
** * * * * * * : STRUCTURED LANGUAGES SIG :
* * * * : NEWSLETTER !
* * * * **

Volume 5 Number l April 1981

Out with the old, and in with the new:

The Structured Languages SIG now has a new chairman,
and several new people within the SIG leadership (see the
editors notes). I have decided to step down as chairman
after four long years and let someone with new ideas and
energy lead the SIG. I will not be dropping out of struc
tured languages entirely, however, since I will still be
interested in the implementation of the NBS-Pascal compiler.
Over the years, I have seen the SIG evolve from a group of
people interested in just Pascal to a group which is
interested in all languages which significantly improve the
programming environment on DIGITAL computers. I am sure
that Bill will enhance the SIG more than I could have at
this time. Being a member of the U. S. DECUS Executive
Board demands more time than I have had while chairing the
SIG. If everybody gives Bill the same support they gave me
during these past years I am sure that the SIG will continue
to flourish and grow. The SIG is now one of the four larg
est SIGs within DECUS. Your continued support will probably
make it the largest SIG in the next few years.

The Pascal SIG was founded during the 1976 Spring DECUS
Symposium 1n Atlanta. At that time I was chairman of the
Networks SIG. The Southern California Local Users Group was
heavily involved in the development of a Pascal compiler for
RSX-llD at that time. The SCLUG first started to bug DIGI
TAL about implementing a Pascal compiler on PDP-lls during
the 1974 Fall DECUS Symposium in San Diego. Seeing that
DIGITAL was not going to produce a Pascal compiler in the
near future, the SCLUG along with Brian Lucas at the
National Bureau of Standards modified Brian's initial DOS
version which was implemented in something called Block
Structured Macros to run on RSX-llD and RSX-llM (we said it
didn't work on IAS since DIGITAL was saying that what they
were doing for IAS didn't work on RSX-llD or M). I
presented a paper on the implementation at the 1977 Spring
DECUS Symposium 1n Boston. The response was overwhelming.

Copyright©. 1981 Digital Equipment Corporation
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS publication.
The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the editor assume no responsi
bility or liability for articles or information appearing in the document. The views herein expressed are those of the authors and do not
necessarily express the views of DECUS of Digital Equipment Corporation.

- 2 -

I installed the compiler on the PDP-11/60 in the demonstra
tion room and told everybody that they could copy it off of
the system if they had a 1200' tape (the 11/60 only had a
TS03). Needless to say, the DIGITAL store sold all of their
1200' tapes and the 11/60 was busy up until the time they
put it on the truck. l then decided that there was a need
for an active Pascal SIG, handed over the reins of the Net
works SIG to Bill Brindley (that is another story), and
resurrected the Pascal SIG. During the Boston symposium I
also had the pleasure of sitting down next to Kathleen Jen
sen at a Pascal BOF session. When they passed around the
sign-up sheet for interest in Pascal, Kathleen signed it
first, and she just knodded knowingly to my quizical look
when I saw her name and made the association. Kathleen
later agreed to present a paper on Pascal entitled "Why Pas
cal" at the 1979 Spring DECUS Symposium in New Orleans. She
was very nervous about the presentation and wanted me to
back her up on the podium to answer any technical questions
about the Pascal language since she only wrote the users
quide and Wirth wrote the report part of her and Wirth's
book. Since that time Kathleen has come back partially into
the world of Pascal and is presenting a series of tutorials
on Pascal. Getting back to my history of the SIG, the years
following the Boston symposium saw the Pascal SIG grow into
one of the largest SIG$ within DECUS. Many people contri
buted to its growth. Roger Vossler and Bill Heidebrecht at
TRW were working closely with me in California as we refined
the NBS Pascal compiler. Brian Lucas joined forces with
Justin Walker at NBS and implemented a version of the com
piler on Unix. Since they had finally given up on BSM,
switched to C, and then finally rewrote the compiler in Pas
cal, I received a copy of their version over the ARPAnet at
UCLA. With the help of some collegues at Hughes Aircraft, I
was able to port their version over to RSX-llD and M. Also
at this time we received the first version of the Swedish
Pascal compiler from Seved Torstendahl in Sweden (that is
why we call it the Swedish Pascal compiler). At each of the
DECUS symposia since Boston, the Pascal SIG and now the
Structured Languages SIG has compiled a SIG tape containing
the current versions of Pascal compilers and utility rou
tines for distribution. Bill Heidebrecht has spent many
hours at symposia copying the many tapes, all of which
started with the files on the PDP-11/60 at Boston. James
Triplett is now our SIG librarian, and a formal tape copy
procedure is in place. The 1200' tape has grown into two
2400' tapes containing Pascal, C, and Praxis compilers along
with numerous associated software and documentation. It has
been an immense pleasure to me to see and be a part of the
distribution of software tools to the DECUS community.
There are many other people who have helped during the years
who I have not mentioned. They know what they have done,
and many of you know as well.

As I said before, I am not dropping out of the

- 3 -

Structured Languages SIG. My involvement will be with the
NBS Pascal compiler on the RT-11 and Unix operating systems.
The RT-11 version of the compiler for FIS and FPP systems is
available from me on floppy disks. Just call me at (406)
243-2883) to find out how to get a copy. It will also be on
future SIG tapes for those of you who have tape drives.

I am looking forward to being able to contribute even
more to the SIG. Even though I will not be the chairman, I
will be active and waiting to see what the rest of the DECUS
community will come up with in the future. Thank you for
your past support and interest.

John R. Barr •••

From the editor:

In this issue of the newsletter I have included the
remainder of Hal Morris' article on C from the last
newsletter, a note from David O'Connor that describes an
implimentation of the 'pipe' operation under RT-11, a note
from Gary Beckman who directs our RATFOR effort, and a note
from Dr. James Greenwood about the implimentation of Praxis
that he has developed at Lawrence Livermore National Labora
tory. Please also notice the announcement from DIGITAL of
the seminar "Pascal as a Second Language". Instructors for
the seminar are Kathleen Jensen and Gil Roeder. This sem
inar is not associated with the symposium at Miami, however,
Kathleen Jensen will present a one day seminar, "Introduc
tion to Pascal", at Miami. Details are in your Preliminary
Program.

We are fortunate to be able to add two very good people to
our staff of newsletter editors. James Greenwood will be
the feature editor for Praxis and Jim Flournoy will be the
feature editor for FORTH. You are encouraged to contacted
them if you have any questions, comments or articles related
to their interests. Since we have had several changes and
additions to the SIG staff I have included a complete list
below.

The spring symposium in Miami on May 18-21 promises
very good one with a wide variety of presentations.
is sponsoring the following sessions:

Mon 2:00-3:30 Introduction to Structured Languages
3:45-4:45 Concurrent Languages Panel
4:45-5:45 Concurrent Euclid
6:30-8:30 SIMULA
8:30-9:30 NBS Pascal Report

Tue 3:45-4:45 C for Systems Programmers

to be a
The SIG

- 4 -

Wed 3:45-4:45 PRAXIS and ADA
4:45-5:45 PRAXIS tutorial

Thu 2:00-3:00 Structured Languages SIG meeting

You can find a description of these sessions in your Prelim
inary Program. And, don't forget the pre-symposium seminar
on Pascal given by Kathleen Jensen. The seminar will be
held on Sunday, May 17 from 9am to 5pm.

Finally, I want to pass on to you two requests that I have
received.

Does anyone have a C compiler which will run on the
DECSYSTEM-20? Contact:
Ron Smith
AMG Associates Inc.
1725 Jeff Davis Hyway, Suite 704
Arlington, Vr 22202
(703) 892-5600

Does anyone have a C,
language compiler which
machine code for an 8085
Bob Martin

Pascal, or equivalent structured
will run under RSX-llM and generate
microprocessor? Contact:

Teradyne Central, Inc.
3368 Commercial Ave.
Northbrook, IL 60062
(312) 291-4300

structured Languages SIG

Chairman -

Librarian -

Symposia -

Newsletter -

Bi 11 Carro 11
Moore Systems
1730 Technology Drive
San Jose, CA 95110
(408) 297-9920 X0354

James Triplett
Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138
(617) 661-1840

Hal Morris
Park View at Madison,
Lawrence Harbor, NJ
{201) 949-7466

Roy Touzeau, Editor
Department of Computer
University of Montana
Missoula, MT 59812
{406) 243-2883

Apt. 18G
08879

Science

Feature Editors -

c
Steven McGeady
2143 SE Bush Street
Portland, Oregon 97202
(503) 235-2462

RATFOR
Gary Beckman

- 5 -

Pascal
John Barr
Department of Computer Science
University of Montana
Missoula, MT 59812
(406) 243-2883

FORTH
Jim Flournoy
Box 2455

Praxis
James Greenwood
Lawrence Livermore

National Lab
Box 5508 L-464
Livermore, CA 94550
(415) 422-5369

Joint Center for Radiation Therapy
50 Binney Street
Boston, MA 02115

San Rafael, CA 94902
(213) 280-4365

Implementors -

NBS Pascal -
RSX

J. Bill Heidebrecht
TRW/DSSG R2/ll 70
One Space Park
Redondo Beach, CA 90278
(213) 535-2804

RTll
John Barr
Department of Computer Science
University of Montana
Missoula, MT 59812
{406) 243-2883

Swedish Pascal - Gerry Pellitier
Transport Canada
Pl ace de Vi 11 e

RSTS
Brian Nelson
Computer Center
University of Toledo
Toledo, Ohio

Unix
John Barr
Roger Vossler
TRW/DSSG R2/l l 70
Justin Walker
Interactive Systems
Gaithersburg, Maryland 20760
{301) 963-0100

Ottawa, Canada KlA ON8
(613) 994-2378

C - Rob Denny
Martin Minow

RATFOR - Joe Sventik
Dave Sykes

Standards - Chuck Grant
Lawrence Livermore National Laboratory
Box 5508 L-152
Livermore, CA 94550
(415) 422-3869

- 6 -

PASCAL
as a

Second Language
WASHINGTON, D.C.

January 27 - 29, 1981
Ramada Inn

Lanham, Maryland
(301) 459-1000

LOS ANGELES
February 23 - 25, 1981

Del Webb's Newporter Inn
Newport Beach, California
(714) 644-1700 ext. 504

SAN FRANCISCO
February 25 - 27, 1981

Santa Clara Marriott
Santa Clara, California

(408) 988-1500

MINNEAPOLIS
March 23 - 25, 1981

Radisson Downtown Hotel
Minneapolis, Minnesota

(612) 333-2181

BOSTON NEW YORK ATLANTA DALLAS
March 25 - 27, 1981

Fairmont Hotel
Dallas, Texas

April 27 - 29, 1981
Marriott Hotel

Newton, Massachusetts
(617) 969-1000

April 29 - May 1, 198 1
The New York Statler
New York, New York

May 20 - 22, 1981
Omni International
Atlanta, Georgia
(404) 659-0000 (2 14) 7 48-5454

Are you looking for a new
development language because
you are having problems
implementing modern structured
programming techniques?

Are your programmers asking for
a more modern language to help
them do their job better?

Is it time to invest in your
programmers' future by training
them in a modern structured
language?

Are the costs of your software
maintenance over budget by a
factor of 2 or 3 or more?

... Or do you just want a good.
short but intensive, course on
Pascal?

If the answer is YES to any of the
above questions, Digital' s 2-1 I 2·
day seminar on Pascal wilt be of
interest to you.

Why Pascal?

The questions have been asked,
"Why does the computer community
need another language? And even if it
does, why Pascal?"

PASCAL
Today's Language
for
Structured Programming

The development of any computer
program goes through various stages
of abstraction and refinement. Pascal

(212) 736-5000

was created to provide a means of
expressing these abstractions more
easily. With the current emphasis on
structured methodology and structured
programming, Pascal is an ideal
language by which to standardize your
programming methods.

The language constructs of Pascal
inherently reflect program structures
which otherwise would have to be
hand-coded. By providing a facility for
clearly expressing programming
solutions, Pascal promotes self·
documentation, thereby aiding
program readability and
maintainability. At the compiler level,
Pascal's design provides for efficient
implementation, and excellent error
detection and diagnostic capability.
The richness of the language
combined with a growing number of
excellent implementations have
promoted Pascal's popularity among
programmers and project leaders
alike.

Pascal aids project leaders in
cutting costs of program development
and maintenance by allowing them to
develop a clear-cut framework of
programming standards. A recent
Business Week report cites one claim
that programming in a structured
language such as Pascal "can make
programming as much as 10 times
faster and can cut the cost of software
by 30%-75%."

As a leader in the implementation of
Pascal in the minicomputer field,
Digital presents an opportunity for you
to learn Pascal and the benefits it can
bring to your environment.

Features

This seminar:
• Gives you an insight into why

Pascal was developed
• Teaches you all the elements of

"standard" Pascal
• Data structures
• Control statements
• Structure of a Pascal

program
• Exposes you to the advantages

of using Pascal
• Inherent documentation

features
• Ease of maintainability
• Transportability of

programs between
systems

• Requires you to write several
programming exercises
demonstrating the key features
of Pascal

• Shows you how Pascal is
positioned in the computer
language spectrum

Benefits

• You will make a 2· 1I2·day
intensive investment in learning.
When you leave you'll be able to
start programming in Pascaf.

• You wilt leave with a thorough
understanding of Pascal as a
language.

• You wilt be able to take
algorithms written in another
language and start re-coding
them in Pascal.

over

I.

II.

Introduction to Pascal
A. History
B. Why Pascal?
C. Program Reading
Basic Concepts of Pascal

- 7 -

SEMINAR OUTLINE

B. Subrange
C. Structured

• Arrays
• Records
• Sets

A. The Vocabulary of Pascal e Files

B.
c.

• Nomenclature
• Symbols
• Delimiters
• Comments
• Identifiers

Standard Data Types
Operators

v.

VI.

D. User-Defined Data Types
Procedures and Functions
A. Parameters
B. Scope
C. Global vs. Local Variables
D. Standard Procedures and Functions
Advanced Concepts

D. Constants, Variables. and Expressions A. Dynamic Variables
E. Standard ldentifil!rs B. Record Variants

Ill. Programming and Control Flow C. Recursion
Putting It All Together A. Structure of a Pascal Program VII.

B. Declarations
c. Statements

• Simple

• Conditional

• Compound

• Repetitive
IV. Data Types

A. Scalar

• You will leave with a personal
set of course materials that will
be a convenient and valuable
reference when back on the job.

• You will learn how Pascal can
facilitate the process of
establishing programming
standards for project
development.

Who Should Attend

• Professional Programmers who
want to be up-to-date on one of
the most popular structured
languages, Pascal

• Software Project Leaders who
are considering using Pascal for
a project

• Software Product Development
Managers who are planning to
use Pascal as a development
language

• Assembly Language
Programmers who want to learn
a higher level language

• Microprocessor System
Designers who need an
understanding of "standard"
Pascal on which to base
investigations into variations and
extensions

• Anyone who is responsible for
the productivity of programmers

Programming experience is a
prerequisite for this seminar. but no
knowledge of Pascal is assumed.
Several programming exercises are
included which will provide attendees
with experience in writing Pascal.

A. Again . Why Pascal?
B. Differences between Pascal and Other

Programming Languages
C. Discussion

Attendees will be given time during the
seminar to analyze assignments and
derive solutions. There will also be two
short evening assignments.

Course Materials
A copy of a leading textbook in

Pascal, "Pascal User Manual and
Report." by K. Jensen and N. Wirth,
Springer Verlag, NY, 1974.

A set of Seminar Notes for future
reference.

A set of handouts of debugged
Pascal programs that are valid
solutions to the seminar exercises.

Faculty

Kathleen Jensen and Gil Roeder will
be your team of instructors during the
Pascal seminar.

Kathleen worked for Niklaus Wirth at
The Swiss Federal Institute of
Technology (ETH) in Zurich tor three
years during the infancy of the Pascal
language. While at ETH. she taught
Pascal programming and co-authored
the Pascal User Manual and Report.

• Extensions to Pascal
• Status of ANSI standardization

She also contributed to various
research projects including the Pascal
"P Compiler." Currently, Kathleen is
employed by Educational Services
within Digital Equipment Corporation
where she is involved in new project
development.

Gil is president of Retrieval
Techology, a consulting and training
firm located in Chelmsford, MA. Gil
draws on an extensive background of
application development and system
design in several diverse industries
including newspapers and publishing,
energy, and manufacturing. In addition
to his applications experience, Gil has
been involved in intensive system
development in the areas of
communications and database
management systems.

Gil's current interests include the
design of database-oriented business
systems and the integration of
database management within
organizations. He has used Pascal
extensively in the development of
these applications.

REGISTRATION & CONFIRMATION
To register for Digital's seminar. fill out the registration form or
calf the Registrar at (617)493-2858. After your reservation has
been received, you will receive a confirmation letter that will
include time schedules, hotel and meeting room locations, and
other details. If you have additional questions, please call
(617)493-2858.

Early registration is recommended. However, enrollment will
remain open until two weeks before the starting date of the
seminar.

- 8 -

Praxis Axis

James R. Greenwood

Praxis is a high-level systems implementation language designed for
control and cormiunications programming. Praxis was developed by the
Laser Fusion Program of Lawrence Livermore National Laboratory for
control system programming on the Nova Fusion Facility. Three compilers
and substantial documentation exist and will be in the public domain.
The language project was led by Dr. J.R. Greenwood from its inception in
1978 to completion in January 1981. Praxis represents an actual
investment of approximately $1,000,000 by LLNL over a two-year period.
The language has been in operational use at LLNL since June 1980, and is
now the standard programming language for controls applications within
the Laser Fusion program.

The compilers are written in Praxis (40,000 lines) and operate on two
processors: VAX/VMS and PDP-11/RSX-llM. The kernal of the Nova control
system written in Praxis (35,000 lines) is operational at this time.
Three compilers are operational:

VAX/VMS generating VAX code
VAX/VMS generating PDP-11 code
PDP-11/RSX-llM generating PDP-11 code

Praxis is the practice of the programming art, science, and skill. It is
a high-order language designed for the efficient programming of control
and systems applications. It is a comprehensive, strongly typed,
block-structured language in the tradition of Pascal, with much of the
power of the unavailable Ada language. Praxis supports the development
of systems composed of separately compiled modules with user defined data
types and exception handling. Also sophisticated control constructs, and
encapsulated data and routines are built into the language. Direct
access to machine facilities, efficient bit manipulation, and interlocked
critical regions are provided in the language.

Additional information is provided in the manuals listed below which are
available from NTIS or LLNL:

o An Introduction-to Praxis
o Praxis Language Reference Manual (315 pages)
o Programming in Praxis (230 pages)
o Praxis Input/Output Interface Report
o Praxis Internals Document

UCRL-52957
UCRL-15331
UCRL-5xxxx
UCRL-15xxx
UCRL-15xxx

- 9 -

Published reports which describe the language and implementation include:

o A Comparison of Programming Languages:
Ada, Praxis, Pascal, C

o A Tour through the Praxis Compiler
UCRL-15xxx
UCRL-15xxx

The public domain versions of the compilers are being distributed
currently. Contact:

D~. J.R. Greenwood
Lawrence Livermore National Laboratory
P.O. Box 5508 L-481
Livermore, CA. 94550
(415) 422-5369

In addition negotiations are under way with some vendors to distribute,
support, and maintain the DEC compilers. In addition Praxis will be made
available under UNIX and other 16 bit micros.

In summary, the Praxis language is specifically designed to be WITHIN the
state of the art of language design yet suitable for advanced control and
systems implementation needs. Complex language features such as generic
procedures, overloading of operators, and predefined tasking have been
intentially omitted. We felt that these concepts were either not
understood well enough to be incorporated at this time, or that they
should not be part of the language.

In conclusion, Praxis is an extremely powerful, modern programming
language that goes beyond Pascal and yet is available today.

JG:vb
2109f

- 10 -

RATFOR

Ever since mY name appeared in both DECUSCOPE and the
SIG's newsletter, there has been a steadr stream of mail for
me asking that the sender be kept informed of what is
haPPenin9 in and around RATFOR. Some Pe0Pl0 have even
re9uested information concerning specific Preprocessors. It
is mv hope that this newsletter be the source of such
information. I am unable to answer individually each
re9uest to be kePt UP to date, which is why I volunteered m~
time to be the editor of the RATFOR Part of the SIG/~

newsletter. If You have questions, sugsestions. or
interesting things vou have done send them to me:

Garv Beckmann
Joint Center for Radiation Therapy
50 Binney Street
Boston, MA 02115

Please send evervthin9 in camera ready form C8.5x11
paper, inch margins all around, and dark enough Print for
reproduction -- if you can't set a decent Xerox of it I
Probably can't either). If vour question is about a
specific Preprocessor, I will do mv best to set the question
to the implementors of it and an answer from them.
Evervthin9 else that seems within reason will so into the
newsletter. <If vou are claiming to have imPlemented an
oPeratin9 svstem in RATFOR, Please be Prepared to
substantiate that claim.>

There are manv versions of the RATFOR Preprocessor
floating around and I would like to make some attempt to
brin9 them all tosether and Produce one Preprocessor that
the SIG would 'suPPort'. There are two formal sroups of
which I am aware that are workins Presently with a RATFOR
preprocessor: one is the Structured FORTRAN Working Group
of the RSX/IAS SIG and the other is the Software Tools
People. I would like to hear from everYone who has
imPlemented a PreProcessor and who is interested in startins
some communication as to what should and should not be
included in a Preprocessor. This information could then be
offered to the communitv of users bY the SIG. I will attempt
to act as a nexus in this communication. Hopefully we can
schedule a meeting or two at the next svmPosium in Florida
where we can thrash over our thoushts in Person.

Feel free to write -- sometimes mv 9ueue 9ets Prettv
full but I eventually get around to resPondins in some
manner. Until the next newsletter,

- 11 -

Editor's note: The following article is the second part of
the introductory article on the programming language C writ
ten by Hal Morris. It is continued from the last issue of
the newsletter.

I/O Processing and Interrupts on the PDP-11

This section gives sane examples of how to do I/O using C
without the aid of an opera ting sys tern. The programs presented could
in fact be run without an operating system assuming one can find a
way to load and start them. My purposes in doing this are:

(1) To show that it can be done (even efficiently).

(2) To provide for sane people (including myself) a better basis for
understanding I/O on the PDP-11 (and similar machines) than the usual
method which relies heavily on assembler language routines in which
anything of generality is hidden by obscure details.

(3) To provide simple models for real I/O programming in C. For
instance, stand-alone applications, perhaps because the machine is
very small, or the application very specialized, and no operating
system does an adequate job. Another use for bare-machine I/O is an
inline device driver, that is one which is linked into the
application program. There is some discussion of when to use this
technique and when to write a handler in the RT-11 Self-Paced Course.
This is what my biggest example is, at any rate. It is fairly easy,
at any rate, involving a 6-line assembler "front-end" for the
Interrupt Service Routine, and otherwise, only C code. Essentially
the same front-end could be used on any inline device driver. An
actual handler (to be installed in the operating system) is a good
bit more difficult for most operating systems, which make some stiff
requirements on its structure (E.g., fixed offsets from the beginning
and/or end of the handler act as variables through which the system
communicates with the handler; the number of words in the handler
must be contained in some fixed location.). Nevertheless, with some
help from assembler inserts, front-ending, and so forth, one can
write an RT-11 driver in (mostly) c. For a complex enough device, it
may be quite worthwhile, which is the oppinion of an acquaintance who
wrote a CAMJIC handler in C for RT-11. Apparently UNIX (trademark of

- 12 -

Bell Laboratories), which is mostly written in C, is written to make
it much easier to write handlers in c.

UNIBUS Facts for the Hardware Novice:

I must agree that the concept of the UNIBUS and related bus
structures is as outstanding as DEC keeps telling us. C can do most
bare-machine I/0 by itself on any machine with such a structure,
whereas without the UNIBUS or a related bus structure, generalized
I/O (as opposed to reading and writing text) is so specialized to the
machine that it can not be built into a high-level language A device
plugged into the UNIBUS communicates with the CPU through its own
device registers, which, to the CPU (and to your program) work just
like memory locations except that their addresses are higher than
normal memory. To communicate with the device, the CPU, under
control of a program, moves a word or byte into a device register or
sets certain of its bits. The meaning of this to the device may be
"Print this character.", or "Don'"t bother me.", or "It'"s O.K. to
bother me now." (technically: enable or disable interrupts). All
this depends on what bits were set or which register got a word/byte
moved into it. The device may place information in one of its own
registers to say something about its state. If a program must wait
for a device to be in a certain state, it may repeatedly read a
device register, staying in a tight loop until the desired state is
attained. Typical meanings of messages from the device are: "I'"ve
got new input in my other register. ", "Help me, I '"m out of paper.",
or "I'"m not busy now.". Such states of the device may also cause
interrupts, but a discussion of device registers without interrupts
should come 1st.

NOTE 1: On the smaller lls, the highest 2K or 4K numbers which
could be addresses, i.e., could be written with 16 bits, are simply
not allowed to be memory addresses, and are reserved for use as
device register addresses. This is why LSI-lls, 11/lOs, and others
can have at most 28K or 30K words of memory, instead of the 32K words
which the 16 bit size of an address would allow.

NOTE 2: An intelligent but not-yet knowlegeable reader might
well be bugged by the fact that his/her terminal can be attached to a
number of makes of computer, whereas I am talking about devices
having properties specific to the UNIBUS. Since I am going to be
dealing with a terminal in most of the examples, I should point out
that a terminal is not plugged into the UNIBUS. It is connected to a
controller or interfa'Ce, which is plugged into the UNIBUS and which
is made only for UNIBUS computers. '

£Examples: I/O Using Only Device Registers:

I will refer to the printing mechanism or video display of a
terminal as just the "pr inter". Either receives data from the
interface (NOTE 2) in the same way. I ~m going to write a program
for a terminal interfacec as the console to output the letter '"c'".
The console has 4 1-word registers starting at address 0177560, of
which the 4th (6 bytes beyond the 1st) is the output buffer register.
Moving a character this register'"s low order byte will cause it to

- 13 -

print. I will make the output buffer accessible via OBUF, having the
properties of a char variable, via the following macros:

#define ByteAt{loc) {* {char *) {loc))
/* Recall this is contents of loc treated as a pointer
* to a char variable.

#define
#define

*/
DLREGADDR
OBUF

0177560
ByteAt{DLREGADDR+06)

Then, provided I don't collide with the operating system, the
following program wil 1 print the letter 'c':

[#defines]
ma in{)

T
}

OBUF = 'C';

If I want to print several characters, there is a slight
problem, which is that the CPU can send characters much faster than
the terminal can recieve them, and it does not wait to see what
happens to the last character it sent before sending a new one. This
is one purpose of the other register associated with terminal output,
called the Status Register. This tells various things about the
state of the device, and in particular bit 7 is 1 if the printer is
ready to receive a character and 0 if not. {Bit 7 is only set by the
device; attempts by a program to set it will be ignored.) The
condition that bit 7 is set can be expressed as follows:

#define Bit{n) (1 << {n))

{A word w i th ju s t bi t n s et)

#define IsOn{n, x) notNULL{ {x) & Bit{n))

x & Bit{n) is non-zero {and equals Bit{n)) iff
bit n of x is on. notNULL means what is says:

#define not NULL {what not) {whatnot)

{whatnot has the same truth value as whatnot !=NULL.)
Finally:

#define IsOff {n, x) {!IsOn{n, x))

- 14 -

So the program becomes:

[miscellaneous #defines]
#define OSTAT WordAt (DLREGADDR+04)

T
main ()

/*l*/

/*2*/

/*3*/

}

out[] static char
register char *o~
o = out~

= "Hello world\r\n"

while(notNULL(*o))
{ while(Is0ff(7, OSTAT))

{} /* Sit tight. *I

}
OBUF = *o++~

The program just loops as long as the printer says it isn~t
ready to print (Bit 7 of the STATus register "IsOff".) Note that in
[l], out is an array of characters (whose size is determined by the
initialization. [2] and [3] use the buffer and pointer technique
described in the example of printing the system date.

Interrupt-Driven I/O:

The next big exercize will be a program which
lines of text using an inline asynchronous device
linked into the program~ it is not installed in
system.

prints several
driver. Th is is

the opera ting

The console terminal interface, which on my machine is a DL-11,
has one type of interrupt which says that a character has been typed
at the keyboard, and another type of interrupt associated with
printing. The printer interrupt occurs whenever the printer is ready
to print a character. I.e., it interrupts whenever it isn~t busy.
Now this can~t be quite true. If it were, the printer would
continuously interrupt any time the CPU could not keep it busy. This
leads to the subject of enabling and disabling interrupts. When a
particular type of interrupt is disabled, then the event which would
normally cause it doesn~t cause it. This may be illustrated very
simply.

Normally, keyboard interrupts are always allowed to happen.
This means that whenever you type something on the keyboard, the
monitor goes and does something, even if it seems to ignor~ the
character typed. In particular, it will note whether the character
typed was a ctrl/C or not, and if 2 ctrl/Cs are typed consecutively,
a running program will be aborted, unless this feature has been
overridden. Let me broadly sketch what the interrupt does. It takes
control away from the running program, regardless of what is going
on, saves any registers to be used, as well as "status" information
(so that an interrupt can occur between "test x" and "branch if 0",
for instance) and then it looks at what was typed. Then it goes
through a conplex set of decisions and actions. If the running

- 15 -

program has requested a line of text (from TT:) for instance, then
the new character from the keyboard usually goes into a buffer.
Under the same circumstances, if the character is a carriage return,
the buffer's contents are moved to where the user said to put the
next line, and a line feed and a NULL (0) byte are appended. If the
character is a ctrl/U, the buffer is cleared. A ctrl/C may cause an
abort, and so forth. The demonstration program will turn off the
keyboard interrupt so that ctrl/C will have no affect. The program
will also ring the terminal bell 100 times so that you know when it
is running (Try writing and debugging such a program without the last
feature.).

We are still dealing only with device registers. The convention
with UNIBUS devices is to have a register called the Status Register
such that setting bit 6 (to 1) enables interrupts, while clearing it
(setting it to 0) disables interrupts. Here are two macros for
turning on and off spE~cific bits in anything comparable to an int:

#define TUrnOn(n, x)
#define TUrnOff (n, x)

Th is leads to:

#define Enabint(statreg)
#define Disabint(statreg)

((x) I= Bit (n))
((X) &= -Bit (n))

TurnOn(6, statreg)
Tu rnOf f (6, s ta treg)

which turns interrupts for a given device on or off, given the
device's Status Register in a form such as OSTAT above. The
terminal's input, or keyboard status register may be defined as:

#define ISTAT WordAt(DLREx;ADDR)

since it is the st of the DL-ll's registers.

So finally here is the program:

[miscellaneous
#define BELL

/* Ascii
main()

T

#defines
07
char for ctrl/G, i.e. BELL. */

long i~ /* 32 bit integer (on PDP-11) */

}

Disabint(ISTAT) ~

for (i=OL ~ i<lOOOOOOOL ~ ++i) /*for i=l to 10000000 */
if(i % lOOOOOL == 0) /* 10000 divides i evenly*/

OBUF = BELL~

En ab Int (I STAT) ~

while (YES) .
I /* Infinite loop, but ctrl/C now works */

- 16 -

(Constants ending in ""L"" have 32 bits.) To test this properly, you
need to run the program, then type ctrl/C frantically while the
terminal beeps stupidly. This will probabally remind you of some
real life experience. When it stops beeping, it goes into an
infinite loop, but it can now be made to abort via a ctrl/C.

Interrupts for Hardware Novices:

Besides "pseudo memory locations" known as device registers,
most peripherals are wired to have a special relationship with a pair
of words in low memory called an interrupt vector (in fact, possibly
one vector for input and one for output). The vector is filled El
software (unless it""s ROM) with:

(1) the address of an Interrupt Service Routing (ISR) where control
transfers when the devTce""s interrupt occurs,

(2) a value for "PS", or Processor Status, including the priority (a
3 bit number 0-7) which the CPU assumes when the interrupt occurs.

When the device""s interrupt is accepted (which may not happen quite
as soon as the device requests it), the following occurs:

(1) The current :EC (Program Counter, which is register 7), and
current PS are placed on the-stack so that the ISR can restore them
to their pre-interrupt values if it wishes to act civilized.

(2) New values for the :EC and PS are taken from the interrupt vector
of the interrupting device. The replacement of PC should start the
CPU executing a routine which is designed to respond to the
interrupt. Of course with faulty software it might really go
anywhere and almost certainly result in a system crash.

Priority levels and Interrupts:

At this point, you should know at least one thing about the
CPU""s priority level, which is that it may change in response to
interrupts (see comments on "PS", above). I will use the term "soft
priority" of a device for the priority encoded in the second word of
the interrupt vector, which is the priority the CPU takes on when the
device interrupts. "Soft priority" is, as implied, a function of
what software put in the device""s vector. Each device also has a
"hard priority", which is wired into the device. When a device
attempts to interrupt, if its hard priority is higher than the
priority at which the CPU is running, the interrupt occurs.
Otherwise, it is kept pending, i.e., waiting until the CPU""s priority
falls below the devices hard priority. If you consider, for
instance, that the system clock ""s interrupt cannot be pending' more
than l/60th of a second, or the system time will become inaccurate,
it should be clear that the system cannot run for long periods at
maximum priority. If a your interrupt is kept pending, the CPU is
probably executing an ISR for a device with soft priority at least as
high as your hard priority. An interesting consequence is that a
devices soft priority should be at least as high as its hard.
priority, or it might interrupt its own ISR, which for various

- 17 -

reasons is very undesireable.

£ Example: Terminal pr inter driver

The interrupt-driven printer driver presented has 2 parts. In
addition to the ISR which jumps in whenever the printer interrupt is
enabled and the printer is ready to print, there is an initialization
routine "InitOut() ", which helps the ISR know what to do when the
printer wants to print (tells it where to find some characters to be
printed), and then tells the printer to interrupt (invoking the ISR)
when it is ready.

The main program calls InitOUt() when it has a line to be
printed. The arguments are the line to be printed, and a pointer to
an address, "done" which is to equal NO (== 0) while there are
characters left to print, and is set to YES (== 1) when the ISR wakes
up (the printer is ready) and there is nothing le ft to pr int.
InitOUt() halts any ongoing printing job, copies the two arguments to
variables which it and the ISR share, sets user ... s "done" to NO, and
then tells the printer to interrupt when ready. Note that the
printer will interrupt immediately unless it is printing the last
character from its last request. When the ISR wakes up due to an
interrupt, "out" and "pDone" will point to the line to be printed and
the us er ... s done signal.

The driver requires the main program to place the address of the
ISR in the vector, which it does. This is where one starts needing a
good bit of knowlege about a particular machine and compiler. First
consider the C program "isr () ":

i sr ()
{

}

/* C _!nterrupt service Routine */

if (isNULL (*out)) /* out of output */
{ *pDone = YES;

}
else

Disabint(OSTAT);

/* send to OBUF; advance */
OBUF = *out++; /* the char pointer "out". */

Via inspection of the assembler translation of this program and
some reading of l-bitesmith ... s documentation, you would see that:

(1) The routine does not save registers 0 and 1. All other registers
are preserved across function calls, however.

(2) It is not designed to be an interrupt routine. An interrupt
service routine must (besides preserving all registers) return via
the ReTurn from Interrupt, or RT! instruction, which restores PS
(processor st:atus, including priority and condition codes).

Actually, there are equivalent things which it can do (and which
RT-11 handlers do), but an ordinary subroutine return is not
appropriate. -

- 18 -

(3) The solution to problems presented by (1) and (2) involves noting
that isr() can be called from an assembler program via "JSR :EC,ISR".
Thus a very simple assembler program (called ISRM1C) can act as a
front end for isr(). An interrupt service routine should have no
arguments, which is why the call is so simple.

So, part of the solutions (one which can be applied to any
inline C interrupt routine) is to make the C function a subroutine of
an assembler function which

(1) saves RO and Rl
(2) calls the C interrupt routine
(3) restores RO and Rl, possibly destroyed by the C routine,
(4) returns via "RTI".

Here is the macro "front end" program:

ISRM1C:

• GLOBL isr, ISRM1C
.PSEC T c$text

MOV Rl, -(SP)
MOV RO, -(SP)

JSR :EC, isr

MOV (SP)+, RO
MOV (SP)+, Rl
RTI
.END

;Call C counterpart

;Return From Interrupt

Since a DL-11 has 2 consecutive vectors, the 1st for input and
the 2nd for output, its vector address is generally given as the
input vector address, while the output vector is 4 bytes beyond that.
Thus I will define DLOVOC, the output vector as follows:

#define
#define

DLVOCADDR
DLOVOC

060
((unsigned *) (DLVEC ADDR+O 4))

That is, DLOVOC is the 2nd vector treated as a pointer to an unsigned
variable, which may be treated as an array of (2) unsigneds. Thus
the vector gets its new contents via:

DLOVEC(O] = <address of ISRM1C>;
DLOVOC [l] = <New PS value.>;

However, the program should also save the old contents of the vector
and restore them when it is done so that when it is finished, the
operating system will be able to print things the way it normally
does. So the main program to test the printer driver now looks like:

- 19 -

extern I SRMJ'.C () ;
unsigned OldVec [2] ;

Disabint(OSTAT); /* While vectors
/* interrupt has

OldVec[O] = DLOVOC [0];
OldVec[l] = DLOVOC [l] ;
DLOVOC [0] = I SRMJ'.C;
DLOVOC [l] = Priority(7);

••• [exercize driver]

DLOVOC [O] = OldVec [0] ;
DLOVOC [l] = OldVec [l] ;

I* 1 *I
/* 2 *I

are being changed, an
unpredictable effect.

*/
*I

Note on /* 1 */: Getting at the true starting addresses of
subroutines Is naturally system dependent and may lead to rather
misleading code. To do it, I may declare ISRMJ'.C as an extern
function (i.e. global). If I declare some identifier as an extern
function, then a reference to it not followed E1 a parenthesized
argument list (not even an empty argument list, like "() ") will act
in a hery §'Stem-dependent way as the address of the starting address
of t e function with that name (if one can be found). I could print
ISRMJ'.C, and get the same number that I find for ISRMJ'.C on a linker
load map. A non system-dependent purpose for this is to allow the
passing of functions to other functions so that, for instance, a
graphics function to plot points could have the mathematical function
which it is to plot as an argument. Function names end up being
global labels in the asseni:>ler translation of the C program, and are
interchangeable with labels of programs originally written in
assembler.

Note on /* 2 */: Now, consider the second word of the vector,
the ProcessorStatus. Normally with RT-11 and no memory management,
only the 3 bits-starting at 5 which represent the priority should be
non-zero. So I can use the following to generate a PS for a given
priority:

#define Priority(n) ((n) << 5)

In particular I want the PS to make the CPU run at priority 7.

Finally, here are the complete driver and test program:

[I WILL JUST ATTJ'.CH THEM FOR NOW]

It occupies 440 words of which 256 are part of or below the (normal
sized) stack.

Not:.e on C f~alures used: On the "forn :statement, see Kernighan
and Ritchie, - p 16 and section 3. 5. "Call by value", which is the
reason for the peculiar way of passing "done", has several references

- 20 -

in the index, as does the "static storage class", which is the basis
of the "sharing" of out and pDone between InitOut(} and isr(). A
somewhat similar use-- of static variables is in section 5.7 (a date
conversion routine). K&R's index, by the way, is very thorough,
which is one reason it is quite a nice reference.

The way this program cycles waiting for "done" fails to
illustrate the point of interrupts, which is to allow other work to
get done while the CPU is waiting on a device to do something. One
way to get some overlap between computation and output is to only
wait for the printer if one wants to print something. An output
routine might be devised which just gets things going and returns
immediately if the printer is free, but a if printer job is being
finished, it-has to wait on it. Much more sophisticated things could
be done; in particular, with multiprogramming, when one job is
waiting for output to finish, another can be be running. But here is
a modest way of benefitting from interrupts:

...
static char
static BOOL

buf[BUFSIZE];
done = YES; /* 1 */

OupL ine (line)
char *line;
{

}

copy(buf, line); /* 2 */
while (!done)

; /* 3 */
InitOut(buf, &done); /* Start this job; can't start */

/* another til this one's finished. */

Some final notes on the above program:

/* 1 */: This is YES the first time a request is made and thereafter
depends on whether the job requested on the last call has finished or
not. (BOOL is #defined to be int, just to give an air of
respectability to using integers an boo le ans.)

/* 2 */: This allows the caller to not worry about using its own
buffer (pointed to by line). Note again the necessary use of static.

/* 3 */: Wait until the output from the last request is finished.

If perchance every printed line is followed by enough
computation to allow it to finish printing, then the OupLine will
always find done true at the start, so the amount of time spent doing
output will just be a little over the amount of time spent in the
!SR, which is negligible.

Some of my example programs, as well as some of my understanding
of bare machine I/O derives from a new book: PDP-11 Assembler
Language Programming and Machine Organization (Michael Singer, (c)
19 80, John Wiley and Sons) , Chapter 4 , "Per iphera 1 De vices". I 1 ike

- 21 -

it the best of any book on PDP-11 assembly language r·ve seen.

• ! DLDR.C:

/* DLDR.C = DL-11 Output driver consisting of:
* (1) Init:Out(): Point ISR at a line of text and say go.

* (2) isr(): Jumps in whenever interrupts on and printer ready.
*/

#include
i include

<c :std. h>
<dldr.h>

/* Shared by InitOut() and isr(): */
static char *out;
Sta tic BOOL *pDone;

/* Output initiation routine:
* Tell ISR where line to print is, and where user's
* done signal is; tell printer to interrupt when ready.
*/

In i tOu t (NewOut, pNewDone)
char *NewOut;
BOOL *pNewDone;
{

}

/*

if(isNULL(*NewOut)) /* Printing empty string? Just */

else
{

}

pNewDone = YES;/ tell caller he's done. */

Dis ab In t (OST AT) ;
out = NewOu t;
pDone = pNewDone;
*pDone = NO;
Enabint(QSTAT);

/* Unfinished job killed */

*Interrupt Service Routine; Called by ISRMlC() upon interrupt:
*/

isr ()
{

if(isNULL(*out))
{ Disabint(OSTAT);

}
*pDone = YES;

else

}
OBUF = *out++;

- 22 -

'IDLDR.C
/* T D L D R • C = main.

* Test DLDR.C: DL driver written in C.
*/

#include
#include

<c :std. h>
<DLDR.h>

main ()
r

}

BOOL done = NO;
static char *out[] =

{ "ou tl \ r\n", "ou t2\ r\n",
register int i;
unsigned Old Vee[2];
extern ISRMlC ();

"out3\r\n", NULL}

/* Macro front end of Interrupt */
/* Service Routine. */

/* Save old vector and replace with ours. */
Disab!nt(OSTAT);
OldVec[O] = DLOVEC [O];
Old Vee [l] = DLOVEC [l] ;
DLOVEC [O] = ISRMlC;
DLOVEX:![l] =Priority(?);

for (i=O
{

}

; notNULL (out [i]) ; ++i)
Initout(out[i], &done) ;
while (!done)

; /*Wait till output completes */

/* restore vector */
DLOVEC [0] = OldVec[O] ;
DLOVEX:! [l] = Old Vee [l] ;

/*
*
*
*/

DLDR.H:
D L D R • H

for DLDR,
the specific

- 23 -

= constants & macros
or DL-11 driver. Note that this file determines
DL-11 for which the driver will work.

/*==*/
/*'IDOLS FOR BIT MANIP. AND ABOOLUTE ADDRESS REFERENCING: */
!*==*/
#define W::>rdAt (loc} (* (unsigned *} (loc}}
#define ByteAt (loc} (* (char *} (loc}}

#define Bit(n} (l<<(n}}
#define Ia>n(n, x} ((x} & Bit (n}}

/* Bit n of x is on. Equal to Bit(n}, which is true, if so. */
/* It doesn't equal the "canonical true value" YES, or 1. */

#define IsOff(n, x} (!IsOn(n, x}}
/* Is bi t n of x off? *I

#define TurnOn(bitnum, x} ((x} I= Bit(bitnum}}
#define TurnOff(bitnum, x} ((x} &= "'Bit(bitnum}}

/* MISC. */
#define notNULL(whatnot}
#define is NULL (whatnot}

(whatnot}
(! (whatnot} }

/*==*/
/* DEFINES WHICH JL-11 THE PROGRAM IS FOR. (NEEDN" T BE C ONOOLE} * /
/*==*/
#define DLREGADDR 0177560
#define DLVEx::ADDR 060

/*==*/
/*TOOLS FOR BASIC I/O~ GETTING AT DEVICE REGISTERS, E'IC.: */
/*==*/
#define OST AT WordAt (DL REGADDR+O 4}
#define OBUF ByteAt(DLREGADDR+06}

#define DLOVEx:: ((unsigned *} (DLVEx::ADDR+04}}

#define En ab Int (sta treg}
#define Disabint(statreg}

#define Priority (n}

Turn>n (6, s tatr eg}
Turn>ff(6, statreg}

((n} < < 5}

- 24 -

I SRMJC • M1C :

i== .
I .
I

~ .
I

.
I

This routine is entered on interrupt since its address
will be placed in the appropriate vector. It in turn calls
the C function which does most of the work.

The job of this routine is to preserve RO and Rl (any C
function is guaranteed to preserve the rest), call the
C funtion isr{), and return with a RTI (ReTurn from Interrupt) •

,===
.GLOBL is r , I SRMJIC
.PS1£T c$text

ISRMJC:
MOV Rl, -(SP)
MOV RO, -(SP)

JSR IC, isr ;Call C counterpart

MOV (SP)+, RO
mv (SP)+, Rl
RTI ;Return From Interrupt
.END

TDLDR.LNK:

LINK/EXEC :TDLDR/MAP: TDLDR C: CHDR,TDLDR,I SRMJC, DLDR,C :CLIB

TDLDR.MAP:

'RT-11 LINK V05.04E Load Map wed 20-Aug-80 00:42:30
TDLDR .SAV Title: START Ident:

Sect ion Addr Size Global Value Global Value Global Value

• ABS. 000000 001000 (RW,I,GBL,ABS,OVR)
C$TEXT 001000 000462 (RW, I,LCL,REL,CON)

C$STJC 001000 .MAIN 001020 ISRMJC 001166
INI'IOU 001204 ISR 001266 EXIT 001336
ONEX IT 001412 C$SAV 0014 26 C$RET 001444
C$RETS 001454

C$~TA 001462 000114 (RW, I , IC L ,REL ,CON)

Transfer address = 001000, High limit = 001576 = 44 7. words

- 25 -

Editor's note: The 'pipe' in the UNIX* operating system is
a convenient way to pass output from one program to another.
Programs which transform their input into some other form
are often called filters. Filters and pipes can be used to
express rather complex transformations of data. A simple
example which I have found useful is:

ls I pr -4 -11 -t

ls is a system (shell) command which produces an alphabetic
list of the files in the directory. This output is sent
directly to the program invoked by the pr shell command
which produces formated output. The arguments to pr
specify: (1) 4 column output, (2) a page length of 1, and
(3) no header. The result is a list of files spaced across
the terminal screerr rather than zipping down the left mar
gin, the early ones disappearing off the screen before I can
see their names.

'?" t.hrw - l):?•1:i.ri 1 .. , O·' (:i:innOP

·~ . 7 11 r:: ,.~ '·=~ ··~ ~~ t. ..
j":{1i·ff':>!.<")" t\l.,y, l4'?:?{)
? ·1 -~--w:~$:!-·()8<;;8

The r.:.-t.!f'IJ<)5t-:~ o·I-' 'r.;·i.P<·?·,•~:~11,, ·i.s l'J "-'!"'!)•Ji.de l.:!.tl•°!.tP.d S'H·~·i::.-t~t"'t ·f't'.!P ihp
UNT'l<' Pi.Pl?. nnl;:~+,·!.on on PT-11. •N~r·~.ton :.-~b ;:::ncl 12U~r OR(-'.~ret ·i.n9 c;;.t~c:;+ .. +:->•~«=; .•
The Prosr2m PromPls lhe user ~or e command line wtlh ·~· 8nd then
(t";;m•;;.l.ale~~- lhe corrill1a1v·i l:i.ne :i.nlo lh~~ frr-"!.t ·i.rH·ti.f'(-:?ct.. t'i.1.e 'r.:--i_r:,(.~,J:~r:in··'

which i.mPlemenls the inlenl 0¥ lhe command li.ne. Pipe.sav eYeeutes
P :i. Pf.~. com on e~-'. :i. t.

Detailed rlescrtPt.ion of l~e lesal swnleY ~ollowst

1. ,, Thi-'~ II

se<:!men t·~. Est
·!.nF:.-t.1 t. : pr--r:l~ram -·n .. :;~•.=!. l 0 1..1 t .. Pu t

2. The fiPsl sesmenl must conl~in one RT-tt ~ilesPec f'or
UH:-~ 'i.nP•.d .. ·!" t 1.1:~" cw i. +' none 'i. s sr.:-eci. ·f'H~d~' i.nr.:-u t. de·(·' au l t..•;;
t,o thf.~ t .. ~~rmin~d."

3. The last. seement must contain one RT-11 ~ilesPec for
th+~ m.1tr->1 .. 1t t':i.1.~:1~ or' i.f none i.s Sl°:'~?c:i.t'i.f.~d· 01 .. d .. F-·•.1t. def'a1.11.t.<:;.
to the tewmi.nal.

*Trademark of Bell Laboratories.

- 26 -

4. The olher segments are ref8rred lo as tnt~rn~l s~~m~nfc.
and contain lhe name of an executable pra~r8~' fallaw~rl hu

oPt..ional f.J.ass¥ au~<illar-•=· :i.rw-·qt, +'t1.e~::~ :;:.nri ::!'"'";'!rr11:>rdi:;,,
There ;we two tYPes of i.ntE•r·n;:d. <::.P.<:=::rrH.:.:•r.t.<;;:; nn1:~ -f1)r·· i:;"r--t ·1.
Pf"•()gf'·~~fft~. t,Jf·,ic~l·, at:~ceF .. ~ .. ~::.t~t~P(iar-ri (~S·[tr·rr:··•.! i .. :1 ::~nci <·!n<·? f,·~~r ..

WHITESMITHS 'c' Progr~~s which acce~t. an 'ar~v' ~nrl 'ar0r·
command line wi.t..h ·::" ;;md > r-~?di.r···~ctton nf ·i.n1·.:·;Jt. :;:.r"i n••h:.-wi ..

~:.i. CSI i rd .. EH'n ;~ l •;!·?<;~men t<; be~ :i. p 1~1 :i.t.h -' :t' ... • U·H?n ·!hr-'! 1;>".:f·'.'!r:·11 f :::·h l ''"
Pf'O!i~r am n am•~• f q 11.owed b•:!. UP to •::i 01·: .. t. -~.on ::i 1. ::i•, -,.~ -;_ 1. l. ::~r' ,,, ·i. "''""'' ·}

fi .l.es' fol lowed bY 'I. nr-:.~.:i.nna l CSI oi::·t .. ·i.on "'· ·1 r' ·i.•"1"! ... j.~,,~ ·:: : * P"i.P ~ile1 f'ile2 fi1.e3 /U

6. 'e' :i.nlt:,~rnal Sfi.~!.:~ri1enl•;;. b1~•.:t·i.n t..-J:i.th th~ 1~:=·''·"?1'.:1fi.;:::h1,1.::; f ,.:-<::'r':=?r«

n21l1f.~' f1:lllowf.~1·.i b•J. -=~n•J. cn!T•b:i.n:::-t.ion of' A<~r:IT •::tr:!.n•.'-~":·. J::>~:

: finrj -n match :

the next line is lhe PiPe command line.
lie:.. l~-~t l * s~ t P:i.P /U ~ ~;;cir· t .. -n --fl l!P :!.i:~111,~

~-fi.~t .. er'r'Of' error·
f'l.Jn SY! Pi. P

PiPe.tml=*·lxl/U
1' c
run c.:.ort..
(f:-ir.:.f.~" tml ">P:i.Pe. t .. m2 -n -r.i
tC
Pun un:i.l'H!E~

<Pi.Pe.t..m2 >Pi.Pe.tm:!.
·tc
r'un comPa!"
(p:i.Pe ~ tm1. ··:·er rm••::. r:h.i::t
tC
set !;!f't"or none
delele/noGuerY PiPe-lm\,PiPe.tm2
i:;et er•rm' er·r-Qr ..
r~?•;;et

- 27 -

l. ·' i:~-' r.:-r'q•;~p;:~1Y1"; u~::.·i.n•.:~ .. rri;;?iri' r11q~;;l rE~t,urn(YES) 1:w '~~d. t (y1:::~; '1 tr)

·1''1.1 n ..-~ t. 'i. on 1 •• ri. th •.. , "!. r.:-1:~ •.

A. Allhou~h r.:-i~e allows lower C8Se tn~qt, 3nrj lower ~8se file n8m~s
(;~}~i:~~u te f··f' ClF'EH' 11:~ ~ i:;'.T-·· l l •:: "~c; t .. f:~f(I II t :i . .1. :i. t. "i. e•:; fH;?f.~ii u PP er c '3Se qr:-t. :i. f)f) <::,

e<:n : lie: s~!Pi.P 11..1 ~

ta
DEC US
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:~-------

Address: -------------

State/Country: ------------

Zip/Postal Code:-----------

Mail to: DECUS - ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO, MA
01532

