

MSGDATA

8.3 Data Messages

SUBTYPE (3B) B

Subtype
Type (Bits)

0 4

5

6

5
5
6

1 4-5

6

2 4-6

Is the message subtype - used to
modify TYPE field.

Bit set tol
Meaning

0 Data Segment
1 Interrupt or Link Service
1 Beginning-of-Message

segment (bit 4 = 0)
1 End-of-Message

segment (bit 4 = 0)
0 'Link Service (bit 4 = 1)
1 Interrupt (bit 4 = 1)
0 reserved (bit 4 = 1)

0 Data Acknowledgment
1 Other-Data Acknowledgment
2 Connect Acknowledgment
3 reserved
0 reserved

control type (binary) :

o No Operation (included for
compatibility with NSP 3.1)

1 Connect Initiate
2 Connect Confirm
3 Disconnect Initiate
4 Disconnect Confirm
5-7 reserved

Is the remainder of an NSP message (Sections
8.3 - 8.5).

There are three types of data messages:

1. Data Segment messages (Section 8.3.1)

2. Interrupt messages (Section 8.3.2)

3. Link Service messages (Section 8.3.3)

8.3.1 Data Segment Message - A Data Segment message has the following
form:

I MSGFLG I DSTADDR SRCADDR I [ACKNUM] I SEGNUM I DATA I
MSGFLG (EX) : BM Represents the message identifier. The format of

this field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 EOM I BaM I 0 0 0 0 01

88

DSTADDR (2)

SRCADDR (2)

B

B

ACKNUM (2) : BM

SEGNUM (2) BM

DATA

8.3.2 Interrupt
form:

DSTADDR

MSGFLG (EX) : BM

where:

EOM (lB) BM Is the end-of-message indicator

o not-end-of-message
1 end-of-message

BaM (lB) BM Is the beginning-of-message indicator

o not-beginning-of-message
1 beginning-of-message

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Data Segment message
successfully received and
acknowledgment (ACK) or a negative
(NAK). This field is optional.
indicated by bit 15 being set.
this field is as follows:

Bit: 15 14 12 11

a positive
acknowledgment

Its presence is
The format for

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message being
acknowledged.

Is the number of this Data Segment message.
format for this field is:

Bit: 15 12 11

Set to: NUMBER

The

Is the data to be sent over a logical link. This
field is transparent and may use all 8-bits of
each byte. The length of the data field is
ascertained from the total length of the Data
Segment message and consists of all bytes in the
message after the SEGNUM field.

Message - The Interrupt message has the following

SRCADDR [ACKNUM] SEGNUM

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 1 1 0 0 0 0

89

DSTADDR (2)

SRCADDR (2)

B

B

ACKNUM (2) : BM

SEGNUM (2) BM

DATA

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is optional.
Its presence is indicated by bit 15 being set.
The format for this field is as follows:

Bit: 15 14 12 11

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message
being acknowledged.

Is the number of this Interrupt message.
format for this field is:

Bit: 15 12 11

Set to: NUMBER

The

Is the interrupt data. This field is transparent
and may use all 8-bits of each byte. The length
of the data field is ascertained from the total
length of the Interrupt message and consists of
all bytes in the message after the SEGNUM field.
Interrupt data may be no longer than 16 bytes.

8.3.3 Link Service Message - The Link Service message has the
following form:

DSTADDR

MSGFLG (EX) : BM

DSTADDR (2) B

SRCADDR (2) B

SRCADDR [ACKNUM] SEGNUM

Is the message identifier.
field is:

Bit: 7 6 5 4 3

Set to: 0 0 0 1 0

LSFLAGS I FCVAL I
The format of this

2 1 0

0 0
1 01

Is the logical link destination address.

Is the logical link source address.

90

ACKNUM (2) BM

SEGNUM (2) BM

LSFLAGS (EQ) BM

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is optional.
Its presence is indicated by bit 15 being set.
The format for this field is as follows:

Bit: 15

Set to: 1

where:

QUAL (3B) B

14 12 11

QUAL NUMBER

Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

NUMBER (12B) : B Is the number of the message
being acknowledged.

Is the number of this Link Service message. The
format for this field is:

Bit: 15 12 11 0

Set to: 0 NUMBER

Is the Link Service flag s. The format for this
field is as follows:

Bit: 7 6 543 2 1

Set to: I 0 I 0 I 0 I 0 I
where:

FCVAL INT (2B) B

FC MOD (2B) B

91

FCVAL INT FC MODI

Is the interpretation
FCVAL field

of

o data segment or message
request count

1 interrupt request count
2-3 reserved

Is the flow control
modification. If FCVAL INT =
0, then this field has the
following contents.

o no change
1 do not send data
2 send data
3 reserved

If FCVAL INT = 1, then this
field is 0 on transmit and
ignored on receive.

FCVAL (1) B Is the number of Session Control messages, Data
Segment messages, or Interrupt messages that the
sender of the message can receive in addition to
those previously requested by a Link Services
message. This number is added to the request
count which is maintained by NSP, to determine how
many Session Control messages, Data Segment
messages, or Interrupt messages will be
transmitted via a logical link.

NOTES

1. If FCVAL INT = 0, the message is a Data Request message.

2. If FCVAL INT
message.

1, the message is an Interrupt Request

3. The transmit request count for segment flow control may be
negative. (Negative values are presented in 2's complement
form in the FCVAL field.)

4. If FCVAL is for Session Control message or Interrupt message
flow cQntrol, the count must be positive. Use 0 if there is
to be no change in the count.

8.4 Acknowledgment Types

There are three types of acknowledgment messages:

1. Data Acknowledgment message (Section 8.4.1)

2. Other-Data Acknowledgment messages (Section 8.4.2)

3. Connect Acknowledgment messages (Section 8.4.3)

8.4.1 Data Acknowledgment Message - The Data Acknowledgment message
has the following form:

IMSGFLG I DSTADDR I SRCADDR I ACKNUM I
MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

ACKNUM (2) : BM

Is the message identifier.
field is:

Bit: 7 6 5 4 3

Set to: 0

The format of this

2 1

1

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Data Segment message
successfully received and a positive
acknowledgment (ACK) or a negative acknowledgment
(NAK). This field is required. The format for
this field is as follows:

Bit: 15 14 12 11

Set to: 1 QUAL NUMBER

92

where:

QUAL (3B) B

NUMBER (12)3)

Is an acknowledgment qualifier.

o ACK
1 NAK
2-7 reserved

B Is the number of the message
being acknowledged.

8.4.2 Other-Data Acknowledgment Message - The
Interrupt and

Other-Data
Link Service Acknowledgment message acknowledges

messages. It has the following form:

I MSGFLG I DSTADDR I SRCADDR I ACKNUM I
MSGFLG (EX) : BM

DSTADDR (2) B

SRCADDR (2) B

ACKNUM (2) : BM

Is the message identifier.
field is:

The format of this

Bit: 7 6 5 4 3 2 1 0

Set to: I 0 0 0 1 0 1 0 0

Is the logical link destination address.

Is the logical link source address.

Is the number of the last NSP Interrupt or Link
Service message successfully received and a
positive acknowledgment (ACK) or a negative
acknowledgment (NAK). This field is required.
The format fO t this field is as follows:

Bit: 15 14 12 11 0

Set to: 1 QUAL NUMBER

where:

QUAL (3B) B Is an acknowledgment qualifier.

0 ACK
1 NAK
2-7 reserved

NUMBER (12B) B Is the number of the message
being acknowledged.

8.4.3 Connect Acknowledgment Message - The Connect Acknowledgment
message has the following form:

I MSGFLG I DSTADDR I
MSGFLG (EX) BM Is the message identifier. The format of this

field is:

Bit: 7 6 5 4 3 2 1

Set to: 0 1 1

DSTADDR (2) B Is the logical link destination address.

93

8.5 Control Messages

There are five types of control messages:

1. No Operation messages (Section 8.5.1)

2. Connect Initiate messages (Section 8.5.2)

3. Connect Confirm message (Section 8.5.3)

4. Disconnect Initiate messages (Section 8.5.4)

5. Disconnect Confirm messages (Section 8.5.5)

8.5.1 No Operation Message

I MSGFLG TSTDATA

where:

MSGFLG (EX) BM Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 0 0 1 0 0
1 01

TSTDATA Is any data.

8.5.2 Connect Initiate Message - The Connect Initiate message has the
following form:

DSTADDR

where:

MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

SERVICES (EX) BM

SRCADDR SERVICES SEGSIZE DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 0 0 1 1 0 0 0

Is the destination logical link address. This
address will be 0 to allow the receiving NSP to
assign a number dynamically.

Is the source logical link address. This number
is assigned by the sending NSP and will be used by
the destination to address all messages for this
logical link. The value 0 is illegal.

The requested services. The format for this field
is as follows:

Bit: 7 6 5 4 3 2 I 0

Set to:
1

0 I 0 0 0 1 FCOPT 10 III

94

INFO (EX) BM

SEGSIZE (2) B

DATA-CTL

where:

FCOPT (2B) B Are the flow control options.

o none
1 segment request count
2 Session Control message

request count
3 reserved

Is the information. The format for this field is
as follows:

Bit: 7 6 5

Set to: 0

where:

VER (2B) B

4 3 2 1

VER

Is the NSP version.

o version 3.2
1 version 3.1
2,3 reserved

Is the maximum size (in bytes) of the data in a
Data Segment that can be received on this logical
link.

Is the Connect Initiate data field. The length of
this field is ascertained from the total length of
the Connect Initiate message and consists of all
bytes in the message after the SEGSIZE field.

8.5.3 Connect Confirm Message - The Connect Confirm message has the
following form:

DSTADDR

where:

MSGFLG (EX) BM

DSTADDR (2) B

SRCADDR (2) B

SRCADDR SERVICES SEGSIZE DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to:
1

0 I 0 1 0 1 0 0 I 01

Is the destination logical link address. This
will not be 0. It is the value of the SRCADDR
field from the Connect Initiate message.

Is the source logical link address. This number
is assigned by the sending NSP and will be used to
address all messages for this logical link. The
value 0 is illegal.

95

SERVICES (EX)

'INFO (EX) BM

SEGSIZE (2) B

DATA-CTL (1-16)

BM Are the requested services. The format for this
field is as follows:

Bit: 7 6 5

Set to: eJ

where:

FCOPT (2B) B

4 3 2

FCOPT

Are the flow control options.

121 none
1 segment request count
2 Session Control message

request count
3 reserved

Is the information. The format for this field is
as follows:

Bit: 7 6 5

Set to:1 121 121 121

where:

VER (2B) B

4 3 2 1

121 121 121 VER

Is the NSP version.

121 version 3.2
1 version 3.1
2,3 reserved

121

Is the maximum size (in bytes) of the data in a
Data Segment that can be received on this logical
link.

B Is user-supplied data.

8.5.4 Disconnect Initiate Message - The Disconnect Initiate message
has the following form:

DSTADDR

where:

MSGFLG (EX)

DSTADDR (2) B

SRCADDR (2) B

REASON (2) : B

DATA-CTL (1-16)

BM

B

SRCADDR REASON DATA-CTL

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 121

Set to: 121 eJ 1 1 1 121 121 I 1211

Is the logical link destination address.

Is the logical link source address.

Is the first two bytes of Session Control
disconnect data.

Is the remaining bytes of Session Control
disconnect data.

96

8.5.5 Disconnect Confirm Message - A Disconnect Confirm message has
the following form:

IMSGFLG DSTADDR SRCADDR REASON I
where:

MSGFLG (EX) BM

DSTADDR (2)

SRCADDR (2)

REASON (2) : B

B

B

1. If REASON

2. If REASON

3. If REASON

Is the message identifier. The format of this
field is:

Bit: 7 6 5 4 3 2 1 0

Set to: 0 1 0 0 1 0 0 I 01

Is the logical link destination address.

Is the logical link source address.

Is the disconnect reason.

NOTES

1, the message is a No Resources message.

42, the message is a Disconnect Complete message.

41, the message is a No Link Terminate message.

97

APPENDIX A

LOGICAL LINK ADDRESS ASSIGNMENT/DEASSIGNMENT ALGORITHM EXAMPLE

A logical link address is a l6-bit value. When an NSP module opens a
port, it assigns a logical link address. When an NSP module closes a
port, it deassigns a logical link address. The algorithm that assigns
and deassigns these addresses is implementation-dependent. There are
two requirements for this algorithm:

1. It must not assign a given l6-bit address to two ports
concurrently.

2. It must not reassign a given l6-bit address for a long perioJ
following its deassignment.

In addition, the algorithm should operate with a modest
memory, trading off the amount of memory for the
reassignment.

amount
period

of
of

The algorithm described in this appendix is a sample algorithm that
meets these requirements. No implementation of NSP is required to use
this algorithm, however. Any algorithm that meets the two
requirements stated above 1S acceptable. The sample algorithm
restricts the number of outstanding, assigned link addresses.

A.l Interface to the Algorithm

The sample algorithm is implemented by a module that accepts three
calls: one to assign a link address, one to deassign a link address,
and one to initialize the module.

The following routine assigns a link address.

GET-ADDRESS

returns: success - a link address is returned
failure - too many link addresses currently assigned

The following routine deassigns a link address.

RELEASE-ADDRESS (address)

address: the link address to be deassigned

returns: success
failure - link address was not assigned

The following routine initializes the algorithm module.

98

INITIALIZE-ADDRESS

NSP calls this routine during NSP initialization. The routine allows
the algorithm module to meet the second requirement above even across
NSP initializations.

A.2 Data Structures

This algorithm forms link addresses of the following form:

random part index part

r bits i bits

where:

r+i = 16

No two concurrently assigned link addresses will contain the same
value in the low i bits.

Furthermore, the algorithm restricts the number of addresses that can
be assigned concurrently to open ports to:

2i_l

The data base consists of two vectors and three variables. These are
the following.

1. Boolean vector INUSE

This vector contains 2i_l bits. There is one bit for each
possible value in the index part of a link address.

A bit is set to "true" if the corresponding index is in use
(i.e., is in the lower i bits of an assigned link address).
The bit is set to "false" otherwise.

2. vector RANDOM

This vector contains 2i_l entries, each r bits wide. An
element of the vector contains the random part of the last
link address assigned with the index part equal to the index
of this element in the vector.

3. Variable NUMBER-ASSIGNED

This variable contains the number of link addresses currently
assigned. It has a value in the following range:

o <= NUMBER-ASSIGNED <= 2i_l

i When NUMBER-ASSIGNED = 2 -1, then no more link addresses may
be assigned.

99

4. Variable INDEX

This variable contains the index value portion of the last
link address that was assigned.

5. Variable TEMP

This variable is used to temporarily hold the index value
portion of a link address that is being deassigned and in
module initialization.

A.3 Algorithm Operation

This algorithm operation
language that was used
this document.

is represented in the same high-level
to represent NSP's operation in the body of

GET-ADDRESS:

If (NUMBER-ASSIGNED (2 i "-I) then
NUMBER-ASSIGNED (-- NUMBER-ASSIGNED + 1
While (INUSE(INDEX) true) do ",

INDEX (-- INDEX + 1 (mod 21)
Endwhile
RANDOM(INDEX) (-- RANDOM (INDEX) + 1 (mod 2r)
INUSE(INDEX) (-- true
random part of link address (-- RANDOM(INDEX)
index part of link address (-- INDEX
return success

Else
return failure

Endif

RELEASE-ADDRESS:

TEMP (-- index part of the link address
If (INUSE(TEMP) true

and RANDOM(TEMP) = random part of link address) then
INUSE(TEMP) (-- false
NUMBER-ASSIGNED (-- NUMBER-ASSIGNED - 1
return success

Else
return failure

Endif

INITIALIZE-ADDRESS:

TEMP (-- 0
While (TEMP (2 i) do

INUSE(TEMP) (-- false
RANDOM(TEMP) (-- random number (mod 2r)
TEMP (-- TEMP + 1

Endwhile
INDEX (-- random number (mod 2i)
NUMBER-ASSIGNED (-- 0

100

APPENDIX B

SEGMENTATION MODULE EXAMPLE

This Appendix models a segmentation module. The model supports the
queuing of multiple outstanding transmit requests for each port.

B.l Data Structures

To support this model, each port requires the addition of the
following items:

Port Additions

1. A request queue head.

2. A segment queue head.

3. The segment number of the last segment removed from the
segment queue (initial value = 0)

4. A Boolean flag to indicate if the next segment placed on the
segment queue will be a beginning-of-message segment (initial
value = true).

This model also requires a pool of queue control blocks to hold
information about queued transmit requests and outstanding segments.

When a transmit request from Session Control is accepted by the
segmentation module, a queue control block is added to the request
queue for the port. It contains the following information:

Request Queue Control Block

1. Buffer descriptor from the request.

2. Xmtflag from the request.

3. Highest segment number corresponding to the request.

4. Status ("incomplete" or "complete").

When the data from a single transmit request is segmented, each
segment is assigned a queue control block that is added to the segment
queue for the port. Each segment queue control block contains the
following information:

Segment Queue Control Block

1. Buffer descriptor for the segment.

2. End-of-message flag.

101

3. Beginning-of-message flag.

4. Segment number assigned to the segment.

The queue pointer cells required in these blocks and in the queue head
information in the port are not described but are assumed to allow
finding the first control block in each queue, the last control block
on each queue, and the control block queued after a given control
block.

B.2 Operation

DATA-XMT

This routine operates as follows.

1. There must be enough queue control blocks available from the
queue control block pool to queue one block to the port's
request queue and one or more blocks to the port's segment
queue. The total number of blocks required is equal to the
length of the transmit buffer divided by SIZEseg (for the
segment queue) plus one (if there is a remainder from the
pre v i a us d i vis ion) pI usa n e (for the r e que s t que u e) . I f
there aren't enough blocks available from the pool, the
DATA-XMT call is returned as "buffer not queued. ,I

2. If the DATA-XMT call is not rejected y add one control block
to the request queue. Store the buffer descriptor and
xmtflag values from the call in the block. Set the status to
"incomplete."

3. Add a control block to the segment queue. The buffer
descriptor for the control block contains the address from
the DATA-XMT call and a length equal to the minimum of the
length from the call and SIZEseg. Set the
beginning-of-message flag to true only if the
beginning-of-message flag in the port is true. Set the
segment number to the segment Qumber of the preceding block
on the queue plus one (if there is a preceding block).
Otherwise set the segment number to that contained in the
port descriptor plus one.

4. Add the remaining control blocks (if any) to the segment
queue. The buffer descriptor reflects the segmentation of
the transmit buffer into segments. Each segment except,
perhaps, the last is as long as the previous segment. Assign
each block a segment number equal to that of the preceding
block on the queue plus one. Clear the end-of-message and
beginning-of-message flags of each block, except, perhaps,
the last one. The last block has the end-of-message flag set
only if the xmtflag value in the DATA-XMT call indicates
end-of-message.

5. Give the request queue control block queued in step 2 the
segment number of the last block on the segment queue.

102

XMT-POLL

This routine examines the first block on the request queue. If the
status is "complete," remove the block from the queue. Return the
block to the pool. Give a "transmit complete" return with the buffer
descriptor from the block. If the status is not "complete," give a
"no transmit complete" return.

GET-SEGMENT

This routine examines the segment queue to find an entry with a
matching segment number. The buffer descriptor, end-of-message flag,
and beginning-of-message flag are returned.

ACK-SESSION-CONTROL

This routine operates as follows.

NM

1. Examine the first block on the segment queue. If the segment
number from the call is less than the segment number (modulo
4096) in the block, go to step 3. Otherwise, go to step 2.

2. Remove the block from the queue and return the block to the
pool. Store the segment number from the block in the port.
Go to step 1.

3. Examine the request queue. Mark every entry on the queue
containing a segment number less than (modulo 4096) or equal
to the segment number from the call "complete." Make a
return.

This routine identifies the entries on the segment queue from the
entry with a segment number equal to the first argument in the call up
to the entry e~ual to the second argument in the call, inclusive. It
counts the number of these entries that have the end-of-message flag
set and returns this value.

LAST

Return the segment number of the last block on the segment queue, if
such a block exists. Otherwise, return the segment number from the
port.

103

APPENDIX C

REASSEMBLY MODULE EXAMPLE

This Appendix contains a model of a reassembly module. This model
supports the queuing of multiple outstanding receive requests for each
port. It does not support the use of either cache or commit buffers.

C.l Data Structures

To support this model, each port requires the addition of the
following items:

Port Additions

• A request queue head

• A variable (FLOWreass) used to contain changes to the request
count for the port (initial value = 0)

• A variable (FLOWhigh) to contain the highest segment number
(modulo 4096) stored in a session control receive buffer
(initial value = 0)

• A Boolean variable (FLOWdiscard) to indicate if received
segments are to be discarded (initial value = false)

This model also requires a pool of queue control blocks to hold
information about queued receive requests. When a receive request
from session control is accepted by the reassembly module, a queue
control block is added to the request queue for the port. It contains
the following information:

Request Queue Control Block

• Buffer descriptor from the request

• Temporary buffer descriptor to handle the reception of
multiple segments into the same receive buffer

• Rcvflag from the request

• Status ("incomplete,"
truncation," "no
EOM -- truncation").

"EOM
EOM

104

no
no

truncation," "EOM --
truncation," "no

C.2 Operation

In the following descriptions, the checking for invalid port states is
not described since it is assumed to be clear from the body of the
specification.

DATA-RCV

This routine operates as follows.

1. If no truncation was spe~lfied and the buffer is smaller than
NSPbuf, reject the call.

2. If no more queue control blocks are available, reject the
call.

3. Otherwise, store the call parameters in a queue control
block. Set the temporary buffer descriptor equal to the
request buffer descriptor. Add the block to the receive
request queue.

4. If rcvflag indicated no truncation, increment FLOWreass by
one. Otherwise, compute the smallest integer greater than or
equal to the length of the receive buffer divided by NSPbuf.
This is how many segments will fit into the buffer. Add the
result to FLOWreass.

RCV-POLL

If the state of the port is DISCONNECT-NOTIFICATION,
DISCONNECT-COMPLETE, or CLOSE-NOTIFICATION, set the status of all
"incomplete" control blocks on the request queue to either "no
EOM no truncation" (if rcvflag was "no truncation allowed") or " no
EOM -- truncation" (if rcvflag was "truncation allowed") .

Examine the first block on the receive queue. If it has a value other
than "incomplete, jl remove the block from the queue. Return the block
to the control block pool. Return the request buffer descriptor and
status value to Session Control.

If the return block has the value lIincomplete," give a "no buffer
returned" indication to Session Control.

SPECULATE-NUMBER

Return the contents of FLOWreass and clear FLOWreass.

COMMIT-NUMBER

Return the contents of FLOWhigh.

STORE-SEGMENT

The description of this routine uses a colloquial, high-level
language. The terms NUMBER and EOM represent the segment number and
end-of-message flags, respectively, passed to this routine by the data
receive process.

If (NUMBER = FLOWhi~h + 1) then
Find the first ·incoffiPlete-aueued receive reauest
If (such a reauest exists) then

FLOWhi~h (-- FLOWhi~h + 1
If (rcvfla~ = -no truncation-) then

Put received data in front of buffer

105

Set status usin~ EOM
Else

If (FLOWdiscard) then
If (EOM set) then

FLOWdiscard (-- false
Else

FLOWreass (-- FLOWreass + 1
Endif

Else
Put data (that will fit) in buffer (NOTE 1)
Adjust temporar~ buffer descriptor to reflect storaSe
If (data fit in buffer) then

If (EOM set) then
Calculate space loss (NOTE 2)
FLOW reass (-- FLOWreass -- space loss
Set status to -EOM -- no truncation-

Endif
Else

Set status to -EOM -- truncation­
If (EOM not set) then

FLOWreass (-- FLOWreass + 1
FLOWdiscard (-- true

Endif
Endif

Endif
Endif

Endif
Endif

NOTES

1. Use the temporary buffer descriptor.

2. The space loss is equal to the number of segments that were
requested to fill the buffer, but for which there will be no
receive space due to the impending return of the buffer
partially filled.

106

APPENDIX D

TRANSMIT ALLOCATION MODULE EXAMPLE

This Appendix contains a model of a' transmit allocation module.

D.l Data Structures

This model requires a list structure. Each element in the list
contains a port identifier. This list must be large enough to hold
one element for each port that NSPcan handle.

D.2 Primitive Functions

This model assumes that the functions described below are available.

List Manipulation Functions

1. An element can be added to a list.

2. An element, selected by either index or entry contents, can
be removed from the list.

3. The contents of the first list entry can be read.

Random Number Generation

A random number in a selected range can be obtained.

D.3 Operation

The following description of the transmit allocation module operation
uses a high-level, colloquial language.

ALLOCATE (port id)

Add an element with port id to the list.

CHECK-ALLOCATE (port id)

If (port id = contents of first list entr~) then
return success

Else
return failure

Endif

107

DEALLOCATE (port id)

Remove the list entrw containin~ port id
Call REALLOCATE

REALLOCATE (port id)

If (list not emptw) then
Get random index (NOTE)
Swap first and indexed entries

Endif

NOTE

This function obtains a random number in
the range (1, length of list).

108

APPENDIX E

DIFFERENCES BETWEEN NSP V3.2 AND NSP V3.1

There are some differences between NSP version 3.2 and NSP version
3.1. The differences are of two types: interface differences and
protocol differences.

E.l Interface Differences

version 3.2 of NSP does not guarantee that a connect request issued by
one Session control module will be delivered to the destination
Session Control module. This guarantee was inherent in the
point-to-point operation of a DECnet product supporting version 3.1 of
NSP. Version 3.2 of NSP cannot support this guarantee while remaining
compatible with the NSP 3.1 protocol and maintaining the 3.1 guarantee
that no more than one connect request will be delivered to a
destination Session Control module.

E.2 Protocol Differences

One protocol difference between v~rsion 3.1 and version 3.2 is in the
operation of node-to-node initi~lization. With the introduction of
version 3.2, this function (which was included in version 3.1) has
been moved to the Transport layer of the DIGITAL Network Architecture.
See the DNA Transport Functional ~pecification for a discussion of
node-to-node InItIalIzatIon.

Two other differences are handled by the requirement that a version
3.2 implementation modify its operation when communicating with a
version 3.1 implementation. Firs~, version 3.2 of NSP specifies that
a message must be sent in response to a received Connect Confirm
message. A version 3.1 NSP was not required to'send such a response
message. Such a response message is required in a network with a
Transport layer that may lose packets containing NSP messages
(although it was not required in the point-to-point networks in which
version 3.1 NSPs reside). An NSP 3.2 implementation does not require
this response from an NSP 3.1 implementation.

Second, version 3.2 of NSP specifies that a Disconnect Confirm message
may be sent in response to a received Connect Initiate message only if
the receiving NSP has insufficient resources for supporting a new
logical link. A Disconnect Initiate message is specified as the
response to all other rejections of the incoming connect request.

109

version 3.1 of NSP allowed a Disconnect Confirm response for several
reasons that are actually Session Control rejects in version 3.2
terms. For example, if a destination end user does not exist, a
version 3.2 node's NSP will receive a connect reject request from its
Session Control module and will generate a Disconnect Initiate message
to reject the connect request.

This change is required because a version 3.2 NSP will not retransmit
a Connect Initiate message (for the reasons given above in the
discussion about interface differences). Therefore, it is important
that a message sent in response to a received Connect Initiate message
be a message that requires an acknowledgment and can be retransmitted
after a timeout. Therefore, the Disconnect Initiate message is used
instead of a Disconnect Confirm. Sending a Disconnect Confirm message
would increase the probability that the Session Control module that
initially requested the connection would remain in a "connect
initiated" state indefinitely. An NSP 3.2 implementation will accept
a Disconnect Confirm message from an NSP 3.1 implementation in place
of a Disconnect Initiate after having sent a Connect Initiate message.

Versions 3.2 and 3.1 of NSP have several additional differences that
do not require special operation on the part of a 3.2 version of NSP.
These differences are summarized below.

• NSP 3.2 times out and retransmits Connect Confirm, Disconnect
Initiate, Data, Interrupt, and Link Service messages.

• NSP 3.2 allows the possibility that Session Control may
provide one or more receive buffers to be used for receiving
data from a collection of logical links.

• NSP 3.2 ignores a received Connect Initiate or Connect Confirm
message that contains an invalid SERVICES field. A version
3.1 implementation sends a Disconnect Confirm message in
response to such a received message and then destroys its end
of the corresponding logical link. A version 3.2 NSP,
receiving such a Disconnect Confirm message, will ignore the
message, thereby creating the same situation as when
communicating with another 3.2 NSP.

• NSP 3.2 never sends a Disconnect Initiate in response to a
message containing invalid values. NSP 3.2 always interprets
Disconnect Initiate messages received on a logical link in the
RUNNING state as resulting from a Session Control disconnect
or abort request. A version 3.1 of NSP may generate a
Disconnect Confirm message if it detects a protocol error.
This will be given to Session Control by a version 3.2 NSP as
a disconnect notification. Session Control may interpret the
reason for the disconnection from the REASON value carried in
the Disconnect Confirm message and given by NSP to Session
Control.

110

GLOSSARY

confidence

An NSP variable (CONFIDENCE) that indicates the probable
connectedness of the physical network supporting a logical link.

data flow

The movement of data from' a source Session Control to a
destination Se~sion Control. NSP transforms data from Session
Control transmit buffers to a, network form before sending it
across a logical link. NSP retransforms the data at the
destination from its network form to its receive buffer form.
Data flows in both directions (full-duplex) on a logical link.

datagram

A unit of data, including NSP control information, that is passed
to the Transport layer for transmission to a destination system.
When Transport adds its route header information, the unit
becomes a packet.

Data Lirik

The DNA layer below the Transport layer. The modules in the Data
Link layer manage physical channels and maintain data integrity.

delay factor

An NSP parameter (NSPdelay) that is multiplied by the estimated
round trip delay time to det~rmine the appropriate value for the
time to retransmit certain NSP messages.

delay weight

An NSP parameter (NSPweight) that is used to calculate a new
value of the estimated round trip delay. The old round trip
delay is weighted by a function of this statistical factor to
calculate the new round trip delay. If the delay weight is set
high, the retransmit time chqnges slowly. If the weight is set
low, the observed round trip time can change quickly if the
observed round trip delays have a wide variance, and thus the
retransmit time can change more rapidly. The default value for
delay weight is 3.

Disconnect Confirm

The NSP No Resources, Disconnect Complete, and No Link messages.
The REASON field in the Disconnect Confirm message (Section 8)
indicates which message applies.

111

error control

The NSP function that insures the delivery of NSP data messages.
It consists of an acknowledgment mechanism.

flow control

The NSP function that coordinates the flow of data on a
link in both directions, from transmit buffers to
buffers, in order to minimize communications overhead.

inactivity timer

logical
receive

A timer that, upon expiration, causes NSP to attempt to send a
Data Request message. NSP starts this timer when a logical link
enters the RUN/RUN state. Whenever NSP receives a Data Request
message for that logical link, NSP restarts this timer. The
purpose of the timer is to provide activity for ·the logical link
so that NSP can determine the probable connectedness of the
physical network supporting the link. The value for the timer is
an NSP parameter (TIMERinact).

Link Service

The NSP messages that carry flow control information., These
messages are the Data Request and the Interrupt Request messages.

logical link

A virtual channel between two Session Control implementations or
between two components of one Session Control implementation.
NSP's major function is the creation and destruction of logical
links.

logical link identification

A unique 32-bit number describing a logical link. This
identification consists of the two 16-bit addresses of the ports
at each end of the link.

Network Management

The DNA layer directly above the Session Control layer that
enables operator control over and observation of network
parameters and variables. Network Management also provides
down-line loading, up-line dumping, and testing functions.

node descriptor

A collection of variables and counters pertaining to
communications with a particular node. Some of the variables and
counters are the estimated round trip delay, traffic usage
counters, and error counters.

Other~Data

The NSP Data Request, Interrupt Request, and Interrupt messages.
These are all the NSP data messages other than Data Segment.
Because all Other-Data messages move in the same data subchannel,
it is sometimes useful to group them together.

112

port

A collection of control variables and parameters for managing
logical links. Each logical link has a port at each end. Each
NSP at each node has a numer Of available ports. When Session
Control requests a logical link or requests a port be opened to
receive an incoming connect request, NSP allocates a port if
sufficient resources are available.

reassembly

The ordering of received data segments by NSP into numbered
sequence for placement into Session Control receive buffers.

request count

This term has two different definitions in the document. 1)
Variables (FLOWrem.dat and FLOWrem.int) that NSP uses to
determine when to send data. 2) Values sent in Link Service
messages. The flow control mechanism adds the request counts
received in Data Request and Interrupt Request (Link Service)
messages (definition 2, above) to the request counts it maintains
(definition 1, above) to determine when to send data.

retransmission

The resending of NSP data messages that have not been
acknowledged within a certain period of time. This is part of
NSP's error control mechanism.

retransmission counter

An NSP variable (COUNTretrans) that contains a count of message
timeouts for Connect Confirm, Disconnect Initiate, Data Segment,
Link Service, and Interrupt messages. NSP compares this variable
with the retransmit threshold to calculate the confidence
variable.

retransmit threshold

An NSP variable (NSPretrans) equal to the maximum number of
successive times a retransmission occurs with no intervening,
received acknowledgment before NSP decides that the physical
network supporting a logical link has failed. NSP compares the
retransmit threshold with the. retransmission counter to determine
the value of the confidence variable.

round trip delay

An NSP parameter (NODEdelay) that represents the current
estimated time for an acknowledgment to be received for an NSP
message. This parameter is calculated by a formula described in
Section 4.7.6.

segment

The data carried in a Data Segment message. NSP divides the data
from Session Control transmit buffers into numbered segments for
transmission by Transport.

segmentation

The division of normal data from Session Control transmit buffers
into numbered segments for transmission over logical links.

113

Session Control

The DNA layer directly above NSP. Session Control defines the
system-dependent aspects of logical link communication. Session
Control provides functions such as name to address translation,
process addressing, and in some systems, access control.

subchannel

A logical communications path within a logical link that handles
a defined category of NSP data messages. Because Data Segment
messages are handled differently from Other-Data messages, the
two types of messages can be thought of as traveling in two
different subchannels.

Transport

The DNA layer directly below NSP that provides NSP with routing,
congestion control, and packet lifetime control services.

114

· Q)
c

.~
..c

0>
C o
o

.....
j
o
Q)
en
o
Q)

0::::

DECnet DIGITAL
Network Architecture
Network Services Protocol
Functional Specification (NSP)
AA-Kl76A-TK

READER'S COMMENTS

NOTE: This form is for documept comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number .

Please indicate the type of reader that you most nearly represent.

[J Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[J Student programmer
[] Other (please specify)~ __________________________________ ___

Name Date ________________________ _

Organization __ __

Street __ ___

City _______________ State _______ Zip Code ____________ _
or

Country

- - - - -Do Not Tear - Fold Here and Tape - - - - - -

~DmDDma IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
146 MAIN STREET ML 5-5/E39
MAYNARD, MASSACHUSETTS 01754

I

I
I

- ---l

No Postage

Necessary

if Mailed in the

United States

I
I

- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - -- - - - - - - .-,

