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Preface

The Alpha System Reference Manual is divided into 3 Parts, 4 appendixes, and an
index. '

Each part or section of a part describes a major portion of the Alpha architecture.
Each contains its own Table of Contents. Additional sections will be incorporated as
development proceeds on the architecture.

The Alpha System Reference Manual is under ECO control. ECOs are approved only
by the Alpha-A committee.

The following table outlines the contents of the Alpha SRM:

Name Symbol Contents
Part One @ Common Architecture
This part describes the architecture that is common to and

Part Two Im Specific Operating System PALcode Architecture

(III) This part contains sections that describe how, the following
operating systems relate to the Alpha architecture:

Section Name and Contents Symbol
7" OpeAVMS Alpha Software Coan
DEC OSF/1 Alpha Software (III)

Part Three (IV) Platforms
This part describes an architected platform implementation.

Appendixes Because information in the appendixes can be shared by

o« winore than one-section,-they-are-greuped together at the end
of the manual.

Index N The index at the end of the manual is structured like
a master index. Index entries are called out by the
.appropriate symbol, (I), (I), and so forth, associated with
the corresponding part or section. Index entries for the
appendixes are called out by appendix name and page
number.

Digital Restricted




Common Architecture (l)

This part describes the common Alpha architecture and contains the following
chapters:

[ ]

Chapter 1, Introduction (I)

Chapter 2, Basic Architecture (I)

Chapter 3, Instruction Formats (I)

Chapter 4, Instruction Descriptions (I)

Chapter 5, System Architecture and Programming Implications (I)
Chapter 6, Common PAl.code Architecture (I)

Chapter 7, Console Subsystem Overview (I)

Chapter 8, Input/Output (I)
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Chapter 1
Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture
Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and

all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory

operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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Alpha’s Approach to Byte Manipulation
The Alpha architecture does byte shifting and masking with normal 64-bit register-
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

* (Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

e Alpha’s approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

o 'Alpha’s approach can make it easier to pipeline multiple byte operations.

Alpha’s Approach to Arithmetic Traps

Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise—they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha’s Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/0 device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed

A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

* (Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

* There are prefetching hints for the memory system that can allow much higher
cache hit rates.
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* There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PAlLcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version of PALcode lets Alpha implementations run the full OpenVMS operating
system by mirroring many of the OpenVMS VAX features. The OpenVMS PALcode
instructions let Alpha run OpenVMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/1 operating
system by mirroring many of the RISC ULTRIX features. Other versions of PALcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

¢ Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

* Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview
Alpha is a load/store RISC architecture with the following data characteristics:

e All operations are done between 64-bit registers.
®* Memory is accessed via 64-bit virtual little-endian byte addresses.
~ ® There are 32 integer registers and 32 floating-point registers.

* Longword (32-bit) and quadword (64-bit) integers are supported.
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¢ Four floating-point data types are supported:
— VAX F_floating (32-bit)
— VAX G_floating (64-bit)
— IEEE single (32-bit)
— IEEE double (64-bit)

1.3 Instruction Format Overview
As shown in Figure 1-1, Alpha instructions are all 32 bits in length. As represented
in Figure 1-1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 26 25 2120 1615 5 4 0

Opcode Number PALcode Format
Opcode | RA Disp Branch Format
Opcode | RA RB Disp Memory Format
Opcode | RA RB Function T RC |Operate Format

¢ PAlLcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

* Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

* Load and store instructions move longwords or quadwords between register

Ra and memory, using Ra plus a signed 16-bit displacement as the memory
address.

* Operate instructions for floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

— Floating-point operations use Ra and Rb as source registers, and write the
result in register Re. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Re.

Integer operate instructions can use the Rb field and part of the function field

to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

1-4 Common Architecture (1)




1.4 Instruction Overview

PALcode Instructions

As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions

Load and store instructions move either 32-bit or 64-bit aligned quantities from
and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

. The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

integer Operate Instructions

The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

* Scaled add/subtract instructions for quick subscript calculation

¢ 128-bit multiply for division by a constant, and multiprecision arithmetic

* (Conditional move instructions for avoiding branch instructions
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* An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities. ’

In addition to the operations found in conventional RISC architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:
* All instructions are 32 bits long and have a regular format.

® There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

® There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

e All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

* All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

e All memory reference instructions are of the load/store type that move data
between registers and memory.

* There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

¢ Integer and logical instructions operate on quadwords.

* Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating “format compatibility,” in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

¢ A minimal number of VAX compatibility instructions are included.
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1.6 Terminology and Conventions
The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 104. :

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

o Affect the operation of another process without authorization from the operating
system;

e Amplify its privilege without authorization from the operating system; or

e Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecturre has been designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE And UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

¢ Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction

within implementations. Software can never depend on results specified as
UNPREDICTABLE.

e An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
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or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

® An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or niodify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

* Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

¢ UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a “..” and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
.6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in gize. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.
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If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.
1.6.6 Must Be Zero (MB2)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-

zero value. These fields may be used at some future time. If the processor encounters

a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.
1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SB2)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

~ Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

NOTE _
\A note on the manual format: At certain points
in the manual, comments on why certain decisions
were made, unresolved issues, etc., are between a pair
of backslashes. These comments provide additional
clarification and will be removed from externally
distributed editions.\

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
Section, Chapter 2, or are stylized code forms found in Appendix A.
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1.7 \Revision History
Revision 5.0, May 12, 1992
1. VMS —> OpenVMS
2. Converted to SDML
3. Removed reference to EVAX

Revision 4.0, March 29, 1991

1. Typos

2. Correct security holes text

3. Upgrade UNPREDICTABLE definition

4. Add Implementation Dependent definition

5. Add new section, Section 1.6.12, Macro Code Example Conventions
Revision 3.0, March 2, 1990

1. Strengthen UNPREDICTABLE definition

2. Add UNALIGNED definition

3. Add Security Hole definition

Revision 2.0, October 4, 1989
1. Change the read as zero, write ignored registers to R31 and F31

2. Update instruction Set Characteristics for new insert and merge byte instructions

Revision 1.0, May 23, 1989
1. Change MBZ and SBZ definitions

Revision 0.0, March 15, 1988

1. Initial version
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Chapter 2
Basic Architecture (I)

2.1 Addressing

The basic addressable unit in Alpha is the 8-bit byte. Virtual addresses are 64

bits long. An implementation may support a smaller virtual address space. The
minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte .

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

7 0

A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2. -
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"Figure 2-2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the extract, mask,
and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 . 0

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longword operands
that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its
address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2—4.
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Figure 2—4: Quadword Format

63 0

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two’s-complement integer with bits of increasing significance from 0 through 62

and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

NOTE
Alpha implementations will impose a significant perfor-
mance penalty when accessing quadword operands that
are not naturally aligned. (A naturally aligned quad-
word has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

2.2.5.1

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions.

F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

1514 7 6 ]
s| Exp. | Frac.Hi |A

Fraction Lo A+2

An F_ﬁoating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.
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Figure 2-6: F_floating Register Format

63 62 52 51 4544 2028 0

S Exp. Frac. Hi Fraction Lo 0 :Fx

The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping
Memory <14:7>  Register <62:52>

11111111 1000 1111111
1 xxxxxxx 1000 xxxxxxx (xxxxxxx not all 1’s)
0 xxxxXX%XX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and O through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents
of —127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take an
arithmetic exception. The value of an F_floating datum is in the approximate range
0.29*10%*-38..1.7*10**38. The precision of an F_floating datum is approximately
one part in 2**23, typically 7 decimal digits.
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NOTE
Alpha implementations will impose a significant. per-
formance penalty when accessing F_floating operands
that are not naturally aligned. (A naturally aligned F_
floating datum has zero as the low-order two bits of its
address.) ‘ ‘

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

1514 43 0
S Exp. Frac.Hi[:A
Fraction Midh :A+2
Fraction Midl :A+4
Fraction Lo :A+6

A G_ﬂoating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floating Format

63 62 52 51 48 47 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

A G_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all
fraction bits of 0. Exponent values of 1..2047 indicate true binary exponents of
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—1023..1023. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*10*%*~308..0.9*10**308. The precision of a G_floating datum
is approximately one part in 2*¥*52, typically 15 decimal digits.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing G_floating operands
that are not naturally aligned. (A naturally aligned G_
floating datum has zero as the low-order three bits of its
address.)

2.2.,5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-8: D_floating Datum

1514 76 0
s Exp. Frac.Hi |:A
Fraction Midh :A+2
Fraction Midl ‘A+4
Fraction Lo :A+6

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

63 62 5554 4847 32 31 1615 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D_floating datum is identical to an F_floating datum
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except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

NOTE

D_floating is not a fully supported data type; no
D_floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating “format compatibility” in which
binary files of D_floating numbers may be processed,
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

NOTE
Alpha implementations will impose a significant
performance penalty on access to D_floating operands
that are not naturally aligned. (A naturally aligned D_
floating datum has zero as the low-order three bits of its
address.)

2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSIVIEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P—the number of fraction bits

2. Emax—the maximum exponent

3. Emin—the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
a. S=0orl
b. E = any integer between Emin and Emax, inclusive
c. bm)=0orl

2. Two infinities—positive and negative

3. At least one Signaling NaN
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4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

. Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.

Figure 2-11: S_floating Datum

1514 7 6 0

Fraction Lo A

[72]

Exp. Frac. Hi |:A+2

An S floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 €2 52 51 45 44 20 28 0

) Exp. Frac. Hi Fraction Lo 0 Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2-2.
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Table 2-2: S_floating Load Exponent Mapping
Memory <30:23> Register <62:52>

11111111 11111111111

1 xomxxxx 1 000 xxxxxxx  (xxxxxxx not all 1’s)
0 xxxxxxxX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all 1’s differs from that of F_floating load, since for S_floating all 1’s is
an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an S_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>0, then V is NaN , regardless of S.

2. If E=255 and F=0, then V = (-1)**S x Infinity.

3. 0 <E <255, then V = (-1)**S x 2**(E-127) x (LF).
4. If E=0 and F<>0, then V = (-1)**S x 2**¥(-126) x (0.F).
5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing S_floating operands
that are not naturally aligned. (A naturally aligned S_
floating datum has zero as the low-order two bits of its
address.)
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2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from nght
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

1514 4 3 0
Fraction Lo A
Fraction Midl ‘A+2
Fraction Midh :A+4
s|  Exponent |Frac.Hi|:A+6

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floating Register Format

63 62 52 51 48 47 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>0, then V is NaN, regardless of S.

2. If E=2047 and F=0, then V = (-1)**S x Infinity.

3. If 0 <E < 2047, then V = (-1)**S x 2*%(E-1023) x (l.F).
4. IfE=0 and F<>0, then V = (=1)**S x 2**(-1022) x (0.F).
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5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating;point operations on T_floating numbers may take an arithmetic exception

for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing T_floating operands
that are not naturally aligned. (A naturally aligned T _
floating datum has zero as the low-order three bits of its
address.)

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-15.

Figure 2-15: Longword Integer Datum

1514 0

Integer Lo A

S Integer Hi A2

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-16.

Figure 2-16: Longword Integer Floating-Register Format

63 62 61 5058 45 44 2028 0

S| 1| xxx Integer Hi Integer Lo 0 :Fx

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer

operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62>, “I”, in Figure 2-16 is part of the Integer Hi field
in Figure 2-15 and represents the high-order bit of that field. Bits <58:45> of
Figure 2-16 are the remaining bits of the Integer Hi field of Figure 2-15.
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NOTE
Alpha implementations will impose a significant
performance penalty when accessing longwords that are
not naturally aligned. (A naturally aligned longword
datum has zero as the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-17.

Figure 2-17: Quadword Integer Datum

1514 0
Integer Lo A
Integer Midl (A+2
Integer Midh :A+4
S integer Hi :A+6

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-18.

Figure 2-18: Quadword Integer Floating-Register Format

63 62 48 47 32 31 1615 0

S Integer Hi Integer Midh Integer Midl integer Lo Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no

checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing quadwords that
are not naturally aligned. (A naturally aligned

quadword datum has zero as the low-order three bits
of its address.)
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2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware. \ See
the DEC STD 032: VAX Architecture Standard for detailed information on these
data types. \

® Octaword

* H_floating

* D_floating (except load/store and convert to/from G_floating)
¢ Variable-Length Bit Field

¢ Character String

® Trailing Numeric String

¢ Leading Separate Numeric String

¢ Packed Decimal String
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2.3 \Revision History
Revision 5.0, May 12, 1992
1. Converted to SDML

Revision 4.0, March 29, 1991

D_floating point support removed

Typos

Word definition made homologous to longword, quadword
Specify no checking on S_floating load, and T_floating load
Removed S_floating Format illustration and text

A o o

Clarified what is meant by a Vax floating point instruction

Revision 3.0, March 2, 1990
1. Cosmetic change to floating-point pictures

Revision 2.0, October 4, 1989
1. No change

Revislon 1.0, May 23, 1989

1. Change minimum virtual address size to 40 bits
2. Change Floating-point register format

3. Remove alignment warning on word data type

Revision 0.0, March 15, 1989

1. Initial version
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Chaptér 3
Instruction Formats (l)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per-
processor sets of these registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:
e STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

* LDx L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.2 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating-
point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.5.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation
Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and
the other expression operands.

Table 3-1: Operand Notation
Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Re An integer register operand in the Rc field of the instruction.

Fa A fioating-point register operand in the Ra field of the instruction.
Fb A floating-point register operand in the Rb field of the instruction.
Fe A floating-point register operand in the Rc field of the instruction.

Table 3-2: Operand Value Notation
Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation

Notation Meaning

IPR x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode
PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X
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3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<hame>

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name

Meaning

disp
fnc
Ra
Rb
#b
Re
Fa
Fb
Fc

The displacement field of the instruction.

The PAL function field of the instruction.

An integer register operand in the Ra field of the instruction.

An integer register operand in the Rb field of the instruction.

An integer literal operand in the Rb field of the instruction.

An integer register operand in the Rc field of the instruction.

A floating-point register operand in the Ra field of the instruction.
A floating-point register operand in the Rb field of the instruction.
A floating-point register operand in the Re field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type Meaning

a

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.

For example:

“.al” means scale by 4 (longwords) to get byte units (used in branch
displacements); “.ab” means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.
The operand is read only.

The operand is both read and written.
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Access Type Meaning

w The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type Meaning

Byte

F_floating

G_floating

Longword

Quadword

IEEE single floating (S_floating)

IEEE double floating (T_floating)

Word

The data type is specified by the instruction

Ngﬂ-m.g'—'aq"zc‘

3.2.3 Operators
The operators shown in Table 3—4 are used:

Table 3—4: Operators

Operator Meaning

! Comment delimiter

+ Addition

- Subtraction

* Signed multiplication

*U Unsigned multiplication

ok Exponentiation (left argument raised to right argument)
/ Division

— Replacement

11 Bit concatenation
{} Indicates explicit operator precedence
x) Contents of memory location whose address is x

x<m:n> Contents of bit field of x defined by bits n through m
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Table 34 (Cont.): Operators

Operator

Meaning

x<m> ,
ACCESS(z,y)

AND
ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(x,y)

CASE

DIV
LEFT_SHIFT(x,y)

LOAD_LOCKED

3-6 Common Architecture (1)
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M’th bit of x

Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

' Logical product

Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> «— x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action_2

argvaluen: action_n
[otherwise: default action]
ENDCASE

If the value of argument is argvaluel then action_l is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom ’otherwise’. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag.

Log to the base 2




Table 3-4 (Cont.): Operators

Operator Meaning

NOT Logical (ones) complement
OR Logical sum

xMODy x modulo y

Relational Operators

Operator Meaning

LT Less than signed
LTUO Less than unsigned
LE Less or equal signed
LEU Less or equal unsigned
EQ Equal signed and unsigned
NE Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed
GTU Greater unsigned
LBC Low bit clear
LBS Low bit set
MINU(x,y) Returns the smaller of x and y, with x and y interpreted as
unsigned integers :
PHYSICAL_ADDRESS Translation of a virtual address
PRIORITY_ENCODE Returns the bit position of most significant set bit, interpret-

ing its argument as a positive integer ( =int( 1g( x) ) ).
For example:
priority_encode( 255 ) = 7

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

SEXT(x) X is sign-extended to the required size.

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
the lock_flag.
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Table 3-4 (Cont.): Operators
Operator Meaning

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

XOR Logical difference
ZEXT(x) X is zero-extended to the required size.

3.2.4 Notation Conventions
The following conventions are used:
1. Only operands that appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other than that replacement (—) has the
lowest precedence. Explicit precedence is indicated by the use of “{}”.

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, “+” applied to G_floating operands means a G_floating
add, whereas “+” applied to quadword operands is an integer add. Similarly, “LT”
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

* Memory
* Branch
¢ Operate

* Floating-point Operate
e PAlcode

- All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of 31.

SOFTWARE NOTE
There are several instructions, each formatted as a
memory instruction, that do not use the Ra and/or Rb
fields. These instructions are: Memory Rarrier, Fetch,
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Fetch_M, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format

3.3.11

The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3—1: Memory Instruction Format

31 26 25 2120 1615 0

Opcode | Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va «— {Rbv + SEXT (Memory_disp) }
For LDAH the virtual address (va) is computed as follows:
va <+ {Rbv + SEXT (Memory disp*65536)}

Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 2625 2120 1615 0

Opcode | Ra Rb Function

The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.
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3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 26 25 2120 0

Opcode | Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va < PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

3-10

The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3—4 shows the two cases when bit <12> of
the instruction is 0 and 1.

Figure 3—-4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb [SBZ 0| Function Re

31 26 25 2120 131211 5 4 0

Opcode Ra LT 1] Function Re
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An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are three operand fields, Ra, Rb, and Rec.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav «— O

ELSE
Rav «— Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv +- ZEXT (inst<20:13>)

ELSE
IF inst<20:16> EQ 31 THEN
Rbv «— 0
ELSE
Rbv «— Rb
END
END

The Rec field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 2120 1615 5 4 0

Opcode Fa Fb Function Fe

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-
~ bit function field. Unused function encodings produce UNPREDICTABLE results,
as defined in Section 1.6.3.
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3.3.4.1

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav «— O

ELSE
Fav «— Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv «—~ 0

ELSE
Fbv < Fb

END

NOTE
Neither Fa nor Fb can be a literal in Floating-point
Operate instructions.

The Fc field specifies a destination operand.

Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.

The floating-point register to be used is specified by the Fa, Fb, and Fc fields all
pointing to the same floating-point register. If the Fa, Fb, and Fc fields do not all
point to the same floating-point register, then it is UNPREDICTABLE which register
is used.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3-6.

Figure 3-6: PALcode Instruction Format

31 26 25 0

Opcode PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.
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An opcode of zero and a PALcode function of zero specify the HALT instruction.
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3.4 \Revision History
Revision 5.0, May 12, 1992
Removed references to SP and PS
Added unsigned multiplication operator
Added description of Fa, Fb registers if unused
Converted to SDML
Added Memory Format with Function Code section
Moved Instruction Operand section from Chapter 4
Edited description of R31
Separated operand notation from operand value notation and simplified language

© ® N e ;s W N

Added comment and note to section 3.3 which specifies value assigned to unused
register fields of instructions

Revision 4.0, March 29, 1991

Typos

Upgrade description of R30 and implicit stack behavior of HW/PALcode
Upgrade definition of byte_zap, access, left_shift, and right_shift operators
Add definition of single bit field select operator, <n>

Rename arith_shift operator to arith_right_shift and upgrade definition
Make test a dyadic operator with explicit condition argument

Define the CASE pseudocode construct

Include Processor Status register in description of Alpha registers

© ® N & gk W N e

Add definitions of priority_encode and exponentiation (**) operators

10. Changed text describing R30

11. Changed two relational operator mnemonics

Revision 3.0, March 2, 1990

1. Under registers, add lock registers, IPRs, and optional registers

2. Define DIV, BYTE_ZAP, and PHYSICAL_ADDRESS; delete BYTE_SEL
3. Delete reference to R28

Revision 2.0, October 4, 1989

1. Add comment to section on PC that PC is not an Integer Register

2. Add comment that SP is R30
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3. Change description of L field in operate Instruction format

Revision 1.0, May 23, 1989

1. Remove Rb reading as PC for Rb eq 0

2. Fix error in which bit is literal enable bit for operate format
3. Add Floating-point Operate format

Revision 0.0, March 15, 1989

1. Initial version
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Chapter 4
Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section
Integer load and store 4.2
Integer control 4.3
Integer arithmetic 44
Logical and shift 4.5
Byte manipulation 4.6
Floating-point load and store =~ 4.8
Floating-point control 4.9
Floating-point operate 4.10
Miscellaneous 411

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

The group name

The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

The operation of the instruction

Exceptions specific to the instruction

The instruction mnemonic and name of each instruction in the group
Qualifiers specific to the instructions in the group

A description of the instruction operation

Optional programming examples and optional notes on the instruction
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4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the 32 floating-point registers, the Floating-
point Control Register (FPCR) and the instructions to access it, floating-point
branch instructions, floating-point copy sign (CPYSx) instructions, floating-point
convert instructions, floating-point conditional move instruction (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE

A system that will not support floating-point operations
is still required to provide the 32 floating-point
registers, the Floating-point Control Register (FPCR)
and the instructions to access it, and the T_floating
memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point
emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus in