
Cl 
DEC US 

The De VIAS Letter 

~ 
CDECUS 

U.S. CHAPTER 

~ 
CDECUS 

US CHAPTER 

The RSX Multi-Tasker 

Se~tember 1983 



Printed in the U.S.A. 

The following are trademarks of Digital Equipment Corporation: 

DEC DIBOL 
'DECnet · Digital Logo 
D ECsyste~-10 EduSystem 
DECSYSTEM-20 IAS 
DECUS MASSBUS 
DECwriter PDP 

UN IX is a trademark of Western Electric Corporation 

Copyright© Digital Equipment Corporation 1983 
All Rights Reserved 

PDT 
RSTS 
RSX 
UNIBUS 
VAX 
VMS 
VT 

It is assumed that all articles submined to the editor of this newslener are with the authors' permission to publish In any DECUS 
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the 
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are 
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation. 



The DeVIAS 
Volume 

In This Issue 
Curley' s Corner: News from the Chairman 

Letters: 

Mary Roberson: 
William Ferry: 

System Directory/Librarian Package? 
Digital Counterpart for !AS SIG 

John Guidi: 
Bob Turkelson: 

c on !AS? TTY Patch. BAD on !AS 
Status of SRD 

Preliminary description of IAS V3.2 
UIC directory for RSX Fall 82 SIG tape 
The Magic of Sysgening IAS 
LIST utility from Paul Clayton's tape 
DeVIAS Questions and Answers 

Next Issue: 

More from the Clayton tape 
Preview of the RSX Spring 83 SIG tape 

No. 

Letter 
16 

Ff8111 the Editor 
I hope some of those receiving this newsletter are using IAS 
or at least know someone who is and can pass the letter 
along. 

For those of you who don't even know what an IAS is, my 
condolences. You may, however, find the enclosed matter of 
interest since much that affects IAS also affects RSX. 

For those of you who didn't get the previous issue, I need 
submissions. I will take anything that can be printed in a 
free-press society and has some relevance to IAS, DEC or 
DECUS. 

I hope to publish at the rate of one issue every month or 
two, so I need material. 

Qmtributions 
The DeVIAS Letter needs contributions in order to continue 
as an effective medium for exchange of information regarding 
!AS. 

Contributions may be submitted in any form you wish. 
Originals on 8~ x 11 paper are preferred. However, even 
photocopies of relevant match-book covers would be 
appreciated. 

Send all contributions to: 

Ontario Hydro 
700 University Avenue 
Toronto, Ontario 
CANADA, MSG 1X6 

Attn: John W. Drummond 
Mail Stop - M2El0 

ii 



Dear IAS SIG Member, 

Department of Radiation Therapy 
University of Pennsylvania 
Room 410 - 133 South 36th Street 
Philadelphia, Pennsylvania 19104 
31 July 1983 

There are several issues that bear upon us directly. The most 
important, in my view, is the newsletter sharing with the RSX SIG. 
The DECUS management has decided that any new SIG will share the 
newsletter with an established SIG for the first year. This makes 
sense in a couple of ways, (a)it gives the new SIG time to get its 
newsletter act established before being forced into a paid 
subscription program on its own and (b)it allows DECUS to plan ahead 
in its Subscription Service budget. Thus, we will share the 
Newsletter with the Multi-tasker for this fiscal year. I have asked 
that the pages of each newsletter (~he Multi-Tasker" and "The DeVIAS 
Letter") be different, and that we alternate placement on top. The 
RSX SIG has already indicated a willingness to share and be helpful. 

Scheduling for the Fall Symposium in Las Vegas is done. John 
Jenkinson did the preliminary work but was unable to attend the week 
scheduling meeting in Marlboro, Massachusetts. Both Jim Hopp (the 
Symposia Coordinator for the RSX SIG) and Steve Finch (of Emulex 
Corporation, Costa Mesa, California) did the on site work necessary 
for us to have IAS sessions in Las Vegas. Thank you both for taking 
up the gauntlet on short notice. This bri~gs up _an important SIG 
issue: we need a volunteer to be Symposia Coordinator. would be 
glad to hear from you now or find me in Las Vegas and we can discuss 
the job (some DECUS paid travel is required). 

The sessions on the schedule for Las Vegas are: 
Nibbles and Bits of IAS, Ken Guralnik, Thursday, 27 October, 

8-11pm 
IAS Language Panel, Mike Reilly, Tuesday, 25, October 

10-10:30am 
IAS SIG Opening Session and Roadmap, Bob Curley, Monday, 24 October 

8:30-9:30am 
IAS SIG Closing Session and Wish List, Ken Guralkik, Friday, 

28 October, 10-1 lam 
IAS/VMS User panel, John Jenkinson, Tuesday, 25 October 

12: 30-1: 30pm 
IAS SIG Planning, SIG Steering Committee, Thursday, 27 October 

7-8pm 
!AS QA, Bob Curley, Monday, 24 October 

8-11pm 
IAS Product Panel, Tim Leisman, Monday, 24 October 

2-3pm 
The IAS QIO Unveiled, Mike Reilly, Thursday, 27 October 

10-1 lam 
Aerodynamic Laboratory Data System in IAS, Stephen L. Tomlin, 

Thursday, 27 October, 12-1pm 
Enhancing System Security of IAS, Larry Barrett, Tuesday, 25 October 

10: 30-11am 

IAS.RSTS/E.RSX.VMS, Curley et al, Tuesday, 25 October 
5: 30-6: 30pm 

You should have Autopatch E if you have any kind of software 
support. Even if you have not ordered Autopatch before. Ask your 
software support office if you have not already received it. 

I would like to hear from you about talking to your IAS system 
with DEC personal computers. Really, any personal computers, but 
especially with DEC PC's. I have a DECmate II and will get a Rainbow 
"sometime soon". And, I KNOW that intercommunication is NEVER as 
simple as it should be. Anyone who has solved the problems -- please 
let me know. Thanks. 

noticed that there is a new contribution to the DECUS library, 
from New Zealand, that is IAS specific. Why is it that we contribute 
so little to the Library? have heard that question often, in the 
halls of DECUS. I would like to hear your answers or opinions. 
Please. 

The RSX SIG has an active group working on SRO. It would be 
nice, since most of us use it, if our SIG helped. Please call or send 
me your name, to be connected with this worthwhile effort. 

I have asked Ken Guralnik ( EG&G, Las Vegas) to start up a 
mechanism that will permit us to focus our desires for IAS on DEC. It 
is often called a "Wish List" or 11 SIG Menu", but Ken has come up with 
a better name. He'll tell you about it shortly, but if you can't 
wait, call him at 702-647-5551. There are, of course, wishes that 
never come true. But, if DEC never knows, your wishes will never come 
true. I have found the Development group very helpful and reasonable 
in my requests. 

The [ 14,*l UFD tapes that Paul Clayton spoke of in St .Louis are 
ready. A very cooperative, but anonymous, person has created three 
BRU tapes (two at 1600bpi and one at 800bpi) of the whole collection. 
Send me a request, I'll send you a tape, you copy it and return the 
original to me. If you missed St. Louis, Paul Calyton described a 
herculean effort whereby he collected over 100 individual programs or 
collections from DECUS sources (and his own contributions). All run 
on IAS. His sources include the "Best of ICR", of Stodola, Wood and 
Gael; "Reece's Pieces" of Frank Borger and many Symposia RSX/IAS 
Tapes. Some required extensive modification of command files, and the 
like, to work. Paul has offered to share them with us. 

Sandy Krueger, a long time De VIAS member, has been elected 
Chairman of the SIG Council. As many of you know, Sandy has been 
Chairman of the DMS SIG for a couple years, succeeding Sat Mohan (also 
a De VIAS Member). The SIG Chairmen were invited to a meeting last 
weekend at the O'Hare Hilton. We voted to form a group, that consists 
mainly of SIG Chairmen, to be called the SIG Council and elected Sandy 
to chair it. The SIG Council is an effort to make DECUS more 
representative, since you talk to me and I'm supposed to talk to DECUS 
management. To make it all work you must talk to me or the SIG 

2 



chairman you feel will listen best. There are many important (and 
devisive issues) that must be addressed and solved by this level of 
the membership so that DECUS can continue to be the helpful 
organization that it has been for so long. Contribute your ideas and 
criticisms to your SIG Chairmen. 

I was asked a few weeks ago for items to form a "handout• at the 
Las Vegas meeting. I responded that we didn't have that act together 
yet. I'd like to hear from you who think that handouts are a good 
idea for this SIG. I think that our newsletter is a good forum for 
those things (few as they are) and the Proceedings the right place for 
formal papers. Many of the SIG's use the handouts as a mechanism to 
earn money for SIG activities. Any opinions? 

My work address has changed. My new office is at 36th and Walnut 
Streets in Philadelphia and the address above does not usually enter 
the University nor Hospital Mail System. My Old address, 3400 Spruce 
Street, ususlly entered the Hospital Mail and sometimes got to me. 
Sometimes it would enter the University Mail and never get to me. (I 
was approached in San Diego a couple of years ago, at a DECUS 
Symposium, with the words: "Oh, You're Bob Curley I get your 
mail" by someone else whose badge said ''University of Pennsylvania"). 
Thus, you may use the new address above, or the Post Office Box that I 
rent to avoid the issue altogether: P.O. Box 322, Flourtown, 
Pennsylvania 19031-0322. Or you may phone, 215-662-3083 (8am-4:30pm 
Eastern Time). 

Another letter that I received recently asked if we wanted to 
have items for sale in the DECUS Store at the Symposia. You've all 
seen the VAX Ties and various Sig Tee Shirts. Do we wish to sell (or 
more practically, buy) IAS items? A volunteer to organize and 
maintain that efort would be appreciated. I answered this letter that 
we would have no items this Symposium. Again, this is a mechanism for 
SIG's to make a few bucks for SIG activities. 

I must thank, again, the many people who make this newsletter 
possible. The obvious one is John Drummond. But there are you who 
send in items and the DECUS Staff who get it printed and mailed. 
There are you who send in your subscription dollars to support all the 
efforts and ultimately make it possible. Thanks to all of you who 
contribute. 

Robert F. 
Chairman 
IAS SIG 

3 

Curley 

Bell Technical Operations i i ~ :, i •t •) : I 

Bell Technical Operations Corporation 
Subsidiary of Textron lnc. 

To: Robert Curley 

16 February 1983 

1050 East Valencia Road 
Tucson, Arizona 85706 
602/294-2651 
TWX 910-952-1103 

Delaware Valley !AS Local 
P.O. Box 322 
Flourtown, PA 19031 

RE: Disk and Tape Management System for PDP 11/70 !AS 

Dear Mr. Curley: 

We are looking for an automated tool which would assure that the most 
recent version of a file is accessed and provide information for configur
ation control purposes. 

Specifically, the tool should (1) automatically record file name, ver
sion, date, and device ID, (2) prompt the operator for the correct disk or 
tape and (3) then only accept the specified disk or tape. The PDP 11/70 
!AS ~perating system now selects the most recent version from the mounted 
device, but what we want is the most recent version anywhere. 

I would appreciate hearing from other users who have solved or are 
trying to solve this problem through disk and tape management systems or 
other methods. 

Very truly yours, 

BELL TECHNICAL OPERATION CORPORATION 

/? 1,,.,,1 k -;2,k,A--077 
Mary Roberson 
Systems Analyst 

4 



28 June 1983 

Mr. Robert F. Curley, Chairman 
IAS SIG 
Hospital of the University of Pennsylvania 
3400 Spruce Street 
Philadelphia, Pennsylvania 19104 

Dear Mr. Curley: 

As you know, DECUS is a valuable vehicle for information exchange 
between Digital and our customers. Our objective is to insure that 
Digital customers realize the maximum benefit to better meet the 
needs of the marketplace. Our decision to extend support of the 
IAS product set was based on the clear feedback we received from your 
organization regarding the need for continued support. 

I am pleased to honor your request to have Tim Leisman serve as the 
"Digital Counterpart" to the newly formed IAS SIG. Tim brings to 
this position his experience as a "Digital Counterpart" to the 
RSX-IAS SIG, his enthusiasm for IAS and a sincere interest in the 
needs of the IAS user cornrnunity. 

We believe that IAS has a bright future. This is based on the 
quality of the product and the quality of the conununication between 
Digital and the IAS user cornrnuni ty. With your continued support and 
the support of the IAS community we look positively to the future. 

Sincerely, 

·w~J,_?¢; 
William P. Ferry ~ 
Corporate Manager 
Software Product Services 

WPF:j 

DIGIT'-1 fC>!!'"MENT COV"::w'· :·_,~· ··~ ·~··''BOLTON ~cv.;1, S ']"'· •.~;'~; c\CHUSETIS 01775 

'' S97-5111 
s 

Bob; 

John Guidi 
The Computing Center 
The Jackson Laboratory 
Bar Harbor, Maine 

04609 
phone: (207)288-3371 X-391 

Question: Does anyone have the DECUS C system running on an IAS V3.0 
system? If so, would you please contact me at the above address? 

we are running IAS V3.0 and recently we have had some hardware 
problems which prompted a visit by DEC Regional Support. To our 
delight, the person sent up was intimately familiar with IAS. Some of 
his suggestions and comments may be of interest to other IAS users, so 
I pass them to you to do with as you see fit. 

o Bruce Wright of Duke University published a patch for the IAS 
V3.0 terminal handler in the April 1981 issue of the 
Multi-Tasker (Vol 14, Number 4, pp.106-107). The patch 
causes parity errors in the type-ahead buffer to be handled 
the same as breaks or framing errors. Without this patch, 
parity errors in the type-ahead buffer can fill up the 
terminal buffer, locking out all terminals. 

o The BAD utility distributed with IAS V3/V3.l does not inhibit 
retries of marginal sectors. The error log may fill up when 
you run BAD, and if so, you should include any sectors where 
retries occured in a subsequent run of BAD. 
The BRUSYS.SYS image on the IAS V3.l distribution contains 
the RSX-llM version of BAD which has been referred to as a 
"snowplow" - it does not stop to perform retries. We created 
a bootable tape by building the Virtual MCR (VMR) utility and 
running the BRUSYS.SYS image through it to tape. When 
booted, the tape loads a system containing the CNF 
configuration program to describe devices, the FMT disk 
formatter, the "snowplow" BAD, and a copy of BRU. To do 
volume maintenance, we bring the system down, boot this tape, 
run the CNF configuration program, and then run the 
appropriate utilities. 
NOTE: Once you have BRUed onto a volume, you will be unable 
to use DSC to make a copy of that volume. BRU writes 
information into the home block which DSC does not know how 
to handle. We have been told that this is no great sacrifice 
as BRU is said to perform better than DSC. Also with BRU, 
you can specify the location of the index file. 

Sincerely, 

6 



ignored. Various alternate coding sequences will cause the problem to disappear 
from the test program, but instances where "real" programs encounter this bug 
are much harder to find. 

CCJ1HON ID ( 1 ) , IT 
DIMENSION IO (2) 
EQUIVALENCE (IO ( 1), ID ( 1)) 
FORMAT (I3) 
IT : 1 
WRITE (5, t) I0(2) 
IT = 2 
WRITE (5, 1) I0(2) 
END 

>FOR TEST :TEST 
.HAIN. 
>TKB TEST :TEST 
>RUN TEST 

1 

2 
TTll STOP 

>FCR TEST:TEST/CD:EIS 
.HAIN. 
>TKB TEST :TEST 
>RUN TEST 

0 
2 

TTll - STOP 

HELP YOURSELF 

"Help Yourself" is a place for you to get your tough questions answered. Each 
month, questions from readers will be published. If you have a question, send a 
letter to the "-ilti-Tasker at one of the addresses listed on the cover. 

We would also like to publish the answers to questions. If you can help 
someone, send a letter to the Multi-Tasker or call Ralph Stamer john at (314) 
694-4252. Your answer will be sent directly to the person in need and published 
in the next edition of the "-ilti-Tasker. 

ANSWERS TO PREVIOUS QUESTIONS 
!AS TERMINAL LOCKOUT 

Bruce Wright from the Duke University Medical Center had an answer for the IAS 
terminal lockout question in the January, 1981 edition. 

The IAS terminal lockout problem is a very well-known problem. The basic cause 
is that the IAS terminal handler will buffer up parity errors without regard for 
the typeahead buffer size. This is not done for framing errors (a bit is set 
indicating that a framing error has occurred, but it doesn't buffer up framing 
error messages). If a line is generating enough parity errors without any task 
doing a read on the line to get the parity error report, the ENTIRE terminal 
buffer area can be filled up with parity error reports for CJIE terminal! The 
result of this is (as was observed) a <bel> response from any terminal loiienever 
anything is typed on a terminal. It has nothing to do with system load static, 
etc., although parity errors on terminal lines can be generated by line 
cross-talk. 

We have been trying (> 1 year) to get DEC to respond to this problem, but the 
only response we ever get is that this is considered a feature (!!) because it 
is possible for a task to get a report on EVERY parity error which occurs on a 
line. This may be desirable for communications applications, but for other uses 
of terminals it is UNACCEPTABLE! This is especially true as the fix is quite 
easy. The following code was developed for !AS v3. 0, and 1.0rks for the field 
test release of IAS V3. 1 as well since the appropriate module has not been 
changed. The effect of the patch is that only the first parity error in 
typeahead is reported (if the terminal is not in typeahead all parity errors 
will be reported). This is the way breaks or framing errors are currently 
handled. In the module ISRRTN, the subroutine UARTER (Uart error), the 
following patch: 

-40 

PATCH AUTHOR DATE 

LOl BRUCE C. WRIGHT 10-SEP-80 

-416, 422 
BHI 20$ :++LOl 

10$: ASL R5 :++071 
BPL 12$ :++L01 
MOV #TE.BCC,R5 ;++071 
BR 14$ :++L01 

12$: HOV #TE. VER,RS ;++L01 
14$: BIT ISC.BRK, (R4) :++L01 
-428, 428 
20$: MOV #TE. DAO, R5 ;++L01 
I 

REASON 

TREAT PARITY ERRORS LIKE 
FRAMING ERRORS (COPIED 
FROM !AS V3.0 LOCAL HODS) 

SKIP ON DATA OVERRUN. 
TRY FOR BREAK (FRAMING ERROR) 
J IF NOT 
ELSE GET CODE 
AND JOIN CCJ1HON CCDE 
GET PARITY ERROR CODE 
ALREADY SEEN A BREAK? 

GET DATA OVERRUN CODE 

THIS MONTH'S QUESTIONS 

6502 CROSS ASSEMBLER 

I have been attempting to locate a 6502 cross assembler for the PDP-11 for 
either RT-11 or RSX-1 lH for quite some time now. Rumor has it that there is 
"more than one version out there" loiiich is probably a safe assumption. If 



Bob Curley 

NASA/Goddard Space Flight Center 
Code 933 
Greenbelt, MD 2a771 
3al-344-saa3 

July 18, 1983 

Dept. of Radiation Therapy 
University of Pennsylvania Hospital 
34aa Spruce Street 
Philadelphia, PA 19la4 

Dear Bob: 

The enclosed materials were sent to the SRD Working Group members and others 
who have contacted me concerning SRD. I thought the RSX SIG Steering 
Committee would be interested in the status of SRD. The questionnaire 
concerns the emphasis that the SRD Working Group should place on two program 
versions under consideration. It is being sent to you for your information, 
but feel free to return it if you want. 

If you would like a copy of the versions of SRD under consideration, please 
send me a tape. I will assume 16aa bpi BRU format unless you state 
otherwise. 

Sincerely, 

Bob Turkelson 

8 

SRD Working Group Questionnaire 
SRD Version 6.3 has been submitted to the Spring 1983 RSX SIG tape ([3S2,4]). 
This version was- produced by merging Glen Everhart's recent modifications 
which appeared on the Spring and Fall 1982 tape (/HD, /SM, and /BK switches) 
into V6.2. 

At the recent Spring 1983 Symposium in St. Louis, the working group discussed 
desired enhancements to this version of SRD. Enclosed is a wish-list 
generated by suggestions made by those interested in SRD. 

Henry Tumblin, to whom I had submitted changes which went into VS.a on the 
Fall 1979 tape when he was in the Files-11 Working Group, has sent me his new 
version of SRD. He has done much work in cleaning up the code and source code 
documentation, as well as adding some useful features. His version has a sort 
on date switch, a multi-column listing format, a delta date specification 
feature (such as for files created the last S days, or the last 2 weeks, for 
example), and it uses $EDMSG to generate messages. Unfortunately, he started 
with SRD VS.a. The process of bringing his version up to date with the V6.3 
features would be much easier and faster had he modified V6.a from Phil 
Stephensen-Payne, who merged VS.O with Ray Van Tassle's version, for the 
Spring 1981 tape. Henry's recent suggestion was to modify his version, with 
his help, to incorporate features added since vs.a which he has not yet 
included. Our goal would be to have this version distributed on the Spring 
1984 tape, since only a few months remain before the Fall 1983 Symposium. Of 
course, we can still try for the Fall tape. 

As an example of how Henry's version is documented, I have attac?e~ listings 
of modules SRDINI and SRDLST from both versions. ( £b. iJd'f \NC 1 """'~- ;_, 

I was only recently able to try this version (after Henry explained that he 
had a solution for the problem for the RSX-llM version he had sent to me). 
With limited testing so far, his version works well. 

An example of the multi-column format he uses to display file names is 
attached. We would need to allow the generation of the current V6.3 format by 
a switch (which could be defaulted) so programs and command files would 
continue to work. 

Some people have suggested ignoring Henry's version for now, since he started 
with an early version and to bring it up to date with adequate testing would 
be quite time consuming. On the other hand, since he has made many valuable 
contributions it might be worth the effort to merge them. 

Please let me know your feelings on how the working group should proceed by 
returning the enclosed questionnaire. 

9 



SRD Working Group Questionnaire 

Please give your opinions on how the SRD Working Group should proceed: 

1. Should the working group add features to V6.3 for the Fall 1983 SIG tape? 

2. Should the working group plan to adopt Henry Tumblin's version for the 
Spring 1984 tape? 

3. If so, should the working group be modifying only Henry Tumblin's version 
now, even though we may not be ready with a compatible version by 
the Fall 1983 SIG tape? (The code required for many of the desired 
modifications would be the same for either version, so our work 
upgrading V6.3 would not be entirely "lost.") 

Example Directory Listing From Henry Tumblin's SRD 

[ Directory of 
SRD. C:MD; 1 
SRDINI.COR;l 
SRDPRE.COR;l 
SRDSUB.COR; 1 
SRDMOD.DOC;l 
SRDINI.MAC;l 
SRDPRE.MAC;l 
SRDSUB.MAC;l 
SRDX.X2.MAC; 1 

VD0:[352,004] 4-JUL-83 
SRD.COR;l 
SRDLST. COR; 1 
SRDREP. COR; 1 
SRDTRP. COR; 1 
SRD.HLP;l 
SRDLST.MAC;l 
SRDREP.MAC;l 
SRDTRP.MAC; 1 
SRDXX3.MAC;l 

[ 36 files listed out of 36 files in 

17:12 
SRDATA.COR;l 
SRDNUD. COR; 1 
SRDROT.COR;l 
SRDTST. COR; 1 
SRDATA.MAC;l 
SRDNUD.MAC;l 
SRDROT.MAC;l 
SRDTST.MAC;l 
SRD.RNO;l 

VD0:[352,004] ] 

IO 

SRDDBF.COR;l 
SRDOPR. COR; 1 
SRDSRT.COR;l 
SRD.DOC;l 
SRDDBF.MAC;l 
SRDOPR.MAC;l 
SRDSRT.MAC;l 
SRDXXl.MAC;l 
README.lST;l 



Fall 79 

Spring 81 

Fall 81 

Spring 82 

Fall 82 

Spring 83 

vs.o 
I 
I 

V6.2 
I 
I 

I 
I 

SRD 

Ray Van Tassle 

V6.0 (Phil Stephensen-Payne) 

V6.1 
I 
I 
~~~~....-~~~~~~~~~-. 

I 
I 

V6.3 

Glen Everhart 

Glen Everhart 

12 

! 
Carl Friedberg 

! 
! 

July 15, 1983 

Suggestions for SRD Modifications 

0 For multi-header files, show the correct file size. 

o Add a line showing the switch defaults when /ID specified. 

0 

0 

0 

0 

0 

0 

Include the capability to handle version numbers ;O and ;-1 as PIP does. 

Merge in the /FO switch from Ray Van Tassle's version of SRD, so that 
file selection may be based upon file owner. Also it would be nice 
if /-FO:[g,m) displayed all files not owned by [g,m]. 

When displaying the SRD command line, display the original command before 
substitution of special characters. 

Merge in the file sorting features from the version in the U. S. Forest 
Service collection of programs on the SIG tapes (Spring and Fall 
1982 [307,120)). This version allows sorting by file name, file 
type, and version in ascending or descending order. It also has a 
nice command file generator feature. 

Merge in the single character wildcard in UIC capability, as found in DIR 
(Spring 1982 [350,300)) (and perhaps other SRD versions). 

Fix some problems which have been around for a while. For example, when 
an error occurs reading a file header (such as a file-id, sequence 
number check), SRD displays an error message, but then proceeds 
through whatever testing would have been done to determine if the 
file name should be listed, which means that the name of the file in 
error may not be displayed, or that meaningless tests are made. 
When using one of the date switches, if a header contains an invalid 
date format, SRD displays a fatal error message telling the user to 
enter the date in a correct format, without giving the offending 
file name, and then quits working on that directory. The same 
routine (CVDATE in module SRDSUB) which verifies a date specified in 
the command line switches is used to check the date within the file 
header. If the error is from a file header date, SRD shoud give an 
appropriate error message and continue going through the directory. 

o The addition of an /ER switch which displays the file names which cause 
an error while reading the file header. 

o A change should be made so that the following won't happen: Specifying 
the /AF switch with a date will find no files if the system date and 
time have not been set. SRD looks for all files between the 
specified date and the "current" system date. Dlis is OK under most 
circumstances, but it surprised one user who was checking a disk he 
had just copied (to make sure the copy was performed in the correct 
direction). 

13 



0 

0 

0 

0 

0 

0 

0 

0 

0 

Add a switch to allow selection based upon allocated file size (all files 
equal to or greater than a specified size). 

Add a /TB switch to always print the total number of blocks in the 
selected files, even when it would not otherwise be calculated (for 
example, when neither the middle nor full listing is desired). 

Modify the command file to generate SRD: 

o Rf:duce the number of questions necessary for choosing the default 
switches for most systems by grouping one or two sets of 
options most people choose, and asking the user if that set of 
options is desired. For example, many people choose 
/Ll/SR/-WD and /-NA/-RD/WI/AT/Ml. 

o Perhaps show a default set of default switch settings, giving an 
experienced user the option of entering any changes to this by 
typing the switch settings desired. The full question and 
answer method of choosing default switch settings would. still 
be available. 

0 

0 

Supply the source files in a universal library, from which SRD.CMD 
extracts them, does the assembly, and inserts the object modules 
into an object library which the task builder references. 

Create SRDDEF.HLP showing the default switches, which SRD.HLP could 
reference. 

Generate a DCL interface - either external or internal to SRD. Paul 
Sorenson's DIR program (Spring 1982 [350,300]) has internal DCL type 
qualifiers. Henry Tumblin has a parsing module to handle DCL type 
qualifiers, but this module was not completed. 

Several other desirable features are in Henry Turnblin's version now (such 
as sorting by date, appending to an output file, limited multiple 
file specifications). 

Investigate handling named directories and subdirectories for future 
versions of RSX-llM-PLUS. 

The working group should decide what header and trailer formats should be 
used. 

The working group should decide whether to keep the /BE, /BF, /AE, and 
/AF switches for inclusive and exclusive date specifications, or 
find a better method. 

and documentation, help files, and Multi-tasker articles ••• 

14 

IAS V3.2 

PRODUCT DESCRIPTION 

IAS is a general purpose operating system that runs on PDP-11/23 
Plus through 11/70 central processors. It is a multiuser 
timesharing system that supports concurrent interactive, batch, 
and real-time applications. 

The goals of the IAS V3.2 product are to: 

o Enhance the useability, reliability, and supportability of 
the IAS system. 

o Keep IAS and its supported dependent products (BASIC-PLUS-2, 
PDP-11 COBOL, FORTRAN IV, PDP-11 FORTRAN 77, FMS-11, 
DATATRIEVE-11 AND DECnet) as current as possible with their 
RSX-llM counterparts. 

0 

0 

Support the Installed Base Marketing Group (IBG) add-on 
market sales strategies through adding support for new 
hardware. 

Increase hardware and file compatibility with VAX/VMS to 
facilitate migration to VAX/VMS. 

To accomplish these goals, a maintenance release will be 
developed. IAS V3.2 will be an updated release of the currently 
offered IAS system. The principle features which comprise V3.2 
are: 

0 

0 

0 

0 

0 

Fix all known bugs. 

Provide a private node pool area for the IAS executive 
thereby increasing the number of nodes available in the 
System Common (SCOM) node pool for user tasks. 

Incorporate the additional functionality in the Files-11 ACP 
needed for RMS V2.0. 

Fully support all current PDP-11 CPU's including the 11/23, 
11/23 Plus, and 11/24. The "extended addressing" RLV22 and 
RXV22 controllers will be the only supported disk devices on 
the 11/23 Plus. 

Provide support for additional hardware including the 
UbA50/RA60,80,81 fixed disks; the TSll unibus tape drive; the 
RM80 and RP07 massbus disk drives; and the TU77 massbus tape 
drive. 

IS 



0 Include the common utilities from RSX-llM V4.l needed for 

BASIC-PLUS-2/IAS 
DECnet-I AS 
FORTRAN IV/IAS 
PDP-11 FORTRAN 77/IAS 

(Test sites will be licensed for these layered products and 
will be provided them as they become available during the 
test.) 

o Enhance the backup and restore utility (BRU) to allow backups 
of larger disks onto multiple smaller disks. 

IAS will be provided on identical format distribution kits as 
V3.l with the addition of a 1600 bpi tape kit for the TSll tape 
drive. 

PREREQUISITES 

Hardware - The m1n1mum hardware configurations currently listed 
in the IAS V3.l SPD will be supported with the addition of: 

o the 11/23, 11/23 Plus, and 11/24 CPU's 

o the R~80 and RP07 disks 

o the TSll and TU77 tape drives 

Software - None. IAS V3.2 will contain all of the software that 
is currently furnished with V3.l with the exception of the 
unoverlayed macro assembler (PURMAC). This includes the 
executive services, file system, MCR, privileged and 
non-privileged utilities and I/O drivers. The terminal handler 
will be updated to support the TC.TBF characteristic, the IO.RST 
and IO.RTT functions, and RSX-llM compatible character AST's. 

SITE CONFIGURATIONS DESIRED 

The following should be included among the chosen test sites: 

CPU's: 

Peripheral 

11/23 Plus 
11/24 
11/44 

Devices: RM80 disk drive 
RP07 disk drive 
multiple DR or DB type controllers on a single CPU 
TSll tape drive 

For phase 2: 

UDA50 controller with one or more RA60/80/81 drives 

16 

CONTENTS OF RSX F82 SIG TAPE - LISTED BY UIC 

(300,00lJ DOCUMENTATION ON CONTENTS OF THIS TAPE• INCLUDING THIS FILE. 
[300,002] - BIGTPC,TSK CAND BIGTPC.OBJJ - PROGRAM TO MAKE DUPLICATES OF 

THIS AND OT~~R ARBITRARY FORMAT TAPES. 
C300,120J - JOHN OSUDAR LATEST VERSION OF VS: VARIABLE SEND DATA 

IITTIVER• WITH SPEED ENHANCEMENTS, AND ASSOCIATED VSUTIL UTILITY PROGRAM, 
C300,134J - WAYNE BAISLEY PAPER ON 'AST'S AND SST'S IN AN OVERLAY 

ENVIRONMENT', 
AUTOLOAD OVERLAY ROUTINES FOR SYSLIB. 
AUTOLOAD OVERLAY TRACE IAUTI AND FORMATTER IATFI PROGRAMS. 

L300,135J MANARD STEWART OLYMPIC SIZED POOL FOR RSX-11M V4,0 -
FILES AND DOCUMENTATION FOR MOVING SOME OF THE CRASH CODE FROM THE EXEC 

TO EXCOM2. GAINING ABOUT 1/2 K OF Porn_. 
[300,136J - STEPHEN DOVER PAC GAME WITH REVISIONS SINCE S82 TO REDUCE 

IMPACT ON SYSTEM PERFORMANCE WHEN SEVERAL COPIES ARE RUNNING AT THE SAME 
TIME, ALSO SAVES HIGH SCORE, 

L300,137J - STEPHEN DOVER CEN GAME MODIFIED FROM S82 TAPE TO REDUCE 
IMPACT ON SYSTEM WHEN TWO OR MORE COPIES ARE RUNNING AT THE SAME TIME, 

l300,140J - RAY VAN TASSLE MEMORY-RESIDENT DISK FOR 22-BIT SYSTEMS, 
C PROGRAMS: RANDOM NUMBER GENERATOR• QUICKSORT• FILE SORTER, 

L300,201-214J - DAVID BURCH FERMILAB COMMUNICATIONS SOFTWARE PACKAGE 
FOR INTERPROCESSOR COMMUNICATIONS VIA A DR11-W LINK. 

[301,0671 DAVID BARSKY ENTRY FULL-SCREEN DATA ENTRY SYSTEM, 
MODELED AFTER KED/EDT. 

L303,040J MICHAEL OOTHOLJDT SOURCES FOR FLECS AND ALECS STRUCTURED 
LANGUAGE PREPROCESSORS FOR FORTRAN AND MACRO, 

[307,020J GARY MAXWELL UPDATED USGS PACKAGE; INCLUDES LAl~ST OF: 
CSH - CHELl<POINT SPACE HANDLER DISPLAY & EMPTY CHECKPOINT FILE• 
CWD CHANGE WORKING DIRECTORY• 
DVCDAT DEVICE DATABASE DISPLAY• 
SNAP GET PMD TO TAKE A SNAPSHOT OF A TASK WHILE IT'S STILL RUNNING, 
WHO WHO IS ON SYSTEM AND WHAT ARE THEY RUNNING, 

/BACISVENTOOLS L307,30-37J - JOE SVENTEK ON 2ND BRU BACKUP SET~SVENTOOLS• 
A NEW RELEASE OF THE COMPLETE SOFTWARE TOOLS KIT, 

[307.0501 CHARLES SPALDING NEW RELEASE OF S82 RUNOFF BY TI~IS AUTHOR. 
L307,100J - PHILIP KURJAN ACCOUNT -- ACCOUNTING PROGRAM FOR RSX-11M 

V3.2; NOT AS COMPREHENSIVE AS KMS ACCOUNTING, BUT NO SYSGEN REQUIRED. 
GRAF PLOTTING PROGRAM FOR HP 7220 PLOTTER, 

[307,1201 DONALD MCCOY MISCELLANEOUS UTILITIES FOR RSX-11M V4,0 -
INCLUDES INTERUSER MAIL SYSTEM, CUT <RADIX CONVERTER>• SNOOPY CALENDAR, 

COOKIE, CCL, VIRTUAL DISKS, WHO, OPA, REW !REWIND MM:J, RNO, SRD• OTHERS, 
[307,131] - STEPHEN REINIER BLP - 'BLOOPER' TERMINAL LOCKUP PROGRAM. 
[307,132] - STEPHEN REINIER DVC UPDATING DEVICE STATUS UTILITY 

!LIKE DEV BUT UPDATING CONTINUOUSLY), 
C307,133J STEPHEN REINIER RRU - REMOTE TERMINAL RUN PROGRAM. 
L3071134J STEPHEN REINIER TRM - TERMINAL STATUS REPORT PROGRAM, 
C307,135J STEPHEN REINIER PTl TERMINAL 'SPECIAL EFFECTS' PROGRAM 

FOR VT-1oo·s. 
C307,136J - STEPHEN REINIER RSX CILLIS - PROGRAM FOR MANIPULATING DOS 

CIL FILES, 
[307,211] - DENNIS PULSIPHER 

MC2 CATCH-ALL TASK DESIGNED TO DO 'FLYING INSTALLS', 
CPA -- CRASHED POOL ANALYZER1 
OPA -- ON-LINE POOL ANALYZER, 

L312,022J RICHARD KIRKMAN MISCELLANEOUS UTILITY ROUTINES FOR BASIC, 
CORAL• ,,, ? 

17 



[312•315J - GLENN EVERHART 
BIGTPC -- LATEST VERSION• WORKS ON VMS AS WELL AS RSX• 
DDT -- WORKS WITH I/D SPACE ON Mt V2• 
FLOATING POINT EMULATOR FOR M AND M+• 
FILE RECOVERY PROGRAM• 
TECO MACRO TO EMULATE EDT V2• 
TRUNC FILE TRUNCATE AND FFL FAST FLX UTILITIES. 

[312r322J GLENN EVERHART VEDRV - VIRTUAL DISK DRIVER WITH MULTIPLE 
FILES PER VIRTUAL DISK UNIT, THIS VERSION HAS ADDITIONAL SECURITY 
ENHANCEMENTS. 

[312,332J - GLENN EVERHART SRD REVISED FROM S82 TAPE• WITH /BK SWITCH 
TO INSERT EXTRA BLANKS BEFORE FILENAME <FOR COMPATIBILITY WITH OLDER SRD 
FORMATS USED BY POSTPROCESSORSI. 

[312•345J - GLENN EVERHART PORTACALC - PORTABLE <FORTRAN-BASED> SPREAD-
SHEET CALCULATOR PROGRAM. 

C312•347J - GLENN EVERHART MODIFICATIONS TO 2 MEMORY-RESIDENT DISK 
DRIVERSr ORIGINALS ON THIS TAPE ALSO, 

[326•*l - JOHN JENKINSON 
SPELL -- SPELLING CHECKER PROGRAMr 
FLOPPY -- FLOPPY DISK STRUCTURE ANALYSIS PROGRAMr 
MSTRMD -- MASTERMIND GAME• 
DOCEXT --- DOCUMENTATION EXTRACTOR PROGRAM• 

[330r002J - FRANK KEEFER FDT - FORTRAN SYMBOLIC DEBUGGING TOOL -
UPDATED FOR 11M V 4,0, F77 W/ STRING MANIPULATION FEATURES. 

[332r012J - JOHN CLEMENTS RUNOFF -- ENHANCEDr WITH MANY DSR FEATURES 
AND SOME EXTRASl WILL RUN ON RSX, IASr OR VMS INCOMPATIBILITY MODE. 

[332r115J - JACK LEES CAT - CATCHALL TASK FOR MCR. IMPLEMENTS 
CHECK FOR SPECIAL COMMANDS• PASSES LINE TO DCL IF NOT RECOGNIZED. 

[333,100] - ALLEN WATSON 
SLP FILE TO MAKE CCL EITHER A CLI OR CATCHALL UNDER M-PLUSr 
HELP FILES FOR TECO AND RUNOFF, 
PAPERS ON M TO M-PLUS CONVERSION AND SRD FROM ANAHEIM SYMPOSIUM• 
COMMAND FILE TO SET UP SYSMVR.CMD FOR M-PLUS V2r 
EDT SETUP FILE FOR SETTING UP DEFINED KEYS. 

[333r101J - ALLEN WATSON SRD DESIGNED FOR BUILDING AS MULTIUSER 
M-PLUS TASK• NON-OVERLAID, 

SLP FILE FOR UNSUPPORTED M-PLUS V1 
COPY OF TERMINAL OUTPUT IN A FILE), 

UTILITIES IN Co TECO MACROS, 

[333r102J - ALLEN WATSON 
LOG UTILITY <CREATES 

[333r103l - ALLEN WATSON 
[333r104l - ALLEN WATSON 

FOREIGN-MOUNTED TAPE 
TAPE MARKSr ETC. 

[334r002J - SCOTT SNADOW 

TMV - TAPE MOVE UTILITY• FOR MOVING 
FORWARD, BACKWARD• REWINDING• WRITING MULTIPLE 

UTILITIES TO MODIFY TASK IMAGE FILES: 
MODLUN -- CHANGE LUN ASSIGNMENTS• 
MODTSK -- MODIFY OTHER TASK OPTION INFORMATIONr 

[343o031-32J - BRUCE MITCHELL MEMORY-RESIDENT PSEUDO-DISK FOR 22-BIT 
SYSTEMS, 

[343o033J - BRUCE MITCHELL IDLE TERMINAL MONITOR PROGRAM TO LllG OFF 
IDLE TEl~MINALS. 

[344,1J - JIM DOWNWARD KMSKIT ENHANCEMENTS PKG FOR RSX-11M V4,0 -
INCLUDES CCL• KMS ACCOUNTING PACKAGEo MANY OTHERS. IJ"fILITIES,' 

[350o050l - KITTY BETHE MISCELLANEOUS TROUBLESHOOTING 
FILEID <GIVEN FILE IDo FINDS FILE>• 
FNDBLK <FINDS OWNER OF DISK BLOCK), 
DSKZAP <DISPLAY/MODIFY CONTENTS OF DISK BLOCK>• 
TCI <TASK IMAGE COMPARE UTILITY>• 

18 

FOR VT100 FEATURES>• 
TO DO NIGHTLY BACKUPS, ERROR LOG LISTINGS, ETC. 

VTlOOTST <TEST PROGRAM 
NUMEROUS COMMAND FILES 

[350o060l - ROSS AMANN 
[350o061J - ROSS AMANN 

PSZ - PGM TO CREATE/REMOVE COMMON PARTITIONS. 
RE-RELEASE OF RUNOFF FROM S81 TAPE. 

[351o010J - JOHN LLOYD DISPLAY TOP CPU USERS ON VT100 JUST LIKE ON 
A VAX. 

[35lo020J - BENSON ACKERMAN 
PROGRAMS. 

[351,030] - BRIAN NELSON 
[351,040] - DENNIS COSTELLO 
[35lo041J - DENNIS COSTELLO 
C351,042J - DENNIS COSTELLO 
[351o043J - DENNIS COSTELLO 
[351,044] - DENNIS COSTELLO 
[351,045J - DENNIS COSTELLO 
[351o046J - DENNIS COSTELLO 

ASSIGNMENTS FOR FORTRAN-77 
IN OPEN STATEMENTS, 

COMPLEX RADIX2 FFT AND BI-CUBIC SPLINE 

WHYTED TEXT EDITOR FOR RSX AND RSTS. 
DESCRIPTION OF [351,41-51], 
ATP - ACTIVE TASK LIST WITH PRIORITIES. 
STOP - ABORT ALL ACTIVE TASKS AT TI: 
REW - REWIND A MAGTAPE. 
TAPE - SHOW STATUS OF TAPE DRIVE. 
PRU - SET/RESET TERMINAL PRIVILEGE, 
FILEDEF -- PROGRAM TO SET UP LUN-TO-FILE 

PROGRAMS WHICH DO NOT SPECIFY FILENAMES 

[351,047] - DENNIS COSTELLO 
MANAGER FOR RSX-llM V3.2 

[351,050] - DENNIS COSTELLO 
[351,051J - DENNIS COSTELLO 

DEVICES, 

BATCH SYSTEM• WITH VT: DRIVER AND BATMAN 
<SHOULD ALSO WORK ON V4.0I. 

ACCOUNTING AND MISCELLANEOUS. 
UCB - DISPLAY UCBo DCB• SCB ADDRESSES OF ALL 

[351o070J VINCENT GRAHAM LIST - PROGRAM TO LIST FILES AT THE TERMINAL• 
WITH FILENAME DISPLAYED ON SCREEN OF VT52/VT100/TEKTRONIX SCOPE. 

[351,71-73] - VINCENT GRAHAM RSXNET - PROGRAM FOR ASYNCHRONOUS 
COMMUNICATIONS BETWEEN SYSTEMS, USING A NULL MODEM OR A DIALUP LINE, 

[351o074l - VINCENT GRAHAM VTM - PROGRAM TO FORMAT MESSAGES FOR DISPLAY 
ON THE VT100 SCREENo USING All VTlOO VIDEO ATTRIBUTES. 

[351,075] - VINCENT GRAHAM RSXMSG - RSX ERROR MESSAGE MODULE• WILL 
RETURN MESSAGE STRING IN A BUFFER OR PRINT IT ON THE TERMINAL. 

[351,076] - VINCENT GRAHAM WHO - PROGRAM TO SELECTIVELY LIST ENTRIES 
FROM THE ACCOUNT FILE. NOTE: THIS IS NOT THE SAME WHO AS IS 
DISTRIBUTED IN THE KMSKIT, 

[351,077J - VINCENT GRAHAM USERS - PROGRAM TO DISPLAY LIST OF USERS 
CURRENTLY LOGGED IN TO THE SYSTEM, 

L351oll0l - J, F. VIBERT DATABASE MANAGEMENT FOR BIBLIOGRAPHIC 
REFERENCES• DOCUMENTATION, ETC, IN FRENCH, 

C35lolllJ - J, F. VIBERT ANOTHER IMPLEMENTATION OF CCL, WRITTEN 
IN FORTRAN, DOCUMENTATION ETC, IN FRENCH, 

C351o120l - DEREK FRANKS PATCH TOKED FOR MULTIUSER VERSION ON M+. 
[351r130J - BARRY BREEN ADVENTURE WRITTEN IN OMS! PASCAL, 
E352,002J - BOB TURKELSON TALK PROGRAM V06.00 FOR COMMUNICATION FROM 

SYSTEM WITH A FULL DUPLEX TERMINAL DRIVER VIA AN ASYNCHRONOUS SERIAL 
INTERFACE TO A REMOTE SYSTEM, 

[352r004J - BOB TURKELSON BOB DENNY'S UPDATED VERSION OF SRD. 
[370o130J - MICHAEL LEVINE 

INDEX -- FORTRAN CROSS-REFERENCER• 
SUPERMAC -- MACROS TO MAKE MACRO STRUCTURED LANGUAGE, 
FRAG -- DISK FRAGMENTATION DISPLAY UTILITY• 
HPllC PROGRAM LISTINGS FOR CONVERTING BETWEEN DECIMAL AND PDP/VAX BINARY 

FLOATING POINT FORMATS, 
3D PLOTTING, 

[374o001J - BOB DENNY 
DECUS C COMPILER, 

[374o003J - BOB DENNY 

BINARY KIT AND DOCUMENTATION FOR THE 
WITH DEBUGGER, TOOLS, AND UTILITIES. 

LOADABLE XDT FOR RSX-llM V4.0o WITH BUGS 
FIXED AND TESTED WITH BL32. 

[374,004] - BOB DENNY 
[374,005J - BOB DENNY 

VIRTUAL DISK WITH ERROR LOGGING SUPPORT. 
FILES-11 REPAIR TOOLS & INFO, 

19 



THE MAGIC OF SYSGENING IAS 

Mike Reilly - Development Manager with Digital for IAS. 

Mike Garcia - Development Engineer with Digital for IAS 

For the next few minutes we're going to be giving you a general overview of the IAS 
system generation procedure and the functions performed by each of the tasks which are 
included, or which are invoked, as part of the IAS system generation procedure. We are 
going to go into a little bit of detail in some areas but, in most cases, the concepts of 
what is done will be fairly straight forward and there is no sense for us to go into great 
detail to show, for example, how to search through a list, or how to create an entry in 
the list, and so forth, which is done in the standard manner. 

The order in which we will be presenting the individual tasks will be the order in 
which you would normally see them if you were going_ through an IAS system generation. 
Beginning with the initial hardware boot of the system, we will go through a little bit 
about the boot block and the boot procedure to bring up an IAS system which has already 
been generated and then we will talk about System Generation Phase I, which is the task 
that creates a file on the disk. This file is what is going to be later brought into 
memory and is going to become your running IAS system. To bring up this system is an MCR 
task called BOO (for boot), so that will follow. After BOO we will talk about Sysgen 
Phase II, the second part of Sysgen which actually executes in the system which you have 
generated and then finally saving the system which you have generated so you will be able 
to hardware boot it and start the procedure all over again. 

System generation is used to create a file on a disk which is a system image. A 
system image is simply a b"yte by byte copy of what is in memory. If you view a file as 
just the contiguous, or cOntinuous, series of bytes beginning with 0 and continuing out 
through the end of the file, that is exactly what it is in this case. It is simply a byte 
that would be loaded into the memory location is in the identical location in the disk 
image. This file normally is called IAS.SAV and is normally created in a UIC of (11,17]; 
as we will see you have options of changing both of these. 

As I said, Sysgen Phase I is the task that will create this file and turn it into an 
!AS system image. Sysgen Phase I is the most complicated part of the process because it 
must perform all the functions that would normally be done by an executive and several 
installed tasks on a running system. It performs all of its functions on a disk image, 
but it must do the same things that happen if you, for example, enter at a terminal the 
INStall command. Sysgen has to handle the install, parse the command, install the task 
and activate it if needed. There are a couple of tasks that it actually has to activate, 
so it even has to act as if it is the executive when it is writing out the disk image. 
The task BOO, which is normally called MCR BOO in the source listings, is a task that will 
simply read a block, the first 512 bytes of a disk image, into memory and then begin 
executing it. That disk image will continue the process of reading in the rest of the 
system image. 

Sysgen Phase II, which is very simple, straight forward, is simply a command file 
process. 

Finally, SAV. SAV has the task of taking an IAS system which is running in memory, 
writing it out to the disk in such a way that it can be brought back in at a later time 
and continue to run as if it had never been written onto disk at all. 

20 

As I said we will go through the tasks in the order in which you would normally see 
them, so we will begin with the BOOT process and Mike Garcia will stand. 

The following information is a summary of what actually happens as a user is ready to 
bring up a running system. The information contained here is the boot block, information 
on reading the system image into memory, and starting the system. These points will be 
expanded upon, as Mike said, as we follow along throughout the talk. The information here 
is common for bootstrapping all RK, RL, RM and RP disks. Also included here is the power 
recovery trap vector used to restart the system in re-entering SAV, after boot of a saved 
system. The PDP-11 ROM bootstrap program reads the first block from the disk into memory 
at real address 0. It then transfers control at address 0. On the slide you can see the 
boot code being put up to real 0 including the address that it points to in the SAV entry 
file. 

System generation has created an IAS image file on the disk with the first block O'. 
that file being a device specific bootstrap. Sysgen will have set several parameters into 
the bootstrap code including the base address of the exec, the disk address and size of 
the image file it is creating, in the first register address for the disk controller. 

The MCR BOO function has copied this first block of the image file to block 0 of the 
target disk. When the ROM loads memory, the bootstrap program overlays itself with a copy 
of itself and, therefore can continue executing. 

These following items will be initialized by Sysgen Phase I. The first one is two 
words for a logical block number of the SAVed file. Four words are reserved for power 
recovery trap vector and some space for the base address of the exec and the size of the 
SAV file in one K words. Some other additional parameters are required both by BOO and 
SAV. One parameter is provided to be stored by the BOO function to allow a boot to be 
performed from a unit other than 0. And the following information is required by SAV, 
three bytes for a write-data function code, an offset to a place to insert that function 
code, an offset to the code to execute after booting a saved image and an offset to write 
the saved image. Two parameters, one for a saved user PAR0, another for the address it 
saved to return to, have been initialized by the MCR SAV function and used after boot of 
the SA Ved image file. On the slide we can see the address in the boot code which points 
to the module, SAVENT, which is the address of re-entry to the SAV module. MCR SAV and 
BOO functions rely on all the parameters mentioned above being fixed offsets within the 
boot block, since they do not read in the symbol table. Sysgen Phase I, on the other 
hand, does read in the symbol table. 

When the system is booted into memory, via either the MCR BOO function or the ROM, the 
bootstrap program does an indirect jump to the power recovery vector at real address 24. 
This causes the execution of code which will set up the kernel active page registers 
followed by a jump to the power recovery routine of the exec, called Pa/ER. UP. The first 
time the output of Sysgen Phase I is booted, Sysgen Phase II will eventually be found 
active and control passed to it. 

As mentioned previously the start of the bootstrap is at address 0. The RAD50 word 
sys, S-Y-S, identifies the boot block. At this point we are now ready for real booting to 
be done. Note that SAV will also use this code to write the saved image back out to disk, 
by changing the function code to a write. Disk specific stuff is done at this point to 
finish reading in the rest of the system image. If there is non-existent memory you must 
start all over again. 

If all is successful and there is no more memory to transfer, we now set up the PSW 

21 



and return to restart the system. By moving kernel priority seven into the PSW, we 
simulate a trap via the power recovery vector. Power recovery trap vector must be 
addresses 24 and 26. SAY modifies this trap vector by putting the address of a second 
routine in the bootstrap code into location 24 so that the bootstrap will transfer control 
via that routine to the SAY task. When SAY gets control back it will restore the vector 
to its original contents. 

The SAV subroutine sets kernel APRf! and APRl for 4K read/write and maps both to real 
memory f). It then sets up user PARf!, 4K read/write, and maps it using a saved APR value 
and also sets up APR7 to the I/O page. Memory management is now started, followed by 
setting up of the executive stack pointer. PS and the PC are set up to return to user 
mode via an RTI and SAV will then bring up the system. 

The third and last routine in the bootstrap will be used in the event of a real power 
recovery. This routine sets up kernel APRf!, APRl and APR7 for 4K read/write operation and 
maps APRf) and APR 1 to real zero. APR7 is set to external page and memory management is 
then enabled. It will jl.lllp to APR 1 by adding 20, 000 to the program counter, restores 
kernel APRf! and goes to the executive power-up routine. 

Now, that is just a summary of what• s going to be mentioned throughout and Mike 
[Reilly] will continue with Sysgen one. 

As soon as an IAS system image is read into memory, either one block at a time, as 
some of the boot blocks do, or the entire system image in one read request, if possible, 
otherwise in some cases a large system is broken up into as large pieces as possible. As 
Mike mentioned the bootstrap code sets up some kernel mapping registers so that it is 
possible for SAV, which is the next part of the bootstrap process, to access both itself, 
which is its task code, and various parts of the system that it needs to get to. 
Initially control is transferred from the boot block to SAV through the SAVENT entry point 
which was mentioned. It is simply hardwired into the boot block and when the code reached 
that point returns it to SAV. SAV is running in user mode, with access to the boot block. 
SAV uses the boot block to determine the system device and the unit number which it will 
use later. The first thing SAV does, when it begins executing, is what it calls an ECO 
test. There is a test to determine that an 11/40 processor has been properly ECO'd, which 
means there is a necessary change to the hardware that has been applied. If that test 
passes, then SAV will continue to set up memory parity registers and the stack limit 
register if they exist. These are options of various PDP 11's, so SAVE will determine if, 
either the parity registers, or the stack limit register or both exist, and set them up 
appropriately. SAV is also capable of generating values for these registers if the system 
initially was used on a machine that did not have these registers so there are no saved 
contents. 

Following this, SAV will restore the power fail vector. As Mike mentioned, the power 
fail vector is used to gain entry to SAV when it saves the system. When it writes it out 
to the disk image it over writes the contents of the power fail vector with the entry 
point into SAV. It will now restore the original power fail vector, so that if a power 
recovery occurs it will be handled normally. Mike mentioned that the boot block is read 
in at real memory address zero, the executive, however, does not begin at the bottom of 
memory. As shown in this diagram, and this one will be used later on also, the executive 
virtual address zero begins at the end of the boot code. So on a power fail, the virtual 
zero, actually virtual 24, which is an offset to virtual zero, will be used and then the 
value that SAV restores is used on power recovery. 

Following this, SAV restores the memory management registers. When the system was 

22 

initially saved, written out to the disk for the first time, SAY created a stack of all 
the hardware registers that it could find at that time, included were memory management 
registers. So these are restored both in kernel mode and user mode so that the hardware 
is set up in the same manner, the same fashion it was when the system was previously 
running. Following this there is a check for an 11/44, 11/70 processor, which are 22 bit 
CPU• s that require special registers, called UM Rs (for Unibus Happing Registers). These 
registers allow Unibus peripherals access to the entire memory available in the larger 
machines. SAV has been set up to restore the UMR's on the machine that you originally ran 
SA V, in other words when you first saved the system, if you were on a machine with ll4Rs 
they were saved. SAV will use those values, if you are again running on a machine that 
requires the unibus mapping registers. If not, then SA V will generate UMR values and load 
these into the registers so that you can take an IAS system, generated onto another 
machine (for example an 11/40, 11/34), save it and then, when you boot it on a 22 bit 
processor (an 11/44, 11170), SAV will generate the necessary lJIR content values and the 
machine will run as if you had initially used it on the 22 bit machine. SAV will also 
perform the opposite. If you save the system on a 22 bit processor and run it on one of 
the smaller machines it will skip the UMR values that it saved and simply not restore them 
since there is no place to put them. 

The next thing that SAV does is size memory, determine the size of memory in the 
hardware configuration it has, and adjust any partitions as needed. If your last 
partition in the system is the GEN partition it will expand and contract it as needed, 
setting up the appropriate data structures to indicate the current size of the partition. 
SAV is also capable of completely eliminating any partitions that no longer exist. For 
example, if you have a partition which starts beyond the end of memory, on your current 
configuration, SAV will simply eliminate that partition, it will just not exist any more. 
It will also have to remove any tasks which were installed to run in that partition. 

Following this SAV has to check for the system clock. When the system is generated 
you can specify one of two types of clocks, a line clock or a programmable clock. SAV 
will initially check to see if the same clock that you generated for is present in the 
system, if so, it will be used. If not SAV will test for the other type of clock, the one 
you did not specify. If that is present, it will be used. It will be properly 
initialized by SAV and the system will continue as if the correct clock had been found. 

Following this, SAV uses the information that it picked up from the boot block on the 
device which was bootstrapped (the unit number, device name), searches through the system 
data base and redirects the device SY: to whatever physical device was booted, so that if 
you save on a unit 3 of an RP06 for example and then you boot on unit zero, SAV will 
modify the system so that the booted device SY is now unit zero. 

At this point the system is ready to run, so SAV enables task switching, declares a 
power fail AST and then, its final step, the one which seems to take the longest time and 
if you watched your disk, if it has any type of indication as to what it is doing, you'll 
see it's very busy. What SAV does is it reinstalls each task which was installed in the 
system when it was saved. Not reinstalled as if you had installed it, but what it 
actually does is it has to modify an indication stored in the system which points to the 
task image so that it now points to the disk address. When a system is moved as part of 
the copy procedure for DSC or BRU, it is necessary that the next time you boot the system 
all of the tasks which were installed can be located without the system having to know the 
file name of each task, go out and locate it through the file system and reinstall it. So 
what is done is the file system identification number is saved in the image on the disk. 
SAV goes through and takes each task and its identification n1.111ber, converts it to the 
disk address, and sets the disk address into the data base in memory. So that at this 

23 



point it is now possible to find any task image directly on the disk, as it was when the 
system was previously running. 

The last thing that happens is SAV prints out its message, its identification, IAS 
version 3.1, memory size, it tells you whether a partition or partitions were expanded or 
contracted and gives you other information that is needed. For example if it had switched 
the system clock it will tell you that it did so. The last thing that it will do will 
prompt for date and time, allow you to enter a date and time, and then exits. At that 
point you have an identical IAS system with what was running before you initially entered 
the SAV command and wrote it out to disk. The power fail AST which was declared by SAV 
will cause the executive to enter any task or device handler which has declared a power 
fail AST, that task or handler will be able to reinitialize itself to the new hardware 
configuration. If it is a device handler it will normally determine if the peripheral 
that it is communicating with is still present, it will determine whether it is still 
running with UMR's as it was before, if it needs to allocate them and so forth. And the 
system continues as if it had never been written out to the disk. 

Now, the next thing that you are going to do, or that we are going to assume is going 
to happen, is that you wish to generate a new IAS system image. This is done with a task 
which is called SYSGEN Phase I or SGN1. As I mentioned before, SYSGEN Phase I or SGN1 is 
the most complex part of the system generation procedure. It is working with a file which 
it has to use as if that file was memory. It has to know that this file is a copy of 
memory and that it will contain both real and virtual addresses. As shown here, it has to 
know when it writes things into the disk image, it has to know where on the disk to write 
them which corresponds to the real address, when it is setting up the pointers in the 
system it has to know the virtual addresses that the executive will later use to access 
all the data bases that it needs to get to. Normally a sysgen procedure begins by 
installing a task which is given the name INV, this is a virtual install task. This is a 
task that installs other tasks just as the INS command does on a normal IAS system, excep-. 
this task reads and writes the disk file. All the processing which it must go through is 
the same processing that must go through when you install a task from a terminal. After 
that task is installed assuming you have edited the command file which is going to be 
given to SYSGEN Phase I or you are going to enter the commands one by one from the 
terminal, you will run the task SGN 1. 

SGN1 will begin by prompting for a device and file name. This allows you to specify 
the name of the !AS system and what disk it is to be written on. Normally you're going to 
do a system generation onto the current system disk. However if you wish to make a system 
bootable on another disk, then you specify that disk in the initial prompt to SYSGEN Phase 
I and it will use files on the disk you specify, instead of on the system disk. The 
system generation manual for IAS describes all of the individual directives, the commands 
that are given to SYSGEN to indicate what devices you wish to include, what tasks are to 
be installed, what processor you are using. All the necessary information to create an 
!AS system. These parameters are entered either through the command file or a terminal, 
they are parsed by SYSGEN Phase I for correct syntax to make sure all is valid and to make 
sure that you don't do things like trying to allocate the executive and a partition to the 
same area of memory. SYS GEN then creates an internal data base of all the things it's 
going to be doing to this disk file. 

Following this, SYSGEN1, having read the commands either from the file or from your 
terminal, knows which disk you are going to be using for the IAS system you are going to 
build and it looks for a file which contains the bootstrap code for that disk. It will 
read the STB file, which was created when this boot code was task-built. It will look for 
the offsets from the beginning of the boot block where various bytes of information need 

24 

to be plugged in. SYSGEN Phase I will always read the STB file for the corresponding disk 
that you're going to gen onto. 

Following this, it will look for a file called EXECUTIVE. STB, a list of all the 
executive symbols that it needs to know. The last file it looks for at this point is the 
executive task image itself. The !AS executive is overlaid, so that SAV has to know the 
size of the main segment of the executive and of each of the overlays, so it reads this by 
reading the executive task image file. After it completes this, it will determine whether 
you have used a base address for the executive in one of the parameters, it will set up 
the proper real memory address with the executive to be loaded into, and take into account 
the size of the bootstrap. As shown in the diagram, the boot code always remains in 
memory, below the executive. SYSGEN knows the size of the boot code, it is one of the 
symbols it reads from the STB file, so it knows where to place the executive. 

Following this, it allocates the mapping for the overlays in the system. SGN1 finds 
where each overlay will be placed and what memory management information is needed, so 
that when the executive is running it will be able to access the overlay it needs. 

Once SAV has all of this information it is ready to create the system image. It 
begins by opening the system image file, actually creating a new one, using either the 
name you specified or the default IAS.SAV. It then attempts to write the last 32 words of 
the file which causes the file system to allocate the file to the proper size that you 
specified. A system image must be contiguous and SYSGEN has to have access to any word in 
the file in any order, so it has to make sure that all of the file is allocated and it 
does that by simply writing the last 32 words. 

The first thing that gets written out into this file is the executive. It is copied, 
block by block, from the EXECUTIVE. TSK file into the !AS. SA V file. Using the virtual 
addresses that SYSGEN 1 calculates, the overlays and the executive will be moved into the 
disk image, into their proper positions. Also in the executive, there are certain values 
that have to be filled in by SYSGEN and these are filled in as the appropriate block is 
copied out to the disk. 

The next thing it does is begin to generate the data base, beginning with the devices 
that were specified during the beginning portion of SYSGEN, when it read commands that 
were entered. It takes a standard physical unit directory entry, which it maintains in 
the task image, fills in values from tables it has, or from input given during the SYSGEN 
process, and writes these out into the area in the system that will become the system 
common area. It allocates these physical unit directories, or PUils, entries in the 
reverse order that they were specified during the initial reading of commands, so that the 
last device which was specified will have the first PUD entry. In addition the entries 
for a pseudo-device CO:, which is the console terminal, CL: which is the console list 
device, and TT0: will be created. TT0: should have been specified as one of the 
parameters entered during the early parts of SYSGEN, so what the SYSGEN process will do at 
this time is simply test to make sure you have the TT0:. If TT0: is not found it is 
considered a diagnostic, not a fatal, error and SYSGEN will continue. It really doesn't 
care if you have a terminal handler or not. lbwever, it doesn't give instructions in what 
to do with a system without one. 

Following this, it installs all of the global common areas that were specified. 
Normally this is an FCS common area, possibly an IAS common area and SYSRES, the system 
common area. These are installed by SAV going through the procedure of creating the data 
structures necessary in the system common area so that when the system is brought up, the 
tasks for these common areas look as if they had been installed by install commands from 

25 



the terminal. Once this is done SAV can start working on the partitions and it will go 
out and generate the data base needed for each partition which was.specified. Del!8nding 
upon the nl.IDber and type of partitions there are many different things that SAV will do. 
lhe end result is it will have the necessary data base set up for all of the partitions or 
it sets a special flag byte indicating it can not set up some of the partitions and it 
will be handled after the system is booted, during SYSGEN Phase II. lhere is a check then 
for the system disk being installed. It is a fatal error if there is no system disk and a 
fatal error if SYSGEN Phase II has not been installed. 

Memory is then allocated for two tasks. SAV has to install, load and activate two 
tasks in the disk image so that when it is brought into memory these two tasks will become 
active. <Ale of them is the system disk handler, the other one is SYSGEN Phase II. lhey 
are both placed in a special state indicating that they have just been l~ade~ so th~t when 
the system is brought into memory the executive will see this state and it will begin to 
activate the tasks; allow them to run. 

SYSGEN then goes back to the system common area, creates an alpha table,_whi7h i~ a 
fixed length table of tasks by name and a pointer to the data structure. lbis list is 
alphabetical so that the task can be found quickly when you wish to find an installed. 
task. To go with each of these tasks" that is installed is an entry called an STD, which 
is simply the data base for a task which is installed in the system. lhis is also created 
by SYSGEN. 

Finally, SYSGEN has to go through and create another data base for tasks which are 
active, this is called a ATL. It has to do this for the system disk, and for SYSGEN 2. 
It also does it for the special tasks used for timesharing. lhere are 3 of them. One of 
them, TSS1, the second one TSS2 and the third one is a TSNUL 1. These 3 ATL entries are 
always created in SCCJI, whether you generate timesharing system or not. They are not 
marked as active. lhere are special pointers in the system common area that will allow 
the executive to find these ATL entries when you bring up timesharing. 

After this the data base is complete and SYS GEN writes out the remainder of SCOH. It 
has a copy of the system SCCJI data base in the sysgen task. All it does is take this copy 
and write it out to the disk. All through the SYSGEN1 process it has been filling in 
whatever values were needed, so it nows writes out all of the pointers, list heads, all of 
the little bytes of information that are needed when the system is going to begin running. 

The last thing that SYSGEN Phase I does is it takes the boot block, the boot file 
which it already found and copies the boot block itself to the beginning of the IAS system 
image it just created so that when you are finished you will have on the disk, a copy of 
the boot block: It is hardware dependent, it will only work on the device which you 
specify. lb is is followed by the IAS image which is going to be loaded into memory by 
this boot code. SYSGEN has completed all of the necessary bits and pieces it's supposed 
to handle. It prints out its last message which says 'End of SYSGEN Phase I' and it is 
completed. 

II.Iring this process it has communicated with the virtual install task INV. SYSGEN 
behaves as if it is HCR in this case, in that it will insert its own comnand into the HCR 
queue for INV and then request that INV be activated. INV will read whatever install 
command is present and execute it. Before INV is requested for the first time, SYSGEN 
Phase I allocates a node in SCCJI on the running system, so this is now in real memory, and 
it fills it in with the values that are needed by INV to find various locations and 
offsets in the disk image. Things like the logical block number of the system image, the 
size of the boot code, the size of the various executive overlays, and where to find the 

26 

information it needs in the disk image. INV will go and read this node, to pick up all 
the information it needs each time it's called to install a task. 

After SYSGEN1 has closed all of its files and printed out its message it is then ready 
for you to bootstrap the system. lhe HCR BOO command is what will handle that and Hike 
[Garcia] will take over. 

Ok, now that SYSGEN I had completed we 1 re ready for the boot process using the HCR BOO 
command, to boot up the image just created by SYSGEN 1 and to get the bootstrap up to real 
memory zero. lhe intent of the MCR function BOO is to perform an initial boot of an IAS 
system image. It will simulate the function of a hardware ROH fran any device. 
Alternatively, it will write the bootstrap block zero on a specified device, by default 
the latest version of IAS.SAV is the image booted into the memory. lhe specified file to 
be booted must be an IAS system image created by SYSGEN 1. Boot will check this out to 
see if it is the correct file. 

Before going into detail about what boot does, a summary of its operation is it first 
operates validates command syntax, it reads block one of the IAS image file, verifies it 
as an IAS system image, closes the IAS image file, and checks the privileges of the 
requesting terminal to see if it is privileged. If the user is attempting to boot, the 
terminal must be a privileged terminal. If the user is attempting to write a bootstrap 
block, the object device must not be SY: or redirected to SY:, unless the terminal is 
privileged. 

There are 2 choices on performing the HCR boot function. First choice is the HCR 
command BOO with the optional file specification, which inserts the device unit number 
into the bootstrap block to be moved. It moves the whole block to real zero and up. You 
see the boot code going up to real zero [on the diagram]. It moves what we call special 
instructions to real 1000 and up and jumps to the special instructions which enters kernel 
mode, disables memory management, and then jumps to real zero. lhe second choice is to 
issue the MCR command BOO along with the /WB switch where virtual block one is to be 
copied from the specified file to bootstrap block zero of the disk device. As Hike 
mentioned BOO is linked to the STB file for whatever device is being genned so it knows 
offsets in the boot block. 

The boot procedure starts by getting the boot command line. It will validate the 
syntax and parse the command. If there is na syntax error, BOO will exit. It will then 
check to see if the device is a random an access device and also if it is a directory 
device since we can not boot say a line printer or a terminal. If all is valid we now 
proceed to open a file to read the boot block, which is the first block of the IAS image 
file. We now have the first block. If it was written by SYSGEN or SAV, the first word is 
a &-anch instruction and the second word must be 11 SYS11 in RAD50. One of the offsets in 
the boot block is the base APR address of the base of the executive. This address must be 
between 200 and 777700, therefore the offset itself must be between 2 and 7777. Boot 
validates the specified file image by checking all those facts. If all is OK, the 
starting LBN of the system image is now written in the boot block. In other words, the 
address of the system image is stored into the copy of the boot block just read in. Qi 
the slide again we can see the LBN in the boot code which gets moved up. 

Boot checks the privileges of the requesting terminal. If the terminal is privileged, 
boot will allow anything to be done. If it is not privileged it will disallow the actual 
boot or the writing of block zero of the system device. If the privilege is OK and the 
user specified the WB switch, the boot block is then written. If the WB switch was not 
specified we move to the routine that moves the device unit number into the bootstrap 

27 



block. It then moves it all into low memory, starting with real zero, followed by some 
special boot instructions. When done, we jump to real zero to perform the actual boot. 

Now to get at real zero, we need to map an APR to real zero, 4K read/write. Since we 
are running under user mode APR.el, we will use APR 1 and map it to real zero and inhibit 
all interrupts. Twenty thousand is then moved into APR 1 before the routine goes into a 
loop moving one word at a time to real zero. We then jump to the special instructions at 
real address memory 1000, but since it is mapped to APR 1 it is 21000 for the boot 
procedure. Special instructions are there to get us into kernel mode by clearing the 
current mode bits that are in the PSW. They set kernel APR.el and 1 to real memory address 
zero and set 4K read/write for both. The twenty thousand bit in the PC is cleared and we 
then set the starting address to the bootstrap, do a reset and jump to the starting 
address to start the boot. That is the end of the special instructions and that is the 
end of the MGR BOO procedure and we are ready to get SYSGEN Phase II into the system. 

Believe it or not, you sit there and you are ready to do SYSGEN2 and the message comes 
up for SYSGEN generation Phase II, but there is an awful lot that goes on before that 
message is printed. SYSGEN II is installed and loaded by SYSGEN I such that booting the 
new system disk results in the running of SYSGEN II. SYSGEN II is loaded at the top of 
the specified partition to avoid memory fragmentation. You can see where SYSGEN II 
resides in memory on the slide. 

SYSGEN II performs the following functions automatically. It checks to make sure 
there is sufficient memory available, if there isn't it will just exit. It checks to see 
that system disk handler is active, requests and loads a TTY handler and mounts the system 
disk, fixes Files-11 ACP, and after mounting the system disk it will open a file called 
SYSBLD. CMD and execute all the commands found in that file. Note that any task required 
by SYSGEN II must be installed before SYSGEN II uses it. Also note that after SYSGEN 
Phase II exits, the user should do a SAVE to preserve the system as generated. If the 
SAVE is not performed, the IAS image file will still contain the output of SYSGEN Phase I. 
That is, a runnable IAS system with SYSGEN Phase II activated. Note that if it is 
desirable to boot the IAS system, the MGR function BOO must be used with the WB switch to 
initialize the boot block zero of the system image. 

SYSGEN II begins by finding the system size as specified in SYSGEN I. Previous mode 
bits of the PSW are again set to kernel, and the PSW is then saved. If we run out of 
memory, that is less memory is specified during SYSGEN I, SYSGEN II traps at priority 7 
and prints the diagnostic message: "All memory specified does not respond." If memory is 
OK, SYSGEN II will inhibit interrupts, set APR 3 to map over the bootstrap, in other words 
set PAR 3 to map to zero for booting. A call is made to subroutine SPD 3 to prevent APR 3 
from being modified during task switching. APR 3 must be restored to finish. 

The IAS system image has now been booted and a call is made to a subroutine to 
redirect the PUD for SY: to the appropriate unit of the system disk as it must be the 
device and unit number that will specify during SYSGEN I. It extracts this information 
from the offset in the boot block. At this point SYSGEN II gets a saved image size from 
the bootstrap and converts it to 32 word core blocks from memory management. SYSGEN II 
will scan the task partition directories setting up what SYSGEN I could not set up. If 
the SG flag is set it must be cleared. The SG flag is a bit from SYSGEN I that SYSGEN II 
has to look at to set up its hole pointers. The hole pointers are now adjusted and 
manipulated in a loop until all free space in the partitions is found. SPD 3 is called 
again to reset APR 3 and the stack is also reset at this point. This section of SYSGEN 
Phase II is completed by enabling interrupts. 

28 

SYSGEN Phase II continues by requesting the TTY handler. LUN 2 is assigned to TTY and 
LUN 3 is assigned to SY.el:. Here the "GET LUN" directive is used to find the physical 
system device. The routine will point to the buffer in order to move the device name into 
it. It then appends the period ( .) as the third character in the device name, converts 
those 3 characters to RAD 50 and puts them back into the buffer. A check is made on the 
name of each task in the ATL to find the system disk handler. It was put into the ATL by 
SYSGEN Phase I. It will loop through the ATL notes until it finds the system disk 
handler. When the system disk handler is found, another check is done to see if it is 
active. If the system disk handler is not found the message: "Unable to find ATL or 
system disk handler" is printed. 

When we find the system disk handler, SYSGEN II moves along and tries to find the STD 
entry of the TT handler in the ATL, and will loop until it finds it. When it finds the TT 
handler, SYSGEN II waits for the load request state to change, that is the TT handler to 
be loaded. It will check every 1 O ticks until it is finally loaded. Once it is loaded, 
we wait for the TT handler to become active. Again, we wait 10 ticks until it becomes 
active. Once it is in memory, we wait 10 more ticks to give the executive time to 
complete the activation of the task. The TT handler is now in memory and in active state 
and resides directly below where you see the system disk handler. When the TT handler 
loads successfully, its ATL node will be charged to SYSGEN II. Consequently, as long as 
the TT handler is resident and therefore active, SYSGEN II can not be removed from the 
system. To circumvent this, it will now charge the TT ATL to TT handler itself, as SYS GEN 
I does when S YSGEN II and the system disk handler. 

SYSGEN II is now ready, finally, to type the message: "System Generation Phase II." 
The Files-11 ACP is fixed in memory, and the fixed task list is scanned until it finds 
F 11ACP. The routine will loop until it finds the STD for F11ACP and when it does find it, 
the ATLnode is charged to F11ACP and sets Fl lACP as its own requester. SYSGEN II will 
decrement its own pool usage count. If F 1 lACP can not be fixed in memory we have the 
diagnostic message: "Error fixing F11ACP." That is only a warning, if it does not find 
that ACP, SYSGEN II just continues along. At this point SYSGEN II gets the PUD of the TI: 
in use and sets the UIC to [ 1, 1 J. TI: is set as logged on and privileged, and as the 
console terminal CO.el:. 

We now go to the subroutine to obey the contents of the SYSBLD command file to build 
the IAS system. In the SYSBLD subroutine, the first step is to create the command to 
mount the system disk, "Mount SY.el:/OVR•. SYSGEN II now opens [11, 17] SYSBLD.CMD, which is 
the default c011111and input file and goes through each command one at a time. If there is 
an open error or read error on SYSBLD.CMD a fatal error message is issued and SYSGEN II 
will exit. 

Another routine is called to obey an MGR type command line. This routine checks each 
command in SYSBLD.CMD to see if it is comment. It checks for both types of comments, the 
semicolon and the exclamation point, both types of these comments are ignored. It also 
ignores 2 special cases, the asterisk (*) Delay command and the "Log" c0111Dand. These two 
commands may appear in older versions of IAS. The routine sets up the SPAWN DPB and 
executive request SPAWN is issued. It converts the first 3 letters of the convnand line to 
RAD50 and stores them in the SPAWN DPB as the name of the task to be SPAWNed, for example, 
PIP and INSTALL. If the MGR task is not installed, an attempt is made to run MCR's 
multi function task, ••• MFT, to do the job instead, and it will use MFT as the task name. 
If all this fails, a diagnostic error message: "Task not installed" is printed and SYSGEN 
II exits with a Fatal request error. 

Finally SYSBLD.CMD is closed when end of file is reached. SYSGEN II is now ready to 

29 



print the "End of System Generation Phase II" message and will then exit. After SYSGEN II 
completes and exits the user should always perform typical post SYSGEN2 functions and then 
save the system. Mike [Reilly] is ready to discuss SAY. 

We started with the SA V task and we end with the SA V task. This time the job of SA V 
is to write the contents of memory out to the disk. SAV will do this by verifying that 
the system is quiet, that nothing is happening, that all users except the user who is 
actually attempting to save to the system are logged out, all disks have been dismounted, 
that there is no activity in the SEND/RECEIVE queues, no tasks that are waiting to be 
loaded into memory and basically, no activity within the system. There are qualifiers to 
the SA V command when you enter the SA V command to override some of these checks. SA V then 
will map itself to the boot block that was left in memory by the BOO c011111and, use the 

•~ logical block number found in the boot block to know where on the disk memory is to be 
written, use the size of the system image found in the boot block to know how much memory 
to write, and it will convert the read function code in the boot block to a write function 
code. Since it is identical code, it will just write instead of read. SAY then builds a 
stack to store all of the hardware registers that are going to be restored when the system 
comes back up. It then jumps to the boot code so that the boot code will be executed, and 
the system image will be written out to the disk. That completes the System Generation 
discussion. 

30 

Cervantes Convention Center 
st. Louis, Missouri 
Thursday, 26 Hay 1983 

,_...., 

.___, 

BOOT 
ADDRESS 

I 

A 

s 

SAVE 

SAVENT 

"" 

CODE 

IAS SYSTEM 
IMAGE ON 

DISK 

REAL BOOT 

31 



REAL 0 ....----------, 

BOOT 

t-----------1 VIRTUAL 0 
EXEC 

SCOM 

SYSTEM DISK 
HANDLER 

SG2 ... 

32 

0 

1000 

...3. , 

BOO 

BOOT CODE 
LBN 

SPECIAL CCDE 

33 



LIST File Listing Utility 
========================= 

Written b~: 

William Wood 
The Institute For Cancer Research 

7701 Burholme Ave. 
PhiladelPhiar Pa. 19111 

<215) 728 2760 

Version 2 

LIST File Listing Utility 

LIST is a utility for disPlaYing selected portions of a file. It 
Provides facilities for disPlaYing linesr positioning in the file1 and 
searching for character strings, In addition• outPut from LIST can be 
redirected from the terminal to a file. 

This manual explains how to use LIST, Throughout the manualr op
tional Parts of a command are enclosed in souare brackets. 

1,0 Running LIST 

The LIST command line has the following syntax: 

2.0 Switches 

3.0 FsPec 

LISTC/switchesJ fspec[rfspec •• ,] rcommandsJC>C>Jfile] 

/HD 

/GO 

Write a header record containing each file's name 
and the date to the standard outPut before listins 
each file. 

List all files selected bY fspec without promPting 
<see below: FsPec). 

FsPec may be a simPle file namer an indirect command file name 
Preceded by @, orr in some installationsr a file name containing SRD 
wild card characters or switches. If the file name is an indirect 
file namer LIST will list the named files in the indirect file one at 
a time, If it is an SRD-tYPe file namer LIST will list the files se
lected bv SRD. In either easer LIST will Prompt YOU with each of the 
selected file names to see if vou want it listedr unless /GO was se
lected <see above: Switches), Responses to the PromPt are: 

y 
<er> or N 
G 
~z 

List the file. 
Don't list the file. 
List this and remaining files with no PromPting. 
Don't list this file and remaining files. 

If commands are given on LIST'S command liner theY will be exe
cuted once for each file selected by the fspec. If the standard out
PUt is redirected by a command liner it will remain redirected for 
each file selected. 

Note: Normal SRD wild card characters and switches maY be used 

34 35 



LIST File Listing Utilitw 

in an SRD-twPe file namel however, do not use the /SE: 
switch• as this is the default switch. Also, onlw the 
aost recent versions will be selected unless '* is spec
ified. 

3.1 Default Fields in File Names 

More than one file ma~ be listed durins the same LIST session bw 
twPing LIST and then a carriage-return. LIST will Prompt for a file 
name. After each file has been listed• LIST will Prompt for a new 
file name. 

Whenever LIST attempts to oPen a file• the device, uic• name. and 
extension are remembered and become the defaults, The defaults are 
used to rePlace missins fields of subseauent file names entered for 
listins. For example! 

PDS> LIST 
FILE? LB:[22,2JLIST.DOC 

When wou are finished listing LB:[22o2JLIST.DQC, if wou wanted to 
LB:c22,2JVGJ.DOc, ~ou would only have to t~Pe: 

see 

FILE? VG3 

and LIST would suPPlw the missing fields of the file name. 

If LIST can't oPen a file after suPPlwing the defaults. it 
the file name as entered. Initiallw• the defaults are SY: 
device and .LST for the extension. 

4.0 Numbers 

tries 
for the 

Numbers are used to Position LIST in the file and as arsuments to 
commands, Numbers alwaws precede the command thew affect. A number 
maw be a simPle number• one of several sPecial line number variables. 
or a search Pattern. The value of a search Pattern is the number of 
the line that Matches the Pattern. Some commands oPtionallw take two 
numbers as arSu•ents; when SPecifYins more than one number, separate 
the two numbers by a comma, e.s. 1,45 In addition' numbers may be 
added and subtracted from one another. e.s. S-9 is the 10th line from 
the end of the file. 

LIST scans the inPut on a command line from left to risht, 
Whenever it encounters a number, dot <the current line number) is set 
to that number. MultiPle line numbers maw appear next to each other; 
LIST Positions to each in turn. e,g, 1/SUBR/ searches for SUBR after 
line 1. 

36 

LIST File Listing Utilitw 

4.1 Line Nuaber Variables 

$ 

• 

* 

4.2 Search Patterns 

Dot is the current line nuaber. Whenever LIST en
counters a line number, the value of dot is reset to 
that line number. 

Dollar is the last line of the file. 

Sharp is the line number disPlawed bw the most recent 
Prompt. 

At-sign is the line number of the toP of the last 
screen disPlawed bw LIST. 

Star is set bw the = command and is eaual to the value 
of dot when the = command was last issued, * serves 
to mark a line of interest for future reference. 

Se•i-colon is eaual to the current screen size. 

A search Pattern is a string of characters bracketed bw slashes 
(/) or backwards slashes (\): 

/strins/ 
\strins\ 

causes LIST to search forward from dot for strins. 
causes LIST to search backwards from dot-1 for 
strins. 

There are several characters which have a special meanins when thew 
appear inside a search strins: 

7. 

means that the following character is to be treat
ed as itself• not as a special character. 
sPecifies that the match must occur at the besin
nins of the line only, Z itself must appear at 
the besinnins of the Pattern• otherwise it has no 
sPecial meanins. 
causes the next character to be interpreted as a 
control character. 

Once SPecifiedr a Pattern becomes the default Pattern and maw be in
voked by // or \\, Patterns maw be used anwwhere a number maw appear; 
the value of a Pattern is the line number of the matched line. 

37 



LIST File Listins Utilits 

4.3 Examples of Line Numbers 

.-10 
1r$ 
/SUBR/ 
/XSUBR/ 

\\ 

/'/He''s/ 
2/HELL0/-5 

10 lines before the current line. 
Line 1 and the last line of the file. 
First line which matches SUBR. 
First line which matches SUBR at the besinnins of 
the line. 
First line which matches the default pattern while 
scannins backwards. 
First line which matches /He's 
5 lines before first occurrence 
after line 2. 

of HELLO at or 

It is possible to sPecifs fairlw comPlex line numbersl the value 
of a line number is alwass the last number evaluated. For instance. 

1/SUBR/t1//r.t3/END/t1// 

sPecifies two line numbersl the first is the second occurrence of 
SUBR at or after line onel the second is the second occurrence of END 
at or after 3 after the first line number. 

5.0 Coa11ands 

LIST accePts commands on it's coamand line or when it Prompts 
with the current line number and a '>' character. Coamands are sinsle 
characters and are preceded bs zeror one• or two numbers which are ar
suaents to the comaand. Hore than one command mas be entered on a 
comaand linel LIST scans the command line from left to rishtr posi
tionins to line nuabers and executins commands. 

There are two twPes of commands! those that Print and those that 
affect LIST's state without Printins. Commands that print usuallw 
Print from dot <the current line number) unless two line numbers were 
sPecifiedr in which case Printins occurs from the first line number. 
Other commands 'eat up' the number<sl that are their arsumentsl in 
other wordsr dot is reset to the value it had before the command• with 
it's arsument(s), was executed. 

If a line number appears at the end of the command line with no 

coaaand after itr the default command (p) is executed. 

Thus /SUBR/ is eauivalent to /SU!lR/P both cause Printins to 

bes in at the first occurrence of SUBR, 

38 

LIST File Listins Utilits 

5.1 Comaands That Print 

p 

G 

DisPlass lines froa the file. Dot is alwass left at the last 
line Printed Plus 1. P is the default coamand1 and is option
al at the end of the comaand line. 

P Print as aans lines as will fit within the current 
screen size (initialls 23)1 startins at the cur
rent line <dot), 

nP Print as aanw lines as will fit within the current 
screen size startin~ at line n. 

n1rn2P Print lines n1-n2. 

Like p, G disPlaws lines from the filer however with zero or 
one arsuaents G onls Prints one liner and the value of dot is 
not chansed. 

G Print the current line. 
nG Print line n, 
n1rn2G Print lines n1-n2, 

DisPlass onlw lines matchins the current search Pattern. 
T DisPlaw a screen-full of lines matchins the cur

rent Pattern. If the end of the file is reached• 
dot is left at line 1, else dot is left at the 
next line matchins the current Pattern. 

nT DisPlas a screen-full of lines matchins the cur
rent Pattern• startins at line n. If the end of 
the file is reached• dot is left at line 1, else 
dot is left at the next line matchins the current 
Pattern. 

n1,n21 DisPlaw all lines matchins the current Pattern 
between lines nl and n2. Dot is left at nl. 

Note: LIST usualls chanses most control characters to nulls 
before Printins a record' however when two line numbers 
are specified or when the 6 command is executed• all 
characters are written out unchansed. Thus it is possi
ble to write out Portions of a file without losins anw 
characters. 

Other Co1111oands 

L The L command causes the last command line to be reexecuted. 

s 

The coma.and sets the line number variable, 
s•rves to 

n= 

Sets the 
s 

mark a line 
Set * to 
Set * to 

screen size. 
Reset the 

for later reference. 
dot. 
n. 

screen size to 23. 

39 

*• to dot, * 



LIST File Listins Utilitw 

c 

F 

N 

nS Set the screen size to n. 
n11n2S Set the screen size to (n2-n1>+1. 

Sets the column ranse which will be read fro• the input file. 
C Reset the colu•n ranse to 1-512. 
nC Set the column ranse to 1-n. 
nlrn2C Set the colu•n ranle to n1-n2. 

Create 
subset 

F 

a 'virtual file' bw restrictins LIST to 
of the lines in the file. 

Reset the virtual file to correspond 
file. 

a contisuous 

to the actual 

nF Hake a virtual file between dot and dottn-1. Dot 
beco•es the new line 1 of the virtual file. 

n11n2F Hake a virtual file between nl and n2. Nl becomes 
the new line 1 of the virtual file. 

Turn Prompt •ode on/off, When Pro•Pt mode is offr LIST will 
not Pro•Pt with the current line nu•berr but will leave the 
cursor after the last line Printed. If the screen size is set 
to one and PrOmPt •ode is set off <lSN acco•Plishes this> then 
LIST will be in line-bw-line •oder in which one line is Print
ed for each carriase-return. 

R Resets the screen size to 23r the screen width to it's orisi
nal value. the column ranse to 1-5121 the virtual file to the 
full• actual file• and prompt mode to on. 

X Finish listins the file. X is identical to -z <EDF), 

• • Space <blank> is the null com•andr and does nothins. 

5,3 Installation Specific Commands 

Not all installations have the followins co•mands. 

W Sets the screen width. 
W Reset the screen width to it's orisinal value. 
nW Set the screen width to n. 

H Invokes LIST as a subtask to Print a helP file, 

V Routes all the followins output from the command line to the 
Printer Port of the DTBO (a VTlOO look-alike), 

6.0 Definins and Usins the Macro 

LIST File Listins Utilitw 

LIST has a si•Ple text rePlacement •aero facilitw. 
remembered text fro• a line of LIST com•ands. The macro 
enclosin• the text in souare brackets <CJ), When H is 
the co••and liner the H is replaced bw the macro text. 

For ex••Ple: 

C@tl//PJ 

The macro is 
is defined bw 
specified on 

defines a macro to search for the current Pattern startins from the 
top of the last screen + 1, and Print fro• there. To invoke the 
•aero. twPe H on the co••and line. 

The text of the •aero is not executed when it is defined bw en
closin• it in souare brackets. It is not executed until an H is 
twPed. H •aw appear with other commands and line numbers on the co•
•and linel first the •aero text replaces the H1 then the command line 
is executed. In addition• H •aw be used more than once on a co••and 
line. 

7.0 Redirectins Output From LIST 

The output fro• a line of LIST co••ands1 which nor•allw soes to 
the ter•inal1 •aw be redirected to a file. To write a new file• Put 
>FILE at the end of the co••andsr where FILE is a standard file na•e• 
To append to an existinl file• Put >>FILE at the end of the co••and 
line. If FILE doesn't exist. it will be created. The carriasecontrol 
twPe of newlw created files is identical to the carriasecontrol twPe 
of the file beins listedr while that of appended files is the same as 
that of the file beins appended to. 

Once a file na•e has been specified usins >FILE or >>FILEr that 
file na•e beco•es the default file name for file redirection onlw1 and 
need not be specified asain1 i.e. > or>> alone is all that is needed 
to redirect outPut to that file. 

41 



LIST File Listins Utilit~ 

s.o Examples of Co•monl~ Used Commands 

<er> 
45 
• -5 

@-
<esc> 
$-9 
ISUBRI 
II 
451SUBRI 
IERRl-5 
$-SOISUBRI 

Hittins return Prints the next screen. 
Start Printins at line 45. 
Print from 5 lines back • 
Print startins half a screen back. 
Start PrintinS one and one-half screens back. 
Hitting escape Prints from 2 screens back. 
Print the last 10 lines in the file. 
Locate the strins SUBR and Print from there. 
II alone defaults to the last search Pattern specified. 
Locate SUBR at or after line 45 and disPlaY a screen. 
DisPla~ startins 5 lines before next occurrence of ERR. 
Look for a subroutine in the last 51 lines of the file. 

1,10 Print lines 1-10. 
ISUBRlrlEND/ Print the next subroutine. 
1/SUB/,.t51ENDI Print from SUB at or after 1 to END at or after 5 after SUB 
/SUBRI? Display lines containins SUBR. 
? DisPla~ lines containins the current pattern. 
10r$>T.TMP Write lines 10 throush the end of the file to T.THP. 

LIST *•FTN IXVALl,$?X would Print all occurrences of XVAL in *•FTN. 

42 



Name: 

Mailing 
Address: 

Phone 
Number: 

Instructions 

DeVIAS Questions - Answers 

-----------------------·--------------

1) Complete relevant part of form 
2) Mail to Editor, The DeVJA5 l~tter 
3) Question and/or Answer will Le published in next 

newsletter. 

Date Submitted: _____ / ____ / ___ _ 
Question: 

Answer: 

43 



NOTES 

45 



MOVING OR REPLACING A DELEGATE? 

Please notify us immediately to guarantee cont inuing 
receipt of DECUS literature. Allow up to six weeks 

~-
{ -for change to take effect. I 

b ( ) Change of Address I 

( ) Delegate ReplJcement i 
I 

DECUS Membership No.: 
I 

Name: 
i 
I 

Company: 

Address: i 

State/Country: 
n. 

Zip/Postal Code: 

Ma il to: DECUS · ATT : Subscript ion Service - 1 

One Iron Way, MR02-1 /C11 
I 

Marlboro, Massachusetts 01752 USA 

-~"""" 

J 

' 

l 

3: 0 0 0 >z-m 
::i:im~C"> 
r---tC: 
gi::i:J>en 
oor-en 
::i:i z m C: 
.o:eo~ 
3: > s: C"> > -< "ti :xJ 

~~~~ 
> :xJ z -
(") 0 -t 0 
:::z:: ~ (") z 
c:..aoen 
~?; 3: m 
-t ... "ti :xJ 
-t"""c:S 
(I) -t (") mm 

::i:J Q ... ..., 
(JI 
N 

c: en m 
::i:J en 

~ 
S2 
m 
~ 

~[O] 

,, 
.,, ;:;.- c 
C'D n · CJ ., ::r .,, ~ c: 

~ ~. g- )> .,, ~ 
....... .cio-~:::o z - ... II> 

0 ""' II> ... . :::.. 'i C'D 

> 




