DEC 7000/10000 AXP
KN7AA CPU

Technical Manual
Order Number EK—KN7AA—TM.001

The KN7AA is an Alpha AXP CPU module designed for the L8B platform. It
is based on the DECchip 21064 microprocessor and is used in the BEC 7000
and DEC 10000 RISC systems. It supports up o seven MS7AA memory mod-
ules in a uniprocessor configuration and one IOP module per system. A
multiprocessor system can be configured by either loading additional modules
in empty backplane slots or replacing a memory module with a .CPU module.

digital equipment corporation
maynard, massachusetts

First Printing, July 1993

The information in this document is subject to change without notice and should not be construed as a com-
mitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of soft-
ware or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1993 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

Alpha AXP DECUS VAXBI

AXP DWMVA VAXELN
DEC OpenVMS VMScluster
DECchip ULTRIX XMI

DEC LANcontroller UNIBUS The AXP logo
DECnet VAX diigli'tlall

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency en-
ergy. The equipment has been type tested and found to comply with the limits for a Class A computing de-
vice pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such radio frequency interference when operated in a commercial environment. Operation of this
equipment in a residential area may cause interference, in which case the user at his own expense may be
required to take measures to correct the interference.

Contents

PROICICE ... es s vasseseessesess s st s s st s e se s e e eese et s antan s sanssesesastsesassanasensees

Chapter 1 KN7AA CPU Module Overview

11 Module HATAWATEccoeeeeeeimeeeceieeceeiceseeteeeeereeaeessensesessassessssessassassanssssssessesnsasasensn
111 DECCHID 21064ooceeeririeeceenerneeeaeseerenesrasesaesssssenessasssssacesassssnsssssssssasasesessessasse
112 Backup Cache (B-Cache)cocoooiiiiininirniecicececeeetenctsstesneceeene e see e e e seseesacoes
1.13 LSB Interface (LEVI)cooirieiieseeeoneienereeseenessesessesesncessassssasssessassessessassesnsens

Chapter2 Address Space

21 MemOry SPAce MAPcceieviereerieireissrerserrnnresnessesrssessassnsessas aesnsasssseseassssnnssseesseesnsasen
2.2 I/O SPACE MAP ...ocovvierrrreneseassesecrssnanetsseissinsasesssnsssersasssassssssssssssanesssesestossssteesessssssossss
221 LSB CSR MAD oo eeeeseeeeeseseemeesesessseeessseressesssessesssmssessss s sesssesessasoses
222 GDUS MAP ...oooeeiieecerictieeeeteestescseeensesstessseessesssesssaesnssssessaasssassnssasssasssessssnsssnsessadasse
223 Broadcast SPACE.........ecceeeeerereccieecteecrtteeereesane s eesterestteaeassassessene e stnneessssaessanseen

Chapter 3 Alpha AXP Architecture Overview

3.1 Data Types.....cceeuee-. eettersreesetessteeesstessstaeasattenarasasastrtseasesrassasenioran
32 INSEIUCHIONS ..uveiieeeicccccttiteeeeeeecrcrctiet e eecessesssseseeeesessssssessnssssssensseesssassenssnnssasavensen
321 Instruction Format Classescuueeeeeeeeeeiieeiveeeeeieeeeeeeeeeanreeneeeersesasseaeeseasnsessones
3.2.2 Instruction Set CharacteriStics....ccccoovveieeierieeereieeeerrerrececersnrreressssrnsasessescsssssesssnes
3.3 Architecturally Defined OpenVMS AXP IPRScccceevceeereemsstinnmescrsresssistossesssessens

Chapter4 DECchip 21064 Overview

4.1 FunctioNal UNIEScoueeeeeiiiiiieeiieeeeeieeeteteeeeeeeieeeeeceeeeeeeessesesesessessesssnssssssnssssassnsesseasasensanes
411 TDOZ oeeeieeeeeereeete et eeesntee s e reseste s e e e st e et eeennaeess e asneaensbneaeennneennteseannnraeensseannnaans
41.1.1 Branch Prediction LOgiccooeioieiieieeeeee ettt
4112 Instruction Translation Buffersccooivviieeieciiiiieereeeeeeeecceee e eeeeeeeeaeeens
4113 INLErTUPL LOZIC ... ceceeceereeret et etes st e cmee e e e s enmetessnaessssneessameenesncensnes
4114 Performance COUNLET'Sueeeveeieecieeiiieeceeeeesesesseessesesiesesssessssssssssssssssesasanes
412 B DO ceeeeieieieiceetteeeecteetteeaeassestesssssssssesesesssssssssssasssssssrsssreseresaenssesressasssassasnssnnnrsssranees
413 ADOX . eeiiieeeeeeeeeeeteeeecesseesssseseseeeesaaeessteeesas e s ssasaresessntee s sressnnseassnres snreeeensnesenaeeaannns
4131 Data Translation Buffer ... oeiiieeiieececiiirereeeieteeeecerseeseseesssnsnnassseaees
4132 Bus INterface Utcocovveeiiieeiieieeeeceieeeeeseieesseeeesesteeeeseesecassesessste s veasssnes
4133 Ti0BA SIS ..oueeeeeeeeeeceeeenreeeeeeeeeteseeaeeneesseeesssasassseaesassnaeassaasasssaresssnssesseasanns
4134 WAL BUETET ...ttt et ese e eseeesnsne s sassessssesesssssessnsasesnnsasnn
414 FIDOX ceeeiieceesieeeeeeeeeeeeeeneeaseessssssssssesssnssssnsssnssssssssesssnnnsnsnnsnnnsanasessseresasansennnnsnnsnnnnnnsasas

4.14.1
4.14.2
4.2
4.3
43.1
432
433
44
44.1
442
443
444
4.5
45.1
4.52
4.53
4.6
4.6.1
4.62
4.7
4.7.1
4.72

ATIOT] cooiiiiiiaieintenctontntiesctitttmmcntencaesscnoscesssanccnssssssosorssrsssosssessssacssonsussnseseassvons

IEEE Floating-Point Conformanceccccceeeevmecereerersserreessseessessessesases 4-10
INternal CACRE ...t tectesree e tre st e e ssnesssares st e ssessss s ressssassssessssessannnan 4-11
Pipeline Organizationcccccceciiiruieninienienicecrereeennesssteesessnnasnessessessessssarsensnseseaseen 4-11

Static and Dynamic STAZeSccccveieveeiverrrreerstrenetessseerseeeseesssesssssssesssseesssssssssses 4-13
ADOTES ...ttt cte ettt saesaas st st srneae st e sas st ensanseens st eresuss s esnaenssrasaesans 4-13
Nonissue ConAItionsSccccceereciirrerienesriecreeesrneesrsteessessssnesssesssssssssnsssessesssasssssnns 4-14
Scheduling and Issuing Rulescccocoriieiiiiereneiieneccecesreseeseeessesreassssessansssensans 4-14
Instruction Class Definitionccocevereceecvecseersanrsrasserrressresseesssassesessssssnssssssaasnes 4-14
Producer-Consumer LatenCycccccceevvieevienceeeieeseeeceereneerserenessssssssssssnssasssssassnes 4-15
Instruction ISSue RUles ... iiiieccicceeceserercneccnescteeesessasssasasssssassssnssnsens 4-17
Dual-Issue Table.........cccccceeeueeeenn. eeveeennessens 4-18
PALCOAE INSEIUCHONSovrveerrieeeeeesreecseienserssassresessseesrasessnsasssasssessseesasssssassassessaseass 4-19
Required PALcode INStructionsc.ccccccieciniiiiieseeneenennnesseseesecsssessssassasenns 4-19
PALcode Instructions That Require Recognitionccccccovvuevereneccaeseecaescencne 4-20
Architecturally Reserved PALcode Instructions........ccccccceveeceenvecrnenneseeesencnnns 4-20
Exceptions and INtEITUPLSccoeueeenerreeeeneteursesesessnaesesssessessnssssssssesssssssssassssesensans 4-21
EXCEDLIONS ...ttt rceceteeaersse e st e srnsssnnecasasessnssrnssasesessansasessnsssassonnane 4-21
INEEITUDLS ..ottt sessas s resnsaesssssessessenesssssssnsassssansasasesssaese 4-22
Internal Processor ReGIStErsc.ccoiiiiueeriinriinienntinneeccenreeraesnesenesaessessssassssssenasens 4-23
IPR ACCESSccerrvrereececannrsrerseaneeeseesseranassrssnssssssssenssesssssssessasssersssnsessesssssssesseerasssens 4-23
IPR DeSCTIPIONScocovierrecrneiincecnesnrenesosssscessassessasssassesssnesaressessnsesassesssasasessassss 4-27
TB_TAG—Translation Buffer Tag Register..........ccccocvvirnrnenicnnrccsncncresenennenns 4-29
ITB_PTE—Instruction Translation Buffer PTE Registercccceceerureevunennnn 4-30
ICCSR—Instruction Cache Control/Status Register..........ccccccvmvervceenreecvernnnnan. 4-31
ITB_PTE_TEMP—Instruction Translation Buffer PTE_TEMP Register......... 4-36
EXC_ADDR—Ezxception Address Register eesteessaesnsesesssrassonsanes 4-37
SL_RCV—Serial Line Receive Registerccooceeereeveeemeccreeeecenesennennns eeeernrenennes 4-39
PS—Processor Status RegiStercccoveviiiicerorercrcereeeecrseesececre s sessesvesnnas 4-40
EXC_SUM—Ezception Summary Register...........cccoereernenncrcrneesensesnesseoscnene 4-41
PAI,_BASE—PAlcode Base Address Register eeeeereenressnenanans 4-43
HIRR—Hardware Interrupt Request Register........ccccoeevevenerreinveenencscnressennenn. 4-44
SIRR—Software Interrupt Request Register...........cccooivveninrvnenecnrinanneseeneac 4-46
ASTRR—Asynchronous Trap Request Registerc.cccoeveneeneninveennnncrenennene 4-47
HIER—Hardware Interrupt Enable Register.........ccccocooenernininvscneciraccenccnenaes 4-48
SIER—Software Interrupt Enable Registerccccovceiiivineircenrneneeecseceseeeneens 4-50
ASTER—AST Interrupt Enable Registercccocvceermrrcreverincsrsessneccsnessennns 4-51
SL_CLR—Interrupt Clear Serial Line Registercccccceeuenirncrceeerrnsnscencnnes 4-52
SL_XMIT—Serial Line Transmit RegiStercccceemreeruerrnereresreereerrvesseraseranes 4-53
TB_CTL—Translation Buffer Control Registercccooeeeieveunvernenecccncencnnes 4-54
DTB_PTE—Data Translation Buffer PTE Registerccccecvvvveeveevennrecneenennnnens 4-55
DTB_PTE_TEMP—Data Translation Buffer PTE_TEMP Register 4-56
MMCSR—Memory Management CSR Registercccovivueeivvenrecrcinvcnecscnne. 4-57
BIU_ADDR—BIU Address Register........c.ccccovinieneiricnninneranseesenaeseensnssnssessessenns 4-58
BIU_STAT—BIU Status Registercccoceecrimiiniereeeecere et reeneenns 4-59
DC_STAT—D-Cache Status Register.......ccccccoemiimririiccnerinieeeenecesseteesesseneeneas 4-62
FILL_ADDR—Fill Address Registerccccceenuimeerimiicrnnenerecnceesecesecareneesanons 4-63
ABOX_CTL—Abox Control Registerccccccvieiireeennireeeeiiisssessssesssssesrasessesses 4-
ALT_MODE—Alternate Processor Mode Registerccocccrveruecnneecrenecseenneces. 466
CC—Cycle Counter Registercccccceeveeririirinininiriinncninseeesseesnneseesesessenssssns 4-67
CC_CTL—Cycle Counter Control Registercccceeieiinrniinnrnenineeesceeneens 4-68
BIU_CTL—BIU Control REgiSterc.cccocenermurrueneerruenerneeresresessesseesnssasssssasssne 4-69
FILL_SYND—Fill Syndrome Registercccocevuinernineneneeninenccenseneesisennenans 4-72

BC_TAG—B-Cache Tag Registercccccenirnrrnicrnrnrnrnrecressirneserecssnensassessessnes 4-74

Chapter§ Cache Memory

5.1 PoCachie ...ttt et et ae e s aee e n e s e e s se e st s e e e e b s s s seeasssennn 5-2
5.2 BCaChe. ..o ettt ettt crreete e e b s s s res s s e s s sesa s e e e sntaea s taeesenees 5-2
5.3 B-Cache States ..ot ctete s e saeensae e et re st sersesanes s s e s et esnens 5-2
54 B-Cache State Changesc..cccvieceirrrennciinieneentresreeserssnnesssssesseessessssesssssessessseesssens 5-3
5.5 WIALE POLCY ..ottt ettt et eesreneese e s n e nestaersesssasssessassssersessesnnns 5-6
5.6 Cache Backmapsccccoueiouieiiiines ottt et seces et nesass e st st s ene s sae e ssansasessanas 5-6
56.1 P-MAD ...oooomneveeeeennieeemssesessessssseesssesssssesassseseessesmnesessssaessseesssesssemeseseseseeseserrenesesee 5-6
562 B-MAD .oooooeeeeeeeeeseaseseeesesssseesmeeseesssessss st eosesesssemessesessesessenseeesseereeseessresessesees 5-6
5.7 VICHIN BUSTEY ...ttt s e te s e s nee s erres e esssesnesssessnsessenssnnnen 5-7
5.8 B-Cache Operating Modescccccoirreercereecrrreesenrereeeseeesaeessssssssssessresssesnsesseesnosssosaens 5-7
59 Cache INTHAHZALIONcooeeeeeteeeeeice e ceieeiesrereeseessesnesseassnsessesssessesonressessesssssnssonsossessens 5-8

6.1 LEVI AAAress Path ...ttt erecessstesssssssesseesessssesssssssssssssessnsssone 6-2
6.2 LEVIData Pathoieeccetereerereeeeereecsraeeessesesss s aesssnesssssssessnsssesnsssssssssnsees 6-3
6.3 LEVI CONEIOIEEScoovireeeeecriiirieeeecrieeeeerrereecrssreesssssesssssssseessessesssssesssssssrsessossssssssossssnes 6-4
6.3.1 LEVI Processor CONIOLIETooovveeeeiieeeeeeeieeeeeeeeeeeeecssseerneeesensesssssasesasessssneans 6-4
6.3.2 LEVIData Controller...........ooeeeicereeeeeeeeeeeeeesesaeeessesseesssssssessessssssesssssssssssssssssens 6-4
6.3.3 LiSB CONLIOIIETcoeeeeeeeeereecraeerereeeesresesesssensseessaessseessnsessasssssessessssesrsssenssessasns 6-5
6.4 Interfacing RUles ..ot ctree e et re s e s ete s ra e s e e st ae e e nesnaenee 6-6
64.1 Dual-Ported Access Synchronizationco.eeeoieeierreerueseseessesesesseeseessesnssaeseesens 6-6
642 LiSB ATDItration «...c.coveeeiieeeeieecieeeetteeeereeetressstees e e esastesesnssssnaesennsesesasseesesesaraeas 6-6
6.5 Address Space MappPing.......c..cccceceeeeeeereerrenenresessesreseessessessasssssssssessessarssssessassssssasssssens 6-7
6.6 LEVI TransSactionsccccceeeeiueecioeeciiineesseeeseessssessssessssssresssssesssssesssssnsassssssssssssssssssesses 6-7
6.6.1 Processor-Initiated Transactions............ccoceerieeeecreeersienecerreeeessseeessissssseseessasensens 6-7
6.62 LSB-Initiated TransSactionsc.cccccceeveeeemeevereseeiornseeessssessssrsscssssessssessssssessnsens 6-8
6.6.3 Transaction OTAETINGc..ccceeerieeininriereesieeserseeessessssasessessseassssessasesssessssesssessresns 6-9

7.1 CPU ConSole HATAWATEccocceeeeeeecceemeceeeecereesveesssnecossssesesssssssssssessssssssssasessssassonsens 7-1
7.1.1 SETHAl ROM ...ttt ce st et es st e soe st e stosssm e ssesaesssbassasanessonsseresnnnsoans 7-2
7.12 Serial POTtccoveeeeeereeenneeeeeeereerrneesressassseesseesesssesssseesnns tereestereeeessaeerneeraennas 7-2
7.13 FEPROMESoooenieeeeeeeteereeereeesteessesaeesssesstessessasseseessssssesansnss sansesnmssssnsessessssans 7-3
7.14 EEPROM ... cieieieecceeteeteecteeesseessessseesssssssessessssesssss o snessssenssessnsassss sonsssssnsssanas 7-3
7.15 TARTS ..ceveeviecereeeesriessesrasessesseesssessssesssesssesssssssssssassssesassssssssessssssesssss sossssnsssesessssons 7-3
7.15.1 Ctrl/P Character Detection and Halt Protectionc..ccceeeuveeveerveceieercvecrinennes 7-4
7152 UART Register AdATessingccccveveereeevereeenererreseessressesrseessersesssssssssssosneeses 7-4
7.1.6 WALCh ChIP ..ottt ettt s essessate e e ess et seasesesseneeeeneene 7-4
72 Console Program INVOCAtIONceccceviieriiirieieni it ceeeeeee st e erteeassas e e cne et e e seasnaeee 7-4
7.3 Console ReISEErs oottt r e ce e e s st saae e enes 7-5
GDUSSWHAMI ...ttt ee e e e s ee e sessee s e snneasnssesseemaseensens 7-7
GDUSBLEDS ...ttt e et e ee et s e sssssasseoaesmssesssse e sessssaneseaees 7-9
GDUSEPMASK ..ottt et e e et et e e aese st ese st saseseentoesasenneansnseesesanes 7-10
(€330153.3 00X » SO U SRRSO 7-12
GDUSPTHALL ...ttt eeesaie s s s ee s amte e srasesssesnnseenaesenns 7-14
GDUSBLSBRST ...ttt ettt eae et e sse e ssessmaeassesssssatansnssassennssenns 7-16
GDUSSBMISCveeeeeeeeceeeeeenreeteereeeeaeesessnssasesessassssassesseasanssasssossbesassssssssssssssessesssessns 7-17
GDUSBRMOTEooovveeeererecrrrerirseiesseessissessesssessssasssssssssssssssessosssssssesssssasssssssssssesssens 7-19
GDUSBLTAZRWooeeereeeeeeeeeeereeercereseeserasesae s se s essenseseesensensesessessessesnsessenns 7-20

Chapter 8 1/0 Operations

8.1
8.2
8.3
84

Mailbox Data Structireoooiiiiiiiiiirecie ettt s et 81
Mailbox Operation ...ttt see e e esntrese s et e esaeesns s e e esssesann 82
Device Interrupt Handlingccovvviiiciniiniiniciinicctetiecsccneeesreesssessesssssssseens 83
I/O Operation Registerscccuiicniiinmnminiiniienincarircete et eseessssstesecsssssssenmssssonsens 84

LMBOX—LSB Mailbox RegiStercccoeeuiieieuiiieeiecececenieencnteseseseesessssaessesees 85

Chapter9 CPU Module Registers

9.1
9.2

RegiSter Mappingccootvieriiireieenictimtnecitsntee e cemeesssoseesacessessasssescsssnssaasens asassesonsans 9-2
Register DescriPtionsccc.ccccccicrrmeereneccsernserecnsraseseseesssaessscesrssasanssassssasenssssssaassonsesnns 9-4
LDEV—Device REZISLEYcccceeevriciiireecireinrierercnnteecssiessasssssssssssansessanessessasassonns 9-5
LBER—BuS Error RegISterccceoereriiireeieesinscieneisesensasesssessssssssssesssasesessoses 9-6
LCNR—Configuration RegiStercccviivieniriiniiiirciistinteeie s csecessesannes 9-9
LMMRO0-7—Memory Mapping Registersccccccenvrveninccrcnericenncnrenccccssuenes 9-10
LBESR0-3—Bus Error Syndrome Registers.......ccovreivrcrirnnreecernrenrcssvnnsncennes 9-12
LBECRO,1—Bus Error Command RegiStersc..ccccccevrrieneinveenieicrersccrsensveosaens 9-14
LIOINTR—I/O Interrupt Registerccooiviiiuiiinrcicinniitiee et tacececneene 9-16
LIPINTR—Interprocessor Interrupt Registercccocevminniiicenvinieirccecnrnen. 9-18
LMODE—Mode ReZISLETcooiueercreeriisreececicsreeetesteteeae e nsssssnsesstssmassnesssese 9-20
LMERR—Module Error Registerccccoveeeeeceerenirnnsescecescssenenesesacesasssessenes 9-24
LLOCK—Lock Address RegisSterccoevrreierrrererneeeecrreceennenceeesceseessesesseoses 9-26
LDIAG—Diagnostic Control REgiStercccocvirriririniencrreeieerseeeee s rasencsenees 9-27
LTAGA—Tag Address RegiSterccccevceevercmrccrirreeseensresesnssesanssessscesssasseeees 9-30
LTAGW—Tag Write Data RegiSterccuccevivvovrccinenirncireirsencsseessesneesnene 9-31
LCONO0,1—Console Communication Registersccceeecivvrreccenvenrscnnecerrcsnecacens 9-33
LPERF—Performance Counter Control Registerc.cc.cceecveecveecrceeecnvnrennens 9-34
LCNTRO0,1—Performance Counter Registerscccoccevvivuvisrivinnccnnecscanncane. 9-42
LMISSADDR—Last Miss Address Registerccocninrniccnccccnnnseencsninnnnen 9-43

Chapter 10 Privileged Architecture Library Code

10.1
10.2
10.3
10.3.1
10.3.2
104
10.5
10.5.1
105.1.1
105.1.2
10.6
10.6.1

- e ek

PALCOAEooeneeereeveeeeeeeerecrseeereeseranesessssssssnsesessssneesssasasssnsssssassssesssssnssessssssassesssnnnsnsess 10-1
PALmMode ENVITONIMENTuveiiicieiieeeeiecisumrerecieieeseeeesisnssesesssssasanssnnessssnsssssssssssssnsasas 10-2
INVOKING PALICOAE ...ccceieviinrienciinicnnenitienn et st sase st st esesssasssasonassne e sasssasssesssaesasessens 10-2
Categories of Hardware-Initiated PALcodeccccovveveevnmnvciccersencnnnsnriecesecnens 10-3
CALL_PAL INSEIUCHON ...uevevieeiecrevereeeecirsrneeesssssnsessessssssassasssssssesssssssarsansansenessssnns 10-3
PALcode EDtry PoInts.....c.c.coociemirernrscriesnneinsetrossseecssesascssnneessansassasssasessssssssssassssnses 104
PALMOdE RESETICHIONSceoeeuveeeeeeiiceerrieenrneeresesissnreesssrnessssraessssesssssssssessassessssnsasssasens 10-7
TB MISS FIOWS ..eeeecrieieeicrieeeeeeeecenrarreessassaseessessnssnsesssessnsssesessssssssssassassssnnassases 10-13
TTB MiSS ...ocueeieeeeeeereeenieneeeieeseeeessieisesesasasssssessnssssssnsnssssessssssssssssssassasesasensenens 10-13

DTB MISS couveeeererrerrrnrereeessseeeeressssssssesessssrssesasssssssssssesssssasesssstssssassssesassasannes 10-14
Implementation of Architecturally Reserved Opcodes ..o, 10-15
HW_MFPR and HW_MTPR INStructionscccccevevvveeeeenievereesevecesrnessereeessnns 10-16
HW LD and HW_ST Instructionscoooorieioomieeeeeeeeeee et evene e 10-16
HW_REI INStructioncceeeeeieiieiieeiieeeeiceeceeeemenevesvssssnssssssssnnsassssssssnsassnsasans 10-17

Chapter 11 OpenVMS AXP System Support

111
1111
11.1.2

vi

OpenVMS Memory Managementc.ccccceecenvenncinneeniinnensesissseeseeesessessensesasesees 11-1
Virtual Address SPAcCEc.ccoceveeiirieieecieiceccce ettt sesene 11-2
Physical Address Spaceccceeevvrinniirininiinniniitinine s sesaens 11-3

11.1.3 Memory Management Controlcocoiviienieniiereeeeneesienreessreeesseesreessrvessenens 11-3

11.14 Page Table ENIIeSccoviemevceieeereeerrctecieetrecesseeseseessesssessesssesssessessssssssessossases 11-3
11.1.5 Changes to Page Table ENtries...........coieeieeceeieiiiereeeceveeinesneesesessnsesssessnsenns 11-5
11.1.6 MemOTry Protectioncocccciieemiiiiciiiiieiieeeiiees e eeesteeesteeessssnsssnnresstssssenssseesnsaanes 11-6
11.1.6.1 Processor Access Modesccooeoueerevriceeeeeieeniceis e seeeese e enseer et e eaeeeas 11-7
11.1.62 Protection Codeooeieeeeeeeieeieeecrccrcereeseeetteeesaeseeeneesesssnres e seeesas s s ernesnnes 11-7
11.1.6.3 Access Violation Faulfccooerreioiireeeeececee e et e seesaee e s e nes 11-7
11.1.7 Address Translationcccecceeeerreriminsseereseeerrreeereeereesssesseseessssssresssesssessassanes 11-7
11.1.7.1 Physical Access for Page Table Entriesccccooeeeereeveeneeneinneneneeeenrenennn 11-7
11.1.7.2 Virtual Access for Page Table Entriesccoooceeieereeeeceesenenieenieesneeennns 11-9
11.1.8 Translation BUffer ... iiieeiiiiinreriieeeececerreeee s s seeseesseesssasssesesseessesas 11-10
11.19 Address Space NUMDETs......c.c.ooceiiiieeeeeeeeeee et eeeee e seesses e e sse e snesesas 11-10
11.1.10 Memory Management Faults...........cccooeeieieineniieieceeeieeeeeeee e 11-11
11.2 OpenVMS AXP Process SEIUCUTEc.cocereeienereeeeereeeecaesaeeseeeneesesessessesssesssssnnans 11-12
11.2.1 Hardware Privileged Process Context.........ccoceveeeveeeererevennicerernennrenneerneesnenens 11-12
11.2.2 Asynchronous System Traps (AST)cccooveivimiiicceierrrenrrrseesceeeenessnnesessesessersns 11-14
11.2.3 Process Context SWitChingccceeiiierieeiieciiccteeeecec e e e e s s eeetseseevessmseseeeens 11-14

Chapter 12 DEC OSF/1 AXP System Support

121 DEC OSF/1 AXP Memory Managementccoecceeeueeeerersesseressesesssssssassesseiesessenens 12-1
12.1.1 Virtual Address SPacesccocerieeenirieseneeninieneneeerstereeteteessesessees et eseasessesaens 12-2
12111 Segment Seg0 and Segl Virtual Address Formatccocooeeeenniiinncnennne 12-2
12.1.12 Kseg Virtual Address FOrmat.....c..ccceoeeeeeoeeieecveseeeeeeeeeeeeaessseeesessesaesenens 12-3
12.1.2 Physical AQdress SPACEcccceeverereerieciieeessreestesseessseesssssssesssesssessssesssessnsesses 12-3
1213 Memory Management Controlcccooeieivmiicirrinrcenncienerrrerreecesecrsscesssecssaronas 124
12.14 Page Table ENIYIescccococoieoieeiercecreeeeceeesieeveeceeteeeenaeneessessesssaensassssssnssnnsnsas 124
12.15 MemMOTY ProteCtiOncccceeeiieeiieeeeeieeiieeeeeceeeeeereeesaeesnnnreesraeesssesseentessessanesssnesens 12-6
12.1.5.1 Processor ACCeSS MOGAESc.cccarriiremieceeeierenreesrrestestesensssnesesssscsssossrssassaessasases 12-6
12152 Protection Codec.ccooviiieieiieiirrcrentesecesaeceresrcessnaesaee s sr e saassn e s e e e s ennanas 12-6
12.1.53 Access Violation Fault ...ttt et 12-6
12.1.6 Address Translation for Seg0 and Seglcccocceirieeeciireerenrererreerensreesceeenesaene 12-6
12161 Physical Access for Seg0 and Segl PTESccccccovveureveereeneereeeneneeeneneeeneeenne 12-7
12.1.62 Virtual Access for Seg0 or Segl PTEsc..coooevenirmeenrereeneenaesrreneeseneseenens 12-8
12.1.7 Translation BUufferccccoociinieneniiiieneeiecenreeesenssee e snsssssnessssesnssssesssssssans 12-8
12.1.8 Address Space NUMDETS.........ccoiviiierieceieeeee e creetece s saese e re e seesne e s e eanassassennas 12-9
12.1.9 Memory Management Faults...........ccoccceeiiieiiioriesiecieeceeesrcecieeeeeesese e cveeeesreeeneanes 129
122 DEC OSF/1 AXP Process StrucCtUrecccecceoeeuereeruecrrercnereeseeseraessessessessessasssesseses 12-10

Chapter 13 Initialization

13.1 Initialization OVEIVIEWcccveeeiieiieiceeiee e te s e e et s e e e st e s saess e se e seesaeeaanesesene 13-1
132 SEHITEBE «..ccneeet ettt et e et ee st e r e et et e s e e ete e eneeeseesane st ne s aae e e se e neeaneesenaeeaeesaraen 13-1
1321 SROM OPETation ...c.ccecvvveeeeroriieeiteeieetieestraeetaeieessessseessasassesssesssessseessnressnsessesasaes 13-2
13.2.2 CPU Module Self-Testccceceeerueeereeeiierieeerceteesress e eeneassmesaeeseesssassesensassesees 13-2
1323 Additional Power-Up Testingccccoocieimiiiiirecreerce e et ee e emtseseesseeeane 13-2
13.3 ConS0le ENITYooiieiieeceeeetee ettt te e ee et e e e se st essae s ebbeessaesaaesbaessnbenstsearaans 13-2
13.3.1 Boot Processor Arbitrationccocieiiiiiiininiiiir ettt e 13-3
13.3.2 Boot Processor System Setupcooiiviiiiiireeeereie e ee et cne e e s s 13-3
13.3.3 Operating System Startupcoceveeerreniie ettt 13-3

il

Chapter 14 Error Handling

14.1 Machine Check OVETVIEWccccvuieriiinreiccricncrienetaeeieseerneresecsssernnsenssessssesecsnessnns 14-2
142 DECchip 21064 Actions on EITOTSccceiviiineeniniinincnicstisecrecse st seeecatesa e 14-2
14.2.1 Response t0 Single EITOTScocirviieeniiiiceeiicnerrcteeseeerseteseeesanessesesnsesecsansenns 14-3
14.2.2 Response to Multiple EXTOTScoooveriiiinniiiinernttceneenc e sree e csernesaeesssseeans 14-5
14.3 PALcode Error Handlingcccccceeceeeerriienirnriereenieseruessesssssssersnsessssessssnsssnsessosns sonsssns 14-6
143.1 Error Log Packets.....occoeieeeieiceeci et savs et s st e men et e s e st sa sae e 14-6
14.3.2 Error Parse TTEESccccccveeerienrieenreieceeiecrnessnentesseessnassesessensesnsesnsssssasssasssasenense 14-10
14.3.3 Events Reported Through 670 Machine Checksccccveeeecimrevreneescenvicnncnn. 14-11
14.34 Events Reported Through 660 Machine Checkscccooervmeceinrnnenverienrencennene 14-46
14.3.5 Events Reported Through Entry 630ccccoviiniiccneninieeteteenrensesceenaeneeens 14-66
14.3.5.1 DECchip 21064 Revision 2.1ccceviirriercrnreenseeiernerseesceseassteseessessessesones 14-66
14.3.5.2 DECchip 21064-C Revision 3.0.....cccciririreriiirecnireeeccesessaeecc e seesaaesaseeseses 14-66
Examples
10-1 Code for a Delay of Three Cycles........coiieiiniicericrireesisneenereseeessseesssesssesssssssssnsesas 10-7
10-2 Reading PAL_TEMP After a Write to PAL_TEMP.........ccccoiiiieriimniiniencniinenee. 10-8
10-3 Reading the EXC_ADDR IPR........couiioiriiticiientinscenisesnesnscesessssasessesessssssnsensons 10-8
104 Using Result of Integer Operation as Source of HW_MTPR DTBIS 10-9
10-5 Clearing the ITB and DTBccooieeeimriieccceecrunescrsneeesaeseccasessassecenssessssconmsensasssesoes 10-10
10-6 Write to ITB Ignored Following REI..........coocoiiviiiiiviiiiiiccn ettt ecveeneene 10-10
10-7 Conditions for Avoiding Asynchronous Exceptions.........c.cccceveecininiinnnienevenennnne 10-11
10-8 Delay Between HW_MFPR DTB_PTE and HW_MFPR DTB_PTE_TEMP........... 10-11
10-9 Delay Between HW_MFPR ITB_PTE and HW_MFPR I'TB_PTE_TEMP 10-12
14-1 Error Isolation Using a Parse TTeecccoovuriverieieneiiericeveeenernecereensssescesssnneseesses 14-10
Figures
1-1 Block Diagram of a DEC 7000 or DEC 10000 Systemc.cccociimmnnnrinneincennneecccnens 1-1
1-2 KN7AA CPU Module Block DIiagramccccccoereureerereericseeereessiresueseeseescsessmssesessesnes 1-2
2-1 KINTAA Address SPace.....c.ccccereeneriresereneescecsnrestssesaneesnsesacssssesnsssnsssessanssssnssssssisaeesnes 2-1
2-2 /O (Noncacheable) SPace Mapcc.cccevriiiaricnsniiinetiniteecin et ramesee e s seesassesssaeanns 2-2
2-3 GDUS SPACE MAPD ..eeieicrierirnceieecnetnteectestae et s crnesesssmae s st e s se g et ssssssmms sansessessnt scssnasss 24
3-1 Alpha AXP Instruction FOrmatsc..cccecvreruiicenreeiecrssressensscssssescssessnssssassssssasesns 3-2
4-1 Block Diagram of the DECchip 21064cooiniiiinniniiiiiecctiiniesecrecestenereseestessesennns 4-2
4-2 Integer Operate PIpelinecoooiiiiiiioiiiciiritestccete sttt e e esananas e seenaaees 4-12
4-3 Memory Reference PIPelinecccceeeiiieereeierninceceentieneeeeeseeesereeceaneseenanesesssensesnens 4-12
4-4 Floating-Point Operate PIPelineccooeeeeiierciieirieceeciresree e s seeseceseseensesaeas 4-12
45 Producer-Consumer Latency Matrix..........ccccceervieneninninicninnnsnconennscesnnesenessesneseess 4-16
4-6 HW_MFPR and HW_MTPR Instruction Formatc.ccoevvvirniininnciinnnenscsnennnes 4-23
5-1 KN7AA CPU Module Cache OrganizZationcccceeevveeerersrneerrctrreesseesseeresnessrescssnnes 5-1
6-1 LEVI BIoCk DIQ@TAIMcceeeernereeneeneeeesnenaecessnesneeitesaecesenessssasoncsssesesasessesnacsessssesenases 6-2
81 Mailbox Data SEIUCLUTEcoieiereeecireerteee ettt ettt e sr et et er e 8-1
8-2 Mailbox Pointer Structureccoveiieenccirii ettt ettt st ae 8-3
10-1 HW_MFPR and HW_MTPR Instruction Formatcccccevvviniiininivinniiicnnnnnene 10-16
10-2 HW_LD and HW_ST Instruction Formatcccooeoiiiiiiiiiinninncereerecrenenecncenes 10-17
10-3 HW_REI Instruction FOrmat........oooeeeiieieieeeieeeeeceeieeeeeetee e eeasessrsesesseesnnesnnns 10-18
11-1 Virtual Address FOrmatccccoeeieeinieniieicee ettt seee st se s emeeeenane 11-2
11-2 Page Table ENtry ..oocccvioiieeiirtene ettt et seree s et e e eane e e e e snas 11-3
11-3 Hardware Privileged Context Blockccccoooviriiiiiiniiincccnnieeeninee et 11-13
12-1 Virtual Address FOrmat ..ottt e e rece e s e e e sansnesseseannne 12-2
12-2 Kseg Virtual Address Format......c..ccoooiiiiiiiiiiiniiiicnrterntecnieccnentensr e sitsses e 123
12-3 Page Table Entry (PTE)cccciviernreerrrreetresneiseeesuecssaessssnnessnsesesssssssssssssesssnsnssssnans 124

vill

124
14-1
14-2
14-3
144
14-5
146
14-7

Tables

2-1
3-1
41
42
4-3

45
46
47
48
49
4-10
411
412
4-13
414
415
4-16
417
418
4-19
4-20
4-21
422
4-23
4-24
4-25
4-26
4-27
4-28
4-29
5-1
5-2
5-3
5-4
5-5
6-1
6-2
7-1
7-2
7-3
7-4
7-5

Process Control BIOCK (PCB)coooovoooeeeiteeeeeeeeerieeeeesesessssssssessesssssssssssnsssasmmsensesses 12-11

670/660 Machine Check Error Log Packet Formatccccccveiinueinnvenesreeecnenieesnnns 14-7
670/660 STACK FTAMNEoonereieriieiraerecctentree et e aeesmsesnre st ot eensesssnsesnnnessasssnsasnes 14-8
630 Error Log Packet FOrmatcccoiimiriiieseereeecececeseenne e sacesseesacnsneesnnenns 14-9
630 StACK FTAIIE .ccocveiiiiieieiereeeieriecesreteceresteesteesseeesesssnsaesassnsesstasssneessessssssassasssssosnras 14-9
Processor Machine Check 670 Parse TTeecovevveieerreecrerenrenienesesarssnessneesnenas 14-12
System Machine Check 660 Parse Treecccueceeeceirrircesrerccceneiesreseseeceesenansesnsesns 14-47
PALCOAE 630 ParSe TTEE «.ccccuureeeeeiiieeecerereniiaeeeesteeeeeenantesesssasessnssnssssassnssssssssssesas 14-67
DEC 7000/10000 Documentationcccccceevurereereererernereennen Ceeseeeesatesentaeeesnseeaesasesaras xiv
KN7AA LSB Node Base AQATESSEScccceeruererieveenrreerieeiesseessenessseesssssssssessssessesasseses 2-3
Alpha AXP OpenVMS Internal Processor Registers........cocvoveerieeeecceecnreineeseeseeneenes 3-5
Producer-Consumer Classescccceerreeerrieesersseesiseesrsesssnsssessesesssesssessssssessessssessasens 4-15
Opcode Summary (with Instruction Issue Bus)ccocoeeveiriirveienncciccneneinreeseeeenens 4-19
Required PALcode INStIICIONScccveeeeeeerieeieeceeeiiecteeeereerasteeasessseessassnsansnesssanes 4-20
PALcode Instructions That Require Recognitionccoccevvereniirveicrceeenieanienenns 4-20
PALmode Instructions Specific to the DECchip 21064cccoceeveeeerereereeeecrecnennes 4-21
KINTAA INEEITUPLS ...ecueeeeeeireereiereeteeseae e estnesaser e snestassranssssssasssasssssnsssntessnsassersessesses 4-22
DECchip 21064 Internal Processor Registerscccovveeecveeveeniiuineiseerernneeneneeennes 4-24
DECchip 21064 IPR Reset Statecccoiveeriiceieeciiiirtteecttessreeneseteeesanseseneasnesesvas 4-26
TB_TAG IPR Bit Definitionsccccceveeieruieniieniestenreeineeressestesseensesnsesssesassssassnsssesssens 4-29
ICCSR IPR Bit Definitionsccccueeeeieeeciciieeeeeeectieesteeeesnseessseessssesssseessssssssssssessssssanses 4-32
EXC_ADDR IPR Bit Definitionscccccceeriioiieeeieneiereeneese e eteesaessssesesssessaessessasnes 4-37
SL_RCV IPR Bit DefiNGtiONScoeeccieeieeieeceriiieceeeeeeeceeeeessseeaesessssasessassssasassssses 4-39
EXC_SUM IPR Bit Definitionscccccecveerrmeenieceeessciereesneseesscessnssssssasneesaseasssssseen 4-42
PAL_BASE IPR Bit Definitionscccccceeeeeimimriecieeeeeecceaeeceeecercecraeeseeesenseasesnsanens 4-43
HIRR IPR Bit Definitionscccooaiiiiiiieieececiieecctteeececeemte e s e eeceenseeseesesssnnsasesessnseas 4-45
HIER IPR Bit Definitionsccceceeierercesienircesecsnecerecaeeessnssnesssecssssesassssssnsessessesses 4-49
SL_CLR IPR Bit Definitions........c.ccceeeeereerieiereeseeenieveereeseesssesssesssssssessssssassassassnes 4.52
TB_CTL IPR Bit Definitionsccccoeeeievienieciirneeeeeeecesete e e ssaesseasssssseessssnsannsenssnes 4-54
MMCSR IPR Bit Definitionscccccuiieerciriniiiiieieeceereseeeeeeessteeeesaesessssesssnssssseessees 4-57
BIU_ADDR IPR Bit Definitionsccccccerierieiieieeecieeierieseeseeaesssssnaesssssassssssseseeenes 4-58
BIU_STAT IPR Bit Definitionsccccecceeerureciireeeecereeceeeeesesrasesessnesssessssrasessensenes 4-60
DC_STAT IPR Bit Definitions ..ccocveeceeceeereerienrenneeeseersnececesseseressessnssssesnsssssessessesses 4-62
FILL_ADDR IPR Bit Definitionscccccoummiiiiiiiiiiciciiiicteecerreennnitvesieeseesansessesssnnaces 4-63
ABX_CTL IPR Bit Definitionsccccceeeiniiieciieieeennieicereeseecesnnseeessssssssssessssesssseens 4-64
ALT MODE IPR Bit Definitionscccceoreeeereriirieereecneerienaseesaeseessseseaesssesssessasensssessrens 4-66
BIU_CTL IPR Bit DefiNutionsccoooeeeevereeieeeeieeieerveereesssseneessrnessssssssssessosssssesesssssenes 4-69
FILL_SYND IPR Bit Definitions......cccccceemeeveeiieieiteeeieeeeeeteseetaeesesssssenssessssssessesens 4-72
Syndromes for Single-Bit EXTOTSccccevreiiiieniictreeicreceeeceeraee e senee e eecseessssssnsene 4-73
BC_TAG IPR Bit Definifions ..ccceeeeeeereeeeeeiieeiiieieceeeecrinrerreereeesessensseseereesseesesesssssnnnnes 4-75
B-Cache States ...coeeeveeeeeereeeeeerieeicenrere e eeteeeetessaeeeeeetneeseaaaeessmearsaeassaeanreserne et annsaaranes 5-3
Effect of Processor Action on B-Cache Linecccoooiiiiiiiieiiieecieeeee e 5-4
Effect of LSB Bus Action on B-Cache Lineocccoiiiiiiiirincinesie et 5-5
KN7AA CPU Module Response to Incoming Addressesc.ccoceeeeeeenccecccevcenenencenen. 5-5
Selection of the B-Cache Operating Modecoocoiiiiiiiiiieeeee e 5-7
LSB Command Field Encodings..........cccooiiiiiitinniiieneeseeiteceie st st saeeesneeeseneeeenne 6-7
Processor-LEVI Actions During Transactionsc.ccoocueevcertieniretiencecnseenecenscccnccenen. 6-9
GDUS COMPONENLSoeevreereeeierrieetiieiteaeeeeeanree e eeeseeseeeeseeesassseesseessasssrsssasssssessanassessan 7-2
Console ReGISETs ...ttt ettt et 7-5
Gbus$WHAMI Register Bit Definitionsccceceeceeeeeoreeieeeeeeeeeicieeeeeeee s eaenae e 7-7
Gbus$LEDs Register Bit Definitionscccceoeeoieeecceeieeercieeeeceeieeceeteeeree e enssesnaanes 7-9
Gbus$PMask Register Bit Definitionscccceeeeveeeereenierriereeentanieeesesene e ssessessennens 7-10

7-6
7-7
7-8
81
8-2
8-3

9-1

9-2

9-3

94

9-5

9-6

9-7

9-8

9-9

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
10-1
10-2
10-3
10-4
10-5
10-6
10-7
11-1
11-2
12-1
12-2
12-3
124
14-1
14-2

Gbus$Intr Register Bit Definitionsccccecvreeeereiereeeiienereneeeneesveeseessessecnsessserssssnas 7-12

Gbus$Halt Register Bit Definitionsccccceevierverrerreennenerreesnesneisssereessessnevssesssonses 7-14
Gbus$Misc Register Bit Definitions........ccveeveeeievmeieerieeeeieeerresneesrenreeesessssssessssnesas 7-17
Mailbox Data Structureccccoiiiirieiiicecerctcrereere st resreess e e sarseesesneesseaeenessnaes 82
Mailbox Pointer SErUCLUTEcccoviriirrerreeerceete et ee e cretesecessteeess et eenssre e sasessesssnnane 8-3
KINTAA CPU INLEITUPLES ..c.oveeveecrierieeerreeireieensressseessseesssessssessssresssnsesssssssesssserassassassssens 8-4
LMBOZX Register Bit Definitionsccccoeveeiieiiinniinreconteniessete e cssee e s 8-5
LSB Node Space Bage AAAressesccooeevvveerreesseercrerecnneesrsssesasesseessssessassonsssssessnssss 9-2
CPU MoOQUIE REZISLETS ..cvveveeererecreereentersresssesriersessasssersesssassnsasarssssessssssessassssessesssenses 9-3
LDEV Register Bit Definitionscccoviiiriiiinieniciicniincnesnreseenssessssnsscsssassesssones 9-5
LBER Register Bit Definitionscccccceveieirnerenrisreiesrtinserroreeescsensssesessessssessansesssssnasss 9-7
LCNR Register Bit Definitionscccoeeeeveeeerreenieriseiecseeeseecesersecseeesssessnsessssssssesssesensses 9-9
LMMR Register Bit DefiNitionscccoccveeererererrersseessnssesssesssncsssasssssssossesssssnssossssses 9-10
LBESR Register Bit Definifionsccceveeeceeeiiniineesenesteereccenesanesseessecnsesssssasssnesseas 9-12
Syndromes for Single-Bit ErTorsccccociciinieniiniiinieinnciienecenecnnenasecssessesseesens 9-13
LBECR Register Bit Definitionsc.cccoeueeeieniericreiennenntinienocsssssnsssessensessessossssasssess 9-14
LIOINTR Register Bit Definitionsccceevrecrueereesseessecereeassssereeseessssssansssassssssssnss 9-16
LSB Interrupt Mappingccccciviminniinirinsninitmnncnisnssssisssssssssssssssesssssossassssssssssassss 9-17
LIPINTR Register Bit Definitionscccccociiiiniicnnninnnniniinencinenensnsnssssssssssosana 9-18
LMODE Register Pass 1 and Pass 2 LEVI Bit Definitionsccccecvevcerinnnceinsicnninne 9-21
LMODE Register Pass 3 LEVI Bit Definitionsccoceevrniniciinicisnninsnssiscssscessansanne 9-22
LMERR Register Bit Definitions.........ccccccevvetiresineriiceecrceersnecssanecssnsssessnesesessssassssese 9-24
LLock Register Bit Definitionsc.ceceriieniimninnmenniensein st inesssssesessscssssessessaees 9-26
LDIAG Register Bit Definitionsccccvveeereinrenecnissnesssnsenesissscensesssssssesssssassssssanes 9-27
LTAGA Register Bit Definitionsccccoceerieerneneentiocraeseennssneensecseereseesassasesssnsesneseas 9-30
LTAGW Register Bit Definitionsccccceeveeereecerneroeerceneeccrseesceeseseesasscssasssssansssssees 9-31
LCON Register Bit Definitionsc.cccceceeeeeerenncnsinverrenceseerscrsenesnesessssssnsssesnsessossse 9-33
LPERF Register Pass 1 and Pass 2 LEVI Bit Definitionscceeeeevrirecirecncccaane 9-35
LPERF Register Pass 3 LEVI Bit Definitionscccccvvnninncnnncirncinnnscccncnscsenns 9-38
LCNTR Register Bit Definitionscccccveniiiniiniininsiiniiineintinesnncessssasissessessssnns 9-42
LMISSADDR Register Pass 1 and Pass 2 LEVI Bit Definitions..........cccoveutriceennne 9-43
LMISSADDR Register Pass 3 LEVI Bit Definitionscccceeeceiinervennienninscsisenssinsanne 9-44
PALcode Entry POInts.......ccccoiiiiiiiniieincrsettcccnissscns s st s ecssensssssassas msssaessnns 10-5
D-Stream Error PALcode Entry Pointscccccceeverecrerecerenrecenscnieerenesseeseeessasessasessee 10-6
HW_MTPR ReStrictionsccccovuiiinirninniinsncesisisisssinisssisssssissssissossssssssossssssssssssassasse 10-9
HW_MTPR Cycle Delayccvnvvirnssnnissnsiessnssicsssssnsssssssssecsssssassssssssssssssesssssssnes 10-13
HW_MFPR and HW_MTPR Field Descriptionscccccortsseirenisnssissnscssssssanssssssssnnne 10-16
HW_LD and HW_ST Instruction Field Descriptionscccooeenveeninsinsnisesssaensnnens 10-17
HW_REI Instruction Field Descriptions.........ccvciineernvrsvmnsessssseesisresssissosssssessnsess 10-18
Virtual Address OPHonScceercreerccrensrenrnncsessssasessassssssasssssssssosnassssssesssesssarasansssss 11-3
Page Table Entry Bit Definitionscccccccoverceninnnnmniinicininsnsisemssssssmsisssssessssssess 114
Virtual Address Space Segmentscc.ccocivrineirienciininiinniiniisnesiiiossssisens 12-2
Virtual Address OpHOnScviiienniiniiinrnnincnnr st essssasesssseesses 12-3
Page Table Entry Bit DefInitionsc.cccccecciniiveniniiniiininiiniciicnicsnesecssaecnsens 124
Memory Management Fault Type Codescccoccovrrrninieiinecneicnessneescssieieceennes 12-10
Error Entry Points to the PALcode Service Routinescoccocoiiiciiniininiinicniciencene. 14-1

Registers That Report Error Conditionscccceoeeecrreiecmrnncemrsnenscessecscssecssaeeennae 14-11

Preface

Intended Audience

This manual discusses the processor module of Digital’s Alpha AXP com-
puter systems designed for the LSB platform. It isintended for developers
of system software and for Digital service personnel. It discusses the func-
tions and operations of the KN7AA CPU module at register level. The
manual assumes programming knowledge at machine language level and
familiarity with the OpenVMS AXP and DEC OSF/1 AXP operating sys-
tems.

Document Structure

The material is presented in 14 chapters.

Chapter 1, KN7AA CPU Module Overview, presents an overall intro-
duction to the KN7AA CPU module.

Chapter 2, Address Space, discusses the address space, memory and I/O,
supported by the DECchip 21064.

Chapter 3, Alpha AXP Architecture Overview, discusses data types
and instructions of the Alpha AXP architecture to prepare the user for the
rest of the document.

Chapter 4, DECchip 21064 Overview, describes the organization of the
central processor of the KN7AA CPU module. It discusses such topics as
functional units, internal cache, instruction pipeline, exceptions and inter-
rupts, and internal processor registers.

Chapter 5, Cache Memory, describes the elements and operations of the
two-level cache hierarchy, which includes the primary cache and the
backup cache.

Chapter 6, LSB Bus Interface, describes the functions and operations of
the LEVI gate arrays that provide the CPU module interface to the LSB
bus. It discusses processor-initiated and LSB bus-initiated transactions,
LEVI address and data paths, and the LEVI controllers.

Chapter 7, Console Overview, gives a brief description of the various ele-
ments that comprise the console. It also describes the Gbus registers,
which perform console control, diagnostic, and interrupt-related functions.

Chapter 8, /O Operations, describes the mailbox data structure, the op-
eration of the mailbox, interrupt handling, and I/O registers.

Chapter 9, CPU Module Registers, lists the LSB required and CPU-
specific registers, and provides bit-level functional descriptions of each
register.

x

Chapter 10, Privileged Architecture Library Code, describes the es-
sentials of the PALcode and discusses the PALmode environment.

Chapter 11, OpenVMS AXP System Support, discusses memory man-
agement performed by the OpenVMS AXP operating system and gives the
structure of a process within the OpenVMS AXP environment.

Chapter 12, DEC OSF/1 AXP System Support, discusses memory man-
agement performed by the DEC OSF/1 AXP operating system and gives
the structure of a process within the DEC OSF/1 AXP environment.

Chapter 13, Initialization, gives an overview of the CPU module initiali-
zation, describes the methods and process of initialization, system configu-
ration, and bootstrapping of the operating system.

Chapter 14, Error Handling, describes how the KN7AA module handles
various types of errors. It discusses the three categories of errors from the
viewpoint of error handling routines: processor-detected hard errors,
module-detected and processor-recognized hard errors, and processor-
corrected soft errors. Error isolation parse trees and individual fault dis-
cussions are intended to assist the error routine programmer.

Conventions Used in This Document

xil

Unpredictable Results and Undefined Operations

Results of operations termed UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruc-
tion within implementations. Software must never use UNPREDICT-
ABLE results.

Operations termed UNDEFINED may vary from moment to moment, im-
plementation to implementation, and instruction to instruction within im-
plementations. UNDEFINED operations may halt the processor or cause
it to lose information. However, they do not cause the processor to hang,
that is, reach a state from which there is no transition to a normal state of
instruction execution. Nonprivileged software cannot invoke UNDE-
FINED operations.

Register and Bit Designations

Certain conventions are followed in register descriptions and in references
to bits and bit fields:

¢ Registers are referred to with their mnemonics, such as LCNR regis-
ter. The full name of a register (for example, Module Error Regis-
ter) is spelled out only at the top of the register description page, or
when the register is first introduced.

¢ Bits and fields are enclosed in angle brackets. For example, bit <31>;
bits <31:18>. For clarity of reference, bits are usually specified by
their numbers or names enclosed in angle brackets adjacent to the reg-
ister mnemonic, such as LMERR<3:0> or LMERR<PMAPPE>,
which are equivalent designations.

¢ When the value of a bit position is given explicitly in a register dia-
gram, the information conveyed is as follows:

Bit Value Meaning

0 Reads as zero; ignored on writes.
1 Reads as one; ignored on writes.
X Does not exist in hardware. The value of the bit is UN-

PREDICTABLE on reads and ignored on writes.

e Acronyms are used in register description tables to indicate the access
type of the bit(s). The entry in the Type column of a register descrip-
tion table may include the initialization values of the bits. For exam-
ple, entry “R/W, 0” indicates a read/write bit that is initialized to zero.

Acronym Access Type

‘RC Read to clear. The value is written by hardware and re-
mains unchanged until read by software or PALcode.

R Read only. May be read by software, PALcode, or hard-
ware. Written by hardware. Software or PALcode
writes are ignored.

RW Read/write. May be read and written by software,
PAlLcode, or hardware.

RO Reads as zero. Read only. Writes are ignored.

w Write only. May be written by software or PALcode. It
is read by hardware. Reads by software or PALcode re-
turn an unpredictable value.

wicC Write 1 to clear. The value may be read by software or
PAlcode. Software or PALcode writes of 1 to the posi-
tion cause hardware to clear the bit. Software or
PAlLcode writes of 0 do not modify the state of the bit.

Wwis Write 1 to set. May be read and written by software,
PAlcode, or hardware. Set by software or PALcode
with a write of 1.

MBZ. Fields in registers or data structures noted as must be zero (MBZ)
must never be filled by software with a nonzero value. If the processor en-
counters a nonzero value in an MBZ field, an Illegal Operand exception oc-
curs.

SBZ. Fields in registers or data structures noted as should be zero (SBZ)
should be filled by software with a zero value. A nonzero value in an SBZ
field produces UNPREDICTABLE results and may produce extraneous
instruction-issue delays.

RAZ. Fields in registers or data structures noted as read as zero (RAZ)
return a value of zero when read.

IGN. Fields (in registers or data structures) noted as Ignore (IGN) are ig-
nored when written.

il

Documentation Titles

Table 1 lists the books in the DEC 7000/10000 documentation set.

DWLMA XMI PIU Installation Guide

DWMBB VAXBI Installation Guide

H7237 Battery PIU Installation Guide

H7263 Power Regulator Installation Card

BA654 DSSI Disk PIU Installation Guide

BA655 SCSI Disk and Tape PIU Installation Guide
Removable Media Installation Guide

ER-DWLMA-IN
EK-DWMBB-IN
ER-H7237-IN
EK-H7263-IN
EK-BA654-IN
EK-BA655~IN
EK-TFRRD-IN

Table 1 DEC 7000/10000 Documentation

7000 Systems 10000 Systems
Title Order Number Order Number
Installation Kit ER-7000B-DK EK~1000B-DK
Site Preparation Guide ER-7000B-SP ER-1000B-SP
Installation Guide EK-700EB-IN EK-100EB-IN
Hardware User Information Kit ER-7001B-DK EK-1001B-DK
Operations Manual EK-7000B-OP EK-1000B-OP
Basic Troubleshooting ERK-7000B-TS EK-1000B-TS
Service Information Kit—DEC 7000 EK-7002B-DK EK-1002B-DK
Platform Service Manual EK-7000A-SV EK-1000A-SV
System Service Manual EK-7002B-SV EK-1002A-SV
Pocket Service Guide ER-7700A-PG EK-1100A-PG
Advanced Troubleshooting EK-7701A-TS EK-1101A-TS
Reference Manuals
Console Reference Manual EK-70COB-TM
KN7AA CPU Technical Manual EK-KN7AA-TM
MS7AA Memory Technical Manual ER-MS7TAA-TM
I/O System Technical Manual ER-70I10A-TM
Platform Technical Manual EK-7000A-TM
Upgrade Manuals
KN7AA CPU Installation Card ERK-KN7AA-IN
MS7AA Memory Installation Card ER-MS7AA-IN
KZMSA Adapter Installation Guide ER-KXMSX~-IN
DWLAA Futurebus+ PIU Installation Guide ER-DWLAA-IN

xiv

Table 1 DEC 7000/10000 Documentation (Continued)

7000 Systems 10000 Systems
Title ’ Order Number Order Number
Related Documentation
DECchip 21064-AA, -BA Microprocessor Hardware
Reference Manual EC-N0079-72
Alpha Architecture Reference Manual EY-L520E-DP

Chapter 1
KN7AA CPU Module Overview

The KN7AA CPU module is a high performance, dual-instruction issue,
RISC (reduced instruction set computer) central processor unit designed
around the 64-bit DECchip 21064 microprocessor and is intended for use in
midrange compute servers. It operates at a peak clock rate of 200 MHz
and communicates with main memory and I/O subsystems by way of the
LSB bus. Figure 1-1 shows how the KN7AA CPU module fits in an Alpha
AXP computer system that uses the LSB bus.

Figure 1-1 Block Diagram of a DEC 7000 or DEC 10000 System

Processors Memory
< LSB >
/0 Bus
IOP
° Adapter BXB-0054C-62

The CPU module is an Alpha AXP architecture implementation that runs
optimized versions of OpenVMS AXP and DEC OSF/1 AXP. It operates in
multiple as well as single processor configurations.

All backplane slots except slot 8, which is dedicated to the IOP module, can
accept CPU or memory modules. It is strongly recommended, however,
that the first CPU module be placed in slot 0 for optimum performance.

KN7AA CPU Module Overview 1-1

1.1 Module Hardware

The KN7AA CPU module is comprised of three major sections:
e CPU chip (DECchip 21064)
¢ Backup cache (B-cache)
e LSB interface (LEVI)

Figure 1-2 shows the major sections of the CPU module, which includes on-
board ROMs that permit booting from supported devices and provide self-
test diagnostics on power-up.

Figure 1-2 KN7AA CPU Module Block Diagram

< LSB:BUS >

LEVI
‘.—
A A A A UART | <
2138
F z « FPE omed®
Q = 73
% | [Bus Addr A
Bl m SROM] | watch “3
B-Data 4—— l
\ 4 + * \4 ROM
EDAL Interface
DECchip 21064
BXB-0372A-93

1.1.1 DECchip 21064
The DECchip 21064 processor is a single-chip, super-scalar, super-
pipelined processor with dual-instruction issue. Features include:

s Internal 8-Kbyte data cache (D-cache) and 8-Kbyte instruction cache
(I-cache)

¢ Pipelined floating-point unit
¢ Demand-paged memory management unit consisting of:

— A 12-entry I-stream translation buffer with eight entries for 8-
Kbyte pages and four entries for 4 Mbyte pages

— A 32-entry D-stream translation buffer with each entry able to map
a single 8-Kbyte, 64 Kbyte, 512 Kbyte, or 4-Mbyte page (see discus-
sions of granularity hint in Sections 11.1.4 and 12.1.4).

o Parity and ECC support
Chip and module level test support

1-2 KN7AA CPU Module Overview

o Cache and memory subsystem interface (EDAL interface)

The macroinstruction pipelined design of the DECchip 21064 allows sig-
nificant parallel processing. The DECchip 21064 pipelines macroinstruc-
tion decode and operand fetch with macroinstruction execution. When the
macropipeline is operating smoothly, the instruction unit (Ibox), which
parses instructions and fetches operands, is running several macroins-
tructions ahead of the execution unit (Ebox). Branch predictions allow
compilers to generate optimized code flow. Outstanding writes to registers
or memory locations are kept in a scoreboard to ensure that data is not
read before it has been written.

The DECchip 21064 uses a set of subroutines, called Privileged Architec-
ture Library code (PALcode), that is specific to a particular Alpha AXP op-
erating system implementation and hardware platform. These subrou-
tines provide operating system primitives for context switching, interrupts,
exceptions, and memory management. The subroutines can be invoked by
hardware or CALL_PAL instructions. PALcode is written in standard ma-
chine code with some implementation-specific extensions that provide di-
rect access to low-level hardware functions. PALcode supports optimiza-
tion for multiple operating systems, flexible memory management
implementations, and multi-instruction atomic sequences.

1.1.2 Backup Cache (B-Cache)

The external backup cache (B-cache) is a 4-Mbyte superset of the primary
cache (P-cache). It is a physically addressed, direct mapped, write back,
mixed I-stream and D-stream cache with a block and fill size of 64 bytes.
It consists of three sets of RAMs:

B-data
B-tag
B-stat

Each block of data (B-data) has a tag (B-tag) and three status bits (B-stat)
associated with it. The status bits are Valid, Dirty, and Shared.

1.1.3 LSB Interface (LEVD)

The interface to the L'SB bus is called LEVI, which consists of two chips:
LEVI-A and LEVI-B. LEVI-A contains most LSB required registers, im-
plements all command execution, LSB arbitration, and B-cache manipula-
tion functions. It also contains a P-cache backmap (P-map) to allow the
CPU to do invalidate filtering and to make intelligent update vs. invalidate
decisions in response to LSB write traffic. LEVI-A uses an external RAM
structure to implement a backmap of the B-cache to filter bus traffic from
the B-cache while still maintaining cache coherence.

LEVI-B completes the 128-bit data path between the DECchip 21064 and
the LSB bus. A 14-bit communication bus between LEVI-A and LEVI-B
provides a path that allows look-aside ECC checking on incoming memory
traffic.

KN7AA CPU Module Overview 1-3

Chapter 2
Address Space

The DECchip 21064 allows for 34 bits of physical address space. The
KN7AA module defines which portion of this space is cacheable or
noncacheable. Cacheable address space is commonly referred to as mem-
ory space and noncacheable space as I/O space. The KN7AA module segre-
gates I/O space into LSB CSR space, local Gbus space, and broadcast
space. Figure 2-1 shows the portion of LSB address space accessible to the
DECchip 21064 processor.

Figure 2-1 KN7AA Address Space

0 0000 0000

Memory

15.5 Gbytes
3 DFFF FFFF
3 E0Q0 0000

Reserved
3 EFFF FFFF
3 FO00 0000

110 256 Mbytes
3 FFFF FFFF

BXB-01998-93

2.1 Memory Space Map

All of memory in an LSB system is accessed as 64-byte blocks. The
KN7AA module maps DECchip 21064 address bits <33:5> to LSB address
bits <33:5>. LSB address bits <39:34> are always zero during nonCSR
LSB command cycles generated by the KN7AA module.

Address Space 2-1

2.2 1/0 Space Map

Figure 2-2

The KN7AA module maps the I/O space into the highest 256 Mbytes of the
34-bit DECchip 21064 physical address space. When DECchip 21064 ad-
dress bits <33:28> are all ones, the KN7AA module defines these accesses
to be noncached. Figure 2-2 shows the KN7AA 1I/O space map.

1/0 (Noncacheable) Space Map

21064
Byte Address

3 F000 0000

3 F7EF FFFF 128MB of Gbus Space

3 F800 0000

LSB Node 0 CSRs (64K CSR Locations)
3 F83F FFFF

3 F840 0000

LSB Node 1 CSRs (64K CSR Locations)
8 F87F FFFF

3 F9C0 0000
LSB Node 7 CSRs (64K CSR Locations)
3 FOFF FFFF

3 FA0O 0000

|OP: LSB Node 8 CSRs (64K CSR Locations)
3 FA3F FFFF
3 FA40 0000

Reserved
3 FDFF FFFF

3 FEOO 0000

LSB Broadcast Space (64K CSR Locations)
3 FE3F FFFF

3 FE40 0000

Reserved

3 FFFF FFFF

BXB-0663-93

2.2.1 LSB CSR Map

All LSB-visible CSRs are defined to be 32 bits wide and aligned on 64-byte
boundaries. L'SB CSRs are accessed using the Read CSR and Write CSR
commands. Bits D <22:1> of the address field in an LSB CSR read/write
command cycle are used to specify all LSB CSRs (LSB bits D <33:23> and
D <0> are always zero during CSR command cycles).

The KN7AA module maps the 128-Mbyte LSB CSR space into the next to
the highest 128 Mbytes of the DECchip 21064 34-bit physical address
space. When DECchip 21064 address bits <33:27> are all ones, the
KN7AA module uses LSB CSR commands with DECchip 21064 physical
address bits <27:6> mapped to LSB command cycle D <22:1>. D <34:23>
and D <0> are driven with zeros by the KN7AA module during CSR com-
mand cycles. Table 2-1 shows the base addresses of the nodes on the LSB
bus.

2-2 Address Space

Table 2-1

KN7AA LSB Node Base Addresses

Node Number Module 21064 Base Address
0 CPU 3 F800 0000
1 CPU/Memory 3 F840 0000
2 CPU/Memory 3 F880 0000
3 CPU/Memory 3 F8C0 0000
4 CPU/Memory 3 F900 0000
5 CPU/Memory 3 F940 0000
6 CPU/Memory 3 F980 0000
7 CPU/Memory 3 F9C0 0000
8 0 3 FA0O 0000

2.2.2 Gbus Map

The KN7AA module allocates the first 128 Mbytes of the LSB I/O space for
local (Gbus) use. This region is called private space. References to this re-
gion are serviced by resources local to the module and, therefore, are never
accessed with LSB CSR or memory commands.

The KN7AA module provides access to ROM, EEROM, the console UARTS,
and the watch chip through the Gbus. All Gbus addresses are located on
64-byte boundaries. Figure 2-3 shows the allocation of the Gbus space seg-

ments.

Address Space 2-3

Figure 2-3 Gbus Space Map

21064
Byte Address
3 F000 0000
3 FO7E FFEE FPROMO: 128Kb
3 F080 0000
FPROM1: 128Kb
3 FOFF FFFF
3 F100 0000
FPROM2: 128Kb
3 F17F FFFF
3 F180 0000
. FPROM3: 128Kb
3 FIFF FFFF
3 F200 0000
FPROM4: 128Kb
a E27F FFFF SROM: 32Kb from 3 F260 0000 to 3 F27F FFFF
3 F280 0000
FPROMS: 128Kb
3 F2FF FFFF
3 F300 0000
FPROMS6: 128Kb
3 F37F FFFF
3 F380 0000
EEPROM: 8Kb
3 F3FF FFFF
3 F400 0000
DUARTO
3 F47F FFFF
3 F480 0000
DUART1
3 F4FF FFFF
3 F500 0000
DUART2
3 F57F FFFF
3 F580 0000
Reserved
3 F5FF FFFF
3 F600 0000
Watch Chip
3 F67F FFFF
3 F680 0000
Reserved
3 F6FF FFFF
3 F700 0000 . .
Miscellaneous Registers
3 F77F FFFF :
3 F780 0000
Reserved
3 F7FF FFFF

BXB-0662-93

2.2.3 Broadcast Space
Broadcast space is used for write-only registers that are written in all

nodes in a single bus transaction. This region is used to implement inter-
rupts on the L'SB. The base address of the broadcast space is 3 FEQO 0000.

2-4 Address Space

Chapter 3
Alpha AXP Architecture Overview

The Alpha AXP architecture is a 64-bit load/store RISC architecture de-
signed with particular emphasis on clock speed, multiple instruction issue,
and multiple processors. The architecture has the following characteris-
tics: .
o All registers are 64 bits in length, and all operations are performed be-
tween 64-bit registers.

o All instructions are 32 bits in length.
o There are 32 integer registers and 32 floating-point registers.
¢ Memory operations are either loads or stores.

¢ Memory is accessed by 64-bit virtual byte addresses in conformity with
the little-endian format of the 1L.SB bus.

This chapter presents an overview of the Alpha AXP architecture. It fo-
cuses on only two of the elements that make up the architecture: data
types and instructions. The information given in this chapter is meant to
provide insight to the material discussed in this document. The program-
mer should refer to the Alpha Architecture Reference Manual for a thor-
ough discussion of the topics covered in this chapter.

3.1 Data Types

The Alpha AXP architecture provides hardware support to the following
subset of data types:

Byte

Word

Longword

Quadword '
D_floating (not fully supported by Alpha AXP hardware)
F_floating (32-bit)

G_floating (64-bit)

S_floating (IEEE single, 32-bit)

T_floating AEEE double, 64-bit)

The remaining data types (octaword, H_floating, D_floating (except
load/store and convert to/from G_floating), variable-length bit field, charac-
ter string, trailing numeric string, leading separate numeric string, and
packed decimal string) can be emulated by PALcode. Hardware-supported
data types are discussed in detail in the Alpha Architecture Reference Man-
ual.

Alpha AXP Architecture Overview 3-1

3.2 Instructions

The Alpha AXP architecture supports the following types of instructions:

Memory integer load /store
Control

Integer arithmetic

Logical and shift

Byte manipulation
Floating-point

Memory format floating-point
Branch format floating-point
Floating-point operate format
Miscellaneous

VAX compatibility

These instruction types can be grouped under four instruction format
classes that contain 0, 1, 2, or 3 register fields. All formats have a 6-bit
opcode. The next section gives brief descriptions of the Alpha instruction
classes. Refer to the Alpha Architecture Reference Manual for a thorough
discussion of instructions supported by the Alpha AXP architecture.

3.2.1 Instruction Format Classes

The Alpha AXP architecture supports the following four instruction for-
mats:

¢ PAlcode
e Branch
¢ Load/Store (Memory)
o Operate
Figure 3-1 shows the formats for the four classes of Alpha instructions.

Figure 3-1 Alpha AXP Instruction Formats

3 2 25 2 2 16 15 s 4 ° FORMAT:
OPCODE NUMBER PALcode
OPCODE RA DISP Branch
OPCODE RA RB DISP or FUNCTION Memory
OPCODE RA RB FUNCTION RC Operate

BXB-0665-93

PAlLcode instructions specify, in the function code field, complex opera-
tions to be performed.

3-2 Alpha AXP Architecture Overview

Conditional branch instructions test register Ra and specify a signed
21-bit PC-relative longword target displacement. Subroutine calls put the
return address in register Ra.

Load and store instructions move longwords or quadwords between
register Ra and memory, using Rb plus a signed 16-bit displacement as the
memory address.

Operate instructions for floating-point and integer operations are both
represented in Figure 3-1 by the operate format illustration and are as fol-
lows:

Floating operations use Ra and Rb as source registers and write the re-
sult in register Rc. There is an 11-bit extended opcode in the function
field.

Integer operations use register Ra and register Rb or an 8-bit literal as
the source operand and write the result in register Rc. Integer operate
instructions can use the Rb field and part of the function field to spec-
ify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

3.2.2 Instruction Set Characteristics

The Alpha AXP instruction set has the following characteristics:

All instructions are 32 bits long and have a regular format.

There are 32 integer registers (R0 through R31), each 64 bits wide.
R31 reads as zero and writes to R31 are ignored.

There are 32 floating-point registers (FO through F31), each 64 bits
wide. F31 reads as zero and writes to F31 are ignored.

All integer data manipulation is between integer registers, with up to
two variable register source operands (one may be an 8-bit literal) and
one register destination operand.

All floating-point data manipulation is between floating-point regis-
ters, with up to two variable register source operands and one register
destination operand.

All memory reference instructions are of the load/store type that move
data between registers and memory.

There are no branch condition codes. Branch instructions test an inte-
ger or floating-point register value, which may be the result of a previ-
ous compare.

Integer and logical instructions operate in quadwords.

Floating-point instructions operate on G_floating, F_floating, IEEE
double, and IEEE single operands. D_floating "format compatibility,"
in which binary files of D_floating numbers may be processed, but
without the last 3 bits of fraction precision, is also provided.

A minimal number of VAX compatibility instructions are included.

Alpha AXP Architecture Overview 3-3

3.3 Architecturally Defined OpenVMS AXP IPRs

The Alpha AXP architecture defines OpenVMS internal processor registers
(IPRs) that can be accessed by software. These registers are read and writ-
ten with Move From Processor Register (MFPR) and Move To Processor
Register (MTPR) instructions. Many of these registers will be referred to
throughout discussions in this document. All architecturally required
IPRs are discussed in the Alpha Architecture Reference Manual. Table 3-1
lists the Alpha AXP OpenVMS IPRs (not to be confused with the DECchip
21064 IPRs).

3-4 Alpha AXP Architecture Overview

Table 3-1 Alpha AXP OpenVMS Internal Processor Registers

Name Mnemonic Access'
‘Address Space Number Register ASN R
AST Enable Register ASTEN R/W*
AST Summary Register ASTSR R/W*
Data Align Trap Fixup Register DATFX w
Floating-Point Enable Register FEN RW
Interprocessor Interrupt Request Register IPIR w
Interrupt Priority Level Register IPL R/W*
Machine Check Error Summary Register MCES R'W
Performance Monitor Register PERFMON W
Privileged Context Block Base Register PCBB R
Processor Base Register PRBR R/'W
Page Table Base Register PTBR R
System Control Block Base Register SCBB RW
Software Interrupt Request Register SIRR w
Software Interrupt Summary Register SISR R
TB Check Register TBCHK R

TB Invalidate All Register TBIA w
TB Invalidate All Process Register TBIAP w
TB Invalidate Single Register TBIS w
TB Invalidate Single Data Register TBISD w
TB Invalidate Single Instruction Register TBISI w
Kernel Stack Pointer KSP None
Executive Stack Pointer ESP R/W
Supervisor Stack Pointer SSP RW
User Stack Pointer USP R/'W
Virtual Page Table Base Register VPTB R/'W
‘Who-Am-I Register WHAMI R

1 Access Types:

et A

%/Y*A:cg:scisys M'I?R or MFPR. Read and write by MTPR
Nmieﬁgtm:ﬁ;esﬁ MoTrP MFPR. Accessed by PALcode routines as needed.

Alpha AXP Architecture Overview 3-5

Chapter 4

DECchip 21064 Overview

The implementation of the Alpha AXP architecture is defined by a combi-
nation of the DECchip 21064 hardware and the Privileged Architecture Li-
brary code (PALcode). This chapter presents an overview of the DECchip
21064 micro-architecture: The PALcode is discussed in Chapter 8. Sec-
tions in this chapter include:

Functional Units

Internal Cache

Pipeline Organization
Scheduling and Issuing Rules
PAlLcode Instructions
Exceptions and Interrupts
Internal Processor Registers

For more information on some of these topics, consult the DECchip 21064-
AA, -BA Microprocessor Hardware Reference Manual and the Alpha Archi-
tecture Reference Manual.

Figure 4-1 shows a block diagram of the DECchip 21064.

DECchip 21064 Overview 4-1

Figure 4-1 Block Diagram of the DECchip 21064

I-Cache

Ebox 4« Ibox |» Fbox

Data Bus (128 bits) >

Abox

External Cache Control >

D-Cache

External System Interface)

BXB-0447-93

4.1 Functional Units
Instructions are processed in four functional units or boxes in the DECchip
21064:
¢ Tbox (central control unit)
* Ebox (integer execution unit)
¢ Abox (address generation, load/store and bus interface unit)
¢ Fbox (floating-point unit)

The functional units operate independently of each other. Each unit can
accept at most one instruction per cycle; however, if code is correctly sched-
uled, the DECchip 21064 can issue two instructions to two independent
units in a single cycle.

4.1.1 Ibox

The primary function of the Ibox is to issue instructions to the Ebox, Abox,
and Fbox. The Ibox implements the following major elements to provide
this function:

¢ Branch prediction logic
e Instruction translation buffers (ITB)
¢ Interrupt logic

4-2 DECchip 21064 Overview

¢ Performance counters

The Ibox decodes two instructions in parallel and checks that the required
resources are available for both instructions. If resources are available,
then both instructions are issued. The Ibox does not issue instructions out
of order. If the resources are available for the second instruction, but not
for the first instruction, then the Ibox issues neither. If the Ibox issues
only the first of a pair of instructions, the Ibox does not advance another
instruction to attempt dual issue again. Dual issue is only attempted on
aligned quadword pairs.

4.1.1.1 Branch Prediction Logic

The DECchip 21064 offers a choice of branch prediction strategies
selectable through the ICCSR IPR. The I-cache records the outcome of
branch instructions in a single history bit provided for each instruction lo-
cation in the I-cache. This information can be used as the prediction for the
next execution of the branch instruction. The prediction for the first execu-
tion of a branch instruction is based on the sign of the displacement field
within the branch instruction itself.

o Ifthe sign bit is negative, the instruction prefetcher predicts the con-
ditional branches to be taken.

¢ If the sign is positive, the instruction prefetcher predicts the condi-
tional branches not to be taken.

¢ Alternatively, if the history table is disabled, branches can be predicted
based on the sign of the displacement field at all times.

The DECchip 21064 provides a four-entry subroutine return stack that is
controlled by the hint bits in the BSR, HW_REI, and jump to subroutine
instructions (JMP, JSR, RET, or JSR_COROUTINE). The chip also pro-
vides a means of disabling all branch prediction hardware.

4.1.1.2 Instruction Translation Buffers

The Ibox contains two instruction translation buffers (ITB).

¢ An eight-entry, fully associative translation buffer that caches re-
cently used I-stream page table entries for 8-Kbyte pages.

o A four-entry, fully associative translation buffer that supports the larg-
est granularity hint option (512 * 8-Kbyte pages) as described further
in this manual and more extensively in the Alpha Architecture Refer-
ence Manual.

The instruction translation buffers—hereafter referred to as the small-

page ITB and large-page ITB—use a not-last-used (NLU) replacement al-
gorithm. ’

In addition, the ITB includes support for an extension called the super-
page, which can be enabled by the MAP bit in the ICCSR IPR. Superpage
mappings provide one-to-one virtual PC<33:13> to physical PC<33:13>
translation when virtual address bits <42:41> =2. When translating
through the superpage, the PTE<ASM> bit used in the I-cache is always
set. Access to the superpage mapping is only allowed while executing in
kernel mode.

DECchip 21064 Overview 4-3

PALcode fills and maintains the ITBs. The operating system, through
PALcode, is responsible for ensuring that virtual addresses can only be
mapped through a single ITB entry (in the large page, small page, or
superpage) at the same time.

The Ibox presents the 43-bit virtual program counter (VPC) to the ITB
each cycle while not executing in PALmode. If the PTE associated with the
VPC is cached in the ITB, then the Ibox uses the PFN and protection bits
for the page that contains the VPC to complete the address translation and
access checks.

Each PTE entry in the ITB contains an address space match (ASM) bit.
The DECchip 21064 ITB supports a single address space number (ASN)
through the PTE<ASM> bit. Writes to the ITBASM IPR invalidate all en-
tries that do not have their ASM bit set. This provides a simple method of
preserving entries that map operating system regions while invalidating
all others.

The ITB’s tag array is updated simultaneously from the TB_TAG IPR
when the ITB_PTE IPR is written. Reads of the ITB_PTE IPR require two
instructions. The first instruction sends the PTE data to the
ITB_PTE_TEMP IPR and the second instruction, reading from the
ITB_PTE_TEMP IPR, returns the PTE entry to the register file. Reading
or writing the ITB_PTE IPR increments the TB entry pointer correspond-
ing fo the large/small page selection indicated by the TB_CTL, which al-
lows reading the entire set of ITB_PTE IPR entries.

4.1.1.3 Interrupt Logic

The DECchip 21064 supports three sources of interrupts:

* Hardware—Six level-sensitive hardware interrupts sourced by the in-
terrupt request pins

¢ Software—Fifteen software interrupts sourced by an on-chip IPR
(SIRR)

* Asynchronous system trap (AST)—Four AST interrupts sourced by a
second internal IPR (ASTRR)

All interrupts are independently maskable by on-chip enable registers to
support a software controlled mechanism for prioritization. In addition,
AST interrupts are qualified by the current processor mode and the cur-
rent state of SIER<2>.

By providing distinct enable bits for each independent interrupt source, a
software controlled interrupt priority scheme can be implemented by
PAlcode or the operating system with maximum flexibility. For example,
the DECchip 21064 can support a six-level interrupt priority scheme
through the six hardware interrupt request pins. This is done by defining
a distinct state of the Hardware Interrupt Enable IPR (HIER) for each in-
terrupt priority level (IPL). The state of the HIER determines the current
interrupt priority. The lowest interrupt priority level is produced by ena-
bling all six interrupts (setting bits <6:1>). The next is produced by ena-
bling five interrupts (setting bits <6:2>), and so on, to the highest inter-
rupt priority level, which is produced by enabling only a single interrupt
(setting only bit <6> and clearing bits <5:1>). When all interrupt enable
bits are cleared, the processor cannot be interrupted from the HIRR IPR.
Each state (<6:1>, <6:2>, <6:3>, <6:4>, <6:5>, <6>) represents an individ-

4-4 DECchip 21064 Overview

ual IPL. If these are the only states allowed in the HIER IPR, a six-level
hardware interrupt priority scheme can be controlled entirely by PALcode.

The scheme is extensible to provide multiple interrupt sources at the same
interrupt priority level by grouping enable bits. Groups of enable bits must
be set and cleared together to support multiple interrupts of equal priority
level. This method reduces the total available number of distinct levels.

Since enable bits are provided for all hardware, software, and AST inter-
rupt requests, a priority scheme can span all sources of processor inter-
rupts. The only exception to this rule is the following restriction on AST
interrupt requests:

Four AST interrupts are provided, one for each processor operating mode—
kernel, executive, supervisor, and user. AST interrupt requests are quali-
fied such that AST requests corresponding to a given mode are blocked
whenever the processor is in a higher mode regardless of the state of the
AST Interrupt Enable Register. In addition, all AST interrupt requests are
qualified in the DECchip 21064 with SIER<2>.

When the processor receives an interrupt request that is enabled, hard-
ware reports or delivers an interrupt to the exception logic if the processor
is not currently executing PALcode. Before vectoring to the interrupt serv-
ice PALcode dispatch address, the pipeline is completely drained and all
outstanding data cache fills are completed. The restart address is saved
in the Exception Address IPR (EXC_ADDR) and the processor enters
PALmode. The cause of the interrupt may be determined by examining
the state of the interrupt request registers.

Hardware interrupt requests are level-sensitive and, therefore, may be re-
moved before an interrupt is serviced. If they are removed before the inter-
rupt request register is read, the register will return a zero value.

4.1.1.4 Performance Counters

The DECchip 21064 contains a performance recording feature. The imple-
mentation of this feature provides a mechanism to count various hardware
events and cause an interrupt upon counter overflow. Interrupts are trig-
gered six cycles after the event, and therefore, the exception program
counter may not reflect the exact instruction causing counter overflow.
Two counters are provided fo allow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. Counter inputs
include:

o Issues

o Non-Issues

e Total cycles

o Pipedry

o Pipe freeze

¢ Mispredicts and cache misses

e Counts for various instruction classifications

In addition, the DECchip 21064 provides one chip pin input to each
counter to measure external events at a rate determined by the selected

system clock speed.

DECchip 21064 Overview 4-5

4.1.2 Ebox

4.1.3 Abox

The Ebox containg the 64-bit integer execution data path, which consists of
the following elements:

e Adder

¢ Logic box

¢ Barrel shifter

¢ Byte zapper

e Bypassers

¢ Integer multiplier

The integer multiplier retires four bits per cycle. The Ebox also contains
the 32-entry 64-bit integer register file (IRF in Figure 4-1). The register
file has four read ports and two write ports that allow reading operands
from and writing operands (results) to the integer execution data path.

The Abox contains four main elements:
¢ Data translation buffer
* Businterface unit (BIU)
¢ Load silos
e Write buffer

4.1.3.1 Data Translation Buffer

The 32-entry, fully associative, data translation buffer (DTB) caches re-
cently used D-stream page table entries and supports all four variants of
the granularity hint option, as described in the Alpha Architecture Refer-
ence Manual. Superpage mapping modes, selected through ABOX_CTL
<5:4>, provide virtual to physical address translation for two regions of the
virtual address space. The first mode enables superpage mapping when
virtual address bits <42:41> = 2. In this mode, the entire physical address
space is mapped multiple times to one quadrant of the virtual address
space defined by VA <42:41> = 2. The second mode maps a 30-bit region of
the total physical address space defined by PA <33:30> = 0 into a single
corresponding region of virtual space defined by VA<42:30> = 1FFE (hex).
Superpage translation is only allowed in kernel mode. The operating sys-
tem, through PALcode, should ensure that translation buffer entries, in-
cluding those in the superpage regions, do not map overlapping virtual ad-
dress regions at the same time.

The DECchip 21064 DTB supports a single address space number (ASN)
with the PTE<ASM> bit. Each PTE entry in the DTB contains an address
space match (ASM) bit. Writes to the DTBASM IPR invalidate all entries
that do not have their ASM bit set. This provides a simple method of pre-
serving entries that map operating system regions while invalidating all
others.

For load and store instructions, the effective 43-bit virtual address is pre-
sented to the DTB. If the PTE of the supplied virtual address is cached in

4-6 DECchip 21064 Overview

the DTB, the PFN and protection bits for the page that contains the ad-
dress are used by the Abox to complete the address translation and access
checks.

The DTB is filled and maintained by PALcode. Note that the DTB can be
filled in kernel mode by setting ICCSR<HWE>.

The DTB’s tag array is updated simultaneously from the TB_TAG IPR
when the DTB_PTE is written. Reads of the DTB_PTE require two instruc-
tions. The first instruction sends the PTE data to the Data Translation
Buffer Page Table Entry Temporary IPR (DTB_PTE_TEMP). The second
instruction, reading from the DTB_PTE_TEMP IPR, returns the PTE en-
try to the register file. Reading or writing the DTB_PTE increments the
TB entry pointer of the DTB, which allows reading the entire set of
DTB_PTE entries.

4.1.3.2 Bus Interface Unit

The bus interface unit (BIU) controls the interface to the DECchip 21064
EDAL interface. The BIU responds to three classes of CPU-generated re-
quests:

¢ D-cache fills
o I-cache fills
e Write buffer-sourced commands

The BIU resolves simultaneous internal requests using a fixed priority
scheme in which D-cache fill requests are given highest priority, followed .
by I-cache fill requests. Write buffer requests have the lowest priority.

The BIU contains logic to directly access an external cache to service inter-
nal cache fill requests and writes from the write buffer. The BIU services
reads and writes that do not hit in the external cache with help from exter-
nal logic.

Internal data transfers between the CPU and the BIU are made through a
64-bit bidirectional bus. Since the internal cache fill block size is 32 bytes,
cache fill operations result in four data transfers across this bus from the
BIU to the appropriate cache. Also, because each write buffer entry is 32
bytes wide, write transactions may result in four data transfers from the
write buffer to the BIU.

4.1.3.3 Load Silos

The Abox contains a memory reference pipeline that can accept a new load
or store instruction every cycle until a D-cache fill is required. Since the
D-cache lines are only allocated on load misses, the Abox can accept a new
instruction every cycle until a load miss occurs. When a load miss occurs,
the Ibox stops issuing all instructions that use the load port of the register
file or are otherwise handled by the Abox. This includes LDz, STx,
HW_MTPR, HW_MFPR, FETCH, FETCH_M, RPCC, RS, RC, and MB. It
also includes all memory format branch instructions, JMP, JSR,
JSR_COROUTINE, and RET. However, a JSR with a destination of R31
may be issued.

Because the result of each D-cache lookup is known late in the pipeline
(stage 6) and instructions are issued in pipe stage 3, there can be two in-

DECchip 21064 Overview 4-7

structions in the Abox pipeline behind a load instruction that misses the
D-cache. These two instructions are handled as follows:

¢ Loads that hit the D-cache are allowed to complete — hit under miss.

¢ Load misses are placed in a silo and replayed in order after the first
load miss completes.

o Store instructions are presented to the D-cache at their normal time
with respect to the pipeline. They are siloed and presented to the write
buffer in order with respect to load misses.

To improve performance, the Ibox is allowed to restart the execution of
Aboz-directed instructions before the last pending D-cache fill is complete.
D-cache fill transactions result in four data transfers from the BIU to the
D-cache. These transfers can each be separated by one or more cycles de-
pending on the characteristics of the external cache and memory subsys-
tems. The BIU attempts to send the quadword of the fill block that the
CPU originally requested in the first of these four transfers (it is always
able to accomplish this for reads that hit in the external cache). Therefore,
the pending load instruction that requested the D-cache fill can complete
before the D-cache fill finishes. D-cache fill data accumulates one quad-
word at a time into a "pending fill" latch, rather than being written into
the cache array as it is received from the BIU. When the load miss silo is
empty and the requested quadword for the last outstanding load miss is re-
ceived, the Ibox resumes execution of Abox-directed instructions despite
the still-pending D-cache fill. When the entire cache line has been received
from the BIU, it is written into the D-cache data array whenever the array
is not busy with a load or a store.

4.1.3.4 Wirite Buffer

The Abox contains a write buffer for two purposes:

e To minimize the number of CPU stall cycles by providing a high
bandwidth (but finite) resource for receiving store data. This is re-
quired since the DECchip 21064 can generate store data at the peak
rate of one quadword every CPU cycle, which is greater than the rate
at which the external cache subsystem can accept the data.

¢ To attempt to aggregate-store data into aligned 32-byte cache blocks to
maximize the rate at which data may be written from the DECchip
21064 into the external cache (B-cache).

The write-merging operation of the write buffer may result in the order of
off-chip writes being different from the order in which their corresponding
store instructions were executed. Further, the write buffer may collapse
multiple stores to the same location into a single off-chip write transaction.
If strict write ordering is required, or it is desired that multiple stores to
the same location result in multiple off-chip write sequences, software
must insert a memory barrier instruction between the store instructions of
interest.

In addition to store instructions, MB, STQ_C, STL_C, FETCH, and
FETCH_M instructions are also written into the write buffer and sent off-
chip. Unlike stores, however, these write buffer-directed instructions are
never merged into a write buffer entry with other instructions.

The write buffer has four entries, each of which has storage for up to 32
bytes. The buffer has a "head" pointer and "tail" pointer. The buffer puts

4-8 DECchip 21064 Overview

4.1.4 Fbox

new commands into empty tail entries and takes commands out of
nonempty head entries. The head pointer increments when an entry is
unloaded to the BIU, and the tail pointer increments when new data is put
into the tail entry. The head and tail pointers only point to the same entry
when the buffer has zero or four nonempty entries.

Suppose for a moment that no writes ever merge with existing nonempty
entries. In this case the ordering of writes with respect to other writes will
be maintained. The write buffer never reorders writes except to merge
them into nonempty entries. Once a write merges into a nonempty slot, its
"programmed” order is lost with respect to both writes in the same slot and
writes in other slots.

The write buffer attempts to send its head entry off-chip by requesting the
BIU when one of the following conditions is met:

¢ The write buffer contains at least two valid entries.

¢ The write buffer contains one valid entry and at least 256 CPU cycles
have elapsed since the execution of the last write buffer-directed in-
struction.

¢ The write buffer contains an MB instruction.
¢ The write buffer contains an STQ_C or STL_C instruction.

¢ Aload miss is pending to an address mrrenﬂy valid in the write buffer
that requires the write buffer to be flushed. The write buffer is com-
pletely flushed regardless of which entry matches the address.

The Fbox is on-chip, pipelined, and capable of executing instructions in
both Digital and IEEE floating-point formats. IEEE floating-point data
types S_floating and T_floating are supported with all rounding modes ex-
cept round to +/- infinity, which can be provided in software. F_floating
and G_floating Digital floating-point data types are supported fully. Sup-
port for D_floating format is limited.

4.1.4.1 Operation

The Fbox contains:
¢ A 32-entry, 64-bit floating-point register file (FRF in Figure 4-1)
¢ A user-accessible control register, FPCR, containing:
— Round mode controls

— Exception flag information

The Fbox can accept an instruction every cycle, with the exception of
floating-point divide instructions. The latency for data-dependent, non-
divide instructions is six cycles.

For divide instructions, the Fbox does not compute the inexact flag. Conse-
quently, the INE exception flag in the FPCR register is never set for IEEE
floating-point divide using the inexact enable (/I) qualifier. To deliver
IEEE-conforming exception behavior to the user, DECchip 21064 FPU
hardware always traps on DIVS/SI and DIVT/SI instructions. The intent is
for the arithmetic exception handler in either PALcode or the operating

DECchip 21064 Ovetview 4-9

system to identify the source of the trap, compute the inexact flag, and de-
liver the appropriate exception to the user. The exception associated with
DIV/SI and DIVT/SI is imprecise. Software must follow the rules specified
by the Alpha AXP architecture associated with the software completion
modifier to ensure that the trap handler can deliver correct behavior to the
user.

4.1.4.2 IEEE Floating-Point Conformance

The DECchip 21064 supports the IEEE floating-point operations as de-
fined by the Alpha AXP architecture. Support for a complete implementa-
tion of the IEEE Standard for Binary Floating-Point Arithmetic
(ANSLIEEE Standard 754-1985) is provided by a combination of hard-
ware and software as described in the Alpha Architecture Reference Man-
ual. The DECchip 21064 supports IEEE floating conformance as follows:

¢ When operating without the /Underflow qualifier, the DECchip 21064
replaces underflow results with exact zero even if the correct result
would have been negative zero as defined in the IEEE Standard. This
is an Alpha AXP architecture value-added behavior for improved per-
formance over either hardware or software Denormal handling. When
strict IEEE compliance is required, the /Underflow modifier is neces-
sary and the software must provide the correct result (including nega-
tive zero).

o The DECchip 21064 supports Infinity operands only when used in the
CMPT instruction. Other instructions using Infinity operands cause
Invalid Operation (INV) arithmetic traps.

e NaN, Denormal, or Infinity (except when used in CMPT) input oper-
ands produce Invalid Operation (INV) arithmetic traps when used with
arithmetic operation instructions. CPYSE/CPYSN, FCMOV instruc-
tions, and MF_FPCR/MT_FPCR are not arithmetic operations, and
will pass NaN, Denormal, and Infinity values without initiating arith-
metic traps. Input operand traps take precedence over arithmetic re-
sult traps.

¢ The DECchip 21064 does not produce a NaN, Denormal, or Infinity re-
sult.

¢ The DECchip 21064 supports IEEE normal and chopped rounding
modes in hardware. Instructions designating plus infinity and minus
infinity rounding modes cause precise exceptions to the OPCDEC
PALcode entry point. This implies that the EXC_ADDR IPR will be
loaded with the address of the faulting instruction and all following
instructions will be aborted.

e The DIVS and DIVT with /Inexact modifier instructions report an In-
exact (INE) arithmetic trap on all results of operations that do not in-
volve NaN, Infinity, or Denormal input operands. Operations using
NaN, Infinity, and Denormal input operands generate Invalid Opera-
tion (INV) arithmetic traps.

o Floating-point exceptions generated by the DECchip 21064 are re-
corded in two places.

— The FPCR register, as defined in the Alpha AXP architecture and
accessible by the MT/MF_FPCR instructions, records the occur-
rence of all exceptions that are detected (except SWC), whether or

4-10 DECchip 21064 Overview

not the corresponding trap is enabled (through the instruction
modifiers). This register can only be cleared through an explicit
clear command (MT_FPCR) so that the exception information it re-
cords is a summary of all exceptions that have occurred since the
last clear.

— In addition, if an exception is detected and the corresponding trap
is enabled, the DECchip 21064 will record the condition in the
EXC_SUM IPR and initiate an arithmetic trap. As a special case,
in order to support Inexact exception behavior with the DIVS/I and
DIVT/ instructions, the FPCR will not record an Inexact exception,
although the DECchip 21064 will always set the INE bit in the
EXC_SUM register during these instructions. This behavior allows
software emulation of the division instruction with accurate report-
ing of potential Inexact exceptions.

4.2 Internal Cache

The DECchip 21064 includes two on-chip caches, a data cache (D-cache)
and an instruction cache (I-cache). These two internal caches are referred
to as P-cache in this document.

The D-cache has a size of 8 Kbytes. It is a write-through, direct-mapped,
read allocate physical cache and has 32-byte blocks. System components
can keep the D-cache coherent with memory by using the invalidate bus.

The I-cache is an 8-Kbyte, direct-mapped physical cache. An I-cache block,
or line, contains 32 bytes of I-stream data with associated tag, as well as a
six-bit ASN field, a one-bit ASM field, and an eight-bit branch history field.
The I-cache does not contain hardware for maintaining coherency with
memory and is unaffected by the invalidate bus.

The DECchip 21064 also contains a single-entry I-cache stream buffer
that, together with its supporting logic, reduces the performance penalty
due to I-cache misses incurred during in-line instruction processing.
Stream buffer prefetch requests never cross physical page boundaries, but
instead wrap around to the first block of the current page.

4.3 Pipeline Organization

The DECchip 21064 has a seven-stage pipeline for integer operate and
memory reference instructions. Floating-point operate instructions pro-
gress through a ten-stage pipeline. The Ibox maintains state for all pipe-
line stages to track outstanding register writes and determine I-cache ac-
cess results (hit/miss). .

Figures 4-2, 4-3, and 4-4 show the integer operate, memory reference, and
the floating-point operate pipelines for the Ibox, Ebox, Abox, and Fbox.
The first four cycles are executed in the Ibox; the last stages are box spe-
cific. There are bypassers in all the boxes that allow the results of one in-
struction to be used as operands of a following instruction without having
to be written to the register file.

DECchip 21064 Overview 4-11

Figure 4-2 Integer Operate Pipeline

por| 28516 |
Firlswliiol nlarlalwrl

L Integer register write / I-cache
hit / miss

Computation cycle 2 / ITB look-up
Computation cycle 1/ lbox
computes new PC

— Register file(s) access / Issue check
Decode

Swap Dual Issue Instruction / Branch prediction
Instruction Fetch

BXB-0619-93

Figure 4-3 Memory Reference Pipeline

{101 [111 | 12| 18] [41| 51| [6] |
liFlswliwol nlacl 8 Ml

I-D-c:-.ache hitmiss and load data
register file write

DTB look-up

Abox calculates the effective
D-stream address

— Roegister file(s) access/Issue check

Decode

Swap Dual Issue Instruction /Branch prediction
Instruction Fetch

BXB-0620-93

Figure 4-4 Floating-Point Operate Pipeline

Oy 1R B M 86708 | 9]
lriswliol nlrilr2lF3lralrs [Fwrl

_V_J

Floating-point calculate pipeline
Floating-point register file write —

Register file(s) access/Issue check
Decode

Swap Dual Issue Instruction /Branch prediction
Instruction Fetch

BXB-0621-93

4-12 DECchip 21064 Overview

4.3.1 Static and Dynamic Stages

4.3.2 Aborts

The DECchip 21064 integer pipeline divides instruction processing into
four static and three dynamic stages of execution. The DECchip 21064
floating-point pipeline maintains the first four static stages and adds six
dynamic stages of execution. The first four stages consist of:

¢ Instruction fetch
e Swap

¢ Decode

¢ Issue logic

These stages are static because instructions can remain valid in the same
pipeline stage for multiple cycles while waiting for a resource, or stalling
for other reasons.

Dynamic stages always advance state and are unaffected by any stall (also
referred to as freeze) in the pipeline. A pipeline freeze may occur while
zero instructions issue, or while one instruction of a pair issues and the
second is held at the issue stage. A pipeline freeze implies that a valid in-
struction or instructions are present to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions are allowed to con-
tinue through any pipeline toward completion. Instructions cannot be held
in a given pipe stage after they are issued. It is up to the issue stage to
ensure that all resource conflicts are resolved before an instruction is al-
lowed to continue. The only means of stopping instructions after the issue
stage is a chip-internal abort condition.

Aborts can result from a number of causes. In general, they are grouped
into two classes:

¢ Exceptions (including interrupts)
¢ Nonexceptions

There is one basic difference between the two classes: exceptions require
that the pipeline be drained of all outstanding instructions before restart-
ing the pipeline at a redirected address. In both exceptions and non-
exceptions, the pipeline must be flushed of all instructions that were
fetched after the instruction that caused the abort condition. This includes
stopping one instruction of a dual-issued pair in the case of an abort condi-
tion on the first instruction of the pair.

The non-exception case, however, does not need to drain the pipeline of all
outstanding instructions ahead of the aborting instruction. The pipeline
can be immediately restarted at a redirected address. Examples of non-
exception abort conditions are branch mispredictions, subroutine
call/return mispredictions, and instruction cache misses. Data cache
misses do not produce abort conditions but can cause pipeline freezes.

If an exception occurs, the processor aborts all instructions issued after the
excepting instruction as described. Due to the nature of some error condi-
tions, this can occur as late as the write cycle. Next, the address of the
excepting instruction is latched in the EXC_ADDR IPR. When the pipeline

DECchip 21064 Overview 4-13

is fully drained, the processor begins instruction execution at the address
given by the PALcode dispatch. The pipeline is considered drained when:

¢ All outstanding writes to both the integer and floating-point register
file have completed and arithmetic traps have been reported.

¢ All outstanding instructions have successfully completed memory man-
agement and access protection fraps.

4.3.3 Nonissue Conditions

There are two basic reasons for nonissue conditions:

¢ A pipeline freeze when a valid instruction or pair of instructions are
prepared to issue but cannot due to a resource conflict. This type of
non-issue cycle can be minimized through code scheduling.

¢ Pipeline bubbles when there is no valid instruction in the pipeline to
issue. Pipeline bubbles exist due to abort conditions as described in
Section 4.3.2. In addition, a single pipeline bubble is produced when-
ever a branch-type instruction is predicted to be taken, including sub-
routine calls and returns. Pipeline bubbles are reduced directly by the
hardware through bubble squashing, but can also be effectively mini-
mized through careful coding practices. Bubble squashing involves the
ability of the first four pipeline stages to advance whenever a bubble is
detected in the pipeline stage immediately ahead of it while the pipe-
line is otherwise frozen.

4.4 Scheduling and Issuing Rules

The following sections cover scheduling and issuing rules.

4.4.1 Instruction Class Definition

The scheduling and dual issue rules covered in this section are only per-
formance related. There are no functional dependencies related to schedul-
ing or dual issuing. The scheduling and issuing rules are defined in terms
of producer-consumer instruction classes. Table 4-1 lists all the instruc-
tion classes and indicates the functional box that executes the particular
class of instructions.

4-14 DECchip 21064 Overview

Table 4-1

Producer-Consumer Classes

Class Name Box Instruction List

LD Abox All loads (HW_MFPR, RPCC, RS, RC, STC — producers only:
FETCH — consumer only).

ST Abox All stores (HW_MTPR)

IBR Ebox Integer conditional branches

FBR Fbox Floating-point conditional branches

JSR Ebox Jump to subroutine instructions JMP, JSR, RET, or
JSR_COROUTINE (BSR, BR producer only)

IADDLOG Ebox ADDL ADDL/V ADDQ ADDQ/V SUBL SUBL/V SUBQ SUBQ/V
S4ADDL S4ADDQ SSADDL SSADDQ S4SUBL S4SUBQ S8SUBL
S8SUBQ LDA LDAH AND BIS XOR BIC ORNOT EQV

SHIFTCM Ebox SLL SRL SRA EXTQL EXTLL EXTWL EXTBL EXTQH EXTLH
EXTWH MSKQL MSKLL MSKWL MSKBL MSKQH MSKLH
MSKWH INSQL INSLL INSWL INSBL INSQH INSLH INSWH
ZAP ZAPNOT CMOVEQ CMOVNE CMOVLT CMOVLE CMOVGT
CMOVGE CMOVLBS CMOVLBC

ICMP Ebox CMPEQ CMPLT CMPLE CMPULT CMPULE CMPBGE

IMULL Ebox MULL MULL/V

IMULQ Ebox MULQ MULQ/V UMULH

FPOP Fbox Floating-point operates except divide

FDIV Fbox Floating-point divide

4.4.2 Producer-Consumer Latency

Figure 4-5 shows in a matrix form the issue rules that the DECchip 21064
enforces regarding producer-consumer latencies. Each row and column in
the matrix is a class of Alpha AXP instructions. A 1 in the producer-
consumer latency matrix indicates one cycle of latency. A one cycle latency
means that if instruction B uses the results of instruction A, then instruc-
tion B can be issued one cycle after instruction A is issued.

When determining latency for a given instruction sequence, first identify
the class of each instruction. The following example lists the classes in the
comment field:

ADDQ Rl, R2, R3 ; IADDLOG class
SRA R3, R4, R5 ; SHIFT class
SUBQ R5, R6, R7 ; IADDLOG class
STQ R7, D(R10) ; ST class

The SRA instruction consumes the result (R3) produced by the ADDQ in-
struction. The latency associated with an iadd-shift producer-consumer
pair as specified by the matrix is one. That means that if the ADDQ was
issued in cycle n, the SRA could be issued in cycle n+1.

DECchip 21064 Overview 4-15

The SUBQ instruction consumes the result (R5) produced by the SRA in-
struction. The latency associated with a shift-iadd producer-consumer
pair, as specified by the matrix, is two. That means that if the SRA was
issued in cycle n, the SUBQ could be issued in cycle n+2. The Ibox injects
one no-op cycle in the pipeline for this case.

The final case has the STQ instruction consuming the result (R7) produced
by the SUBQ instruction. The latency associated with an iadd-st producer-
consumer pair, when the result of the iadd is the store data, is zero. This
means that the SUBQ and STQ instruction pair can be dual-issued if
prefetched in the same quadword.

Figure 4-5 Producer-Consumer Latency Matrix

| LD |JsR |1ADDLOG | SHIFTCM [IcMP IMULL iMuL|FRop| FIRV | FDIV

o L3 J e 4 00|
LD | 3|3 2 2 2 |21 |28 | x | x | X

O st 3 |3 2/0 20 |20 |21/20 | 23/22 | A/4 | A/32 | A/B1
BR | 3|3 1 2 1 |20 [28 | x| X | X
JSR | 3|3 2 2 2 |21 [23 | X | X | X
IADDLOG | 3 | 8 1 2 2 |21 | 23 | X | X | X
SHIFTCM | 3 | 3 1 2 2 | 21 | 23 | x | x | X
IcMP | 3 | 3 1 2 2 |2 | 23 | x | x | X
ML | 3 |3 1 2 2 |21m9|2321 | X | X | X
FBR | 3 | X X X X | x | x | 6 | 34 | e3
FPOP | 3 | X X X X | x | x | 6| 3 | e3
FOIV | 8 | X X X | x| X | x | & |3430wse

BXB-0448-93

Notes to Figure 4-5:

@ Forloads, a D-cache hit is assumed. The latency for a D-cache miss
is dependent on the system configuration.

©® For some producer classes, two latencies, X/Y, are given with ST con-
sumer class. The X represents the latency for the base address of
store; the Y represents the latency for store data. Floating-point re-
sults cannot be used as the base address for load or store operations.

© For IMUL followed by IMUL, two latencies are given. The first rep-
resents the latency with data dependency; in other words, the sec-
ond IMUL uses the result from the first. The second is the multiply
latency without data dependencies.

©® For FDIV followed by FDIV, two latencies are given. The first repre-
sents the latency with data dependency; the second FDIV uses the
result from the first. The second is division latency without data de-
pendencies.

X in Figure 4-5 indicates an impossible state, or a state not encountered
under normal circumstances. For example, a floating-point branch would
not follow an integer compare.

4-16 DECchip 21064 Overview

4.4.3

Producer-producer latencies, also known as write-after write-conflicts, are
restricted only by the register write order. For most instructions, thisis
dictated by issue order; however, IMUL, FDIV, and LD instructions may
require more time than other instructions to complete and, therefore, must
stall following instructions that write the same destination register to pre-
serve write ordering. In general, only cases involving an intervening
producer-consumer conflict are of interest. They can occur commeonly in a
dual-issue situation when a register is reused. In these cases, producer-
consumer latencies are equal to or greater than the required producer-
producer latency as determined by write ordering and therefore dictate the
overall latency. An example of this case is shown in the code:

LDQ R2,D(R0) ; R2 destination

ADDQ R2,R3,R4 ; wr-rd conflict stalls execution ;
; waiting for RZ2

LDQ R2,D(Rl) ; wr-wr conflict may dual-issue when

; addg issues

Instruction Issue Rules

The following conditions prevent instruction issue:

[2

No instruction can be issued until all of its source and destination reg-
isters are clean; in other words, all outstanding writes to the destina-
tion register are guaranteed to complete in issue order and there are
no outstanding writes to the source registers or those writes can be by-
passed.

No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, or BSR,
BR, JSR (with destination other than R31) can be issued after an MB
instruction until the MB has been acknowledged on the external EDAL
interface.

No IMUL instructions can be issued if the integer multiplier is busy.

No SHIFT, IADDLOG, ICMP, or ICMOV instruction can be issued ex-
actly three cycles before an integer multiplication completes.

No integer or floating-point conditional branch instruction can be is-
sued in the cycle immediately following a JSR, JMP, RET,
JSR_COROUTINE, or HW_REI instruction.

No TRAPB instruction can be issued as the second instruction of a
dual-issue pair.

No LD instructions can be issued in the two cycles immediately follow-
ing an STC.

No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR or BSR,
BR, JSR (with destination other than R31) instruction can be issued
when the Abox is busy due to a load miss or write buffer overflow. For
more information, see Section 4.1.3.3.

No FDIV instruction can be issued if the floating-point divider is busy.

No floating-point operate instruction can be issued exactly five or ex-
actly six cycles before a floating-point divide completes.

DECchlp 21064 Overview 4-17

4.4.4 Dual-Issue Table

Table 4-2 can be used to determine instruction pairs that can issueina
single cycle. Instructions are dispatched using two internal data paths or
buses. For more information about instructions and their opcodes and
definitions, refer to the Alpha Architecture Reference Manual. The buses
are referred to in Table 4-2 as IB0, IB1, and IBx.

Any instruction identified with IB0 in the table can be issued in the same
. cycle as any instruction identified with IB1. An instruction that is identi-
fied as IBx may be issued with either IBO or IB1.

Dual-issue is attempted if the input operands are available as defined by
the producer-consumer latency matrix (Figure 4-5) and the following re-
quirements are met:

e Two instructions must be contained within an aligned quadword.
¢ The instructions must not both-be in the group labeled as IBO.
¢ The instructions must not both be in the group labeled as IB1.

¢ No more than one of JSR, integer conditonal branch, BSR, HW_REI,
BR, or floating-point branch can be issued in the same cycle.

¢ No more than one of load, store, HW_MTPR, HW_MFPR, MISC,
TRAPB, HW_REI, BSR, BR, or JSR can be issued in the same cycle.

NOTE: Producer-consumer latencies of zero indicate that dependent operations be-
tween these two instruction classes can dual issue. For example, ADDQ R1,
R2, R3, and STQ R3, D(R4).

4-18 DECchip 21064 Ove_rvlew

Table 4-2 Opcode Summary (with Instruction Issue Bus)

00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
IB1 LBO IBO IB1 IBx IBx I1B1 IB1
1/9 RSVD LDAH INTL* HW_MFPR LDG LDQ FBEQ BEQ
IB1 1BO 1BO 1B1 IBx IBx IBO IB1
2/A RSVD RSVD INTS* JSR LDS ILDL L FBLT BLT
IB1 IB1 1BO IB1 IBx IBx 1IBO IB1
3/B RSVD LDQU INTM* HW_LD LDT LDQL FBLE BLE
IB1 IBx 1BO IB1 IBx IBx 1BO iB1
4/C RSVD RSVD RSVD RSVD STF STL BSR BLBS
IB1 1B1 1B1 IB1 1BO IB1 IB1 I1B1
5/D RSVD RSVD FLTV* HW_MTPR STG STQ FBNE BNE
IB1 I1B1 IB1 I1B1 IBO IB1 IBO I1B1
6/E RSVD RSVD FLTI* HW_REI STS STL_C FBGE BGE
I1B1 IB1 IB1 IB1 IBO IB1 IBO IB1
F RSVD STQU FLTL* HW_ST STT STQ.C FBGT BGT
IB1 IB1 IB1 I1B1 IBO IB1 1BO IB1
Key to Opcode Summary
FLTI*—IEEE fl instructi ode:
FLTL* Floata.n;f%tp:;n;aw msu'\sgzlg%copc:des
FLTV*—VAX floating-point instruction opcodes
INTA*—Integer arithmetic instruction o
I'NTL*—-—Integer logical instruction opcod?:des
Integer multiply instruction opcodes
INTS*—Intega' instruction opcodes
JSR*—Jump instruction opeodes
MISC*—Miscellaneous instructi
PAL*—PAlLcode instruction (CALL BCAL) opcodes
RSVD*—Reserved for Digital

4.5 PAlcode Instructions

Five opcodes are provided by the Alpha AXP architecture as implement-
ation-specific privileged instructions. These instructions are defined inde-
pendently for each Alpha AXP hardware implementation to provide
PALcode software routines with access to specific hardware state and func-
tions. All PALcode instructions are described in the Alpha Architecture
Reference Manual.

4.5.1 Required PALcode Instructions

The PALcode instructions listed in Table 4-3 must be supported by all Al-
pha AXP implementations.

DECchlp 21064 Overview 4-19

Table 4-3 Required PALcode Instructions

Mnemonic
OpenVMS AXP OSF/1 AXP Type Operadtion
HALT Halt Privileged Halt processor
IMB imb Unprivileged I-stream memory barrier
DRAINA draina Privileged Drains aborts
SWPPAL swppal Privileged Swap PALcode

4.5.2 PALcode Instructions That Require Recognition
The PALcode instructions listed in Table 4-4 must be recognized by mne-

monic and opcode in all operating system implementations, but the effect
of each instruction is dependent on the implementation.

Table 4-4 PAlLcode Instructions That Require Recognition

Mnemonic
OpenVMS AXP OSF/1 AXP Name
BPT bpt Breakpoint trap
BUGCHK bugchk Bugcheck trap
GENTRAP gentrap Generate trap
RDUNIQUE rdunique Read unique value
WRUNIQUE wrunique Write unique value

4.5.3 Architecturally Reserved PALcode Instructions

The instructions shown in Table 4-5 are implementation dependent and
are specific to the DECchip 21064. These instructions are executed in the
PALcode environment. They produce OPCDEC exceptions (see Table 10-1)
if executed while not in the PALcode environment. These instructions are
mapped using the architecturally reserved opcodes (PAL19, PAL1B,
PAL1D, PAL1E, PAL1F). They can only be used while executing chip-
specific PALcode.

4-20 DECchip 21064 Overview

Table 4-5

NOTE:

PALmode Instructions Specific to the DECchip 21064

Mnemonic Operation

HW_MTPR "Move data to processor register
HW_MFPR Move data from processor register
HW_LD Load data from memory

HW_ST Store data in memory

HW_REI Return from PALmode exception

PALcode uses the HW_LD and HW_ST instructions to access memory out-
side the realm of normal Alpha AXP memory management.

4.6 Exceptions and Interrupts

4.6.1

Exceptions

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is typically handled by the current process, while an
interrupt is caused by some activity outside the current process and typi-
cally transfers control outside the process.

The DECchip 21064 processor services 32 interrupt priority levels (IPLs)
divided into 16 software levels (0 to 15) and 16 hardware levels (16 to 31).
User programs and most operating system software runs at IPL 0 which
may be thought of as process IPL. Higher IPLs have higher priority.

The system control block (SCB) specifies the entry points for exception and
interrupt service routines. The block is 8 Kbytes long, and must be page
aligned. The physical address of its first byte is specified by the value in
the System Control Block Base (SCBB) IPR. The operating system or con-
sole software must initialize the SCB before any interrupts are enabled.

The SCB consists of 512 entries, each 16 bytes long. The first 8 bytes of an
entry, the vector, specify the operating system virtual address of the serv-
ice routine associated with that entry. The second 8 bytes, the parameter,
are an arbitrary quadword value to be passed to the service routine. Refer
to the Alpha Architecture Reference Manual for details on the system con-
trol block and SCB entries.

The Alpha architecture defines three types of exceptions:

e Faults
A fault is an exception condition that occurs during an instruction and
leaves the registers and memory in a consistent state such that elimi-
nation of the fault condition and subsequent reexecution of the instruc-
tion will give correct results. The PC saved in the exception stack
frame is the address of the faulting instruction. An REI to the PC will
reexecute the faulting instruction.

¢ Arithmetic Trap
An arithmetic trap is an exception condition that occurs at the comple-
tion of the operation that caused the exception. Since several instruc-

DECchip 21064 Overview 4-21

tion of the operation that caused the exception. Since several instruc-
tions may be in various stages of execution at any time, it is possible
for multiple arithmetic traps to occur simultaneously. The PC that is
saved in the exception stack frame is that of the next instruction that
would have been issued if the trapping condition(s) had not occurred.
A CALL_PAL REI to this PC will not reexecute the trapping instruc-
tion(s), nor will it reexecute any intervening instructions; it will sim-
ply continue execution from the point at which the trap was taken.

¢ Synchronous Trap
A synchronous trap is an exception condition that occurs at the comple-
tion of the operation that caused the exception, and no subsequent in-
struction is issued before the trap occurs.

4.6.2 Interrupts
The KN7AA module uses the provided hardware interrupts as shown in

Table 4-6. The handling of interrupts from the LSB, interval timer, and
UARTS is accomplished with both hardware and PALcode.

Table 4-6 KN7AA Interrupts

OpenvVMS : irg_h

IPL,, IPL,, OSF/1 Condition Signal

1F 7 Ctrl/P detection 5

31 Node halt (LCNR<NHALT>) 5
Machine check (LSB ERR or KN7AA-detected error) 4

N/A! Unused
18-1E 6 LSB level 3 interrupt 3
30 5 Internal timer 2

17 Interprocessor interrupt 2

23 LSB level 2 interrupts 2

16 4 LSB level 1 interrupts 1

22 3 KN7AA console UARTS 0
LSB level 0 interrupts 0
Processor-corrected errors x

> N/A Unused

14 0-2 Software interrupt asserted b4

20

10-13

16-19

01-0F

01-15

1 Not applicable.

2 Only DECchip 21064-BA (rev 3) chips generate internal interrupts at IPL 20. Rev 2 DECchip 21064 chips do not

correct correctable errors. These chips generate hard errors at IPL 31 instead.

4-22 DECchip 21084 Overview

The Alpha AXP processor IPL is defined by the processor state managed by
PALcode. The contents of the HIER, SIER, and ASTER DECchip 21064
IPRs defines the processor IPL. It is the responsibility of PALcode to man-
age the contents of these registers to conform to the processor IPL defined
by the Alpha AXP architecture. The PALcode gets entered whenever the
processor IPL is low enough (HIER, SIER, and ASTER contain appropriate
values) and one of the six interrupt signals is asserted.

4.7 Internal Processor Registers

4.7.1 IPR Access

The DECchip 21064 contains a number of registers referred to throughout
this document as IPRs (internal processor registers). The IPRs are used by
the DECchip hardware and the PALcode to implement functions required
by the Alpha AXP architecture. Detailed descriptions are provided for only
those IPRs whose functions are defined at bit level.

PALcode initializes the ICCSR<HWE> to zero. This means that the IPRs
are not visible to the user software. They are accessible only in PALmode
by using the HW_MFPR or HW_MTPR instruction (see Figure 4-6). These
instructions select the IPR group and reference an IPR within the group.
It is possible to access IPRs in different groups with a single instruction by
setting their respective bits (PAL, ABX, and IBX) in the HW_MFPR or
HW_MTPR instruction, provided the IPRs from the different groups share
the same index. Setting the PAL, ABX, and IBX fields to zero generates a

no-op.

Figure 4-6 HW_MFPR and HW_MTPR Instruction Format

31

26 25 21 20 16 15 8 7 &6 5 4]

OPCODE RA RB IGN INDEX

NOTE:

PAL — |
ABX
IBX

Refer to Section 10.6 for the field descriptions of the HW_MFPR and
HW_MTPR instructions.

There are two registers per processor that are associated with the LDQ L/
LDL_L and STQ_C/STL_C instructions: the lock_flag single-bit register
and the locked_physical_ address register. The use of these registers is de-
scribed in the Alpha Architecture Reference Manual. These registers are re-
quired by the Alpha AXP architecture but are not implemented by the
DECchip 21064. They must be implemented in the application.

Table 4-7 lists the DECchip 21064 IPRs. It also indicates the access type
and the index of each IPR.

BXB-0618-92

DECchip 21064 Overview 4-23

Table 4-7 DECchip 21064 Internal Processor Registers

1 Used in PALmode only.

Name Mnemonic Access Index
Ibox

Translation Buffer Tag Register! TB_TAG A 0
Instruction Translation Buffer PTE Regisf:.er1 ITB_PTE R'W 1
Instruction Cache Control/Status Register ICCSR R/'W 2
Instruction Translation Buffer PTE_TEMP Register’ ITB_PTE_TEMP R 3
Exception Address Register EXC_ADDR R'W 4
Serial Line Receive Register SL_RCV R 5
Instruction Translation Buffer ZAP Reg:istaar1 ITBZAP w 6
Instruction Translation Buffer ASM l'\‘,eg:ist,er1 ITBASM w 7
Instruction Translation Buffer IS Reg:ister1 ITBIS w 8
Processor Status Register PS R/W 9
Exception Summary Register EXC_SUM RW 10
PALcode Base Address Register PAL,_BASE R/'W 11
Hardware Interrupt Request Register HIRR R 12
Software Interrupt Request Register SIRR RW 13
Asynchronous Trap Request Register ASTRR R'W 14
Hardware Interrupt Enable Register HIER RW 16
Software Interrupt Enable Register SIER R'W 17
AST Interrupt Enable Register ASTER R/W 18
Serial Line Interrupt Clear Register SL_CLR w 19
Serial Line Transmit Register SL_XMIT w 22

4-24 DECchip 21064 Overview

Table 4-7 DECchip 21064 Internal Processor Registers (Continued)

1 Used in PALmode only.

Name Mnemonic Access Index
Abox

Translation Buffer Control Register TB_CTL w 0
Data Translation Buffer PTE Register DTB_PTE RW 2
Data Translation Buffer PTE_TEMP Register DTB_PTE_TEMP R 3
Memory Management CSR Register MMCSR R 4
Virtual Address Register VA R 5
Data Translation Buffer ZAP Register DTBZAP w 6
Data Translation Buffer ASM Register DTASM w 7
Data Translation Buffer IS Register DTBIS A 8
BIU Address Register BIU_ADDR R 9
BIU Status Register BIU_STAT R 10
D-Cache Status Register DC_STAT R 12
Fill Address Register FILL_ADDR R 13
Abox Control Register ABOX_CTL w 14
Alternate Processor Mode Register ALT_MODE w 15
Cycle Counter Register CcC w 16
Cycle Counter Control Register CC_CTL w 17
BIU Control Register BIU_CTL w 18
Fill Syndrome Register FILL_SYND R 19
B-Cache Tag Register BC_TAG R 20
Flush IC Register FLUSH_IC w 21
Flush IC_ASM Register FLUSH_IC_ASM w 23
PAL

PALcode Temporary Registers PAL_TEMP R/W 31-00

Table 4-8 shows the reset states of the DECchip 21064 IPRs and indicates
the registers that need to be initialized by power-up PALcode.

DECchip 21064 Overview 4-25

Table 4-8

DECchip 21064 IPR Reset State

IPR Reset State Comment'

TB_TAG Undefined

ITB_PTE Undefined

ICCSR Cleared except Floating-point disabled, single-issue mode, pipe mode

ASN, PC0, PC1 enabled, JSR predictions disabled, branch predictions

disabled, branch history table disabled, performance
counters reset to zero, Perf Cnt0: Total Issues/2, Perf
Cntl: D-cache Misses, superpage disabled

ITB_PTE_TEMP Undefined

EXC_ADDR Undefined

SL_RCV Undefined

ITBZAP Not applicable PAlLcode must do an ITBZAP on reset before writing
the ITB (must do HW_MTPR to ITBZAP IR).

ITBASM Not applicable

ITBIS Not applicable

PS Undefined PALcode must set processor status.

EXC_SUM Undefined - PALcode must clear the Exception Summary IPR and
the exception write mask by doing 64 reads.

PAL_BASE Clear Cleared on reset.

HIRR Not applicable

SIRR Undefined PALcode must initialize.

ASTRR Undefined PALcode must initialize.

HIER Undefined PALcode must initialize.

SIER Undefined PALcode must initialize.

ASTER Undefined PALcode must initialize.

SL_CLR Undefined PAlcode must initialize.

SL_XMIT Undefined PALcode must initialize. Appears on external pin.

TB_CTL Undefined PALcode must select between SP/LP DTB prior to any
TB fill.

DTB_PTE Undefined

DTB_PTE_TEMP Undefined

1 The B-cache parameters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all
undetermined on reset. These parameters must be initialized before enabling the B-cache.

4-26 DECchip 21064 Overview

Table 4-8 DECchip 21064 IPR Reset State (Continued)

IPR Reset State Comment

MMCSR Undefined Unlocked on reset.

VA Undefined Unlocked on reset.

DTBZAP Not applicable PALcode must do an ITBZAP on reset. See ITBZAP.

DTASM Not applicable

DTBIS Not applicable

BIU_ADDR Not applicable Potentially locked.

BIU_STAT Undefined Potentially locked.

DC_STAT Undefined

FILL_ADDR Undefined Potentially locked.

ABOX_CTL Cleared <11:0> <- %0100 Write buffer enabled, machine
checks disabled, correctable read interrupts disabled,
I-cache stream buffer disabled, superpages 1 and 2
disabled, endian mode disabled, D-cache disabled,
forced hit mode off.

ALT_MODE Undefined

CcC Undefined Cycle counter is disabled on reset.

CC_CTL Undefined

BIU_CTL Cleared B-cache disabled, parity mode undefined, chip enable
asserts during RAM write cycles, B-cache forced-hit
mode disabled. BC_PA_DIS field cleared. BAD_TCP
cleared. BAD_DP cleared.

FILL_SYND Undefined Potentially locked.

BC_TAG Undefined Potentially locked.

PAL_TEMP Undefined

1 The B-cache eters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all

undetermined on reset. These parameters must be initialized before enabling the B-cache.

4.7.2 |IPR Descriptions

This section provides detailed descriptions of the DECchip 21064 IPRs.
The list of the DECchip 21064 IPRs includes IPRs that do not carry func-
tional fields and some pseudoregisters. These IPRs are the following:

¢ Virtual Address Register (VA)
When D-stream faults or DTB misses occur, the effective virtual ad-
dress associated with the fault or miss is latched in the read-only VA
IPR. The VA and MMCSR registers are locked against further updates
until the software reads the VA IPR. The VA IPR is unlocked after re-
set. PALcode must explicitly unlock this register whenever its entry
point is higher in priority than a DTB miss.

DECchip 21064 Overview 4-27

e Imstruction Translation Buffer ZAP Register ITBZAP)
A write to this IPR invalidates all 12 instruction translation buffer
(ITB) entries. It also resets both the NLU pointers to their initial state.
The ITBZAP IPR is only written to in PALmode.

e Imstruction Translation Buffer ASM Register ITBASM)
A write to this IPR invalidates all ITB entries in which the <ASM> bit
is equal to zero. The ITBASM IPR is only written to in PALmode.

¢ Imstruction Translation Buffer IS Register ITBIS)
A write to the ITBIS IPR invalidates all 12 ITB entries. It also resets
both the NLU pointers to their initial state. The ITBIS IPR is only
written to in PALmode.

¢ Data Translation Buffer ZAP Register (DTBZAP)
The DTBZAP is a pseudoregister. Any write to this register invali-
dates all 32 DTB entries. It also resets the NLU pointer to its initial
state.

¢ Data Translation Buffer ASM Register (DTBASM)
The DTBASM is a pseudoregister. Any write to this register invali-
dates all 32 DTB entries in which the ASM bit is zero.

¢ Data Translation Buffer Invalidate Single Register (DTBIS)
Any write to this pseudoregister will invalidate the DTB entry, which
maps the virtual address held in the integer register. The integer reg-
ister is identified by the Rb field of the HW_MTPR instruction, used to
perform the write.

¢ Flush Instruction Cache Register (FLUSH_IC)
Any write to this pseudoregister flushes the entire instruction cache.

¢ Flush Instruction Cache ASM Register (FLUSH_IC_ASM)
Any write to this pseudoregister invalidates all I-cache blocks in which
the ASM bit is clear.

¢ PAL_TEMP IPRs
These 32 registers provide temporary storage for PALcode. They are
accessed by way of the HW_MTPR and HW_MFPR instructions.

The descriptions of the rest of the DECchip 21064 IPRs follow.

4-28 DECchip 21064 Overview

TB_TAG—Translation Buffer Tag Register

Index Ibox 0
Access w

The TB_TAG IPR holds the tag for the next translation buffer up-
date operation in the instruction translation buffer (ITB) or the
data translation buffer DTB). The tag is written to a temporary
register and not transferred to the ITB or DTB until the Instruc-
tion Translation Buffer Page Table Entry (ITB_PTE) or the Data
Translation Buffer Page Table Entry (DTB_PTE) IPR is written.
The entry to be written is chosen at the time of the ITB_PTE or
DTB_PTE write operation by a not-last-used (NLU) algorithm, im-
plemented in hardware.

Small Page Format:

6
3

wh
N
W
[
[-1-]

IGN VA<42:13> IGN

;I’B_CTL<GH> = 11 Format {(ITB only):

4
3 32

»~
N
--N
[-1-]

IGN VA<42:22> IGN

BXB-0283-93

Table 4-9 TB_TAG IPR Bit Definitions

Name Bit(s) Type Function

VA <42:13> w Virtual Address. Bits extracted from the vir-
tual address to form the tags for the small pages
(8 Kbytes) of the ITB.

VA <42:22> W Virtual Address. Bits extracted from the vir-
tual address to form the tags for the large pages
(4 Mbytes) of the ITB.

DECchip 21064 Overview 4-29

ITB_PTE—Instruction Translation Buffer PTE Register

Index
Access

Ibox 1
R/W

The ITB_PTE IPR represents 12 page table entries split into two
distinet arrays. The first eight PTEs provide small page (8 Kbytes)
translations while the remaining four provide large page (4
Mbytes) translations. The entry to be written is selected by a not-
last-used algorithm implemented in hardware for each array inde-
pendently, and the status of the TB_CTL IPR. Writes to the
ITB_PTE IPR use the memory format bit positions as described in
the Alpha Architecture Reference Manual, with the exception that
some fields are ignored.

Refer to the chapter discussing the appropriate operating system
support in this manual for the bit definitions of the PTE.

Write Format:

6
3

5
3

nw
Ed

5
2

IGN PFN<33:13> IGN iGN| | 1GN
URE —J I
SRE
ERE
KRE
Read Format: ASM
[} 333 1711100 0
3 543 3210908 0
RAZ PFN<33:13> RAZ
ASM —J URE fI_J
SRE
ERE
KRE
BXB-0284 -93

4-30 DECchlp 21054 Overview

ICCSR—Instruction Cache Control/Status Register

Address
Access

lbox 2
R/W

The ICCSR IPR contains various Ibox hardware enables. The only
architecturally defined bit in this register is the floating-point en-
able (FPE), which enables floating-point instructions. When
cleared, all floating-point instructions generate FEN exceptions.
Most bits of this IPR are cleared by hardware at reset. Fields that
are not cleared at reset include ASN, PC0, and PC1.

NOTE: The hardware enable bit allows the PALcode instructions to execute
in kernel mode. This bit is intended for diagnostic or operating system al-
ternative PALcode routines only. It does not allow access to the ITB IPRs if
not running in PALmode.

Write Format :

[
3

(XY
-
(1~
~No
no
a0
wo
nNo
“o
oo

IGN

IGN

Read Format:

6
3

PCO
MBZ
PCH

L — PCMUX1<20> __|
PC MUX0<3:0>
MBZ
RSVD

PC1 ﬂ
PCO
RAZ —

DI PC MUX0<3:0>

BHE PC MUX1<2:0>
JSE

BPE ——
PIPE

BXB-0286-92

DECchip 21064 Overview 4-31

Table 4-10 ICCSR IPR Bit Definitions

Name Bit(s) Type Function
ASN W<52:47> R/W,0 Address Space Number. The ASN field is used with
R<33:28> the I-cache to further qualify cache entries and avoid

some cache flushes. The ASN is written to the I-cache
during fill operations and compared with the I-stream
data on fetch operations. Mismatches invalidate the

fetch without affecting the I-cache.
FPE W<4d2> R/'W, 0 Floating-Point Enable. If set, floating-point instruc-
R<23> tions can be issued. If clear, floating-point instructions
cause FEN exceptions.
MAP W<dl> R/'W, 0 Map. If set, it allows superpage I-stream memory
R<22> mapping of virtual PC <33:13> directly to physical PC

<33:13> essentially bypassing ITB for virtual PC ad-
dresses containing virtual PC <42:41> = 2. Superpage
mapping is allowed in kernel mode only. The I-cache
ASM bit is always set. If clear, superpage mapping is

disabled.
HWE W<40> R/W,0 Hardware Enable. If set, it allows the five PALRES
R<21> instructions (see the Alpha Architecture Reference

Manual) to be issued in kernel mode. If cleared, at-
tempts to execute PALRES instructions while not in
PALmode result in OPCDEC exceptions.

DI W<39> R/W,0 Dual Issue. If set, dual-instruction issue is enabled.
R<20> If cleared, instructions can only single issue.
BHE W<38> R'W,0 Branch History Enable. Used with BPE to select
R<19> branch prediction.
BPE BHE Prediction
0 X Not taken
1 0 Sign of displacement
1 1 Branch history table
JSE W<37> R/W, 0 Jump Subroutine Enable. If set, it enables the JSR
R<18> stack to push a return address. If cleared, JSR stack is
disabled.
BPE W<36> R/W,0 Branch Prediction Enable. Used with BHE to se-
R<17> lect branch prediction. See description of BHE above.
PIPE W<38> R/W,0 Pipeline. If clear, it causes all hardware interlocked
R<19> instructions to drain the machine and waits for the

write buffer to empty before issuing the next instruc-
tion. Examples of instructions that do not cause the
pipe to drain include HW_MTPR, HW_REI, conditional
branches, and instructions that have a destination reg-
ister of R31. If set, pipeline proceeds normally.

4-32 DECchip 21064 Overview

Tabie 4-10 ICCSR IPR Bit Definitions (Continued)

Name Bit(s) Type Function
PCMUX1 W<34:32> R/W,0 Performance Counter Mux 1.
R<15:13>
MUX1 input Comment
000 D-cache miss Counts total D-cache
misses.
001 I-cache miss Counts total I-cache
misses,
010 Dual issues Counts cycles of dual is-
sue. ‘
011 Branch Counts both conditional
mispredicts branch mispredictions
and JSR or HW_REI
mispredictions. Condi-
tional branch mispre-
dictions cost 4 cycles and
others cost 5 cycles of
pipeline delay.
100 FP instruc- Counts total floating-
tions point operate instruc-
tions; that is, no FP
branch, load, or store.
101 Integer oper- Counts integer operate
ate instructions including
LDA and LDAH with
destination other than
R31.
110 Store instruc- Counts total store in-
tions structions.
111 PERF_CNT_H Counts external events
=1 supplied to a pin at a se-
lected system clock cycle
interval.

DECchip 21064 Overview 4-33

Table 4-10 ICCSR IPR Bit Definitions (Continued)

Name Bit(s) Type Function
PCMUX0 W<l11:8> R/W,0 Performance Counter Mux 0.
R<12:9>
MUX0 Input Comment
000X Total Issues/2 Counts total issues di-
vided by 2; dual issue in-
crements count by 1.
001X Pipeline Dry Counts cycles where
nothing issued due to
lack of valid I-stream
data. Causes include I-
cache fill, misprediction,
branch delay slots, and
pipeline drain for excep-
‘ tion.
010X Load Instruc- Counts all Load instruc-
tions tions.
011X Pipeline Frozen = Counts cycles where
nothing issued due to re-
source conflict.
100X Branch Instrue- Counts all conditional
tions branches, unconditional
branches, JSR, and
HW_REI instructions.
1011 PALmode Counts cycles while exe-
cuting in PALmode.
1010 Total cycles Counts total cycles.
110X Total Non- Counts total non_issues
issues/2 divided by 2; that is, no
issue increments count
by 1.
111X PERF_CNT_H Counts external events
= supplied to a pin at a se-
lected system clock cycle
interval.
PC1 W<0> R'W Performance Counter 1. If clear, it enables performance
R<> counter 1 interrupt request after 2 12 events counted. If set
it enables performance counter 1 interrupt request after 28
events counted.
PCO W<3> R/'WO Performance Counter 0. If clear 1t enables performance
R<1> counter 0 interrupt request after 2'° events counted. If set,
it enables performance counter 0 interrupt request after
212 events counted.

4-34 DECchip 21064 Overview

Performance Counters

The performance counters are reset to zero upon power-up. Otherwise they
are never cleared. The counters are intended as a means of counting events
over a long period of time, relative to the event frequency. They provide no
means of extracting intermediate counter values.

Since the counters continuously accumulate selected events, despite inter-
rupts being enabled, the first interrupt after selecting a new counter input
has an error bound as large as the selected overflow range. Some inputs
can overcount events occurring simultaneously with D-stream errors that
abort the actual event very late in the pipeline.

For example, when counting load instructions, attempts to execute a load
resulting in a TB miss exception will increment the performance counter
after the first aborted execution attempt and again after the TB fill routine
when the load instruction reissues and completes.

Performance counter interrupts are reported six cycles after the event that
caused the counter to overflow. Additional delay can occur before an inter-

rupt is serviced if the processor is executing PALcode that always disables

interrupts. Events occurring during the interval between counter overflow

and interrupt service are counted toward the next interrupt.

Only in the case of a complete counter wrap-around while interrupts are
disabled will an interrupt be missed.

The six cycles before an interrupt is triggered implies that a maximum of
12 instructions may have completed before the start of the interrupt serv-
ice routine.

When counting I-cache misses, no intervening instructions can complete
and the exception PC contains the address of the last I-cache miss. Branch
mispredictions allow a maximum of only two instructions to complete be-
fore start of the interrupt service routine.

DECchip 21064 Overview 4-35

ITB_PTE_TEMP—Instruction Translation Buffer PTE_TEMP

Register

Index
Access

Ibox 3
R

The ITB_PTE_TEMP IPR is a holding register for ITB_PTE read
data. Reads of ITB_PTE require two instructions to return data to
the register file. The two instructions are as follows:

1. Read the ITB_PTE IPR data to the ITB_PTE_TEMP IPR.
2. Read the ITB_PTE_TEMP IPR data to the integer register file.

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both

read and write. A read of the ITB_PTE to the ITB_PTE_TEMP
should be followed closely by a read of the ITB_PTE_TEMP to the
register file. Refer to the PTE descriptions in Chapters 9 and 10 for
the bit definitions of this register.

won

LL12]
-
wo
@
FYyy
-
o=
0o
@O
oo

RAZ PFN<33:13> RAZ

AsM —] URE —
SRE
ERE

KRE BXB-0285-92

4-36 DECchip 21064 Overview

EXC_ADDR—Exception Address Register

Index Ibox 4
Access R/W

The EXC_ADDR IPR is a read/write register used to restart the sys-
tem after exceptions or interrupts.

PC<63:2>

.

BXB-0288-93
Table 4-11 EXC_ADDR IPR Bit Definitions
Name Bit(s) Type Function
PC <63:2> R'W Program Counter. Contains bits <63:2> of the PC.

This field is written by hardware following an exception
to provide a return address for PALcode.

PAL <0> R/W PALmode. If set, the value in EXC_ADDR<63:2> is cor-
rect. When clear, the HW_REI instruction executes a
jump to native (nonPALmode) mode, enabling address
translation.

EXC_ADDR IPR Usage

The instruction pointed to by the EXC_ADDR IPR did not complete its exe-
cution. The EXC_ADDR IPR is written by hardware after an exception to
provide a return address for PAlcode. The HW_REI instruction executes a
jump to the address contained in the EXC_ADDR IPR. EXC_ADDR<0> is
used to indicate PALmode to the hardware.

CALL_PAL exceptions load the EXC_ADDR with the PC of the instruction
following the CALL_PAL. This function allows CALL_PAL service routines
to return without needing to increment the value in the EXC_ADDR IPR.

This feature requires careful treatment in PALcode. Arithmetic traps and
machine check exceptions can prompt CALL_PAL exceptions resulting in
an incorrect value being saved in the EXC_ADDR IPR. In the cases of an

DECchip 21064 Overview 4-37

arithmetic trap or machine check exception (only in these cases),
EXC_ADDR<1> takes on special meaning. PALcode servicing these two
exceptions must:

¢ Interpret a zero in EXC_ADDR<1> as indicating that the PC in
EXC_ADDR<63:2> is too large by a value of 4 bytes and subtract 4 be-
fore executing an HW_REI from this address.

o Interpret a one in EXC_ADDR<1> as indicating that the PC in
EXC_ADDR<63:2> is correct and clear EXC_ADDR<1>.

All other PALcode entry points except reset can expect EXC_ADDR<1> to
be zero.

The logic allows the following code sequence to conditionally subtract 4
from the address in the EXC_ADDR register without the use of an addi-
tional register. This code sequence must be present in arithmetic trap and
machine check flows only.

HW_MFPR Rx, EXC_ADDR
SUBQ Rx, 2, Rx

read EXC_ADDR into GPR
subtract 2 causing borrow
if bit <1>=0

clear bit [1]

write back to EXC_ADDR

BIC Rx, 2, Rx
HW_MTPR Rx, EXC_ADDR

Ne N Ne Ne Ne

NOTE: Using the HW_MTPR instruction to update the EXC_ADDR register while
in the native mode is restricted to bit <0> being equal to zero. The combina-
tion of the native mode and EXC_ADDR<0> being equal to one causes UN-
DEFINED behavior. This combination is only possible through the use of
ICCSR<HWE>.

4-38 DECchip 21064 Overview

SL_RCV—Serial Line Receive Register

Index Ibox 5
Access R

The SL_RCV IPR contains a single read-only bit (RCV) which is
used with the interrupt control registers, the sRomD_h signal, and
the sRomClk_h signal to provide an on-chip serial line function.

wo
&0
wo
nNO
Qo

RAZ R
RCV —
BXB-0289-93
Table 4-12 SL_RCYV IPR Bit Definitions
Name Bit(s) Type Function
RCV <3> R Serial Line Receive. This bit is functionally connected to

the sRomD_h pin after the I-cache is loaded from the exter-
nal SROM. Using a software timing loop, RCV can be read
to receive external data one bit at a time.

A serial line interrupt is requested on detection of any tran-
sition on the receive line that sets the SL_REQ bit in the
HIRR IPR. The serial line interrupt can be disabled by
clearing HIER<SL_EN>.

DECchip 21064 Overview 4-39

PS—Processor Status Register

Index lbox 9
Access R/IW

The PS IPR contains only the current mode bits of the architectur-
ally defined PS. Refer to the Alpha Architecture Reference Manual
for the functional descriptions of the current mode bits.

Write Format:
[3 0000 o
3 5432

IGN IGN|

Read Format:

[3
3

Kaw
are
ww
L 1-]

BXB-0280-92

4-40 DECchip 21064 Overview

EXC_SUM—Exception Summary Register

Index lbox 10
Access R/W

The EXC_SUM IPR records the various types of arithmetic traps
that occurred since the last time the EXC_SUM was written
(cleared). When the result of an arithmetic operation produces an
arithmetic trap, the corresponding EXC_SUM bit is set.

The register containing the result of the operation is recorded in
the Exception Register Write Mask parameter (see the Alpha Ar-
chitecture Reference Manual), as a single bit in a 64-bit field speci-
fying registers F31-F0 and 131-10. The EXC_SUM IPR provides a
one-bit window to the Exception Register Write Mask parameter.
This is visible only through the EXC_SUM IPR.

Each read to the EXC_SUM shifts one bit in order F31-F0 then
I31-I0. The read also clears the corresponding bit. The EXC_SUM
must be read 64 times to extract the complete mask and clear the
entire register. If no integer traps are present I0V=0), only the
first 32 bits of the corresponding register in the floating-point reg-
ister file need to be read and cleared.

Any write to EXC_SUM clears bits <8:2> and does not affect the
write mask bit.

The write mask parameter bit clears three cycles after a read.
Code intended to read the parameter must allow at least three cy-

cles between reads. This allows the clear and shift operations to
complete in order to ensure reading successive bits.

MSK _] lov :J_l_l

BXB-0291-83

DECchip 21064 Overview 4-41

Table 4-13

EXC_SUM IPR Bit Definitions

Name Bit(s) Type Function

MSK <33> RC Mask. Exception Register Write Mask parameter window.

10V <8> WA Integer Overflow. When set, indicates Fbox convert to in-
teger overflow or integer arithmetic overflow.

INE <7> WA Inexact Error. When set, indicates floating inexact error.

UNF <6> WA Underflow. When set, indicates floating-point underflow.

FOV <5> WA Floating-Point Overflow. When set, indicates floating-
point overflow.

DZE <4> WA Divide by Zero. When set, indicates divide by zero.

INV <3> WA Invalid. When set, indicates invalid operation.

SWC <2> WA Software Completion. When set, indicates software com-

pletion possible. The bit is set after a floating-point instruc-
tion containing the /S modifier completes with an arithmetic
trap and all previous floating-point instructions that

trapped since the last HW_MTPR EXC_SUM also contained
the /S modifier. The SWC bit is cleared whenever a floating-
point instruction without the /S modifier completes with an
arithmetic trap. The bit remains cleared regardless of addi-
tional arithmetic traps until the register is written by way of
an HW_MTPR instruction. The SWC bit is always cleared
upon any HW_MTPR write to the EXC_SUM IPR.

4-42 DECchlp 21064 Overview

PAL_BASE—PALcode Base Address Register

Index
Access

lbox 11
R/W

The PAL_BASE IPR contains the base address for PALcode. This
register is cleared by the hardware at reset. It establishes the ref-
erence (base) address to which an offset is added to determine the

entry point to the PALcode.
H i3 i3 o
IGN/RAZ PAL_BASE<33:14> IGN/RAZ
BXB-00292-93
Table 4-14 PAL_BASE IPR Bit Definitions
Name Bit(s) Type Function
PAL_ BASE <33:14> RW PAlLcode Base Address. Contains the PALcode base ad-
dress. »

DECchip 21064 Overview 4-43

HIRR—Hardware Interrupt Request Register

Index
Access

lbox 12
R

The HIRR IPR provides a record of all currently outstanding inter-
rupt requests and summary bits at the time of the read. For each
bit of the HIRR<5:0>, there is a corresponding bit of the Hardware
Interrupt Enable IPR (HIER) that must be set to enable that inter-
rupt.

In addition to returning the status of the hardware interrupt re-
quests, a read of the HIRR returns the state of the software inter-
rupt and AST requests.

NOTE: A read of the HIRR can return a value of zero if the hardware inter-
rupt was released before the read (passive release).

The register guarantees that the HWR bit reflects the status as
shown by the HIRR bits. All interrupt requests are blocked while
executing in PALmode.

Read Format:

€
3

ne
[1-]
~o
wo
a0

wo
no
—o
oo

ww
on
®N
e
-
[Xy
o
oo

RAZ SIRR[15:1]
L USEK ASTRR[3:0] _I
SLR 1
HIRR[2:0]
PCO
PC1
HIRR[5:3]
CRR —
ATR —
SWR ——
HWR ———
RAZ

BXB-0293-93

4-44 DECchip 21064 Overview

Table 4-15 HIRR IPR Bit Definitions

Name

Bit(s) Type

Function

ASTRRI[3:0]

SIRR[15:1]

SLR

HIRRI[5:0]

PCoO

ATR

SWR

<32:29> R

<28:14> R

<13> R

<12:10> R
<7:5>

<4> R

<3> R

<1l> R

AST Request. Corresponds to AST requests 3 through
0 (USEK). When a bit is set, the corresponding inter-
rupt request is posted. The four bits are expanded as fol-
lows:

ASTRR Operating Mode

UAR: User AST request
SAR: Supervisor AST request
EAR: Executive AST request
KAR: Kernel AST request

QN W

Software Interrupt Request. Corresponds to soft-
ware interrupt requests 15 through 1. When a bit is set,
the corresponding interrupt request is posted.

Serial Line Interrupt Request. When set, a serial
line interrupt request is posted. See also SL_RCV,
SL_XMIT, and SL_CLR.

Hardware Interrupt Request. Reflects the state of
signals Irq_h [5:0]. Any bit set in the HIRR field indi-
cates an interrupt request on the corresponding Irq_h
line.

Performance Counter 0 Interrupt Request. When
set, indicates that an interrupt request is posted by PCO0.

Performance Counter 1 Interrupt Request. When
set, indicates that an interrupt request is posted by PC1.

Correctable Read. When set, indicates that a
correctable read error interrupt request is posted. This
interrupt is cleared by way of the SL_CLR IPR.

Asynchronous Trap Request. Is set if any AST re-
quest and corresponding enable is set. This bit also re-
quires that the processor mode be equal to or higher than
the request mode. SIER[2] must be asserted to allow
AST interrupt requests.

Software. Is set if any software interrupt request and
corresponding enable is set.

Hardware. Is set if any hardware interrupt request
and corresponding enable is set.

DECchip 21064 Overview 4-45

SIRR—Software Interrupt Request Register

Index
- Access

lbox 13
R/W

The SIRR IPR is used to control software interrupt requests. For
each bit of the SIRR there is a corresponding bit of the Software
Interrupt Enable IPR (SIER) that must be set to request an inter-
rupt. Reads of the SIRR return the complete set of interrupt re-
quest registers and summary bits. All interrupt requests are
blocked while executing in PALimode. See Table 4-15 for the

SIRR IPR bit definitions.

Write Format:

[
3

oM
~Nh
(21}
~e

[-1-]

IGN

SIRR[15:1] IGN

€
3

Read Format:

ne
on

W
«r
B
W
N
o
©wo
L 1-]

~No
wno
»0
wo
no
-0
oo

RAZ SIRR[15:1]

L usek ASTRR[3:0] J
SLR
HIRR[2:0]
PCO

PC1
HIRR[5:3>\]
CRR
ATR
SWR
HWR
RAZ

I

BXB-0264-93

4-46 DECchlp 21064 Overview

ASTRR—Asynchronous Trap Request Register

Index
Access

Ibox 14
R/W

The ASTRR IPR contains bits to request AST interrupts in each of
the processor modes. To generate an AST interrupt, the corre-
sponding enable bit in the ASTER IPR must be set. Also, the proc-
essor must be in the selected processor mode or higher privilege as
described by the current value of the PS CM bits. AST interrupts
are enabled if SIER[2] is asserted. This provides a mechanism to
lock out AST requests over certain IPL levels.

All interrupt requests.are blocked while executing in PALmode.
Reads of the ASTRR IPR return the complete set of interrupt re-
quest registers and summary bits. See Table 4-15 for the ASTRR
IPR bit definitions.

Write Format:

IGN IGN
UAR — ,] L— kam
SAR EAR
Read Format:
6 33 22 111 1000 000000
3 32 9 8 432 0987 543210
RAZ SIRR[15:1]
L usexk ASTRR[3 01 __|
HIRR[Z 0]
PCO
PC1
HIRR[5:3]
CRR —
ATR ——
SWR ——
HWR ————
RAZ

BXB-0295-93

DECchip 21064 Overview 4-47

HIER—Hardware Interrupt Enable Register

Index lbox 16
Access R/W

The HIER IPR is used to enable corresponding bits of the HIRR re-
questing interrupt. The PC0, PC1, SLE, and CRE bits of this regis-
ter enable:

1. Performance counter interrupts

2. Serial line interrupts

3. Correctable read error interrupts

There is a one-to-one correspondence between the interrupt re-
quests and enable bits. As with the reads of the interrupt request
registers, reads of the HIER IPR return the complete set of inter-
rupt enable registers. See Table 4-15 for details.

Write Format:

[
3

W
N
-0

0
°

®o
wo
no
-0
Q0

111
€654

HIER
IGN IGN 5o | | IGN
SLE —[PC1 | PCO A CRE —l l
Read Format: IGN
6 333322 111 1000 000000
3 321098 432 0987 543210
RAZ SIER[15:1] RAZ
uae —! ’ SLe I
SAE HIER[2:0]
EAE PCO
KAE PC1
HIER[5:3]
CRE

BXB-0296-93

4-48 DECchip 21064 Overview

Table 4-16 HIER IPR Bit Definitions

Name Bit(s)‘ Type Function
SLE W<32> R/'W Serial Line Interrupt Enable. If set, enables the se-
R<13> , rial line interrupts. See also SL_RCV, SL_XMIT, and
SL_CLR.
ASTRR[3:0] <32:29> R AST Interrupt Enable. Corresponds to AST inter-

rupt enable bits 3 through 0 (USEK). Ifa bitis setin
this field, the corresponding interrupt is enabled. The
four bits are expanded as follows:

ASTRR(3:0) Operdating Mode

3 UAE: User AST interrupt enable

2 SAE: Supervisor AST interrupt enable

1 EAE: Executive AST interrupt enable

0 KAE: Kernel AST interrupt enable
SIER[15:1] <28:14> R Software Interrupt Enable. Corresponds to software

interrupt requests 15 through 1. Any bit set in this
field indicates that the corresponding software inter-
rupt is enabled.

PC1 W<15> RW Performance Counter 1 Interrupt Enable. When
R<8> set, enables PC1 interrupts.

HIER[5:0] W<14:9> R/W Hardware Interrupt Enable. Interrupt enable bits
R<12:10> for signals Irq_h[5:0]. Any bit set in this field enables
R<7:5> the corresponding hardware interrupt.

PCO W<8> R'W Performance Counter 0 Interrupt Enable. When
R<9> set, enables PCQ interrupts.

CRE W<2> R'W Correctable Read Error Interrupt Enable. If set,
R<4> enables the interrupt. The interrupt request is cleared

by way of the SL_CLR.

DECchip 21064 Overview 4-49

SIER—Software Interrupt Enable Register

Index lbox 17
Access R/W

The SIER IPR is used to enable corresponding bits of the SIRR re-
questing interrupts. There is a one-to-one correspondence be-
tween the interrupt requests and enable bits. As with the reads of
the interrupt request registers, reads of the SIER return the com-
plete set of interrupt enable registers.

Refer to Table 4-16 for bit definitions of the SIER.

Write Format:
6
3

2
~N&
(217}
now
[-1-]

IGN SIER[15:1] IGN
Read Format:
6 338322 111 1000 000000
3 - 3210068 432 0887 543210
RAZ SIER[15:1] RAZ
vae —I | SLE — ‘
SAE HIER[2:0]
EAE PCO
KAE PC1
HIER[5:3]
CRE

BXB-0297-93

4-50 DECchip 21064 Overview

ASTER—AST Interrupt Enable Register

Index Ibox 18
Access R/W

The ASTER IPR is used to enable corresponding bits of the ASTRR
requesting interrupts. There is a one-to-one correspondence be-
tween the interrupt requests and enable bits. As with the reads of
the interrupt request registers, reads of the ASTER return the
complete set of interrupt enable registers.

Refer to Table 4-16 for bit definitions of the ASTER.

Write Format:

6 555444 0
3 210987

IGN IGN
UAE — I , L— Kkae
SAE EAE
Read Format:
-] 333322 111 1000 600000
3 321098 432 0987 543210
RAZ SIER<15:1> RAZ
UAE —I | SLe I
SAE HIER<2:0>
EAE PCO
KAE PC1
HIER<5:3>

CRE
BXB-0298-93

DECchip 21064 Overview 4-51

SL_CLR—Interrupt Clear Serial Line Register

Index lbox 19
Access W
The SL_CLR IPR is a write-only register that clears:
1. Serial line interrupt requests
2. Performance counter interrupt requests
3. CRD interrupt requests
The indicated bit must be written with a zero to clear the selected
interrupt source.
$ 333 $i3i 889 LERR]
IGN IGN IGN IGN
SLC —-[PC1 -—[PCO —l CRD —-l 1
IGN
BXB-0287-93
Table 4-17 SL_CLR IPR Bit Definitions
Name Bil(s) Type Function
SLC <32> woC Serial Line Clear. Clears the serial line interrupt request.
PCl <15> woC Performance Counter 1. Clears the performance counter
1 interrupt request.
PCo <8> woC Performance Counter 0. Clears the performance counter
0 interrupt request.
CRD <2> woC Correctable Read. Clears the correctable read error in-
terrupt request.

4-52 DECchip 21064 Overview

SL_XMIT—Serial Line Transmit Register

Index
Access

lbox 22
W

The SL_XMIT IPR contains a single write-only bit. This bit is used
with the interrupt control registers, the sRomD_h signal, and the
sRomClk_h signal to provide an on-chip serial line function. The
TMT bit is functionally connected to the sRomClk_h signal after
the I-cache is loaded from the external SROM. Writing the TMT
bit can be used to transmit data off chip, one bit at a time, under a

software timing loop.

wo

IGN

IGN

BXB-0299-93

DECchip 21064 Overview 4-53

TB_CTL—Translation Buffer Control Register

Index Abox 0
Access W

The TB_CTL IPR controls the granularity of the translation buffer.

IGN IGN
GH —
BXB-0600-93
Table 4-18 TB_CTL IPR Bit Definitions
Name Bit(s) Type Function
GH <6:5> R'W Granularity Hint. Selects between the DECchip 21064

TB page mapping sizes when writing or reading the ITB
and the DTB. There are two sizes in the ITB and four

gizes in the DTB.
TB_CTL<6:5> ITB Page Size DTB Page Size
00 8 Kbytes 8 Kbytes
01 8 Kbytes 8*8 Kbytes
10 8 Kbytes 64*8 Kbytes
11 512*8 Kbytes 512*8 Kbytes

4-54 DECchip 21064 Overview

DTB_PTE—Data Translation Buffer PTE Register

Index Abox 2
Access R/W

The DTB_PTE IPR represents the 32-entry DTB. The entry to be
written is chosen by a not-last-used (NLU) algorithm implemented
in the hardware. Writes to the DTB_PTE IPR use the memory for-
mat bit positions as described in the Alpha Architecture Reference
Manual, with the exception that some fields are ignored. The
valid bit is not represented in hardware.

Refer to the chapter discussing the appropriate operating system
support in this manual for the bit definitions of the PTE.

oo
oo
“w

IGN PFN<33:13> IGN IGN

UWE — I

SWE

EWE

KWE ASM
URE IGN
SRE FOW
ERE FOR —
KRE IGN

BXB-0601-93

DECchip 21064 Overview 4-55

DTB_PTE_TEMP—Data Translation Buffer PTE_TEMP
Register

Index Abox 3
Access R

The DTB_PTE_TEMP IPR is a holding register for the DTB_PTE
read data. Reads of the DTB_PTE require two instructions to re-
turn the data to the register file. The two instructions are as fol-
lows:

1. Read the DTB_PTE register data to the DTB_PTE_TEMP.

2. Read the DTB_PTE_TEMP register data to the integer register
file.

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both
read and write. A read of the ITB_PTE to the ITB_PTE_TEMP
should be followed closely by a read of the ITB_PTE_TEMP to
the register file.

Refer to Chapter 9 (OpenVMS AXP System Support) or Chapter 10
(DEC OSF/1 AXP System Support) for the bit definitions of the

PTE.
¢ 333 111100000000 0
3 543 321008765432 0
RAZ PFN<33:13> RAZ
LFOR
ASM —J URE -il
ERE
KRE
UWE
SWE
EWE —
KWE
BXB-0602-93

4-56 DECchip 21064 Overview

MMCSR—Memory Management CSR Register

Index
Access

Abox 4
R

The MMCSR IPR saves information about D-stream faults. The VA
and MMCSR IPRs are locked against further updates until the soft-
ware reads the VA. PALcode must explicitly unlock this register
whenever its entry point is higher in priority than a DTB miss.

The MMCSR bits are only modified by the hardware when the reg-
ister is not locked, and a memory management error or a DTB miss
occurs. The MMCSR IPR is unlocked after reset.

won

o0 0
98 4

[7. 159
E s
wo
No
~0
oo

RAZ OPCODE{ RA

Fow -
FOR
ACV

WR ———
BXB-0603-93

Table 4-19 MMCSR IPR Bit Definitions

Name Bit(s) Type Function v

OPCODE <14:9> R Opcode. Contains the Opcode field of the faulting in-
struction.

RA <8:4> R Register A. The RA field of the faulting instruction.

FOW <3> R Fault on Write. Set if the reference was a write and the
PTE’s FOW bit was set.

FOR <2> R Fault on Read. Set if the reference was a read and the
PTE’s FOR bit was set.

ACV <1> R Access Violation. Set if reference caused an access vio-
lation.

WR <0> R Write. Set if reference that caused error was a write.

DECchip 21064 Overview 4-57

BIU_ADDR—BIU Address Register

Index Abox 9
Access R

The BIU_ADDR IPR contains the physical address associated with
errors reported by BIU_STAT<7:0>. Its contents are meaningful
only when one of BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR are set. Reads of the BIU_ADDR register unlock both
BIU_ADDR and BIU_STAT<7:0>.

wo
IS
we
wo
no
no
-0
oo

RAZ Address

“2’,&;:—|_}

BXB-0613-93
Table 4-20 BIU_ADDR IPR Bit Definitions
Name Bit(s) Type Function
ADDRESS <33:5> R Address. Reflects the states of adr_h signals [33:5] asso-

ciated with the EDAL interface transaction that resulted
in the error indicated in BIU_STAT<7:0>.

RB/LL <4:2> R Read_Block or Load_Locked. If the BIU_CMD field of
i the BIU_STAT IPR indicates that the transaction that re-
ceived the error was Read_Block or Load_Locked, then the
state of RB/LL is UNPREDICTABLE. If the BIU_CMD
field of the BIU_STAT IPR encodes any EDAL interface
command other than Read_Block or Load_Locked, then
RB/LL reads as zeros.

4-58 DECchip 21064 Overview

BIU_STAT—BIU Status Register

Index
Access

Abox 10
R

Bits <6:0> of the BIU_STAT IPR are locked against further updates
when one of the following bits is set:

BIU_HERR
BIU_SERR
BC_TPERR
BC_TCPERR

The address associated with the error is latched and locked in the
BIU_ADDR IPR. BIU_STAT<7:0> and BIU_ADDR are unlocked
when the BIU_ADDR register is read. When FILL_ECC or
FILL_DPERR is set, BIU_STAT<13:8> are locked against further
updates. The address associated with the error is latched and
locked in the FILL,_ADDR IPR. BIU_STAT <14:8> and FILL, ADDR
are unlocked when the FILL_ADDR IPR is read.

This register is not unlocked or cleared by reset and needs to be
explicitly cleared by PALcode.

wn

FATAL2 — l
FILL_QW
FILL_IRD

FILL_DPERR
FILL_CRD

FILL_ECC
FATAL1T —
BIU_CMD
BC_TCPERR -
BC_TPERR —
BIU_SERR |
BIU_HERR

BXB-0608-93

DECchip 21064 Overview 4-59

Table 4-21 BIU_STAT IPR Bit Definitions

Name

Bit(s)

Type

Function

FATAL2

FILL_QW

FILL_IRD

FILL_DPERR

FILL_CRD

FILL_ECC

FATAL1

BIU_CMD

<14>

<13:12>

<11>

<10>

<8>

<7>

<6:4>

R

Fatal 2. When set, indicates that a primary cache fill op-
eration resulted in either a multi-bit ECC error or in a
parity error while FILL_ECC or FILL_DPERR was al-
ready set.

Fill Quadword. Identifies the quadword within the
hexword primary cache fill block that caused the error.
This field is only meaningful when either FILL_ECC or
FILL_DPERR is set. FILL_QW can be used together with
FILL_ADDR<33:5> to get the complete physical address of
the bad quadword.

Fill I-Cache Read. When set, indicates that the error
that caused FILL_ECC or FILL_DPERR to be set occurred
during an I-cache fill. When clear, indicates that the error
occurred during a D-cache fill. This bit is only meaningful
when either FILL_ECC or FILL_DPERR is set.

Fill Data Parity Error. When set, indicates that the
BIU received data with a parity error from outside the
CPU chip while performing either a D-cache or I-cache fill.
FILL_DPERR is only meaningful when the CPU chip is in
parity mode, as opposed to ECC mode.

Fill Correctable Read. When set, indicates that the in-

formation latched in BIU_STAT <13:8>, FILL_ADDR IPR,
and FILL_SYND IPR relates to an errored quadword that

does not contain multi-bit errors in either of its component
longwords. This bit is only meaningful when FILL_ECC is
set.

Fill ECC Error. When set, indicates that P-cache fill
data received from outside the CPU chip contained an
ECC error.

Fatal 1. When set, indicates that an external cycle was
terminated with the cAck_h pins indicating
HARD_ERROR, or that a B-cache tag probe encountered
bad parity in the tag address RAM or the tag control RAM
while one of BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR was already set.

BIU Command. Latches the cycle type on the cReq_h
pins when a BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR error occurs.

4-60 DECchip 21064 Overview

Table 4-21 BIU_STAT IPR Bit Definitions (Continued)

Name Bit(s) Type Function

BC_TCPERR <3> R B-Cache Tag Control Parity Error. When set, indi-
cates that an external cache tag probe encountered bad
parity in the tag control RAM.

BC_TPERR <2> R B-Cache Tag Parity Error. When set, indicates that
an external cache tag probe encountered bad parity in the
tag address RAM.

BIU_SERR <1> R BIU Soft Error. When set, indicates that an external
cycle was terminated with the cAck_h pins indicating
SOFT_ERROR.

BIU_HERR <0> R BIU Hard Error. When set, indicates that an external

cycle was terminated with the cAck_h pins indicating
HARD_ERROR.

DECchip 21064 Overview 4-61

DC_STAT—D-Cache Status Register

Index Abox 12
Access R

The DC_STAT IPR is intended for use by diagnostics. For chip re-
visions less than 8, PALcode must first issue the following instruc-
tion before issuing the load or store whose D-cache lookup result is
to be recorded into DC_HIT:

HW_MTPR R31, 4B (hex)

For pass 3 chips, software need not execute the HW_MTPR instruc-
tion before using DC__ STAT. Also, the field marked Unpredictable
reads zero in the pass 3 chips.

wom

11 000 O
54 432 o0

RAZ Unpredictable
DC_HIT —J '
CHIP_ID

BXB-0607-93

Table 4-22 DC_STAT IPR Bit Definitions

Name Bit(s) Type Function

DC_HIT <3> R D-Cache Hit. Indicates whether the last load or store in-
struction processed by the Abox hit (DC_HIT set) or
missed (DC_HIT clear) the D-cache. Loads that miss the
D-cache can be completed without requiring external
reads.

CHIP_ID <2:0> R Chip Identification. This field has a value of 111 (bin)
for Revision 3 DECchip 21064 processors. Any other value
in this field indicates a lower revision level.

4-62 DECchip 21064 Overview

FILL_ADDR—Fill Address Register

Index Abox 13
Access R

The FILL,_ADDR IPR stores the physical address associated with
errors reported by BIU_STAT<14:8>. The contents of this IPR are
meaningful only when FILL,_ECC or FILL_DPERR is set. Reads of
the FILL_ADDR unlock FILL_ADDR, BIU_STAT<14:8>, and

FILL_SYNDROME.

wo
~e
W

no
"~
YY)
-0
oo

RAZ

Address

o |

BXB-0612-93

Table 4-23 FILL_ADDR IPR Bit Definitions

Name Bit(s) Type Function

ADDRESS <33:5> R

PA/UNP <4:2> R

DICTABLE.

Address. Identifies the 32-byte cache block that the CPU
was attempting to read when the error occurred.

Physical Address or Unpredictable. If the FILL_IRD
bit of the BIU_STAT IPR is clear, it indicates that the er-
ror occurred during a D-stream cache fill. At such times,
PA/UNP contains bits <4:2> of the physical address gener-
ated by the load instruction that triggered the cache fill. If
FILL_IRD is set, then the state of PA/UNP is UNPRE-

DECchlp 21064 Overview 4-63

ABOX_CTL—Abox Control Register

Index Abox 14

Access W

The ABX_CTL IPR controls the Abox functions. PALcode writes to
this register at initialization and keeps an image of the register
which appears in error log entries and is readable by the user.

wo

MBZ MBZ

DC_FHIT :J_’ J
DC_EN

EMD_EN

SPE_2

SPE_1

IC_SBUF_EN

CRD_EN -

MCHK_EN —

WB_DIS —

BXB-0604-93

Table 4-24 ABX_CTL IPR Bit Definitions

Name Bit(s) Type

Function

DC_FHIT <11> Ww,0

DC_EN <10> Ww,0

EMD_EN <6> W, 0

D-Cache Force Hit. When set, this bit forces all D-
stream references to hit in the D-cache. This bit takes
precedence over DC_EN. That is, when DC_FHIT is set
and DC_EN is clear, all D-stream references hit in the D-
cache.

D-Cache Enable. When clear, this bit disables and
flushes the D-cache. When set, this bit enables the D-
cache.

Endian Mode Enable. Used to provide limited hard-
ware support for big endian data formats. When set, this
bit inverts the physical address bit <2> for all D-stream
references. The chip endian mode is only selected during
PALcode initialization.

4-64 DECchip 21064 Overview

Table 4-24 ABX_CITL IPR Bit Definitions (Continued)

Name

Bit(s)

Type

Function

SPE_2

SPE_1

IC_SBUF_EN

CRD_EN

MCHK_EN

WB_DIS

<5>

<4>

<3>

<1>

<0>

Ww,0

‘with VA <42:30> = 1FFE to the physical addresses with

Superpage Enable 2. When set, enables one-to-one
superpage mapping of the D-stream virtual addresses
with VA <33:13> directly to physical addresses PA
<33:13>, if virtual address bits VA <42:41> = 2. Virtual
address bits VA <40:34> are ignored in this translation.
Access is only allowed in kernel mode.

Superpage Enable 1. When set, enables one-to-one
superpage mapping of the D-stream virtual addresses

PA <33:30> = 0. Access is only allowed in kernel mode.

I-Cache Stream Buffer Enable. When set, enables op-
eration of a single-entry I-cache stream buffer.

Correctable Read Interrupt Enable. When set, the
Abox generates an interrupt request whenever an EDAL
interface transaction is terminated with a cAck_h code of
SOFT_ERROR.

Machine Check Enable. When set, the Abox generates
a machine check when errors (that are not correctable by
the hardware) are encountered. When cleared, uncorrect-
able errors do not cause a machine check. However, the
BIU_STAT, DC_STAT, BIU_ADDR, and FILL_ADDR
IPRs are updated and locked when the errors occur.

Write Buffer Unload Disable. When set, prevents the
write buffer from sending write data to the BIU. This bit
should only be set by diagnostics.

DECchlp 21064 Overview 4-65

ALT_MODE—Alternate Processor Mode Register

Index Abox 15
Access W

The ALT_MODE IPR stores information that specifies the alternate

processor mode.
H 8882 3
IGN IGN
AM
BXB-0605-93
Table 4-25 ALT_MODE IPR Bit Definitions
Name Bit(s) Type Function
AM <4:3> w Alternate Mode. Specifies the alternate processor mode

used by HW_LD and HW_ST instructions that have their
ALT bit (<14>) set. The alternate modes are selected as

follows:
AM Processor Mode
00 Kernel
01 Executive
10 Supervisor
11 User

4-66 DECchIp 21064 Overview

CC—Cycle Counter Register

Index Abox 16
Access w

The DECchip 21064 supports a cycle counter, as described in the
Alpha Architecture Reference Manual. When enabled, the CC IPR
increments once each CPU cycle. The HW_MTPR Rn, CC writes
the CC<63:32> with the value held in the Rn<63:32>; bits <31:0> are
not changed.

This IPR is read by the RPCC instruction and is written to by the
HW_MTPR Rn, CC instruction as defined in the Alpha Architecture

Reference Manual.
Read Format:

[33 0
3 21]
Offset Counter

Write Format:

6 33 /]

3 21 0
Oftset IGN

BXB-0614-93

DECchip 21064 Overview 4-67

CC_CTL—Cycle Counter Control Register

Index Abox 17
Access W

The CC_CTL IPR is used to write to the CC IPR. The HW_MTPR
Rn, CC_CTL instruction writes the CC<31:0> with the value held in
Rn <31:0>; bits <63:32> bits are not changed. The CC<3:0> must be
written with zero. If Rn<382> is set, then the counter is enabled;
otherwise, the counter is disabled.

won
(212}
17
A
(-1}

IGN Counter

EN -l BXB-0615-93

4-68 DECchip 21064 Overview

BIU_CTL—BIU Control Register

Index
Access

Abox 18
W

The BIU_CTL IPR is a write-only register that controls the operat-
ing parameters of the BIU interface and the B-cache. PALcode
writes to this register at initialization and keeps an image of the
register which appears in error log entries and is readable by the

user.

won

121
-
Qw

L1

2
7

111 o0 o
321 87 4

MBZ BC_WE_CTL<15:1>
BAD_DP — I Mez —| i
BC_PA_DIS BC_WR_SPD
BAD_TCP BC_RD_SPD
BC_SIZE BC_FHIT —!
OE
ECC —
BC_EN —
BXB-0606-93

Table 4-26 BIU_CTL IPR Bit Definitions

Name

Bit(s)

Type Function

BAD_DP

BC_PA_DIS

<36>

<35:32> W,0

w,0 Bad Data Parity. When set, causes the DECchip
21064 to invert the value placed on bits <0, 7, 14, 21> of
the check_h [27:0] field during off-chip writes. This pro-
duces bad parity when the DECchip 21064 is in parity

mode and bad check bit codes when in ECC mode.

B-Cache Physical Address Disable. This 4-bit field is
used to prevent the CPU chip from using the B-cache to
service reads and writes based upon the quadrant of
physical address space that they reference. The corre-
spondence between this bit field and the physical

DECchip 21064 Overview 4-69

Table 4-26 BIU_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type

Function

BAD_TCP <31> W, 0

BC_SIZE <30:28> W,0

BC_WE_CTL <27:13> W,0

address space is as follows:

BIU_CTL Bits Physical Address
<35> PA <33:32>=3
<34> PA <33:32> =2
<33> PA <33:32>=1
<32> PA <33:32> =0

When a read or write reference is presented to the BIU,
the values of BC_PA_DIS, BC_EN, and the physical ad-
dress bits <33:32> determine whether an attempt is to
be made to use the B-cache to satisfy the reference. If
the B-cache is not to be used for a given reference, the
BIU does not probe the tag store and makes the appro-
priate system request immediately. The value of
BC_PA_DIS has no impact on which portions of the
physical address space may be cached in the P-cache.
System components control this by way of the dRAck_h
field of the EDAL interface.

Bad Tag Control Parity. When set, causes the
DECchip 21064 to write bad parity into the tag control
RAM whenever DECchip 21064 does a fast B-cache
write.

B-Cache Size. This field is used to indicate the size of
the B-cache as follows:

BC_SIZE Size of B-Cache
000 128 Kbytes

001 256 Kbytes

010 512 Kbytes

011 1 Mbyte

100 2 Mbytes

101 4 Mbytes

110 8 Mbytes

B-Cache Write Enable Control. This field is used to
control the timing of the write enable and chip enable
signals during writes into the data and tag control
RAMSs. It consists of 15 bits, where each bit determines
the value placed on the write enable and chip enable sig-
nals during a given CPU cycle of the RAM write access.
When a given bit of the BC_WE_CTL is set, the write en-
able and chip enable signals are asserted during the cor-
responding CPU cycle of the RAM access. BIU_CTL-
<13> corresponds to the second cycle of the write access,

4-70 DECchip 21064 Overview

Table 4-26 BIU_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type

Function

BC_WR_SPD <11:8> W,0

BC_RD_SPD <7:4> W, 0

BC_FHIT <3> W, 0
OE <2> w,0
ECC <1l> Ww,0
BC_EN <0> W, 0

BIU_CTL<14> to the third CPU cycle, and so on. The
write enable signals will never be asserted in the first
CPU cycle of a RAM write access. Unused bits in this
field must be written with zeros.

B-Cache Write Speed. Indicates to the BIU the write
cycle time of the RAMs used to implement the off-chip B-
cache, measured in CPU cycles. It should be written
with a value equal to one less than the write cycle time
of the B-cache RAMs.

The access times for writes must be in the range of 16 to
2 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 1.

B-Cache Read Speed. Indicates to the BIU the read
access time of the RAMs used to implement the off-chip
B-cache, measured in CPU cycles. It should be written
with a value equal to one less than the read access time
of the B-cache RAMs.

The access times for reads must be in the range of 16 to
4 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 3.

B-Cache Force Hit. When this bit is set and the
BC_EN bit is also set, all EDAL interface Read_Block
and Write_Block transactions are forced to hit in the B-
cache. Tag and tag control parity are ignored. The
BC_EN takes precedence over BC_FHIT. When BC_EN
is cleared and BC_FHIT is set, no tag probes occur and
external requests are directed to the cReq_h pins.

NOTE: The BC_PA_DIS field takes precedence over
BC_FHIT.

Output Enable. When set, the DECchip 21064 does
not assert its chip enable signals during RAM write cy-
cles, thus allowing the corresponding pins to be con-
nected to the output enable pins of the cache RAMs.

Error Checking and Correction. When set, the
DECchip 21064 generates/expects ECC on the check_h
pins. When cleared, the DECchip 21064 gener-
ates/expects parity on four of the check_h signals.

B-Cache Enable. When cleared, the B-cache is dis-
abled. When the B-cache is disabled, the BIU does not
probe the B-cache tag store for read/write references; it
launches a request on cReq_h immediately.

DECchip 21064 Overview 4-71

FILL_SYND—Fill Syndrome Register

Index Abox 19
Access R

The FILL,_SYND IPR stores the syndrome bits. If the DECchip
21064 is in ECC mode and an ECC error is recognized during a P-
cache fill operation, the syndrome bits associated with the bad
quadword are locked in the FILL_SYND IPR. A syndrome value of
zero means that no errors were found in the associated longword.
The FILL_SYND IPR is unlocked when the FILL_ADDR IPR is
read. Table 4-28 lists the syndromes associated with correctable
single-bit errors.

If the processor is in parity mode and a parity error is recognized
during a P-cache fill operation, the FILL_SYND IPR indicates
which of the longwords in the quadword got bad parity.

~o
»o
oo

RAZ HI<6:0> | LO<6:0>

BXB-0609-93

Table 4-27 FILL_SYND IPR Bit Definitions

Name Bit(s) Type Function

Hi<6:0> <13:7> R High <6:0>. Contains the syndrome associated with the
upper longword of the quadword. If the processor is oper-
ating in parity mode, bit <0> (FILL_SYND<7>) of this
field is set to indicate that the upper longword was cor-
rupted. Bits <6:1> (FILL_SYND<13:8>) read as zeros in
parity mode.

LO<6:0> <6:0> R Low <6:0>. Contains the syndrome associated with the
lower longword of the quadword. If the processor is oper-
ating in parity mode, bit <0> (FILL_SYND<O0>) of this
field is set to indicate that the lower longword was cor-
rupted. Bits <6:1> (FILL_SYND<6:1>) read as zeros in
parity mode.

4-72 DECchip 21064 Overview

Table 4-28 Syndromes for Single-Bit Errors

DataBit Syndrome (Hex) CheckBit Syndrome (Hex)
<0> 4F 0 01
<1> 4A 1 02
<2> 52 2 04
<3> 54 3 08
<4> 57 4 10
<5> 58 5 20
<6> 5B 6 40
<7> 5D

<8> 23

<9> 25

<10> 26

<11> 29

<12> 2A

<13> 2C

<14> 31

<15> 34

<16> OE

<17> 0B

<18> 13

<19> 15

<20> 16

<21> 19

<22> 1A

<23> 1C

<24> 62

<25> 64

<26> 67

27> 68

<28> 6B

<29> 6D

<30> 70

<31> 75

DECchip 21064 Overview 4-73

BC_TAG—B-Cache Tag Register

Index
Access

Abox 20
R

The BC_TAG IPR is loaded with the results of every B-cache tag
probe, unless locked. When a tag, tag control parity, or primary
fill data error (parity or ECC) occurs, BC_TAG is locked against
further updates. PALcode may read the LSB of this register by us-
ing the HW_MFPR instruction. Each time an HW_MFPR from
BC_TAG completes, the contents of BC_TAG are shifted one bit po-
sition to the right, so that the entire register can be read using a
sequence of HW_MFPRs. PALcode can unlock the BC_TAG with
an HW_MTPR to BC_TAG. Successive HW_MFPRs from the
BC_TAG must be separated by at least one null cycle.

won

222211111111110000000000
321098765432100876543210

RAZ TAG<33:17>

TAGADR_P - TAGCTL_V :l_J
TAGCTL_S

TAGCTL_D
TAGCTL_P
HIT

BXB-0610-93

4-74 DECchip 21064 Overview

Table 4-29 BC_TAG IPR Bit Definitions

Name Bit(s) Type Function

TAGADR_P <22> R Tag Address Parity. Reflects the state of the
tagAdrP_h signal of the DECchip 21064 when a tag, tag
control, or data parity error occurs.

TAG<33:17> <21:5> R Tag. Contains the tag that is being probed currently.

NOTE: Unused bits in the TAG field are always clear,
based on the size of the B-cache, as determined by
BIU_CTL<BC _SIZE>.

TAGCTL_V <4d> R Tag Control Valid. Reflects the state of the tagCtIV_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs.

TAGCTL_S <3> R Tag Control Shared. Reflects the state of the tag-
CtlS_h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs.

TAGCTL_D <2> R Tag Control Dirty. Reflects the state of the tagCtID_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs.

TAGCTL_P <1> R Tag Control Parity. Reflects the state of the tag-

CtIP_h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs.

HIT <0> R Hit. When set, indicates that there was a tag match
when a tag, tag control, or data parity error occurred.

DECchip 21064 Overview 4-75

Chapter 5
Cache Memory

The KN7AA CPU module features a two-level cache memory. The first
level is implemented on the DECchip 21064 and is referred to as the pri-
mary cache (P-cache). The second level resides on the module, external to
the DECchip 21064, and is referred to as the backup cache (B-cache).
Both caches are accessed with physical addresses. Memory access is per-
formed hierarchically. Instruction and data are first sought from the P-
cache, then the B-cache, and finally from memory/another CPU. Figure
5-1 shows the KN7AA CPU module cache organization.

Figure 5-1 KN7AA CPU Module Cache Organization

)

LSB Address < LEVI
P-M LWPEND| |LLOCK Y
a Reg Reg Buf
v v
I E——
B-Map B-Stat _|¢—
—CFTw e —
$—l B-Data l(
® - =]
l&z & |8
A Y
A
- Data g Z
2T [BCae S
2| From Ebox & lbox L»To reg file | Buf |
& © |
From ibox To lbuf %
A v 21064 :
BXB-0210-93

Cache Memory 5-1

5.1 P-Cache

5.2 B-Cache

The P-cache consists of an 8-Kbyte instruction cache (I-cache) and an 8-
Kbyte write-through data cache (D-cache). The I-cache and the D-cache
are physically addressed, direct-mapped caches with 32-byte blocks. The
I-cache is used to service requests from the Ibox. The D-cache is used to
service requests from the DECchip 21064 load/store unit.

The P-cache is a subset of the B-cache at all times.

. The B-cache is implemented in three RAM structures: B-tag, B-data, and

B-stat, located between the DECchip 21064 and the LSB interface.

The B-cache stores 4 Mbytes of data. It is organized as direct-mapped,
with a block (line) size of 64 bytes to match the LSB bus. For each block,
the following information is stored:

¢ Tag: Consists of bits <33:22> of the physical address
o Tag parity bit: Reflects even parity over the field
e Valid bit (V): Indicates whether the line can be considered

¢ Shared bit (S): Indicates whether this line might be resident in an-
other cache in the system

o Dirty bit (D): Indicates whether the line has been written to by this
CPU and has more recent data than memory.

e Status parity bit: Reflects even parity over the V, S, and D bits.

The B-cache organization groups the status bits in a single 64K X 4 RAM
(B-stat) and allows these bits to be updated without changing the value of
the tag. This in turn allows the CPU to set the Dirty bit on write hits to
nonshared blocks. In general, the tag field is only loaded by the LSB inter-
face, and the status and data stores are loaded by both the processor and
the LSB interface.

5.3 B-Cache States

5-2 Cache Memory

The B-cache state is defined by the three status bits: Valid, Shared, and
Dirty. Table 5-1 shows the legal combinations of the status bits.

From the perspective of the DECchip 21064, a tag probe for a read is suc-
cessful if the tag matches the address and the V bit is set. A tag probe for a
write is successful if the tag matches the address, the V bit is set, and the
S bit is clear.

Table 5-1 B-Cache States
B-Stat

vV § D State of Cache Line Assuming Tag Maich

0 X X Valid miss.

10 0 Valid for read or write. This cache line contains the only cached copy of the
block. The copy in memory is identical to this block.

10 1 Valid for read or write. This cache line contains the only cached copy of the
block. The contents of the block have been modified more recently than the
copy in memory.

1 1 0 Valid for read or write but writes must be broadcast on the bus. This cache
line may also be present in the cache of another CPU. The copy in memory is
identical to this block.

111 Valid for read or write but writes must be broadcast on the bus. This cache

line may also be present in the cache of another CPU. The contents of the
block have been modified more recently than the copy in memory.

5.4 B-Cache State Changes

The state of any given cache line in the B-cache is affected by both proces-
sor actions and actions of other nodes on the L.SB bus.

Table 5-2 shows what effect processor actions have on the state of a given
B-cache line and the resulting/required bus traffic. Table 5-3 shows what
effect bus actions have on the state of a given B-cache line, and the result-
ing/required module action. In these tables, Maich means that the tag
stored at the index matches the supplied address and the <V> bit is set for
the index. Dirty means that the <D> and <V> bits are set for the index.
Invalid means that the <V> bit is not set.

LSB writes always clean (make non-dirty) the cache line in both the initi-
ating node and all nodes that choose to take the update. They also update
the appropriate location in main memory.

The KN7AA CPU module decides whether to take an update or not as a
function of the state of the P-cache backmap (P-map, Section 5.6.1). If the
LSB interface determines that the block referenced by an LSB write com-
mand is resident in the P-cache, the relevant block is updated in the B-
cache with the LSB write data and also invalidated in the P-cache. If the
LSB interface determines that the block referenced by an LSB write com-
mand is not resident in the P-cache (therefore not "interesting”), but is
resident in the B-cache, it invalidates the relevant block in the B-cache.

Cache Memory 5-3

Table 5-2 Effect of Processor Action on B-Cache Line

Processor : LSB Next Cache
Request Tag Probe Resuit Action on LSB Response State
Read Invalid Read Shared Shared, Dirty
Read Invalid Read Shared Shared, Dirty
Write Invalid Read Shared Shared, Dirty
Write Invalid Read, Write Shared Shared, Dirty
Read Match AND Dirty Read Shared Shared, Dirty
Read Maich AND Dirty Read Shared Shared, Dirty
Write Match AND Dirty Read Shared Shared, Dirty
Write Match AND Dirty Read, Write Shared Shared, Dirty
Read Match AND Dirty Read, Wr-Victim Shared Shared, Dirty
Read Match AND Dirty Read, Wr-Victim Shared Shared, Dirty
Write Match AND Dirty Read, Wr-Victim Shared Shared, Dirty
Write Match AND Dirty Read, Write, Wr- Shared Shared, Dirty
Victim
Read Match None None No change
Write Maitch AND Shared None None Shared, Dirty
Write Match AND Shared Write Shared Shared, Dirty
Write Match AND Shared Write Shared Shared, Dirty
1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

For diagnostic and system performance measurement purposes, the
KN7AA module implements two alternate behavior modes in response to
LSB writes. LMODE<WMODE> allows selection of either the normal
mode as described, using the P-map, or forces all LSB writes to cause a B-
cache invalidate/update.

5-4 Cache Memory

Table 5-3

Effect of LSB Bus Action on B-Cache Line

Next Cache

LSB : Module

Operation Tag Probe Result Response State Comment

Read Maich OR Invalid Shared, Dirty No change

Write Match OR Invalid Shared, Dirty No change

Read Match AND Dirty Shared, Dirty Shared, Dirty

Read Match AND Dirty Shared, Dirty Shared, Dirty This module must

supply the data.

Write Match AND line is Shared, Dirty Shared, Dirty This module takes
interesting the update.

Write Maitch AND line is S_;;r?i, Dirty Invalid This module takes
uninteresting the invalidate.

1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

The KN7AA CPU module also compares incoming LSB addresses to those
found in the LLOCK register, LVICT register, and LWPEND register (see
Chapter 6). The behavior of the KN7AA CPU module in these cases is

shown in Table 5-4.
Table 5-4 KN7AA CPU Module Response to Incoming Addresses
LSB Address Register
Operation Matched Module Response Action
Read LLOCK register Shared No action
Write LLOCK register Dirty Clear LLOCK<31>
Read LVICT register Shared, Dirty Supply data from victim buffer
Write LVICT register Shared, Dirty Invalidate victim buffer; remove
bus request
Read LWPEND register = Shared No action
Write LWPEND register = Shared, Dirty Accept update to B-cache
1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

Cache Memory 5-5

5.5 Wirite Policy

The KN7AA module performs LSB write operations as follows:
¢ Victims

If a given cache line is valid and dirty and the tag does not match the
address for the given processor request, the line must be written back
to memory. To enhance performance, this victim is written back to
memory after the refill. The victim data must be removed from the B-
cache data store and held in a victim buffer (see Section 5.7) for later
transmission on the LSB bus. While a block is in a victim buffer, the
KIN7AA must respond to all reads and writes that reference the block
(see Table 5-4).

+ Shared Blocks
If the response to a tag probe for a processor write is shared, the write
must be broadcast on the LSB bus.

5.6 Cache Backmaps

5.6.1 P-Map

5.6.2 B-Map

5-6 Cache Memory

The KN7AA CPU module implements two backmaps (or duplicate tag
stores) that keep track of the contents of the P-cache and the B-cache.
They are referred to as P-map and B-map. The backmaps are cycled with
every bus transaction to allow the KN7AA CPU module to properly re-
spond to a given bus command/address.

The P-map is located in the LEVI gate arrays and consists of four identical
structures, each 64 entries deep. Each P-map entry contains a value that is
equal to the difference between the B-cache tag (address bits <33:22>) and
the P-cache tag (address bits <31:12>), valid bit, and an even parity bit.
Thus, the P-map is 12 bits wide: Address bits <21:12>, V, and P. The P-
map is loaded by the DECchip 21064 during B-cache D-stream read hits
and by the LSB interface during B-cache D-stream read misses. The LSB
interface control can read the P-map whenever an L'SB write hits in the
B-map.

The KN7AA CPU module enforces inclusion, which ensures that the valid
contents of the P-cache are always a subset of the valid contents of the B-
cache. Therefore, the KN7TAA CPU module must invalidate P-cache lines
whenever the given block becomes invalid in the B-cache. This occurs on
refills (either a dirty victim or a nonshared victim) and on updates.

‘When an update occurs on the LSB bus, and the given address yields a tag
match and the entry is valid in the P-map, the B-cache takes the update
and the CPU module invalidates the corresponding entry in the P-cache.

The B-map is located on the module and is a structure 64K entries deep.
Each entry consists of the B-cache tag (address bits <33:22>), valid bit, and
even parity bit. The B-map is written by the LSB interface at the same
time that the B-cache tag is written (within the context of B-cache manipu-
lation, due to either processor action or bus action). The B-map is read on
every L.SB bus command/address cycle. The contents of the B-map inform

the KN7AA CPU control logic when to request the B-cache to form an ap-
propriate bus response. The processor does not read or write the B-map.
The LSB interface only reads and writes the B-map in the LSB time do-
main.

5.7 Victim Buffer

The KN7AA CPU module implements a victim buffer to hold the contents
of a victimized block in the B-cache. A victim block is a B-cache line that is
valid and dirty but has a tag mismatch for a processor request. The proces-
sor tag probe yields a miss and the appropriate block is fetched from mem-
ory. However, the block in the B-cache at this index must be written back
to memory since it is dirty. The KN7AA CPU module posts the miss refill
to the bus before actually performing the victim write.

A single victim block and victim address pair is stored in the LEVI chips
for later transmission on the bus. While the victim buffer contains a valid
victim, the KN7AA CPU module treats this block like a second set in the
B-cache, compares all bus addresses to the victim address, and responds to
bus reads and writes as required by the bus protocol (see Table 5-4).

The KN7AA CPU module has a single victim buffer. It therefore does not
process a second B-cache miss before writing the victim block to memory.

5.8 B-Cache Operating Modes

The backup cache has two modes of operation:
¢ B-cacheon

e B-cache force hit

The operating modes are controlled by two bits in the BIU_CTL register:
BC_ENB (bit <0>) and BC_FHIT (bit <3>).

Table 5-5 shows how the operating mode of the B-cache is selected.

Table 5-5 Selection of the B-Cache Operating Mode

NOTE:

BIU_CTL<3> BIU_CTL<0> Operating Mode
0 1 B-cache on
1 1 Force hit

The On state is the normal opsrating mode of the B-cache. It is selected by
setting BIU_CTL<0> and clearing BIU_CTL<3>.

In reality, the B-cache is never off. If BIU_CTL<0> is cleared, the proces-
sor bypasses the B-cache and goes directly to the LSB. This function should
be used only by diagnostics.

The B-cache force hit mode is selected by setting BC_FHIT (BIU_CTL<3>)
when the B-cache is enabled. When this bit is set, all memory space reads
and writes to the B-cache, both I-stream and D-stream, are forced to hit.
The tag store state is not changed. The data RAMs are accessed as if the

Cache Memory 5-7

tag store access produced a dirty-valid hit. In a multiprocessor environ-
ment, the B-cache must be flushed of all dirty blocks before force hit mode
is selected.

Force hit mode is intended to be used only for testing and initialization.
Tag store parity and data RAM ECC errors are detected in this mode.

5.9 Cache Initialization

CAUTION:

5-8 Cache Memory

On power-up or following a reset, the processor microcode and the console
firmware initialize the P-cache and the B-cache. In the initialized state,
the P-cache is enabled for I-stream and D-stream operations, and the B-
cache is on.

The cache subsystem is initialized to a determined state. Software must
never turn the B-cache off once the system is up and running. Turning the
B-cache off during normal operation places the system in an UNDETER-
MINED state.

Chapter 6

LSB Bus Interface

The CPU module connects to the LSB bus through LEVI, the LSB inter-
face, which is implemented in two gate array chips, LEVI-A and LEVI-B.
LEVI controls all the tags, maps, and data RAMs on the CPU module. It
contains the P-map, which maps the processor P-cache.

LEVI performs the following major tasks:

Translates CPU, memory, and I/O space references to the appropriate
LSB transactions.

Supports control of writebacks to memory and cache fills from memory
in reponse to processor actions.

Supports control of cache invalidates, cache updates, and cache block
transfers to the LSB bus in response to LSB actions.

Initiates reads and writes to the CPU node private address space (the
Gbus on the CPU module).

Supports L'SB required interrupt logic.
Implements all LSB required registers.

This chapter discusses the role of LEVI in transactions between the CPU
module and other modules on the LSB bus. Sections include:

®

L

LEVI Address Path
LEVI Data Path

LEVI Controllers
Interfacing Rules
Address Space Mapping
LEVI Transactions

Figure 6-1 shows a block diagram of the LEVI chips.

LSB Bus Interface 6-1

Figure 6-1

LEVI Block Diagram

-cache|
P i ToDECchip21064
Buffer A A
& 4, & iy
Data <127:40>] Addr LVICT
"ECC <27:0> 9 Reg LPC
Vi-B Z’ ‘
LEVI- ©
e « | LLOCK
EcCinio; [§ |P-Map —=!| “Re Y Y
Y ‘ tc || we
Hit _ | LWPEND l A
Y [
CMD LSB
Data ~ , Hits Arb
Fill Fill
= Buffer — Buffer [| _ b 1o
>~ sB | sB L Data Path:
- - Elements
1 Write . | Write |__|
Buffer : Buffer
vB | - VB LEVI-A
| Get Get E
N Butfer k¥ \\w Butfer L .
o <] I B4
Yy v 12 2l & v Y
LSB System Bus >
BXB-0364A-93

6.1 LEVI Address Path

The LEVI address path (see Figure 6-1) is implemented in the LEVI-A
chip. It consists of the following major elements:

6-2 LSB Bus Interface

P-Map

The P-map consists of four 64 X 16 dual-ported RAMs maintained ex-
clusively by LEVI. Each entry in the P-map represents a P-cache block
in the processor. LEVI writes to the P-map during processor read hits
to the B-cache. One use of the P-map is deciding whether to update or
invalidate a B-cache block during LSB writes from another node. If
the LSB write hits in the P-map, the update is taken; otherwise LEVI
invalidates the B-cache. Another use is to invalidate P-cache blocks
that are being displaced by B-cache fills.

LVICT Register

LEVI keeps the address of the last victimized B-cache block and a valid
bit in the LVICT register. Once the LSB Victim Write takes place, the
Valid bit is cleared. Should another LSB (non-Victim) write match the
address in the LVICT register, LEVI invalidates its own LVICT regis-
ter (see Table 5-4).

LLOCK Register

The address is latched and LLOCK<31> is set when the processor is-
sues an LDzL instruction. LLOCK<31> is cleared after a successful
STxC instruction. LSB reads that hit in the LLLOCK register cause
LEVI to respond “Shared” so that all subsequent writes to the address

are visible on the LSB bus. LSB writes that hit in the LLOCK register
cause LEVI to clear the LLOCK<31> (see Table 5-4).

LWPEND Register

This register contains the address of the pending write and a valid bit.
If an LSB Write hits the LWPEND register, LEVI-A takes the update
even if the write missed in the P-map to assure that the write about to
be issued has the latest data (see Table 5-4).

>

6.2 LEVI Data Path

The LEVI data path, like the LSB bus and CPU module data paths, is 156
bits wide: 128 bits of data and 28 bits of ECC (7 bits for each longword).
Note that LEVI treats the data and ECC bits identically since there is no
ECC correction between the B-cache and the LSB bus.

An array of buffers in the LEVI data path serve to store data and synchro-
nize data movement within LEVI. The buffers are implemented in both
LEVI chips, as shown in Figure 6-1. The main buffer elements on the
LEVI data path are the following:

Fill Buffer

The fill buffer works with the LEVI buffer on the module to receive,
and possibly hold, four octawords of LSB data headed for the B-cache.
The data pipeline shifts from the gate array time domain to the clock-
forwarded module time domain in the fill buffer. The fill buffer also
merges write buffer data with LSB data following B-cache write
misses.

Get Buffer

The get buffer also works with the LEVI buffer; it captures B-cache
blocks headed for the LSB bus. The data pipeline shifts back from the
module to the gate array time domain in the get buffer.

Write Buffer
The write buffer captures two octawords of write data from the proces-
sor in three situations:

B-cache write misses
B-cache write hits to shared blocks
CSR writes

The write buffer also receives a write data mask (LEVI-A gets four of
eight bits; LEVI-B gets all eight bits) and ADDR<5> from the proces-
sor. The mask and address bits indicate which longwords are to be
merged with B-cache data.

Stall Buffer

The stall buffer holds four octawords of B-cache data for broadcast onto
the LSB bus. It also merges write buffer data with B-cache data dur-
ing writes to shared blocks and processor CSR writes.

Victim Buffer

The victim buffer holds B-cache blocks victimized by cache fills. The
buffer holds only a single cache block so transactions that cause other
victims are held off until the current victim reaches the LSB bus.

LSB Bus Interface 6-3

6.3 LEVI Controllers

The control functions on the LEVI transactions are implemented in three
controllers in the LEVI chips:

e LEVI processor controller (LPC)
¢ LEVI data controller (LDC)
¢ LSB controller (LC)

6.3.1 LEVI Processor Controller

The LPC provides the control interface between the processor and LEVI.
It fields requests from the processor and initiates LEVI responses. Major
functions include:

¢ LoadLock/StoreCond
The LPC first probes the cache; misses generate requests to the LSB
controller for LSB transactions.

¢ Gbus Read
The LPC asks the LSB controller for a CSR read and does extra hand-

shaking on the Gbus. It appears on the LSB as a private command
(not a CSR read).

¢ Gbus Write
The LPC controls the write to the LEVI write buffer, then handshakes
with the Gbus and acknowledges the processor. No LSB transaction is
requested.

¢ Processor Read Fill
After a processor read miss and after LEVI has received the missed
data from the LSB bus, the LPC loads the processor with the two
octawords it has waited for. The LEVI data controller (LDC) briefly in-
terrupts the B-cache fill after the first octaword write to allow the proc-
essor to load two octawords from the LEVI buffer. The LDC then com-
pletes the final three octaword writes.

¢ Processor Write Data
The LPC controls the processor writes to the write buffer on LEVI
when the processor cannot write directly to the B-cache.

¢ P-Cache Invalidates
Whenever LEVI invalidates P-map entries, the LPC invalidates the
corresponding P-cache entries in the processor.

The LPC runs in the processor time domain.

6.3.2 LEVI Data Controlier

6-4 LSB Bus Interface

The LDC directs data traffic moving between the LSB and the B-cache
based on requests from the LC. Each transaction described below moves
one B-cache block. The LDC is involved in the following transactions:

¢ GetRAM
GetRAM moves one B-cache block to the LSB by way of the stall buffer.
The LSB controller (LC) requests this transfer when another node has
issued a read to a block and the local (and only valid) copy is dirty.

GetWBRAM

GetWBRAM is used on processor writes to shared B-cache blocks and
processor CSR writes. The fetched B-cache block is conditionally
merged with the contents of the write buffer (based on the values of
the write data mask and ADDR<5>) before being driven onto the LSB
by way of the stall buffer.

GetVic

GetVic is used to route B-cache blocks that are victimized by B-cache
fills to the victim buffer. Note that blocks in the victim buffer must
await an LSB slot; blocks in the stall buffer have already had their
LSB slots allocated (by the LC).

FillRAM

FillRAM moves one block directly from the LSB to the B-cache. The
LC requests this to take an update to a shared block or to complete the
first read of a processor write miss to a shared B-cache block.

FillProcRAM

FillProcRAM is requested following processor read misses. The LDC
moves data from the LSB to the fill buffer and the LEVI buffer on the
module. The data pipeline is frozen briefly after the first octaword
write to the B-cache to allow the LPC to load the first two octawords
into the processor (in its own time domain) by way of the LEVI buffer.
The LPC then releases the processor but retains control of the B-cache
so that the LDC can write the remaining three octawords to the
B-cache.

FillProc

FillProc services processor CSR reads. This transaction is identical to
FillProcRAM discussed above except that writes to the B-cache are
suppressed. (CSR data is not cached.)

FillWBRAM

FillWBRAM merges processor write data in the Write buffer with the
incoming LSB data and writes the result into the B-cache. Merging is
based on the values of the write data mask and ADDR<5>. The LC re-
quests this transaction following processor write misses to blocks that
are not shared.

The LDC uses clock forwarding on the CPU module for data transfers be-
tween LEVI and the B-cache.

6.3.3 LSB Controller

The LC is the central controller of the LEVI chipset. It receives requests
from the LPC and issues requests to the LPC, LDC, and the LSB arbiter.
The LC responds to both processor-initiated and LSB-initiated transac-
tions. Specifically, the LC performs the following functions:

Controls the address path and LEVI access to the B-map, B-stat, and
B-tag RAMs on the CPU module.

Schedules all LEVI and CPU module operations except B-cache hits
and Gbus transactions. Requests from the LC to the LPC and LDC
move data around the module, the gate arrays, and the LSB bus.

Asserts the LSB address and control signals (CNF, ERR) according to
LSB protocol. LSB SHARED and DIRTY are asserted based on the re-

LSB Bus Inferface 6-5

sults of B-tag and B-stat lookup. LSB STALL is asserted when re-
quired by internal conflicts.

¢ The LC also controls B-cache access from the processor or LEVI with
the LSynch signal (Section 6.4.1).

The LC schedules transfers of data between the LEVI and the CPU module
during dedicated LSB cycles.

6.4 Interfacing Rules

Logic on the CPU module synchronizes dual-ported accesses to the B-cache
and the P-map, since these components are accessed by both the processor
and LEVI. LSB arbitration rules govern node accesses to the LSB bus.

All cache data is longword ECC protected (seven bits per longword). LEVI
does look-aside ECC error detection but no ECC error correction.

The LEVI chips calculate ECC for each longword and compare it against
the received ECC. Any difference between calculated and received ECC in-
dicates an error, which is signaled to the system. The ECC for longword 0
and a partial ECC syndrome for longword 1 are passed each cycle from
LEVI-B to LEVI-A.

6.4.1 Dual-Ported Access Synchronization

NOTE:

Dual-ported B-cache and P-map accesses are synchronized with the
LSynch semaphore. LSynch is also used to synchronize access to the CPU
module data path during Gbus references.

Whenever LSynch is deasserted (default state), the processor can read or
write the B-stat, B-tag, and B-data RAMs directly.

The B-map RAMs are never accessed by the processor.

During LoadLock and StoreCond requests, whenever LSynch is
deasserted, the LPC can read or write the B-stat, B-tag, and B-data RAMs
directly.

During RBlock and WBlock requests to Gbus addresses, whenever LSynch
is deasserted, the LPC can transfer data between the processor and the
Gbus buffer on the CPU module. LEVI has priority to assert LSynch and
access the B-cache to service LSB transactions, since the LSB is non-
pended. LEVI also accesses the B-cache to complete processor transactions
that miss the B-cache. When the LC asserts LSynch, the processor and the
LPC suspend B-stat/B-tag references (tag probes), P-map updates
(PMapWE), and B-data references within a fixed number of LSB cycles.
The LEVI is then free to access any resource within the CPU module until
it deasserts LSynch at the completion of the LSB-related access.

6.4.2 LSB Arbitration

6-6 LSB Bus Interface

LEVI watches all LSB traffic to adhere to the arbitration rules. Specifi-
cally, read, write, or victim transactions from any node that reference a
common memory bank cannot occur more frequently than once every three
transactions (or once every 15 LSB cycles). CSR transactions are also lim-
ited in the same manner.

6.5 Address Space Mapping

The LEVI chips define which portion of the address space is cacheable or
noncacheable. Cacheable address space is memory space and noncacheable
address space is I/O space. The LEVI chips further separate I/O space into
LSB bus CSR space and local Gbus space.

The LEVI interface ensures that processor references to memory result in
an LSB bus read or write command, while references to I/O space result in
an LSB read CSR, write CSR command, or private command.

Table 6-1 gives the encodings of commands that LEVI can send to the LSB
bus.

Table 6-1 LSB Command Field Encodings

LSB D<37:35> Command
000 Read

001 Write

010 Reserved
011 Write Victim
100 Read CSR
101 Write CSR
110 Reserved
111 Private

6.6 LEVI Transactions

As the CPU module’s interface to the LSB bus, LEVI responds to transac-
tions initiated from two sources:

¢ Processor (CPU chip)
e LSB bus (other nodes)

These transactions require that both the processor and LEVI have access
to the B-cache on the CPU module and the P-map in LEVI. The dual-
ported accesses to these components are synchronized with the LSynch
semaphore (Section 6.4.1). The two LEVI chips operate in both the proces-
sor and the LSB bus time domains.

6.6.1 Processor-Initiated Transactions

LEVI responds to the following processor requests:

¢ Read/Write Hit
During a D-stream read hit, LEVI updates its P-map. It takes no other
action.

¢ Block Read/Write
LEVI captures B-stat and B-tag data, arbitrates for the LSB bus, is-
sues the read/write command code on the bus, receives/drives data on
the bus, and updates all tags, maps, and B-stat bits.

LSB Bus Inferface 6-7

LoadLock/StoreCond

LEVI waits for LSynch to deassert, if necessary, then probes the B-tag.
On an LDxL (LoadLock) command that hits in the B-cache, LEVI com-
pletes the read request and sets LLOCK<31>. If the LDxL is a B-
cache miss, LEVI issues an LSB bus read command and sets
LLOCK<31>. On an STxC (StoreCond) request from the processor,
LEVI checks LLOCK<315>. If this bit is set, (success) and the B-cache
tag lookup results in a hit, LEVI immediately completes the write and
clears LLOCK<31>. If the tag probe results in a miss, and
LLOCK<31> is set, LEVI issues an LSB bus write command. On an
STxC, if LLOCK<31> is clear, LEVI returns failed status to the proces-
sor.

Gbus Read/Write

LEVI waits for LSynch to deassert, if necessary. For Gbus reads,
LEVI-A arbitrates for the LSB bus, issues a private command, for-
wards data from the Gbus to the processor by way of the LSB bus.
Gbus writes slip through LEVI to the Gbus without an LSB transac-
tion.

The processor can be engaged in only one external operation at a time.
This means that once the processor makes a transaction request to LEVI,
it remains idle until released by LEVI.

6.6.2 LSB-Initiated Transactions

LEVI responds to transactions initiated by other nodes on the LSB. These
transactions include:

Read

LEVI checks each read address against the B-map. If there is a match,
LEVI then checks the B-stat RAMs. It returns B-cache data if the
Dirty bit is set. LEVI returns a victimized block, which is sitting in the
victim buffer, if the block’s address matches the read address.

Write

When the write address matches that of a valid block in the B-map,
LEVI reacts as follows. If the address also hits in the P-map, LEVI
takes the update and invalidates the P-cache block in the processor.
Otherwise, the B-cache block is simply invalidated. Note that this be-
havior can be altered with the LMODE register.

Victim Write
LEVI ignores victim writes from other nodes.

CSR Read/Write

Only registers in the LSB node space can be read or written from the
LSB. Gbus registers cannot be accessed from the LSB. Note that
LEVI can also respond to its own processor-generated CSR transac-
tions on the bus.

Private

Private transactions are used to return Gbus data to the processor, to
allow access to the B-tag, B-stat, B-map, and P-map structures directly
by the processor, and to resolve STxC boundary conditions. LEVI does
not respond to private commands from other modules.

LEVI is pipelined to track up to three interleaved LSB transactions.

6-8 LSB Bus Interface

6.6.3 Transaction Ordering

The processor controller (LEVI PC, Section 6.3.1) and the LSB controller
(LEVI LC, Section 6.3.3) work together to guarantee strict ordering of
transactions issued on the LSB. Processor and LEVI actions proceed in
stages as shown in Table 6-2.

Table 6-2 Processor-LEVI Actions During Transactions

Processor Action LEVI Action
P1. The processor issues a request In response to P1, LEVI performs
with address Al. the following actions:
L1. LEVI initiates an LSB trans-
action with address Al.

P2. The processor can issue a new L2. If P1 was a WBlock and L1

request with address A2 any time was an LSB Read that received a

after L1 completes. shared response, LEVI issues an
LSB Write with address Al.

L3. IfL1 was an LSB Read and
the B-cache block being displaced
had the Dirty bit set, LEVI issues
an LSB Write Victim command.

In response to P2, LEVI performs
the following action:

L4. LEVI initiates an LSB trans-
action with address A2.

LSB Bus Interface 6-9

Chapter 7

Console Overview

The KN7AA CPU module supports the LSB system console with combined
hardware/software elements that control the system at power-up, on reset,
or on CPU halts. This chapter describes the console hardware that re-
sides on the CPU module. Sections include:

¢ CPU Console Hardware
¢ Console Program Invocation
¢ Console Registers

The console user interface and commands are discussed in the Console Ref-
erence Manual.

7.1 CPU Console Hardware

The KN7AA CPU module provides hardware to support the console func-
tions. This hardware includes:

¢ A serial ROM (read-only memory) for first-level console program stor-
age

¢ A set of FEPROM:s (flash programmable ROMs) for second-level con-
sole program storage

¢ An EEPROM (electrically erasable/programmable ROM) for miscella-
neous parameter/log storage

¢ A set of UARTS (universal asynchronous receivers/transmitters) that
allow the console program to communicate serially with one console
terminal and the system power supplies

¢ A watch chip that provides a programmable internal timer and a
battery-backed-up time-of-year (TOY) clock for use by operating sys-
tem software

e A set of parallel I/O ports for functions such as LED status indicators
and node identification

¢ A serial I/O port for manufacturing diagnostic use

The CPU module provides access to ROM, EEPROM, console UARTS, the
watch chip, and other functions through the 8-bit Gbus.

All Gbus component registers and memory stores are located in node pri-
vate space, which means that their addresses are constant and are inde-
pendent of slot identification. Table 7-1 gives the address ranges allocated
to the Gbus components.

Console Overview 7-1

Every Gbus memory store byte or register byte is located on a 64-byte,
naturally aligned boundary. For example, the first byte of FEPROM stor-
age is located at byte address 3 F000 0000; the second byte is at 3 F000
0040. Also note that a single 128-Kbyte FEPROM consumes 8 Mbytes of
address space. This addressing restriction implies that processor code can-
not be executed from this address space.

Table 7-1 Gbus Components

7.1.1 Serial ROM

7.1.2 Serial Port

7-2 Console Overview

Component Address

Console ROM 3 F000 0000 to 3 F37F FFCO
Console EEPROM 3 F380 0000 to 3 F3FF FFCO
UART registers 3 F400 0000 to 3 F500 00CO
Watch registers 3 F600 0000 to 3 F600 OFCO
Gbus$WHAMI 3 F700 0000

Gbus$LEDs 3 F700 0040

Gbus$PMask 3 F700 0080

Gbus$Intr 3 F700 00C0

Gbus$Halt 3 F700 0100

Gbus$LSBRST 3 F700 0140

Gbus$Misc 3 F700 0180

Gbus$RMode 3 F780 0000

Gbus$LTagRW 3 F780 0100

After power-up, node reset, or system reset, but before any instructions are
executed, the DECchip 21064 automatically loads its internal I-cache
through the serial I/O port from an external, 8-Kbyte serial ROM (SROM).

The SROM contains the first level of console/diagnostic/bootstrap code (se-
rial ROM code). This code initializes all programmable features of the
DECchip 21064, diagnosing any faults detected along the bootstrap path
and bootstrapping code execution out to the second level of console /diag-
nostic/ bootstrap code (the main console program). The first level bootstrap
copies the main console program code from FEPROM storage to the B-
cache and transfers control flow to the B-cache. Once the serial ROM is
loaded into the B-cache, the same serial I/O port becomes available for use
by software as a diagnostic interface.

The DECchip 21064 provides an initialization and diagnostic interface in
the form of a serial I/O port. The serial I/O port is a full duplex connection

7.1.3 FEPROMs
7.1.4 EEPROM
7.1.5 UARTs

between the CPU chip and a module connector. The port is accessed and
controlled through internal processor registers.

The serial /O port drives a LED indicator, which may flash as data is
transmitted over the serial port, but is otherwise available to diagnostic
code as a status indicator.

The console program is stored in a set of 128K X 8 FEPROM chips. This
code does not appear in a structure of contiguous locations in the proces-
sor’s address space. Specifically, each byte of FEPROM storage appears on
a 64-byte naturally aligned boundary. This implies that the console pro-
gram cannot execute directly out of FEPROM, but instead must be copied
into a more compact contiguous space in cacheable memory and executed
from there. This process of copying the code store and transferring control
flow is known as the first-level bootstrap and is performed by the serial
ROM code, as explained in Section 7.1.1.

The FEPROMs can be programmed online without assistance from an ex-
ternal programming device. The FEPROMs cannot be patched; they can
only be erased and programmed as a whole.

A single 8K X 8 EEPROM is used for miscellaneous parameter and log
storage. This store does not appear in a contiguous address space. Each
byte of EEPROM storage appears on a 64-byte boundary.

The EEPROM can be written to byte-by-byte online, without assistance
from an external programming device.

The CPU module has six serial communication lines but uses only three.
The communication lines are named and assigned as follows:

e UARTOA is connected to the LSB local console terminal line LOC_RX/
LOC_TX (computer room terminal for field service).

¢ UARTIB is connected to the LSB power supply status lines PS_RX and
PS_TX.

o UART2A is dedicated to Ctrl/P character detection. Its receive line can
tap receive characters off LOC_RX, OP_RX, or RD_RX as selected by
the Gbus$PMask register. Its transmit line is unused. UART2A ena-
ables IPL 15 interrupts. If no serial lines are selected for console op-
eration (the processor is halt-protected), then all receive characters re-
sult in an IPL 15 interrupt. For UART2A to detect Ctrl/P characters,
all control settings must be programmed to match the console terminal
UART.

e TUARTOB, UARTI1A, and UART2B are unused.

The LSB console serial lines are connected to all CPU slots. After power-
up or system initialization, the CPU modules arbitrate for use of the com-
mon console lines; the winner is allowed to drive them. The default con-

figuration of the serial lines at power-up is as follows:

Console Overview 7-3

Baud rate set to 9600
No parity

One stop bit

8-bit characters

One physical component (DUART) implements two UARTS, hence the
naming of the UARTs as UARTOA, UARTOB, and so on, where the number
indicates the physical component and the letter indicates the individual
UART within the component. Control of these UARTS is accomplished
through a set of registers in each UART. These registers are listed in Ta-
ble 7-2.

7.1.5.1 Cti/P Character Detection and Halt Protection

UART2A is dedicated to detecting Ctrl/P characters received from the con-
sole terminal.

UART2A intercepts a copy of all UART receive characters from the console
terminal line and compares for Ctrl/P. Ctrl/P characters result in an IPL
1F interrupt (halt) posted to the processor (reflected in the Gbus$Halt reg-
ister). Note that the IPL 1F interrupt is in addition to the IPL 15 inter-
rupt.

7.1.5.2 UART Register Addressing

Each UART in a DUART component is controlled independently through
its own set of registers (some registers are shared between two UARTs
within a DUART). All UART registers are either read only (for status and
data receive) or write only (for control and data transmit). Read registers
and write registers share common addresses, that is, reading and writing a
single address accesses two separate registers.

For each UART there are two read registers and two write registers that
are directly accessible in the processor’s address space: RR0O, WRO, RRS,
and WR8. RRO and WRO are the main status and control registers for the
UART. RR8 and WRS are the data receive and transmit registers.

For each UART there are a number of other control and status registers
that are indirectly accessible through RR0O and WRO. These registers are
accessed by writing the correct index value into WR0 and then reading
RRO or writing WRO. After the second read/write operation occurs, the in-
dex value is automatically reset back to zero.

7.1.6 Watch Chip

A watch chip resides on the Gbus and provides a battery-backed-up time-
of-year clock and 50 bytes of battery-backed-up RAM. The chip contains a
built-in crystal oscillator, an internal timer, and a 10-year lithium battery.

7.2 Console Program Invocation

The DECchip 21064 operates in console mode when the CPU module en-
counters one of the following conditions:

¢ System reset through power-up, control panel reset, or reset through
the Gbus$LSBRST register

7-4 Console Overview

Module reset performed by setting NRST (LCNR<30>)
Module halted by setting NHALT (LCNR<29>)

Ctrl/P character received from the console terminal

7.3 Console Registers

Table 7-2 lists the console registers with their addresses and indicates the

components in which they are implemented.

A number of console/diagnostic/interrupt related registers listed in Table
7-2 are referred to with a prefix of Gbus$. These registers provide the fol-

lowing control and status functions:

[]

[

Node identification
LED status indicators

Interrupt status summaries
Console terminal selection

Halt protection
System reset

This section provides descriptions of individual Gbus registers. The re-
maining console registers are listed in Table 7-2 for reference only. All

Gbus registers are eight bits wide.

Table 7-2 Console Registers

Register Address implementation
UARTxx$ WRO! UARTxx_BASE! DUART chip
UARTxx$WR1 Index 0001 DUART chip
UARTxx$WR2 Index 0010 DUART chip
UARTxx$WR3 Index 0011 DUART chip
UARTxx$WR4 Index 0100 DUART chip
UARTxx$WR5 Index 0101 DUART chip
UARTxx$WR6 Index 0110 DUART chip
UARTxx$WR7 Index 0111 DUART chip
1 UART Base Addresses:

xx = 0B; BASE = 3 F400 0000

xx = 0A; BASE = 3 F400 0080

XX =]B;BASE=3F4800000

xx = 1A: BASE = 3 F480 0080

xx = 2B; BASE = 3 F500 0000

xx = 2A; BASE = 3 F500 0080

Console Overview 7-5

Table 7-2 Console Registers (Continued)

Register Address Implementation
UARTxx$WRS UARTxx_BASE+40H DUART chip
UARTxx$WR9 Index 1001 DUART chip
UARTxx$WR10 Index 1010 DUART chip
UARTxx$WR11 Index 1011 DUART chip
UARTxx$WR12 Index 1100 DUART chip
UARTxx$WR13 Index 1101 DUART chip
UARTxx$WR14 Index 1110 DUART chip
UARTxx$WR15 Index 1111 DUART chip
UARTxx$RR0 UARTxzx_BASE DUART chip
UARTxx$RR1 Index 0001 DUART chip
UARTxx$RR2 Index 0010 DUART chip
UARTxx$RR3 Index 0011 DUART chip
UARTxx$RR8 UARTxx_BASE+40H DUART chip
UARTxx$RR10 Index 1010 DUART chip
UARTxx$RR13 Index 1101 DUART chip
UARTxx$RR15 Index 1111 DUART chip
Watch$Seconds 3 F600 0000 Watch chip
Watch$Minutes 3 F600 0080 Watch chip
Watch$Hours 3 F600 0100 Watch chip
Watch$Day_of_Month 3 F600 01C0O Watch chip
Watch$Month 3 F600 0200 Watch chip
Watch$Year 3 F600 0240 Watch chip
Watch$ CSRA 3 F600 0280 ‘Watch chip
Watch$CSRB 3 F600 02C0 Watch chip
Watch$CSRC 3 F600 0300 Watch chip
Watch$ CSRD 3 F600 0340 Watch chip
Backup RAM (50 bytes) 3 F600 0380 to 3 F600 0FCO Watch chip
Gbus$WHAMI 3 F700 0000 CPU module
Gbus$LEDs 3 F700 0040 CPU module
Gbus$PMask 3 F700 0080 CPU module
Gbus$Intr 3 F700 00CO CPU module
Gbus$Halt 3 F700 0100 CPU module
Gbus$LSBRST 3 F700 0140 CPU module
Gbus$Misc 3 F700 0180 CPU module
Gbus$RMode 3 F780 0000 CPU module
Gbus$LTagRW 3 F780 0100 LEVI

1 UART Base Addresses:

xx = 0B; BASE = 3 F400 0000

X = OA, BASE = 3 F400 0080
xx = 1B; BASE = 3 F480 0000
xx = 1A; BASE = 3 F480 0080
xx = 2B; BASE = 3 F500 0000
xx = 2A; BASE = 3 F500 0080

7-6 Console Overview

GbusSWHAMI

Address 3 F700 0000
Access RO

The Gbus$WHAMI register provides information on system con-
figuration and reflects the status of certain backplane signals.

7 6 5 4 3 2 [}

LSB_BAD
LSB_CONWIN
RSVD
REQ_MODE

BXB-0243A-93

Table 7-3 Gbus$WHAMI Register Bit Definitions

Name Bit(s) Type Function
REQ_MODE <7> RO Request Mode. Indicates the maximum number of
CPU modules that this CPU module supports in a sys-
tem.
Gbus$WHAMI
<7> CPUs Allowed in LSB Slots
0 03
1 0-7

Console Overview 7-7

Table 7-3 Gbus$WHAMI Register Bit Definitions (Continued)

Name Bit(s) Type Function

LSB_CONWIN <5> RO LSB CONWIN. Reflects the inverted state of the
LSB_CONWIN L backplane signal. When set, indi-
cates that Gbus$LEDs<1> is clear (asserted) in one
or more CPU modules.

LSB: BAD <4> RO LSB Bad. Reflects the inverted state of the
LSB_BAD L backplane signal. When set, indicates
that LSB_BAD L is driven by one or more CPU mod-
ules.

MFG <3> RO Manufacturing Status. Used by manufacturing.

NID <2:0> RO Node ID. Identifies the CPU module by the slot

(0-7) where it resides.

7-8 Console Overview

Gbus$LEDs

Address 3 F700 0040
Access R/W
The Gbus$LEDs register is used for lighting a series of LEDs on the
module to aid in debug and to indicate self-test status. Writing a
zero to a bit in this register lights the corresponding LED.
7 6 5 4 3 2 1 0
’ L— STP L
CONWIN_L
RUN_L
LED3 L
LED4 L
LED5_L
LED6_L
LED7 L
BXB-0240-92
Table 7-4 Gbus$LEDs Register Bit Definitions

Name Bit(s) Type Function

LEDs L <7:3> RW LEDs Low. When a bit in this field is set, the associ-
ated LED signal is asserted low.

RUN_L <2> RW RUN Low. When set, the associated LED signal is as-
serted low. The state of this bit also indicates whether
the currently running software is the operating system
(and not the diagnostic/console program).

CONWIN_L <1> R'W CONWIN Low. When set, the associated LED signal
is asserted low. Also drives the backplane signal
LSB_CONWIN L. The state of this signal can be read
through the Gbus$WHAMI register.

STP_L <0> RW Self-Test Passed Low. When set, the associated LED
signal is asserted low.

Console Overview 7-9

Gbus$PMask

Address 3 F700 0080
Access R/W

The Gbus$PMask register controls halts to the processor.

7 4 32 10

RSVD
l l— HALT_EN
SEL_CONS_TERM

PHALT_EN

BXB-0242-92

Table 7-5 Gbus$PMask Register Bit Definitions

Name Bit(s) Type Function
RSVD <74> R'W,1 Reserved. Initialized to ones.
PHALT EN <3> RW,1 Ctrl/P Halt Enable. When set, enables Ctrl/P

characters received by the UART selected in the Se-
lect Console Terminal field of this register to halt
the processor. The Halt Enable bit of this register
must also be set for a Ctrl/P character to generate a
halt.

7-10 Console Overview

Table 7-5 Gbus$PMask Register Bit Definitions (Continued)

Name Bit(s) Type

Function

SEL_CONS_TERM <2:1> R'W,1

HALT EN <0> RW,1

Select Console Terminal. Selects one of three
console terminals for Ctrl/P character detection.

Gbus$PMask Console Terminal
<2:1> Selected
00 UARTOA (local terminal)
01 UARTOB (Reserved)
10 UART1A (remote diagnostic
control)
11 UART2A placed into module-

level loopback mode. In this
mode, the UART2A receive
line is driven by the UART2A
transmit line. PHALT EN
(bit <3> of this register) must
be zero (Ctrl/P halts disabled)
while modifying
SEL_CONS_TERM to avoid
erroneous halts.

Halt Enable. When set, enables halts to the
processor, including halts generated by
LCNR<NHALT> or by detection of a Ctrl/P char-
acter received by a UART selected in the Select
Console Terminal field of this register. When
clear, all halts to the processor are disabled.
PHALT EN must also be set for Ctrl/P characters
to generate a halt.

Console Overview 7-11

GbusSintr

Address 3 F700 00CO
Access R/W
The Gbus$Intr register stores interrupt summary information.
Specifically, it provides a means to determine the source of IPL 14,
IPL 15, and IPL 16 interrupts to the processor.
7 6 5 4 32 1 0
0
’ l— DUARTO_INT
DUART1_INT
LSBO
LSB1
RSVD
LSB2
P
INTIM
BXB-0244-92
Table 7-6 Gbus$inir Register Bit Definitions

Name Bit(s) Type Function

INTIM <7> RO, 0 Interval Timer. When set, indicates that the watch
chip is asserting its interval timer output.

P <6> W1C, 0 Interprocessor. When set, indicates that the LEVI-
A chip has detected a write to the LIPINTR register
with data selecting this node.

LSB2 <5> RO, 0 LSB 2. When set. indicates that the LEVI-A chip has
an LSB level 2 interrupt pending.

RSVD <4> RO Reserved. Reads as zero.

7-12 Console Overview

Table 7-6 Gbus$intr Register Bit Definitions (Continued)

Name Bit(s) Type Function

LSB1 <3> RO, 0 LSB 1. When set, indicates that the LEVI-A chip
has an LSB level 1 interrupt pending.

LSBO <2> RO, 0 LSB 0. When set, indicates that the LEVI-A chip

has an LSB level 0 interrupt pending.

DUART1_INT <1l> RO, 0 DUARTI1 Interrupt. When set, indicates that
either UART1A or UART1B is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUART1 interrupt sources are cleared.

DUARTO_INT <0> RO, 0 DUARTO Interrupt. When set, indicates that
either UARTOA or UARTOB is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUARTO interrupt sources are cleared.

Console Overview 7-13

Gbus$Halt

Address 3 F700 0100

Access R/W

The Gbus$Halt register summarizes halt and power conditions.

7 6 5§ 4 32 10

0

0
l l— RSVD
NHALT

LSB_SEC
LDC_PWR_OK

PWR_MODA_OK

—— PWR_MODB_OK

Ctrl/P_HALT

RSVD

BXB-0241-92

Table 7-7 Gbus$Halt Register Bit Definitions

Name Bil(s) Type Function

RSVD <7> RO Reserved. Reads as zero.

Ctrl/P_HALT <6> WiC, 0 Ctrl/P Halt. Set when a Ctrl/P character is received
by the UART selected in the Gbus$PMask register.

PWR_MODB_OK <5> RO Power Module B Okay. Set when Power Module B
of the I/O PIUs (plug-in unit) is working properly.
Cleared when Module B fails.

PWR_MODA_OK <4> RO Power Module A Okay. Set when Power Module A

of the /O PIUs (plug-in unit) is working properly.
Cleared when Module A fails.

7-14 Console Overview

Table 7-7 Gbus$Halt Register Bit Definitions (Continued)

Name Bit(s) Type Function

LDC_PWR_OK <3> RO LDC Power Okay. Is set when all local disk con-
verters (LDC) in the platform are working properly.
Cleared when no LDCs are installed or when one or
more of the LDCs fails.

LSB_SEC <2> RO LSB Secure. Reflects the inverted state of the
backplane signal LSB_SECURE L. When set, indi-
cates that the control panel keyswitch is in the Se-
cure position and that Ctrl/P halts to the processor

are disabled by hardware.
NHALT <1l> RO Node Halt. Reflects the state of LCNR<NHALTS>.
RSVD <0> RO Reserved. Reads as zero.

Console Overview 7-15

Gbus$LSBRST

Address 3 F700 0140
Access R/W

The Gbus$LSBRST register is used for initiating a system reset se-
quence. When the CPU chip writes any value to this register, the
LSB RESET signal is asserted for 512 L.SB cycles.

BXB-0264-92

7-16 Console Overview

Gbus$Misc

Address 3 F700 0180
Access R/W

The Gbus$Misc register controls various system functions.

7 3 2 10

RSVD
l i—— EXPSEL
BAD

BXB-0239-92

Table 7-8 Gbus$Misc Register Bit Definitions

Name Bit(s) Type Function

RSVD <7:3> RO, 1 Reserved. Initialized to ones.

BAD 2> RW, 1 Bad. When set, causes the module to drive LSB BAD which,
in turn, lights the control panel fault LED. The state of this
bit does not affect the Self-Test-Passed LED on the module or
the STP bits in the Gbus$LEDs and LCNR registers. This bit
allows software to assert LSB BAD on behalf of another sys-
tem component. To determine if any module is driving LSB
BAD, software should read Gbus$ WHAMI<LSB_BAD>, not
Gbus$Misc<BAD>.

Console Overview 7-17

Table 7-8 Gbus$Misc Register Bit Definitions (Continued)

Name Bit(s)

Type

Function

EXPSEL <1:0>

RW,1

Expander Select. Selects which cabinet the power supply
UART lines are logically connected to, and therefore, which of
three 48V regulators are connected to the power supply lines.

Gbus$Misc
<1:.0> Power Supply Connection

00 PS lines logically connected to main CPU
cabinet.

01 PS lines logically connected to right ex-
pander cabinet.

10 PS lines logically connected to left ex-
pander cabinet.

11 PS transmit line is looped back to PS re-
ceive line.

7-18 Console Overview

Gbus$RMode

Address 3 F780 0000
Access R/W

The Gbus$RMode register is a write-only register. A write to it
sets LDIAG<FRIGN> and logically disconnects the CPU module
from the LSB bus. This register is intended for use as a backup
system should there be a problem with the LSB interface and
writes to the LDIAG register be unsuccessful (writes to the LDIAG
register require a successful LSB transaction while writes to Gbus
space are completed without any L.SB access). Note that software
should write to the LDIAG register as a first choice and use the
Gbus$RMode register only if the write to the LDIAG register fails.

BXB-0264-92

Console Overview 7-19

Gbus$LTagRW

Address 3 F780 0100
Access R/W

The Gbus$LTagRW register, when used with LTAGA, LTAGW, and

LDIAG registers, allows software to read and write the B-cache, B-
map, and P-map tags. See descriptions of the LTAGA, LTAGW, and
LDIAG registers in Chapter 9.

BXB-0264-92

7-20 Console Overview

Chapter 8

/O Operations

I/0 operations handled by the KN7AA CPU module include I/0 reads,
I/O writes, and device interrupts. The DECchip 21064 uses four
hardcoded SCB vectors for all device interrupts. Interrupt service rou-
tines at the four SCB vectors are required to determine the source of the
interrupt and invoke the appropriate service routine.

From the perspective of I/O operations, registers are divided into two
groups: local registers and remote registers. Registers that reside on the
KN7AA CPU module and the L'SB bus are local registers. Those that re-
side on I/O buses are remote registers. Local registers are directly acces-
sible to software; remote registers are not. Access to remote registers is
achieved by means of the mailbox protocol. The LMBOX register is pro-
vided to assist software in the mailbox protocol.

8.1 Mailbox Data Structure

Figure 8-1

Remote control and status registers (CSRs) are accessed through 64-byte
naturally aligned mailbox data structures located in main memory. Read
requests are posted in mailboxes. Data is returned in memory with
status in the following quadword. Mailboxzes are allocated and managed
by the operating system software. Figure 8-1 shows a mailbox data struc-
ture.

Mailbox Data Structure

awo

w1

Qw3

aws4

Qws

Qw e

w7

6 s ss 4847 a3 w23 30 2 210
SBZ |HOSE | SBZ | MASK (W|B CMD
RBADR <63:0>
WDATA <63:0>
MBZ
UNPREDICTABLE RDATA <31:0>

STATUS R|S

UNPREDICTABLE

UNPREDICTABLE
BXB-0174 A-92

I/O Operations 8-1

Table 8-1 describes the mailbox data structure. Refer to the DEC 7000
AXP System [VAX 7000 I/ O System Technical Manual for a detailed de-
scription of the mailbox protocol.

Table 8-1 Mailbox Data Structure
Quad-

Field Bit(s) Type word Function

HOSE <55:48> R/'W 0 Hose. Used to determine which remote bus the
command is meant for.

MASK <39:32> R/W 0 Mask. Contains the byte mask. The I/O mod-
ule does not use this field.

CMD <29:0> R/'W 0 Command. Contains the command. Valueis
1/0 bus adapter specific.

RBADR <63:0> R/W 1 Remote Broadcast Address. Contains the ad-
dress to be broadcast on the remote bus.

WDATA <63:0> R/W 2 Write Data. Contains the write data to be
broadcast on the remote bus.

RDATA <31:0> RW 4 Read Data. Contains read data returned from
the remote bus.

STATUS <63:2> RW 5 Status. Contains status information provided
by the remote bus.

ERR <1> R'W 5 Error. When set, indicates that a mailbox op-
eration failed.

DON <0> R'W 5 Done. Status bit set by the /O module when a
mailbox operation is complete.

8.2 Mailbox Operation

The I/0 module services mailbox requests by means of four mailbox pointer
CSRs (LMBPR registers; see Section 8.4) located in the I/O module’s node
space. There is one LMBPR address for each CPU node. Software sees
only one LMBPR register address, but the CPU module replaces the least
significant two bits of the address (that is, D<2:1>) with the least signifi-
cant two bits of the node ID (that is, NID<1:0>). If a given LMBPR regis-
ter is in use when it is written to, the /O module does not acknowledge it
and CNF is not asserted. Processors use the lack of CNF assertion on
writes to the LMBPR register to indicate a busy status. The write is
retried later under software control.

To perform a write to the LMBPR register, microcode must know the ad-
dress of the LMBPR register and the address of the mailbox data structure
to be loaded into the LMBPR register. Another memory structure needs to
be created to pass this information to microcode. This structure is called
the Mailbox Pointer and consists of two longwords. Figure 8-2 shows the
mailbox pointer structure. Table 8-2 gives the bit definitions of the
mailbox pointer structure.

8-2 /O Operations

Figure 8-2 Mailbox Pointer Structure

31 6 5 [}
LMBPR_ADDR
MB_ADDR MBZ
BXB-0176-92
Table 8-2 Mailbox Pointer Structure
Name Bit(s) Type Function
MB_ADDR <31:6> wo Mailbox Address. Contains the physical ad-
dress of the mailbox data structure. Since this
structure is aligned on a 64-byte boundary, bits
<5:0> of the address must be zero.
LMBPR_ADDR <31:0> wO LMBPR Address. Contains the virtual address

of the LMBPR register.

When software has created the mailbox data structure and the mailbox
pointer structure, it can start the YO operation. An MTPR to the LMBOX
register (Section 8.4) initiates the I/O operation. Microcode reads the
MB_ADDR field out of the mailbox pointer structure and then writes the
value to the LMBPR register using the address provided in the mailbox
pointer structure. An EDAL store conditional command is used to per-
form the write. Microcode then checks the Zero Condition Code bit
(PSL<2>) in the BIU_STAT register to determine if the write passed or
failed. If the write passed, PSL<2> is set; otherwise, PSL<2> is cleared.
Software can loop on the MTPR to the LMBOX register until the write
passes.

After the I/O module has accepted the write to LMBPR, it performs the I/O
operation. Software can now poll the status bit in the mailbox data struc-
ture until the I/O operation is complete. When the I/O operation has com-
pleted, DON in the mailbox data structure (see Table 8-1) is set. If an er-
ror occurred during the transaction, LBER<E> (see Chapter 9) is also set.
If the operation was an I/O write, no further action is required. If the op-
eration was an I/O read, software can now fetch the returned data from the
RDATA field in the mailbox data structure.

8.3 Device Interrupt Handling

The KN7AA module uses the device interrupts as shown in Table 8-3. In-
terrupts from the LSB and the UARTS (device interrupts) are handled by
both hardware and software. After an interrupt has been posted to the
CPU chip through one of the four IRQ lines, the CPU chip passes control to
the operating system through four dedicated SCB entry points. Table 8-3
shows the device interrupt sources and their matching SCB entry points.

I/O Operations 8-3

Table 8-3 KN7AA CPU Interrupts

DECchip

Interrupt 21064 IRQ SCB
Level (Hex) Interrupt Condition Pin Vector
17 LSB level 3 interrupts 3 DC

16 Interprocessor interrupt 2 D8

16 LSB level 2 interrupts 2 D8

15 Console UARTs 1 D4

15 LSB level 1 interrupts 1 D4

14 LSB level 0 interrupts 0 DO

For IPL 16 and IPL 17 interrupts, software reads the Gbus$Intr register to
determine if the interrupt is.posted by an LSB I/O device, another proces-
sor in the system, or a UART. If an interprocessor or a UART interrupt
has been received, software can directly pass control to the appropriate
service routine. For LSB I/O interrupts, software must get the device in-
terrupt vector from the I/O module.

8.4 1/0O Operation Registers

Two registers are used for I/O operations:
¢ Mailbox Pointer CSR (LMBPR)
¢ Mailbox Register (LMBOX)

The LMBPR register resides on the IOP module and is described in the
DEC 7000 AXP System /[VAX 7000 I/0 System Technical Manual. The de-
scription of the LMBOX register follows.

8-4 /O Operations

LMBOX—LSB Mailbox Register

Address BB + 00
Access R/W

The LMBOX register contains the physical address of the mailbox
pointer structure.

31

MBXREG
BXB-0175-02
Table 8-4 LMBOX Register Bit Definitions
Name Bit(s) Type Function
MBXREG <31:0> WO Mailbox Register. Contains the physical address of
the mailbox pointer structure.

I/O Operations 8-5

Chapter 9

CPU Module Registers

The KN7AA CPU module, like the memory and I/O modules on the LSB
bus, contains two groups of registers:

¢ LSB required registers
o CPU-specific registers

LSB required registers are used for internode communication over the LSB
bus. CPU-specific registers are used to perform functions specific to the
CPU module.

CPU Module Registers 9-1

9.1 Register Mapping

All CPU module registers reside in node space. The only exceptions to this
rule are the two interrupt registers, LIOINTR and LIPINTR, which reside
in LSB broadcast space.

CPU module registers are mapped to the node space as offsets to a base
address (BB). The base address is implemented in hardware and depends
on the node ID, which is determined by the LSB backplane slot occupied
by the module. Table 9-1 gives the physical base addresses of nodes on the

LSB bus.

Table 9-1 LSB Node Space Base Addresses

Physical Base Address (BB)
Node ID Module (Byte)
0 CPU/Memory 3 F800 0000
1 CPU/Memory 3 F840 0000
2 CPU/Memory 3 F880 0000
3 CPU/Memory 3 F8C0 0000
4 CPU/Memory 3 F900 0000
5 CPU/Memory 3 F940 0000
6 CPU/Memory 3 F980 0000
7 CPU/Memory 3 F9CO0 0000
8 /0 3 FA00 0000

Table 9-2 lists the CPU module registers and gives the address of each reg-
ister as an offset from a selected node space base address.

NOTE: Two CPU registers listed in Table 9-2, LIOINTR and LIPINTR, are located
in LSB broadcast space, the base address of which is 3 FE00 0000.

9-2 CPU Module Reglisters

Table 9-2 CPU Module Registers

Address
Register Name Mnemonic (Byte Offset)
LSB Required
Device Register LDEV BB+ 0000
Bus Error Register LBER BB + 0040
Configuration Register LCNR BB + 0080
Memory Mapping Register 0 LMMRO BB + 0200
Memory Mapping Register 1 LMMR1 BB + 0240
Memory Mapping Register 2 LMMR2 BB + 0280
Memory Mapping Register 3 LMMR3 BB + 02C0
Memory Mapping Register 4 LMMRA4 BB + 0300
Memory Mapping Register 5 LMMRS5 BB + 0340
Memory Mapping Register 6 LMMR6 BB + 0380
Memory Mapping Register 7 LMMRY7 BB + 03C0
Bus Error Syndrome Register 0 LBESRO BB + 0600
Bus Error Syndrome Register 1 LBESR1 BB + 0640
Bus Error Syndrome Register 2 LBESR2 BB + 0680
Bus Error Syndrome Register 3 LBESR3 BB + 06C0
Bus Error Command Register 0 LBECRO BB + 0700
Bus Error Command Register 1 LBECR1 BB + 0740
I/O Interrupt Register LIOINTR BSB2 + 0000
Interprocessor Interrupt Register LIPINTR BSB + 0040
CPU-Specific
Mode Register LMODE BB + 0C00
Module Error Register LMERR BB + 0C40
Lock Address Register LLOCK BB + 0C80
Diagnostic Control Register LDIAG BB + 0D00
Tag Address Register LTAGA BB + 0D40
Tag Write Data Register LTAGW BB + 0D80
Console Communication Register 0 LCONO BB + 0E00
Console Communication Register 1 LCON1 BB + 0E40
Performance Counter Control Register LPERF BB + O0F00
Performance Counter 0 Register LCNTRO BB +0F40
Performance Counter 1 Register LCNTR1 BB + 0F80
Last Miss Address Register LMISSADDR BB + 0FC0

1 BB is the node space base address of the CPU module in hex.
2 BSB is the broadcast space base address, which is 3 FE00 0000.

CPU Module Registers 9-3

9.2 Register Descriptions

LSB required registers have the following characteristics:
o All writes are 32 bits wide. Byte or word operations are not supported.

o Writes directed to a read-only register may be accepted and acknowl-
edged, but no action is taken, and the content of the register is not af-
fected.

CPU-specific registers appear in the LSB CSR space.

9-4 CPU Module Registers

LDEV—Device Register

Address BB + 0000

Access R/W
The LDEV register is loaded during initialization with information
that identifies a node.
31 16 15)
DREV DTYPE
BXB-0100-92
Table 9-3 LDEV Register Bit Definitions
Name Bit(s) Type Function
DREV <31:16> R/W,0 Device Revision. Identifies the revision level
of an LLSB node. For the KN7AA CPU module,
the value of this field is zero.
DTYPE <15:0> R/W,0 Device Type. Identifies the type of node. For
the KN7AA CPU module, the value of this field
is set to 8001 (hex).

CPU Module Regiisters 9-5

LBER—Bus Error Register

Address BB + 0040
Access R/W

The LBER register stores the error bits that are flagged when an
LSB node detects errors in the LSB operating environment and
logs the failing commander ID. The status of this register remains
locked until software resets the error bit(s).

31 19 18 1716 15 14 13 12 111 ¢ 8 7 6 § 4 3 2 1 0

RSVD
NSES .1g> — I l
CTCE 17>
DTCE 16>
DIE <15>
SHE <14>
CAE <13>
NXAE <12> —
CNFE <11> —
STE<10> —
TDE <9
CDPE2 <8> —
CDPE <7> —
CPE2 <6> —
CPE <5>
CE2 <4>
CE <3> —
UCE2 <2 —
UCE <«1>
E <0>
BXB-0101-82

9-6 CPU Moduie Registers

Table 9-4 LBER Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:19> RO Reserved. Read as zero.

NSES <18> R,0 Node-Specific Error Summary. Set when an error
condition is reported in the LMERR register.

CTCE <17> WI1C,0 Control Transmit Check Error. Set when an LSB con-

trol line is driven incorrectly by the CPU module. When
CTCE is set, ERR is asserted by the CPU module for one
cycle.

DTCE <16> W1C,0 Data Transmit Check Error. Set when the CPU mod-
ule detects an error while driving the D<127:0> and
ECC<27:0> lines during a data or command cycle. When
DTCE is set, ERR is asserted by the CPU module for one
cycle.

DIE <15> W1C,0 Dirty Error. Set if the CPU module receives an asserted
DIRTY signal during a cycle when DIRTY signals are not
allowed. When DIE is set, ERR is asserted by the CPU
module for one cycle.

SHE <l4> W1C,0 Shared Error. Set if the CPU module receives an as-
serted SHARED signal during a cycle when SHARED sig-
nals are not allowed. When SHE is set, ERR is asserted
by the CPU module for one cycle.

CAE <13> W1C,0 Command/Address Error. Set if the CPU module re-
ceives an asserted CA signal during a cycle when CA sig-
nals are not allowed. When CAE is set, ERR is asserted
by the CPU module and error registers are locked.

NXAE <12> WI1C,0 Nonexistent Address Error. Set when the CPU mod-
ule does not receive confirmation for a command it sent on
the LSB. When NXAE is set, ERR is asserted by the CPU
module for one cycle.

CNFE <11> W1C,0 CNF Error. Set if the CPU module receives a confirma-
tion signal during a cycle that does not permit confirma-
tion. When CNFE is set, ERR is asserted by the CPU
module for one cycle.

STE <10> WI1C,0 STALL Error. Set when the CPU module receives a
STALL signal during a cycle that does not permit stalls.
When STE is set, ERR is asserted by the CPU module for
one cycle.

TDE <9> W1C,0 Transmitter During Error. Set if a CE, UCE, CPE, or
CDPE error occurs during a cycle when the CPU module
was driving D<127:0>. When TDE is set, ERR is as-
serted by the CPU module for one cycle.

CPU Module Registers 9-7

Table 9-4 LBER Register Bit Definitions (Continued)

Name

Bit(s)

Type

Function

CDPE2

CDPE

CPE2

CPE

CE

UCE2

UCE

<8>

<7

<6>

<5>

<4>

<3>

<l>

<0>

Wi1C, 0

W1C, 0

WicC, 0

Wwi1cC, 0

W1C, 0

Wi1C, 0

W1C, 0

W1C, 0

W1C, 0

Second CSR Data Parity Error. Set when a second
parity error occurs while CDPE is set on a CSR data cycle.

CSR Data Parity Error. If a parity error occurs during
a CSR data cycle, the CPU module sets CDPE, asserts
ERR for one cycle, and locks the error registers.

Second Command Parity Error. Set when a second
parity error occurs on a command cycle while CPE is set.

Command Parity Error. If a parity error occurs on a
command cycle, the CPU module sets CPE, asserts ERR
for one cycle, and locks the error registers.

Second Correctable Data Error. Set when a second
correctable ECC error occurs on a data cycle while CE is
set.

Correctable Data Error. If the CPU module detects an
ECC error on the LSB, it sets CE, asserts ERR for one cy-
cle, and locks the error registers.

Second Uncorrectable Data Error. Set when the
CPU module detects a second uncorrectable data error
while UCE is set.

Uncorrectable Data Error. If the CPU module detects
an uncorrectable ECC error on the LSB during a data cy-
cle, it sets UCE, asserts ERR for one cycle, and locks the
error registers.

Error. Set whenever the CPU module detects assertion
of ERR on the LSB.

9-8 CPU Module Registers

LCNR—Configuration Register

Address BB + 0080
Access R/W
The LCNR register contains LSB configuration setup and status in-
formation.
31 30 20 28 27 10
RSVD
1
u RSTSTAT CEEN
NHALT
NRST
STF
BXB-0102-92
Table 9-5 LCNR Register Bit Definitions

Name Bit(s) Type Function

STF <31> WiC, 1 Self-Test Fail. When set, indicates that this node has
not yet completed self-test.

NRST <30> W, 0 Node Reset. When set, the node enters console mode
and undergoes a reset sequence.

NHALT <29> R/W, 0 Node Halt. When set, a CPU node enters console
mode.

RSTSTAT <28> W1C,0 Reset Status. When set, provides an indication to con-
sole software that a given CPU node should not attempt
to become the boot processor, but should rather join an
already running system. This bit is set when NRST
(LCNR<30>) is set. It is cleared with a write of one, at
system power-up, or with an LSB RESET command.
This bit is not cleared in a reset sequence caused by set-
ting NRST.

RSVD <27:1> RO Reserved. Read as zero.

CEEN <0> RW,0 Correctable Error Detection Enable. When set, en-
ables detection of correctable errors.

CPU Module Registers 9-9

LMMRO-7—

Address
Access

Memory Mapping Registers

BB + 0200 to BB + 03CO
R/W

Eight LMMR registers define the memory configuration for all
memory modules installed in the system. They are copies of the
equivalent AMR registers in memory modules installed in the sys-
tem. Each LMMR register is associated with the LSB module
whose node ID matches the three lower bits of the LMMR address.
Thus, LMMRO is associated with node 0, LMMRI1 is associated with
node 1, and so on. LMMR registers are loaded during system in-
itialization when the memory modules are initialized and config-
ured.

31

17 16 1 10 9 8 S 4 321 0

MODULE_ADDR RSVD

NBANKS l
AW

BXB-0104-92

Table 9-6 LMMR Register Bit Definitions

Name

Bit(s) Type Function

MODULE_ADDR

<31:17> R/W Module Address. Specifies the most significant
bits of the base address of the memory region
spanned by the memory module associated with
this register (LMMRO-LMMRY7). These bits cor-
respond to bits <39:25> of the byte address or
D<34:20> of the command cycle.

<16:11> RO Reserved. Read as zero.

9-10 CPU Module Registers

Table 9-6 LMMR Register Bit Definitions (Continued)

Name Bit(s) Type Function

NBANKS <10:9> R'W Number of Banks. Specifies the number of in-
dividual memory banks (1, 2, 4, or 8) contained
on the memory module associated with this reg-
ister (LMMRO-7). The value of this field deter-
mines how many bits of the memory address (0,
1, 2, or 3) are inserted into the bank number.

LMMR Banks per Bits in Bank
<10:9> Module Number
00 1 0
01 2 1
10 4 2
11 8 3
AW <8:5> R'W Address Width. Specifies the number of valid

bits in MODULE_ADDR (LMMR<31:17>), start-
ing from the MSB. The remaining bits of MOD-
ULE_ADDR are ignored.

IA <4:3> RW Interleave Address. Specifies which inter-
leave, within a group of interleaved modules, is
served by the module associated with this regis-
ter (LMMRO-7).

INT <2:1> RW Interleave. Specifies the number of memory
modules interleaved with this module (1, 2, or 4).
This value determines the number of bits in the
INT field (0, 1, or 2, starting from the LSB) that
are compared to the LSBs of the memory ad-

dress.

LMMR Modules Address Bits

<2:1> Interleaved Compared

00 1 0

01 2 1

10 4 2

11 Reserved Reserved
EN <0> R/W Enable. When set, indicates that the module

associated with this register (LMMRO0-7) is in-
stalled, and it is 2 memory module.

CPU Module Registers 9-11

LBESRO-3—Bus Error Syndrome Registers

Address BB + 0600 06CO
Access R

The LBESR registers contain the syndrome computed from the
LSB Data and ECC fields received during the cycle when an error
was detected. The syndrome is the bit-by-bit difference between
the ECC check code generated from the received data and the ECC
field received over the bus. The LBESR registers lock only on the
first occurrence of an ECC error (LBER<CE> or LBER<UCE?>).
Subsequent ECC errors set LBER<CE2> or LBER<UCEZ2> until
software clears those error bits.

31 7 6 0

RSVD SYND_0
RSVD SYND_1
RSVD SYND 2
RSVD SYND_3
BXB-0105-92

Table 9-7 LBESR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:7> RO Reserved. Read as zero.

SYND_O <6:0> R Syndrome 0. Syndrome computed from D<31:0>
and ECC<6:0> during error cycle.

SYND_1 <6:0> R Syndrome 1. Syndrome computed from D<63:32>
and ECC<13:7> during error cycle.

SYND_2 <6:0> R Syndrome 2. Syndrome computed from D<95:33>
and ECC<20:14> during error cycle.

SYND_3 <6:0> R Syndrome 3. Syndrome computed from D<127:96>
and ECC<27:21> during error cycle.

9-12 CPU Module Registers

Syndrome Values

A syndrome of zero indicates no ECC error for the given longword. Table
9-8 gives the syndromes for all single-bit errors. Any non-zero syndrome
not listed in Table 9-8 indicates a double-bit error.

Table 9-8 Syndromes for Single-Bit Errors

Syndrome Syndrome

Bit (Hex) Bit (Hex)
Data<0> 4F Data<20> 16
Data<1> 4A Data<21> 19
Data<2> 52 Data<22> 1A
Data<3> 54 Data<23> 1C
Data<4> 57 Data<24> 62
Data<5> 58 Data<25> 64
Data<6> . 5D Data<26> 67
Data<7> 23 Data<27> 68
Data<8> 25 Data<28> 6B
Data<9> 26 Data<29> 6D
Data<10> 29 Data<30> 70
Data<ll> 2A Data<31> 75
Data<12> 2C ECC<0> 01
Data<13> 31 ECC<1> 02
Data<i4> 34 ECC<2> 04
Data<15> 0E ECC<3> 08
Data<16> 0B ECC<4> 10
Data<17> 13 ECC<5> 20
Data<18> 15 ECC<6> 40
Data<19>

CPU Module Registers 9-13

LBECRO, 1—Bus Error Command Registers

Address BB + 0700 and BB + 0740

Access R

The LBECR registers save the contents of the LSB command and
address fields during the command cycle when an error is de-
tected. The following errors detected by the CPU module lock the
LBECR registers:

LSB uncorrectable ECC error (LBER<1>)

LSB correctable ECC error (LBER<3>)

LSB command parity error (LBER<5>)

LSB CSR data parity error. (LBER<7>)

LSB nonexistent address error (LBER<12>)
LSB arbitration drop error (LMERR<10>
LEVI P-map parity error LMERR<3:0>)

LEVI B-cache tag parity error (LMERR<4>)
LEVI B-cache status parity error (LMERR<5>)
LEVI B-map parity error LMERR<6>)

31

20 19 18 17 16 15 14 11 10 7 6 5 32]

CA <31:0>

RSVD

CID cip3 |P|CMD| CA

Lo
SHARED

DIRTY

DCYCLE
BXB-0106A-92

Table 9-9 LBECR Register Bit Definitions

Name Bit(s) Type Function

CA <31:0> R Command/Address. Contents of D<31:0> during the
command cycle.

RSVD <31:20> RO Reserved. Read as zero.

9-14 CPU Module Registers

Table 9-9 LBECR Register Bit Definitions (Continued)

Name Bit(s) Type Function
DCYCLE <19:18> R Data Cycle. Indicates which data cycle had data error.
LBECR <19:18> Data Cycle in Error
00 0
01 1
10 2
11 3
DIRTY <17> R Dirty. Set when DIRTY is asserted for the current com-
mand.
SHARED <16> R Shared. Set when SHARED is asserted for the current
command.
CNF <15> R Confirmation. Set when CNF is asserted for the cur-
rent command.
CID <14:11> R Commander ID. Contents of REQ<3:0> during com-
mand cycle.
CID3 <10:7> R Commander ID 3. This field is the duplicate of CID

(bits <14:11>). It reads the same as CID. In some early
versions of the KN7AA module, CID3 reads as zero.

P <6> R Parity. Contents of D<38> during command cycle.
CMD <5:3> R Command. Contents of D<37:35> during command cy-
cle. CMD is decoded as follows:
Command Function
000 Read
001 Write
010 Reserved
011 Write Victim
100 Read CSR
101 Write CSR
110 Reserved
111 Private
CA <2:0> R Command/Address. Contents of D<34:32> during com-
mand cycle.

CPU Module Registers 9-15

LIOINTR—1/0O Interrupt Register

Address
Access

BSB + 0000

R/W

The LIOINTR register is used by the LSB I/O module to signal in-
terrupts from the LSB I/O system to processors.

NOTE: A maximum of four processors can receive interrupts regardless of
the system configuration. In a multiprocessor system with more than four
CPU modules, only CPUOQ to CPUS3 can receive interrupts.

31

16 15 12 1 8 7 43 0

RSVD

CPU3| CPU2|CPU1| CPUO

BXB-0109-92

Table 9-10 LIOINTR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:16> RO Reserved. Read as zero.

CPU3 <15:12> wis CPUS8 /O Interrupt. When a bit is set-in this
field, an interrupt is posted to CPU3.

CPU2 <11:8> wis CPU2 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU2.

CPU1 <74> wis CPU1 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU1.

CPUO <3:0> wWi1s CPUO0 IO Interrupt. When a bit is set in this
field, an interrupt is posted to CPUO.

Interrupt Mapping

Each interrupt target is assigned four bits of interrupt in the LIOINTR
register corresponding to the four I/0 interrupt levels. A given CPU only

looks at the four bits that correspond to its target assignment. This allows
interrupts to be targeted to a single CPU or up to four CPUs, depending on

the data supplied in the bus CSR write transaction from the I/O module.

This register appears in LSB broadcast space. Writes that address this lo-

cation are accepted without regard to node ID. Thus, all CPUs accept

9-16 CPU Module Registers

writes to the register. The register bits are write one to set (W1S). Multi-
ple writes with a value of one to a given bit in this register post an equal
number of interrupts to the targeted CPU. Reads to this location are unde-
fined. Any given CPU implements only four bits of this register.

Table 9-11 shows the mapping of LSB interrupt levels to DECchip 21064
interrupt levels.

Table 9-11 LSB Interrupt Mapping

LSB Interrupt Level DECchip 21064 IPL (Dec)
3 IPL 23
2 1PL 22
1 IPL 21
0 IPL 20

When any of the four interrupt-pending bits is set, the LEVI gate array
correspondingly asserts the IOINTR<3:0> signals. The CPU module then
uses these signals to assert the appropriate interrupt request to the
DECchip 21064. The LEVI-A gate array also watches for LSB CSR reads
to the LILID0-3 registers in the IOP module. When an LSB CSR read for
LILIDO is asserted on the LSB bus, the LEVI-A gate array correspondingly
deasserts IOINTR<0>. The LEVI-A gate array performs the same function
on LILID3, LILID2, and LILID1.

NOTE: At least one CPU module must reside in slots 0 to 3.

CPU Module Registers 9-17

LIPINTR—Interprocessor Interrupt Register

Address BSB + 0040
Access R/W

The LIPINTR register is used by the CPU modules to signal
interprocessor interrupts.

31

16 15 0

RSVD

MASK

BXB-0120-92

Table 9-12 LIPINTR Register Bit Definitions

Name Bit(s) Type Function
RSVD <31:16> RO Reserved. Read as zero.
MASK <15:0> W1S,0 Interprocessor Interrupt Mask. When a

given bit is set, an interprocessor interrupt is
posted to a specific processor. Bits are mapped
to specific CPUs within a multiprocessor system
as follows:

LIPINTR Bits DECchip 21064 CPU
<15:8> Not used.

<7> CPU7

<6> CPU6

<5> CPU5

<4> CPU4

<3> CPU3

<2> CPU2

<1> CPU1

<0> CPUO

9-18 CPU Module Registers

Interprocessor Interrupt

When a processor wishes to post an interrupt to another processor, it sim-
ply writes to the LIPINTR register to set the relevant bit. The bits in
LIPINTR<7:0> are write one to set (W1S).

This register appears in LSB broadcast space. Writes that address this lo-
cation are accepted without regard to node ID. Thus, all CPUs accept
writes to the register. Reads to this location are undefined.

The contents of LIPINTR<7:0> are qualified by the node ID. If a given
CPU node is selected, the LEVI-A gate array asserts the IPINTR signal for
one processor external clock. The CPU module ORs this signal and issues
the appropriate interrupt request to the DECchip 21064.

CPU Module Registers 9-19

LMODE—Mode Register

Address BB + OCO0
Access R/W

The LMODE register contains mode setup for an operational CPU
module (as opposed to the LDIAG register which provides mode
setup for a CPU module while running diagnostics).

NOTE: Pass 1 or 2 and Pass 3 LEVI bit definitions of the LMODE register
are given in separate tables. See bits <19:16> for the LEVI revision.

LEVIPass 1or2

31 17 16 15 1110 9 8 7 6 § 4 3 2 1 0

RSVD RSVD

LEVI_REV _ ‘J

CLR_LOCK
STCOND_TO ——

LOCK_MODE
PMODE
WMODE
BSIZE

LEVI Pass 3

31 20 19 16 15 14 13 121110 9 8 7 6 5 4 3 2 1 O

RSVD
LEVI_REV - I
RSVD

LOCK_IN
REQ_MODE

RSVD

CLR_LOCK ____
STCOND_TO
LOCK_MODE

LOCK_ALL —
PMODE ——
WMODE
BSIZE

BXB-0626-93

9-20 CPU Module Registers

Table 9-13 LMODE Register Pass 1 and Pass 2 LEVI Bit Definitions

Name

Bit(s)

Type

Function

-RSVD
LEVI_REV

RSVD
CLR_LOCK

STCOND_TO

LOCK_MODE

PMODE

WMODE

BSIZE

<31:17>
<16>

<15:11>
<10>

<9:8>

<7:6>

<5:4>

<3:2>

<1:0>

RO
R, X

RO
W, 0

R'W,0

R/W,0

R/W, 0

R/W,0

R/W, 0

Reserved. Read as zero.

LEVI Revision. When clear, indicates pass 1 LEVI-
A. When set, indicates pass 2 LEVI-A. See Table
9-14 for pass 1, pass 2, and pass 3 LEVI_A codes.

Reserved. Read as zero.

Clear Lock. When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved state
irrespective of the state of LOCK_TIME, and so on.

Store Conditional Timeout. Unused on the
KIN7AA module. Should be written with zeros.

Lock Mode. Unused on the KN7AA module. Should
be written with zeros.

P-Cache Mode. Allows LEVI to work with CPU
chips with varying internal cache organizations. The
value of this field for the KN7AA module is 01 (bin),
which denotes an 8K D-cache and an 8K I-cache.

Write Mode. Selects the behavior of LEVI in re-
sponse to LSB writes.

LMODE
<3:2> LEVI Behavior

00 Use results of P-map lookup to determine
invalidate/update.

01 Invalidate the B-cache.
10 Update the B-cache.
11 LEVI behavior undefined.

B-Cache Size. Tells LEVI about the size of the B-
cache.

LMODE
<1:0> B-Cache Size

00 4 Mbytes

01 LEVI behavior undefined.
10 LEVI behavior undefined.
11 LEVI behavior undefined.

CPU Module Registers 9-21

Table 9-14 LMODE Register Pass 3 LEVI Bit Definitions

Name

Bit(s)

Function

RSVD
LEVI_REV

LOCK_IN

REQ MODE

CLR_LOCK

STCOND_TO

<31:20>
<19:16>

<15>
<14>

<13:12>

<1ll>
<10>

<9:8>

Type
RO
R, X

RO
R/'W, 0

R/W,0

RO
Ww,0

R'W, G

Reserved. Read as zero.
LEVI Revision. Indicate revision of LEVI-A.

LMODE
<19:16> LEVI Revision

0000 Pass 1 LEVI-A
0001 Pass 2 LEVI-A
0011 Pass 3 LEVI-A
Allelse Reserved

Reserved. Reads as zero.

Lock In. When set, LEVI-A asserts LSB
LOCKOUT if LEVI-A signal R_CRD is asserted.
This bit should be set along with
LMODE<LOCK_ALL>. The use of LOCK_IN is
intended for system debug only and should nor-
mally be cleared.

Request Mode. Determine the CPU module con-
figurations by controlling the number of LSB REQ
lines used by LEVI-A for arbitration. This field
should allow no more than are allowed by
Gbus$WHAMI<REQ_MODE>.

LMODE
<13:12> CPUs Allowed in LSB Slots

00 0to3
11 O0to7
All else Reserved

Reserved. Read as zero.

Clear Lock. When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved
state irrespective of the state of LOCK_TIME, and
80 on.

Store Conditional Timeout. Unused on the
KN7AA module. Should be written with zeros.

9-22 CPU Module Registers

Table 9-14 LMODE Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LOCK_MODE <7> R/W,0 Lock Mode. Unused on the KN7AA module.
Should be written with zero.

LOCK_ALL <6> R/W,0 Lock All. When set, prevents all LSB transac-

tions (except secondary and victim writes) if LSB
LOCKOUT is asserted by another node. This bit
should be set along with LMODE<LOCK_IN>.
The use of LOCK_ALL is intended for debug only.
This bit should normally be cleared.

PMODE <5:4> RW,0 P-Cache Mode. Allows LEVI to work with CPU
chips with varying internal cache organizations.
The value of this field for the KN7AA module is 01
(bin), which denotes an 8K D-cache and an 8K I-

cache.
WMODE <3:2> R/W,0 Write Mode. Selects the behavior of LEVI in re-
sponse to LSB writes.
LMODE
<3:2> LEVI Behavior
00 Use results of P-map lookup to deter-
mine invalidate/update.
01 Invalidate the B-cache.
10 Update the B-cache.
11 LEVI behavior undefined.
BSIZE <1:0> R/W, 0 B-Cache Size. Tells LEVI about the size of the
B-cache.
LMODE
<1:0> B-Cache Size
00 4 Mbytes
01 1 Mbyte
10 16 Mbytes
11 LEVI behavior undefined.

CPU Module Registers 9-23

LMERR—Module Error Register

Address BB + 0C40
Access R/W

The LMERR register provides module-specific error information.
If any bits are set in this register