
I
I
t
'

I

I
j
i

l
t

An Exposition on SAV in RSX-llM-PLUS V2.0

Paul J. Bezeredi

Digital Equipment Corporation
Nashua, New Hampshire

The information contained in this document is
for informational purposes only and should not
be construecl as a commitment by Digital
Equipment Corporation.

I. Why SAV?

The general intent of SAV is to copy the current system image
from main memory back into the system image disk file from which
the system was booteo. This causes the current state of the
running system, including modifications made since the system
was booted, to become a permanent part of the system image file.
Therefore the modifications do not have to be made whenever the
system is booted. For example, tasks do not have to be
reinstalleo -every time the system is booten and patches (made by
OPEN or XDT) need be made only once.

SAV, an<l the in<lirect commano file it invokes, will
automatically handle the many details necessary to use any
system. For example, redirecting the pseudo devices, mounting
the system disk, and utilizing all of available main memory.

There are two other reasons for saving a system. SAV provides
the only way a system image can be made hardware bootable, that
is, for the disk's hardware hoot block, Logical Rlock Number
(LBN) n, to be written so it points to the system image.
Additionally, after being saved, the disk on which the system
resides can be compressed (copied by BRU or DSC) without
destroying the integrity of the system.

II. The Concepts and Techniques of SAV

SAV operates in two distinct phases. In the first phase, SAV
writes what is in main memory into the system image file, ano it
is executed only by invoking SAV from MCR. In the second phase,
SAV restores the saved context to the CPU and it is invoked
either automatically in the first phase or by booting the saved
system image file.

71

In phase one, the lowest section of main memory (bytes O through
LOWSI7.*2) is copied into a buffer in SAV's address space (see
the module SAVF. for the definition of LOWSIZ). The system image
hootstrap (see SVRN1 in the moc1ule SAVVBl) is copiecl into the
locations just vacated. The special clriver for the type of
system disk is copied into the system image bootstrap. (See
Section V, nspecial Driversn, for details about special
drivers.) The mapping registers are pushed onto SAV's stack and
a copy of the the special driver that is in SAV's address space
writes all of main memory into the system image file.

Rasically, phase two reverses that process. Control of the CPU
is passecl to the system image bootstrap from phase one by
jumping to location zero or by using BOO, which reads the system
image bootstrap from the front of the system image file into low
main memory.

The special driver in the system image bootstrap reads the rest
of the system image file into main memory. Control is passed to
the task SAV, which overwrites the system image bootstrap with
the orginal contents of low main memory, restores the mapping
registers from the stack, performs housekeeping functions (for
example, expanding or contracting the last partition in the
system to include all of available main memory, redirecting the
pseudo devices SY:, LB:, and SP: to the hooted device, and
initiating the startup indirect command file), and exits.

A part of phase one ano two deserves special mention. P,very
installed task has a Task Control Block (TCR) in the system data
structures. Offsets T.LBN and T.LBN+l contain the LBN of the
task image file on the disk, so the Executive can quickly locate
the file for initial task loading. If the disk is compressed
(copied) by BRU or DSC, the task images will probab!y change
locations on the disk, and therefore the system data structures
will be wrong. To avoid this, SAV retrieves the task's File ID,
which does not change when a disk is compressed, from the task's
header and saves the File ID in the task's TCB when the system
is written out. SAV converts the File IDs hack into LRNs when
the system image file is read into main memory.

All active copies of multiuser tasks have a similar problem.
Their Partition Control Blocks (PCBs) contain the LBNs of their
common read-only sections. When the system image is written
out, SAV converts those LBNs to numbers relative to the first
block of the task image files that contain the common read-only
sections. SAV reconverts the relative block numbers hack inrn
absolute block numbers when the system image file is read into
Main memory.

The M-PLUS version of SAV is memory resident overlaid for two
reasons. First there is more code in SAV to fit into the AK
words allotted to a privileged task that references the I/O
page. The modules SAVCl, SAVC~, SAVC2, SAVST, and SAVFN all
used to he part of the module SAVF.. There were no subtl8
reasons for breaking SAVF. up into those particular monuJes. The
present arrangement was chosen hecause it ma0e hoth memory
resi0ent overlays ahout the S<"me size. Seconcl, hecause each of

72

the memory resident overlays is loaded before main memory is
copied to the system image file, SAV.TSK can be deleted after
the system is saved, and the system will still successfully
boot, as long as SAV does not have to be checkpointed in order
to mount the system disk.

In the future
0

M-PLUS may support new system disks. Therefore
SAV will have to add more special drivers. Such an upgrade
should not require reoverlaying SAV (shoulc not increase its
virtual address space) but should require modifying the fewest
possible modules. Adding another special driver merely requires
the writing of a new special driver module and the updating of
SAVP.LD.ODL.

Because manual overlay loads cannot be mixed with automatic
overlay loads, the loading of memory resident code segments such
as SAVCl is also done manually. This is a bit unfortunate,
because the implicit loading of code segments is both less
confusing and less cluttered. Figure 1 gives a graphic
description of the memory layout of SAV.

120000

13777F,

FIGURE 1 -- MODULE LAYOUT OF SAV.TSK

I ROOT (includes SAVE, SAVVEC, I
I overlay runtime routines) I

140000 ---------------------------------
Segment SAVCl (includes SAVCl, I This cotree contains
SAVC3, SAVST, SCNDV, SAVBOT, I those modules needed
SAVVBl, all special drivers, I to save the system
SYSLIB routines) I (except for SAVC2)

15777F, ---------------------------------
140000 ---------------------------------

! Segment SAVFN (incudes SAVFN, I This cotree contains
I SAVINS, SAVC2, SAVSIZ, S~VSUB,f those modules used to
I SCNDV, HRSIZ, SYS LIB routines) I restore a s<tved system

15777F, ---------------------------------

In M-PLUS, SAV, BOO, and VMR all share a technique for
determining the length of a system image bootstrap. SAV
symbolically defines the number of disk blocks that compose the
bootstrap and derives the values of BTADD and LOWSIZ from this.
ROO and VMR get the length of the system image bootstrap minus
one from the "transfer address" of the system image file's label
hlock, where SAV leaves it. As a consequence, M-PLUS can boot
RSX-llM systems, which have a smaller system image bootstrap,
but by coincidence (as far as RSX-llM is concerned) have the
appropriate value (zero) as the "transfer address."

In RSX-llM, SAV, BOO, and VMR all locally define the length of a
system image bootstrap, BTADD, and LOWSIZ (watch out, all the
references may not even be done symbolically). As a
consequence, RSX-llM pre-V4.0 systems cannot boot M-PLUS
systems, because the llM BOO has no way of knowing that it must
read in more than the one block that is normal for a saved
RSX-llM system image file.

73

The current state of RSX-llM V4.0 is that BOO has been modified
to interpret the "transfer address" of a system ~mage file in
the same manner as M-PLUS. That is, BOO can boot hoth RSX-llM
and M-PLUS systems. SAV needs to be modified to consolidate the
definitions of BTADD and LOWSIZ and to always use the symbolic
definitions. VMR (see the modules RANIO and SETUP) needs to be
modified to use the "transfer address" from the system image
file's label block rather than explicitly knowing how big the
system image file bootstrap is.

III. SAV's Restrictions

The restrictions imposed by SAV come in two general categories:
those detailed ch~cks on the state of a system that must be
passed to guarantee that the system can be successfully saved
and the general implications of the current structure of SAV.

For a system to be saved, it must be in a specific state, that
is defined in general terms as being "quiet" or inactive.
Checks that are made are sensitive to the detailed capabilities
of the system (see Section IX, "What SAV does in Detail") and
therefore change from base level to base level. When a check
fails, you will receive a specific error message.

The manner in which SAV is currently implemented results in
several general restrictions:

o If a system is saved on one type of disk (for example an
RLO/.), it generally cannot be copied by RRU or DSC to
another type of disk (for example an RKOF,) and remain
bootable. This is because the driver in the system image
bootstrap can generally boot only one generic type of
device (in the example, this would be an RLOl or RL02).
The exception to this are MASSBUS devices
(RM02/03/05/RMRO, MLll, RP04/05/0F,/07), RKhll/711 devices
(RK0F, and RK07), <tnd UDASO devices (RA80). A significant
decrease in packaging complexity has been achieved for
M-PLUS by combining the MASSBUS, RK~ll, and UDASO special
drivers into one common driver (in the module SAVCM) <tnd
using a controller detection algorithm and the device
drivetype code supplied by the hardware to determine the
disk type and its associated geometry.

o A saved system cannot be booted if the hardware boot block
or the system image boot blocks contain ECC correctable
(or any other) errors. This is because neither the ROM
boot code, which reads in the hardware bootstrap block,
nor the special driver in the hardware bootstrap block,
which reads in the system image bootstrap, is large enough
to perform ECC correction. They merely retry an
unsuccessful operation, which causes an infinite loop, or
simply halt.

74

o Because the M-PLUS system image file bootstrap is more
than one block long, its special driver is big enough to
handle F.CC correctable errors in the system image file.
Because the system imaqe flle bootstrap for RSX-llM is
only one block long, it is toQ small to hold the F.CC
correction code. Therefore the RSX-llM boot process is
vulnerable to an F.CC correctable error anywhere in the
system image file.

While an M-PLUS system can boot an RSX-11~ system, the inverse
is not necessarily true. There are two theoretical reasons for
this. First, a saved ~-PLUS system requires that CPU registers
R4 and RS contain the physical unit number and CSR address of
~he boot.device. A pre-V4.0 RSX-llM system does not pass this
information. (For a complete description of register
conventi~ns, see the module SAVVBl.) Second, when reading a
system image bootstrap into main memory, a pre-V4.0 RSX-llM
system reads in only one block. An M-PLUS system image
bootstrap consists of multiple disk blocks.

The attempt to boot a saved M-PLUS system image file with an
RSX-llM pre-V4.0 BOO will result in a NO TRANSFER ADDRESS error
~essage before either of the two problems are encountered. This
is because the "transfer address" of the saved M-PLUS system is
currently 1. The pre-V4.0 BOO mistakes this for the transfer
~ddress of a virgin system image file and rejects it because it
is odd.

Note the implications of the /CSR switch (see Section VI,
"Format of the SAV Command Line"). If the switch is not used, a
system can be saved and booted on any controller on the system
as long as the hardware bootstrap returns the CSR address of the
controller in CPU register Rl. To the best of our knowledge,
all bootstraps that M-PLUS is likely to run on hehave in this
fashion.

Debugging SAV is tedious. It is a privileged task that must
reference the J/O page, so it is restricted to a maximum size of
RR words. In spite of being overlaid, SAV is too big to allow
~he inclusion of ODT. The trick of using ZAP to insert RPT
instructions in sections of code that run in Kernel Mode (and
using XDT as the debugging aid) doesn't always work, because SAV
frequently gets into Kernel Mode by jamming the Program Status
~ord rat~er tha~ using CALL SSWSTK. The result of this practice
is that ~STKDP is greater than 0 when the Executive handles the
breakpoint and therefore the Executive does not correctly
determine how to handle the trap.

There is an additional complication. When exiting XDT, the
various Page Descriptor Registers (PDRs) are jammed to be
appropriately read/write or read-only. They must all be
read/write for parts of SAV. See the module SAVE to identify
which sections are restricted in this manner.

The result of this is that infinite loops inserted by ZAP and
manipulated from a debugging console are frequently the
dPhugqing method of choice.

75

Many parts of SAV (for example, the memory sizing routine in the
module SAVSIZ), manipulate the memory management registers.
They obviously must not remap the register that maps their
instructions. As a result, such sections of code must he mapped
by certain Active Page Registers {APRs). SAVBLD.ODL irler.t:iFi<>s
such sections and the APRs that must be used to map_ them.

IV. Virgin Systems

The task builder produces virgin (unsaved) system image files.
They are characterized by having transfer addresses in their
label blocks that point to INITL or XDT. Various fields in the
system's data structures, such as T.LBN in each '.!'CB, conta:n
Logical Block Numbers. A saved system image file has a
"transfer address" of less than ~n (octal), SAV as the active
task, and such words as T.LBN in each TCB containing pointers
that are invariant across disk compressions.

Although useful work can be accomplished using a virgin system
by manually mounting the system disk, establishing a checkpoint
file, bringing devices online, etc., this is not a nesign goal
of M-PLUS. The system may be limited in the future so that the
only legitimate operation that can be performed using a virgin
system is saving.

A virgin system image will not generally function correctly if
its disk has been compressed {copied by BRU or DSC). This is
because the Task Control Blocks (TCBs) cf the installed tasks
and some Partition Control Blocks (PCBs) of checkpointable
commons contain absolute pointers to disk r.BNs. When a· disk is
compressed, the starting LBNs of common and task image files
generally change. As explained previously, one of the big
tricks of SAV is to convert those absolute pointers into
pointers that are invariant across disk compressions.

A virgin system image file can be copied by using PIP. If a
virgin system image file is on a disk that has been compressed,
it can be salvaged by using VMR to remove all tasks and commons
and then reinstalling them.

Because a virgin system does not size the system disk, SYSGEN
must produce a Unit Control Block (UCB) for the system disk that
correctly indicates its geometry {for example, an RKOfi or RK07)
if the system is to work once it has been booted.

Because of a "trick" that can be used when answering the SYSGEN
peripheral questions, there is a bit more flexibility available
than is immediately obvious. Currently, for the RLOI/02,
RP04/05/0n, and the RM02/03, the only difference between the
large disk of the generic type (an RP06) and its equivalent
small disk (an RPn') is the number of cylinders per disk.
Therefore when you are given a choice of drive types, choose the
largest type. However, note that the RKOfi/07, RM80/RMn5, and
RP07 must he dealt with honestly. If the drive turns out to he
the larger type, everything is perfect. If the drive turns out
to he the smaller, it cannot have LBNs that are too hiq (LRNs
that would push the heads off the end of the c'lisk).

76

A virgin system aoes not have to be "quieter" by a CON OFFLINP.
ALL command before being saved. The I/O data structures output
by SYSGEN show all the appropriate controllers and units
(everything except the boote0 disk and conso1e) as offline.

V. Special Drivers

Special drivers are used by SAV to write the contents of memory
to the system image file and to read the system image file into
main memory when the saved system image file is hooted. When
SAV writes the hardware boot block, SAV includes a special
driver that will read in the system image bootstrap of the saved
system image file. The source modules for SAV's special drivers
are found in UFD fl2,10] and are named SAVdd, where d~ is the
device name. For example, SAVDL is for the RL01/02 and SAVCM is
for the MASSBUS, RKOn/07, and UDA50 devices.

BOO also uses special drivers to read system image files into
memory. BOO can handle DECtape, the RXOl, and the RX02 (see the
module ROODRV) in addition to the devices SAV can handle.

A special driver is special because of the constraints under
which it must work. A special driver must not use interrupt
vectors (while the special driver is heing used, the system
image bootstrap occupies low main memory). It must be as small
as possible (because it must fit into the hardware boot block).
It must conform to an elaborate set of conventions established
because the driver must be able to read or write variable
amounts of main memory or system image files.

The small size (you do not want to waste instructions making
tests) and need for flexibility are met by using SAV to mo?ify
the driver before inserting it into one of the various
environments (hardware boot block, system image file bootstrap,
or internally in SAV) the special driver can handle. The places
to make the modifications (for example, where to start writing,
whether to write or rea<i, etc.) i'lre specified for each special
driver by a table.

Structurally, a special driver consists of i'l module that has
three sections:

o The first defines the names of the CSR offsets that the
driver uses.

o The second is a fixed length segment of the PSECT DRVTAB
that defines various aspects of the driver. For example,
its lenqth, what a write function is, and what it's
segment - name is. In the aggregate, the segments form a
contiguous table that is terminated by a zero word.

o The third section is the driver itself.

When the driver is entered, the following CPU registers have
special significance:

77

RS - will be zero (indicating that the driver should use the
CSR address stored in the driver) or nonzero (indicating
that the contents of RS should be used as the CSR
C'lddress).

R2 - will be zero if no UMRs are required by the special
driver else it will he nonzero.

R3 - will contain the BAF. offset if R2=0 and the special
driver being used is SAVCM or SAVDL else it will be
unoefined.

Locations ~ and n will contain the LBN where the driver should
start reading or writing.

When the driver bas finished, the following registers will
contain information required by SAV:

Rr - will be the residual block count (the number of blocks
that were to have been read or written, but were not).

Rl - will be the ASCII representation of the load device
name, that is the name of the device that was just used.

R4 - will be the physical unit number of the device that was
just used.

RS - will be the CSR address of the device that was just
used.

Although the best way to write a special driver is to follow
closely one of the existing special drivers, several subtleties
deserve mention.

All drivers end with a RETURN (labelled xxEND, where xx is the
ni'lme of the specii'll driver). When SAV copies the speciaJ driver
into either the hardware boot block or the system image file
bootstrap, it copies up to, but does not include, the xxEND
statement. Thus when the driver is finished, controJ falls into
the next instruction of the bootstrap. When SAV uses the
special driver to write main memory to the system image file,
the special driver is called, so the xxEND statement returns
control to SAV. Figure 7 gives a graphic description of how the
special driver fits into the system image bootstrap.

Special drivers must be extremely careful about using the stack,
because there is not much i'lvailable. Por example, a special
driver is about to read in the system image bootstrap into
locations 0-277~. The stack is at 3004. If the driver pushes
three words onto the stack before starting the transfer, the
last word will be overwritten hy the system imi'lge bootstrap.

Additionally, the use of a "trap catcher" by the special driver
can easily push enough onto the stack to extend it into the last
few words of the boot block.

78

FIGURE 2 -- SYSTEM IMAGE BOOTSTRAP (VBNl-3)

Location

0 !--~--!
I I
!---!
I LBN of system image I
!---!

10 I Relative block number of moved memory I
!--------------------------------~----------!

12 I Displacement in buffer of moved memory I
!---!

111 I I
I Code to set up mapping registers
I I
!---!
I I
I Code to determine if-U~Rs should I
I be used I
I I
!---!

SDRVP.R I Driver code that SAV copied over a field I
I of NOPs I , ___ ,

xxF.ND I Field of NOPs I , ___ ,
SDRVND I Set mode to USER and Priority to 7 I

!---!
I RTI to SSVENT I
!---!

VI. Format of the SAV Command Line

The format of the SAV command line is:

SAVrE] r/WBl r/MOU="switches"J f/SFILE="file spec"] rcsR=xl

/WB is an optional switch that indicates that the hardware boot
block {LBN 0) of the boot device should be rewritten to point to
the system image file that is about to be written.

/MOU="switches" is an optional switch that provides a string to
append to the MOUNT command for the system disk. This allows
the overriding of the default mount parameters for the system
disk. The pair of double quotes is part of the required syntax.
SAV simply appends all the characters between the quotes to the
MOUNT command. It does no syntax checking.

/SFILE="filespec• is an optional switch that provides the file
specification of an MCR indirect command file to use in plnce of
"booted-0evice:rl,21STARTUP.CMD", which is the default file
specification. The pair of double quotes is part of the
required syntax. SAV does no syntax checking on the file
specification. It simply precedes the characters between the
quotes with ~n "@" and queues the resulting string to MCR.

79

/CSR=x is an optional switch that specifies the CSR address for
the boot device. If this keyword is not specified, SAV uses the
CSR a0dress in the boot device's KRB for writing the system
image out to the disk and what the hardware bootstrap leaves in
CPU register Rl for reading it in when the system is booted. If
x is an even octal number greater than 157777, SAV uses the KRB
CSR address to write the system out and x to read it in. If x
is "SY", SAV uses the KRB CSR address to both write the system
out and to read it in. An implication of this is that given the
proper type of hardware bootstrap, the disk can be booted on any
controller in the system, not just on the controller on which
the system was saved.

This switch is useful for creating distribution kits on systems
where the CSR of the actual device is not at the default CSR
address for that type of device. For example, on a system with
RPOSs and RM03s, the CSR address for the RM03 will not be the
default, because the RPOSs occupy the default address. To
create a disk that will boot on a default RM03, save the system
with CSR=l7fi700. The system will reboot (the CSR address used
to write the system out is taken from the RMP3's KRB, and the
system image bootstrap that has been left in low main memory is
forced to use that CSR address to read the system back in) . Use
the CON command in VMR to set the vector and CSR addresses for
the RM03 to the defaults.

VII. A Roadmap of SAV's Modules and Entry Points

Module Entry Point

SAVE SAVEP

SS VENT

SKRBOF

SAVCl SSAVCl

SAVC:_:l SSAVC:<

SAVC2 SSAVC2

SAVST SSAVST

Function

Load overlays and call subroutines,
push mapping registers onto stack, copy
low main memory into a buffer, put the
system image bootstrap in low main
memory, and transfer control to it

Restore low main memory, hardware map
registers, and CPU context

Put KRB offline and remove vector

Parse command line, unstop tasks, tell
PMT to exit

Check memory size, checkpoint all R/~
commons, insure checkpoint files are
inactive, check active processors

Dismount load device, check for tasks
with outstanding I/O, insure all devices
are offline

Set up special driver, check home block,
and write label block

80

$SAVnN Setup hardware boot block, set TI: and
SY: of fl ine

SAVI:-JS $STFID Convert T.LBNs and P.LBNs

SINSTK Restore the T.LBNs and P.LBNs

SAVVBl SVBNl Initialize the CPU, read system image
file into main memory, and transfer
control to it

SAVSIZ SSTCLK Select clock and initialize clock and
Floating Point ~rocessor vectors

STSTPY

SCRSIZ

SS TC PU

HRSIZ SSDISK

SAVFN SSA VPN

SSAVID

Set up nonexistent CSR table

Size main memory

Determine CPU type

Size the booted device

Finish bringing the system up

Output console ID, redirect pseudo
devices

VIII. What SAV does in Detail (Saving the System)

The following is basically a nondefinitive, English version of
SAV's code (see modules SAVE, SAVCl, SAVC3, SAVC2, SAVST, SAVFN,
SAVVBl, SAVSIZ, SAVINS, and SAVSUB). It is intended to give a
flavor of that code and some of its motivation. The code, not
this, is the truth.

The principal reason for the order of the following tests is for
coding convenience or for historically obscured eccentricities
of the various authors. For example, there isn't a logical
reason for testing whether or not SAV supports the device on
which the system image file is to be written before checking the
syntactic validity of the command. At one point in time, it
saved a few words of code.

1. If the SAV command was not
terminal, SAV issues the
message and exits.

issued from
PRIVILEGED

a privileged
COMMAND error

2. The name and logical unit number of the system disk
(frequently referred to as the load or boot device) is
retrieved from SSYSIZ+2 and SSYSIZ+n. They were left
there by BOO, which had to know that information to
find the system image file to boot.

The device name is checked against the names of all the
I/O devices in the system. If no match is found, the
NOT VALID SAVE DEVICE error message is issued and SAV
exits. If this occurs, the locations around SSYSIZ
have probably been corrupted. INITL would not have
allowed the system to come up if the boot device was
not in the system J/O data structures.

81

The SAV command line
error, SAV outputs
exits.

is obtained. If there is an
the COMMAND I/O ERROR message and

4. SAV sets bit FE.MXT in the first system feature mask
word (SFMASK) and unstops tasks that are not stopped
for an event flag or buffered I/0. This should cause
all Command Line Interpreters (CLis) to exit because
they should check for FE.MXT being asserted before they
stop themselves. As a side effect, other tasks, such
as HRC ..• , will also exit. This makes such tasks
inactive when the system is copied into the system
image file. Thus \fll'IR can remove and reinstall new
copies of those tasks.

Note that SAV will hang if any CLI does not exit. This
is only the first example of a general principle.
There are systems that cannot be saved. There is an
implicit pact between the system as a whole and SAV to
provide a •reasonable" environment. There are some
cases SAV cannot win, so why try unreasonably hard?

This philosophy (justified in part because SAV does not
have enough address space to be really paranoiac) is
rarely challenged simply because SAV is almost solely
used immediately after booting a virgin system image
file.

5. SAV makes sure that the pool monitor task (PMT) is
inactive. If it is installed, an attempt is made to
force it to exit.

Fi. The command line is parsed. If it is syntactically
incorrect, a SYNTAX ERROR message is output, and SAV
exits.

7 SAV makes sure that the system image file is big enough
to hold everything in main memory that is of value
(defined to be secondary pool and everything that has a
PCB except device commons). If that is not the case, a
COMMON, DRIVER OR TASK ABOVE SYSTEM IMAGE FILE LIMIT
error message is printed, and SAV exits.

Either make the system image file large enough or use
the MCR PAR command to determine what is above the
system image file size and get rid of it or move it
lower.

8. SAV attempts to force installed, resident, read/write
commons into their file images. It is assumed that a
common will remain check ointed once it is
checkpointed, because there s supposed to be minimal
system activity when a system s saved. If this is not
true, SAV will hang.

82

!

I
I
t
l

l
t

I
;

I

I

It is not obvious why this steo is not c'lone hefore
checking to see if all of main ~emory will fit into the
system image file. If aJl nonreferenced commons were
forced out of main memory, the previous check would
succeed more frequently.

9. If any checkpoint files are in use, a CHECKPOINT FILE
STILL IN USE ON ddn: error message is output for the
first such file, and SAV exits.

ACS should be used to disable checkpointing on that
device.

10. If error logging is still active, an PRROR LOGGING
STILL ACTIVE error message is output, and SAV exits.

Run ELI to stop error logging.

11. If there are any checkpointable commons that are not
installed from an LB:, a COMMON name NOT INSTALLED FROM
AN LB: error message is output for the first such
common, and SAV exits.

When a saved system image is booted, the task image
files of all installed commons and tasks are checked to
see if they are still usabJe (for example, that they
have not been deleted or that the disk they reside on
is still ~ccessible.) T~sks and commons that have
unusable task image files are removed from the system.
An obvious way for a task image to be unaccessible then
is not to be on the booted (system) device, which is
the only accessible device at that time.

To make it easy to avoid this situation, a convention
has been established. If a common or task is installed
from any LBn:, it is assumed that its common or task
image file will be accessible when the system is
booted. Any LBn: was chosen as the criteria, because
LBO: is the oefault device for VMR INS and because
L~n: tends t~ always point at the bootec'l (system
library) device. Because LBn: will pass this test,
users can run multidisk systems if they are willing to
assume the responsibility that all such disks will be
accessible when the system is booted.

The MCR command CBD lists checkpointabJe commons.

12. If the processor on which SAV is executing is not the
only active processor, a PROCESSOR x IS NOT STOPPED
error message is output for the first such processor,
and SAV exits. Note that the CPU identifier x in the
error message is a letter (A, B, C, or D).

CON DISPLAY FULL FOR CP shows the status of a]l CPUs.
CON OFFLINE CPx or CON OFFLINE ALL can be used to taKe
CPUs offline.

83

11. If any mountable devices in addition to the system
device are mounted, a VOLUMF. STILL MOUNTP.D ON ddn:
error message is output for the first such device, and
SAV exits.

The MCR DEV command can be usea to determine which
devices have mounted volumes.

14. If any files are still open on the system device, an
OPEN FILES ON dc'ln: error message is output, and SAV
exits.

This is most likely caused by having a print or batch
queue still active. Stop the various despoolers and
the queue manager.

15. If the system device is mounted, SAV attempts to
automatically dismount it. Jf the dismount succeeds, a
couple of different messages can be output depending on
whether or not TKTN is installed. Jf the dismount
fails, an F.RROR ATTEMPTING TO DISMOUNT ddn: error
message is output, and SAV exits.

16. If any task has I/O active, a TASK name HAS OUTSTANDING
I/O error message is output for the first such task,
and SAV exits.

The MCR ATL command can be used to identify such tasks.

The test is made, because such tasks would hang when
the system is later booted and, needless to say, the
device is no longer active to cause an interrupt.

17. If any task is active and checkpointed, a TASK name IS
ACTIVE AND CHECKPOINTED error message is output for the
first such task, and SAV exits.

The MCR ATL command can be used to identify such tasks.

The test is made because tasks can be simultaneously
installed in more than one system image file.
Therefore when the other system image runs, ·it could
checkpoint the task into its task image file. When
this system image file is then booted, the task from
the other system would be simply loaded into main
memory and used {or executed) by the system. This
would probably cause a very mysterious crash.

18. If any task is found to be connected to an interrupt
vector (the $CINT directive)·, a TASK name IS CONNECTED
TO AN INTERRUPT VECTOR error message is output for the
first such task, and SAV exits.

Abort the task or use some other method to cause the
task to relinquish the interrupt vector.

84

An RSX-11~ system cannot tolerate tasks being r.on~ected

to interrupt vectors because the TCB word T.CPCD is
used by both SAV and connect-to-interrupt. This is not
a problem in M-PLUS, but the problems of tracking down
the interrupt vectors (they are not jn the system J/O
data structures) and bus affinity are severe .enough to
postpone a general treatment in SAV until a future
release (if ever).

19. If any tasks are installed from.some device other than
an LB:, a TASK name IS NOT INSTALLRn FROM AN LB: error
message is output for the first such 'task, and SAV
exits.

The MCR TAS command can be used to determine from which
devjce a task is installed.

The rationale behind this check is the
having checkpointable commons installed
and suffers from the same problems.

same as for
from an LB:

Note that VMR INS will install tasks only if their task
image files are on LBO:.

20. SAV then disables checkpointing in the system.

21. A test is made to insure that accounting is turned off.
If it is active, the message ACCOUNTING IS ACTIVE is
sent, and SAV terminates.

7-2. If secondary pool is not completely within the range of
memory to be saved in the system image file, SAV will
output the message SECONDARY POOL DOES NOT FIT INTO THE
SYSTEM IMAGE and terminate. This check is made because
many things are now stored in secondary pool (for
example UCB extensions.}

7J. If any controllers except those for the system device,
TI:, MK:, and II: are online, a PROPER CONTROLLERS
AND/OR UNITS ARE NOT QFFLINE error message is output,
and SAV exits.

If any units except those for the system device, TI:,
MK:, pseudo devices, and RD: - are online, the error
message is output, and SAV exits.

In either case, CON DISPLAY FULL will show which
controllers and/or units are online.

CON OFFLINE ALL should leave only the permissible
controllers and/or units online. However, because CON
OFFLINE ALL suppresses error messages, the system may
be having problems during the offline process and you
may he unaware of them. In this case, CON should be
used in an attempt to put individual controllers and/or
units offline. The problems pointed out by the
resulting error messages should be corrected.

85

TI: and the load device are exceptions, because SAV
wants to send QIOs to them. Pseudo devices are
exceptions, because they are always redirected to real
devices, which can be handled normally. MK: and II:
are exceptions, because they are integral parts of a
system configuration. RD: is an exception, because it
must be online to bring anything else onli~e.

24. At this point all normal operations of the system
should be quiesced. However, each main partition's
wait queue is checked to insure that no task is still
checkpointed into its task image. Note that the
checkpoint files have already been checked to make sure
that they are empty. SAV also looks at the loader
task's receive queue and will output a message if
anything is queued to the loader.

All of the necessary checks on the system have now been
made. The checks that follow assume that the system is·
in a quiescent state.

25. If SAV cannot find the name of the required special
driver in the table in PSECT DRVTAB, a NOT VALID SAVE
DEVICF. error message is output, and SAV exits.

Except for internal errors (the size of one entry in
DRVTAB is wrong or a module is missing) and a corrupted
SSYSIZ+6, this check should always succeed.

2fi. If the desired special driver is found, the UMR usage
flag is set and the BAE offset is calculated (for RH
and DL devices} and the r~ng and packet pointers are
initialized in case the device is connected to a UPASO
controller. The special driver is then initialized to
read in the system i~age file and is then copied into
the system image bootstrap if necessary.

27. The structure l~vel of the volume on which the system
is being saved .is checked. This prevents "old~ SAVs
from being used in situations that they might not be
able to handle. For example, when a disk supports fiSK
files per volume, it - will have a multiheader inciex
file. SAVs that have not been modified to handle this
circumstance should not be used on such disks.

28. The label block of what SAV believes to be the system
image file (LBN in SSYSIZ+J and SSYSIZ+4) undergoes
several tests. If it cannot be read in, a LABEL BLOCK
I/O ERROR message is output, and SAV exits. If it does
not pass a few cursory checks on its integrity as a
laheJ. block (for example, the file has no header), a
SSYSIZ DOES NOT POINT AT SYSTEM IMAGE FILP. error
message is output, and SAV exits. If all the checks
succeed, the number of blocks composing the system
image file bootstrap minus one is written into the
label block as the "transfer address•, and the label
block is written hack to the file.

86

Altering the transfer address of the file gives VMR and
BOO a simple test for determining if a file is a saved
or virgin system image as well as for telling them how
long the system image bootstrap is.

29. Context switching is disabled so that tasks the
F.xecutive starts before SAV restores the T.LBN's won't
get into the active task list and then block all tasks
except for SAV. The low order bit of. T.STAT is set in
every TCB except SAV's. Because this ·is one of the
blocking mask hits, all tasks except SAV are prevented
from executing.

30. All copies of a multiuser task have a pointer to the
read-only part of the "parent" task image. In a
running system, P.LBN is the high byte of the LRN of
the first byte of the read-on}y code. P.LBN+2 is the
low order word of P.LBN. P.LBN+4 is zero. In a saved
system image file, P.LBN is the high byte of a number
which when anded to the LBN equivalent of T.LBN will
yield the LBN of the read-only segment of the "parent"
task image file •. P.LBN+2 j.s the low order word of
P.LBN. P.LBN+4 is nonzero to indicate that P.LRN
contains a relative number.

31. For every installed task, T.LBN, T.LBN+l, and T.ASTL
(if a task is not fixed and inactive) or P.SIZE+2 (if
the task is fixed or active) is overwritten with the
task's File ID. INS copied the File ID from the task
image file label block into the task's header.

If SAV cannot read a task header during this process, a
TASK HEADER READ ERROR message is output, and SAV halts
the processor. At this point, the system has heen
corrupted. Not only have all tasks except SAV been
stopped, but some of the P.LBNs and T.LBNs have heen
converted. Only the part of SAV that brings a system
up can reconvert those pointers to the form used in a
running system. You must delete the system image file
and use VMR to apply the appropriate SYSVMR.CMD file to
a copy of the corresponding virgin system image file.

32. If SAV was invoked with the /WB switch (write hardware
bootstrap), the special driver is initializPn to read
the system image bootstrap into low main memory and is
copied into the hardware bootstrap block (see SRTBLK in
the module SAVBOT). The LBN of the system image
bootstrap is written into locations 4 and 6 of the
hardware bootstrap block and the hardware bootstrap
block is written into LBN 0 of the disk.

33. The special driver in SAV is then set up to write
of main memory into the system image file.
includes setting the ring and packet pointers in
in case the SAV device is the lJDASO.

87

all
This

SAVCM

34. SAV calls the Executive (and consequently the
appropriate drivers) to put the controllers and units
of the system device, TI:, MK:, ~nd II: ~ffline. For
several reasons, it is assumed that there will be no
delay in this process and that it will succeed (see
WIPVC in the module SAVST for the details). The
controllers and units for programmable memory boxes are
simply markdd offline.

35. CO: is redirected to TI: (see below for the special
action that is taken if this· is not still true when the
system comes up) and all terminals are set
nonprivileged and logged out.

3f'l. The softw·are volume valid bit is cleared for the system
device. After this, SAV cannot issue any additional
QIOs because th~y will Se rejected by the driver.

37. If the clock has a CSR address, it. is stopped. The
processor's mapping registers are saved on SAV's stack.

38. Bytes 0 through LOWSIZ*2 are copied into a buffer in
SAV. The system image bootstrap (see SVBNl in module
SAVVBl), which includes the special driver primed to
read in the system image file, is copied into low
physical memory.

39. The LBN of the system image file (the system image
bootstrap) is copied into physical locations 4 ann f'.l
and into physical locations BTADD+4 and BTADD+~.

40. The LBN and offset within the block of SAV's buffer for
low mairi memory are written into physical locations 10
and 12. This allows VMR to find low main memory in the
system image file.

4]. SAV calls its copy of the special driver to copy all of
main memory into the system image file. The LBN of the
system image file is found in locations ~ and f'l.

42. When the driver is finished copying main memory, it
transfers control to location o, where the unused
system image bootstrap resides. Note that at this
point the CPU is left in 22-bit mode with D-space, and
the unibus map t~rned off.

88

IX. What SAV does in Detail (Restoring the System)

It is at this point that control passes to the saved system from
BOO, SAV, or from a hardware bootstrap. Note that this point
can be entered with the CPU in either 16- or 22-bit mode. If
the system has just been booted by the hardware bootstrap, the
CPU will be in lh-bit mode. If control got here via the SAV or
BOO commands, the CPU will be in 22-bit mode.

l. If the system has been booted by the harc1ware
bootstrap, the boot block (LBN 0) of the disk has just
been read into main memory locations n through 777.
The purpose of this boot block is to read in the system
image bootstrap. The boot block was written to the
disk by the /WB command.

?..

3.

The boot block relocates itself to a place in memory
that is well above the size .of the system image
bootstrap. This is currently calculated by adding 1000
to the size of the system image bootstrap. Once the
boot block has been relocated, a copy of the special
driver is used to read in the system image bootstrap.
For MASSBUS, RKfill/711, and UDASO devices, a simplified
special driver is used because of size constraints in
the boot block (for example, the boot block can only be
256 words long.) These simplified drivers take
advantage of the state of the disk hardware left setup
by the hardware bootstrap.

The system image bootstrap picks up the LBN
to read into main memory from locations
BTADD+h and deposits them into locations d
use by its special driver in reading in the
system image file.

of the file
BTADD+4 and
and 6 for
rest of the

If the system image bootstrap had been read into main
memory by ROO, the contents of BTADD+4 and BTADD+6
would have been supplied by the module BOTPH2.

If the system image bootstrap had been read into main
memory by the disk's boot block (see SBTBLK in the
module SAVBOT), the contents of BTADD+4 and BTADD+fi
would have been supplied by the oisk's boot block. The
LBN of the hardware bootable system is stored in
relative locations 4 and 6 of the disk's boot block.
When control is transferred to the hardware boot block
from the hardware bootstrap, the hardware boot block
relocates itself to BTADD and then reads the system
image bootstrap into locations O to BTADD.

The routine SVBNl is then entered and a number of
things happen to get the system back on the air.
Figure 3 gives a graphic description of the steps
executed in SVBNl. The SVBNl process involves the
following steps:

89

1. The processor's mapping registers are set up.
Kernal APRfi is specifically set up for use by
certain special drivers and User APRS and APRfi are
set up to map to SAV itself.

2. Register SR] is set for 22-bit and UMRs. If a
nonexistent memory trap occurs, the processor does
not support 22-bit addressing. For M-PLUS V2.0,
this is an invalin condition.

3. A special test is made for a DL (RLOl/02) device
connected to an RLV12 controller. If this test is
successful, SAV is running on a PDP-11/23-Plus
processor which has 22-bit addressing and a BAE
register.

4. SVBNl now looks at the name of the special driver
contained in the driver ~lock further up in the
SVBNl code. If the c1river is the common driver
{SAVCM) and the boot device controller is an RKfill
or a UDASO, then SAV assumes that UMRs are required
to read in the image. If the special driver is not
SAVCM, then UMRs are used by default.

5. SAV now knows that the boot device controller is
either an RHll (no RHBAE) or an RH70. If the SYSID
register does not exist, SAV must be executing on a
PDP-11/24 or PDP-ll/4d processor, which means that
the controller is an RHll and UMRs are required.
If the SYSID register exists, SAV is executing on a
PDP-11/70. However, the controller may not be an
RH70. SAV then 0etermines which controller is used
and calculates the RHBAE offset by testing for the
las~ controller register that responds and
subtracting the CSR address from it if the
controller is an RH70.

6. If this is a 22-bit CPU and the boot device
controller is not an RH70, set register R2 nonzero
to indicate that UMRs are required for the special
Clrivers.

7. The CPUERR register is cleared to remove any
residual error indicators. Next the LBN of the
system image is updated to point to the next area
of the image to be read in (currently VBN3}.

R. The memory management unit is then enabled (SRO}.

9. Control then falls into the system image
bootstrap's special driver, which reads into main
memory (starting just above the system image
bootstrap) the remainner of the system image file.

90

FIGURE 3 -- FLOW DIAGRAM FOR SVBNl

SVBNl
I

1--------------------1
I SETUP MAPPING REGS I
1--------------------1

I
1--------------------1 1------!
I 22-BIT CPU? 1--NO---f HALT I
1--------------------1 1------1

I
I YES
I

1--------------------1 1--------1 1---------1
I DL DEVICE? l--YES--1 RLV12? l--YES--1 SET BAE 1-1
1--------------------1 1--------1 1---------1 I

I I I
I NO I NO I
I I I

f--------------------1 I I
I COMMON BOOTSTRAP? l----N0-----1 I
1--------------------1 . I I

I ! I
I YES I I
I I I

I -------------------- I I I
I RKfill or UDASO? l---YES-----1 I
1-------------------- I I I

I I I
I NO ! I
I I I

1-------------------- I 1---------- I I
I PDP-11/70? 1--NO--I USE UMRS I I
1--------------------1 1----------1 I

I I I
I YES I I
I I I

1-------------------- I I I
I CALCULATE RHBAE I I I
1-------------------- I I I

l----------------------1 I
1--------------------1 I
I CLR CPUERR I I
1--------------------1 I

!---!
1--------------------1
I UPDATE LBN, I
I START MEM. MGMT., I
I READ SYSTEM IMAGE, I
I RTI TO SSVENT I
1--------------------1

91

4. The system image bootstrap then passes control to SAV
at location SSVF.NT in the module SAVE. There the LBN
of the system (founn in locations 4 anc'I fi), the
physical unit number, the physical device name, and CSR
address of the load device (passed to SAV in R4, Rl and
RS) are saved. Bytes 0 up to LOWSIZ*2 are restored
from SAV's buffer, and the mapping 7egjsters are
restored.

SAV currently initializes user data space by restoring
it from its own user I-space. This implies that SAV
cannot be built with user I/D space support unless the
code is changed to save and restore both sets of
registers.

When the UMRs are restored, three distinct algorithms
may be used. First, if this CPU has UMRs and the saved
system had UMRs, then load the UMRs with the values
saved and set HF.UBM in the hardware feature mask word
(SHF1'1SK) • Second, if th is CPU has UM Rs and the saved
system didn't, then load only the first five UMRs and
set HF.UBM. Third, if this CPU has no UMRs
(PDP-11/23-Plu~), then simply clear HF.UBM.

5. To increase the system's transportability, test the FPP
hardware and see if it is present. If it is, clear
HF.FPP, otherwise, set the bit. Then test to see if
the booted processor has the CIS hardware. Note that
this check uses a special stack because the CIS
hardware requires a minimum of fill words of stack space.
Set HF.CIS if the CIS hardware is present.

fi. If the system is a multiprocessor system, the
Interprocessor Interrupt and Sanity Timer (IIST) is
interrogated to determine the number of the booted
processor. If the IIST exists (if it does not, the
booted processor is considered to be CPU A), the
processor is mapped to the appropriate
processor-dependent, low main memory context. The IIST
is marked online, and its interrupt vector is
established.

Note that a dual processor system consisting of CPUs A
and B cannot be booted and then run as a dual on CPUs C
and D. Each processor requires its own
processor-dependent context. The processor finds its
context by determining its absolute processor number by
interrogating the IIST and then looking in the
appropriate part of the CPU partition. A dual
consisting of CPUs A and B does not have
processor-dependent context areas for CPUs C and D.
Therefore the only truly transportable multiprocessor
system is either a single- or a quad-processor system.

7. If the booted processor is not the processor on which

92

8.

the system was saved, SAV's context is logically
transferred to the booted processor. This involves
actions such as logically making SAV the current task
on the booted processor, marking the other processcir as
stopped, exchanging trap vectors, and the like.

If the processor on which the system·was saved had a
free running clock (a line frequency clock with no
CSR), SAV checks for a programmabJe cJock or a line
frequency cJock with a CSR. Jf one is found, it is
used as the system clock. llnless this is cone hefore a
system _was saved on a processor with a free running
clock, it could not be run on a system without a free
running clock, because nQ attempt would be made to find
(enable the interrupts for) another type of clock. If
no clock with a CSR is found, it is assumed that the
booted system also has a free running-clock.

Note that SAV will hang when it waits
redirect of the system device to
system has a ticking clock.

for the first
occur unless the

If the booted processor has the same type of clock as
the processor on which the system was saved, that clock
becomes the system clock. If that is not so, it must
be one of two cases:

o The processor on which the system was saved had a
line frequency clock, and the booted processor
has only a programmable clock. SAV runs the
programmable clock at line frequency. Note that
if the programmable clock has not been properly
installed (had a line frequency signal run to its
small Peripheral Controller slot), it wilJ not
tick if run at line frequency.

o Or, the processor on which the system was saved
had a programmable clock, and the booted
processor has only a line frequency clock. SAV
treats line frequency as ~O or ~0 hertz,
dependjng upon the SYSGEN response to the system
hertz question.

N?te that all_it~ms in the clock queue are scheduled by
ticks. Not f1nd1ng the type of system clock with whjch
the system was saved may cause SAV to change the number
of ticks per second for the booted system from that of
the saved system image file. SAV makes no attempt to
alter the clock queue to reflect any change in the
number of ticks per second. All the events already in
the clock queue will occur in the correct relative
relationship, but the absolute times when they occur
will be off by an undetermined factor. However,
entries added to the clock queue after the system is
booted will occur at the correct absolute times.

93

9. By examining the contents of the Floating Point
Processor (FPP) trap vector and testing for the
existence of the PIRO register, the FPP trap vector is
altered to correctly handle the processor's FPP.

10. To increase the system's transportabili~y, the
Executive contains a table of CSR addresses. These
addresses are typically those of parity memory modules.

SAV checks to see if those addresses exist in the I/O
page of the booted processor. Tf not, the table is
altered to point to a main memory location. This
allows the Executive to contain unconditional code that
manipulates those CSRs.

11. A series of tests is then made to determine the type of
CPU that SAV is executing on. At the present only the
PDP-11/74, PDP-11/70, PDP-11/4 4, PDP-11/24, and
PDP-11/23-Plus are fully supported. The CPU model
number is stored in the Executive as a decimal value.

12. Main memory is then sized. This consists of writing a
zero into every memory location above the area written
into by the boot process (so the parity memory bits are
set to a known state) and noting where memory first
does not exist.

SAV always sizes memory because after the CPU mapping
has been set up, SAV might be able to find memory that
the special driver couJd not when it was DMA'ing in the
system image. For example, we might find UNIBUS memory
on the PDP-11/44.

The last (highest) main partition in the system that is
not a devic_e common is automatically expanded to cover
all memory that is found, and SSYSIZ is updated. The
partition should not be expanded if it is a CPU or
secondary pool partition.

If the booted processor has MKAll main memory, SAV will
find onJy the memory boxes that have their "force
panel" switches set to force the boxes' starting
addresses to be determined by the control panel's
starting address switches. Either the M9312 bootstrap
or BOO will have forced the programmable boxes out of
the main memory address space.

l~. SAV makes sure secondary pool exists and makes sure
that it is within the available memory. Note that this
routine must precede the one that brings the console
and system disk online, since data structures for those
devices are created in secondary pool.

14. The system I/O data structures are then searched for a
device with the same name, same CSR, and same physical

94

unit number as the booten oevice. If such a data
structure is not found (for exampJe, the system was
booted on DB2:, but data structures exist only for DBn:
and DBl:) or, if the booted-device is not on the UNIBUS
run of the booted processor, SAV attempts to output
(the console may not exist or function) a 900TF.D DF.VICE

NOT IN SYSTEM - 0d nnn mmmmmm x error message, where
dd, nnn, and mmmmmm are the device name, physical unit
number and CSR address for which SAV was looking, and x
is the name of the CPll on which SAV thinks it is
runninq. The CPU is then halted with a number greater
than 12nooo in RO.

15. If the load device exists in the system data
structures, SAV, if necessary, alters the data
structures to show that, the port for the device is
switched to the booted CPU and checks for the driver
being ~oaded. If the driver is not loaded, SAV
attempts to output a SYSTEM DISK DRIVER NOT LOADED
error message and halts the CPU with a number greater
than 120000 in Rr.

Boot another system and use VMR to load the driver for
the system disk.

lh. The Unit Control Block (UCB) for the booted <'levice is
redirected to itself. Its software volume valid bit is
set, and it is marked as public if the system is a
multiuser protection system.

An attempt is made to bring the booted device online,
which, if the operation is successful, accomplishes
several things. The interrupt vector(s) will be set to
point to the driver interrupt entry point(s), common
interrupt routine, or Interrupt Control Block(s) as
appropriate. If the device can operate on a MASSBUS,
it is determined if an RHll or RH70 is involved.

To do this, M-PLUS uses a different technique than does
RSX-llM. In M-PLUS, the driver has a special entry
point for going online, and the data structures show
where the RHBAE register should be if it exists. (If
the RHBAE register exists, it is an RH70.) In RSX-llM,
SAV contains a table of device names that are
associated with MASSBUSes and their standard number of
CSR registers.

If the device cannot be brought online, SAV outputs a
BOOTED DEVICE CANNOT BE BROUGHT ONLINE error message,
and the system is halted with a number greater than
120000 in RO.

Short of a bug in the system disk driver or a badly
corrupted system, this error message should never be
output.

95

17. If a directive partition exists and is not loaded (the
APR mapping for the partition in SDRAPR is zero), SAV
attempts to output a DIRECTIVE PARTITION UNFIXED OR
NONEXISTENT error message, and the processor is halted
with a number greater than 12rr00 in Rr.

This check is accomplished in two ways: If the
contents of SSYSIZ are greater than the contents of
SDRAPR, the directive common mav have been comoletelv
read into main memory. Or, th~ PCB that is ass~ciatea
with the directive common can be Found, and the
directive common's upper bound can be checked against
the contents of SSYSIZ.

18. The system disk is sized by a module stolen from
reconfiguration. Sizing allows the system to adjust to
the booted device being slightly different from the
saved device. For examp~e, BRU can be ~sed to copy an
RKOo disk that contains a hardware-bootable saved
system image file to an RK07. The RK07 will be
hardware bootable after the copying, because the sizing
of the system disk will adjust the UCB for the system
device to that of an RK07.

This implies that SYSGEN questions about what type of
disk drives are on what controllers are useless except
for virgin systems (hecause virgin systems do not size
disks). Actually, they are even useless for virgin
systems except for the RKOh/07 case. The RKOh/07
driver must know which type of unit is being used,
bec~use an RKOfi/07-type bit in the CSR must be properly
~sserted or deasserted to read or write the unit.

19. Pool is now sized if the system supports the pool
monitoring task (PMT).

20. SAV then determines which unit shouJd he CO:, the
console. If CPUn is bootee'!, YLn (the nth DLll terminal
interface) is the default console. In a single
processor system, this is TT0:.

When the system is saved, CO: is redirected to TTO:
by SAV. If CO: is not redirected to TTO: when the
system is booted (that is, someone uses VMR to alter
the redirection), SAV attempts to use the unit to whjch
CO: is redirected as the console. This allows a
system to be booted on a configuration where TTO: does
not work.

If the device to which CO: is redirected does not make
a good console device (for example, it is not a
terminal device, or it floes not exist in the booted
configuration), SAV attempts to use the default
terminal.

96

If no device makes sense as a console terminal, SAV
halts the processor with a\number less than l/.0000 in
R0 (currently 1).

21. When the console terminal is determined, SAV alters the
system data structures to show the console terminal as
logged in, nonslaved, and privileged. CO: and CL:
are redirected to it, and it becomes TI: for SAV.

22. Because the module SAVINS can potent i a 11 y queue
commands to MCR, a check is made to make sure that the
MCR dispatcher is installed. If it is not, an MCR IS
NOT INSTALLED error message is output, and the
processor is haltea.

/.1. The system ID message is output.

24. The redirection of the pseudo devices SY:, LB:, and SP:
to the booted device is accomplished by direct
manipulation of the data structures. This must be done
so the MCR dispatching action for the RED and MOU
commands that follow will operate from the booted disk.

25. Tasks are then "reinstalled." This basically consists
of undoing SAV's alterations to the various P.LBNs and
T.LBNs and, if necessary, "rebinding" the tasks'
Logical Unit Table (LUT) entries {Logical Unit Numbers,
LUNs) to the UCB addresses of this system and the
tasks' headers to the PCB addresses of this system.
(For information regarding the logical structure of the
booted disk and task images, see the appendices of the
IAS/RSX-11 I/O Operations Reference Manual and the
RSX-llM/M-PLUS Task Builder Manual.)

SAV first finds and validates the home block of the
booted device. After validation, the home block is
used to find the index file header, which is also
validated.

For each installed task, the task's File ID is
retrieved from the appropriate TCB. Given that and the
index file header, the file header of each task can be
found. The file header is validated and, if any harm
has come to it (for example, the task image file was
deleted), an error message js output, and the task is
removed.

Given an intact task image file, the label block is
read and the LBN of the task image is determined and is
rewritten into T.LBN and T.LBN+l of the TCB.

If the task has a read-only segment, the P.LBN that
points to the read-only segment is converted from a
numher relative to the T.LBN of the task image file
that contains the read-only segment to the LRN of the

97

segment. P.LBN+4 is used as a flag to determine if the
conversion has already been performed.

If the first word of each of a task's LUT entries is
not a valid UCB address of the booted system, Assign
LUN Directives are done using the static LUN
assignments of the task's label block. The resulting
UCB addresses for the booted system are written into
the first words of the LUT entries.

Note that while any dynamic LUN assignments made by the
task are lost, the UCB addresses that SAV derives are
the same UCB addresses that INS would use if the task
were to he manually reinstalled using the same global
logical assignments as occur in the system image file
(that is, if STARTUP.CMD does not establish any global
logical assignments). Some sort of reinstallation of
the task must be done or the system will crash when a
LUT's "UCB address" is used as a UCB address by the
system. A task can have the "wrong" UCB addresses in
its LUT if the task is simultaneously installed in more
than one system image file.

If the label block device assignment for a LUN is not
for a device that is in the booted system, a (WARNING)
~ONEXISTENT LUN ASSIGNMENT FOR TASK name error message
is output and no assignment is made for the LUN (that
is, a zero is written into the first word of the LUT
entry). The task will get an error if it tries to use
the LUN without assigning a device to the LUN.

There is a similar problem with the mapping windows in
the task header. If the task is simultaneously
installed in more than one system image file, the PCB
addresses in the windows may not be for the booted
system. If SAV discovers such a case, it rewrites the
addresses to the appropriate PCB addresses of the
booted system. The correct PCB addresses are derived
from other system data structures (T.PCB and T.PCBV) so
even the effect of installing a task with a
/PAR=partition-name is preserved.

There is one case that cannot be covered. If the task
is active and has dynamically mapped regions, a TASK
ACTIVE IN ANOTHER SYSTEM, TASK REMOVED name error
message is output, and the task is removed.

If the partition in which the task should execute has
shrunk so much (because of the small amount of main
memory on this processor) that the task can no longer
fit into the partition even if nothing else is in the
partition, a TASK TOO BIG FOR PARTITION, TASK REMOVED -
name error message is output, and the task is removed.

If the task image for SAV has been damaged (deleted,

98

for example), the error message SYSTEM MAY NOT BOOT
CORRECTLY is output in addition to the message about
removing SAV. If the system does not have enough main
memory to allow both SAV and MOU to reside
simultaneously in main memory, the system will now
hang. This is because the system needs to checkpoint
SAV to get MOU into memory to mount the system disk,
but SAV has been blocked from checkpointing, so it
cannot overwrite the part of the disk where SAV.TS~
used to be.

SAV should handle corrupted task images better. There
is no need for SAV to worry about deleted task image
files if the task is fixed in main memory (for example,
the loader).

For each common in the common block directory list that
has a task image file, convert its File ID (left in
P.FIDl, P.FID2, and P.FID3 by INS) int-0 a LBN. This
allows BRU and DSC to compress disks containing commons
as well as task images.

sure that each common task image file is not
If one has been, the system is prevented from
checkpoint the common into the task image

SAV makes
deleted.
trying to
file and
COMMON name

a SYSTEM MAY NOT WORK - CORRUPTED FILE FOR
error message is output for each affected

common.

2h. After all the reconverting, the tasks are unhlocked,
and SAV may no longer be the only running task in the
system.

27. The system clock is started after all tasks are
reinstalled to prevent the possibility of the Executive
finding a clock queue entry for a t~sk to be run on the
first clock tick (this could result from a RUN command
in VMR). If that occurred, the Executive clears the
task's TS.EXE bit, which would make SINSTK look in
P.WAIT rather than T.EFLG for the task's File ID. The
result would be a bad T.LRN for the task.

After saving the time the system was booted for RMDEMO,
the system clock is started.

28. After reenabling system checkpointing, a check is made
to see if the booted processor had enough physical
memory to hold all of the system image file's important
structures. Important structures are defined to be
those that have PCBs and are not device commons. If
the check fails, a SYSTEM MAY NOT WORK - LARGER THAN
MAIN MEMORY error message is output. Note that
secondary pool is checked prior to this.

The system will work if those structures that were not

99

read in from the system image file can be logically
removed before the system makes an attempt to reference
them (for example, unload any 1oa0ed drivers that might
not have made it into main memory.)

29. Just to give the user a record of what is going on,
commands for redirecting the pseudo devices SY:, LB:,
and SP: to the system device are queued to MCR. This
has the side effect of printing them on the console.

As an historical note, there is another device name
that is treated specially. WK: is meant to be the
work file device for such tasks as MAC and TKB. The
intent is to identify a LUN that will have heavy I/O
usage. Assigning the LUN to a fast device (for
example, a fixed head disk) can improve the performance
of a system.

The idea has been partially implemented. VMR
automatically creates a global logical assignment for
WK: to LB: for all system images. Unfortunately, WK:
is not generally referenced in task-build command
files. Therefore if WK: is to be used, the task must
be installed and the work file LUN must be manually
identified and reassigned to WK:. There is little
point in doing this, because the work file LUN could
just as easily be assigned directly to the real device
rather than to WK:.

There are two reasons for WK: being a logical device
name rather than a pseudo device. Pseudo devices must
always be redirected to physical devices (with the
exception of TI:, which is special cased in the
Executive). When the system is booted, there is only
one disk device available, the system device.
Therefore the pseudo devices ~re redirected to it.
Because it is illegal to redirect devices that are
redirected to mounted devices and because the system
device is automatically mounted, if WK: were a pseudo
device, it could not later be redirected to the real
work file device.

If the tasks that use WK: do runtjme LUN assignments,
the logical name WK: provides more flexibility than a
pseudo device. Each user can independently estabJish
his own work file device by simply making WK: a local
logical name. This can prevent running out of space on
the one system work file device due to the aggregate
demand on that one device of all running tasks that use
work files.

30. The system disk is mounted. The defaults that MOU uses
can be overridden if the /MOU switch was used when the
system was saved. In must cases, overridding the
defaults can improve system performance. For instance,

100

see the oiscussion of the /LPU ano /WIN switches in the
niscussion of the MOU commano in the RSX-llM/M-PLUS MCR
Operations Manual.

11. The startup inoirect commana file is initjaten. Tf the
0efault file specification is useo, SAV inserts the
harnware name of the boot 0evice to avo(n the problem
of a global logical assiqnment for SY: that is not
directen to the booted device.

32. Finally, if the system supports the pool monitor task
(PMT), PMT is initiateo if it is instaJJec.

