
THE HEAP
STRUCTURED LANGUAGES

February 1984 Issue

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem-10 Edu System
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UN IX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1984
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submined to tha editor of this newsletter are with tha author1' permission to publish In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporetion, and the
editor assume no responsibility or liability for anicles or Information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

r·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-

The MUMPS SIG

Did not submit material for this issue

-·-·-·-·-·-·-·-·-·-·-·-
Send your submissions for the next issue to:

Jim Bernard

Data Processing
Kettering Medical Center
3935 Southern Blvd.
Kettering, OH 45429

l--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-~

1

THE HEAP

From the Editor

John R. Barr, University of Montana, Missoula, MT

This is really the November issue of the Heap which is appearing
late due to the lack of submissions and my own personal time. This
month's award for letting people know what you are doing has to go to
Kathy Hornbach (Lear Siegler) who is our Productivity Tools Coordinator.
It looks like Kathy is using her software tools effectivly as she has
the time to tell people what she and her people are doing. How about
the rest of the people who read this newsletter? Why are you so busy
that you can't tell other people what you are doing? There must be more
people using software tools and languages that have something to say
about them. How about sending me something for the newsletter? I will
accept RT-11 floppy disks, UNIX tar tapes (1600bpi only), ANSI standard
tapes, DEC20 tapes, or give me a call and I will give you access to one
of my systems (300 baud) to type it in. We also have Kermit on the
DEC20 to transfer a completed file. Use DSR (Runoff) without any fixed
margins. If you have to send me reproducable copy I will paste it in,
but I prefer to use DSR as it produces much better copy.

We are planning two pre-symposium seminars for Cincinnati. One by
Kathy Hornbach "Implementing a Software Development Environment" and one
by myself "Modula-2 Programming and Concurrent Programming Techniques".
Let us know if you are interested in other topics for future symposia.
I will not know what sessions will be presented in Cincinnati until
February. Look for the next issue of the HEAP sometime in April to
contain a review of what the Languages and Tools SIG has planned.

A couple of the newer members of the SIG steering committee have
submitted an outline of what they will be doing for this newsletter. I
will include a complete list of the SIG leaders in the April HEAP.

1

The HFAP - January 1984 - Volume 7 Number 2
From the Editor

This issue contains two excellent articles on how Lear Siegler is
utilizing productivity too ls in the VAX/VMS environment. I am sure you
and others can profit from their experiences and may even have something
to contribute along these lines. Let me know what you think •••••

John R. Barr
Department of Computer Science
University of Montana
Missoula, MT 59812
(406) 243-4807

Modula-2 Interest Area Coordinator

I am Jack Davis, the LTSIG Modula-2 Interest Area Coordinator. I
am attempting to compile a resource list for Modula-2: sources of
information about the language, sources of compilers that generate code
for DEC machines (from PC's to 10/20's!), or run on DEC machines
generating code for other processors, and also information about who is
working with Modula-2 to enhance existing implementations or produce new
ones. I would also like to be informed of useful tools and other
programs that have been implemented via Modula-2. Last but certainly
not least, I would like to hear from individuals who have encountered
and/or fixed bugs in Modula-2 implementations.

The information I collect will appear in a later edition of the HFAP.

For those with questions or information to contribute, my telephone
number is (615) 690-3160 (eastern time), and my address is

As
of the
name is
Leader
Systems

Jack R. Davis
NAP Consumer Electronics
9041 Executive Park Drive
Suite 612
Knoxville, Tennessee 37923

UNIX Coordinator

the new UNIX coordinator of the Operating Systems interest area
LTSIG steering committee, I would like to introduce myself. My

Rod Creason and I work as a Systems Programmer and Project
for Compiler Design and Development at Digital Information
Corporation (DISC). My address is:

Rod Creason, Jr.
Digital Information Systems Corporation
3336 Bradshaw Road 340
Sacramento, California 95827
(916) 363-7385

2

The HEAP - January 1984 - Volume 7 Number 2
UNIX Coordinator

My function as UNIX coordinator will be to track and Languages and Tools
associated with UNIX, test and document any new UNIX contributions, act
as liaison to the UNISIG, and work closely with the Operating Systems
Coordinator of the LTSIG. Please get in touch with me if you have any
thoughts which might concern my area.

RT-11 Operating System Coordinator

I would like to introduce myself to the Languages and Tools members
as the new RT-11 operating system coordinator. My name is Michele Wong.
I am the manager of Software Development at Digital Information Systems
Coorporation (DISC). At DISC I am responsible for overseeing the
development of the DBL language. Most of our work is systems-level work
on RT-11, TSX-PLUS, RSTS, RSX-llM, and VAX/VMS.

AS RT-11 coordinator for the LTSIG, I will be responsible for
conmunicating information relating to languages and tools under the
RT-11 operating system between the Languages and Tools and RT-11 SIGs.
I will also be providing support to RT-11 users in the languages and
tools areas. I can be reached at the following address:

Michele Wong
DISC
3336 Bradshaw Road, Suite 340
Sacramento, California 95827
(916) 363-7385

I am looking forward to working with the members of the LTSIG.

3

The HF.AP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

Too ls ide Chat

This is the first of a quarterly column, answering questions on software
tools and methodologies. It is written by Kathy Hornbach, from Lear
Siegler in Grand Rapids, MI. If you have a question on software tools
or methodologies you would like answered, send it to:

John Barr
LTSIG Newsletter Editor
Computer Science Dept.
University of Montana
Missoula, MT 59812

This month's question:

How can I find out what software packages are available for DEC machines
- both from DEC and from 3rd party vendors?

Answer:

A good place to start is with some literature provided by DEC and DECUS
they have several books available that contain a host of software

packages. The books available include:

o Software Referral Catalog. 10th edition; from the Engineering
Systems Group.

It contains over 600 entries, under the headings of chemical,
civil, earth resource, electronic, mechanical, optical, power
systems and structural engineering; also CAD, CAM, engineering
libraries, general engineering tools, and management and
administration. Packages listed run on a variety of DEC
machines.

To receive future editions of this catalog, write to:

Digital Equipment Corporation
Software Referral Catalog Attn: SRC Manager
Engineering Systems Group MR03-1/E8
2 Iron Way
Marlboro, MA 01752

o PDP-11 Software Source Book, 1st edition;

Contains 980 pages of software
PDP-11 operating systems, in
engineering to languagues.

that
all

runs under the various
areas - from business to

To obtain a copy of this catalog, contact your local Digital
Sales office, or write to:

4

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

Attn: G. Deforge
Printing and Circulation Services
Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532

and ask for PDP-11 Software Source Book, Order No.
ED-24762-20.

o UNIX* Software Guidebook, First Edition

Contains 180 pages of
operating systems.
packages are listed.
Digital Sales office,

software packages that run under the UNIX
Both applications and systems software
To obtain a copy, contact your local
or write to:

Attn: G. Deforge
Printing and Circulation Services
Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532

and ask for UNIX Software Guidebook, Order No.
EJ-25541-20

o Graphics Referral Catalog, third edition. From the Engineering
Systems Group

Contains 75 pages of information about graphics hardware and
software that is available for a variety of DEC machines. To
receive future editions of the Graphics Referral Catalog, write
to:

Digital Equipment Corp.
Graphics Referral Catalog
Engineering Systems Group
2 Iron Way
Marlboro, MA 01752

Attn: GRC Manager
MR03-l/E8

o U.S. Chapter DECUS Program Library Software Abstracts,

Over 150 pages of abstracts of user-donated sofware that is
available for order from the DECUS library. You must be a
DECUS member to use this library (you also must be a DECUS
member to subscribe to this newsletter, so you should not have
any problems). To get a copy of this catalog, write to:

DECUS Publications
MR02-l/Cll

*UNIX is a trademark of Bell Labs

5

The HF.AP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

One Iron Way
Marlboro, MA 01752

All of the above are invaluable resources when someone stops by and asks
if there is any software available to 11 •••••• 11 • They are frequently
revised to incorporate new packages. Later articles in this column will
talk about non-DEC sources of tools catalogs.

6

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

USING CMS FOR A VERY LARGE SOFTWARE PROJECT

Robert Gable
Lear Siegler, Instrument Div.
4141 Eastern Ave. S.E. MS 121
Grand Rapids, Michigan 49508

"When the going gets tough, the tough turn to code management."
Raoul Duke

INTRODUCTION

We have spent the last 6 months setting up and using a source code
control system for a large, real-time avionics software project. This
software is being developed and initially checked out on a VAX-11/782
running VMS and a TI 990 minicomputer running DXlO. The following will
attempt to share some of the experiences we have bad in using DEC's Code
Management System (CMS) on the VAX for our source code management
system.

PROJECT BACKGROUND

Lear Siegler is currently developing the hardware and software for
a state of the art flight management computer system (FMCS) be used in a
large commercial aircraft. The system can fly a plane on airline routes
from origin to destination automatically and in the most fuel efficient
manner. The system consists primarily of three computer processors;
one for navigation, one for performance, and one for the I/O. We are
using CMS to manage the operational flight program which consists of
over 300,000 lines of source code for the three processors.

The people concerned with the source code on this project can be
divided into three groups:

o development

These are the people who write the design documents,
write, debug and module test the code, and who integrate all of
the modules after they have been coded until they are ready to
undergo system test.

o verification

These are the people who approve or disapprove module
tests from designers, test the code by individual function and
do hardware/software integration tests.

7

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o support people

This is everybody else.

The delivery schedule to the customer has been tight, meaning that
development, integration and verification of the software is all being
done concurrently. Development engineers, integration engineers, and
verification engineers all need access to different versions of the FMCS
source code. CMS provides the necessary common environment for storing
and retrieving that source code.

Development is being done in three "packages" or releases where
each package has more functionality than the previous package. Because
of the tight schedule, more than one package is being developed at a
time. The later package uses some of the previous package's code
untouched, modifies some of the previous package's code to add
functionality, and also adds new modules of its own. This means that
while a module is still being developed for the earlier package,
sometimes it must at the same time be modified and used for development
of the later package. Eventually, different versions of modules between
packages must be resolved. More about this concurrent development
later.

To attempt to control this type of source code development using
the more informal ways of the past would have been impossible.
Therefore, we have chosen CMS to be the mechanism to manage our source
code in a controlled, yet flexible manner. As an added benefit, we can
generate data using CMS that attempts to quantify the progress of the
software.

USAGE OF OUR CMS LIBRARY (SO FAR)

Most of the following information is derived from the CMS history
file.

o -2200 source files for a total of -60000 blocks

o -50 people use the library

This includes development engineers, verification
engineers, clerks, summer students, configuration management
and software quality assurance personnel and even project
managers.

o over 200,000 library transactions in 6 months

8

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o typical weekday usage

The library gets heavy interactive use during the day and
large batch FETCHes and INSERTs during the evening. Users were
given plenty of encouragement to delay their big batches until
after peak hours and they have cooperated.

-1500 transactions a day (the peak day so far had 3000)

50-200 RESERVEs or REPLACEs a day

o the most frequent commands in order are:

FETCH, INSERT, RESERVE, REPLACE, CREATE, REMOVE, UNRESERVE

o we backup the library twice a day (6AM, 6PM)

o 20% of the users have 80% of the library usage

HOW THE LIBRARY IS SET UP

o all modules are in only one library

This was necessary because some modules are used in more
than one processor.

o source modules consist of FORTRAN code, assembly language code
and common blocks that are lexically included at compile time

o connnon blocks are treated as multi-file elements

Our connnon blocks are generated automatically by a
Datatrieve procedure that works automatically from our "design
dictionary". Both assembly and FORTRAN versions of every
connnon block are generated. We store them in CMS as a single
element. Everytime you FETCH, RESERVE or REPLACE a common
block from the library, CMS automatically either gives you a
copy of both versions or stores both versions back into the
library.

9

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o we have the history attribute enabled

Unless you specify otherwise, the CMS replacement history
is automatically appended to the end of source modules copied
from the library.

o a source module is uniquely identified by the its CMS element
name and generation number

Earlier in the project, we had another method of
identifying modules but element name and generation number
turned out to be the superior way of identifying modules for
module test status lists, software configuration management
paper documents etc.

PARTIAL LIST OF CODE MANAGEMENT TASKS

The following are the standard ways in which project engineers
interface with the library.

o development engineers - adding a new source module to the
library

Each development engineer is responsible for putting new
modules into the library using a procedure developed to
standardize and automate this task. The module must compile
cleanly but need not have undergone module level test to be
entered in the library.

o development engineers - fetching a read-only module

This is simply an engineer needing a copy of a module with
no intention of modifying it.

o development engineers - problem fix

This involves RESERVEing a module, revising and debugging
it, REPLACEing it back into the library and eventually
submitting a completed module test report. The remarks field
will contain the reason for the change and usually the problem
report number that this change fixes• Some developers FETCH a
module, modify it and when debug is complete, do a RESERVE,
delete the module just copied from the library, and REPLACE
with the module they had modified after the FETCH. The
developer must take responsibility for any problems that might
crop up by circumventing the "correct" procedure.

10

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

We slowly realized that it is better to get the source
changes into CMS as soon as possible rather than strictly
enforcing the "rules" and have engineers refuse to use CMS
until absolutely necessary. One of the most difficult aspects
of introducing CMS on this project was deciding on what the
guidelines are for when a module can be changed in CMS and when
it cannot.

o integration engineers fetching source to build a test
executable for integration work in the lab

This is where we gain the greatest benefit from using CMS.
Integration engineers are required to fetch all of their source
used for a build from the library while at the same time
recording the exact element and generation number in a CMS
class. This is to insure that at any time, what is being run
in the lab has been clearly identified in CMS and is
reproducible at any time in the future. The engineers quickly
realized that it was to their advantage to do this diligently.
Eventually, these classes are used to determine what to deliver
to the customer.

o verification engineers - fetching source for functional or
hardware/software integration test

After a few iterations, we developed a method whereby one
person performs all of the source fetches for verification.
The verification engineer informs this person of what he or she
desires and the "test fetcher" takes care of all the rest. The
engineer provides a list of modules with exact generation
number. This list is then used to fetch the modules from the
library at an appropriate time and the list is stored
elsewhere. At any time until the end of the project, what
source was tested will be identified exactly by this list.

o verification engineers - maintenance of module test information

Verification maintains a progress data base which contains
the test status of every module. Among other things, the
generation of every module that has passed module level test is
maintained in a data base and in CMS classes.

o configuration management, software quality assurance personnel

11

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

Both maintain classes which satisfy their requirements for
properly identifying the source that has been tested and
released. On previous projects, an extremely cumbersome and
error prone manual, paper based system was used. CMS
automation has saved many, many hours in this area as well as
dramatically improving quality.

o support engineers - overall maintenance of library

This involves correcting mistakes made by engineers (typos
during new module creation being the most common), trouble
shooting problems, renaming modules and investigation of better
methods of utilizing CMS.

o support engineers - build tools or educate users for more
productive use of CMS

CMS is relatively easy to use so education has been
minimal. We wrote an FMCS CMS user's manual to accompany the
DEC/CMS manuals. The manual describes how to use the FMCS CMS
library, what is the significance of all the classes, what are
the naming conventions, what tools are available and how to use
them etc. We are on the constant prowl for ideas for tools
that will exploit the wealth of information gained by using
CMS.

o facilities personnel insure proper BACKUPs of library;
installation and control of CMS

These are the normal system manager tasks. It pays to be
on the good side of these people since CMS does use up
resources and the library is a valuable item which needs to be
preserved.

CMS CLASSES WE MAINTAIN

o function classes

The FMCS source code is partitioned into functions. A
class which contains all modules constituting a function is
created for each function. For example, FPN is the class which
contains all modules for the "flight plan management" function
in the navigation processor

12

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o integration build classes

The development engineers responsible for debug
integration of the software (i.e. taking software into the
lab and doing their magic), create and maintain a class for
each build they do, by processor and package. Before they can
test a module in the lab, they insert the module into the
appropriate class and then fetch it. These are the most
important classes since they are the definitive record of what
software is being tested. Monitoring the activity of these
classes gives a good indication of the amount of development
work taking place.

For example, NAVPK20CT25 is the class
the modules (with proper generation
navigation processor build for package 2
25th.

containing
number)

release on

o in-module-test and passed-module-test classes

all of
for the
October

These classes are maintained by verification. Every
module must have a corresponding module test packet submitted
for it by the developer. When verification receives the test
packet, the module is placed in the in-module-test class. When
verification approves the test packet, the module is placed in
the passed-module-test class. By comparing these classes with
the preceding integration classes, we can determine which
modules being integrated still require an initial unit test or
retest.

o software quality assurance passed module class

This class contains all modules which software quality
assurance has found satisfactory.

o software configuration management release classes

This class contains all modules which have been released
and sent out to the customer in a particular release.

MODULE STATUS

By simply doing a CMS SHOW ANCESTOR /CLASS, we are able to
determine the following things about an FMCS module. On previous,
manual-based projects, most of the information was difficult, if not
impossible, to obtain.

13

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o how many generations exist

o which version of a module is the "latest & greatest"

o for each generation:

who made the change

when they did it

what problem reports this change fixes

reason for the change

o what processors use the module

o the module title

o the module part number identifier

o what generations have been released to the customer

o what generations are currently in integration

o what generations have been module tested

ADVANTAGES WE GAINED BY USING CMS

o advantages for development

accurate access to "new & improved" code for debug work

- knowledge of what code is currently in integration, what
code has been module tested, function tested and system
tested and what code has been released

source code under visible control

14

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

reservation mechanism to avoid concurrent modification by
more than one person (which can be overridden if necessary)

o advantages for verification

clearly identified record of tested source

knowledge of debug changes

source code under visible control

ability to monitor current status of various packages

latest version plus all previous versions always accessible

o advantages for project managers

little time lost due to test of wrong/unknown versions of
software

accurate information on project status and module status

Most important, this status is available in a timely
manner.

history of source code, available for analysis of metrics,
bug origins etc. for later projects

o advantages for the persons responsible for controlling the
source code

CMS is sufficiently flexible to allow evolution in the way
we choose to use it

no human intervention is necessary between the
engineer and the source code library (
except ions)

development
with a few

data integrity

DEC has done an outstanding job of insuring
data gets lost. We have had disk crashes, system
a power glitch, hostile and incompetent users;
which has caused any source code to be lost.

15

that no
crashes,
none of

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

PROBLEMS WE HAVE HAD

o no "clean" way to turn off access to the library

o no explicit prov1s1ons made for allowing BACKUP to run while
engineers are accessing the library

We excluded the library from the normal system backup and
do our own backup twice a day. We require that everyone stop
using the library at this point.

The only time we had to restore the library from backup
was when the disk went bad 20 minutes after preventive
maintenance had been completed.

o response time gets very slow when several users are trying to
access the library at the same time

o when an element belongs to many classes, it is very painful to
have to rename the element

It must be deleted from all old classes under the old name
and added to those same classes under the new name.

THE PEOPLE

The following are some thoughts about the social and psychological
implications about using CMS on a large project.

o Nobody ever had any problem learning how to use the basic
commands.

o The development engineer who spends his time coding and testing
his own modules is usually the one who objects to using CMS.

Some of this is probably frustration at having yet another
new tool/methodology to have to master.

When using CMS interactively on a busy day, time can be
wasted waiting on CMS commands. yet, few managers viewed the
time wasted as significant.

16

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

A few people have the attitude that "real" programmers
don't need code management systems.

o 95% of all complaints center around response time on a loaded
system when several others are using CMS also.

Getting several "Your library is in use" messages at your
terminal can be frustrating. As CMS response time improves,
complaints should drop dramatically. Many engineers have
become adept at SPAWNing CMS commands and setting up batch jobs
rather than doing their CMS work interactively.

o I prefer to see each development engineer accessing the library
him or herself rather than delegating that activity to support
people.

0

SURPRISES

The goal is to get any new or changed source in CMS as
soon as possible. Otherwise, very quickly you lose all hope of
tracking that module. For example, in one case an engineer did
not have time to put his modules into CMS himself. Two other
people tried to put the same modules into the library (
different copies of course) • Fortunately, CMS leaves a record
of all important transactions.

As the system evolved, it became obvious that this did not
hold true for verification engineers and that it was more
efficient to have one person to do the big fetches of source
for test

Both project management and line
recognized the benefits of CMS
problems arose.

management
and were

at LSI quickly
supportive when

Both they and engineers get the credit for the successful
use of CMS. Plus, everybody's complaints and grumbles tended
to be humorous in retrospect.

o Development engineers are reasonably precise about what they
put for the remark when doing a REPLACE.

17

The HF.AP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o Development engineers are nearly unanimous in complaining about
the response time for CMS commands when several people are
accessing the library.

o Multiple batch jobs running CMS concurrently tended to shut out
people running CMS interactively.

o Using classes is a boon in tracking development's progress.

o Considering that we have run CMS hundreds of thousands of
times, we found only 3 minor bugs that need to be SPRed.

o Variants of the same module for different packages allow
concurrent development of the same module, but signal everybody
to pay particular attention to these modules to insure proper
coordination.

Allowing variants to evolve from a module is a far cry
from 2 or 3 people copying the same module to their own
personal directory with nobody knowing that somebody else is
working on that module. We originally viewed variants as being
too risky and complicated to use but gradually came to accept
their use in legitimate cases.

o Despite threats of bodily harm, people continue to delete CMS
batch jobs from the batch queue while they are running.

This leaves the library in an inconsistent (though easily
recoverable) state.

o When the library is in an inconsistent state, anyone using CMS
gets a message saying "Please use CMS VERIFY/RECOVER."

Even though we tell people not to do it, they, without
fail, never disobey the computer. One time, a project manager
and a part time summer student both tried to run the RECOVER at
the same time. The student probably did not know better. The
manager knew better but did it anyway. Recovery on a library
of this size can take 2 hours of exclusive access to the
library and is sometimes not necessary. Project tends not to
appreciate this down time. Rumor has it that the error message
will be changed in the next release.

TOOLS DEVELOPED TO AID IN USING CMS

18

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o tool to put new code into the library

This tool does a CREATE ELEMENT with standardized remarks,
inserts the element into a function class and records some
other data

o tool to fetch code from the library for verification testing
and record exactly what was fetched

o tool to find compare two classes to find elements with the same
generation number that are in both classes

For example, often we want to know which elements
currently in integration have been module level tested.

o tool to record gripes about CMS

o tool to put the latest version of the common blocks into the
library

The tool does RESERVE/REPLACEs only for those common
blocks that have changed in the design dictionary since the
last time the tool has been run

o tool to show which modules for a package need retest or have
passed module test or are currently in module test or have an
inconsistent status that needs to be resolved

o the next obvious tool to build is a dependency file generator
to allow MMS to rebuild the system from the library

SUMMA.RY

CMS has proven to be a necessary component of our software
development methodology. It provides not only a mechanism for capturing
source code changes, but used properly, it allows the monitoring of
development and verification progress during an ongoing project. The
only technical drawback to using CMS is performance. It has improved
with version 1.1 and should improve greatly for version 2.0.
Nevertheless, we feel strongly that CMS was the right choice for our
source code management system.

19

The HEAP - January 1984 - Volume 7 Number 2
Using CM,S for a Very Large Software Project

If you have any questions about using CMS, I would be glad to
answer questions through the newsletter.

20

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

A STRUCTURED ANALYSIS METHOD FOR LARGE, REAL-TIME SYSTEMS

Derek J. Hatley
Lear Siegler Inc., Instrument Division,

Qrand Rapids, Michigan.

22 Nov 83

1.0 Introduction

In the spring of 1982 we, at the Instrument Division of Lear
Siegler Inc. <LSI/ID>, were faced with a dilemma. We develop and
manufacture real-time avionics systems and, as those systems became
more software intensive, larger, and more complex, we had bePn
experiencing all the classical problems: schedules were unacceptable,
costs were high, and it was increasingly difficult to get the systems
to work as intended. Against this background we were about ta embark
on another large, complex, and critical proJect: the Flight
Management Computer System CFMCS> for the new Boeing 737-300.

It was clear that, to be more cost-effective, we needed to make
significant improvements in our management of re~uirements, design,
and testing, each of which had been handled somewhat open-loop until
that time, and we set out on an evaluation of structured methods,
hoping to find some which would be suitable for our tupe of system and
which would provide the improvements we were looking for. Our
conclusion was that the Yourdon methods had the mast potential, but
that there was nothing available which would completely meet our
needs. Conse~uently, a decision was made to go ahead and develop our
own methods, based on those of Yourdon, but modified and/or extended
as needed.

A maJor part of that decision was the formation of a "Methods
Team", with representatives from Engineering Management, Systems
Engineering, Software Design, Software Testing, and Support Software.
The Methods Team was tasked with:

developing structured
applications

methods suitable for LSI/ID

teaching the methods in-house to all personnel who would need
to use them

investigating the availability of automated aids ta support
the methods, and develop aids in-house if necessary

21

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

supporting the initi•l implementation of the methods on the
FMCS prOJeCt.

The results to date of th• Methods Team's work •re:

a real-time Structured Analysis method, based on Yourdon's
but with a completely new extension to handle the control
requirements

a Structured Design method, also b•sed on Yourdon's, but with
some modifications to meet the needs of large real-time
systems

a cross-reference data-base, linking all the primitive
statements in the requirements, design, and test documents

some basic software aids to support these tools

in-house classes an the methods, with our own texts, and over
200 people now trained in their use

most importantly, an FMCS which is now well into system test
with significantly fewer problems and better quality than any
of our comparable previous systems at this stage of
development.

This article gives an overview of FMCS and describes the SA
method developed for it.

2.0 Overview of the 737-300 Flight Management Computer System

As the name implies, the FMCS manages all aspects of the flight
of the aircraft. It interfaces with all other maJor systems on board
and with the pilot and first officer through dual control/display
units <CDUs). There are 13 other systems with which it currently
interfaces, and provision for three more in the future. These systems
include the auto-pilot and auto-throttle, with which FMCS forms part
of the outer control loop, so response times are critically important
for stability reasons. Typical response time requirements are 50,
100, or 200 msec. MaJOT functions which the system is required to
perform are: navigation, aircraft performance calculations,
management of the CDUs, management of the flight plan, flight profile
prediction, vertical guidance and steering, lateral guidance and
steering, and built-in-test. It contains two large data bases: the
Navigation Data Base, which contains all the information on waypoints,
navaids, airports, airways, standard routes, altitude restrictions and
other data for the area covered by the user airline; and the
Performance Data Base, which contains numerical models of the
aerodynamics of the aircraft and of the engine thrust characteristics.
The size of the Navigation Data Base ranges from 96k to 192k words and
that of the Performance Data Base from 4k to 12k words (actual sizes

22

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

are determined by customer option and aircraft
size of the executable code is about 200k
16 bit).

configuration>. The
words (all words are

The response of the system to a given stimulus is highly
dependent on past events. current conditions. and predicted future
events. Such considerations as the recent history of navigation
signals. the current flight phase. and whether the aircraft is
approaching an altitude or speed restriction. all have an impact on
various aspects of system response.

The CDU has a 14 line by 24 character CRT display. a full
alpha-numeric keyboard. a variety of special function keys, and
several annunciators for alerting the crew to unusual conditions.
Many different displays are available to the crew. and through the CDU
they are able to monitor such things as: the progress of the aircraft
through out the f 1 i g ht; predictions of time, distance, and fuel
reserves to the destination and alternate destinations; and the
status of FMCS and other systems on board. They are also able to
enter many kinds of data, including changes to the current flight plan
and construction of completely independent flight plans for future
use. Figure 1 illustrates the layout of the CDU.

Systems of this type can provide capabilities which had not
p~eviously been possible. One of these is to guide the aircraft along
a "great circle" path <the shortest distance between two points on the
surface of the earth), which is characterized by a continuously
changing heading and bearing. Conventional guidance methods use a
fixed heading or bearing for each flight leg.

A prime consideration in the development of commercial avionics
systems is the fact that they must be subJected to the very exacting
requirements of FAA certification. These requirements include,
amongst many other things, demonstration of the fact that the system
will not fail in ways which will impair the continued safe flight of
the aircraft, and that it will not present false or misleading
information to the crew. The need to demonstrate these
characteristics in systems as complex as FMCS makes it almost
mandatory to present all the requirements and design data to the FAA
in an orderly and structured manner.

23

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

CATA STATUS
BLOCK

SELECT I ENTER
KEYS

E3
E3
E3
E3
E3
E3

I
I
I

I
I
I
I
I
I
I
I L------------------J

SCRATCH PAO/
MESSAGE ALOCK

~----------------·
_!!----c""\"'1: ... -- - --------- - - - --.J

FLIGHT PHASE ANO
FUNCTION KEYS

DECIMAL POINT
KEY

E3
E3
E3
EJ
E3

SELECT/ENTER
KEYS

FIGURE 1 - Illustration of FMCS Control/Displav Unit

24

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

3.0 Qoals of the Real-Time SA Method

Recognizing the effectiveness of the basic Yourdon SA methQd
within its own scope, we adopted the goals of that method for the
extended method, namely:

Rigor

Completeness

Understandability

Changeability and Maintainability

In addition, we wanted to minimize the
method, and to adopt as many of its features
as possible. In this way we would take best
experience invested in the basic method and
one method to the other as easy as possible.

changes to this basic
into the extended method
advantage of all the

make the transition from

Basic SA is an elegant concept, but its strengths lie also in its
practicality which arises from features such as leveling, balancing,
its numbering system, and the diagrammatic representation. We wanted
to adopt these features as much as possible in the extended method,
and we also recognized the large body of knowledge available in finite
state machine theory and wanted to take advantage of that too.

4.0 Description of the Method

4. 1 Overview

There are a number of characteristics which distinguish real-time
CRT> from non-real-time systems, two of which are particularly
important to this method. First, RT systems contain two distinct
types of signals - as well as the familiar data signals (data flows>
which are used within data processes, there are other signals, both
external and internal, whose primary purpose is to modify the response
of the system to incoming data rather than to be processed by it.
Second, RT systems are required to recognize past events, current
status, and expected future events and, again, to modify system
response accordingly.

These characteristics give rise, directly, to the two principle
new features of the real-time SA method. First, signals are divided
into two types - data signals and control signals - with flow diagrams
similarlu divided into data flow diagrams <DFDs> and control flow
diagrams <CFDs>. <Note that the latter are D.Q!. state transition
diagrams). Second, a new type of spec is introduced - the control
spec - which represents the finite state CFS> machine characteristics
of the system (and which mav contain state transition diagrams>. To
distinguish them from control specs, mini-specs are renamed "process

25

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

specs". In fact, several minor changes in terminologu have been
adopted and are listed below:

Beal-Time Method Basic Method

Data context diagram Context diagram

Control context diagram None

Data flow diagram Data flow diagram

Control flow diagram None

Process spec Mini-spec

Control spec None

Timing spec None

Re~uirements dictionary Data dictionary

Having decided to separate signals into two tupes it becomes
necessary to define how to make that separation in practice. As
usual, there are no absolute rules, but some guidelines were
established. Any signal representing a continuous phusical ~uantitu
must be categorized as data. Discrete-valued signals are not always
so easily dealt with. The best approach is to refer back to the
original principle: if a signal is used within a process as part of a
calculation, categorize it as data, if it is used to modifu the
response of the system to other signals, categorize it as control. It
sometimes happens that a signal is used for both purposes, in which
case it is categorized as both, and appears both in the DFDs and CFDs.

The primary purpose of the FS machine attributes of the sustem is
to modify the response of the system according to past, current, and
expected future conditions. It does this by controlling processes
Cthat is, activating and de-activating them> and can conveniently be
thought of in the same way as a feedback control loop in control
system theory. Figure 2 illustrates this concept. A second purpose
of the FS machine is to signal the status of the system to other
systems, and this is done through the control outputs shown in the
figure.

Two additional terms are introduced in figure 2: "process
controls" and "data conditions". Process controls are the signals
which activate and de-activate processes in the data processor.. and
data conditions are control signals derived through tests on data;
for example:

If ALTITUDE > 18000ft.
set HIALT = TRUE

in which HIALT is a data condition.
26

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

1)An \Wf\lT"f ~T~ ~\fuTr

~~C£~SO~

~~OL e.btt.:n~~L

t'-lt>U~ OU\~~'tt

FIQURE 2 - Feedback Control Representation of Method

4.2 Integration of the Control Method into the Basic SA Format

It is characteristic of control svstem design that the entity to
be controlled is defined first. since only then can the controlling
mechanism be defined. For example. in designing a feedback power
amplifier. the output stage must first be designed to drive the
required load. then the number of stages and the loop transfer
function can be calculated to suit the requirements of the output
stage. This principle was used in structuring the real-time SA
method. Since the main purpose of the FS machine is to control the
data processor. its structure is slaved to that of the data flow
structure. Specifically. control signals are constrained to flow only
along the same routes as data signals. and each control spec is
associated with one and onlv one DFD - the one whose processes it
controls. This means that each CFD must correspond with a particular
DFD and must have the same name and number as that DFD. and that each
process on that CFD must have the same name and number as a process on
the corresponding DFD. It also means that a control spec must have
the same name and number as its corresponding DFD. This gives rise to
very tightlv coupled groups of diagrams: a DFD, • CFD· and a control
spec. all with the same name and number. All the inputs to the
control spec come from the corresponding CFD and the two must balance.
All the outputs from the control spec are either activators of
processes on the corresponding DFD, or new control signals which go
directlv to the corresponding CFD and must balance with it.

This structure has the verv desirable effect of concentrating
control requirements close to where thev are used. vet there is no
loss of flexibility. as the control signals from which the control
functions are derived may flow within the structure in Just the same

27

The HFAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

wav data signals do. The control requirements simplv get partitioned
in the same way as the processing requirements are partitioned.

Figure 2 mav be thought o, as being repeated at each level in the
structure and the 0 controller 0 block divided into CFDs and control
specs. Figure 3 illustrates one level of this configuration.

r--
/

'1Po~tr.rr /
CCM/7'/fOC.S /

/
/

/

Fo'IV~a<..- -

T'/~t.'1
L~l.. A~c:wa.

I
I I

/

,., 4 """" c.. r 't:'oNr~oc. F<..o~
,, /Ill 4 tJr., ,._,

I

' T"c:a /~«C.M
t.~~c.. 'l•Lt.W

/
/

/

{?"',.,,
/ /cOIV~T/01\ff

FIGURE 3 - Interconnections between DFD, CFD, and Control Spec.

4. 3 Data Flow Diagrams.

DFDs are essentially identical to those in basic SA. The one
exception is the appearance of data conditions (described earlier>
flowing out o, the primitive processes in which they are generated.
They are shown there to complete the picture of the process, and are
also shown flowing out of the same process on the corresponding CFD.
Any further flow, to higher or lower levels, is shown only on the
CFDs, as with all the other control signals. Figure 4 is a typical
DFD with data conditions.

Process activators are not shown at all on the DFDs, only in the
control specs. Since, in the document, a control spec is l.ocated
close to its DFD, it is easy to refer to it to find which processes
are activated. Processes which do not have activators operate in the
same way as in basic SA - they are data triggered.

28

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

DATA fLDW 1.s.J.z.4
SET PP INDICATDRS PDR NAV DATA

FIGURE 4 - Data Flow Diagram with Data Conditions

29

The HFAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

4.4 Control Flow Diagrams

The term "control flow diagram" is sometimes used svnonvmouslv
with "state transition diagram", but this is not its me•ning in this
method. Here. the term is used because the diagram it describes is
verv similar to a DFD, so it is appropriate Por them to have
correspondinglv similar names. State transition diagrams are referred
to exclusivelv by that name in this method, and appear only in control
specs.

Like DFDs, CFDs contain processes. signal flows. •nd stores. and
must balance with their parent and child diagrams. The differences
between the two are important, however, and are as follows:

their signal flows are control signal flows, and are shown
with broken lines to distinguish them from data signal flows.

signals flowing to and from the associated control spec are
shown with a short bar on the end of the vector.

the processes on a CFD are duplicates of those on the
associated DFD. If a particular process on the DFD has no
control signal flows associated with it, it may be omitted
from the CFD.

It is not required that every DFD has a CFD and control spec
associated with it. If none of the processes in the DFD is
controlled, then a control spec is not required, and if none of the
children of the DFD has anv control signals associated it, then no CFD
is required (no signals flowing down to or up from lower levels>.
However, if a control spec is needed, then so is a CFD <to provide the
inputs and receive any outputs>. Figure 5 is a tvpical CFD, and
corresponds with the DFD of figure 4.

It is important not to misinterpret the control signals
into and out of processes on a CFD. They are not activators
processes. but signals flowing between levels, Just like data
DFDs. The process activators only appear in control specs.

4. 5 Control Specs

flowing
of those
flows in

Control specs contain the representations of the actual FS
machines. Their purpose is analogous to that of process specs - to
show how their outputs are generated from their inputs - but the_y do
this using decision tables and state transition diagrams instead of
structured English.

30

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

CDNTRDL PLOW 1.S.J.Z.4

SET PP INDICATORS POR NAV DATA

FIOURE 5 - Control Flow Diagram

31

The HF.AP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

FS machines may be divided into two types: combinational and
sequential. In combinational machines, the current outputs and states
of the internal elements are determined entirely by the current
inputs. They are represented mathematically as a "3-tuple",
<I, z, w), where:

I is a finite set of input symbols,
Z is a finite set of output symbols,
w is a mapping of I onto Z called the output function or
transfer function.

Combinational machines are usually represented by decision tables
in which all combinations of the input signal values Ci. e. all the
input symbols) are listed with their corresponding output signal
values (output symbols). In practice, it is usual that many of the
input symbols are of no interest <"don't care" condition) and the
table can be greatly simplified. Figure 6 is a typical control spec
using decision tables, including generation both of control signals
and process controls. It corresponds with the DFD and CFD of figures
4 and 5. The numbers in the body of the process control table
represent activation of the processes in that numerical sequence.

In
internal
values of
They are
where:

sequential machines, current outputs and states of the
elements are determined by current inputs together with past
inputs and internal elements - i.e. they contain memory.
represented mathematically as a "5-tuple", {I, G, z, d, w),

I is a finite set of input symbols,
0 is a finite set of states,
z is a finite set of output symbols,
d is a mapping of I X G onto G called the next state
function,
w is a mapping of I X 0 onto z called the output function.

Sequential machines may be modelled in a number of ways, including the
Moore model, in which the output function depends only on the current
state, not on the inputs, and the Mealy model, in which the output
function depends on both the current state and the inputs. It can be
proved that any representation using one of these models has an
equivalent representation an the other, but the Moore representation
will usually require more states. Because of its greater flexibility,
the Mealy model was chosen for this method.

Although the types of system we are dealing with are invariably
sequential machines overall, when the control requirements are
partitioned as described earlier, it is usually found that the
sequential r•quirements can be concentrated into a few localized
areas; that the rest of the control re~uirements can be represented
in combinational machine form (simple decision tables>• and that
large parts of the system can be represented in basic SA form, with no
control structure at all, using the "data triggering" concept.

32

~SPl.Y-
T.NU/llt

5

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

CONTROL IN

f)SPLY- FXN- NAV-DATA-
~T. NUM CDDE FORM/Ir

5
1L9'

INDEX ZL,
lR

CDNrROL IN

F"K."F-c,f)DE l~J.AV- DATA-
MMA'1"

N~-DllPL TS

>O

AIRPORT
0

JL-
SL, >O

1R- WAYPOl>IT 0
SR

>O
NAVA ID

0

RUNWAY /)/C

,,., ,.,. ' "Cf&
N

Prrc ass AcrwlfrED
/. S.3. Z. 4-./t/

NfJM.WPL-
Prs 1 8 6 7
>O

1 z. 3 0
0 0 3

PNOC£SS ACTIVATED 1.5.3.2.4.N
S/P-
STATUS 2. 3 4 5 6 7

D/c z.
0

1 0 /)£LETE
0

oTHEb/ISE' 2.

l>/C 2
0 0 ()rLETE 1 0

orHERWIS.£ z
l>/C.. z

0
i>EL~TE 0 1 0
01"Et:w1S£

0 z
l>/C 0 1 0 2

33

9
0

t---1 z
0

0
t-

2
0

0

z
0
0

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

Sequential machines are represented using state transition
diagrams, or various equivalent tabular forms, any o, which may be
used in a control spec. Figure 7 shows a typical example using a
matrix form. In addition to the state transition diagram itself,
decision tables are usually required to represent its input and output
logic.

Since the control requirements for a given DFD may be arbitrarily
complex. there is no restriction on the size of control specs, and
they are frequently several pages long. It is important that their
input and output signals are grouped together and clearly identified
near the front of the spec so that they can be easily balanced with
the CFD.

4.6 Requirements Dictionary

The requirements dictionary <RD>, is essentiallv the same as the
SA data dictionary. but it contains the definitions of both the data
and control signals. The symbology is the same for both control
signals are grouped in Just the same way as data signals. The RD has
been automated using a commercial data management system, and is
divided into fields: 11 name 11 , "composed of", "used in 11 , and 11 member
of". The last two list, respectively, the flow diagrams in which the
signal is used, and other signal groups in which it is included.

4. 7 Timing Requirements

From the requirements point of view, timing falls into Just two
categories:

required rates of receiving inputs and generating outputs

response times from system input events to resulting system
output events.

Input and output rates are stated in the requirements dictionary as
attributes of the individual primitive signals. Response times are
listed in simple tabular form showing the input signal(s), the event
associated with those signals, the output signals, and the resulting
event associated with those output signals. Figure 8 illustrates a
response time spec format.

Such considerations as timing budgets for soft11Jare functio·ns or
module calling rates have no place in a requirements spec.

34

The HFAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

' t•~•' tf1 lf 1 liz lls
IUTI '

PIJD rDT
i" i' i"' •D C ko'~D .,, I Ill Tl•ST• Tl•ST• ITINSTll l
-

LI_ -------1~1-
-

___ _. _____ t _____ . ___ --- -
THIDPP

CLllll

SUIT l•lT '
CLI n

-----------------CUltl CUMI

UHi

"''
----------- ------CIUIU

DLT

CIUISI DIS

• • •• • • • • • • • • RSGS

l&ILT ''™
llStl•T DIS

CIUUI

CUlll

AJlll&SS

IUtlll

------lf"ll ~LI Fiii
MOLD HP

!au& k"I s; -------
-- pn LI

MLDf
¥'D' I DDU -------
--

nn
Cl%

llLD1 --- U'D&TI ----- TODU

--------'In & Ill

DU
MCL¥f u•Da

TDDU ---- ---
--- -------------------------
P&TM

IUCllT ---
TUT

'"" DIS

u~8ih
TDDES - ---

tg11u
II WED

'IE"IE
PDI

DU

- ---

is~=~ I i=~t I 1:1'
"1~n1 T
IS

J-±
, .. , .. 1

PDI

DU,

lllJT

WG IT

'"" DUCllT

,.E'UE
FOi

Uh
" ST

---------'ll"IE
POI CIZ 'lf'UI
'IE'UE POI
FOi DIS DUt
•IE•Uf
POI MLD un

WG ST

S!T CIZ
"ll'Uf
FOR DES • • • •
••E•UE
FOi MLD '""
• • • • DISClliT

TST DIS TST DES
llDDl1 llDDf
SET 'll ,.E,.lf
,.IE'Uf POI OU
FDR DIS llUT
'U•UE v; ST
POI llLD • • • • ---- '''" DIStfNT

"'" DIStlNT ------- -------S !T DES SET DES
,.IEJAIE 'lf"IE
PCI DES PDR
,.HARE DES1
FOi HLD JllJT

w; ST

'"" DUCfllOT

--- -----------------~-------------------------

L&Tll&L

P&TM

TUT
UfL
llDLD

••LT • • - - • • • • • • • • • • • • • • • - • • • - - • • • • • - • • • • • • • • •

--·--~----------
Ce11trel l••c 1.1 I l•R•r•t• ¥ertic•l Sui••Rce •
..... , t et at.

•llT •l•Rk •) •t•r iR
ltatr curreftt •t•t• -------

FIGURE 7 - P•rt oP Control Spec using State Transition Matrix.

35

The HF.AP - January 1984 - Volume 1 Number 2 .
A Structured Analysis Method for Large, Real-T11De Systems

INPUT
SIQNAL

I OUTPUT MAX
EVENT I SIQNAL EVENT RESPONSE

I TIME ---
I

A/N_KSTRKj
!

ANV I SCRTCHPD CHARACTER 1/3 SEC
CHARACTER I APPEARS

FIQURE B - R•spons• Time Sp•c Format

5.0 Preparing Specs using the Real-Time SA Method.

The guidelin•s for preparing basic SA specs generally applv to
r•al-time SA specs. In addition, som• furth•r guid•lin•5 have been
found useful, as follows:

The customer spec usuallv has data and control requirements
totally intermixed, so it is necessary to start separating
them before starting the analvsis. This can be a long and
tedious task and, in fact, tends to continue throughout the
analvsis.

Work on the data flow structure first, or at least start it
first. This follows the principle of defining what has to be
controlled before deciding how to control it.

Trv to minimize the amount of control specified. In other
words, maximize the amount of basic SA in the spec. Control
tends to be implementation dependent and th• maximum possible
freedom should be given to the designer.

Trv to keep as much of the control requirements as possible
in combinational machine form (decision tables>. This is the
simplest and therefore th• most desirable form.

Concentrate the requirements which must be in sequential form
into localized ar•as.

36

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

Tru to put the control re~uirements at as high • level as
possible in the structure. Control specs typicallv transform
into "boss" modules in the structured design, •nd these
decision making processes should be towards the top of the
hierarchv.

6.0 Practical Experiences with the Method.

Everyone with experience in the use of structured methods
recommends that new users introduce them on a small, low-key proJect.
The proJect on which this method was introduced was verv large <the SA
spec is 15 volumes long> and very critical, and moreover, the method
itself was new and untried. To counter these obstacles, all the
training was done in-house, and the methods team acted as full time
consultants to the proJect staff, providing advice, assistance, and
practical problem solving on demand. The level of acceptance varied
widely from individual to individual, and there were some difficulties
in getting consistent standards from all of the 20 to 25 engineers
working on the re~uirements definition, but the maJority were
overwhelmingly positive towards it, and the results have generally
been excellent. FMCS is in system test at the time of writing and is
performing significantly better at this stage of development than
previous, similar systems.

Customer acceptance, too, has been excellent, and they are using
this method as a model for their own work and as a standard for their
other vendors.

Another, and possibly the most important, advantage we had was
that, after the decision was made to proceed with structured methods,
there was 100/. management commitment behind the effort. There would
have been no time to deal with political problems which others
apparently have had to contend with, and, happily, none occurred.

As expected, the "up front" effort to prepare the re~uirements
spec was considerably more than on previous proJects, in fact,
considerably more than was originally estimated for this proJect.
Nevertheless, the proJect overall is on schedule, and the results of
the additional effort in terms of performance to date, and improved
communication with t.he customer and with the design group, Justify
this tupense.

The most serious shortcoming has to do with the size of the
system rathe~ than the method itself: manual implementation is
impractical on systems of this size, and full automation is essential
in the long term.

37

The HE'AP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Re.al-Time Systems

7. 0 Summary.

A real-time structured analysis method has been developed in
response to the needs of a large, complex avionics system. It is
based on the Yourdon SA method, but adds two new features: control
flow diagrams, and control specs. The former are essentially the same
as data flow diagrams but show flow of control signals. and use a
special symbol to show flow to and from control specs; the latter
show the actual control requirements of the system, and make use of
well known techniques from finite state machine theory. The new
features have been integrated completely into the existing SA
structure, using the same leveling, balancing, and numbering
techniques. The control structure is slaved to the data structure, so
that the controls for a given DFD are concentrated close to that DFD.
The method has been successfully applied to the system for which it
was originally developed, and will be used on our future development
programs. In addition, considerable interest has been expressed by
other organizations involved in the development of real-time systems.

8.0 Acknowledgments.

I would like to thank Lear Siegler Inc., Instrument Division, for
permission to publish this article, and K. Hornbach, D. Morrow,
W. Roth, Dr. R. Wierenga, and G. Wood for their review and valuable
comments.

38

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:--------

Name : -------------~
Company : _____________ _

Address : ----------------

State/Country : -------------
Zip/Post a I Code : -----------

Mail to : DECUS - ATT : Subscription Service
One Iron Way, MR02-1/C11
Marlboro, Massachusetts 01752 USA

.-------,_J .

J

s: 0 0 0
>z-m
::z:im~n
r- - -I c m::z:J>cn
oor-cn
::z:i Z m c
9 :E 0 ~
s:><=n
>-<=ti::z:J (/) -, s: =ti
cn::a.m-1
> ::z:J z -no-10
::c ~ (') z c...a 0 cn
~ c:; s: ~
:I::::~$
(/) -I (')

0
""" U1
N

mm
::z:J
c
(/)
m
::z:J
(/)

~
(')

m
-I
-<

~[O]

,,
-0 ;:;: c
~ g. .,, c.n ro
3 O" . c

IV - · c)> -0 ~
......... ~ - 0
z~O~;'
!' ~ ~ ~

)> "'

