
DECnet-DOS
Programmer's Reference Manual
OrderNo.AA-EB46B-TV

April 1986

This manual contains design considerations which are critical to early
stages of development. It also details network programming calls used in
the creation of DECnet-DOS applications.

Supersession/Update Information:

Operating Syst~m and Version:

Software Version:

This is a revised manual.'

MS-DOS V2.11
PC DOS V2.10
PC DOS V3.10

DECnet-Rainbow V1.1
DECnet-DOS V1.1

AA-EB46B-TV
First Printing, April 1986

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or
copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not suppl ied
by Digital or its affiliated companies.

Copyright © 1986 by Digital Equipment Corporation

The postage-prepaid Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PDP ULTRIX-32
DECmate P/OS ULTRIX-32M
DECnet Professional UNIBUS
DECUS Rainbow VAX
DECwriter RSTS VAXcluster
DIBOL RSX VMS

~DmDDmD RT VT

MASSBUS ULTRIX Work Processor

MS™ and XENIX™ are trademarks of Microsoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.
PC/XT and Personal Computer AT are trademarks of International Business Machines
Corporation.

This manual was produced by Networks and Communications Publications.

Contents

Preface

1 Introduction to Network Programming

1. 1 Concepts. .. 1-4
1.1.1 Client and Server Tasks 1-4
1. 1.2 Sockets. .. 1-4
1. 1.3 Blocking and N onblocking I/O Operations. .. 1-6
1. 1. 4 Node Names and Addresses .. 1-6
1.1.5 Network Object Numbers and Task Names 1-6
1. 1.6 Access Control Information. 1-6
1. 1.7 Optional User Data. .. 1-6
1.2 FormsofTask-to-TaskCommunication 1-7
1.2. 1 Transparent Communication .. 1-7
1.2. 2 Nontransparent Communication 1-9
1.3 Task-to-task Communication Functions 1-9
1.3.1 Establishing a Logical Link 1-9
1.3.2 Sending Normal Data Messages. 1-12
1. 3.3 Receiving Normal Data Messages. .. 1-12
1.3.4 Out-of-BandMessages .. 1-13
1.3.5 Terminating Network Activity and Closing the Logical Link 1-14
1.4 Transparent File Access .. 1-16

2 Transparent File Access Operations

2.1 Introduction to Transparent File Access 2-1
2.2 Initiating Transparent File Access 2-2
2.2.1 Remote File Name ... 2-2
2.2.2 Access ControlInformation ... 2-2
2.3 File Characteristics. .. 2-3
2.3.1 File Attributes ... 2-3
2.4 Performing Data Conversions. .. 2-4
2.5 Converting Remote Input Files. .. 2-5
2.5.1 Binary Image Files ... 2-5

Contents-1

3

Contents-2

2.5.2
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.8
2.9
2.9.1

2.9.2
2.9.3
2.10
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.11.5
2.11.6
2.11.7
2.11.8
2.11.9

ASCII Files .. 2-5
Converting Remote Output Files. .. 2-6
ASCII Files .. 2-6
Image Files. .. 2-6
Using Network File Specifications for Network Access. 2-7
Node Specification .. 2-7
File Name Specifications .. 2-8
Passing User Parameters ... 2-8
Using the Transparent Network Task Control Utility. 2-8
Displaying Network Status of the Transparent File
Access Utility. .. 2-9
On-Line Help ... 2-10
Deinstalling TF A .. 2-10
TF A Programming Considerations 2-11
MS-DOS Function Requests. .. 2-11
Close ... 2-12
Create .. 2-13
Delete .. 2-15
Find First Matching File .. 2-16
Find Next Matching File .. 2-18
Load and Execute a Program 2-20
Open ... 2-21
Read ... 2-23
Write ... 2-25

Transparent Task-to-Task Communication

3.1 Transparent Task-to-Task Communication. .. 3-1
3.2 Transparent Communication Functions 3-1
3.2. 1 Initiating a Logical Link Connection 3-2
3.2.2 Handshaking Sequence for a Client Task 3-2
3.2.3 Handshaking Sequence for a Server Task 3-2
3.2.4 Exchanging Data Messages over a Logical Link. .. 3-2
3.2.5 Terminating the Logical Link .. 3-3
3.3 Creating a Transparent Communication Task 3-3
3.4 Network Task Specifications. .. 3-4
3.4.1 Node Specifications ... 3-4
3.4.2 Task Specifications. .. 3-5
3.5 MS-DOS Intercept Routine ... 3-6
3.6 Using the Transparent Network Task Control Utility 3-6
3.6.1 Displaying Status of the Transparent Task-to-Task Utility 3-6
3.6.2 On-Line Help .. 3-7
3.6.3 Deinstalling TTT .. 3-8
3.7 TTT Programming Considerations. .. 3-8
3.8 MS-DOS Function Requests for Transparent Task-to-Task

Communication. .. 3-8
3.8.1 Close. .. 3-9
3.8.2 Create/Open ... 3-10

4

5

3.8.3 Read ... 3-12
3.8.4 Write ... 3-13

C Language

4.1
4.1.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17

Creating the DECnet-DOS Programming Interface Library 4-1
DECnet-DOS Programming Considerations 4-2
How to Read the Socket Interface Call Descriptions.. 4-3
Understanding a SYNTAX Section 4-3
Socket Function Calls 4-5
Example Socket Interface Calling Sequence. 4-6
accept ... 4-7
bind ... 4-9
connect .. 4-11
getpeername ... 4-13
getsockname ... 4-15
listen ... 4-17
recv .. 4-19
sclose .. 4-22
select ... 4-23
send .. 4-26
setsockopt and getsockopt ... 4-29
shutdown .. 4-33
sioctl ... 4-34
socket .. 4-36
sread ... 4-38
swrite .. 4-40

DECnet Utility Functions

5.1
5.1.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14

Creating the DECnet-DOS Programming Interface Library. 5-1
DECnet-DOS Programming Considerations. 5-2
DECnet Utility Function Calls 5-4
bcmp .. 5-5
bcopy ... 5-6
bzero .. 5-7
dnet_addr. 5-8
dnet_conn 5-9
dnet_eof .. 5-13
dnet_getacc ... 5-14
dnet_getalias .. 5-16
dnetjtoa ... 5-17
dnet~nstalled ... 5-18
dnet~toa ... 5-19
dnet_path ... 5-20
getnodeadd .. 5-23
getnodeent ... 5-24

Contents-3

6

5.2.15
5.2.16
5.2.17

getnodename .. 5-26
nerror .. 5-27
perror .. 5-28

Assembly Language

6.1
6.2
6.3
6.3.1
6.4
6.4.1
6.5

6.5.1
6.5.2
6.6

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.7.10
6.7.11
6.7.12
6.7.13
6.7.14
6.7.15
6.7.16
6.7.17
6.7.18
6.7.19
6.7.20

DECnet-DOS Network Process 6-1
DEC net Network Process Installation Check 6-1
Using the 110 Control Block ... 6-4
110 Control Block Structure. .. 6-5
Using the Callback 110 Control Block 6-7
Callback 110 Control Block Structure 6-7
Blocking and N onblocking Synchronous 110 vs.
Asynchronous I/O. .. 6-9
Using a Callback Routine. .. 6-10
Setting the io_flags Field .. 6-10
Using Socket Numbers with DECnet Network Process
Interface Calls. 6-11
Network Process Interface Calls 6-11
ABORT ... 6-13
ACCEPT .. 6-15
ATTACH ... 6-21
BIND .. , 6-24
CANCEL .. 6-27
CONNECT ... 6-29
DETACH ... 6-34
DISCONNECT ... 6-36
LISTEN ... 6-38
LOCALINFO ... 6-40
PEERADDR .. 6-43
RCVD .. 6-46
RCVOOB ... 6-52
SELECT .. 6-57
SEND ... 6-62
SENDOOB ... 6-68
SETSOCKOPT and GETSOCKOPT 6-73
SHUTDOWN ... 6-80
SIOCTL .. 6-82
SOCKADDR .. 6-85

A Socket Definitions

A.l Communications Domain ... A-I
A.2 DECnetLayers .. A-I
A.3 DECnetObjects ... A-2
A.4 DECnetOptions ... A-3
A.5 Flag Options .. A-5

Contents-4

A.6 Logical Link States .. A-6
A.7 Maximum Number of Incoming Connection Requests A-6
A.S Socket Interface Options .. A-6
A.9 Socket Types .. A-7
A.I0 Defined Software Modules .. A-S

B Defined Data Structures and Data Members

B.l Access Control Information Data Structure B-2
B.2 Attach Data Structure ... B-2
B.3 'DECnet Node Address Data Structure B-3
B.4 Listen Data Structl.\re .. B-3
B. 5 Local Node Information Data Structure B-4
B.6 Logical Link Information Data Structure B-4
B.7 Optional User Data Structure .. B-5
B.S Select Data Structure .. B-5
B.9 Shutdown Data Structure ... B-6
B.I0 Socket Address Data Structure B-6
B.ll Socket I/O Status Data Structure B-7
B.12 Socket Option Data Structure B-7
B.13 User Access Control Information Data Structure B-S
B.14 User Defined Callback Routine Data Structure B-S
B.15 User Defined Data Buffer Structure B-S

c Summary of Error Completion Codes

D Summary of Extended Error Codes

E Data Access Protocol (DAP) Error Messages

E. 1 Overview .. E-l
E.l.l Maccode Field. .. E-l
E.l.2 Miccode Field ... E-2

F Transparent File Access Error Messages

G Transporting DECnet-DOS Programs

H DECnet-DOS Programming Examples

H.l Example Client Task Program H-l
H.2 Example Client Transparent Task-to-Task Program H-7
H.3 Example Server Task Program H -10

Contents-5

Figures

1-1
1-2

1-3
1-4
1-5
1-6
1-7
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
3-2
3-3
3-4
6-1
6-2
6-3
6-4

Tables

2-1
2-2
2-3
3-1

4-1
5-1
6-1
6-2
6-3
D-l
D-2
E-l
E-2
E-3

E-4

Contents-6

Personal Computers in an Ethernet LAN 1-3
Sockets: Basic Building Blocks for DECnet-DOS Intertask
Communication. .. 1-5
Transparent Task -to-Task Communication ... 1-8
Establishing a D ECnet Logical Link. .. 1-11
Sending Data Messages over a D ECnet Logical Link 1-12
Receiving Data Messages over a D Eenet Logical Link 1-13
Closing Down the DECnet Logical Link Connection. 1-15
Close Function Call .. 2-12
Create Function Call ... 2-13
Delete Function Call ... 2-15
Find First Matching File Function Call. 2-16
Find Next Matching File Function Call 2-18
Load and Execute a Program Function Call 2-20
Open Function Call .. 2-21
Read Function Call ... 2-23
Write Function Call .. 2-25
Close Function Request .. 3-9
Create/Open Function Request. 3-10
Read Function Request ... 3-12
Write Function Request .. 3-13
MS-DOS Interrupt Function Call 35H, Get Vector 6-2
Interrupt Function Ca1l6EH, IOCB Request 6-4
An IOCB Data Structure. .. 6-6
A CIOCB Data Structure ... 6-8

Remote Input File Transfers. .. 2-4
Remote Output File Transfers. .. 2-5
MS-DOS Function Requests for Transparent File Access 2-11
MS-DOS Function Requests for Transparent Intertask
Communication. .. 3-3
Socket Interface Calls .. 4-5
DECnet Utility Function Calls. .. 5-4
IOCB Header Data Members .. 6-5
IOCB Parameter List Members 6-5
Assembly Language Network Process Interface Calls 6-11
Extended Error Messages - Unable to Make a Connection ' D-l
Extended Error Messages - Disconnecting a Logical Link D-2
DAP Maccode Field Values .. E-2
DAP Miccode Values for Use with Maccode Values of 2, 10, 11. E-3
DAP Miccode Values for Use with Maccode
Values 0, 1,4,5,6,7 .. E-9
DAP Miccode Values for Use with Maccode Value 12 E-19

Preface

DECnet-DOS Version 1.1 is the collective product name for the following set of soft
ware products:

• DECnet-DOS Version 1.1 which runs on the IBM PC/XT, IBM Personal Computer
AT, and the IBM PC personal computers. These computers require the IBM DOS
operating system V2.10 and/or V3.10.

• DECnet-Rainbow Version 1.1 which runs on the Rainbow 100 computer systems.
The Rainbow 100 requires the MS-DOS operating system V2.11.

DECnet-DOS software, coupled with the appropriate hardware, allows a Rainbow 100
system to connect to a DECnet network, and to act as a DECnet Phase IV end node. It
also enables IBM personal computers: PC, PC/XT, and Personal Computer AT to con
nect to a DEC net network.

Manual Objectives

The DECnet-DOS Programmer's Reference Manual discusses software requirements
for creating D ECnet - DO S applications. It provides detailed information on the use of C
and MS-DOS system calls supported by DECnet-DOS. It discusses software consider
ations when developing DECnet-DOS applications in C or assembly programming lan
guages.

It also assumes that you are fanliliar with the DECnet and the MS-DOS environments.

Intended Audience

This manual is designed for application developers who are responsible for creating
DECnet-DOS applications.

Preface-1

Structure of the Manual

This manual consists of 6 chapters and 8 appendices.

• Chapter 1 presents an overview of the DECnet-DOS programming environment.
It discusses the features of DECnet task-to-task communication.

• Chapter 2 describes standard MS-DOS function calls used for transparent file
access.

• Chapter 3 discusses standard MS-DOS function calls used for transparent task-to
task communication.

• Chapter 4 details the use of C language for nontransparent task-to-task communica
tion. The socket interface calls are described in alphabetical order. Each descrip
tion includes the call's syntax, argument(s) and associated error/completion status
codes.

• Chapter 5 discusses socket interface utilities including those that access network
related databases.

• Chapter 6 discusses the use of assembly language for nontransparent task-to-task
communication. It details the network process function calls supported by DEC
net-DOS. They are described in a manner similar to the calls in Chapter 4.

This manual also contains 8 appendices:

• Appendix A lists common definitions for the socket network interface.

• Appendix B details the format of the data structures used with the socket interface
and assembly language network process interface calls.

• Appendix C lists error completion codes for DECnet-DOS task-to-task communica
tions and transparent file access operations.

• Appendix D summarizes the DECnet system error messages.

• Appendix E lists DAP error messages that provide extended error information to
transparent file access operations.

• Appendix F summarizes extended error messages for transparent file access opera
tions.

• Appendix G lists specific socket interface and assembly language network process
interface calls which cannot be transported to a DECnet-UL TRIX system.

• Appendix H contains a 'C' programming example using socket interface function
calls.

Preface-2

Graphic Conventions Used in This Manual

Convention Meaning

bold Words in boldface are considered to be literal and are typed
exactly as shown. The call name is always shown as literal.

monospaced
type

Monospaced type indicates examples of system output or user
input. System output is in black; user input is in red.

italics Italics in commands and examples indicate that either the sys
tem supplies or you should supply a value.

Control characters are shown as (CTRUx J, where x is an alpha
betic character. Press the appropriate key while you hold down
the (TIffiJ key.

#include <file.h> When #include appears in a SYNTAX section, it indicates an
include or header file. This type of file contains a collection of
definitions commonly used throughout a program. You must
include this file whenever it is required by a specific function
call.

Associated Documents

The following documents are included in the documentation set if you are using a Rain
bow computer.

• DECnet-Rainbow Installation Guide

• DECnet-DOS Getting Started

• DECnet-DOS User's Guide

• DECnet-DOS Programmer's Reference Manual

• DEGnet-DOS Mini-Reference Guide

• DECnet-Rainbow Release Notes

You should also have the following manuals available for reference:

The installation guide and introductory manuals for your computer.

The following documents are included in the documentation set if you are using an
IBM personal computer.

• DECnet-DOS Installation Guide

• DECnet-DOS Getting Started

• DECnet-DOS User's Guide

• DECnet-DOS Programmer's Reference Manual

• DECnet-DOS Mini-Reference Guide

• DECnet-DOS Release Notes

Preface-3

You should also have the following manuals available for reference:

The installation guide and introductory manuals for your computer.

Introduction

DECnet is the name given to a family of software and hardware communications prod
ucts that provide a network interface for Digital operating systems. The relationships
between the various network components are governed by a set of standards called the
Digital Network Architecture (DNA).

DECnet enables multiple computer systems to participate in communications and
resource sharing within a specific network. The individual computer systems, called
nodes, are connected by physical communications paths. Tasks that run on different
nodes and exchange data are connected by logical links. Logical links are temporary
software information paths established between two communicating tasks in a DECnet
network.

D ECnet - DOS is a nonrouting implementation of the Phase IV Digital Network Architec
ture. The DECnet-DOS software includes the following features:

• Task-to-task communication between a Rainbow 100 system and/or an IBM per
sonal computer: PC, PC/XT or a Personal Computer AT and any Phase III system
connected to a DECnet router, or any other Phase IV system.

• Limited network management and maintenance functions.

• Transport facilities that permit programs to access remote files.

• Virtual disk and printer, and remote terminal capabilities.

• Mail utility that lets you send messages and text files to other nodes in the network.

• Provides file access, for other users in the network, to the files local to your per
sonal computer.

Preface-4

1
Introduction to Network Programming

DECnet-DOS allows Rainbow 100 personal computers, and IBM personal computers:
PC, PC/XT and Personal Computer AT to participate as end nodes in DEC net computer
networks. DEC net-DOS nodes can either connect directly to an Ethernet local area net
work, or to an adjacent routing node. The DEC net-DOS software product offers the
following set of functions:

• Task-to-task communication. Task-to-task communication is a feature common
to all DECnet implementations. It allows tasks or application programs to commu
nicate with each other. Cooperating tasks on different nodes issue DECnet calls
which enable them to exchange data over a logical link.

DECnet-DOS allows you to create C and assembly language programs that use non
transparent task-to-task communication functions. A set of DECnet utility func
tions enable you to access the network node database and manipulate the data.

DECnet-DOS supports the DECnet-UL TRIX task-to-task network communica
tions interface. Any DECnet-DOS C program, using compatible DECnet-ULTRIX
network interface calls, can be transported to DECnet-UL TRIX systems. (See
Appendix G for possible exceptions.)

A simpler programming interface allows DECnet-DOS tasks to exchange data with
a remote network program. To perform transparent operations, tasks use standard
MS-DOS I/O system calls.

• Network Resource Access. DECnet-DOS offers a set of utilities that allow a user
to access network resources. Using a DECnet-DOS utility, files can be transferred
between a Rainbow or an IBM PC, PC/XT, and PC AT computers, and another node
in the network. Transparent file access is also available to a DECnet-DOS task by

1-1

adding network location information to an MS-DOS path name string. Accessing
remote DECnet files is accomplished with standard MS-DOS I/O system function
requests.

With DECnet-DOS, users can establish a virtual terminal connection to a multi
user remote DECnet system. (The remote system must provide similar support.)
This feature allows for sharing of resources and application development tools of
larger DECnet systems.

DECnet-DOS provides the capability to access remote network devices. A utility
program allows you to share remote printers and disks as if they were directly con
nected to your personal computer.

• Network Management. Limited network management is available with DECnet
DOS. This feature serves three primary functions: to configure a DECnet-DOS
node, display statistical and error information, and test the operation of the net
work connection.

Figure 1-1 shows personal computers running DECnet-DOS in an Ethernet local area
network.

1-2 DECnet-DOS Programmer's Reference Manual

PC RB100+

VAX-11/750

LEGEND

ETHERNET COAXIAL CABLE

PRO 380

DEUNA DEeNA

PDP-11/73 PRO 350

RB100+ PC

Asynchronous Line

Asynchronous Telephone Line

Figure 1-1: Personal Computers in an Ethernet LAN

Introduction to Network Programming 1-3

1 .1 Concepts

Before you can create a DECnet-DOS application, you need to understand the follow
ing programming concepts:

• Client and server tasks. Client and server tasks communicate through sockets.
These tasks exchange data over logical links.

• Sockets. Sockets are the basic building blocks for DECnet-DOS task-to-task com
munication. They are created by tasks for sending and receiving data. They contain
information about the status of the logical link connection.

1.1.1 Client and Server Tasks

DECnet-DOS communication requires cooperation between two programs or tasks.
For the purposes of defining the DECnet-DOS programming interface, a distinction is
made between the client task which initiates a connect request, and the server task
which waits for and accepts or rejects the connection.

A client task is the program which initiates a connect request with another task. A
server task is the program which waits for and accepts/rejects the pending connect
request.

Once a logical link is established, the client and server tasks have a peer-ta-peer relation
ship. The operations performed on their respective sockets are symmetrical. Either
task can act as the source or receiving task and can send and receive data, or terminate
the logical link at any time.

1.1.2 Sockets

The basic building block for DECnet-DOS communication is the socket: an addressable
endpoint of communications within a program or task. A task uses the socket to send
and receive data to and from a similar socket in another task. Figure 1-2 illustrates the
use of sockets within DECnet-DOS tasks.

DECnet-DOS supports stream sockets and sequenced packet sockets. Stream sockets
cause bytes to accumulate until internal DECnet buffers are full. The receiving task
does not know how many bytes were sent in each write operation. Sequenced sockets
cause bytes to be sent immediately. The receiving task receives those bytes in one
"record" .

A DECnet-DOS program can detect any potential problems by polling the socket's
status, or by receiving error status in response to network requests.

1-4 DECnet-DOS Programmer's Reference Manual

NODE A

SERVER TASK DECnet

IPROGl © A

NODE C

B

~
C

DECnet

LEGEND:

q
Socket

I Program

A Logical link between

B Logical link between

c Logical link between

B

programs

programs

programs

CLIENT TASK

PPROG31

PROGl and PROG3 (using sockets)

PROGS and PROG4 (using sockets)

PROGS and PROG4 (using sockets)

TW0222

Figure 1-2: Sockets: IBasic Building Blocks for DECnet-DOS Intertask
Commun:ication

Introduction to Network Programming 1-5

1.1.3 Blocking and Nonblocking 110 Operations

DECnet-DOS allows tasks to send and receive data without waiting for the completion
of the operation. This mode of operation is called nonblocking I/O. When nonblocking
is set, socket operations return to the calling program after the operation has been
started, but not necessarily completed. Some operations must be restarted. On the
other hand, the default mode for socket operations is blocking I/O. When blocking I/O
is set, DECnet-DOS does not return control to the calling program until the operation
has been completed.

1 .1 .4 Node Names and Addresses

Each system in a DECnet network has a unique node name and address. A node name
can have 1 to 6 alphanumeric characters with at least one alphabetic character. A node
address is a binary number which consists of an area number and a node number. An
area consists of a group of interrelated nodes. Multiple areas are typically used only in
large networks. When initiating a connection with a remote node, you must identify
that node with a name or address.

1.1.5 Network Object Numbers and Task Names

Client tasks can specify the server task that they want to communicate with by using
network object numbers and task names. Network object numbers range from 1 to 255.
Numbers 1 to 127 are assigned to generic network servers. Numbers 128 to 255 are
available for user-written tasks. When a user specifies a task name, the object number
must be zero.

The server task must be installed as a network task on the remote node. In the context
of DECnet-DOS, the server task declares his network object number and task name
with the bind function call.

1.1.6 Access Control Information

Access control information contains arguments that define your access rights at the
remote node. It consists of three character strings: user 10, password and account num
ber. Access control verification is performed according to the conventions of the desti
nation system. For some systems, the access information is the log-in data used by the
client program.

1 . 1.7 Optional User Data

DECnet-DOS allows up to 16 bytes of optional user data to be exchanged between
tasks when connecting to/disconnecting from logical links.

1-6 DECnet-DOS Programmer's Reference Manual

1.2 Forms of Task-to-Task Communication

DECnet-DOS supports two forms oftask-to-task communication: transparent and non
transparent. Transparent communication provides a subset of the functions used by a
program to exchange data with other network programs. Nontransparent communica
tion allows you to use the full range of DEC net-DOS task-to-task communication.

1.2.1 Transparent Communication

DECnet-DOS transparent communication provides C and assembly language tasks
with the basic functions to communicate over the network. These tasks perform stan
dard MS-DOS system I/O operations. This form of I/O lets you move data with little
concern for the underlying DECnet interface.

The DECnet-DOS transparent functions include the initiation and establishment of a
logical link, the orderly exchange of messages between both tasks, and the controlled
termination of the communication process. Chapter 3 discusses the MS-DOS function
requests that support transparent task-to-task communication.

Figure 1-3 shows the series of events that occur during transparent task-to-task commu
nication.

Introduction to Network Programming 1-7

TW0201

Figure 1-3: Transparent Task-to-task Communication

1-8 DECnet-DOS Programmer's Reference Manual

1.2.2 Nontransparent Communication

DECnet-DOS nontransparent communication provides the same functions as DECnet
DOS transparent communication plus additional system and I/O functions. For exam
ple, you can use network protocol features such as optional user data on connects and
disconnects, and out -of-band messages.

DECnet-DOS allows you to create C and assembly language programs that use non
transparent communication functions. A C program should use the socket interface
calls to perform DEC net functions. These calls are detailed in Chapter 4 of this manual.
A set of DEC net utility functions are also provided with DECnet-DOS. These functions
are used for accessing the network node database and manipulating the data. The DEC
net utility functions are detailed in Chapter 5 of this manual.

An assembly language program uses the MS-DOS interrupt function request (6EH) to
request network process access. Information regarding I/O operations is passed with
this MS-DOS function request. The information is contained in an I/O Control Block
(IOCB) data structure. Chapter 6 details how to create a DECnet-DOS program using
the assembly language network process interface calls. This chapter details the set of
calls used for assembly language programs.

1.3 Task-to-task Communication Functions

This section describes the functions that the client and server tasks request to communi
cate with each other. Illustrations that appear in this section use the socket interface
calls to show task-to-task communication capabilities.

1.3.1 Establishing a Logical Link

The creation of a logical link is a cooperative venture. Two tasks must agree to commu
nicate before you can have an established 10gical1ink. The process of establishing a logi
cal link is detailed in Figure 1-4. A logical link connection is required before data can be
exchanged between two tasks.

To begin the process, the server task creates a socket supported by DECnet. When this
socket is first created, it has no assigned name or number. An object name or number is
assigned to the socket. The name or number is required for use in future listening opera
tions. The socket declares itself as a server which is available for client connections.

In turn, the client task must create a socket supported by DECnet. The client task can
set up access control information and/or optional connect data. (See Sections 1.1.6 and
1.1.7 for an explanation of each). The system returns an integer value called a socket
number. Subsequent DECnet-DOS function calls on this socket will reference the asso
ciated socket number. At this point, the client task requests a logical link connection to
another task. Any optional user data and/or access control information is sent along
with the connection request.

Introduction to Network Programming 1-9

The server task can define how it accepts or rejects an incoming connection request.
There are two options:

• The server task can immediately accept the connection request. In this case, any
optional user data and/or optional access control information is not used by the
task. A logical link has successfully been established between the two tasks.
Another socket is also created for the server task. Using the new socket, the server
task can exchange data with the client task. The original socket remains open for
the server task to listen for other incoming connection requests.

• For nontransparent communication only, the server task can defer making a deci
sion about accepting or rejecting the incoming connection request. When the
deferred option is set, the server task can examine any optional user data and/or
optional access control information. It can then send optional user data with an
acceptance or rejection message to the client task. The client task then retrieves the
optional user data and/or status message.

If the connection failed, another attempt can be made at establishing a logical link.
If the connection was successful, the logical link is established and another socket
is created for the server task. Using the new socket, the server task can exchange
data with the client task. The original socket remains open for the server task to lis
ten for other incoming connection requests.

1-10 DECnet-DOS Programmer's Reference Manual

CLIENT TASK

PROG 3

I SOCKET IlsETSOCKOPTI

SET OPTIONAL
USER DATA

LEGEND

I GETSOCKOPTI

GET CONNECT ACCEPTANCE
STATUS AND OPTIONAL
USER DATA

SOCKET

DECnet LOGICAL
LINK ESTABLISHED

D PROGRAM

SERVER TASK

PROG 1

F

I SOCKET 1.-1 B,,-,I:..;..:ND~_---,

I LISTEN

1 SETSOCKOPTI I ACCEPT

SET DEFERRED
ACCEPT OPTION

SET CONNECT
ACCEPTANCE

NEW SOCKET

1 GETSOCKOPTI

GET OPTIONAL
USER DATA

FUNCTION CALL

TW0223

Figure 1-4: Establishing a DECnet Logical Link

Introduction to Network Programming 1-11

1.3.2 Sending Normal Data Messages

Either task can send normal data to its peer. It must specify the socket used for transmit
ting the message, the buffer containing the outgoing message, and the buffer size. If the
socket is set to blocking I/O, and no buffer space is available to hold the outgoing mes
sage, the transmission is blocked until resources are freed up. If the socket is set to
nonblocking I/O, an appropriate error message is returned to the user.

When the asynchronous form of the SEND call is used, control returns to the calling
program immediately after the DECnet network process records the request. The net
work process may complete the request immediately or wait for a later time. To check
to see if the data was sent, you can either use a callback routine or poll for status. Sec
tion 6.7.15 details the asynchronous form of the SEND call.

Figure 1-5 shows normal data being sent over a logical link.

CLIENT TASK SERVER TASK

PROG 3 PROG 1

SEND

TW0230

Figure 1-5: Sending Data Messages over a DECnet Logical Link

1.3.3 Receiving Normal Data Messages

Either task can receive normal data from its peer. It must specify the socket used for
receiving the message, the address of the buffer which will store the incoming message,
and the buffer size. If the socket is set to blocking I/O, and no messages are received, the
task waits for a message to arrive. If the socket is set to nonblocking I/O, and no data is
ready to be received, an appropriate error message is returned to the user.

1-12 DECnet-DOS Programmer's Reference Manual

When the asynchronous form of the RCVD call is used, control returns to the calling
program immediately after the DECnet network process records the request. The net
work process may complete the request immediately or wait for a later time. To check
to see if the data was received, you can either use a callback routine or poll for status.
Section 6.7.12 details the asynchronous form of the RCVD call.

Figure 1-6 shows data being received over a logical link.

CLIENT TASK

PROG 3

I RECV

DECnet LOGICAL
LINK

PROG 1

SERVER TASK

Figure 1-6: Receiving Data Messages over a DECnet Logical Link

1.3.4 Out-ot-Band Messages

TW0229

Out-of-band messages are unsolicited, high priority messages sent between non
transparent communication tasks over a logical link. An out-of-band message usually
informs the receiving task of an unusual or abnormal event in the sending task. The
valid range for the message size is 1 to 16 bytes.

Out-of-band messages are always sent ahead of outstanding normal messages. Unless
certain error conditions exist, an out-of-band message is always sent even if the socket
is set to blocking or nonblocking I/O.

Introduction to Network Programming 1-13

1.3.5 Terminating Network Activity and Closing the Logical Link

The process of terminating network activity can begin with either the client or server
task. To initiate close down for nontransparent communication, either task can send
up to 16 bytes of optional disconnect data to another task. The optional disconnect
data is sent with an abort or disconnect option.

Figure 1-7 provides an example on how sockets are deactivated, and the logical link
connection is broken. The close down steps, as depicted in Figure 1-7, include:

• The server task sets up optional disconnect data.

• The server task deactivates its socket used for exchanging data.

• The server task can also deactivate the original socket on which it listened for
incoming connection requests.

• The client task retrieves any optional disconnect data. At some point in time, the
task should also deactivate its original socket.

• The logical link connection is broken.

Hence, the sockets are reclaimed as network resources which are made available for
future assignment to this task or another task.

1-14 DECnet-DOS Programmer's Reference Manual

CLIENT TASK SERVER TASK

PROG 3 PROG 1

IGETSOCKOPTI ISCLOSE

GET OPTIONAL
DISCONNECT
DATA

DEACTIVATE
SOCKET

DECnet LOGICAL
LINK

--pOp/
<-

- --?

-- ,'1 'I ---~

I SETSOCKOPT I
SET OPTIONAL
DISCONNECT
DATA

I SCLOSE I SCLOSE

DEACTIVATE SOCKET DEACTIVATE SOCKET
USED FOR DATA USED FOR ISSUING
EXCHANGE ACCEPT CALL

TW0228

Figure 1-7: Closing Down the DECnet Logical Link Connection

Introduction to Network Programming 1-15

1 .4 Transparent File Access

Using DECnet, programs in one node can transparently access a file in another node.
Transparent file access enables user programs to perform standard MS-DOS system I/O
operations. This form of I/O allows you to move data with little concern for the under
lying DECnet interface.

To perform transparent access operations on remote files, use the MS-DOS function
requests detailed in Chapter 2.

1-16 DECnet-DOS Programmer's Reference Manual

2
Transparent File Access Operations '. '.'

Using DECnet, a program in one node can transparently access a file in another node.
Transparent file access enables user programs to perform standard MS-DOS system I/O
operations. This form of I/O allows you to move data with little concern for the under
lying DECnet interface.

Transparent file access functions allow you to open and close a remote file, create or
delete a remote file, and read from or write records to a remote file, submit a batch job
and search a directory for a specific file or files.

2.1 Introduction to Transparent File Access

In the context of transparent file access, the program that requests remote file access is
called the client program. At the remote node, the DECnet system program that
receives the request is called the server program. For DECnet-DOS, the client program
is a user-written program. The server program is a form of the File Access Listener
(FAL). FAL receives remote file access requests from the network. FAL completes con
nections initiated by remote accessing user programs and translates them into calls to
the file system at the remote node. FAL then sends or receives the resulting file data
back to the accessing program. At the client node, special routines reformat the data to
make it conform to local or remote file structures (depending upon I/O direction).

Before accessing any remote files, you must install the Transparent File Access utility.
TFA can be installed at every boot time (See the DECnet-DOS Installation Guide or
the DECnet-Rainbow Installation Guide for installation details); or installed by typ
ing the following start-up command line:

E>TFA(RET)

2-1

The system responds with one of the following messages:

DECnet - TFA Version 1.1 instal led -

or

DECnet - TFA Version 1.1 has already been instal led -

Once the utility is installed, you can request network access by including a subset of
MS-DOS system calls in your program. (Refer to Table 2-3.) These calls activate Trans
parent File Access Routines (TFARs). The TF ARs build, send, receive and interpret D EC
net file access messages. These messages are defined by the Data Access Protocol
(DAP). DAP messages control the execution of remote file access, and outline proce
dures to accomplish specific file operations.

A user program does not handle remote file access operations directly. DECnet-DOS
includes system software that sends and receives DAP messages on behalf of user pro
grams. DAP-speaking TFARs at the local node exchange DAP messages with the DAP
speaking server FAL at the target node.

2.2 Initiating Transparent File Access

Transparent file access operations require an extended handshake sequence being per
formed at the beginning of the operation. This extended handshake occurs when the
user program issues an initial file access call (for example, open, create, delete, submit,
etc.) to a remote file. The handshake sequence includes the TFARs setting up the logical
link connection, and exchanging file access messages to initialize the DAP environment
for pending file operations.

The initial access to the remote file passes the following information to TF ARs in the
local file system:

• remote file name string

• access control information

2.2.1 Remote File Name

The file name string specifies the remote node name, and the file on that node to be
accessed. It includes the device, directory, file name, extension and version number of
the remote file. Since the remote file system actually carries out the requested file opera
tion, you must be familiar with the conventions used for identifying files at the remote
node.

2.2.2 Access Control Information

Access control information provides access rights to the remote system. It consists of a
user identification name, a password associated with the user identification, and addi
tional accounting information required by the remote system. To supply access control
information, you must follow the syntax detailed in Section 2.7. 1 of this chapter.

2-2 DECnet-DOS Programmer's Reference ,Manual

2.3 File Characteristics

A file has specific characteristics that determine how the file is transferred between
local and remote systems.

The following sections discuss the effects of file characteristics on remote input and
remote output files. A remote input file is a file located on a remote DECnet host that is
read by an MS-DOS system. A remote output file is a file located on a remote DEC net
host that is written to by an MS-DOS system.

2.3.1 File Attributes

File attributes for remote input files are determined by the remote file and the remote
file system. For example, an ASCII file cannot be redefined as an image file.

File attributes for remote output files are determined by the format of the local file and
the type of remote file system.

The set of file attributes are:

• File Organization. DECnet-DOS only supports sequential files. A sequential file
has records arranged one after the other. The first record written is the first record
in the file; and the record written most recently is the last record in the file.

• Data Type. A remote file can have an ASCII or image data type. Depending on the
file's record attribute, record format and the remote file system type, DECnet
DOS can reformat ASCII data. On the other hand, DECnet-DOS cannot convert
image data type files.

• Record Format. This particular file attribute indicates how records are formatted
within the file. A record can have one of the following formats:

Undefined records have no declared formats.

Stream records consist of a continuous series of ASCII characters delimited by car
riage return/line feed pairs.

Fixed length records are identical in size.

Variable length records can be different lengths, up to a maximum size that you
specify. The maximum size is fixed at file-creation time and cannot be changed for
the life of the file.

Variable-with-fixed length control (VFC) records include a fixed-length control
field that precedes the variable-length data portion. This format allows you to con
struct records with additional data that labels the contents of variable-length por
tion of the record.

• Record Attributes. This characteristic indicates how data is formatted within a
record. Record attributes (RATs) include implied carriage return/line feed pairs,
embedded carriage control, FORTRAN carriage control, print file carriage control,
line sequence ASCII, block, and MACYll.

Transparent File Access Operations 2-3

• Fixed Size. If the record format of the remote input file is VFC, this characteristic
defines the size of each fixed length header.

• Maximum Record Size. If the record format is fixed, maximum record size (mrs)
defines the length of each record. For fixed length records, the default size is 128
bytes. For variable-length records, mrs declares the maximum record size. There is
no default size.

2.4 Performing Data Conversions

To successfully read or write files on other nodes, data must be formatted according to
the conventions of the respective file system. A system running MS-DOS supports
stream formatted files. Remote DECnet hosts running heterogeneous operating sys
tems can support stream and nonstream file systems: variable-length, fixed-length and
VFC records.

The following tables summarize file structure interdependencies when you read or
write files on remote systems.

Table 2-1: Remote Input File Transfers

File Remote System
Type Type Record Attributes Processing Mode

Image Not applicable Ignored No conversion.

ASCII Stream Ignored No conversion with embed-
ded carriage control.

ASCII Nonstream Implied CR/LF pair CR/LF pair appended to
each record.

ASCII Nonstream FORTRAN, Print or Conversion of carriage con-
LSA carriage control. trol done.

ASCII Nonstream Null, embedded, No conversion.
block, MACYll

2-4 DECnet-DOS Programmer's Reference Manual

Table 2-2: Remote Output File Transfers

File Remote System
Type Type Record Attributes Processing Mode

ASCII Stream None No conversion.
Records determined by LFs.

ASCII Nonstream Variable, New line and CR characters
Implied CR/LF are dropped. Records deter-

mined by LFs.

Image Stream None No conversion.

Image Nonstream Fixed: record No conversion. Last record is
size = 128 bytes. padded if necessary.

The following sections detail how the TF ARs handle data conversions for remote input
and output files.

2.5 Converting Remote Input Files

During remote file input, a file located on a remote DECnet host is transferred to an
MS-DOS system. Local handling of the remote file is determined by its attributes and
the type of remote file system.

2.5.1 Binary Image Files

No record to stream conversion is performed on a binary image file. The file is passed
to the calling task one record at a time. The size of each record is set by the record attri
butes and the maximum record size of the remote input file. If the remote file system
does not support record attributes (for example, stream), the size is set to 128 bytes.

The remote file's record format (RFM) and record attributes (RATs) are ignored in this
type of file transfer.

2.5.2 ASCII Files

No data interpretation is performed on an ASCII file coming from a stream file system.
For ASCII files being copied from a nonstream file system, data handling is determined
by the remote file system, the remote file's record format and record attributes.

A nonstream file system can support variable-length, fixed-length, variable with fixed
carriage control (VFC) record formats and stream record formats. It also supports a
number of record attributes. The TFARs perform data conversion on ASCII files

Transparent File Access Operations 2-5

depending on the record attributes of the remote file. The following section describes
how TFARs interpret data based on the remote file's record attributes:

• RAT = Implied LF/CR. No conversion of embedded carriage control characters. A
CR/LF pair is appended to each record.

• RAT = FTN, PRN. FORTRAN (FTN) and Print (PRN) carriage control characters
are converted appropriately to stream file systems.

• RAT = NULL, Embedded carriage control, Block, MACY11. No data is inserted
between records.

2.6 Converting Remote Output Files

Remote output files are transferred from the local system to a remote DECnet host. By
default, files are transferred in ASCII mode. The file's record format and record attri
butes are determined by the remote file system. A logical record consists of data up to
and including a CR/LF pair. The TF ARs send a file as image if the first logical record is
not terminated by either a CR/LF or a LF/CRpair.

2.6.1 ASCII Files

If the local file is transferred to a remote stream file system, the logical records are
passed with no data conversion being performed. The file structure defaults are:

Record
Format

Stream

Record
Attribute

NONE

If the file is copied to a nonstream file system, delimiting CR/LF pairs are dropped from
the logical records before they are sent. The file structure defaults are:

Record
Format

Variable
length

2.6.2

Record
Attribute

Implied
CR/LF

Image Files

If the remote output file is an image file, the records are passed with the following
default file structure:

Record
Format

Fixed-length

2-6

Record
Attribute

NONE

Maximum Record
Size (bytes)

128

DECnet-DOS Programmer's Reference Manual

Since the default data type for a remote output file is ASCII, the TF ARs initially create
an ASCII file on the remote node. If the first logical record is not terminated by a CR/LF
or a LF/CR pair, the TFARs will issue a DAP access message complete (purge) message.
In this case, the TFARs create a new image file on the remote node. This particular file is
then sent using the data handling defaults for an image file transfer.

2.7 Using Network File Specifications for Network Access

MS-DOS system calls requesting network access must pass a specifically formatted net
work file specification string. The TFARs intercept these calls, recognize the network
access request and perform the DAP functions necessary to complete the specified net
work operation.

The network file specification consists of a node specification string, optional access
control information; and a file name specification string.

To request network access, use the network file specification string as shown below:

\\f\node\userid\password\account\\fi Ie-specification

NOTE

You must specify either a lowercase f or an uppercase F as part of the
network task specification string.

2.7.1 Node Specification

A node specification identifies the remote system where file access operations will take
place. The node specification string is preceded by two backslashes, the letter f and
another backslash. The optional access control string follows the node information.
Each element is separated by a single backslash character.

If no access control information is supplied, then the default access control informa
tion set with NCP is used. If there is no default access information, only the node name
is used by the TF AR subroutines for processing.

The node specification string uses one of the following formats:

1. To access the remote node with access control information:

\\f\node\userid\password\account\\

2. To access the remote node without optional access control data:

\\f\node\\

where:

node specifies either the name or address of the remote node. A node name
has a maximum of 6 alphanumeric characters with at least one alpha
betic character. A node address is a numeric string induding the area
number in the range of 1 to 63, and the node number in the range of 1
to 1023.

Transparent File Access Operations 2-7

userid

password

account

identifies a user name or log-in ID on the remote system. The user
name and password set the user's privileges for accessing the remote
task. A user name has a maximum of 39 alphabetic characters.

defines a user's password which is associated with user. A user's pass
word has a maximum of 39 alphabetic characters.

identifies a billing account number which is used with the user name
and password information on some systems. An account number has a
maximum ,of 39 characters. If the account information is not required,
you can omit it from the string.

2.7.2 File Name Specifications

The file name specification string identifies the remote file to be accessed. File specifica
tion strings cannot contain spaces, semi-colons, left < or right> angle brackets. File
names must conform to the conventions of the target node. Any unspecified elements
default to the target system's conventions. Refer to the appropriate programmer's refer
ence manual for more details.

2.8 Passing User Parameters

Whenever an I/O file operation is invoked, system control is transferred to the TF ARs.
Users pass parameters to and receive results from the TFARs via the MS-DOS function
requests. The parameters are loaded into or returned to one or more 8086/8088 regis
ters. The contents of each register is defined by the specific MS-DOS function call.

The TF AR subroutines check to see if the proposed I/O operation is a network sup
ported call. Network access is signaled by the string \ \j\ which begins the network
file specification string. (See Section 2.7)

The TFARs parse the network file specification string. If a function call returns a han
dle, the TFARs save the handle (and related file specification data) in a database for sub
sequent calls requiring network access over the same path. Once the requested DAP
operation is completed, control is returned to the system and the TF ARs.

2.9 Using the Transparent Network Task Control Utility

The Transparent Network Task (TNT) Control utility, Version 1.1 reports the status of
the Transparent File Access (TFA) utility as well as the Transparent Task-to-task (TTT)
utility. It features an on-line help routine which lists supported TNT commands. TNT
returns DAP messages and other extended error information for assisting in fault isola
tion. Using TNT, you can deinstall TFA (and/orTTT) from memory.

This section deals only with the use of TNT for transparent file access operations. Chap
ter 3 discusses TNT and its role in transparent task-to-task communication.

2-8 DECnet-DOS Programmer's Reference Manual

2.9.1 Displaying Network Status of the Transparent File Access Utility

To display the status of TFA, you run TNT. The system responds with a start-up mes
sage and one or more network status message(s).

All errors returned by the Transparent File Access utility are standard MS-DOS error
messages. However, the Transparent Network Task Control utility provides extended
error support to transparent file access operations. DAP and other extended error mes
sages, returned by this utility, can help you locate problem areas. See Appendices C, E
and F for a complete list of these error messages.

NOTE

When you run TNT, the status of the Transparent Task-to-task utility is
also reported.

To invoke TNT, type the following command:

E> (RET)

The system responds with a start-up message:

Transparent Network Task Control VI.I

and one or more of the following status message(s):

DECnet TFA is not instal led.

DECnet TFA has no errors to report.

DECnet TFA Errors are:
remote fi Ie specification: extended error message

or

DECnet TTT is not instal led.

DECnet TTT has no errors to report.

DECnet TTT Errors are:
remote fi Ie specification: extended error message

where

extended error message returns an error code from one of the following groups of
error messages:

• error codes contained in the external variable errno -Appendix C.

• DAP error messages (maccode/miccode in octal) - Appendix E.

• Transparent File Access Routines error messages - Appendix F.

Transparent File Access Operations 2-9

2.9.2 On-Line Help

On-line help provides you with a list of supported TNT commands. To obtain help,
type:

E>Th!T HELY(RET)

The system responds with the following help text:

Transparent Network Task Control VI.I
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

If you mistype a command" TNT responds with an error message and the list of sup
ported TNT commands:

Transparent Network Task Control VI.I
Transparent Network Task command error.
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

2.9.3 Deinstalling TFA

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

You can remove TF A from memory. Enter the following command line:

E>' I :;' i ;:(RET)

The system responds with the following text:

Transparent Network Task Control VI.I
The task was removed successfully.

If TF A could not be removed, one of the following messages is displayed:

Transparent Network Task Control VI.I
T FA can not be r emo v e d bee a use i tis not ins t a I led 0 r i s not ins t a I led
last.

or if MS-DOS failed on the remove call,

Transparent Network Task Control VI.I
The task could not be removed.

2-10

NOTE

TFA traps MS-DOS interrupt function call 21H as do other software
applications. If you want to remove TFA from memory, it must be the
last task installed which intercepts interrupt 21H. Otherwise, you
should remove any tasks installed after TFA that also trap 21H, or
reboot your system to remove TF A.

DECnet-DOS Programmer's Reference Manual

2.10 TFA Programming Considerations

There are specific MS-DOS function requests that support DEC net-DOS transparent
file access operations. Table 2-3 provides you with a summary of these calls. When cre
ating TFA applications, you should note the following:

• Some user programs may not accept the TF A network specification string.

• You should not use unsupported MS-DOS function requests to perform transpar
ent file access operations.

• If you issue a ~ while TFA is active, network operation may be blocked. To
clear this condition, run the TNT utility.

2.11 MS-DOS Function Requests

The following table summarizes the MS-DOS function requests used for transparent
file access operations. Call descriptions appear in Sections 2. 11. 1 through 2. 11.9.

Table 2-3: MS-DOS Function Requests for Transparent File Access

Hexadecimal
Value

3CH

3DH

3EH

3FH

40H

4tH

4BH

4EH

4FH

Function

Create a file.

Open a file.

Close a file handle.

Read from a file/device.

Write to a file/device.

Delete a file from a
specified directory.

Load and execute a
program.

Find first matching file.

Find next matching file.

Transparent File Access Operations

Network Access

Initiate a logical link request to create a
remote file.

Initiate a logical link request to open a remote
file.

Close a remote file and terminate a logical link
connection.

Read data from a remote file.

Write data to a remote file.

Delete a file from a remote directory.

Submit a remote command file to be exe
cuted.

Search for the first remote file that matches
the specified file characteristics.

Find the next file entry that matches the name
specified on the previous find first call.

-2-11

2.11.1 Close

NAME

Close - close a remote file, terminate a logical link connection and deactivate the han
dle used for data exchange.

+- --+
On 8086/8088 Register Contents

, Entry
+- - - - - - - -+- --+

AH 3EH
+- - - - - - - -+- -. - - - --+

EX handle for logical link access
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents I

I Return I
+- - - - - - - -+- --+
I AX I no errors; if carry bit is clear
I I
I I error code; if carry bit is set
+- - - - - - - -+- --+

Figure 2-1 : Close Function Call

DESCRIPTION

The Close function closes the remote file, terminates the logical link connection, and
deactivates the handle used for data exchange.

On entry, the BX register contains the 16-bit handle value returned by the open or cre
ate I/O operation. If the close operation completes successfully, no error is returned in
the AX register. If an error condition occurs, the appropriate error code is returned in
the AX register.

The following error code can occur:

Hexadecimal
Value

6

2-12

Meaning

An invalid handle value was detected.

NOTE

If you issue the Close call with a handle equal to - 1; the TF ARs will
interpret the call as a request to abort any active Find Matching File
operations.

DECnet-DOS Programmer's Reference Manual

2.11.2 Create

NAME

Create - initiate a logical link request to create a remote file.

+ -+
I On '8086/8088 Register Contents !

! Entry I
+- - - - - - - -+- -+
I AH ! 3CH I
+- - - - - - - -+- --+
I DS:DX I address of remote file

I specification string
+ - - - - - - - -+ -+

+- --+
I On I 8086/8088 Register Contents I
I Return I I
+- - - - - - - -+- --+
I AX I handle for logical link access;
I I if carry bit is clear
I I error code; if carry bit is set
+- - - - - - - -+- --+

Figure 2-2: Create Function Call

DESCRIPTION

The Create function call enables a source task to initiate a logical link request to create a
remote file. When the request is made, the file is opened for write operations. On
entry, DS:DX contains the address of the remote file specification string. Any optional
access control information is passed as part of the string to the target task.

On return, the AX register contains an error code or a 16-bit handle associated with the
source task. The returned handle value must be used for subsequent read and write I/O
operations.

The TF ARs exchange a series of DAP messages with the remote F AL in order to initialize
the DAP environment and define the requested network access. Each link initialization
involves an exchange ofDAP configuration, attributes and access messages. The config
uration messages include information regarding the operating and file systems of the
source and target systems, and the buffer size. The attributes messages supply informa
tion about the file to be accessed. Undefined file attributes are set to default values
determined by the remote file system. The access message establishes the type of access
to the remote file.

Transparent File Access Operations 2-13

If you are unable to initiate a logical link connection, an error code is returned in the
AX register. The following set of error codes can occur:

Hexadecimal
Value

2

3

4

5

2-14

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task
on the outgoing connection is not available. The network is
unreachable.

The target task was not found.

There are too many active logical link connections.

The remote object rejected the request.

DECnet-DOS Programmer's Reference Manual

2.11.3 Delete

NAME

Delete - delete a remote file from a specified directory.

+- --+
I On I 8086/8088 Register Contents
I Entry I
+- - - - - - - -+- --+
I AH I 41H
+- - - - - - - -+- --+
I DS:DX I address of network file
I I specification string I

+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents
I Return I
+- - - - - - - -+- ~ - - - - - --+
I AX I error code; if carry bit is set
+- - - - - - - -+- --+

Figure 2-3: Delete Function Call

DESCRIPTION

The Delete function call deletes a remote file from a specified directory.

On entry, DS:DX contains the address of the remote file specification string. Any
optional access control information is passed as part of the string to the target task.

If an error condition occurs, the error code is returned in the AX register. The follow
ing set of error codes can occur:

Hexadecimal
Value

2

5

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task
on the outgoing connection is not available. The network is not
reachable.

The remote object rejected the request.

Transparent File Access Operations 2-15

2.11.4 Find First Matching File

NAME

Find First Matching File - search for the first remote file that matches the specified file
characteristics.

+- --+
I On I 8086/8088 Registet Contents !

I Entry
+- - - - - - - -+- --+
I AH I 4EH
+- - - - - - - -+- --+
i DS:DX I pointer to remote directory

I specification string
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents
I Return I
+- - - - - - - -+- --+

AX error codes; if carry bit is set

currentl file name, creation date,
DMA I file size and creation time; if
data I carry bit is clear
block I

+- - - - - - - -+- --+

Figure 2-4: Find First Matching File Function Call

DESCRIPTION

The Find First Matching File function searches for the first file that matches the direc
tory specification set by the user. If a directory specification is given without a file spec
ification, or includes wildcards; the first matching file is returned. On entry, the DS:DX
register contains the address of the network file specification string.

If a file is found that matches the specification string, the carry bit is cleared and the
information is returned into the current DMA data block as follows:

• file name

• creation time

• creation date

• file size

2-16

bytes 30-42

bytes 22-23

bytes 24-25

bytes 26-29 (26-27 low, 28-29 high)

DECnet-DOS Programmer's Reference Manual

The DMA is a portion of memory that is allocated for passing data between processes.
The user can obtain a pointer to this area by issuing an MS-DOS Get Disk Transfer
Address function ca1l2FH.

If only one matching file is found, the carry bit is not set and an 18 is returned in the AX
register. If no matching file is found, the carry bit is set, and an error code of 2 is
returned in the AX register.

The following set of error codes can occur:

Hexadecimal
Value

2

18

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task
on the outgoing connection is not available. The network is
unreachable.

There are no matching files.

Transparent File Access Operations 2-17

2.11.5 Find Next Matching File

NAME

Find Next Matching File - find the next file entry that matches the name specified on
the previous find first call.

+ ••••••• ~ ••••••••••••••• - ••..••••••••••••••••• +

i On i 8086/8088 Register Contents
: Entry !
+ •...•••• + _ _._ .. +
! AH I 4FH
+ ••••••• -+ ••••• - - _. _ •••• - •••• - - - - - _. - •••••• _.+

i current! must point to a data block I
I DMA ! returned by the previous Find I
I addressl First Matching File function call I
+. _ - -+ .. _. - - - _ ..•... _ - - - - - - - - - - - _. - --+

+- - _. _. - - - - - - - - - - _ _. _. - - - - - - - - - _ ... - - --+
I On I 8086/8088 Register Contents
I Return I
+ .. _. - - - -+- - - - - - - - - - _ ... _ _. - - _ .. _ .. - _. - --+
I AX I error codes; if carry bit is ~et
+. - _. - - - -+ .. - _. _ ... _ _ _ .. _ _ .. - _.+

Figure 2-5: Find Next Matching File Function Call

DESCRIPTION

This function call finds the next matching entry in a directory. On entry, the current
DMA address must point to a data block returned by the previous Find First Matching
File function call. .

If a file is found that matches the specification string, the information is returned into
the current DMA data block as follows:

• file name bytes 30-42

• creation time bytes 22-23

• creation date bytes 24-25

• file size bytes 26-29 (26-27 low, 28-29 high)

The DMA is a portion of memory that is allocated for passing data between processes.
The user can obtain a pointer to this area by issuing an MS-DOS Get Disk Transfer
Address function call 2FH.

2-18 DECnet-DOS Programmer's Reference Manual

When a matching file is found, and it is the last matching file in the directory; an error
code 18 is returned in the AX register and the carry bit is cleared. Likewise, if no match
ing file is found, the carry bit is set and an error code 18 is returned in the AX register.

The following error code can occur:

Hexadecimal
Value Meaning

18 There are no more files.

Transparent File Access Operations 2-19

2.11.6 Load and Execute a Program

NAME

Load and Execute a Program - submit a remote command file.

+ --+
I On I 8086/8088 Register contents [
I Entry I I
+ - - - - - - - -+- --+
I AH I 4BH
+ - - - - - - - -+- --+
I DS:DX I pointer to remote file
i I specification string
+ - - - - - - - -+- --+

+- --+
I On I 8086/8088 Register contents
I Return I
+- - - - - - - -+- --+
I AX I error code; if carry bit is set
+- - - - - - - -+- --+

Figure 2-6: Load and Execute a Program Function Call

DESCRIPTION

This function call allows an existing remote file to be submitted as a batch or command
file for remote execution. The remote file is not deleted after completion of this call.
On entry, the DS:DX register contains the address of the network file specification
string. It specifies the remote file to be loaded and executed in a standard MS-DOS load
and execute function call, registers ES:BX points to a parameter block qefining the com
mand file's environment. These registers are ignored for remote command file submis
sion.

If the load and execute is urisuccessful, the carry bit is set and the error reason is
returned in the AX register. The following error code can occur:

Hexadecimal
Value

2

2-20

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task
on the outgoing connection is not available. The network is
unreachable.

DECnet-DOS Programmer's Reference Manual

2.11.7 Open

NAME

Open - initiate a logical link request to open a remote file.

+- --+
I On I 8086/8088 Register Contents
I Entry I
+ - - - - - - - - + - - - - - - - -. - +
I AH I 3DH
+- - - - - - - -+- --+
I DS:DX I address of remote file
I I specification string
+- - - - - - - -+- --+
I AL I access mode !

+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents !

I Return I i

+- - - - - - - -+- +
AX handle for logical link access; !

if carry bit is clear

error code; if carry bit is set
+ - - - - - - - -+ - +

Figure 2-7: Open Function Call

DESCRIPTION

The OPen call enables a task to initiate a logical link request to open a remote file. On
entry, DS:DX contains the address of the remote file specification string. If you include
wildcards as part of the specification string, only one file is opened.

Any optional access control information is passed as part of the string to the target task.

The access mode is defined in AL and consists of one of the following values:

• 0

• 1

• 2

open file for reading

open file for writing

open file for reading and writing

If the Open call completes successfully, a 16-bit handle is returned in the AX register.
The handle value must be used for subsequent read and write I/O operations.

Transparent File Access Operations 2-21

If an error condition occurs, the carry bit is set and an error code is returned in AX regis
ter.

The following set of error codes can occur:

Hexadecimal
Value

3

4

5

2-22

Meaning

The target task was not found.

There are too many active logical link connections.

Network access was denied.

DECnet-DOS Programmer's Reference Manual

2.11.8 Read

NAME

Read - receive data from a remote file.

+- --+
I On I 8086/8098 Register Contents
i Entry i

+- - - - - - - -+- --+
I AH I 3FH I

+- - - - - - - -+- --+
I DS:DX I address of network message buffer i

+- - - - - - - -+- --+
I ex I size of network message buffer I
+ - - - - - - - -+ - +
I ax I handle for logical link access I
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents I
I Return I I
+- - - - - - - -+- --+

AX number of bytes received over the I

logical link; if carry bit is I
clear I

I
error codes; if carry bit is set I

+- - - - - - - -+- --+

Figure 2-8: Read Function Call

DESCRIPTION

The Read function call allows the target task to read data from a remote file.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be received. DS:DX contains the address of the network message
buffer.

On return, the AX register contains the number of bytes successfully received by the tar
get task. If the carry bit is clear and AX = 0, an end-of-file status is indicated. A single
read function returns a maximum of one logical record.

If the buffer is too small for one logical record, no error occurs. The next read con
tinues to return bytes until the entire logical record has been read.

If an error condition occurs, the carry bit is set, and an error code is returned in the AX
register.

Transparent File Access Operations 2-23

The following set of error codes can occur:

Hexadecimal
Value

5

6

2-24

Meaning

The logical link was disconnected.

An invalid handle was detected.

DECnet-DOS Programmer's Reference Manual

2.11.9 Write

NAME

Write - write data to a remote file.

+- --+
I On I 8086/8088 Register Contents
I Entry I

+ - - - - - - - -+ - '- +
I AH I 40H
+- - - - - - - -+- --+
I DS:DX I address of network message buffer i
+ - - - - - - - -+ - +
I CX I size of network message buffer
+- - - - - - - -+- --+
I BX I handle for logical link access I
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents
I Return I
+- - - - - - - -+- --+

AX number of bytes sent over the
logical link; if carry bit is
clear

error codes; if carry bit is set
+ - - - - - - - -+ - +

Figure 2-9: Write Function Call

DESCRIPTION

The Write function call allows the source task to write data to a remote file.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be sent. DS:DX contains the address of the network message buffer.

On return, the AX register contains the number of bytes successfully sent by the source
task.

If an error condition occurs, the carry bit is set and an error code is returned in the AX
register.

Transparent File Access Operations 2-25

The following set of error codes can occur:

Hexadecimal
Value

5

6

2-26

Meaning

Network access was denied.

An invalid handle was detected.

DECnet-DOS Programmer's Reference Manual

3
Transparent Task-to-Task Communication

DEenet-DOS supports transparent task-to-task communication for high level language
and assembly language programs. DEenet-DOS supports DOS Version 2.0 XENIX
compatible 110 handle calls starting with function request 2FH. Using specific calls, a
task can perform standard I/O operations, and communicate with another task over the
network.

3.1 Transparent Task-to-Task Communication

Transparent communication provides the basic functions necessary for tasks to com
municate over the network. These functions include the initiation, acceptance and
establishment of a logical link; the orderly exchange of messages between DEenet
tasks; and the controlled termination of the communication process.

When accessing the network transparently, you use no DEenet-specific calls to per
form these functions. Instead, you use normal I/O statements provided by the applica
ble high level language. An assembly language task uses a subset of the MS-DOS func
tion requests to perform the same communication activities.

3.2 Transparent Communication Functions

This section describes the functions that the client and server tasks use to communicate
over the network.

3-1

3.2.1 Initiating a Logical Link Connection

Transparent communication can only take place after a logical link is established
between two cooperating tasks. You establish the logical link by issuing a client task
call that requests a logical link connection. The request is sent to the server task on the
remote node.

The interaction that takes place prior to establishing a logical link is termed a
handshaking sequence. Using transparent task-to-task communication, an MS-DOS
program can act as either a client or a server.

3.2.2 Handshaking Sequence for a Client Task

To initiate the logical link request transparently, a client task performs a file create or
open operation. This task supplies the following information:

• The identification of the server node. Every node in the network has a unique
identifier that distinguishes it from other nodes in the network. Transparent com
munication uses a node specification string to indicate the name of the server node.
(See Section 3.4. 1)

• The identification of the server task. Client tasks specify the server task that they
want to communicate with by using a network task specification string. This string
uses network object numbers and task names. Network object numbers range from
1 to 255. Numbers 1 to 127 are assigned to generic network servers. Numbers 128
to 255 are available for user-written tasks.

When a user specifies a task name, the object number is zero.

High level language client tasks can use standard file opening statements to request a
logical link connection to the remote task. An assembly language client task uses the
MS-DOS Create or Open function request to perform the same operation.

3.2.3 Handshaking Sequence for a Server Task

A high level language server task performs a file create or open operation to accept the
logical link connection request. If SYS$NET is specified as the node name, the task is
always a server task. An assembly language server task can accept the logical link
request with either the MS-DOS Create or Open function request.

3.2.4 Exchanging Data Messages over a Logical Link

Once the logical link is established, either task can send and receive data messages. A
coordinated set of write and read operations enable the exchange of data over the logi
cal link. For high level language tasks, standard read and write calls are used for data
exchange. An assembly language task uses the MS-DOS Read and Write function
requests. The handle returned by the previous Create and Open function requests must
be specified in all Read and Write function requests.

3-2 DECnet-DOS Programmer's Reference Manual

3.2.5 Terminating the Logical Link

The termination of a logical link signals the end of the communication process between
two tasks. When network activity is no longer required, either high level language task
can issue a file closing statement to break the link. Likewise, either assembly language
task can issue the MS-DOS Close function request to terminate the connection. This
particular MS-DOS call closes the logical link, and deactivates the original handle used
for data exchange.

3.3 Creating a Transparent Communication Task

Before creating a transparent communication task, you must install the Transparent
Task-to-Task (TTT) utility. To install this utility, type the following start-up command
line:

E>! I--I[RET)

The system responds with either:

DECnet - TTT Version 1.1 instal led

or

DECnet - TTT Version 1.1 has al ready been instal led

Once the utility is installed, a high level language task can invoke standard I/O function
calls. An assembly language task can use the following MS-DOS function requests.

Table 3-1: MS-DOS Function Requests for Transparent Intertask Communication

Function

Create/Open

Close

Read

Write

Network Access

Initiate a logical link request. Accept
a logical link request.

Terminate a logical link connection.

Receive data over a logical link.

Send data over a logical link.

Whether you are running a high level or assembly language task, network access
requires the use of specially formatted task names. These task names are implemented
as network task specification strings. The strings must be specified with all create and
open file operation calls.

Transparent Task-to-Task Communication 3-3

3.4 Network Task Specifications

The network task specifications consist of a node specification string with optional
access control information; and a target task specification string. Access control infor
mation contains arguments that define your access rights at the remote node. The con
trol string contains three fields: user name, password, and account number. Access con
trol verification is performed according to the conventions of the remote node ..

The target task can be identified as either a named or numbered object. Named objects
are user-written tasks which are referenced by a name during a connect request and an
accept request. The object number for such tasks is O. Numbered objects are tasks
which are referenced by a number. The object numbers range from 1 to 255. Numbers
1 to 127 are reserved for DEC net-specific tasks. Numbers 128 to 255 are available for
user-written tasks.

You can access the target task by its object name or number. The network task specifica
tion string uses one of the following formats:

1. To access the target task by object name with access control information

\\t\node\userid\password\account\\object-name

2. To access the target task by object name without access control information

\\t\node\\object-name

3. To access the target task by object number with access control information

\\t\node\user\password\account\\#object-number

4. To access the target task by object number without access control information

\\t\node\\#object-number

5. To establish a server task by object name

\\t\SYS$NET\\object-name

6. To establish a server task by object number

\\t\SYS$NET\\#object-number

NOTE

You must specify either a lowercase t or an uppercase T as part of
the target task specification string.

3.4.1 Node Specifications

A node specification for a client task names the remote node and supplies optional
access control data. The node specification string is preceded by two backslashes, the
letter t and another backslash. The optional access control string follows the node infor
mation. Each element is separated by a backslash.

3-4 DECnet-DOS Programmer's Reference Manual

The node specification string takes the following format:

\\t\node\user\password\account\\

or

\\t\node\\

where:

node

userid

password

account

specifies either the name or address of the remote node. A node name
has a maximum of 6 alphanumeric characters with at least one alpha
betic character. A node address is a numeric string induding the area
number in the range of 1 to 63, and the node number in the range of 1
to 1023.

identifies a user name or log-in ID on the remote system. The user
name and password set the user's privileges for accessing the remote
task. A user name has a maximum of 39 alphabetic characters.

defines a user's password which is associated with user. A user's pass
word has a maximum of 39 alphabetic characters.

identifies a billing account number which is used with the user name
and password information on some systems. An account number has
a maximum of 39 characters. If the account information is not
required, you can omit it from the string.

A node specification string for a server task is always \ \t\SYSINET\ \.

3.4.2 Task Specifications

For a client task, the task specification identifies the cooperating task on the remote sys
tem. The server task specification identifies the server task. The task can be specified as
a named or a numbered object.

The task specification string is expressed in one of the following formats:

object-name

or

#object-number

where:

object-name

object-number

specifies the task as a named object. User-written tasks are usually
addressed as object type 0 plus a name. Digital-specific tasks can be
addressed by object name. The object name has a maximum of 16
characters.

specifies the task as a numbered object. The valid range is 1 to 255.

Transparent Task-to-Task Communication 3-5

3.5 MS-DOS Intercept Routine

Whenever an I/O file operation call is invoked, system control is transferred to the MS
DOS task-to-task intercept routine. Network access is signaled by the string \ \t\
which begins the network task specification string. (See Section 3.4 for formats.) The
MS-DOS intercept routine checks to see if the proposed I/O operation is a network sup
ported call.

The intercept routine parses the network task specification string. It stores away the
socket numbers for the handles used with the open and create I/O calls. These values
must be specified with subsequent read, write and close operations. Before one of
these calls can complete, the intercept routine must verify the current status of the net
work handles.

3.6 Using the Transparent Network Task Control Utility

The Transparent Network Task (TNT) Control utility, Version 1.1 reports the status of
the Transparent Task-to-Task (TTT) utility as well as the Transparent File Access (TFA)
utility. It features an on-line help routine which lists supported TNT commands. TNT
returns extended error information for assisting in fault isolation. Using TNT, you can
deinstall TTT (and/or TF A) from memory.

This section deals only with the use of TNT for transparent task-to-task communica
tion. Chapter 2 discusses TNT and its role in transparent file access operations.

3.6.1 Displaying Status of the Transparent Task-to-Task Utility

To display the status of TTT, you run TNT. The system responds with a start -up mes
sage and one or more status message(s).

All errors returned by the Transparent Task-to-Task utility are standard MS-DOS error
messages. However, the Transparent Network Task Control utility provides extended
error support to transparent task-to-task communication. Extended error messages,
returned by this utility, can help you locate problem areas.

NOTE

When you run TNT, the status of the Transparent File Access utility is
also reported.

To invoke TNT, type the following command:

E>-ii.! I-(RET)

The system responds with a start-up message:

Transparent Network Task Control VI.I

and one or more of the following status message(s):

DECnet TTT is not instal led.

3-6 DECnet-DOS Programmer's Reference Manual

DECnet TTT has no errors to report.

DECnet TTT Errors are:
remote fi Ie specification: extended error message

or

DECnet TFA is not instal led.

DECnet TFA has no errors to report.

DECnet TFA Errors are:
remote fi Ie specification: extended error message

where

extended error message is a message contained in the external variable errno. See
Appendix C for a list of errno messages.

3.6.2 On-Line Help

On-line help provides you with a list of supported TNT commands. To obtain help,
type:

E> ':!. . '[RETI

The system responds with the following help text:

Transparent Network Task Control VI.I
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

If you mistype a command, TNT responds with an error message and the list of sup
ported TNT commands:

Transparent Network Task Control VI.I
Transparent Network Task command error.
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

Transparent Task-to-Task Communication 3-7

3.6.3 Deinstalling TTT

You can remove TTT from memory. Enter the following command line:

E>TNT TTT OFF(RETJ

The system responds with the following text:

Transparent Network Task Control VI.I
The task was removed successfully.

If TTT could not be removed, one of the following messages is displayed:

Transparent Network Task Control VI.I
TTT cannot be removed because it is not i nsta I I ed or is not i nsta II ed
last.

or if MS-DOS failed on the remove call,

Transparent Network Task Control VI.I
The task could not be removed.

NOTE

TTT traps MS-DOS interrupt function call 21H as do other software
applications. If you want to remove TTT from memory, it must be the
last task installed which intercepts interrupt 21H. Otherwise, you
must remove any tasks installed after TTT that also traps 21H, or
reboot your system to remove TTT.

3.7 TTT Programming Considerations

There are specific MS-DOS function requests that support DECnet-DOS transparent
task-to-task communication. Table 3-1 provides you with a summary of these calls.
When creating TTT applications, you should note the following:

• Some user programs may not accept the TTT network specification string.

• You should not use unsupported MS-DOS function calls to perform transparent
task-to-task communication.

• If you issue a (CrRUe J while TTT is active, network operation may be blocked. To
clear this condition, run the TNT utility.

3.8 MS-DOS Function Requests for Transparent Task-to-Task
. Communication

The following sections describe the MS-DOS function requests and provide specific
guidelines. A drawing of the 8086/8088 registers shows their contents before and after
each function request.

The function requests are discussed in alphabetical order.

3-8 DECnet-DOS Programmer's Reference Manual

3.8.1 Close

NAME

Close - terminate a logical link connection and deactivate the original handle.

+ --+
I On 8086/8088 Register Contents I
! Entry
+- - - - - - - -+- --+
t AH t 3EH
+- - - - - - - -+- --+
i BX i handle for logical link access
+ - - - - - - - -+- --+

+ --+
I On I 8086/8088 Register Contents
t Return I
+- - - - - - - -+- --+

AX I no errors; if carry bit is clear I

I I
I error code; if carry bit is set I

I I
+- - - - - - - -+- --+

Figure 3-1: Close Function Request

DESCRIPTION

The Close function request terminates the logical link connection and deactivates the
handle used for data exchange. Either task can issue the Close call.

On entry, the BX register contains the 16-bit handle value returned by the open or cre
ate 110 operation. If the close operation completes successfully and the carry bit is
clear, no error is returned in the AX register. If an error condition occurs and the carry
bit is set, the appropriate error code is returned in the AX register.

The following error code can occur:

Hexadecimal
Value Meaning

6 An invalid handle value was detected.

Transparent Task-to-Task Communication 3-9

3.8.2 Create/Open

NAME

Create/Open - initiate or accept a logical link connection request.

+ --+
! On I 8086/8088 Register Contents
I Entry I
+- - - - - - - -+- --+
I AH I 3CH or 3DH
+- - - - - - - -+- --+
I DS:DX I address of network task
I I specification string
+- - - - - - - -+- --+
I AL I 0 !
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents
I Return I
+- - - - - - - -+- --+

AX handle for logical link access; I

if carry bit is clear I

error codes; if carry bit is set
+- - - - - - - -+- --+

Figure 3-2: Create/Open Function Request

DESCRIPTION

In the context of DECnet-DOS, the Create and Open calls perform the same functions.
Either call can initiate and/or accept a logical link connection. However, if SYS$NET is
specified as the node name in the network task specification, and supplied with either
call, the function is only interpreted as the task accepting a logical link connection.

• To initiate a logical link connection. The Create or Open call enables a source task
to initiate a logical link connection. On entry, DS:DX contains the address of the
network task specification string. Any optional access control information is
passed as part of the string to the target task.

On return, the AX register contains an error code or a 16-bit handle associated with
the source task. The returned handle value must be used for subsequent read and
write I/O operations.

3-10 DECnet-DOS Programmer's Reference M.llnual

• To accept a logical link connection. The Create or OPen call accepts a logical link
request from another network task. The 16-bit handle value is returned in the AX
register. This handle must be used for subsequent read and write operations. On
entry, DS:DX contains the address of the network task specification string.

If you are unable to initiate a logical link connection, an error code is returned in the
AX register. To obtain extended error information, run the TNT utility.

The following error code can occur:

Hexadecimal
Value

2

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task
on the outgoing connection is not available. The network is
unreachable. Too many files are currently open. There is an error
in the path specification string.

The target task was not found.

There are too many active logical link connections.

The remote object rejected the request.

If you are unable to accept a logical link connection, an error code is returned in the AX
register. To obtain extended error information, run the TNT utility.

The following error code can occur:

Hexadecimal
Value

2

Meaning

The target task was not found.

Network access was denied.

Transparent Task-to-Task Communication 3-11

3.8.3 Read

NAME

Read - receive data over a logical link connection.

+- --+
I On ! 8086/8088 Register ~ontents
I Entry !
+- - - - - - - -+- --+
I AH I 3FH
+ - - - - - - - - + -.+
I DS:DX I address of network message buffer I
+- - - - - - - -+- --+
I CX I size of network message buffer
+- - - - - - - -+- --+
I BX I handle for logical link access
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register contents
I Return I
+- - - - - - - -+- --+
I AX I number of bytes received over the !
I I logical link; carry bit I
I I is clear I
+- - - - - - - -+- I

Figure 3-3: Read Function Request

DESCRIPTION

The Read function request allows the target task to receive data sent over the logical
link.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be received. DS:DX contains the address of the network message
buffer.

On return, the AX register contains the number of bytes successfully received by the tar
get task. If an error condition occurs, zero bytes are returned. To obtain extended error
information, run the TNT utility. See Appendix D for a list of extended error messages.

3-12 DECnet-DOS Programmer's Reference Manual

3.8.4 Write

NAME

Write - send data over a logical link connection.

+- --+
I On I 8086/8088 Register Contents I
I Entry I I
+- - - - - - - -+- --+
I AH I 40H i

+- - - - - - - -+- --+
I DS:DX I address of network message buffer i

+- - - - - - - -+- --+
I ex I size of network message buffer I
+- - - - - - - -+- - - - - - - - -. - - - - _. _ •• _ ••••• - - - - - - - - --+
I BX I handle for logical link access !

+- - - _. - - -+. - - - - - - - - - _. - -. _ .. - - - - .. - - - - - - _. - --+

+- - - - - -. - - - - - - - - - - - _. - - - _. - - - - - - - _. - - - - - - - - --+
I On I 8086/8088 Register Contents I
I Return 1 I

+- - - - _. - -+- - - _ .. - - - - - - - - - - - -. - - - - _. - - - - - - - - --+
AX number of bytes sent over the I

logical link; if carry bit I
is clear I

I

error codes; if carry bit is set
+- - _. -. - -+- _. - - - - - - - _. - - - - - - - - - - - - _. - - - - _. - --+

Figure 3-4: Write Function Request

DESCRIPTION

The Write function request allows the source task to send data over the logical link.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be sent. DS:DX contains the address of the network message buffer.

On return, the AX register contains the number of bytes successfully sent by the source
task. If an error condition occurs, the error code is returned in the AX register. To
obtain extended error information, run the TNT utility.

The following error code can occur:

Hexadecimal
Value Meaning

5 Network access was denied.

Transparent Task-to-Task Communication 3-13

4
C Language

DECnet-DOS includes C language source files which are used to create a linkable
library for DECnet-DOS applications. This library provides compatibility with the net
work socket interface supported by DECnet-ULTRIX.

4.1 Creating the DECnet-DOS Programming Interface Library

The file DNETLIB.SRC contains three types of files: the .C files (C language sources),
the .H files (header files that contain definitions for the network interface) and the
.ASM files (assembly language sources). You should refer to the appropriate installation
guide for a complete list of these files.

In order to interface to the DECnet-DOS network process, you should create a library
against which to link your DECnet-DOS program(s).

Use the following procedure to create a DECnet-DOS programming interface library:

1. The Break Source utility, BREAKSRC, allows you to break the source file,
DNETLIB.SRC, into separate source files for compilation and assemblies.
BREAKSRC is supplied with the DECnet-DOS distribution kit. When you run the
DECnet-DOS Installation Procedure (DIP), you can select to have the
DNETLIB.SRC file split into separate files. The BREAKSRC utility will then be run
automatically for you. For instructions on how to run DIP, refer to the appropriate
installation guide.

To manually use BREAKSRC, follow this format:

BREAKSRC < input~i1e_spec > < output_device: \path >

For example:

BREAKSRC A:DNETLIB.SRC C:\DECNET\SRC\

4-1

2. Use your C language compiler to compile each C language source module. Use your
assembler to assemble each assembly source module.

3. After you produce an object module for each source module, build a library against
which to link your DECnet-DOS applications programs.

4.1.1 DECnet-DOS Programming Considerations

The following programming considerations should be noted when writing and devel
oping your DECnet-DOS applications:

1. Using the External Variable errno - Most DECnet-DOS programming interface
functions use the external variable ermo as a place to return error detail. It is
assumed that errno has been defined externally to the programming interface as an
into It may already be defined in your C language run-time library, if not, your appli
cations program should define it.

Appendix C lists the error codes returned by DECnet-DOS in ermo.

2. Checking Software Compatibility - When creating DECnet-DOS applications,
make sure that you resolve any C language compiler incompatibilities before com
piling the C language source modules such as long variable names or certain type
definitions.

3. Using Assembly Source Modules - There are assembly source modules included in
DNETLIB.SRC. Before you can successfully call these functions from sources com
piled by your C language compiler, you should fulfill any assembly-format require
ments such as segment names. (Refer to the header file, begin.h, on the distribution
kit as an example of specific C language compiler segment naming requirements.)

4. U sing Specific Macros - There are references to the macros/functions such as
toupper and islower in some of the C language source modules. It is assumed that
your C language compiler has provided a standard macro/function for them. If not,
you can simply provide your own macros/functions.

5. If you are not using a C compiler that supports the signal handling function (for
example, (CTRUC) trapping), then you will need to either provide your own signal
function or comment out from the code in dnet_conn any references to the sig
nalO function and the reference to the include file, < signal.h > .

4-2

The (CTRUC) trapping, provided in dnet_conn, allows you to abort a utility which
appears to be waiting indefinitely for connections to complete. (This applies only
to utilities that use dnet_conn for making connections.) The connect function in
dnet_conn is invoked in a nonblocking socket mode.

IfICTRUC) trapping code is commented out from dnet_conn, there is the potential
problem of leaving hung sockets and running out of system resources, should users
decide to ~ in the middle of nonblocking connection request attempts.

DECnet-DOS Programmer's Reference Manual

6. If you are using a compiler that does not define the following variables: int day
light, long timezone and char *tzname[2], either comment these external declara
tions out of the header file <time.h> or define them in your C program code.

7. The DECnet-DOS programming interface library was based on a 2-segment model.

Caution

If a program terminates with any active logical links (sockets), the links
remain active. In this way, another program can start and use the same
links.

If the logical links are not needed, you must issue an sclose function
call before a program is terminated with an EXIT, [CTRUZ J or~. If
too many links are left active, an error message, indicating that no
more buffers are available or insufficient network resources, is
reported. This causes the network to become unusable. To completely
deactivate any logical links, run the Network Control Program (NCP)
and issue the SET KNOWN LINKS command with STATE OFF. (See the
DECnet-DOS User's Guide for more information on this command.)

4.2 How to Read the Socket I nterface Call Descriptions

The socket interface calls are presented as separate entries in this manual. They are
documented in a consistent manner. Each call is described under the following head
ings:

NAME

SYNTAX

DESCRIPTION

DIAGNOSTICS

gives the exact name and a brief description of its function.

shows the complete syntax. Possible call options and the
type of expected argument(s) are indicated.

provides more detail on what the call does, and how its
action is modified by the options.

gives explanations of error messages that may be produced.

4.3 Understanding a SYNTAX Section

Each socket interface call documented in this chapter has a SYNT AX entry. It shows
how a call is defined. The SYNTAX entry consists of several components.

The SYNTAX section for the bind call illustrates these components:

int bind(s, name, namelen)
int s, namelen;
struct sockaddr_dn * name;

C Language 4-3

The first line represents the function call and a list of input arguments. Each function
call should do one specific task. Data may be passed to the called function via argu
ments. The input arguments follow the function name. They are separated by commas
and surrounded by parenthesis.

The next set of lines list the formal arguments and their respective data types (char, int
or structure).

Using the bind call example, * name declares name to be a pointer to the structure type
sockaddr_dn. This structure contains several modifiable fields.

4-4 DECnet-DOS Programmer's Reference Manual

4.4 Socket Function Calls

The following sections describe the socket interface function calls for C programs.
They also provide you with specific guidelines. Some of the socket interface calls use
specific data structures. Appendix B details how each data structure is formatted.

The socket interface calls are summarized in the table below:

Table 4-1: Socket Interface Calls

Socket Call Description

accept Accept an incoming connection request on a socket, and return a
socket number.

bind Assign an object name or number to a socket.

connect Initiate a connection request on a socket.

getpeername Get the name of a connected peer on a socket.

getsockname Get the current name for the specified socket.

getsockopt Get options associated with sockets.

listen Listen for pending connections on a socket.

recv Receive data and out-of-band messages on a socket.

sc10se Terminate a logical link connection and deactivate a socket.

select Check the I/O status of the network sockets.

send Send data and out-of-band messages on a socket.

setsockopt Set options associated with sockets.

shutdown Shutdown part or all of a full duplex logical link connection.

siocd Control the operations of sockets.

socket Create an endpoint for communication and return a socket number.

sread Read data on a socket.

swrite Write data to a socket.

C Language 4-5

4.4.1 Example Socket Interface Calling Sequence

The following program segments illustrate the socket interface calls used by DECnet
DOS client and server tasks.

Socket calls issued by a client task:

s = socket(..•) 1* get a DECnet socket
setsockopt(s"DSO_CONDATA,,) 1* set up optional data
setsockopt(s"DSO_CONACCESS,,) 1* set up access'

connect(s, ...)

getsockopt(s"DSO_CONDATA,,)

send(s, ...)
recv(s, ...)
setsockopt(s"DSO_DISDATA)

sclose(s)

1* control information
1* initiate connection to
1* the server task
1* get returned status and
1* optional data
1* send data (or write)
1* receive data (or read)
1* set up optional
1* data for disconnect
1* terminate connection

Socket calls issued by a server task:

s = socket(...)
bind(s, .•.)
listen(s, ••.)

1* get a DECnet socket
1* bind a name to the socket
1* make the socket available
1* for client connections

setsockopt(s"DSO_ACCMODE, 1* accept mode, *1
ACC_DEFER,) 1* deferredlimmediate *1

ns = accept(s, . .•) 1* await connect(s) on the *1
1* new socket, ns *1

getsockopt(ns"DSO_CONACCESS,,)/* get access *1
1* control information *1

getsockopt(ns"DSO_CONDATA,,) 1* get optional connect data *1
setsockopt(ns"DSO_CONDATA,,) 1* set up optional data *1
setsockopt(ns"DSO_CONACCEPT,,)/* finally accept the *1

1* connection request *1
recv(ns, ..•) 1* receive data (or read) *1
send(ns, ..•) 1* send data (or write) *1
setsockopt(ns"DSO_DISDATA,,) 1* set up optional *1

sclose(ns)
selose(s)

4-6

1* disconnect data *1
1* terminate connection
1* terminate DECnet path

DECnet-DOS Programmer's Reference Manual

4.4.2 accept

NAME

accept - accept an incoming connection request on a socket and return a socket num
ber.

SYNTAX

#include <types.h>
#include <socket.h>
#include <dn.h>

int
int
struct

accept(s, sorcblk, sorclen)
s, *sorclen;
sockaddr_dn *sorcblk;

DESCRIPTION

The accept call extracts the first connection request on the queue of pending connec
tions, creates a new socket with a new number having the same properties of the origi
nallistening socket. The original socket remains opened.

If the socket is set to nonblocking 110, and there are no queued connection requests,
io_status will return a -1 and errno will contain EWOULBLOCK.

There are two modes of accepting an incoming connection. They are immediate and
deferred modes. These modes of acceptance are set via the setsockopt call. When imme
diate mode is in effect, the connection is established immediately. The deferred mode
indicates that the server task completes the accept call without fully completing the
connection to the client task. In this case, the server task can examine the access con
trol or optional data before it decides to accept or reject the connection request. The
server task can then issue the setsockopt call with the appropriate reject or accept
option.

Input Arguments

s

sorcblk

sorclen

C Language

specifies the number for a socket which was created with the socket
call, bound to a name or number by the bind call, and was set to listen
for connects by the listen call.

is a value result argument. It specifies an address of a structure sorcblk
of the data type sockaddr _dn. This argument will be filled in with
the information of the entity requesting the connection.

is a value result argument. It specifies the address of an into The value
of sorclen should initially contain the size of the sorcblk.

4-7

Return Arguments

sorclen specifies the actual length of the returned data in bytes.

sorcblk specifies the socket address data structure, sockaddr _dn. A user
retrieves data from the fields filled in by this function call. (See Appen
dix B on how sockaddr _dn is formatted.)

The following data fields are filled in by this function call:

sdn-family

sdn_objnum

sdn_objnamel

sdn_objname

Return Value

is the address family AF _DECnet.

is the object number for the client task. It can be a number 0
to 255. It is set to 0 only when the object name is used.

is the size of the object name.

is the object name of the client task. It can be up to a 16-ele
ment array of char. It is used only when sdn_objnum equals
O.

is the node address structure for the client task. (See Appen
dix B on how dn_naddr is formatted.)

If the call succeeds, it returns a nonnegative integer called a socket number. This num
ber will be used for communications over a logical link connection. If an error occurs,
the call returns a -1. When an error condition exists, the external variable errno will
contain error detail. See the DIAGNOSTICS section for a full description of the error
messages.

DIAGNOSTICS

[EBADF]

[ECONNABORTED]

[ENETUNREACH]

[ENFILE]

[EWOULDBLOCK]

4-8

The argument s does not contain a valid socket number.

The client task disconnected before the accept call com
pleted.

The network is unreachable. The network process is not
installed.

There are no more available sockets.

The socket is marked for nonblocking and no connections
are waiting to be accepted.

DECnet-DOS Programmer's Reference Manual

4.4.3 bind

NAME

bind - assign an object name or number to a socket.

SYNTAX

#include < types.h >
#include <·socket.h>
#include < dn.h >

int
int
struct

bind(s, name, namelen)
s, namelen;
sockaddr_dn *name;

DESCRIPTION

The bind call assigns an object name or number to a 'socket. When a socket is first cre
ated with the socket call, it exists in a name space but has no assigned name or number.
The bind call is used primarily by server tasks. The object name is required before a
server task can listen for incoming connection requests using the listen call. It can also
be used by client tasks to identify themselves to server tasks. See also the accept (Sec
tion 4.4.2), connect, (Section 4.4.4), getpeername (Section 4.4.5), and getsockname
(Section 4.4.6) calls.

NOTE

VAX/VMS proxy access by user name is made possible if the client task
uses the bind call specifying his user name as the object name. Refer to
the SO_REUSEADDR option for the setsockopt call (Section 4.4.12) if
you want to make more than one proxy connection with the same
name.

Input Arguments

s

name

specifies the number for a socket which has been created with the socket
call.

specifies the address of the structure name of data type sockaddr _dn. A
user fills in the data for each field. (See Appendix B on how sockaddr _dn
is formatted.)

The following data fields can be modified:

sdn_family

sdn_flags

sdn_objnum

C Language

specifies the address family as AF _DECnet.

specifies the object flag option. It must be set to O.

defines the object number for the server task. It can be a number
o to 255. It is set to 0 only when the object name is used.

4-9

sdn_objnamel is the size of the object name.

sdn_objname defines the object name of the server or client task. It can be up
to a 16-element array of char. It is used only when
sdn_objnum equals o.

sdn_add specifies the node address structure for the server task. This
data member is ignored.

namelen specifies the size of the name structure.

Return Value

If the bind is successful, a 0 value is returned. An unsuccessful bind returns a value of
-1. When an error condition exists, the external variable errno will contain error
detail.

DIAGNOSTICS

[EADDRINUSE]

[EBADF]

[EINVAL]

[ENETUNREACH]

4-10

"

The specified name or number is already used by another
socket.

The argument s does not contain a valid socket number.

The socket s is already bound to a name or number.

The network is unreachable. The network process is not
installed.

DECnet-DOS Programmer's Reference Manual

4.4.4 connect

NAME

connect - initiate a connection request on a socket.

SYNTAX

#include < types.h >
#include <socket.h>
#include < dn. h >

int
int
struct

connect(s, destblk, destlen)
s, destlen;
sockaddr_dn, *destblk;

DESCRIPTION

The connect call issues a connection request to another socket. The other socket is spec
ified by destblk which is a pointer to the destblk data structure.

Optional data as well as access control information may be passed with this function
call. This data must be previously set by the setsockopt call. If subsequent connect calls
are issued on the same socket, a task must reissue the setsockopt call to set up new
optional user data and/or access control information.

Input Arguments

s

destblk

specifies the number for the socket which has been created with the
socket call. This socket number is used for establishing a connection
between the user tasks. It is also used with subsequent send and receive
function calls.

specifies the address of the structure destblk of the data type
sockaddr_dn. A user fills in the data for each field. (See Appendix Bon
how sockaddr _dn is formatted.)

The following data fields can be modified:

sdn_family

sdn_flags

sdn_objnum

specifies the address family as AF _DECnet.

specifies the object flag option. It must be set to O.

defines the object number for the server task. It can be a num
ber 0 to 255.

is the size of the object name.

defines the object name of the server task. It can be up to a
16-element array of char. It is used only when sdn_objnum
equals O.

specifies the node address structure for the server task. (See
Appendix B on how dn_naddr is formatted.)

destlen specifies the size of the destination block structure.

C Language 4-11

Return Value

If the call succeeds, it returns a value of o. Otherwise, the call returns a value of -1.
When an error condition exists, the external variable errno will contain error detail. If
the socket is set to nonblocking I/O (see also sioctl, Section 4.4.14), and you issue a con
nect, the function returns a -1, and the error message, EINPROGRESS.

DIAGNOSTICS

[EAFNOSUPPORT]

[EBADF]

[EBUSY]

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTUNREACH]

[EINPROGRESS]

[ENETDOWN]

[ENETUNREACH]

[ERANGE]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

4-12

Addresses in the specified address family cannot be
used with this particular socket.

The argument s does not contain a valid socket num
ber.

The socket is not in idle state. The socket is in the pro
cess of being connected or disconnected; is currently
a connected or listening socket.

The peer task has disconnected and the connection
was aborted.

The attempt to connect was forcefully rejected.

The remote task has failed.

The remote node is unreachable.

The connection request is now in progress.

The network is down. The Executor name and
address may not have been set and/or the Executor
state may not have been set ON.

The network is unreachable. The network process is
not installed.

The object number of the server task is invalid. The
valid range is 0 to 255.

The server object does not exist on the remote node.

Connection establishment was timed out before a
connection was established.

The remote node has accepted the maximum num
ber of connection requests.

DECnet-DOS Programmer's Reference Manual

4.4.5 getpeername

NAME

getpeername - get the name of a connected peer on a socket.

SYNTAX

#include <types.h>
#include <socket.h>
#include <dn.h>

int
int
struct

getpeername(s, destblk,destlen)
s, *destlen;
sockaddr_dn *destblk;

DESCRIPTION

Thegetpeername call returns information about the peer socket connected to the speci
fied socket. This information is the same information returned by the accept call. It
may be used by a client or server task anytime after a connection has been established
between two tasks or peers.

Input Arguments

s

destblk

destlen

specifies the number for a socket which has been created by the socket or
the accept call.

specifies the address of the destblk structure of the data type
sockaddr_dn. This argument will be filled in with peer information
returned by getpeername.

is a value result argument. It specifies the address of an into The value of
destlen should be initialized to the size of the destblk.

Return Arguments

destlen specifies the actual size of the destination block (in bytes).

destblk specifies the socket address data structure, sockaddr _dn. A user
retrieves data from the fields filled in by this function call. (See Appendix
B on how sockaddr_dn is formatted.)

The following data fields can be filled in by this function call:

sdn_family

sdn_objnum

sdn_objnamel

sdn_objname

CLanguage

is the address family AF _DECnet.

is the object number for the peer task. It can be a number 0 to
255.

is the size of the object name.

is the object name of the peer task. It can be up to a 16-e1ement
array of char. It is only used when sdn_objnum equals o.

4-13

Return Value

is the address structure for the peer node. (See Appendix B on
how dn_naddris formatted.)

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a -1.
When an error condition exists, the external variable errno will contain error detail.
See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

[ENOTCONN]

4-14

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The socket s is not connected, it has no peer.

DECnet-DOS Programmer's Reference Manual

4.4.6 getsockname

NAME

getsockname - get the current object name or number for the specified socket.

SYNTAX

#include <types.h>
#include < socket.h >
#include < dn.h >

int
int
struct

getsockname(s, destblk, destlen)
s, *destlen;
sockaddr_dn *destblk;

DESCRIPTION

The getsockname call returns the bound object name or number of the specified
socket.

Input Arguments

s

destblk

destlen

specifies the number for a socket which has been created by the socket
or the accept call.

specifies the address of a structure of the data type sockaddr _dn .
This argument will be filled in with local task information returned by
getsockname.

is a value result argument. It specifies the address of an into The value
of destlen should be initialized to the size of the destblk.

Return Arguments

destlen specifies the actual size of the destination block (in bytes).

destblk specifies the socket address data structure, sockaddr_dn. A user
retrieves data from the fields filled in by this function call. (See Appen
dix B on how sockaddr _dn is formatted.)

The following data fields can be filled in by this function call:

sdn_family

sdn_objnum

sdn_objnamel

sdn_objname

C Language

is the address family AF _DECoet.

is the object number for the local task. It can be a number 0 to
255.

is the size of the object name.

is the object name of the local task. It can be up to a 16-element
array of char. It is only used when sdn_objnum equals o.

is the address structure for the local node. (See Appendix B on
how dn_naddr is formatted.)

4-15

Return Value

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a -1.
When an error condition exists, the external variable errno will contain error detail.
See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

4-16

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

DECnet-DOS Programmer's Reference Manual

4.4.7 listen

NAME

listen -listen for pending connections on a socket.

SYNTAX

int listen(s, backlog)
int s;
int backlog;

DESCRIPTION

The listen call declares your socket as a server which is available for client connections.
The server uses the bound name or number in order to listen for incoming client con
nections. This call must be issued before an incoming connection can be accepted or
rejected. See also the accept (Section 4.4.2), the bind (Section 4.4.3) and the select (Sec
tion 4.4.10) calls.

If you detach a listening socket while the socket is receiving client connections, then all
links associated with the listening socket immediately abort and all outstanding data is
lost.

Input Arguments

s specifies the number for a socket which has been created with the socket
call and bound to a name or number by the bind call.

backlog defines the maximum number of unaccepted incoming connects which
are allowed on this particular socket. The maximum allowable number is
5. If a connection request arrives when the queue is full, the client task
will receive an error with an indication of ECONNREFUSED.

Return Value

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a-I.
When an error condition exists, the external variable errno will contain error detail.
See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ECONNREFUSED]

[ENETUNREACH]

[EOPNOTSUPP]

CLanguage

The argument s does not contain a valid socket number.

The connection request was rejected.

The network is unreachable. The network process is not
installed.

The socket type does not support the listen operation.

4-17

4-18

NOTE

You may issue a listen(sJ 0) call while already processing data over a
previously accepted connected socket. If this is done, subsequent
incoming connection requests will be rejected by the network process.
When communications are completed over the currently connected
socket, the listen(sJ backlog) call should be reissued to allow for subse
quent acceptance of incoming connection requests.

DECnet-DOS Programmer's Reference Manual

4.4.8 recv

NAME

recv - receive data or out-of-band messages on a socket.

SYNTAX

#include < socket.h >

int recv(s, buffer, buflen, flags)
int s, buflen, flags;
char * buffer;

DESCRIPTION

The recv call is used to receive data from your peer. See also the sread call (Section
4.4.16).

If no messages are available at the socket, the recv call waits for a message to arrive
unless the socket is nonblocking. (See sioctl, Section 4.4 .14). In this case, a status of -1
is returned with the external variable errno set to EWOULDBLOCK.

If the link is disconnected, queued data can still be received on the socket. However, if
you shutdown the socket or detach it, queued data cannot be received. When the logi
cal link is not in a connected state, and all data has been read, the recv call returns zero
bytes.

The select call may be used to determine when more data has arrived. (See Section
4.4.10)

Out-of-band messages are delivered to a receiving task ahead of normal data messages.
These messages can be received by specifying MSG_OOB as the flag argument.

Input Arguments

s

buffer

buflen

flags

specifies the number for a socket returned by the socket or the accept call.

specifies the address of a buffer which will contain the received message.

specifies the size of the message buffer.

set to 0 indicates that the task will receive normal messages. If set to
MSG_OOB, the task will receive out-of-band messages. Only one out-of-
band message can be outstanding at any time. You can also set the flags
argument to MSG~EEK to read the next pending message without
removing it from the receive queue.

Output Argument

buffer specifies the buffer which contains the received message.

CLanguage 4-19

Return Value

If the call succeeds, the number of received characters are returned.

If the call returns a zero, you have either received a zero length message or the logical
link has been disconnected. To determine the state of the logical link, use the
getsockopt function call with the DSO--LINKINFO option (See Section 4.4.12), or the
DECnet utility function, dnet_eof (See Chapter 5). If the link has been disconnected,
then all subsequent receives will return zero bytes.

If an error occurs, a value of -1 is returned. Additional error detail will be specified in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

When receiving normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[ENETUNREACH]

Nonblocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur
rently no data to receive.

When receiving out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

4-20

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur
rently no data to receive.

DECnet-DOS Programmer's Reference Manual

Nonblocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

C Language

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur
rently no data to receive.

4-21

4.4.9 sclose

NAME

sclose - terminate a logical link connection and deactivate a socket.

SYNTAX

int sclose(s)
int s;

DESCRIPTION

The sclose call terminates an outstanding connection over the socket referenced by s. It
also deactivates the socket.

NOTE

Before you can terminate a connection over a socket set with the
option SO_KEEPALIVE, you must first issue a setsockopt call with the
SO_KEEPALIVE option turned off. That is, precede the
SO_KEEPALIVE with a "(tilde), as in "SO_KEEPALIVE. Then issue the
sclose function call and the connection is completely broken.

The effect of sclose on unsent data queued for a remote task depends on the linger
option set with the setsockopt function call. (See Section 4.4.12.) If SO_LINGER is set,
control is returned to the task, but the link is not disconnected until the unqueued data
is sent. If SO_DONTLINGER is set, control is returned to the task, and any unqueued
data is lost.

NOTE

The DECnet-DOS function call sclose is not compatible with DECnet
UL TRIX systems. See Appendix G for information on how to transport
DECnet-DOS programs that use sclose.

Input Argument

s specifies the number for a socket which was returned by the socket or the
accept call.

Return Value

If the call succeeds, a value of 0 is. returned. If an error occurs, a value of -1 is returned.
Additional error detail will be specified in the external variable errno. See the DIAG
NOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

4-22

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

DECnet-DOS Programmer's Reference Manual

4.4.10 select

NAME

select - check the I/O status of the network sockets.

SYNTAX

#include < time.h >

int select(nfds, readfds, writefds, exceptfds, ti meout)
nfds; int

unsigned long
struct

DESCRIPTION

*readfds, *writefds, *exceptfds;
timeval *timeout;

The select call checks the network sockets specified by the bit masks readfds, writefds,
and exceptfds, respectively, to see if they are ready for reading, writing, or have any
outstanding out-of-band messages. The select call does not tell you if the logical link
connection has been broken.

You should use the select call to help manage your accept, send, recv, swrite, and sread
calls.

The readfds, writefds, and exceptfds I/O descriptors are long words which contain bit
masks. Each bit in a mask represents one socket number. For example, socket" 3 " is the
fourth bit or has a hex value of 8.

NOTE

The select call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value returned by the socket or the
accept call, as "1 < <s".

Input Arguments

nfds

readfds

C Language

specifies the highest socket number to be checked. The bits from
(1 < <0) to (1 < < (nfds-I» are examined.

specifies the socket numbers to be examined for read ready. For listen
ing sockets, a read ready condition indicates that an incoming connec
tion request can be read and either accepted or rejected. For
sequenced sockets, there is a complete message to be read. For stream
sockets, there is some data to be read. If a socket disconnects or
aborts, a read ready condition will always occur.

NOTE

To prevent a program from hanging on a stream
socket, issue the sioctl call, with the FIONREAD func
tion argument (See Section 4.4.14), and then read

4-23

writefds

exceptfds

timeout

timeval

only those number of bytes returned by the call. You
should also perform socket operations in
nonblocking I/O mode.

This descriptor can be given as a null pointer if of no
interest.

specifies the socket numbers to be examined for write ready. A write
ready condition exists when the logical link is available. This descrip
tor can be passed as a null pointer if of no interest.

specifies the socket numbers to be examined for out-of-band data
ready. There is a pending out-of-band message to receive. This descrip
tor can be given as a null pointer if of no interest.

NOTE

The bit mask exceptfds is presently not supported by
DECnet-UL TRIX.

specifies a pointer to a data structure of type timeval. If this pointer is
null, then the select call will wait until an event occurs. If the pointer is
non-null, and the time value is greater than zero, then the select call
will return either after n seconds have expired or when an event
occurs, whichever one comes first. If the pointer is non-null and the
time value is zero, then the select call will return after an immediate
poll.

specifies the amount of time to wait. The data members are:

specifies the time in seconds.

this data member is ignored.

Output Arguments

read_fds

write_Ids

except_Ids

4-24

If a socket is read ready, the bit is returned "on", and read_Ids
returns the socket numbers (as bit masks) to be examined. If the
socket is not read ready, the bit is cleared.

If a socket is write ready, the bit is returned "on", and write_Ids
returns the socket numbers (as bit masks) to be examined. If the
socket is not write ready, the bit is cleared.

If the socket is out-of-band data ready, the bit is returned "on", and
except_Ids returns the socket numbers (as bit masks) to be exam
ined. If the socket is not out-of-band data ready, the bit is cleared.

DECnet-DOS Programmer's Reference Manual

Return Value

The value returned by the select call is the number of bits set in all the masks. The bit
masks contain the set bits that correspond to the sockets in which events have
occurred. If the time period expires, a value of 0 is returned.

If an error occurs, a value of -1 is returned. Additional error detail will be contained in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

C Language

One of the specified bit masks is an invalid descriptor.

The network is unreachable. The network process is not
installed.

4-25

4.4.11 send

NAME

send - send data or out-of-band messages on a socket.

SYNTAX

#include < socket.h >

int send(s, buffer, buflen, flags)
int s, buflen, flags;
char * buffer;

DESCRIPTION

The send call is used to transmit data to your peer. The client task uses the socket num
ber returned by the socket call. The server task uses the socket number returned by the
accept call.

If you cannot get enough buffer space while building the outgoing message on a block
ing socket, the message is blocked. You must wait until current transmissions are fin
ished. For a nonblocking socket, the error message, EWOULDBLOCK, is returned. If a
socket disconnects, any outstanding data to be sent is discarded.

The flag option, MSG_OOB, can be set to indicate that out-of-band data will be sent to
your peer socket. An out-of-band message is a high priority message that you can send
to your peer. This message bypasses any normal messages waiting to be received. An
out-of-band message must be received by your peer before another message can be
sent.

The select call can be used to determine if it is possible to send more data. (See Section
4.4.10)

Input Arguments

s

buffer

buflen

flags

specifies the number for a socket returned by the socket or the accept call.

specifies the address of the buffer which contains the outgoing message.

specifies the size of the outgoing m~ssage.

can be set to 0 to indicate normal messages. It can be set to MSG_OOB
for out -of-band messages.

Return Value

If the call succeeds, the number characters sent is returned. If an error occurs, a value of
-1 is returned. Additional error detail will be specified in the external variable errno.
See the DIAGNOSTICS section for a full description of the error messages.

4-26 DECnet-DOS Programmer's Reference Manual

DIAGNOSTICS

When sending normal data, the following set of error messages can occur:

Blocking 110

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

Nonblocking 110

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

The outbound quota was full, and the message could not be
sent. Try again later.

When sending out-of-band data, the following set of error messages can occur:

Blocking 110

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

C Language

Description

The out-of-band message could not be sent. A similar trans
mission request is still in progress.

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 16 bytes.

The network is unreachable. The network process is not
installed.

4-27

Message

[ENOTCONN]

[EPIPE]

Nonblocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

4-28

Description

The send call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

Description

The out-of-band message could not be sent. A similar trans
mission request is still in progress.

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 16 bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

DECnet-DOS Programmer's Reference Manual

4.4.12 setsockopt and getsockopt

NAME

setsockopt and getsockopt - set and get the options associated with sockets.

SYNTAX

#include < types.h >
#include < socket.h >
#include <dn.h>

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname, optlen;
char *optval;

int getsockopt(s,level, optname, optval, optlen)
int s, level optname, *optlen;
char *optval;

DESCRIPTION

The setsockopt and getsockopt calls manipulate various options associated with a
socket. Options exist at multiple levels and you must specify the level number for the
desired operation.

At the socket level (SOL_SOCKET), the options include:

• SO_KEEPALIVE. If this option is set on a socket, any links and sockets associated
with this socket will remain active, despite any attempts to disconnect them.

NOTE

Before you can terminate a connection over a socket with the
option SO_KEEP ALIVE set, you must first issue a setsockopt call
with SO_KEEPALIVE turned off. To turn off SO_KEEPALIVE,
you must precede SO_KEEPALIVE with a tilde " (as in,
"SO~KEEPALIVE). ("SO_KEEPALIVE is the default condition.)

You then issue the sclose call. The logical links (if any) are discon
nected, and the socket and associated sockets (if any) are
deallocated. However, if you issue sclose without turning off
SO_KEEP ALIVE , the sockets remain allocated, and the links (if
any) stay active.

• SO_LINGER. SO_LINGER controls the actions taken when unsent messages are
queued on a socket and a sclose call is issued. If SO_LINGER is set, the connection
is maintained until the outstanding messages have been sent. This is the default con
dition.

C Language 4 29

• SO_DONTLINGER. SO_DONTLINGER also controls the actions of un sent mes
sages. If SO_DO NTLIN G ER is set, and the sclose call is issued, any outstanding mes
sages queued to be sent will be lost. The connection is then terminated.

• SO_REUSEADDR. SO_REUSEADDR allows the reuse of a name already bound
to a socket. For most situations, a name is bound to a socket only once. However,
this option enables you to reuse the same name. This particular option must only
be used for outgoing connection requests. It cannot be used for incoming connec
tions.

At the DECnet level (DNPROTO_NSP), socket options may specify the way in which a
connection request is accepted/rejected, may be used to set up optional user data and/
or access control information, or may be used to obtain current link state information.
The following socket options can be specified:

• DSO_ACCEPTMODE. The accept option mode is used at the DECnet level for pro
cessing accept calls. A socket must be bound (See Section 4.4.3) before specifying
this option. There are two values which can be supplied for this option. They are
immediate mode, ACC_IMMED, and deferred mode, ACC_DEFER.

ACC_IMMED. ACC_IMMED mode is the default condition for this option.
When immediate mode is in effect, control is immediately returned to the
server task following an accept call with the connection request accepted. The
access control information and/or optional data is ignored by the server task.

ACC_DEFER. ACC_DEFER mode enables the server task to complete the
accept call without fully completing the connection to the client task. In this
case, the server task can examine the access control or optional data before it
decides to accept or reject the connection request. The server task can then
issue the setsockopt call with the appropriate reject or accept option.

• DSO_CONACCEPT. DSO_CONACCEPT allows the server task to accept the
pending connection on the socket returned by the accept call. The original listen
ing socket was set to deferred accept mode. Any optional data previously set by
DSO_CONDATA will also be sent. .

• DSO_CONREJECT. DSO_CONREJECT allows the server task to reject the pend
ing connection on the socket returned by the accept call. The original listening
socket was set to deferred accept mode. Any optional data previously set by
DSO_DISDATA will also be sent. The reject reason is the value passed with this
option.

• DSO_CONDAT A. DSO_CONDA TA allows up to 16 bytes of optional user data to
be set by the setsockopt call. It can be sent as a result of the connect or the accept
(with the deferred option) calls. The optional data is passed in a structure of type
optdata_dn. (See Appendix B on how optdata_dn is formatted.) The data is read
by the task issuing the getsockopt call with this option.

4-30 DECnet-DOS Programmer's Reference Manual

• DSO_DISDATA. DSO_DISDATA allows up to 16 bytes of optional data to be set
by the setsockopt call. It can be sent as a result of the sclose call. The optional data is
passed in a structure of type optdata_dn. (See Appendix B on how optdata_dn is
formatted.) The data is read by the task issuing thegetsockoptcall with this option.

• DSO_CONACCESS. DSO_CONACCESS allows access control information to be
passed by the user task. This information is set with the setsockopt call. The access
data is sent to the server task. It is passed with the connect call in a structure of type
accessdata_dn. (See Appendix B on how accessdata_dn is formatted.) The
access data is read by the task issuing the getsockopt call with this option.

• DSO_LINKINFO. DSO_LINKINFO determines the state of the logical link con
nection.

When the getsockopt call is issued with this option, the state of the logical link is
returned in a logical link information data structure, linkinfo_dn. (See Appendix
B on how linkinfo_dn is formatted.)

Input Arguments

s specifies the number for a socket returned by the socket or the accept
call.

level specifies the level at which options are manipulated. The level is
either SOL_SOCKET or DNPROTO_NSP. (See Appendix A for
details.)

optname specifies options to be interpreted at the level specified. For example,
SO_LINGER at the SOL_SOCKET level.

optval, optlen specify access option values used with the setsockopt and the
getsockopt calls. The interpretation of each argument is function
dependent as shown here:

setsockopt call

optval

optlen

specifies the address for a buffer which contains information for set
ting option values.

specifies the size of the option value buffer.

getsockopt call

optval

optlen

C Language

specifies the address of a buffer which will contain the returned value
for the requested option(s).

is a value result parameter. It specifies the address of an int. The value
of optlen should initially contain the size of the buffer pointed to by
optval. On return, it will contain the actual size of the returned value.

4-31

Output Arguments (for getsockopt only)

optval specifies the buffer which contains the returned value for the
requested socket option(s).

optlen specifies the actual size of the returned value.

Return Values

If the call completes successfully, a value of 0 is returned. An unsuccessful call returns a
value of -1. When an error condition exists, the external variable errno will contain
error details. See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EACCES]

[EBADF]

[ECONNABORTED]

[EDOM]

[ENETUNREACH]

[ENOBUFS]

[ENOPROTOOPT]

[EOPNOTSUPP]

4-32

Unable to disconnect the socket.

The argument s does not contain a valid socket number.

The accept connect did not complete. The peer task discon
nected and the connection was aborted.

The acceptance mode is not valid.

The network is unreachable. The network process is not
installed.

There are no available buffers for optional access control
and/or user data.

No access control information was supplied with the connec
tion request.

The option is unknown.

DECnet-DOS Programmer's Reference Manual

4.4.13 shutdown

NAME

shutdown - shutdown all or part of a full duplex logical link.

SYNTAX

int shutdown(s, how)
int s, how;

DESCRIPTION

The shutdown call causes all or part of a full duplex connection on the original socket
to be shut down.

Input Arguments

s specifies the number for a socket returned by the socket or the accept call.

how specifies the type of shutdown. The how argument can be set to:

o which disallows further receives or reads.

1 which disallows further sends or writes.

2 which disallows further sends (or writes) and receives (or reads).

Return Value

If the shutdown call completes successfully, a value of 0 is returned. If an error occurs,
a value of -1 is returned. Additional error detail will be contained in the external vari
able errno. See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

[ENOTCONN]

CLanguage

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The specified socket is not connected.

4-33

4.4.14 sioctl

NAME

sioctl - control the operations of sockets.

SYNTAX

#include < sioctl.h >

int sioctl(s, request, argp)
int s, request;
char *argp; (or int *argp)

DESCRIPTION

The sioctl call controls the operations of sockets. The call indicates whether an argu
ment is an input or output argument and the size of the specific argument in bytes.

NOTE

The DECnet-DOS function call sioctl is not compatible with DECnet
UL TRIX systems. See Appendix G for information on how to transport
DECnet-DOS programs that use sioctl.

Input Arguments

s

request

specifies the number for a socket returned by the socket or the accept call.

specifies the I/O control function to be used. The control levels are:

FIONREAD returns the total byte count of all messages waiting to be read.
argp points to an into

FIONBIO sets/clears blocking or nonblocking I/O operation. argp points
to a byte that contains a value of 0 or 1. For blocking I/O, argp should
point to a value o. For nonblocking I/O, argp should point to a value of 1.

FIORENUM renumbers an assigned socket number to another number. In
this way, the original socket number is made available again. The valid
range for socket numbers is 0 to 31. argp points to an int.

NOTE

The select function call does not accept socket numbers
that exceed this range. (See Section 4.4.10 for details.) If
you specify a number that is already in use, an error mes
sage, EEXIST, is returned.

argp specifies the address of the argument list.

Output Argument

argp specifies the results of the socket operations.

4-34 DECnet-DOS Programmer's Reference Manual

Return Value

If the call completes successfully, a value of 0 is returned with the following additional
message:

for FIONREAD, argp returns the total byte count of all messages waiting to be read.

If an error occurs, a value of -1 is returned. Additional error detail will be contained in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

[EBADF]

[EEXIST]

[ENETUNREACH]

[EOPNOTSUPP]

C Language

The argument s does not contain a valid socket number.

The socket number is already in use.

The network is unreachable. The network process is not
installed.

The socket type does not support the socket I/O operation.

4-35

4.4.15 socket

NAME

socket - create an endpoint for communication and return a socket number.

SYNTAX

#include <types.h>
#include < socket.h >
#include <dn.h>

int socket(domain, type, protocol)
int domain, type, protocol;

DESCRIPTION

The socket call creates a socket and returns a socket number. A socket is an addressable
endpoint of communications within a task. It can be used to transfer data to/from a simi
lar socket in another task. Subsequent function calls on this socket will reference the
associated socket number.

Input Arguments

domain

type

protocol

Return Value

specifies the communications environment as AF _DECnet.

specifies the type of communication for the socket. For example,
SOCIL-STREAM. (See Appendix A for a list of defined socket types.)

SOCIL-STREAM causes bytes to accumulate until internal D ECnet
buffers are full. The receiving task does not know how many bytes
were sent in each write operation.

NOTE

To prevent a program from hanging on a stream
socket, issue the sioctl call, with the FIONREAD func
tion argument (See Section 4.4.14), and then read
only those number of bytes returned by the call. You
should also perform socket operations in
nonblocking I/O mode.

SOCIL-SEQPACKET causes bytes to be sent immediately. The receiv
ing task receives those bytes in one' 'record" .

specifies a particular D ECnet protocol to be used with the socket. (See
Appendix A for a list of supported DECnet layers.)

If the call completes successfully, the socket number is returned. This number is used
by subsequent system calls on this socket. If an error occurs, a value of -1 is returned.
Additional error detail will be contained in the external variable ermo. See the DIAG
NOSTICS section for a full description of the error messages.

4-36 DECnet-DOS Programmer's Reference Manual

DIAGNOSTICS

[EAFNOSUPPORT]

[EMFILE]

[ENETUNREACH]

[ENOBUFS]

[EPROTONOSUPPORT]

[ESOCKTNOSUPPORT]

C Language

The specified domain is not supported in this version
of the system.

Too many open sockets.

The network is unreachable. The network process is
not installed.

No buffer space is available. The socket cannot be cre
ated.

The specified protocol is not supported.

The specified socket type is not supported in this
address family.

4-37

4.4. 16 sread

NAME

sread - read data from a socket.

DESCRIPTION

The sread call is used to read data from your peer. If no messages are available at the
socket, the sread call waits for a message to arrive unless the socket is nonblocking. In
this case, a status of -1 is returned with the external variable errno set to
EWOULDBLOCK.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shutdown the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the sread call returns zero bytes.

The select call can be used to determine if more data has arrived. (See Section 4.4.10.)

NOTE

The DECnet-DOS function call sread is not compatible with DECnet
UL TRIX systems. See Appendix G for information on how to transport
DECnet-DOS programs that use sread.

The sread call performs the same function as the recv call (See Section
4.4 .8) with one exception - you cannot set any flags.

SYNTAX

int sread(s, buffer, buflen)
int s, buflen;
char ." buffer;

Input Arguments

s

buffer

specifies the number for a socket returned by the socket or the accept call.

specifies the address of the buffer which will contain the received mes
sage.

buflen specifies the size of the message buffer.

Output Argument

buffer specifies the buffer which contains the received message.

Return Value

If the call succeeds, the number of read characters are returned.

If the call returns a zero, you have either received a zero length message or the logical
link has been disconnected. To determine the state of the logical link, use the

4-38 DECnet-DOS Programmer's Reference Manual

getsockopt function call with the DSO~INKINFO option (See Section 4.4.12), or the
DECnet utility function, dnet_eof(See Chapter 5). If the link has been disconnected,
then all subsequent receives will return zero bytes.

If an error occurs, a value of -1 is returned. Additional error detail will be specified in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

When reading normal data, the following set of error messages can occur:

Blocking I/O

Message

[EBADF]

[ENETUNREACH]

Nonblocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

CLanguage

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is currently
no data to receive.

4-39

4.4.17 swrite

NAME

swrite - write data to a socket.

SYNTAX

int swrite(s, buffer, buflen)
int s, buflen;
char * buffer;

DESCRIPTION

The swrite call is used to write data to your peer.

If no message space is available at the socket to hold the message to be transmitted, then
the swrite call will normally block. If the socket has been placed in nonblocking I/O
mode, the message will not be sent, and the function will complete with the error
EWOULDBLOCK.

The select call can be used to determine if more data may be sent over the socket. (See
Section 4.4.10)

NOTE

The DECnet-DOS function call swrite is not compatible with DECnet
UL TRIX systems. See Appendix G for information on how to transport
DECnet-DOS programs that use swrite.

Input Arguments

s

buffer

buflen

Return Value

specifies the number for a socket returned by the socket or the accept
call.

specifies the address of the buffer which contains the outgoing mes
sage.

specifies the size of the message.

If the call succeeds, the number of sent characters are returned. If an error occurs, a
value of -1 is returned. Additional error detail will be specified in the external variable
errno. See the DIAGNOSTICS section for a full description of the error messages.

4-40 DECnet-DOS Programmer's Reference Manual

DIAGNOSTICS

When sending normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

Nonblocking 110

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

CLanguage

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The network is unreachable. The network process is not
installed.

The swrite call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The network is unreachable. The network process is not
installed.

The swrite call did not complete and the link was discon
nected.

The link has been disconnected, aborted or shutdown. No
further messages can be sent.

The outbound quota was full, and the message could not be
sent.

4-41

5
DECnet Utility Functions

DECnet-DOS includes C language source files which are used to create a linkable
library for DECnet-DOS applications. This library provides compatibility with the net
work socket interface supported by DECnet-UL TRIX.

The DECnet utility functions are contained in the C language source files. Some of
these routines are used for accessing the network node database and manipulating the
data.

Some of the DECnet utility functions include the DECnet header file < dnetdb.h > .
This file provides DECnet definitions used with standard C functions.

5.1 Creating the DECnet-DOS Programming Interface Library

The file DNETLIB.SRC contains three types of files: the .C files (C language sources),
the .R files (header files that contain definitions for the network interface) and the
.ASM files (assembly language sources). You should refer to the appropriate installation
guide for a complete list of these files.

In order to interface to the DEC net-DOS network process, you should create a library
against which to link your DECnet-DOS program(s).

Use the following procedure to create a DECnet-DOS programming interface library:

1. The Break Source utility, BREAKSRC, allows you to break the source file,
DNETLIB.SRC, into separate source files for compilation and assemblies.
BREAKSRC is supplied with the DECnet-DOS distribution kit. When you run the
DECnet-DOS Installation Procedure (DIP), you can select to have the
DNETLIB.SRC file split into separate files. The BREAKSRC utility will then be run
automatically for you. For instructions on how to run DIP, refer to the appropriate
installation guide.

5-1

To run BREAKSRC, use the following format:

BREAKSRC < input~ile_spec > < output_device: \path >

For example:

BREAKSRC A:DNETLIB.SRC C:\DECNET\SRC\

2. Use your C language compiler to compile each C language source module. Use your
assembler to assemble each assembly source module.

3. After you produce an object module for each source module, build a library against
which to link your DECnet-DOS applications programs.

5.1.1 DECnet-DOS Programming Considerations

The following programming considerations should be noted when writing and devel
oping your DECnet-DOS applications:

1. Using the External Variable errno - Most DECnet-DOS programming interface
functions use the external variable errno as a place to return error detail. It is
assumed that errno has been defined externally to the programming interface as an
into It may already be defined in your C language run-time library, if not, your
applications program should define it.

2. Checking Software Compatibility - When creating DECnet-DOS applications,
make sure that you resolve any C language compiler incompatibilities before com
piling the C language source modules such as long variable names or certain type
definitions.

3. Using Assembly Source Modules - There are assembly source modules included in
DNETLIB.SRC. Before you can successfully call these functions from sources com
piled by your C language compiler, you should fulfill any assembly-format require
ments such as segment names. (Refer to the header file, begin.h, on the distribution
kit as an example of specific C language compiler segment naming requirements.)

4. Using Specifk Macros - There are references to the macros/functions such as
toupper and islower in some of the C language source modules. It is assumed that
your C language compiler has provided a standard macro/function for them. If not,
you can simply provide your own macros/functions.

5. If you are not using a C compiler that supports the signal handling function (for
example, (CTRUC) trapping), then you will need to either provide your own signal
function or comment out from the code in dnet_conn any references to the
signal() function and the reference to the include file, < signal.h > .

5-2

The (C~RUC) trapping, provided in dnet_conn, allows you to abort a utility which
appears to be waiting indefinitely for connections to complete. (This applies only
to utilities that use dnet_conn for making connections.) The connect function in
dnet_conn is invoked in a nonblocking socket mode.

DECnet-DOS Programmer's Reference Manual

If CTRLlC trapping code is commented out from dnet_conn, there is the potential
problem of leaving hung sockets and running out of system resources, should users
decide to ICTRUC) in the middle of nonblocking connection request attempts.

6. If you are using a compiler that does not define the following variables: int day
light, long timezone and char *tzname[2J, either comment these external declara
tions out of the header file < time.h > or define them in your C program code.

7. The DECnet-DOS programming interface library was based on a 2-segment model.

8. Using specific DECnet function calls - If you develop code that uses dnet----.getacc,
dnet_installed and dnet-path function calls, you will be unable to transport that
code to a DECnet-ULTRIX system. These function calls are not valid on DECnet
UL TRIX systems.

Caution

If a program terminates with any active logical links (sockets), the links
remain active. In this way, another program can start and use the same
links.

If the logical links are not needed, you must issue an sclose function
call before a program is terminated with an EXIT, ICTRUZ) or ICTRUC J. If
too many links are left active, an error message, indicating that no
more buffers are available or insufficient network resources, is
reported. This causes the network to become unusable. To completely
deactivate any logical links, run the Network Control Program (NCP)
and issue the SET KNOWN LINKS command with STATE OFF. (See the
DECnet-DOS User's Guide for more information on this command.)

DECnet Utility Functions 5-3

5.2 DECnet Utility Function Calls

The following sections describe the DECnet utility function calls for C programs. The
calls are summarized in the table below:

Table 5-1 : DECnet Utility Function Calls

DECnet Call Description

bcmp Compare byte strings.

bcopy Copy n bytes from one specific string to another string.

bzero Zero n bytes in a specific string.

dnet_addr Convert an ASCII node address string to binary and return a pointer to a
dn_naddr data structure.

dnet_conn Connect to the specified target network object on a remote node and send
along access control information and/or optional data.

dnet_eof Test the current state of the connection.

dnet_getacc Search the incoming access database file, DECACC.DAT, for access control
information that is associated with a given user name. The access control
information set by the NCP command SET ACCESS is stored in the database
file, DECACC.DAT.

dnet_getalias Return default access control information by node name.

dnetjtoa Search the node database. If the node name is found, a pointer to the DEC
net ASCII node name string is returned. Otherwise, a pointer to the DEC
net ASCII node address string is returned. If the function fails to return a
valid node name or address string, a pointer to the string "?unknown?" is
returned.

dnet~nstalled

dnet~toa

getnodeadd

getnodeent

getnodename

nerror

perror

5-4

Perform an installation check on the specific software module.

Specify a pointer to the dn_naddr data structure which contains the
binary node address. If the function completes successfully, a pointer to
the ASCII string representation of the DECnet node address is returned.

Return a modified file name which contains the DEC net database device
and path name prefixed to the file name.

Return the address of your local DECnet-DOS node.

Access the network node database and return complete node information
given only a node address or node name.

Return the ASCII string representation of your local DECnet-DOS node.

Produce DECnet error messages and output the ASCII text string to stdout.

Produce an VL TRIX error message appropriate to the last detected system
error, and output the ASCII text string to stdout.

DECnet-DOS Programmer's Reference Manual

5.2.1 bcmp

NAME

bcmp - compare byte strings.

SYNTAX

int

char
int

bcmp(s1, s2, n)

*s1, *s2;
n;

DESCRIPTION

bcmp compares byte strings to see if they are matching character strings. It is assumed
that the strings are of equal length.

Input Arguments

sl

s2

n

Return Value

specifies the address of the first character string.

specifies the address of the second character string.

is the length of the strings.

If a match is found, the value of 0 is returned. Otherwise, a nonzero value is returned.

DECnet Utility Functions 5-5

5.2.2 bcopy

NAME

bcopy - copy n bytes from one specific string to another string.

SYNTAX

int bcopy(s1, s2, n)

char *s1, *s2;
int n; *

DESCRIPTION

bcopy copies n bytes from one specific string to another string.

Input Arguments

sl

s2

n

Return Value

is the character pointer to the source string.

is the character pointer to the destination string.

specifies the number of bytes to be copied.

The number of bytes copied from the source string to the destination string is returned.

5-6 DECnet-DOS Programmer's Reference Manual

5.2.3 bzero

NAME

bzero - zeroes n bytes in a specified string.

SYNTAX

int bzero(s1, n)

char
int

*s1;
n;*

DESCRIPTION

bzero zeroes n bytes in a specified string.

Input Arguments

*sl

n

Return Value

is the character pointer to the specified string.

specifies the number of bytes to be zeroed.

The number of bytes zeroed in the specified string is returned.

DEenet Utility Functions 5-7

5.2.4 dneLaddr

NAME

dnet_addr - convert an ASCII node address string to binary and return a pointer to a
dn_naddr data structure.

SYNTAX

struct dn_naddr *dneLaddr(cp)

char *cp;

DESCRIPTION

In area based networks, a DECnet node address includes an area number and a node
number. dnet_addr converts an ASCII node address string to binary and returns a
pointer to a dn_naddr data structure. This information is required for the
sockaddr _dn data structure. (See Appendix B on how these data structures are format
ted.)

Input Argument

cp is the character pointer to the ASCII node address string. The DECnet node
address is specified as a. n

where

a is the area number

n is the node number

Return Argument

specifies the node address data structure. A user retrieves data from
the fields filled in by this function call. The fields are:

specifies the length of the returned node address.

specifies the node address.

If the call succeeds, a pointer to a dn_naddr data structure is returned. Otherwise, a
null value is returned.

5-8

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local buffer.

DECnet-DOS Programmer's Reference Manual

5.2.5 dneLconn

NAME

dnet_conn - connect to the specified target network object on a remote node and
send along access control and/or optional user data.

SYNTAX

int

char
char
int
u_char
int

DESCRIPTION

dneLconn(node, object, socLtype, out_data, out_len,
in_data, in_len)

*node;
*object;
socLtype;
* out_data, * in_data,
ouLlen, *in_len;

dnet_conn establishes a connection to the specified target DECnet object on a remote
node. If no access control information is supplied as part of the node input argument,
the default access control information (if found in the access control database) will be
sent. Optional data can also be passed with the function.

dnet_conn supports password prompting based on the input node specification
string. You are asked to supply a password whenever:

• the password field in the node specification is either a question mark (?) or an aster-
isk (*).

• the user field is present but the password field is missing.

The following example node specifications will cause prompting for passwords:

dneL...conn (" boston/ reve re" , ...)
dnet~onn("boston/revere/?", ...)
dnet~onn("boston/revere/*", ...)

dnet_conn supports outgoing proxy login access. Outgoing proxy allows the local
node to initiate proxy login access to the remote node, but does not allow proxy login
access from the remote node to the local node. Before you are permitted to use proxy
login, the following must take place:

• proxy login access must be supported at the remote node.

• the Executor (local) node must have a user name set up in its node database. This
user name is passed in outgoing connection requests and may be used for proxy
login access. To set up access control information, refer to the discussion on the
NCP utility in the DECnet-DOS User's Guide.

If access control information is not explicitly supplied with an input node name,
dnet_conn will check the node database for implicit access control information. If

DECnet Utility Functions 5-9

implicit access control does not exist, proxy login will take place with the Executor
node's user name and passed in the outgoing connection request.

The following examples show the use of proxy login access with the dnet_conn func
tion call:

The Executor (local) node has set up TASHA as the user name in the local node's data
base. The remote node BOSTON is stored as an entry in the local node's database with
out any access control information.

1. no proxy, null access control information is explicitly specified:

dnet_conn ("BOSTON/ /" , ...)

2. proxy will be passed, no explicit access control information, no implicit access con
trol information for node BOSTON in the database:

dnet_conn (" BOSTON" , . . .)

The Executor (local) node has set up TASHA as the user name. The remote node BOS
TON is stored as an entry in the local node's database with TASHA as the user name/
access control information.

1. no proxy, null access control information is explicitly specified:

dnet_conn (" BOSTON/ /" , . . .)

2. no proxy, the implicit access control information for node BOSTON will be used:

dnet_conn (" BOSTON" , . . .)

A target task can return a 1- to 16-byte optional data message when it accepts or rej ects
the connection request.

When a program which uses dnet_conn fails to complete a connection request, nerror
can subsequently be called in order to display the DECnet error message.

Input Arguments

node

5-10

specifies the address of the string which contains the remote node
name or address and any access control information. Node names are
always converted to uppercase before being processed by this func
tion. Access control information is passed as supplied with regard to
case.

To pass access control information, the node string can take one of
the following formats:

"node_name/user/password/account' '

or

"area. node_number/user/password/ account"

DECnet-DOS Programmer's Reference Manual

object

Return Value

To pass null access control information, the node string can take one
of the following formats:

"node_name/ /"

or

"area. node_number/ /"

specifies the address of the string which contains the specified target
DECnet object. The object string can be specified in one of the follow
ing ways:

1. To access a target object by supplying an object. You should note
that the object name is passed as supplied, with regard to case.

"target_object_name' ,

2. To access a target object by object number.

"#target_object_number' ,

is 0 when creating a sequenced socket packet, and 1 when creating a
stream socket.

specifies the address of the outgoing optional user data buffer. If not
required, supply a null pointer.

specifies the size of the optional outgoing message. The message
length can be up to 16 bytes. If not required, supply a null value.

~

specifies the address of the buffer which will store the optional incom-
ing message. If not required, supply a null pointer.

specifies the address of the location in which the value will be stored.
It should initially contain the size of the buffer pointed to by
in_data. On return, it will contain the actual size of the optional
incoming message. If not required, supply a null pointer.

If the function completes successfully, the socket number is returned. If an error
occurs, a value of -1 is returned. Additional error detail will be contained in the exter
nal variable errno. See the DIAGNOSTICS section for a full description of the error mes
sages.

DIAGNOSTICS

[E2BIG] An argument is too long.

[EACCES] Access control information was rejected.

[EADDRNOTAVAIL] The node name is undefined.

DECnet Utility Functions 5-11

[EDESTADDRREQ]

[ENAMETOOLONG]

[ENETUNREACH]

[ESRCH]

A specific destination address is required.

The node name is invalid.

The network is unreachable. The network process is not
installed.

The object is unknown.

NOTE

Additional errors may be returned by the socket, setsockopt, and the
connect function calls which are called from within dnet_conn.

5-12 DECnet-DOS Programmer's Reference Manual

5.2.6 dnet_eof

NAME

dnet_eof - test the current state of the connection.

SYNTAX

int dnet_eof(sock)

int sock;

DESCRIPTION

dnet_eoftests the current state of the connection.

Input Argument

sock specifies the socket whose connection is to be checked.

Return Value

If the connection is determined to be active (either a running or a connecting state), a
value of 0 is returned. If the connection is inactive, a value of 1 is returned.

NOTE

If a bad socket number is supplied with dnet_eof, a value of 1 is
returned. However, this value is not a true indication of an invalid
socket number.

DEenet Utility Functions 5-13

5.2.7 dnet_getacc

NAME

dnet_getacc - searches the incoming access database for access control information
that is associated with a given user name.

SYNTAX

struct dnet_accent
struct dnet_accent

* dnet_getacc(nacc)
*nacc;

DESCRIPTION

dnet-.getacc searches the incoming access database file, DECACC.DAT, for access con
trol information that is associated with a given user name. The access control informa
tion set by the NCP command SET ACCESS is stored in the database file, DECACC.DAT.

NOTE

!fyou develop code that uses dnet-.getacc, you will be unable to trans
port that code to a DECnet-ULTRIX system. This call is not valid on
DECnet-UL TRIX systems.

Input Argument

nacc is a character pointer to an access control information block contain
ing the user name to be matched. The string consists of 1 to 39 alpha
betic characters. This string must be identical to the user string set up
by the NCP command SET ACCESS. (Use the NCP command SHOW
KNOWN ACCESS to display the string.) Refer to the DEGnet-DOS
User's Guide on using these commands.

Return Argument

nacc

acc-pass

5-14

specifies the access control information block data structure
dnet_accent. A user retrieves information filled in by this function
call. (See Appendix B on how dnet_accent is formatted.)

The following data fields can be filled in by this function call:

is used internally by this function call.

specifies the type of privilege associated with a user name.
The four access types are: 0 for no access rights, 1 - read only
access, 2 - write only access and 3 for read and write access.

specifies the user name. It consists of a 1 to 39 alphabetic
character string terminated by a null character.

specifies the password associated with a user name. It con
sists of a 1 to 39 alphabetic character string terminated by a
null character.

DECnet-DOS Programmer's Reference Manual

If there is a match, a character pointer to the access control information block associ
ated with the user string is returned. The access type is always returned along with any
user and password information.

A value of 0 is returned if there is no match, or the DEC net database path cannot be
found for DECACC.DAT using the function dnet-Path. (See Section 5.2.12.)

NOTE

If you plan to use this function again before you are finished using the
data, you must copy the data into a local structure.

DECnet Utility Functions 5-15

5.2.8 dnet_getalias

NAME

dnet~eta1ias - returns default access control information by node name.

SYNTAX

char *dneLgetalias(node)

char *node;

DESCRIPTION

dnet--.getalias retrieves any default access control information associated with a spe
cific node.

Input Argument

node is a character pointer to a node name. The node name is forced to
uppercase and then processed by the function.

Return Argument

If the node has default access control information associated with it, the node name fol
lowed by the access data is retrieved. The extended node name string is returned as
node_name/userlpassword/account. This data was set up in the permanent data
bases, DECNODE.DAT and DECALIAS.DAT, using the Network Control Program
(NCP).

If no access control data can be found, a null pointer is returned.

5-16

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local buffer.

DECnet-DOS Programmer's Reference Manual

5.2.9 dneLhtoa

NAME

dnet~toa - search the node database. If the node name is found, a pointer to the DEC
net ASCII node name string is returned. Otherwise, a pointer to the DEC net ASCII node
address string is returned. If the function fails, a pointer to the string "?unknown?" is
returned.

SYNTAX

char

struct

* dneLhtoa(add)

dn_naddr * add;

DESCRIPTION

dnet---.btoa searches the node database. If the node name is found, a pointer to the DEC
net ASCII node name string is returned. If the node name is not found, a pointer to the
DECnet ASCII node address string is returned.

Input Argument

add

Return Value

specifies a pointer to a structure of the type, dn_naddr, which con
tains the node address. The format is area. number. (Refer to Appendix
B on how the dn_naddr data structure is formatted.)

If the node name is found, a pointer to the DECnet ASCII node name string is returned.
Otherwise, a pointer to the DECnet ASCII node address string is returned.

If the function call fails to return a valid node name or address string, a pointer to the
string "?unknown?" is returned.

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local structure.

DEenet Utility Functions 5-17

5.2.10 dnet_installed

NAME

dnet_installed - perform an installation check on a specific software module.

SYNTAX

int dnet_installed(vector, tla)
short vector;
char *tla;

DESCRIPTION

dnet_installed performs an installation check on a specific software module. You sup
ply the interrupt vector number and the 3-letter acronym for the software module.

If the software module is installed, the 2-byte software version number is returned. The
low byte is the major version number. The high byte is the minor version number. Oth
erwise, a value of -1 is returned.

NOTE

If you develop code that uses dnet_installed, you will be unable to
transport that code to a DECnet-ULTRIX system. This function call is
not valid on DECnet-UL TRIX systems.

Input Arguments

vector

tla

Return Value

specifies the interrupt vector number for the software module. Appen
dix A lists the interrupt vector numbers for the defined software mod
ules.

is the 3-letter acronym for the software module. The acronym is
passed as supplied, with regard to case. For example, DNP is the acro
nym for the DECnet Network Process. It must be passed as uppercase.
See Appendix A for a list of defined software modules.

If the installation check successfully completes, the 2-byte software version number is
returned. Otherwise, a value of -1 is returned.

5-18 DECnet-DOS Programmer's Reference Manual

5.2.11 dnet_ntoa

NAME

dnet_ntoa - Convert a DECnet node address from binary form to ASCII form.

SYNTAX

char

struct

* dnet_ntoa(add)

dn_naddr * add;

DESCRIPTION

dnet_ntoa converts a DECnet node address from binary form to ASCII form.

Input Argument

add specifies a pointer to a structure of the type, dtL-naddr, which con
tains the binary node address. (See Appendix B on how the dtL-naddr
data structure is formatted.)

Return Value

If the function completes successfully, a pointer to the ASCII string representation of
the DECnet node address is returned. The format is area.number.

If the function call fails to return a valid node name or address string, a pointer to the
string "?unknown?" is returned.

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local structure.

DECnet Utility Functions 5-19

5.2.12 dnet_path

NAME

dnet_path - return a modified file name that contains the DECnet database device and
path name prefixed to the specified input file name.

SYNTAX

char *dneLpath(file_name)

char *file_name;

DESCRIPTION

Given a character string pointer to a file name, dnet-path returns a modified file name
that contains the DECnet database device and path name prefixed to the specified input
file. It is recommended that all user-created DECnet-DOS database files be located in
the same DECnet directory.

For example:

Call:

n ew-1 i I e--.n arne dnet-path("NCPHELP.BIN");

Returns:

new-1 i I e--.narne = "e: \deenet\NCPHELP. BIN"

The DECnet database device and path name should be specified as input arguments to
the DLL and/or DNP command lines in your AUTOEXEC.BAT file. To do this, edit your
AUTOEXEC.BAT file using EDLIN or a similar text editor.

IMPORTANT

The dnet-Path function call differs from Version 1.0. You can no lon
ger set the DECnet database device and path names using the NCP com
mand SET EXECUTOR. However, you can still display the database
path specification. To do this, issue the NCP command SHOW EXECU
TOR CHARACTERISTICS. For information on using this command,
refer to the DECnet-DOS User's Guide.

If you develop code that uses dnet-path, you will be unable to trans
port that code to a DECnet-UL TRIX system. This function call is not
valid on DECnet-ULTRIX systems.

When the system is rebooted, DNP and/or DLL will use its command line argument or
default to the current device: \decnet as the path specification.

To change the DECnet database path, you will need to specify a new path specification
as command line input the next time that DLL and/or DNP are installed.

5-20 DECnet-DOS Programmer's Reference Manual

DEC net-DOS Version 1.1 supports Ethernet and asynchronous DDCMP configura
tions. DEC net-Rainbow VI.I only supports asynchronous DDCMP configurations.
The following examples illustrate acceptable ways for specifying the DECnet database
path.

If you have an Ethernet setup.

Example 1: The Scheduler (SCH), Data Link Layer (DLL) and DECnet Network Pro
cess (DNP) files are to be installed. The DLL and DNP command lines include a defined
DECnet database path. The DLL path is used.

SCH
DLL c:\decnet\vll
DNP c:\decnet\vll

Example 2: SCH, DLL and DNP files are to be installed. Only the DLL command line
includes a defined DECnet database path. A database path is not defined for DNP. The
database path set for DLL will also be used by DNP.

SCH
DLL c:\decnet\vll
DNP

Example 3: SCH, DLL and DNP files are to be installed. The DLL and DNP command
lines do not include defined database paths. For this setup, the default DEC net database
path (current device:\decnet) set for DLL will also be used by DNP.

SCH
DLL
DNP

If you have an asynchronous DDCMP setup.

Example 1: SCH and DNP files are to be installed. The DNP command line includes a
defined DECnet database path. The DLL file is not required for asynchronous opera
tions.

SCH
DNP c:\decnet\vll

DECnet Utility Functions 5-21

Example 2: SCH, and DNP files are to be installed. A DECnet database path is not speci
fied for DNP. Therefore, the default database path (current drive: \decnet) will be used
byDNP.

SCH
DNP

Return Value

If the call completes successfully, a pointer to a modified file name that contains the
DECnet database device and path name prefixed to the file is returned.

5-22 DECnet-DOS Programmer's Reference Manual

5.2.13 getnodeadd

NAME

getnodeadd - return the address of your local DECnet-DOS node.

SYNTAX

struct dn_naddr * getnodeadd();

DESCRIPTION

getnodeadd returns a pointer to a dn_naddr data structure which contains the DEC
net node address of the local D ECnet - DOS node.

Return Argument

specifies the node address data structure. A user retrieves data from
the fields filled in by this function call. The fields are:

specifies the length of the returned DECnet-DOS node
address.

specifies the DECnet-DOS node address.

If the call succeeds, a pointer to a dn_naddr data structure is returned. If an error
occurs, a null value is returned.

NOTE

The dn_naddr data structure will be reused by additional calls. To
keep this information, you must copy the data into a local structure.

DECnet Utility Functions 5-23

5.2.14 getnodeent

NAME

getnodeent, getnodebyaddr, getnodebyname, setnodeent, endnodeent - access the net
work node database and return complete node information given only a node address
or node name.

SYNTAX

#include < dnetdb.h >

struct

struct
char

struct
char
int

nodeent * getnodeent()

nodeent *getnodebyname(name)
*name;

nodeent *getnodebyaddr(addr, len, type)
*addr;
len, type;

setnodeent(stayopen)
int stayopen;

endnodeent() *

DESCRIPTION

These functions access the network node database and return complete node informa
tion given only a node address or node name. Each getnodeent, getnodebyname and
getnodebyaddr function returns a pointer to a single static nodeent structure. This
structure contains the broken out fields of an entry in the network node database.

getnodeent returns a pointer to the next entry of the database.

setnodeent positions you at the beginning of the database. If the stayopen flag is set to
nonzero, the node database is not closed after each call to getnodeent (either directly,
or indirectly through one of the other "getnode" calls).

endnodeent closes the database file.

getnodebyname andgetnodebyaddr sequentially search from the beginning of the data
base until a matching node name or node address is found, or until an end of the data
base is encountered. Node names are stored in the network node database as upper
case. Therefore, comparisons of node name strings to node names stored in the
database are forced to be uppercase. Node addresses are always arranged in ascending
numeric order.

5-24 DECnet-DOS Programmer's Reference Manual

Input Arguments

name specifies the address of the buffer containing the DECnet node name
string.

addr specifies the address of the buffer containing the D ECnet node
address string.

len is the length of the node's address string in bytes.

is the address type AF_DECnet. type

stayopen specifies a call dependent argument. If set to nonzero, the network
node database is kept open for subsequent "getnode" calls.

Return Value

If the function, other than setnodeent and endnodeent, complete successfully, the
address for the nodeent structure is returned.

nodeent specifies the node address database structure. A user retrieves data
from the fields filled in by this function call. The following data fields
can be modified:

*n_name points to a string which is the name of the DECnet node.

n_addrtype

n_addr

specifies the address type AF _DECnet.

specifies the DECnet network address for the node.

If an error or an EOF occurs, a null pointer is returned.

If setnodeent completes successfully, a value of 0 is returned. Otherwise, a value of -1
is returned.

NOTE

The nodeent structure will be reused by additional calls. To keep this
information, you must copy the data into a local structure.

DECnet Utility Functions 5-25

5.2.15 getnodename

NAME

getnodename - return the DECnet node name of your local DECnet-DOS node.

SYNTAX

char * getnodename();

DESCRIPTION

getnodename returns the ASCII string representation of your local DECnet-DOS node
name.

Return Value

If the function call is successful, your local DECnet node name is returned. Otherwise,
a null pointer is returned.

5-26 DECnet-DOS Programmer's Reference Manual

5.2.16 nerror

NAME

nerror - produce DECnet system error messages.

SYNTAX

nerror(s)
char *s;

DESCRIPTION

nerror produces DECnet error messages by mapping standard errno values to their
equivalent DECnet error messages. First the characters pointed to by s are output to
stdout, followed by a colon, and then the resulting DEC net error text. The error num
ber is taken from the external variable, errno, which is set when an error occurs.

If a program makes a call to dnet_conn which fails, nerror should be subsequently
called in order to display the DECnet error text.

Input Argument

* c is the character pointer to the ASCII text string to be displayed before the
DECnet error text is displayed.

Output Argument

The characters pointed to by s are output to stdout, followed by the colon, and then the
resulting DECnet error text. You should refer to Section 5.2.5 for the list of DECnet
error messages returned by dnet_conn.

NOTE

This call is not UL TRIX compatible. For the UL TRIX call, the log is out
put to stderr.

DEenet Utility Functions 5-27

5.2.17 perror

NAME

perror - produce a standard UL TRIX error message appropriate to the last detected sys
tem error.

SYNTAX

perror(cp)

char *cp;

DESCRIPTION

perror produces a standard UL TRIX error message appropriate to the last detected sys
tem error. First the character string is output, followed by a colon, and then the stan
dard UL TRIX error message indexed by errno.

For example,

perror("Last error was ")

Input Argument

* cp is the character pointer to the ASCII text string to be displayed before the
UL TRIX error text is displayed.

5-28

NOTE

The log from perror is output to stdout. This call is not
UL TRIX compatible. For the UL TRIX call, the log is output
tostderr.

DECnet-DOS Programmer's Reference Manual

6
Assembly Language

Application programs written in assembly language can establish logical links and
exchange data over the network. Nontransparent task-to-task communication requires
specific network process interface calls. The implementation of these programming
calls are discussed in this chapter.

6.1 OECnet-OOS Network Process

The DECnet-DOS network process is a terminate and stay resident task which is
loaded into memory. It remains in memory once it is run. The DECnet-DOS network
process supports blocking and nonblocking synchronous, and asynchronous I/O.

6.2 OECnet Network Process Installation Check

Before accessing the DECnet network process, you should check to see if the network
process has been installed. You must first issue the MS-DOS interrupt function call 35H
(Get Interrupt Vector) with the DNP vector number as input. This function call returns
a pointer to the DNP interrupt entry point.

On entry, the AH register contains the hexadecimal code, 35H. The AL register con
tains a hexadecimal interrupt number. For example, 6EH is the interrupt number for
the DECnet network process. On return, the ES:BX register contains the CS:IP inter
rupt vector for the specified interrupt.

6-1

The interrupt function ca1l35H is described below:

+- --+
! On I 8086/8088 Register Contents
I Entry I
+- - - - - - - -+- --+
I AH I 35H (hexadecimal function code)
I I
+- - - - - - - -+- --+
I AL I 6E (interrupt vector number for
I I the DECnet network process)
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents
I Return I
+- - - - - - - -+ --+
I ES:BX I pointer to the interrupt
I I handling routine
+- - - - - - - -+- --+

Figure 6-1: MS-DOS Interrupt Function Call 3SH, Get Vector

6-2 DECnet-DOS Programmer's Reference Manual

Using the interrupt vector that identifies the DECnet network process (DNP) module,
you can examine the contents of the five bytes that precede the D NP entry point. Use
the following procedure:

• Check the first 3 bytes for the 3-1etter acronym for the software module. In this
case, the acronym is DNP.

• Examine the 2-byte software version number. The low byte is the major version
number, and the high byte is the minor version number.

The installation check procedure is described below:

In Memory
+----- ----------+
i major version I

+----- ----------+
I minor version I

+----- ----------+
Returned by GET INTERRUPT VECTOR D

+----- ----------+
+----------+ N
I segment I +---------------+
+----------+ P
I offset entry +---------------+
+ - - - - - - - - - - + - - - - - - - - - - - - - - - - - > DNP: I code

point +----- ----------+

Assembly Language 6-3

6.3 Using the 110 Control Block

All I/O to the network process is handled via DECnet-DOS network process interface
calls. A data structure called the I/O Control Block (IOCB) transfers data to/from the net
work process. The address of the 10CB data structure is passed directly to the network
process.

To issue a network process interface call, you must first create an 10CB for that call.
Refer to the individual call descriptions (Sections 6.7.1 to 6.7.20) on how to set up the
10CB. To pass information to the DECnet network process, you must issue the inter
rupt function ca1l6EH. You use this call for I/O requests to the network process:

• set up data in an 10CB

• move the address of the 10CB into the DS:DX register

• move the DEC net network process code, DE, into the AH register

• move a value of 1 into the AL register as the function code for an 10CB function
request

• issue the interrupt function call 6EH

On return, status information is returned in the 10CB for the network process interface
call addressed by this interrupt function. If the call 6EH completes successfully, the
10CB's data member, io_status, returns a value of o. Data may also be returned in the
10CB. You should refer to the individual call descriptions for details on any returned
data.

In all 110 modes, if the call 6EH is unsuccessful, io_status returns a -1 value. In asyn
chronous mode, if the call does not complete, a value of -2 is returned. Another
(C)IOCB data member, io_errno returns additional error detail. See Appendix C for a
list of error conditions.

The function ca1l6EH is described below:

+- -. - - - - - - - - - - --+
I On I 8086/8088 Register Contents !

I Entry I
+- - - - - - - -+- --+
I AH I DE (DECnet network process I
I I hexadec imal code) i
+- - - - - - - -+- --+
I DS:DX I address of IOCB (or CIOCB) I
+- - -. - - - -+- - - - - _. --+
I AL I 1 (IOCB Function request) I
+- - - - - - - -+- --+

Figure 6-2: Interrupt Function Call 6EH, IOCB Request

6-4 DECnet-DOS Programmer's Reference Manual

6.3.1 1/0 Control Block Structure

The I/O Control Block consists of a header substructure and a parameter list. The mem
bers of the 10CB header are listed in the following table:

Table 6-1: IOCB Header Data Members

Member Size Data Contents

io-/code 1 byte network process call specific function code (See Section
6.7.)

io~ocket 2 bytes socket number

io-flags 2 bytes flag option

io~tatus 2 bytes returned status value

io_errno 2 bytes returned error value

i0-Psize 2 bytes parameter list size or buffer size

The 10CB parameter list depends on the particular network process interface call. It
may contain one of the following members:

Table 6-2: IOCB Parameter List Members

Member Size Data Contents

attach-"'n 12 bytes socket creation data

io_buffer 4 bytes data buffer offset

listen-"'n 2 bytes maximum number of incoming connects

localinfo_dn 20 bytes local node information

select-"'n 16 bytes socket 110 descriptors

shutdown-"'n 2 bytes type of logical link shutdown

sioctl-"'n 8 bytes socket 110 control

sockaddr _dn 26 bytes socket definitions

sockopt_dn 12 bytes socket options

Assembly Language 6-5

The members of an IOCB data structure are illustrated below:

Bytes Data Fields: Input or Output

+ - - - - - - - + < -. - - -
Function code (io,fcode)

+-------+
10 ! Socket (io,socket)

+-------+
hi V

+-------+
I 10 Flags (io.flags)
+-------+
I hi
+-------+
I 10
+-------+

hi
+-------+

V

Status (io.status)
I

V

10 Errno (io.errno)
+-------+
I hi V
+-------+

10 ! Parameter size (io.psize) <--------+
+-------+
! hi ! V
+-------+

< --+
+-------+ I

Data structure(s)

< --+
+-------+

Figure 6-3: An IOCB Data Structure

IOCB
HEADER

IOCB
PARAMETER

LIST

6-6 DECnet-DOS Programmer's Reference Manual

6.4 Using the Callback 1/0 Control Block

To request a callback routine when specific calls complete, you must set up a data struc
ture called the Callback I/O Control Block (CIOCB). The address of the CIOCB data
structure is passed directly to the DECnet network process. To issue a DECnet-DOS
call with a callback routine, you must first create a CIOCB for that call. Refer to individ
ual call descriptions on how to set up the CIOCB. To pass information to the DECnet
network process, issue the interrupt function call 6EH: (Refer to Section 6.3 for a
description of the function call 6EH.)

• set up data in a CIOCB

• move the address of the CIOCB into the DS:DX register

• move the DECnet network process code, DE, into the AH register

• move a value of 1 into the AL register as the function code for a CIOCB function
request

6.4.1 Callback 1/0 Control Block Structure

The Callback I/O Control Block consists of a header substructure, a parameter list and
the address of the callback routine. The CIOCB uses the same header substructure and
parameter list as the 10CB. Their data members are listed in Tables 6-1 and 6-2. The
additional data member is the address of the callback routine which requires 4 bytes.

Assembly Language 6-7

Its location along with the other members of the CIOCB are illustrated below:

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
Function code (io_fcode) I

+-------+ I

10 Socket (io socket)
+-------+ i
i hi V
+-------+

10 i Flags (io_flags)
+-------+ I

hi V
+-------+

10 Status (io_status)
+-------+

hi V
+-------+

10 Errno (io errno)
+-------+

hi V
+-------+

10 Parameter size (io_psize) <--------+
+-------+

hi V
+-------+

< --+
+-------+ I

Data structure(s)

I
< --+

+ - - - - - - -+ < -+
10 offset

+-------+ I

hi v
+-------+ io callback

10 segment
+-------+

hi I v
+- - - - - - -+ < -,- - - - - - - - - --+

Figure 6-4: A CIOCB Data Structure

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-8 DECnet-DOS Programmer's Reference Manual

6.5 Blocking and Nonblocking Synchronous 1/0 vs. Asynchronous
1/0

DECnet-DOS supports three ways of handling network I/O: blocking synchronous,
nonblocking synchronous and asynchronous I/O. Each method is independent of the
other.

When a DECnet-DOS call is issued in blocking synchronous mode, the software issu
ing the call does not regain control until the call completes or has failed. When
non blocking synchronous 110 is set, socket operations return to the calling program
after the operation has been started, but not necessarily completed. Some operations
must be restarted. If on the other hand, the operation can be performed immediately, it
will either be completed or fail. When it fails, an error reason such as EWOULDBLOCK
or ENOBUFS will be reported.

When asynchronous I/O is used, control returns to the calling program immediately
after the DECnet network process records the call request. The network process may
complete the request immediately or wait for a later time. There are two ways for you
to check the status of an asynchronous DECnet-DOS call: use a callback routine and/or
poll for status.

When using asynchronous I/O, the calling program can request that a routine be called
upon completion. This routine is referred to as the callback routine. Callback routines
can only be implemented with the asynchronous form of a function call. Asynchronous
callbacks are valid for the following seven calls. It is also valid to issue these calls asyn
chronously without a callback as well as synchronously. The calls are:

•
•
•
•
•
•
•

ACCEPT (Section 6.7.2)

CONNECT (Section 6.7.6)

RCVD (Section 6.7.12)

RCVOOB (Section 6.7.13)

SELECT (Section 6.7.14)

SEND (Section 6.7.15)

SENDOOB (Section 6.7.16)

NOTE

Information pertaining to the asynchronous form of function calls is
indicated by the caption For Asynchronous Mode.

The function calls not appearing in this list can be issued asynchro
nously without a callback routine. Due to the way that the network
process handles these calls, they will still complete immediately.

Assembly Language 6-9

If your program does not implement callback routine(s), you should poll for status. To
do this, examine the io---.-Status field in the 10CB. A value of either -2,0 or -1 may be
returned. A value of -2 indicates pending or no change in status. When the call success
fully completes, a value of 0 is returned in the io_status field. For some calls, you will
be able to retrieve data from a data structure which is filled in by the call.

If the call is unsuccessful, io_status returns a value of -1. Additional error reason will
be contained in the io_errno field. The error messages are listed in the DIAGNOSTICS
section under each call description.

You can use callbacks and also poll for status. When you do this, the following status
values can be returned:

Status
Value Meaning

-2 No change in status. The callback routine has not been called.

o The call has completed. The callback routine was already called.

-1 The callback was already called, but there was an error in completing
the call.

6.5.1 Using a Callback Routine

When you write a program that uses a callback routine, follow these guidelines:

• There is a valid stack, but not the user's stack.

• The address of the 10CB is in the DS:DX register.

• The address of the 10CB is on the stack.

• You preserve all registers except for the AX, BC, CX and OX registers.

• You must be sure to do a far return.

• When you implement callback routines, you cannot do any MS-DOS function calls
or synchronous network I/O inside the callback routine. You can still do asynchro
nous network I/O.

6.5.2 Setting the io_flags Field

You can set more than one bit in the io_flags field which is included in the I/O control
block. Bits for asynchronous I/O and callback routines can be used in conjunction with
other bits for "peeking" at messages, and for sending and receiving a multi-part mes
sage. How these bits are used with a specific function call appear in the individual call
descriptions. Additional information about these flag options appear in Appendix A.

6-10 DECnet-DOS Programmer's Reference Manual

6.6 Using Socket Numbers with DECnet Network Process Interface
Calls

The network process uses socket numbers to identify a particular I/O session. A socket
number must be assigned by the user before he can proceed with further network I/O.
To assign a socket number, issue the ATTACH function call. (See Section 6.7.3 for a call
description.) The assigned socket number is then used in the 10CB for subsequent net
work calls. The DETACH function call instructs DNP to deallocate any network
resources associated with the attached socket, and make the socket and resources avail
able again for network I/O.

6.7 Network Process Interface Calls

The following sections describe the synchronous form of the network process inter
face calls used for assembly language programs. An 10CB is passed to the network pro
cess with each call. Each 10CB contains a header and a parameter list. The members of
the 10CB header are detailed with each call. For some calls, the 10CB also includes a
data structure or a buffer address. The type of data structure is determined by the spe
cific call. The members of the data structures are detailed in a similar manner.

Information pertaining to the asynchronous form of certain function calls is indicated
by the caption For Asynchronous Mode. Refer to Section 6.5 for a list of function calls
that have an asynchronous and a synchronous form.

The assembly language network process interface calls are summarized in the follow
ing table:

Table 6-3: Assembly Language Network Process Interface Calls

Decimal
Value

10

5

o

2

4

1

Function

ABORT

ACCEPT

ATTACH

BIND

CONNECT

DETACH

Assembly Language

Description

Disconnect all logical links (if any) and detach the
sockets that do not have the option SO~EEP ALIVE

set.

Accept an incoming connection request on a socket,
and return a socket number.

Create a socket and attach a socket number.

Assign an object name or number to a socket.

Initiate a connection request on a socket.

Disconnect all associated active logical links, and
detach the specified socket and any associated
sockets, only if the option SO~EEPALIVE is not set.

(continued on next page)

6-11

Table 6-3 (cont.): Assembly Language Network Process Interface Calls

Decimal
Value Function Description

6 DISCONNECT Disconnect from the peer socket, and terminate the
logical link connection.

26 GETSOCKOPT Get the options associated with sockets.

3 LISTEN Listen for pending connections on a socket.

22 LOCALINFO Retrieve network information for the local node.

16 PEERADDR Retrieve information about your peer socket.

S RCVD Receive data on a specified socket.

13 RCVOOB Receive out-of-band messages on a specified socket.

23 SELECT Check the 1/0 status of the network sockets.

9 SEND Send data on a specified socket.

14 SENDOOB Send out-of-band messages on a specified socket.

25 SETSOCKOPT Set options associated with sockets.

7 SHUTDOWN Shutdown part or all of a full duplex logical link con-
nection.

24 SIOCTL Control the operations of open sockets.

15 SOCKADDR Retrieve information set by the BIND call for the spec-
ified socket.

6-12 DECnet-DOS Programmer's Reference Manual

6.7.1 ABORT

NAME

ABORT - disconnect all logical links (if any) and detach sockets that do not have the
option SO_KEEP ALIVE set.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
iofcode: ABORT (10)

+-------+
10 io_socket: 0 (not used)

+-------+ I
hi V

+-------+
10 io_flags: 0 (not used)

+-------+ I
hi V

+-------+
10 io_status: (not used)

+-------+ I

hi V
+-------+

10 io_errno: (not used)
+-------+ I

hi V
+-------+

10 ! io_psize: (not used)
+-------+ I

hi V
+-------+

!

i

<------------+

< --+
+-------+

Data structure: none

< --+
+-------+

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-13

DESCRIPTION

The ABORT call disconnects all logical links (if any) and detaches the sockets that do
not have the option SO-KEEPALIVE set. Refer to Section 6.7.17 for a discussion of
SO_KEEP ALIVE.

NOTE

Before you can terminate a connection over a socket with the option
SO_KEEP ALIVE set, you must first issue a SETSOCKOPT call with
SO_KEEPALIVE turned off. To turn off SO-KEEPALIVE, you must
precede SO_KEEPALIVE with the NOT operator. (NOT
SO_KEEPALIVE is the default condition.)

You are then able to issue the ABORT call. The logical links (if any) are
disconnected, and the socket is detached. However, if you issue
ABORT without turning off SO_KEEP ALIVE , the socket remains
attached, and the links (if any) stay active.

Input Data

io_fcode

io_socket

io_flags

io-psize

Output Data

specifies ABORT as the function code. It has a decimal value of 10.

specifies the socket number created by the ACCEPT or the
ATTACH call. It is not used with the ABORT call. All logical links
are disconnected by the ABORT call.

defines specific flag options. You must set this data member to O. It
is not used with the ABORT call.

specifies the size of a data structure. This data member is not used
with the ABORT call.

There is no output data for the ABORT call.

6-14 DECnet-DOS Programmer's Reference Manual

6.7.2 ACCEPT

NAME
ACCEPT - accept an incoming connection request on a socket and return a socket num
ber.

IOCB Data Members

Bytes

+-------+
I

+-------+
10

+-------+
hi !

+-------+

Data Fields: Input or Output

< -+
io_fcode: ACCEPT (5) I

I

io_socket: socket number
f

V

10 io_flags: 0 (not used)
+-------+ I

hi V
+-------+

10 io_status: 0 for success,
+-------+ or -1 if unsuccessful

hi V
+-------+

10
+-------+

hi
+-------+

10
+-------+
I hi
+-------+
!

+-------+

io errno: error detail,
if status: -1

V

io_psize: 26 bytes <--------------+
I

V

< --+

IOCB
HEADER

IOCB
Data structures: attach_dn PARAMETER

(input) LIST
sockaddr_dn
(output) I

+- - - - - - -+ < -+

Assembly Language 6-15

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+-------+ <- - - - - --- - --- - - ---- -- - - ------ -----
: io_fcode: ACCEPT (5)
+-------+

10
+-------+

io socket: socket number
i

hi V
+-------+

10 io_flags:
+-------+

hi V
+-------+

(asynchronous)
(callback)

10 io_status: 0 for success,
+-------+ I -1 if unsuccessful,

hi V -2 for pending status
+-------+

10 io_errno: error detail,
+-------+ if status: -1

hi V
+-------+

10 io_psize: 26 bytes (--------------+
+-------+ I

hi V
+-------+

+-------+
< --+

Data structures: attach_dn
(input)
sockaddr dn
(output)

(- --+
+- - - - - - -+ < --+

10 offset I

+-------+ I
hi I v

+-------+ io callback
10 ! segment

+-------+ I

hi v !
+- - - - - - -+ < --+

crOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-16 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The A CCEPT call extracts the first connection request on the queue of pending connec
tions, creates a new socket with a new number having the same properties of the origi
nallistening socket. The original socket remains open.

If the socket is set to nohblocking 110, and there are no queued connection requests,
io_status will return a -1, and errno will contain EWOULDBLOCK.

There can be two modes of accepting an incoming connection. They are immediate
and deferred modes. These modes of acceptance are set via the SETSOCKOPT call.
When immediate mode is in effect, the acceptance of the connection request takes
place immediately. The deferred mode indicates that the server task completes the
ACCEPT call without fully completing the connection to the client task. In this case,
the server task can examine the access control or optional user data before it decides to
accept or reject the connection request. The server task must then issue the
SETSOCKOPT call with the appropriate reject or accept option.

DESCRIPTION - For Asynchronous Mode

The A CCEPT call extracts the first connection request on the queue of pending connec
tions, creates a new socket with a new number having the same properties of the origi
nallistening socket. The original socket remains open. When the asynchronous form of
the ACCEPT call is used, it is possible that the call may not complete. If this occurs,
there are two ways for you to check the status of the call:

• A callback routine (if implemented) will be called upon completion of the call.

• If there is no callback routine, you should poll for status. To do this, examine the
io--.status field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. When the ACCEPT call successfully completes, a value
of 0 is returned in the io_status field. In addition, you can retrieve data from the
sockaddr _dn data structure which is filled in by the A CCEPT call.

If the call is unsuccessful, io_status returns a value of -1. Additional error detail
will also be contained in io_errno. For a description of these error messages, see
the DIAGNOSTICS section.

There can be two modes of accepting an incoming connection. They are immediate
and deferred modes. These modes of acceptance are set via the SETSOCKOPT call.
When immediate mode is in effect, the acceptance of the connection request takes
place immediately. The deferred mode indicates that the server task completes the
ACCEPT call without fully completing the connection to the client task.

In this~ase, the server task can examine the access control or optional user data before
it decides to accept or reject the connection request. The server task can then issue the
SETSOCKOPT call with the appropriate reject or accept option.

Assembly Language 6-17

Input Data

io_fcode

io-.-Socket

io-flags

specifies ACCEPT as the function code. It has a decimal value of 5.

specifies the socket number to be assigned. If 0 is specified, the net
work process assigns a socket number for you. If a nonzero value is
specified, the network process assigns that value. The assigned socket
number, returned to io_socket, is used in subsequent send and
receive calls. If the value is already in use, an error message, EBADF, is
returned in io_errno.

defines specific flag options. You must set this data member to O. It is
not used with the synchronous form of the ACCEPT call.

For Asynchronous Mode: You can set io_f/ags to MSG~SYNC
and MSG_CALLBACK. MSG~SYNC processes the asynchronous
I/O form of the ACCEPT function call. MSG_CALLBACK allows the·
network to issue a callback routine when the ACCEPT call completes.
The hexadecimal value for each flag option is listed in Appendix A.

io-psize specifies the larger size of the 2 data structures, attach_dn and
sockaddr_dn (26 bytes). The 2 data structures overlay each other:
attach_dn is used for input and sockaddr _dn is used for output.

attach_dn specifies the attach function data structure. The structure contains the
following data fields:

att_socket defines the number for a socket which was created with the
ATTACH call, bound to a name by the BIND call, and was set
to listen for incoming connections by the LISTEN call.

att-protoco/

att-.-Supreq

6-18

specifies the communications domain as AF _DECnet.

specifies the socket type. For example, SOC~STREAM.
(See Appendix A for a list of defined socket types.)

specifies the DECnet option for the socket. For example,
DNPROTO~SP. (See Appendix A for details.)

specifies the socket recovery period. This data member is not
used with the ATTACH call.

.specifies the support requirements. This data member is not
used with the ATTACH call.

For Asynchronous Mode: If the MSG_CALLBACKbit is set
in io_flags, then io_callback specifies the 4 byte address of
the function to be called by the network process when the
function completes. (See Appendix B on how the data type
exptr is formatted.)

DECnet-DOS Programmer's Reference Manual

Output Data

sdn_family

sdn_objnum

sdn_objnamel

sdn_objname

o upon successful completion. If an error occurs, io_status
returns a -1. io_errno will also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a
value of -2 is returned. io_status will return a 0 upon success
ful completion. If an error occurs, io_status will return a -1.
io_errno will also contain additional error detail.

additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

specifies the socket address data structure. A user retrieves data
from the fields filled in by this function call. (See Appendix Bon
how sockaddr _dn is formatted.)

For Asynchronous Mode: A user cannot retrieve data from the
socket address data structure until io_status has changed from
a pending condition (-2) to successful completion (0).

The following data fields are filled in by this function call:

is the address family AF _DECnet.

is the object number for the client node. It can be a number 0
to 255.

is the size of the object name.

is the object name of the client network task. It can be up to a
16-byte array. It is used only when sdn_objnum equals O.

is the node address structure for the client task. (See Appen
dix B on how dn_naddr is formatted.)

Data Structure Type Summary

sdn_family 2 bytes

sdn_objnum 1 byte

sdn_objnamel 2 bytes

sdn_objname 16-byte array

sdn_add 4 bytes

a tt_socket 2 bytes

att_domain 2 bytes

att_type 2 bytes

att-protocol 2 bytes

Assembly Language 6-19

att_srp

att_supreq

DIAGNOSTICS

[EBADF]

[ECONNABORTED]

[EEXIST]

[EM FILE]

[EWOULDBLOCK]

6-20

2 bytes

2 bytes

The argument io_socket does not contain a valid socket
number.

The client task disconnected before the ACCEPT call com
pleted.

The socket number is already in use.

There are no more available sockets.

The socket is marked for nonblocking and no connections
are waiting to be accepted.

EWOULDBLOCK is not a valid error message for the asyn
chronous form of the ACCEPT call.

DECnet-DOS Programmer's Reference Manual

6.7.3 ATTACH

NAME

ATTACH - create a socket and attach a socket number.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ < --+

+-------+
10

+-------+
hi

+-------+
10

+-------+
hi

+-------+
10

+-------+
hi 1

+-------+
10

+-------+
hi

+-------+

io_code: ATTACH (0) I

io_socket: socket number
I
v

io_flags: 0 (not used)
!

V

io_status: 0 for success,
I or -1 if unsuccessful

V

io_errno: error detail,
! if status: -1
V

I
!
I

I
I
I
i

!
I
I

!

!
I

I

I

10 ! io_psize: 12 bytes <--------------+
+-------+ I

hi V
+-------+

< --+
+-------+ I

I
Data structure: attach_dn I

I

< -,- - - - --+
+-------+

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-21

DESCRIPTION

The ATTACH call creates a socket and attaches a socket number.

Input Data

io_fcode specifies ATTACH as the function code. It has a decimal value of o.
io_socket specifies the socket number to be assigned. If 0 is specified, the net

work process assigns a socket number for you, and returns this num
ber to io_socket. If a nonzero value is specified, the network process
assigns that value. The assigned socket number is used in subsequent
network calls.

io_flags defines specific flag options. You must set this data member to o. It is
not used with the ATTA CH call.

i0-Psize specifies the size of the data structure attach_dn as 12 bytes.

attach_dn specifies the attach function data structure. The structure contains the
following data fields:

att~ocket specifies the socket number. This data field is ignored by the
ATTA CH call.

specifies the communications domain as AF _DECnet.

specifies the socket type. For example, SOCIL-STREAM.
(See Appendix A for a list of defined socket types.)

att-protoco/ specifies the DECnet option for the socket. For example,
DNPROTO_NSP. (See Appendix A for details.)

Output Data

io~tatus

6-22

specifies the socket recovery period. This data member is not
used with the ATTACH call.

specifies the support requirements. This data member is not
used with the ATTACH call.

o upon successful completion. If an error occurs, io_status returns a
-1 . io_errno will also contain additional error detail.

additional error detail if io_status returns a -1. (See the DIAGNOS
TICS section for a list of error conditions.)

DECnet-DOS Programmer's Reference Manual

Data Structure Type Summary

att_type

att-Protoco/

att_srp

att_supreq

DIAGNOSTICS

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

[EEXIST] The socket number is already in use.

[EINV AL] The argument io_socket does not contain a valid socket num
ber. (You cannot assign -lor -2 as socket numbers.)

[EMFILE] There are no more available sockets.

[ENOBUFS] No buffer space is available. The socket cannot be created.
There are no more available logical links.

Assembly Language 6-23

6.7.4 BIND

NAME

BIND - assign an object name or number to a socket.

tOeS Data Members

Bytes Data Fields: Input or Output

+ - - - - - - -+ < --+
io_fcode: BIND (2) I

+-------+
10 io_socket: socket number

+-------+ I
hi V

+-------+
10 io_flags: 0 (not used)

+-------+ I
hi I V

+-------+
10 io status: 0 for success,

+-------+ I or -1 if unsuccessful
hi V

+-------+
10 I io_errno: error detail,

+-------+ I if status: -1
hi V

+-------+
10 io_psize: 26 bytes <----------------+

+-------+
hi V

+-------+
I <-----------------------------------+
+-------+ I

+-------+

I
Data structure: sockaddr_dn I

I

I
< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-24 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The BIND call assigns an object name or number to a socket. When a socket is first cre
ated with the ATTACH call, it exists in a namespace but has no assigned name. The
BIND call is used primarily by server tasks. The object name is required before a server
task can listen for incoming connection requests using the LISTEN call. It can also be
used by client tasks to identify themselves to server tasks. See also ACCEPT (Section
6.7.2), CONNECT (Section 6.7.6), PEERADDR (Section 6.7.11) and SOCKADDR (Sec
tion6.7.20).

NOTE

The VAX/VMS proxy access by user name is made possible, if the client
task uses the BIND call specifying his user name as the object name.
You should refer to the SO_REUSEADDR option of the SETSOCKOPT
call if you wish to make more than one proxy connection with the
same name.

Input Data

io_fcode

io_socket

io_flags

iO-/Jsize

sdn_family

sdn_flags

sdn_objnum

sdn_objnamel

sdn_objname

Assembly Language

specifies BIND as the function code. It has a decimal value of 2.

specifies the number for a socket which has been created by the
ATTACH call.

defines specific flag options. You must set this data member to
O. It is not used with the BIND call.

specifies the size of the data structure sockaddr _dn as 26
bytes.

specifies the socket address data structure. A user fills in the
data for each field. The same data members must be used with
the ACCEPT call.

The following data fields can be modified:

specifies the address family as AF _DEenet.

specifies the object flag option. It must be set to O.

defines the object number for this network task. It can be a
number 0 to 255.

is the size of the object name.

defines the object name of this network task. It can be up to a
16-byte array. It is used only when sdn_objnum equals O.

specifies the node address structure for this network task.
This data member is ignored.

6-25

Output Data

returns a 0 upon successful completion. If an error occurs, io_status
returns a-I. io_errno will also contain additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

Data Structure Type Summary

sdn_family

sdn_flags

sdn_objnum

sdn_objnamel

sdn_objname

sdn_add

DIAGNOSTICS

[EADDRINUSE]

[EBADF]

[EINVAL]

6-26

2 bytes

1 byte

1 byte

2 bytes

16-byte array

4 bytes

The specified name is already used by another socket.

The argument io_socket does not contain a valid socket num
ber.

An invalid length for the object name was specified.

DECnet-DOS Programmer's Reference Manual

6.7.5 CANCEL

NAME
CANCEL - cancel a previous asynchronous function call request.

IOCB Data Members

Bytes

+-------+

+-------+
! 10
+-------+

hi
+-------+

10
+-------+

hi
+-------+

10
+-------+

hi
+-------+

10
+-------+

hi !

+-------+

Data Fields: Input or Output

< --+
io_fcode: CANCEL (20)

io socket: socket number,
I except to cancel SELECT, socket
V number must equal O.

io_flags: 0 (not used)
I
I

V

io_status: 0 for success,
i or -1 if unsuccessful

V

io_errno: error detail,
if status: -1

V

10 io_psize: 4 bytes (----------------+
+-------+ I

hi V
+-------+

< -+
+-------+

Data structure: io buffer

< -+
+-------+

Assembly Language

rOCB
HEADER

IOCB
PARAMETER

LIST

6-27

DESCRIPTION

The CANCEL call allows a network process to cancel a previous asynchronous I/O
request. This function call is used with the asynchronous form of the ACCEPT, RCVD,
RCVOOB, SELECT and SEND function calls. To cancel a previous function request, you
must specify the socket number for that call. If you want to cancel a SELECT call, the
socket number must be set to O. Otherwise, the call will not be cancelled.

There are two return values for any cancel operation:

• When a function call is cancelled, the CANCEL function always returns success. It
does not matter whether the previous request existed, already completed or still in
progress.

• To determine if the previous request was found and successfully cancelled, you
must examine io_errno for that particular call. An error code of EINTR will indi
cate successful cancellation. (See the DIAGNOSTICS section for each applicable
function call.)

Input Data

io-psize

Output Data

6-28

specifies CANCEL as the function code. It has a decimal value of 20.

specifies the socket number that must match the socket number for
the call to be cancelled.

defines specific flag options. You must set this data member to O. It
is not used with the CANCEL call.

specifies the size of a data structure. This data member is not used
with the CANCEL call.

returns a 0 upon successful completion.

specifies additional error detail. This data member is not used with
the CANCEL function.

DECnet-DOS Programmer's Reference Manual

6.7.6 CONNECT

NAME

CONNECT - initiate a connection request on a socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ <-----------------------------------+
io fcode: CONNECT (4) I

+-------+ I
10 io_socket: socket number I

+-------+ . I I
hi V

+-------+
10 io_flags: 0 (not used)

+-------+ I
hi V

+-------+
10 io_status: 0 for success,

+-------+ I or -1 if unsuccessful
hi V

+-------+
10 io_errno: error detail,

+-------+ if status: -1
hi V

+-------+
10 ! io_psize: 26 bytes <----------------+

+-------+ I
hi V

+-------+
< --+

+-------+ I

IOCB
HEADER

I IOCB
Data structure: sockaddr dn

< --+
+-------+

Assembly Language

PARAMETER
LIST

6-29

CIOCB Data Members - For Asynchronous Mode

Bytes

+-------+
I
I

+-------+
10

+-------+
hi

+-------+
10

+-------+
hi

+-------+
10

+-------+
I hi
+-------+
I 10
+-------+

hi
+-------+

Data Fields: Input or Output

<------- -------------------------
io fcode: CONNECT (4)

io socket: socket number
i

V

io_flags: (asynchronous)
I (callback)

V

io status: 0 for success,
I -1 if unsuccessful,
V -2 for pending status

io_errno: error detail,
if status: -1

V

10 io_psize: 26 bytes <--------------+
+-------+
! hi V
+-------+

< --+
+-------+ I

I
I

+-------+
10

+-------+
hi

+-------+
10

+-------+
hi

+-------+

Data structure: sockaddr dn

< --+
< --+
offset

I
v

segment
!
v

io callback

< --+

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-30 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The CONNECT call issues a connection request to another socket. Optional data as well
as access control information (if any) are passed to the peer task as a result of this func
tion call. This data must be previously set by the SETSOCKOPT call. If subsequent CON
NECT calls are issued on the same socket, a task must reissue the SETSOCKOPT call to
set up new optional data and/or access control information.

NOTE

Subsequent connection requests cannot be made on the same socket
until it has been disconnected.

If nonblocking I/O mode is set, and the CONNECT call is issued, the call returns immedi
ately with an error status, EINPROGRESS.

DESCRIPTION - For Asynchronous Mode

The CONNECT call issues a connection request to another socket. Optional data as well
as access control information (if any) are passed to the peer task as a result of this func
tion call. This data must be previously set by the SETSOCKOPT call. If subsequent CON
NECT calls are issued on the same socket, a task must reissue the SETSOCKOPT call to
set up new optional data and/or access control information.

When the asynchronous form of the CONNECT call is used, it is possible that the call
may not complete. If this occurs, there are two ways for you to check the status of the
call:

• A callback routine (if implemented) will be called upon completion of the call.

• If there is no callback routine, you should poll for status. To do this, examine the
io_status field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. When the CONNECT call successfully completes, a
value of 0 is returned in the io_status field.

If the call is unsuccessful, io_status returns a value of -1. Additional error detail
will also be contained in io_errno. For a description of these error messages, see
the DIAGNOSTICS section.

Input Data

io_fcode

io_socket

specifies CONNECT as the function code. It has a decimal value of 4.

specifies the number for the socket which has been created by the
ATTACH call. This socket number is used for establishing a connec
tion between the user tasks. It is also used with subsequent send and
receive function calls.

defines specific flag options. You must set this data member to o. It
is not used with the synchronous form of the CONNECT call.

Assembly Language 6-31

io-Psize

sockaddr _dn

sdn_family

sdn_flags

For Asynchronous Mode: You can set io-flags to MSG~SYNC
and MSG_CALLBACK. MSG-ASYNC processes the asynchronous
I/O form of the CONNECT function call. MSG_CALLBACK allows
the network to issue a callback routine when the CONNECT call
completes. The hexadecimal value for each flag option is listed in
AppendixA.

specifies the size of the data structure sockaddr _dn as 26 bytes.

specifies the socket address data structure. A user fills in the data for
each field. (See Appendix B on how sockaddr _dn is formatted.)

The following data fields can be modified:

specifies the address family as AF _DECnet.

specifies the object flag option. It must be set to O.

defines the object number for the server task. It can be a num
ber 0 to 255.

sdn_objname/

sdn_objname

is the size of the object name.

defines the object name of the server network task. It can be
up to a 16-byte array. It is only used when sdn_objnum
equals O.

Output Data

6-32

specifies the node address structure for the server task. (See
Appendix B on how dn_naddr is formatted.)

For Asynchronous Mode: If the MSG_CALLBACKbit is set
in io-flags, then io_callback specifies the 4 byte address of
the function to be called by the network process when the
function completes. (See Appendix B on how the data type
exptr is formatted.)

returns a 0 upon successful completion. If an error occurs,
io_status returns a-I. io_errno will also contain additional error
detail.

If the socket is set to nonblocking 110, and you issue a CONNECT,
the function returns a value of -1 and the error message,
EINPROGRESS.

For Asynchronous Mode: If the call's status is still pending, a value
of -2 is returned. io_status will return a 0 upon successful comple
tion. If an error occurs, io_status will return a-I. io_errno will
also contain additional error detail.

DECnet-DOS Programmer's Reference Manual

returns additional error detail if io~tatus returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

Data Structure Type Summary

sdn-/amily

sdn_flags

sdn_objnum

sdn_objnamel

sdn_objname

sdn_add

DIAGNOSTICS

[EAFNOSUPPORT]

[EBADF]

[EBUSY]

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTUNREACH]

[EINPROGRESS]

[EINVAL]

[ENETDOWN]

[ENETUNREACH]

[ERANGE]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

Assembly Language

2 bytes

1 byte

1 byte

2 bytes

16-byte array

4 bytes

Addresses in the specified address family cannot be
used with this particular socket.

The argument io_socket does not contain a valid
socket number.

The socket is not in idle state. The socket is in the pro
cess of being connected or disconnected; the socket is a
connected or listening socket.

The peer task has disconnected and the connection was
aborted.

The attempt to connect was forcefully rejected.

The remote task has failed.

The remote node is unreachable.

The connection request is now in progress.

The object name of the server task is too long.

The network is down.

The network cannot be reached from this host.

The object number of the server task is invalid. The
valid range is 0 to 255.

The server object does not exist on the remote node.

Connection establishment was timed out before a con
nection was established.

The remote node has accepted the maximum number of
connection requests.

6-33

6.7.7 DETACH

NAME

DETACH - disconnect all associated active logical links, and detach the specified
socket and any associated sockets, only if the option SO_KEEPALIVE is not set.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - -+ < --+
io_fcode: DETACH (1)

+-------+
i 10 io socket: socket number
+-------+

hi V
+-------+

10
+-------+

hi
+-------+

10 I
+-------+

hi
+-------+

io_flags: 0 (not used)
I
V

io status: 0 for success,
or -1 if unsuccessful I

I

V

10 io_errno: error detail,
+-------+ if status: -1

hi V
+-------+

10 ! io_psize: not used <--------------+
+-------+ I

hi V
+-------+

I, <------------------------- _________ +
+-------+

Data structure: none

<- --
+-------+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-34 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The DETACH call disconnects all associated active logical links, and detaches the speci
fied socket if it does not have the option SO_KEEP ALIVE set.

NOTE

Before you can terminate a connection over a socket with the option
SO_KEEP ALIVE set, you must first issue a SETSOCKOPT call with
SO_KEEPALIVE turned off. To turn off SO_KEEPALIVE, you must
precede SO_KEEPALIVE with the NOT operator. (NOT
SO_KEEPALIVE is the default condition.)

You are then able to issue the DETACH call. The logical links (if any)
are disconnected, and the socket is detached. However, if you issue
DETACH without turning off SO_KEEPALIVE, the socket remains
attached, and the links (if any) stay active.

Input Data

io_fcode

io_socket

io_flags

io-psize

Output Data

DIAGNOSTICS

[EBADF]

specifies DETACH as the function code. It has a decimal value of 1.

specifies the socket number created by the A CCEPT or ATTACH call.

defines specific flag options. You must set this data member to O. It is
not used with the DETACH call.

specifies the size of a data structure. This data member is not used
with the DETACH call.

returns a 0 upon successful completion. If an error occurs, io_status
returns a-I. io_errno will also contain additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a possible error condition.)

The argument io_socket does not contain a valid socket number.

Assembly Language 6-35

6.7.8 DISCONNECT

NAME

DISCONNECT - disconnect socket from the peer socket, and terminate the logical link
connection.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - - + < - - - - - - - - '- -+
io fcode: DISCONNECT (6) I

+-------+
10 io socket: socket number

+-------+
hi V

+-------+
i 10 io_flags: 0 (not used)
+-------+
i hi V
+-------+

10 io status: 0 for success,
+-------+ I or -1 if unsuccessful

hi V
+-------+

10 io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10 io_psize: not used <-------------~+

+-------+ I
hi V

+-------+
< --+

+-------+ I

+-------+

I

Data structure: none I

i

I
< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-36 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The DISCONNECT call disconnects the socket from the peer socket, and terminates the
logical link.

NOTE

Before you can terminate a connection over a socket set with the
option SO_KEEPALIVE, you must first issue a SETSOCKOPT call with
the SO_KEEP ALIVE option turned off. That is, precede the
SO_KEEPALIVE with the NOT operator. Then issue the DISCON
NECT function call and the connection is completely broken.

The effect of DISCONNECT on unsent data queued for a remote task depends on the lin
ger option set with the SETSOCKOPT function call. (See Section 6.7. 17) If
SO_LINGER is set, control is returned to the task, but the link is not disconnected until
the unqueued data is sent. If SO_DONTLINGER is set, control is returned to the task,
and any unqueued data is lost.

Input Data

io_fcode

io_flags

io-psize

Output Data

DIAGNOSTICS

[EBADF]

specifies DISCONNECT as the function code. It has a decimal value
of6.

specifies the socket number created by the ACCEPT or ATTACH
call.

defines specific flag options. You must set this data member to o. It
is not used with the DISCONNECT call.

specifies the size of a data structure. This data member is not used
with the DISCONNECT call.

returns a 0 upon successful completion. If an error occurs,
io~tatus returns a-I. io_errno will also contain additional error
detail.

returns additional error detail if io~tatus returns a -1. (See the
DIAGNOSTICS section for a possible error condition.)

The argument io_socket does not contain a valid socket number.

Assembly Language 6-37

6.7.9 LISTEN

NAME

LISTEN -listen for pending connections on a socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: LISTEN (3) I

+-------+ I

10 io_socket: socket number I
+-------+ I I

hi V I

+-------+ I

10 io_flags: 0 (not used) I

+-------+ I I
hi V I IOCB

+-------+ I HEADER
10 io_status: 0 for success, I

+-------+ I or -1 if unsuccessful
hi V

+-------+
10 io_errno: error detail,

+-------+ if status: -1
hi V

+-------+
10 io_psize: 2 bytes <---------------+

+-------+ I

I hi V
+-------+

< --+
+-------+ I

+-------+

I
Data structure: listen dn I

I

I

< --+

IOCB
PARAMETER

LIST

6-38 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The LISTEN call declares your socket as a server which is available for client connec
tions. The server must use a bound name or number in order to listen for incoming cli
ent connections. This call must be issued before an incoming connection can be
accepted or rejected. See also the ACCEPT (Section 6.7.2) and the SELECT (Section
6.7.14) calls.

If you detach a listening socket while the socket is receiving client connections, then all
links associated with the listening socket immediately abort and all outstanding data is
lost.

Input Data

io_fcode specifies LISTEN as the function code. It has a decimal value of 3.

io_socket specifies number for a socket which has been created by the
ATTACH call and bound to a name by the BIND call.

io_flags defines specific flag options. You must set this data member to O. It
is not used with the LISTEN call.

io-psize specifies the size of the data structure listen_dn as 2 bytes.

listen_dn specifies the listen data structure. (See Appendix B on how
listen_dn is formatted.) The structure contains the following data
field:

lsn_backlog defines the total maximum number of unaccepted incoming
connects which are allowed on this particular socket. The maxi
mum allowable number of incoming connects is 5. If a connec
tion request arrives when the queue is full, the client task will
receive an error with an indication of ECONNREFUSED.

Output Data

returns a 0 upon successful completion. If an error occurs,
io_status returns a-I. io_errno will also contain additional error
detail.

returns additional error detail if io_status returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

Data Structure Type Summary

lsn_backlog

DIAGNOSTICS

2 bytes

[EBADF] The argument io_socket does not contain a valid socket num
ber.

[EOPNOTSUPP] The specified socket type does not support the listen operation.

Assembly Language 6-39

6.7.10 LOCALINFO

NAME

LOCALINFO - retrieve network information for the local node.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io fcode: LOCALINFO (22)

+-------+
10 io_socket: n6t used

+-------+ I

hi V
+-------+

10 io_flags: a (not used)
+-------+ I

hi V
+-------+

10 io_status: a for success,
+-------+ I or -1 if unsuccessful

hi V
+-------+

10 io_errno: error detail,
+-------+ if status: -1

hi V
+-------+

10 io_psize: 20 bytes <-~-------------+
+-------+ I

hi V
+-------+
! < --+
+-------+ I

Data structure: localinfo_dn

< - - - - - - - - - - - - .- -+
+-------+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-40 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The LOCALINFO call retrieves network information for the local node. It returns the
software version number for the network process; the local node name and address;
and the maximum possible segment buffer size which can be used on a logical link. It
also returns the number of sockets available for data exchange, and the current DECoet
database device and path.

NOTE

The localinfo_dn data structure format differs from the format that
appeared in DECnet-DOS Vl.0.

Input Data

io_fcode

io_flags

io-psize

Output Data

specifies LOCALINFO as the function code. It has a decimal value of
22.

specifies the socket number. It is not used with the LOCALINFO call.

defines specific flag options. You must set this data member to o. It is
not used with the LOCALINFO call.

specifies the size of the data structure localinfo_dn as 20 bytes.

io_status returns a 0 upon successful completion. If an error occurs, io_status
returns a -1. io_errno will also contain additional error detail.

io_errno returns additional error detail if io_status returns a -1. (See Appen
dix C for a list of error conditions.)

localinfo_dn specifies the local node information data structure. A user retrieves
data from the fields filled in by this function call. (See Appendix B on
how localinfo_dn is formatted.)

The following data fields can be filled in by this function call:

lcl_nodeaddr

lcl~egsize

lcl~ockets

is the software version number for the network process.

is the node name for the local node.

is the node address for the local node.

is the buffer segment size to be used on the logical link.

is the number of sockets available for data exchange.

lcl_decnet_device is the DECnet database device.

lcl_decnet~atb specifies the address of the buffer that contains the DECnet
database path specification which includes the device name.

Assembly Language 6-41

Data Structure Type Summary

lei_version 3-byte array

lel_nodename 7 -byte array

lcl_nodeaddr 2 bytes

lel_segsize 2 bytes

lei_sockets 1 byte

lel_deenet_deviee 1 byte

lcl_deenet-path 4 bytes

6-42 DECnet-DOS Programmer's Reference Manual

6.7.11 PEERADDR

NAME

PEERADDR - get information about your peer socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ < --+
I io fcode: PEERADDR (16) I

+-------+
10 ! io_socket: socket number

+-------+ I
hi v

+-------+
10 io_flags: 0 (not used)

+-------+ I
hi V

+-------+
10 io_status: 0 for success,

+-------+ I or -1 if unsuccessful
hi V

+-------+
10 io_errno: error detail,

+-------+ I if status: -1
hi V

+-------+
10 io_psize: 26 bytes <----------------+

+-------+ I
hi V

+-------+
I <-----------------------------------+

+-------+ I

+-------+

I
Data structure: sockaddr_dn I

I

I

< --+

Assembly Language

rOCB
HEADER

IOCB
PARAMETER

LIST

6-43

DESCRIPTION

The PEERADDR call returns information about your peer socket.

Input Data

io_fcode

io_flags

io-psize,

Output Data

specifies PEERADDR as the function code. It has a decimal value of
16.

specifies the number for the socket which has been created by the
ACCEPT or ATTACH call.

defines specific flag options. You must set this data member to o. It is
not used with the PEERADDR call.

specifies the size of the data structure sockaddr _dn as 26 bytes.

io_status returns a 0 upon successful completion. If an error occurs, io_status
returns a-I. io_errno will also contain additional error detail.

io_errno returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a possible error condition.)

sockaddr _dn specifies the socket address data structure. A user retrieves data from
the fields filled in by this function call. (See Appendix B on how
sockaddr _dn is formatted.)

The following data fields can be filled in by this function call:

sdn_family

sdn_objnum

sdn_objnamel

sdn_objname

6-44

is the address family AF_DECnet.

is the object number for the peer task. It can be a number 0 to
255.

is the size of the object name for the peer task.

is the name of the peer network task. It can be up to a 16-ele
ment array. It is only used when sdn_objnum equals O.

is the node address structure for the peer task. (See Appendix
B on how dn_naddr is formatted.)

DECnet-DOS Programmer's Reference Manual

Data Structure Type Summary

sdn_family

sdn_objnum

sdn_objnamel

.sdn_objname

2 bytes

1 byte

2 bytes

16-byte array

4 bytes sdn_add

DIAGNOSTICS

[EBADF] The argument io_socket does not contain a valid socket number.

Assembly Language 6-45

6.7.12 RCVD

NAME

RCVD - receive data on a specified socket.

IOCB Data Members

Bytes

+-------+

+-------+
10

+-------+
I hi
+-------+

10
+-------+

Data Fields: Input or Output

< --+
io fcode: RCVD (8) I

!
io_socket: socket number I

I I
V I

I

io_flags: (peek message) I

I (NEOM) !
hi V I IOCB

+-------+
I 10
+-------+

hi
+-------+
I 10 I
+-------+

hi
+-------+

io_status: -1 if unsuccessful,
I a - received message, zero

V length or logical link down,
1 if partial message received

io_errno: error detail,
I if status: -1

V

10 io_psize: user defined <-----------+
+-------+ I size of io_buffer (input)

hi V number of bytes received (output)
+-------+

< --+
+-------+ i

Data structure: io buffer

<- --+
+-------+

HEADER

IOCB
PARAMETER

LIST

6-46 DECnet-DOS Programmer's Reference Manual

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: RCVD (8) I

+-------+ I
i 10 io_socket: socket number I
+-------+ I I

hi V I
+-------+

10 io_flags: (peek message)
+-------+ I (asynchronous)

hi V (callback)
+ - - - - - - - + (NEOM)

10 ! io_status: -1 if unsuccessful
+-------+ I 0 - received message, zero

hi V length message or logical link
down, -2 if pending, 1 if

+-------+ partial message received
! 10 io errno: error detail,
+-------+ if status: -1

hi V
+-------+

10 io_psize: user defined <---------+
+-------+ i size of io_buffer (input)

hi V number of bytes received (output)
+-------+

< --+
+-------+ I

I

Data structure: io buffer

I
+-------+

< --+
< --+

10 offset
+-------+ I

hi v
+-------+ io callback

10 segment
+-------+ I

hi v
+ - - - - - - -+ < --

Assembly Language

crOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-47

DESCRIPTION

The RCVD call is used to receive data from your peer. If no messages are available at the
socket, the RCVD call waits for a message to arrive unless the socket is nonblocking. In
this case, a status of -1 is returned with the field io_errno set to EWOULDBLOCK.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shutdown the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the RCVD call returns zero bytes.

For sequenced sockets, you can read a single message with multiple calls into multiple
buffers. (See Appendix A for a description of socket types.) To do this, set the io_flags
field to MSG_NEOM (not end of message).

NOTE

MSG_NEOM is not a valid option for stream sockets. Stream mode
destroys all record boundaries.

For example, you want to receive a 300 byte message, but only specified a receive
buffer of 100 bytes. Normally, the RCVD call would flush the rest of the message (after
you read the first 100 bytes) and return a status of O. Setting io_flags to MSG_NEOM
indicates that the caller does not want the remaining unread data to be flushed. If the
user did not receive the entire message, io_status returns a value of 1. MSG_NEOM
allows you to issue another RCVD call and read the remaining 200 bytes of the buffer.

In addition to flagging the RCVD call with MSG_NEOM, you can also set the flags
option to MSG_PEEK. This option enables you to "peek" or read the next pending
message without removing it from the receive queue. When the RCVD call is flagged
with MSG_PEEK and MSG~EOM, multiple RCVD calls can be made to peek at the
entire message. You cannot peek at more than one message.

The SELECT call may be used to determine when more data has arrived. (See Section
6.7.14)

DESCRIPTION - For Asynchronous Mode

The RCVD call is used to receive data from your peer. If the socket becomes discon
nected, queued data can still be received from the broken logical link. However, if you
shutdown the socket or detach it, queued data cannot be received. When the logical
link is not in a connected state, and all data has been read, the RCVD call returns zero
bytes.

When the asynchronous form of the RCVD call is used, it is possible that the call may
not complete. If this occurs, there are two ways for you to check the status of the call:

• If the asynchronous form of the RCVD call is used, you can also specify that a call
back routine be used. The message option, MSG_CALLBACK, allows the network
to issue a callback routine when the RCVD call completes.

6-48 DECnet-DOS Programmer's Reference Manual

• If there is no callback routine, you should poll for status. To do this, examine the
io.-status field. A value of -2,0, -lor 1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, you need to see how the call
was completed: If the message was received, the number of bytes sent by your peer
is returned in io-psize. Otherwise, a zero length message was received or the logi
cal link has been disconnected.

A value of 1 indicates that a partial message was received.

If the call is unsuccessful, io_status returns a value of -1. The error reason will be
contained in io_errno. For a description of error messages, see the DIAGNOSTICS
section.

For sequenced sockets, you can read a single message with multiple calls into multiple
buffers. To do this, set the io_flags field to MSG_NEOM (not end of message).

NOTE

MSG_NEOM is not a valid option for stream sockets. Stream mode
destroys all record boundaries.

For example, you want to receive a 300 byte message, but only specified a receive
buffer of 100 bytes. Normally, the RCVD call would flush the rest of the message (after
you read the first 100 bytes) and return a status of O. Setting io_flags to MSG_NEOM
indicates that the caller does not want the remaining unread data to be flushed. If the
user did not receive the entire message, io_status returns a value of 1. MSG_NEOM
allows you to issue another RCVD call and read the remaining 200 bytes of the buffer.

In addition to flagging the RCVD call with MSG_NEOM, you can also set the flags
option to MSG_PEEK. This option enables you to "peek" or read the next pending
message without removing it from the receive queue. When the RCVD call is flagged
with MSG_PEEK and MSG_NEOM, multiple RCVD calls can be made to peek at the
entire message. You cannot peek at more than one message.

The SELECT call may be used to determine when more data has arrived. (See Section
6.7.14)

Input Data

io_fcode

io.-socket

io_flags

specifies RCVD as the function code. It has a decimal value of 8.

specifies the number for a socket created by the ACCEPT or ATTACH
call.

defines specific flag options. You can set this field to a for reading nor
mal messages. To read the next pending message without removing it
from the receive queue, set the io_flags field to MSG_PEEK. To
receive a single message having multiple parts, set the io_flags field
to MSG_NEOM. The hexadecimal value for each flag option is listed
in Appendix A.

Assembly Language 6-49

iO--/Jsize

io_buffer

Output Data

io_buffer

iO--/Jsize

io_status

6-50

For Asynchronous Mode: You can set this data member to
MSG~SYNC and MSG_CALLBACK for implementing asynchro
nous callback routines. MSG~SYNC processes the asynchronous
110 form of the RCVD function call. MSG_CALLBACK allows the net
work to issue a callback routine when the RCVD call completes. In
addition to asynchronous callbacks, you can set the io_flags to
MSG_PEEK and/or MSG~EOM. MSG_PEEK allows you to read the
next pending message without removing it from the receive queue.
MSG_NEOM allows you to receive a single message in multiple parts.
The hexadecimal value for each flag option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address for the buffer which contains the incoming mes
sage. (Refer to Appendix B on how io_buffer is formatted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io-flags, then io_callback specifies the 4 byte address of the func
tion to be called by the network process when the function com
pletes. (See Appendix B on how the data type exptr is formatted.)

is the address for the buffer which will contain the incoming message.
(Refer to Appendix B on how io_buffer is formatted.)

specifies the number of transferred bytes upon successful completion.

If status returns a 0, the message was received. (Check iO--/Jsize for
the number of transferred bytes.) Otherwise, you have received a zero
length message, or the logical link has been disconnected. To deter
mine the state of the logical link, use the GETSOCKOPT function call
with the DSO-LINKINFO option (See Section 6.7.17). If the link has
been disconnected, then all subsequent receives will return zero
bytes.

If an error occurs, io_status returns a-I. io_errno will also contain
additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value of
-2 is returned. If status returns a 0, the message was received. (Check
iO--/Jsize for the number of transferred bytes.) Otherwise, you have
received a zero length message, or the logical link has been discon
nected. To determine the state of the logical link, use the
GETSOCKOPT function call with the DSO-LINKINFO option (See
Section 6.7.17). If the link has been disconnected, then all subsequent
receives will return zero bytes.

DECnet-DOS Programmer's Reference Manual

If an error occurs, io~tatus returns a-I. io_errno will also contain
additional error detail.

returns additional error detail if io~tatus returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

If you receive a zero length message, io_errno will return a 1.

Data Structure Type Summary

io_buffer

io_callback

DIAGNOSTICS

4 bytes

4 bytes

When receiving normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

Nonblocking 1/0

[EBADF]

[EWOULDBLOCK]

Assembly Language

Description

The argument io_socket does not contain a valid socket num
ber.

The argument io_socket does not contain a valid socket num
ber.

The receive operation would block because there is currently
no data to receive.

EWOULDBLOCK is not a valid error message for the asynchro
nous form of the RCVD call.

6-51

6.7.13 RCVOOB

NAME

RCVOOB - receive out-of-band messages on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - -+ < --+
io_fcode: RCVOOB (13) I

+-------+
10 io_socket: socket number

+-------+ !
hi V

+-------+
I 10 io_flags: (peek message)
+-------+ I

hi ! V
+-------+

10
+-------+

hi
+-------+

10
+-------+

hi

io_errno:
I
V

-1 if unsuccessful,
o - received message,
zero length message or
logical link down

error detail,
if status: -1

+-------+ i

10 io_psize: user defined <-----------+
+-------+ I size of io_buffer (input)

hi V number of bytes received (output)
+-------+
I <-----------------------------------+
+-------+

Data structure: io_buffer

<- --
+-------+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-52 DECnet-DOS Programmer's Reference Manual

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: RCVOOB (13) I

+-------+
10 io_socket: socket number

+-------+ I
hi V

+-------+
10 io_flags:

+-------+
hi V

(peek message)
(asynchronous)
(callback) CIOCB

+-------+ HEADER
10 io_status: -2 for pending

+-------+ I status, -1 if
hi V unsuccessful, 0 - received I

message, zero length messagel
+-------+ or logical link down I

10 io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10
+-------+

hi !
+-------+

+-------+

!

io_psize: user defined <---------+
1 size of io.buffer (input)

V number of bytes received (output)

< --+

Data structure: io buffer

< --+
+- - - - - - -+ < --+

10 offset I
+-------+ I

hi I v
+-------+ io callback
! 10 segment
+-------+ I

hi v
+- - - - - - -+ < --+

Assembly Language

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-53

DESCRIPTION

The RCVOOB call is used to receive out-of-band data from another socket. Out-of
band messages are delivered to a receiving task ahead of normal messages. If the socket
is set to nonblocking I/O, and there is no data to receive, a status of -1 is returned with
the field io_errno set to EWOULDBLOCK.

NOTE

This occurs whether or not the socket is in blocking or nonblocking
mode.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shutdown the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the RCVOOB call will not return.

The SELECT call may be used to determine when more data has arrived. (See Section
6.7.14)

DESCRIPTION - For Asynchronous Mode

The RCVOOB call is used to receive out-of-band data from another socket. Out-of-band
messages are delivered to a receiving task ahead of normal messages.

When the asynchronous form of the RCVOOB call is used, it is possible that the call
may not complete. If this occurs, there are two ways for you to check the status of the
call:

• If the asynchronous form of the RCVOOB call is used, you can also specify that a
callback routine be used. The message option, MSG_CALLBACK, allows the net
work to issue a callback routine when the RCVOOB call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io_status field. A value of -2, ° or -1 may be returned. A value of -2 indicates
pending (no change) status. If status returns a 0, the message was received. (Check
io-psize for the number of transferred bytes.) Otherwise, you have received a
zero length message, or the logical link has been disconnected.

If the call is unsuccessful, io_status returns a value of -1. Additional error detail
will also be contained in io_errno. For a description of these error messages, see
the DIAGNOSTICS section.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shutdown the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the RCVOOB call will return but the function will not complete. The SELECT call may
be used to determine when more data has arrived. (See Section 6.7.14)

6-54 DECnet-DOS Programmer's Reference Manual

Input Data

io_fcode

io_socket

io_flags

io~size

io_buffer

Output Data

io_buffer

io~size

io_status

specifies RCVOOB as the function code. It has a decimal value of 13.

specifies the number for a socket which has been created by the
ACCEPT or CONNECT call.

defines specific flag options. You can set this field to MSG_PEEK to
read the next pending message without removing it from the receive
queue. The hexadecimal value for each flag option is listed in Appen
dixA.

For Asynchronous Mode: You can set this data member to
MSG.-ASYNC and MSG_CALLBACK for implementing asynchro
nous callbac~ routines. MSG.-ASYNC processes the asynchronous
I/O form of the RCVOOB function call. MSG_CALLBACK allows the
network to issue a callback routine when the RCVOOB call completes.
In addition to asynchronous callbacks, you can set the io_flags to
MSG_PEEK which allows you to read the next pending message with
out removing it from the receive queue. The hexadecimal value for
each flag option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address for the buffer which contains the incoming out
of-band message. (Refer to Appendix B on how io_buffer is format
ted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io_flags, then io_callback specifies the 4 byte address of the func
tion to be called by the network process when the function com
pletes. (See Appendix Bon how' the data type exptris formatted.)

is the address for the buffer which will contain the incoming out-of
band message. (Refer to Appendix B on how io_buffer is formatted.)

specifies the number of transferred bytes upon successful complt. .., .

If status returns a 0, the message was received. (Check io~size tt
the number of transferred bytes.) Otherwise, you have received a zero
length message, or the logical link has been disconnected. To deter
mine the state of the logical link, use the GETSOCKOPT function call
with the DSO-LINKINFO option (See Section 6.7.17). If the link has
been disconnected, then all subsequent receives will return zero
bytes.

If an error occurs, io_status returns a-I. io_errno will also contain
additional error detail.

Assembly Language 6-55

For Asynchronous Mode: If the call's status is still pending, a value of
-2 is returned. If status returns a 0, the message was received. (Check
io-psize for the number of transferred bytes.) Otherwise, you have
received a zero length message, or the logical link has been discon
nected. To determine the state of the logical link, use the
GETSOCKOPT function call with the DSO~INKINFO option (See
Section 6.7.17). If the link has been disconnected, then all subsequent
receives will return zero bytes.

If an error occurs, io~tatus returns a-I. io_errno will also contain
additional error detail.

returns additional error detail if io-.Status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

If you receive a zero length message, io_errno will return a 1.

Data Structure Type Summary

io_buffer

io_callback

DIAGNOSTICS

4 bytes

4 bytes

When receiving out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[EWOULDBLOCK]

Nonblocking 1/0

Message

[EBADF]

[EWOULDBLOCK]

6-56

Description

The argument io_socket does not contain a valid socket num
ber.

The receive operation would block because there is currently
no data to receive.

EWOULDBLOCK is not a valid error message for the asynchro
nous form of the RCVOOB call.

Description

The argument io_socket does not contain a valid socket num
ber.

The receive operation would block because there is currently
no data to receive.

EWOULDBLOCK is not a valid error message for the asynchro
nous form of the RCVOOB call.

DECnet-DOS Programmer's Reference Manual

6.7.14 SELECT

NAME

SELECT - check the 110 status of the network sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io fcode: SELECT (23)

+-------+
10 io_socket: 0 (not used)

+-------+ I
hi V

+-------+
! 10 io_flags: 0 (not used)
+-------+ I

hi V
+-------+

10 io_status: number of
+-------+ I descriptors, or

hi V -1 if unsuccessful
+-------+

10 io errno: error detail,
+-------+ if status: -1

hi V
+-------+ i

10 io_psize: 16 bytes <---------------+
+-------+ I

hi V
+-------+

< --+
+-------+ I

+-------+

I

Data structure: select dn I

I
I

< --+

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-57

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io fcode: SELECT (23) !

+-------+ I
10 io socket: a (not used) I

+-------+ I I
hi V I

+-------+ I
10 io_flags: (asynchronous) I

+-------+ I (callback)
hi V crOCB

+-------+ HEADER
10 io status: number of

+-------+ I descriptors, or
hi V -1 if unsuccessful,

+-------+
10

+--.:----+
hi I

+-------+
10

+-------+
hi I

+-------+

-2 for pending status

io errno: error detail,
if status: -1

V

io_psize: 16 bytes <---------+
I

V

< --+
+-------+ I

I crOCB
Data structure: select_dn ! PARAMETER

I

< --+
+ - - - - - - -.+ < -+

10 offset I
+-------+ I I
I hi v I
+-------+ io callback I

10 I segment I

+-------+ I I
hi' v I

+ - - - - - - -+ < - - - - - - - - - - - - - - - - '- - - - - - - - - - - - - - - - -+

LIST

CALLBACK
ADDRESS

6-58 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The SELECT call checks the network sockets specified by the bit masks in the data struc
ture select_dn to see if they are ready for reading, writing, or have any outstanding
out-of-band messages.

The SELECT call does not tell you if the logical link has been broken. You should use
the SELECT call to help manage your ACCEPT, SEND, SENDOOB, RCVD and RCVOOB
calls.

The I/O descriptors are long words which contain bit masks. Each bit in a mask repre
sents one socket number. For example, socket "3" is the fourth bit or has a hex value
of8.

NOTE

The SELECT call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value created by the ATTACH or the
A CCEPT call, as "1 < < s" .

DESCRIPTION - For Asynchronous Mode

The SELECT call checks the network sockets specified by the bit masks in the data struc
ture select_dn to see if they are ready for reading, writing, or have any outstanding
out-of-band messages.

The SELECT call does not tell you if the 10gical1ink has been broken. You should use
the SELECT call to help manage your ACCEPT, SEND, SENDOOB, RCVD and RCVOOB
calls.

The SELECT call examines the network sockets until the call timeouts (see
sel_seconds) or status is returned. If you specify multiple sockets to be examined, and
one socket becomes detached, the SELECT call will return with the error message,
EBADF. You must reissue the SELECT call in order to examine the remaining sockets.

The I/O descriptors are long words which contain bit masks. Each bit in a mask repre
sents one socket number. For example, socket "3" is the fourth bit or has a hex value
of8.

NOTE

The SELECT call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value created by the ATTACH or the
ACCEPT call, as "1 < < s" .

Input Data

io_fcode

io_socket

specifies SELECT as the function code. It has a decimal value of 23.

specifies the socket number. This field is set to O.

Assembly Language 6-59

io_flags

io--psize

select_dn

defines specific flag options. You must set this data member to O. It is
not used with the synchronous form of the SELECT call.

For Asynchronous Mode: You can set this data member to
MSG~SYNC and MSG_CALLBACK. MSG~SYNC processes the
asynchronous I/O form of the SELECT function call.
MSG_CALLBACK allows the network to issue a callback routine
when the SELECT call completes.

specifies the size of the data structure select_dn as 16 bytes.

specifies the select data structure which is used for examining bit
masks. The user fills in data for each field. (See Appendix B on how
select_dn is formatted.)

The structure contains the following data fields:

specifies the highest socket number to be checked. The bits
from (1 < < 0) to (1 < < (nfds-l» are examined.

specifies the socket numbers (as bit masks) to be examined
for read ready. For listening sockets, a read ready condition
indicates that an incoming connection request can be read
and either accepted or rejected. For sequenced sockets, there
is a complete message to be read. For stream sockets, there is
some data to be read. If a socket disconnects or aborts, a read
ready condition will always occur.

This descriptor can be given as a zero value if of no interest.

specifies the socket numbers (as bit masks) to be examined
for write ready. A write ready condition exists when the logi
cal link is available. This descriptor can be given as a zero
value if of no interest.

specifies the socket numbers (as bit masks) to be examined
for out-of-band data ready. There is a pending out-of-band
data message to receive. This descriptor can be given as a
zero value if of no interest.

sel~econds defines the maximum interval to wait for a descriptor selec
tion to be completed. If the time value is set to -1, the
SELECT call will wait until an event occurs. If the time value
equals 0, then the SELECT call will return after an immediate
poll. If the time value is greater than zero, the SELECT call
will return either after n seconds have expired, or when an
event occurs, whichever one comes first.

6-60 DECnet-DOS Programmer's Reference Manual

Output Data

io~tatus

For Asynchronous Mode: If the MSG_CALLBACKbit is set
in io_flags, then io_callback specifies the 4 byte address of
the function to be called by the network process when the
function completes. (See Appendix B on how the data type
exptr is formatted.)

If a socket is read ready, the bit is returned "on", and sel_read
returns the socket numbers (as bit masks) to be examined. If the socket
is not read ready, the bit is cleared.

If a socket is write ready, the bit is returned "on", and set_write
returns the socket numbers (as bit masks) to be examined. If the socket
is not write ready, the bit is cleared.

If the socket is out-of-band data ready, the bit is returned "on", and
set_except returns the socket numbers (as bit masks) to be examined.
If the socket is not out-of-band data ready, the bit is cleared.

For Asynchronous Mode: The number of sockets to be examined for
read ready, write ready or out-of-band data ready, are not returned
until io_status has changed from a pending condition (-2) and the
call has successfully completed.

returns the number of descriptors to be examined upon successful
completion. If an error occurs, io_status returns a-I. io_errno will
also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value of
- 2 is returned. io_status will return the number of descriptors upon
successful completion. If an error occurs, io_status will return a-I.
io_errno will also contain additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a possible error condition.)

Data Structure Type Summary

set_ndfs 2 bytes

set_read 4 bytes

set_write 4 bytes

set_except 4 bytes

set_seconds 2 bytes

DIAGNOSTICS

[EBADF] One of the specified bit masks is an invalid descriptor.

Assembly Language 6-61

6.7.15 SEND

NAME

SEND - send data on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: SEND (9)

+-------+
10 io_socket: socket number

+-------+
hi V

+-------+
10 io_flags: NEOM

+ - - - - - - - + I NBOM
hi I V

+-------+
10 io_status: 0, if successful

+-------+ I -1 if unsuccessful
I hi V
+-------+

10 ! io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10 io_psize: user defined <-----------
+-------+ I size of io_buffer (input)

hi V number of bytes sent (output)
+-------+

I <-----------------------------------+
+-------+ I

Data structure: io buffer

< --+
+-------+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-62 DECnet-DOS Programmer's Reference Manual

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+-------+ < --+
I io_fcode: SEND (9)
+-------+

10 io_socket: socket number
+-------+

hi
+-------+

i
V

10 io_flags:
+-------+ I

hi V
+-------+

(asynchronous)
(callback)
(NEOM), (NBOM)

10 io_status: 0 if successful
+-------+ I -1 if unsuccessful

hi V -2 for pending status

+-------+
10 io_errno: error detail,

+-------+ I if status: -1
hi V

+-------+
I 10 I io_psize: user defined <---------
+-------+ I size of io_buffer (input)
I hi I V number of bytes sent (output)
+-------+

< --+
+-------+

I
+-------+

10
+-------+

hi
+-------+

10
+-------+

hi
+-------+

I
I

Data structure: io buffer I
I
I

< --+
< --+
offset I

I I
v I

io callback I

segment I

I I
v I

< --+

Assembly Language

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-63

DESCRIPTION

The SEND call is used to transmit data to your peer. The client task uses the socket num
ber returned by the ATTACH call. The server task uses the socket number returned by
the ACCEPT call.

If you can't get enough buffer space on a blocking socket, the call is blocked. You must
wait until current transmissions are finished. If the socket is set to nonblocking, the call
returns with -1 in io_status, and the error value EWOULDBLOCK in io_errno. If a
socket disconnects, any outstanding data to be sent is discarded.

For sequenced sockets, you can send a multi-part message as if it is a single message. To
do this, you should flag the SEND call with the required message options, NEOM (not
end of message) and NBOM (not beginning of message).

NOTE

NEOM and NBOM are not valid options for stream sockets. Stream
mode destroys all record boundaries.

The following example describes how to send a 3-part message and have the SEND call
treat it as one message. The io_flags are set as follows:

• first buffer (io_flags = NEOM)

• second buffer (io_flags = NEOM and NBOM)

• third buffer (io_flags = NBOM)

At the receive end, the three-part message would be reconstructed and treated as a sin
gle message.

DESCRIPTION - For Asynchronous Mode

The SEND call is used to transmit data to your peer. The client task uses the socket num
ber returned by the ATTACH call. The server task uses the socket number returned by
the A CCEPT call.

When the asynchronous form of the SEND call is used, it is possible that the call may
not complete. If this occurs, there are two ways for you to check the status of the call:

• If the asynchronous form of the SEND call is used, you can also specify that a call
back routine be used. The message option, MSG_CALLBACK, allows the network
to issue a callback routine when the SEND call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io_status field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, and the SEND call has com
pleted, the number of bytes transferred to your peer is returned in io-psize.

If the call is unsuccessful, io_status returns a value of -1. Additional error detail
will also be contained in io_errno. For a description of these error messages, see
the DIAGNOSTICS section.

6-64 DECnet-DOS Programmer's Reference Manual

For sequenced sockets, you can send a multi-part message as if it is a single message. To
do this, you should flag the SEND call with the required message options, NEOM (not
end of message) and NBOM (not beginning of message).

NOTE

NEOM and NBOM are not valid options for stream sockets. Stream
mode destroys all record boundaries.

The following example describes how to send a 3-part message and have the SEND call
treat it as one message. The io_flags are set as follows:

• first buffer (io_flags = NEOM)

• second buffer (io_flags = NEOM and NBOM)

• third buffer (io_flags = NBOM)

At the receive end, the three-part message would be reconstructed and treated as a sin
gle message.

Input Data

io_fcode

io_socket

io_flags

iO-/Jsize

io_buffer

specifies SEND as the function code. It has a decimal value of9.

specifies the number for a socket created by the A CCEPT or the CON
NECTcall.

defines specific bit options. For sequenced sockets, you can send a
multi-part message as if is was a single message. To do this, the SEND
call is flagged with the message options, MSG_NEOM and
MSG_NBOM. When the message is received, it would be recon
structed and treated as a single message.

The hexadecimal value for each option is listed in Appendix A.

For Asynchronous Mode: You can set io_flags to one or more of the
following bits: MSG-ASYNC processes the asynchronous I/O form of
the SEND function call. MSG_CALLBACK allows the network to
issue a callback routine when the SEND call completes. For sequenced
sockets, you can send a multi-part message as if is was a single mes
sage. To do this, the SEND call is flagged with the message options,
MSG_NEOM and MSG_NBOM. When the message is received, it
would be reconstructed and treated as a single message.

The hexadecimal value for each option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address of the buffer which contains the outgoing mes
sage. (Refer to Appendix B on how io_buffer is formatted.)

Assembly Language 6-65

io_callback For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io-flags, then io_callback specifies the 4 byte address of the func
tion to be called by the network process when the function com
pletes. (See Appendix B on how the data type exptr is formatted.)

Output Data

io-psize

io_status

specifies the number of transferred bytes upon successful completion.

Upon successful completion, a value of 0 is returned. The number of
bytes transferred to your peer is returned in io-psize. If an error
occurs, io_status returns a-I. io_errno will also contain additional
error detail.

For Asynchronous Mode: If the call's status is still pending, a value of
-2 is returned. Upon successful completion, a value of 0 is returned.
The number of bytes transferred to your peer is returned in io-psize.
If an error occurs, io_status returns a-I. io_errno will also contain
additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

Data Structure Type Summary

io_buffer

DIAGNOSTICS

4 bytes

When sending normal data, the following set of error messages can occur:

Blocking I/O

Message

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

Nonblocking I/O

Message

[EBADF]

[EMSGSIZE]

6-66

Description

The argument iO-3ocket does not contain a valid socket num
ber.

The size of the outgoing message is more than 2048 bytes.

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted or shutdown. No fur
ther messages can be sent.

Description

The argument io_socket does not contain a valid socket num
ber.

The size of the outgoing message is more than 2048 bytes.

DECnet-DOS Programmer's Reference Manual

Message

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

Assembly Language

Description

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted or shutdown. No fur
ther messages can be sent.

The outbound quota was full, and the message could not be
sent.
EWOULDBLOCK is not a valid error message for the asynchro
nous form of the SEND call.

6-67

6.7.16 SENDOOB

NAME

SENDOOB - send out-of-band messages on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ <- --+
I
I io fcode: SENDOOB (14)
+-------+

10
+-------+

hi
+-------+

io_socket: socket number
I

V

10 io_flags: 0 (not used)
+-------+ I

hi V
+-------+

10 io status: 0 if successful,
+-------+ I -1 if unsuccessful

hi V
+-------+

10 io_errno: error detail,
+-------+ if status: -1

hi V
+-------+

10 io_psize: user defined <-----------+
+-------+ I size of io_buffer (input)

hi ! V number of bytes sent (output)
+-------+

I < --+
+-------+ I

rOCB
HEADER

I IOCB

+-------+

6-68

Data structure: io buffer

< --+

PARAMETER
LIST

DECnet-DOS Programmer's Reference Manual

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: SENDOOB (14)

+-------+
10 io_socket: socket number

+-------+ I
I hi I V
+-------+

10 io_flags:
+-------+ I

hi V
+-------+

(asynchronous)
(callback),

10 io_status: 0 if successful,
+-------+ I -1 if unsuccessful,

hi I V -2 for pending status
I

+-------+
10 io_errno: error detail,

+-------+ I if status: -1
hi I V

+-------+
10 I io_psize: user defined <---------+

+-------+ I size of io_buffer (input)
hi I V number of bytes sent (output)

+-------+
< --+

+-------+ I

crOCB
HEADER

I CrOCB
Data structure: io_buffer I PARAMETER

I LIST
I

< --+
+- - - - - - -+ < --+

10 I offset I
+-------+ I I

hi I v io callback I
+-------+ I
I 10 I segment I
+-------+ I I

hi v I
+- - - - - - -+ < - - - -- --+

Assembly Language

CALLBACK
ADDRESS

6-69

DESCRIPTION

The SENDOOB call is used to send out-of-band data to your peer. An out-of-band mes
sage is a high priority message that you can send to your peer. Out-of-band messages
are sent to a receiving task ahead of normal messages. If a socket disconnects, anyout
standing data to be sent is lost.

DESCRIPTION - For Asynchronous Mode

The SENDOOB call is used to send out-of-band data to your peer. An out-of-band mes
sage is a high priority message that you can send to your peer. Out-of-band messages
are sent to a receiving task ahead of normal messages. If a socket disconnects, anyout
standing data to be sent is lost.

For the asynchronous form of the SENDOOB call, you can only have 1 active out-of
band message and 1 pending out-of-band message.

When the asynchronous form of the SENDOOB call is used, it is possible that the call
may not complete. If this occurs, there are two ways for you to check the status of the
call:

• If the asynchronous form of the SENDOOB call is used, you can also specify that a
callback routine be used. The message option, MSG_CALLBACK, allows the net
work to issue a callback routine when the SENDOOB call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io_status field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, and the SEND call has com
pleted, the number of bytes transferred to your peer is returned in io-psize.

If the call is unsuccessful, io--.Status returns a value of -1. Additional error detail
will also be contained in io_errno. For a description of these error messages, see
the DIAGNOSTICS section.

Input Data

io_fcode

io_socket

io_flags

6-70

specifies SENDOOB as the function code. It has a decimal value of 14.

specifies the number for a socket created by the ACCEPT or CON
NECTcal1.

defines specific bit options . You must set this data member to O. It is
not used with the synchronous form of the SENDOOB call.

For Asynchronous Mode: You can set io_flags to MSG~SYNC
and MSG_CALLBACK. MSG~SYNC processes the asynchronous
I/O form of the SENDOOB function call. MSG_CALLBACK allows the
network to issue a callback routine when the SENDOOB call com
pletes.

The hexadecimal value of each flag option is listed in Appendix A.

DECnet-DOS Programmer's Reference Manual

io-psize

io_buffer

Output Data

io-psize

io_status

specifies the size of the user defined buffer.

specifies the address of the buffer which contains the outgoing out-of
band message. (Refer to Appendix B on how io_buffer is formatted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io_flags, then io_callback specifies the 4 byte address of the func
tion to be called by the network process when the function com
pletes. (See Appendix B on how the data type exptris formatted.)

specifies the number of transferred bytes upon successful completion.

Upon successful completion, a value of 0 is returned. The number of
bytes transferred to your peer is returned in io-psize. If an error
occurs, io_status returns a-I. io_errno will also contain additional
error detail.

For Asynchronous Mode: If the call's status is still pending, a value of
-2 is returned. Upon successful completion, a value of 0 is returned.
The number of bytes transferred to your peer is returned in io-psize.
If an error occurs, io_status returns a-I. io_errno will also contain
additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

Data Structure Type Summary

io_buffer

io_callback

DIAGNOSTICS

4 bytes

4 bytes

When sending out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

Assembly Language

Description

The out-of-band message could not be sent. A similar transmis
sion request is still in progress.

The argument io_socket does not contain a valid socket num
ber.

The size of the outgoing message is more than 16 bytes.

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted or shutdown. No fur
ther messages can be sent.

6-71

Nonblocking I/O

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

6-72

Description

The out-of-band message could not be sent. A similar transmis
sion request is still in progress.

The argument io~ocket does not contain a valid socket num
ber.

The size of the outgoing message is more than 16 bytes.

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted or shutdown. No fur
ther messages can be sent.

DECnet-DOS Programmer's Reference Manual

6.7.17 SETSOCKOPT and GETSOCKOPT

NAME

SETSOCKOPT and GETSOCKOPT - set and get the options associated with sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I io.fcode: SETSOCKOPT (25) I

+-------+ I
10 io.socket: socket number I

+-------+ I I
hi I V I

+-------+ I
10 I io.flags: 0 (not used) I

+-------+ I I
hi V I IOCB

+-------+ I HEADER
I 10 I io.status: 0 for success, I
+-------+ I or -1 if unsuccessful I
I hi I V I
+-------+ I

10 io.errno: error detail, I
+-------+ I if status: -1 I

hi V
+-------+

10 ! io.psize: 8 bytes <----------------+
+-------+ I

hi V
+-------+

< --+
+-------+ i

I
Data structure: sockopt.dn I

I

< --+
+-------+

Assembly Language

IOCB
PARAMETER

LIST

6-73

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: GETSOCKOPT (26) I

+-------+ I
10 io_socket: socket number I

+-------+ I i
I hi I V I
+-------+

10 io_flags: a (not used)
+-------+ I

hi I V
+-------+

10 io_status: a for success,
+-------+ I or -1 if unsuccessful

hi I V
+-------+

10 io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10 I io_psize: 8 bytes <----------------+
+-------+ I

hi V
+-------+

< --+
+-------+ I

+-------+

I
Data structure: sockopt_dn I

I
I

< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-74 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The SETSOCKOPT and GETSOCKOPT calls manipulate various options associated
with a socket. Options exist at multiple levels and you must specify the level number
for the desired operation.

NOTE

In the following discussion, references are made to symbolic values.
See Appendix A for details.

At the socket level (SOL_SOCKET), the options include:

• SO_KEEPALIVE. If this option is set on a socket, any links and sockets associated
with this socket will remain active, despite any attempts to disconnect them.

NOTE

Before you can terminate a connection over a socket with the
option SO_KEEP ALIVE set, you must first issue a SETSOCKOPT
call with SO_KEEP ALIVE turned off.

You then issue either the ABORT, DETA CH or DISCONNECT call.
The logical links (if any) are disconnected, and the socket and asso
ciated sockets (if any) are aborted or only disconnected. However,
if you issue either call without turning off SO_KEEP ALIVE, the
socket remains attached, and the links (if any) stay active.

• SO_LINGER. SO_LINGER controls the actions taken when unsent messages are
queued on a socket and a DISCONNECT call is issued. If SO_LINGER is set, the
connection is maintained until the outstanding messages have been sent. This is the
default condition.

• SO_DONTLINGER. SO_DONTLINGER also controls the actions of unsent mes
sages. If SO_DONTLINGER is set, and the DISCONNECT call is issued, anyout
standing messages queued to be sent will be lost. The connection is then termi
nated.

• SO_REUSEADDR. SO_REUSEADDR allows the reuse of a name already bound
to a socket. For most situations, a name is bound to a socket only once. However,
this option enables you to reuse the same name. This particular option must only
be used for outgoing connection requests. It cannot be used for incoming connec
tions.

VAX/VMS proxy access by user name is made possible if the client task uses the
BIND call specifying his user name as the object name. If you wish to make more
than one proxy connection with the same user name, you must use the
SO_REUSEADDR option.

Assembly Language 6-75

At the DECnet level (DNPROTO_NSP), socket options may specify the way in which a
connection request is accepted/rejected, may be used to set up optional user data and/
or access control information, may be used to obtain current link state information.
The following socket options can be specified:

• DSO_ACCEPTMODE. The accept option mode is used at the D ECnet level for pro
cessing ACCEPT calls. A socket must be bound (See BIND, Section 6.7.4) before
specifying this option. There are two values which can be supplied for this option.
They are immediate mode, ACC_IMMED, and deferred mode, ACC_DEFER.

ACC_IMMED. ACC_IMMED mode is the default condition for this option.
When immediate mode is in effect, control is immediately returned to the
server task following an ACCEPT call with the connection request accepted.
The access control information and/or optional user data is ignored by the
server task.

ACC_DEFER. ACC_DEFER mode indicates that the server task completes
the ACCEPT call without fully completing the connection to the client task. In
this case, the server task can examine the optional access control or user data
before it decides to accept or reject the connection request. The server task can
then issue the SETSOCKOPT call with the appropriate reject or accept option.

• DSO_CONACCEPT. DSO_CONACCEPT allows the server task to accept the
pending connection on the socket returned by the A CCEPT call. The original listen
ing socket was set to deferred accept mode. Any optional user data previously set
by DSO_CONDAT A will also be sent.

• DSO_CONREJECT. DSO_CONREJECT allows the server task to reject the pend
ing connection on the socket returned by the ACCEPT call. The original listening
socket was set to deferred accept mode. Any optional user data previously set by
DSO_DISDAT A will also be sent. The reject reason is the value passed with this
option.

• DSO_CONDATA. DSO_CONDATA allows up to 16 bytes of optional user data to
be set by the SETSOCKOPT call. It can be sent as a result of the CONNECT or the
ACCEPT (with the deferred option) calls. The optional data is passed in a structure
of type optdata_dn. (See Appendix B on how optdata_dn is formatted.) The
data is read by the task issuing the GETSOCKOPT call with this option.

• DSO_DISDATA. DSO_DISDATA allows up to 16 bytes of optional data to be set
by the SETSOCKOPT call. It can be sent as a result of the DISCONNECT call. The
optional data is passed in a structure of type optdata_dn. (See Appendix B on how
optdata_dn is formatted.) The data is read by the task issuing the GETSOCKOPT
call with this option.

• DSO_CONACCESS. DSO_CONACCESS allows access control information to be
passed by the user task. This information is set with the SETSOCKOPT call. The
access data is sent to the server task. It is passed with the CONNECT call in a struc-

6-76 DECnet-DOS Programmer's Reference Manual

ture of type accessdata_dn. (See Appendix B on how accessdata_dn is format
ted.) The access data is read by the task issuing the GETSOCKOPT call with this
option.

• DSO_LlNKINFO. DSO_LINKINFO determines the state of the logical link con
nection.

When GETSOCKOPT call is issued with this option, the state of the logical link is
returned in a logical link information data structure, linkinfo_dn. (See Appendix
B on how linkinfo_dn is formatted.)

Input Data

io_fcode

io~ocket

io_flags

io-psize

sockopt_dn

specifies SETSOCKOPT as the function code. It has a decimal value of
25. This data member also specifies GETSOCKOPT as the function
code. It has a decimal value of 26.

specifies the number for a socket created by the ACCEPT and/or
deferred-mode A CCEPT, or ATTA CH call.

defines specific flag options. You must set this data member to O. It is
not used with the SETSOCKOPT or the GETSOCKOPT call.

specifies the size of the data structure sockopt_dn as 8 bytes.

specifies the socket option data structure. (See Appendix B on how
sockopt_dn is formatted.)

The structure contains the following data fields:

specifies the level at which options are manipulated.

If the level is set to SOL_SOCKET, then sop_optval and
sop_optlen are ignored. If the level is set to
DNPROTO~SP, then the rest of the data structure can con
tain either access control or optional user data; or access
mode information.

sop_optname specifies options to be interpreted.

sop_optval,
sop_optlen

Assembly Language

When the socket level is set to DNPROTO_NSP,
sop_optname can be set to one of 6 specific options. For
example, DSO_CONDA T A. (See Appendix A for a list of the
specific options.)

specify access option values used with the SETSOCKOPT and
the GETSOCKOPT calls. The interpretation of each argument
is function dependent as shown here:

6-77

SETSOCKOPT call

sop_optval specifies the pointer to a buffer which contains information
for setting access option values.

specifies the size of the option value buffer.

GETSOCKOPT call

sop_optval

sop_optlen

Output Data

specifies the pointer to a buffer which will contain the
returned value for the requested option(s).

is a value result parameter. It should initially contain the size
of the buffer pointed to by sop_optval. On return, it will
contain the actual size of the returned value.

returns a 0 upon successful completion. If an error occurs, io_status
returns a-I. io_errno will also contain additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

GETSOCKOPT call

sop_optlen

specifies the pointer to a buffer which contains the returned value for
the requested socket option(s).

is a value result parameter. On return, it contains the actual size of the
returned value for the buffer pointed to by sop_optval.

Data Structure Type Summary

sop_level 2 bytes

sop_optname 2 bytes

sop_optval 4 bytes

op_optlen 4 bytes

sndJow 2 bytes

6-78 DECnet-DOS Programmer's Reference Manual

DIAGNOSTICS

[EACCES]

[EBADF]

[ECONNABORTED]

[ED OM]

[ENOBUFS]

[ENOPROTOOPT]

[EOPNOTSUPP]

Assembly Language

Unable to disconnect the socket.

The argument io_socket does not contain a valid socket
number.

The accept connect did not complete. The peer task dis
connected and the connection was aborted.

The acceptance mode is not valid.

There are no available buffers for optional access control
and/or user data.

There was no access control information supplied with the
connection request.

The option is unknown.

6-79

6.7.18 SHUTDOWN

NAME

SHUTDOWN - shut down all or part of a full duplex logicallinlc

IOCB Data Members

Bytes Data Fie~ds: Input or Output

+- - - - - - -+ < --+
io_fcode: SHUTDOWN (7) I

+-------+ I
10 io_socket: socket to be I

+-------+ I shut down I
hi V !

+-------+ I
10 io_flags: 0 (not used) I

+-------+ I I
I hi V IOCB
+-------+ HEADER
I 10 io_status: 0 for success,
+-------+ I or -1 if unsuccessful

hi V
+-------+

10 io_errno: error detail,
+-------+ I if status: -1
I hi V
+-------+
I 10 io_psize: 2 bytes <----------------+
+-------+ I

hi I V
+-------+
I < --+
+-------+ I
I I

+-------+

Data structure: shutdown_dn I
I
I

< --+

IOCB
PARAMETER

LIST

6-80 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The SHUTDOWN call causes all or part of a full duplex connection on the original
socket to be shut down.

Input Data

io_fcode

io~ocket

io-flags

io-psize

specifies SHUTDOWN as the function code. It has a decimal value
of7.

specifies the socket number.

defines specific flag options. You must set this data member to O. It is
not used with the SHUTDOWN call.

specifies the size of the data structure shutdown_dn as 2 bytes.

shutdown_dn specifies the type of shutdown. (See Appendix B on how
shutdown_dn is formatted.)

snd---.bow

Output Data

DIAGNOSTICS

The structure contains the following data field:

specifies the type of shutdown. This argument can be set to:

o which disallows further receives.

1 which disallows further sends.

2 which disallows further sends and receives.

returns a 0 upon successful completion. If an error occurs, io~tatus
returns a-I. io_errno will also contain additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

[EBADF] The argument io~ocket does not contain a valid descriptor.

[ENOTCONN] The specified socket is not connected.

Assembly Language 6-81

6.7.19 SIOCTL

NAME

SIOCTL - control the operations of open sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: SIOCTL (24) I

+-------+ I
10 io_socket: socket number I

+-------+ I I
hi V I

+-------+
10 I io_flags: 0 (not used)

+-------+ I
hi I V

+-------+
10 io_status: 0 for success,

+-------+ I or -1 if unsuccessful
hi V

+-------+
10 I io_errno: error detail,

+-------+ I if status: -1
hi I V

+-------+
10 io_psize: 8 bytes <----------------+

+-------+ I
hi V

+-------+
! < --+

+-------+ I
I I I

+-------+

Data structure: sioctl_dn I
I
I

< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-82 DECnet-DOS Programmer's Reference Manual

DESCRIPTION

The SIOCTL call controls the operations of open sockets. The call indicates whether an
argument is an input or output argument and the size of the specific argument in bytes.

Input Data

io_fcode

io_socket

io_flags

io-psize

sioctl_dn

argp

specifies SIOCTL as the function code. It has a decimal value of 24.

specifies the socket number.

defines specific flag options. You must set this data member to O. It is
not used with the SIDCTL call.

specifies the size of the data structure sioctl_dn as 8 bytes.

specifies the socket I/O control function data structure. (See Appendix
B on how sioctl_dn is formatted.)

The structure contains the following data fields:

This data field is ignored.

specifies the I/O control function to be used. The control
levels include:

FIONREAD returns the total byte count of all messages wait
ing to be read. argp points to a word.

FIONBIO sets/clears blocking or nonblocking I/O operation.
argp points to a byte that contains a value of 0 or 1. For block
ing 110, argp should point to a value of O. For nonblocking
110, argp should point to a value of 1.

FIORENUM renumbers an assigned socket number to another
number. In this way, the original socket number is made avail
able again. The valid range for socket numbers is 0 to 31.
argp points to a word.

The SELECT function call cannot accept socket numbers that
exceed this range. (See Section 6.7. 14 for details.)

If you specify a socket number that is already in use, an error
message, EEXIST, is returned.

specifies the address of the argument list.

Assembly Language 6-83

Output Data

returns a 0 upon successful completion. When the call is successful,
argp (only if it is FIONREAD) returns the total byte count of all mes
sages waiting to be read.

If an error occurs, io_status returns a-I. io_errno will also contain
additional error detail.

returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

Data Structure Type Summary

argp

DIAGNOSTICS

[EBADF]

[EOPNOTSUPP]

6-84

2 bytes

2 bytes

4 bytes

The argument io_socket does not contain a valid socket num
ber.

The socket type does not support the socket I/O operation.

DECnet-DOS Programmer's Reference Manual

6.7.20 SOCKADDR

NAME

SOCKADDR - retrieve socket information set by the BIND call.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I io_fcode: SOCKADDR (15) I

+-------+ I
10 io_socket: socket number I

+-------+ I I
hi V I

+-------+ I
10 io_flags: 0 (not used) I

+-------+ I I
hi V I IOCB

+-------+ I HEADER
10 io_status: 0 for success, I

+-------+ I or -1 if unsuccessful I
hi V I

+-------+ I
I 10 I io_errno: error detail, I
+-------+ if status: -1 I

hi V I
+-------+ I

10 io_psize: 26 bytes <----------------+
+-------+ I

hi V
+-------+

< --+
+-------+ I
I I

+-------+

Data structure: sockaddr dn I
I
I

< --+

Assembly Language

IOCB
PARAMETER

LIST

6-85

DESCRIPTION

The SOCKADDR call returns socket information set by the BIND call. If no BIND call
was ever executed, undefined results are returned in output data fields.

Input Data

io_fcode

io_flags

io-psize

Output Data

specifies SOCKADDR as the function code. It has a decimal value of
15.

specifies the number for a socket which was bound to a name by the
BIND call.

defines specific flag options. You must set this data member to O. It is
not used with the SOCKADDR call.

specifies the size of the data structure sockaddr _dn as 26 bytes.

io_status returns a 0 upon successful completion. If an error occurs, io_status
returns a-I. io_errno will also contain additional error detail.

io_errno returns additional error detail if io_status returns a -1. (See the DIAG
NOSTICS section for a list of error conditions.)

sockaddr _dn specifies the socket address data structure. A user retrieves data from
the fields filled in by this function call. (See Appendix B on how
sockaddr _dn is formatted.)

The following data fields can be filled in by this function call:

sdn_family

sdn_objnum

sdn_objnamel

sdn_objname

6-86

is the address family AF _DECnet.

is the object number for the local task. It can be a number 0 to
255.

is the size of the object name.

is the object name of the local task. It can be up to a 16-byte
array. It is only used when sdn_objnum equals O.

specifies the address structure for the local node. (See Appen
dix B on how sockaddr _dn is formatted.)

DECnet-DOS Programmer's Reference Manual

Data Structure Type Summary

sdn_family

sdn-f/ags

sdn_objnum

sdn_objname/

sdn_objname

sdn_add

DIAGNOSTICS

2 bytes

1 byte

1 byte

2 bytes

16-byte array

4 bytes

[EBADF] The argument io~ocket does not contain a valid socket number.

Assembly Language 6-87

A
Socket Definitions

The following definitions are related to socket types, option flags and other related
socket definitions. The symbols that appear in this appendix are defined in the DECnet
header files.

A.1 Communications Domain

DECnet-DOS supports the following communications domain:

Decimal
Value Domain

A.2 DECnet Layers

Description

Enables multiple computer systems to participate in com
munications and resource sharing within a DECnet net
work.

The symbol is defined in < socket.h > header file.

The following DECnet layers are supported by DECnet-DOS:

Hexadecimall
Decimal Value

Oxffff

Layer

SOL_SOCKET

DNPROTO~SP

Description

Specifies the socket session interface layer.

Specifies the DECnet layer. How a connection
request is accepted/rejected, optional access con
trol and/or user data, or link state can be specified.
(See Appendix B for a list of defined data struc
tures.)

These symbols are defined in < socket.h > header
file.

A-1

A.3 DECnet Objects

Certain DECnet object numbers are used as arguments to the dnet_conn call. The fol
lowing are ASCII strings:

Object

DNOBJ_FAL

DNOBJ_NICE

DNOBJ_TERM

DNOBJ~IRROR

DNOBJ_EVR

DNOBJ~AIL11

DNOBJ_PHONE

DNOBJ_CTERM

DNOBJ_DTR

ASCII String

#17 (File Access Listener)

#19 (Network Information and Control Exchange)

#23 (Network command terminal handler - host side)

#25 (Loopback mirror - MIR)

#26 (Event receiver - EVR)

#27 (Personal message utility)

#29 (Phone utility)

#42 (Command terminal operations)

#63 (DECnet test receiver tool- DTR)

The following are decimal numbers:

Decimal
Value Object Process Type

17 DNOBJECT_FAL File Access Listener

19 DNOBJECT_NICE Network Information and Control
Exchange

23 DNOBJECT_DTERM Network command terminal handler -
host side

25 DNOBJECT~IRROR Loopback mirror (MIR)

26 DNOBJECT_EVR Event receiver (EVR)

27 DNOBJECT ~AIL 11 Personal message utility

29 DNOBJECT_PHONE Phone utility

42 DNOBJECT_CTERM Command terminal operations

63 DNOBJECT _DTR DEC net test receiver tool (DTR)

These symbols are defined in < dn.h > header file.

A-2 DECnet-DOS Programmer's Reference Manual

A.4 DECnet Options

At the DECnet layer (DNPROTO_NSP), socket options can define how a connection
request is accepted/rejected, specify optional user data and/or access control informa
tion, or obtain current link state information. The following options can be used to
specify or retrieve data with the setsockopt and getsockopt function calls:

Decimal
Value Option

2

3

4 DSO~CCEPTMODE

o ACC~MMED

Socket Definitions

Description

Allows up to 16 bytes of optional user
data to be set by the setsockopt call. The
optional data is passed in the
optdata_dn data structure. The user
task reads the data by issuing the
getsockopt call with the connect option.
The call returns a connect status.

Allows up to 16 bytes of optional user
data to be set by the setsockopt call. The
optional data is passed in the
optdata_dn data structure. The user
task reads the data by issuing the
getsockopt call with the disconnect
option. The call returns a disconnect
status.

Allows access control information to be
set by the setsockopt call. The access con
trol information is passed in the
accessdata_dn data structure. The user
task reads the data by issuing the
getsockopt call. The information is pro
cessed once the task issues the accept
call.

Defines the way in which a user task
accepts a pending accept call. A socket
must issue a bind call before this option is
valid. The acceptance mode can be speci
fied as follows:

Specifies the default condition. The
accept call is immediately completed.

(continued on next page)

A-3

Decimal
Value

1

5

6

7

7

A-4

Option

ACC_DEFER

DSO~AX

Description

Allows the server task to complete the
accept call without fully completing the
connection to the client task. The server
task can examine the source address,
access control and/or optional user data
before accepting or rejecting the pending
connection.

Allows the server task to accept the pend
ing connection on the socket previously
set to the deferred accept mode
(ACC_DEFER). Any optional user data
previously set by DSO_CONDA TA will
also be sent.

Allows the server task to reject the pend
ing connection on the socket previously
set to the deferred accept mode
(ACC_DEFER). Any optional user data
previously set by DSO_DISDA TA will
also be sent.

Allows the user task to retrieve the state
of the logical link connection. There are
four supported link states. (See Section
A.6)

The link state is returned in the
linkinfo_dn data structure. It is
retrieved with the getsockopt call.

Specifies the allowable number of
defined socket options.

These symbols are defined in < dn.h >
header file.

DECnet-DOS Programmer's Reference Manual

A.S Flag Options

The following bits can be set in the io_flags field which is included in the IOCB and/or
CIOCB:

Hexadecimal
Value

Oxl

Ox2

Ox8

OxlO

Ox20

Ox40

Socket Definitions

Message

MSG_OOB

MSG~SYNC

MSG~EOM

MSG~BOM

Description

Process out-of-band messages with the
send and recv calls.

The symbol is defined in < socket.h >
header file.

Read the next pending message without
removing the message from the receive
queue. The symbol is defined in
< socket.h > header file.

Process the asynchronous I/O form of
DECnet function calls.

The symbol is defined in < socket.h >
header file.

Allows the network to issue a callback
routine when a specific function call
completes.

The symbol is defined in < socket.h >
header file.

For sequenced sockets, use MSG~EOM
with the option MSG~BOM to send a
multi-part message as if it was a single
message. To receive a single message in
multiple parts, flag the receive call with
MSG~EOM.

The symbol is defined in < socket.h >
header file.

For sequenced sockets, flag the send call
with MSG~BOM and MSG~EOM to
send a mUlti-part message as if it was a
single message. MSG~BOM cannot be
used for receive operations.

The symbol is defined in < socket.h >
header file.

A-5

A.6 Logical Link States

The following logical link states are supported by DECnet-DOS.

Decimal
Value

o

2

3

State

LL~NACTIVE

LL_CONNECTING

LL_RUNNING

LL_DISCONNECTING

Description

The logical link is inactive.

The logical link is connecting.

The logical link is running.

The logical link is disconnecting.

The symbols are defined in < dn.h > header file.

A.7 Maximum Number of Incoming Connection Requests

The maximum number of incoming connection requests is specified as follows:

Hexadecimal
Value Message

Ox5 SOMAXCONN

A.a Socket Interface Options

Description

Defines the maximum number of incoming
connection requests which are allowed on the
specified socket.
The symbol is defined in < socket.h > header
file.

At the socket level (SOL_SOCKET), the following options exist:

Hexadecimal
Value Flag

Oxo4 SO~EUSEADDR

Ox08

A-6

Description

Allows the reuse of a bound socket name.
This option must only be used for outgo
ing connection requests.

If this option is set on a socket, any links
and sockets associated with this socket
remain active, despite any attempts to
abort, detach and/or disconnect them.
The effects of ABORT, DETACH, and
DISCONNECT functions are only real
ized after SO~EEP ALIVE is turned off.

(continued on next page)

DECnet-DOS Programmer's Reference Manual

Hexadecimal
Value

Ox80

Description

Controls the actions taken when unsent
messages are queued on a socket and the
sclose (or the DISCONNECT) call is
issued. If SO_LINGER is set, the connec
tion is maintained until the outstanding
messages have been sent.

Controls the actions of unsent messages.
If SO_DONTLINGER is set, and the
sclose (or the DISCONNECT) call is
issued, any outstanding messages queued
to be sent will be lost. The connection is
then terminated.

The symbols are defined in < socket.h > header file.

A.9 Socket Types

DECnet-DOS supports the following socket types:

Decimal
Value

1

5

Type

SOC~STREAM

SOC~SEQPACKET

Description

Stream sockets cause bytes to accumulate
until internal DECnet buffers are full. The
receiving task does not know how many
bytes were sent in each write operation.

Sequenced sockets cause bytes to be sent
immediately. The receiving task receives
those bytes in one "record".

The symbols are defined in < socket.h > header file.

Socket Definitions A-7

A.10 Defined Software Modules

The following software modules are supported by DECnet-DOS. They have defined
three letter acronym (da) strings.

Module TLA
Name String Description

DNMOD_LAT LAT LAT driver

DNMOD~DV PDV Port driver

DNMOD_SCH SCH Real-time Scheduler

DNMOD~LL DLL Data Link Layer

DNMOD_DNP DNP DEC net Network Process

The following interrupt vectors have been defined for these DECnet-DOS software
modules:

Vector
Number
(Hex)

Ox6a

Ox6b

Ox6c

Ox6d

Ox6e

Symbol

DNMODULE_LAT

DNMODULE_PDV

DNMODULE_SCH

DNMODULE_DLL

DNMODULE_DNP

Description

LAT driver

Port Driver

Real-time Scheduler

Data Link Layer

DECnet Network Process

The symbols are defined in < dn.h > header file.

A-8 DECnet-DOS Programmer's Reference Manual

B
Defined Data Structures and Data Members

The following data structures can be used with specific socket interface and assembly
language network driver interface calls. Guidelines for specifying a data structure are
detailed with the appropriate function call. The symbols that appear in this appendix
are defined in the DECnet header files.

If data type exptr is used as an address (or a long pointer), it takes the following format.
It is defined in <types.h> header file.

Bytes

+------+
10

+------+ offset
hi

+------+
10

+------+ segment
hi

+------+

8-1

B.1 Access Control Information Data Structure

The accessdata_dn data structure contains the following data members:

Data
Type Size Member Description

unsigned short 2 bytes acc_accl Defines the length of the account string.

unsigned char 40-byte array acc_acc Specifies the account string.

unsigned short 2 bytes acc-passl Defines the length of the password string.

unsigned char 40-byte array acc-pass Specifies the password string.

unsigned short 2 bytes acc_userl Defines the length of the user ID string.

unsigned char 40-byte array acc_user Specifies the user ID string.

The symbols are defined in the < dn.h > header file.

B.2 Attach Data Structure

The attach_dn data structure contains the following data members:

Data
Type Size Member Description

int 2 bytes att-.Socket Specifies the number of the socket. If non-
zero, the other data structure members are
ignored.

unsigned short 2 bytes a tt_domain Specifies the communications domain for
the socket as AF _DECnet.

unsigned short 2 bytes att_type Specifies the socket type for the socket. For
example, SOCIL-STREAM. (See Appendix A
for a list of defined socket types.)

unsigned short 2 bytes att-protocol Specifies the protocol for the socket. For
example, DNPROTO_NSP. (See Appendix
A for a list of defined protocol interfaces.)

unsigned short 2 bytes att_srp Specifies the socket recovery period.

unsigned short 2 bytes att_supreq Specifies the support requirements.

The symbols are defined in <dnmsdos.h> header file.

8-2 DECnet-DOS Programmer's Reference Manual

B.3 DECnet Node Address Data Structure

The dn_naddr data structure contains the following data members:

Type Size

unsigned 2 bytes
short

unsigned 2-byte
char array

Data
Member Description

a_len Specifies the length of the DECnet
node address.

a~ddr[DN--.MAXADDL] Specifies the DECnet Phase IV node
address for the user task. When
a_addr[DN--.MAXADDL] is used as
a 16-bit unsigned integer, bits 0-9 are
the node number, and bits 10-15 are
the area number.

The symbols are defined in < dn.h> header file.

B.4 Listen Data Structure

The listen_dn data structure contains the following data member:

Data
Type Size Member Description

int 2 bytes Defines the maximum number of unaccepted incoming
connects which are allowed on this particular socket.

The symbol is defined in < dnmsdos.h> header file.

Defined Data Structures and Data Members 8-3

8.5 Local Node Information Data Structure

The localinfo_dn data structure contains the following data members:

Data
Type Size Member Description

unsigned 3-byte lel_version Specifies the software version number for the
char array network process.

unsigned 7-byte lcl_nodename Specifies the node name for the local node. It is
char array terminated by a null character.

unsigned 2 bytes lel_nodeaddr Specifies the DECnet Phase IV node address for
short the local node. The node address is formatted

as a 16-bit unsigned integer, where bits 0-9 are
the node number and bits 10-15 are the area
number.

unsigned 2 bytes lcl-.Jegsize Specifies the minimum buffer segment size used
short on the logical link. This number should match

the value defined with the NCP command,
DEFINE EXECUTOR SEGMENT BUFFER SIZE.
(Refer to the DECnet-DOS User's Guide for
more details.)

unsigned 1 byte IcLsockets Specifies the number of sockets available for
char data exchange.

unsigned 1 byte lcl_decnet_device Specifies the DECnet database device name.
char

exptr 4 bytes lel_decnet-fJath Specifies the address of a buffer that contains
the D ECnet database path specification string
which includes the device name.

The symbols are defined in <dnmsdos.h> header file.

8.6 Logical Link Information Data Structure

The linkinfo_dn data structure contains the following data members:

Type Size

unsigned short 2 bytes

unsigned char 1 byte

Data
Member Description

idn_segsize Specifies the buffer segment size in use on
the logical link.

idn_linkstate Specifies the state of the logical link. (See
Appendix A for a list of logical link states.)

The symbols are defined in <dn.h> header file.

8-4 DECnet-DOS Programmer's Reference Manual

B.7 Optional User Data Structure

The optdata_dn data structure contains the following data members:

Data
Type Size Member Description

unsigned short 2 bytes opt---.Status Specifies an extended status value returned
by function call. A list of the extended error
codes appear in Appendix D.

unsigned short 2 bytes opt_optl Is the size of the optional user data.

unsigned char 16-byte opt_data Specifies the optional user data.
array

The symbols are defined in < dn.h > header file.

B.8 Select Data Structure

The select_dn data structure contains the following data members:

Data
Type Size Member Description

unsigned short 2 bytes sel_nfds Specifies the highest socket number to be
checked.

field32 4 bytes sel_read Specifies the socket numbers to be examined
for read ready or incoming connections.

field32 4 bytes sel_write Specifies the socket numbers to be examined
for write ready.

field32 4 bytes sel_except Specifies the socket numbers to be examined
for exception or out-of-band data ready.

unsigned short 2 bytes sel---.Seconds Specifies the time to wait for the socket selec-
tion to complete.

NOTE

field32 is the same as unsigned long for type.

The symbols are defined in < dnmsdos.h > header file.

Defined Data Structures and Data Members 8-5

B.9 Shutdown Data Structure

The shutdown_dn data structure contains the following data member:

Data
Type Size Member

int 2 bytes sndJow

Description

Specifies the type of shutdown. The argument can be
set to:

o which disallows further receives.

1 which disallows further sends.

2 which disallows further sends and receives.

The symbol is defined in <dnmsdos.h> header file.

B.10 Socket Address Data Structure

The sockaddr _dn data structure contains the following data members:

Data
Type Size Member Description

unsigned 2 bytes sdn_family Specifies the communications domain as
short AF_DECnet.

unsigned 1 byte sdn_flags Specifies the object flag option. It must be set to
char zero, if not used.

unsigned 1 byte sdn_objnum Defines the object number for the socket.
char

unsigned 2 bytes sdn_objnamel Is the size of the node's object name.
short

char 16-byte sdn_objname Defines the name of the network task.
array

struct 4 bytes sdn_add Specifies the node address data structure. (See the
description of the dn_naddr data structure in this
appendix.)

The symbols are defined in < dn.h > header file.

8-6 DECnet-DOS Programmer's Reference Manual

8.11 Socket 1/0 Status Data Structure

The sioctl_dn data structure contains the following data members:

Data
Type Size Member Description

int 2 bytes sio_s This data member is not used by the ATTACH call.

int 2 bytes sio_request Specifies the I/O control level to be used. (See Section
4.4.14 for details.)

exptr 4 bytes argp Specifies the address of the argument list.

The symbols are defined in <dnmsdos.h> header file.

8.12 Socket Option Data Structure

The sockopt_dn data structure contains the following data members:

Type Size

int 2 bytes

int 2 bytes

exptr 4 bytes

exptr 4 bytes

Data
Member Description

Specifies the layer at which options are manipu
lated.

If the level is set to SOL_SOCKET, then the rest of
the data structure is ignored. If the level is set to
DNPROTO_NSP, then the rest of the data structure
can contain either access control and/or optional
data; or acceptance mode information.

sop_optname Specifies options to be passed for interpretation.

sop_optlen

When the socket level is set to DNPROTO_NSP,
sop_optname can be set to one of 7 specific
options. For example, DSO_CONDA TA. (See
Appendix A for a list of the specific options.)

Specifies an address for the buffer which contains
either access control or optional user data. (See Sec
tion 4.4. 12 for the relationship between
sop_optname and sop_optval arguments.)

Specifies an address for the buffer which contains
acceptance mode information.

Specifies the size of the option value buffer used as a
parameter for the setsockopt call.

It is also a value result parameter for the getsockopt
call.

The symbols are defined in < dnmsdos.h > header file.

Defined Data Structures and Data Members B-7

8.13 User Access Control Information Data Structure

The dnet_accent data structure contains the following data members:

Type

char

char

char

char

Size

1 byte

1 byte

40-byte
array

40-byte
array

Data
Member

acc~tatus

acc-Pass

Description

Is used internally by this function call.

Specifies the type of privilege associated with the
user name or password. The four access types are: 0
for no access rights, 1 - read only access, 2 - write
only access and 3 for read and write access.

Specifies the user name. It consists of a 1 to 39 alpha
betic character string terminated by a null character.

Specifies the password associated with a user name.
It consists of a 1 to 39 alphabetic character string ter
minated by a null character.

These symbols are defined in < dnetdb.h> header file.

8.14 User Defined Callback Routine Data Structure

The io_callback member of the CIOCB has the following format:

Type Size

exptr 4 bytes

Data
Member Description

Specifies the address for the callback routine which
will be returned when a function call completes.

You should refer to Chapter 6 of this manual for more details on the CIOCB data struc
ture.

8.15 User Defined Data Buffer Structure

The io_buffer member of the IOCB(CIOCB) data structure has the following format:

Type Size

exptr 4 bytes

Data
Member

io_bujjer

Description

Specifies the address for the buffer which contains
user defined data.

You should refer to Chapter 6 of this manual for more details on the IOCB and CIOCB
data structures.

B-8 DECnet-DOS Programmer's Reference Manual

C
Summary of Error Completion Codes

This appendix lists the error completion codes returned by DECnet-DOS in errno.
They provide extended error information to transparent file access, transparent task
to-task operations, and nontransparent 'task-to-task communication.

These error codes are a subset of the error codes contained in the external variable
errno. The following descriptions are standard ULTRIX definitions. You should refer
to specific DECnet-DOS calls for a network definition of the error codes.

Decimal
Mnemonic Value Description

ESRCH 3 No such process

E2BIG 7 Argument list too long

EBADF 9 Bad file number

EACCES 13 Permission was denied

EFAULT 14 Bad address

EBUSY 16 Mount device busy

EEXIST 17 File exists

EINVAL 22 Invalid argument

EMFILE 24 Too many open files

ENOSPC 28 No space left on device

EPIPE 32 Broken pipe

(continued on next page)

C-1

Mnemonic

Math software

EDOM

ERANGE

Nonblocking and interrupt 1/0

EWOULDBLOCK

EINPROGRESS

EALREADY

Argument errors

ENOTSOCK

EDESTADDRREQ

EMSGSIZE

ENOPROTOOPT

EPROTONOSUPPORT

ESOCKTNOSUPPORT

EOPNOTSUPP

EAFNOSUPPORT

EADDRINUSE

EADDNOTA VAIL

Operational errors

ENETDOWN

ENETUNREACH

ECONNABORTED

ECONNRESET

ENOBUFS

EISCONN

ENOTCONN

ETOOMANYREFS

ETIMEDOUT

ECONNREFUSED

C-2

Decimal
Value

33

34

35

36

37

38

39

40

42

43

44

45

47

48

49

50

51

53

54

55

56

57

59

60

61

Description

Argument too large

Result too large

Operation would block

Operation now in progress

Operation already in progress

Socket operation on nonsocket

Destination address required

Message too long

Protocol not available

Protocol not supported

Socket type not supported

Operation not supported on socket

Address family not supported by proto
col family

Address already in use

Can't assign requested address

Network is down

Network is unreachable

Software caused connection abort

Connection reset by peer

No buffer space available

Socket is already connected

Socket is not connected

Too many references: cannot splice

Connection timed out

Connection refused

(continued on next page)

DECnet-DOS Programmer's Reference Manual

Decimal
Mnemonic Value Description

ENAMETOOLONG 63 File name too long

EHOSTDOWN 64 Host is down

EHOSTUNREACH 65 No route to host

Summary of Error Completion Codes C-3

D
Summary of Extended Error Codes

DECnet-DOS supports extended error support to certain socket operations. When you
write a program which uses the getsockopt function call, extended error codes can be
returned in opt_status, a data member of optdata_dn. This can occur following an
attempted connection request or after disconnecting a logical link.

Table D-l lists extended error codes which can be returned following an attempted
connection. It lists the error messages found in derrno.h, the decimal value for each
message, their equivalent error message that dnet_conn returns in errno, and the
error reason.

Table 0-1: Extended Error Messages - Unable to Make a Connection

derrno.h dnet_conn
Mnemonic In errno

EREjBYOBj ECONNREFUSED o Connect failed. Connec
tions rejected by object.

EINSSNETRES ENOSPC 1 Connect failed. Insuffi

2 EUNRNODNAM EADDRNOTA VAIL

3 EREMNODESHUT ENETDOWN

4 EUNROBj ESRCH

cient network resources.

Connect failed. Unrecog
nized node name.

Connect failed. Remote
node shutting down.

Connect failed. Invalid
object name format.

(continued on next page)

D-1

Table 0-1 (cont.): Extended Error Messages - Unable to Make a Connection

Decimal derrno.h dnet_conn
Error Code Mnemonic In errno Reason

5 EINVOBJNAM EINVAL Connect failed. Invalid
object name format

6 EOBJBUSY ETOOMANYREFS Connect failed. Object
too busy.

10 EINVNODNAM ENAMETOOLONG Connect failed. Invalid
node name format.

11 ELOCNODESHUT EHOSTDOWN Connect failed. Local
node shutting down.

34 EACCONREJ ECONNABORTED Connect failed. Access
control rejected.

38 ENORESPOBJ ETIMEDOUT Connect failed. No
response from object.

39 ENODUNREACH ENETUNREACH Connect failed. Node
unreachable.

Table D-2lists extended error codes which can be returned following a disconnection.
It lists the error messages found in derrno. h, the decimal value for each message and
the error reason.

Table 0-2: Extended Error Messages - Disconnecting a Logical Link

Decimal
Error Code

o
8

9

38

0-2

derrno.h
Mnemonic

EREJBYOBJ

EABTBYNMGT

EUSERABORT

ENORESPOBJ

Reason

The end user disconnected a running logical link.

The logical link was disconnected by a third party.

The remote end user has aborted the link.

Use of this symbol may not be D ECnet - UL TRIX com
patible.

A third party has aborted the link, or the node at the
other end has crashed.

OECnet-OOS Programmer's Reference Manual

E
Data Access Protocol (DAP) Error Messages

The Network Task Error log utility provides extended error support to transparent file
access operations. This appendix lists DAP error messages that can be returned by this
utility. The Network File Transfer Utility may also return some of these error messages.

E. 1 Overview

The OAP messages return status from the remote file system or from the operation of
the cooperating process using DAP. The 2-byte status field (16 bits) is divided into two
fields:

• Maccode (bits 12-15):

• Miccode (bits 0-11):

E.1 .1 Maccode Field

Contains the error type code (See Table E-1) in Sec
tion E.1.1)

Contains the specified error reason code (See Tables
E-2, E-3, and E-4, depending on error type, as
described in Section E.1.2)

The value returned in the maccode field describes the functional type of the error that
has occurred. The specific reason for the error is given in the miccode field. Miccode
values correlating to each maccode value listed in Table E-1 are found in the table ref
erenced in the last column of Table E-1.

E-1

Table E-1: DAP Maccode Field Values

Field
Value Miccode
(Octal) Error Type Meaning Table

0 Pending The operation is in progress. E-3

1 Successful Returns information that indicates success. E-3

2 Unsupported This implementation of DAP does not support E-2
the specified request.

3 Reserved

4 File open Errors that occur before a file is E-3
successfully opened.

5 Transfer Errors that occur after a file is opened and E-3
error before it is closed.

6 Transfer For operations on open files, indicates E-3
warning that the operation completed, but not with

complete success.

7 Access Errors associated with terminating access E-3
termination to a file.

10 Format Error in parsing a message. Format is not E-2
correct.

11 Invalid Field of message is invalid (that is, bits that E-2
are meant to be mutually exclusive are set,
an undefined bit is set, a field value is out of
range, or an illegal string is in a field.)

12 Sync DAP message received out of synchronization. E-4

13-15 Reserved

16-17 User-defined status maccodes

E.1.2 Miccode Field

The value returned in this field identifies the specific reason for the error type defined
in the mac code field (See Section E.1.1). Miccode field values are defined in three dif
ferent tables, each table associated with certain maccode values, as outlined below:

• Table E-2:

• Table E-3:

• Table E-4:

E-2

For use with mac code values 2, 10, 11

For use with maccode values 0, 1,4,5,6,7

For use with maccode value 12

DECnet-DOS Programmer's Reference Manual

Table E-2 follows. The DAP message type number (column 1) is specified in bits 6-11,
and the DAP message field number (column 2) is specified in bits 0-5. The field where
the error is located is described in the third column.

Table E-2: CAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Miscellaneous message errors

00 00
10

Configuration message errors

01 00
10
11
12
13
14
20
21
22
23
24
25
26
27

Attributes message errors

02 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31
32

Field Description

Unspecified DAP message error
DAP message type field (TYPE) error

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
BITCNT field (BITCNT)
Buffer size field (BUFSIZ)
Operating system type field (OSTYPE)
File system type field (FILESYS)
DAP version number (VERNUM)
ECO version number field (ECONUM)
USER protocol version number field (USRNUM)
DEC software release number field (DECVER)
User software release number field (USRVER)

Unknown Field
DAP message flags field (FLAGS)
Data stream identification (STREAMID)
Length field (LENGTH)
Length extension field (LEN 256)
Bit count field (BITCNT)
Attributes menu field (A TTMENU)
Data type field (DATA TYPE)
Field organization field (ORG)
Record format field (RFM)
Record attributes field (RAT)
Block size field (BLS)
Maximum record size field (MRS)
Allocation quantity field (ALQ)
Bucket size field (BKS)
Fixed control area size field (FSZ)
Maximum record number field (MRN)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-3

Table E-2 (cont.): CAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

33
34
35
36
37
40
41
42
43
44
45

Access message errors

03 00
10
11
12
13
14
20
21
22
23
24
25
26

Control message errors

04 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

E-4

Field Description

Run-time system field (RUNSYS)
Default extension quantity field (DEQ)
File options field (FOP)
Byte size field
Device characteristics field (DEV)
Spooling device characteristics field (SDC); reversed
Longest record length field (LRL)
Highest virtual block allocated field (HBK)
End-of-block field (EBK)
First free byte field (FFB)
Starting LBN for contiguous file field (SBN)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit Count field (BITCNT)
Access function field (ACCFUNC)
Access options field (ACCOPT)
File specification field (FILESPEC)
File access field (FAC)
File-sharing field (SHR)
Display attributes request field (DISPLAY)
File password field (PASSWORD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Control function field (CTLFUNC)
Control menu field (CTLMENU)
Record access field (RAC)
Key field (KEY)
Key of reference field (KRF)
Record options field (ROP)
Hash code field (HSH); reserved for future use
Display attributes request field (DISPLAY)
Block count (BLKCNT)

(continued on next page)

DEC net-DOS Programmer's Reference Manual

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Continue message errors

05 00
10
11
12
13
14
20

Acknowledge message errors

06 00
10
11
12
13
14
15

Access complete message errors

07 00
10
11
12
13
14
20
21
22

Key definition message errors

12 00
10
11
12
13
14
20
21
22
23
24

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Continue transfer function field (CONFUNC)

Unknown field
DAP message flags field
Data Stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Access complete function field (CMPFUNC)
File options field (FOP)
Checksum field (CHECK)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Key definition menu field (KEYMENU)
Key option flags field (FLG)
Data bucket fill quantity field (DFL)
Index bucket fill quantity field (IFL)
Key segment repeat count field (SEGCNT)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-5

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

Allocation message errors

13 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31

Summary message errors

14

E-6

00
10
11
12
13
14

Field Description

Key segment position field (PaS)
Key segment size field (SIZ)
Key of reference field (REF)
Key name field (KNM)
Null key character field (NUL)
Index area number field (IAN)
Lowest level area number field (LAN)
Data level area number field (DAN)
Key data type field (DTP)
Root VBN for this key field (RVB)
Hash algorithm value field (HAL)
First data bucket VBN field (DVB)
Data bucket size field (DBS)
Index bucket size field (IBS)
Level of root bucket field (LVL)
Total key size field (TKS)
Minimum record size field (MRL)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Allocation menu field (ALLMENU)
Relative volume number field (VOL)
Alignment options field (ALN)
Allocation options field (AOP)
Starting location field (LaC)
Related file identification field (RFI)
Allocation quantity field (ALQ)
Area identification field (AID)
Bucket size field (BKZ)
Default extension quantity field (DEQ)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)

(continued on next page)

DECnet-DOS Programmer's Reference Manual

Table E-2 (cont.): CAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

20
21
22
23
24

Date and time message errors

15 00
10
11
12
13
14
20
21
22
23
24
25
26
27

Protection message errors

16 00
10
11
12
13
14
20
21
22
23
24
25

Name message errors

17 00
10
11
12
13
14

Field Description

Summary menu field (SUMENU)
Number of keys field (NOK)
Number of areas field (NOA)
Number of record descriptors field (NOR)
Prologue version number (PVN)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Date and time menu field (DA TMENU)
Creation date and time field (COT)
Last update date and time field (ROT)
Deletion date and time field (EDT)
Revision number field (RVN)
Backup date and time field (BOT)
Physical creation date and time field (PDT)
Accessed date and time field (ADT)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Protection menu field (PROTMENU)
File owner field (OWNER)
System protection field (PROTSYS)
Owner protection field (PROTOWN)
Group protection field (PROTGRP)
World protection field (PROWLD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-7

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5) Field Description

20 Name type field (NAMETYPE)
21 Name field (NAMESPEC)

Access control list message errors (reserved for future use)

20

E-8

00
10
11
12
13
14
15
20
21

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)
Access control list repeat count field (ACLCNT)
Access control list entry field (ACL)

DECnet-DOS Programmer's Reference Manual

Table E-3 follows. The error code number (column 1) is contained in bits 0-11. For
corresponding RMS or FCS status codes, refer to the appropriate DEC net or RMS docu
mentation for each remote system.

Table E-3: DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11) Error Description

o Unspecified error

Operation aborted

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

FII-ACP could not access file

File activity precludes operation

Bad areaID

Alignment options error

Allocation quantity too large or 0 value

Not ANSI D format

Allocation options error

Invalid (that is, synchronous) operation at AST level

Attribute read error

Attribute write error

Bucket size too large

Bucket size too large

BLN length error

Beginning of file detected

Private pool address

Private pool size

Internal RMS error condition detected

Cannot connect RAB

$UPDATE changed a key without having attribute ofXB$CHG set

Bucket format check-byte failure

RSTS/E close function failed

Invalid or unsupported COD field

(continued on next page)

Data Access Protocol (DAP) Error Messages E-9

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

E-10

Error Description

FI1-ACP could not create file (STV - system error code)

No current record (operation not preceded by get/find)

FI1-ACP deaccess error during close

Data area number invalid

RFA-accessed record was deleted

Bad device, or inappropriate device type

Error in directory name

Dynamic memory exhausted

Directory not found

Device not ready

Device has positioning error

DTP field invalid

Duplicate key detected; XB$DUP not set

FI1-ACP enter function failed

Operation not selected in ORG$ macro

End of file

Expanded string area too short

File expiration date not yet reached

File extend failure

Not a valid FAB (BID does not = FB$BID)

Illegal FAC for record operation, or FB$PUT not set for create

File already exists

Invalid file ID

Invalid flag-bits combination

File is locked by other user
(continued on next page)

DECnet-DOS Programmer's Reference Manual

Table E-3 (cont.): CAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Err05Code
(bits 0-11)

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

100

101

102

103

104

105

106

107

110

111

112

Error Description

F11-ACP find function failed

File not found

Error in file name

Invalid file options

Device/file full

Index area number invalid

Invalid IFI value or unopened file

Maximum NUM (254) areas/key XABS exceeded

$INIT macro never issued

Operation illegal or invalid for file organization

Illegal record encountered (with sequential files only)

Invalid lSI value on unconnected RAB

Bad key buffer address (KBF = 0)

Invalid key field (KEY = 0 or negative)

Invalid key of reference ($GET/$FIND)

Key size too large

Lowest level index area number invalid

Not ANSI-labeled tape

Logical channel busy

Logical channel number too large

Logical extend error; prior extend still valid

LOC field invalid

Buffer-mapping error

F11-ACP could not mark file for deletion

MRN value = negative or relative key > MRN

MRS value = 0 for fixed length records and/or relative files

(continued on next page)

Data Access Protocol (DAP) Error Messages E-11

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134

135

136

137

140

141

142

143

144

E-12

Error Description

NAM block address invalid (NAM = 0 or is not accessible

Not positioned to EOF (with sequential files only)

Cannot allocate internal index descriptor

Indexed file; primary key defined

RSTS/E open function failed

XABs not in correct order

Invalid file organization value

Error in file's prologue (reconstruct file)

POS field invalid (POS) > MRS; STY = XAB indicator)

Bad file date field retrieved

Privilege violation (OS denies access)

Not a valid RAB (BID does not = RB$BID)

Illegal RAC value

Illegal record attributes

Invalid record buffer address (either odd or not word aligned ifBLK-IO)

File read error

Record already exists

Bad RFA value (RFA = 0)

Invalid record format

Target bucket locked by another stream

F 11-ACP remove function failed

Record not found

Record not locked

Invalid record options

Error while reading prologue

Invalid RRV record encountered

(continued on next page)

DECnet-DOS Programmer's Reference Manual

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

Error Description

RAB stream currently active

Bad record size (RSZ > MRS or NOT = MRS if fixed length records)

Record too big for user's buffer

Primary key out of sequence (RAC = RB$SEQ for $PUT)

SHR field invalid for file (cannot share sequential files)

SIZ field invalid

Stack too big for save area

System directive error

Index tree error

Error in file type extension on FNS is too big

Invalid user buffer address (0, odd, or not word aligned ifBLK-IO)

Invalid user buffer size (USZ = 0)

Error in version number

Invalid volume number

File write error (STV = system error code)

Device is write locked

Error while writing prologue

Not a valid XAB (@XAB = odd; STY = XAB indicator)

Default directory invalid

Cannot access argument list

Cannot close file

Cannot deliver AST

Channel assignment failure (STV = system error code)

Terminal output ignored due to (CTRUO)

Terminal input aborted due to (CTRUY)

Default file name string address error

Invalid device ID field
(continued on next page)

Data Access Protocol (DAP) Error Messages E-13

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

200

201

202

203

204

205

206

207

210

211

212

213

214

215

216

217

220

221

222

223

224

225

226

227

230

231

232

E-14

Error Description

Expanded string address error

File name string address error

FSZ field invalid

Invalid argument list

Known file found

Logical name error

N ode name error

Operation successful

Inserted record had duplicate key

Index update error occurred; record inserted

Record locked, but read anyway

Record inserted in primary key is okay; may not be accessible by secondary
keys orRFA

File was created, but not opened

Bad prompt buffer address

Asynchronous operation pending completion

Quoted string error

Record header buffer invalid

Invalid related file

Invalid resultant string size

Invalid resultant string address

Operation not sequential

Operation successful

Created file superseded existing version

File name syntax error

Timeout period expired

FB$BLK record attribute not supported

Bad byte size
(continued on next page)

DECnet-DOS Programmer's Reference Manual

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

233

234

235

236

237

240

241

242

243

244

245

246

247

250

251

252

253

254

255

256

257

260

261

262

263

264

265

Error Description

Cannot disconnect RAB

Cannot get JFN for file

Cannot open file

Bad JFN value

Cannot position to end of file

Cannot truncate file

File currently in an undefined state; access is denied

File must be opened for exclusive access

Directory full

Handler not in system

Fatal hardware error

Attempt to write beyond EOF

Hardware option not present

Device not attached

Device already attached

Device not attachable

Shareable resource in use

Illegal overlay request

Block check or CRC error

Caller's nodes exhausted

Index file full

File header full

Accessed for write

File header checksum failure

Attribute control list error

File already accessed on LUN

Bad tape format

(continued on next page)

Data Access Protocol (DAP) Error Messages E-15

Table E-3 (cont.): CAP Miccode Values for Use with Maccode Values 0, 1,4,5, 6, 7

Error Code
(bits 0-11)

266

267

270

271

272

273

274

275

276

277

300

301

302

303

304

305

306

307

310

311

312

313

314

315

316

317

E-16

Error Description

Illegal operation on file descriptor block

Rename; two different devices

Rename; new file name already in use

Cannot rename old file system

File already open

Parity error on device

End of volume detected

Data overrun

Bad block on device

End of tape detected

No buffer space for file

File exceeds allocated space; no blocks left

Specified task not installed

Unlock error

No file accessed on LUN

Send/receive failure

Spool or submit command file failure

No more files

DAP file transfer checksum error

Quota exceeded

Internal network error condition detected

Terminal input aborted due to ~

Data bucket fill size > bucket size in XAB

Invalid expanded string length

Illegal bucket format

Bucket size of LAN does not = IAN in XAB

(continued on next page)

DECnet-DOS Programmer's Reference Manuai

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

320

321

322

323

324

325

326

327

330

331

332

333

334

335

336

337

340

341

342

343

344

345

346

347

350

Error Description

Index not initialized

Illegal file attributes (corrupt file header)

Index bucket fill size > bucket size in XAB

Key name buffer not readable or write able in XAB

Index bucket will not hold two keys for key of reference

Multibuffer count invalid (negative value)

Network operation failed at remote node

Record is already locked

Deleted record successfully accessed

Retrieved record exceeds specified key value

Key XAB not filled in

Nonexistent record successfully accessed

Unsupported prologue version

Illegal key of reference in XAB

Invalid resultant string length

Error updating RRVs; some paths to data may be lost

Data types other than string limited to one segment in XAB

Reserved

Operation not supported over network

Error on write behind

Invalid wildcard operation

Working set full (cannot lock buffers in working set)

Directory listing: error in reading volume set name, directory name, or file
name

Directory listing: error in reading file attributes

Directory listing: protection violation in trying to read the volume set, direc
tory, or file name

(continued on next page)

Data Access Protocol (DAP) Error Messages E-17

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

351

352

353

354

355

356

357

360

361

362

363

364

365

366

6000
to
7777

E-18

Error Description

Directory listing: protection violation in trying to read file attributes

Directory listing: file attributes do not exist

Directory listing: unable to recover directory list after continue transfer (skip)

Sharing not enabled

Sharing page count exceeded

UPI bit not set when sharing with BRO set

Error in access control string

Terminator not seen

Bad escape sequence

Partial escape sequence

Invalid wildcard context value

Invalid directory rename operation

User structure (FAB/RAB) became invalid during operation

Network file transfer mode precludes operation

User-defined errors

DECnet-DOS Programmer's Reference Manual

Table E-4 follows. The message type number is contained in bits 0-11.

Table E-4: CAP Miccode Values for Use with Maccode Value 12

Type
Number
(bits 0-1) Message Type

o Unknown message type

1 Configuration message

2 Attributes message

3 Access message

4 Control message

5 Continue transfer message

6 Acknowledge message

7 Access complete message

10 Data message

11 Status message

12 Key definition attributes extension message

13 Allocation attributes extension message

14 Summary attributes extension message

15 Date and time attributes extension message

16 Protection attributes extension message

17 Name message

20 Access control list extended attributes message

Data Access Protocol (DAP) Error Messages E-19

F
Transparent File Access Error Messages

This appendix summarizes extended error messages for transparent file access opera
tions. The following messages are displayed by the TNT utility.

Extended Error Message

Can't get a handle to the network driver.

Too many logical links already in use. The maximum number is 4.

Error in node specification.

The node name specification was not found in DECPARM.DAT.

Unable to transmit user buffer.

Invalid DAP message type received.

Unsupported DAP flag field received.

Invalid DAP message format received.

Unexpected DAP message received.

Unsupported DAP data type.

Unsupported file organization. DECnet-DOS only supports sequential file organiza
tion.

Remote system DAP buffer size is less than 128 bytes.

The file to be accessed is not open.

Error - unknown error.

F-1

The maximum record size has exceeded 128 bytes.

The buffer size for the records contained in the remote input file is too small.

Error in closing file.

F-2 DECnet-DOS Programmer's Reference Manual

G
Transporting DECnet-DOS Programs

If you develop code to be transported to a DECnet-ULTRIX or any other system that
supports the socket interface library, it is recommended that you use these suggestions:

• The select function has a feature specific only to DECnet-DOS. The bit mask
exceptfds is presently not supported by DECnet-UL TRIX. As a result, you cannot
transport code that includes the exception bit mask.

• Include a special prefix and compatibility mode header file in your DECnet-DOS
program.

• Define certain function call names depending upon which system compilation is to
take place. For DECnet-DOS programs, the socket function calls - ioctt, read,
write and close must be prefixed with an "s".

An example compatibility header file is shown below:

#ifdef MSDOS

#define ioctL(s, f, a) sioctL(s, f, a) 1* controL *1
1* socket i/o*1

#define read(s, buf, Len) sread(s, buf, Len) 1* read from *1
1* a socket *1

#define write(s, buf, len) swrite(s, buf, Len) 1* write to *1
1* a socket *1

#define cLose(s) scLose(s) 1* close a *1
1* socket *1

#endif 1* MSDOS *1

G-1

H
DECnet-DOS Programming Examples

H.1 Example Client Task Program

The following networking program uses the DECnet-DOS socket interface. In this
example, the client task tries to connect to a task on a remote node; send data and wait
30 seconds for any incoming data before timing out or until the peer task decides to
close down the link.

* IncLude standard headers.
*1

#incLude <stdio.h>

1*
* User defined symboLs for conditional compiLation.
*1

#incLude ndnprefix.h n

1*
* IncLude some network interface headers.
*1

#incLude ntypes.h n 1* Type definitions, abstract data types.
*1
#include ntime.hn 1* Time data structures.
*1
#incLude ndn.hn 1* Network data structures and
*1

1* definitions.
*1

(continued on next page)

H-1

#include "socket. h" 1* Socket interface layer definitions.
*1
#include "sioctl.h" 1* Socket 1/0 control functions.
*1
#include "errno.h" 1* Global user error definitions
*1

1* in 'errno'.

1*
* Conditionalize for DECnet-ULTRIX compatibility.
*1

#ifndef MSDOS
#define sclose(s) close(s)
#define sioctl(s,f,a) ioctl(s,f,a)
#endif

#define SEQUENCED_PACKET 0
#define STREAM 1

1*
* Version string.
*1

static char

1*
* Main line code.
*1

main(argc, argv)

int
char

1*

argc;
*argv[];

* Local data.
*1

version[J

timeval tmvi

"v 1 • 0 1 ";

struct
char
u_char
u_c ha r
u_cha r
field32
int

*node, *objecti
optional_send[16Ji
optional_receive[16Ji
data_buffer[100Ji
readfds, writefdsi
rec_len;

int
int
int
int
int
int
char

sock_type;
socki
lOOPi
count;
len;
indOi
bio[1J;

returned

(continued on next page)

H-2 DECnet-DOS Programmer's Reference Manual

1*
* Make sure there are a valid number of input arguments.
*1

if (argc < 3)
{

printfCUUsage: test <node name or address>\
<#objnum or objnam>\n U);

exit(1);

1*
* Display our current version.
*1
p r i n t f("\ t \ t Sam p l e - % s \ n ", & v e r 5 ion [0,]);

1*
* Set up optional data to send with connect.
*1

strcpy(&optional_send[OJ, "hello");

1*
* Attempt to connect to the object on the remote node.
*1

rec_len = sizeofCoptional_receive);
node = *++argv;
object = *++argv;
sock_type = SEQUENCED_PACKET;
printf("connecting to node \U%s\U, object \"%s\"\n",

node, object);
if «sock = dnet_conn(node, object, sock_type,

&optional_send[OJ,
strlen("hello"),
&optional_receive[OJ, &rec len» < 0)

nerror("dnet_conn");
exit(1);

printf("connect complete with node \"%5\",\
object \"%s\"\n", node, object>;

1*
* Check for returned optional data.
*1

if (rec_len)
{

puts("optional data received:");
for (indO = 0; indO < rec_len; indO++)
{

printf(" %d", optional_receive[indO]);

puts("");

(continued on next page)

DECnet-DOS Programming Examples H-3

/*
* Fill a data buffer with dummy data.
*/

for (loop = 0; loop < s;zeof(data_buffer); loop++)
{

data_buffer[loopJ = loop + 10;

/*
* Try to send a dummy data buffer 10 times
* to target object as long as link is still active.
*/

loop = 10;
while (loop--)
{

if (dnet eof(sock) == 1)
{

printf("link is down.\n");
sclose(sock);
exit(1);

if «count send(sock, &data_buffer[OJ,
sizeof(data_buffer), 0» < 0)

per r 0 r ("w r i t e ") ;
sclose(sock);
exit(1);

printf("data successfully sent to %s\n", node);

/*
* Now set the socket to nonblocking mode.
*/

bio[O] = 1;
sioctL(sock, FIONBIO, &bio[O]);

/*
* Clean out the data buffer.
*/

bzero(&data_buffer[OJ, sizeof(data_buffer»;

/*
* Continue to receive data from target object until
* disconnected.
*/

while (1)

(continued on next page)

H-4 DECnet-DOS Programmer's Reference Manual

/*
* Check if Link is stiLL active.
*/

if (dnet eof(sock) == 1)
{

/*

printf("Link is down.\n");
scLose(sock);
exit(1);

* Now check to see if the socket has data avaiLabLe
* to read and timeout after 30 seconds.
*/

readfds = 1 « sock;
tmv.tv_sec = 30;
if «indO = seLect(sock + 1, &readfds, 0, 0, &tmv» < 0)
{

eLse
{

perror("seLect");

if (indO == 0)
{

printf("receive wait timed out.\n");
scLose(sock);
exit(1);

if «count recv(sock, &data_buffer[OJ,
sizeof(data_buffer), 0» < 0)

if (errno != EWOULDBLOCK)
{

eLse

perror("read");
break;

continue;

printf("data received (%d bytes):\n", count);
for (indO = 0; indO < count; indO++)
{

printf(" %d", data buffedindOJ);

puts("");

(continued on next page)

DECnet-DOS Programming Examples H-5

1*
* Finish up. Make the socket linger on close to allow
* things to get cleaned.
*1

if (setsockopt(sock, SOL_SOCKET, SO_LINGER, 0, 0) < 0)
(

perror("setsockopt");

1*
* CLose the socket and exit program.
*1

sclose(sock);
exit(O);

H-6 DECnet-DOS Programmer's Reference Manual

H.2 Example Client Transparent Task-to-Task Program

The following program illustrates transparent task-to-task communication. It describes
the functions that the client task uses to communicate over the network.

/*

* * Sample client program written in C that shows Transparent
* Task-to-task using DECnet-DOS.

* * When running this program, the command line argument should
* look like a network task specification. See the following
* examples as well as examples cited in the documentation:
* For example:
* * \\t\pcdos\\#100(to connect by object number)
* \\t\pcdos\smith\xxxxx\\TIMESRV(to connect by object name)

* * After getting a handle (for example, by connecting to a
* remote object), an attempt is made to write/send some data to
* the object and then close the handle.

* * 0 All C include files and external functions are
* distributed with the DECnet-DOS kit in the file
* DNETLIB.SRC.
* * 0 When attempts to run this program fail, run the utility
* TNT.EXE shipped with the DECnet-DOS kit to examine
* DECnet errors.
*
*/

#include
#include
#include
#include

<stdio.h>
"types.h"
"scbdef.h"
"errno.h"

static char buf[100Ji

/*
* Function(s) included in DNETLIB.SRC
*/

extern int hopen()i
extern int hwrite(), hclose()i

main(argc, argv)

int argci

DECnet-DOS Programming Examples

(continued on next page)

H-7

char *argv[];

in t i;
in t j;
int'len;
int h = 0;

if (argc < 2)
{

printf("Usage: ttttst <TTT_network_task_string>\n");
printf("\n example:\n");
printf("\t ttttst \\\\t\\pygmy\\\\<#object_number>\n");
printf("\t or\n");
printf("\t ttttst \\\\t\\pygmy\\\\<object_name>\n");
exit(1);

1*
* Fill a dummy data buffer.
*1

for (i = 0; < sizeof(buf); i++)
buf(iJ i;

1*
* Open file (access remote network object).
*1

h = hopen(argv[1J, SCBC_HOPEN);
if (h == ERROR)
{

perror("\nopen");
printf("\n (run TNT.EXE to examine network error)");
exit(1);

printf("\nopen succeeded handle: %u (connected to object)",
h) ;

1*
* Write to file (send data to remote object).
*1

if (hwrite(h, &buf[OJ, sizeof(buf» != sizeof(buf»
{

perror("\nwrite");
printf("\n (run TNT.EXE to examine network error)");

else
printf("\nwrite succeeded (sent data to object)");

1*
* Read from file handle (receive data from object, if any).
*1

len = hread(h, &buf[OJ, sizeof(buf»;

(continued on next page)

H-8 DECnet-DOS Programmer's Reference Manual

if (len < 0)
{

eLse
{

1*

perror("\nread");
printf("\n (run TNT.EXE to examine network error)");

printf("\nread ~u byte(s) (received from object)\n",
len);

for (i = j = 0; < len; i++, j++)
{

if (j > 9)
{

printfC"\n");
j = 0;

printfC" ~4u", buf[i]);

* Close file handle (disconnect link).
*1

hclose(h);

printfC "\nfinished.");
exit(O);

DECnet-DOS Programming Examples H-9

H.3 Example Server Task Program

The following networking program uses the DEC net-DOS socket interface. The exam
ple describes the activities of a DECnet-DOS server task.

/*
* Program - MIRROR

*
* Copyright <C) 1985, All Rights Reserved, by
* Digital Equipment Corporation, Maynard, Mass.
*
* This software is furnished under a license and may be used
* and copied only in accordance with the terms of such license
* and with the inclusion of the above copyright notice. This
* software or any other copies thereof may not be provided or
* otherwise made availabLe to any other pe~son. No titLe to
* and ownership of the software is hereby transferred.

*
* The information in this software is subject to change without
* notice and should not be construed as a commitment by
* Digital Equipment Corporation.

*
* Digital assumes no responsibiLity for the use or reLiability
* of its software on equipment which is not supplied
* by DigitaL.
*
*
* MODULE DESCRIPTION:
*
* Program MIRROR

* * DECnet-DOS, mirror server, DECnet object 25

*
* Networks & Communications Software Engineering
*
* IDENT HISTORY:
*
* V1.00 20-Nov-85
* DECnet-DOS, Version 1.1

#incLude <stdio.h>
#include "types.h"
#include "dnmsdos.h"
#include "dn. h"
#include "socket. h"
#incLude "t i me. h"
#include "errno.h"
#incLude "scbdef.h"

#define MAX BU F S I Z E 2048

struct sockaddr_dn sockaddr;
struct optdata_dn opt;
char buff[MAX_BUF_SIZE);
int lsock = -1;

H-10

/* maximum loop data buffer */

/* accept connect data structure */
/* optional data buffer */
/* data buffer */
/* incoming connections on */

(continued on next page)

DECnet-DOS Programmer's Reference Manual

/* listening socket */
int sock = -1;
char mode[1];

/* data communications socket *1
/* accept mode *1

char msg_version[] "MIRROR listening CV1.1)";

/*
* Sample DECnet-DOS server task. This task will bind itself
* as DECnet object number 25, the standard DECnet object
* reserved for a mirror task. When started, the mirror is the
* only running task. To terminate, the user may
* press any key.
*1

mainCargc, argv)
int argc;
char **argv;
{

extern char *mallocC);
extern char *dnet_ntoaC);
int len;
int nfds;
unsigned long read;
struct timevaL tmv;

/*
* Set up Listening socket for incoming connect requests.
*/

if CCLsock = socketCAF_DECnet, SOCK_SEQPACKET, 0» < 0)
mir exitC"socket faiLed", errno);

/*
* Bind task to DECnet object 25.
*/

bzero(&sockaddr, sizeofCsockaddr»;
sockaddr.sdn_family = AF_DECnet;
sockaddr.sdn_objnum = 25;
if CbindClsock, &sockaddr, sizeofCsockaddr» < 0)

mir_exitC"bind failed", errno);

1*
* Set up listening socket to listen for incoming connect
* requests. Allow for up to 5 pending incoming
* connect requests.
*/

if (listenClsock, 5) < 0)
mir_exitC"listen failed", errno);

/*
* Listen for incoming connect requests until
* there is keyboard input.
*/

while(1)
{

DECnet-DOS Programming Examples

(continued on next page)

H-11

1*
* Display mirror version message.
*1

printfC"\n%s", msg_version);

1*
* Poll listening socket for incoming connect request.
*1

whi le(1)
{

if Cmir_keyboard_inputC»
mir_exitCNULL, 0);

bzero(&tmv, sizeof(tmv»;
read = 1 « lsock;
nfds = lsock + 1;
if (select(nfds, &read, 0, 0, &tmv) > 0)
{

if (read & (1 « lsock»
break;

1*
* Issue a deferred accept on the connect request - send
* some optional data along with it.
*1

mode[O] = ACC_DEFER;
if CsetsockoptClsock, DNPROTO_NSP, DSO_ACCEPTMODE,

&mode[O], sizeofCmode» < 0)

mir exit("set accept mode", 1);

len = sizeof(sockaddr);
if (Csock = accept(lsock, &sockaddr, &len» < 0)

mir_exit("accept failed", errno);

1*
* Set up outgoing optional data - maximum mirror
* data buffer size.
*1

bzero(&opt, sizeofCopt»;
opt.opt_optl = sizeof(unsigned short);

(continued on next page)

H-12 DECnet-DOS Programmer's Reference Manual

*(unsigned short *)&opt.opt_data[O] = MAX_BUF_SIZE;
if (setsockopt(sock, DNPROTO_NSP, DSO_CONDATA, &opt,

sizeof(opt» < 0)

mir exit("set socket option - optional data",

errno);

if (setsockopt(sock, DNPROTO_NSP, DSO_CONACCEPT,
0, 0) < 0)

mir_exit("set connect accept", 1),;

1*
* Display peer information.
*1

printf("\n")i
printf("\nLoop connect request from node: Xs",

dnet_ntoa(&sockaddr.sdn_add»;

if (sockaddr.sdn_objnum == 0)
printf("\nRequesting object name: ~s",

&sockaddr.sdn_objname[O])i
else

printf("\nRequesting object number: ~d",
sockaddr.sdn_objnum);

printf("\n")i

1*
* Loop data while link is still active and other end is
* still sending data.
*1

while(ldnet_eof(sock»
{

len = MAX_BUF_SIZEi
len = sread(sock, buff, &len);
if (len == 0)
{

else
{

if (dnet_eof(sock»
mir_exit(NULL, 0);

if (len < 0)
mir_exit("sread", 1>;

if (buff[O] 1= 0)
{

bufHO] -1;
len = 1;

DECnet-DOS Programming Examples

(continued on next page)

H-13

else
{

buff[O] 1 i

if (swrite(sock, buff, len) < 0)
mir_exit("swrite", 1)i

1*
* Finished with current data socket, close it up.
*1

if (sock != -1)
sclose(sock)i

int mir_keyboard_input()
{

SCB scbi

scb.AH = SCBC_CKSTATi
msdos(&scb)i
if (scb.AL>

return(1)i
return(O)i

mir_exit(sp, err)
char *SPi
int erri
{

if (sp != NULL>
{

strcpy(buff, "\nmirror _ ")i
strcat(buff, sP)i
perror(buff)i

if Clsock != -1)

sclose(lsock) i

if (sock != -1)

sclose(sock)i

exit(err)i

H-14 DECnet-DOS Programmer's Reference Manual

A

ABORT, 6-13
ACCEPT, 6-15

and MSG~SYNC flag, 6-18
and MSG_CALLBACK flag,

6-18
asynchronous mode described,

6-17
accept, 4-7
Accepting connection requests,

1-10,4-7,6-17
with SYS$NET as node name,

3-10
Access control information

and outgoing proxy logins,
5-9

and remote file access, 2-2
components, 2-7
defining access rights, 1-6
passed with CONNECT call,

6-31
passed with connect call,

4-11
verifying access rights, 1-6,

3-2
ASCII files, 2-3

converting remote input files,
2-5

converting remote output files,
2-6

Asynchronous configurations
installing DNP and DLL, 5-21
specifying DEC net database

path, 5-21
Asynchronous I/O

and ACCEPT, 6-17
and callbacks, 6-9
and CONNECT, 6-31
and RCVD, 6-48
and RCVOOB, 6-54
and SELECT, 6-59
and SEND, 6-64
and SENDOOB, 6-70
defined, 6-9
receiving messages, 1-13
sending messages, 1-12

ATTACH, 6-21

B

bcmp, 5-5
comparing byte strings, 5-5

bcopy, 5-6
copying byte strings, 5-6

BIND, 6-24
bind,4-9
Blocking I/O

defined, 1-6
error messages when receiving

normal data, 4-20, 4-39, 6-51
error messages when receiving

out-of-band data, 4-20, 6-56

Index

Index-1

Blocking 110 (Cont.)
error messages when sending

normal data, 4-27, 4-41, 6-66
error messages when sending

out-of-band data, 4-27, 6-71
receiving normal data, 1-12
sending normal data, 1-12

Blocking synchronous 110
defined, 6-9

Break Source utility
creating programming interface

library, 5-1
BREAKSRC

see Break Source utility
Buffers

blocking 110,4-26,6-64
nonblocking 110,4-26,6-64
sending messages, 4-26, 6-64

bzero, 5-7
zeroing out bytes, 5-7

c
C language

programming considerations,
4-2

Callback 110 Control Block
members of, 6-8
setting up, 6-7

Callback routines
and asynchronous 110, 6-9
defined, 6-9
guidelines for using, 6-10

CANCEL, 6-27
cancel previous asynchronous

function request, 6-27
CIOCB

see Callback 110 Control Block
Client task

defined, 1-4
Close, 2-12, 3-9
Closing the logical link, 1-14
CONNECT, 6-29

and MSG-ASYNC flag, 6-32
and MSG_CALLBACK flag,

6-32
asynchronous mode described,

6-31
connect, 4-11

Index-2

Connection requests
and access control information,

1-10
and CONNECT call, 6-31
and connect call, 4-11
and optional user data, 1-10
deferred accept/reject mode, 1-10
immediate accept mode, 1-10
using dnet_conn, 5-9

Create, 2-13,3-10
Creating a logical link, 1-9,3-2

handshaking sequence, 3-2

o
DAP

see Data Access Protocol
DAP error messages

see Appendix E
Data

normal, 1-12
optional user, 1-6
reading data from peer socket,

4-38
receiving, 1-12,4-19,6-48
receiving out-of-band, 4-19, 6-54
sending, 1-12,4-26,6-64
sending out-of-band, 4-26, 6-70
writing data to peer socket, 4-40

Data Access Protocol, 2-2
Data conversions, 2-4

file structure interdependencies,
2-4 to 2-5

for remote input files, 2-5
for remote output files, 2-6

Data Link Layer, 5-21
Data structures

access control information, B-2
attach data, B-2
DECnet node address, B-3
listen data, B-3
local node information, B-4
logical link information, B-4
optional user data, B-5
select data, B-5
shutdown data, B-6
socket address, B-6
socket 110 status, B-7
socket options, B-7

Data structures (Cont.)
user access control information,

B-8
user defined buffer, B-8
user defined callback routine,

B-8
DECnet areas, 1-6
DEC net database path

installing DNP, 5-21
installing DNP and DLL, 5-21
locating with dnet_path, 5-20
specifying, 5-21
specifying for asynchronous setups,

5-21
specifying for Ethernet setups, 5-21

DEC net Network Process, 5-21
DECnet objects

see Appendix A
DECnet utility function calls summary,

5-4
DEC net utility functions, 5-1

bcmp, 5-5
bcoPy,5-6
bzero,5-7
dnet_addr, 5-8
dnet_conn, 5-9
dnet_eof, 5-13
dnet_getacc, 5-14
dnet_getalias, 5-16
dnet~toa, 5-17
dnet~nstalled, 5-18
dnet_ntoa, 5-19
dnet_path, 5-20
getnodeadd,5-23
getnodebyaddr, 5-24
getnodebyname, 5-24
getnodeent, 5-24
getnodename, 5-26
nerror,5-27
perror,5-28
require dnetdb.h header file, 5-1

DECnet-DOS
and XENIX-compatible 110 handle

calls, 3-1
compatible with DECnet-UL TRIX,

1-1
defining socket interface calls for

DECnet-UL TRIX, G-l
features, 1-1

DECnet-DOS (Cont.)
header files, H-l
network 110 types, 6-9
prevent program hangs by issuing

sioctl, 4-23
programming considerations, 2-11,

3-8,4-2,5-2
programming examples, H-l to H-14
transporting programs to other

systems, G-l
DECnet-DOS Network Process

defined,6-1
installation check, 6-1
installing, 6-1

Delete, 2-15
DETACH, 6-34
DISCONNECT, 6-36
DLL

see Data Link Layer
dnet_addr, 5-8
dnet_conn, 5-9

and outgoing proxy logins, 5-9
and password prompting, 5-9
calling nerror to display error

message, 5-27
dnet_eof, 5-13
dnet_getacc, 5-14

retrieving access control information,
5-14

dnet_getalias, 5-16
dnet~toa, 5-17
dnet~nstalled, 5-18

perform installation check with, 5-18
dnet_ntoa, 5-19
dnet_path, 5-20

locating DECnet-DOS database files
5-20

DNP
see DECnet Network Process

E

Error messages
using nerror, 5-27
using perror, 5-28

Ethernet configurations
installing DNP, 5-21
specifying DECnet database path,

5-21

Index-3

Extended error reasons
see Appendix D

F

FAL
see File Access Listener

File Access Listener, 2-1
File characteristics

ASCII and image data types, 2-3
effects on file transfers, 2-3
file organization, 2-3
fixed size, 2-4
maximum record size, 2-4
record attributes, 2-3
record formats, 2-3

Files
remote input, 2-3
remote output, 2-3

Find first matching file, 2-16
Find next matching file, 2-18
Flags

G

MSG--ASYNC, 6-18, 6-32,
6-50,6-55,6-60,6-65,6-70

MSG_CALLBACK, 6-18, 6-32,
6-50,6-55,6-60,6-65,6-70

MSG_NBOM, 6-65
MSG_NEOM, 6-50,6-65
MSG_OOB, 4-19, 4-26
MSG_PEEK, 4-19,6-50

getnodeadd, 5-23
getnodebyaddr, 5-24
getnodebyname, 5-24
getnodeent, 5-24
getnodename, 5-26
getpeername, 4-13
getsockname, 4-15
GETSOCKOPT, 6-73
getsockopt, 4-29

H

Handles
returned by create and open

function requests, 3-11
used by close function request, 3-9

Header files, H-l, H-I0
dn.h, H-l, H-I0

Index-4

Header files (Cont.)
dnetdb.h, 5-1
dnmsdos.h, H-I0
errno.h, H-l, H-I0
scbdef.h, H-I0
sioctl.h, H-l
socket.h, H-l, H-I0
stdio.h, H-I0
time.h, H-l, H-I0
types.h, H-l, H-I0

110 Control Block
guidelines for using, 6-4
members of, 6-5

I/O control block
and data transfers, 6-4

110 operations
blocking, 1-6
nonblocking, 1-6

110 status
and callbacks, 6-9
checking network sockets, 4-23
polling for, 6-10

Image files, 2-3
converting remote input files, 2-5
converting remote output files,

2-6
IOCB

see I/O Control Block

L

Libraries
creating a programming interface

library, 4-1, 5-1
DNETLIB.SRC, 4-1
running Break Source utility, 5-1

LISTEN, 6-38
listen, 4-17
Listening for incoming client

connections, 4-17, 6-39
Load and execute a program, 2-20
LOCALINFO, 6-40
Logical link

creating, 1-9
exchanging data, 3-2
rejecting, 1-10
states, A-6

Logical link (Cont.)

M

terminating activity on, 1-14,
3-3,4-22

testing state of, 5-13
using SHUTDOWN call, 6-80
using shutdown call, 4-33

MS-DOS function requests
and TFARs, 2-8

N

close, 2-12, 3-9
create, 2-13, 3-10
delete, 2-15
find first matching file, 2-16
find next matching file, 2-18
load and execute a program,

2-20
open,2-21,3-10
read, 2-23, 3-12
write, 2-25, 3-13

Named objects, 3-4
and BIND call, 6-25
and bind call, 4-9
assigning to sockets, 4-9

nerror, 5-27
called when dnet_conn fails

to make connection, 5-27
log output to stdout, 5-27

Network access
examining network task strings,

3-6
intercepting requests for, 3-6

Network file specifications
file name strings, 2-8
node specifications, 2-7
requesting network access, 2-7
string format, 2-7

Network node database
accessing information, 5-24

Network object number, 1-6
range of, 1-6

Network process interface calls
ABORT, 6-13
ACCEPT,6-15
ATTACH, 6-21
BIND, 6-24

Network process interface calls (Cont.)
CANCEL, 6-27
CONNECT, 6-29
DETACH, 6-34
DISCONNECT, 6-36
GETSOCKOPT, 6-73
LISTEN,6-38
LOCALINFO, 6-40
PEERADDR, 6-43
RCVD,6-46
RCVOOB, 6-52
SELECT,6-57
SEND, 6-62
SENDOOB, 6-68
SETSOCKOPT, 6-73
SHUTDOWN, 6-80
SIOCTL, 6-82
SOCKADDR, 6-85

Network process interface calls
summary, 6-11 to 6-12

Network task name
defined with bind call, 1-6

Network task specifications, 3-4
format of, 3-4

Node address, 1-6
converting binary to DEC net ASCII

string, 5-17
converting DEC net ASCII string to

binary, 5-8
DECnet ASCII string, 5-19

Node information
retrieving, 5-16

Node name, 1-6
searching with dnetjtoa,

5-17
Node names

specifying as SYS$NET, 3-10
Node specifications, 2-7, 3-4

and access control data, 2-7
format of, 2-7, 3-5
format using dnet_conn, 5-10

N onblocking I/O
defined, 1-6
error messages when receiving

normal data, 4-20, 4-39
error messages when receiving

out-of-band data, 4-21
error messages when sending

normal data, 4-27, 4-41, 6-66

Index-5

Nonblocking I/O (Cont.)
error messages when sending

out-of-band data, 4-28, 6-72
receiving normal data, 1-12
sending normal data, 1-12

Nonblocking synchronous I/O
defined, 6-9

Nontransparent communication
network process interface calls,

6-1
using socket interface calls, 4-5

Nontransparent task-to-task
communication, 1-9

socket interface calls, 1-9
Numbered objects, 3-4

and BIND call, 6-25
and bind call, 4-9

o
On-line help

displaying TNT commands,
2-10,3-7

Open, 2-21, 3-10
Optional user data

closing the logical link, 1-14
passed with CONNECT call, 6-31
passed with connect call, 4-11
size of, 1-6
when disconnecting logical link,

1-6
when requesting logical link, 1-6

Out-of-band messages, 1-13
and blocking I/O, 1-13
and nonblocking I/O, 1-13
and send call, 4-26
checked by SELECT call, 6-59
checked by select call, 4-23
receiving, 4-19
size of, 1-13
using MSG_OOB flag, 4-19,

4-26
Outgoing proxy logins

defined, 5-9
passed with dnet_conn, 5-9

p

Passwords
and dnet_conn, 5-9

Index-6

Peeking at message
using RCVD and MSG_PEEK

flag, 6-48
using RCVOOB and MSG_PEEK

flag, 6-55
Peer sockets

retrieving name with getpeername,
4-13

retrieving name with PEERADDR,
6-44

PEERADDR, 6-43
perror, 5-28

log output to stdout, 5-28

R

RCVD, 6-46
and MSG~SYNC flag, 6-50
and MSG_CALLBACK flag, 6-50
and MSG~EOM flag, 6-50
and MSG_PEEK flag, 6-50
asynchronous mode described, 6-48

RCVOOB, 6-52
asynchronous mode described, 6-54

Read,2-23,3-12
Real-time Scheduler, 5-21
Receiving data

read multi-part message set with
MSG~EOM flag, 6-48

using RCVD, 6-48
using recv or sread call, 4-19

Record formats
fixed length, 2-3
stream, 2-3
undefined, 2-3
variable length, 2-3
variable-with-fixed length control,

2-3
recv, 4-19
Rejecting connection requests, 1-10
Remote file access

node name string, 2-2

5

SCH
see Real-time Scheduler

sclose, 4-22, G-l
SELECT, 6-57

and MSG~SYNC flag, 6-60

SELECT (Cont.)
and MSG_CALLBACK flag,

6-60
asynchronous mode described,

6-59
checking I/O status of sockets,

6-59
managing ACCEPT, SEND, SENDOOB,

RCVD and RCVOOB calls, 6-59
select, 4-23

checking I/O status of sockets, 4-23
SEND, 6-62

and MSG~SYNC flag, 6-65
and MSG_CALLBACK flag, 6-65
and MSG_NBOM flag, 6-65
and MSG_NEOM flag, 6-65
asynchronous mode described, 6-64

send, 4-26
Sending data

multi-part message set with MSG_NEOM
and MSG~BOM flags, 6-64

using SEND call, 6-64
using send or swrite call, 4-26

SENDOOB, 6-68
and MSG~SYNC flag, 6-70
and MSG_CALLBACK flag, 6-70
asynchronous mode described, 6-70

Sequential files, 2-3
Server task

and bind call, 4-9
defined, 1-4
using BIND call, 6-25

SETSOCKOPT,6-73
setsockopt,4-29
SHUTDOWN, 6-80
shutdown, 4-33
SIOCTL, 6-82
sioctl, 4-34, G-l

prevent program hangs on stream
sockets, 4-23

SOCKADDR, 6-85
socket, 4-36
Socket interface

sample calling sequence, 4-6
Socket interface calls, 4-5

accept, 4-7
bind, 4-9
connect, 4-11
getpeername,4-13

Socket interface calls (Cont.)
getsockname, 4-15
getsockopt,4-29
listen, 4-17
recv,4-19
sc1ose, 4-22
select, 4-23
send, 4-26
setsockopt,4-29
shutdown, 4-33
sioctl, 4-34
socket, 4-36
sread,4-38
swrite,4-40
used by C programs, 1-9,4-5

Socket interface calls summary, 4-5
Socket names

retrieving name with getsockname,
4-15

retrieving name with SOCKADDR,
6-86

used for listening operations, 1-9,
4-9

Socket numbers, 1-9,4-17,4-26
and accept call, 4-7
checked by SELECT call, 6-59
checked by select call, 4-23
range of, 4-23, 6-59
renumbering with SIOCTL call, 6-83
renumbering with sioctl call, 4-34
returned by ACCEPT call, 6-17
returned by socket call, 4-36
used for listening operations, 4-9
using with network process interface

calls, 6-11
Socket options, 4-29 to 4-31, 6-75 to

6-77
retrieving with GETSOCKOPT, 6-75
retrieving with getsockopt, 4-29
setting with SETSOCKO PT, 6-75
setting with setsockopt, 4-29

Socket types
see Appendix A

Sockets
assigning names, 1-9
controlling I/O operations of, 4-34,

6-83
creating, 1-9,4-36,6-17
deactivating, 1-14

Index-7

Sockets (Cont.)
deactivating with sclose call,

4-22
defined, 1-4
detaching, 6-13
exchanging data, 1-4
peer, 4-13, 6-44
sequenced, 1-4
stream, 1-4

sread, 4-38, G-l
stdout

nerror log output to, 5-27
perror log output to, 5-28

swrite, 4-40, G-l

T

Target task
accessing by object name, 3-4
accessing by object number, 3-4
defined as named object, 3-4
defined as numbered object, 3-4

Target task specifications
format of, 3-5
format using dnet_conn, 5-11

Terminating logical link
using DETACH call, 6-35
using sclose call, 4-22

Terminating logical links
using ABORT, 6-13

TFA
see Transparent File Access utility

TFARs
see Transparent File Access

Routines
TNT

see Transparent Network Test
utility

Transparent communication, 1-7
access control data, 3-2
and assembly language, 3-1
and high level languages, 3-1
capabilities, 1-7, 3-1
creating a logical link, 3-2
exchanging data, 3-2
handshaking sequence, 3-2
terminating activity on link, 3-3
using MS-DOS function requests,

3-3

Index-8

Transparent communication function
requests

close, 3-9
create, 3-10
open, 3-10
read,3-12
write, 3-13

Transparent communication function
requests summary, 3-3

Transparent file access, 2-1
error messages, F-l to F-2
initiating, 2-2
using MS-DOS function requests, 2-2

Transparent file access error messages
see Appendix F

Transparent file access function
requests
summary, 2-11

Transparent file access functions
close, 2-12
create, 2-13
delete, 2-15
find first matching file, 2-16
find next matching file, 2-18
load and execute a program, 2-20
open, 2-21
read,2-23
write, 2-25

Transparent File Access Routines
accessing remote files, 2-2

Transparent File Access utility
deinstalling with TNT, 2-10
displaying network status of, 2-9
installing, 2-1
programming considerations, 2-11
traps MS-DOS interrupt 21H, 2-10

Transparent Network Task utility
extended error support, 3-6
invoking, 3-6
on-line help, 3-7
returns DAP messages, 2-8

Transparent Network Test utility, 2-8
invoking, 2-9
on-line help, 2-10

Transparent Task-to-Task utility
deinstalling with TNT, 3-8
displaying network status of, 3-6
installing, 3-3
programming considerations, 3-8

Transparent Task-to-Task utility (Cont.)
traps MS-DOS interrupt 21H, 3-8

Transporting DECnet-DOS programs
and socket interface calls, G-l
compatibility header file, G-l

TTT
see Transparent Task-to-Task utility

u
UL TRIX error completion codes, C-l

toC-3

w
Write, 2-25,3-13

8086/8088 registers
and MS-DOS function requests, 3-8

Index-9

READER'S COMMENTS

DECnet-DOS
Programmer's Reference Manual

AA-EB46B-TV

What do you think of this manual? Your comments and suggestions will help us to improve
the quality and usefulness of our publications.

Please rate this manual:
Poor Excellent

Accuracy 1 2 3 4 5
Readability 1 2 3 4 5
Examples 2 3 4 5
Organization 2 3 4 5
Completeness 2 3 4 5

Did you find errors in this manual? If so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement:

Name _____________________ Date __________ _

Title Department
Company Street ____________ _

City ___________ State/Country ______ Zip Code _____ _

DO NOT CUT FOLD HERE AND TAPE

IIIIII
BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
550 KING STREET
LITTLETON, MA01460-1289

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

-------------------------------~----: DO NOT CUT FOLD HERE

c:
Z
m

