCE).

lnconsistent-LSB

Description: In an attempt to parse the possible error conditions for a ma
chine check while. theDECchip 21064 has an outstanding StoreCond, it
was found that no error cases were present which would have caused the
system to machine check.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check. Set software flag bit 34
(DECchip 21064 StoreCond), 49 (LSB ERR, write), and 70 (inconsistent er
ror).

Previous System Error Latched

Description: When parsing the reasons for a machine check while the CPU
had an outstanding StoreCond request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check. It is
assumed that a previous LSB error has latched all the bus registers. Mul
tiple errors must have occurre~.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and an LSB snapshot. Set soft
ware flag bits 96 (LSB), 34 (DECchip 21064 StoreCond), and 69 (previous
system error).

Failure Not Understoud

Description: After parsing all possible known reasons for a machine check,
it was found that there were no matches. This could be due to unexpected
system error behavior or error cases that were not understood when the
parse trees were developed. In any case, this is considered inconsistent
and will be a fatal condition.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic machine check and also an LSB subpacket. Set
software flag 96 (I.SB) and 70 (inconsistent).

Error Handling 14-45

14.3.4 Events Reported Through 660 Machine Checks

14-46 Error Handling

The KN7AA module detects eITor conditions related to the operation of the
B-cache (LSB side), the Gbus, and the LSB. These errors, when occwring
asynchronous to the operation of the DECchip 21064 processor, are re
ported through the irq_ 4 signal line on the KN7 AA module. This, in turn,
becomes an IPL31 interrupt and is vectored through offset 660. Single-bit
ECC eITors that are caused by either another CPU's B-cache or the LSB
also cause a 660 to occur.

The KN7 AA also vectors through 660 if other nodes pull the LSB ERR
line. This is the case for the IOP. EITor handling in the 660 domain in-

. eludes monitoring and error checking for !OP-detected LSB etTors. See the
I I 0 System Technical Manual for discussion IOP error parse trees.

Figure 14-6 is the parse tree associated with the 660 machine check. Fol
lowing the parse tree is a description of each type of error and, when possi
ble, a suggested recovery method.

Figure 14-6 System Machine Check 660 Parse Tree

MCHK
660

Select all ...

BIU STAT. FILL ECC <8>
!--, - -

Se/set one ...

BIU STAT.FILL IRD <11>
1-- - -

BC TAG.HIT <O> --
I-stream ECC error

Should be a 630 or 670
B-cache reference

Not BC TAG.HIT <0> _ @ L.:..:.~:;..:..:::..:..;....;..;;....;.;.__;,.__;..;.__ ________________ ~-~ A
Not BIU STAT.FILL IRD <11> D-stream ECC error__ - -

BC TAG.HIT <0> - Should be a 630 or 670
~ B-cache reference

~N~o~t~B~C=T~A~G~·~H~IT_<~O>--------------------~~~ @)

LBER.NSES <18> · Select all ...
I--

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BMAPPE <6>

-.. -
ARB drop on write

ARB collision on write

LEVI B map parity error (crash)
LMERR.PMAPPE <3:0>
1---------------~~ LEVI D map parity error (crash)

LMERR.BDATASBE <7> LEVI read of B-cache correctable
1- error

LBECR1 .CA <37:35> = Read (000) and
LBECR1 .CID= Not this node _ LEVI read of B-cache correctable

I' error from LSB REO (Dirty blk)

LBECR1 .CA <37:35> = Victim Write (011) and
LBECR1 .CID <14:11> = This_node_ LEVI LSB victim write

___. correctable error (victim block)
LBECR1 .CA <37:35> = Write (001) and
LBECR1 .CID <14:11> = This_node_ LEVI LSB write correctable error --Else - Inconsistent

BXB-0399-92

Error HandDng 14-47

Figure 14-6 System Machine Check 660 Parse Tree (Continued)

1 2 MCHK 660 Continued

LMERR.BDATADBE <8>
LEVI read of B-cache

uncorrectable error
t- LBECR1 .CA <37:35> • Read (000)

LBECR1 .CID • Not this node
and LEVI read of B-cache -60

uncorrectable error from LSB
REO (dirty block)

LBECR1 .CA <37:35> • Victim Write (0 11)
and LBECR1 .CID <14:11 > = This_~od e LEVI LSB victim write

uncorrectable error (VIC block) -
LBECR1 .CA <37:35> == Write (001) a
LBECR1 .CID <14:11 > • This_node_

nd
LEVI LSB write uncorrectable -

Else -- error

Inconsistent

LMERR.BTAGPE <4> LEVI 8-cache tag parity error
and .__, LBECR1 .CA <37:35> • Read (000)

LBECR1 .CID • Not this node · -- LEVI lookup 8-cache tag parity
error

LBECR1 .CA <37:35> • Write (001) an
LBECR1 .CID • Not_this_node

d

Else

LMERR.BSTATPE <5>
1--

...
60

--
LEVI lookup B-cache tag parity

error from LSB write request
B-cache tag parity error on LSB

write

LBECR1 .CA <37:35> • Read (000) an
LBECR1 .CID • Not this node

d

-60

LBECR1 .CA <37:35> • Write (001) a
LBECR1 .CID • Not this node -
Else --

None of above -
LBER.E c0>

LEVI lookup B-cache STS p~
error from LSB read request

nd
LEVI lookup B-cache STS parity

error from LSB write request

B-cache tag parity error on LSB
write

Inconsistent error (crash)

l LBER.SHE <14> or
LBER.DIE <15> ,,)illla LSB cache protocol error (crash)

© BXB-0400-92

14-48 Error Handllng

Figure 14-6 System Machine Check 660 Parse Tree (Continued)

1 MCHK 660 Continued t
LBER.E <0> and
LBECR1 .CID = This node

1-- -

LBER.STE <10> or LBER.CNFE <11 > or
LBER.CAE <13> --
~ER.NXAE <12>

LBECR1 .CA <37:35> = Victim write (0
LBECR1.CA <14:11> = Thi~CPU -
LBECR1 .CA <37:35> = Write(001) and
LBECR1 .CA <14:11 >=This CPU -Else --

LBER.TDE <9>
t-=

LBER.CPE <5> and
LBECR1 .CA <37:35> = Write or victim

write
~

LBER.CE <3> -~ LBER.UCE <1 > --LBER.CDPE <7>
"" -Else ---LBER.CDPE <7> and

Not LBER.TDE <9> ----
LBER.CE <3> and
~ot LBER.TDE <9>

LBECR1 .CA <37:35> = Read and
LBECR1 .CID <14:11 > =This~ CPU_ --LBECR1 .SHARED <16> ---

r 'r
CD®

Select all...

LSB synchronization failure (crash)

LSB NXM (crash)
Select one ...

11) and
NXM to LSB memory victim write

NXM to LSB memory Write

Inconsistent

LSB write control transmitter
check parity error (crash)

LSB write correctable data
transmitter check error

LSB write uncorrectable data
transmitter check error

LSB write CSR data parity error

Inconsistent

Read CSR data parity error

LSB correctable ECC error

Correctable ECC on 8-cache word
2 or 3 fill

Correctable ECC on B-cache
update

BXB-0401-92

Error Handing 14-49

Figure 14-6 System Machine Check 660 Parse Tree (Continued)

1 2 MCHK 660 Continued

LBER.UCE <1> and

14-50 Error Handling

Not LBER.TDE <9>
t-- Uncorrectable ECC error

LBECR1 .CA <37:35> • Read and
LBECR1 .CID <14:11> • Thi~CPU_ Uncorrectable ecc on B-cache
LBECR.SHARED <16> ,,_ word 2 or 3 fill_ __________ ..,.._- UncorrectableECCon~e

-,,.. update

i-L_B_E_R_.U_C_E2_<2_> _______ ~oOI'!!-~ Multiple uncorrectable ECC errors

LBER.CE2 <4>
1-------------:::~ Multiple single ECC errors
LBER.CPE2 <6>
i-------------·~-311!'.~. Multiple LSB command parity
LBER.CDPE2 <8> _ errors

1-E-ls-9-----------~--- Multiple LSB CSR data parity errors

.__-----------.;.oil!!~~ Inconsistent
LBER.E <0> and
LBECR1 .CID = IOP _node (IOP cmdr)

IOP _LBECR1 .CA <37:35>-= Write (001)

Else

IOP _LBECR1 .CA <37:35> • Read (000)

Select all .••

IOP _LBER.STE <1 O>

IOP _LBER.CAE <13>

IOP _LBER.CNFE <11>

IOP _LBER.NXAE <12>

IOP _LBER.CPE <5>

IOP _LBER.CE <3>

IOP _LBER.UCE <1>

Inconsistent

1-------------e- IOP _LBER.NXAE <12>

1-----------...,. IOP _LBER.CPE <5>

1------------..- IOP _LBER.CE <3>

1------------..-. IOP _LBER.UCE <1>
Else

Inconsistent
BXB-0402-92

Figure 14-6 System Machine Check 660 Parse Tree (Continued)

1 2 MCHK 660 Continued

1
JQP _LBECR1 .CA <37:35> =Write CSR (1

... --·---Else ... ---
-·---""" -··---""" --Else -,..

LBER.E and LBECR1.CID = Not_this_CPU
and LBER.CE <3> --
LBER.E and LBECR1.CID = Not_this_CPU
and LBER.UCE <1 > -----
Else ::::-

01)

IOP _LBER.NXAE <12>

IOP _LBER.CPE <5>

IOP _LBER.CDPE <7>

Inconsistent

IOP _LBER.CPE2 <6>

IOP _LBER.CDPE2 <8>

IOP _LBER.CE2 <4>

IOP _LBER.UCE2 <2>

IOP _LBER.NSES <18>

Inconsistent

Bystander correctable ECC error
onLSB

Bystander uncorrectable ECC
error on LSB

Inconsistent

BXB-0403-92

Error Handllng 14-51

Figure 14-6 System Machine Check 660 Parse Tree (Continued)

A

14-52 Error Handling

LSB reference I-stream
BIU_STAT.FILL CRD <9>

LBER.CE<3>

Not LBECR1 .DIRTY <17>

LBECR1 .DIRTY <17>

Else

Else

LSB reference D-stream
BIU_STAT.FILL_CRD <9>

LBER.CE<3>

Not LBECR1 .DIRTY <17>

LBECR1 .DIRTY <17>

Else

Else

Select one ...

I-stream LSB Read single bit
ECC error, memory reference

I-stream other CPU B-cache
reference

I-stream Read EDAL single bit
error (should be 630)

Inconsistent

Select one •..

0-stream memory Read ECC
error

0-stream other CPU B-cache
reference

0-stream Read EDAL single bit
error (should be 630)

Inconsistent

BXB-0404-92

I-Stream Inconsistent Error

Description: During an I-stream reference the error bit FILL_CRD was
not set, indicating that this error was not a single-bit error. This is an in
consistent state for the 660 parse flow.

Recovery procedure: None.

Restart condition:: Terminate the user or session.

Error logging: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 67.

LSB Single-Bit ECC Error, Memory Reference

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. From parsing the error, it was found that the bus cycle associated
with this error had a CE error. Also, the dirty bit in LBECRl was clear,
which implies that a memory supplied the data. Operating system soft
ware should determine which memory controller is associated with the
latched LSB address and append a memory controller subpacket from the
associated memory.

Recovery procedure: Hardware and P ALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error logging: For this error, the basic machine check entry with an LSB
subpacket and an LMA subpacket will be required. Set software flag bits
68, 96 (LSB subpacket), and 97 (LMA subpacket).

Additional parsing: Memory address correlation.

I-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. From parsing the error, it was found that it was caused by a B
cache single-bit error which was sourced from another CPU node. The
other CPU(s) will also be attempting to parse this error through its 660 er
ror handler.

Recovery procedure: Hardware and P ALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error logging: For this error the basic machine check entry with an LSB
subpacket will be required. Set software flag bits 69 and 96 (LSB
subpacket).

Additional parsing: BDATASBE parse.

I-Stream Read EDAL Single-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. This error was caused by the EDAL data path. Note that there
were no LSB errors on this data transfer. This error should be a 630!

Recovery procedure: Hardware and PALcode do recovery.

Error Handling 14-53

14-54 Error Handling

Restart condition: Restart if coITected by PALcode or hardware.

Error logging: None. Should be a 630.

0-Stream Inconsistent Error

Description: During a D-stream reference the error bit FILL_ CRD was not
set, indicating that this was not a single-bit error. This is an inconsistent
state for the 660 parse flow.

Recovery procedure: None.

Restart condition: Terminate the user or session.

Error logging: For this error, the basic machine check entry will do. All
eITor state associated with this error resides on this CPU module. Set soft
ware flag bit 77.

0-Stream LSB Read Single-Bit ECCError, Memory Reference

Description: During a D-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. From parsing the error, it was found that the bus cycle associ
ated with this eITor had a CE error. Also, the dirty bit in LBECRl was
clear, which implies that a memory supplied the data. Operating system
software should figure out which memory controller is associated with the
latehed LSB address and append a memory controller subpacket from the
associated memory. This error was caused by an LSB single-bit eITor in
which a memory was the source.

Recovery procedure: Hardware and P ALcode do recovery.

Restart condition: Restart if coITected by PALcode or hardware.

Error logging: For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required. Set soft
ware flag bits 78 and 97 (LMA subpacket).

Additional parsing: Memory address coITelation.

0-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description: During a D-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. Note that this error was caused by another CPU's B-cache. The
other CPU will also be attempting to parse this error through its 660 error
handler.

Recovery procedure: Hardware and PALcode do recovery.

Restart condition: Restart if coITected. by P ALcode or hardware.

Error logging: For this error, the basic machine check entry with an LSB
subpacket will be required. Set software flag bits 79 and 96 (LSB
subpacket).

Additional parsing: BDATASBE parse.

D-Stream Read EDAL Single-Bit Error

Description: During a D-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. Note that this error was caused by the EDAL data path. Note
that this should be a 630!

Recovery procedure: Hardware and P ALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error logging: None.

Arbitration Drop or Arbitration Collision

Description: A serious LSB failure has occurred in which one or several
nodes have asserted acknowledgment of status signals out of sequence.
This implies a possible loss of cache coherence.

Recovery procedure: No specific recovery action is called for.

Restart condition: This error cannot be recovered from. Cache status is
potentially corrupt. The current operating system session should be termi
nated.

Error logging: Log the basic 660 error log and an LSB subpacket. Set soft
ware flag 96 (LSB subpacket) and 1 (arbdrop) or 2 (arbcol), depending on
the error type.

B-Map Parity Error

Description: The LEVI detected a parity error when accessing the B-map
RAMs. This is considered fatal. Cache state could be corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 error log. All error data required is resi
dent on the CPU reporting the error. Set software flag 3.

P-Map Parity Error

Description: The LEVI detected a P-map parity error when looking up the
CPU cache status. This is considered fatal. Because the lookup was not
successful, a required invalidate might not have occurred, making the CPU
P-cache retain stale data. Cache coherence is at risk.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 error log. All error data required is resi
dent on the CPU reporting the error. Set software flag 4.

LEVI Read of B-Cache Correctable Error

Description: During an LSB transaction, it was determined by this LEVI
that this B-cache contained the latest copy of the data (dirty). This CPU's
LEVI read the cache and supplied the data to the LSB. This data con
tained a single-bit error.

Error Handling 14-55

14-56 Error Handling

Recovery procedure: For this error, log the fact that this board detected
that its cache supplied correctable data. Clear the error state.

Restart condition: After recording the error and clearing error state, re
turn to the calling routine. This error is corrected by the consumer of the
data. It is not fatal and is recoverable.

Error logging: Log a basic 660. Set software flag bit 5. Note that if the
consumer of the data was another CPU, that CPU will be going through its
machine check code thread. In that case, don't log the additional 660. Just
flag the error in the software flag bits so EEPROM logging will eventually
take place. If the consumer of the data was the IOP, log the 660 and an
LSB snapshot with a log adapter subpacket. In the latter case, make sure
software flag bits 96 (LSB subpacket), 98 (log adapter), and 5
(BDATASBE) are set.

LEVI Read of B-Cache Uncorrectable Error

Description: During an LSB transaction, it was determined by this LEVI
that this B-cache contained the latest copy of the data (dirty). This CPU's
LEVI read the cache and supplied the data to the LSB. This data con
tained a double-bit error. Note that there are three system states associ
ated with this error condition. This text applies to all of those.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660. Set software flag bit 6. Note that this is
fatal to the system. The consumer of the data, ifit was a CPU, will have
gone through the machine check code flow. In that case, don't log this 660,
because machine check will have already logged the error state. Just set
the software flag bit so EEPROM logging can take place. If the consumer
was the IOP, log the 660 and an LSB snapshot with a log adapter
subpacket. In the latter case, make sure software flag bits 96 (LSB
subpacket), 98 (log adapter), and 6 (BDATADBE) are set.

LEVI B-Cache Tag Parity Error

Description: When attempting to do a B-cache lookup, the LEVI detected
a parity error in the B-cache tag RAMs. Because the lookup failed, the
cache state could potentially be corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660. All required error state is on this CPU.
Set software flag bit 7 (BTAGPE).

LEVI B-Cache Status Parity Error

Description: When attempting to do a B-cache lookup, the LEVI detected
a parity error in the B-cache status RAMs. Because the lookup failed, the
cache state could be corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660. All required error state is on this CPU.
Set software flag bit 8 (BSTATPE).

Inconsistent Error

Description: During analysis of the error, the NSES bit was set but no
supporting error state could be found. This is inconsistent.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 and an LSB snapshot. Set software flag
bits 96 (LSB) and 9 (inconsistent NSES).

LSB Cache Protocol Error

Description: The LEVI on this CPU detected that the cache state line(s) on
the LSB were NOT set on the appropriate cycle on the LSB. This error im
plies that cache state is corrupt.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 error log with an LSB snapshot. Set software
flag bits 96 (LSB), 16 (LSB ERR), and 17 (SHE) or 18 (DIE), depending on
the error detected.

LSB Synchronization Failure

Description: The LEVI detected-the assertion of STALL, or CNF during
the wrong cycle type. Also, the KN7 AA could have detected a com
mand/address error. All these errors are considered fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB), 16 (LSB ERR), and one of-19 (STE), 20 (CNFE), or 21 (CAE),
depending on the error type.

Additional parsing: Memory address correlation.

LSB Nonexistent Memory

Description: The LEVI, upon writing data out to memory, detected that
the command/address cycle did not get a confirmation. This is an NXM er
ror and sets NXAE. The write data is lost. This is fatal.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 and an LSB subpacket. Also, if any memory er
rors exist, log the appropriate LMA subpacket. Set software flag bits 96
(LSB), 22 (NXAE), and 97 (LMA), if required.

Error Handling 14-57

14-58 Error Handling

Control Parity Error

Description: The LEVI, when outputting onto the LSB, detected that what
it sent out for command information had a parity error. Command parity
error bit was set indicating this error. If CTCE is also set, this implies
that the data driven from the module to the bus changed. Something di
rectly on the bus broke the data. If CTCE is not set, it can be assumed
that.this module has caused the failure.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 and an LSB subpacket. Set software flag bits 96
(LSB), 16 (LSB ERR), and 23 (CPE).

LSB Correctable Error

Description: The LEVI.chips detected a single-bit error in the data that
this node was transmitting on the bus. The consumer of the data does cor
rect this data eITOr. Also, ifDTCE is set, this implies that something on
the bus broke the data. If DTCE is not set, this implies that this module
drove the bad data onto the bus.

Recovery procedure: Log the event and clear the error bits.

Restart condition: Restart. The error is recoverable from this node's point
of view.

Error logging: Log the 660 and the LSB subpacket. If another CPU was
the consumer, it will have taken a machine check. If this is the case, do
not log this 660, just record the error into the software flags. If a CPU was
not the consumer, make sme you log this and set software flags 96 (LSB),
16 (LSB ERR), and 24 (CE). Also, if the IOP was the consumer, a log
adapter packet should be provided. Set software flag bit 98 Oog adapter).

Additional parsing: Memory address correlation.

LSB Uncorrectable Error

Description: The LEVI chips detected that when this node was transmit
ting on the bus the data had a double-bit eITOr. The consumer of the data
cannot coITect this error. Also, if DTCE is set, this implies that something
on the bus broke the data. If DTCE is not set, this implies that this mod
ule drove the bad data onto the bus.

Recovery procedure: None.

Res'tart condition: None.

Error logging: Log the 660 and an LSB subpacket. If another CPU was
the consumer, it will have taken a machine check. If this is the case, do
not log this 660, just record the error into the software flags. If a CPU was
not the consumer, make sure you log this and set software flags 96 (LSB),
16 (LSB ERR), and 25 (UCE). Also, if the IOP was the consumer, a log
adapter packet should be provided within this 660 error log.

Additional parsing: Memory address correlation.

Write CSR Data Parity Error

Description: During a write to an LSB I/O space address, a CSR data par
ity error was detected. This is considered fatal. Also, if DTCE is set, this
implies that something on the bus broke the data. If DTCE is not set, this
implies that this module drove the bad data onto the bus.

Recovery procedure: None.

Restart condition: None.

Error logging: Log the 660 and also an LSB subpacket. Set software flag
bits 96 (LSB), 16 (LSB ERR), and 26 (CDPE).

Additional parsing: Memory address correlation.

Read CSR Data Parity Error

Description: During a read from an LSB I/O space address, a CSR data
parity error was· detected. This is considered fatal. Note that if TDE is
also set, the read was probably to our own CSR I/O address space.

Recovery procedure: None.

Restart condition: None.

Error logging: Log the 660 and also an LSB subpacket. Set software flag
bits 96 (LSB), 16 (LSB ERR), and 26 (CDPE).

Additional parsing: IJO address correlation.

B-Cache Fill 2/3 Correctable Error

Description: During a CPU read command, the first two (target) octawords
were received without error and proceeded into the B-cache and CPU as
fill data. The remaining two octawords off the bus had a single-bit ECC
error. This error is triggered as a 660 because the first words were re
ceived by the CPU correctly without error. The LEVI signals this error via
the IRQ4 line. In this case the B-cache has a single-bit error resident.

Recovery procedure: You can choose to do nothing and then expect to see a
machine check if the CPU references this single-bit location (not the pref
erable course) or the B-cache block can be invalidated or flushed back to
memory if it has become dirty. In either case, clear the error bits.

Restart condition: Continue, this error is recoverable.

Error logging: Log a basic 660 with an LSB snapshot. Set software flag
bits 96 (LSB), 16 (LSB ERR), and 27 CB-cache fill 2-3 CE).

Additional parsing: Memory address correlation.

Bystander Correctable ECC

Description: For this error, this LEVI has detected the correctable ECC er
ror on the LSB. This node was not a participant in this transaction; it was
a bystander.

Recovery procedure: Dismiss this error; clear the error bits.

Restart condition: Return. This node was not involved.

Error logging: No error logging is required. An error log entry occurs from
either a CPU that took a machine check or from the IOP flows within this

Error Handling 14-59

14-60 Error Handling

660 parse tree. Just set software flag 28 (bystander CE) for EEPROM log
ging information.

B-Cache Fill 2/3 Uncorrectable Error

Description: During a CPU read command, the first two (target) octawords
were received without error and proceeded into the B-cache and CPU as
fill data. The remaining two octawords off the bus had a double-bit ECC
error. This error is triggered as a 660 because the first words were re
ceived by the CPU correctly without error. The LEVI signals this error via
the IRQ4 line. In this case our B-cache has a double-bit error now resi
dent.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 and an LSB subpacket. If the data source was
memory, log an LMA subpacket from the associated memory controller.
Set software flags 96 (LSB), 97 (LMA), 16 (LSB ERR), and 29 (B-cache fill
2-3 UCE).

Additional parsing: Memory address correlation.

Bystander Uncorrectable ECC

Description: For this error, this LEVI has detected the uncorrectable ECC
error on the LSB. This node was not a participant in this transaction; it
was a bystander.

Recovery procedure: None. But dismiss this, because this node was not in
volved. Clear the error bits.

Restart condition: None.

Error logging: No logging needed. The hardware that initiated this trans
action will log the error. Ifit was a CPU, we'll get a machine check. Ifit
was the IOP, then the error will be found by another branch farther down
the 660 parse tree. Just set software flag 30 (bystander UCE) for
EEPROM logging reasons.

LSB Second Errors

Description: Second error occurrences indicate serious system errors. Ex
cept for CE2, all are considered fatal. For CE2, if the system has a rev 2
DECchip 21064, this is fatal. If the system has rev 3 DECchip 21064, all
occurrences of CE are recovered by hardware. Note that when these occur,
the error state from the subsequent occurrence(s) are lost. The source and
destination of the CE errors cannot be determined.

Recovery procedure: For CE2, rev 2 DECchip 21064, none; rev 3 DECchip
21064, continue; all others, none.

Restart condition: For CE2, rev 2 DECchip 21064, none; rev 3 DECchip
21064, continue; all others, none.

Error logging: There is no specific error logging required. The parse tree
branch associated with the first occurrence of the error will indicate the
proper error logging for the type of error encountered. Just set software
flag 32 (UCE2), 33 (CE2), 34 (CPE2), or 35 (CDPE2), as appropriate, to in
dicate the occurrence of the second error.

Inconsistent State

Description: When parsing for a 660 reason, no LSB reason was found.
This is an inconsistent state.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 with an LSB snapshot. Set software flag bits 96
(LSB), 16 (LSB ERR), and 31 (LBER_Inconsistent).

IOP Commander

Description: The LSB error indicates that the commander node is the IOP.
The rest of the errors parsed after this point deal with the error state from
the IOP's viewpoint. Up to this point in the parse tree, any branch that
was true should have been associated with a CPU being a responder or a
bystander to the error detected by the IOP. In the case of a CPU by
stander, the IOP error should have had the memory as the responder. The
IOP flows will look for memory errors and report accordingly.

Recovery procedure: None.

Restart condition: None.

Error logging: None. Error logging associated with the IOP l.SB detected
errors will be specified farther down the parse tree. Just set software flag
bit 36 (IOP CMDR) to highlight the IOP as the commander.

IOP-Detected LSB Synchronization Errors

Description: During an LSB command in which the IOP was the com
mander, one of the LSB synchronization errors occurred. Just as with the
CPU, these errors are considered fatal. Stall error, command/address er
ror, and confirmation error are the candidates for this class of error.

Recovery procedure: None.

Restart condition: None.

Error logging: For this error log a basic 660 with an LSB subpacket and a
log adapter subpacket. Set software flag bits 96 (LSB subpacket), 98 (log
adapter), 36 (IOP CMDR), and one of 40 (IOP Stall Err), 41 (IOP CAE), or
42 (IOP CNFE), depending on the type of LSB synchronization error.

IOP LSB Nonexistent Memory

Description: During an LSB command in which the IOP was the com
mander, the command/address cycle sent out did not get a confirmation.
This results in an LSB NXM:. When this occurs, one of following three cy
cles could be present on the LSB bus. First, a write cycle. For this the IOP
was attempting to write to LSB memory. The latched LBECRO will iden
tify what address the write was trying to access. Second, the IOP could be
reading from memory. In this case the latched LBECRO identifies which
address was being read from. Remember that the memory is the node that
always does the confirmation to the command/address cycle, even ifthe
data will be returned by some dirty B-cache. Third, the cycle could be a
CSR write. This would be true ifthe IOP is writing to the Interrupt regis
ter. All cases are considered fatal. Finally, if the error shows up with

Error Handling 14-61

14-62 Error Handling

some other command type, this error state is considered inconsistent. Note
that this error could also be caused by some 1/0 bus adapter supplying an
out of range memory address. If this is the case, suspect the Xl\U controller
first, the DWLMA second. If the address is within memory space, then
suspect the IOP and/or corresponding LSB memory. Also, if the bus type is
an LSB read, the XMI l/O controller that initiated this transaction will be
returned an RER error from the DWLMA. The operating system must do
an XMI snapshot so the controller that initiated this transfer can be identi
fied. For LSB writes, the information regarding the initiating adapter is
lost. No XMI subpacket is required ifthe LSB bus transaction is a write.
For systems with multiple hoses (XMls), software will need to find the
node on which the bus has theXBER<ltER> bit set and supply anXMI
snapshot from that XMI bus.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 error log with an LSB subpacket. Set software
flag bits 96 (LSB), 36 (IOP CMDR), 48 (IOP NXAE), and one of 45 (IOP
LSB Write), 46-(IOP LSB Read), or 47 (IOP LSB Write CSR), depending on
the type of command. If the cycle type is inconsistent, set software flag 49
(IOP NXAE Inconsistent). If the LSB cycle type is a read, log an XMI
subpacket and set software flag 112 (XMI subpacket).

Additional parsing: Memory address correlation; XMI RER parsing to
find the XMI RER only when cycle type is a read.

IOP LSB Command Parity Error

Description: During an LSB command in which the IOP was the com
mander, the command/address cycle that was sent out was determined to
have bad parity. This results in LSB CPE being set. When this occurs,
with the IOP being the commander, one of following three cycles could be
present on the LSB bus. First, a write cycle. For this the IOP was at
tempting to write to LSB memory. Second, the IOP could be reading from
memory. And third, the cycle could be a CSR write. This would be true if
the IOP is writing to the InteITUpt register. All cases are considered fatal.
Finally, if the error shows up with some other command type, this error
state is considered inconsistent.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 error log with an LSB subpacket. Set software
flag bits 96 (LSB), 36 (IOP CMDR), 50 (IOP CPE), and one of 45 (IOP LSB
Write), 46 (IOP LSB Read), or 47 (!OP LSB Write CSR), depending on the
type of command. If the LSB command is not one of those three, set 51
(IOP CPE inconsistent).

IOP LSB CSR Data Parity Error

Description: During a CSR write to the Interrupt register, the IOP de
tected that the data it placed on the data lines had a parity error. This is a
fatal condition.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a 660 and an LSB snapshot. Set software flag bits 96
(LSB), 36 (IOP CMDR), 47 (IOP LSB Write CSR) and 52 (IOP CDPE).

IOP LSB Corrected ECC Error

Description: During an LSB transaction in which the IOP was the com
mander, the data cycle that was sent out was determined to have a single
bit ECC error. This results in LSB CE being set. When this occurs with
the IOP being the commander, one of the following two cycles could be pre
sent on the LSB bus: a write cycle ifthe IOP was attempting to write to
LSB memory; or a read cycle if the IOP was attempting a read from mem
ory. In all cases, the error has been recovered by the hardware. In the
write case, the memory corrects the error when converting the data from
32-bit LSB ECC to 64-bit memory ECC. In the read case, the IOP corrects
the data before it continues onto the Vortex bus (see the I /0 System Tech
nical Manual) an~ down the hose. In the read case, a CPU B-cache could
have been the supplier of the data. Note that there could be many, if not
all CPUs trying to parse this error. One will have BDATASBE set in its
LMERR register if this was B-cache supplied data.

Recovery procedure: No specific software recovery. The hardware corrects
these errors.

Restart condition: Log the error and continue.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB), 36 (IOP CMDR), 53 (IOP CE), and 45 (IOP LSB Write) or 46
(IOP LSB Read), depending on the type of command.

IOP LSB Corrected ECC Error (Dirty)

Description: During an LSB transaction in which the IOP was the com
mander, the data cycle sent out was determined to have a single-bit ECC
error. This results in LSB CE being set. When this occurs with the IOP
being the commander, one of the following two cycles could be present on
the LSB bus: a write cycle if the IOP was attempting to write to LSB mem
ory; or a read cycle if the IOP was attempting a read from memory. In all
cases, the error has been recovered by the hardware. In the write case,.the
memory corrects the error when converting the data from 32-bit LSB ECC
to 64-bit memory ECC. In the read case, the IOP corrects the data before
it continues onto the Vortex bus and down the hose. In the read case, a
CPU B-cache could have been the supplier of the data. Note that there
could be many, if not all CPUs trying to parse this error. One will have
BDATASBE set in its LMERR register if this was B-cache supplied data.

Recovery procedure: No specific software recovery. The hardware corrects
these errors.

Restart condition: Log the error and and continue.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB), 36 (IOP CMDR), 53 (IOP CE), and 45 (IOP LSB Write) or 46
(IOP LSB Read), depending on the type of command.

Additional parsing: BDATASBE.

Error Handling 14-63

14-64 Error Handling

IOP LSB Uncorrectable ECC Error

Description: During an LSB transaction in which the IOP was the com
mander, the data cycle sent out was determined to have a double-bit ECC
error. This results in LSB UCE being set. When this occurs with the IOP
being the commander, one of following two cycles could be present on the
LSB bus. First, a write cycle. For this, the IOP was attempting to write to
LSB memory. Second, the IOP could be reading from memory. In all
cases, the error cannot be recovered from. In the write case, the memory
inverts ECC when converting the data from 32-bit LSB ECC to 64-bit
memory ECC. It will show up bad on a later read of that location. In the
read case, the IOP detects the error and sets the UCE bit. The data does
not go down the hose. In the read case, a CPU B-cache could have been
the supplier of the data. Note that there could be many, if not all CPUs
trying to parse this error. One will have BDATADBE set in its LMERR
register if this was B-cache supplied data.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB subpacket), 36 (IOP CMDR), 54 (IOP UCE), and 45 (IOP LSB
Write) or 46 (IOP LSB Read), depending on the type of command.

Additional parsing: Memory address correlation.

LSB Uncorrectable ECC Error (Dirty)

Description: During an LSB transaction in which the IOP was the com
mander, the data cycle sent out was determined to have a double-bit ECC
error. This results in LSB UCE being set. When this occurs with the IOP
being the commander, one of following two cycles could be present on the
LSB bus. First, a write cycle. For this, the IOP was attempting to write to
LSB memory. Second, the IOP could be reading from memory. In all
cases, the error cannot be recovered from. In the write case, the memory
inverts ECC when converting the data from 32-bit LSB ECC to 64-bit
memory ECG. It will show up bad on a later read of that location. In the
read case, the IOP detects the error and sets the UCE bit. The data does
not go down the hose. In the read case, a CPU B-cache could have been the
supplier of the data, Note that there could be many, if not all CPUs trying
to parse this error. One will have BDATADBE set in its LMERR register
if this was B-cache supplied data.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB subpacket), 36 (IOP CMDR), 54 (IOP UCE), and 45 (!OP LSB
Write) or 46 (IOP LSB Read), depending on the type of command.

Additional parsing: BDATADBE.

IOP LSB Inconsistent Error

Description: During parsing the IOP LSB errors, it was determined that
no supporting error bits were set to indicate why this error occurred. This
is determined to be an inconsistent state.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB subpacket), 98 Oog adapter), 36 (IOP CMDR), 55 (IOP LSB
inconsistent state), and 45 (IOP LSB Write) or 46 (IOP LSB Read), depend
ing on the type of command.

IOP Multiple Data Errors

Description: When parsing the LSB errors, note the occUITence of these
LSB multiple error bits. Except for CE2, in all cases, if these are set, the
error conditions are not recoverable. Error state of the subsequent occur
rence(s) has been lost. For CE2 errors, ifthe system has a rev 2 DECchip
21064, it is NOT recoverable. If the system has a rev 3 DECchip 21064, it
is recoverable.

Recovery procedure: For CE2, rev 2 DECcbip 21064, none; rev 3 DECchip
21064, continue; all others, none.

Restart condition: For CE2, rev 2 DECchip 21064, none; rev 3 DECchip
21064, continue; all others, none.

Error logging: No specific error logging required. Log per the parse tree
branch that was true above. However, set software flag 56 (IOP CPE2),
57 (IOP CDPE2), 58 (IOP CE2), or 59 (IOP UCE2) as appropriate, to show
the occurrence of this error.

IOP Node-Specific Error Summary

Description: If this condition is met, the implication is that there is an in
ternal IOP error that needs to be serviced. If this is the case, there will be
an interrupt IPL 17 pending. It is suggested that this error case be flagged
in the error log but be handled by the interrupt IPLl 7 IOP service routine.

Recovery procedure: Clean up the LSB errors, but let the NSES errors be
parsed by the IPL 17 routine when that is called.

Restart condition: None.

Error logging: Log a 660 and an LSB subpacket along with a log adapter
subpacket. Set software flags 96 (LSB subpacket), 98 Oog adapter), 36
(IOP CMDR), and 60 (IOP NSES).

Additional parsing: Eventually parse the subpackets.

Interrupt 660 Inconsistent Error

Description: This is a catchall for the case when all the error parsing fails
to find a failure. Should never get here.

Recovery procedure: None.

Restart condition: None.

Error logging: Log a basic 660 with an LSB subpacket. Set software flag
bits 96 (LSB subpacket) and 61 (660 Inconsistent).

Error Handling 14-65

14.3.5 Events Reported Through Entry 630

The KN'7 AA module detects error conditions related to the operation of the
B-cache (LSB side), the Gbus, and the LSB. These errors, when occmring
asynchronous to the operation of the DECchip 21064 processor, are re
ported through the irq_ 4 signal line on the KN7 AA module. This, in turn,
becomes an IPL31 intenupt and is vectored through offset 660. Single-bit
ECC errors that are caused by either another CPU's B-cache or the LSB
also cause a 660 to occur.

The KN7 AA also vectors through 660 if other nodes assert the LSB ERR
signal. This is the case for the IOP. Error handling in the 660 domain in
cludes monitoring and error checking for I OP-detected LSB errors. See the
I I 0 System Techni.cal Manual for discussion IOP error parse trees.

Figure 14-6 is the parse tree associated with the 660 machine check. Fol
lowing the parse tree is a description of each type of error and, when possi
ble, a suggested recovery method.

The KN7AA PALcode entry 630 pertains to all DECchip 21064 processor
detected single-bit ECC errors that occur when a P-cache fill is in progress
and the error occurs on this module. Two situations cause this to occur:
first, when the B-cache is the source; second, when the EDAL causes the
error. Upon detection of this error, the system jumps to PALcode, which
has the routines required to coordinate recovery of this error based on the
two DECchip 21064 revisions, 2.1 or 3.0. Note that if the source of the er
rors is an LSB request (that is, LBER<E> is set), then the single-bit error
is handled in the 660 parse trees. The LSB error causes the 660 error in
terrupt and it takes precedence over the 630. For these cases, a 660 error
log will be provided. The 630 will be dismissed and will not produce a 630
error log.

14.3.5. 1 DECchip 21064 Revision 2. 1

If the DECchip 21064 processor is at revision 2.1, the recovery is tried at
the PALcode level. For rev 2.1DECcbip21064 processors, recovery will
only occur for single-bit ECC errors detected during I-stream reads. All
other single-bit ECC errors detected by the CPU will result in no correc
tion being performed. These uncorrected errors will produce a 670 ma
chine check. Those errors must be parsed with the 670 parse tree.

14.3.5.2' DECchip 21064-C Revision 3.0

14-66 Error Handling

For revision 3.0 DECchip 21064s, single-bit ECC recovery is perl'ormed by
the hardware. For single-bit errors on I-cache fills which corrupt more
than a single quadword of the cache filL the DECchip 21064 traps to
PALcode and attempts to recover by flushing the I-cache. All errors that
are not recoverable will produce a 670 machine check.

Figure 14-7 shows the PALcode entry 630 parse tree.

Figure 14-7 PALcode 630 Parse Tree

Select one ...

BIU_STAT.FILL_CRD <9>

BIU_STAT.FILL_IRD <11 >

BC_ TAG.HIT <0>

Not BC_TAG.HIT <0>

Not BIU_STAT.FILL_IRD <11 >

BC_TAG.HIT <0>

Not BC_ TAG.HIT <0>

Else

Select one ...

I-stream ECC error

I-stream read B-cache single-bit
ECC error

I-stream read EDAL single-bit
error

0-stream ECC error

I-stream read B-cache single-bit
ECC error

I-stream read EDAL single-bit
error

Inconsistent (no soft error)

BXB-0423-92

I-Stream Read B-Cache Single-Bit ECC Error

Description: During an I-stream reference with a B-cache hit, the
DECchip 21064 detected a correctable ECC error. The failing syndrome is
latched in the FILL_SYND register.

Recovery procedure: Hardware and P ALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error loggi,ng: For this error, the basic machine check entry will do. All
error state associated with this error resides on this CPU module. Set soft
ware flag bit 6. Also, log the 630 machine check stack frame to the
EEPROM logging area.

I-Stream Read EDAL Single-Bit ECC Error

Description: During an I-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. Note that this error was caused by the EDAL data path and no
IBB errors occurred on this data transfer.

Recovery procedure: hardware and PALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 11. Log the 630 stack to the EEPROM area.

D-Stream Read B-Cache Single-Bit ECC Error

Description: During a D-stream reference with a B-cache hit, the DECehip
21064 detected a correctable ECC error. The failing syndrome is latched in
the FILL_SYND register.

Recovery procedure: Hardware and PALcode do recovery.

Restart condition: Restart if corrected by PALcode or hardware.

Error Handing 14-6 7

14-68 Error Handling

Error logging: For this error, the basic machine check entry will do. AU
eITor state associated with this error resides on this CPU module. Set soft
ware flag bit 16. Log the 630 stack frame to the EEPROM area.

D-Stream Read EDAL Single-Bit Error

Description: During a D-stream reference the DECchip 21064 detected a
correctable ECC error. The failing syndrome is latched in the FILL_SYND
register. Note that this eITor was caused by the EDAL data path.

Recovery procedure: Hardware and PALcode do recovery.

Restart condition: Restart if coITected by PALcode or hardware.

Error logging: For this error, the basic machine check entry is fine. Set
software flag bit 21. Log the 630 stack to the EEPROM area.

A
Aborts, 4-13
Abox, 4-6
Abox Control Register, 4-64
ABOX_CTL IPR, 4-64
ABX, 10-16
Access synchronization, 6-6
Access types, xiii
Access Violation bit, 4-57
Access violation fault

DEC OSF/1 AXP, 12-6
Open VMS AXP, 11-7

Acronyms, xiii
ACV,4-57
ADDRESS, 4-58, 4-63
Address bits, BIU, 4-58
Address bits, FILL_ADDR, 4-63
Address path, LEVI, 6-2
Address space, 2-1
Address space mapping, 6-7
Address Space Match bit, DEC OSF/1 AXP,

12-5
Address Space Match bit, Open VMS AXP,

11-5
Address space numbers, DEC OSF/1 AXP,

12-9
Address space numbers, Open VMS AXP,

11-10
Address Space Number bits, 4-32
Address translation, DEC OSF/1 AXP, 12-6
Address translation, Open VMS AXP, 11-7
Address Width bits, 9-11
Alpha AXP architecture, 3-1
Alpha AXP IPRs, architecturally defined, 3-5
ALT, 10-17
Alternate Mode bits, 4-66
Alternate Processor Mode Register, 4-66
ALT_MODE IPR, 4-66
AM,4-66
ARBCOL, 9-24
ARBDROP, 9-24
Arbitration Collision bit, 9-24
Arbitration Drop bit, 9-24
Arbitration drop or arbitration collision, 14-55

Index

Arbitration, boot processor, 13-3
Arbitration, LSB, 6-6
ASM, DEC OSF/1 AXP, 12-5
ASM, OpenVMSAXP, 11-5
ASN, 4-32
AST,11-14
ASTER IPR, 4-51
ASTRRIPR,4-47
ASTRR<3:0>, 4-45, 4-49
AST Interrupt Enable bits, 4-49
AST Interrupt Enable Register, 4-51
AST Request bit, 4-45
Asynchronous exceptions, conditions for

avoiding, 10-11
Asynchronous system trap, 11-14
Asynchronous system trap, Open VMS AXP,

11-14
Asynchronous Trap Request bit, 4-45
Asynchronous Trap Request Register, 4-47
ATR, 4-45
AW, 9-11

B
Backmaps, cache, 5-6
Backup cache description, 5-2
BAD, 7-17
Bad bit, 7-17
Bad Data Parity bit, 4-69
Bad Tag Control Parity bit, 4-70
BAD_DP, 4-69
BAD_TCP, 4-70
Base addresses, 2-3, 9-2
BC_EN, 4-71
BC_HIT, 4-71
BC_PA_DIS, 4-69
BC_RD_SPD, 4-71
BC_SIZE, 4-70
BC_TAGIPR, 4-74
BC_TCPERR, 4-61
BC_TPERR, 4-61
BC_ WE_CTL, 4-70
BC_WR_SPD, 4-71
BDATADBE, 9-25
BDATASBE, 9-25

lndex-1

BHE, 4-32
BIU, 4-7
BIU Address Register, 4-58
BIU Command bits, 4-60
BIU Control Register, 4-69
BIU Hard Error bit, 4-61
BIU inconsistent error, 14-22
BIU second error, 14-21
BIU Soft Error bit, 4-61
BIU Status Register, 4-59
BIU_ADDR IPR, 4-58
BIU_CMD, 4-60
BIU_CTL IPR, 4-69
BIU_HERR, 4-61
BIU_SERR, 4-61
BIU_STAT IPR, 4-59
Block diagram

CPU module, 1-2
system, 1-1

BMAPP, 9-32
BMAPPE, 9-25
Boot processor arbitration, 13-3
Boot processor system setup, 13-3
BPE,4-32 .
Branch Prediction Enable bit, 4-32
Branch prediction logic, 4-3
Broadcastspace,2-4
BSIZE, 9-21, 9-23
BSTATP, 9-32
BSTATPE, 9-25
BTAGP, 9-32
BTAGPE, 9-25
Bus Error Command Register, 9-14
Bus Error Register, 9-6
Bus Error Syndrome Register, 9-12
Bus interface unit, 4-7
Bystander correctable ECC, 14-59
Bystander uncorrectable ECC, 14-60
B-cache

emulation of main memory, 9-29
force hit mode, 5-7
introduction, 1-3
operating modes, 5-7
size, 4-70
states, 5-2
state changes, 5-3

B-Cache Data Single-Bit Error bit, 9-25
B-cache description, 5-2
B-Cache Enable bit, 4-71
B-cache fill 2/3

correctable error, 14-59
uncorrectable error, 14-60

B-Cache Force Hit bit, 4-71
B-Cache Physical Address Disable bits, 4-69
B-Cache Read Speed bits, 4-71
B-Cache Size bits, 9-21, 9-23

lndex-2

B-Cache Status Store Parity Error bit, 9-25
B-Cache Tag Control Parity Error bit, 4-61
B-Cache Tag Parity Error bit, 4-61
B-Cache Tag Register, 4-74
B-Cache Tag Store Parity Error bit, 9-25
B-Cache Write Enable Control bits, 4-70
B-Cache Write Speed bits, 4-71
B-map, 5-6
B-Map Parity bit, 9-32
B-Map parity error, 14-55
B-Map Parity Error bit, 9-25
B-Stat Parity bit, 9-32
B-Tag Parity bit, 9-32

c
CA, 9-14, 9-15
Cache backmaps, 5-6
Cache fill second error, 14-21
Cache initialization, 5-8
Cache organization, 5-1
Cache protocol error, 14-29, 14-34, 14-35,

14-37, 14-40, 14-43, 14-57
CACK_HERR, BIU error handling, 14-4
CACK_SERR, BIU enor handling, 14-4
CAE, 9-7
CALL_PAL instruction, 10-3
CC IPR, 4-67
CC_CTL IPR, 4-68
CDPE2, 9-8
CE, 9-8
CEEN, 9-9
CE2, 9-8
Changes to PTEs, OpenVMS.AXP, 11-5
CID, 9-15
CID3, 9-15
Clear Lock bit, 9-21, 9-22
Clear Serial Line Interrupt Register, 4-52
CLR_LOCK, 9-21, 9-22
CMD, 9-15
CNF, 9-15
CNFE, 9-7
CNF Error bit, 9-7
Code for 3-cycle delay, 10-7
Commander ID bits, 9-15
Command.er ID 3 bits, 9-15
Command bits, 9-15
Command parity error, 14-35
Command parity errors, 14-30, 14-36, 14-38,

14-41, 14-44
Command Parity Error bit, 9-8
Command/Address bits, 9-14, 9-15
Command/Address Error bit, 9-7
Configuration Register, 9-9
Confirmation bit, 9-15
Console Communication Data 0 bits, 9-33

Console Communication Data 1 bits, 9-33
Console Communication Register, 9-33
Console entry, 13-2
Console hardware, 7-1
Console program invocation, 7-4
Console registers, 7-5
Context switching, Open VMS AXP, 11-14
Controller, 6-5
Controller, LSB, 6-5
Control parity error, 14-58
Control transmit check elTor, 14-31, 14-35,

14-37, 14-41, 14-45
Control Transmit Check Error bit, 9-7
Conventions, xii
CONWIN Low bit, 7-9
CONWIN_L, 7-9
CON_COM_DATAO, ·g.33
CON_COM_DATAl, 9-33
CotTectable Data EtTor bit, 9-8
CotTectable Error Detection Enable bit, 9-9
Correctable Read bit, 4-45, 4-52
CotTectable Read EtTor Interrupt Enable bit,

4-49
Corrected Read Data Interrupt Enable bit,

4-65
CPE2, 9-8
CPU chip overview, 4-1
CPU interrupt levels, 8-4
CPU module

block diagram, 1-2
register list, 9-3
self-test, 13-2

CPU Register
Bus Error, 9-6
Bus Error Command, 9-14
Bus Error Syndrome, 9-12
Configuration, 9-9
Console Communication, 9-33
Device, 9-5
Diagnostic Control, 9-27
Interprocessor Interrupt, 9-18
1/0 Interrupt, 9-16
Last Miss Address, 9-43
Lock Address, 9-26
Memory Mapping, 9-10
Mode, 9-20
Module Error, 9-24
Performance Counter, 9-42
Performance Counter Control, 9-34
Tag Address, 9-30
Tag Write Data, 9-31

CPU registers, 9-1
CPU self-test, 13-2
CPUO, 9-16
CPUO 1/0 Interrupt bits, 9-16
CPUl 1/0 Interrupt bits, 9-16

CPU2, 9-16
CPU2 l/O Interrupt bits, 9-16
CPU3, 9-16
CPU3 l/O Interrupt bits, 9-16
CRD_EN, 4-65
CRE,4-49
CRR, 4-45
CSR data parity error, 14-31
CSR Data Parity EtTor bit, 9-8
CSR map, 2-2
CSR write non-EX address, 14-38
CTCE, 9-7
Ctrl/P character detection, 7-4
Ctrl/P Halt bit, 7-14
Ctrl/P Halt Enable bit, 7-10·
Ctrl/P _HALT, 7-14
Cycle Counter Control Register, 4-68
Cycle Counter Register, 4-67

D
Data Cycle bits, 9-15
Data path, LEVI, 6-3
Data structure, mailbox, 8-1
Data translation buffer, 4-6
Data Translation Buffer ASM Register, 4-28
Data Translation Buffer Invalidate Single

Register, 4-28
Data Translation Buffer PTE Register, 4-55
Data Translation Buffer Pl'E_TEMP Register,

4-56
Data Translation Buffer ZAP Register, 4-28
Data Transmit Check Error bit, 9-7
Data types, 3-1
DCYCLE, 9-15
DC_EN,4-64
DC_FIDT, 4-64
DC_HIT, 4-62
DC_STAT IPR, 4-62
DECchip 21064

action on errors, 14-2
block diagram, 4-2
introduction, 1-2
overview, 4-1

DEC OSF/1 AXP memory management, 12-1
DEC OSF/1 AXP process structure, 12-10
DEC OSF/1 AXP system support, 12-1
Delay, example, 10-11, 10-12
Device interrupt handling, 8-3
Device Register, 9-5
Device Revision bits, 9-5
Device Type bits, 9-5
DI, 4-32
Diagnostic Control Register, 9-27
Diagnostic notes, 9-29
DIE, 9-7

lndex-3

DIRTY, 9-15, 9-31
Dirty bit, 9-15, 9-31
DISP, 10-17
Divide by Zero bit, 4-42
Documentation, related, xiv
Document structure, xi
Double-bit D-stream ECC error, 14-3
Double-bit I-stream ECC error, 14-3
DREV, 9-5
DTBASM IPR, 4-28
DTBIS IPR, 4-28
DTBZAP IPR, 4-28
DTB clearing, example, 10-10
DTB_PTE IPR, 4-55
DTB_PTE_TEMP IPR, 4-56
DTCE, 9-7
DTYPE, 9-5
Dual Issue bit, 4-32
Dual-issue table, 4-18
Dual-ported access synchronization, 6-6
DUARTO Interrupt bit, 7-13
DUARTO_INT, 7-13
DUARTl Interrupt bit, 7-13
DUARTl_INT, 7-13
DZE, 4-42
D-Cache Enable bit, 4-64
D-Cache Force Hit bit, 4-64
D-Cache Hit bit, 4-62
D-Cache Status Register, 4-62
D-stream inconsistent error, 14-54
D-stream LSB read single-bit ECC error,

memory reference, 14-54
D-stream LSB single-bit ECC error, memory

reference, 14-26
D-stream parity error, BIU error handling,

14-5
D-stream read B-cache double-bit ECC error,

14-26
D-stream read B-cache single-bit ECC error,

14-25, 14-67
D-stream read EDAL double-bit ECC error,

14-28
D-stream read EDAL single-bit ECC error,

14-27' 14-55, 14-68
D-stream read LSB double-bit ECC error,

14-27
D-stream read memory double-bit ECC error,

14-27
D-stream read other CPU B-cache double-bit

ECC error, 14-26, 14-27
D-stream read other CPU B-cache single-bit

ECC error, 14-54

E
E, 9-8

lndex-4

Ebox, 4-6
ECC, 4-71
EEPROM, 7-3
EMD_EN, 4-64
EN, 9-11
Enable bit, 9-11
Endian Mode Enable bit, 4-64
Entry points, PALcode, 10-4
ERE, Open VMS AXP, 11-4
Error bit, 9-8
Error Checking and Correction bit, 4-71
Error entry points, 14-1
Error handling, 14-1
Error log packets, 14-6
Error log packet format, 630 correctable error,

14-9
Error log packet format, 670/660 machine

check, 14-7
Error syndromes, 4-73
Event Count 0 bits, 9-42
Event Count 1bits,9-42
EV_COUNTO, 9-42
EV_COUNTl, 9-42
EWE, OpenVMSAXP, 11-4
Exceptions and interrupts, 4-21
Exception Address Register, 4-37
Exception Summary Register, 4-41
EXC_ADDR IPR, 4-37
EXC_ADDR IPR usage, 4-37
EXC_SUM, 4-11
EXC_SUM IPR, 4-41
Executive Read Enable bit, Open VMS AXP,

11-4
Executive Write Enable bit, Open VMS .AXP,

11-4
Expander Select bits, 7-18
EXPSEL, 7-18

F
Failure not understood, 14-45
Fatal 1bit,4-60
Fatal 2 bit, 4-60
FATAL!, 4-60
FATAL2, 4-60
Fault on Execute bit, DEC OSF/1 AXP, 12-5
Fault on Execute bit, Open VMS AXP, 11-5
Fault on Read bit, 4-57
Fault on Read bit, DEC OSF/1 AXP, 12-5
Fault on Read bit, Open VMS AXP, 11-5
Fault on Write bit, 4-57
Fault on Write bit, DEC OSF/1 AX.P, 12-5
Fault on Write bit, Open VMS AXP, 11-5
FBCP, 9-28
FBDP, 9-28
Fbox, 4-9

FDBE, 9-28
FDIRTY, 9-28
FEPROMs, 7-3
Fill Address Register, 4-63
Fill buffer, 6-3
Fill Correctable Read bit, 4-60
Fill Data Parity Error bit, 4-60
Fill ECC Error bit, 4-60
Fill I-Cache Read bit, 4-60
Fill Quadword bits, 4-60
Fill Syndrome Register, 4-72
FILL_ADDR IPR, 4-63
FILL_CRD, 4-60
FILL_DPERR, 4-60
FILL_ECC, 4-60
FILL_IRD, 4-60
FILL_QW, 4-60
FILL SYND IPR, 4-72
Floating-Point Control Register, 4-9
Floating-Point Enable bit, 4-32
Floating-point operate pipeline, 4-12
Floating-Point Overflow bit, 4-42
Flush Instruction Cache ASM Register, 4-28
Flush Instruction Cache Register, 4-28
FLUSH_IC IPR, 4-28
FLUSH_IC_ASM IPR, 4-28
FOE, DEC OSF/l AXP, 12-5
FOE, OpenVMSAXP, 11-5
FOR,4-57
Force Bad Data Parity bit, 9-28
Force Dirty bit, 9-28
Force Double-Bit Error bit, 9-28
Force hit mode, 5-7
·Force LSB Ignore bit, 9-28
Force Share bit, 9-28
Force Single-Bit Error bit, 9-28
FOR, DEC OSF/l AXP, 12-5
FOR, OpenVMSAXP, 11-5
FOV,4-42
FOW,4-57
FOW, DEC OSF/l AXP, 12-5
FOW, OpenVMSAXP, 11-5
FPCR, 4-9, 4-11
FPE,4-32
FRIGN, 9-28
FSBE, 9-28
FSHARE, 9-28
Functional units, 4-2

G
Gbus components, 7-2
GBus map, 2-3
Gbus$Halt, 7-14
Gbus$Intr, 7-12
Gbus$LEDs, 7-9

Gbus$LSBRST, 7-16
Gbus$LTagRW, 7-20
Gbus$Misc, 7-17
Gbus$PMask, 7-10
Gbus$RMode, 7-19
Gbus$WHAMI, 7-7
Get buffer, 6-3
GH, 4-54
GH, DEC OSF/1 AXP, 12-5
GH, Open VMS AXP, 11-5
Granularity Hint bits, 4-54
Granularity Hint bits, DEC OSF/1 AXP, 12-5
Granularity Hint bits, OpenVMSAXP, 11-5

H

Halt Enable bit, 7-11
Halt protection, 7-4
HALT_EN, 7-11
Hardware bit, 4-45
Hardware Enable bit, 4-32
Hardware Interrupt Enable bits, 4-49
Hardware Interrupt Enable Register, 4-48
Hardware Interrupt Request bits, 4-45
Hardware Interrupt Request Register, 4-44
Hardware privileged process context,

OpenVMSAXP, 11-12
ffiER IPR, 4-48
mER<5:0>, 4-49
High <6:0> bits, 4-72
mRR,4-45
ffiRR IPR, 4-44
mT,4-75
Hit bit, 4-75
ffi<6:0>, 4-72
HWE,4-32
HWR,4-45
HW LD and HW ST instructions, 10-16
HW-MFPR and Hw _MTPR instructions, 10-16
HW =MTPR cycle delay, 10-13
HW MTPR DTBIS, 10-9
HW-MTPR restrictions, 10-9
HW=REI instructions, 10-17

I.A, 9-11
lbox, 4-2
IBX, 10-16
ICCSR IPR, 4-31
IC SBUF EN, 4-65
IEEE floating-point conformance, 4-10
Inconsistent error, 14-57
Inconsistent error-LSB, 14-32
Inconsistent error-NSES, 14-28, 14-32, 14-33,

14-40, 14-43
Inconsistent state, 14-61

lndex-5

Inconsistent-LSB, 14-35, 14-37, 14-38, 14-42,
14-45

INE, 4-42
Inexact Error bit, 4-42
Initialization, 13-1

cache, 5-8
overview, 13-1

Instructions, 3-2
Instruction Cache Control/Status Register,

4-31
Instruction class definition, 4-14
Instruction formats, 3-2
Instruction format classe-s, 3-2
Instruction issue rules, 4-17
Instruction processing stages, 4-13
Instruction set characteristics, 3-3
Instruction translation buffers, 4-3
Instruction Translation Buffer ASM Register,

4-28
Instruction Translation Buffer IS Register,

4-28
Instruction Translation Buffer PTE Register,

4-30
Instruction Translation BQ.:ffer ZAP Register,

4-28
INT, 9-11
Integer operate pipeline, 4-12
Integer Overflow bit, 4-42
Interfacing rules, 6-6
Interleave Address bits, 9-11
Interleave bits, 9-11
lnternalcache,4-11
Internal processor registers, 4-23
Interprocessor bit, 7-12
lnterprocessorinterrupt,9-19
Interprocessor Interrupt Mask bits, 9-18
Interprocessor Interrupt Register, 9-18
Interrupts and exceptions, 4-21
Interrupt conditions, 8-4
Interrupt handling, device, 8-3
Interrupt levels, 8-4
Interruptlogic,4-4
Interrupt mapping, 9-16
Interrupt, interprocessor, 9-19
Interupt 660 inconsistent error, 14-65
Interval Timer bit, 7-12
INTIM, 7-12
INV, 4-42
Invalid bit, 4-42 ·
Invoking PALcode, 10-2
IOP commander, 14-61
IOP LSB command parity error, 14-62
IOP LSB corrected ECC error, 14-63
IOP LSB corrected ECC error, Dirty, 14-63
IOP LSB CSR data parity error, 14-62
IOP LSB inconsistent error, 14-64

lndex-6

IOP LSB NXM, 14-61
IOP LSB uncorrectable ECC error, 14-64
IOP multiple data errors, 14-65
IOP node specific error summary, 14-65
!OP-detected LSB synchronization errors,

14-61
IOV, 4-42
IP, 7-12
IPL, 9-17
IPR

ABOX_CTL, 4-64
access, 4-23
ALT_MODE, 4-66
ASTER, 4-51
ASTRR, 4-47
BC_TAG, 4-74
BIU_ADDR, 4.,58
BIU_CTL, 4-69
cc, 4-67
CC_CTL, 4-68
DC_STAT, 4-62
descriptions, 4-27
DTB_PI'E, 4-55.
DTB_PrE_TEMP, 4-56
EXC_ADDR, 4-37
EXC_SUM, 4-41
FILL_ADDR, 4-63
FILL_SYND, 4-72
IIlER,4-48
IIlRR, 4-44
ICCSR, 4-31
ITB_PTE, 4-30
ITB_PTE_TEMP, 4-36
MMCSR,4-57
PAL_BASE, 4-43
PS, 4-40
SIER, 4-50
SIRR, 4-46
SL_CLR, 4-52
SL_RCV, 4-39
SL_XMIT, 4-53
TB_ CTL, 4-54
TB_TAG, 4-29

IPRs, 4-23
IPR access. 4-23
IPR descriptions, 4-27
ITBASM IPR, 4-28
ITBIS IPR, 4-28
ITBZAP IPR, 4-28
ITB and DTB clearing, example, 10-10
ITB clearing, example, 10-10
ITB_PTE IPR, 4-30
ITB_PTE_TEMP IPR, 4-36
ITB_PTE_TEMP Register, 4-36
I-Cache Stream Buffer Enable bit, 4-65
I-stream inconsistent error, 14-53

I-stream parity error, BIU error handling, 14-4
I-stream read B-cache double-bit ECC error,

. 14-23
I-stream read B-cache single-bit ECC error,

14-22, 14-67
I-stream read EDAL double-bit ECC error,

14-25
I-stream read EDAL single-bit ECC error,

14-24, 14-53, 14-67
I-stream read LSB double-bit ECC error, 14-25
I-stream read memory double-bit ECC error,

14-24
I-stream read other CPU B-cache double-bit

ECC error, 14-24
I-stream read other CPU B-cache single-bit

ECC error, 14-24, 14-53
I/O Interrupt Register, 9-16
1/0 operation registers, 8-4
I/O space map, 2-2

J
JSE, 4-32
Jump Subroutine Enable bit, 4-32

K
Kernel Read Enable bit, DEC OSF/1 AXP, 12-4
Kernel Read Enable bit, Open VMS AXP, 11-4
Kernel Write Enable bit, DEC OSF/1 AXP,

12-4
Kernel Write Enable bit, Open VMS AXP, 11-4
KN7 AA block diagram, 1-2
KN7 AA LSB node base addresses, 2-3
KRE, DEC OSF/1 AXP, 12-4
Kseg virtual address format, DEC OSF/1 AXP,

12-3
KWE, DEC OSF/1 AXP, 12-4
KWE, OpenVMSAXP, 11-4

L
LADR, 9-26
Last Miss Address Register, 9-43
LBECR, 9-14
LBER, 9-6
LBESR, 9-12
LCNR, 9-9
LCNTR, 9-42
LCNTRO Halt bit, 9-36, 9-39
LCNTRO Overflow bit, 9-37, 9-41
LCNTRO Run bit, 9-36, 9-39
LCNTRO Select bits, 9-36
LCNTRl Halt bit, 9-35, 9-38
LCNTRl Overflow bit, 9-37, 9-41
LCNTRl Run bit, 9-35, 9-38
LCNTRl Select bits, 9-35, 9-38, 9-40

LCON, 9-33
LCO_HLT, 9-36, 9-39
LCO_OVFL, 9-37, 9-41
LCO_RUN, 9-36, 9-39
LCO_SEL, 9-36, 9-40
LCl_HLT, 9-35, 9-38
LCl_OVFL, 9-37, 9-41
LCl_RUN, 9-35, 9-38
LCl_SEL, 9-35, 9-38
LDC Power Okay bit, 7-15
LDC_PWR_OK, 7-15
LDEV, 9-5
LDIAG, 9-27
LEDs Low bits, 7-9
LEDs_L, 7-9
LEVI, 6-4
LEVI address path, 6-2
LEVI block diagram, 6-2
LEVI B-cache status parity error, 14-56
LEVI B-cache status parity error on lookup,

14-40, 14-43
LEVI B-cache tag parity error, 14-56
LEVI B-cache tag parity error on lookup,

14-39, 14-43
LEVI controllers, 6-4
LEVI data controller, 6-4
LEVI data path, 6-3
LEVI processor controller, 6-4
LEVI read ofB-cache correctable error, 14-55
LEVI read of B-cache uncorrectable error,

14-56
LEVI Revision bit, 9-21, 9-22
LEVI transactions, 6-7
LEVI_REV, 9-21, 9-22
LIOINTR, 9-16
LIPINTR, 9-18
LLOCK, 9-26
LMBOX, 8-5
LMBPR, 8-4
LMBPR Address bits, 8-3
LMBPR_ADDR, 8-3
LMERR, 9-24
LMISSADDR, 9-43
LMMR,9-10
LMODE, 9-20
Load silos, 4-7
Load_Locked bits, 4-58
LOCK, 9-26
Lock Address bit, 9-26
Lock Address Register, 9-26
Lock bit, 9-26
Lock Mode bits, 9-21, 9-23
LOCK_MODE, 9-21, 9-23
Low <6:0> bits, 4-72
L0<6:0>, 4-72
LPERF, 9-34

lndex-7

LSB, 6-5
LSB arbitration, 6-6
LSB Bad bit, 7-8
LSB cache protocol error, 14-29, 14-34, 14-35,

14-37, 14-40, 14-43, 14-57
LSB command field encodings, 6-7
LSB command parity errors, 14-30, 14-35,

14-36, 14-38, 14-41, 14-44
LSB controller, 6-5
LSB control transmit check error, 14-31, 14-35,

14-37' 14-41, 14-45
LSB CONWIN bit, 7-8
LSB correctable error, 14-58
LSB CSR map, 2-2
LSB interface, introduction, 1-3
LSB interrupt level, 9-17
LSB Mailbox Register, 8-5
LSB node space base addresses, 9-2
LSB nonexistent memory, 14-57
LSB second errors, 14-60
LSB Secure bit, 7-15
LSB single-bit ECC error, memory reference,

14-23, 14-53
LSB synchronization failure, 14-29, 14-34,

14-36, 14-37, 14-40, 14-44, 14-57
LSB uncorrectable ECC error, Dirty, 14-64
LSB uncorrectable error, 14-58
LSB 0 bit, 7-13
LSB 1.bit, 7-13
LSB 2 bit, 7-12
LSB-initiated transactions, 6-8
LSBl, 7-13
LSB2, 7-12
LSB_BAD, 7-8
LSB_CONWIN, 7-8
LSB_SEC, 7-15
LTAGA, 9-30
LTAGW, 9-31

M
Machine Check Enable bit, 4-65
Machine check overview, 14-2
Machine check stack frame, 670/660, 14-8
Machine check 660 events, 14-46
Machine check 660 parse tree, 14-4 7
Machine check 670 events, 14-11
Machine check 670 parse tree, 14-12
Mailbox

data structure, 8-1
operation, 8-2
pointer CSR, 8-4
pointer structure, 8-3

Mailbox Address bits, 8-3
Mailbox Register bits, 8-5
Manufacturing status bit, 7-8

lndex-8

MAP, 4-32
Mapping

address space, 6-7
interrupt, 9-16

MASK, 9-18
Mask bit, 4-42
MA_FREQ, 9-37, 9-41
MBXREG, 8-5
MB_ADDR, 8-3
MCHK_EN, 4-65
Memory emulation, B-cache, 9-29
Memory management

DEC OSF/lAXP, 12-1
OpenVMSAXP, 11-1

Memory management control
DEC OSF/1 AXP, 12-4
Open VMS .AX.P, 11-3

Memory Management CSR Register, 4-57
Memory management faults

DEC OSF/1 AXP, 12-9
Open VMS AXP, 11-11

Memory management, DEC OSF/1 AXP, 12-1
Memory management, Open VMS AXP, 11-1
Memory Mapping Register, 9-10
Memory protection

Open VMS AXP, 11-6
Memory protection, DEC OSF/1 AXP, 12-6
Memory reference pipeline, 4-12
Memory space map, 2-1
MFG, 7-8
Missed Address bits, 9-43
Miss Address Frequency bits, 9-37, 9-41
Miss, DTB, 10-14
Miss, ITB, 10-13
MISS_ADDR, 9-43
MMCSR IPR, 4-57
Mode Register, 9-20
Module Address bits, 9-10
Module Error Register, 9-24
Module hardware, 1-2
MODULE_ADDR, 9-10
MSK, 4-42
Multiple error response, 14-5
Multiple LSB command parity errors, 14-30
Multiple single-bit ECC errors, 14-31
Multiple uncorrectable ECC errors, 14-31

N
NBANKS.9-11
NHALT, 7-15, 9-9
NID, 7-8
Node Bank bits, 9-35, 9-38
Node base addresses, 2-3
Node Halt bit, 7-15, 9-9
Node ID bit, 7-8

Node Reset bit, 9-9
Node space base addresses, 9-2
Node-Specific Error Summary bit, 9-7
Nonexistent Address EITor bit, 9-7
Nonissue conditions, 4-14
NRST, 9-9
NSES, 9-7
Number of Banks bits, 9-11
NXAE,9-7
NXM to LSB 1/0 space, 14-29
NXM to LSB memory, 14-30
NXM to self 1/0 space, 14-30
N_MASK, 9-35, 9-38

0
OE, 4-71
OPCODE, 4-57, 10-16, 10-17, 10-18
Opcode bits, 4-57
Opcode summary, 4-19
Open VMS .AXP memory management, 11-1
Open VMS .AXP process structure, 11-12
Open VMS .AXP system support, 11-1
Operating system startup, 13-3
OU.tput Enable bit, 4-71
Overview, CPU module, 1-1

p

P, 9-15
Page Frame Number bits, DEC OSF/1 AXP,

12-4
Page Frame Number bits, Open VMS AXP,

11-4
Page table entries, Open VMS AXP, 11-3
Page table entry, DEC OSF/1 AXP, 12-4
PAL, 4-37, 10-16
PALcode, 10-1
P ALcode Base Address bits, 4-43
P ALcode Base Address Register, 4-43
P ALcode categories, 10-3
P ALcode entry points, 10-4
PALcode entry 630 events, 14-66
P ALcode entry 630 parse tree, 14-67
P ALcode error entry points, 14-1
P ALcode error handling, 14-6
P ALcode instructions, 4-19
PALcode, categories of hardware initiated,

10-3
PALcode, invoking, 10-2
PALmode, 4-37
PALmode environment, 10-2
P ALmode restrictions, 10-7
P AL_BASE, 4-43
PAL_BASE IPR, 4-43
PAL_TEMP IPRs, 4-28
Parity bit, 9-15

Parse trees, 14-10
PA-UNP, 4-63
PC, 4-37
PCB, DEC OSF/1.AXP, 12-11
PCMUXO, 4-34
PCMUXl, 4-33
PCO, 4-34, 4-45, 4-49
PCl, 4-34, 4-45, 4-49
Performance counters, 4-5, 4-35
Performance Counter Control Register, 9-34
Performance Counter Mux 0, 4-34
Performance Counter Mux 1 bits, 4-33
Performance Counter Register, 9-42
Performance Counter 0 bit, 4-34, 4-52
Performance Counter 0 IntetTUpt Enable bit,

4-49
Performance Counter 0 IntetTUpt Request bit,

4-45
Performance Counter 1 bit, 4-34, 4-52
Performance Counter 1 IntetTUpt Enable bit,

4-49
Performance Counter 1 Interrupt Request bit,

4-45
PFN, DEC OSF/1 AXP, 12-4
PFN, OpenVMSAXP, 11-4
PHALT_EN, 7-10
PHY, 10-17
Physical access for PTEs, Open VMS AXP, 11-7
Physical address or unpredictable, 4-63
Physical address space, DEC OSF/1 AXP, 12-3
Physical address space, Open VMS AXP, 11-3
Physical base addresses, 9-2
PI.PE, 4-32
Pipeline bit, 4-32
Pipeline organization, 4-ll
PMAPP, 9-31
PMAPPE, 9-25
PMAP _DIS, 9-28
PMODE, 9-21, 9-23
PowerModuleAOkaybit, 7-14
Power Module B Okay bit, 7-14
Power supply connection codes, 7-18
Power-up test, 13-2
Previous system etTor latched, 14-32, 14-39,

14-42, 14-45
Primary cache, 5-2
Privileged architecture library code, 10-1
Processor access modes, DEC OSF/1 AXP, 12-6
Processor access modes, Open VMS AXP, 11-7
Processor mode, 4-66
Processor Status Register, 4-40
Processor-initiated transactions, 6-7
Process context switching, Open VMS AXP,

11-14
Process context, hardware privileged,

OpenVMSAXP, 11-12

lndex-9

Process control block, DEC OSF/1 AXP, 12-11
Process structure, DEC OSF/1AXP,12-10
Process structure, Open VMS .AXP, 11-12
Producer-Consumer classes, 4-15
Producer-Consumer latency, 4-15
Program counter, 4-37
Protection code, DEC OSF/1.AXP,12-6
Protection code, Open VMS AXP, 11-7
PS IPR, 4-40
PTE access, physical, Open VMS AXP, 11-7
PTE access, virtual, 11-9
PTE access, virtual, Open VMS AXP, 11-9
PTE changes, Open VMS .AXP, 11-5
PTE, DEC OSF/1 AXP, 12-4
PTE, OpenVMSAXP, 11-3
PWR_MODA._OK, 7-14
PWR_MODB_OK, 7-14
P-cache, 4-11, 5-2
P-Cache Mode bits, 9-21, 9-23
P-map, 5-6
P-Map Disable bit, 9-28
P-Map Parity bit, 9-31
P-Map parity error, 14-55
P-Map Parity Error bit, 9-25

Q
QW, 10-17

R
RA, 4-57
RA/RB, 10-17,10-18
RB/LL, 4-58
RCV,4-39
Reading EXC_ADDR, example, 10-8
Reading PAL_TEMP, example, 10-8
Read arbitration collision, 14-28, 14-32, 14-39,

14-42
Read arbitration drop, 14-28, 14-32, 14-39,

14-42
Read B-tag address parity error, 14-21
Read B-tag control parity error, 14-22
Read CSR data parity error, 14-59
Read LSB non-EX memory, 14-34, 14-41
Read_Block or Load_Locked bits, 4-58
Registers

console, 7-5
1/0 operation, 8-4

Register addressing, UART, 7-4
Register A bits, 4-57
Register descriptions, 9-4
Register mapping, 9-2
Register, LSB Mailbox, 8-5
Request Mode bits, 7-7
REQ_MODE, 7-7
Reserved opcodes, implementation, 10-15

lndex-10

Reserved 0 bit, DEC OSF/1 AXP, 12-4
Reserved lbit, DEC OSF/1 AXP, 12-4
Reserved 2 bit, DEC OSF/1 AXP, 12-4
Reset Status bit, 9-9
RSTSTAT, 9-9
RSVO, DEC OSF/1 AXP, 12-4
RSVl, DEC OSF/1 AXP, 12-4
RSV2, DEC OSF/1 AXP, 12-4
RUN Low bit, 7-9
RUN_L, 7-9
RWC, 10-17

s
Scheduling and issuing rules, 4-14
Second Command Parity Error bit, 9-8
Second Correctable Data Error bit, 9-8
Second CSR Data Parity Error bit, 9-8
Second Uncorrectable Data Error bit, 9-8
Segment virtual address form.at, DEC OSF/1

AXP, 12-2
Select control terminal bits, 7-11
Self-test description, 13-1
Self-Test Fail bit, 9-9
Self-Test Passed Low bit, 7-9
SEL_CONS_TERM, 7-11
Serial Interrupt Line Enable bit, 4-49
Serial Line Clear bit, 4-52
Serial Line Interrupt Request bit, 4-45
Serial Line Receive bit, 4-39
Serial Line Receive Register, 4-39
Serial Line Transmit Register, 4-53
Serial port, 7 -2
Serial ROM, 7-2
SHARED, 9-15, 9-31
Shared bit, 9-15, 9-31
SHE, 9-7
SIER IPR, 4-50
SIER<15:1>, 4-49
Single-bit D-stream ECC error, 14-3
Single-bit error syndromes, 4-73, 9-13
Single-bit I-stream ECC error, 14-3
Single-error response, 14-3
SIRR, 4-45
SIRR IPR, 4-46
SLE, 4-49
SLR, 4-45
SL_CLR IPR, 4-52
SL_RCV IPR, 4-39
SL_XMIT IPR, 4-53
Software bit, 4-45
Software bits, DEC OSF/l .AXP, 12-4
Software Completion bit, 4-42
Software Interrupt Enable bits, 4-49
Software Interrupt Enable Register, 4-50
Software Interrupt Request bits, 4-45

Software Interrupt Request Register, 4-46
Space map

1/0, 2-2
memory,2-1

SPE_l, 4-65
SPE_2, 4-65
SRE, OpenVMSAXP, 11-4
SROM, 7-2
SROM operation, 13-2
Stack frame, 630, 14-9
Stall buffer, 6-3
Stall Error bit, 9-7
Static and dynamic stages, 4-13
STCOND_TO, 9-21, 9-22
STE, 9-7
STF, 9-9
Store Conditional Timeout bits, 9-21, 9-22
STP_L, 7-9
Structure, mailbox pointer, 8-3
Superpage Enable 1 bit, 4-65
Superpage Enable 2 bit, 4-65
Supervisor Read Enable bit, Open VMS AXP,

11-4
Supervisor Write Enable bit, Open VMS .AXP,

11-4
SWC,4-42
SWE, Open VMS AXP, 11-4
SWR, 4-45
SW, DEC OSF/1 AXP, 12-4
Synchronization

dual-ported access, 6-6
failure, 14-29, 14-34, 14-36, 14-37, 14-40,

14-44, 14-57
Syndromes

single-bit errors, 4-73, 9-13
values, 9-13

Syndrome 0 bit, 9-12
Syndrome 1 bit, 9-12
Syndrome 2 bit, 9-12
Syndrome 3 bit, 9-12
SYND_O, 9-12
SYND_l, 9-12
SYND_2, 9-12
SYND_3, 9-12
System block diagram, 1-1
System setup, boot processor, 13-3

T
TAGADR_P, 4-75
TAGCTL_D, 4-75
TAGCTL_P, 4-75
TAGCTL_S, 4-75
TAGCTL_ V, 4-75
Tag Address bits, 9-30
Tag Address Parity bit, 4-75

Tag address parity error, BIU error handling,
14-4

Tag Address Register, 9-30
Tag Control Dirty bit, 4-75
Tag Control Parity bit, 4-75
Tag control parity error, BIU error handling,

14-4
Tag Control Shared bit, 4-75
Tag Control Valid bit, 4-75
Tag Data bits, 9-32
Tag read/write, 9-29
Tag Select bits, 9-27
Tag Write Data Register, 9-31
TAG<33:17>, 4-75
TAG_ADDR, 9-30
TAG_DATA, 9-32
TAG_SEL, 9-27
TB clearing, example, 10-10
TB miss flows, 10-13
TB_CTL IPR, 4-54
TB_TAG IPR, 4-29
TDE, 9-7
Transaction ordering, 6-9
Translation Buffer Control Register, 4-54
Translation Buffer Tag Register, 4-29
Translation buffer, DEC OSF/1 AXP, 12-8
Translation buffer, OpenVMSAXP, 11-10
Transmitter During Error bit, 9-7

u
UARTs, 7-3
UART register addressing, 7-4
UCE, 9-8
UCE2, 9-8
Uncorrectable Data Error bit, 9-8
Underflow bit, 4-42
UNF,4-42
URE, DEC OSF/1 AXP, 12-4
URE, Open VMS AXP, 11-4
User Read Enable bit, DEC OSF/1 AXP, 12-4
User Read Enable bit, Open VMS AXP, 11-4
User Write Enable bit, DEC OSF/1 AXP, 12-4
User Write Enable bit, Open VMS AXP, 11-4
UWE, DEC OSF/1 AXP, 12-4
UWE, OpenVMSAXP, 11-4

v
VA, 4-29
VALID, 9-31
Valid bit, 9-31
Valid bit, DEC OSF/1 AXP, 12-5
Valid bit, Open VMS .AXP, 11-5
VAIPR,4-27
Victim buffer, 5-7
Virtual access to PrEs, Open VMS AXP, 11-9

lndex-11

Virtual Address bits, 4-29
Virtual address format, DEC OSF/1.AXP, 12-2
Virtual address options, DEC OSF/1AXP,12-3
Virtual Address Register, 4-27
Virtual address spaces, DEC OSF/l .AXP, 12-2
Virtual address space segments, DEC OSF/1

AXP, 12-2
Virtual address space, Open VMS .AXP, 11-2
V, DEC OSF/1 AXP, 12-5
V, Open VMS AXP, 11-5

w
Watch chip, 7-4
WB_DIS, 4-65
WMODE, 9-21, 9-23
WR, 4-57
Write arbitration collision, 14-33
Write arbitration drop, 14-33
Write bit, 4-57
Write buffer, 4-8, 6-3
Write Buffer Unload Disable bit, 4-65
Write B-tag address parity error, 14-21
Write B-tag control parity error, 14-22
Write CSR data parity error, 14-38, 14-59
Write LSB non-EX memory, 14-36
Write Mode bits, 9-21, 9-23
Write policy, 5-6
Write to ITB following REI, example, 10-10

lndex-12

