
THE MULTI-TASKER
Volume 16, Number 3 April 1983

The Newsletter of the RSX-11/IAS Special Interest Group

Table of Contents

Columns

Columns

From the Editor.
DECUS/RSX SIG Library News

DIR
SYSLDG

Working Group News
BUG in INStall for RSX-llM

Help Yourself.
It's in the Code.

FORTRAN IV-Plus V3.0
EDT V2.0
SYSLOGIN and SYSLOGOUT

Hints and Things.
Preserving Resident Data Common
Tricks with FMS-11
CINT$ (Switch to System State)
Swedish Pascal under RSX V4

Speak Out.
A Further Note on RX03 Problems

Articles

RSX Buzzwords •
BRU Sorting Bug - A Wrapup •
RSX-llM to RSX-llM Plus Migration
The Night of the SIG Tape •
Uni imited Keywords in TPARS •
CCL Can Help Protect Your System
An RSX-llM Device Driver.
RSX-llM V4.0 System Generation •

Copyright© Digital Equipment Corporation 1983
All Rights Reserved

2

6

9
11

15

• 19

20
64
72
87
90
92
95

107

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to pubUsh in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

READ THIS FIRST

This issue has several articles that should be of inter
est to everyone. Carl Mickelson has written a wrapup article
on the BRU sorting problem that he has described in the past.
A must article for everyone who uses B~U.

Ralph Stammer john has written the first of what wi I I
hopefully be a continuing stream of articles. First, is a
dictionary of over 300 words, phrases, and acronyms related
to RSX/IAS. Second, is an article describing the SYSGEN phi
losophy at Monsanto. If you must SYSGEN more than one system
read this article carefully. Perhaps most important are some
of Ralph's patches; included are patches that can recover up
to 1400(8) bytes of poo I.

From the Editor

I would I ike to personally thank Ralph Stammer john for
the fine job he did as the editor of the MULTITASKER.
didn't realize how much work was involved in putting an issue
together until I started putting this issue together (which
explains why it is so long in coming).

The Anaheim Symposia is history. For those of you who
were unable to attend the biggest announcement was that DECUS
is going to have a subscription fee. l.ffective July 1, 1983
if you want to receive any news I etters you w i 11 have to pay
for them. This fee has become necessary due to the dynamic
growth rate of DECUS and inflation. The subscription fee has
not been set as of yet, but we should be informed around
March 1. DECUSCOPE. wi 11 not be affected by the subscription
fee. The only known fact at this time is that there will be
a subscription fee, exactly what the fee wi I I be or what it
will include are not known for sure.

Since we wi 11 all be charged for the privi ledge of re-
ceiving the MUL Tl TASKER it is my intention to provide an
issue every month of the highest possible qua I ity. In order
to provide this I need articles to publish and these articles

2

come from you the readers. An article can be on any subject,
even IAS, of any level of expertise. A large majority of our
audience are new users. They need articles that many of us
might consider everyday or simple. Articles should prefer
ably be in machine readable format (tape or floppy) or of a
publishable quality on 8 1/2 by 11 plain white paper.

Charles Goodpasture
Multi-Tasker Editor

Phone: (713) B"/1-8000

DECUS/RSX SIG Library News

Paul Tompkins
Library News Editor

Over the years, DECUS, through the DECUS I ibrary, and
the RSX-11/IAS SIG, through the SIG tapes, have accumulated a
huge set of useful software. If you have news about any of
this software, please send to the Multi-Tasker c/o this co
lumn. This includes any problems discovered, patches to ex
isting software, short notes on I ibrary submissions you found
useful, or any other information you may have. Send submis
sions to Multi-Tasker Library News, c/o DECUS, One Iron
Way, MR2-3/E55, Marlboro, MA 10752.

DIR

David WeBlatt

The University of Newcastle
Department of Mathematics, Statistics and Computer Science

New South Wales, 2308

I would I ike to advise on the fol lowing problems with
"DIR" and "RNO", ~oth of which I have found very useful.

DIR

When used without the "V" switch om should list the la-

3

test versions of a file in the directory. As version numbers
are not included in the printout, the date and time are the
only evidence. Sometimes, it seems, DIR gets these wrong.
Presumably, it is picking up the first occurence in the
directory(?).

DIR will not wildcard on directories l•,•J so that it
becomes awkward to get sorted directories of complete vo
lumes. I have enclosed a cumbersome but effective solution
to this using a command file, DIRALL.CM!J. Basically, it does
a PIP [0,0J•.DIR/LI to get the I ist of di rectories on the vo
lume, then generates and executes a command file called
DIRALL.TMP, which it finally deletes. Perhaps someone in
tends to enhance DIR to provide some decent wi Id carding, but
meanwhile, this may be of use.

DIRALL.TEC

@i/en/ zj @i/[0,0J•.DIR$/@i/$/
hxb hk
mb@EWDIRALL.TMP$
EN$i .ENABLE SUBSTITUTION
$
< :EN$;G•OLI;
.OPEN NAME.TMP
.ENABLE DATA
'$BLANK'
==========='<DATE>' '<TI ME>'===============
Directory I isting of '$PAK'
dir >tx: -lev $
.ub s[$.ua sJ$ qa,.k 3c i,$ 3c iJ
$. ,zk qb, .xa -1 rr ga
1 '$blank'
.disable data
• c Io se
PIP TX:=NAME.TMP
PIP NAME.TMP;•/DE
$ZJ>
EX$$

DIRALL.CMD

; USE DIR UTILITY TO MAKE A COMPLETE SORTED
: DIRECTORY OF A DEVICE, ALL UIC'S
.; DWEB 12-AUG-82
.ENABLE SUBSTITUTION
.ENABLE GLOBAL
.SETS $BLANK "
.ASKS $PAK PACK IDENTIFICATION STRING
.SETS DFALT "DK"

4

RNO

.ASKS DEV DEVICE TYPE ['OFALT'J

.IF DEV = "" .SETS DEV DFALT

.ASKS DVN 'DEV' UNIT NUMBER
• ASKS OUT OUTPUT TO [DEFAULT Tl:J
.IF OUT = "" .SETS OUT "Tl:"
ASN 'OUT'=TX:
PIP TX:=OK7:[1,2JFORHFEED
HUNG OK7:[1,2JDIRALL, 'DEV' 'DVN':
<fDIRALL. THP
PIP OIRALL.THP;•/DE

ENO OF DIRECTORY LISTING OF 'DEV''DVN': TO 'OUT'
LISTING IOENT IS '$PAK'

An awkward prb I em with RNO is that Ii nefeeds, by them
selves, are not included in the count of I ines on a· page. It
is someti•es necessary to have a carriage return I inefeed
pair. This can make literal sections <.lit to .eli) give
rise to embarassing page overflows. Files transferred from
other systems <eg. in FLX RTll format> often have bare Ii
nefeeds for multiple blank lines, giving rise to this prob
lem. It is necessary to either write a filter program or do
a messy edit run (e.g. with teco and controls visible on a
VTIOO by -1,3:w) to name.RNO files.

SY SLOG

James G. Downward

KHS Fusion, Inc.
P.O. Box 1567

Ann Arbor, HI 4B106

It recently came to my attention that a fatal "BUG" ex
ists in SYSLOG for RSXllH V4.0 for those users who include
XDT in their system. Conditional assembly code to handle
source code only used by XDT was not included in the distri
bution source. If SYSLOG is run and the user selects QIO ac
counting, the system wi 11 promptly CRASH. The enclosed SLP
file solves this problem. I apologize for not catching this
problem sooner. Since we never use XDT on a system which
runs accounting, I never noticed the problem unti I a user who
generated XDT in their system called up to ask why his system
crashed.

5

To solve the problem (if you use XDl>, rename SYSLOG.HAC
to SYSLOG.VGN and create the following SLP correction file,
SYSLOG.SLP •

SYSLOG.HAC/AU=SYSLOG.VGN

-2,2
IO ENT /04.1/

-/V4.0 compatible/,,

"

JDG4
lS-Sep-82

Fix bug in $IOFIN intercept address
would crash systems with XDT

-/QADTB:/,. ,I; JDG4/
QADDTB:

DRESS

DRESS

I

.IFDF A$$TRPR$$DER

.WORD

• !FF
.WORD

.ENDC

$10FIN+12

$IOFIN

With XDT in system

1, I/O COUNT INlERCEPT AD-

with no XOT
1, I/O COUNT INTERCEPT AD-

!natal I SLP and type SLP <fSYSLOG.SLP. Then proceed
use SYSLOG.CHD to rebui Id SYSLOG.

Working Group News

Elizabeth Bai fey
Working Group News Editor

BUG in INSTALL for RSX-llM

to

Recently Robert Gezelter encountered a bug in INSTALL on
RSX-llH Versions 3.2 and 4.0.

The problem was that in certain case a block of the

6

task's header must be written to disk while INSlALL is pro
cessing COMMON/LIBRARY region references. Unfortunately the
code in module INSLB which processes the COMMON/LIBRARY
references uses RO to hold the PCB pointer for the common re
gion. Subroutine $IWHDR {which is called by INSLB> will des
troy RO if the current header b I ock is fu 11. lh is i neons is
tent hand Ii ng of RO by $RDHDR is f i •ed by saving RO upon
entry to $RDHDR and restoring RO upon ••it.

RSX prints the fol lowing error message when this condi
tion occurs:

Base mi smatoh in common block xx xx xx

The patches for the various versions of RSX-11M are as
fol I ows:

Version 3.2

-2,2,/;RLGOOJ/
.IDENT /04.1/

-39, ,/;RLGOOI/
RLGOOl 09-AUG-82

-229,229,/;RLGOOl/

~IX BUG IN $RDHDR WHICH
SOMETIMES DESTROYS RO

SRDHDR::MOV RO,-<SP> ; SAVE RO ON THE STACK
CMP R4, $HDRBF+512. ;HEADER BLOCK FULL?

-244,244,l;RLGOOl/
30$: MOV <SP>+,RO

RETURN
I

RESTORE RO FROM THE STACK
RETURN TO CALLER

VERSION 4.0

-2,2/;RLGOOl/
.IDENl /06.1/

-47, ,l;RLGOOJ/
R. GEZELlER - FIX BUG IN $RDHDR WHICH

SOMETIMES DESTROYS RO
-256,256,/;RLGOOl/
SRDHDR::MOV RO,-<SP>

CMP R4, $HDRBF+512.
-271,271,/;RLGOOl/
30$: MDV <SPl+,RO

RETURN
I

Wi 11 iam D. Burton Jr., Chairman of the Unsupported Ver
sions Working Group, reports that the same bug appears to be

7

in Versions 3.0 and 3.J. The symptoms appear to be either
"BASE ADDRESS MISMATCH ••. " or "PARAMETER MISMATCH •.• " error
messages.

The correction file for ll2,IOJINSR0l.MAC for RSX-JIM
Versions 3.0 and 3.1 is as follows:

-2,2,/;RLGOOJ/
. IDENT /03A/

-37, ,l;RLGOOJ/
RLG001 09-AUG-82 FIX BUG IN $RDHDR WHICH

SOMETIMES DESTROYS RO.
<ADAPTED FOR V3.0 AND V3.1>

-215,215,/;RLGOOl/
$RDHDR::MOV RO,-<SP>

CMP R4, $HDRBF+512.
-230,230,/;RLGOOl/
30$: MDV <SP>+,RO

RETURN
I

The Virtual Disk Working Group met in Anaheim at the RSX
SIG general working group session. Current active versions
of the virtual disk packages were discusses. It was decided
that the primary goal of the group at this time is to conso-
1 idate the various features into a complete software package
with documentation and command files. The code should be
conditional ized for RSX-11M and RSX-11M+ and upgraded to the
current version level. This package should then be field
tested by members of the working group. On completion of
software checkout, the comp I ete package wi 11 be submitted to
the RSX SIG tape and the DECUS I ibrary. At that time, the
working group wi 11 address ••tensions and enhancements to the
software package.

Any suggestions or enhancements that you have or would
like to see implemented should be mailed to the Chairman of
the Virtual Disk Working Group:

Mr. Robert Hayes
Union Carbide Corporation

P. 0. Bo• 3500
Oak Ridge, Tennessee 37830

8

Help Yourself

Help Yourself

David DiGiacomo
Help Yourself Editor

"Help Yourself" is a place for you to get your tough
questions answered. Each month, questions from readers wi 11
be pub I ished. If you have a question, send a letter to the
Multi-Tasker Help Yourself, c/o DECUS, One Iron Way,
MR2-3/E55, Marlboro, MA 01752.

We would also like to publish the answers to questions.
If you can help someone, contact the Multi-1asker. Your
answer wi I I be sent directly to the person in need and pub-
1 ished in the next edition.

This Month's Questions

RT Emulator

We are trying to I ocate an Rl-11 emu I a tor to run under
RSX-llM V3.2. MINITAB under RSX-llM requires a FPll floating
point unit since the taskbui Ider (RSX-llM SLOTKB) can not
cope with MINITAB unless FPll is ins ta I led. The RT-11 I inker
can, on the other hand, I ink MINI TAB without a FPll. We are
aware of RTEM-11 from DEC but are looking for a more economi
cal solution.

Friorik Marteinsson, Hus verslunarinnar, 108 Reykjavik, Ice
land

Hewlett Packard 3354

I have a PDP 11/45 running RSX-l!U and am trying to

9

communicate with a Hewlett Packard 3354 laboratory system via
a direct I ink. If anyone has successfully done this, please
contact me at your convenience.

Randolph P. Brown, U.S. Environmental Protection Agency
9311 Groh Road, Grosse lie, Michigan 48138

Fun Programs

We are new users with a PDP-11/23, RSX-llM V3.2 with
FORTRAN 4, using 2 RL02 disks. We are non-programmers at a
branch office and would like to obtain print-outs of some of
the smaller fun programs that we can install ourselves.

James R. Lee,
1455 Deming Way, No.

Barringer Resouces
15, Sparks, Nevada, 89431

Does anyone have generalized REGIS routines to drive a
VT125 from RSX-llM?

8. J. Checkowy, Saskatchewan Telecommunications
2121 Saskatchewan Drive, Regina, Saskatchewan S4P 3Y2

DOll Driver

0 u r new hardware con f i g u rat i on re q u i res that our PDP
l l//44s interface with up to four fu 11-dup I ex ser i a I synchro-
nous communications lines simultaneously. Investigations
into available interface boards have located only one,
Digital 's DOil, that is DMA and operates at the required baus
rates (7.2 to 56 KBaud).

Does anyone know of any cost-effective alternatives to
the DOll interface boards that are DMA and operate in the 7.2
to 56K Baud range?

We are uti I izing DEC's RSX-llM Version 4.0 operating
system. The DO driver software under this operating system
is strictly half-duplex. Has anyone been able to modify the

10

eKi&ting DQ driver software or develop stand-alone software
that permits the DO!! board to be operated in the
ful I-duplex mode?

Raylene Pak, Bendix Field Engineering Corporation
P.O. Box 67, Moffett Field, California, 94035

Continuous Flow Analyzers

We are runnig RSX-llM on a PDP 11/34 to collect data
from up to 32 laboratory instruments, either continuous flow
analyzers or HPLC's. The data collection system is working
well, but a current problem is the selection of peaks from
the raw data. The standard DEC laboratory subroutines pack
age is perfectly adequate for c.f. analyzers, but leas than
satisfactory for the more complex peaks from the HPLC's.
There are only throe peak-picking parameters available, com
pared with a minimum of ten for most commercial integrators
and the determination of peak hights and areas is often ina
dequate.

I am sure there must be some better PDP-11 compatible
software available for GC'a or HPLC's but I cannot find any
in the U.K. Do you know of any in the U.S.A., or if any of
your SIG can help. I would be grateful.

C.B. Taskis, Beecham Pharmaceuticals
Clarendon Road, Worthing, West Sussex BN14 8QH

It's in the Code

Jim Preciado
Column Editor

FORTRAN IV-Plua V3.0

D. Scott Campbe 11

11

Par Technology Corporation
4575 Hilton Parkway, Suite 200

Colorado Springs, CO. 80907

The FORTRAN IV Plus compiler has several undocumented
switches which produce some interesting, but probably not
very useful, variations on the listing obtained, and on the
lave I of compiler optimization. lhay are used as fol lows:

SWITCH

/FI: 2

/LI:n

/OP:n
the

EFFECT

Produces an internal dump of some sort,
perhaps the symbol table. Not sure about
effects other than values for the switch.

ORing 10<8> to the /Ll: switch produces a
dump of tho compi lor internal data
structures and pseudo object code. For
ex /LI:13 wi 11 produce the normal I isting
<1ource t p-sections t symbols + generated
macro) as wel I as the dump.

Alters the level of optimization used by

compiler. 0 i1 no optimization, 3 is the
highest <default).

Aside from given the curious something to look at, I can
see very little use for the dumps produced by the two
switches. However, if you suspect the compiler is making an
error due to improper optimization, specifying no optimiza
tion (/OP:O> will allow you to make this determination.

BDT V2.0

Mike Kabo

University of California, Los Angeles
1000 Veterans Avenue

Los Angeles, CA. 90024

For what it's worth, these are just a few lines to in
form users of EDT V2.0 of an undocumented featur• in keypad
mode which may or may not prove useful. Use of the gold +
"left arrow" or "right arrow" in keypad mode shifts the
screen window contents to what appears to be one tab stop (8

12

spaces) to the left or right, respectively. Neither the set
tab command nor alteration of the hardware tabs seems to have
any effect on altering this increment. lhis action only af
fects the viewing window and not the contents of tho file,
i.e., inclusion of characters either from tho keyboard or
from a buffer are inserted beginning at the true cursor posi
tion.

SYSLOGIN and SYSLOGOUT Command Files

Al Ion A. Watson

The Record
150 River Street

Hackensack, NJ 01602

When doing a SYSGEN it is hard to avoid discovering tho
fact that RSX-llM+ V2.0 supports a [1,2JSYSLOGIN.CMD file.
I t i s not at a II ob v i o us , u n I es s you happen to read the M CR
manual on the BYE command, that it also supports a
[1,2JSYSLOGOUT.CMD file. <And who thinks they need to read
about "BYE?> Basically, if there is a file cal led
[1,2JSYSLOGOUT.CMD, BYE wi I I execute it before signing you
off.

In the MCR manual under HELLO is a sample SYSLOGIN.CMD
file showing how to make it chain to a user's LOGJN.CMD file.
We put a command in ours to notify users if they had mai I (we
are u~ing the MAIL program from KMS FUSION currently and ex
perimenting with the one from the LBL tools package).

Using a similar concept 1 created a SYSLOGOUT.CMO file
that also chains to a user's LOGOUT.CHO file. It also noti
fies of unread mail. Here is ours:

.ENABLE SUBSTITUTION

.ENABLE QUIET

. TESTOEVICE TI:

.SETS TI <EXSTRl>(1:2l

.IF Tl = "VT" .GOTO BATCH
MA IL?
.DISABLE QUIET
.SETS FILE <LOGOEV>+":"+<LOGUIC>+"LOGOUT.CMD"
.TESTFILE 'FILE"
.IF <FlLERR> = I .CHAIN 'FILE'/LO

.BATCH: .EXIT

13

I al so made the f i I e check to see whether it is a batch
(virtual) terminal logging out, and if so did nothing.

When I was testing my LOGOUT.CMD f i I e, I put a PIP /FU
directory command in it. Lo and behold, after about 10 sec
onds, both AT and PIP were aborted by BYE just as if they
wore running when I logged off. Vet it did word for a while.
I figured there must be a timeout parameter somewhere in BYE.
Found it, called JNDTIM. Looked in the task build file,
U,24lBYEBLE.CMD, and found it is a task bui Id option, set to
octal 12 seconds by default. I decided a three minute time
out might provide enough time to do something useful at lo
gout and so changed it to 264 octal (180 decimal>. Rebuilt
BYE and it work's just fine.

There are some other interesting GBLDEF's there in BY
EBLD. Hero they are:

GBLDEF=•USRSB:O
GBLDEF=•MALSB:O

GBLDEF=INDTIM:264
GBLDEF=ABOTIM:O ;

ADDR OF USER SUBROUl!NE <O=NOT USED>
ADDR OF MAIL NOTIFICATION SUBROUTINE
<O=NOT USED>
; TIMEOUT FOR INDIRECl <SECONDS>
TIMEOUT FOR ABOURl AST <SECONDS>

I intend to investigate the code in BYE.MAC to see what
possible use might be made of the USER SUBROUTINE AND MAIL
NOTIFICATION SUBROUTINE options, but meanwhile I was wonder
ing if anyone else has already experimented. Anybody?

ED !TORS NOTE

When testing the SYSLOGIN.CMD file ensure that there is
another privileged CRT logined to the system. If you make a
mistake in the command file and AT aborts your terminal will
be set SLAVED. Also keep a copy of the command file in
another UIC so that if you have problems with the file the
version in [1,2] can be deleted to allow other users to
I og in •

14

Hints And Things

"Hints and Things·" is a monthly potpouri of helpful tid
bits and rumors. Readers are encouraged to submit items to
this column. Any input about any way to make life easier on
RSX/IAS is needed. Please beware that items in this column
have not been checked for accuracy. Send any contributions
to Multi-Tasker - Hints and Things, c/o DECUS, One Iron Way,
MR2-3/E55, Marlboro, MA 01752.

Preserving Resident Data Common

Phi I Rowland

Celanese Corporation
Charlotte, N.C.

An efficeint way to keek large applications synchronized
is to keep pointers and flags in a resident data common. A
resultant problem is how to keep the disk image (nearly) cur
rent. One way is to update the disk image. !:tut why have a
resident image.

This article describes how to periodically, and espe
cially during SHUTUP, update the disk image. This procedure
does not require creating new files and the updated data wi 11
be loaded at the neKt Reboot or Instal I.

Create the resident data common image as described in
the Task Builder manual. Carefully note the first data disk
block from the map, normally Block Group and is used to ln
stal I to properly load the image. This area should not be
disturbed and is the key to this procedure.

Create a program which fully describes the
and links to it. Use equivalences for clarity.
following <FORTRAN> code:

common data
Include the

1010

OPEN <UNIT=dd, NAME='[uicJname.tsk', TYPE='OLD',
1 ERR=KKK, FORM='FORMATTEO', SHARED>
READ (dd,10101 !SKIP LABEL GROUP
FORMAT<2<512Xll !TWO BLOCKS WORTH

15

1020
WRITE (dd,10201 KOM !WRITE COMMON
FORMAT <adjust for data type and length>
CLOSE <UNIT=ddl

Run the progran with some appropriate reschedule inter-
val, possibly one hour. Also include its eKecution in
SHUTUP.CMD.

Tricks with FMS-11

John P. Hoekstra
Yasunobu Suginaka

powell Quiring

Macatawa Computer Services, Inc.
1 West Fifth Street
Holland, Ml 49423

We recently decided to use FMS for a real time display
application. The named fields and shared forms features
seemed useful. There was only one problem, FMS does not sup
port dynamic (run time) changing of video attributes (bl ink
ing, etc.I. We require this to alert the user to any out of
range parameters.

The way around this problem that we are using is to de
fine the fields that wil I have varying attribute~ with no
video attributes and then define a separate disply only field
in a blank part of the screen that al lows any ASCII char
acters {we cal I this field ATTRIBI. The trick is that FMS
only writes the escape sequences for setting the attributes
of fields so defined. The video terminals associate the es
cape sequence with the fol lowing character stream. So if you
put out the required escape sequence for setting video attri
butes to the ATTRIB field any field after the put will be
displayed on the terminal with the requested attributes set.
After you have finished writing the fields you wi I I need to
put the reset attributes escape sequence to the ATTRIB field.

You can take this idea one step further by storing the
printable parts of the escape sequence for setting and reset
ting video attributes in the named data area of each form.
The application program can then get the field called BLINK
from the form, add an escape character to the beginning, put
the resulting string to the field ATTRIB, put out any field
requiring blinking, get the field called RESET and do the
same put to ATTRIB.

16

Tho advantage of this approach is that the task indepen
dent features of FMS are preserved (ie. change the forms la
yout without relinking). The disadvantage is that FMS
doesn't restore them if a screen refress is done.

CINT$ (Switch to System State)

Terry Coombes

Logica <Benelux>BV
Vasteland 12

3011 BL
Rotterdam, Nederland

The size of a privileged task mapped onto the l/O page
and a 20K RSX-llM executive is limited to SK words. Very vew
privileged tasks need to be mapped onto the exec at al I times
during their execution. Indeed, it is desirable that the
exec be protected from such tasks as much as possible. This
contribution al lows a privileged <PR:O) task to make use of
the ful I 32K virtual address space for its own code while re
taining the ab i I ity to map onto executive data structures and
code whenever necessary.

The following macro and subroutine exploit the
"i nterrupt-enab I e" feature of the Connect-to-Interrupt di rec
t i veto switch the task into system state. Once in system
state, the task has acces to the I/O page, the executive, and
4K words of its own code/data, starting at the macro cal I.
Code executed in system state must obey the rules set out in
the documentation for the CINT$ system di rec ti ve. The task
returns to task state by executing an RTS PC instruction.

Apart from the need to ensure that support for CINT$ has
been included during Sysgen, the only prerequisite is an un
used vector doubleword (preferably) near the top vector area
in I ow memory.

TINE

CODE

.MACRO

JSR
RETURN

.WORD

.WORD

SWSTK,RET,ERR,?LAB

RO,SWSTK ISSURE CONNECT DIRECTIVE
DUMMY INTERRUPT SERVICE ROU-

ERR ADDRESS O~ ERROR PROCESSING

RET CODE ADDR AFTER RETURN TO

17

TASK STATE

CODE

LAB:

CINT:

SWSTK::

CLR
CALL

JMP

.ENDM

.MCALL
ITBDFS
.GLOBL
CINH

MOV
MOV
ADD
MOV
MOV

10$: SUB
DIR$

BCC
CMP
BGT
TST

20: MOV
RTS

X.DSI<Rl> ENSURE NO CALL ON DISCONNECT
LAB PERFORM USERS'S SYSTEM-SlATE

@ $D!SIN FORCE IMMEDIATE DISCONNECT

CINT$,DlR$, ITBDF$

X.DSI,X.TCB
o,o,o,o,o,o

RO,CINT+C.INBA BASE IS IMMED. A~TER SWSTK
RO,CINT+C.INIS SO IS DUMMY INT SERVICE RTN

6,RO SKIP !SR AND USER RET ADDR
RO,CINT+C.INOI ADDR OF SYSTEM-STATE CODE
$V$$CTR,CINT+C.INVE ; VECTOR JS JUST LEGAL

4,CINT+C.INVE POINT AT NEXT VECTOR DOWN
$CINT TRY 10 CONNECT TO IT

SYSTEM-STAlE CODE ALREADY -

20$
CINT+C.INVE,
10$
-<RO>
-<RO>
RO

60

EXECUTED IF SUCCESSFUL
BACK TO CALLER IF FINISHED
IF NOT, CHECK IF ALL TRIED
TRY ANOTHER IF NOT
SKIP OVER SUCCESS REl ADDR
GET SUCCESS/ERROR RET ADDR

Swedish Pascal under RSX V 4

Seved Torstendahl

Te lefon AB LM Ericsson
S-126 25 Stockholm, Sweden

The "Swedish Pascal" compiler will not run if built
under RSX V4. The prob I em is that the comp i I er is he av i I y
over I aid and that a patch must be app Ii ed to the over 1 ay rou
tine because of the recursive use of procedures in Pascal.

For RSX V4 the fol lowing changes have to be made:

modify module RECURS in PASLIB.OLB using the fol lowing

18

procedure:

!. extract RECURSEG.MAC from SRCFIL.PAC using the uti I ity se
lect or an editor.

2. apply the following SLP file to it:

3
.!DENT /RSX.V4/

I 7, I 7
$AUf0+36 :; BR SEGENT
23, 23

MDV SEGEXIT,14CSPl ;RSX.V4
28, 30

JMP $AUT0+42 ;READ SEGMENTS WHEN
READY

TO SEGEXIT

START

99$:
40,

47'

9$: ''
I

JSR R4,$WRERROR
41

JSR R5,.SAVR1
MOV @ N.OVPT,Rl

49
JMP $AUT0+42

MOV CSPl+,R2

3. assemble: MAC RECURSEG;RECURSEG

;CONTROL TRANSFERRED

;NORMAL SEGMENT REAO

4. modify PASL!S: LBR PASLIB/RP;RECURSEG

- change patch in PASLJB.CMO fron 34:435 to 36:441 giving
the line

GBLPAT;RQOT:$AUT0+36:441 : BR SEGENT

After these two changes the compiler can be rebuilt
using TKB.

Speak Out

"Speak Out" ls a monthly column for readers to express
their opinions or to comment on a previous column. The arti
cles published in this column are an individual's viewpoint
and do not necessarily reflect the opinion of DECUS or the

19

RSX/!AS SIG. Readers are welcome to submit articles on any
subject concerning the RSX/IAS world. Send submissions to
Multi-Tasker - Speak Out, c/o DECUS, One Iron Way, MR2-3/E55,
Marlboro, MA 01752.

A Further Note on RX03 Problems

John G. Roth

University of Toronto Computing Services
Toronto, Ontario, Canada M!':>S !Al

We also use DSD-860 floppy/Winchester on some of our
systems and are disappointed about DEC's quiet decision to
drop double sided support. I was also able to patch the DY:
by comparing V3.2 and V4.0 source, but could not get the sys
tem to MOUnt doub I e sided diskettes. I compared my patch
with the patch given by Greg Liverman in the Sept/Oct Multi
tasker and found it to be the same (except for cosmetic
differences).

The key, which Greg mentions with respect to the execu
tive corruption problem, is in forcing MOUnt to do a sense
characteristics QIO. <It appears that MOU is trying to read
a block above the single side limit, in addition to reading
block 1. MOU detects incorrect volume labels, but returns
JE.RER errors if you specify the correct I abe I or /OVR.).
Not wnating to modify MOU, I wrote a 'one-I iner' to do the
sense and RUN it with a double sided diskette in the drive
before MOUnting. Thanks to Greg for pointing the way; and
I've sent DEC and SPR suggesting that MDU be fixed.

RSX Buzzwords

Ralph W. Stammerjohn

Monsanto
BOON. Lindbergh

St. Louis, Missouri 63167

The following is a alphabetical list of over 300 words,
phrases, and acronyms related to RSX/I AS. The Ii st covers a

20

wide variety of •ubjoch, from tho very ba•ic to executive
internals. The definitions are given in the RSX/IAS context
and not as they may globally apply to computers.

Many RSX terms have acronyms which are their more fami-
1 iar form. This document has the definition I isted under the
acronyms and points to term to the shorthand description.

For further information on RSX/IAS concepts and basic
information, the reader is refered to the Introduction to
RSX-llM and RSX-llM-Plus <AA-L763A-1C) and the RSX-11M Infor
mation Directory and Index <AA-2593F-TC). These two manuals
wi I I get you started with the rest of the RSX manual set.

CO,OJ
[0,0J is the notation for the master file directory.
[0,0J is tho directory that has entries for the user di-
rectories. Each user directory shows up as a file with
tho name gggooo.DIR;l - where ggg is the owner number
and ooo is the group number. For example, di rectory
(7,114] is a file in [Q,OJ with a name of 007114.DIR;l.
Other system files are also found in CO,OJ. These in
clude the index file (JNDEXF.SYS), disk block bit map
<BITMAP.SYS>, bad block file <BADBLK.SYS>, and account
file <RSXll.SYS). [0,0J does not normally show up in
wi Id card searches, but it can be directly named.

Abort
Abort means terminating a task abnormally. This can ei
ther occur because the task had an unexpected failure
due to a programming error <SSl>, another task issues
the executive directive ABR1$, or a user from a terminal
exp I icitly aborts the task. When a task aborts, the
RSX-llM executive cleans up al I the context for the task
as best it can. See also 1/0 Rundown and SST.

Account
Each RSX user is identified by a pair of octal numbers
and a ASCII name and must use either the number or name
to gain access to the system. These numbers and name
are cal led accounts. The two octal account numbers are
cal I ed the group and owner number. Each has a range of
1 to 377.

When you log in, the RSX system program HELLO uses ei
ther the account number or name to find a record in the
system account f i I e. This f i I e has a password which
must match your supplied string and various defaults for
your session. Your account number informs the system
what initial directory you want to work from and what
kind of access to files and other system facilities you
will have. The account numbers are directly tied into

21

ACNT

ACP

ACS

the protection mechanisms of RSX. Privileged users
<those having group numbers equal or less than 10) have
access to a 11 system commands and a I I parts of the sys
tem. Nonprivi leged users are I imited to everyday opera
tions that do not threaten the integrity of the system.
See ACNT, File Protection, and Privilege User.

RSX accounts are kept in a spec i a I system f i I e named
L8:[0,0JRSX11.SYS. ACNl is the RSX system utility for
defining, deleting, changing, and listing the current
accounts in this file.

ACP is an acronym for Anci 11 i ary Contro I Processor. An
ACP is a privilege RSX task with that is used to imple-
ment protocols for classes of devices. ACP's form an
integral part of the RSX 1/0 mechanism. Examples of ACP
tasks inc I ude Fl lACP for the Fi I es-11 disk and MTAACP
for ANSI labeled magtapes. See 1/0 mechanism.

ACS is the RSX system ut i Ii ty for defining and removing
checkpoint f i I es. See Checkpoint i ng.

Active Task List
See ATL.

Address Page Register
See PAR.

Anc i 11 i ary Contro I Processor
See ACP.

APR

ASCII

A SECT

See PAR.

ASCII stands for American Standard Code for Information
Interchange and is the standard coding used in RSX for
character information. ASCII defines a 128 character
set, which is stored in a PDP-11 in eight-bit bytes.

Memory al location for various code segments when a pro
gram is linked in established by attributes assigned to
program sections. ASt::Cl is a special form of the gener
al program section <PSECT> directive that defines an ab
solute segment. lhis tells the task builder that the
segment cannot be relocated and must be linked starting
at absolute virtual address zero. See PSECT.

22

AST
AST is an acronym for Asynchronous System Trap.
tem trap is a transfer of control that is caused
event. RSX defines two types of system traps,
nous <SST> and asynchronous <AST>.

A sys
by some

synchro-

An AST is a trap that occurs asynchronous to program ex
ecution. That is, the program has no direct control
over the precise time and point the event - and there
fore the trap - will occur. Examples of AST's include
1/0 completion, mark time eKpiration, or message sent
from another task.

A program specifies AST notification for different types
of events. When the event actua 11 y occurs, the execu
tive queues the AST to the task. The AST wi I I then in
terrupt the normal task execution the next time the task
is scheduled and control wi I I be passed to the AST trap
address. The executive knows when a task is executing
an AST and waits unti I the processing of the AST is com
p I et e before i n i t i at i n g another queued AST trap . A pro
g ram can also selectively enable and disable AST notifi
cation.

Asynchronous System Trap
See AST.

ATL
ATL stands for Active Task List. The ATL is a
priority-order list of all tasks actively competing for
system resources, i.e. in execution. This includes
tasks which may be checkpointed out of memory. See STD
and TCB.

Attach
Attach has two meanings in RSX. First, attach is an 1/0
function <IO.ATT> which grants a program exclusive ac
cess to a non-shareable device. Once a program success
fully attaches to a device, only its 1/0 requests will
be sent to the device. Al I requests from other tasks,
including their attach requests, will remain in the dev
ice queue.

Second, attach is a PLAS directive function that allows
a task to gain access to a region of memory. Once a re
gion is attached by a task, it can then map windows into
the region and directly address it. See PLAS.

Attachment Descriptor
Attachment Descriptor is an RSX executive data structure
stored in pool. It ties tasks to the various regions
and partitions in memory that they have attached.

23

Auto load
Autoload is the method of loading overlay segments, in
which the Overlay Run-Time routines automatically load
overlay segments when they are needed. The asterisk <•>
is the control symbol in overlay descriptor files that
te 11 s the taskbu i Ider to setup auto I oad vectors for the
module.

Auto load Vectors
A transfer of control table generated by the Task Bui Id
er to resolve a overlay reference. When an overlaid
routine is cal led, the reference is actually to the au
toload vector which passes control to the Overlay
Run-Time routines. lhese routines do any disk 1/0 ne
cessary to bring the routine into memory and then pass
control to the actual routine.

Autopatch
Autopatch is a part of the Software Maintenance Service
mechanism. On a irregular basis (about three to four
times a year>, Digital makes a machine-readable compila
tion of al I patches that apply to the current release of
the operating system and many layered products. The
media is typically magtape.

BAD

Autopatch kits are named alphabetically by their
occurence: Autopatch A, B, C, and so forth. There is
master documentation for the entire kit and specific do
cumentation for each set of patches to layered products.

The patches supp Ii ed by Autopatch usu a I I y come in two
forms: SLP correction files for distribution sources
and PAT source files for distribution object modules and
object I ibraries. The patches are always applied to the
original distribution, no manner how many Autopatch kits
may have been distributed in the past. Also, Digital
has us~d the Autopatch kits to distributed completely
new versions of software that did not make the original
distribution.

Autopatch kits are historically not entirely bug-free
and usually do not have a one-for-one relationship to
the Software Dispatch.

BAD is a RSX system uti I ity for detecting and recording
the bad blocks on a disk. BAD writes a worst-case pat
tern to al I blocks on a disk and reads the pattern back.
Any errors detected are stored in the last good block on
the disk where it is used by the disk initialization
program, !NI. BAD is also handles disks with last-track
information. See Bad Block Fi le.

24

Bad Block File
The bad block file is a RSX system file
([O,OJBADBlK.SYSl created when the disk is initialized
by IN!. The file contains al I the bad blocks found on
the disk by the BAD uti I ity or from the manufacturers
bad block data. Placing the bad blocks into a file
makes them unavai I able for al location by other files.

Bi h1ap

Block

A bitmap in RSX is a free/used mapping where each bit in
the set i n d i -cat es whet he r a i t em i s i n use o r f re e for
allocation. The bit is set on if the corresponding item
is free. The mapping within a word is from
right-to-left, i.e. bit 0 of the first word maps the
first item, bit 1 maps the second item, and so forth.

Two examples of bitmaps are the index file bitmap and
the disk allocation bitmap. The first indicates
free/used blocks in the index file. The second is for
block allocation for the entire disk.

A block is a unit of measurement for disks. In RSX, a
block is 256 words <512 bytes) and is the smallest ad
dressable unit of a disk.

The term block is also used to refer to an arbitrary
number of contiguous bytes used to store logically re
lated information, such as a Unit Control Block <UCB>,
Fi le Control Block (FCB>, or Task Control Block (lCBl.

Blocked Task

BOO

A blocked task is an active task that cannot execute.
Blocked tasks do not compete for the CPU but do compete
for memory at their current priority. A task typically
enters a blocked state by waiting for an event flag as
sociated with an event to set. lasks can also be
blocked by user commands.

BOO is the RSX system ut i Ii ty to boo ts trap a named f i 1 e
as a system image. The current system context is com-
pletely erased. See Bootstrap.

Boot Block
The Boot Block is the first block on a disk. This block
contains the code necessary to read a system image on
the disk into memory and start execution of this image.
The boot b I ock has the starting phys i ca I b I ock and
length of the image to read. Boot blocks are created by
the SAV program when the /WB switch is used. The PDP-11
ROH bootstrap loaders have only enough code to read this

25

block into memory and start its execution. The Boot
block code then does the second phase of booting up a
system. See also Bootstrap, !Nill, and SAV.

Bootstrap

BRO

BRU

Bootstrap is the process of completely starting a PDP-11
with fresh copy of the RSX system. In RSX, this is a
three step process. First, the hardware ROH bootstrap
code reads the first block of the disk into memory.
This block contains code to then read the entire system
image into memory. Finally, control is passed to the
system startup code, either !Nill for a virgin system or
SAV for a saved system.

BRO is the RSX system utility for outputting a message
to specified terminals, either a single terminal, al I
logged in terminals, or all terminals. It is typically
used to carry on a conversation between two terminals or
to notify al I users of some change in system status.

BRU is the main RSX system uti I ity for making backups of
disk volumes and restoring from the backup to a disk.
BRU is highly optimized for speed and has support for
various types of incremental backups and selective file
restores.

Bucket

BYE

Cache

Bucket i s the I/ 0 and d i s k storage u n i t fore RMS re I a-
t iv e and indexed files.

BYE is the RSX system utility for terminating a terminal
session. BYE cleans up any current activity from the
terminal by aborting tasks and marks the terminal logged
out. Unti I a correct login sequence is completed, RSX
wi I I not accept any commands from the terminal after a
BYE.

Cache refers to a technique of putting a high-speed,
I imi ted set of objects in front of a bulk storage of the
objects. Al I accesses for an object are first checked
to see if present in the cache, and if so, retrieved
from it to speed access. The cache wi I I have some al
gorithm for determining what objects to store and dis
card (look-ahead, least recently used, fixed).

On PDP-ll's, cache is typically used for memory.
High-speed memory is put in front of main memory on the
PDP-11/44/60/70. RSX supports the use of cache on those

26

processors. Caching is also sometimes used by operating
systems for disk blocks, but not currently by RSX sys
t e11s.

Catch-Al I

CCL

COA

Catch-All is a MCR mechanism by which it passes any com
mands with verbs it does not recognize to a task named
••• CA. The catch-al I task can then take whatever action
on the command line it pleases, including constructing
new commands and passing back to MCR. See CCL.

CCL stands for Concise Command Language and is the most
popular implementation of a catch-al I task for RSX. CCL
comes from the KMS Fusion kit on the SlG tapes. It is
table driven and supports option prompting, command
parsing, and MCR command submission.

COA is the RSX system uti I ity for outputting formatted,
annotated I istings of RSX crash dumps.

Checkpointing

CL:

CLI

Checkpointing is part of the process by which RSX makes
memory space available to tasks. If a tasks is waiting
to run and no memory is available for it, RSX will move
any lower priority task from memory to disk to make mem
ory space available for the task waiting to come into
memory. Tasks which are moved out of memory wi I I be
brought back into memory when either a task exits and
frees up memory space or they can checkpoint out an even
lower priority task.

Checkpo inti ng
an automatic
checkpointing
your tasks is

is invisible to the user and task and is
process. The typical way you learn the

is occuring is because response time of
slower than normal.

CL: is a pseudo device that is al ways present in a RSX
system. CL: stands for console I isting device and is
typically redirected to the console terminal. See Pseu
do Device.

CL! stands for Command Line Interpreter. CLI's are a
RSX system feature and provide the mechanism for a user
to communicate via a terminal with the operating system.
Whenever you sign onto a RSX system, a CL! is associated
with your terminal. The CL! then gets all unsolicited
input from the terminal and processes it according to
the command language the CL! provides. The two CL! 's

27

provided by Digital are MCR and OCL.

Clock Queue
The clock queue is a time-ordered I ist of future events.
The queue is kept in the executive pool and includes
mark ti me and task schedu Ii ng requests has we I I as
internal RSX executive timed events.

Cluster Library

CMP

CO:

Cluster I ibraries are two or more resident ~ibraries
that share the same virtual task address space, i.e.
the same APR. The overlay control code uses the PLAS
directives to correctly map the appropriate cluster Ii
brary when a routine is called.

CMP is the RSX uti I ity to compare two source files and
report the differences in a variety of ways.

CO: is the console output device. If console logging
is not included in a system, CO: is a pseudo device
typically directed to the console terminal. Otherwise,
the CO: device is a real device used as a gateway to
direct output to the console logging mechanism.

Command Dispatcher
The command dispatcher, MCR ••• , is a special RSX system
task that takes all unsolicited input from terminals and
passes to the appropriate CL! for that terminal. See
Unsolicited Input.

Command Line Interpreter
See CL!.

Command String Interpreter
See CS!.

Connect-to-Interrupt
Connect-to-Interrupt is a feature of the RSX executive
that allows a privilege program to connect its service
code to a interrupt vector. This al lows special devices
to be serviced directly from a task without the need to
write special device drivers.

Contiguous
Contiguous means a set of physical adjacent objects,
typically refering to disk blocks. In a contiguous
file, the entire block allocation is a set of physically
adjacent blocks. This means only one operation is need
ed to map a virtual block to logical block in the file,
simply adding the starting logical block number to the

28

virtual block number. Because contiguous files are much
more efficient to handle, RSX requires certain files,
specifically task images, to be contiguous.

Contro I Status Register
See CSR.

Co-Tree
One of one or more secondary tree structures within an
overlay structure. Al I modules contained in a co-tree
are accessible from any point in the main segment or a
I ower co-tree. Conceptual I y, a co-tree can be cons i
dered has a second, independent overlay structure within
a task.

Common Block
Common block refers to either a Fortran common area or
is another name for resident common.

Crash
A crash is a RSX system's response to an unstable condi
tion. When the executive encounters a condition it is
unable to handle, it stores certain volatile information
on a special crash stack and enters special code to re-
cord al I of memory to a scratch media. The system must
then be bootstrapped to continue normal operations. See
Crash Dump and CDA.

Crash Dump

CRF

Crash Dump is a copy of al I of physical memory at the
actual point the system encountered an exception it can
not handle. Special code in the executive has primitive
routines for recording memory to various scratch media.
This copy can be symbolically interpreted by CDA.

CRF is a slaved RSX task for processing cross-reference
information accumulated by either the Macro assembler or
task bui Ider and appending a cross-reference I isting to
either the macro listing or task map.

Cross-Reference

CS!

Cross-Reference is information which shows all occu-
rences of a symbol in either a macro source or task
bui Id. The Macro assembler and RSX task bui Ider record
each time a symbol is encountered. This information is
passed to CRF for actual cross-reference processing.

CS! stands for Command String Interpreter and is
of system Ii brary routines used to parse RSX
I ines. Almost al I RSX uti I ities use CS! for

29

a set
command
command

CSR

processing, so a consistent interface is provided across
utilities.

CSR stands for Control Status Register. [ach peripheral
on a PDP-11 has a set of registers that al low control
and operation of the device. These registers look I ike
memory locations at certain fixed positions. lhe main
register for a device is called the CSR by convention
and is typically, but not always, the first register in
the set. See 1/0 Page.

Dataset Descriptor

DCB

DCL

A dataset descriptor is a FCS control block that points
to the device, UIC, and filename portions of a filename
string.

DCB stands for Device Control Block. DCB's are the por
tion of the device databases which defines a class of
I ike devices, such as al I terminals, al I RKOS's, etc.
The DCB names the device, has the mapping to the device
driver, and specifies the legal functions serviced by
the device driver.

DCL stands for Digital Command Language. DCL has sever
al levels of definitions. DCL is a Digital standard for
command languages that is supported across many operat
ing systems. This provides a consistent user interface
when moving from RSX to other systems.

DCL is also the RSX implementation of the standard. It
is a task that is known to the system as a CL!. The
command dispatcher, MCR ••• , passes unsolicited commands
to DCL for parsing. DCL uses a table-driven mechanism
to parse the commands and construct actual MCR commands
to pass back to the command dispatcher for actual execu
tion.

DECnet
DECnet is a layered product for RSX that allows network
communications to other Digital operating systems.

Detach
Detach has two meanings in RSX. First, Detach is an l/O
function (10.DET> which releases a program's exclusive
access to a non-shareable device. See Attach

Second, detach is a PLAS directive function that
a task to release access to a region of memory.

30

a I I ows

Device Control Block
See DCB.

Device Driver
Device Driver is a RSX-llM/M-Plus term for the code
which actual services a peripheral. Device drivers form
the bottom of the RSX I/O mechanism and are perform the
basic I/O functions for the device: read, write, spe
cial control. Device drivers need not reside inside the
executive, but are mapped directly from the executive
and execute in kerne I mode.

Device Handler

DIC

Device Handler is a RSX-11D/IAS term for the code which
actual services a peripheral. Device handlers are like
device drivers, except that perform a part of their pro
cessing as a task and other service is kernel mode.

DIC stands for Directive Identification Code. Each RSX
system directive has control block <DPB). The first
word is the DIC, which consists of a low-byte directive
identifier and high-byte DPB size.

Digital Command Language
See DCL.

Directive
Requests for system functions from user tasks are cal led
directives. A user task forms a control structure that
identifies the directive and holds parameters and issues
an EMT instruction to pass control to the executive.
RSX supplies a complete set of Macro-11 macros for as
sembly language programs to construct and issue direc
tives. Asimilar subroutine I ibrary is provided for
Fortran code.

The RSX d i rec t i v es a I I ow tasks to ob ta i n task and system
information, measure time intervals, perform I/O, start
and control other tasks, communicate with other tasks,
manipulate the virtual and logical address space, wait
for events in the system, and exit from the system. See
DPB, DIC.

Directive Identification Code
See DIC.

Directive Parameter Block
See DPB.

31

Directive Status Word
See DSW.

Di rectory
A directory is
f i I es stored
the filename,
to the actual

a file that briefly catalogs a
on disk or tape. lhe di rectory

type, and version and also has a
f i I e.

set of
includes
pointer

RSX breaks directories into two classes. The MFD <Mas
ter Fi le Directory) is the di rectory that catalogs the
directory files. U~D's (User Fi le Directories) are the
actual catalogs for files.

Note that a f i I e's di rectory entry is independent of the
file itself and one can exist without the other. For
example, temporary files are created without directory
entries and therefore must be deleted when a program is
finished with them.

Disk-Resident
Disk-resident is that which resides on a disk until
needed.

Disk Swapping
Disk Swapping is a RSX mechanism for allowing tasks at
the same priority to compete equally for memory. Disk
swapping and its associated priority have nothing to do
with the actual priority a task competes for the CPU,
although obviously a task must be in memory in order to
execute.

Disk swapping works on the basis of a swapping interval
and priority. Each time a task is loaded into memory,
the executive sets the priority it competes for memory
to the task priority plus the swapping priority. At
each swapping interval, all memory priorities are decre
mented. The minimum value is the task priority minus
the swapping priority. After every interval, the execu
tives checks to see if some task waiting for memory is
now greater in priority than tasks currently in memory.
If so, a checkpoint is initiated.

For an example, consider a partition large enough to
hold either task A or Band swapping interval of 1 sec
ond and priority of 3. Both A and B have a normal pri
ority of 50. When A is loaded, its memory priority is
set to 53 and after one second drops to 52. When after
4 seconds the value drops to 49, the executive wi I I
checkpoint A out of the system and I oad in B. A wi 11
now have a priority of 50 and wait unti I task B's memory
priority drops to 49.

32

OMA

OMO

DMP

DPB

OMA stands for Direct Memory Access. OMA is the techni
que fast devices I ike disks use to transfer to and from
memory. The devices is told the starting physical ad
dress and size of transfer and then does the operation
without any further program control. The device will
then signal an interrupt when the transfer is complete.

OMO is the RSX system task for di sab Ii ng
disk or magtape volume. This process
mounting.

access to a
is called dis-

DMP is a RSX utility for outputting RSX files in a vari
ety of formats, including octal, ASCII, RADSO, and hexa
decimal.

DPB stands for Directive Parameter Block. A DPB is the
user task control structure that holds the information
for the executive to use when processing a directive.

Driver

DSC

See Device Ori ver.

DSC is a RSX utility for making a volume copy of a disk
to either another disk or magtape. DSC also performs
the function of compressing the una 11 ocated space on the
disk into one contiguous fragment.

D-Space

DSR

DSW

D-Space refers to one of the two addressing spaces of
the PDP-11 memory management unit. If enabled, all data
references use separate D-space PAR/PDR registers to re
solve the reference. The use of D-space al lows the vi r
tual address space of a task to expand to 64 KW's, 32
for instructions and 32 for data. Only RSX-llM-Plus
supports D-space.

DSR stands for Dynamic Storage Region. See Pool.

DSW stands for Directive Status Word. This is a special
word in a task which is used to return success/failure
information for all directives. RSX convention is a po
sitive number is directive success and a negative value
is some from of directive failure.

33

Dynamic Storage Region
See Pool.

EAE

EOI

EDT

EIS

ELI

EMT

EOF

ERL

EAE stands for Extended Arithmatic Element and is an ob
solete option used on early PDP-ll's for multiple and
divide support.

EDI is the traditional
I ine-oriented editor with
It is the easiest and least
ilable for RSX to learn.

RSX editor. It is a
a a very simple command set.
comp I ex of the editors ava-

EDT is the Digital standard editor and is available on
most Digital operating systems. EDT main power comes
from its video editting mode available for VT-series
terminals.

EIS stands for Extended Instruction Set. EIS instruc
tions are now standard features on PDP-11 processes and
include the MUL, DIV, ASH, ASHC, XOR, and SOB instruc
tions. EIS instructions are not avai I able for early
PDP-11 model <PDP-11/10 and 11/20) and is an option on
some <PDP-11/35 11/40>.

ELI is a RSX system uti I ity for control I ing the error
logging system. See Error Logging.

EMT is a set of PDP-11 instructions that cause a trap to
the executive through vector 30. EMT instructions are
used in RSX to pass control to the executive for direc
tive processing. Sometimes EMT is used as a synonym for
RSX directives.

EOF stands for End-of-Fi le and refers the the logical
end point of a file. EOF"s are a function of FCS/RMS
and not Files-11. Both FCS/RMS maintain the last point
data was written and do not al I ow read access beyond
this point.

ERL is the
logging.
which then
gin g.

RSX system task that actual
The executive passes error
records them to a disk file.

34

performs error
packets to ERL

See Error Log-

Error Logging
Error logging is a RSX system feature to record various
information about hardware errors and output annotated
I istings on the errors. The RSX error logging system
handles errors detected by devices when performing I/O
operations, interrupts that are unexpected, and memory
and cache parity problems.

Event Flag
An event flag is a single bit indicator that is used to
synchronize programs with events. A variety of RSX di
rectives al low ta&ks to read, clear, and set event
flags, as well as wait for an event flag to set. Also,
almost al I events in a RSX system, such as I/O comple
tion, can be associated with an event flag. When the
event occurs, the executive wil I set the event flag.

Event flags are addressed by number and range from I to
96. This range is further broken down into 3 32-bit
classes: local, global, and group global.

EXCOMl/2
EXCOMl/2 are the names of the executive
gions. These are partitions that holds
The executive maps the regions directly
them.

Executive

eKtension re
executive code.
when it needs

Executive is a general word for the code and processing
which comprising the basic part of the RSX operating
system.

Extend
Extend means to add additional space to the end of an
object. In RSX this usually means to add more virtual
address space to a task or more disk blocks to a file.

Extended Instruction Set
See EIS.

External Task Header
External Task Header's is a RSX-llM-Plus feature that
puts the task header directly in front of the task image
in memory and not in system pool I ike in RSX-llM.

FllACP
FllACP is the special RSX system task that implements
the Fi les-11 disk structure. FllACP is a ACP and pro
cess the Fi les-11 QIO's.

35

F4P

F77

FCB

FCP

FCS

FOB

F4P is shorthand for the Fortran-IV-Plus compiler. lhis
is a separate product and supports the ANSI 66 Fortran
standard with extensions. F4P assumes the avai labi I ity
of the EIS and FPP instructions.

F77 is shorthand for the Fortran-77 comp i I er. lh is is a
separate product with origins from F4P. F77 supports a
subset of the ANSI 77 Fortran standard.

FCB stands for File Control Block. FCB's are the execu-
tive data structure which hold the necessary information
about open files. fl!ACP creates a FCB for each time a
file is first opened on the system. FCB's can come from
either FllACP's internal buffer space or system pool
when that is exhausted.

FCP stands for File Control Primitives. These are the
various QIO's which make up the functions available from
a user pro g ram for access i n g f i I es on a d i s k or mag tape
volume.

FCS is shorthand for File Control Services.
set of routines I inked directly to a task
device independent I/O and primitive record
FCS subroutine cal Is break down the user
into specific QIO's for the actual device.

FCS is a
that provide

management.
I/O request

FOB is an acronym for Fi I e Descriptor Block. lhi s is
the main control structure used by FCS and contains in
formation about the type of I/O being performed from a
user pro9ram.

File Control Block
See FCB.

File Control Primitives
See FCP.

File Control Services
See FCS.

File Descriptor Block
See FOB.

36

File Header
A file header is one disk block the holds all infor11a
tion about a file. It includes attributes used by
FCS/RMS to determine the internal record structure and
the mapping pointers for virtual disk blocks to the ac
tual physical disk blocks.

File Name Block
See FNB.

File Specification
A file specification is the unique identification of a
file. The convention for file specification is:

ddnn:[g,mJfi lename.typ;version

The device name (ddnn:> is a two-letter mnemonic, an
octal number from 0 to 77, and a terminating colon. The
UIC specification ([g,o]) is a pair of octal numbers
that range from 0 to 377. UIC's are enclosed in brack
ets and the two numbers are separated by a comma. The
filename is one to nine character alphanumeric string
and the fi letype is a one to three character string.
They are separated by a period. The version number
<;version) is an octal number which is always preceded
by a semicolan.

File-ID
File-ID is a pair of numbers which uniquely identify
each file on a volume. The first number is the position
of the file header in the index file. The second number
is cal led the sequence number and is the number of times
the header has been used to for a file header. Whenever
a file is created, the current sequence number is incre
mented by one.

The mapping from a file directory entry to the file
header is by the Fi le-ID. If a Fi le-ID is already known
for a file, directory processing can be skipped.

Files-11

FIS

Files-11 is a term for the on-disk structure used by RSX
for files. It also applies to the various user func
tions available to access files.

FIS is a hardware option for the PDP-11/35 and 11140
processors that provide four simple instructions for
floating arithmetic.

37

Floating Instruction Set.
See FIS.

Floating Point Processor
See FPP.

FLX

FMT

FNB

Fork

FPP

FTB

FLX is a RSX system utility for transfering files
between RSX systems and other PDP-11 operating systems.
FLX understands RT-11 disk formats and DOS magtape for
mats.

FMT is a RSX system uti Ii ty for formatting disk packs.

FNB is shorthand for Fi I ename 8 I ock, This is the struc-
ture used by FCS to name files. The parsing logic of
FCS takes dataset descriptors and template filename
blocks to construct the actual FNB.

Fork is a term app Ii ed to the RSX executive's mechanism
for serializing access to the executive and its data
bases. Whenever an interrupt service routine needs to
drop processing down from interrupt level to executive
level, it performs a fork. An example of this would be
when a device error occurs and needs to be logged or the
interrupt service routine detects 1/0 completion.

The fork process queues an entry to the fork I ist. When
the executive finishes its current process, it checks
the fork queue before returning to a user task.

FPP stands for Floating Point Processor and is a
hardware feature for most PDP-11 CPU's to implement flo
ating point instructions. FPP supports integer to flo
ating conversion and single and double precision float
ing notation.

FTB is a RSX uti I ity for fast
only limited powers but is
for simple task bui Ids.

task bui I ding. It has
three to four times faster

Global Event Flags
Global event flags are event flag numbers 33 to 64.
These event flags are seen by al I tasks in the system
and therefore can be used for intertask communication.
For ex amp I e , convent i on at a s i t e co u I d say the a pp I i ca
t ion system is to shutdown gracefully if global event

38

flag 35 is set. All application tasks would then peri
odically check the state of this flag and being shutdown
operations if they find it set. See Group GI obal Event
Flags and Event Flags.

Global Symbol
A global symbol is a symbol defined in one object module
that can be referenced in another object module. Global
symbols are identified and defined by the Task Bui Ider.
An example of a global symbols would be the subroutine
name of a Fortran routine.

Group Global Event Flags
Group global event flags are event flag numbers 65 to
96. There can actually be many sets of these event
flags. The sets are addressed by a tasks group number.
Al I tasks at the same group see the same set of group
global event flags. There are executive directives to
create and destroy group global event flag sets and to
lock their existence.

Group Number
Group number is the first part of
pair. Group numbers are expressed
from I to 377. See Account and UIC.

the account
in octal and

<UI C >
range

Handler

Hang

See Device Handler.

When a terminal, task, or system is
doing nothing useful, it is said to
results from many different causes.
frequent are exhaustion of system
and program I oops.

going nowhere and
be hanging. Hanging

Some of the more
resources, deadlock,

Header
See Task Header.

$HEADR

HEL

$HEADR is a RSX system variable that has the address of
the current task header. This location is updated whe
never a context switch is made to another task.

HEL is a RSX system utility to initiate a terminal ses
sion. HEL identifies you to the system, establishes any
privileges you may have, and set the CL! to initially
use from the terminal. HEL also processes all requests
for HELP.

39

HOM
HOM is a RSX system utility to change the volume attri-
butes of a already initialized disk.

Home Block

ICP

The home block is the root information for a Files-II
disk volume. The home block is usually the second phy
sical block on a disk. If this block is bad, the home
block is placed at the first good block found at multi
ples of 256. The home block has all necessary informa
tion for Fl!ACP to find the rest of the Fi les-11 struc
tures.

ICP is the RSX system task for processing indirect com-
mand files.

Index File
Index File is the area on a disk structure which com
prises the control information for the Files-I! volume.
The index file shows up as an actual file on the disk
([0,0JINDEXF.SVSl. It contains the boot and home blocks
as its first two blocks, followed by other special in
formation. The majority of the index file is made up of
individual file headers.

Indirect Command File

IND

!NI

INS

An indirect command file is a file processed by the ICP
task. The command file consists of special directives
that control the processing done by ICP and commands for
ICP to pass to the CL!. The directives available in in
direct command files are sufficient to consider them as
a programming language: flow control, input and output,
and variable and character operations.

IND is the RSX system task for processing indirect com-
mand files available on RSX-llM V3.2 and earlier sys-
tems. IND was enhanced and renamed to ICP in RSX-!IM
V4.0.

!NI is the RSX system utility used to create the initial
Files-II on-disk structure. !NI creates a blank index
file and establishes the volume characteristics. Doing
an IN! on a vo I ume comp I ete I y I oses any previous struc
ture on the disk.

INS is the RSX system uti Ii ty for installing a task.
See Install.

40

Install
Install is a term in RSX that refers to making a program
known to the system and available for execution. All
programs are contiguous files known as task images.
Unti I a task image is installed, it cannot be executed.
Installing a task is a process of reading information
from a task header and constructing a TCB. See lCB.

Interrupt
The mechanism used by PDP-ll's to signal changes in dev
ice status is known as an interrupt. There are also in
structions <E.MT, TRAP, BPT, IOT> and illegal conditions
(odd address, illegal instruction) that are also inter
rupts.

When an interrupt occurs, the current program counter
and processor status are pushed onto the stack and a in
terrupt vector is used to supply a new program counter
and processor status. This causes control to pass to
code to service whatever specific condition is being
signaled.

Interrupt Vector
An interrupt vector is an transfer vector, processor
status pair in the first 1000 words of physical memory.
Each interrupt in a PDP-II are tied to a specific inter
rupt vector so control can be passed to the correct ser
vice code.

Interrupt Transfer Block
See !TB.

I/O Mechanism
I/O mechanism is a term applied to the various compo
nents used in a RSX system for device input and output.
The I/O mechanism can be broken down to four distinct
levels: FCS/RMS, QIO, ACP's, and device drivers.

FCS/RMS comprise the top level of the I/O mechanism and
provide for device independence and record management.
These are routines I inked directly to user tasks and
perform much of the bookwork required to interface with
the lower levels.

The QIO is the directive used to signal I/O from a user
task to the RSX executive. All I/O, including that ac
tually performed by FCS/RMS is done using a QIO. The
executive performs common processing on the request and
then forwards it to the specific function handler. This
can either be an ACP or device driver.

ACP's are tasks which implement high-level protocols for

4 I

classes of devices, such as the on-disk structure or
ANSI labeled tapes. Many of the QIO's issued from user
tasks are not specific to the device but instead routed
by the executive to ACP's. lhese tasks process the re
quest in a variety of forms, which include issuing QIO's
of their own for specific device functions.

Device drivers form the bottom of the l/O mechanism and
perform device specific I/O operations.

I/O Packet

An I/O packet is the internal executive representation
of a QIO directive. The I/O packet is the control in
formation passed to either an ACP or device driver for
further processing.

I/O Page
All PDP-ll's consider the last 4 KW's of their physical
address space as a special area known as the I/0 page.
Instead of memory, this space has device registers for
all peripherals on the system.

I/O Rundown

IOX

I/O rundown is a term for the state a task enters when
i t tr i es to ex i t but a I I outs tan d i n g I /0 cannot be com
p I et ed. RSX keeps track of outstanding I/O requests and
open files for a task and tries to clean these up when a
task exits. If an error in the system causes the clean
up to fai I, the task wi 11 get stuck in I/O rundown state
and remain in limbo until some other action is taken
(I ike rebooting the system>.

IOX is a RSX system utility for exersing the devices on
the system. IOX wi 11 place a heavy I/O load on as many
parts of the system as the user selects.

I-Space

!TB

I-Space refers to one of the two addressing spaces of
the PDP-II memory management unit. If enabled, al I in
struction references use separate I-space PAR/PDR regis-
ters to resolve the reference. I-space is also the de-
fault mode for al I references for memory management
units that do not have D-space implemented and for those
units that have D-space disabled.

!TB is shorthand for Interrupt Transfer Block. This is
an executive data structure used to pass control for an
interrupt to a loadable device driver. The interrupt
vector for the device points to the !TB and the !TB then

42

maps the loadable device driver and passes control to
its interrupt service routine.

KMS Fusion Kit
The KMS Fusion Kit is a major submission on the RSX SIG
tapes that covers two primary areas: RSX-llM accounting
and CCL. The kit has been submitted to many tapes and
is always found in (344,*l. lhe latest version for
RSX-llM V4.0 is on the Atlanta Spring 1982 tape.

Kernel
Kernel is a term used in RSX to refer to any type of ex
ecutive processing and in genera I a synonym for e><ecu
tive.

Kerne I Mode
Kernel mode is a processor state on the POP-11. It is
the most privilege of the three processor states (ker
nel, supervisor, user) and has no restrictions on tn
structions that can be executed. Al I executive process
ing is done in RSX in kernel mode. Switches to kernel
mode from higher levels are accomplished through the in
terrupt vectors, which set the vector address and pro
cessor state. When in kernel mode, the memory manage
ment unit uses the kernel address registers for virtual
to physical memory mapping.

Kernel Stack
The kernel stack is the stack used by the executive when
processing in kernel mode. It sits immediately above
the vector space. A PDP-11 that supports memory manage
ment has a separate stack pointer register for each pro
cessor mode. When a switch is made from one mode to
another, the stack pointer register is also switched.

Laye red Product

LB:

LBR

/\RSX layered product is a separate product avai I able
from Digital that requires RSX. Examples of layered
products include al I languages <F77, Basic-Plus-2), DEC
net, and SORT-11.

LB: is a pseudo device that is red i rooted when a system
is bootstrap to the disk booted from. LB: is the de
fault disk for almost al I RSX system files.

LBR is a RSX utility for creating and manipulating i-
brary files. See Library.

43

LCB

LOR

LCB is shorthand for Logical Contro I Block. An LCB is
an executive data structure and holds the information
necessary to translate a logical device assignment to
the real device. The MCR ASN command is used to create,
destroy, and I ist LCB's.

LOR is a RSX-llM system task that is directly interfaced
in the executive. LOR is used to load task images and
for the checkpointing of tasks to and from disk.

Library

LOA

A library is a file which contains related types of
files. The primary use of library files is to hold col
lections of macro definitions and object modules. The
Macro assembler and task bui Ider have faci I ities to re
trieve macros and objects from these I ibraries. RSX
also provides a type of I ibrary termed universal. Such
I ibraries can hold any type of file and are a convenient
method for packaging many smal I files.

LOA is a RSX system task that is used to read a loadable
device driver into memory and initialize the system so
the device can then be used for I/O operations. See Lo
adable Driver.

Loadable Driver
A loadable driver is a device driver that is not ini
tially bui It into the kernel executive. Instead, the
driver is loaded into a partition using LOA or VMR. The
advantage of loadable drivers is that the driver does
not take up space in the kernel executive. This frees
space for pool. See Dev ice Ori ver.

Loadable Database
Loadable database refers to a loadable device driver
that fol lows some specific conventions so the actual
device database is a part of the driver image on disk.
When the loadable driver is loaded into the system using
LOA or VMR, the tempi ate database in the image is used
to created the normal device database. Space for this
database comes from system pool. The advantage of load
able databases is that they allow new devices to be
added to the system without an entire new system genera
tion. Note, loadable databases are not destroyed when
the driver is unloaded.

Loader
See LOR

44

Local Event Flags
Local event flags are event flag numbers 1 to 32.
task has its own copy of local event flags.

Loca I Symbo I

Each

A I oca I symbo I is a definition that cannot be referenced
outside of the object module that has its definition.

Lo ca I User Group
See LUG.

Locked Block
A locked block is a block is a disk file that can only
be read and written by the task that locked it. This
mechanism is used in RSX-llM to allow multiple tasks to
open the same file and still safely allow update access
to the file.

Logical
Log i ca I is used in RSX as a synonym for physical. See
Logical Block, Logical Address Space, and Virtual.

Log i ca I Address Space
The to ta I amount of phys i ca I memory to which a task has
access rights. The memory management unit performs the
translation between virtual addresses and logical ad-
dresses. The PLAS directives allow a task to change
their virtual address to map different logical ad-
dresses. See Virtual Address Space.

Logical Block
A logical block is the actual block on the disk. FllACP
and the executive are responsible for mapping a file
virtual block to the actual logical blocks. The Window
Block has this mapping information. See Virtual Block.

Logical Control Block
See LCB.

Logical Device
A logical device is a device name that maps into a phy
sical device. Logical devices are created, I isted, and
destroyed by the ASN command and provide a useful method
for assigning devices independently of the actual dev
ices used at any one point in time.

Logical Unit Number
See LUN.

Lost File
A lost file is a file that has no directory entry and
therefore can only be accessed by file-ID. One function

45

LUG

LUN

MAC

Macro

of the VFY utility is to find lost files and create a
file directory entry for them.

LUG is an acronym for Local User Group. LUG's are smal I
groups of DECUS formed in a specific area by users with
spec if i c interest.

LUN stands for Logical Unit Number. A LUN is
associated with a physical device during a
operat i ans. Each task es tab Ii shes its own
dence between LUN's and devices.

a number
task's 1/0
correspon-

MAC is the name of the RSX assemb I er. The assemb I er
language is cal led Macro-11 and has an extensive set of
directives in addition to sup·port the actual instruction
notation,

A macro is a single assembly-language statement that ex-
pands into a predefined set of other assembly-language
statements. Macros may have arguments which are substi
tuted by the MACR0-11 assembler when expanding the
macro.

Macro Library

MAG

A macro I ibrary is a collection of macros packaged into
a file by LBR. The Macro-11 assembler has a directive
(.MCALL> which will cause searches of macro libraries.

MAG is a RSX system utility for manipulating magnetic
tapes.

Manual Load
This is a method of loading overlay segments
the user makes exp I icit calls in his task to
I ays and hand I e unsuccessful load requests.

Mapped
Mapped refers to a RSX system that has support
PDP-11 memory management unit.

Mapping directives.

in which
load over-

for the

A synonym for the PLAS feature of RSX. Refers to the
set of directives which allow a task to change its vir
tual addressing.

46

Mark Time
The Mark Time di rec ti ve cases an event to occur at some
interval in the future. lhe task can be notified when
the time elapses by either a event flag or AST.

MASS BUS
MASSBUS is a name for the disk and magtape controllers
used on a PDP-11/70. These controllers provide direct
access to 11/70 memory.

Master Fi le Di rectory
See MFD.

MCR
MCR stands for Monitor Console Routine, the prime inter
face for a user with a RSX system. MCR receives all
commands and either operates on them diretly or dis
patches them according to its special parsing rules.
MCR commands tend to use initials or acronyms in a
strict syntax, rather than the Eng Ii sh Ii ke syntax of
OCL.

Memory Management
Memory management refers to the hardware option on most
POP-ll's that al lows the system to use more than the
32KW's directly addressable in the PDP-11 16-bit ad
dress. The memory management system takes each 16-bit
address and maps it to the correct physical address.

Memory-Resident
In general, that which resides
The entity, as in the case of
may initially reside on disk.
memory.

inmemoryall the time.
memory-resident overlays,
Once I oaded it stays in

Memory-Resident Overlay

MFD

An overlay that shares virtual address space with other
overlay segments, but which resides in its own physical
memory. The segment is loaded from disk only the first
time it is referenced. Thereafter mapping directives
are issued in place of disk load requests.

Each Files-!! volume has a Master File Directory CMFD>.
This is a special file that contains pointers to all
User File Directories on the system. The MFD itself is
di rectory EO,OJ.

Monitor Console Routine
See MCR.

47

MOU
MOU is the RSX system utility for reading the Files-11
information found on a disk and setting up the necessary
RSX data st r u ct u res so the f i I es on the v o I um e can be
accessed.

MTAACP
AN ACP task that implement support for ANSI labeled
tapes. MTAACP uses Fi les-11 QIO's to access such tapes.

Multi-Tasker
The Multi-Tasker is the newsletter of the RSX-11/IAS
SIG. It has been pub I ished monthly since 1976, except
for the current year where budget cuts forced temporary
bimonthly schedules.

Multi-User Task

NL:

An RSX-llM-Plus or !AS task that has the read-only re
gion of the code shared among several copies of the same
task. Each task has its own copy of the read/writ~ data
areas.

NL: is the null device, a special device driver that
provides a sink for all output and EOF signals for all
input. The devices main use is to discard I isting out
put. This is done by assigning a logical device to NL:
whenever Ii stings are not desired.

Null Device
See NL:

Object Library
An object Ii brary
packaged into a
stands the format
modules from them

is a collection of object modules
file by LBR. The task builder under

of object I ibraries and get extract
to resolve global references.

Object Module
An object module is a file that is the output of the
Macro-11 assembler or the various RSX language com
pilers. Object modules have binary representation of
the code desired by the programmer and are used as input
to the task bui Ider for creating the executabl' image.

Object Time System
See ors.

OCB
OCB stands for Offspring Control Block. This is the ex
ecutive data structure used by RSX to tie offspring
task's to their parent tasks. OCB's are created in sys-

48

ODL

ODT

tem poo I and Ii nked to the offspring task.

ODL stands for Overlay Descriptor Language and is the
type of file supplied to the task builder to define how
it should setup overlays.

ODT is the On-line Debugging Tool. ODl is an object mo
dule that when I inked with a task al lows the user to ex
amine and deposit locations in the task, set breakpo
ints, and single step the task's execution.

Offspring Control Block
See OCB.

OTS
OTS is shorthand for Object Time System. Each language
avai I able on RSX has a set of object modules that are
used by the code generated by the language compiler.
This code, called OTS, is linked to user programs auto
matically by the task bui Ider. Because al I programs
written in the same language wi I I use the same OTS rou
tines, a common practice is to link the OTS routines in
a resident I ibrary and share the code among tasks.

Overlapped Seek
Overlapped seek refers to starting the search for a
specified disk block on one disk drive while performing
a disk transfer on another drive. Most of the disks
supplied by Digital have this ability but only
RSX-llM-Plus implements this feature.

Overlay Description Language
See ODL.

Overlay Runtime System
A set of system I ibrary routines that the task bui Id au
tomatically I inks into an overlaid program to perform
al I overlay load and mapping requests.

Overlay Segment
A segment that shares virtual address space with other
segments and is loaded when needed.

Owner Number
Owner number is the second part of
pair. Owner numbers are expressed
from 1 to 377. See Account and UIC.

49

the account
in octal and

< UIC >
range

Page Address Register
See PAR.

Page Descriptor Register
See PDR.

PAR
PAR stands for Page Address Register. It is al so re
fered to as APR or Address Page Register. PAR's are a
part of the PDP-11 memory management mechanism and there
are a total of eight PAR registers for each of the vari
ous addressing spaces (kernel, user, etc.) A PAR regi s
ter contains the starting physical address of a 4 KW
vi rtua I address.

Partition
A partition is a contiguous area in memory in which
tasks are loaded and executed and data can be stored.
RSX has three types of partitions: tasks, common, and
system. The first two are static and can be used for
tasks and data respectively. System partitions are al
located dynamically into subpartitions.

Partition Control Block
See PCB.

PAT

PC

PCB

PDP

PAT is a RSX uti I ity for making patches to object mo
dules. PAT is used by Digital to correct distribution
software which is not in source form.

PC stands for Program Counter and is register 7. lhis
is a special register and always contains the neMt ad
dress to fetch for instructions.

PCB stands for Partition Control Block. PCB's are the
executive data structure used to define each region of
physical memory that is in use. PCB's are I inked to-
gether in pool by increasing physical address. The
space between two successive PCB's is is the unused
space that can be al located.

PDP stands
tal first
a computer
name it's
around the

for Programmable Data Processor. When Digi
made computers, the industry would not accept
for less than $100,000. Digital decided to

machines Programmab I e Data Processors to get
prejudice of the time.

50

POR
POR stands for Page Descriptor Register. POR's are used
by the memory management unit to describe the length of
a page and the type of memory access al lowed.

Physical Address
The actual byte locations in real memory.

Physical Device

PIC

PIP

PLAS

PHO

PHT

Pool

A physical device is a real device. Logical and pseudo
devices will finally map into a physical device.

An acronym for Position-Independent Code. PIC al lows
the code to be placed anywhere in a task's virtual ad
dress space without relocating the actual addresses.

PIP is the RSX uti I ity for hand I ing fi las. PIP major
functions are copying files, listing directories, and
deleting files.

PLAS stands for Program Logical Address Space and is a
set of directives that allow a task to create and des
troy regions in memory and change its virtual mapping in
these regions. PLAS al lows a task, under program con
trol, to overcome the 32KW addressing restriction of the
POP-11 by providing a user interface to the memory man
agement unit.

PHO is a RSX system task for output a formatted dump of
a task or particular part of a task (cal I snapshot).
PMO is normally used to dump a task when it aborts so
you can find the reasone for the error.

PMT is the special RSX system task used for pool
toring. See Pool Monitoring.

mon i -

Pool refers to the space in the executive used to hold
RSX executive data structures. The structure of RSX-llM
1 imits the size of the kernel executive to the first
20KW of physical memory. Pool is whatever space is left
in this space after subtracting out the kernel code.

RSX-l!M-Plus extends the avai !able pool because the exe
cutive uses l/0-spaee and a second area for some struc
tures.

51

Almost
p oo I .
turned
common

every RSX function requires some allocation of
If the space cannot be found, and error is re

and the operation fails. Low pool is the most
type of fai I ure for a RSX system.

Pool Monitoring
Pool monitoring is a RSX executive feature that allows
some action to be taken when system pool is critically
low. The RSX executive keeps track of pool allocations
and wi I I notify the pool monitoring task <PMT) when var
ious threshholds are crossed. If pool becomes exhaust
ed, the pool monitor task wi I I take complete control of
the system and allow the system manager to abort select
ed task to recover their allocations.

Pool Fragmentation

Pop

Pool fragmentation refers to the state when enough pool
is free for most requirements but the space is so scat
tered into little chuncks that allocations cannot be
made. Pool allocation is by a first-fit algorithm and
over time the free pool wi II become fragmented.

Pop means removing an item from the stack.

Position Independent Code
See PIC.

Post-Mortem Dump
See PMO.

Privilege Task
A task that has no restrictions on the executive ser
vices it can use. A class of privilege tasks are mapped
to the executive and the I/O page and therefore can di
rectly address pool structures and devices.

Processor Status Word
See PSW.

Program Counter
See PC.

Program Logical Address Space
See PLAS.

Protection Code
Each f i I e has a protection code that spec if i es what ac
cess different categories of users have to the file.
The catagories are selected by comparing the UIC associ
ated with the file and the UIC of the program making the
access. RSX has four categories: system, owner, group,

52

and world. For each catogory, four levels of file pro
tection can be named: read, write, extend, and delete
access.

PSECT
Memory al location for various code segments when a pro
gram is linked in established by attributes assigned to
program sections. PSECT is the Macro-11 directive for
setting these attributes.

Pseudo Device

PSW

Push

QIO

QMG

Queue

A pseudo device is an entity treated as an 110 device by
tha system by is not a rea I device. Instead pseudo dev
ices are always mapped to an actual physical device.
Pseudo de v i c es a I I ow s programs to refer to de v i c es w i th
o u t actual knowing the real name. For example, LB:
always points to the system disk no manner which actual
disk is booted.

PSW is shorthand for Processor Status Word. The PSW is
the last word in the l/O page <and therefore in physical
memory space) and has the current execution status. The
PSW is broken into three bits fields. The first has the
current and previous processor state (kernel, supervi-
sor, and user) and determines what memory management re
gisters wi I I be used. The next is the processor priori
ty and ranges from 0 to 7. lhis controls what devices
wi I I be al lows to interrupt the processor. The final
bits are condition codes and have information on the re
sult of the last instruction.

Push means adding an item to a stack.

QIO is the directive RSX uses for al I l/O requests.

QMG is the RSX task that manages the queue of jobs di
rected to the batch processor, I ine printer, or other
spooled devices.

Q queue is a waiting I ine of items waiting to be pro
cessed. RSX has a queue manager for batch and spooled
jobs. Also, almost all executive lists are maintained
as queues ordered by task priority.

Queue Manager
See QGR.

53

RAD50
RAD50 is a coding convention for the uppercase alphabet
ic characters, decimal digits, blank, period, and dollar
sign. Three of these characters can be packed into one
word. The executive uses RAD50 packing for almost al I
of its character storage as a space saving too I.

Record Management Service
See RMS.

Reentrant Code
Reentrant
than one
all local

code means code that can be executed by more
process at a time. Reentrant code must keep

variables on a stack.

Region
A region is a contiguous block of physical
which a task, driver, resident common, or
sides. The PLAS directives allows tasks to
create regions.

memory in
Ii brary re
dynami cal ly

Remove
Remove means to eliminate the TCB for a task so
no longer be executed.

it can

Resident Common
A resident common is a partition that holds data.
Resident common s can be mapped by many tasks at the
same time. This a 11 ows data to be shared and exchanged
between tasks.

Resident Library

RHO

RMS

A resident I ibrary
tions. Resident
at the same time.

is a partition that holds instruc
libraries can be mapped by many tasks
This a 11 ows reentrant code to be

shared among many programs, reducing the physical memory
needed to run the programs.

RHO {also known as RMDEMOl is the RSX system uti I ity for
dynamically displaying the system status on a CRT
screen. RMD w i I I update its di sp I ay once a second so
you can visually see tasks enter and leave memory.

RMS stands for Record Management Services and is the
more sophisticated of the two sets <FCS/RMS> of 1/0 rou
tines avai I able on RSX systems. RMS has routines for
normal sequent i a I l/O and more comp I ex record management
of relative and index {keyed) files. RMS is common to
many other Digital operating systems so programs written
using RMS 1/0 are usually more portable that those writ-

54

ten with FCS.

RNO
See Runoff.

Round-Robin

RPT

Round-robin is a RSX system feature that gives tasks at
equal priority in memory equal access to the CPU.
Without round-robin scheduling, the executive would give
the first task at a priority the CPU and not interrupt
it for other tasks at the same priority. Round-robin
works by rotating tasks at the same priority in the ATL
at some fixed interval and causing a significant event.
Note, round-robin scheduling has no effect on memory al
location. See Disk Swapping.

RPT is the RSX system ut i Ii ty for producing error I og
reports. RPT reads the binary information accumulated
by the error logging system and outputs annotated infor
mation on each error.

Runoff

SAV

Save

SCB

Runoff is a DECUS uti I ity for document preparation.
Runoff takes a mixture of free-formatted text and for
matting commands to output justified, pag i nanted output.
This document is prepared using Runoff.

SAV is the RSX system task that takes a running, quiet
RSX system and copies it the the system boot f i I e. It
then restarts the system from this file.

Save in RSX refers to setting up a bootable system using
the special system task SAV.

SCB is an acronym for Status Control Block and is the
RSX executive structure that has the information about
each device controller in the system.

Secondary Pool
Secondary
executive

pool is a RSX-llM-Plus feature where certain
structures are al located from a second pool
the system partition. This pool can be any
he I ps i no rease the ava i I ab I e space in system

I ocated in
size and
p oo I •

Seek Optimization
Seek optimization refers to a technique of examining the
waiting 110 requests to a disk and selecting the next

55

request based on some algorithm that
time. This functionality is
RSX-l!M-Plus.

reduces disk
only available

l/O
on

Send-by-Reference
Send-by-Reference is a set of directives that al low two
tasks to exchange information on a region. These direc
tives area part of the PLAS functions.

Send/Receive

SHF

Send/receive refers the mechanism of one task sending a
fixed-length (13 word) message to another task.

SHF is a special RSX system task that moves tasks in a
system partition to make more contiguous free space ava
ilable for loading tasks from disks. Whenever RSX tries
to load a task in memory and fai Is, it starts the
shuffler which attempts to consolidate the partitions
and free space at the top of the main partition.

Shuffler

SIG

See SHF.

SIG stands for Special Interest Group. SIG's a major
part of the DECUS structure and subdivide DECUS into
members with similar interest. DECUS currently has 23
active SIG's. Symposia sessions are oriented by SIG's
and each SIG pub I ishes a newsletter.

SIG Tapes
At each symposia since !S77, the RSX SIG has collected
software from members and put on one master tape. This
tape is then copied and distributed via LUG's to all in
terested members. This collection is cal led the SIG
tapes. Since the success of the RSX tapes, most other
SIG's have initiated similar efforts.

Significant Event
A significant event is declared whenever there is a
change in RSX system status, i.e. when an event occurs.
When significant events are declared, RSX will review
the status of al I blockes tasks to see if the event has
unblocked them and made them eligible to run. Note,
setting an event flag is often associated with a signi
ficant event but is not a significant event itself.

Slaved Terminal
A slaved terminal is a terminal
CLl's. Therefore no program
slaved terminal using MCRIDCL.

56

that has no access to
can be initiated from a

SLP
SLP is the RSX uti I ity used to make corrections to
source f i I es • SL P i s a I i n e - or i en t e d e d i to r that a c -
cepts text files with edit changes.

Software Performance Report
See SPR.

SP
SP stands for Stack Pointer and is a special PDP-11 re
gister <RS>. The various transfer control instructions
use this register to save and restore the ca 11 i ng
status.

Special Interest Group
See SIG.

Specified AST
A specified AST is an AST a task presets so it can re
ceive AST notification if the event occurs in the fu
ture. Examples of specified AST's include one for when
a message is sent to a task or the system recovers from
powerfai lure. There is a separate directive for each
type of specified AST.

SPM-llM
SPM-llM is a layered product for RSX-llM that collects
RSX performance data and summarizes this data for ana
lysis. SPM puts hooks into the executive and records
the occurence of almost every system event.

Spooling

SPR

SRO

SST

Spooling refers the the process of sending 1/0 to a disk
file and then queuing for transfer to sequential,
non-shareable devices like line printers.

SPR stands for Software Performance Report and is the
form used by Digital for users to report errors in
software.

SRO is a popular DECUS utility that has a wide variety
of directory operations. lhe major function is to sort
directories and select files based on a wide variety of
criteria.

SST is an acronym for Synchronous System Trap. A system
trap is a transfer of control that is caused by some
event. RSX defines two types of system traps, synchro
nous <SST) and asynchronous (AST>.

57

Stack

An SST is a trap that occurs synchronous to program exe
cution. That is, the trap occurs as a direct result of
program execution and wi I I always occur in the same
place if the same instructions are executed. SST's usu
a I I y i n d i cat e a program error but can a I so be caused by
specific instructions. Examples of SST'a include odd
address errors, TRAP instructions, and breakpoint traps
<BPT instruction).

A program can specify SST notification for different
types of SST's. When the trap actually occurs, the exe
cutive interrupts the current execution and paases con
trol to the SST service routine. If no SST routine is
enabled, the executive wi 11 abort the task.

A stack is a last-in, first-out temporary storage area,
The instruction set on the PDP-11 has certain optimiza
tions that make stack operations easy.

Stack Depth
Stack Depth refers the mechanism the executive uses to
determine what is the current execution stato and what
kind of transition just took place. A system variable,
$STKDP, is decremented each time there is an interrupt
and incre-mented each time a return from interrupt is
made. The variable is set to one if running in a user
task, zero if at executive state, and negative if pro
cessing device interrupts.

Stack Pointer
See SP.

STB

STD

STB is an acronym for symbol table and is a form of file
output by the task builder. STB files hold the defini
tion for al I global symbols in the task image.

STD stands for System Task Directory and is a I inked
list of all TCB's. lherefore, tho STD is the list of
all installed tasks in the system.

$STKDP

Stop

$STKDP is the global RSX system variable uaed as the
stack depth counter. See Stack Depth.

State
Stop state is a special wait state for tasks. A task in
stop state does not compete for either the CPU or memo
ry. It can be swapped out by any task, including those
of lower priority. Otherwise, a task in wait state does

58

not compete for the CPU but doe& retain ita priority as
far as memory al location is concerned.

Subpart it ion
A subpartition i& a subdivision of a system partition
that is made by RSX to hold tasks and regions created by
the PLAS directives.

Supervisor Mode
This is one of the processor modes of a PDP-11 and has a
separate set of memory management registers and stack
pointer. Supervisor mode support is only available with
RSX-11M-Plus for supervisor libraries. This allows re
sident libraries to be used without subtracting from the
task's user mode address space.

Swapping

SY:

See Disk Swapping.

SY: is a pseudo device that stands for the users
fault disk device: Each user has a unique
assign11ent. This allows easy distribution of
across various disks.

de
SY:

use rs

Synchronous Syste11 Trap
See SST.

SYSCM
SYSCM is the executive module that holds all RSX global
variables. These include the listheads for all execu
tive data structures, current time information, and
other executive control fields.

Sysgen

SYSTB

Sysgen refers to the process of creating a unique
system for your specific site needs. The process
volves selecting the specific features and devices,
sembling the executive source modules for those
tures, I inking the executive and system tasks, and
ting up the system as the bootable RSX system.

RSX
in
as-

fea
set-

SYSTB is the executive module that holds the device data
bases. This file is actually created on the fly by the
sysgen process so it is unique to your system.

System Control Block
See see.

59

System Control led Partition
A system controller partition is a type of partition
that the RSX system controls allocation within. RSX
will automatically create subpartitions in a system par
tition whenever a taek load is requested.

System Library
The system I ibrary i& an object I ibrary that lKB de
faults to to resolve and undefined symbols after search
ing al I other named I ibrariea. The system I ibrary is
named LB:Cl,lJSYSLIB.OLB and typfcally holds the FCS
routines, overlay system, and default language OTS mo
dtiles.

System State
System state mean• executing in the executive mode.

System Task Directory
Sea STD.

Task
The task is the fundamental, executable RSX program
unit. The tradition computer program in a RSX system is
a ta1k. Tasks are Qreatad by the task builder from ob
Ject modules and libraries.

Taak Bui I dar
See TKB.

Task Control Block
See TCB.

Task Header
A Task Header is the low virtual address of a task that
hold the task'• initial and current context.

Task loader
Sae LOR.

TCB

TECO

TCB stands for Task Control Block and is the RSX exeou
tive structure that holds al I the information necessary
to run a task. TCB's are created when the task is in
stalled and destroyed when it is removed. The STD is
the list of all TCB's. The TCB's in this chain• that
are for active tasks are also chained together in a sep•
arate list called the ATL.

TECO is a character-oriented text editor avai I able
through DECUS and the RSX SIG tapes. lECO js the one
editor available on all Digital operating systems. Its

60

command &et i& &o powerful that lE.CO could properly be
considered as a programming language.

Telephone Support Center
See TSC.

Tl:

TKB

TKN

TI: is a special RSX device that always references the
terminal from where a task was initiated. A program can
do I/O to the user terminal by assigning a LUN to device
TI: and the executive will map to actual terminal.
Normally LUN 5 defaults to TI:.

TKB is the RSX task bui Ider. Essentially, TKB takes ob
ject modules as input and relocates the coda to the cor
rect virtual address and resolve& global references.
TKB outputs a task image. This is a file which is ready
to be installed and executed.

TKN is a special RSX system task that performs the error
message processing when a task terminates abnormally.

tTKTCB

TPARS

$TKTCB is a RSX system variable that alway& contain& the
address of the TCB for the current, active taak.

TPARS is a finite-state parsing mechanism that can be
used to proceaa any grammar. TPARS ia implemented by a
set of macros the user usea to de1cribe the grammar and
an object module that parses the supplied grammar ac
cording the atates setup by the macros.

Transparent Spooling

TSC

UCB

Transparent spooling refers to capturing al I output to a
spooled device (I ina printer) and writing it to disk.
Whan the 1/0 ia complete, the mechanism queues the out
put for printing to the device. RSX-11M does not have
transparent spooling. IAS and RSX-11M-Plus have this
mechanism.

TSC stands for Telephone Support Service. TSC is a 24
hour, seven day a week service for answering questions
about RSX.

UCB is an acronym for Unit Control Block and is the exe
cutive data structure for each device unit.

61

Uf"D

UIC

UMR

UFO stands for User File Directory and is a file that
contains the names of all files found in the user ac
count. UFO is also the RSX system task that creates the
initial empty directory fi lu.

UIC is the two-number user identification code that RSX
uses to identify different people. UIC's are expressed
in the form [g,ol with "g" being the group number and
"o" the owner number. People working together are typi
cally put in the same group because the file protection
mechanism allows group members to have access to each
others files.

UMR stands for Unibus Mapping Register and is the
hardware feature used on 22-bit PDP-ll's <PDP-11/70 1

PDP-11/44) to map the 18-bit Unibus to the 22-bit memo
ry.

Unibus
Unibus ia the common 1/0 bus structure used on a PDP-11
to connect devices to the CPU.

Unibus Mapping ~egister
See UMR.

Unit Control Block
Su UCB.

Universal Library
A univeraal library is a library file that holds a com
mon set of files. The librarian utility, LBR, is used
to create universal librariaa and extract and list the
individual contents.

Unsolicited Input
Unsolicited input
no program has
has the terminal

User Fila Directory
See UFO.

is any terminal input that'occurs when
an outstanding read to the terminal or

attached or slaved.

User ldantif ication Coda
Sea UIC.

User Mode
User mode refers to execution of user programs as op
posed to execution with the RSX executive.

62

VCB

VFV

VCB stands for Volume Control Block. VCB's are the exe
cutive data structure used by ACP's to hold information
unique to each mounted volume.

VFV is the RSX utility for checking the integrity of a
Files-II disk volume. VFV will also correct many of the
co mm on err o rs that can occur w i th a F i I es -11 d i s k •

Virgin System
A virgin system is a RSX executive task image file that
has never been booted or modified using VMR. lhe recom
mended practice is to copy the virgin system to another
file before setting up with VMR and booting.

Virtual
The term virtual means from the point-of-view of the
program as opposed to logical which means from the
point-of-view of the system or hardware.

Virtual Address
Virtual address is the address within a task and from
the task's point of view. Virtual addresses are limited
to 32 KW's (0-177777> and can be dynamically changed
using PLAS directives to different logical addresses.

Virtual Block
Virtual blocks are blocks in a file. These are numbered
starting from one.

Virtual Disk
Virtual disk is a program on the RSX SIG tapes that al
lows contiguous f i I es to be treated as disks.

Virtual Terminal

VMR

Virtual terminal means a device that functions as a ter
minal but is not associated with hardware. Instead a
program acts as the terminal keyboard and screen.

VMR is the RSX utilit.y for setting up the initial state
of an RSX system when it is booted. VMR commands are
identical to MCR, except where MCR operatea on the data
structures i n po o I , V MR operates on a d i s k f i I e •

Volume
Volume is the largest logical unit of the file structure
and is equivalent to a disk pack. Volumes are then bro
ken down into files.

63

Volume Control Block
See VCB.

Wait State
Wait state refers to a task which is active but not com
peting for the CPU. lhe task is waiting on some event
or has its execution suspended.

Wildcard
Wildcard is a special character in a file specification
that matches anything for the field. RSX has two forms
of wi ldcards: asterisk (•)for matching al I characters
in the position and percent sign (7.) for matching exact
ly one character.

Window
A window is a task's view of a region of memory.
Windows are controlled by the PLAS directives and can be
moved under program control to any point in a task's re
gions.

Window Block

XDT

ZAP

Window block is the RSX executive structure used to map
virtual blocks in a file to the actual logical (physi
cal) disk blocks.

XDT is a part of the RSX executive for debugging of exe
cutive code. XDT uses a subset of DDT commands. From
the system console, a programmer can set breakpoints in
the executive, examine and modify locations, and stop
the execution of the executive. When in XDT mode, the
executive does not process any normal activity.

ZAP is a RSX uti I ity with ODT-1 ike commands for examina
tion and modification of disk files. ZAP has specialc
features to easy use with task image files.

BRU Sorting Bug - A Wrapup

Carl T. Mickelson

Goodyear Aerospace Corp
D470/G3

1210 Massillon Rd.
Akron, Ohio 44315

64

In an SPR submitted to DEC in May, and published in
the Multi-Tasker in July 82, I outlined a bug-fix to the
LBNORD module of BRU. The last issue of the
Multi-Tasker contained a fol lowup article in which I
presented a correction to LBNORD to stack the larger
partition of the sort I ist rather than only the left
half as originally distributed by DEC.

This article is written to correct an error in the
patches that appeared in that article. Fol lowing are
the corrected patches - note that on I y one instruction
has changed from that published earlier. Also, the
checksum for the LBNORD.POB patch object module is
changed by the corrected instruction.

PAT
LBNORD.OBJ;2=LBNORD.OBJ;l/CS:10755,LBNORD.POB;l/CS:33041

The patch for V4.0 given here is slightly different
in patch locations than the V3.2 patch due to other
changes DEC made in the base I ine version for V4.0.
Since we are still running V3.2, I have not been able to
try this patch on a V4.0 BRU.

• TITLE LBNURD FOR V3.2 BRU

; MODIFICATION:

1982>

5.1.17.9

CORP.

STACKING

ALWAYS

BUT MAY

CORP.

.PSECT

.BLK.=.

01.2 -- FIX SORT LOGIC ERROR IN LBNDRD <21 MAY

THIS IS PART OF THE REAL FIX FOR

C. T. MICKELSON, GOODYEAR AEROSPACE

AKRON, OHIO 44315 <216) 796 - 2388

01.3 -- FINISH CORRECTION TO OUICKSORT BY

LARGER PARTITION OF LIST RATHER THAN

THE LEFT PARTITION THIS ELIMINATES
POSSIBILITY OF A STACK OVERFLOW ERROR

MAKE PAST BRU TAPES INCOMPATIBLE.
C. T. MICKELSON, GOODYEAR AEROSPACE

AKRON, OHIO 44315 <216) 796 - 2388

65

.!DENT /01.2/

.=.BLK.+436
DEC $QSTAK+200.(R5l

.!DENT /01.3/

.=.BLK.+12
I: .BLKW
J: . BLKW
!STACK: .BLKW
JSTACK: .BLKW

.=.BLK.+200
LOOP:

.=.BLK.+362
JSR PC,PAT013
NOP

.=.BLK.

.PSECT
PAT013:

$$PAT

I ,RO
RO,RO
ISTACK,RO
JSTACK,RO

MOV
ADD
SUB
CMP
BLE
MOV
RTS

10$; This instruction was BGE 10$

10$:
TST
MOV
MOV
DEC
MDV
ADD
MOV
JMP

.END

$QSTAK-2<R5l,$QS1AK<R5l
PC

<SP>+ ;CLEAN UP STACK
$QSTAK+l98.<R5l,$QSTAK+200.<R5l
I, RO
RO
RO,$QSTAK+198.<R5l

2,RO
RO,SQSTAKCR5>
LOOP

. TITLE LBNORD FOR V4.0 BRU

; MODIFICATION:

01.3 -- FIX SORT LOGIC ERROR IN LBNORD <21 MAY
1982)

THIS IS PART OF THE REAL FIX FOR
5.1.17.9

C. T. MICKELSON, GOODYEAR AEROSPACE

66

CORP.
AKRON, OHIO 44315 <216) 796 - 2388

ALSO, RE.MOVE. "FIX" OF 5.1.17.9

01.4 -- FINISH CORRE.Cl ION TO QUICKSORT BY
STACKING

LARGER PART!l!ON OF LIST RATHER THAN
ALWAYS

THE. LEFT PARTITION lHIS ELIMINATES
POSSIBILITY OF A STACK OVERFLOW ERROR

BUT MAY
MAKE PAST BRU TAPES INCOMPATIBLE.

C. T. MICKELSON, GOODYEAR AEROSPACE
CORP.

AKRON, OHIO 44315 <216) 796 - 2388

.PSECT

.BLK.=.

.!DENT /01.3/

.=.BLK.+56
MOV 20. ,R2 :Remove "FIX" of 5.1.17.9

.=.BLK.+472
DEC $QSTAK+200.<R51

.!DENT /01.4/

.=.BLK.+12
I: • BLKW
J: .BLKW
!STACK: .BLKW
JSTACK: .BLKW

• =.BLK.+234
LOOP:

.=.BLK.+416
JSR PC,PAT013
NOP

.=.BLK.

• PSECT
PAT013:

$$PAT

I,RO
RO,RO
JSTACK,RO
JSTACK,RO

MOV
ADD
SUB
CMP
BLE
MDV
RTS

10$: This instruction
$QSTAK-2<R5),$QS1AK<R51
PC

10$:
TST <SP>+ :CLEAN UP STACK

67

was BGE 10$

MDV
MOV
OEC
MOV
ADD
MOV
JMP

$QSTAK+198.IR51,$QSTAK+200.IR5)
I, RO
RO
RO,$QSTAK+l98.<R5>

2,RO
RO,$QSTAK<R5>
LOOP

.END

would now like to turn to a discussion of the
compatibi I ity problem that was introduced into BRU when
SPR Article 5.1.17.9 was published. The following ob
servations can be made about the operation of LBNORD as
distributed by DEC:

!. Given an "unlimited length" stack, the algor
ithm as distributed will always sort a list of
retrieval pointers. Proper performance of the
algorithm is assured regardless of which parti
tion (right or left, larger or smaller) is
pushed onto the stack, so long as the stack
does not overflow! lhis is true due to the
fact that during each iteration of the algor
ithm, after a pivot element has been properly
positioned, all elements to its left are less
than, and all elements to its right are greater
than the pivot. Once the pivot is properly lo
cated, the stack is used simply to remember the
upper and lower boundaries of one I ist parti
tion while the other list partition is complet
ed. Stacking the "wrong" partition (read left
side only in DEC's distributed version) has no
effect on which partitions are generated •
Stacking the "wrong" partition only effects the
order in which partitions of the I ist are gen
erated. Therefore a true sort is maintained.
The only reason to stack the larger partition
is to guarantee that the deepest stack penetra
tion is limited to log base 2 of the list
length (or 10(10) for BRUI •

2. The effect of the "typographical" error in the
original version of LBNORD on the ordering of
data on tape is a little more difficult to
understand. This error was originally dis
cussed in the July Multi-Tasker. Briefly sum
marized there is a flaw in the distributed ver
sion of LBNORD when modifying the partition
stack when the pivot index reaches the right
end of a partition. The algorithm intends that
the value 1-1, designating the upper bound of

68

He left I ist partition, be saved on the stack.
The implementation saves the value of I, and
decrements a location in memory 50 words away
from the location in which I was stored! This
location is in the upper half of the stack of
right end indices for saved list partitions.
The failure to proper I y decrement the value of
I simply includes a previously positioned pivot
element in the list partition placed on the
stack. However, it is known that al I elements
to the left of this point are already less than
the included pivot element. Therefore, includ
ing the pivot element in the list partition
wi 11 not change the final sorted order of the
list. The more serious flaw is decrementing
the wrong word in the stack. If the stack
never reachs 50 levels deep, no active element
in the right end index stack wil I be changed,
so the I ist wi 11 sti 11 be sorted proper I y.
Fortunately, for a sufficiently "out-of-order"
I ist <see discussion below) the frequency of
occurrence of such a deep stack is rare.

3. The distributed version of LBNORD makes a
pre-sort pass over the I ist of retrieval po
inters to determine if the pointers are suffi
ciently 11 out-of-order" to warrant sorting. The
initial "out-of-order" count used to make this
sufficiency decision was 20<10). The recommen
dation of SPR 5.1.17.9 is to raise this count
to 40<10) or higher if stack overflows are
sti I I encountered, (i.e. the stack is not "un
i imited" enough for the particular I ist of re
t r i e v a I po i n t er s enc o u n t e red by BRU) • 1 he e f -
feet of this change is to place more sets of
saved data, <those that satisfy 20 <=
"out-of-order" count <= 40) on tape based upon
unsorted retrieval pointers. If read back with
a version of BRU using a different
''out-of-order'' count, proper restoration of
data cannot be guaranteed. This is because a
different "out-of-order" count version of BRU
wi 11 sort retrieval pointers for some sets of
data that were not sorted when written to tape.

4. 4. The patches provided in this article will
not change the order of data written on tape.
The patches simply prevent stack overflow by
limiting stack growth to the theoretical maxi
mum for quick-sort.

69

There is unfortunately one additional comp I ication
in this analysis. lhis is due to the method used in
DEC's version of LBNORD to perform exchanges of retriev
al pointers within the sorted I ist. Each retrieval po
inter in the list is comprised of five words. When an
exchange of pointers is to be performed, one pointer (5
words) is stored on top of the stack wh i I e the second
pointer is moved into the space occupied by the first.
Finally, the saved pointer is moved to the space occu
pied by the second, completing the exchange.

This use of the stack is perfectly acceptable for a
BOUNDED stack with at least five additional words for
the temporary data, but due to the organization of the
stack in memory, and the nature of D~C's implementation
of quick-sort, the stack depth can reach or exceed
96<10). When this occurs, moving a retrieval pointer
onto the stack wi I I destroy up to five words of the sec
ond half of the stack. However, the distributed version
of LBNORD does not detect stack overflow unti I the stack
depth exceeds 100(10>. Therefore it is possible to cor
rupt the stack without overflowing it' lhis occurrence
shou Id be just about as rare as the stack overf I ow in
sort error treated in SPR Article 5.1.17.9. In fact, if
this type of corruption does occur, it is likely that
BRU wi 11 odd address trap or violate memory protection
and crash. This was probably the mechanism that caused
BRU to crash last Hay while saving our disc, and led to
my discovering the typographical error documented and
patched in the July Multi-Tasker.

In summary, a version of BRU with a given
"out-of-order" count, and with the patches provided here
applied should be able to restore most any BRU tape suc
cessfully written with a version of BRU having the same
"out-of-order" count. lhis, coupled with the fact that
it is now impossible to overflow the stack, can solve
the incompatibi I ity problems of BRU tapes (between V3.2
and V4.0) by using a universal "out-of-order" count.
The value 20<10) is suggested, as this is probably the
most widely used due to its initial distribution.

EDilORS NOTE

After having received Carl's article, and just as I
was about to send this issue to the DECUS off ice for
printing I received the following from Carl.

Enc I osed is a copy of DEC's response to my I ast BRU
LBNORD SPR. It effectively confirms my solution to the

70

sort modulo problems in BRU that have existed for so
long.

Tho DECUS Atlanta patches referred to in this DEC
response were discussed in my Sept/Dot 82 Multi-Tasker
article. Regardin the availability of future correc
tions for BRU, I have been told by the BRU maintainer
that V3.2 BRU wi 11 no longer receive pub I ished changes.
Thus we can expect that Software Dispatch Articles
5.1.17.2 !Feb 80; BRUBITMAP>, 5.1.17.16 !Apr, 81;
SCND!Rl, 5.1.17.18 <Jul 81; BlGIN and BRUALLOCl, and
5.1.17.21 !Dec 82; 11 assorted cumulative patches) re
present al I of the known and to be pub I ished patches for
V3.2 BRU. These patches, together with those pub I ished
for LBNORD, represent a version of V3.2 BRU that should
run very reliably, at least regarding retrieval pointer
sorting.

I would I ike to discuss some of the problems I en
countered in applying the BACKLB patch published in
5.1.17.21, Dec 1982. The baseline *.PAT files were ori
ginally acquired from the RSX-llM Autopatch E distribu
tion. Using these patch files as a starting point, the
new changes were added to BACKLIB.PAT from pages 1-6 of
the subject article. The following difficulties were
encountered:

1. On page 5, at I ine 260$:, the macro call
shou Id read JSR R5,RESRG.

RESRG

2. On page 3, after MDV $LAB1+4,-21R2l, the I ine
.=.BLK. is missing from the Autopatch E base-
1 i ne f i I e. The checksum /CS: 125544 on page 51
of the patch article is correct for the changed
patch file, without this .=BLK. line.
However, without this I ine, the patches to the
blank PSECT made for !DENT 1.07 on pages 4 and
5 are put into the module at tho wrong place,
because, without the Iino, the assembler's base
for this PSlCT has been lost. Adding tho miss
ing I ine .=.BLK. after the MDV $LAB+4,-21R2l
instruction, places the patchoscorrectly, but
changes the checksum for the patch file to
/CS:125764. Ono wonders whether this particu
lar published patch was ever applied directly
to an object module, or whether the patch file
was developed from source changes only.

3. Finally, the line .BLK.=.
MSGFLG=.BLK.+1576, on page 5 of
should read .=.BLK. to preserve the
dress for the blank PSECT for

71

after
the patch,

base ad
subse quent

patches. This does not change the checksum;
it remains /cs:125764.

The checksums for the remaining modules and their
patches are correct as pub I ishod in the Dec 82 article.

SPR NUMBER 11-46577A

PROBLEM STATEMENT:

The user submitted his solution for the BRU over
flow problem in the module LBNORD.

RESPONSE:

Thank you for the time you spent helping to solve
this BRU problem. We basically agree with your last ar
ticle in the Multitasker, except on one point. BRU ver
sion 4.0 does not produce incompatible tapes because we
have a special flag word at the beginning of the data
area on the tape. This word is equal to 1 if retrieval
pointers for the data were sorted, and 0 if the retriev
al pointers were not sorted. This means that during the
restore operations, we do not depend on the sort parame
ter and cna always determine when we have to sort the
retrieval pointers. Tho problem appears only when we
are restoring BRU Version 3.2 tapes. In this case, we
definitely need to use the same sort parameter during
the backup and restore operations.

The articles in the AUGUST 1980 Software Dispatch,
and one that we distributed at Dacus, represent a possi
ble solution to the reported problem. Of course, it is
not the best possible solution, but it always works.
This is the main reason we still recommend it to our
customers as a temporary workaround unt i I we pub Ii sh a
new correction which will eliminate this problem.

RSX•llM to RSX-llM-Plus Migration

A 11 en A. Watson

Bergen Evening Record

72

150 River Street
Hackensack, NJ 07602

1.0 REASONS FOR GOING TOH-PLUS

I.I Shadow Oi sk

Our main reason for migrating from RSX-llH to
RSX-llH-PLUS was the added capabi I ity of what is called
"shadow disk". We have been, and sti I I are, developin~
several large applications that will be handling vola-
tile and sensative data: an advertising accounts re
ceivable package, a display advertising layout package,
and a newspaper circulation package. All of this data
is changing rapidly from day to day. Some of it, such
as the ad layout data, is critical to the daily produc
tion of the newspaper.

In the newspaper computing world we have a saying:
"THERE IS NO TOMORROW." In most computing applications
in the event of disaster it is possible, although not
des i rab I e, to "do it tomorrow". Getting out payro 11 a
day late may be expensive, it may cause alot of discon
tent, but in the worst case it can be done. Producing
Tuesday's newspaper on Wednesday, however, simply cannot
be done. For a newspaper, there is no ••tomorrow''.

For applications involved in the production of the
paper, therefore, data backup is imperative, and reco
very in case of disaster, such as a head crash, must be
nearly instantaneous. Typically, in newspaper applica-
tions, five minutes is considered a maximum recovery
time. It may be nice in movies about newspapers to have
someone screaming 11 Stop the press! 11

, but in real life
stopping the press is about the last thing you ever want
to do. To stop the press because the computer has lost
data necessary to the production of the next pages would
cost so much that you could buy a complete secondary
computer with the money. In fact, almost every paper I
am fami I iar with has totally redundant computer hardware
for just that reason.

What we needed was dual recording of critical
on two identical disk packs , so that if a head
occurred, al I that would be necessary to recover
be to boot up from the second disk. That is what

73

data
crash
would
"sha-

dow recording" is. A complete, up-to-the-second, mirror
image copy of your disk is maintained on another disk
mounted on another drive.

We briefly considered a transaction log type of
system, where any updates to files would be logged onto
a disk or a mag tape. lhis required a lot of support
software: each application would have to handle its
transaction logging, programs would have to be written
to recover from transaction logs and periodically purge
them, and so on. Any new application would have to in
clude support of transaction logging, making all the ap
plications larger. We rejected this approach in favor
of H-PLUS and shadow disk because shadow disk is tran
sparent to the application and requires no additional
code.

A nice side benefit of shadow disk from the viewpo
int of operations is that it eliminates the need to copy
the disk you are shadowing; you have a constant,
on-I ine copy.

In our brief experience with shadow disk, we have
found that it adds I ittle overhead to the system, espe
cially when you funnel the shadow disk through a separ
ate cont r o I I er us i n g a u n i q u e A CP.

Remember, however, that if you have four disks you
want to shadow, you wil I need eight disk drives! If the
ab i Ii ty to recover from a head crash in five minutes
instead of an hour, or much more (you know what it would
take at your s itel is worth the price of another drive,
you shou Id consider using H-PLUS shadow disk.

At lHE RECORD we have experimented with combining
the Virtual Disk package from the RSX SIG tapes with
shadow disk. This allows us to designate selected sets
of files that have been assigned to virtual disks, which
are located on several disk drives, for shadowing on a
comparab I e set of vi rtua I disks that have been I ocated
on a single "shadow" drive. We have limited the files
to be shado,,ed to the critical few, instead of dupl icat
ing entire disk packs, and have been able to reduce the
number of drives needed to shadow those fi las. I wi 11
be discussing this aspect of shadow disk in a separate
sass ion Thursday afternoon at 4:30.

74

1.2 Overlapped seeks for disk

M-Plus supports overlapped seeks for disk. This
feature al lows multiple disk units attached to a single
controller to perform seeks (head movement) simultane
ously, although only one data transfer can occur at any
one time. Most advanced disk controllers support this
feature, as ours do. Since we anticipated an operations
environment where up to eight drives might be accessed
through a single controller, it seemed to us that over
lapped seeks would be a considerable help to disk
throughput.

In our current operations we rarely have more than
two drives operating through a single controller, and in
most cases we are operating on just one drive, so we
have no concrete data yet on savings through overlapped
seeks.

1.3 Suoervisor mode libraries

Available only on ll/70's and ll/44's under M-PLUS,
supervisor mode I ibraries
double a user task's virtual
the instruction space of
mode.

are resident Ii brari es that
address space by mapping
the processor's supervisor

That was a near quote from the Executive Reference
Manual. For those of you who haven't yet learned to
speak DEC, let me give a rough translation. A task or
program under RSX-llM is only allowed to have 32K
(roughly 32,000> locations of memory to run in because
the hardware can't count any higher than that.
Supervisor mode is I ike a second counter, al lowing
another 32K locations to be used. For a I ittle memory
overhead in your program and some run time overhead when
your program has to switch modes to get at the stuff in
the supervisor mode I ibrary, you can double your program
size.

That was important to us because we are converting
a number of programs from an IBM 370 with virtual memory
to run on our 11/70. Most of them were just too big to
run without overlaying and breaking them up into sub
tasks, with the attendant overhead in increased execu
tion time. Supervisor mode libraries give us the abili
ty to build bigger tasks.

In addition, many of the DEC utilities can be built

75

using a supervisor mode library for File Control Ser
vices <FCSl. That makes those commonly used programs
smaller, and for the larger ones that require a lot of
overlaying under RSX-l!M, al lows OEC to reduce the over
laying, thus reducing the number of overlay cal Is from
disk. In sum, the utilities are smaller and run faster.
The option of bui I ding FCSFSL uti I ities is offered dur
ing SVSGEN and I advise you to take it.

1.4 Secondary pool

Under RSX-llM we had frequent system crashes when
we ran out of pool. for you new users, 11 pool 11 is a
space in the executive used by the system as a work area
to contain data structures such as system I ists, control
blocks, and 1/0 packets. Every file that is open has a
file control block in pool; each installed task has a
task control block; active tasks have task headers in
pool; each terminal has a user control block, and so
on. There's a lot of stuff in pool and only a limited
space in the Exec. When i't fills up, the system
crashes.

How many of you RSX users have experienced that
problem?

Before M-PLUS we tried lots of tricks to get more
pool or to keep from crashing. We installed the Pool
Monitor Task from the SIG tapes; we put in patches from
Jim Downward at KMS Fusi on that al I owed us to run with
fewer tasks installed; we put in a patch to the termi
nal database to reduce the number of SCB's for termi
nals. Each thing helped a I ittle, then we'd run out of
pool again as the load increased.

Under M-PLUS we have yet to come close to running
out of pool space. One of the main reasons is secondary
pool. Secondary pool is a memory partition that is out
side of the Executive, and it can be as large as you
want. M-PLUS uses it for more permanent or less fre
quently used data structures, and thus frees up that
space in primary pool. Task headers, for example, go
there, so under M-PLUS there is almost no I imit to the
number of tasks you can instal I.

We had a pool problem under M; no longer. We come
u p w i th o v e r 11 , 00 0 w o rd s of p r i mar y p o o I • We ' II run
out of memory long before we run out of pool. PMl seems
almost superfluous under MPLUS. But we can (and wi I I)
buy more memory! and you could never buy more pool.

76

1.5 Directive common

Directive common is another way you get more
space; some of the executive directives are moved
a common partition thus freeing up more space in
exec.

1.6 Multi-user tasks

pool
into
the

Our system has lots of users. We anticipate having
up to 52 terminals on a single 11/70. That many users
can fill up memory with tasks awfully fast. M-PLUS al
lows the building of multi-user tasks, in which a single
copy of read-on I y portions of a task is shared by many
users. Even on our development system, the multi-user
versions of EDT and PIP have helped reduce checkpointing
in the system. We are making some of our application
tasks multi-user also.

1.7 Multistream batch processing

We wanted batch processing so that users could
schedule long, time-consuming tasks to be done in off
hours. Batch al lows you to do this. In effect you sub-
mit a command file to the queue manager just I ike a
print job: SUBMIT MYJOB/AFTlR:l7:00. Also, when devel
opment gets really heavy we can ask users to submit jobs
to batch streams rather than running them di re ct I y, thus
I imiting the number of simultaneous compiles and task
bu i Ids.

1.8 Task and user accounting cap ab i Ii ty

We expect our system to overload before long even
under M-PLUS. When that happens we wi I I be able to use
the resource accounting faci I ity to determine which
tasks are over I oad ing the system, and with what kind of
activity: CPU, disk, QID's, etc. It is possible we may
develop a charge-back system to our user departments.

77

2.0 TRANSITION PROCESS FROM M ro M+

I would say we had a rough transition, but largely
because of two factors: first, we elected to migrate at
exactly the time DEC was discontinuing Version 1.0 and
starting on Version 2.0. For several months we couldn't
get either version from them. Finally they delivered
Version 1.0; about six weeks later, we got Version 2.0.
We had barely adjusted to Version 1.0!

Second, we had al I non-DEC disks and disk control 1-
ers. It's very hard to SYSGEN a system when you can't
run any of your disks on it. We ran our Version 1.0 GEN
from our RSX-llM 3.2 system, and then GEN'ed our Version
2.0 using the Version 1.0 system. Before starting the
GEN, we had to modify SAVE, the DB driver, other uti Ii
ti es and the SYSGEN command files to compensate for our
foreign controllers. It was frustrating because we
spent weeks debugging code for the disk sub-system with-
out being able to see the new system at al I. We read
the manuals and dreamed great dreams; meanwhile we
couldn't even boot the thing.

If I were back buying our system in the first place
would include at least one standard DEC disk system

for doing SYSGEN's if for no other reason.

One nice thing is that DEC had inc I uded very c I ear
instructions on how to GEN a Version 2.0 system from a
Version 1.0 base -- just what we needed. They even have
a special command file for doing it, letting you build
the Version 2.0 versions of MAC, TKB and IND that you
need for the GEN on your Version 1.0 system. We did it
and it works. In general the Version 2.0 SYSGEN manual
is much clearer and the SYSGEN procedure is much simpler
than any I have done before.

Autoconfigure is a new thing DEC has added that el
iminates the messiest part of a SYSGEN: specifying
CSR' s and vectors for a I I you r hardware • Auto con f i g u re
just goes out there, probes around the system to figure
out what hardware is attached, and generates al I that
stuff for you. It then al lows you to examine and edit
the results in case it goofed or left out something it
cou I dn 't recognize. If you have a system put together
by DEC with mostly DEC hardware, use autoconfigure; or
if you know your CSR's and vectors meet their standards,
use it. Our CSR's and vectors are definitely
non-standard even for the DEC gear <the system was put
together by an DEM> and we found it more convenient not
to use autoconfigure, so I can't say how it works.

78

3.0 PROBLEMS ENCOUNTERED IN SYSGEN

3.1 Bug in Building the Executive

The command file SGNBE.CMD has a bug in it that DEC
knows about. When the exec finishes task building the
command file attempts to wait for the cross-reference to
complete with the statement:

• !FINS CRF •••• WAIT CRF •••

For some reason this causes an error message saying
"SPAWN FAILURE" and the SVSGEN command file aborts.

The only thing that fails is the indirect command
file. The task build of RSX11M has worked fine. All
you really need to do is make sure CRF has finished and
continue with the GEN. I checked SGNBE.CMD and the only
remaining executable I ine was "TKB @DRIVERS". So
typed that in directly, waiting for it to complete, and
then re-started the SYSGEN at the next phase after
"Bui Id the Executive and Drivers". Worked fine.

You could modify SGNBE.CMD <see note on SYSGEN com
mand files below under "Hints from our Experience") by
commenting out the line at fault and replacing it with a
.PAUSE. When it pauses, just check active tasks. If
CRF ••• is not active, then resume. DEC software sup
port suggested removing CR>... before starting the
bui Id of the exec, but that seemed counter-productive to
me.

3.2 Getting correct versions of N.P. tasks

Pay close attention to the NOTE on page 3-63 of the
SVSGEN manual. If you make any changes to the task
build files to select options on some of the
non-pr i ve I eged tasks, and you fa i I to move them from
[! ,54J to [3,54J after they are bu i It, you won't get
your tailored· versions of those non-privalagad tasks
when you bring up the system. The versions of those
tasks from the distribution tape are in t3,54J. The
versions you bui Id, for some reason, go into tl,54J.
When SVSGEN creates SYSVMR.CMD file it specifically in
stal Is non-priveleged tasks from [3,54J so you get the
DEC originals, not the ones with the options you so
carefully chose. DEC should build non-priveleged tasks

79

into [3,54J if that's where they expect them to be, and
I have complained to that effect in an SPR.

4.0 HELPING THE USERS ADJUST

Some of these things probably apply equally well to
new users of RSX-11M Version 4.0. In general the tran
sition for the users of our system was painless, but not
without some effort ahead of time and behind the scenes •

4.1 Getting used to DCL

For someone coming to M-PLUS from M Version 3.2,
DCL is something new. We elected to put in DCL as the
primary Command Lina Interpreter <CLI> and to modify the
task build file <see below> to select the option to
al low any unrecognized commands to fal I through to MCR.
If you don't do that, any user of DCL is going to be ex
tremely annoyed when typing PIP fileA=fileB/RE elicits
an "UNRECOGNIZED COMMAND" message. You can't get di
rectly at anything through DCL, not even PIP, unlesa you
enable the fall-through-to-MCR option in the task build.

Overal I fal Ii ng through to MCR works fine;
used to MCR just go on using it as they always
never know DCL is there unti I they get around to
the new manuals. Almost.

people
did and
reading

There are a few problem spots where MCR and DCL use
the same command, as in SET, MOU, MAC, FOR, and INS. A
user enters a fami I iar command I ike "MAC fILE=FILE" and
is given the error massage:

MACRO Extraneous input
MAC FILE=FILE

That's DCL complaining, because its syntax is dif
ferent. Simply alert your users that if familiar com
mands don't work, they should try them with a dot in
front of them. For example ".MAC FILE=FILE" wi 11 work
just fine. The dot tells DCL to schlep the command off
to MCR without even looking at it.

If they're going to do a lot of that sort of thing,
they can set their terminal to MCR as primary CLI with
SET TERMINAL MCR. In general, SEl TERMINAL MCR and SET

80

/DCL=Tl: should be the first two new commands you teach
your users if DCL is in your system.

4.2 Command file execution

If a terminal is running under DCL many old command
fi !es won't work if they use MCR commands like "MAC
FILE,FILE/-SP=FILE" because "MACRO" is a DCL command ex
pecting DCL syntax. I happen to I ike DCL, so what I do
is put this into my command files:

.setf DCL
• if <CL!>= "DCL" .sett DCL
.ift DCL SET TERM MCR

contents of old command file

.ift DCL SET /DCL=TI:

That could be more generalized if you plan on multiple
CLI's:

.sett MCR

.enable subs ti tut ion

.sets CL! <CL!> ! Save starting CL!
• if CL! NE "MCR" • setf MCR
.iff MCR MCR SET /MCR=TI: !Assumes MCR command in all

CL Is!

.iff MCR SET /'CLI'=TI: Restore starting CL!

4.3 Hints to KMS CCL users

We sti II use CCL. It works fine. We have three
commandline interpreters: DCL, MCR, and CCL. DCL comes
first; any unrecognized commands fall through to MCR;
finally, CCL is installed as CA. (catch-all) to handle
any th i n g MC R does not know • A I I I d i d was to re bu i I d
CCL.TSK on the new system, and since CCL is not prive-
leged even that was probably unnecessary. None of the
Jim Downward patches to system routines were made; most
of them exist in MPLUS as distributed. One Downward
patch to MCR we miss was the one that forced it to pass
everything to CCL (instead of kicking out things Ii ke

81

11 ?" and "LI"). When we want to add a new command it is
sti 11 ever so much easier to edit t1o10 or three I ines
into SYSCCL.CCL than to master the complex syntax re-
quired to bu i Id a DCL command tab I e entry, edit the
file, assemble it, and double task build DCL!

The /CMD parameter to RUN is not exactly like the
o Id KMS /PRM parameter: it expects the task name in the
first four characters. In other 1o1ords, it clobbers the
first four characters you pass. You must say:

RUN $MAC/CMD="MAC F ILE>FILl" instead of
RUN $MAC/PRM="FILE=FILE"

The CMD parameter does not exist for INSTALL, as
PRM did in the KMS mods. One strange annoyance is that
you cannot pass parameters to an ins ta I led task from the

RUN command using CMD; to use RUN/CMD the task must be

non-installed.

4.4 New Introduction manual

The Introduction To RSX-llM-PLUS book with accompa-
nying files in [200,1] are a great training aid for new
users. I did find some of the examples in the book did
not work; some files used in the text were missing, but
were easy to provide. Mostly they were one-I ine text
f i !es used to illustrate several commands I ike TYPE and
PRINT. Nothing major was missing. I suggest you run
thru the book yourself before handing it to a new user,
and fix the things that don't work. Even your old hands
should work thru this because they wi I I learn DCL and
other stuff they probably never knew or have forgotten
(e.g. EDT I ine edit mode for people who always use key
pad).

One outright error: the manual says the
mand "T LAST" types the I ast Ii ne of a f i I e;
types the last I ine referenced. lhe command
"TEND-I".

4.5 Queue Manager and Error Logger

EDT com-
i n fact it
should be

The Queue Manager and Error Logger commands have
changed entirely from anything you ever knew. God knows
they needed it, but be warned and spend some time look
ing through the documentation before turning the system
I oose on your users. You may want to write some memos
to frequent users and computer operations personnel, or

82

hold some re-training classes. At least alert them to
the excel lent HELP fi las and how to find them.

If you have any command f i I es that used to make
error report generation easier throw them out.
They' II be use less. Be prepared to rewri ta, and to find
that it is easier this time. I wrote a file called
ERRORS.CHO for our operators to use (it wi I I be in
[333,100) on the SIG tape) that walks them through most
of the options.

The canned report option for the error log REPORT
GENERATOR did not work. You are supposed to be able to
enter:

RPT /RE:DAY

to get a fu 11 summary report on al I today's errors, for
example. It bombs. My ERRORS.CHO file could not make
use of this switch, unfortunately. I have SPR'ed this.

5.0 HINTS FROM OUR EXPERIENCE

5.1 Multi-path access to disks

Setting up procedures for proper handling of
dual-ported disks, disks that in addition are accessible
from two or three CPU's simultaneously, was very com
plex. We have three CPU's, three controllers, and six
drives. The disks are each connected to two of the
three controllers, and al I three controllers are con
nected to all three CPU's. There are two paths to each
disk from each CPU.

M-PLUS allows you to specify disk drives as
dual-ported. Since that is what we have physically it
seemed to make sense to te 11 the software about it. It
took us weeks to find out al I the things that could go
wrong. We found no actual bugs in the software, just
mass confusion for us as users.

One rule of thumb: DON'T LIE TO THE SYSTEM. If
you SAY there are two paths to a disk there damn wel I
better BE two paths. You see, we have this nice switch
pane I that can put individual ports on a contro I I er off-
1 ine ... Well, if the second path for DB2: is switched
off I ine, and you try to MOUNT 0El2:, mount wi II time out.
If you're booting from DB2:, tasks will start getting

83

load failures in S1ARTUP right after CON ONLINl ALL is
executed (more on the CON tasks below).

We a I so found (with CDC drives and SI contro I I ers)
that dismounting a pack on one CPU could knock it off-
1 ine for another CPU as wel I. We had one CPU booted
from OB5:. A user on a second CPU mounted DB5:/NOWRITE
<that's a new switch on MOUNT that is very useful), and
when he was done , he d i s mounted OB 5: I i k e a good user
should. Bang! down goes the first CPU. For some rea
son, even though our drives look like RP04's to RSX, the
dismount command is trying to unload the disk! And for
some reason the disk seems to recognize it even though
it can't be unloaded from software, <Could be a
hardware bug.)

We finally discovered that, to be safe, we should
mount disks with a new switch, /LOCK=N, which sets the
default for dismount to "no unload". That way users
don't have to remember to use OMO DBn:/LOCK=N. We set
up a MOUNT.CHO command f i I e and have everyone use it to
mount a disk so the right switches are always used.

Another switch useful in multi-path situations is
/LRU=O. Whenever we mount a disk /NOWRITE we also add
/LRU=O, which instructs RSX not to cache directories in
memory but to always read from the disk. lhat may sound
inefficient, but when we mount a disk /NOWRilE it is
usually because it is mounted for writing from another
system. Directories can get strangely out of sync when
one system is writing to a directory and another thinks
it has the directory cached in memory'

What we really need is a mechanism that completely

prevents a disk being mounted for writing from two sys
tems at once. We have done that, of course, and the re
sult is hundreds of multiply allocated blocks as each
system blithly writes using its own copy of the bitmap
of free b I ocks. One use I ess disk and I ots of grouchy
users. We are currently working on some mods to MOU and
SAV to accomplish this.

5.2 CON, the System Reconfiguration task

The System Reconfiguration task is both an enormous
boon and a colossal pain. This task enables you to
place devices in your configuration either on or offline
by software command: CONFIGURE OFFLINE OBO:, for exam
ple. You can also display and even change CSR's and
vectors! This affords great flexibility. But there is

84

a whole new command set to learn.

The pain comes from what I said above: DON'T LIE
TO THE SYSTEM. RSX-llM users are used to being able to
do peculiar things like spinning down one disk and spin
ning up another in its place without dismounting it from
the system. M-PLUS won't let you do that; the minute
you touch the button it dismounts the drive automatical-
ly. This particular protection is, I suppose, good.
But some t i mes I want to I i e to the system ! L i k e when I

blow a home block on an otherwise good disk and want to
recover its files. I've kept a Version 3.2 pack around
just so I can play that game.

A re I ated difference is the fact that under M-PLUS
any access to mag tape requires that the tape be mount-
ed. To initialize a tape you can't Just allocate your-
self the drive and initialize; you allocate it, MOUNT
it /FOREIGN, and then initialize. Same with BRU and
other ut i Ii ti es that used to access unmounted tapes and
disks under RSX-llM; no more, you have to MOUNT
/FORE:! GN.

In general M-PLUS forces you to be more careful
about what you do with the hardware, and to te I I the
system using CON before you do it. If we are going to
switch an access path to disk offline, we first must CON
it OFFLINE. Makes sense, but at first it creates
strange situations for someone used to M.

5.3 lask Bui Id options

Before building non-privileged tasks, recommend
you search thru all xxxBLD.BLD files in [!,20] for all
the GBLPAT and GBLDEF I ines to see for yourself what op-
tions you have in task building the various utilities.
These are command f i I es used by SYSGEN to create
xxxBLD.CMD files in [!,24] for the related task builds.
For example, PIPBLD.BLD contains switches to select op
tions for PIP.

There is a point where SYSGlN pauses after creating
the command files in [!,24] and asks if you want to edit
any of them, and you could wait unti I then and then do
your editing. However, if you re-run SYSGEN for any re
ason you'll have to repeat the editing. In addition,
you can, if you wish, build three versions of many util
ities, one regular (overlaid), one using FCSRES, and one
using FCSFSL. Then you have to edit three command files
in [1,24]. If you edit the xxxBLD.BLD files in [1,20]

85

before starting the non-privileged task part of SYSGEN,
then your options wi 11 automatically be included in al I
three versions every time you do a GEN.

5.3.1 PIP

For example, PIP is advertised as having the option
to preserve creation date on copies, but nowhere does it
tell you that you must edit a gl.obal in the PIPBLO.BLD
to obtain this option.

5.3.2 INDIRECT

The Indirect Command processor also has nifty op-
tions. For example, you can have it default to the sys
tem UIC (or another you designate) if the command file
is not found in the user's UIC: once again, howev~r,
you must edit the Bui Id file to get this. IND is now
cal I ed ICM just to confuse you.

5.3.3 DCL

DCL has a couple of options, most useful
is al lowing unrecognized commands to fal I
MCR. Edit U,20JDCLBLD.BLD to get it.

5.3.4 Other tasks with options

Tasks I found having bui Id file options:

DMP
QCL

QMG
LBR

RPT

CMP AT.

RMD SHA

SAV DCL

LPP MAC PIP

lKB ACN BYE

86

of which
through to

PRT

HEL

6.0 MISCELLANEOUS COMMENTS

The ab i Ii ty to broadcast to users by name is
finds them even on multiple terminals.

nifty:

The sample DTR reports for Resource Accounting are
excellent tools for producing your own customized re
ports. Al I of the accounting records are now accesible
through Datatrieve.

In general, Mplus is easier to manage for an unso-
phisticated user because it translates more of what you
need to know into human-readable form.

Be aware that under M-PLUS a task named " ••• XXX"
NEVER RUNS; it is a prototype task only. When TlO runs
it by saying "XXX", it gets a task cal I ed "XXXTO". If
you have any command fi I es that try to do ".WAIT ••• XXX"
they w i 11 no I onger work. Such tasks are not intended
for multi-terminal use and should be installed with task
names not in the form •• ... XXX''.

SIG programs we bu i It under MPLUS (versions on SIG
tape): SRO (multiuser, non-overlaid), lECO, UIC, LIST,
GREP, COOKIE, RNO, DOC, DUNGEON, C<XCC>, PREDAY, TYPE
(renamed TIPE>, TREK, TCF, BRUDIR, SRDCMD <CMD>, ADVENT,
RMC, LUT, USERMN, TRUNC, RATFOR, PACMAN. Most required
no modification, only a few required other than minor
mods to the bui Id files.

The HELP f i I es on Ver s i on 2. 0 are fan ta st i c , i n
some cases more accurate than the manuals. I wrote
three TECO macros, HDX, HFL, EDH, and TEH <all with both
TES and TEC extensions>, to help me step through al I of
them and index what is there. See [333,lOOJ on the cur
rent RSX tape. (The text of this handout -- possibly
with updates after 15-0CT-B2 -- wi I I be there, too as
M2MPTALK.DOC.>

The Night of the SIG Tape

Roger Jenkins

Wycliffe Bible Translators
Huntington Beach, CA 92647

B7

At the Fal I Anaheim Symposium, several of
standing around waiting for others to show up
left to create the SIG tape. Ralph Stamerjohn
and made the suggestion that we should place
in the MULTITASKER describing the work that

us were
before we
walked by

an article
goes into

the SIG tape collection. lhis article is a result of
that suggestion.

At the Spring 19B2 Atlanta DECUS Symosium, had
approached Jim Neeland, RSX SIG lape Coordinator, and
had offered our site as a collection point for the Fal I
Anaheim Symposium. Our site is about 12 miles from the
Disneyland Hotel, so it seemed I ike it would be a con
venient po int from which to create the SIG tape. Jim
accepted my offer, so Tuesday night around 10:00 PM we
loaded seven people and a box of 30 tapes into two smal I
cars and drove to our site for a marathon tape copy ses
sion.

The first step (after the usual site inspection
every programmer performs when he walks into a new ma
chine room) was to prepare a scratch disk onto which the
contents of al I of the tapes would be placed. We have
thr~e RP06 equivalent drives and two tape drives. I had
requested exclusive use of the machine, so we had plenty
of resources.

Next we had to I oad several uti I ity programs: TECO
(mine was not up to date>, version 3.2 BRU, lPC, fFL and
perhaps there were others that were necessary to create
the SIG tape.

Before long there was quite a flurry of activity.
Charles Goodpasture and Vince Perriello were carefully
checking tapes and release forms to make sure that each
tape had a release form and that it was signed. Jim
Neeland and Glenn Everhart were copying the software
from tape to disk, John Osudar was mounting tapes I eft
and right and Tony Scandora was the "scribe" recording
the directories into which each tape was placed.

I asked Jim, who was also coordinating the overal I
activity, how he determined which UIC the contents of a
tape went into. Basiclly there is a set of 4 rules:

1. If the person submitted a tape I ast year, his
data went into the same UIC as last year.

2. Each LUG is assigned a group number, and new
submissions are placed into subsequently num
bered member UICs within the LUG's group.

BB

3. If a person is not part of a LUG but is close
enough geographically to be a part of one, his
submission may be included as part of the LUG
group.

4. For every one else, they are placed into a com-
mon group with each submission getting its own
member number.

If the tape UIC was wrong, then it was copied into the
r i g h t U IC when poss i b I e • At I east one tape was i n B RU
format and we wanted to p I ace the f i I es in a different
UJC than they were in on the tape. This i nvo I ved copy
ing them to the same UJC as on the tape, but that UIC on
the disk already had files in it. So first the files on
the disk were renamed to a different UJC then the tape
was copied and those fi I es renamed to the right UIC then
the original files were renamed back in to the correct
UJC. Now you know why we were here unti I 6 AM.

The copy process itself was no simple task. Even
if the submission form told the tape format and was cor
rect, then several tries might be necessary. For exam
ple, if the submitter failed to specify whether 3.2 BRU
or 4.0 BRU was used, then one BRU would have to be tried
and if it didn't work the other would be tried. A lot
of intuition and guess work was required if the format
was not spec if ied. We would try FLX, ANSI! PIP, 3.2
BRU, 4.0 BRU and even DMP! Jim tells of one time when a
format even turned out to be RMSRST. ("It mounted I ike
an ANSI! tape but PIP wouldn't read it!")

After several of the tapes had been loaded to disk
and a 11 of the submission forms had been checked,
Charles and Vince switched to mounting the tapes (they
did the "reel" work). Then John began the laborious
task of reading al I of the README f i I es and summarizing
them. For each UIC, John created a file from README
info containing a one line description of each program.
Then these files were sorted in UIC order and merged to
form the final SIG tape contents summary. This data was
then edited further and placed in [300,1JRSXF821PE.DOC.

When the disk was finally ready, we made copies of
the pre I iminary tape for each of us. Jim then took that
copy back to his site to prepare the final tape. He
wi I I notify the members of the distribution tree by mai I
when the tape is ready. It is then the responsibi I ity
of each LUG I ibrarian on the tree to contact his parent
node to get a copy of the tape. If for some reason his
parent node can't him a copy of the tape, he should con
tact his grandparent node.

89

The tape copy team had severa I suggestions for sub
mitters that would make the tape copy job easier:

1. Submitters from LUGs shou Id get a UIC number
from the LUG librarian.

2. If you have to use a specific UIC, use one
below [300,lJ to avoid colisions with other
submissions that may already be on the disk
when your tape is copied to disk. Label the
tape and submission form with the UIC you are
us in g •

3. FLX is the easiest format to work with for
small submissions and especially when you don't
know a UIC number. If you use BRU, specify the
backup set name(s) and the UJC<s> used.

4. Always include a README.lST <not README.DDC,
READMElST.DOC, etc.) The README.!ST should be a
summary of the programs in the UJC (one or two
I ines per program), not the main documentation.

5. Be sure to f i II
rectly. Tell
and density.

out the submission form cor
the truth about the tape format

I think that the SIG tape is one of the most su-
cessfu I "products" of the RSX SIG. I know that my site
has benifitted greatly from it. We all owe our appreci
ation not only to those who have contributed to it but
also to Jim Neeland and the others who have worked long,
hard and late hours to put the tape together over the
years.

Unlimited Keywords in TPARS

Ken Cross

Perceptics Corporation
2218 Clark Streat

Knoxville, lN 37921

TPARS is one of the neatest packages that DEC has
made available to users. Those unfamiliar with it
should check it out in the 1/0 Operations Manual. It is

90

a I ittlo etrango at first, but once you got tho hang of
it, you find many useful applications.

We have used TPARS to develop the operator inter
face for a Fa I con that contro Is the image processing
system we have developed. It provides very powerful
command syntax structures, but was restricted to 64 key
words. I had run into this I imitation on other projects
and got around it in very complicated ways in my appli
cation program. This time I decided to fix it right.

The fix involves moving the address of the keyword
strings into the "extension" word of the transition
tables. It doesn't take any more memory than before and
s imp I i f i es the process i n g • A II keywords have a 2 00
(octal) in the TYPE byte. An unlimited number of key
words can be used.

The only drawback of this fix is the fact that it
is not compatible with the standard TPARS. All programs
using TPARS must be reassembled and bui It again.

The fix involves changing the TRAN$ macro and a
smal I patch to the .TPARS routine. You may want to keep
them separate from the originals to maintain compatibi I
i ty.

The patch to TRAN$ can be done by extracting the
macro from RSXMAC.SML and using a SLP correction file:

LBR TRANSORIG.MAC
SLP @TRANS.COR

LB:Cl,1JRSXMAC.SML/EX:TRAN$

TRANS.COR contents:

TRANS.MAC=TRANSORIG.MAC
-29,37

I

.MACRO

.BYTE

.ENDM
$$$KEY
$$$FLG
.MACRO
• WORD
.ENDM

$$$TYP
200
$$$TYP
$$$KEV +
$$$FLG
$$$EXT
$$$TMP
$$$EXT

The revised module could then replace the original,
if desired:

91

>LBR LB:Cl,lJRSXMAC.SML =TRANS.MAC/RP

The patch to TPARS changes five words.
plest way to do this is to use ZAP.

The sim-

>LBR TPARS.OBJ=LB:Cl,1JSYSLIB/EX:.1PARS
>ZAP

ZAP>TPARS.OBJ/AB

LOCATION

2:202/
2:204/
2:206/
2:210/
2:212/
1: 16/

CHANGE

042700
177700
006300
061600
011000
146400

TO

16500
1

240
240
240

146401

The last word changes the version from V0122 to
V0122A. The revised module could then replace the ori-
ginal, if desired:

>LBR LB:Cl,lJSYSLIB/RP=TPARS

CCL Can Help Protect Your System

PROBLEM:

Eliezer May

Tadiran Electronics Ltd./Systems Division
P.O. BOX 267
Holon, Israel

A mat icious user who has access to the computer and
disks (beyond my control to change this) and gets into
the system files after stealing "privilege status" (gen
e r a I I y by abort i n g the st a rt up procedure) •

HISTORICAL BACKGROUND TO CCL ON MY SYSTEM

After writing a primitive CCL processor and
a few CCL's from DECUS RSX tapes, I found the
from James Downward of KMS FUSION, INC. to be

92

trying
version
excel-

lent. With it. help i began buildin a system of EN-
GLISH, easily understood commands for my users. <Down
with non-descipt acronyms fol lowed by esoteric
switches!) Next l decided to use the capabi I ity of "fly
ing instal I'', run, and remove in order to save pool
space for tasks that need not be installed permanently.
This worked fine for me but the instal I failed for my
non-priviledged users. To solve this, I installed a
simple fix to CCL to turn on the priviledge bit if the
command being processed is found in SYSCCL.CCL and to
restore the status upon comp I et ion. In effect this par-
a 11e1 s the use of priviledged tasks by non-priviledged
users if such tasks are installed. RSX checks the pri-
vi ledge at the time of install and not run. Therefore
the system manager can control which privi I edged tasks
are safe for the users to use. Similarly, this allows
the system manager control over which commands the user
can use in pri vi I edged mode from the extended system
commands, i.e., SYSCCL.CCL.

PROTECTING THE SYSTEM

The first thing that must be done is to assign ap-
propriate access permissions to all system files, i.e.,
no permission to delete or modify. The users may either
execute or read as is appropriate. Do not forget f i I es
in [0,0J.

The next problem is to eliminate his access to pri-
vi ledge mode whereby he can overcome the file protec-
tions. As a further safeguard in case he does somehow
find an unguarded terminal in priviledge mode, hide ACNT
with a different name somewhere obscure in the system.
This is of vital importance. lhe first thing my mali
cious user did was to get a I isting of al I user accounts
and passwords. The two methods he used were dumping the
file with the account information and ACNT.

The final problem deals with protecting against
privileged access at the time of booting the system. I
first after making a copy of the system disk <the devel
opment of such protections will frequently render the
disk unusable and must be restored) VMRed RSX!IM to
start off TTO as non-privi I edged and in anon-privileged
UJC. Also redefine CO to the nul I device. This further
protectsagainst an abort attempt during "wake up". The
normal processing commands in [!,2JSTAR1UP are separated
into different files with a complex chain of indirect
command file chaining between them. The first command
in STARTUP initiates a command sequence handled by CCL
to prepare a terminal to eMecute the privileged commands

93

but block users from entering this terminal. Next we do
the normal RE.Os that RSX would normally do on wakeup.
Since CO: is redefined to NL:, the normal messages and
REDs disappeared. We also fake the normal print out of
these messages by copying a canned message from a f i I e
that looks like the normal message. Next in the se
quence is the login dialog. We first open a file in
another privileged user account by .OPE.N command and as
a result of the dialog sequence bui Id the sequence of
privileged commands that must be executed. The entire
sequence on the consol is unprivileged. We now use FRC
(see DECUS tapes) to log on a receive-only terminal or
some terminal that wi II execute the privileged commands
but can not be intercepted by the user and aborted.
Some techniques for such a terminal are: a receive-only
terminal (with no keyboard), setting a terminal to a
speed lower than 300 baud if the jumper on the DZ's dis
tribution panel for that port is cut, or setting the
speed DZ's port speed to 7200 since VTlOOs do not have a
7200 rate. Next we force a HE.L message to the terminal
to login a privileged account. This automaically starts
its LOGJN.CMD fi lewhich then starts the command file
that was previously built, deltes it, restores its ter
minal attributes to what they are supposed to be and
exits. It is a wonderful experience to see a receive
only terminal login to a system and start working on its
own initiative. Also hide as much of the commands as
possible to the users eyes by either using .E.NABLE. QUIET
and/or putting them in SYSCCL. One may continue ad in
finitum complicating the processby different versions of
CCL and SYSCCL.CCL, FRCing commands al I over the
system,and chaining of either tasks (spawn is helpful
here) or indirect command f i I es. By the way the .ENABLE
QUIET did not work on my RSX 3.2 system but did on 4.0.
Also there are tasks around that simply turn off or on
the privilege bit for the user. I strongly recommend
NOT ha v i n g such a task i n s ta I I e d i n the system •

One way of hiding ACNT is renaming it to something
I ike BASLJB.OLB and putting it with the I ibraries in
C1,1J on the system disk. <We don't use BASIC> Pick a
name consistant with a possible language but one not in
use. This way the f i I e can be inconspicuous in that it
is contiguous but not an obvious candidate for a task
image search command.

Although this doues not eliminate al I threats to
system stabi I ity if does offer fundamental protection
against some of the most dangerous aspects of the system
in its most vu I nerab I e state.

94

An RSX-llM Device Driver Implementing
Network Protocols on the DR-llW

D. Burch
V. White

Computing Department
Fermi National Accelerator Laboratory

Batavia, II. 60510

ABSTRACT

At Fermi lab, DR-llWs have been used as hig~ speed
data I inks to interconnect PDP-lls under both Rl-11 and
RSXll-M. An imolementation for VAX-lls (under VMS) is
planned. Using this hardware, several processors can be
used to provide distributed data collection, data moni
toring and control, in real-time, for physics experi
ments.

This paper discusses a device driver which we have
implemented under RSX-llM V3.2. lhis driver allows
task-to-task logical connections to be established
between a pair of connected PDP-lls. This driver imple
ments several unique software mechanisms including
non-standard ASTs, driver maintained queues, and task
rundown support. It allows a network operation to -be
processed with less than 6 ms software overhead.

The reasons for choosing this method of implementa
tion are discussed, and problems solved are described.

Plans for the future development
software wi I I be briefly mentioned.

Introduction

of ut i Ii ty

The Fermi National Accelerator Laboratory (Fermi
lab) is a national laboratory dedicated to pure research
in the field of high energy physics. Research is per
formed by a large number of experimental groups each

95

using a dedicated minicomputer for data acquisition.
Experiments at Fermi lab are based on the use of a proton
accelerator (proton synchrotron) which provides an in
tense beam of protons for one second out of every ten
second accelerator cycle. During this one second period
<known as the accelerator 11 spill 11 >, the minicomputer for
each experiment acquires as much data as possible from
the experimental apparatus. lhe data is accumulated in
the form of 11 events", each containing the information
recorded by the experimental apparatus for a single in
teraction between the elementary particle beam and the
atoms in a target. Depending on the experiment, the
size of an event can vary from one word of data to sev
eral thousand words of data. In many experiments, the
amount of data which can be accumulated during each
spill is limited by the rate at which the computer can
transfer the data from the experimental apparatus. Data
acquisition rates can run as high as 300,000 words of
data per spill, with typical rates being about one quar
ter of this.

In addition to accumulating data and storing them,
normally on magnetic tape, the online computers must
monitor the accumulated data and carry out direct checks
of the hardware to verify the proper functioning of the
entire experimental apparatus.

Fermilab is currently embarked upon a program of
improvement in order to meet the future needs of high
energy physics. This program involves the construction
of a new proton synchrotron that wi I I provide protons
with energies of 1 TlV <One lrillion llectron Volts>.
The principal effects of this program upon the data ac
quisition environment are the increase of the spill time
to twenty seconds out of every sixty, and a marked in
crease in the complexity of the apparatus of some exper
iments.

In order to meet the data taking needs of this new
era in high energy physics, it became apparent that cur
rent data acquisition systems were not adequate. After
consideration of many alternatives, it was decided to
implement a distributed processing system in which
PDP-lls and VAX-lls are connected by a high speed
OMA-type communications device. We chose the DR-l!W.

The DR-llW is a device capable of transmitting data
buffers from one UNIBUS to another in DMA mode. It does
so (in non-burst mode) at a rate of three microseconds
per word. The peak (burst mode) rate is about two mi
croseconds per word <8,000,000 baud). It is capable of
operating only over short (fifty foot) distances, but

96

this was not a limitation in our environment. The
DR-llW is low in cost, readily available, DEC supported,
and avai I able from a second source.

Link Protocol

In this section we wi I I consider the protocol steps
involved in a normal transfer operation of a single
block of data (referred to as a "packet") between one
and 32,000 words in length. Exceptional cases such as
errors, restarts, collisions, and timeouts will not be
discussed here. We wil I note, briefly, the possible ex
ceptions to this protocol which cannot be considered er
rors.

Our I ink protocol supports both the transmission of
blocks of data and single byte values known as Signals.
A signal is transmitted with a shorter protocol ex
change, and therefore is suitable for the rapid transfer
of simple control data. Data blocks are moved in OMA
mode, and protocol exchanges occur in programmed data
transfer mode.

The DR-llW is a half-duplex device, and therefore a
bid for ownership of the I ink must occur before a
transfer operation can take place. A I ink operation
starts with one side of the I ink <the Sender) issuing a
Request Link. It's partner Ctha Receiver) responds with
a Link Acknowledge.

Next, the Sander transmits a Packet Type Coda CPTCl
to the Receiver. The Receiver responds to the PlC ei
ther with a PTC acknowledge or a PlC NACK. lha PTC NACK
exists to allow a Receiver to reject certain types of
I ink transactions.

Next, the Sander transmits either a Word Count for
the transfer to be performed, or a Signal. A signal can
be identified because the sign bit is set and a the
upper byte is fi I led with a particular pattern. lhe Re
ceiver responds either with a Signal Acknowledge, with A
Permitted Word Count, or with a Word Count NACK. The
Permitted Word Count is the amount that the receiver ac
tually wishes to receive. By means of this feature, a
transmitter can send pieces of a large buffer to a re
ceiver which does not have a buffer large enough to con
tain the complete message. lhe Word Count NACK allows a
Receiver to reject a transmission which is for some rea
son not of the correct length. If the receiver sands a
permitted word count, it first sets up it's DR-llW for
the OMA operation.

97

Fol lowing the receipt of the Permitted Word Count,
the Sender sets up its DR-llW device for a OMA, and be
gins the OMA operation.

After completion of the operation, the Receiver de
termines whether it has received al I of the expected
words, and also whether it has any messages waiting for
the I ink, and from these determinations forms an End of
Message Status Code. The Receiver then transmits the
End Of Message Status Code to the Sender. lhe capabi Ii
ty of a Receiver to request the I ink at the end of a
I ink operation is important in cases where a Sender is
much faster than a Receiver, and could turn around and
win the link bid process after each transmission. It
also reduces the number of protocol steps during times
when the I ink is seldom idle. lhe End of Message Status
Code completes the I ink operation. See Figure One for a
diagram of this process.

Program-to-Program Protocol

Imp I ied by the Link Protocol is the
Program-to-Program or Network Protocol. This system
does not address the concept of "route-through". It
only provides for communication between a pair of con
nected machines. To allow all members of a network
using this system to communicate with one another with
out providing application specific routing software, one
would have to connect each machine to every other ma
chino in the net.

The Packet Type Code CP1Cl identifies a logical
I ink from soma procedure to a Racei ver. In a
multi-tasking system, such as RSX or VMS, this value is
associated to a particular task. A "Packet Type Affini
ty" is then said to exist. By this method, a data block
can be sent from a buffer within a task running one ma
chine directly to a buffer in a task running in the re
ceiver machine.

In order to make the operation of a system using
the link as insensitive as possible to the type of oper
ating system running in a connected machine, we chose
numbers rather than task names to identify logical
I inks. The PTC destination address mechanism provides a
logical link in one direction only, that is, from a
sander to a receiver. The receiver has no information
about the sender of a massage other than which LUN the
message was received from, and therefore, which physical
machine the sender resides in.

SB

For this reason, application code protocols must
exist if the receiver of a message must know anything
about the message's sender.

Depending on the implementation of this protocol,
it is possible for a task using the I ink to be informed
of the nature of a packet before it specifies a buffer
for the receipt of the packet. The task then has the
option of specifying a sufficiently large buffer, some
smaller buffer if wants less than the entire buffer, or
rejecting the transaction entirely, which causes the
I ink serving mechanism to issue a Word Count NACK.

The s i gna I mechanism is intended to provide a I ow
overhead mechanism to transfer contro I information. In
the case of RSX-11, the Receiver does not need to issue
an I/O operation to receive a signal. In p I ace of an
110 operation, an AST is forced to the task with the
signal on the AST stack.

Each Task wil I ing to receive a message must declare
which PTCs it intends to receive. Note that one and
only one task may establish affinity for a particular
PTC at a given time, but as soon as that affinity is re
moved (either explicitly or through the demise of the
task>, any other task may obtain an affinity for that
PTC.

Note that a 11 data b I ocks are moved in OMA mode di-
rect ly from one task's buffer into another task's
buffer. No intermediate pools or buffers are involved.

The RSX-llM Device Driver Implementation

The RS X-11 M imp I em en tat i on of the above pro to co I s
is in the form of a device driver. lasks using the Com
munications Driver <CD:>, communicate with it via the
QIO directive. Currently, this driver has been imple-
mented as either a loadable or resident driver for
18-bit mapped PDP-lls. It is capable of handling com
munications to any number of DR-llW connected proces
sors, as wel I as task-to-task communication between
tasks running in the machine in >1hich the driver re
sides.

This latter feature is interesting because it al-
lows al I programs in a system to communicate with each
other via a standard interface. This al lows functions
in the distributed processing system to be independent
of their position within the system, and al lows debug
ging of software on a single machine. lhe internal com-

99

munications option can be generated into a driver which
does not supp o rt any phys i ca I DR -11 W u n i ts • It can ,
therefore, run on a 22-bit mapped PDP-11.

In order to create a Packet lype Affinity, a spe-
cial l/O function is executed which specifies the PTC
that the task needs to receive, and an ASl address which
w i 11 be used upon receipt of a s i gna I or when a message
arrives with no read queued for that PlC. As described
above, this al lows a task to accept I ink transactions
with out a I ways having an outstanding 110 packet. This
al lows the task to be checkpointable. lwo 1/0 functions
are provided to remove the Packet lype Affinities for a
task. One removes a specific Packet lype Affinity,
while the other removes all Packet Type Affinities for
the issuing task.

I/O functions have been implemented to read pack-
ets, write packets, and send signals. The write func
tion specifies a packet address, packet length, and des-
tination PTC as 1/0 parameters. lhe unmodified form of
the read function is intended to receive a currently
pending packet (one for which the task has received an
AST>. Since there can be one and only one pending pack
et for each DR-llW unit, the read function specifies
only the buffer address and length. Note that unti I the
Receiver issues it's QIO and the transaction completes,
no other 1/0 may occur on that physical unit. Therefore
any long series of transactions in this mode will decre
ase I ink throughput. An I/O subfunction has been de
fined that >1i 11 al low a read operation to be queued to a
particular PTC. This read operation will remain queued
unti I a transaction is received for the PTC to which it
is assigned. This is the recommended mode when I arge
amounts of data are to be transferred.

When a task receives an AST informing it that a
packet is pending for a PTC for which it has declared
affinity, but it is unable to process that packet for
some reason, it can issue a special I/O function which
causes a Word Count NACK to be issued, thereby rejecting
that transaction and freeing the I ink.

At Fermi lab, we saw the need for some tasks to per
iodically gain exclusive use of the DR-llW link, prefer-
ably without device driver intervention to avoid the
system overhead time of performing a QIO. For this pur-
pose, a subfunction bit has been defined for both the
read and write QIO functions that wi I I direct the device
driver to 1'sleep 1', that is, to give up it's ownership of
the DR-1 lW interrupt vector. The intended use of this
function requires that a pair of cooperating tasks exist

100

on either side of the link which is to be put to sleep.
One of these tasks initiates the transaction by issuing
a write-and-sleep operation to a pre-defined PlC. The
other task responds to the receipt of a packet AST for
that PTC by issuing a read-and-sleep operation. Upon
completion of this transaction, the CD: driver in each
machine removes it's interrupt vector and replaces it
with the address of the nonsense interrupt handler.
This fully interlocks the sleeping process.

When the cooperating tasks have finished their use
of the Ii nk, they each disconnect from the DR-llW inter
rupt and issue a special I/O function which restores the
driver's interrupt vector and starts the I ink startup
protocol.

While the DR-llW interrupt is removed, link tran-
saction I/O operations are rejected unless they contain
a special subfunction bit which tells the driver to
allow them to be queued until the interrupt is regained.

7.0 INTERESTING DETAILS OF IMPLEMlNTATION

One of the more interesting detai Is of the RSX-11
imp I ementat ion of this protoco I is that it does not de
pend on the Anci I lary Control Processor <ACP) mechanism.
Originally, we had intended that the device driver be a
much more modest entity, and that an ACP would handle
the ind iv i dua I steps of the protoco I and maintenance of
the PTC tables. When we investigated this path, we
found that the overhead time introduced by the ACP sche
duling mechanism was longer than our target for total
overhead time.

In order to perform the complex protocol and house
keeping chores, the device driver itself had to be con
siderably more complex than most RSX-!lM drivers are (or
should be),

The CD: driver handles all of it's own queuing of
l/O request packets. Write type l/O operations are
queued to the standard I/O queue when needed (when the
driver is busy upon receipt of the packet). Read opera-
tions are handled quite differently.

When a task creates a Packet Type Affinity, a Pack
et Des c r i pt or B I o ck (PD B) i s a I I o cat e d i n the system
poo I. This PDB contains the lCB of the owning task, the
PTC it refers to, and the AST address spec if ied by the
task, The POB is then Ii nked to the end of a sing I y

101

Ii nked Ii st whose head is contained in a Unit Contro I
B I o ck (UCB) extent i on • Cont a i n e d w i th i n the PO B, and
initialized at creation time, is an I/O queue header.
When a read operation is received for a particular PTC,
that is, with the queue subfunction bit set and the
third I/O parameter referring to a PlC for which the is-
suing task has declared affinity, the I/O packet is
queued to this PDB I/O queue. For a picture of these
pool structures, see figure two.

One particularly nasty feature of the DR-llW when
used as an interprocessor communications device is that
interrupts from a connected machine may be lost if the
Interrupt Enable <Ill bit in the device's CSR is turned
off, This feature dictates some of the more interesting
elements of the CD: design.

The CD: driver maintains two independent execution
streams. One stream handles the I/O functions that
transfer data. It is driven by the comp I et ion of I/O
operations if the device is busy, and started by either
the receipt of a QIO packet or by an unsolicited I ink
transaction. Transfer functions are terminated through
the $!ODON executive subroutine. The second execution
stream handles so-cal led control or housekeeping func-
tions. These functions are never queued, and are exe-
cuted immediately upon receipt of the QIO packet which
specifies them. Control functions are terminated
through the use of the $IOFIN executive subroutine,

Because an interrupt from the DR-llW may occur at
any time during the protocol and in any driver state,
the management of interrupt and fork-level code is com
plex. Interrupts can arrive faster than we expect them
to, or some error may have occurred in the machine the
driver is communicating with, causing a link startup
code, or simply garbage, to be received. To handle
these situations, the driver follows certain rules such
that it's current state is always known while it is exe-
cuting at below the priority of the device interrupt.
At the interrupt entrypoint, a dispatch/action state
table is consulted. If any currently executing
fork-level code needs to be informed of the result of
the interrupt, state flags are set which the fork-level
code is required to consult before it terminates it's
operations. This function is simplified through the use
of central routines which effect the entry to and exit
from a particular state.

As was previously mentioned, the CD: informs a
task of the receipt of a signal or an unsolicited tran
saction through the use of an ASl. lhis non-standard

102

AST block i; al located from pool, and queued to the task
using the $QASTT executive subroutine. lhe ASl stack
contains the PTC which generated the AST, the unit
number of the interrupting unit, and either the word
count for the data packet or the signal. Including the
unit number and the PTC al lows one AST routine to suf
fice for a task which connects to several units and/or
has multiple Packet Type Affinities.

Because the CD: driver maintains non-standard I/O
queues, it must intercept and process I/O Ki 11 func-
tions. Any write QIO packets that are on the system I/O
queue for the unit are removed by the executive, and
then the driver is called to complete the operation by
scanning the PDB I/O queues.

When a task exits, it is important that any pool
structures which it has created are removed. To al low
the CD: driver to perform this function, an RSX-llM I/O
function known as IO.CLN is used. In an RSX-llM system,
IO.CLN is issued by the I/O rundown service when a task
exits with a file open. lhe intention is that the
FILES-11 ACP wi I I intercept the function and close the
file. The CD: driver marks the second word of the LUN
entry in the header of any task which creates a Packet
Type Affinity. This fools the 110 rundown service into
be I i e v i n g that a f i I e i s open on that L UN , and i t sends
the driver an IO.CLN I/O request packet. The driver
responds to this packet by removing al I PDBs owned by
that task.

An interesting build-time option of this driver is
the trace feature. If the trace feature is present, the
driver looks through the Partition Control Block <PCB>
chain for a partition called CDTRAC. If this partition
is available, some words at the beginning of it are ini
tialized, and the partition is marked as busy so that
nobody tries to I oad anything over it. At key points in
the driver's code, a TRACE macro is invoked. This macro
creates a cal I to a tracing subroutine and passes a par
ameter Ii st to it. The trace subroutine checks a f I ag
in the UCB to see if the trace partition was initial
ized, and if so it checks a bit in the partition to see
if tracing was enabled <the trace enable bit is set by
an external task). If tracing was enabled, it moves the
current clock tics into the next free position in the
trace partition (defined by pointers at the beginning of
the partition) followed by the parameter list. A dump
program has been written which decodes the data in the
trace partition and displays them on a terminal or a
lineprinter, and which can enable or disable the trace
feature. This allows rapid fault isolation. This code

103

and the dumping task are sufficient I y mo du I ar that the
writer of any new driver should consider using them.

Timing and Size of Code

The CD: driver may be generated with any combina-
tion of several options. It may contain (or not) physi
cal DR-llW support, intraprocessor (internal to a single
machine) communication support, and the trace feature.
We assembled the driver using the combinations of these
options to determine code size. lhe results were:

1. Physical, Trace,
words.

and Intraprocessor 2859.

2. Physical, no Trace, and Intraprocessor - 2011.

3.

4.

5.

words.

Physical, Trace, no Intraprocessor
words.

Physical, ~o Trace, no Intraprocessor
words.

No Physical, Trace, and Intraprocessor -
WO rd S.

2601.

1805.

1383.

6. No Physical, no Trace, and Intraprocessor
899. words.

The size of the pool structures needs to be consi-
dered when planning a sysgen for a system which wi I I use
this driver. The fol lowing numbers are for a loadable
driver for a non-multi-user system. The Device Control
Block <DCB) is fifteen words. lhe size of the Unit Con
trol Block <UCB) is thirty-three words, and must be re
peated for each unit. lhe size of the Status Control
Block <SCB> is twelve words and must be repeated for
each unit. Each Packet Descriptor Block <PDB) takes up
seven words.

The following average timings were made for commun
ications between an 11/34 and an 11/50;

1. One word packets - 5. 7 ms/l ransfer.

2. Ten word packets - 5.8 ms/Transfer.

3. 500 word packets - 7.3 ms/Transfer

104

4. 1000 word packets - 8.8 ms/lransfer.

5. 2000 word packets - 11.9 ms/l ransfer.

6. 4000 word packets - 17.9 ms/Transfer.

These timings compare favorably with those for
other high speed devices. We timed transfers to an
STC-1900 tape drive at 6250 BPI, and found that a 4000
word transfer took 24.3 ms on average. A 4000 word
transfer to a TU-10 <BOO BPI> took 247.5 ms on average,
to no one's surprise.

We ran the intraprocessor version of the driver on
a PDP-11/70, and recorded an overhead time of less than
5 ms.

Note that when the lrace feature
overhead per transfer goes up markedly.

Mi::;cellanious Asides

is i n use,

There are a few things that ought to be noted
passing.

the

in

The RT-II implementation of this protocol is compa
tible with the RSX-llH implementation, permitting appli
cations under the two operating systems to communicate.

The intraprocessor communications feature uses the
$BLXIO executive subroutine to transfer data from one
task buffer to another. If this feature is to be used
in your system, you should specify the maximum size for
the $8LXIO vector in your SYSGEN options generation ses
sion.

The Ii nk startup protoco I depends upon having a
source of essentially random numbers to function depend
ably. We used the location SIDLCl which is a count of
idle cycles updated by the rotating data I ight support
routine. Unless you wish to modify the driver, we sug
gest that you include this option in your system genera
tion. We routinely run our system on ll/34s and ll/60s
which do not have data I ights, and have experienced no
problems with that to date.

We have created a subroutine package, cal led
CDPACK, which provides an operating system independent,
FORTRAN-callable interface to the communications ser
vices. Currently, versions of this package written for

105

RT-11 and RSX-JIM are completed, and a VHS version wi I·
be produced as VHS support is added.

We are currently adapting our Data Aquisition and
Analysis systems to use the DR-llW services. Our future
projects wi I I probably include remote access to CAHAC
device drivers through the use of ACPs and remote
servers, Fi le Transfer, and some sort of virtual termi
nal support.

The current version of the CD: driver, the trace
dumping task, and CDPACK wi 11 be on the RSX-II Special
Interest Group tape for th is DECUS symposium.

Conclusion

The DR-1 IW-based communications architecture deve l
oped at Fermi lab is suitable for situations in which
rapid data transfer is more important than such features
as error detection and retry, al though such features
could be added with an application layer. This archi
tecture is currently being used to develop applications
to support the high energy physics community at Fermi
lab, and its widespread use at Fermi lab is forseen.

REFE.RE.NCES

I. P.Heinicke, J.Biel, D.Burch, R.Dosen,

2.

H.Pyatetsky, D.Ritchie, V.White, 1982 "High
Speed Interprocessor Data Links Using The
DRll-W", 1982 Fal I DECUS U.S. Symposium, Ana-

H.Pyatetsky, P.Heinicke, D.Ritchie, V.White,
1982 "Using the DR-1 IW OMA Device for Interpro
cessor Communications", 1982 Fal I DECUS U.S.

Simplified Link Protocol

Sender Receiver

Request Link

Link ACK

Packet Type Code CPTC>

106

PTC ACK or PTC NACK

Word Count or Signal

Permitted Word Count,
or Signal ACK,
or Word Count NACK

N Data Words <DMA>

End-of-Message Status

figure I

RSX-llM V4.0 System Generation

St.

Ralph W. Stammerjohn

Monsanto
BOON. Lindbergh
Lou i s, Mi s sour i 63167

We have recently completed generating RSX-llM V4.0B
for the nine Monsanto PDP-II systems. We set out with
three major goals:

I. Minimize the differences between systems as
much as possible. We wanted to keep the actual
number of copies of various task images, espe
cially privilege tasks, to a minimum.

2. Make the system as friendly to use from the
terminal as possible.

3. Maximize the amount of available
pool. We have historically tried to
a RSX-llM system then we should and
always been the I imiting factor.

executive
do more on

poo I has

In general, we have met al I of these goals. This
report covers the key actions we took, concentrating on
changes to RSX-llM that helped us reach our goals. We
also discuss various problems we encountered and our
system generation methodology. Specific patch files can

107

be found at the end of the article.

8.0 MINIMIZING SYSfEM DIFFERENCES

The nine separate systems include PDP-ll/23's,
11/34's, ll/44's and ll/70's. All systems have differ
ent device configurations and even when they support the
same device, the hardware addresses are different. Al I
systems have memory management and floating point units.

We first I isted the executive features we required
for each system. We then did a dummy system generation
and selected the union of al I features. The actual
differences were minor because we have consistently used
the same approaches in each application. We included
the new executive commons, pool monitoring and alternate
CL! support. Specific features not selected included
powerfail recovery, set system time, group global event
f I ags, connect-to-interrupt, disk wr i techeck, and XDT.
The first two are not needed because we have UPS and
time-of-day clocks on al I systems and the last four fea
tures are not used or cost significant pool space.

We also selected the union of all
our systems during the dummy generation
figuration symbols would be generated.

devices between
to see what con-

When we examined the resulting configuration file
<RSXMC.MACl, it was clear the only differences were ex
tended memory support (22-bit addressing), the crash
dump device, and actual peripherals.

A RSX-llM privilege task uses the symbol defini
tions in RSXllM.STB to map references in the executive.
If all global references used by a privilege task are
identical between two executives, the same copy of the
privilege task can be used on both systems.

We decided to restructure the executive so only two
different versions of privilege tasks would be needed,
one for 18-bit systems Cll/23, 11/34) and one for 22-bit
systems (11/44, 11/ 70>. We wou Id bu i Id unique execu
tives for each system. The fol lowing changes were made:

1. The crash dump module <CRASH.MAC> conditionally
assembles unique code for the specific crash
device. Our first thought was to make the
length of each code segment the same, thereby
making the position of modules following the
crash module the same in al I systems. This ap-

108

proach was discarded because it would be diffi
cult to maintain and waste space on some sys
tems.

The approach used was to split the crash module
into two files, CRSHP and CRSHC. The first
f i I e has the crash dump stack and the crash
dump entry points. The module would be the
same size no matter what crash device is se
lected. The second mo du I e has the actua I crash
dump code and contains no global references
used by privilege tasks. We placed this module
at the end of EXCOM2. A side benefit was an
increase in pool because the crash code no
longer subtracted from the 20KW kernel execu-
tive.

2. Al I other code in our two executives was the
same unt i I we reached the device tab I es
<SYST8.MACl. We looked at the dummy SYS18.MAC
file that had the union of all devices and
checked to see what global references were made
by pri vi 1 eged tasks. These turned out to be
the console terminal <TTO:>, console device
<COO:), and several psuedo devices. In addi-
tion there are some special structures used by
the terminal driver.

We needed to make the references have the same
addresses on a 11 systems. We did this by edit
t i n g a new mod u I e (DEV T B. MAC) from the de v i c e
database code that had TTO:, COO:, NLO: and
the various psuedo devices. Then unique data
bases for the remaining systems were created as
separate f i I es.

3. The only module which follows the device data-
bases is the system initialization code
<INITL.MACl. This module does the basic system
startup when a virgin image is booted and then
links itself into pool. The only global label
in this module is at the start of the module
($POOL>. This is used in various privilege
tasks to find the start of poo I.

We added a new word to the executive common
data base <SYSCM.MACl named $POOLA and modified
INITL.MAC to store its starting address in this
word. Then al I references in privilege tasks
to SPOOL were changed to use the contents of
$POOLA.

109

These three steps al lowed us to bui Id two dummy ex
ecutives, one for 18-bit systems and one for 22-bit sys
tems, and use the resulting RSX11M.ST8 files to I ink two
sets of privilege tasks that would work on al I systems.
We setup RSXMC.188 and RSXMC.228 as the configuration
files for both systems and created two separate object
I ibraries. In separate accounts for each actual system
we put a RSXMC file that had the specific system name,
CPU, and crash device, the system unique device conf i gu
rati on source, and the executive build files. The only
unique objects needed for each system were CRSHC <the
unique crash device), SYST8 (unique devices>, and SYSCM
(unique system names).

All of our device drivers are loadable. Device
drivers have internal storage based on the number of
devices and controllers, but this is typically only one
or two words per device. The RSXMC.188 and RSXMC.228
configurations had the union of al I devices so we assem
bled the drivers using these files and generated just
two sets of loadable drivers.

The same approach was used with DECnet support.
For configuration reasons, Mons an to uses DECnet-1 lM
V2.0. We generated two versions of DECnet that had the
union of di I network devices used in the system. Each
system then as a unique configuration file <CETAB.MACl
that loads only the actual device and sets its vector
and CSR address and other unique network parameters. We
actually generated four versions of device drivers and
DDCMP in order to support whether the system had a KGll
or not.

In summary, we were able to support nine different
RSX-llM systems with just two sets of privilege tasks
and loadable device drivers. The executive and driver
source
18-b it
CRSHC,
system
bu i I t.
I inked
22-bit

modules are assembled only two times, once for
support and once for 22-b it systems. Unique

SYSCM, and SYSTB object files are made for each
and specific RSXllM, ~XCOMl, and ~XCOM2 images

Al I privi loge tasks and device drivers are
to the dummy symbo I tab I e f i I e for 18-b it and
systems.

9.0 SYSTEM FRIENDLINESS

System friend Ii ness at Monsanto means I etti ng each
programmer use whatever command language they desire and
as much shorthand as possible. At the same time, we
also have a goal of minimizing pool usage and this means

110

keeping tasks not installed unless they are actually
being used.

The KMS Fusion CCL program and INSTALL /CMD are
perfect for this purpose. CCL operates as a catch-al I
task and any commands which MCR cannot directly process
are forwarded to CCL. So if a user types MAC A=B and
••• MAC is not installed, CCL wi 11 get the command I ine.
CCL can then issue an INS $MAC/CMD="MAC A=B" and the as
sembler will be installed on the fly, do the assembly,
and be removed.

The normal command we use at Monsanto to run a task
that is not installed is

INS f i I ename/TASK=namtxx/CMD="nam command"

where filename is the task image filename, nam is the
first three characters of the command verb, txx is the
terminal number, and command is the actual command
string. For example, our CCL lYPE command would gener
ate the fo I I owing MCR command when issued from TTl 1:

INS $PIP/TASK=TYPT11/CMD="lYP TI:=fi leCsl"

This is the same form of command that would be generated
by DCL. We chose this command format because we did not
want programmers to get confused about what task to
abort when changing between DCL and MCR.

However, there is one major problem. RSX-11M I im
its al I MCR command I ines to 80 characters. This means
the actual command I ine that can be used with the /CMD
switch is 80 minus the overhead of the INS command. The
overhead for our shortest form would be the above exam
ple or 28 characters. It could be more if we would use
an actual filespecification and becomes a problem for
commands that normaly have long command I ines <MAC, PAT,
etc.)

We decided to recode CCL to resolve this and other
problems. The new program, CCS, would support the CCL
notation with some new extensions but would use TPARS
for al I parsing, use the new Request and Pass Offspring
Information <RPO!> directive, have extended command
search algorithms, eliminate parts of CCL we did not use
at Monsanto, and solve the problem of the 80 character
command I ine.

1. We used TPARS because it would make it easier
to add extensions to CCS command processing in
the future and give us better parsing control.

111

We implement TPARS state tables that handled
a I I of the current CCL syntax and added a 7.N
option. This is the reverse of 7.Q or execute
the command I ine if the tested parameter is
nu I I.

2. The new RPO! directive solved a problem with
CCL that existed in V3.2. When a catch-al I
task is invoked, MCR passes any offspring in
formation COCBl it has to the catch-al I task.
But in V3.2 there was no way for the catch-al I
task to pass the OCB's onto its spawned task
(except through executive modifications done by
Dan Steinberg to the spawn directive).

The problem this caused is best i I lustrated by
CCL commands issued from an indirect command
file. If CCL exited after spawning MCR with
the command I ine, indirect would continue pro
cessing because it thought the command was fin
ished. Also, no exit status would be returned.
CCL had to wait unti I the spawned task would
finish and pass the exit status it received
along to its parent. CCL's waiting around used
unnecessary resources and prevented other CCL
commands from being issued when working inter
actively.

The RPO! directive solves this problem and we
coded CCS to use the directive whenever it con
structed the last command in a sequence.

3. CCL would search various places for matches to
the command: an internal file, a user file and
the system file. We wanted to extend the al
gorithm to be table driven and add searching by
task filename. Our implementation first checks
the internal file. Then the command verb is
used as the name of a task f i I e and a search is
made for the file using a table of dataset des
criptors. If the file is found, the command
I ine shown above would be issued with the f i
lename as the command verb. Finally, CCS
searches for CCL comm and f i I es , a g a i n des c r i bed
by a table of dataset descriptors, and then
searches these f i I es the same way the internal
file is searched.

4. CCL had a lot of configuration options we did
not use at Monsanto, so while writing CCS, we
cleaned up the code and eliminated those fea
tures we did not use.

112

5. Th• final change is the most critical. When
CCS finally constructs a command, it checks the
resulting length. If less than BO characters,
CCS uses either the SPWN or RPO! directive to
issue the command and either waits or ex its.

But if the command is longer than 80 characters
and is in the typ i ca I format:

INS f i I ename/TASK=namtnn/sw ... /CMD=" command"

we removed the /CMD part of the command I ine
and check to see if the actual command I ine is
no I anger than 80 characters. If this is true,
the following logic was used:

1. Raise CCS's priority to 255.

2. Send the command I ine, without the /CMD
part , to MC R to i n st a I I the task , W a i t for
INS to finish and take immediate control
(because we are the highest priority task
in the system).

3. Now issue either the SPWN or RPO! directive
to the task directly ana pass the actual
command I ine.

4. Enter system state and find the Task Con
tra I Block for the target task. Set its
remove-on-exit bit <13.RE.Ml and propagate
CCS's MCR prompt bit <T3.MCR>. Turn CCS's
prompt bit off and exit back to task state.
This wi 11 cause the target task to be re
moved when it exits and cause a CL! prompt.

5. Return back to CCS's installed priority.

The I og i c works quite we 11, at the cost of mak
ing CCS into a privilege program. We are now
able to run our systems with only two installed
MCR tasks, INS and HEL. Al I other tasks are
i nsta 11 ed on I y when actua 11 y used and there is
no command line penalty for the flying install.

There were other actions taken in the area of sys-
tem friendliness. First, INS has an option in the task
build command file to allow non-privilege users to in
stal I non-privilege tasks. This is the option statement

11 3

GBLPAT = INSROT:$PRVT:240:240

and is normally commented out. We naturally enable<
this so CCS would work for flying installs. In addition
we added a similar global label, $PRVP, to allow
non-privilege users to do privilege installs. This does
not effect system security because privilege programs
typically do further security checks and let us invoke
programs such as MOU and OMO using CCS. fhose tasks
that do present a security problem, I ike BOO, we simply
hide in an account that non-privilege users cannot ac
e e ss.

Next, the i ndi re ct command processor (ICP> had a
task bui Id option f~r a system I ibrary account to search
if the command file was not found in the current user's
account. This feature is enabled by setting the value
of the option statement to the binary default account.
We used LB:U,2J, done with the following statement in
ICPBLD.CMD

GBLDEF 0$CU!C:402

In addition, we patched the search algorithm in ICP to
first search SY:[l,2J before the check in the system ac
count. This I et separate projects, al I working from
different virtual disks, to set up their own unique li
braries of command files.

With RSX-llM V4.0, we decided to be more aggressive
and use more software from the DECUS tapes. We examined
all the tapes and compared different versions of various
common items. We use the fol lowing under RSX-llM V4.0
with no problems:

TECO V36 Spring 1980 [343,002J Text
editor

DOB 00 Fa I I 1980 [301,052J Object
disassembler

REI VO! Fa I I 1980 [307,022J Un de-
I eted f i I e

GREP 010102 Fa I I 1981 [315, lOOJ Pat-
tern search

RUNOFF M2.4 Fa I I 1981 [305,302J Text
formatter

SRO 6. 1 Spring 1981 [373,004J Di-
rectories

p I us Fa I I 1981 [352,004J
(patches)

Finally, using the version 6.1 of SRO and the new

114

powers of the indirect command processor, we wrote OPS.
This command f i I e takes a SRD command Ii ne and prototype
MCR commands and issues the MCR commands for each occu
rence of the files found by SRO. This essentially ex
tends the wi Id-card powers of SRD and PIP to al I tasks.
For example, the fol lowing OPS command does an assembly
of all files created on November 11, 1982.

@OPS <•.MAC/DA:ll-NOV-82) <MAC $F,$F/-SP/CR=SFl

The prototype command use $x for various field substitu
tion and if no prototype command given on the first
I ine, OPS wi I I prompt for any number of commands that
will be issued in sequence for each file.

10.0 MAXIMIZING POOL

The I imiting factor for the Monsanto systems has
always been system pool. Maximizing system pool takes
one of two forms:

I. Maximize the total available system pool.
RSX-11M's structure requires system pool to be
in the first 20KW's of memory, so the maximum
size of system pool is 120000<8> minus whatever
code resides in this space. Any code removed
from the first 20KW's will increase available
po o I •

2. Minimize the usage of pool. The key to minim
izing poo I usage is never to tie pool up for
inactive users, use as much secondary storage
as possible, and keep the size of pool struc
tures to a minimum.

The first steps we took to maximize total available
space were obvious: select executive commons, use load
able drivers for all devices, and use the loadable task
loader. The next step was to select only the executive
features needed for our systems so unused features were
not assembled. We did choose the union of al I features
(see above>, however, our most pool-critical systems are
also the ones that use the most features.

The only other positive action we did in this area
was to move the crash dump code to EXCOM2. This saved
around 1400<8> bytes on our I argest systems, as we I I as
made it possible to accomplish our first goal. We exam-
; ned moving other routines to the executive commons

115

<PARTY, TOSCH, ERROR, PLSUBl, but concluded the changes
required would not be worth the gain in avai I able pool.

We were more sucessful in minimizing the usage of
pool The Monsanto systems are configured with lots of
main memory, ranging from 124KW's on our 18-bit systems
to 1088KW's on the ll/70's. Whenever possible, we tried
to trade memory for poo I:

I.

2.

3.

The full-duplex terminal driver <lTDRVl is in
stalled in a 8KW partition. The actual code in
the driver is only about 5KW's and the addi
tional space is used for terminal driver pool.

CCS helped extensively to reduce the number of
installed tasks. We are able to run our sys-
tems with only seventeen basic installed tasks
and sti I I have the ful I power's of RSX. We do
install SAV and MOU in our VMR command files
but these are removed on system startup.

TKTN
LOR •••
PMT •••
MCR •••
F 11 ACP
NET ACP
••• INS
ERR LOG
COT •••
PMD •••
••• MCR
••• DCL
••• CA.
••• HEL
••• AT.
PRT •••
CRF •••

Task termination
Task loader
Pool monitor
Command dispatcher
Files-11 ACP
DECnet ACP
Ins ta 11 task
Error I ogger
Console terminal logger
Post-mortem dumper
MCR command I ine interpreter
DCL command I ine interpreter
Catch-al I task <CCSl
Login/help task
Indirect command processor
Print spooler <serial version)
Cross referencer

FllACP has internal buffer space that can be
expanded in the task build command files. With
memory to burn, we decided to expand the large
FllACP <FCPLRG> to 12KW's and make the internal
ACP pool ($$AFR1> for Fi le Control Blocks as
large as possible. We looked at the normal map
and calculated the expansion size for various
F11ACP program sections. Unfortunately, this
version of F11ACP would trap as soon as mount
ed. Further investigation showed an undocu
mented restriction that PSECl $$8UF3 must start
before v i rt u a I address 16 00 00 (8) • We red i d the

116

calculations and were able to still add more
FCB storage to FllACP than al lowed in the dis
tribution command file.

The distributed version of FCPLRG has the size
of $$AFR! as 3000<8> or 34 FCB' s. We are ab le
to increase this to 4400(8) or 52 FCB's before
hitting the 160000<8) limit. We still found
FCB's being al located from pool on some systems
so we mount different disks with different
ACP's,

4. FllACP has an option to used fixed-size window
blocks for open files or attempt to create a
window block that exactly maps the entire file
(/WIN=FULL). The second option saves poo I
space when opening small files. If only one
retrieval pointer is needed to map the file,
then a window block of size 24(8) is al located
instead of the 70(8) when fixed-size windows of
7 are used. Unfortunately, the pathological
files that are highly fragmented can cause win
dows 1n excess of 1000(8) bytes to be al located
from pool.

We patched FllACP to useful I mapping instead
of fixed-size windows, but to use the volume
def au It window size as tho upper I imi t. We
feel this gives us the best of both worlds.
Sm a I I , ex i st i n g f i I es on I y use as much po o I as
they need. Large, fragmented files do not soak
up extremely large segments of pool. Our typi
ca I systems have 60 to 70 open f i I es at any
point in time so the resulting savings is sig
nificant.

5. We found the poo I monitor feature of RSX-1 lM
V4 .0 to work quite we 11. A feature we enab I ed
after reading the task build command file was
periodic stop task checkpointing
<GBLPAT=PMT:CNTRL:160>. Every sixty seconds,
PMT wi 11 force a check po int for al I stopped,
non-ACP tasks. We now see the console logger
normally checkpointed has well as many of our
own application tasks. Also, the indirect com-
mand processors wi I I be check pointed when they
are waiting on a long executions. Any tasks
which stop but we do not want check pointed we
simply install with checkpointing disabled.

RSX-l!M V4.0, with these additional steps, seems to

117

have sufficient pool for even our largest systems. Our
typ i ca I work I oad is around 2~-30 active tasks and free
pool from 3500 to 4000 words. We have seen peaks of
45-50 active tasks.

11.0 PROBLEMS ANO FEATURES

RSX-llM V4.0B has been fairly problem free. We
have only encountered two serious errors, one bad patch,
and two 'features' in our conversion from RSX-llM V3.2E.

The first error we encountered were poo I Ii nk er-
rors that were traced to terminals used DCL. We banned
the use of DCL unti I lSC resolved the problem to a logic
error in MCR <MCRDIS>. Software Dispatch article
2.2.1.2 (September 1982) fixes the problem. Note, the
problem statement is somewhat misleading. Continously
striking the PF keys certainly will cause the problem,
but any command sent by DCL to MCR and on to the
catch-all could corrupt the system.

The other serious bug caused system crashes when a
post-mortem dump was made of various tasks. We traced
the error to PMD 's hand Ii ng of tasks which map to a 4KW
region using APR7, for example a 4KW non-overlaid
FCSRES. The error is in PMD's hand I ing of a high virtu-
al address of 177777(8). PMD would increment the value
to zero and then subtract the I ow virtual address to get
the length of the region. The resulting bad value then
caused bad memory transfers.

Experience and conversations with TSC found the Au-
topatch B TSHOW.COR patch to DCL is incorrect. Our new
version of this file seems to fix the problem and is
shown with the other file listings.

The first 'feature' we discovered in RSX-l!M V4.0
was slaved terminals no longer had typeahead enabled.
A 11 of our actua I app Ii cations have their own command
parsers and run from slave terminals <these were all
written before the days of CL!'s). Typeahead from these
terminals is required to support the block-mode editting
done on the terminals. We examined the terminal driver
and removed the new feature. Happily we discovered
Software Dispatch article 3.1.3.1 <October 1982) had the
same patch.

Another 'feature' we discovered concerns the buffer
size of the console terminal CCO:). In RSX-l!M V3.2,
the CO: device buffer size was 255 characters. It ap-

118

pea1-s in the ne'" re I ease that the CO: device takes the
buffer size of the terminal used for console logging,
typically 80 characters. lhis broke various parts of
our application packages unti I we found the prob I em and
so I ved by s imp I y making the buffer size of the conso I e
terminal larger.

12.0 SYSTEM GlNERAl!ON ANO SUPPORT

Monsanto only uses the Digital system generation
procedure long enough to generate the template configu
ration files and system device tables. Once we have
this information, we use our own command files to assm
b I e mo du I es and put into the correct system Ii brary.

We take a similar approach to task building. We
ran SYSGEN3 and generated task bu i Id command f i I es for
everything. We then edit the command files and overlay
descriptors into a standard format and enable or disable
various options.

Among the changes we made to the task bu i Id command
files is to consistently output task images to device
TG:, output maps to device LI:, and input al I source
files from device SY: (except RSXl!M.STB and CEX.STB
which come from TG:>. This lets us easily maintain two
virtual disks, one which contains al I tasks and maps for
18-bit systems and another for 22-bit systems. We set
the state of the checkpoint (/CP/-CP> and floating point
(/FP/-FP> switch explicitly and flag all maps for full
I istings (/MA> and cross reference (/CR>. Al I tasks
a I so have exp Ii cit TASK, PR!, UIC, PAR, UN!l S, ASG, and
STACK options. This lets us do pattern searches to see
the various parameter settings for al I tasks.

did:
The following is a list of various other actions we

I. We are currently using both Fortran-JV-Plus
V3.0 and Fortran-77 V4.l in production and
wanted to avoid problems we had in the past
with def au It SYSLIB.OLB searching. If one form
of OTS was in SYSLIB, it would be certain that
someone using the other compiler would forget
and use SYSLIB.OLB as the default. The OTS
mismatch would then cause strange problems.

We dee i ded to put no Fortran OlS (or
support) in SYSLIB. Instead,
F4PLIB.OLB and F77LIB.OLB OTS-only

119

ANSI FCS
separate

libraries

were created. We al so support SYSF4P.OLB and
SYSF77.0LB as default libraries. lhis forced
programmers to exp I icitly name the OlS they
used.

2. We have many application programs that I ink to
the RSX-llM V3.2 FCSRES resident I ibrary. In
order to avoid re bu i Id i ng a 11 these programs,
we name the RSX-llM V4.0 resident I ibrary DE
CRES and support both on a I I systems. We w i I I
eventually migrate all FCSRlS support to OE
CRES.

3. Our systems have memory to burn, so we tried to
find all tasks which benefit from additional

4.

dynamic memory and task bui It them as 28KW
tasks (plus OlCRES>. lhis increases system
throughput and helps the tasks show up on a
!088KW RMOEMO display. lhe tasks that fal I
into this category include CMP, CRF, DSC, FTB,
F4P, F77, LBR, MAC, PIP, llC, lKB, and VFY.

We examined the priority of a I I tasks and
changed to better meet our needs. lhe basic

question we asked as if these two tasks b 0th
want to run at the same time, which one should.

We ended up setting the following priority

classes:

1 • Pr i or i t y 80

A 11 MCR pr iv i I ege tasks except INS <ACS,
BOO, BRO, BYE, OMO, ELI, HlL, !NJ, LOA,
MOU, PMO, SAV, UFO, and UNL>.

2. Priority 70

A 11 CL I command processors and video ed i-
tors <DCL, CCS, EDT>.

3. Priority 60

The indirect command processor, other ed i
tors, and file utilities <AT., TEC, PIP,
and SRO>.

4. Priority 50

5.

A 11 of the other tasks with
of those at 40.

Priority 40

120

the exception

Background ta&k& (CRF) and backup/di &k
uti I ities <BAD, BRU, DSC, FMT>. The later
are normal I y run at stand al one times and
when used in production really consume sys
tem resources.

There is also a category of system tasks that
we put in individual priorities, starting at
245. These task are ranked by descreasing im
portance, separated by units of 5. This al lows
us to put our real-time application tasks at
exactly the right order with regard to the rest
of the system. The current ordering for these
tasks is TKTN, LOR, PMl, COL <SPM data collec
tion), RMD, MCR, FllACP, NE.TACP, INS, ERRLOG,
COT, MTAACP, PMD, and SHF.

13.0 PATCHES AND FILES

The following has many of the files discussed in
the previous sections. The source patch files are in
SLP autolocator format and the object patches in PAT
form.

13.1 Crash Mo du 1 e

The fol lowing SLP correction file splits CRASH.MAC
into two files, CRSHP.MAC and CRSHC.MAC.

CRSHP.MAC/AU:72./-BF=CRASH.MAC

-/.TITLE CRASH/, •
. TITLE CRSHP

-I; MODIFIED BY:/

; R. STAMERJOHN 19-JUL-82

RWSOOl -- SPLIT CRASH INTO POOL AND CODE MO-
DUL ES

; R. STAMERJOHN 07-SE.P-82

RWSOll -- MAKE. SURE MEMORY MANAGEME.NT IS ON
BEFORE JMP

;(

-/$CRUST::/,/$CRPBF::/,l;RWS001/

121

$CRUST::.WORO 0
HERE

.IF OF 0$$PAR~$$MGE

$CRAR5::.WORD 0
VALUE

.ENDC

*** ADJACENT
$CRPBF::.BLKW 4
BROUTINE CALLS
-/SCRSBN::/,/SCRSCS::l,/;RWSOOl/
-/SCRALT::/,/$BTSTP::/,/;RWS001/
SCRALT::

.!FT

.IF OF 0$$PAR~SSMGE

USER PS IS STORED

SAVE.D KERNAL APR 5

lHE FOLLOWING MUSl BE

;SlACK ARE.A FOR SU-

MDV KISAR5,SCRAR5
MOY $XCOM2,KISAR5

;SAVE. OLD MAPPING
; MAP INTO E.XCOM2

- , ,I ;RWSOl l/
BIS 1,@ SRO ;MAKE SURE. MEMORY MANAGEMENT

IS ON
-,,/;RWSOOl/

.ENDC

JMP SCRSHC ;JUMP TO CRASH CODE

• !FF

HALT

-.,/BR .-21,/;RWSOOl/
-. , .+3,/;RWSOOl/
I
CRSHC.MAC/AU:72./-BF=CRASH.MAC

-/.TITLE CRASH/,.
• TITLE CRSHC

-I; MODIFIED BY:/

; R. STAMERJOHN 19-JUL-82

RWSOOl -- SPLIT CRASH INTO POOL AND CODE. MO-
DUL ES

;(

122

-/$CRUPC::/,/$CRUST::/,/;RWSOOI/
-I; ***THE FOLLOWING!,/; *** ABOVE/,/;RWSOOI/

• IF OF CUC DA
-/;+l,/$TRINT::/,/;RWSOOI/
-. , . ,l;RWSOOI/
-/$CRASH::/,/$CRALT::/,/;RWSOOI/
$CRSHC:: ; CRASH DUMP ROUT! NE

. IF OF CUR SH

-I UBHPRl,.,l;RWSOOI/

.IF OF 0$$PARM$$MGE

HOV $CRAR5,24<SP> ;;;STORE SAVE KERNEL APR 5

.ENDC

HOV UBHPR,RO ;;;GET ADDRESS OF FIRST UHR
I

13.2 $POOLA Support

The following SLP correction files add the new glo
bal variable $POOLA to SYSCH, modify INITL to inti al ize
this variable to start of pool, and change all uses of
label $POOL to reference the contents of $POOLA. Note,
ST20V and HCRDEF are HCR modules and RHDDEF, HDINIT,
THFl IF, and THPAGE are RHDEHO f i I es.

SYSCH.HAC/AU:72./-BF=SVSCH.HAC

-I; MODIFIED BY:/

R. STAHERJOHN IS-JUL-82

RWS002 -- ADD $POOLA WORD, HOLDS TOP OF POOL.

x
-/$CHFIN::/,.,l;RWS002/
$POOLA::.WORD 0
$CHFIN::
I

;lOP OF POOL <SPOOL>
;END DF SYSCH AREA FOR CDA

INITL.HAC/AU:72./-BF=INITL.HAC

-I; MODIFIED BY:/

; R. STAHERJOHN 1 S-JUL-82

123

RWS002 -- STORE TOP OF POOL IN $POOLA

x
-/BIC

HOV
I

$CRAVL-2/,,/;RWS002/
RO,$POOLA

HCRDEF.HAC/AU:72./-BF=HCRDEF.HAC

-I; VERSION:/

R. STAHERJOHN IS-JUL-82

;STORE TOP OF POOL

RWS002 -- REFERENCE $POOLA INSTEAD OF $POOL

x
-/$POOLl,.,/;RWS002/

.GLOBL $POOLA
I

ST20V.HAC/AU:72./-BF=ST20V.HAC

-I; MODIFIED BY:/

R. STAHERJOHN !S-JUL-82

RWS002 -- STORE TOP OF POOL IN SPOOLA

x
-/SUB

SUB
VALUE
I

$POOLl,.,l;RWS002/
$POOLA,R3 CURRENT AS TO BOUNDARY

RHDDEF.HAC/AU:72./-BF=RHDDEF.HAC

-I; MODIFICATIONS:/

R. STAHERJOHN IS-JUL-82

RWS002 -- USE $POOLA TO GET START OF POOL

x
-/$POOL/, .,l;RWS002/

.GLOBL $POOLA
I

HDINIT.HAC/AU:72./-BF=HDINIT.HAC

-I; MODIFICATIONS:/

124

R. STAMERJOHN 19-JUL -82

RWS002 -- USE $POOLA TO GET START Of POOL

" -/MOV
MOV
ASR
ASR
ASR
ASR
ASR
ASR
BIC

$POOL/,. ,I ;RWS002/
$POOLA,Rl
Rl

;GET START Of POOL
IN 32W BLOCKS

Rl
RI
Rl
Rl
Rl

1777,Rl ;CLEAR ANY GARBAGE
I

THF11L.MAC/AU:72./-BF=THF11L.MAC

-I; DATE:/

R. STAMERJOHN 19-JUL-82

RWS002 -- USE $POOLA TO GET SlART Of POOL

" -/CMP
CMP

I

R2, $POOL/,.,/;RWS002/
R2,$POOLA ;; BELOW POOL?

THPAGE.MAC/AU:72./-BF=THPAGE.MAC

-I; DATE:/

R. STAMERJOHN 19-JUL-82

RWS002 -- USE SPOOLA TO GET START OF POOL

" -/CMP RO, $POOL-I/, .+1,/;RWS002/
CHKADR: CMP RO,$POOLA

BLO 10$
I

1 3. 3 I NS Support for Non-Pr i v i I e g e Ins ta I I s

The following SLP correction file adds a new
I abe I, $PRVP, to INSTALL. This a 11 ows the error
ing for non-privilege users installing privilege
to be disabled in the task build command file.

125

global
check
tasks

INSLB.MAC/AU:72./-BF=INSLB.MAC

-I; MODIFIED BY:/

; R. STAMERJOHN l 9-AUG-82

RWS007 -- ADD GLOBAL LABEL TO PATCH OUT PRIVl
L EGE INSTALL

CHECK FOR NON-PRIVILEGE USER

" -/4912$:/
-/INSL21/,., I; RWS007/
$PRVP::

JMP INSL21 NO
I

13.4 Indirect Command Fi I e Lookup

The following SLP patch adds SY:U,21 to Indirect
MCR' s search path for command f i I es. This a I so requires
the task build value of 0$CUIC to be set to 402<8>.

ICPATS.MAC/AU:72./-Bf=ICPATS.MAC

-!; MODIFED BY:/

; R. STAMERJOHN 10-AUG-82

RWS006 -- SEARCH SY:[l,21, THEN LB:[l,21 FOR
COMMAND FILES

" -/BEQ 16S/,.,l;RWS006/
BL E 16$

THEN LB:U,2J
-/l6$:/,,/;RWS006/

TST R4
BEQ 17$
MOV CMBPTR,RO
MOV "@L,IROl+
MOV "B:,IROl+
MOV 1,R4
BR 10$

17$:
-I "@LI,!

MOV
MOV

"B:/,/;RWS006/
"@S, I ROl+
"Y:,IROl+

126

BR If NOT, TRY SY:[l,2J,

IS THIS SECOND PASS
BR If NO, lRY SY:[l,2J
SET PREVIOUS COMMAND
SET FOR @LB:

FLAG NO MORE PASSES
AND RETRY OPEN

SET FOR @SY:

-/MOV SP, R4/,., I; RWS006/
MOV -1,R4 ; SET SWITCH FOR THIRD PASS

I

13.5 OPS.CMD

The fol lowing is the command file we use for
wi Id-card support for all uti I ities.

.ENABLE SUBSTITUTION

.ENABLE GLOBAL

•. OPS - Select files and perform operation.

@OPS <SRO selection) (command string)

.PARSE COMMAN "()()"DUMMY SRO DUMMY CMDl

.; If no command string specified, loop and read
strings.

.IF CMDl <> "" .GOTO SORT
.SETN CMD 0

.CMOS: .INC CMD
.ASKS XXX Command string 'CMD'
.IF XXX = "" .GOTO SORT
.SETS CMD'CMD' XXX
.GOTO CMOS

., Make SRO selection to te11porary file and open for
read.

.SORT: SRO SRD.TMP='SRD'/LI
.OPENR SRD.TMP

.; Read SRO file and select filenames. Parse so $N
is entire

.; filename, $0 is device, $U is UIC ($G is group, $0
is owner),

.; $Fis filename, $Tis filetype, and $Vis version.

. LOOP: . READ LINE
• !FT <EOF> .GOTO FINI

.SETS TEST LINE[1:3J

.IF TEST <> " **" .GOTO FILE
.PARSE LINE " [,J" DUMMY DUMMY $0 $G $0 DUMMY
.SETS $U "["+$G+","+$0+"J"
. GOTO LOOP

127

.FILE: .SETS TEST LINE[20:20J
.IF TEST <> ":" .GOTO LOOP

.PARSE LINE" .; "DUMMY DUMMY $F $1 $V DUMMY

.SETS $T ". "t$T

.SETS $V "; "t$V

.SETS $N $0+$U+$F+$T+$V

., Enter loop and execute commands for each file.

.SETN CMD 0
.CHKS: .INC CMD

.IFNDF CMD'CMD' .GOTO LOOP
.TEST CMD'CMD'
.SETN SIZE <STRLEN>
.SETN CHAR 0
.SETS OUT

.CONT: . INC CHAR
.IF CHAR> SIZE .GOTO EXEC

.SETS TEST CMD'CMO'['CHAR' :'CHAR']

.IF TESl = "$" .GOTO SUBS

.SUBS:

CMD'CMD'['CHAR': 'CHAR'J

.SETS OUT OUT+TEST

.GOTO CONT

. INC CHAR
.SETS TEST

.SETS OUl OU1+$'TEST'

. GOTO CONT

.EXEC:

. FIN I:

'OUT'
.GOTO CHKS

PIP SRD.TMP;*/DE/NM

13.6 FllACP Windows

The following PAT file allows HlACP to
file window mapping with an upper limit of
window size. The original module checksum is
and the INWIN.POB file checksum is 16421<8) .

. TITLE INWIN

.!DENT /M0226/

use exact
the volume

70061<8)

RWS015 - USE VOLUME DEFAULT AS UPPER LIM!l TO
TRY FULL MAPPING .

128

.PSECT INWIN
.PURE.

. = .PURE.+24
MOVB V.WISZ<R4l,Rl

FAULT
NOP

= .PURE.+52
CALL PATOOI

.PSECT PATOOl

.PURE.

;GET THE VOLUME DE-

; FALL INlO FULL LOGIC

PATOOI: MDV Rl,R3 ;COPY RETRIEV-
AL POINTER SIZE

BGT 10$; IF GT - USE AS UPPER
LIMIT

HOV <<512.-W.RTRV>/6.>,R3 ;SET MAXIMUM RElRIEVAL
SIZE
10$: RETURN ; AND CONTINUE

.ENO

13.7 PMD Correction

The following PAT correction file fixes the problem
in PMD with 4KW APR7 windows. lhe orginal object file
checksum is 37060(8) and the PMD.POB f i I e checksum is
4122<8> .

. TITLE PMD

. !DENT /07. 21

MODIFICATION:

RWS012 -- FIX DUMMPING OF 4KW APR7 WINDOW

.PSECT
.BLK. = •

= .BLK.+1776
NOP

.END

129

13.8 TSHOW Correction

The following is a corrected version of
TSHOW.COR file on the Autopatch B kit .

[23,IOJTSHOW.MAC;2/AU/-BF=C23,10JTSHOW.MAC;I

-2,2
. I DENT /01.01/

-20,20
; LHS032 CORRECTED SHO ACC SYNTAX
x
-36,37,/;LHS032/

. IF OF RUMPL
OR <GNITNUOCCA BST=Bl>
OR. <'CLO BST=B2>
.!FF
OR <'CLO BST=B2>
.ENDC

-55,71,/;LHS032/
. IF OF RUMPL

GNITNUOCCA:
AND <<'SHO ACC >><MAP=! OPl=T>
END
.ENDC

I

130

the

[Ol
CEQ.JS
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR02-1/C11
MARLBORO. MASSACHUSffiS 01752

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:-------

Name=-------------~

Company:------------

Address:-------------

State/Country:----------

Zip/Postal Code: ----------

Mail to: DECUS · ATT: Membership
One Iron Way, MR02-1/C11
Marlboro, Massachusetts 01752 USA

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO, MA
01532

