DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS

ENGINEERING SPECIFICATION

DATE 27 June 1978

TITLE TU58 ENGINEERING SPECIFICATION

			REVISIONS			r	
REV	DESCR	PTION	CHG NC	ORIG		APPD BY	DATE
A	UPDATE	- - -			1251,28	In fer	Aug ;
•			ı		·		
					-	•	
							•
NGRI	Rose / M. LEIS	APPD -	Sev Aug 1, 197	SIZE CO		NUMBER	REA

ł

angritan

.

TU58 ENGINEERING SPECIFICATION TITLE

TABLE OF CONTENTS	PAGE
1.0 GENERAL DESCRIPTION	4
1.1 OPERATION	4
1.1.1 FEATURES	4
1.1.2 INTERFACE OPERATION	4
1.1.2.1 PARALLEL INTERFACE	4
1.1.2.2 SERIAL INTERFACE	5
1.1.3 POWER	5
1.2 CONFIGURATION	5
1.2.1 MECHANICAL CONFIGURATION	7
1.2.2 OPTIONS AND INDICATORS	7
1.2.3 SUBSYSTEM DESIGNATION PLAN	7
1.3 INTERCHANGE COMPATIBILITY	8
1.3.1 MEDIUM	8
1.3.2 RECORDING SCHEME	8
1.3.3 LOGICAL FORMAT	10
1.3.3.1 BOT, EOT, AND INTER RECORD M	ARKS 12
1.3.3.2 HEADER DESCRIPTION	12
1.3.4 DATA FIELD DESCRIPTION	13
1.3.5 RECORD USAGE	14
1.4 SYSTEM PERFORMANCE	14
1.4.1 WEAR	14
1.4.2 SYSTEM RELIABILITY	14
1.4.3 DRIVE PERFORMANCE	15
1.4.4 ENVIRONMENTAL CHARACTERISTICS	15
SIZE CODE	NUMBER REV
EC FORM NO EN-01022-16-N370-(381) RA 108	TUS8-0-0 A SHEET 1 OF 35

digital

ITLE	TU58 ENGINEERING SPECIFICATION	
	1.4.5 ELECTRICAL	PAGE 17
	1.5 DIMENSIONS	21
	1.5.1 CONTROLLER BOARD	21
	1.5.2 DRIVE MODULE	21
	1.5.3 CAGE	21
	1.5.4 RACKMOUNT UNIT	21
	2.0 SOFTWARE INTERFACE	24
	2.1 GENERAL DESCRIPTION	24
	2.2 RADIAL SERIAL PROTOCOL (RSP)	24
	2.2.1 MESSAGE PACKETS	24
	2.2.2 FLAG BYTE OP CODES	24
	2.2.3 SIGNAL	25
	2.3 COMMAND SET	26
	2.3.1 COMMAND PACKETS	26
	2.3.2 DATA PACKETS	28
	2.3.3 END PACKETS	28
	2.3.4 THE INSTRUCTION SET	31
	SIZE A	CODE NUMBER RE SP TUS8-0-0 F

dighthan

TITLE TU58 ENGINEERING SPECIFICATION

1.0 GENERAL DESCRIPTION

The TU58 is a low cost mass memory device using the 3M DC-100A cartridge. The cartridge is preformatted to store 2048 records each containing 128 bytes. The controller provides random access to any record. The average search time to any record is ten (10) seconds. All data transfers between the TU58 and the host are in 512-byte blocks. The TU58 manipulates four 128-byte records to accomplish this. The control and read/write electronics will support two drives, but only one drive can operate at a time. Two controller modules are available. One has a parallel interface for use inside a terminal. The other is designed for use with an asynchronous serial interface. Baud rates for the serial interface are jumper selectable from 150 baud up to 38.4K baud.

The TU58 consists of one or two cartridge drives and a module containing read/write circuits, motor speed, control, and a firmware programmed control module. Power may be provided by an external power supply or from an existing power supply in devices with which it is integrated.

The TU58 may be maintained in the field by sub unit swaps. The sub units are: TU58-XA Drive and Cable TU58-XB Serial Controller Module TU58-XC Parallel Controller Module

1.1 OPERATION

1.1.1 FEATURES

The TU58 uses cartridges that have been factory preformatted to have 2048 headers to identify each record number. The TU58 searches at 60 IPS to find the file requested then reads the file at 30 IPS. Data read from the tape are verified via check sums at the end of each record or header. Data are recorded on two tracks and both tracks are recorded in the forward direction.

1.1.2 INTERFACE OPERATION

1.1.2.1 PARALLEL INTERFACE

The Parallel Interface is used in terminals where the interconnect distance is one foot or less. It permits the TU58 to be wired directly to the terminal processor bus. The terminal processor controls data transfers between itself and the TU58 via the series of commands defined for the serial radial bus protocol. Each byte is processed by interrupt service routines.

SIZE CODE

Δ

SP

NUMBER:

TU58-0-0

REV

36

dîğital

TITLE TU58 ENGINEERING SPECIFICATION

1.1.2.2 SERIAL INTERFACE

The Serial Interface is an RX-232, RS-422 and RS-423 compatible asynchronous full duplex serial line which permits operation of the TU58 through DL-11, DLV-11 or M8650 interface modules. Control commands are distinguished from binary data via the serial radial bus protocol. Transmit and receive baud rates may be different. The appropriate interface standard and baud rates are selected by jumpers on the module. Table 1.1 shows the baud rates obtainable and the resulting average data transfer rate.

TABLE 1.1

BAUD RATES AVAILABLE	AVERAGE DATA TRANSFER RATE (BYTES/SEC.)
38.4K BAUD	1280
19.2K BAUD	750
9600 BAUD	520
4800 BAUD	330
2400 BAUD	190
1200 BAUD	100
600 BAUD	50
300 BAUD	25
150 BAUD	12.5

1.1.3 POWER

The TU58 requires the following power inputs:

+5V ±5% @ .75A

+12V -5% @1.2A peak (60ms) +10% .6A average running .1A idle

1.2 CONFIGURATION

See Figure 1 for configuration with the parallel interface and Figure 2 for configuration with the serial interface.

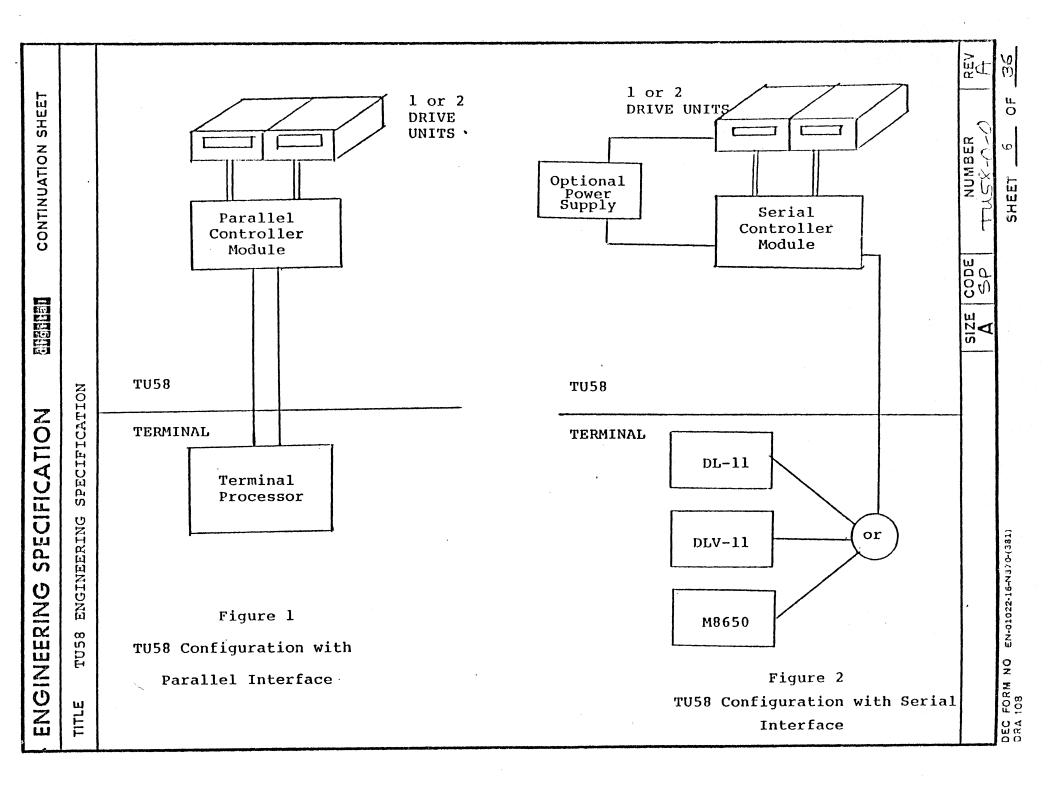
Component Designations

TU58-XA Drive and Cable TU58-XB Serial Controller Module 5413489 TU58-XC Parallel Controller Module 5413491 DL-11-D Serial Interface Module DLV-11-J Serial Interface Module M8650 Serial Interface Module DLV-11 Serial Interface Module

Δ

SIZE | CODE

SP


DEC FORM NO EN-01022-16-N370-(381)

SHEET _5_ OF _36

REV

NUMBER

TUS8-0-0

alghean

TITLE TU58 ENGINEERING SPECIFICATION

1.2.1 MECHANICAL CONFIGURATION

The unit may be configured with one or two drives. The module is mounted under the drives. This package may be integrated as is into a terminal or host processor, or it may be mounted in a box with power supply as a stand-alone or rack mount unit.

1.2.2 OPTIONS AND INDICATORS

An LED may be added to each drive at time of manufacture to indicate tape in motion. The unit may have either a parallel or serial interface. The cartridges may be removed at any time but if a cartridge is removed during a read or write operation, an error will be indicated to a host processor. A switch may be added to initiate boot.

1.2.3 SUBSYSTEM DESIGNATION PLAN

The TU58 is available in the following configurations with accompanying designations.

Components

- TU58-AA Parallel interface controller module, surface mounting, with one drive.
- TU58-AB Serial interface controller module, surface mounting, with one drive.
- TU58-BA Parallel interface controller module, surface mounting, with two drives.
- TU58-BB Serial interface controller module, surface mounting, with two drives.

Subsystems

TU58-CA Rackmount, two drives, serial interface controller module, power supply 110/220 volts switch-selectable, detachable line cords and fuses for both voltages, two cartridges.

Additional Supplies

BC20M-5 Interface cable TU58 to DLV-11J, 5 feet BC20M-50 Interface cable TU58 to DLV-11J, 50 feet Preformatted data cartridges, DEC #TU58K

	A SP	TUS8-0-0	REV
DEC FORM NO EN-01022-16-N220-(281)		~	

SHEET _7_ OF _36_

TITLE TU58 ENGINEERING SPECIFICATION

1.3 INTERCHANGE COMPATIBILITY

This section describes the medium, logical format and structure of headers and data.

1.3.1 MEDIUM

The 3M DC-100A was designed as a second generation version of the DC-300 data cartridge unit. It contains 140 feet of 0.15 inch tape in a package measuring 2.4 X 3.2 X 0.5 inches. The outline drawing of the cartridge is shown in Figure 3.

1.3.2 RECORDING SCHEME

The data are recorded with ratio encoding using a 1/3duty cycle pulse for zeros and a 2/3 duty cycle pulse for ones. The recording density is 800 bits per inch. Each bit requires three flux reversal positions although only two will actually contain flux reversals. The density is, therefore, 2400 flux reversals per inch. The record head current wave forms are shown in Figure 4.

		•	•		
. <u>-</u>		SIZE	CODE	NUMBER	REV
		A	SP	TU58-0-0	A
DEC FORM NO DRA 108	EN-01022-16-N370-(381)			SHEET SHEET	36

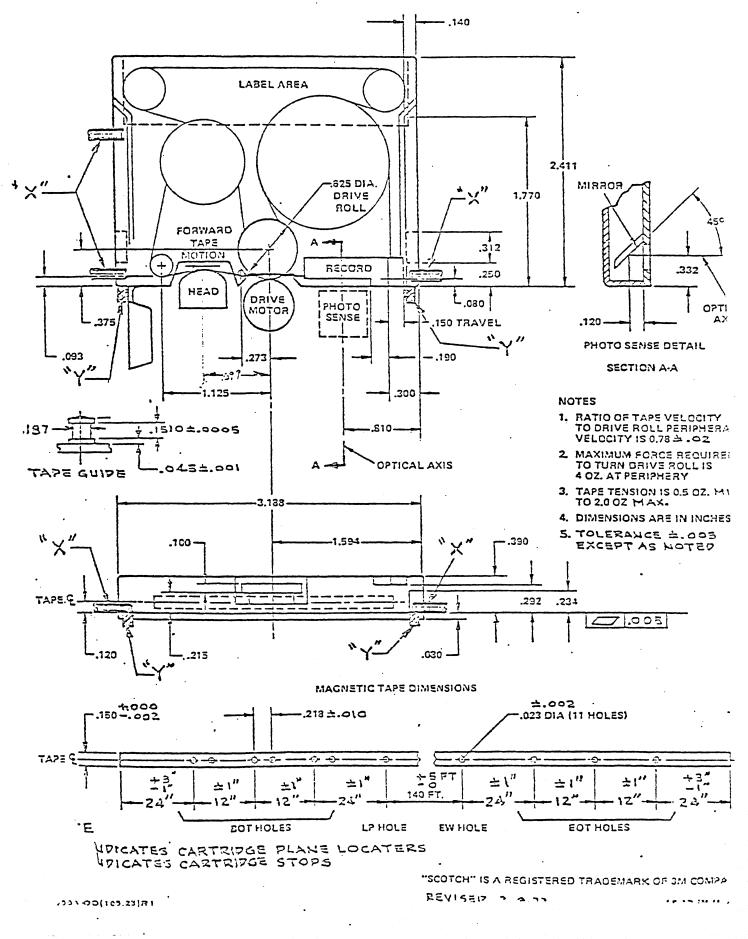
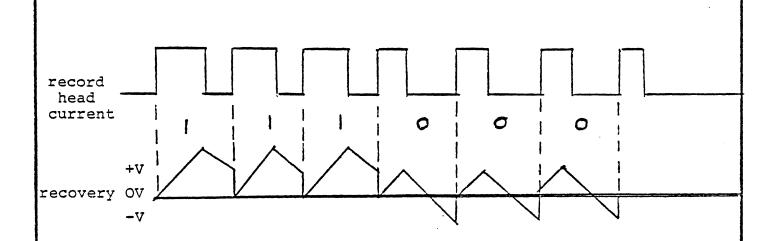


FIGURE 3

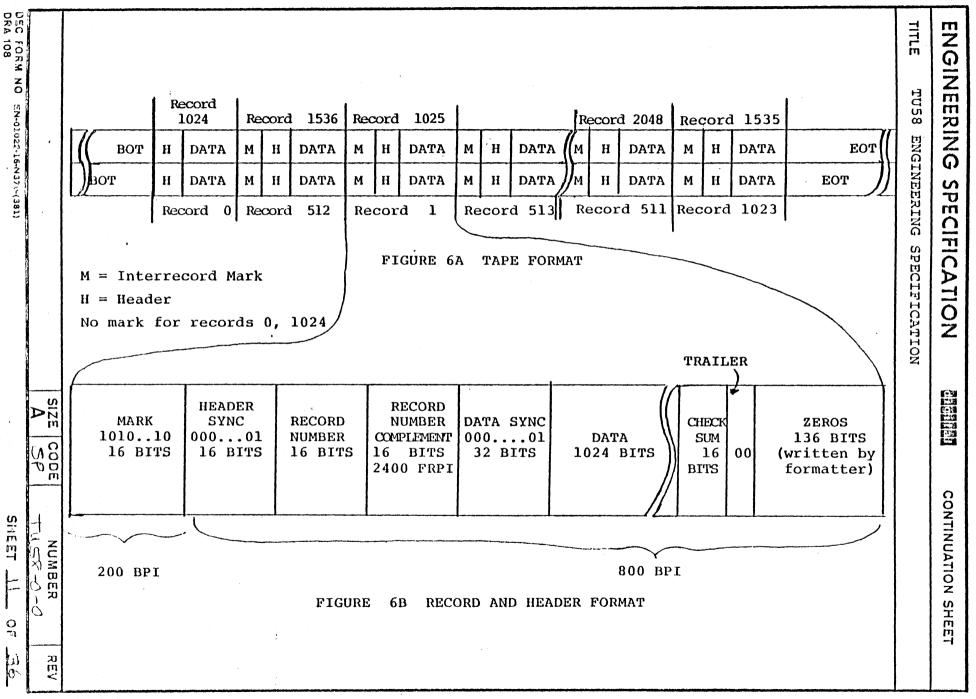

sheet 9 of 36

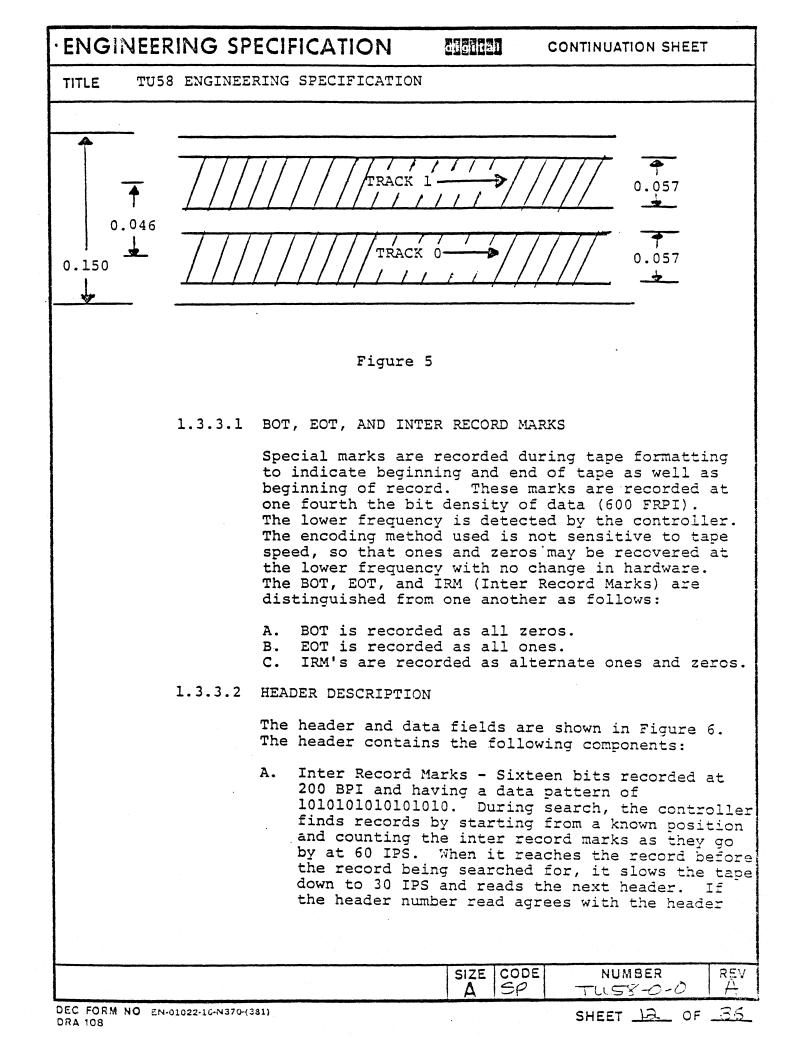
CONTINUATION SHEET

TITLE

TU58 ENGINEERING SPECIFICATION

Data are recovered using an integrater as shown in Figure 4. The integrater is dumped on the positive edge of the data waveform. The data waveform is then integrated. The integrater output is sampled on the next positive edge. If the integrater output is positive at sample time, the recorded bit was a one. If the integrater was negative at sample time, the bit was a zero. The time between bits is 1/(800 bits per inch) (30 ips) = 41.7 µs.


1.3.3 LOGICAL FORMAT


FARM -

Data are recorded on two tracks. Each track contains 1024 records of 128 bytes. To accommodate the orientation of the record and erase head gaps, both tracks are recorded in the same direction. The positioning of the tracks is shown in Figure 5. To accommodate standard mass storage blocks of 512 bytes, the controller groups four 128 byte records together. All addressing from the host is done by block numbers.

	SIZE	CODE
-	Α	SP

NUMBER TUSX-0-0

diğilal

TITLE TU58 ENGINEERING SPECIFICATION

number expected, the controller continues with the read or write operation. Otherwise, it corrects the current position and initiates a new search.

- B. Pre-Amble (All of the following bits are recorded at 800 BPI.) It consists of 15 zeros followed by a one. The controller looks for the one and then begins to accept the record number.
- C. Record Number 16 bits (0 to 2041)
- D. Record Number Complement The controller tests this number to insure that the header was read with no errors.
- E. Trailer 31 zeros and a one. During a write operation, the controller reads the first four zeros then switches to write mode and writes the remaining zeros and one. The glitches caused by switching on the write current are then confined to a narrow space which the controller blanks out during read operations. After a fixed duration blank (controller ignores tape output) the controller begins to search for the one at the end of the trailer. When it finds the one it begins reading the data field.

1.3.4 DATA FIELD DESCRIPTION

The data field is shown in Figure 6 and consists of the following components:

- A. Data field the next 1024 bits of data are stored in the data buffer in the controller.
- B. Checksum The checksum contains 16 bits and is used to find errors in the read data. During read, each pair of bytes is summed in a 16 bit add. The remainder is added to the checksum and the result should be zero. If the result is not zero, the record is re-read up to eight tries. If the correct data cannot be read after eight tries, a hard error is indicated to the host processor.

		SIZE	CODE	NUMBER	REV
		<u> </u>		1435 6 8	
DEC FORM NO EN-01022-16 DRA 108	-N370-(381)			SHEET 13 OF	36_

diginal

TITLE TU58 ENGINEERING SPECIFICATION

- C. Trailer This field is two zeros and is used to prevent noise from influencing the last bit of data.
- D. Post record zeros When the tape is formatted, an additional 136 zeros are written to allow for 10% tolerance in motor speed. These zeros are never rewritten or read in normal operation. Their purpose is only to provide flux reversals where gaps might be left from normal system operations.

1.3.5 RECORD USAGE

The TU58 controller will treat all records as data records. Any records may be used for directories, error logs, etc., but these functions must be accomplished via user software.

1.4 SYSTEM PERFORMANCE

1.4.1 WEAR

The TU58 read and write operations are performed by a contact process resulting in wear at the head/tape interface. The DC-100A cartridge maintains contact between the tape and record/play back head whenever the cartridge is inserted in the drive. This results in wear during search and rewind operations as well as read/write operations. The wear is, thus, a function of total tape motion and not just read/write tape motion.

1.4.2 SYSTEM RELIABILITY

	asses beginning to end to beginning					
Search error rate** 1 in 10 ⁴ searches						
Soft data error rate** 1	in 10 ⁷ bits read or written					
Hard data error rate 1	in 10 ⁹ bits read or written					
MTBF System* 10	000 hours at 100% duty cycle					
MTTR System Le	ess than .5 hour, module swap					

* With expected 10% usage, MTBF will be 10,000 hours.
** These errors will be recovered by the TU58 controller.

Δ

SIZE | CODE |

SP

DEC	FORM	NO	EN-0	1022-	16-N37	0-(381)
DRA	108					

SHEET 14 OF 36

REV

NUMBER

TU55-C-

dfigfitial

TITLE	TU58 E	NGINEERING SPECIFICATIO	N			
	1.4.3	**Continued Search errors and soft to effects such as ele the medium. If the er it is a soft error. T after eight tries are notified that retries DRIVE PERFORMANCE	ctrical ror can he error hard err	noise, be reco s that ors.	dust, or wear in overed in eight t cannot be recove	ries,
		Capacity				
		per cartridge	262,144	bytes	(2048 records X 128	byteŝ
		per track	131,072	bytes		
		per record	128	bytes		
		Data Transfer Rate				
		read/write ch tape	41.7		lata bit	
		data buffer to interfa	ce 150 t	:0 38.41	K baud, jumper sele	cted
		• · · · ·	•		· · · ·	
·		parallel interfa	ce 30 ,	is per d	data byte, min.	
		average access time	9.3	sec.		
		maximum access time	28	sec.		
		read/write tape speed	30	ips		
		search tape speed	60	ips		
		bit density	800	bpi		
		flux reversal density	2400	frpi		
	1.4.4	ENVIRONMENTAL CHARACTE	RISTICS			
		The TU58 will meet DEC When the TU58 is integ a terminal, the maximu inside the device must	rated in m temper	n a hos ature	t device such as rise above ambien	t
		(Performance limits u	nder Cla	ss B to	be defined.)	
			SIZE	CODE	NUMBER	REV

DEC FORM NO EN-01022-16-N370-(381) DRA 108

dhanlad

TITLE TU58 ENGINEERING SPECIFICATION

Temperature

TU58 operating $15^{\circ}C (59^{\circ}F)$ to $32^{\circ}C (90^{\circ})$	-
TU58 non-operating -30° F to 140° F (-34 $^{\circ}$ C to)	60 ⁰ C)
Medium operating $0^{\circ}C$ (32°F) to 50°C (122°	°F)
Max temperature gradient between system ambient TU58 ambient 18°C (32.4°F)	t and
Relative Humidity	
TU58 operating	
Maximum wet bulb 25°C (77°F)	
$N_{initiation}$ does point $2^{\circ}C$ (2007)	

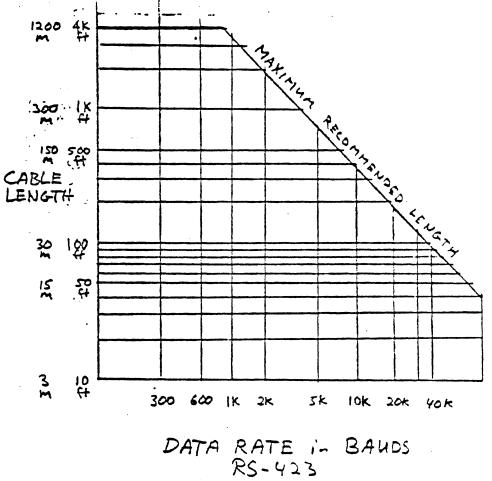
Minimum dew point	2 [°] C (36 [°] F)
Relative humidity	20% to 80% RH
TU58 non-operating	5% to 98% RH > non-condensing
Medium non-operating	10% to 80% RH)

Magnetic field

It is recommended that if the recipient of a data NOTE: cartridge knows or suspects that the cartridge has been exposed to either the maximum or minimum temperature extreme, the tape should be rewound one complete cycle before using.

EMI

SIZE	CODE	NUMBER
A	SP	TU58-0-

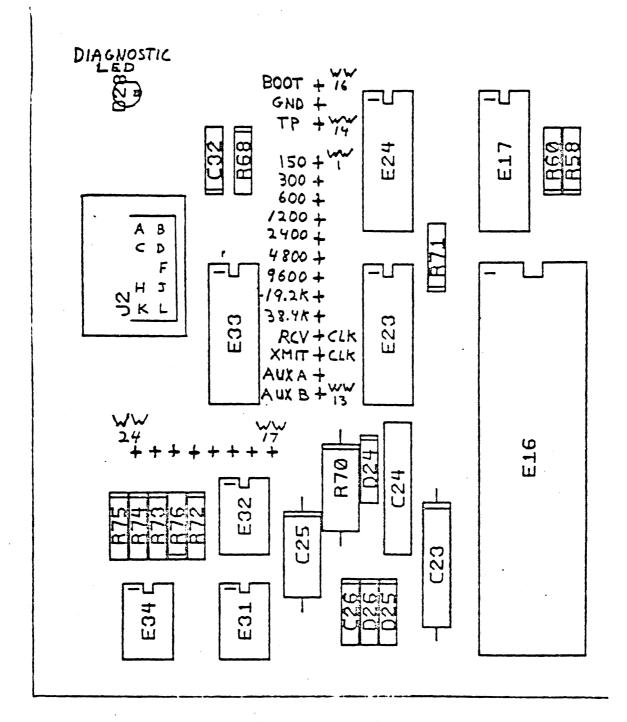

REV

afahrah

TU58 ENGINEERING SPECIFICATION TITLE 1.4.5 ELECTRICAL Power Requirements Module and Drive 12V - 5%, + 10% = 1.2 A peak (60ms) .6 A average running .1 A idle Rack Mount 110,220 VAC 50, 60 Hz 50 watts max. Interface Levels Parallel Interface - TTL levels Serial Interface - In accordance with RS-422, or RS-423, jumper selectable. Compatible with RS-232-C when set for RS-423. The serial interface operates on half-duplex, asynchronous four-wire lines at rates from 150 baud to 38.4 kilobaud. The transmit and receive rates may be independently set. Each 8-bit byte is transmitted with one start bit, one stop bit and no parity. The line driver and receiver may be set to operate in accordance with EIA RS-422 balanced or RS-423 unbalanced signal standards. When set to RS-423, the TU58 is compatible with devices complying with RS-232-C. The TU58 is shipped prewired for operation at 38.4 kbaud transmit and receive on RS-423. The maximum wire length that may be used at that data rate in an electrically quiet environment like an office is approximately 27 meters (90 feet). The wire used with any installation should be no less than 23 AWG diameter. Longer wire runs may be made if data rates are reduced. RS-422 is considerably more noise-immune than RS-423 and can be used over at least 1200 meters (4000 feet) at any TU58 data rate. The following chart, figure 4-10, derived from the EIA standards, illustrates the variations in distance needed by RS-423 for different data rates. For more information, consult the standards for RS-422 and RS-423 published by the Electronic Industries Association. NUMBER CODE SIZE 90 TUSS-C-C Δ

DEC FORM NO EN-01022-16-N370-(381) DRA 108

SHEET 17 OF 36



Figure

Data Rate and Cable Length for RS-423

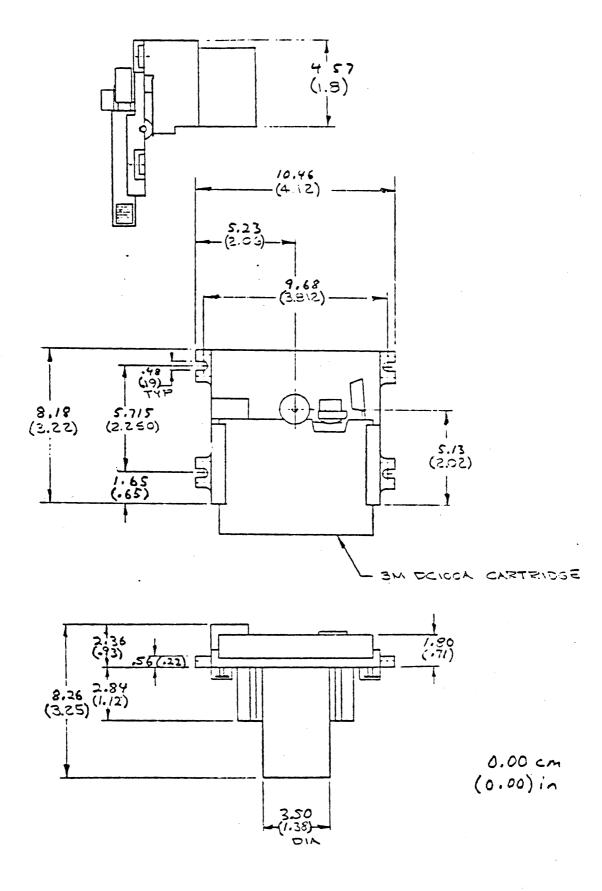
sheet 18 of 36

TLE	TU58 ENGINEERING SPECIFICATION
	TU58 MODULE CONNECTIONS
	WW1 150 Baud WW2 300 Baud WW3 600 Baud WW4 1200 Baud WW5 2400 Baud WW6 4800 Baud WW6 4800 Baud WW7 9600 Baud WW7 9600 Baud WW8 19200 Baud WW9 38400 Baud WW9 38400 Baud WW10 UART Receive Clock WW11 UART Transmit Clock WW12 Auxiliary A (To interface connector pin L)
	WW13 Auxiliary B (To interface connector pin A)
	WW14 Factory Test Point WW15 Ground WW16 Boot Connect together for auto-boot on power-up.
	<pre>WW17 RS-423 Driver WW18 RS-423 Common (Ground) WW19 Transmit Line + WW20 Transmit Line - WW21 RS-422 Driver + WW22 RS-422 Driver - WW23 Receiver Series Resistor WW24 (Jump for RS-422)</pre>
	Serial Interface Connector J2-A Auxiliary B H Transmit Line - B Ground J Transmit Line + C Receive Line + K Ground D Receive Line - L Auxiliary A F Ground
	Power Input Connector J1-1 +12 volts 3 Ground 5 +5 volts 6 Ground
	Drive Cable J3,4-1 Cart L 9 LED 2 n/c 10 H Ground 3 Permit L 11 Erase Return 4 Signal Ground 12 Erase 1 5 Motor + 13 Erase Ø 6 Motor - 14 Head Return 7 +12 volts 15 Head Ø 8 Tach 16 Head 1
	SIZE CODE NUMBER REV A SP TUS8-0-0 A

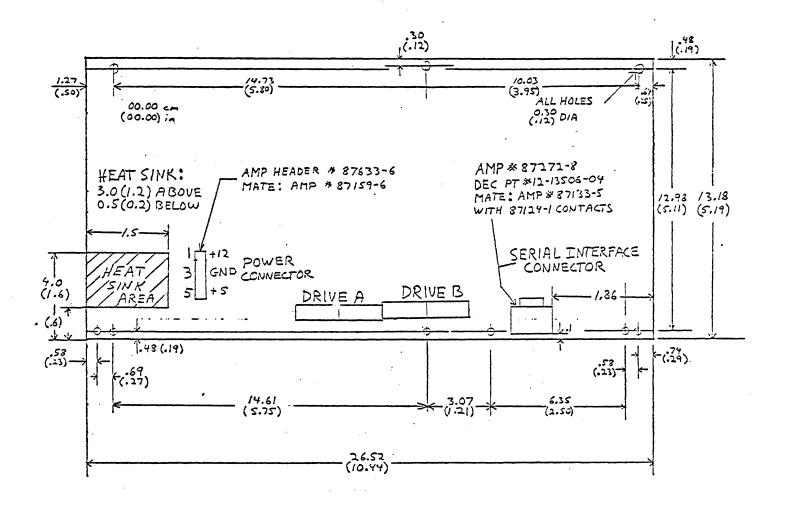
Jumper Table 232 | 17-19 423 | 18-20 422 | 21-19 22-20 23-24

Figure

Interface Selection Jumper Pin Locations .


sheet 20 of 36

ENGI	NEERING	SPECIFICATION	digittal	CONTINUATION S	HEET
TITLE	TU58 ENGI	NEERING SPECIFICA	FION		
	1.5 DIME				
	1.5.1	Controller Board			
			13.2 X 26.	5 cm.	
	1.5.2	Drive Module	3.2H X 3.	3D X 4.1W in.	
			8.1 8.	3 10.6 cm.	
	1.5.3	Cage 4.2H X	7.2D X 11.4	W (including mounting	ng tabs)in
			3.5 29.1		J
	154	Rackmount Unit	5) U V I)		
	T•J•4	Rackilloune unit		18.3" centers)	
				9 X 48.7cm.	
			.		
		•			


1		· · · · · · · · · · · · · · · · · · ·	
DEC FORM	NO	EN-01022-16-N370-(381)	
DRA 108			

NUMBER TUS8-0-0 REV

SIZE CODE A SP

sheet 22 of 36

sheet <u>23 of 36</u>

TITLE TU58 ENGINEERING SPECIFICATION

2.0 SOFTWARE INTERFACE

2.1 GENERAL DESCRIPTION

The TU58 is controlled by a high level command set that unburdens the host from device-related operations such as tape positioning, read retries, etc. The commands are implemented by the Radial Serial Protocol which arranges commands and data in separate message packets. These are byte sequences suitable for transmission by asynchronous serial or parallel interfaces.

2.2 RADIAL SERIAL PROTOCOL (RSP)

The full spec for radial serial protocol is included in Appendix A. This section provides an introduction to the major features.

2.2.1 MESSAGE PACKETS

All communication between TU58 and host is broken up into message packets. Each packet begins with the flag byte. This byte is defined as follows:

> BITS 7-5 = RESERVEDBITS 4-0 = OP CODE

The next byte in a message packet is the byte count. This is the number of message characters in the packet, excluding the flag, byte count, and checksum. Up to 128 bytes may be in each packet. Larger blocks of data are sent with multiple packets. The last two bytes of the message packet are a 16 bit checksum. The checksum is formed by summing successive byte pairs taken as sixteen bit words and using an end around carry from bit 15 to bit 0. The flag and byte count are included in the checksum.

SIZE CODE

SP

Δ

2.2.2 FLAG BYTE OP CODES

00001 DATA 00010 CONTROL (COMMAND) 00100 INIT 10000 CONTINUE 10011 XOFF

SHEET 24 OF 36

NUMBER

TUSR-0-0

REV

dighesi

TITLE TU58 ENGINEERING SPECIFICATION

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ì
· ·	DATA:	This flag informs the receiver that data rather than commands are arriving. The receiver loads the incoming bytes into a buffer area in memory. It doesn't look for an op code to execute.	
	COMMAND:	The COMMAND flag informs the TU58 that a command packet follows. This is particularly important when the TU58 encounters an error condition. In this case it sends an end packet before data transfer is complete. The host knows that the end packet has been sent because the packet received has a COMMAND flag instead of a DATA flag.	
	INIT:	This op code is sent from the host to the TU58 to cause it to execute its power-up sequence. It is sent from the peripheral to the host to tell the host that the initialize sequence has occurred. When the TU58 makes a protocol error or receives an invalid command, it reinitializes and sends INIT to the host. The TU58 must send up to 261 INITs in this case because the host may think it is receiving a message packet and will not interpret the INIT until the message packet is complete.	
	CONTINUE:	After a message is sent from host to TU58, the host must wait until the TU58 sends CONTINUE before any more messages can be sent. This permits the TU58 to control the flow of data. CONTINUE means that the tape is in position and ready for data.	
	XOFF:	Ordinarily, the TU58 does not have to wait between messages to the host. However, if the host is unable to receive all of a message from the peripheral at once, it sends XOFF. The TU58 stops transmitting immediately and waits until the host sends continue to complet the transfer when it is ready.	
2.2.3	SIGNAL		
	entity the the state	defined in the RSP spec as a unique logic at can be interpreted as signal regardless of of the protocol. Its implementation for the he BREAK condition on the serial line. Break	
N		SIZE CODE NUMBER RE	V
		SIZE CODE NUMBER RE A SP TUST-0-0 F	ł

DEC FORM NO EN-01022-16-N370-(381) .

SHEET 25 OF 36

öngətan

TITLE

TU58 ENGINEERING SPECIFICATION

is interpreted when the serial line is kept in the space condition for more than one character time. This causes the UART to set its framing error bit. The TU58 will interpret the framing error as signal.

2.3 COMMAND SET

The command set is designed to be compatible with the device handlers for any random access mass storage devices. Since the full scale handlers are used with large disk systems, the TU58 implements only a subset of the commands available to higher performance devices. The TU58 commands meet the minimum requirements for a device handler; the differences are in characteristic and status flexibility in large systems.

A data transfer operation uses three or more message packets. The first packet is the command packet from host to peripheral. Next, the data is transferred in 128 byte packets in either direction (as required by read or write). After all data is transferred, the peripheral sends an end packet. If the peripheral encounters a failure before all data has been transferred, it sends the end packet as soon as the failure occurs.

2.3.1 COMMAND PACKETS

The command packet format is shown in Figure 2.1 Bytes 0, 1, 12, 13 are the message delivery bytes. Their definition is as follows:

0	FLAG	This byte is set to 00000010 to indicate that the packet is a command packet.
1	MESSAGE BYTE COUNT	Number of bytes in the packet excluding the four message delivery bytes. This is decimal 10 for all command packets.
12,13	CHECKSUM	The 16 bit checksum of bytes 0 through 11. The checksum is formed by treating each pair of bytes as a word and summing words with end around carry.
•		
	••••••••••••••••••••••••••••••••••••••	
		SIZE CODE NUMBER REV

SP

Δ

DEC FORM NO EN-01022-16-N370-(381) DRA 108 SHEET 36 OF 36

TUSKA

ENGINEERING SPECIFICATION CONTINUATION SHEET

TITLE TU58 ENGINEERING SPECIFICATION

Figure	2.	1
--------	----	---

COMMAND PACKET STRUCTURE

BYTE

0	FLAG = 0000 0010
1	MESSAGE BYTE COUNT = 0000 1010
2	OP CODE
3	MODIFIER
4	UNIT NUMBER
5	SWITCHES
6	SEQUENCE NUMBER - LOW
7	SEQUENCE NUMBER - HIGH
8	BYTE COUNT - LOW
9	BYTE COUNT - HIGH
10	BLOCK NUMBER - LOW
11	BLOCK NUMBER - HIGH
12	CHECKSUM - LOW
13	CHECKSUM - HIGH

Figure 2.2

TNEMDICATON COM

INSTRUCTION SET	
OP CODE 0 NOP 1 INIT 2 READ 3 WRITE 4 COMPARE 5 POSITION 6 ABORT 7 DIAGNOSE 8 GET STATUS 9 SET STATUS 10 GET CHARACTERISTICS 11 SET CHARACTERISTICS	
	SIZE CODE NUMBER REV A SP TUS8-C-C H
DEC FORM NO EN-01022-16-N370-(381) DRA 108	SHEET 37 OF 36

disteat

TITLE TU58 ENGINEERING SPECIFICATION

The remaining bytes are defined as follows:

- 2 OP CODE Operation being commanded. See Figure 2.2
- 3 MODIFIER Permits variations of commands.
- 4 UNIT NUMBER Selects drive 0 or 1.
- 5 SWITCHES Not used by TU58.
- 6,7 SEQUENCE NUMBER Used with devices that can handle more than one outstanding operation. Always zero for TU58.
- 8,9 BYTE COUNT Number of bytes to be transferred by a read or write command. Ignored by other commands.
- 10,11 BLOCK NUMBER The block number to be used by commands requiring tape positioning.

2.3.2 DATA PACKETS

The data packet is shown in Figure 2.3. The flag byte is set to 00000001. The number of data bytes may be between 1 and 128 bytes. For data transfers larger than 128 bytes, the transaction is broken up and sent 128 bytes at a time. The host is assumed to have enough buffer capacity to accept the entire transaction, whereas the TU58 only has 128 bytes of buffer space. For write commands the host must wait between message packets for the TU58 to send the Continue flag (0001000) before sending the next packet. Since the host has enough buffer space, the TU58 does not wait for a continue flag between message packets when it sends back read data.

2.3.3 END PACKETS

The end packet is sent to the host by the TU58 after completion or termination of an operation or on an error. The end packet is shown in Figure 2.4. The definition of bytes 0, 1, 12, 13 are the same as for the command packet. The remaining bytes are defined as follows:

SIZE CODE

SP

BYTE 2 OP CODE - 0100 0000 for end packet.

Δ

DEC	FORM	NO	EN-01022-16-N370-(381)
DRA	108		

SHEET 28 OF 36

REV

#

NUMBER

TUS3-0-0

dförlal

TITLE

TU58 ENGINEERING SPECIFICATION

Figure 2.3

DATA PACKETS

BYTE	
0	FLAG = 0000 0001
1	BYTE COUNT = M
2	FIRST DATA BYTE
3	DATA
11	11
17	11
17	73

11	18
M+1	LAST DATA BYTE
M+2	CHECKSUM L
M+3	CHECKSUM H

Figure 2.4

END PACKET

BYTE	
0	FLAG = 0000 0010
1	BYTE COUNT = 0000 1010
2	OP CODE = 0100 0000
3	SUCCESS CODE
4	UNIT
5	NOT USED
6	SEQUENCE NO. L
7	SEQUENCE NO. H
8	ACTUAL BYTE COUNT L
9 .	ACTUAL BYTE COUNT H
10	SUMMARY STATUS L
11	SUMMARY STATUS H
12	CHECKSUM L
13	CHECKSUM H

DEC FORM NO EN-01022-16-N370-(381) DRA 108.

SIZE CODE A SP TU58-0-0

SHEET 29 OF 36

REV

NUMBER

ENGI	NEER	ING :	SPECI	FICA	TION CONTINUATION SHEET
TITLE	TU58	ENGIN	EERING	SPEC	IFICATION
•			BYTE	3	SUCCESS CODE 0 = NORMAL SUCCESS 1 = SUCCESS BUT WITH RETRIES -1 = READ ERROR -8 = WRITE ERROR -15 = SEEK ERROR -16 = COMMAND ERROR -32 = NO CARTRIDGE -33 = NON-EXISTANT UNIT -34 = WRITE LOCKED -35 = ABORTED -36 = PARTIAL OPERATION (End of Medium)
			BYTE	4	UNIT NUMBER 0 or 1 FOR DRIVE NUMBER
			BYTE	5	NOT USED
			BYTE	6,7	SEQUENCE NUMBER - ALWAYS 0 AS IN COMMAND PACKET
			BYTE	8,9	ACTUAL BYTE COUNT - NUMBER OF BYTES HANDLED IN TRANSACTION. IN A GOOD OPERATION, THIS WILL BE THE SAME AS THE DATA BYTE COUNT IN THE COMMAND PACKET
			BYTE	10,11	SUMMARY STATUS
			BYTE Bit	10 0 1	
			BYTE Bit	$ \begin{array}{c} 11 \\ 0 \\ 1 \\ 2 \end{array} $	RESERVED
	•			3 4 5 6 7	LOGIC ERROR MOTION ERROR TRANSFER ERROR SPECIAL CONDITON (Errors)
	-				
	•		- 		
					SIZE CODE NUMBER RE A SP TUST-0-0 H

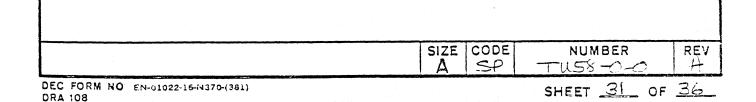
dightad

TITLE TU58 ENGINEERING SPECIFICATION

2.3.4 THE INSTRUCTION SET

The instructions and their op codes are shown in Figure 2.2 The following is a brief description and usuage example of each.

OP CODE 0 NOP


This instruction causes the TU58 to return an end packet. There are no modifiers to NOP. The NOP packet is shown below.

BYTE

0	0000 0010	FLAG
1	0000 1010	MESSAGE BYTE CNT
2	0000 0000	OP CODE
3	0000 0000	MODIFIER
4	0000 000X	UNIT NUMBER (IGNORED)
5	0000 0000	SWITCHES (NOT USED)
6	0000 0000	SEQ NO. NOT USED
7	0000 0000	SEQ NO. NOT USED
8	0000 0000	BYTE COUNT L 🔪 NO DATA
9	0000 0000	BYTE COUNT H 🖌 INVOLVED
10	0000 0000	BLOCK NO. L NO TAPE
11	0000 0000	BLOCK NO. H J POSITION
12	0000 l01X	CHECKSUM L
13	0000 1010	CHECKSUM H

The TU58 returns the following end packet:

0	0000 0010	FLAG
ĩ	0000 1010	MESSAGE BYTE CNT
2	0100 0000	OP CODE
3	0000 0000	SUCCESS CODE
4	0000 000X	UNIT (IGNORED)
5	0000 0000	NOT USED
6	0000 0000	SEQ. L) NOT HEED
7	0000 0000	SEQ. H) NOT USED
8	0000 0000	ACTUAL BYTE CNT L] NO DATA
9	0000 0000	ACTUAL BYTE CNT H 🖌 INVOLVED
10	0000 0000	SUMMARY STATUS L
11	XXXX XXXX	SUMMARY STATUS H
12	000X XXXX	CHECKSUM L
13	XXXX XXXX	CHECKSUM H

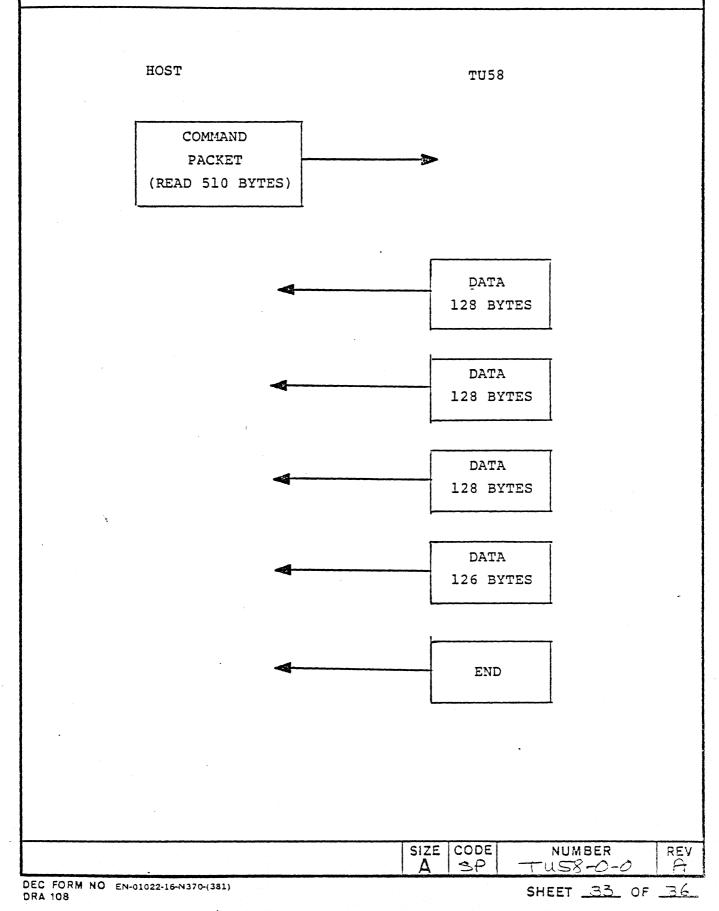
digilital

TITLE TU58 ENGINEERING SPECIFICATION

OP CODE 1 INIT

This instruction causes the TU58 controller to reset itself to a known state. No tape positioning results from this operation. The command packet is the same as for NOP except for the OP CODE and the resultant change to the low order checksum byte. The TU58 sends the same end packet as for NOP after reinitializing itself. There are no modifiers to Init.

OP CODE 2 READ


This instruction causes the TU58 to position the tape in the drive selected by UNIT NO. to the block designated by the block number bytes. It reads data starting at the first block and continues reading until the byte count (command bytes 8 and 9) is satisfied. After data has been sent the TU53 sends an end packet. Byte 3 will indicate success, success with retries, or failure of the operation. In the event of failure, the end packet will be sent at the time of failure without filling up the data count. The end packet will be recognized by the host by the flag byte. The host will see a command flag (0000 0010) instead of a data flag (0000 0001).

There is one modifier to the read command. A modifier of 0000 0001 will cause the TU58 to read the tape with an increased threshold in the data recovery circuit. This will make the tape drop bits if any weak spots are present. Thus, if the TU58 can read error free in this mode, the data is healthy. The read transaction between TU58 and host is shown on the next page.

SIZE	CODE	NUMBER	REV
Α	SP	TU58-0-0	A

DEC FORM NO EN-01022-16-N370-(381) DRA 108

TITLE TU58 ENGINEERING SPECIFICATION

deginar

TITLE TU58 ENGINEERING SPECIFICATION

OP CODE 3 WRITE

This OP CODE causes the TU58 to position the tape in the selected drive to the block specified by the number in bytes 10, 11 of the command packet and write data from the first data packet into that block. It writes data from subsequent data packets into one or more blocks until the byte count called out in bytes 8, 9 of the command packet has been satisfied.

The controller will automatically zero-fill any remaining bytes in a 512 byte tape block.

There is one modifier permitted with the write command. A modifier of 0000 0001 will cause the TU58 to write all of the data and then back up and read the data just written and test the checksum of each record. If all of the checksums are correct, the TU58 will send an end packet with the success code set to zero (or 1 if retries were necessary to read the data). Failure to read correct data will result in a success code of -6 (1111 1010) to indicate a hard read error.

The write operation has to cope with the fact that the TU58 only has 128 bytes of buffer space. It is necessary for the host to send a data packet and wait for the TU58 to write it before sending the next data packet. This is accomplished using the continue flag. The continue flag is a single byte response of 0001 0000 from TU58 to host. The write operation is shown for both write and write/verify operations. (Figure

OP CODE 4 COMPARE

Treated as a NOP.

OP CODE 5 POSITION

This command causes the TU58 to position tape on the selected drive to the block designated by bytes 10, 11. After reaching the selected block, it sends an end packet. No modifiers are used.

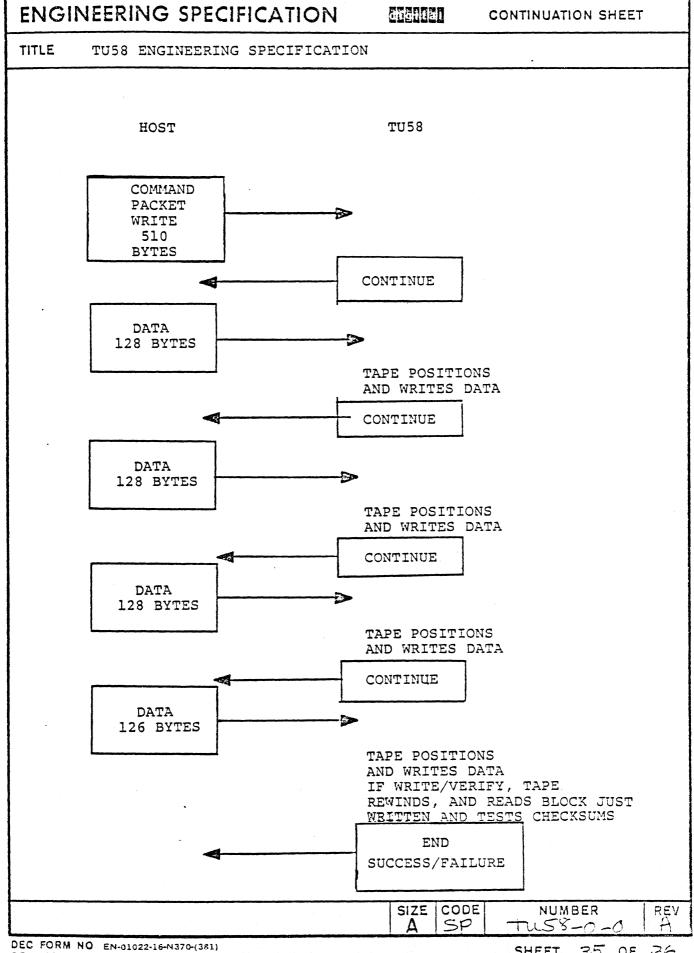
OP CODE 6 ABORT

This command is treated as a NOP. Its use is intended for devices with multiple outstanding operations. The TU58 returns an end packet.

Δ

SIZE CODE

SP


DEC FORM NO EN-01022-16-N370-(381) DRA 108

SHEET _ 24 OF 36

REV

NUMBER

TU58-0-0

DRA 108

SHEET 35 OF 36

asahtai

TITLE TU58 ENGINEERING SPECIFICATION .

OP CODE 7 DIAGNOSE

This command causes the TU58 to run its internal diagnostic program. Upon completion TU58 sends an end packet with appropriate success code.

OP CODE 8 GET STATUS

OP CODE 9 SET STATUS

Treated as a NOP because TU58 status cannot be set from the host. The TU58 returns an end packet.

OP CODE 10 GET CHARACTERISTICS

This command causes the TU58 to send a data message to the host containing its operating parameters. The format of these parameters is not defined yet.

OP CODE 11 SET CHARACTERÍSTICS

The TU58 characteristics cannot be changed so this command is treated like a NOP.

SIZE CODE NUMBER	-0. REV -0. H.