
Order No. AA-K176A-TK

DEenet
DIGITAL Network Architecture

Network Services Protocol
Functional Specification

(NSP)

Version 3.2.0

DEenet
DIGITAL Network Architecture

(Phase III)

Network Services Protocol
Functional Specification

(NSP)
Order No. AA-K176A-TK

Version 3.2.0

October 1980

This document describes the Network Services architecture,
which models that part of the DECnet software that supports
the creation and destruction of logical links, error control, and
flow control. Network Services is part of the DIGITAL Network
Architecture.

To order additional copies of this document, contact your local
Digital Equipment Corporation Sales Office.

digital equipment corporation · maynard, massachusetts

First Printing, October 1980

This material may be copied, in whole or in part, provided that the
copyright notice below is included in each copy along with an
acknowledgment that the copy describes protocols, algorithms, and
structures developed by Digita~ Equipment Corporation.

This material may be changed without notice by Digital Equipment
Corporation, and Digital Equipment Corporation is not responsible for
any errors which may appear herein.

Copyright ~ 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-10
SBI
PDT

1.0
2.0
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.3.1
2.6.3.2
2.6.4
2.7
2.7.1
2.7.2
3.0
3.1
3.2
3.3
4.0
4.1
4.2
5.0
S.l
5.2
5.3
5.4
5.5
6.0
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.6
6.6.1
6.6.2
6.6.3
6.7
6.8
6.9

CONTENTS

INTRODUCTION
FUNCTIONAL DESCRIPTION

Design Scope
Relation to DIGITAL Network Architecture
Transport Characteristics
Basic Network Services Concepts
Logical Links and Ports
Port and Logical Link States
Logical Link Identification
Data Flow
Messages
Major Network Services Functions
Establishing and Destroying Logical Links
Error Control
Flow Control
Normal Data Flow Control
Interrupt Data Flow Control
Segmentation and Reassembly of User Data Messages
Functional Components
Data Bases and Buffer Pools
Modules

NSP INTERFACES
Session Control Interface
Network Management Interface
Transport Interface

NSP STATES
Port States
Logical Link States

NSP DATA BASES AND BUFFER POOLS
NSP's Internal Data Base
Session Control Port Data Base
Reserved Port Data Base
Node Data Base
Buffer Pools·

DETAILED FUNCTIONAL MODEL
Interface Routines
Receive Dispatcher Module
Index to Routines
Receive Processes
Connect/Disconnect Receive Processes
Data Receive Processes
Reserved Receive Processes
Reassembly Module
Transmit Processes
Connect/Disconnect Transmit Processes
Data Transmit Processes
Reserved Transmit Processes
Transmit Format Module
Segmentation Module
Transmit Allocation Module

iii

Page

1
2
2
3
5
6
6
6
7
7
8
9

10
11
13
13
15
15
16
16
17
19
19
26
31
34
34
38
40
40
41
45
45
46
48
49
53
54
55
56
59
65
66
67
67
69
75
75
79
80

7.0
7.1
7.2
7.3
7.4
7.5
8.0
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

CONTENTS (Cont.)

ALGORITHMS
Data Segment Retransmission
Other-Data Handling
Retransmission Timer Value Estimation
Inactivity Timing
Confidence Testing

MESSAGE FORMATS
Message Format Notation
General Message Format
Data Messages
Data Segment Message
Interrupt Message
Link Service Message
Acknowledgment Types
Data Acknowledgment Message
Other-Data Acknowledgment Message
Connect Acknowledgment Message
Control Messages
No Operation Message
Connect Initiate Message
Connect Confirm Message
Disconnect Initiate Message
Disconnect Confirm Message

APPENDIX A LOGICAL LINK ADDRESS ASSIGNMENT/DEASSIGNMENT
ALGORITHM EXAMPLE

A.l
A.2
A.3
APPENDIX B
B.l
B.2
APPENDIX C
C.l

Interface to the Algorithm
Data Structures
Algorithm Operation
SEGMENTATION MODULE EXAMPLE
Data Structures
Operation
REASSEMBLY MODULE EXAMPLE
Data Structures

C.2
APPENDIX D
0.1

Operation
TRANSMIT ALLOCATION MODULE EXAMPLE
Data Structures

D.2
0.3
APPENDIX E
E.l
E.2

GLOSSARY

FIGURE 1
2
3
4
5
6
7

Primitive Functions
Operation
DIFFERENCES BETWEEN NSP V3.2 AND NSP V3.l
Interface Differences
Protocol Differences

FIGURES

Relation of Network Services to DNA
Model of Data Flow as Seen by Session Control
Connection with Acceptance
Connection Attempt with Rejection
Connection Attempt with No Resources
Connection Attempt with No Communication
Disconnection

iv

Page

82
82
82
83
84
85
86
86
87
88
88
89
90
92
92
93
93
94
94
94
95
96
97

98
98
99

100
101
101
102
104
104
105
107
107
107
107
109
109
109

111

4
7

10
10
10
11
11

CONTENTS (Con t.)

Page

FIGURES (Cont.)

FIGURE 8 Segment Acknowledgment Operation 12
9 Example of Segment Flow Control for Normal Data on a

Logical Link 14
10 Interrelationship of NSP Components 16
11 Port State Diagram 37
12 Logical Link State Diagram 39

TABLES

TABLE 1 NSP Messages
2 Port States
3 NSP's Internal Data Base
4 Session Control Port
5 Reserved Port
6 Node Descriptor
7 Index to Routines Used in Model

v

8
34
40
41
45
45
55

1.0 INTRODUCTION

This document describes the structure, functions, interfaces, and
protocols of Network Services. Network Services, also known as NSP
(Network Services Protocol), is that part of the DIGITAL Network
Architecture (DNA) that models the software (or hardware) enabling the
creation and destruction of logical communication links, data flow
control, end-to-end error control, and the segmentation and reassembly
of messages.

DIGITAL Network Architecture is the model on which DECnet
implementations are based. A DECnet network is a family of software
modules, data bases, and hardware components used to tie DIGITAL
systems together for resource sharing, distributed computation or
remote system communication.

DNA is a layered structure. Modules in each layer perform distinct
functions. Modules within a single DNA layer (but typically in
different computer systems) communicate using specific protocols.
Modules in different layers (but typically in the same computer
system) interface using subroutine calls or a system-dependent method.
In this document interfaces are described in terms of calls to
subroutines.

This specification describes Phase III NSP architecture. In Phase II,
an earlier version, Session Control was part of NSP. with Phase III,
Session Control has been logically separated from NSP, and the
interface between the two layers defined. The Session Control layer
is described in a separate functional specification. The routing
specification, also a part of the Phase II NSP specification, has been
greatly expanded in Phase III and is contained in a separate Transport
specification. Appendix E details the differences between Pnase II
and Phase III NSP.

A glossary at the end of this document defines many Network Services
terms.

This document assumes that the reader is familiar with computer
communications and DECnet. The primary audience consists of those who
implement DECnet systems, however, the document may be useful to
anyone interested in the details of DECnet structure. The other DNA
Phase III functional specifications are:

DNA Data Access Protocol (DAP) Functional Specification, Version
5.6.0, Order No. AA-K177A-TK

DNA Digital Data Communications Message Protocol (DDCMP)
Functional Specification, version 4.1.0, Order No.
AA-K175A-TK

DNA Maintenance Operations Protocol (MOP) Functional
Specification, Version 2.1.0, Order No. AA-K178A-TK

DNA Transport Functional Specification, Version 1.3.0, Order No.
AA-K180A-TK

DNA Network Management Functional Specification, Version 2.0.0,
Order No. AA-K18lA-TK

DNA Session Control Functional Specification, Version 1.0.0,
Order No. AA-K182A-TK

The DNA General Description (Order No. AA-K179A-TK) provides an
overview of the network architecture and an introduction to each of
the functional specifications.

1

2.0 FUNCTIONAL DESCRIPTION

Network Services Protocol (NSP) performs the following functions:

1. Enables the creation and destruction of virtual channels
(logical links) that can be used for sending messages within
a network node and between network nodes.

2. Manages the movement
transmit buffers to
mechanisms.

of interrupt and
receive buffers,

normal data from
using flow control

3. Breaks up normal data messages into portions (segments)
can be transmitted individually, and reassembles
segments in their correct order after they have
transmitted.

that
these

been

4. Guarantees the delivery of data and control messages to a
specified destination by means of an error control mechanism.

Section 2 is an overview of NSP, covering the following topics:

• Design scope (Section 2.1)

• Relation of NSP to the DIGITAL Network Architecture (Section
2.2)

• Transport characteristics (Section 2.3)

• Basic concepts (Section 2.4)

• Messages (Section 2.5)

• Major functions (Section 2.6)

• Functional components (Section 2.7)

2.1 Design Scope

Network Services satisfies these following design requirements:

1. Compatibility. Network Services version 3.2 is compatible
with NSP version 3.1, except for those differences described
in Appendix E.

2. Performance. Network Services allows an implementation to
perform without deadlocks while using dynamic buffer pools.

3. Promptness. Network Services minimizes the delays incurred
in moving data from one Session Control module to another.

4. Efficiency. Network Services
overhead (for example, line
protocol.

2

minimizes the communications
bandwidth) consumed by the

5. Extensibility.
functions in
subset.

Network Services accommodates additional
the future, leaving earlier functions as a

6. Fairness. If more than one logical link is established to
the same destination at the same time, Network Services
assures that each provides useful communication services.

7. Elasticity. Network Services allows an implementation to
trade memory resources (both algorithm complexity and buffer
pool sizes) for performance.

The following are not within the scope of Phase III Network Services:

1. Maximum throughput. Network Services will not necessarily
maximize the throughput of a logical link.

2. Uniform service. Network Services will not guarantee the
same average throughput and average delays over two logical
links from a common source to a common destination.

2.2 Relation to DIGITAL Network Architecture

Figure 1 shows the relatlonship
hierarchy. Each layer in DNA
protocols.

of Network Services to the DNA
consists of functional modules and

Generally, modules use the services of the next lowest layer. In this
document the service relationship is demonstrated in the way the
interfaces are modeled -- as calls to subroutines. Note, however,
that the Network Management layer interfaces directly with each of the
lower layers. Also, all the layers above Session Control interface
directly with it. In fact, the upper three layers are sometimes
referred to as the "end user."

Modules of the same type in the same layer communicate with each other
to provide their services. The rules governing this communication and
the messages required constitute the protocol for those modules.
Messages are typically exchanged between equivalent modules in
different nodes. However, equivalent modules within a single node can
also exchange messages.

3

User Layer

Network

Management Layer

Network
Application Layer

Session Control Layer

Network Services Layer

Transport Layer

Data Link Layer

Physical Link Layer

Horizontal arrows show direct access for control and examination of parameters, counters, etc. Vertical and curved arrows show interfaces
between layers for normal user operations such as file access, down-line load, up·line dump, endto·end looping, and logical link usage.

Figure 1 Relation of Network Services to DNA

A brief description of each layer follows in order from the highest to
the lowest layer:

1. User layer. The highest layer, the User layer supports user
services and programs. Programs such as the Network Control
Program, which interfaces with the Network Management layer,
and file transfer programs, which interface with the Network
Application layer, reside in the user layer.

2. Network Management layer. The Network Management layer is
the only one that has direct access to each lower layer for
control purposes. Modules in this layer provide user control
over and access to network parameters and counters. These
modules also perform up-line dumping, down-line loading, and
testing functions.

4

3. Network Application layer. Modules in the Network
Application layer support network functions, such as remote
file access and file transfer, used by the User and Network
Management layers.

4. Session Control layer. The Session Control defines the
system-dependent aspects of logical link communication, which
allows messages to be sent from ohe node to another in a
network. Session Control functions include name to address
translation, process addressing, and, in some systems,
process activation and access control.

5. Network Services layer. The Network Services layer defines
the system-independent aspects of logical link communication.

6. Transport
messages,
nodes.

layer.
called

Modules
packets,

in the
between

Transport layer route
source and destination

7. Data Link layer. The Data Link layer defines the protocol
concerning data integrity and physical channel management.

8. Physical Link layer. The Physical Link layer encompasses a
part of the device driver for each communications device plus
the communications hardware itself. The hardware includes
interface devices, modems, and the communication lines.

2.3 Transport Characteristics

NSP interfaces directly with the Transport layer for its services.
Transport is a datagram delivery service to NSP. A datagram is a
block of data sent intact from one DECnet node to another. Transport
sends datagrams in packets. NSP expects Transport to have the
following characteristics:

1. Transport will accept a datagram at least as large as 230
8-bit bytes.

2. There is an extremely low probability that Transport will:

a. Duplicate a datagram

b. Deliver a datagram to the wrong destination

c. Change the data in a datagram

3. Transport may fail to deliver a datagram.

4. Transport may fail
destination from a
transmitted.

to deliver datagrams
given source in the

to a given
order they were

5. Datagrams delivered to a given destination from a given
source undergo a variable delay while under the control of
Transport. However, this maximum delay is bounded.
Datagrams not delivered within the maximum delay will not be
delivered.

5

2.4 Basic Network Services Concepts

This section describes concepts that are fundamental to an
understanding of NSP.

1. Logical links and ports (Section 2.4.1)

2. Port and logical link states (Section 2.4.2)

3. Logical link identification (Section 2.4.3)

4. Data flow (Section 2.4.4)

2.4.1 Logical Links and Ports - NSP provides a logical link service
to Session Control. A logical link is a virtual connection between
two Session Control modules, either between two nodes or within one
node. The connection enables controlled communication between network
nodes. A pair of Session Control modules may have more than one
logical link between them. Each logical link is separate from all
other logical links.

Each logical link must have a port at each end. A port is an area in
memory, generally in a dedicated or shared pool, that contains control
variables for managing logical links. Table 4 in Section 5.2
specifies these variables. NSP manages ports. Each node on a network
has a number of available ports. In forming a logical link, one port
is associated with another.

When Session Control requests a logical link or requests that a port
be opened to receive an incoming connect request, NSP allocates a port
if sufficient resources are available. When Session Control requests
that a port be closed, NSP deallocates the resources associated with
the port. Deallocation usually occurs after Session Control requests
a logical link disconnection.

NSP also maintains a "confidence" variable in each port that has been
opened. Session Control has access to this information, which is
useful in detecting network failures.

2.4.2 Port and Logical Link States - Each end of a logical link is in
one of a set of states at any time. In other words, each port has a
state.

The states at one end of the link affect the states at the other end
of the link. In this document the possible link states at one end of
a link are called the port states. The logical link states are the
combination of possible states at both ends of the logical link.

Every logical link has its own set of logical link states.

Session Control requests and NSP messages determine the particular
states and state transitions of the logical link. NSP manages these
state changes, based on the particular requests and messages it
receives. Section 5 details all the normal port and logical link
states and state transitions.

6

2.4.3 Logical Link Identification - In order for two NSP modules to
manage a given logical link, each NSP module must be able to identify
the link. The logical link identification consists of the port
addresses at each end of the link.

Each NSP module assigns a l6-bit numerical address to its end 'of a
logical link. The port at one end of the link contains the address of
the port at the other end of the link and vice versa. This is the way
in which the two ports are associated with each other. The complete
identification of the link, identifying both ends of the link, is
therefore a 32-bit number.

To avoid using the same number to identify two different links, an NSP
module refrains from assigning a 16-bit address it used for a previous
(but now disconnected) link to a new link as long as possible. The
probability that each of the two NSP modules reassigns its 16-bit
address and that these two addresses are paired a second time during a
connection process is extremely low. Therefore, the probability that
the same 32-bit identification would exist for two different links is
very low. This ensures that there will be no cross-talk between
links.

2.4.4 Data Flow - After a logical link is established, data may flow
in both directions (full-duplex) from transmitting Session Control
transmit buffers through the network to receiving Session Control
receive buffers. The size of the buffers at each end of the link is
implementation-dependent. However, the data flowing through the
network is always handled the same way. The NSP interface to Session
Control takes Session Control data provided in DATA-XMT calls (Section
3.1). It then transforms the data to a network form. At the other
end of the link the receiving NSP interface, responding to Session
Control DATA-RCV calls, transforms the data from its network form to
its receive buffer form. The mechanisms NSP uses to handle data are
transparent to Session Control. From Session Control's viewpoint, the
data flow is as shown in Figure 2.

Transmitting Node

TRANSMITTING
SESSION

CONTROL

B
U
F
F
E
R

N

B
U
F
F
E
R

1

NSP
interface

Legend:
EOM end-of-message flag
OAT A a collection of 8-bit bytes

NSP
interface

Receiving Node

RECEIVING
SESSION

CONTROL

B
U
F
F
E
R

N

B
U
F
F
E
R

1

This figure shows Session Control data transformed from a transmitting Session Control to a transmitting NSP and then transformed back from a
receiving NSP to a receiving Session Control. The NSP data does not actually move through the network as shown. (The DNA General Description
shows how Transport packets actually move through the network.) -

Figure 2 Model of Data Flow as Seen by Session Control

7

The transmitting NSP appends the end-of-message (EOM) flags (Figure
2), to the data in the network form. The receiving NSP module removes
these flags, places only data in the Session Control receive buffers,
and then informs the receiving Session Control via a flag in a
returned receive buffer whether an EOM was received. Section 3.1
details this procedure.

Throughout the data flow
places data bytes from a
in the same order as they
that no data will be
procedure.

2.5 Messages

process, NSP preserves data order. NSP
single transmit buffer into the network form
were in the buffers. NSP also guarantees
lost. Section 3.1 details the data flow

In order to provide logical link service, flow control and error
control (thereby supporting the Session Control interface), NSP
modules in different nodes must communicate. They do so by sending
and receiving NSP messages. The NSP protocol consists of these
messages and the rules governing their exchange.

There are three types of NSP messages:

• Data messages

• Acknowledgment messages

• Control messages

Table 1 summarizes the functions performed by each NSP message.
Section 8 describes the message formats in detail.

Type

Data

Data
(also called
Other-Data)

Message

Data Segment

Interrupt

Data Request

Table 1
NSP Messages

-.

Description

Carries a portion
Control message.

of a Session
(This has

been passed to Session Control
from higher DNA layers and
Session Control has added its
own control information.)

Carries urgent data,
originating from higher DNA
layers.

Carries data flow control
information (also called Link
Service message) .

Interrupt Request Carries interrupt flow control
information (also called Link
Service message) .

(continued on next page)

8

Table 1 (Cont.)
NSP Messages

Type Message

Acknowledgment Data
Acknowledgment

Control

Other Data
Acknowledgment

Connect
Acknowledgment

Connect Initiate

Connect Confirm

Disconnect
Initiate

No Resources

Disconnect
Complete

No Link

No Operation

2.6 Major Network Services Functions

Description

Acknowledges receipt of either
a Connect Confirm message or
one or more Data Segment
messages.

Acknowledges receipt of one or
more Interrupt, Data Request or
Interrupt Request messages.

Acknowledges receipt of
Connect Initiate message.

a

Carries a logical link connect
request from a Session Control
module.

Carries a logical link connect
acceptance from a Session
Control module.

Carries a logical link connect
rejection or disconnect request
from a Session Control module.

Sent when a Connect Initiate
message is received and there
are no resources to establish a
new port (also called
Disconnect Confirm message) .

Acknowledges the receipt of a
Disconnect Initiate message
(also called Disconnect Confirm
message) .

Sent when a message is received
for a non-existing link (also
called Disconnect Confirm
message) .

Does nothing (included for
compatibility with NSP V3.l).

This section summarizes the operation of the major NSP functions which
include:

1. Establishing and destroying logical links (Section 2.6.1)

2. Error control (Section 2.6.2)

3. Flow control (Section 2.6.3)

4. Segmentation and reassembly of user data messages (Section
2.6.4)

9

2.6.1 Establishing and Destroying Logical Links - A source NSP and a
destination NSP exchange messages to establish and destroy (in other
words, to connect and disconnect) logical links. Figures 3 through 7
summarize the message exchanges. The calls in capital letters under
Session Control headings are names of interface functions as described
in Section 3.1. The message exchanges below will take place correctly
in an implementation, if the algorithms in Section 4 are followed.

Source Destination

Session i i Session
I I

Control I NSP NSP : Control
I

I I

CONNECT-XMT ---}---.. Connect Initiate I
I

I I
I Connect Acknowledgment I
I I
I I
I Connect Confirm .. I ACCEPT I I
I Data Acknowledgment I
I I
I I
I I
I I

Figure 3 Connection with Acceptance

Source Destination

Session I I Session
I I

Control : NSP NSP : Control

I I
CONNECT-XMT ~Connect Initiate .. I

I
I - Connect Acknowledgment

I
I .- I
I I
I I
I - Disconnect Initiate ..------t--REJECT
I I

I Disconnect Complete I ... I I I I I
I I

Figure 4 Connection Attempt with Rejection

Source Destination

Session
! ! Session

Control , NSP NSP
I

Control

CONNECT - XMT Connect Initiate ... --- ---- -- No Resources

j

Figure 5 Connection Attempt with No Resources

10

Session I

Control
I
I

I
I

CONNECT-XMT ~
I
I
I
I
I
I
I
I
I :

Source

NSP

Connect Initiate

(Connect I nitiate returned
y Transport) to sender b

Destination

NSP

Figure 6 Connection Attempt with No Communication

Source Destination

Session i
I

Control I NSP NSP
I
I

DISCONNECT - XMT ~ Disconnect Initiate
I
I
I
I
I Disconnect Complete
I
I
I
I

1

Figure 7 Disconnection

Session
Control

Session
Control

2.6.2, Error Control - NSP uses a basic acknowledgment mechanism to
ensure that messages are delivered. NSP does this for each of the
four data messages listed in Table 1, section 2.5.

On a logical link, the four data messages can be thought of as moving
in two subchannels. One contains Data Segment messages; the other
contains Interrupt, Data Request, and Interrupt Request messages
(collectively known as Other-Data) .

Messages in each subchannel are numbered sequentially by the
transmitting NSP. The receiving NSP returns an acknowledgment
quickly. Otherwise, the transmitting NSP retransmits the message. It
1S not necessary to acknowledge each message individually.
Acknowledgment of a given numbered message implies acknowledgment of
all messages with a lower number (modulo the maximum message number) .

Figure 8 depicts the segment acknowledgment operation.
specifies the format of the acknowledgment messages.

11

Section 8

o The data-transmitting NSP assigns a transmit number to a message, transmits the message, and starts a timer.

Data-transmitting
NSP

1-----

1-----

transmit number = n
Data Segment Message

transmit number = m
"Other Data" Message

Data Subchannels

o If the timer times out, the message is retransmitted.

---

---+

Data-receiving
NSP

o If the timer does not time out, and the flow control mechanism allows another message to be sent, the data-transmittill9
NSP assigns the transmit number plus one to the next data message transmitted in that subchannel.

Data-transmitting
NSP

~----
transmit number = n + 1
Data Segment Message

transmit number = m + 1
"Other Data" Message

Data Subchannels

---

---+

Data-receiving
NSP

o When the message with the first transmit number is received by the data-receiving NSP, it returns that number as an
acknowledgment number within the first acknowledgment.

o If the next data message transmit number received is equal to th'!~IJ.!.':_nt ac~~owle~gme~t numbe~~~~, the
data-receiving NSP accepts the data message, incrementing the acknowledgment number. It then sends the
new receive acknowledgment number back to the data-transmitting NSP within an acknowledgment message.

Data-transmitting
NSP

j-- --- -- -- ------- - --I

: receive ack. number = n :

f+--: Data :...--
: Acknowledgment Message* : L ___________________ I

receive ack. number = n + 1
Data

Acknowledgment Message

receive ack. number = m
for-------------- "Other Data" --------------

Acknowledgment Message

Data Subchannels

Data-receiving
NSP

·The data-receiving NSP might not send an acknowledgment for each data message received. The receive acknowledgment
number implies that all previous numbers were received.

o However, if the data-receiving NSP receives a data message transmit number less than or equal to ~he current receive
acknowledgment number for that subchannel, the data segment is discarded. The datil-receiving NSP sends an acknowl
edgment back to the datil-transmitting NSP. The acknowledgment contains the receive acknowledgment number.

o If the data-receiving NSP receives a data message transmit number greater than. the current receive acknowledgment
number plus one for that subchannel, the data segment may be held until the preceding segments are received or it may be
discarded.

Figure 8 Segment Acknowledgment Operation

12

2.6.3 Flow Control - Flow control is the mechanism that determines
when to send an NSP Data Segment or Interrupt message. This
mechanism, along with the error control mechanism, coordinates the
flow of data on a logical link from transmit buffers in one node to
receive buffers in another node.

Flow control is performed separately for normal and interrupt data.
Flow control operates symmetrically ~or data flow in each direction, on
a logical link.

2.6.3.1 Normal Data Flow Control - Flow
algorithms for normal data:

control requires two

1. An implementation-dependent algorithm executed
data-receiving NSP that determines both when to
request message and the count value to be put into a
message.

2. An algorithm executed by a data-transmitting NSP
determines if a Data Segment message may be sent.

by a
send a

request

that

In addition, an "on/off" control mechanism may be used by a
data-receiving NSP to indicate to a data-transmitting NSP that Data
Segment messages mayor may not be sent.

On/off control. On/off control is independent of the request count
control. It operates as follows: Each Data Request message contains
a "send/do not send" indicator. When the error control mechanism in a
data-transmitting NSP has received and accepted a Data Request
message, the value of the "send/do not send" indicator is saved in the
data base associated with the logical link. When the value is "do not
send," the data-transmitting NSP may not transmit normal data. When
the value is "send," the data-transmitting NSP exercises the flow
control mechanisms described next.

Request count flow control. During logical link formation, the NSP at
each end of the link determines the kind of flow control it expects
when acting as a data receiver. The term "data-receiving NSP" means
an NSP acting as a data receiver. There is a choice of:

• No flow control

• Segment flow control

• Session Control message flow control

The choice of flow control is indicated via fields in Connect Initiate
and Connect Confirm messages. Each data-transmitting NSP must accept
the type of flow control the data-receiving NSP expects.

A data-transmitting NSP maintains a "transmit request count" variable
for normal data in the data base associated with each logical link.
When the error control mechanism receives and accepts a Data Request
message, flow control adds the count value from the message to the
appropriate transmit request count. The count values contained in the
request messages may be zero, positive, or, in some cases, negative.
This additive scheme works because the request messages are
error-controlled; it would not work otherwise.

No flow control. If the data-receiving
control," the data-transmitting NSP may
(subject to the "on/off" constraint).

13

NSP selected "no flow
transmit data at any time

NSP/Node A
"Data-Transmitting"

NSP/Node B
"Data- Receivi ng"

o NSP/Node A sends a Connect Initiate message to NSP/Node B:

o

o

o

o

8

e

L

c_o_n_n_e_ct ___________ J~----------~~~ Initiate

NSP/Node B, having received the Connect I nitiate message, returns a Connect Confirm message. A field in the message
indicates that NSP/Node B expects segment flow control:

"I want segment flow control U
,

..
NSP/Node A's data base has the initial value of rp for its request count variable for normal data segment flow control:

NSP/Node B sends a Data Request message containing a flow control value that indicates the number of Data Segment
messages NSP/Node B can receive. (NSP/Node B executes an implementation-dependent algorithm to determine this
value):

"I can receive n messages"

..)] Data
Request

NSP/Node A sets F LOWrem_dat to n:

NSP/Node A executes algorithm to determine if Data Segment number 1 can be sent (highest acknowledged Data
Segment message plus the current request count must be greater than or equal to the number of the next Data Segment
message sent): 7NO -~"·t .. nd

YES
I

send
The answer to the above is YES, so NSP/Node A sends Data Segment number 1:

Data Segment
1

NSP/Node B acknowledges receipt of first data segment:

.. o NSP/Node A subtracts 1 from its flow control request count:

Data Acknowledgment
of segment number 1

Figure 9 Example of Segment Flow Control for Normal Data on a
Logical Link (shown in one direction only)

14

Segment flow control. Figure 9 shows an example of the operation of
segment flow control. Segment flow control operates in the following
manner: If the data-receiving NSP selected the segment flow control
mechanism when the logical link was formed, the highest numbered Data
Segment message that may be transmitted is the one whose number is
equal to the sum of the highest numbered Data Segment message that has
been acknowledged (via the error control mechanism) by the
data-receiving NSP plus the current value of the request count. The
data-transmitting NSP decrements its request count variable by one for
each Data Segment message acknowledged by the data-receiving NSP.

The count values that can be contained in Data Request messages may be
negative. This means that the permission to transmit a particular
Data Segment message (even if it has been previously transmitted) may
be withdrawn by the receiver. This, in turn, causes an interaction
between the flow control and error control mechanisms. Specifically,
it is not necessary for the error control mechanism to maintain an
active retransmission timer for a Data Segment message that has been
transmitted at least once but for which permission to transmit (in
other words, to retransmit) has been withdrawn.

Session Control message flow control. If the data-receiving NSP
selected Session Control message flow control, the data-transmitting
NSP cannot send a segment if the number of end-of-message segments
between the highest acknowledged segment and the segment in question
(exclusive) is greater than or equal to the count. The
data-transmitting NSP decrements its request count variable by one for
each Data Segment message that is an end-of-message segment
acknowledged by the data-receiving NSP.

The mechanism for Session Control message
interact closely with the error control
mechanism for segment flow control). Once a
given permission to be transmitted, the
withdrawn.

flow control does not
mechanism (unlike the

Data Segment has been
permission will never be

2.6.3.2 Interrupt Data Flow Control - All NSPs use interrupt data
flow control for moving interrupt data. This mechanism is similar in
operation to the Session Control message flow control mechanism.
Interrupt message request counts are carried in Interrupt Request
messages. The counts are additive and may not be negative. The
interrupt-transmitting NSP can, therefore, maintain an interrupt
transmit request count. When a logical link is established, there is
an implicit request of one interrupt message. The interrupt
transmitting NSP cannot send an Interrupt message if the number of
Interrupt messages between the highest acknowledged Other Data message
and the Interrupt message in question is greater than or equal to the
count. The interrupt-transmitting NSP decrements its request count
variable by one for each Interrupt message acknowledged by the
interrupt-receiving NSP.

2.6.4 Segmentation and Reassembly of User Data Messages - Because of
network constraints such as available buffer sizes and transmission
error characteristics, user messages in Session Control buffers cannot
always be sent in one piece. A data-transmitting NSP breaks up data
contained in a single Session Control buffer into segments. A
data-receiving NSP reassembles the segments. The data-transmitting
NSP transmits the segments by means of Data Segment messages. The
data-receiving NSP puts the segments from the Data Segment messages
into the correct sequence. These messages contain user data as well
as NSP header information. The segment acknowledgment scheme (Figure
8, Section 2.6.2) ensures that all data segments are received.

15

The data-transmitting NSP must know the maximum length of a Data
Segment. This length is the lesser of:

1. The size of a transmit buffer in the source node. This size
cannot be larger than the node's Transport layer will permit.

2. The maximum length that the data-receiving NSP can receive.
The SEGSIZE field in the Connect Initiate and Connect Confirm
messages, exchanged when the logical link was formed,
contains this information.

The data-receiving
number contained
information. When
they are either
(Section 2.7.1).

NSP orders the data segments using the sequence
in the Data Segment message and end-of-message
Data Segments have been received out of sequence,
discarded or stored temporarily in a cache buffer

This document does not specify the detailed processes of segmentation
and reassembly. However, Sections 6.5 and 6.8 provide a model for
implementation and Appendixes Band C provide examples.

2.7 Functional Components

In its relation to DNA, NSP can be considered a "black box," which
interfaces to Session Control and Transport by defined interfaces and
with other NSP modules by the Network Services Protocol. The
functional components in this section and in Sections 5 and 6 describe
the operation of this "black box" by means of a sample implementation.
Any other implementation with equivalent operation is also a
legitimate NSP implementation.

NSP consists of data bases, buffer pools, and modules. Brief
descriptions of each follow in this section. Section 5 details the
data base and buffer pool specifications. Section 6 specifies in
detail the operation of the NSP modules with a model implementation
written in a high-level, colloquial computer language. Figure 10
shows the interrelationship of the NSP components.

2.7.1 Data Bases and Buffer Pools - The following is a model of the
NSP data bases:

NSP internal data base. The NSP internal data base contains NSP's
internal variables and parameters. Variables are values defined by
NSP. Variables change automatically during the operation of NSP.
Parameters are values defined by the Network Management interface.
Parameters can be read and sometimes set by the user. Many parameters
are static in the sense that they remain set until the user changes
them.

session Control port data base. The Session Control port data base
contains the port 'variables that NSP uses to manage a logical link.
When a logical link is created, NSP allocates a Session Control port
to it. When the link is destroyed, NSP releases the port back to the
port data base as a free port.

Reserved port data base. The reserved port data base contains the
port variables reserved for NSP's internal use. NSP uses these to
manage the sending of messages that do not map onto the Session
Control port data base.

16

SEG
MENTATION
MODULE

TRANSMIT
PROCESSES

I

TRANSMIT
ALLOCATION
MODULE

TRANSMIT
FORMAT
MODULE

I

SESSION
CONTROL

INTERFACE
ROUTINES

1"--_-"

PORT
DATA
BASES

......... -"

LARGE
AND
SMALL

........ --------+1 TRANSMIT
BUFFER
POOLS

..... ~

1 t
TRANSPORT

....... - -"

CACHE
AND
COMMIT

REASSEMBLY _ BUFFER
MODULE POOLS

RECEIVE
PROCESSES

..... -~

RECEIVE RECEIVE
L--__ ~ DISPATCHER f+--- BUFFER

MODULE POOL

...... -~

Figure 10 Interrelationship of NSP Components

Node data base. The node data base contains a collection of node
descriptors. A node descriptor is required for each remote node to
which a logical link is established. A node descriptor contains
variables and counters pertaining to communications with that node
(for example, the estimated round trip communications delay, traffic
usage and error counters)-.

Large and small transmit buffer pools. The large and small transmit
buffer pools contain large and small transmit buffers. Large transmit
buffers transmit Connect Initiate messages or Data Segment messages.
Small transmit buffers transmit all other NSP messages. An
implementation may choose to use a single transmit buffer pool for all
NSP messages.

Receive buffer pool. The receive buffer pool contains a collection of
receive buffers required to receive an NSP message from Transport.

Commit buffer pool. The commit buffer pool is an optional pool which
contains commit buffers used for data that the receiving node may
commit to storage even in the absence of receive buffers supplied by
Session Control. Such data may be acknowledged to its transmitter.

Cache buffer pool. The cache buffer pool is an optional pool which
contains a collection-of cache buffers. Cache buffers hold received
Data Segment messages that cannot be acknowledged either because they

17

are out of order or because there is no storage in either a commit
buffer or a Session Control receive buffer for them.

Event buffer pool. The event buffer pool contains buffers that may be
queued to NSP's event queue for reading by Network Management.

2.7.2 Modules - NSP modules perform specialized functions. There are
two kinds of modules:

1. A process is a module that is independent of other modules,
but uses the services of some other modules. It is designed
as if it were executing on a processor dedicated to it.

2. A routine is a module that provides functions for one or more
processes, but does not have a context of its own.

In general, processes communicate with routines by means of calls and
with other processes by means of shared variables, usually a port.
The mechanisms that synchronize two processes to prevent common entry
to a critical region are not explicitly defined.

The NSP process and routine modules are described below. Note that
these are functional descriptions of components. Implementations need
not be structured exactly as outlined in these descriptions.

Interface routines. The interface routines handle all Session Control
calls (Section 3.1).

Receive dispatcher routine. The receive dispatcher manages the
receive buffer pool. It polls Transport for received messages, parses
them, maps them onto ports, and returns message contents to the
appropriate NSP process.

Receive processes. These receive and handle NSP messages from Network
Services at remote nodes and help manage logical link states. Each
Session Control port has a set of these processes.

Reassembly routine. The
control policy, maintains
reassembles received Data
receive buffers.

reassembly routine determines the flow
the cache and commit buffer pools, and
Segment messages into Session Control

Transmit processes. These transmit (and retransmit, if necessary) NSP
messages to Network Services at remote nodes. Each Session Control
port has a set of these processes.

Transmit format routine. The transmit format routine maintains large
and small transmit buffer pools and formats outgoing messages. It
queues messages to Transport. It polls Transport to get "transmit
complete ll notifications.

Segmentation routine.
buffers into a form
messages.

This segments data in Session Control
suitable for transmission in Data

transmit
Segment

Transmit allocation routine. The transmit allocation routine receives
requests for permission to transmit from the transmit processes. It
allocates permission to transmit in a way that guarantees that when
more than one logical link is established to the same destination at
the same time each provides useful communication services.

18

3.0 NSP INTERFACES

This section describes the three external Network Services (NSP)
interfaces:

1. Session Control interface

2. Network Management interface

3. Transport interface

The interface functions are described as calls to subroutines in the
following format:

FUNCTION (input; output)

Descriptions of input and output then follow unless previously given.

In general, there are two types of subroutines: those performing a
function that is completed immediately, and those queueing a buffer
for transmitting or receiving data.

For buffer-queueing calls, additional calls are defined to allow
poll ing to obta in "buffer returned" not if icat ions. A "buffer"
argument denotes a system-dependent buffer descriptor that contains
location and length information. A "port id" is a system-dependent
number identifying a port. Although not described in the following
functions, an invalid port identifier causes an error.

Note that an implementation is not required to code the interfaces as
calls to subroutines. The calls specify functions only.

It may be useful to refer to the port state descriptions in Section
4.1 when studying the following interface functions.

3.1 Session Control Interface

This interface allows NSP to provide Session Control with the logical
link service. This service allows Session Control to create one or
more logical links to one or more other Session Control modules in the
same network.

In the interface descriptions, the terms "source" and "destination"
distinguish the requestor of a function from the receiver of the
request. The source and destination can be within a single Session
Control module or in two separate Session Control modules. Thus, at a
single node, a Session Control module can communicate with itself via
a logical link; between two nodes, two Session Control modules can
communicate with each other via a logical link.

The calls, described by function, are as follows:'

STATUS (; NSP status)

returns: NSP is halted.

NSP is running; minimum receive buffer
(NSPbuf -- Table 3, Section 5.1) returned

size

This function reads the status of NSP and obtains a minimum
receive buffer size if NSP is running. This is the one Session
Control interface function that does not involve the use of a
logical link.

19

OPEN (source, buffer; return)

source: a 16-bit buffer to contain the logical link requestor
node address when this node receives a connect
request

returns: port allocated and port identifier returned

port not allocated insufficient resources

port not allocated NSP halted

This function allocates a port in NSP for receiving a logical
link connect request. The source variable receives the node
address of the requesting node; the buffer receives the
incoming connect data. When the port state indicates an
incoming connect request is received, NSP places the source
node address in the source variable and the incoming data in
the buffer.

CLOSE (port id)

This function deal locates a port. When a port is closed, NSP
immediately returns all transmit and receive buffers to Session
Control (see DATA-XMT and DATA-RCV calls). Once a port is
closed, its associated port identifier is undefined. Any
subsequent call issued with such a port identifier results in
an error return.

Session Control may close a port at any time regardless of the
port's state. However, doing so may create ambiguities for the
Session Control module at the other end of the logical link.

CONFIDENCE (port id; confidence)

returns: network probably connected

network probably disconnected

port not in RUNNING, CONNECT-CONFIRM,
DISCONNECT-REJECT, or DISCONNECT-INITIATE state

This function obtains NSP's assessment of connectivity. NSP
periodically tests a logical link once it is formed to
ascertain if the physical path supporting the link is
connected. The result of this testing is the probable state of
connectivity. It is not a guaranteed state.

Session Control may issue this call to determine when to
disconnect a link on behalf of a program at the user level.

20

STATE (port id; state)

returns: the state of the associated logical link

This function returns the state of a port that is not CLOSED.

Because NSP's operation is not necessarily synchronized with
that of Session Control, it is possible that this call will not
detect every state transition. This is especially the case for
state transitions that occur very quickly. However, this is
not a problem because the intervening undetected states can be
logically deduced.

CONNECT-XMT (destination, channel, buffer; return)

destination: destination node address

channel: an internal NSP mechanism selector used to enable
loop testing. Channel is either unspecified (for
normal use) or a system-dependent line number
representing the line NSP is to use for its messages
establishing this logical link (for Network
Management loop tests) .

returns: port allocated; port id returned

port not allocated insufficient resources

port not allocated NSP halted

This function allocates a port and requests a logical link
connection. After a logical link has been successfully formed,
Session Control can put a load on a particular physical link
for loop test purposes provided that the channel argument
specified the physical link. This enables testing of the
physical link and all of the DECnet modules from Session
Control or higher layers by sending and receiving data on the
resulting logical link. For normal use, the channel argument
is set to "unspecified."

CONNECT-STATUS (port id, buffer; return)

returns: connect request accepted by destination port in
RUNNING state; accept data returned in buffer

connect request rejected by destination port in
REJECTED state; reject data returned in buffer

port in neither RUNNING nor REJECTED state

This function obtains accept or reject data returned as a
result of a previous connect request. If the return is one of
the first two, NSP returns any available accept or reject data.
Once this is done, an NSP implementation may discard its copy
of the accept or reject data so that a subsequent connect
status function would not return data.

In cases where state transitions occur very rapidly, Session
Control may not be able to perceive some intervening states.
Consequently, this call may not be accepted (see Section 4.1).

21

Accept data will be lost if the rapid state transitions end
with a transition to the DISCONNECT-NOTIFICATION state and this
call was never executed in the RUNNING state. No data is lost
otherwise.

If the connect request is accepted, up to 16 bytes of accept
data may be returned in the buffer. If the connect request was
rejected, up to 18 bytes of reject data may be returned in the
buffer (see the ACCEPT and REJECT calls).

ACCEPT (port id, buffer; return)

returns: link accepted

port not in CONNECT-RECEIVED state

This function accepts a connect request from a remote Session
Control module. The call supplies a buffer containing up to 16
bytes of accept data.

REJECT (port id, buffer; return)

returns: link rejected

port not in CONNECT-RECEIVED state

This function rejects a connect request from a Session Control
module. The call supplies a buffer containing up to 18 bytes
of reject data.

DISCONNECT-XMT (port id, buffer; return)

returns: call accepted

call rejected -- port not in RUNNING state

This function requests the disconnection of a logical link that
is in the RUNNING state. The call supplies a buffer containing
up to 18 bytes of disconnect data.

The remote Session Control module receives any data transmitted
by the disconnecting Session Control module prior to this call.
Session Control disconnects a link when it has no more data to
send and wants to ensure that the link will be properly
disconnected, not aborted.

ABORT-XMT (port id, buffer; return)

returns: call accepted

call rejected -- port not in RUNNING state

This function requests the immediate disconnection of a logical
link that is in the RUNNING state. The remote Session Control
module may not receive all previously transmitted data before
receiving the abort notification.

The call supplies a buffer containing up to 18 bytes of abort
data.

22

DISCONNECT-RCV (port id, buffer; return)

returns: disconnect data available

no disconnect data available

port not in DISCONNECT-NOTIFICATION state

This function receives disconnect data returned to the local
Session Control module as a result of a DISCONNECT-XMT or
ABORT-XMT call from the remote Session Control module. Session
Control detects a logical link disconnection or an abort when a
STATE call returns a DISCONNECT-NOTIFICATION. Up to 18 bytes
of data may be returned in the buffer.

DATA-XMT (port id, buffer, xmtflag; return)

xmtflag: a flag indicating whether the last byte in the buffer
is the last byte of a Session Control message. Its
value is one of:

• end-of-message

• not-end-of-message

Section 2.4.4 describes data flow.

returns: buffer queued

buffer not queued -- insufficient resources

port not in RUNNING state

This function queues a transmit buffer to a port for
transmitting normal data on a logical link. NSP refuses to
queue the buffer either if it lacks,the resources to do so or
if the port is not in the RUNNING state.

XMT-POLL (port id; return)

returns: no tranmsit complete

transmit complete -- buffer descriptor returned

This function returns a transmit buffer to Session Control.

DATA-RCV (port id, buffer, rcvflag; return)

rcvflag: a flag indicating whether data truncation is allowed.
It may have either of the following values:

• no truncation allowed

• truncation allowed

23

returns: buffer queued

buffer not queued insufficient resources

buffer not queued buffer too small and no
truncation was specified in rcvflag

port not in RUNNING or DISCONNECT-INITIATE state

This function queues a receive buffer to a port to receive
normal data. A "buffer too small" return indicates the buffer
size is smaller than the minimum receive buffer, NSPbuf (see
STATUS) .

Session Control may provide a buffer to a port in the
DISCONNECT-INITIATE state to avoid a Session Control deadlock
in which each end of the logical link is in the
DISCONNECT-INITIATE state. However, this is an
implementation-dependent issue.

RCV-POLL (port id; return)

returns: no buffer returned (Either
queued to the port or
available.)

no receive buffers are
there is no receive data

buffer returned no data lost, end-of-message

buffer returned data lost, end-of-message

buffer returned no data lost, not end-of-message

buffer returned data lost, not end-of-message

buffer returned empty port not in RUNNING,
DISCONNECT-INITIATE, DISCONNECT-COMPLETE, or
DISCONNECT-NOTIFICATION states.

This function obtains a "receive complete" notification for a
receive buffer previously queued via a DATA-RCV call. NSP
returns receive buffers along with buffer descriptors to
Session Control in the order in which data was placed in them.

A data-transmitting NSP segments data given to it by the
DATA-XMT call and sends each segment separately through the
network. A segment containing data given to NSP with an
"end-of-message" flag is so marked. A data-receiving NSP
receives these segments and places the data in Session Control
receive buffers given to NSP by the DATA-RCV function. The
sequence of packets flowing from a data-transmitting NSP to a
data-receiving NSP constitutes the network form described in
Section 2.4.4.

If a data-receiving Session Control module gives NSP each
receive buffer with the rcvflag set to "no truncation allowed"
on the DATA-RCV call, then NSP attempts to place the data, in
order, from one or more segments of a single Session Control
message into each receive buffer. A receive buffer is always
returned with a "no data lost" indication and is returned with
an "end-of-message" indication if and only if the last segment
of data placed in it was marked as ah "end-of-message" segment.
Note that two DATA-XMT calls by the data-transmitting Session

24

Control module, one with data that is not marked
"end-of-message" and the second with no data but marked
"end-of-message," may result in data and status being given to
the data-receiving Session Control either in two buffers, as
given to NSP by the data-transmitting Session Control module,
or in a single buffer containing the data and marked as
"end-of-message."

If a data-receiving Session Control module gives NSP each
receive buffer with the rcvflag set to "truncation allowed,"
then NSP either fills the receive buffer or puts data into it
up to and including the data in a segment marked as
"end-of-message" whichever comes first. If a receive buffer is
filled first, then NSP continues to receive and discard data
segments up to and including the first one marked as
"end-of-message." In either case, the receive buffer is
returned as an "end-of-message" on the RCV-POLL call. In the
case where data was discarded, the receive buffer is returned
with a "data lost" indication. The only time a buffer given
with a "truncation allowed" rcvflag is returned as
"not-end-of-message" is when the logical link is disconnected
by the data-transmitting Session Control module with a
partially transmitted message.

A data-receiving Session control module may mix calls with the
"truncation allowed" rcvflag with calls with the "no truncation
allowed" rcvflag.

If Session Control closes
queued via the DATA-RCV
immediately.

a port
call,

INTERRUPT-XMT (port id, buffer; return)

returns: data accepted

data not accepted

port not in RUNNING state

that
NSP

has receive
returns these

buffers
buffers

This function sends up to 16 bytes of high priority data to the
destination Session Control module. The data has no sequential
relationship to normal data transferred on a logical link. NSP
may refuse a request to send interrupt data if it is unable to
queue the data internally. The buffer may be up to 16 bytes
long.

INTERRUPT-RCV (port id, buffer; return)

returns: data returned

no data returned

port not in running state

This function obtains available interrupt data. Interrupt data
is delivered in the order transmitted by the INTERRUPT-XMT
function. Interrupt data has no sequential relationship to
normal data transferred on a logical link.

25

3.2 Network Management Interface

Network Management can perform the following functions using NSP's
Network Management interface:

1. Initialize or halt NSP.

2. Read and set some of NSP's local parameters and variables.

3. Read NSP's remote node variables and counters.
remote node counters.

Clear NSP's

4. Read (one event at a time) and clear NSP's event queue.

The interface is modeled as a collection of functions provided by
subroutines. Each call represents a specific function. In each
return, the variable in parentheses is its name appearing in the data
base descriptions in Tables 3 and 4, Section 5.

Many of the calls pertain to either local or remote NSPs. Actually,
the "remote" NSP is the local NSP if the logical link is made within a
single node.

All the variables read, set, or cleared by the following Network
Management functions are locally kept variables. Thus, a set of NSP
variables for each remote node to which there is an active logical
link is kept at the local node. NSP does not guarantee that any
information will be available when there are no logical links to the
specified remote node.

Implementations of Network Management are not required to return every
parameter, variable, or counter listed here.

The Network Management interface functions are as follows:

INITIALIZE

HALT

This function initializes the local NSP.

This function halts NSP. The call has the following effects:

1 NSP closes all ports.

2. NSP will refuse to open a new port.

3. NSP returns all Session Control buffers to Session
Control.

4. NSP freezes its counters and event queue.

5. NSP issues a TRANSPORT-CLOSE call to its Transport
service (Section 3.3).

26

LOCAL-READ-ADDRESS (; address)

return: NSP's node address (NSPself)

This function reads NSP's node address.

LOCAL-READ-INACTIVITY (; inactivity)

return: NSP's inactivity timer (NSPinact_tim)

This function returns the interval after which, if there is no
data going in either direction on a link, NSP checks the link.
NSP checks the link by sending a Data Request message (Table I)
to the remote NSP. This message does not change flow control
parameters, but does require an acknowledgment.

LOCAL-READ-DELAY (; delay)

return: NSP's delay factor (NSPdelay)

This function returns the number by which to multiply one
sixteenth of the estimated round trip delay to a node to set
the retransmission timer to that node. The round trip delay is
used in an NSP algorithm that determines when to retransmit a
message (Section 7.3).

LOCAL-READ-WEIGHT (; weight)

return: NSP's delay weight (NSPweight)

This function returns the weight NSP applies to the current
round trip delay estimate to a remote node when updating the
estimated round trip delay to a node (Section 7.3).

LOCAL-READ-RETRANSMIT (; retransmit)

return: NSP's retransmit threshold (NSPretrans)

This function returns the maximum number of times the source
NSP will restart an expired retransmission timer before
deciding that the remote node is probably unreachable (see
CONFIDENCE in Section 3.1). When this number is exceeded, NSP
gives a "probable disconnection" return to a Session Control
CONFIDENCE call. Session Control may then disconnect the link
on behalf of the end user. The retransmit threshold is called
the NODE RETRANSMIT FACTOR in the DNA Network Management
Functional Specification.

27

LOCAL-READ-MAXIMUM-ACTIVE (; maximum ports)

return: NSP's maximum ports number (NSPmax)

This function returns the maximum number of ports NSP has
concurrently had assigned to a logical link (in other words,
concurrently in a state other than OPEN or CLOSED). This is
called NODE MAXIMUM LOGICAL LINKS ACTIVE in the DNA Network
Management Functional Specification.

LOCAL-READ-TOTAL (; total ports)

return: NSP's total ports number (NSPtotal)

This function returns the maximum active logical link count for
the node. This is the total number of ports that NSP can have
in use concurrently. This is called NODE MAXIMUM LINKS in the
DNA Network Management Functional Specification.

LOCAL-READ-VERSION (; version number)

return: NSP's version number (NSPversion)

This function returns the local NSP's version number. For this
version, the value returned is 3.2.

LOCAL-SET (qualifier, value)

qualifier: one of the following, defined above:

value:

LOCAL-SET-ADDRESS
LOCAL-SET-DELAY
LOCAL-SET-INACTIVITY
LOCAL-SET-MAXIMUM
LOCAL-SET-RETRANSMIT
LOCAL-SET-WEIGHT

the new numerical value for the selected parameter or
variable.

This function sets NSP local parameters.

REMOTE-READ-DELAY (node; delay)

node:

return:

a node address

the estimated round trip delay to the remote node
(NODEdelay)

This function returns the estimated round trip delay to the
remote node.

28

REMOTE-READ-ACTIVE (node; active)

return: the number of active logical links to the remote NSP
(NODEactive)

This function returns the number of ports in a state other than
OPEN that NSP has associated with logical links to the remote
node. This variable is called NODE ACTIVE LINKS in the DNA
Network Management Functional Specification.

REMOTE-READ-BYTES RECEIVED (node; bytes received)

return: the number of user data bytes received (NODEbyt_rcv)

This function returns the total number of user data bytes
received from the remote node, including normal, interrupt,
connect, accept, reject and disconnect data.

REMOTE-READ-BYTES SENT (node; bytes sent)

return: the number of user data bytes sent (NODEbyt_xmt)

This function returns the total number of user data bytes sent
to the remote node.

REMOTE-READ-MESSAGES RECEIVED (node; messages received)

return: the total number of messages received from the remote
node (NODEmsg rcv)

This function returns the total number
messages received from the remote
disposition.

of all types of NSP
node regardless of their

REMOTE-READ-MESSAGES SENT (node; messages sent)

return: the total number of NSP messages sent to the remote
node (NODEmsg xmt)'

This function returns the total number of NSP messages sent to
the remote node.

REMOTE-READ-CONNECTS RECEIVED (node; connects received)

return: the total number of NSP Connect Initiate messages
received from the remote node (NODEcon_rcv)

This function returns the total number of NSP Connect Initiate
messages the local node has received from the remote node
regardless of their disposition.

29

REMOTE-READ-CONNECTS SENT (node; connects sent)

return: the number of NSP Connect Initiate messages sent to
the remote node (NODEcon_xmt)

This function returns the number of number of NSP Connect
Initiate messages sent to the remote node.

REMOTE-READ-CONNECTS REJECTED (node; connects rejected)

return: the number of received NSP Connect Initiate messages
for which there was no open port (NODEcon_rej)

This function returns the number of
messages rejected by the local NSP.
IIreceived connect resource errors"
Management specification.

NSP Connect Initiate
This variable is called

in the DNA Network

REMOTE-READ-TIMEOUTS (node; timeouts)

return: the number of timeouts that have occurred in waiting
for acknowledgments (of any kind) from the remote
node (NODEtimeout)

This function returns the number of response timeouts received
from the destination NSP.

REMOTE-READ-AND-CLEAR (node, value; qualifier)

value: the numerical value for the corresponding qualifer.

qualifier: one of the following, defined above:

• REMOTE-READ-BYTES RECEIVED
• REMOTE-READ-BYTES SENT
• REMOTE-READ-MESSAGES RECEIVED
• REMOTE-READ-MESSAGES SENT
• REMOTE-READ-CONNECTS RECEIVED
• REMOTE-READ-CONNECTS SENT
• REMOTE-READ-CONNECTS REJECTED
• REMOTE-READ-TIMEOUTS

returns: the selected information

This function reads and then clears a node-dependent NSP
counter.

30

READ-QUEUE (; return)

returns: event queue empty

the first entry on the event queue.
following events:

One of the

invalid message A received message was
discarded because reserved
bits or values in the message
were used. The beginning of
the message is the event data.

invalid flow control A received Link Service

data base reused

events lost

message was discarded because
it contained a request count
that, when used to compute an
accumulated request count,
would produce a result out of
limits. The message and
current request counts are the
event data.

A node descriptor (Section
5.4) was reused for a
different remote node. The
contents of the data base are
the event data.

The queue was full when NSP
attempted to place an entry in
it. One or more events were
lost.

This function reads the first entry on an event queue. NSP
maintains an internal event queue. The length of the queue is
implementation-dependent, but is always at least one. When
events (described above in the returns) occur, NSP places
entries in the queue. If the queue is full when NSP attempts
to place an entry in it, the last entry in the queue changes to
"events lost."

The DNA Network Management Functional Specification describes
return formats.

CLEAR-QUEUE

This function clears NSP's internal event queue.

3.3 Transport Interface

NSP requires a Transport ,service for its operation. A Transport
service provides NSP with the ability to send datagrams (containing
NSP messages) to, and receive datagrams from, any other NSP module in
the same DECnet network.

The interface described below appears in the form of calls from an NSP
module to a Transport module in the same node.

31

TRANSPORT-OPEN (source)

This function makes an NSP module an active Transport user and
defines NSP's node address. The "source" argument contains the
node address.

TRANSPORT-CLOSE (source)

This function removes an NSP module as a Transport user.
Transport immediately returns all buffers queued internally.

TRANSPORT-TRANSMIT (source, destination, returnflag, channel, buffer;
return)

source: a source node address

destination: a destination node address

returnflag: a Boolean flag to indicate whether or not the packet
is to be returned by the Transport service if the
destination node is inaccessible. The flag may have
one of the following values:

• false -- do not return packet

• true -- return packet

channel: an internal NSP mechanism selector (used for loop
testing). One of:

• unspecified

• a system-dependent line number that is the
line on which Transport should direct this
datagram

buffer: a buffer containing a packet

returns: buffer queued

buffer not queued

This function queues a transmit buffer to Transport. Transport
rejects this call (in other words, does not queue a packet)
only if it has insufficient resources to queue the buffer. If
the destination node is currently unreachable, then Transport
accepts the buffer, although it may return the buffer
immediately (see TRANSPORT-CHECK-TRANSMIT-BUFFER call,
following). The "channel" argument has the same meaning as
that in the CONNECT-XMT call (Section 3.1).

32

TRANSPORT-CHECK-TRANSMIT-BUFFER (; return, buffer)

returns: all buffers remain queued by Transport

buffer:

buffer returned to NSP

a buffer previously given to Transport
TRANSPORT-TRANSMIT call

via a

This function checks to see if a previously queued transmit
buffer can be returned to NSP.

TRANSPORT-SUPPLY-RECEIVE-BUFFER (buffer; return)

returns: buffer queued for receive by Transport

buffer not queued for receive by Transport

This function queues a receive buffer to Transport.

TRANSPORT-CHECK-RECEIVE-BUFFER (;
channel, buffer)

return, source,

returns: all buffers remain queued by Transport

destination,

buffer returned with source and destination node
addresses -- contains a normal packet

buffer returned -- contains a "return to sender"
packet

source: a source node address

destination: a destination node address

channel: an internal NSP mechanism selector (used for loop
testing). It has one of the following values:

• unspecified

• a system-dependent line number that is the
line on which Transport received this message

This function checks to see if a previously queued receive
buffer can be returned to NSP.

33

4.0 NSP STATES

This section describes the states and state transitions required for
normal NSP operation.

4.1 Port States

Whenever Session Control allocates a port, NSP associates the port
with a state. This state is represented by a variable in the port
data base. The CLOSED state really means that the port no longer
exists. This state is necessary in the architecture because the
remote port may be placed in the CLOSED-NOTIFICATION state. In some
implementations the CLOSED state may be indicated by the absence of an
entry. A port has only one state at a time. Table 2 summarizes the
normal port states.

(Symbol) State

(0) OPEN

(CR) CONNECT-RECEIVED

(DR) DISCONNECT-REJECT

Table 2
Port States

Explanation

The local Session Control has
issued an OPEN call which
created the port.

NSP has received a Connect
Initiate message. (The remote
port is or was in the
CONNECT-INITIATE state.)

The local Session Control has
issued a REJECT call while the
port was in the
CONNECT-RECEIVED state.

(DRC) DISCONNECT-REJECT-COMPLETE NSP has received a Disconnect
Complete message while in the
DISCONNECT-REJECT state. (The
remote port is or has been in
the REJECTED state.)

(CC) CONNECT-CONFIRM The local Session Control has
issued an ACCEPT call, while
the port was ln the
CONNECT-RECEIVED state.

(CI) CONNECT-INITIATE The local Session Control has
issued a CONNECT-XMT call,
which created this port.

(NR) NO-RESOURCES NSP has received a No Resources
message while in the
CONNECT-INITIATE state. (The
remote NSP did not have an
available port in the OPEN
state.)

(continued on next page)

34

(Symbol) State

(NC) NO-COMMUNICATION

(CD) CONNECT-DELIVERED

(RJ) REJECTED

(RUN) RUNNING

(DI) DISCONNECT-INITIATE

(DIC) DISCONNECT-COMPLETE

Table 2 (Cont.)
Port States

35

Explanation

NSP has
Connect
in the
because
deliver

received its own
Initiate message while

CONNECT-INITIATE state
Transport was unable to
the message.

NSP has received a Connect
Acknowledgment message while in
the CONNECT-INITIATE state.
(The destination port is or has
been in the CONNECT-RECEIVED
state.)

NSP has received a Disconnect
Initiate message while in the
CONNECT-INITIATE or
CONNECT-DELIVERED state. (The
remote port is or has been in
the DISCONNECT-REJECT state.)

NSP has either received a
Connect Confirm message while
in the CONNECT-INITIATE or
CONNECT-DELIVERED state or
received a Data, Data Request,
Interrupt Request, Data
Acknowledgment or Other Data
Acknowledgment message while in
the CONNECT-CONFIRM state. The
logical link may be used for
sending and receiving data.
(Either the remote port is or
was in the CONNECT-CONFIRM
state or the remote port
entered the RUNNING state from
the CONNECT-DELIVERED state.)

The local Session Control has
issued a DISCONNECT-XMT call or
an ABORT-XMT call while in the
RUNNING state.

NSP has received either a
Disconnect Complete message or
a Disconnect Initiate message
while in the
DISCONNECT-INITIATE state.
(The remote port is or has been
in either the
DISCONNECT-NOTIFICATION state
or the DISCONNECT-INITIATE
state.)

(continued on next page)

Table 2 (Cont.)
Port States

~---------------------------------.-------------------------------------~

(Symbol) State

(DN) DISCONNECT-NOTIFICATION

(CL) CLOSED

(CN) CLOSED-NOTIFICATION

Explanation

NSP has received a Disconnect
Initiate message while in the
RUNNING state. (The remote
port is or has been in the
DISCONNECT-INITIATE state.)

The local Session Control has
issued a CLOSE call (normally
while the local port was in the
DRC, DN, DIC, NC, NR or CI
state). This is not really a
state of the port, but is used
for descriptive purposes to
indicate that the port is not
there.

NSP has received
message while
DISCONNECT-INITIATE
DISCONNECT-REJECT
remote NSP closed
por t.)

a No Link
in the

or
state. {The

the remote

Figure 11, following, summarizes the normal port state
These transitions correspond with those in Table 2.
guarantee to exit the CONNECT-INITIATE (CI) state.

transitions.
NSP does not

36

---,
Legend: o ,ontain. port ... to (T.b,. 21

~ result from an action by NSP

~ result from a Session Control call

NOTES

1. A state from which an exit can be made by a double arrow is a potentially unstable state.

2. A state from which the only exits are single arrows are stable states.

3. A state from which an exit can be made by more than one double arrow is a state from
which the exit is non·deterministic.

Figure 11 Port State Diagram

A transition to CLOSE from any state other than those connected by
arrows to CL on Figure 11 is equivalent to terminating the logical
link while it was in a useful state. Such a transition would occur,
for example, when a user process terminates abnormally. This is the
only kind of transition that can occur that is not shown in Figure 11.

37

4.2 Logical Link States

When one Session Control module attempts to form a connection to a
second Session Control module NSP places the requesting port in the
CONNECT-INITIATE (CI) state. NSP then attempts to associate the local
source port with a destination port that is in the OPEN (0) state. If
the association between the two ports is successful, the combination
of the two port states is the logical link state. The initial logical
link state is represented as CliO.

A logical link can
implementations that
transitions correctly.

be in
follow

only one
the model

An NSP may fail to associate two ports.
following situations:

state at a time. NSP
in Section 6 will make the

This can happen in the

• If the network is disconnected so that the destination system
is not accessible. In this case, NSP places the requesting
port in the NO-COMMUNICATION state.

• If there are no ports managed by the remote NSP in the OPEN
state. In this case, NSP places the requesting port in the
NO-RESOURCES state.

• If the network becomes congested. In this case, the
requesting port remains in the CONNECT-INITIATE state
indefinitely. To recover from a failure to form a logical
link due to congestion, Session Control can:

1. Start a timer to detect no transition out of the
CONNECT-INITIATE state in the timeout period

2. Inform higher level users of a failure to form a
connection

Figure 12 shows the normal logical link state transitions.

The only state transitions that are not illustrated in Figure 12 are
those that represent the transition of one of the ports to the CLOSED
state from a non-terminal state. Such a transition is generally
succeeded by a transition of the other port to the CLOSED-NOTIFICATION
state. These transitions introduce ambiguity into the diagram of
logical link transitions. Figure 12 shows an example of this kind of
ambiguity in the exits from the CLIDI and Dl/cL states. Figure 12
does not show this complete set of transitions, because there are too
many to represent coherently in a single diagram. Moreover, they
obscure the transitions that occur during normal operation of a
logical link.

38

NOTES

@L

* CL An exit is made to the state from
this state if the port that is still open is
closed by Session Control.

o

*

contains logical link state
consisting of the port
states at both ends of
the link (Table 21.

~ transition caused by NSP

~ transition caused by a
Session Control call

~ ~ NSP does not guarantee to
make this transition

1. A state from which an exit can be made by a double arrow is a potentially unstable state.

2. A state from which the only exits are single arrows are stable states.

3. A state from which an exit can be made by more than one double arrow is a state from which the exit is non-deterministic.

4. The logical link states presented above describe the disconnection or abortion of the link from the RUN state when
requested by either Session Control module. This is true because the Session Control requesting a disconnection could be
either the Session Control that requested the logical link or the module that accepted the logical link.

5. If a logical link enters either the Ol/RUN or RUN/OI state because of a disconnect request by one of the Session Control
modules, then an NSP exit from the Ol/RUN or RUN/OI states is possible only if the Session Control module in the RUN
state has provided a sufficient number of receive buffers to receive all data transmitted by the other Session Control
module. The unbroken double arrow exit from either of these states means that NSP guarantees to make the exit eventually
only if this constraint has been met. Similarly, an NSP exit from the 01/01 state is possible only if one of the Session
Control modules sharing the logical link has met this constraint. This constraint does not apply when the 01 port state is
entered because of an abort request.

Figure 12 Logical Link State Diagram

39

5.0 NSP DATA BASES AND BUFFER POOLS

This section specifies the variables and parameters in the data bases
and buffer pools described in Section 2.2:

• NSP's internal data base (Section 5.1)

• Session Control port data base (Section 5.2)

• Reserved port data base (Section 5.3)

• Node data base (Section 5.4)

• Buffer pools (Section 5.5)

5.1 NSP's Internal Data Base

This data base contains
Network Management can
describes the data base.

NSP's internal variables and parameters.
modify some of these (Section 3.2). Table 3

Table 3
NSP's Internal Data Base

Name

NSPstate

NSPself

NSPinact tim

NSPdelay

NSPweight

NSPretrans

NSPmax

Bit Initial
Value width Definition

"halted" 1

o 16

0+ *

2+ 8

3+ 8

5+ 8

o *

NSP's state: One of "halted"
or "running"

The node address of this NSP
module.

NSP's inactivity time value (in
system-dependent units). 0 means
"no time value" (Section 7.4).

NSP's "delay factor" (Section
6.6) .

NSP's "round trip delay estimation
factor" (Section 6.6).

NSP's "retransmit threshold" for
determining confidence in network
connectivity for a logical link
(Section 7.5).

The maximum number of ports that
NSP has had simultaneously in a
state other than OPEN.

(continued on next page)

* This value is not essential to the model implementation.

+ This is a suggested initial value:
bound to use this as an initial value.

40

implementations are not

Name

NSPversion

NSPtotal

NSPbuf

Table 3 (Cont.)
NSP's Inte~nal Data Base

Initial
Value

3.2

*

*

Bit
width

*

*

*

Definition

NSP's version number.

The total number of ports NSP can
handle simultaneously.

The minimum Session Control
receive buffer size for this
implementation (this value is
equal to the size of a buffer
in the receive buffer pool minus
9 -- see Section 5.5).

* This value is not essential to the model implementation.

+ This is a suggested initial value;
bound to use this as an initial value.

implementations are not

5.2 Session Control Port Data Base

This data base consists of a collection of ports. NSP allocates a
port on a Session Control OPEN or CONNECT-XMT call. A port contains
the minimal information required to maintain a logical link. Table 4
specifies a Session Control port.

Name

STATE

NODE

ADDRloc

ADDRrem

CHANNEL

VERSION

Table 4
Session Control Port

Initial Bit
Value width

0 or CI 5

0 16

0 16

0 16

0 *

o *

Definition

The state of the port.

Remote node address.

Local link address.

Remote link address.

The channel number to use to
transmit messages to Trans
port. One of:

o (= "unspecified")
a channel number

The version of the remote NSP.

(continued on next page)

* This value is not essential to the model implementation.

41

Name

TIMERdat

TIMERoth

TIMERcon

TIMERinact

NUMdat

NUMoth

NUMhigh

ACKxmt dat

ACKxmt oth

ACKrcv dat

FLOWloc dat

FLOWloc int

Initial
Value

o

o

o

o

1

1

o

o

o

o

o

"empty"

Table 4 (Cont.)
Session Control Port

Bit
width

*

*

*

*

12

12

12

12

12

12

8

2

Definition

Message timer value for Data
Segment messages.

Message timer value for
Interrupt or Link Service
messages (data type messages
other than Data Segment) .

Message timer value for Connect
and Disconnect messages.

Inactivity timer value (Section
7.4)

Number of next Data Segment
message to transmit.

Number of next Interrupt or
Link Service message to trans
mit (data type messages
other than Data Segment) .

Number of highest numbered Data
Segment message available from
Session Control.

Number of last Data Segment
message acknowledgment sent by
local NSP.

Number of last Interrupt or
Link Service message
acknowledgment sent by the
local NSP.

Number of highest Data Segment
message acknowledgment received
from remote NSP.

The normal data request count
that will be sent in the next
Data Request message.

The flow control state for re
ceiving interrupt data. This
variable takes into account the
contents of the buffer BUFrcv
as well as whether or not a new
interrupt request should be
sent. One of:

"empty"
"interrupt"
"send request"

(continued on next page)

* This value is not essential to the model implementation.

42

Name

FLOWrem dat

FLOWrem int

FLOWrem sw

FLOWrem_typ

FLAGdat ack

FLAGoth ack

FLAGbuf

FLAGcon

FLAGint avail

FLAGcon_alloc

FLAGdat_alloc

BUFxmt

Initial
Value

o

1

"send"

"none"

false

false

false

false

false

false

false

o

Table 4 (Cont.)
Session Control Port

Bit
width

8

8

1

2

Definition

The cumulative normal data
request count received from the
remote NSP.

The cumulative interrupt data
request count received from the
remote NSP.

The normal data on/off switch
most recently received from the
remote NSP. One of:

"send"
"do not send"

The flow control type of the
remote receiver (determines
how remote normal data request
counts are interpreted). One
of:

"none"
"segment"
"session-control-message"

1 Boolean "data acknowledgment
required" flag.

1 Boolean "other data acknow
ledgment required" flag.

1 Boolean "buffer required for
connect or disconnect message"
flag.

1 Boolean "connect data
available" flag.

1 Boolean "transmit interrupt
data available" flag.

1 Boolean "transmit allocation
requested for the port
connect/disconnect transmit
process."

1 Boolean "transmit allocation
requested for the port
data transmit process."

18 bytes Buffer to contain data for
transmitted Connect Confirm,
Disconnect Initiate, or
Interrupt messages.

(continued on next page)

* This value is not essential to the model implementation.

43

Name

BUFrcv

BUFacc

BUFcon

BUFsrc

COUNTretrans

DELAYstr tim

OTHERstate

OTHERtyp

CONFIDENCE

SIZEseg

Table 4 (Cont.)
Session Control Port

Initial
Value

o

o

O's

O's

o

Bit
width

18 bytes

16 bytes

*

*

16

o *

o 12

IIreadyll 2

* 2

true 1

* 16

Definition

Buffer to contain data for
received Disconnect Initiate
or Interrupt messages.

Buffer to contain accept
data for received
Connect Confirm
message.

Address of a buffer to contain
data from a transmitted or
received Connect Initiate mes
sage.

Address of a buffer to contain
source node address for a
received connect request.

Count of message retrans
missions.

Round trip time-of-day
value for start of round trip
time estimation.

The number of the Data Segment
message currently being timed
for theround trip delay
estimation.

The state of the single "Other
Data ll message being
transmitted, if any. One of:

"ready"
"sent"
"timeout"

The type of "Other Data"
message being sent, if any. It
has meaning only when
OTHERstate is not "ready."
One of:

"interrupt"
"interrupt request"
"data request"

The Boolean "confidence ll

variable for the port.

The transmit segment size.

* This value is not essential to the model implementation.

44

5.3 Reserved Port Data Base

This data base contains a collection of port variables reserved for
NSP's internal use. NSP uses them to manage responses to received
messages that do not map onto the Session Control port data base.
Table 5 describes a reserved port.

Initial
Name Value

NODE 0

ADDRtmp 0

ADDRrem 0

MSGtype "none"

5.4 Node Data Base

Table 5
Reserved Port

Bit
width Definition

16 Remote node address.

16 Temporary (local) link

16 Remote link address.

address.

2 The message type, if any that
must be sent. One of:

"no resources"
"no link"
"none"

The node data base contains a collection of node descriptors. A node
descriptor is a collection of node-dependent variables and counters.
These are required in processing logical link connections. When NSP
receives either an outgoing connect request (from Session Control) or
an incoming connect request (via a Connect Initiate message), NSP
attempts to allocate a node descriptor for the remote node if one does
not exist. Failure of such an attempt has the same consequences as
failure to allocate a port. Table 6 describes a node descriptor.

Initial
Name Value

NODEaddr *
NODEdelay 0

NODEactive 0

NODEbyt_rcv 0

Table 6
Node Descriptor

Bit
width Definition

16 Node address.

* Estimated round trip delay.

* The number of ports with
logical links to the remote
node in a state other than
OPEN.

32 Total user data bytes received.

(continued on next page)

* This value is not essential to the model implementation.

45

Name

NODEmsg_xmt

NODEcon rcv

NODEcon xmt

NODEtimeout

Initial
Value

o

o

o

o

o

o

o

Table 6 (Cont.)
Node Descriptor

Bit
width

32

32

32

16

16

16

16

Definition

Total user data bytes
transmitted.

Total NSP messages received.

Total NSP messages transmitted.

connect Initiate messages
received.

Connect Initiate messages
transmitted.

Connect Initiate messages
received for which there was no
OPEN port.

Number of timeouts causing NSP
message retransmission.

* This value is not essential to the model implementation.

5.5 Buffer Pools

There can be up to six buffer pools, as follows:

Large transmit buffer pool. Large transmit buffers are required to
transmit Connect Initiate or Data Segment messages. The form these
buffers take is implementation-dependent. Implementations that
support buffer chaining may require only enough space in a large
transmit buffer to build a message header. Other implementations may
use buffers no larger than the size Transport can transmit. The
minimum size for the pool is one buffer.

Small transmit buffer pool. Small transmit buffers are required to
transmit messages other than Connect Initiate or Data Segment. The
minimum size for this pool is one buffer. An implementation may use a
single transmit buffer pool. In this case, the buffers must all be
"large."

Receive buffer pool. Receive buffers are required to receive an NSP
message from Transport. Minimum buffer size is 230 bytes. This size
is equal to the contents of NSPbuf (Table 3, Section 5.1) plus 9 (the
maximum length of a Data Segment header). All NSP messages are
received into buffers of the same size. The minimum size for this
pool is one buffer.

Commit buffer pool. Once data is placed in a
receiving node is committed to keeping it. Such
to the transmitter. A commit buffer is the same
buffer. This buffer pool is not required for the
NSP.

46

commit buffer, the
data is acknowledged
size as a receive
correct operation of

Cache buffer pool. Cache buffers hold received Data Segment messages
that cannot be acknowledged either because they were received out of
order or because there is no permanent storage (such as a commit
buffer or a Session Control buffer) for them. A cache buffer is the
same size as a receive buffer. This buffer pool is not required for
the correct operation of NSP.

Event buffer pool. This contains buffers for NSP's event queue for
reading by Network Management. The minimum size for the pool is one
buffer.

47

6.0 DETAILED FUNCTIONAL MODEL

section 6 is essentially a model implementation of NSP that defines
the operation of NSP in terms of a high level language. There is no
requirement that an actual implementation conform to either the
structure or the logical flow of this model. This is a specification
of function only. The following variables are used in the model:

• Data base variables from Section 5. These are given in mixed
capital and small letters plus STATE, NODE, VERSION,
CONFIDENCE, and CHANNEL.

• TIME. This refers to the value of a local clock that keeps
the time of day.

• Fields in a message from Section 8. These are all other
variables and are given in capital letters.

All NSP segment number arithmetic in this section is performed modulo
4096. A segment number n is defined to be greater than a segment
number m if 0 < (n - m) < 2048, modulo 4096.

A timer is modeled as a variable in a port. A timer is in one of
three states: stopped, running, or expired. A timer contains a zero
when it is stopped, a time value (the expiration time) greater than
the time of day when it is running, and a time value less than or
equal to the time of day when it has expired.

This section does not describe:

• The operation of the Network Management interface,

• The maintenance of counters in the node data base and the
variable NSPmax in NSP's internal data base,

• The handling of NSP's event queue, or

• The handling of port pools.

It is assumed that the above operations are described sufficiently in
the description of the Network Management interface in Section 3.

Finally, this section does not describe the operation of an NSP
implementation that requests no flow control or message flow control.
Nor does it describe the operation that would generate a negative
acknowledgment or exercise "on/off" flow control. The operation of
NSP in transmitting to an NSP implementation that uses these other
forms of flow control and acknowledgment is described in Section
2.6.3.

The colloquial language in the model adheres to the following rules:

1. <-- is the assignment operator

2. <) means "not equal to"

3. <= means "less than or equal to"

4.)= means "greater than or equal to"

5. "Loop ... Endloop" defines a section of logic
repeatedly. An "Exitloop" causes an exit
immediately following the "Endloop."

48

that
to

executes
the logic

6. "If ... Elseif ... Else ... Endif" defines a collection of separate
logic sections, each guarded by a Boolean condition. After
the first section with a "true" Boolean guard is executed, an
exit is made to the logic following the "Endif." The implied
Boolean condition on "Else" is "true." That is, the section
following an "Else" is always executed if a previous section
has not been executed.

7. Comments are near the code to which they apply, either before
or after.

6.1 Interface Routines

NSP handles the Session Control calls
The operation is described by a series of

The algorithms assume that at each of the
a port identifier passed by Session Control,

This section specifies how
described in section 3.1.
algorithms with comments.
entry points involving
NSP does the following:

1. Checks the port identifier for validity.

2. Maps the port identifier onto a Session Control
descriptor, if possible.

port

The port descriptor variables used herein refer to those in the proper
descriptor.

OPEN:

Logical link address assignment (Appendix A)

If (NSPstate = Ihalted R
) then

return I no port allocated - NSP halted·
Elseif (Session Control port is available

and a loSicsl link address is assi~nable) then
allocate Session Control port
ADDRloc (-- assi~ned link address
STATE < .. ~- 10 1

BUFcon (-- Session Control's buffer descriptor
BUFsrc (-- address of "source l ar~uffient

return "port allocated" with port identifier
Else

return "port not allocated - insufficient resources"
Endif

CLOSE:

Logical link address deassignment (Appendix A)

dea$si~n link address in ADDRloc
release resources

CONFIDENCE:

If (STATE:::: "RUN" OT' "CC" OJ' "DR" OJ' "DI") thE.'n
return CONFIDENCE

Else
return "port in invalid state"

Endif

49

STATE:

return STATE

CONNECT-XMT:

Logical link address assignment (Appendix A). Setting FLAGbuf true
causes the connect/disconnect process for the port to send a Connect
Initiate messag~. NSP passes the channel value to Transport for
subsequent transmissions for this port. The channel value is used for
loop-back testing.

If (NSPstate ; -halted-) then
return -no port allocated - NSP halted

Elseif (Session Control port is available
and a node descriptor exists or is available
and a logical link address is assignable) then

allocate Session Control port descriptor
allocate and initialize a node descT'iptor, if rH~C~;~S!:;ay'~
ADDRloc <-- assigned link address
STATE <-- -CI-
BUFcon <-_ .. Sess ion Cont ro I' s I.:IIJfft;~ r deat.' Y'l. F,tO T'

CHANNEL <-- channel from call
FLAGbuf < - t rlJe
return -port allocated- with port identifier

Else
return -port not allocated - insufficient resources

Enfji f

CONNECT-STATUS:

Accept or reject data is only available if the port is in the "RJ" or
"RUN" states. The data is in BUFacc if the port is in the "RUN"
state; the data is in BUFrcv if the port is in the "RJ" state.
Furthermore, since BUFrcv receives interrupt data once the logical
link is running, Session Control can obtain accept data only once.
The variable FLOWloc int identifies the contents of the BUFrcv buffer.
Setting this variabl~ to "empty" allows NSP to receive interrupt data
on the logical link.

If (STATE = -RJ M) then
Sess i on Cont, 1'0 I' £. buffe T' <: ._-- BlJF rcv
return ·connect re~uest reJected

Elseif (STATE = MRUN") then
If (FLOWloc_int = -accept") then

Session ContT'ol'!:; buff E'l' < .. _ .. - BUFacc
Endif
return Mconnect reQuest accepted"

Else
T' e t, urn • PO r t not in RUN N I N [) (] T' F~ E ,,J E C TED ~; tat c-::' "

Endif

ACCEPT:

Setting FLAGbuf true will cause the connect/disconnect transmit
process to send a connect Confirm message.

If (STATE = ·CR·) then
STATE < - -CC-
BUFxmt <-- Session Control's data
FLAGbuf <_ t ruf:.'
return -link accepted M

Else
return ·port not in CONNECT-RECEIVED state

Endif

50

REJECT:

Setting FLAGbuf true causes the connect/disconnect transmit process to
send a Disconnect Initiate message.

If (STATE = ICRI) then
S TAT E < .. -.... I [I R •
BUFxmt <-- Session Control's data
FLAGbuf <-_ .. - t T'U(-?

return Ilink reJected l
Else

return Iport not in CONNECT-RECEIVED state
Endif

DISCONNECT-XMT:

Setting FLAGbuf false and STATE to "01" causes the connect/disconnect
transmit process to send a Disconnect Initiate message only if there
are no outstanding, unacknowledged data messages.

BTATE <....... I DI I

BUFxmt <-- Session Control's data
DELAYstr_tim <-- 0
stop timer TIMERdat
stop timer TIMERoth
FLAGbuf <-- false
return Icall accepted"

Else
return Iport not in RUNNING state"

Endif

ABORT-XMT:

This routine acts as routine DISCONNECT-XMT except that it sets
NUMhigh to ACKrcv dat to stop the transmission of data messages and to
allow the transmission of a Disconnect Initiate message.

If (STATE = IRUN') then
STATE <-- IIDII
BUFxmt <-- session control's data
DELAYstr_tim <-- 0
stop timer TIMERdat
stop timer TIMERoth
FLAGbuf (-- false
NUMhi~h <-- ACKrcv_dat
return Icall accepted I

Else
return Iport not in RUNNING statel

Endif

DISCONNECT-RCV:

The connect/disconnect process places any received disconnect data in
BUFrcv.

If (STATE = IONI) then
If (BUFrcv empty) then

return I no disconnect data available·
Else

Session Control's buffer <-- BUFrcv
return Idisconnect data available"

Er.dif
Else

return 'port not in DISCONNECT-NOTIFICATION statel
Endif

51

DATA-XMT:

The segmentation module handles this call almost entirely.

If (STATE = -RUN-) then
pass call to se~ffientation ffiodule
pass return to Session Control

Else
return -port not in RUNNING state

Endif

XMT-POLL:

The segmentation module handles this call entirely.

pass call to se~ffientation module
pass return to Session Control

DATA-RCV:

The reassembly module handles this call almost entirely. This call is
accepted in the 01 state to prevent a Session Control deadlock
(Section 4.1).

If (STATE = -RUN- or -DI-) then
pass call to reasseffibl~ ffiodule
pass return to Session Control

Else
return -port not in RUNNING or DISCONNECT-INITIATE state U

Endif

RCV-POLL:

The reassembly module handles this call entirely.

pass call to reasseffibl~ module
pass return to Session Control

INTERRUPT-XMT:

BUFxmt is the single buffer holding outgoing
variable FLAGint avail indicates the state
FLAGint avail is -false, then there is no
interrupt data in it and setting FLAGint_avail
transmit process to send an Interrupt message.

If (STATE (> RUN) then
return -port not in RUNNING state-

Elseif (FLAGint_avail false> then
BUFxmt (-- Session Control's data
FLAGint_avail (-- true
return -data accepted-

Else

interrupt data. The
of the buffer. When

data in it. Putting
to true causes the data

return -data not accepted - insufficient resources"
Endif

52

INTERRUPT-Rev:

The data receive process places received interrupt data in BUFrcv if
FLOWloc int "empty." The receive data process informs this routine
that interrupt data is available by setting FLOWloc int to
"interrupt." This routine informs ,the data transmit process that it
~hould request another interrupt message by setting FLOWloc int to
"send request." This causes the data transmit process to-send an
Interrupt Request message.

If (STATE < > RUN) then
return ·port not in RUNNING state·

Elseif (FLOWloc_int = "interrupt") then
Session Control's buffer (-- BUFrev
FLOWloc_int (-- ·send reGuest"
return "data returned"

Else
return ·no data returned"

Endif

6.2 Receive Dispatcher Module

This module has an imbedded process
Transport, polls to get them back,
processes. Although not explicitly
algorithms, these processes return
dispatcher module after the buffers

that gives receive buffers to
and then gives them to the receive
modeled in the receive process
the receive buffers to the receive
have been processed.

The receive dispatcher module maps received messages onto ports and
parses messages into field contents. Mapping a received message onto
a particular port is described below.

1. If the TYPE or SUBTYPE subfields of the MSGFLG field contain
reserved binary values, or if the MSGFLG field is extended,
then discard the message.

2. Discard a received No Operation message.

3. A received Connect Initiate message with DSTADDR 0 maps
onto any Session Control port with STATE = "0," if such a
port exists. Otherwise, it maps onto any reserved port with
MSGtyp "none," if such a port exists. Otherwise, discard
the message.

4. A returned Connect Initiate message always maps onto the
Session Control port with STATE = "CI" and SRCADDR=ADDRloc,
if such a port exists. Otherwise, discard the message.

5. Treat a received Disconnect Confirm message as a No Resource
message if the REASON field contains a 1, as a Disconnect
Complete message if the REASON field contains a 42, and as a
No Link message if the REASON field contains a 41.

6. The following messages map onto a Session Control port with
the source node = NODE and DSTADDR = ADDRloc, if such a port
exists.

• Connect Acknowledgment
• No Resources
• Connect Confirm
• Disconnect Initiate
• Disconnect Confirm with REASON < > 1, 41, or 42

53

If a Connect Acknowledgment or No Resources message cannot be
mapped onto a Session Control port, discard it. If a Connect
Confirm or Disconnect Initiate message cannot be mapped onto
a Session Control port, map it onto a reserved port with
MSGtyp = "none," if one exists. Otherwise, discard it.

7. The following messages map onto a Session Control port with
the source node=NODE, DSTADDR=ADDRloc, and SRCADDR=ADDRrem,
if such a port exists.

• Disconnect Complete
• No Link
• Data Segment
• Data Acknowledgment
• Interrupt
• Data Request
• Interrupt Request
• Other-Data Acknowledgment

A Data Segment, Interrupt, Data Request, or Interrupt Request
message that cannot map onto a Session Control port is mapped
onto a reserved port with MSGtyp = "none," if one exists;
otherwise, it is discarded. Discard the remaining messages
in the above list if they cannot map onto a Session Control
port.

Note that a Session Control port with STATE "0," "CI,"
"CD, II "NR," or "NC" does not have a defined value for
ADDRrem. Therefore, NSP cannot map these messages onto such
a port.

Parsing messages into field contents is generally straightforward.
The following are special rules:

1. Mask the QUAL field of a received Data
Link Service, Data Acknowledgment, or
message to the low order bit to obtain a
acknowledgment indication. Ignore any
are set in QUAL.

Segment, Interrupt,
Other Acknowledgment
positive or negative
additional bits that

2. Mask the SEGNUM field of a received Data Segment, Interrupt,
Link Service, Data Acknowledgment, or Other Acknowledgment
message to the low order 12 bits. Ignore the upper 4 bits
regardless of setting.

3. Mask the LSFLAGS field of a received Link Service message to
the low order 4 bits. Ignore the upper 4 bits regardleos of
setting. Check the reserved values of the FCVAL INT and FC
MOD subfields of the LSFLAGS field, however. If the reserved
values are used, ignore the entire Link Service message.

6.3 Index to Routines

Sections 6.4 through 6.9 contain routines that are used in more than
one subsection. These routines are only defined once. To aid your
reading of the model, Table 7 is an alphabetic list of all the
routines used in these sections. The table shows both the section in
which the routine is defined and the section(s) that call or otherwise
use the routine.

54

Table 7
Index to Routines Used in Model

Routine Defined In Used In

ACK-SESSION-CONTROL 6.7 6.6.2
ALLOCATE 6.9 6.6.1, 2, 3
CHECK-ALLOCATE 6.9 6.6.1, 3
COMMIT-NUMBER 6.5 6.4.2
DATA-ACK-SENT 6.6.2 6.6.2
DATA-ACK-TO-BE-SENT 6.6.2 6.6.2
DATA-REQUEST-TO-BE-SENT 6.6.2 6.6.2
DATA-TO-BE-SENT 6.6.2 6.6.2
DEALLOCATE 6.9 6.6.1, 2, 3
GET-SEGMENT 6.8 6.6.2
INTERRUPT-TO-BE-SENT 6.6.2 6.6.2
INT-REQUEST-TO-BE-SENT 6.6.2 6.6.2
LAST 6.8
MESSAGE-SENT 6.6.2 6.6.2
MESSAGE-TO-BE-SENT 6.6.2 6.6.2
NM 6.8
OTHER-ACK-SENT 6.6.2 6.6.2
OTHER-DATA-ACK-TO-BE-SENT 6.6.2 6.6.2
OTHER-DATA-SENT 6.6.2 6.6.2
PROCESS-DATA-ACK 6.4.2 6.4.2
PROCESS-OTHER-DATA-ACK 6.4.2 6.4.2
REALLOCATE 6.9 6.6.1, 2 , 3
SEND-CONNECT-ACKNOWLEDGMENT 6.7 6.6.1
SEND-CONNECT-CONFIRM 6.7 6.6.1
SEND-CONNECT-INITIATE 6.7 6.6.1
SEND-DATA-ACK 6.7 6.6.2
SEND-DATA-REQUEST 6.7 6.6.2
SEND-DATA-SEGMENT 6.7 6.6.2
SEND-DISCONNECT-COMPLETE 6.7 6.6.1
SEND-DISCONNECT-INITIATE 6.7 6.6.1
SEND-INTERRUPT 6.7 6.6.2
SEND-INTERRUPT-REQUEST 6.7 6.6.2
SEND-NO-LINK 6.7 6.6.3
SEND-NO-RESOURCES 6.7 6.6.3
SEND-OTHER-DATA-ACK 6.7 6.6.2
SEND-SMALL-MESSAGE 6.7 6.7
SET-SWITCH-AND-FLAG 6.4.2 6.4.2
SPECULATE-NUMBER 6.5 6.4.2
STORE-SEGMENT 6.5 6.4.2
TIMEOUT 6.6.2 6.6.1, 2
TRANSPORT-TRANSMIT 6.1 6.7
UPDATE-DELAY 6.4.2 6.4.1, 2

6.4 Receive Processes

This section contains algorithms for implementing the three receive
processes:

• Connect/Disconnect Receive Process (Section 6.4.1)

• Data Receive Process (Section 6.4.2)

• Reserved Receive Process (Section 6.4.3)

55

6.4.1 Connect/Disconnect Receive Processes - These processes receive
messages from the receive dispatcher module. The message variables
below refer to the information content of message fields as returned
from the receive dispatcher module. There is one connect/disconnect
receive process for each Session Control port.

Loop

This process loops forever.

Oncase (received message t~pe)

When this process receives a message, execute the appropriate case
statement.

Case (Connect Acknowledgment)

If this message is received when the link is in the IICI II state, then
observe the round trip delay (Section 7.3). This value is equal to
the current time of day minus the time the Connect Initiate message
was sent. This latter time is kept in DELAYstr tim. Routine
UPDATE-DELAY makes this calculation and updates the variable
NODEdelay.

If (STATE = 'CI ') then
STATE <_.- I CD I
Call UPDATE-DELAY

Endif

Case (Connect Initiate)

A Connect Initiate message may contain any value in the INFO field.
However, the SERVICES field must contain "none," "segment" or
"message." Setting FLAGbuf true causes the connect/disconnect transmit
process to send a Connect Acknowledgment message.

If (SERVICES = Inone,1 ·seSment,' or Imessage ') then
buffer whose descriptor is in BUFcon <-- DATA-CTl
NODE <-- node from Transport
location whose address is in BUFsrc <-- NODE
ADDRrem <-- SRCADDR
FlOWrem_t~p <-- SERVICES
VERSION <_.- INFO
SIZEseg <-- min of (SEGSIZE, size of a large transmit

buffer -9)
FLAGbl.Jf < -- true
STATE <_ .. - I CR I
If (NODE = NSPself) then

CHANNEL <-- channel received from Transport
Else

CHANNEL <-- ·unspecified l

Endif
Endif

Case ('returned to sender ' Connect Initiate)

If (STATE = 'CI·) then STATE <-- INC'

Case (Connect Confirm)

56

The testing of INFO and SERVICES is the same for a Connect Confirm
message as for a Connect Initiate message. Setting the variable
FLOWloc int to "accept" informs the interface routines that there is
accept -data available. Since the "RUN" state can be entered, start
the inactivity timer (Section 7.4). Call UPDATE-DELAY for the same
reasons as when a Connect Acknowledgment message is received.

If (SERVICES = -none,- ·sesment,1 or Imessase l
) then

If (STATE = ICI I or ICDI) then
ADDRrem (-- SRCADDR
FLOWrem_t~p (-- SERVICES
VERSION (-- INFO
SIZEses (-- min of (SEGSIZE, size·of a larse transmit

buffer -9)
BUFacc (-- DATA-CTL
TIMERinact (-- TIME + NSPinact_tim
If (STATE = ·CI I) then Call UPDATE-DELAY
STATE (-- "RUN I

Endif
If (STATE = "RUNI) then

FLAGdat_ack (-- true
Endif

Endif

Case (Disconnect Initiate)

In all cases below, setting FLAGbuf true causes the connect/disconnect
transmit process to send a Disconnect Complete message.

If (STATE = ICI I or ·CD I) then

A Disconnect Initiate message received in either of these two states
indicates a rejection of a previously transmitted Connect Initiate
message.

ADDRrem (-- SRCADDR
first two bwtes of BUFrcv (-- REASON
remainins b~tes of BUFrcv (-- DATA-CTL
FLAGbuf (-- true
If (STATE = ICI I

) then Call UPDATE-DELAY
STATE (-- IRJ I

Elseif (STATE = MRJ") then

A Disconnect Initiate message received in this state is assumed to be
a duplicate caused by the retransmission of the message that
originally caused the transition to the "RJ" state.

FLAGbuf (-- true
Elseif (STATE = IRUNI) then

A Disconnect Initiate message received in this state indicates a
disconnect of a running link.

first two b~tes of BUFrcv ~-- REASON
.remainins b~tes of BUFrcv (-- DATA-CTl
FLAGbuf (-- true
STATE (-- IDN"
DELAYstr_tim (-- 0
stop timer TIMERdat
stop timer TIMERoth

Elseif (STATE = IDIC" Dr "DI") then

57

A Disconnect Initiate message received in either of these states is
assumed to be a result of a disconnect collision. In the case of the
"DIC II state, this message may have been delayed in Transport until
after the reception of the Disconnect Complete message that caused the
transition to the IIDIC II state. In the case of the 110111 state, there
has been a crossing of Disconnect Initiate messages in Transport. In
either case, the response is the same.

FLAGbuf <-- t T'U~'

STATE <-- 'DIC '
DELAYstr_tim (-- 0
stop timer TIMERcon

Elseif (STATE::: 'DN') then

A Disconnect Initiate message received in this state is assumed to be
a duplicate caused by the retransmission of the message that
originally caused the transition to the liON II state.

FLAGbuf <-- tT'ue
Endif

Case (No Resources)
\

If (STATE = 'CI ') then
STATE <.~.- • NR I

Call UPDATE-DELAY
Endif

Case (Disconnect Complete)

Stopping timer TIMERcon prevents the retransmission of a Disconnect
Initiate message after a timeout.

If (STATE::: 'DR' or 'DI') then
stop timer TIMERcon
Call UPDATE-DELAY

Endif
If (STATE - 'DR') then STATE ~-- ·DRC '
If (STATE - 'DII) then STATE ~-- 'DIC'

Case (No LInk)

Stopping the timers prevents any retransmissions.

If (STATE::: ICC, I IRUN, I 'DR' or- 'DI') then
stop timer TIMERcon
stop tiIT,€H' TIMEF~dat
stop timer TIMERoth
STATE <-- 'CN'

Endif

Case (Disconnect Confirm)

This case is included only for compatibility with version 3.1. This
case occurs when a 3.1 system sends this message rather than a
Disconnect Initiate message for a Session Control rejection of a
Connect Initiate message. It also occurs when an NSP version 3.1
system receives a message in error.

58

If (STATE = 'CI') then
first two b~tes of BUFrcv <-- REASON
STATE {_ .. - • R,J I
CALL UPDATE~DELAY

Elseif (STATE = ICC' or STATE "RUN-) then
stop timer TIMERcon
stop timer TIMERdat
stop timer TIMERoth
STATE <._.- • CN'

Endif
Endcase

Endloop

6.4.2 Data Receive Processes - These processes receive messages from
the receive dispatcher module. The message variables below refer to
the information content of message fields as returned from the receive
dispatcher module. There is one Session Control port data receive
process for each Session Control port.

LoaF'

This process loops forever.

If [(STATE = ICC' or 'RUN ')
or (STATE ::= 'DI' and NUMhigh <: :> ACKT'cv._dat)] then

This process only runs for ports in the "CC," "RUN," or "01" states.
It runs for ports in the "CC" state to receive any data type message
as defined by the case statements since the reception of these message
types will cause a transition to the II RUN II state. It runs for ports
in the "RUN" state to receive normal data, interrupts, Link Service
messages, and acknowledgments. It runs for ports in the "01" state to
receive data while there is outstanding, unacknowledged, transmitted
data. This latter case is true when NUMhigh < > ACKrcv_dat.

If (FLOWloc_dat = 0) then

FLOWloc dat contains the value, if any, currently being transmitted or
retransmitted in a Data Request message. If it is zero, a new Data
Request message can be sent. The routine SPECULATE-NUMBER returns the
value to be sent in the next Data Request message.

Call SPECULATE-NUMBER
FLOWloc_dat <:-- returned value

Endif

The routine COMMIT-NUMBER returns the highest number of a previously
received Data Segment that has been committed to either a commit
buffer or a Session Control receive buffer.

Call COMMIT-NUMBER

If (returned value <: :> ACKxmt_dat> then

59

If the returned number
number sent, then a
ACKxmt dat contains the
Data Segment or Data
FLAGxmt ack true causes
Acknowledgment message
transmitted.

is different from the last acknowledgment
new acknowledgment must be sent. The variable
data acknowledgment number to be sent in any

Acknowledgment message transmitted. Setting
the data transmit process to send a Data
if a Data Segment message does not need to be

FLAGdat_ack <-- true
ACKxmt_dat <-- returned value

Endif
Endif
If (messa~e is received) then

If (STATE = ·CC-) then

If this message is taking the port out of the "CC" state, then make an
estimate of the round trip delay to the remote NSP (Section 7.3).
Since the port just entered the "RUN" state, start the inactivity
timer (Section 7.4).

STATE <-- -RUN·
FLAGbuf <-- false
Call UPDATE-DELAY
stop timer TIMERcon
CONFIDENCE <-- true
COUNTretrans (--0

Endif

Receiving any message restarts the inactivity timer.

TIMERinact (-- TIME + NSPinact_tim
Oncase (received messa~e twpe)

When a message is received, execute the appropriate case statement.

Case (Data SeSment)

Process the acknowl~dgment field of a received Data Segment message
independently from the rest of the message.

Call PROCESS-DATA-ACK
If (SEGNUM > ACKxmt_dat) then

Call STORE·-SEGMENT wi th DATA, EOM (fT'olTt MSGFLG), and
SEGNUM

Else
FLAGdat_ack <-- true

Endif

Case (Interrupt)

Process the acknowledgment field of a received Interrupt message
independently from the rest of the message.

Call PROCESS-OTHER-DATA-ACK
If (SEGNUM = ACKxmt_oth + 1 and FLOWloc_int

60

This model of NSP can only buffer one received Interrupt message at a
time (Section 7.3). Its number must be one greater than the number of
the last other-data message accepted (contained in variable
ACKxmt oth). When the variable FLOWloc int contains "empty," there is
room in buffer BUFrcv. Setting FLAGoth ack true causes the data
transmit process to acknowledge this Interrupt message.

BUFrcv <""- DATA
FLOWloc_int <-- -interrupt
ACKxmt_oth <-- ACKxmt~oth + 1
FLAGoth_ack <-- true

Elseif (SEGNUM <:::: ACKxmt_oth) then
FLAGoth_ack <-- true

Endif

Case (Data Reouest)

Process the acknowledgment field of a received Data Request message
independently from the rest of the message.

Call PROCESS-OTHER-DATA-ACK

If (SEGNUM :::: ACKxmt_oth + 1) then

This model of NSP' processes only one other-data message at a time
(Section 7.2). It processes each one to completion. The number of
the one it wants to process next is one greater than the one that it
has most recently accepted and processed (and whose number is
contained in ACKxmt_oth) .

Basically, the algorithm for processing a Data Request message is to
check its validity. Discard it if it is invalid. If it is valid,

(I) Store the data "send/do not send ll switch in variable FLOWrem
sw.

(2) Increment the acknowledgment number for the other-data
channel.

(3) Set the flag FLAGoth ack to true t6 force the data transmit
process to acknowledge the receipt of this message. (Use the
routine SET-SWITCH- AND-FLAG.)

(4) Update the variable FLOWrem dat, if necessary, by adding the
count from the Data Request-message to it.

If (FLOWrem_twp :::: -none·) then
Call SET-SWITCH-AND-FLAG

Eiseif (FLOWrem_twp :::: ·seSment H
) then

The following two statements define the validity check for a received
Data Request message from a remote NSP that receives with "segment"
flow control.

If (-128 <= FCVAL <= 127) then
I f (-128 <::::: FLO W l' f::' IYI HH d a t + Fe VA L. <>:: 1 ::2 7) the,..,

FLOWrem_dat <-- FLOWrelYl_dat + FCVAL.
Call SET-SWITCH-AND~FL.AG

Endif
Endif

Else:i. f (Fl.OW ,'em'H' t~:lP .- "~.f:~SS i on'-cont I'O 1 "HllIessa~je ") thf?n

61

The following two statements define the validity check for a received
Data Request message from a remote NSP that receives with
"session-control message" flow control.

If (0 <= FCVAL <~ 127) then
If (0 < FLOWrem_dat + FCVAL <~ 127) then

FLOWrem_dat <-- FLOWrem_dat + FCVAL
Call SET-SWITCH-AND-FLAG

Endif
Endif

Endif
Elseif (SEGNUM <= ACKxmt_oth) then

FLAG oth_8Ck <-- true
Endif

Case (Interrupt Re~uest)

Process the acknowledgment field of a received Interrupt Request
message independently from the rest of the message.

Call PROCESS-OTHER-DATA-ACK
If (SEGNUM = ACKxmt_oth + 1) then

The message number check for received Interrupt Request messages is
the same as for received Interrupt and Data Request messages. The
following statement defines the validity check for a received
Interrupt Request message.

If (FCVAL)= 0 and 0 <~ FLOWrem_int + FCVAL <= 127) then
FLOWrem_int <-- FLOWrem_int + FCVAL
ACKxmt_oth <-- ACKxmt_oth + 1
FL~Goth_ack <-- true

Endif
Elseif (SEGNUM <~ ACKxmt_oth) then

FLAG oth_ack <-- true
Endif

Case (Data Acknowled~ment)
Call PROCESS-DATA-ACK

Case (Non-Data Acknowled~ment)
Call PROCESS-OTHER-DATA-ACK

Endcase
Endif

Endloop

The data receive processes call the following routines:

PROCESS-DATA-ACK:

In the following routine, the variables NUMBER and QUAL are the
contents of the fields of the same name from the received Data Segment
or Data Acknowledgment message.

If (ACKrcv_dat < NUMBER <= NUMhish) then

If NUMBER is not greater than ACKrcv dat, then this acknowledgment has
been explicitly or implicitly processed before. If it is not less
than or equal to NUMhigh, then it is acknowledging a message that was
never sent. In either case, ignore the acknowledgment.

CONFIDENCE <-- true
COUNTretrans <-- 0

62

The following "If" block updates the flow
(FLOWrem dat) that allows data transmission.
parallel-constructions here:

control variable
Note that there are

(1)

(2)

NM(ACKrcv dat + 1, NUMBER) is the number of
of-message" data segments in the
(ACKrcv dat + 1) to NUMBER, and

"end
range

(NUMBER-- ACKrcv dat) is the number of data segments
in the same range.

If (FLOWrem_thlP ~ ·seSment-) then
FLOWrem_dat (-- FLOWrem_dat - (NUMBER - ACKrcv_dat)

Elseif (FLOWrem_twp ~ -messaSe·)
FLOWrem_dat (-- FLOWrem_dat - NM(ACKrcv_dat + 1, NUMBER)

Endif
If (QUAL = ·nak K or NUMdat (= NUMBER) then NUMdat (-- NUMBER + 1

If either this acknowledgment was a negative acknowledgment or the
number of the next Data Segment message that was going to be sent
(contained in NUMdat) is less than or equal to the number just
acknowledged, then set the number of the next Data Segment message to
transmit to the number just acknowledged plus one.

ACKrcv_dat (-- NUMBER

The following code restarts the data retransmission timer only if
there is remaining unacknowledged, transmitted data.

stop timer TIMERdat
If (ACKrcv_dat (NUMhiSh) then

TIMERdat (-- TIME + (NODEdelaw * NSPdelaw)
Endif
If (DELAYmss_num (= ACKrcv_dat and DELAYstr_tim (> 0) then

If DELAYstr tim is non-zero, then a Data Segment message is being
timed for -an update to the round trip delay estimate (see Section
7.3). If the Data Segment message being timed (whose number is
contained in DELAYmsg num) has just been acknowledged, then calculate
the round trip delay for that message.

Call UPDATE-DELAY
Endif

Endif

PROCESS-OTHER-DATA-ACK:

In the following routine, the variables NUMBER and QUAL are the
contents of the fields of the same name from the received Interrupt,
Data Request, Interrupt Request, or Other-Data Acknowledgment message.

If (NUMBER = NUMoth and OTHERs tate (> ·readw·) then

NUMoth contains the number of the single, outstanding other-data
message, if any (Section 7.2). OTHERstate is equal to either "sent"
or "timeout" (i.e., not equal to "ready") if there is such an
outstanding message. If the message is acknowledged, stop the
retransmission timer for the message.

stop timer TIMERoth
CONFIDENCE (-- true
COUNTretrans (-- 0
If (GUAL = ·nak·) then

63

Handle a negative acknowledgment in the same manner as a timeout.

OTHERstate (-- -timeout
Else

If the message was positively acknowledged, then send a new other-data
message.

Setting OTHERstate to "ready" allows the data transmi t process to send
another other-data message. NUMoth contains the number of the next
other-data message that will be transmitted.

OTHERstate (-- -read~

NUMoth (-- NUMoth + 1
If (OTHERt~p = -interrupt-) then

OTHERtyp contains the type of other-data message that was sent and has
just been acknowledged. If it was an Interrupt message, then a new
one may be buffered into BUFxmt. Indicate this condition by setting
FLAGint avail to false. Decrement the remote interrupt request count.

FLAGint-avail (-- false
FLOWrem_int (-- FLOWrem_int - 1

Elseif (OTHERt~p = -data reauest-) then

If a Data Request message has just been aCKnowledged, then clear the
count value contained in it, allowing the data receive process to
obtain a new speculate number that can be sent in the next Data
Request message.

FLOWloc_dat (-- 0
Endif

Endif
Er.di f

The acknowledgment of an Interrupt Request message does not require
any additional explicit handling. This is because a new Interrupt
Request message cannot be sent until Session control has received the
interrupt data whose request was just acknowledged (Section 7.2).

SET-SWITCH-AND-FLAG:

This routine stores the data "send/do not send" value from a received
Data Request message in FLOWrem sw and sets FLAGoth ack true to
indicate that an other-data acknowledgment is required. -

FLOWrem_sw (-- FC MOD
ACKxmt_oth (-- ACKxmt_oth + 1
FLAGoth_ack (-- true

64

Both the data receive processes and the connect/disconnect receive
processes call the following routine:

UPDATE-DELAY:

This routine updates the NODEdelay variable
Call the routine with a port argument.
temporary variable.

If(DELAYstr_tim <> O)then
If(NODEdelaw = O)then

NODEdelaw <-- TIME - DELAYstr_tim
Else

temp <-- TIME - DELAYstr_tim
temp <-- temp - NODEdelaw

in a node
In this code,

NODEdelaw <-- NODEdelaw + (temp / (NSPweisht + 1»
Endif
DELAYstr_tim <-- 0

Endif

6.4 .. 3 Reserved Receive Processes - These processes
received messages tnat map onto a reserved port.
reserved port process for each reserved port.

Loop

This process loops forever.

If (a messa~e is received) then
If (the messa~e is a Connect Initiate) then

descriptor.
II temp" is a

handle all
There is one

Setting MSGtyp to "no resources" causes the reserved port transmit
process to send a No Resources message.

NODE <-- source node address
ADDRrem (-- SRCADDR
MSGtwp (-- -no resources·

Elsei' (the messaSe is a Connect Confirm, Disconnect Initiate
Data Sesment, Interrupt, Data Re~uest, or Interrupt
ReGuest) then

Setting ~1STtyp to "no-link" causes the reserved port transmit process
to send a No-Link message.

NODE (-- source node address
ADDRrem <-- SRCADDR
ADDRtmp (-- DSTADDR
MSGtwp(-- -no-link-

Endif
Endif

Endloop

65

6.S Reassembly Module

The reassembly module has two functions. First, it maps data from
Data Segment messages into Session Control buffers according to the
rules implied by the Session Control interface description. Because
of this, the DATA-RCV call is passed to this module from the interface
routines. Second, it manages the cache and commit buffer pools. This
function includes flow control policy establishment. That is, this
module is aware of the amount of buffering available via Session
Control receive buffers, cache buffers, and commit buffers. It uses
this information to produce normal data request counts to be sent in
Data Request messages. The data transmit processes execute the flow
control mechanism (in other words, the Data Request message
transmission) .

The detailed description of the operation of this module is beyond the
scope of this specification. However, it must operate with the
following restriction with respect to the management of the cache
buffer pool. It must not discard the data from a received Data
Segment message for a given Session Control port if there is data from
a higher numbered Data Segment message in the cache for the same port.
Appendix C contains an example of this module.

The data receive processes obtain changes in the number of Data
Segment messages that should be received for a given port by calling
this module. The data receive processes store these values in the
corresponding ports. In the most general case, the reassembly module
may be requesting data for which there is not necessarily any
guaranteed storage. Therefore, the number of segments that the
reassembly module wants to receive for a port at any given time is
referred to as the "speculate number ll for the port. The data receive
processes obtain the speculate number for a port by issuing the
following call:

SPECULATE-NUMBER (port id; return)

port id: a port identifier

return: the current number of data segments that this module
would like to receive.

The data receive processes periodically obtain
number committed to either a commit or session
value is the acknowledgment number to be sent
module. The data receive processes obtain this
following call:

COMMIT-NUMBER (port id; return)

port id: a port identifier

the highest segment
control buffer. This

to the remote NSP
number by issuing the

return: the highest segment number committed

66

The data receive processes attempt to put data from received Data
Segment messages into a cache, commit, or session control receive
buffer by issuing the following call:

STORE-SEGMENT (port id, data, eom, number)

port id: a port identifier

data: data from a Data Segment message

eom: one of:

• data is end-of-message

• data is not end-of-message

number: the segment number of the Data Segment message

6.6 Transmit Processes

This section contains algorithms for implementing the following:

• Connect/disconnect transmit process (Section 6.6.1)

• Data transmit processes (Section 6.6.2)

• Reserved transmit processes (Section 6.6.3)

6.6.1 Connect/Disconnect Transmit Processes - These processes
transmit Connect Initiate, Connect Acknowledgment, Connect Confirm,
Disconnect Initiate, and Disconnect Complete messages. There is one
session control port connect/disconnect transmit process for each
Session Control port.

Loop

This process loops forever. In general, if FLAGbuf is true a connect
or disconnect message requires transmission.

If (STATE = ·DI· and FLAGbuf false
and NUMhish = ACKrcv_dat and TIMERcon not runninS) then

This test causes this rocess to attempt to send a Disconnect Initiate
message only if:

(1) Session Control requested a disconnection (i.e., STATE
II DI") ;

(2) there are no outstanding, unacknowledged Data Segment
messages (NUMhigh = ACKrcv dat); and

(3) a previously transmitted DIsconnect Initiate message, if any,
is not being timed out (TIMERcon not running).

FLAGbuf (-- true
DELAYstr_tim (-- TIME

Er,di f
If (timer TIMERcon expired) then

67

If the retransmission timer has
retransmission count and attempts
message.

expired, NSP increments the
to send a connect or disconnect

FL.AGbuf <_.- true
DELAYstr_tim ~-- TIME
Call TIMEOUT

Endif'

When FLAGbuf is true, a connect or disconnect message requires
transmission. When FLAGcon alloc is true, permission to transmit has
been requested from the transmit allocation module. These two
variables act together to form a state variable with 4 states.
Conditions that require a message to be sent can change dynamically.
This process has to request permission to transmit but has to take
back a request it previously made if it no longer must send a message.
Therefore, interpret these variables as follows:

FLAGbuf true, FLAGcon alloc false: request permission to send.
FLAGbuf true, FLAGcon-alloc true: attempt message transmission.
FLAGbuf false, FLAGcon alloc true: take back permission request.
FLAGbuf false, FLAGcon=alloc false: do nothing.

If (FLAGbuf true and FLAGcon_alloc false) then
Call ALLOCATE
FLAGcon_alloc <-- true

Elseif (~LAGbuf false and FLAGcon_alloc true) then
Call DEALLOCATE
FLAGcon_alloc <-- false

Elseif (FLAGbuf true and FLAGcon_alloc true) then
If (CHECK-ALLOCATE) then

CHECK-ALLOCATE is a Boolean function in the transmit allocation module
that returns true if and only if permission to transmit has been
granted. The state of the port determines the message to be sent.

If (STATE = -CI-) then
DELAYstr_tim <-- TIME
Call SEND-CONNECT-INITIATE with data addressed in BUFcon

Endif
If (STATE = -DIC, - -RJ, - or -DN-) then

Call SEND-DISCONNECT-COMPLETE
Endif
If (STATE = -DR- or -DI-) then

If (DELAYstr_tim = 0) then DELAYstr_tim <-- TIME
Call SEND-DISCONNECT-INITIATE

Endif
If (STATE = -CR-) then Call SEND-CONNECT-ACKNOWLEDGMENT
If (STATE = -CC-) then

If (DELAYstr_tim = 0) then DELAYstr_tim <-- TIME
Call SEND-CONNECT-CONFIRM

Endif

If the transmission was successful, this process must take back its
request for permission to transmit (to allow another process to be
given an equal chance to transmit).

If (success) then
Call DEALLOCATE
FLAGcon_alloc <-- false
FLAGbuf (-- false
If (STATE = -CC, - -DI, - or -DR Ii

) then
If (NODEdela!:l = 0) then

68

This means that there is no current round trip delay estimate to the
remote node. The 5 seconds is a suggested value; it is not
mandatory.

TIMERcon (-- TIME + 5 seconds
Else

An estimate does exist.

TIMERcon (-- TIME + (NODEdela~ * NSPdelaw)
Endif

Enl,'ji f
If (STATE - ·CC· and VERSION - 3.1) then STATE (-- 'RUN·

Else

If transmission is unsuccessful, calling REALLOCATE will give other
ports a chance to transmit without removing this port for contention
for Transport resources. This process leaves FLAGbuf true. This
causes the process to request permission to transmit again.

Call REALLOCATE
Endif

Endif
Endif

Endloop

6.6.2 Data Transmit Processes - These processes send Data Segment,
Interrupt, Data Request, Interrupt Request, Data Acknowledgment, and
Other-Data Acknowledgment messages. There is one data transmit
process for each Session Control port.

Loop

This process loops forever.
The data receive process for the port puts the highest number of an
acknowledged Data Segment message in ACKrcv date This process informs
the segmentation module of this value by calling ACK-SESSION-CONTROL.
It obtains the highest segment number available from the segmentation
routines via function LAST.

Call ACK-SESSION-CONTROL with ACKrcv_dat
If (STATE = 'RUN') then NUMhi~h (-- LAST
If eSTATE = -RUN' or (STATE = "DI' and NUMhish (> ACKrcv_dat)] then

with the exception of the processing above, this process does nothing
for a port that is not in either the "RUN" state or in the "DI" state
with outstanding, unacknowledged Data Segment messages (NUMhigh < >
ACKrcv_dat) .

If (timer TIMERdat expired) then

If the data retransmission timer expires, then the number of the next
Data Segment message to transmit is one greater than the highest
segment acknowledged by ~he remote NSP.

NUMdat (-- ACKrcv_dat + 1
Call TIMEOUT

Endif
If (timer TIMERoth expired) then

69

If the other-data retransmission timer expires, record the expiration
in the state variable OTHERstate. This is possible since there can be
at most one outstanding, unacknowledged other data message in this
model of NSP.

OTHERstate (-- -timeout
Call TIMEOUT

Endif

The tests below are completely analogous to the tests performed in a
connect/disconnect transmit process. The only difference is that the
need to transmit a connect or disconnect message could be determined
by examining a single flag (FLAGbuf). But the need to send a data
type message is determined by a complicated Boolean function of
variables in the port. The Boolean function MESSAGE-TO-BE-SENT
returns true if a message requires transmission and is used below in a
manner analogous to FLAGbuf in a connect/disconnect transmit process.

If (MESSAGE-TO-BE-SENT and FLAGdat_alloc fals€~) then
Call ALLOCATE
FLAGdat_alloc (-- true

Elseif (not MESSAGE-TO-BE-SENT and FLAGdat_alloc true) then
Call DEALLOCATE
FLAGdat_alloc (-- false

EI sei f (MESSAGE-TO'-BE--SENT and FLAGdat_ .. a I loc t rUf~) thf~n
If (CHECK-ALLOCATE) then

If permission to transmit has been granted, then determine the type of
message to transmit by testing a collection of Boolean functions of
variables in the port. The order in which these functions are tested
is important and is part of the specification. That is, if more than
one type of data message may be transmitted, the type that must be
transmitted first is important. Also, if transmission is
unsuccessful, call REALLOCATE for the same reasons as in the
connect/disconnect transmit processes.

If (INTERRUPT-TO-BE-SENT) then
Call SEND-INTERRUPT
If (success) then

The routine OTHER-DATA-SENT
successful transmission of
Request messages.

performs
Interrupt,

processing common to the
Data Request, and Interrupt

OTHERmss_ t'=lpe <--- • inteT'ruF,t"
Call OTHER-DATA-SENT

Else
Call REALLOCATE

Endif
Elseif (INT-REQUEST,-TO,-BE SENT) tl'H::,n

Call SEND-INTERRUPT-REQUEST
If (success) then

OTHERmsg_t~p (-- "interrupt, reouest"

Setting FLOWloc int to "empty" allows data from a received Interrupt
message to be saved in BUFrcv by the data receive process.

FLOWloc_int (-- ·emptw·
Call OTHER-DATA-SENT

Else
Call REALLOCATE

Endif
Elseif (DATA-REQUEST-TO-BE-SENT) then

Call SEND-DATA-REQUEST
If (success) then

70

One reason that a Data Request message may
inactivity timer has expired (Section 7.4).
inactivity timer is restarted.

be sent is that the
If this is the case, the

If (TIMERinact expired) then
TIMERinact (-- TIME + NSPinact_tim

Endif
Call OTHER-DATA-SENT

Else
Call REALLOCATE

Endif
Elseif (OTHER-DATA-ACK-TO-BE-SENT) then

Call SEND-OTHER-DATA~ACK
If (success) then

The routine OTHER-ACK-SENT gerforms processing common to the
successful transmission of Interrupt, Data Request, Interrupt Request,
and Other-Data Acknowledgment messages.

Call OTHER-ACK-SENT
Else
Call REALLOCATE

Endif
Eiseif (DATA-TO-BE-SENT) then

If there is no Data Segment currently being timed for an update to the
estimated round trip delay (DELAYstr tim = 0), then save the current
time of day. Also save the number of the Data Segment being timed.

If (DELAYstr_tim =0) then
DELAYstr_tim (-- TIME
DELAYmsS_num (-- NUMdat

Endif
Call GET-SEGMENT with seSment number NUMdat
Call SEND-DATA-SEGMENT with returned values
If (success) then

The routine DATA-ACK-SENT performs processing common to the successful
transmission of Data Segment and Data Acknowledgment messages.

If the Data Segment just sent had a number one greater than the
highest number acknowledged by the remote NSP, then start the
retransmission timer. The value for this timer is a constant times
the current estimated round trip delay (Section 7.3).

If (NUMdat = ACKrcv_dat+l) then
TIMERdat (-- TIME + (NODEdelav * NSPdela~)

Endif

71

Increment the number of the next Data Segment to be transmitted
(NUMdat) .

NUMdat <-- NUMdat + 1
Call DATA-ACK-SENT

Else
Call REALLOCATE

Endif
Elseif (DATA-ACK-TO-BE-SENT) then

Call SEND-DATA-ACK
If (success) then

Call DATA-ACK-SENT
Else

Call REALLOCATE
Endif

Endif
Endif

Endif
Endif

Endloop

The following routines are used by these processes.

TIMEOUT:

COUNTretrans <-- COUNTretrans + 1
If (COUNTretrans > NSPretrans) then CONFIDENCE (-- false

MESSAGE-TO-BE-SENT:

If (INTERRUPT-TO-BE-SENT) then return true
Eiseif (INT-REQUEST-TO-BE-SENT)" then return true
Eiseif (DATA-REQUEST-TO-BE-SENT) then return true
Eiseif (OTHER-DATA-ACK-TO-BE-SENT) then return true
Eiseif (DATA-TO-BE-SENT) then return true
Elseif (DATA-ACK-TO-BE-SENT) then return true
Else

retl.Jrn false
Endif

INTERRUPT-TO-BE-SENT:

To send an interrupt message, either:

{I} Interrupt data must be available in BUFxmt {FLAGint avail
true} ,

{2} The remote NSP must have requested the interrupt data
{FLOWrem int > 0}, and

{3} There must be no outstanding, unacknowledged Interrupt, Data
Request, or Interrupt Request message (OTHERstate "ready") .

or

(I) There must be an outstanding, unacknowledged Interrupt
message (OTHERmsg typ = "interrupt"), and

(2) The message must have timed out (OTHERstate = "timeout").

If (FLAGint_avail true and FLOWrem_int > 0
and OTHERstate = -read~-) then

retl.Jrn true
Elseif (OTHERstate = -timeout-

and OTHERms9_ t~p = - i nte r rupt'·) then
return true

Else
retl.Jrn false

Endif

72

INT-REQUEST-TO-BE-SENT:

To send an Interrupt Request message, either:

(1) The buffer BUFrcv must be empty and an Interrupt Request
message not previously sent (FLOWloc int "send request");.
and

(2) There must be no outstanding, unacknowledged Interrupt, Data
Request, or Interrupt Request message (OTHERstate = "ready"),

or

(1) There must be an outstanding, unacknowledged Interrupt
Request message (OTHERmsg typ = "interrupt request"); and

(2) The message must have timed out (OTHERstate = "timeout").

If <FLOWloc_int = ·send reQuest" and OTHERstate = "readw") then
retlJ rn true

Elseif (OTHERstate
reoIJest,· then
retlJ rn true

Else
retlJ T'n fa 1 se

Endif

DATA-REQUEST-TO-BE-SENT:

To send a Data Request message, either:

(1) There must be an unsent request count (FLOWloc_dat < > 0);
and

(2) There must be no outstanding, unacknowledged Interrupt, Data
Request, or Interrupt Request message (OTHERstate = lIready").

or

(1) The activity timer must have expired (TIMERact expired); and
(2) There must be no outstanding, unacknowledged Interrupt, Data

Request, or Interrupt Request message (OTHERstate = "ready").
or

(1) There must be an outstanding, unacknowledged Data Request
message (OTHERmsg typ = "data request"); and

(2) The message must have timed out (OTHERstate = "timeout").

If (FLOWloc_dat < > 0 and OTHERstate= "ready") then
return tT'ue

Elseif (TIMERinact expired and OTHERstate = "ready") the
retu rn t I'ue

Elseif (OTHERstste = ·tiffi~Dut"
and OTHERmss_typ = "data reouest") then

return true
Else

return false
Endif

OTHER-DATA-ACK-TO-BE-SENT:

return FLAGoth_sck

73

DATA-TO-BE-SENT:

If (NUMdst <= NUMhi~h and FLOWrem_sw = Wsend l
) then

To consider sending the next Data Segment to be transmitted (the one
with number NUMdat), the Data Segment must be available from Session
Control (NUMdat <= NUMhigh) and the remote NSP must be allowing data
to be sent (FLOWrem sw = "send ll

). Note that the next Data Segment
message to be sent is always one that is unacknowledged since the
variable NUMdat is always greater than ACKrcv dat, although there will
be no data to send if NUMdat = ACKrcv_dat + 1-= NUMhigh + 1.

The remaining tests depend on the type of flow control that was
selected by the remote NSP when the logical link was established.

If (FLOWrem_t~p = Inonel) then
return tT'ue

The two tests below are analogous. Each is testing to see if the
number of requested elements (segments or Session Control messages) is
greater than or equal to the number of elements in the range from the
highest acknowledged (ACKrcv dat) to the one whose transmission is
being attempted (NUMdat). -

Elseif (FLOWrem_t~p Isegment·
and NUMdat <= ACKrcv_dat + FLOWrem_dat) then

retuT'n true
Eiseif (FLOWrem_t~p = ·session-control-message·

and NM (ACK ,'em_dat + 1, NUMdat) (:::: FLOW T'em __ dat) th(-:~I"I

return true
Else

return false
Endif

Else
return false

Endif

DATA-ACK-TO-BE-SENT:

return FLAGdat_ack

OTHER-DATA-SENT:

Call OTHER-ACK-SENT
OTHERstate <-- Isentl
TIMERoth (-- TIME + (NODEdela~ * NSPdela~)

OTHER-ACK-SENT:

Call MESSAGE-SENT
FLAGoth_ack <-- false

DATA-ACK-SENT:

Call MESSAGE-SENT
FLAGdat_sck (-- false

74

MESSAGE-SENT:

This routine ascertains if there is more data to be sent. If so, it
calls REALLOCATE to remain in contention for transmit resources but to
free those resources for other ports. If not, it calls DEALLOCATE to
free the resources and remove itself from contention. In the latter
case, it sets FLAGdat alloc false so that an ALLOCATE request will be
made when there is data to send.

If (MESSAGE-TO-BE-SENT) then
Call REALLOCATE

Else
Call DEALLOCATE
FLAGdat_alloc <-- false

Endif

6.6.3 Reserved Transmit Processes - The reserved transmit processes
send No Resources and No-Link messages. There is one reserved
transmit process for each reserved port.

Loop

The processing here is somewhat complicated due to the interaction
with the transmit allocation module and the fact that a transmit
request to Transport may fail. It is not modeled analogously to the
connect/disconnect and data transmit processes because the need to
transmit a given message will not disappear as with the other
processes.

If (MSGtwp < > -none-) then
Call ALLOCATE
Loop

Call CHECK-ALLOCATE
If (success) then

If (MSGtwp ~ -no resources-) then
Call SEND-NO-RESOURCES

Elseif (MSGtwp = -no-link-) then
Call SEND-NO-LINK

Endif
If (success)

MSGt~p <-- -none
Call DEALLOCATE
Exitloop

Else
Call REALLOCATE

Endif
Endif

Endloop
Endif

Endloop

6.7 Transmit Format Module

This module manages the large and small transmit buffer pools, formats
outgoing NSP messages, and sends messages to Transport. In addition,
although it is not explicitly modeled, this module polls Transport to
get back buffers that have been transmitted. When such a buffer is
returned, it is immediately placed back in its pool.

The name of each routine in this module describes its function.
call supplies the appropriate port ide

75

Each

SEND-CONNECT-INITIATE (port id):

If (a lar~e transmit buffer is available) then
allocate lar~e transmit buffer
MSGFlG (-- ·connect initiate·
SRCADDR <-- ADDRloc
SERVICES <-- ·se~ment·

INFO <-- ·version 3.2'
SEGSIZE <-- NSPbuf
DATA-CTL <-- data addressed b~ BUFcon
Call TRANSPORT-TRANSMIT with 'return to sender' and channel

CHANNEL
If (success) then

return success
Else

release lar~e transmit buffer
return failure

Endif
Else

return failure
Endif

SEND-CONNECT-ACKNOWLEDGMENT (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- ·connect acknowled~ment·
DSTADDR (-- ADDRrem
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

SEND-NO-RESOURCES (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- ·disconnect confirm'
DSTADDR (-- ADDRrem
SRCADDR (-- 0
REASON (-- 1
Call SEND-SMAll-MESSAGE

Else
return failure

Endif

SEND-CONNECT-CONFIRM (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFlG (-- ·connect confirm'
DSTADDR <-- ADDRrem
SRCADDR <-- ADDRloc
SERVICES (-- 'se~ment'

INFO (-- ·version 3.2'
SEGSIZE (-- NSPbuf
DATA-CTl (-- BUFxmt
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

76

SEND-DISCONNECT-INITIATE (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- "disconnect initiate"
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
REASON (-- first two bwtes of BUFxmt
DATA-CTl (-- remaining bwtes of BUFxmt
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

SEND-DISCONNECT-COMPLETE (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- "disconnect confirm"
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
REASON (-- 42
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

SEND-NO-LINK (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFlG (-- -disconnect confirm-
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRtmp
REASON (-- 41
Call SEND-SMAll-MESSAGE

Else
return failure

Endif

SEND-DATA-ACK (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- -data acknowledgment"
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_dat
QUAL (-- Wack"
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

77

SEND-OTHER-DATA-ACK (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- lother data acknowled~mentl
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_oth
QUAL (-- lackl
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

SEND-DATA-SEGMENT (port id, buffer descriptor, eorn, born):

If (a lar~e transmit buffer is available) then
allocate lar~e transmit buffer
MSGFLG (-- Idata,1 eom, bom
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_dat
QUAL (-- lackl
SEGNUM (-- NUMdat
DATA (-- data from buffer descriptor
Call TRANSPORT-TRANSMIT with channel CHANNEL
If (success) then

return success
Else

release lar~e transmit buffer
return failure

Endif
Else

return failure
Endif

SEND-INTERRUPT (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- linterruptl
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_oth
QUAL (-- lackl
SEGNUM (-- NUMoth
DATA (-- BUFxmt
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

78

SEND-DATA-REQUEST (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- ·data reuuestl
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_oth
QUAL (-- lack·
SEGNUM (-- NUMoth
FC MOD (-~ Isend l
FCVAL INT (-- Idata l

FCVAL (-- FLOWloc_dat
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

SEND-INTERRUPT-REQUEST (port id):

If (a small transmit buffer is available) then
allocate small transmit buffer
MSGFLG (-- ·interrupt reuuestl
DSTADDR (-- ADDRrem
SRCADDR (-- ADDRloc
NUMBER (-- ACKxmt_oth
QUAL (-- lack·
SEGNUM (-- NUMoth
FC MOD (-- ·send l
FCVAL INT (-- linterruptl
FCVAL (-- 1
Call SEND-SMALL-MESSAGE

Else
return failure

Endif

The following routine is used by the above routines.

SEND-SMALL-MESSAGE:

Call TRANSPORT-TRANSMIT with channel = CHANNEL
If (success) then

return success
Else

release small transmit buffer
return failure

Endif

6.8 Segmentation Module

The segmentation module maps data from Session Control transmit
buffers into Data Segment messages according to the rules implied by
the Session Control interface specification. The module makes the
data available to the data transmit processes. Because of this, the
interface routines pass the DATA-XMT and XMT-POLL calls to the module.

79

The detailed specification of this module is beyond the scope of this
specification (Appendix B).

A data transmit process obtains a buffer descriptor for a segment of a
session control message from this module by issuing the following
call:

GET-SEGMENT (port id, number; return)

number: the number of the desired segment

returns: a buffer descriptor for the segment, an end-of-message
indication, and a beginning-of-message indication

A data transmit process informs this module that it will no longer
require a segment or sequence of segments by issuing the following
call.

ACK-SESSION-CONTROL (port id, number)

number: a segment number;
number will be
process.

no segment with this or a lower
required again by the data transmit

A data transmit process obtains the number of
segments marked as "end-of-message" in a
numbers by executing the following function:

NM (port id, i, j; return)

i : a segment number

j : a segment number

Session Control data
given range of segment

return: the returned number of end-of-message segments in the
range of segments from number i to number j, inclusive.

A data transmit process obtains information on the amount of transmit
data available from the session control by executing the following
function:

LAST (port id; return)

return: the highest segment number that could be assigned to
data available for transmission from Session Control

6.9 Transmit Allocation Module

Each transmit process must call this module to obtain permission to
transmit a message. This module guarantees the fair use of Transport
resources across all logical links. The algorithms executed by this
module are system-dependent and are, therefore, beyond the scope of
this specification (Appendix D). The argument "port id" is a port
identifier.

80

A transmit process requests permission to transmit by issuing the
following call:

ALLOCATE (port id)

A transmit process checks to see if it has permission to transmit by
executing the following Boolean function:

CHECK-ALLOCATE (port id)

returns: true if a message may be sent

false if a message may not be sent

The transmit allocation module cannot give permission to transmit to
more than one transmit process at a time.

A transmit process indicates that it no longer needs to transmit 'by
issuing the following call:

DEALLOCATE (port id)

After obtaining permission to transmit, a transmit process must issue
this call or the next call before permission to transmit can be given
to another transmit process.

A transmit process indicates that it has used its permission to
attempt a transmit, but that it also has more data to send by issuing
the following call:

REALLOCATE (port id)

81

7.0 ALGORITHMS

This section contains an overview of some algorithms collectively
executed by several NSP components. These algorithms are explicitly
defined in Section 6 in the model description. The explanation in
this section is added as an aid to understanding.

7.1 Data Segment Retransmission

The data retransmission algorithm described in Section 6.6 in several
of the modules operates as follows. There is only one timer for each
port. When a Data Segment is transmitted (or retransmitted), start
the timer if the segment being sent is the "oldest" segment. That is,
the segment number is one greater than the highest segment
acknowledged from the remote receiver. Also, restart the timer upon
receipt of a data acknowledgment that acknowledges data. segments that
have not previously been acknowledged but that does not acknowledge
all outstanding data segments. Stop the timer upon receipt of
acknowledgment of all outstanding segments.

When a data transmit process detects that a timer has expired, that
process sets the number of the next Data Segment that can be
transmitted to one greater than the value of the highest segment that
has been acknowledged from the remote receiver. This causes
retransmission if the flow control variables allow retransmission. It
will not necessarily cause a retransmission, however, because there
may have been a change to the flow control variables.

An implementation of NSP may elect to provide an algorithm different
from the one described above. An algorithm that times each
outstanding Data Segment separately would provide a higher level of
service (in terms of average delay seen by end users) at a cost of
more data base storage for NSP.

7.2 Other-Data Handling

Handle other-data subchannel transmission as follows. No more
one other-data message is outstanding at a time for a given port.
variable OTHERstate contains the state of the port with respect to
other-data message. It may have the following states:

State Meaning

"ready" No other-data message has been sent but
acknowledged.

"sent" An other-data message has been sent, has not
acknowledged, and is being timed.

"timeout" An other-data message has been sent, has not
acknowledged, and has timed out.

than
The

an

not

been

been

When the port is in a state other than "ready,1I the variable OTHERtyp
contains the other-data message type that has been transmitted, and
the variable NUMoth contains its number.

Other-data subchannel receiving is handled as follows. The receipt of
either a Data Request message or an Interrupt Request message causes
an update of the corresponding request count variable in the port
(FLOWrem dat and FLOWrem int, respectively). The receipt of an
Interrupl message causes t6e placement of interrupt data in BUFrcv.

82

Since this implementation model can buffer only one received Interrupt
message at a time, handle flow control for Interrupt data as follows.
There is an interrupt flow control state machine conceptually attached
to BUFrcv. This machine has three states. The current state of the
machine is contained in variable FLOWloc into The states are:

State

II empty"

"interrupt"

Meaning

BUFrcv is empty, and an Interrupt Request message has
been sent or the logical link has just entered the RUN
state (in which there is an implied request for one
Interrupt message) .

BUFrcv contains the data from an Interrupt message, and
session control has not yet issued an INTERRUPT-RCV
call to get the data.

"send request" BUFrcv is empty,
should be sent
message.

and an Interrupt Request message
to request an additional Interrupt

Because of this model for interrupt flow control, an Interrupt Request
message cannot be sent for the first time unless FLOWloc int = "send
request" and OTHERstate = "ready."

An implementation of NSP may elect to use a different algorithm for
other-data error and flow control from the ones described. An
implementation could time each outstanding Other-Data message
separately. This would provide a higher level of service (in terms of
average delay seen by end users) at a cost of more data base storage
for NSP. An implementation could buffer more than one Interrupt
message concurrently. The only restriction in the operation of
interrupt flow control is that, unlike normal data flow control, an
Interrupt Request message cannot be sent unless space is guaranteed
for receipt of the interrupt data requested.

7.3 Retransmission Timer Value Estimation

NSP must compute the appropriate value for the time within which to
retransmit certain messages. If the value is too great, end users may
detect unusually long delays given that Transport may drop packets.
If .the value is too small, NSP may make very inefficient use of the
Transport bandwidth.

NSP attempts to maintain an estimate of the current round trip delay
to each remote node with which it is communicating. variable
NODEdelay in a node descriptor contains this value. The estimate is
updated each time an observation of round trip delay is made. An
observation can be made whenever NSP receives a message in response to
a previously transmitted message. Whenever NSP sends a Connect
Initiate, Connect Confirm, or Disconnect Initiate message, it saves
the current time of day in variable DELAYstr tim. Whenever NSP
receives a Connect Acknowledgment, Connect Confirm, Disconnect
Complete message, or any message acknowledging a Connect Confirm, NSP
observes the round trip delay to be the current time minus the value
in DELAYstr tim.

In addition, sample round trip delays are observed by timing selected,
transmitted Data Segment messages. To conserve space, use only a
single timer per port. An implementation may choose to operate with
multiple timers. Such operation would tend to produce better
estimates at a cost of more data base storage.

83

Observe the Data Segment timing by starting the timer (provided it is
not already running) when a Data Segment message needs to be
transmitted the first time and by stopping the timer when an (explicit
or implicit) acknowledgment is received for the message. Do not
restart the timer if the Data Segment is retransmitted, since the
algorithm is attempting to estimate the average delay from first need
to transmit to eventual acknowledgment.

Once an observed round trip sample is taken as described above,
average the value with the current estimate by means of a weighting
factor. The formula for this is:

NODEdelay
NSPweight * NODEdelay + deltaT

NSPweight + 1

deltaT - NODEdelay
NODEdelay + ---------=-

NSPweight + 1

where: NSPweight
NODEdelay
del taT

the weighting factor
the estimated round trip time
the sample round trip time

Note that if NSPweight is equal to a power of 2 minus 1, then this
computation can be performed easily.

The time that NSP uses to determine when to retransmit a message is a
constant times the estimated round trip delay time. This constant is
the "delay factor" and is contained in variable NSPdelay in Table 3.
The delay factor and the weighting factor are NSP parameters.
NSPweight is an integer in the range 0 to 255, inclusive. NSPdelay is
a value in sixteenths of a unit in the range 0 to 15 and 15/16,
inclusive.

7.4 Inactivity Timing

If two NSP's cannot communicate with each other for a sufficiently
long time (for example, because the network is disconnected), the
following problem results. An end user that is either not using a
logical link or is passively waiting to receive would not necessarily
know that it is uselessly consuming resources by maintaining the
logical link. Therefore, NSP contains an algorithm to exercise the
logical link when there is no received traffic (either data or NSP
control messages) f~om the remote NSP for each logical link.

The inactivity timing algorithm operates as follows. Start an
"inactivity" timer when a logical link enters the RUNNING state.
Restart the timer whenever a message is received for the logical link.
If the timer expires, NSP attempts to send a Data Request message that
does not change the remote NSP's flow control variables. If
communications are not possible to the remote NSP, then the
retransmission algorithm causes NSP to periodically retransmit the
Data Request message. Retransmission can result in a change to the
CONFIDENCE variable as described below.

84

7.5 Confidence Testing

A given NSP module cannot know whether or not a network path exists
between it and a given second NSP module, even if the two modules have
communicated in the past. Therefore, NSP cannot give a "network
disconnection" signal to Session Control when the physical network
supporting a logical link fails.

To provide some useful information to Session Control, NSP maintains a
counter in variable COUNTretrans in a port. Each time a message
timeout occurs (for a Connect Confirm, Disconnect Initiate, Data
Segment, Link Service, or Interrupt message) NSP increments this
variable and compares it to a global "retransmit threshold"
(NSPretrans). If COUNTretrans is greater, then NSP sets variable
CONFIDENCE false. Whenever NSP receives an acknowledgment of a
previously unacknowledged message, NSP sets CONFIDENCE to true and
COUNTretrans to zero. NSP returns the CONFIDENCE variable to Session
Control on a CONFIDENCE call.

85

8.0 MESSAGE FORMATS

This section specifies the formats for NSP messages.

8.1 Message Format Notation

The following notation is used to describe the messages contained
herein:

FIELD (LENGTH)

where:

FIELD

LENGTH

CODING description of field

Is the name of the field being described

Is the length of the field as:

1. A number meaning number of 8-bit bytes (octets)

2. A number followed by a IIB oi meaning number of bits

3. The letters "EX-nil means extensible field. n is a
number that specifies the maximum length of 8-bit
bytes in the protocol before interpretation, as
described below. If no number is specified, the
current maximum length is 1 byte. Extensible
fields are variable in length consisting of 8-bit
bytes. The high-order bit of each byte indicates
whether the next byte is part of the same field. A
1 means the next byte is part of this field. A 0
indicates the next byte is the last byte. The
low-order 7-bits of each byte are information bits.
Extensible fields can be binary or bit map. If
they are binary, then 7-bits from each byte are
concatenated into a single binary field. If they
are bit map, then 7-bits from each byte are used
independently or in groups as information bits.

NOTE

The bit definitions define the
information bits after removing the
extension bits and compressing the
bytes.

4. The letters III-nil means this is an image field. n
is a number specifying the maximum length of 8-bit
bytes in the image. A I-byte count of the length
of the remainder of the field precedes the image.
Image fields are variable in length and may be null
(count 0) . All 8-bits of each byte are
information bits. The meaning and interpretation
of each image field is defined with that specific
field.

86

CODING Is the representation type used as follows:

A 7-bit ASCII
B Binary
BM bit map (each bit or group of bits has

independent meaning)
C Constant
null interpretation data dependent

NOTES

1. If both the length and coding are omitted, the
field represents a generic field with a number of
subfields specified in the description.

2. Any bit or field specified as "reserved" must be
zero unless otherwise noted.

3. All numeric values in this section are decimal
unless otherwise noted.

4. Bits are numbered with bit 0 on the right
(low-order, least-significant bit) and bit 7 on the
left (high-order, most-significant bit). For
convenience, when the graphic form of a 2-byte
field is given, it will be shown converted to a
16-bit word. When a subfield of a message field
contains more than one bit, it should be considered
a binary value.

5. Unless otherwise specified, the numbers that appear
at the top uf the message formats represent bit
positions.

6. Bracketed fields are optional.

8.2 General Message Format

In general, NSP Messages have the following format:

I MSGFLG (MSGDATA I
MSGFLG (EX) : BM Is a group of fields describing the

The MSGFLG format characteristics of the message.
is:

Bit: 7 6 2 1 0

Set to: ~10 __ ~ ____ S_U_B_T_Y_P_E ____ ~ __ T_Y_P_E ____ ~0~~0~
TYPE (2B) B

87

Is the message type (binary)

o data message
1 acknowledgment message
2 control message
3 reserved

MSGDATA

8.3 Data Messages

SUBTYPE (3B) B

Subtype
Type (Bits)

0 4

5

6

5
5
6

1 4-5

6

2 4-6

Is the message subtype - used to
modify TYPE field.

Bit set tol
Meaning

0 Data Segment
1 Interrupt or Link Service
1 Beginning-of-Message

segment (bit 4 = 0)
1 End-of-Message

segment (bit 4 = 0)
0 'Link Service (bit 4 = 1)
1 Interrupt (bit 4 = 1)
0 reserved (bit 4 = 1)

0 Data Acknowledgment
1 Other-Data Acknowledgment
2 Connect Acknowledgment
3 reserved
0 reserved

control type (binary) :

o No Operation (included for
compatibility with NSP 3.1)

1 Connect Initiate
2 Connect Confirm
3 Disconnect Initiate
4 Disconnect Confirm
5-7 reserved

Is the remainder of an NSP message (Sections
8.3 - 8.5).

There are three types of data messages:

1. Data Segment messages (Section 8.3.1)

2. Interrupt messages (Section 8.3.2)

3. Link Service messages (Section 8.3.3)

8.3.1 Data Segment Message - A Data Segment message has the following
form:

I MSGFLG I DSTADDR SRCADDR I [ACKNUM] I SEGNUM I DATA I
MSGFLG (EX) : BM Represents the message identifier. The format of

this field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 EOM I BaM I 0 0 0 0 01

88

DSTADDR (2)

SRCADDR (2)

B

B

ACKNUM (2) : BM

SEGNUM (2) BM

DATA

8.3.2 Interrupt
form:

DSTADDR

MSGFLG (EX) : BM

where:

EOM (lB) BM Is the end-of-message indicator

o not-end-of-message
1 end-of-message

BaM (lB) BM Is the beginning-of-message indicator

o not-beginning-of-message
1 beginning-of-message

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Data Segment message
successfully received and
acknowledgment (ACK) or a negative
(NAK). This field is optional.
indicated by bit 15 being set.
this field is as follows:

Bit: 15 14 12 11

a positive
acknowledgment

Its presence is
The format for

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message being
acknowledged.

Is the number of this Data Segment message.
format for this field is:

Bit: 15 12 11

Set to: NUMBER

The

Is the data to be sent over a logical link. This
field is transparent and may use all 8-bits of
each byte. The length of the data field is
ascertained from the total length of the Data
Segment message and consists of all bytes in the
message after the SEGNUM field.

Message - The Interrupt message has the following

SRCADDR [ACKNUM] SEGNUM

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 1 1 0 0 0 0

89

DSTADDR (2)

SRCADDR (2)

B

B

ACKNUM (2) : BM

SEGNUM (2) BM

DATA

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is optional.
Its presence is indicated by bit 15 being set.
The format for this field is as follows:

Bit: 15 14 12 11

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message
being acknowledged.

Is the number of this Interrupt message.
format for this field is:

Bit: 15 12 11

Set to: NUMBER

The

Is the interrupt data. This field is transparent
and may use all 8-bits of each byte. The length
of the data field is ascertained from the total
length of the Interrupt message and consists of
all bytes in the message after the SEGNUM field.
Interrupt data may be no longer than 16 bytes.

8.3.3 Link Service Message - The Link Service message has the
following form:

DSTADDR

MSGFLG (EX) : BM

DSTADDR (2) B

SRCADDR (2) B

SRCADDR [ACKNUM] SEGNUM

Is the message identifier.
field is:

Bit: 7 6 5 4 3

Set to: 0 0 0 1 0

LSFLAGS I FCVAL I
The format of this

2 1 0

0 0
1 01

Is the logical link destination address.

Is the logical link source address.

90

ACKNUM (2) BM

SEGNUM (2) BM

LSFLAGS (EQ) BM

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is optional.
Its presence is indicated by bit 15 being set.
The format for this field is as follows:

Bit: 15

Set to: 1

where:

QUAL (3B) B

14 12 11

QUAL NUMBER

Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message
being acknowledged.

Is the number of this Link Service message. The
format for this field is:

Bit: 15 12 11 0

Set to: 0 NUMBER

Is the Link Service flag s. The format for this
field is as follows:

Bit: 7 6 543 2 1

Set to: I 0 I 0 I 0 I 0 I
where:

FCVAL INT (2B) B

FC MOD (2B) B

91

FCVAL INT FC MODI

Is the interpretation
FCVAL field

of

o data segment or message
request count

1 interrupt request count
2-3 reserved

Is the flow control
modification. If FCVAL INT =
0, then this field has the
following contents.

o no change
1 do not send data
2 send data
3 reserved

If FCVAL INT = 1, then this
field is 0 on transmit and
ignored on receive.

FCVAL (1) B Is the number of Session Control messages, Data
Segment messages, or Interrupt messages that the
sender of the message can receive in addition to
those previously requested by a Link Services
message. This number is added to the request
count which is maintained by NSP, to determine how
many Session Control messages, Data Segment
messages, or Interrupt messages will be
transmitted via a logical link.

NOTES

1. If FCVAL INT = 0, the message is a Data Request message.

2. If FCVAL INT
message.

1, the message is an Interrupt Request

3. The transmit request count for segment flow control may be
negative. (Negative values are presented in 2's complement
form in the FCVAL field.)

4. If FCVAL is for Session Control message or Interrupt message
flow cQntrol, the count must be positive. Use 0 if there is
to be no change in the count.

8.4 Acknowledgment Types

There are three types of acknowledgment messages:

1. Data Acknowledgment message (Section 8.4.1)

2. Other-Data Acknowledgment messages (Section 8.4.2)

3. Connect Acknowledgment messages (Section 8.4.3)

8.4.1 Data Acknowledgment Message - The Data Acknowledgment message
has the following form:

IMSGFLG I DSTADDR I SRCADDR I ACKNUM I
MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

ACKNUM (2) : BM

Is the message identifier.
field is:

Bit: 7 6 5 4 3

Set to: 0

The format of this

2 1

1

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Data Segment message
successfully received and a positive
acknowledgment (ACK) or a negative acknowledgment
(NAK). This field is required. The format for
this field is as follows:

Bit: 15 14 12 11

Set to: 1 QUAL NUMBER

92

where:

QUAL (3B) B

NUMBER (12)3)

Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

B Is the number of the message
being acknowledged.

8.4.2 Other-Data Acknowledgment Message - The
Interrupt and

Other-Data
Link Service Acknowledgment message acknowledges

messages. It has the following form:

I MSGFLG I DSTADDR I SRCADDR I ACKNUM I
MSGFLG (EX) : BM

DSTADDR (2) B

SRCADDR (2) B

ACKNUM (2) : BM

Is the message identifier.
field is:

The format of this

Bit: 7 6 5 4 3 2 1 0

Set to: I 0 0 0 1 0 1 0 0

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is required.
The format fO t this field is as follows:

Bit: 15 14 12 11 0

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

0 ACK
1 NAK
2-7 reserved

NUMBER (12B) B Is the number of the message
being acknowledged.

8.4.3 Connect Acknowledgment Message - The Connect Acknowledgment
message has the following form:

I MSGFLG I DSTADDR I
MSGFLG (EX) BM Is the message identifier. The format of this

field is:

Bit: 7 6 5 4 3 2 1

Set to: 0 1 1

DSTADDR (2) B Is the logical link destination address.

93

8.5 Control Messages

There are five types of control messages:

1. No Operation messages (Section 8.5.1)

2. Connect Initiate messages (Section 8.5.2)

3. Connect Confirm message (Section 8.5.3)

4. Disconnect Initiate messages (Section 8.5.4)

5. Disconnect Confirm messages (Section 8.5.5)

8.5.1 No Operation Message

I MSGFLG TSTDATA

where:

MSGFLG (EX) BM Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 0 0 1 0 0
1 01

TSTDATA Is any data.

8.5.2 Connect Initiate Message - The Connect Initiate message has the
following form:

DSTADDR

where:

MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

SERVICES (EX) BM

SRCADDR SERVICES SEGSIZE DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 0 1 1 0 0 0

Is the destination logical link address. This
address will be 0 to allow the receiving NSP to
assign a number dynamically.

Is the source logical link address. This number
is assigned by the sending NSP and will be used by
the destination to address all messages for this
logical link. The value 0 is illegal.

The requested services. The format for this field
is as follows:

Bit: 7 6 5 4 3 2 I 0

Set to:
1

0 I 0 0 0 1 FCOPT 10 III

94

INFO (EX) BM

SEGSIZE (2) B

DATA-CTL

where:

FCOPT (2B) B Are the flow control options.

o none
1 segment request count
2 Session Control message

request count
3 reserved

Is the information. The format for this field is
as follows:

Bit: 7 6 5

Set to: 0

where:

VER (2B) B

4 3 2 1

VER

Is the NSP version.

o version 3.2
1 version 3.1
2,3 reserved

Is the maximum size (in bytes) of the data in a
Data Segment that can be received on this logical
link.

Is the Connect Initiate data field. The length of
this field is ascertained from the total length of
the Connect Initiate message and consists of all
bytes in the message after the SEGSIZE field.

8.5.3 Connect Confirm Message - The Connect Confirm message has the
following form:

DSTADDR

where:

MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

SRCADDR SERVICES SEGSIZE DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to:
1

0 I 0 1 0 1 0 0 I 01

Is the destination logical link address. This
will not be 0. It is the value of the SRCADDR
field from the Connect Initiate message.

Is the source logical link address. This number
is assigned by the sending NSP and will be used to
address all messages for this logical link. The
value 0 is illegal.

95

SERVICES (EX)

'INFO (EX) BM

SEGSIZE (2) B

DATA-CTL (1-16)

BM Are the requested services. The format for this
field is as follows:

Bit: 7 6 5

Set to: eJ

where:

FCOPT (2B) B

4 3 2

FCOPT

Are the flow control options.

121 none
1 segment request count
2 Session Control message

request count
3 reserved

Is the information. The format for this field is
as follows:

Bit: 7 6 5

Set to:1 121 121 121

where:

VER (2B) B

4 3 2 1

121 121 121 VER

Is the NSP version.

121 version 3.2
1 version 3.1
2,3 reserved

121

Is the maximum size (in bytes) of the data in a
Data Segment that can be received on this logical
link.

B Is user-supplied data.

8.5.4 Disconnect Initiate Message - The Disconnect Initiate message
has the following form:

DSTADDR

where:

MSGFLG (EX)

DSTADDR (2) B

SRCADDR (2) B

REASON (2) : B

DATA-CTL (1-16)

BM

B

SRCADDR REASON DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 121

Set to: 121 eJ 1 1 1 121 121 I 1211

Is the logical link destination address.

Is the logical link source address.

Is the first two bytes of Session Control
disconnect data.

Is the remaining bytes of Session Control
disconnect data.

96

8.5.5 Disconnect Confirm Message - A Disconnect Confirm message has
the following form:

IMSGFLG DSTADDR SRCADDR REASON I
where:

MSGFLG (EX) BM

DSTADDR (2)

SRCADDR (2)

REASON (2) : B

B

B

1. If REASON

2. If REASON

3. If REASON

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 1 0 0 1 0 0 I 01

Is the logical link destination address.

Is the logical link source address.

Is the disconnect reason.

NOTES

1, the message is a No Resources message.

42, the message is a Disconnect Complete message.

41, the message is a No Link Terminate message.

97

APPENDIX A

LOGICAL LINK ADDRESS ASSIGNMENT/DEASSIGNMENT ALGORITHM EXAMPLE

A logical link address is a l6-bit value. When an NSP module opens a
port, it assigns a logical link address. When an NSP module closes a
port, it deassigns a logical link address. The algorithm that assigns
and deassigns these addresses is implementation-dependent. There are
two requirements for this algorithm:

1. It must not assign a given l6-bit address to two ports
concurrently.

2. It must not reassign a given l6-bit address for a long perioJ
following its deassignment.

In addition, the algorithm should operate with a modest
memory, trading off the amount of memory for the
reassignment.

amount
period

of
of

The algorithm described in this appendix is a sample algorithm that
meets these requirements. No implementation of NSP is required to use
this algorithm, however. Any algorithm that meets the two
requirements stated above 1S acceptable. The sample algorithm
restricts the number of outstanding, assigned link addresses.

A.l Interface to the Algorithm

The sample algorithm is implemented by a module that accepts three
calls: one to assign a link address, one to deassign a link address,
and one to initialize the module.

The following routine assigns a link address.

GET-ADDRESS

returns: success - a link address is returned
failure - too many link addresses currently assigned

The following routine deassigns a link address.

RELEASE-ADDRESS (address)

address: the link address to be deassigned

returns: success
failure - link address was not assigned

The following routine initializes the algorithm module.

98

INITIALIZE-ADDRESS

NSP calls this routine during NSP initialization. The routine allows
the algorithm module to meet the second requirement above even across
NSP initializations.

A.2 Data Structures

This algorithm forms link addresses of the following form:

random part index part

r bits i bits

where:

r+i = 16

No two concurrently assigned link addresses will contain the same
value in the low i bits.

Furthermore, the algorithm restricts the number of addresses that can
be assigned concurrently to open ports to:

2i_l

The data base consists of two vectors and three variables. These are
the following.

1. Boolean vector INUSE

This vector contains 2i_l bits. There is one bit for each
possible value in the index part of a link address.

A bit is set to "true" if the corresponding index is in use
(i.e., is in the lower i bits of an assigned link address).
The bit is set to "false" otherwise.

2. vector RANDOM

This vector contains 2i_l entries, each r bits wide. An
element of the vector contains the random part of the last
link address assigned with the index part equal to the index
of this element in the vector.

3. Variable NUMBER-ASSIGNED

This variable contains the number of link addresses currently
assigned. It has a value in the following range:

o <= NUMBER-ASSIGNED <= 2i_l

i When NUMBER-ASSIGNED = 2 -1, then no more link addresses may
be assigned.

99

4. Variable INDEX

This variable contains the index value portion of the last
link address that was assigned.

5. Variable TEMP

This variable is used to temporarily hold the index value
portion of a link address that is being deassigned and in
module initialization.

A.3 Algorithm Operation

This algorithm operation
language that was used
this document.

is represented in the same high-level
to represent NSP's operation in the body of

GET-ADDRESS:

If (NUMBER-ASSIGNED (2 i "-I) then
NUMBER-ASSIGNED (-- NUMBER-ASSIGNED + 1
While (INUSE(INDEX) true) do ",

INDEX (-- INDEX + 1 (mod 21)
Endwhile
RANDOM(INDEX) (-- RANDOM (INDEX) + 1 (mod 2r)
INUSE(INDEX) (-- true
random part of link address (-- RANDOM(INDEX)
index part of link address (-- INDEX
return success

Else
return failure

Endif

RELEASE-ADDRESS:

TEMP (-- index part of the link address
If (INUSE(TEMP) true

and RANDOM(TEMP) = random part of link address) then
INUSE(TEMP) (-- false
NUMBER-ASSIGNED (-- NUMBER-ASSIGNED - 1
return success

Else
return failure

Endif

INITIALIZE-ADDRESS:

TEMP (-- 0
While (TEMP (2 i) do

INUSE(TEMP) (-- false
RANDOM(TEMP) (-- random number (mod 2r)
TEMP (-- TEMP + 1

Endwhile
INDEX (-- random number (mod 2i)
NUMBER-ASSIGNED (-- 0

100

APPENDIX B

SEGMENTATION MODULE EXAMPLE

This Appendix models a segmentation module. The model supports the
queuing of multiple outstanding transmit requests for each port.

B.l Data Structures

To support this model, each port requires the addition of the
following items:

Port Additions

1. A request queue head.

2. A segment queue head.

3. The segment number of the last segment removed from the
segment queue (initial value = 0)

4. A Boolean flag to indicate if the next segment placed on the
segment queue will be a beginning-of-message segment (initial
value = true).

This model also requires a pool of queue control blocks to hold
information about queued transmit requests and outstanding segments.

When a transmit request from Session Control is accepted by the
segmentation module, a queue control block is added to the request
queue for the port. It contains the following information:

Request Queue Control Block

1. Buffer descriptor from the request.

2. Xmtflag from the request.

3. Highest segment number corresponding to the request.

4. Status ("incomplete" or "complete").

When the data from a single transmit request is segmented, each
segment is assigned a queue control block that is added to the segment
queue for the port. Each segment queue control block contains the
following information:

Segment Queue Control Block

1. Buffer descriptor for the segment.

2. End-of-message flag.

101

3. Beginning-of-message flag.

4. Segment number assigned to the segment.

The queue pointer cells required in these blocks and in the queue head
information in the port are not described but are assumed to allow
finding the first control block in each queue, the last control block
on each queue, and the control block queued after a given control
block.

B.2 Operation

DATA-XMT

This routine operates as follows.

1. There must be enough queue control blocks available from the
queue control block pool to queue one block to the port's
request queue and one or more blocks to the port's segment
queue. The total number of blocks required is equal to the
length of the transmit buffer divided by SIZEseg (for the
segment queue) plus one (if there is a remainder from the
pre v i a us d i vis ion) pI usa n e (for the r e que s t que u e) . I f
there aren't enough blocks available from the pool, the
DATA-XMT call is returned as "buffer not queued. ,I

2. If the DATA-XMT call is not rejected y add one control block
to the request queue. Store the buffer descriptor and
xmtflag values from the call in the block. Set the status to
"incomplete."

3. Add a control block to the segment queue. The buffer
descriptor for the control block contains the address from
the DATA-XMT call and a length equal to the minimum of the
length from the call and SIZEseg. Set the
beginning-of-message flag to true only if the
beginning-of-message flag in the port is true. Set the
segment number to the segment Qumber of the preceding block
on the queue plus one (if there is a preceding block).
Otherwise set the segment number to that contained in the
port descriptor plus one.

4. Add the remaining control blocks (if any) to the segment
queue. The buffer descriptor reflects the segmentation of
the transmit buffer into segments. Each segment except,
perhaps, the last is as long as the previous segment. Assign
each block a segment number equal to that of the preceding
block on the queue plus one. Clear the end-of-message and
beginning-of-message flags of each block, except, perhaps,
the last one. The last block has the end-of-message flag set
only if the xmtflag value in the DATA-XMT call indicates
end-of-message.

5. Give the request queue control block queued in step 2 the
segment number of the last block on the segment queue.

102

XMT-POLL

This routine examines the first block on the request queue. If the
status is "complete," remove the block from the queue. Return the
block to the pool. Give a "transmit complete" return with the buffer
descriptor from the block. If the status is not "complete," give a
"no transmit complete" return.

GET-SEGMENT

This routine examines the segment queue to find an entry with a
matching segment number. The buffer descriptor, end-of-message flag,
and beginning-of-message flag are returned.

ACK-SESSION-CONTROL

This routine operates as follows.

NM

1. Examine the first block on the segment queue. If the segment
number from the call is less than the segment number (modulo
4096) in the block, go to step 3. Otherwise, go to step 2.

2. Remove the block from the queue and return the block to the
pool. Store the segment number from the block in the port.
Go to step 1.

3. Examine the request queue. Mark every entry on the queue
containing a segment number less than (modulo 4096) or equal
to the segment number from the call "complete." Make a
return.

This routine identifies the entries on the segment queue from the
entry with a segment number equal to the first argument in the call up
to the entry e~ual to the second argument in the call, inclusive. It
counts the number of these entries that have the end-of-message flag
set and returns this value.

LAST

Return the segment number of the last block on the segment queue, if
such a block exists. Otherwise, return the segment number from the
port.

103

APPENDIX C

REASSEMBLY MODULE EXAMPLE

This Appendix contains a model of a reassembly module. This model
supports the queuing of multiple outstanding receive requests for each
port. It does not support the use of either cache or commit buffers.

C.l Data Structures

To support this model, each port requires the addition of the
following items:

Port Additions

• A request queue head

• A variable (FLOWreass) used to contain changes to the request
count for the port (initial value = 0)

• A variable (FLOWhigh) to contain the highest segment number
(modulo 4096) stored in a session control receive buffer
(initial value = 0)

• A Boolean variable (FLOWdiscard) to indicate if received
segments are to be discarded (initial value = false)

This model also requires a pool of queue control blocks to hold
information about queued receive requests. When a receive request
from session control is accepted by the reassembly module, a queue
control block is added to the request queue for the port. It contains
the following information:

Request Queue Control Block

• Buffer descriptor from the request

• Temporary buffer descriptor to handle the reception of
multiple segments into the same receive buffer

• Rcvflag from the request

• Status ("incomplete,"
truncation," "no
EOM -- truncation").

"EOM
EOM

104

no
no

truncation," "EOM --
truncation," "no

C.2 Operation

In the following descriptions, the checking for invalid port states is
not described since it is assumed to be clear from the body of the
specification.

DATA-RCV

This routine operates as follows.

1. If no truncation was spe~lfied and the buffer is smaller than
NSPbuf, reject the call.

2. If no more queue control blocks are available, reject the
call.

3. Otherwise, store the call parameters in a queue control
block. Set the temporary buffer descriptor equal to the
request buffer descriptor. Add the block to the receive
request queue.

4. If rcvflag indicated no truncation, increment FLOWreass by
one. Otherwise, compute the smallest integer greater than or
equal to the length of the receive buffer divided by NSPbuf.
This is how many segments will fit into the buffer. Add the
result to FLOWreass.

RCV-POLL

If the state of the port is DISCONNECT-NOTIFICATION,
DISCONNECT-COMPLETE, or CLOSE-NOTIFICATION, set the status of all
"incomplete" control blocks on the request queue to either "no
EOM no truncation" (if rcvflag was "no truncation allowed") or " no
EOM -- truncation" (if rcvflag was "truncation allowed") .

Examine the first block on the receive queue. If it has a value other
than "incomplete, jl remove the block from the queue. Return the block
to the control block pool. Return the request buffer descriptor and
status value to Session Control.

If the return block has the value lIincomplete," give a "no buffer
returned" indication to Session Control.

SPECULATE-NUMBER

Return the contents of FLOWreass and clear FLOWreass.

COMMIT-NUMBER

Return the contents of FLOWhigh.

STORE-SEGMENT

The description of this routine uses a colloquial, high-level
language. The terms NUMBER and EOM represent the segment number and
end-of-message flags, respectively, passed to this routine by the data
receive process.

If (NUMBER = FLOWhi~h + 1) then
Find the first ·incoffiPlete-aueued receive reauest
If (such a reauest exists) then

FLOWhi~h (-- FLOWhi~h + 1
If (rcvfla~ = -no truncation-) then

Put received data in front of buffer

105

Set status usin~ EOM
Else

If (FLOWdiscard) then
If (EOM set) then

FLOWdiscard (-- false
Else

FLOWreass (-- FLOWreass + 1
Endif

Else
Put data (that will fit) in buffer (NOTE 1)
Adjust temporar~ buffer descriptor to reflect storaSe
If (data fit in buffer) then

If (EOM set) then
Calculate space loss (NOTE 2)
FLOW reass (-- FLOWreass -- space loss
Set status to -EOM -- no truncation-

Endif
Else

Set status to -EOM -- truncation
If (EOM not set) then

FLOWreass (-- FLOWreass + 1
FLOWdiscard (-- true

Endif
Endif

Endif
Endif

Endif
Endif

NOTES

1. Use the temporary buffer descriptor.

2. The space loss is equal to the number of segments that were
requested to fill the buffer, but for which there will be no
receive space due to the impending return of the buffer
partially filled.

106

APPENDIX D

TRANSMIT ALLOCATION MODULE EXAMPLE

This Appendix contains a model of a' transmit allocation module.

D.l Data Structures

This model requires a list structure. Each element in the list
contains a port identifier. This list must be large enough to hold
one element for each port that NSPcan handle.

D.2 Primitive Functions

This model assumes that the functions described below are available.

List Manipulation Functions

1. An element can be added to a list.

2. An element, selected by either index or entry contents, can
be removed from the list.

3. The contents of the first list entry can be read.

Random Number Generation

A random number in a selected range can be obtained.

D.3 Operation

The following description of the transmit allocation module operation
uses a high-level, colloquial language.

ALLOCATE (port id)

Add an element with port id to the list.

CHECK-ALLOCATE (port id)

If (port id = contents of first list entr~) then
return success

Else
return failure

Endif

107

DEALLOCATE (port id)

Remove the list entrw containin~ port id
Call REALLOCATE

REALLOCATE (port id)

If (list not emptw) then
Get random index (NOTE)
Swap first and indexed entries

Endif

NOTE

This function obtains a random number in
the range (1, length of list).

108

APPENDIX E

DIFFERENCES BETWEEN NSP V3.2 AND NSP V3.1

There are some differences between NSP version 3.2 and NSP version
3.1. The differences are of two types: interface differences and
protocol differences.

E.l Interface Differences

version 3.2 of NSP does not guarantee that a connect request issued by
one Session control module will be delivered to the destination
Session Control module. This guarantee was inherent in the
point-to-point operation of a DECnet product supporting version 3.1 of
NSP. Version 3.2 of NSP cannot support this guarantee while remaining
compatible with the NSP 3.1 protocol and maintaining the 3.1 guarantee
that no more than one connect request will be delivered to a
destination Session Control module.

E.2 Protocol Differences

One protocol difference between v~rsion 3.1 and version 3.2 is in the
operation of node-to-node initi~lization. With the introduction of
version 3.2, this function (which was included in version 3.1) has
been moved to the Transport layer of the DIGITAL Network Architecture.
See the DNA Transport Functional ~pecification for a discussion of
node-to-node InItIalIzatIon.

Two other differences are handled by the requirement that a version
3.2 implementation modify its operation when communicating with a
version 3.1 implementation. Firs~, version 3.2 of NSP specifies that
a message must be sent in response to a received Connect Confirm
message. A version 3.1 NSP was not required to'send such a response
message. Such a response message is required in a network with a
Transport layer that may lose packets containing NSP messages
(although it was not required in the point-to-point networks in which
version 3.1 NSPs reside). An NSP 3.2 implementation does not require
this response from an NSP 3.1 implementation.

Second, version 3.2 of NSP specifies that a Disconnect Confirm message
may be sent in response to a received Connect Initiate message only if
the receiving NSP has insufficient resources for supporting a new
logical link. A Disconnect Initiate message is specified as the
response to all other rejections of the incoming connect request.

109

version 3.1 of NSP allowed a Disconnect Confirm response for several
reasons that are actually Session Control rejects in version 3.2
terms. For example, if a destination end user does not exist, a
version 3.2 node's NSP will receive a connect reject request from its
Session Control module and will generate a Disconnect Initiate message
to reject the connect request.

This change is required because a version 3.2 NSP will not retransmit
a Connect Initiate message (for the reasons given above in the
discussion about interface differences). Therefore, it is important
that a message sent in response to a received Connect Initiate message
be a message that requires an acknowledgment and can be retransmitted
after a timeout. Therefore, the Disconnect Initiate message is used
instead of a Disconnect Confirm. Sending a Disconnect Confirm message
would increase the probability that the Session Control module that
initially requested the connection would remain in a "connect
initiated" state indefinitely. An NSP 3.2 implementation will accept
a Disconnect Confirm message from an NSP 3.1 implementation in place
of a Disconnect Initiate after having sent a Connect Initiate message.

Versions 3.2 and 3.1 of NSP have several additional differences that
do not require special operation on the part of a 3.2 version of NSP.
These differences are summarized below.

• NSP 3.2 times out and retransmits Connect Confirm, Disconnect
Initiate, Data, Interrupt, and Link Service messages.

• NSP 3.2 allows the possibility that Session Control may
provide one or more receive buffers to be used for receiving
data from a collection of logical links.

• NSP 3.2 ignores a received Connect Initiate or Connect Confirm
message that contains an invalid SERVICES field. A version
3.1 implementation sends a Disconnect Confirm message in
response to such a received message and then destroys its end
of the corresponding logical link. A version 3.2 NSP,
receiving such a Disconnect Confirm message, will ignore the
message, thereby creating the same situation as when
communicating with another 3.2 NSP.

• NSP 3.2 never sends a Disconnect Initiate in response to a
message containing invalid values. NSP 3.2 always interprets
Disconnect Initiate messages received on a logical link in the
RUNNING state as resulting from a Session Control disconnect
or abort request. A version 3.1 of NSP may generate a
Disconnect Confirm message if it detects a protocol error.
This will be given to Session Control by a version 3.2 NSP as
a disconnect notification. Session Control may interpret the
reason for the disconnection from the REASON value carried in
the Disconnect Confirm message and given by NSP to Session
Control.

110

GLOSSARY

confidence

An NSP variable (CONFIDENCE) that indicates the probable
connectedness of the physical network supporting a logical link.

data flow

The movement of data from' a source Session Control to a
destination Se~sion Control. NSP transforms data from Session
Control transmit buffers to a, network form before sending it
across a logical link. NSP retransforms the data at the
destination from its network form to its receive buffer form.
Data flows in both directions (full-duplex) on a logical link.

datagram

A unit of data, including NSP control information, that is passed
to the Transport layer for transmission to a destination system.
When Transport adds its route header information, the unit
becomes a packet.

Data Lirik

The DNA layer below the Transport layer. The modules in the Data
Link layer manage physical channels and maintain data integrity.

delay factor

An NSP parameter (NSPdelay) that is multiplied by the estimated
round trip delay time to det~rmine the appropriate value for the
time to retransmit certain NSP messages.

delay weight

An NSP parameter (NSPweight) that is used to calculate a new
value of the estimated round trip delay. The old round trip
delay is weighted by a function of this statistical factor to
calculate the new round trip delay. If the delay weight is set
high, the retransmit time chqnges slowly. If the weight is set
low, the observed round trip time can change quickly if the
observed round trip delays have a wide variance, and thus the
retransmit time can change more rapidly. The default value for
delay weight is 3.

Disconnect Confirm

The NSP No Resources, Disconnect Complete, and No Link messages.
The REASON field in the Disconnect Confirm message (Section 8)
indicates which message applies.

111

error control

The NSP function that insures the delivery of NSP data messages.
It consists of an acknowledgment mechanism.

flow control

The NSP function that coordinates the flow of data on a
link in both directions, from transmit buffers to
buffers, in order to minimize communications overhead.

inactivity timer

logical
receive

A timer that, upon expiration, causes NSP to attempt to send a
Data Request message. NSP starts this timer when a logical link
enters the RUN/RUN state. Whenever NSP receives a Data Request
message for that logical link, NSP restarts this timer. The
purpose of the timer is to provide activity for ·the logical link
so that NSP can determine the probable connectedness of the
physical network supporting the link. The value for the timer is
an NSP parameter (TIMERinact).

Link Service

The NSP messages that carry flow control information., These
messages are the Data Request and the Interrupt Request messages.

logical link

A virtual channel between two Session Control implementations or
between two components of one Session Control implementation.
NSP's major function is the creation and destruction of logical
links.

logical link identification

A unique 32-bit number describing a logical link. This
identification consists of the two 16-bit addresses of the ports
at each end of the link.

Network Management

The DNA layer directly above the Session Control layer that
enables operator control over and observation of network
parameters and variables. Network Management also provides
down-line loading, up-line dumping, and testing functions.

node descriptor

A collection of variables and counters pertaining to
communications with a particular node. Some of the variables and
counters are the estimated round trip delay, traffic usage
counters, and error counters.

Other~Data

The NSP Data Request, Interrupt Request, and Interrupt messages.
These are all the NSP data messages other than Data Segment.
Because all Other-Data messages move in the same data subchannel,
it is sometimes useful to group them together.

112

port

A collection of control variables and parameters for managing
logical links. Each logical link has a port at each end. Each
NSP at each node has a numer Of available ports. When Session
Control requests a logical link or requests a port be opened to
receive an incoming connect request, NSP allocates a port if
sufficient resources are available.

reassembly

The ordering of received data segments by NSP into numbered
sequence for placement into Session Control receive buffers.

request count

This term has two different definitions in the document. 1)
Variables (FLOWrem.dat and FLOWrem.int) that NSP uses to
determine when to send data. 2) Values sent in Link Service
messages. The flow control mechanism adds the request counts
received in Data Request and Interrupt Request (Link Service)
messages (definition 2, above) to the request counts it maintains
(definition 1, above) to determine when to send data.

retransmission

The resending of NSP data messages that have not been
acknowledged within a certain period of time. This is part of
NSP's error control mechanism.

retransmission counter

An NSP variable (COUNTretrans) that contains a count of message
timeouts for Connect Confirm, Disconnect Initiate, Data Segment,
Link Service, and Interrupt messages. NSP compares this variable
with the retransmit threshold to calculate the confidence
variable.

retransmit threshold

An NSP variable (NSPretrans) equal to the maximum number of
successive times a retransmission occurs with no intervening,
received acknowledgment before NSP decides that the physical
network supporting a logical link has failed. NSP compares the
retransmit threshold with the. retransmission counter to determine
the value of the confidence variable.

round trip delay

An NSP parameter (NODEdelay) that represents the current
estimated time for an acknowledgment to be received for an NSP
message. This parameter is calculated by a formula described in
Section 4.7.6.

segment

The data carried in a Data Segment message. NSP divides the data
from Session Control transmit buffers into numbered segments for
transmission by Transport.

segmentation

The division of normal data from Session Control transmit buffers
into numbered segments for transmission over logical links.

113

Session Control

The DNA layer directly above NSP. Session Control defines the
system-dependent aspects of logical link communication. Session
Control provides functions such as name to address translation,
process addressing, and in some systems, access control.

subchannel

A logical communications path within a logical link that handles
a defined category of NSP data messages. Because Data Segment
messages are handled differently from Other-Data messages, the
two types of messages can be thought of as traveling in two
different subchannels.

Transport

The DNA layer directly below NSP that provides NSP with routing,
congestion control, and packet lifetime control services.

114

· Q)
c

.~
..c

0>
C o
o

.....
j
o
Q)
en
o
Q)

0::::

DECnet DIGITAL
Network Architecture
Network Services Protocol
Functional Specification (NSP)
AA-Kl76A-TK

READER'S COMMENTS

NOTE: This form is for documept comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number .

Please indicate the type of reader that you most nearly represent.

[J Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[J Student programmer
[] Other (please specify)~ __________________________________ ___

Name Date ________________________ _

Organization __ __

Street __ ___

City _______________ State _______ Zip Code ____________ _
or

Country

- - - - -Do Not Tear - Fold Here and Tape - - - - - -

~DmDDma IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
146 MAIN STREET ML 5-5/E39
MAYNARD, MASSACHUSETTS 01754

I

I
I

- ---l

No Postage

Necessary

if Mailed in the

United States

I
I

- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - -- - - - - - - .-,

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	replyA
	replyB

