
[Ql
OECUS "THE HEAP"

October 1984 Issue

LANGUAGES AND TOOLS SIG

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem· 10 EduSystem
DECSYSTEM-20 IAS
DECUS MASS BUS
DECwriter PDP

UNIX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1984
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is a11Umed that ell articles submitted to the editor of this newsletter ere with the authors' permission to publish In any DECUS
publication. The articles era the responsibility of the authors end, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or Information appearing in the document. The views herein expressed ere
those of the authors end do not necessarily express the views of DECUS or Digital Equipment Corporation.

"TABLE OF CONTENTS•

TITLE PAGE

Notes From the Editor: Introductions, 2
Excuses, and Pleas for Contributions.
- Al Folsom, Fischer & Porter Co.

Notes From the SIG Chair 4
- Kathy Hornbach, Lear Siegler

Report on the International Software 6
Engineering Conference
- Kathy Hornbach, Lear Siegler

MATRIX, A Language Using Decision Tables 10
- Joe Brugman, Plessey Peripheral Systems

LTSIG Wishlist 18
- Al Folsom, Fischer & Porter Co.

DEC/TEST Manager 27
- Lee Rodabaugh, Digital Equipment Corp.

Converting to PDP-11 Pascal 30

LTSIG Sessions for Anaheim 32

ADA[*] Certification and Validation: 35
First Steps to a Production ADA System.
- Ronald F. Brender, Digital Equipment Corporation

The Languages & Tools "Mushroom" 40
The only complete SA/SD Tool, available
from the LTSIG.
Kathy Hornbach, Lear Siegler

The LTSIG and Standards Activities 41
- Jay Wiley, Bechtel Power Corporation

* ADA is a trademark of the DoD.

My name is Al Folsom, and, if you're reading this, my first
attempt at newsletter editing has not been an abject failure. I
took on this role at the Cincinatti Symposium, when John Barr was
forced to give it up due to work constraints. My primary goals
will be to get the newsletter published on a regular and timely
basis, and to insure that the articles published are of maximum
interest to the SIG membership.

I hope I've made a good start with the current issue of "THE
HEAPn. Our Standards Coordinator, Jay Wiley, has contributed a
synopsis of software engineering standards activities. If you
are interested in this area, Jay has provided a cornucopia of
useful information. In addition, we have articles on a decision
table based programming language, a description of the new
DEC/TEST Manager, a report on the International Software En
gineering Conference, and a variety of information relating to
the Anaheim Symposium.

Speaking of the Anaheim symposium, it is my hope that this
reaches you sometime before the start of the symposium. As I
type this, it is late September, and I hope to ship the
newsletter to the DECUS office within the next two days. Part of
my learning curve, however, will be to get a feel for the lead
times involved in producing the newsletter. The Languages and
Tools SIG is sponsoring a wide variety of sessions at this sympo
sium, including an emphasis on the ADA language. I have included
a list of sessions, but in addition to that list, of particular
interest and note is that Jean Ichbiah, a principal architect of
the ADA programming language, has agreed to give the Languages
and Tools keynote address, certainly a session that no one in
terested software engineering should miss. Since ADA will be a
central topic of the symposium, I have included slides from a
presentation by Ronald F. Br~nder of Digital, concerning the
validation process for ADA. While these pages may be a little
difficult to read due to the duplicating process, they are cer
tainly worth looking over if you are interested in the develop
ment of the language.

The SIG itself has undergone some changes in the last few
months. For one thing, we are no longer the "Structured
Languages SIG", but are now titled the "Languages And Tools SIG",
abbreviated LTSIG. This is to reflect a concern not only with
Languages, but with the whole realm of tools and products which
affect the software engineering environment. Digital has been
filling a void in this area with tools such as CMS, MMS, DEC/TEST
manager, and so forth, and we wish to reflect the growing impor
tance of these types of productivity tools. In addition to the
name change, we have had some personnel changes in the steering
committee. Primarily, our new SIG chair is Kathy Hornbach of
Lear Siegler. If you attended the Cincinnati symposium, or have
been reading your DECUScopes, you may recognize Kathy as the re
fereed papers winner. Kathy's primary interest is in the area of
productivity tools.

2

Here is a partial list of steering committee members, feel
free to contact any of us if you have questions or suggestions,
and if you do attend the Anaheim symposium, try to look us up in
the LTSIG suite.

Kathy Hornbach
LTSIG Chair
Lear Siegler/Instrument Div
4141 Eastern SE MS 121
9rand Rapids, Ml 49508

Alan L. Folsom, Jr
Newsletter Editor
Dept 431, Corporate Cntr
Fischer & Porter Co.
200 Witmer Rd.
Horsham, PA 19044

Jim Livingston
Product Planning/Past Chair
Measurex Corporation
1 Results Way
Cupertino, CA 95014

Barb Chase
Vice Chair
Hughes Aircraft Company
P.O. Box 92426
Bldg R1, MS D340
Los Angelos, CA 90009

Mark Katz
Session Notes Editor
GTE Sylvania
11 A Street
Needham, MA 02194

J.R. Westmoreland
Symposium Coordinator
6748 Acoma Road
Midvale, UT 84047

As you will see in the article dealing with the LTSIG's
Wishlist, one of our members' most common requests is for an in
troductory issue of the newsletter, dealing with some of the pub
lic domain software we have distributed in the past, and possibly
surveys or lists of other available software. I hope to do this
in the next issue, and would like to take this time to solicit
articles in that vein. In addition, other articles of general
interest would be greatly appreciated. Submissions preferably
should be in machine readable format, although we can use hard
copy. (all the articles for this issue were submitted in hard
copy format). If you would like to submit material, write me, or
call at (215) 674-7154, and we can arrange for a suitable media
or format. Also, if you have suggestions for types of articles
which would make the newsletter more valuable to you, I would
like to hear from you. It has been suggested that we should
print summaries of sessions from the symposia, for those people
who could not attend. Would this be of interest to you, or would
you prefer some other type of article? Please let me know.

Finally, I would like to change the name of the newsletter.
"THE HEAP" has unsavory connotations, and is a holdover from the
days when this was the Pascal SIG. If you have suggestions for a
new name, send them to me, and they will be judged by a complete
ly partial random jury of assorted weird programmer types. I'll
send an "LTSIG Mushroom'' to whoever submits the winning name.

3

Looking Towards Anaheim

Now is the time to start thinking about attending the Fall DECUS Symposium, at
the Anaheim Convention Center, December 10 through 14. There are a record
number of sessions being sponsored by the Languages and Tools SIG this
Symposium -- you wi II find a complete list elsewhere in this issue.

Sessions

Coming out with version 4 of VMS are new versions of many of the DEC languages
and tools such as Fortran, CMS, MMS, DEC/Test Manager, editors, and VAX
Debugger -- and sessions are scheduled to bring you up to date on all of these.
Other sessions will highlight C, Pascal, and PL/1. Tutorials will introduce
attendees to effective use of tools for improving software development. User
papers on experience> with Digital and third party languages/tools are also
offered. For the first time, there wi II be a Languages and Tools Question and
Answer session, with a panel of Digital developers and expert users; ready and
hopefully able to answer your most challenging technical questions.

Spotlight~ Ada

The SIG is high I ighting the Ada[•] programming language this symposium a
language that wi II have a tremendous impact on software development in the
coming years. We are proud to announce the Languages and Tools Keynote Address
wil I be given by Jean Ichbiah, one of the principal architects of the Ada
language. In addition, Digital will be giving several technical sessions on
their VAX Ada compiler; and we have many presentations by other companies
working on Ada compilers or programming in Ada.

Seminars

The SIG is sponsoring three Pre Symposium Seminars. They deal with three
different facets of software development, and all promise to be excellent.

o Portable Software/Rapid Prototying with Software Tools VOS The
Software Tools Virtual Operating--system (VOS), a public domain
software package, provides an excellent environment for the
development of software, particularly software that must run on
different types of hardware and/or operating systems. The
UNIX-like[••] package contains over 100 utilities and several hundred
library routines which form a powerful toolbox for the developer
engaged in rapid prototyping or production of portable software.

o Artificial Intelligence -- This course will be an introduction to the
capabi l1ties of Artificial Intelligence, as they are today and as they
may develop in the future. It wi I I attempt to remove some of the

[•] Ada is a trademark of the DoD

[••]UNIX is a trademark of Bell Labs

4

mystique surrounding AI, by covering the standard approaches used in
implementing AI solutions, including expert systems, natural language
understanding, robotics, and vision. It also includes a discussion on
what it takes to actually manage and develop a product-quality AI
system, which wi II be valuable to companies thinking of acquiring or
developing AI products.

o Implementing.!. Software Development Environment -- This seminar wi II
discuss software development tools for al I software life cycle phases,
and how to integrate them into an overal I software development
environment. Specific types of tools, how they are used, and sources
for tools on DEC equipment will all be covered 1n detail, as wi I I
justifying tool purchase and promoting use of tools within an
organization.

Other Symposium Activities

We are planning on repeating our popular Tool Sources handout listing
suppliers of software tools for requirements, design, coding, verfication,
documentation, that run on DEC hardware.

In addition to the formal sessions we present, we have user-driven 'Birds of a
Feather> meetings where people with like interests discuss a specific topic;
and a campground and SIG suite where you can meet the SIG leadership, Digital
developers, and other DECUS members with similar interests. to get the most
out of the week.

Be sure to attend the Roadmap session, first thing Monday morning. There you
wil.1 be fi I led in on special sessions of interest, introduced to Languages and
Tools Steering Committee members and Digital representatives, and in general
given hints on how to get the most out of the week.

In addition to the formal sessions, the Languages and Tools SIG wi II again be
hosting a suite in the headquarters hotel, and a campground in the Convention
Center. These are places where you can escape from the hectic pace for a
little while, meet people interested in the same things you are, and talk with
SIG leadership and Digital developers.

As you can see, many exciting things are happening in the area of Languages and
Tools at Anaheim. Your attendence at sessions, and active participation in the
SIC, can not only help you in your work, but wil I also give you a chance to
shape the direction of future Digital offerings in the area of languages and
tools!

-- Kathy Hornbach
Languages and Tools Chair

5

Report~ the Internation Software Engineering Conference

This report is a brief synopsis of the Seventh International Conference on
Software Engineerin~ (!CSE), held last March tn Orlando, Florida. !CSE;"
sponsored by the IEE and AcM, is the leading forum for introduction of new
ideas into the field of software engineering. It was attended by wel I over
1000 people, with a large percentage of them from Europe, Japan and elsewhere.
The conference is held every 18 months, alternating on and off the North
American continent. There were a lot of recognizable names there, for anyone
fam~liar with the Computer Science field. These are the people breaking new
ground, and writing papers on future directions in software engineering.

Overview

There were several marked trends that became apparent from the papers given at
the conference. These are not things that wi II affect the ordinary software
developer inrnediately, but they wi I) undoubted exert a large influence over the
next five to ten years (just as papers in the early seventies on Structured
Analysis, source code control and UNIX[•] are of central importance now).
These trends include:

o The emphasis .l!. ~requirements - There was very I ittle attention paid
to the design and coding phases - it was almost as if these were
considered solved problems. formalized requirements definition, on
the other hand, was treated as a completely open problem. In fact,
the emphasis was more on defining what the problem is, as opposed to
figuring out how to solve it.

o Artificial intelligence may be the next panacea - Much as •Structured
<fi I 1-in-the-blank>n was touted as the solution to all the woes of
software development a decade ago, artificial intelligence is seen by
many as a cure-al I. The keynote address was by Herbert Simon, a nobel
prize winner and one of the pioneers in the field of AI. Many of the
papers centered on AI-oriented solutions to requirements definition
problems. As with the Structured Methods, there is probably much
value in these techniques, but there remains much to learn, much work
to get people to use them, and many new problems wil I inevitably
appear to replace solved ones.

o Rapid prototyping .l!. ~ .!!!£!:! popular Rapid prototyping (the
putting together of a quick "breadboard" version to try out a concept
and get feedback from users) has been a hot topic for the last few
years. There was much emphasis on this area again this year -
executable specifications are the latest spinoff. The only real world
applications of prototyping, however, seem to be in the area of user
interfaces for information systems.

o 7~op the waterfall - Just as we are patting ourselves on the back for
tnal ly adopting the formalized •requirements-design-code-test"

[•]UNIX is a trademark of Bell Labs

6

software life cycle "waterfal I" model, the people who proposed
the first place change their· mind. They say it really isn't
software should be developed after al I! Actually, what they
are proposing are modifications to the life cycle to reflect
even more accurately - encompassing rapid prototyping, places
assistance, etc.

j t In

the way
rea I ly

rea I ity
for AI

o The generation .9!£ widens The gap between state-of-the-art and
real-world software development techniques seems to be getting bigger.
The papers were on AI and executable specs and formalized proofs of
correctness. The people in the audience working on real projects were
struggling to get their company to recognize that there is such a
thing as a software life cycle; that formalized methods are
worthwhile; that code should be commented and control led; even that
interactive terminals are beneficial.

SESSION DETAILS

1.0 SOFTWARE DEVELOPMENT PARADIGMS

Fred Brooks (of Mythical Man Month fame), Harlan Mills (from IBM and originator
of much of Structured Programming), and Tom Cheatham had a lively debate on the
correct "model" for software development. Brooks advocated the traditional
software life cycle, modified by rapid prototyping.

Harlan Mi I Is put forward some surprising new concepts, based on research he 1s
doing back at IBM. The first concept is of "Structured Data" - get rid of
pointers and arrays; use the higher level constructs of queues, stacks and
sets in their place. (Of course, these would eventually be implemented with
pointers and arrays, but this should be hidden just as GOTO's are hidden in DO
WHILEs). Based on experiments he did, he postulates that use of these high
level data types reduced verification difficulty by a factor of five. If this
seems somewhat far-fetched, remember that goto-less programming did too, when
he first talked about it.

The second concept he discussed is that of "clean room" software development.
Under this method, the development team does the design and writes the code -
but goes no further than obtaining a clean compile. A separate test team, that
has been developing functional tests concurrently with design and coding, runs
the test set against the code. Results are returned to the development team,
who must then fix the code based only on the results from the test team, get a
clean compile, and resubmit it to the test team. What has happened in actual
experiments is that the development team spends much more time in code
walkthroughs and in desk checking their code. The overal I time to implement a
correctly working program has been less than on traditionally developed
programs. And, to their surprise, the development team on the whole did not
resent not being able to execute their own code.

Cheatham talked about the future, with AI assistance in program development,
and how such a system might evolve from current capabilities. The first step
is putting project knowledge in on line data bases, and coordinating that with

7

an integrated tool set. Later stages formalize properties and attributes, and
draw inferences based on data in the data base.

2.0 EXECUTABLE STRUCTURED ANALYSIS

Tom DeMarco (co-inventor of Structured Analysis) gave an interesting talk on
some work he is doing in Modula-2 on the Lilith computer. He has ·extended the
concept of pipes from UNIX. UNIX supports three standard I/O channels per
process - input, output and error. DeMarco extends this concept to many ports
per process by giving each port a name. Processes are then connected together
by connecting named ports with a graphical editor. Each bubble is represented
by an executable process. A bubble can also represent an entire lower level
sequence of bubbles and data flows, just as in SA. Each data flow corresponds
to a named port. This is indeed very similar to a Data Flow Diagram.

They have a primitive version of this tool working on Lilith. This 1s the
first I have seen of an actual implementation of •executable specifications•.
However, as questions from the audience pointed out, it is not clear how many
problems even simple ones would be amenable to this type of solution.
DeMarco admitted it was difficult to even come up with examples of problems
that could be solved with this method. There was some talk that this approach
had been tried before, and dropped when it was discovered it was not al I that
useful.

Nonetheless, it 1s an interesting concept. There 1s a paper on it 1n the
Proceedings.

3.0 PRODUCTIVITY FACTORS

A study by the ITT Advanced Technology Center, of several real world projects
attempted to pin down which factors contributed to effective completion of a
project, and to high productivity. There were wide spreads in the ranges of
data for some of the factors, which was initially puzzling. For example, some
projects that employed modern programming practices had comparatively high
levels of progranvning productivity; but some projects using the same methods
had relatively low productivity. However, al I projects that did NOT employ
modern programming practices had relatively low productivity.

The conclusion drawn is that it is not enough just to use SOME productivity
techniques. To really succeed, a software project must do EVERYTHING right.
Failure in one of the areas can drag al I the others down with it.

4.0 CASE STUDY OF ADA INTRODUCTION

A division of GE did a pi lot project on teaching Ada [••] to embedded system
programmers, to better understand the problems and considerations to
effectively learning the language. The conclusions they reached reinforce some

[••] Ada is a trademark of the DoD

8

suspicions we have had all along about ADA training. They include:

1. Most training programs stress teaching the syntax of the language.
The hard part is understanding the CONCEPTS behind various parts of
the language. An effective training course would include much
background information on concepts like data abstraction and
information hiding. They found that much training is needed, 1n some
cases, to bring people up to speed on the concepts alone.

2. The examples given 1n much of the training are from
computer-science-type applications. Students expressed much interest
in having problems drawn from real world applications, such as sensor
monitoring, navigation, etc.

3. It is important to have a compiler to try out all the things that are
being learned.

4. Although most of the features of Ada were used by programmers on their
first attempt, they were used in ways other than for what the language
designers intended (again, better grounding 1n concepts would help
here).

5. Many support tools are clearly needed. A language sensative editor is
absolutely required - it would have save enormous amounts of time.

6.

Summary

The requirements for the project were too detailed - more
unlike a Fortran system design. Implementors found
abstract UP!

like than
they had to

ICSE was a fascinating conference in many ways. In many ways it is the exact
opposite of DECUS Symposia sessions, which tend to be problem-specific,
immediately useful, and grounded in the real world. ICSE was theoretical and
non-specific, and I had no new knowledge I could take back home and put to
immediate use. BUT, on the other hand, it provided an excel lent preview of the
directions software engineering is likely to be taking over the next five, ten
and fifteen years. While the things I learned may not be immediately useful,
many of the concepts I heard talked about for the first time, will always be in
the background of my thinking now, helping shape how our whole software
development environment will be evolving over the next few years.

If any of you have a chance, I would recommend attending this conference,
keeping in mind its goals and targeted audience. The next one is in London,
England, in August, 1985. You can order the Conference proceedings for this
and all previous ICSE from the IEEE.

-- Kathy Hornbach

9

MATRIX, a Language Using Decision Tables

by Joe Brugman

ABSTRACT

Using decision tables to direct the processing
of business computer programs provides a rapid
and easy method of creating computer programs.
This paper describes such a language.

New languages seem to make their appearance quite often. Many are
special-purpose languages; others assist the programmer by selecting
routines from a library to perform various desired functions. Some are
oriented away from the FORTRAl\I and COBOL format toward an objective or
results language letting the compiler <?>decide how to obtain the
desired end.

I have come across a language which is completely different from any of
these. It is quite popular in Europe under several different names,
but MATRIX will due as a gen•ral reference. Why Matrix? Because it is
a decision table based language. The matrix of a decision table is
used to determine the flow of operations to obtain the desired
processing of the data. This may be handling data input and storage on
a file; it may be processing that data, with other information, to
produce a variety of reports; or most any other activity used in
business data processing. The use of pointers, bits, addresses of
variables and other types of programming aids are also features of the
languages.

MATRIX has some relation to COBOL in that all variables are defined in
the front of the program. The files that will be used are specified
and the location, size, and type of each field that will be used in
each record are defined.

Having established the tools that will be used, the program next needs
to know what results you intend to produce. So a 1 ist is made up of
the variables that will be used in the output. These variables are
associated with a single letter or number. There are three types of
output variables, and what character Is used is significant. Variables
which are printed and have no other significance or function are
assigned the letters A through L, though others from the end of the
alphabet and some other printable characters may be used if necessary
to the output. Those variables which cause a break requiring a
subtotal are assigned letters M through R. These totalling fields
cause breaks in sequential alphabetical order with M being the major
break, N the next most significant, etc. Finally, since a break
generally means that a total is to be taken, the totall Ing fields carry
single-digit designators, and if necessary, letters starting with Sat
the end of the alphabet.

Of course, if breaks and subtotals are to have any meaning, the data
must be sorted. The sorting order Is specified using variables which
have been defined either as field names or as the names given working
variables. Numbers, other than single precision integers must be
converted to strings before sorting.

10

Now that we have d•f in•d what we want to output In th• way of
variabl•s, th• prlnt•d output Is d•fin•d. <Not• that output to a fil•
is handl•d in th• sam• mann•r as input from a fil• •xc•pt that th• data
is mov•d Into th• fi•ld and th• r•cord is writt•n tnst•ad of th•
r•v•r••·> Using th••• assign•d numbers and l•tt•r•, a •plctur•• of
•&ch lin• of output ts made. Th••• plctur•• ar• lab•l•d for their
d•slr•d us•. A h•ader format and th• n•cessary totalling formats for
•&ch br•ak may b• d•fin•d as w•ll as an output for •&ch r•cord. Jf any
formats are not d•fin•d, no probl•m, the program continu•s without
printing the line or br•ak or what•v•r. One of th• chor•s of handling
br•aks ts tak•n car• of by the program, and that Is rolling ov•r the
subtotal to the next higher l•v•l and th• f i•lds z•roed.

By now it's time to get down to massaging the data. A starting
d•cision tabl•, <DETAB> is us•d to ••t up initial conditions if any are
desired. Wh•n it is complet•, th• program automatically starts
processing the DETAB named RECORD. If d•sired, one file may be defined
as a •controll Ing• file and will be r•ad sequentially. D•p•nding on
what Is r•ad or the r•sults of som• op•ration on th• data, another file
may be randomly accessed and further actions taken. Finally, the
r•sults may be print•d and output to a fil•, r•cords updat•d, or other
actions taken.

•what is this DETAB that does all these wonderful things?• •How is it
constructed and how does it work?•, J h•ar you asking. A decision table
is familiar to students of logic; it is a short and concise way of
•xpressing what can be very compl•x conditions and actions taken
depending on thes• conditions. The conditions are posed in the form of
a question: ts A equal to B? This condition stub is then followed, on
the same line, by the condition entry1 usually Y•s <Y>. no <N>, or
don't care <->.

A ~•ries of conditions are followed by actions. The action stub
consists of a v•rb and usually a variable name to be act•d upon. It
may also have a second op•rand if appropriate. The action •ntry for
•ach action stub is directly r•lated to the conditions set forth in the
DETAB. If a rul• <•xplained pr•sently) is satisfied, then the action,
or non-action for each action entry is Indicated. An •x• m•ans •do
1t•1 a•.• means •don't.• Sine• all the Ys, Ns, and -s appear within a
regular matrix, a rul• is easily d•fined as the condition •ntries in
any particular column.

When a rul• is satisfied, i.e. the condition •ntri•s In on• column are
all as specifi•d for the data being tested, th•n th• actions in the
action •ntries with Xs in that rule ar• carri•daut.

11

Consider this DETAB:

c A = B y y N N
A > c y N y N

A c MV 25.00 x [MOVE 25.00 TO c
c MV 10.00 x [MOVE 10.00 TO c
c MV 0 x
CALL ADDRESS x x x
GOTO RECORD x x x x

The- •c• and •A 11 in column 1 are aids to the compiler to signal which
stub is being parsed. The comments are introduced by a •c.• The
•CALL• verb means to process the DETAB named ADDRESS and then return to
process the next action.

An extended entry stub may contain a question mark for one of its
operands. Then the value to substitute for the question mark will be
found in the appropriate entry. For example:

c
A

DEPT =
AMT MV

?
?

2 17 30 ELSE
100 50 80

If DEPT is 17, then 50 will be moved to AMT. The ELSE rule handles all
records which don't satisfy any other rule.

I can run the language on my PDT <MINI MINC> under RT-11. I have used
it extensively under V3B, and some under V5. There are some bugs in
the program, but they can be worked around.

I also have a version that runs under RSTS/E.
however, since V5 so I don't know how it will
versions. Some day I'll try it out. but since
latest version, I suspect that the RSTS may also.

I have not used it,
work under any later
RT-11 works with the

To show the language, I wrote two programs to read the same data and
print the results. They are necessarily short and quite simple. Both
are written to run under RT-11. Although the BASIC code could be
improved upon, and take less space and effort to code, it cannot come
near to being as short and as simple as the MATRIX version. The file
used for these programs contained entries which were ignored. It was
organized in Account Number order within Area as a sequential file.

To summarize: MATRIX is a fast, simplified data processing system which
can be used extensively for the selection and printing of data from
computer files, and for the creation and maintenance of those files.
MATRIX is straightforward to learn and quick and easy to write.
Incorporating a powerful Decision Table Processor, MATRIX allows for
easy definition of record selection criteria and processing
requirements; it is controlled by simple parameters which define Input,
output, and processing required by a problem. As little or as much of
the automatic processing of MATRIX as the programmer desires may be
incorporated in the program.

MATRIX is a compiled ·language which can be used not only by the data
processing staff as a general purpose utility, but also by
non-technical staff and management to provide information retrieval and
report generation.

12

MATRIX, under other names, Is being used in hundreds of installations
in Europe and Australia. Reports show that many of them are placing
incr•asing reliance on the language in gen•ral development work to
max1m1ze progranming output; all report substantial savings in
d•v•lopment time, oft•n up to 80 percent compared with COBOL.

MATRIX program logic is •xpressed in decision tables which are easy to
understand, write and amend, and document. Decision tables normally
consist of •conditions• followed by •actions", but in MATRIX, it is
possible to specify •initial actions• prior to •conditions•, thus
reducing the number of decision tables required to perform the program
logic.

In brief, MATRIX is a comprehensive file maintenance and reporting
system. The facll ities offered by MATRIX make it suitable for a wide
range of appl !cations. They include input validation, file creation
and maintenance, selective reporting with arithmetic actions taken on
desired fields, subtotals on selected field breaks, and information
retrieval.

MATRIX has been designed around three fundamental principles which will
increase productivity:

1. simple, and largely free-format, statements are
used to define requirements

2. decision tables, a simple
expressing logic, are used
concisely, and accurately, the
processing requirements

and powerful way of
to specify, easily,
record selection and

3. capability of interrupting MATRIX's automatic
sequence of operations to specify your own
processing requirements

These provide a high level of utility characterised by simplicity of
syntax and ease of understanding. Bpth accuracy and speed of
programming are enhanced.

If this paper has tickled the fancy of any of you fine readers, and you
would 1 ike to write, I would be happy to respond. Enclose an SASE with
your letter. I also think the language could be improved and rewritten
in C. Certainly the bugs could be fixed. Any comments? Write me at
15434 Janine Drive, Whittier, California 90603.

About the author

The author has a Bachelor's Degree in Engineering
and a Master's Degree in Business Administration.
He has been engaged in data processing for 19 Y•ars
having been involv•d in all aspects of that field.
He is currently managing the technical support and
program production for Plessey Pheripheral Systems.

13

PROGRAM BALACT.BAS 3-SEP-84 1342 HOURS

1 REM
5 REM BALACT.BAS JJB 04-MAY-84 VNC
10 REM
220 LS=• 'L 'LLL $$#####.##•
240 SS=• AREA 'L TOTAL $$#####.##•
260 TS=• FINAL TOTAL $$#####.##•
280 I•=• • ' REM 10 SPACES FOR INDENT
1000 REM
1001 REM ***** INITIALIZE *****
1002 REM
101 O P"/.=O
1020 T•O
1040 Tl•O
1060 T2=0
1080 DIM #1,R1$<18"/.)•255X
1100 OPEN •DK1:CUSTFL.DAT• FOR INPUT AS FILE #1
1120 OPEN •LPO:• FOR OUTPUT AS FILE #4
1400 Y$=R1$<1X>
1420 GOSUB 5000
1440 A$=A1$
1460 M$=Ml$
1480 8$=81$
1600 GOSUB 11000
2000 REM
2001 REM ***** LOOP THROUGH FILE *****
2002 REM
2020 FOR IX=?/. TO 18"/.
2040 Y$=R1$<IX>
2060 GOSUB 5000
2100 IF M$('9000' GO TO 2200
2150 IF M$)'9799' GO TO 2200
2180 GO TO 2800
2200 IF A$<'21' GO TO 2800
2250 IF A$>'22' GO TO 2800
230 0 B=VAL < 8$ >
2500 IF A$=A1$ THEN GOSUB 3000 ' IF IX=18X THEN GOSUB 4000
2600 IF A$<>A1$ THEN GOSUB 3000 ' GOSUB 4000
2800 A$-A1$
2820 M$=M1$
2840 8$=81$
2880 NEXT IX
2900 GO TO 4500
3000 REM
3001 REM ***** PRINT A LINE *****
3002 REM
3020 PRINT #4,I$;
3050 PRINT #4,USING L$,A$,M$,B/100
3060 Tl=Tl+B
3100 LY.=LY.+ 1X
3120 IF LY.>60X THEN GOSUB 11000

14

PROGRAM BALACT.BAS

3200 RETURN
4000 REM

3-SEP-84 1342 HOURS

4001 REM ***** AREA BREAK *****
4002 REM
4020 PRINT 14 ' PRINT 14,I$1
4030 PRINT 14,USING S$,A$,T1/100
4040 T2-T2+T1
4060 T1•0
4080 PRINT 14 ' PRINT 14
4200 RETURN
4500 REM
4501 REM - ***** FINAL TOTAL *****
4502 REM
4520 PRINT 14' PRINT 14,IS;
4540 PRINT 14,USING T$,T2/100
4600 GO TO 31000
5000 REM
5001 REM ***** DECODE RECORD *****
5002 REM
5020 A1$=SEGS<YS,3,4>
5040 M1$=SEG$(Y$,5,8>
5060 81$=SEG$(Y$,159,168>
5100 RETURN
11000 REM
11001 REM ***** NEW PAGE *****
11002 REM
11020 PRINT CHR$<12"/.)
11040 P"/.=PX+ 1/.
11220 LY.=6/.
12100 PRINT #4,IS;
12120 PRINT #4,'04-MAY-84 CUSTCl"IER BALANCE LISTING
12140 PRINT #4
12150 PRINT #4,I$;
12160 PRINT #4,' AREA ACCOlJl.IT BALANCE'
12170 PRINT #4,1$;
12180 PRINT #4,' NUMBER'
12200 PRINT #4
12240 RETURN
31000 REM
31001 REM ***** E 0 J *****
31002 REM
31100 CLOSE tU
31120 CLOSE #4

15

PAGE' ;PX

PROGRAM BALACT.MAT

* * BALACT.MAT
* * BALANCES BY ACCOUNT AND AREA

* *FILE S255 CUSTRP.DAT
*OFILE 3 A DK1:BALACT.LST

*
*DICTI~RY

*

*
* *INLIST
*

*

LR1
AREA
ACCNO
BALANCE

• LR1+3/2
= LR1+5/4
= LR1+159/10

DOLLARS = XX

A ACCNO
M AREA
2 DOLLARS

*HEAD L CH1,2

3-SEP-84

0/255

1344 HOURS

C AREA
C ACCOLNT NU'1BER
C BALAl'.ICE

DD-MMM-YY CUSTOMER BALANCE LISTING

AREA ACCOUNT
NU'1BER

*OUT L 1 '0
AAAA MM

*OUT M 2,1
'AREA'MM'TOTAL'

*OUT F 3,0
'FINAL TOTAL'

*DETAB RECORD
*
c

A

*
* *STOP
*

ACCNO GE
ACCNO LE
AREA LT
AREA GT
DOLLARS MV
DOLLARS /
IGNORE

BALANCE

$22222.22

$222222.22

$2222222.22

'9000' y y ELSE
'9799' y y
'21' y
, 22' - y
BALANCE . x
100 x

x x x x

16

PAGE PPPP

C IGNORE RECORDS
[9000 - 9799

04-MAY-84 CUSTct1ER BALANCE LISTING

AREA ACCOLNT BALANCE
NlJ"IBER

21 1144 $1511.20
21 1313 $151.50
21 8643 $109.22
21 9827 $210.80

AREA 21 TOTAL $1982.72

22 3211 $16.84
22 3270 $128.62
22 9988 $99.88

AREA 22 TOTAL $245.34

FINAL TOTAL S2228.06

17

"LTSIG WISHLIST•

Those of you who have been with the SIG for some time may
remember that about a year and a half ago we conducted our first
Wishlist survey. For a variety of reasons, this information was
not collated until early this past summer, (although we received
responses as recently as last June!), which detracts somewhat
from the usefulness of the responses. The results are, finally,
presented here, along with th£ items from the original survey.

The format consisted of two lists of actions, one directed
at the SIG, and one directed at DEC. Respondents were asked to
cast a total of forty votes per list, with a maximum of five
votes per individual item. For example, eight items could re
ceive five votes each, twenty items could receive two votes each,
or items could be prioritized as desired. Each list was indepen
dent. In addition, a brief questionnaire was included with the
Wishlist.

Perhaps the most amazing result of the survey was the reve
lation of how many people were incapable of following the direc
tions! Nonetheless, I sorted them out as best I could; disallow
ing' blatently illegal responses such as casting forty votes for
one item, and translating Yes/No responses to a balanced distri
bution of forty votes.

Many SIG's conduct surveys under a variety of names, such as
Wishlists, Menus, or SIR's. The RSX SIG was, I believe, t_he
first to do so, and has been at least moderately successful in
getting responses from DEC. As far as I know, however, we are
the first SIG to have a section of the Wishlist directed at the
SIG itself. I hope that this will help the Steering Committee to
best meet the wishes of the SIG membership.

The first four pages consist of the original items on the
Wishlist. It is important to remember that these items were all
submitted by members of the SIG; they are not biased in any way
towards what DEC wished to hear, or what the SIG steering commit
tee thought was appropriate.

Following that is a synopsis of the questionnaire results.
These include operating systems used, types of installations, and
a breakdown of languages used by the respondents and those pre
ferred.

18

Finally, there are two pages representing the results of the
survey, showing first the DEC directed items, and then those
directed to the SIG. On each page the items are sorted first by
the number of votes received, and then by numerical order. The
first column shows the item number, followed by the raw total of
votes received. This is then translated to a precentage of the
maximum votes the item could have received, calculated by multi
plying the number of respondents by five. Finally, there is a
histogram representation, comparing that particular item to the
one receiving the largest vote.

For this Wishlist process to be effective, it is crucial
that the turn around time be reduced. to that end, we are tar
getting at presenting the result of the next wishlist at the
Spring 1985 symposium. Items for the surveys must come from the
members of the SIG, and should be sent to the Newsletter Editor.
If you wish to contribute items for the next wishlist, the ad
dress is:

Alan L. Folsom, Jr.
Dept 431
Corporate Center
Fischer & Porter Co.
200 Witmer Road
Horsham, Pa. 19044

Please indicate whether the items are intended for DEC, or for
the SIG. The Wishlist cannot be effective unless a reasonable
number of rational items are presented to the membership. Face
tious items, or suggestions which are clearly impossible (The SIG
developing and maintaining and ADA compiler, for example), will
not be included. Since the LTSIG is now involved with items such
as CMS, MMS, and the Test Manager, items for improvements or ex
tensions in the area of software development tools would be par
ticularly welcome.

If at all possible, the next Wishlist will be included in
the next issue of the newsletter. It is important, therefore,
that items for inclusion be received as soon as possible.

COLUMN '!' COLUMN '~'

I'll take one of these,
and two of those, and two of •••

19

DEC DIRECTED MENU ITEMS

0.1 DEC should provide a consistant, standardized structured
language, and support it across all operating systems and
CPU's.

0.2 Structured languages should be provided for 10/20 machines.

0.3 Structured languages should be provided for the PDP 11 com
puters.

0.4 A wider range of languages should be supported for RT-11.

0.5 DEC should provide Cross Compilers for the various new 16
bit micros, to facilitate program development.

0.6 Dec should provide more closely coupled compilers and de
buggers, to facilitate program development in high level
languages.

0.7 A common set of debugging tools should be developed, provid
ing a unified interface across operating systems and
languages.

0.8 DEC should announce when software such as loaders are
changed, so that modifications can be made to SIG or custo
mer supported software.

0.9 A standard "C" should be provided across all operating sys
tems.

0.10 DEC should provide and support a "C" compiler for the DEC
10/20 machines.

0.11 DEC should provide and support the "C'' language for RSX sys
tems.

0.12 'ihe "C" language should be available for the new personal
computer lines.

0.13 The "C" language should be
LSI-11 machines, perhaps
larger CPU's.

available for programming the
as a Cross Compiler package on

0.14 DEC should put the DECUS "C'' compiler on the distribution
kits, in the same manner as 'iECO.

0.15 A standard Pascal should be provided across all operating
systems.

20

0.16 Vax-11 Pascal Global variables should be fixed to allow
sharing or non-sharing across seperately compiled modules.

0.17 DEC should support Pascal for RT-11.

0.18 DEC should support Pascal for RSX.

0.19 DEC should provide a Pascal Compiler for the LSI-11, which
would run with limited memory. (64k)

0.20 DEC should support Pascal under RSTS, allowing linkage to
M~cro or Basic+2 object modules.

0.21 PDP 11 Pascal should be provided, allowing linking to RMS
1 1 .

0.22 Fortran 77 should be supported under RT-11.

0.23 DEC should provide customer BLISS courses.

0.24 Modula 2 should be supported under RSX

0.25 ~odula 2 should be supported under V~S

0.26 Modula 2 should be supported for the new Personal Computer
lines.

0.27 DEC should make an ADA package availble for the VAX.

0.28 DEC should make an ADA package availble fo the PDP 11.

21

SIG DIRECTED MENU ITEMS

0.1 The SIG should provide an organized method of feedback to
DEC on language use and problems.

0.2 The SIG should be involved in formulating language stan
dards.

0.3 The SIG should provide information on the use of structured
languages in a time critical commercial environment.

0.4 The SIG should investigate ways of
operating system features, while
system/implementation independence.

taking advantage of
maintaining operating

0.5 The SIG should develop and maintain a source code management
system.

0.6 The SIG should work on developing a set of compilers for all
DEC operating systems, and a unified interface to IBM and HP
systems.

0.7 The SIG should provide information and surveys of Third Par
ty Compilers.

0.8 The SIG should develop and maintain Cross Compilers for the
various new 16 bit microcomputers.

0.9 ~he SIG should provide "C" coopiler benchmarks.

0.10 The SIG should publish information in the newsletter, and
otherwise address the issue, of "C" portability.

0.11 The SIG should develop language translators, such as Fortran
to "C".

0.12 The SIG should provide detailed docuoentation on the input
format to the Code Generator phase of the Decus "C'' com
piler, so that users could write their own code generators
for other processors.

0.13 The SIG should develop a Fortran 77 that uses Pass 2 of the
DECOS "C" compiler.

0.14 The SIG should support a Structured Fortran preprocessor
package.

0.15 The SIG should investigate and develop support for Fortran
77 under RT11.

0.16 The SIG should maintain a Pascal for RSTS.

22

0.17 The SIG should investigate improvements to the MBS Pascal
Compiler and Library.

0.18 The SIG should continue, and enhance, support for Pascal
running under RT11 and RSX.

0.19 An RSX Praxis should be made available on the SIG tapes.

0.20 The SIG should make an ADA package available.

0.21 The SIG should address the issue of portable programming in
general, especially in the area of standard or multilanguage
libraries.

0.22 The SIG should publish articles in the newsletter dealing
with information and experiences concerning Praxis and/or
Ada like languages.

0.23 The SIG should provide an introductory newsletter, with in
formation about Software Tools, and what i3 available on th~
SIG tapes.

0.24 The SIG should provide a comparison of available structured
languages, in terms of their capabilities and available com
pilers.

0.25 The SIG should develop and maintain common debu6ging tools
for all structured languages.

0.26 ~he SIG should encourage development of Software Tools, to
be oade available through the SIG tapes.

0.27 The SIG should survey to determine in what areas software
tools are most needed.

0. 28 Th,.e SIG should endeavor to provide faster turnaround for SIG
tapes.

0.29 ?he SIG should provide better documentation of updates on
the SIG tapes.

n.30 The SIG should investigate other means of ac~uiring updates.

0.31 ~he SIG should develop standardized libraries for various
applications, such as file I/O, graphics, and terminal han
dling.

0.32 The SIG should maintain the largest possible range of
languages for RT11.

23

1
1
1
1

30
1
2

80
9

2
1
1
1
1

25
2
8

51

1
1
1
3
1
1

48
1
1

53

** OPERATING SYSTEMS **
29 respondents using TOPS10 or TOPS20
96 respondents using RSX or IAS
21 respondents using RSTS
72 respondents using RT 11
94 respondents using VMS
23 respondents using UNIX
21 respondents using other operating systems

** TYPE OF INSTALLATION **
73 Scientific oriented installations
24 Manufacturing oriented installations
33 Education oriented installations
27 Business oriented installations
22 Government oriented installations
38 other installations

** LANGUAGES: USED **
MACR0-11 1 ASSEMBLER 3 MODULA-2
SIMULA 2 SIMULA67 1 BLISS10
PL/M 1 SAL-11 1 MAINSAIL
BASIC+2 1 DIBOL 2 BASIC
NOT SPECIFIED 3 PL/1 1 FLECS
SAIL 3 BLISS 2 MANY
COBOL 3 FORTRANIV 14 FORTRAN
PASCAL 32 c 20 FORTRAN77
RATFOR

** LANGUAGES: PREFERRED **
ALGOL68 1 CEDAR 1 BASIC+
APL SF 2 SIMULA 1 SIMULA67
ALGOL-60 6 FORTRAN77 1 MAINSAIL
BASIC+2 31 NOT SPECIFIED 1 LOGO
MODULA 1 FORTH 1 SAIL
MODULA-2 3 ALGOL 1 APL
BLISS 1 FLECS 6 PL/1
FORTRAN 38 c 26 ADA
PASCAL 3 RATFOR

** LANGUAGES: SECOND CHOICE **
BLISS 1 MACR0-11 1 ASSEMBLER
SIMULA67 1 FLECS 1 LISP
SUPERMAC 1 BLISS36 1 CORAL-66
MACRO 1 PRAXIS 3 RATFOR
FORTH 4 PL/1 1 MODULA
XPL 7 FORTRAN77 1 SMALLTALK
NOT SPECIFIED 2 ALGOL 11 MODULA-2
COBOL 24 ADA 1 BASIC
MODULA2 37 c 7 FORTRAN
PASCAL

24

•• SORTED DEC ITEMS ••

Item Total Percent Percent of Largest Vote
Number Votes Of Max 0 50 100

1 463 42.9 ••
7 416 38.5 ••

15 398 36.9 ••
6 375 34.7 ••
9 329 30.5 •••••••••••••••••••••••••••••••••••

21 291 26.9 •••••••••••••••••••••••••••••••
5 225 20.8 ••••••••••••••••••••••••

28 219 20.3 •••••••••••••••••••••••
3 210 19.4 ••••••••••••••••••••••

14 206 19. 1 ••••••••••••••••••••••
22 179 16.6 •••••••••••••••••••
25 169 15.6 ••••••••••••••••••
12 153 14.2 ••••••••••••••••
8 139 12.9 •••••••••••••••

29 121 11. 2 •••••••••••••
18 119 11. 0 ••••••••••••
16 114 10.6 ••••••••••••
2 102 9.4 •••••••••••

21 95 8.8 ••••••••••
11 94 8.7 ••••••••••
4 91 8.4 •••••••••

17 88 8. 1 •••••••••
24 82 7.6 ••••••••
19 79 7.3 ••••••••
26 78 1.2 ••••••••
13 71 6.6 •••••••
10 47 4.4 •••••
20 43 4.0 ••••
23 31 2.9 •••

•• DEC ITEMS ••

Item Total Percent Percent of Largest Vote
Number Votes Of Max 0 50 100

1 463 42.9 ••
2 102 9.4 •••••••••••
3 210 19.4 ••••••••••••••••••••••
4 91 8.4 •••••••••
5 225 20.8 ••••••••••••••••••••••••
6 375 311. 7 ••
7 416 38.5 ••
8 139 12.9 •••••••••••••••
9 329 30.5 •••••••••••••••••••••••••••••••••••

10 47 4.4 •••••
1 1 94 8.7 ••••••••••
12 153 14.2 ••••••••••••••••
13 71 6.6 •••••••
14 206 19. 1 ••••••••••••••••••••••
15 398 36.9 ••
16 114 10.6 ••••••••••••
17 88 8. 1 •••••••••
18 119 11. 0 ••••••••••••
19 79 1.3 ••••••••
20 43 4.0 ••••
21 95 8.8 ••••••••••
22 179 16.6 •••••••••••••••••••
23 31 2.9 •••
24 82 7.6 ••••••••
25 169 15.6 ••••••••••••••••••
26 78 7.2 ••••••••
27 291 26.9 •••••••••••••••••••••••••••••••
28 219 20.3 •••••••••••••••••••••••
29 121 11. 2 •••••••••••••

There were 216 ballots, m~x vote per item = 1080

25

•• SORTED SIG ITEMS ••

Item Total Percent Percent of Largest Vote
Number Votes Of Max 0 50 100

23 424 39.3 ··········*······································· 24 393 36.4 ••
26 376 34.8 ••

1 336 31. 1 •••••••••••••••••••••••••••••••••••••••
7 278 25.7 ••••••••••••••••••••••••••••••••

21 261 24.2 ••••••••••••••••••••••••••••••
31 226 20.9 ••••••••••••••••••••••••••
20 218 20.2 •••••••••••••••••••••••••

2 191 17.7 ••••••••••••••••••••••
4 185 17. 1 •••••••••••••••••••••
5 157 14.5 ••••••••••••••••••

22 156 14.4 ••••••••••••••••••
8 141 13. 1 ••••••••••••••••

12 136 12.6 ••••••••••••••••
14 135 12.5 •••••••••••••••
3 126 11. 7 ••••••••••••••

27 123 11. 4 ••••••••••••••
25 118 10.9 •••••••••••••
10 115 10.6 •••••••••••••
15 113 10.5 •••••••••••••
6 101 9.4 •••••••••••

18 98 9. 1 •••••••••••
9 82 7.6 •••••••••

1 1 81 7.5 •••••••••
32 77 7. 1 •••••••••
29 71 6.6 ••••••••
17 67 6.2 •••••••
28 62 5.7 •••••••
13 42 3.9 ••••
33 39 3.6 ••••
16 37 3.4 ••••
19 36 3.3 ••••
30 23 2. 1 ••

•• SIG ITEMS ••
Item Total Percent Percent of Largest Vote
Number Votes Of MAX 0 50 100

1 336 31. 1 •••••••••••••••••••••••••••••••••••••••
2 191 17.7 ••••••••••••••••••••••
3 126 11. 7 ••••••••••••••
4 185 17.1 •••••••••••••••••••••
5 157 14.5 ••••••••••••••••••
6 101 9.4 •••••••••••
7 278 25.7 ••••••••••••••••••••••••••••••••
8 141 13. 1 ••••••••••••••••
9 82 7.6 •••••••••

10 115 10.6 •••••••••••••
11 81 7.5 •••••••••
12 136 12.6 ••••••••••••••••
13 42 3.9 ••••
14 135 12.5 •••••••••••••••
15 113 10.5 .. ,
16 37 3.4 ••••
17 67 6.2 •••••••
18 98 9. 1 •••••••••••
19 36 3.3 ••••
20 218 20.2 •••••••••••••••••••••••••
21 261 24.2 ••••••••••••••••••••••••••••••
22 156 14.4 ••••••••••••••••••
23 424 39. 3 ••
24 393 36.4 ••
25 118 10.9 •••••••••••••
26 376 34.8 ••
27 123 11. 4 ••••••••••••••
28 62 5.7 •••••••
29 71 6.6 ••••••••
30 23 2.1 ••
31 226 20.9 ••••••••••••••••••••••••••
32 77 7.1 •••••••••
33 39 3.6 ••••

26

There were 216 ballots, max vote per item = 1080

"DEC/TEST MANAGER"
I. WHAT IS DEC/TEST MANAGER?

DIGITAL i' developing a new software tool, called DEC/TEST
MANAGER, to help users test their software during development and
maintenance. This tool automates the organization, execution, and
review of tests by several developers.

DEC/TEST MANAGER is based on the concept of regression
testing. In standard regression testing, established software
tests are run and the results are compared against some expected
results. If the actual and the expected results do not agree, the
test is considered to have failed, indicating that the software
being tested may contain errors. In that case, the software is
said to have "regressed."

With DEC/TEST MANAGER, you can describe your tests, classify
them by assigning them to groups, and choose combinations of tests
and groups to be run. DEC/TEST MANAGER executes the tests you
select and compares the test results with the expected results you
gave it. Multiple developers may choose to run different
combinations of tests, and of course, you can always run all the
tests in the test system. During the execution of a test,
DEC/TEST MANAGER provides a summary of the test's status. It also
allows you to view test results interactively, evaluate the test
run, and use the results to make modifications to your code.

Thus, DEC/TEST MANAGER provides software developers the means
to build a common test system for their project. It automates the
organization of the testing, the running of the tests, and the
evaluation of the results.

II. WHY WOULD I USE IT?

Testing is a necessary part .of software development, yet
developers frequently don't take the time or trouble to do it as
well or as consistently as they should. Without adequate testing
and good testing procedures, code written by several developers
may not integrate smoothly. Fully tested code can save
developers' time and produce a high-quality product with less
expense.

With DEC/TEST MANAGER, developers must still write their own
tests, but they can let the tool keep track of where those tests
are stored. DEC/TEST MANAGER can run tests independently, or it
can run groups of tests that share certain attributes or
behaviors. The capability of grouping related tests makes it easy
for developers to test modules as they finish implementing them.
Because all developers have easy access to the same test system,
one developer can group his tests with the related tests of
another developer or with selected tests from several developers.
For example, periodic integration checks of the developing
software, perhaps nightly or weekly, can be performed by running
all tests or significant groups of tests.

DEC/TEST MANAGER can also help with software maintenance.
Once you have fixed a bug in your software, you can run a single

27

test of that fix. You can also run that test with a ~roup of
tests that are somehow related to the code you modified. Or you
can run all the tests in your test system to insure that your fix
does not affect the rest of the code. DEC/TEST MANAGER gives you
a consistent and simple method of testing during both development
and maintenance cycles.

III. HOW DOES IT WORK?

DEC/TEST MANAGER stores all the information it needs to
manage a test system in an area called a TEST MANAGER library.
You create a library to hold the tests for one project or for a
set of projects.

A. ORGANIZES YOUR TESTS

Once you have written your tests, you use DEC/TEST MANAGER to
create a test description for each test. A test description
contains the-lnformation DEC/TEST MANAGER needs to process tests,
such as:

the name of the test

a pointer to a command procedure that runs the test

a pointer to a set-up file that will be run before the test is
run

a pointer to a clean-up or filter file that will be run after
the test is run

a pointer to a benchmark file that contains the results you
expect from the test run

a description of what the test does

For a very simple test, not all this information is necessary.
But with a complete test description, DEC/TEST MANAGER can manage
a very elaborate test system.

With the flexibility to manage individual tests, simple
groups of tests, and eiaborate sets of groups that contain other
groups or test descriptions, DEC/TEST MANAGER can keep your tests
organized and easily available to all users of the test system.

B. RUNS YOUR TESTS

When you are ready to run your tests, you can collect any
combination of tests and groups of tests for DEC/TEST MANAGER to
execute as a single test run. By automating the process, DEC/TEST
MANAGER saves developers' time but still provides a simple means
for running only the tests you select. DEC/TEST MANAGER
automatically compares the results of every test run with the
benchmarks you supplied and generates a file of the differences
and any other important information from the run.

28

C. AUTOMATES REVIEW OF THE RESULTS

DEC/TEST MANAGER allows you to view interactively the results
of a test run and the differences recorded for each test in the
run. DEC/TEST MANAGER lets you easily see which tests succeeded
(that is, the actual results agreed with the benchmarks) and which
tests failed (that is, the actual results differed from the
benchmar~s. If a test failed, you can examine the differences
file produced by DEC/TEST MANAGER to determine the reason. Using
the information that DEC/TEST MANAGER supplies, you can quickly
organize your own work (changing and recompiling code) and then
rerun the test to insure that the problem has been corrected.

DEC/TEST MANAGER helps you as you implement assigned tasks,
integrate your code, and maintain your software. This tool is
currently used internally by DIGITAL software developers.

For further information, contact:

Lee Rodabaugh ZK02-3/Q08
110 Spit Brook Road
Nashua, NH 03062-2897
(603) 881-2254

29

CONVERTING TO PDP-11 PASCAL

The following list contains syntax differences that exist between PDP-11
PASCAL and other Pascal implementations. These differences should be noted
when converting your existing Pascal applications programs to run
successfully under PDP-11 PASCAL. The list is not meant to be exhaustive
but does point out most of the differences. For more information on the
exact syntax required by PDP-11 PASCAL and the use of these features, refer
to the appropriate section of the PDP-11 PASCAL Language Reference Manual
or the PDP-11 PASCAL User's Guide. For information on the specific
differences between PDP-11 PASCAL and VAX PASCAL refer t~ Appendix E of
the PDP-11 PASCAL Language Reference Manual. In PDP-11 PASCAL,

o The command line used to invoke the compiler and the command line
switches may differ from those of other implementations.

o No switches embedded in comments are recognized.

o PROGRAM or MODULE headings are required. These headings must
include the names of all external files which are referenced in
the program or module including the standard files INPUT and
OUTPUT.

o MODULES must end with an •END.• •

o %INCLUDE syntax may be different from other implementations. File
names used in %INCLUDE directives must include the file extension.
No default file extension is supplied. In a declaration section,
the %INCLUDE directive must not be followed by a semicolon.
Default file extensions are provided for files used in OPEN calls·
.DAT is attached to external files, .TMP is attached to internal
files.

o Only a file variable parameter is allowed for RESET and REWRITE
calls. Use the PDP-11 PASCAL OPEN statement to attach specific
characteristics to a file. Because the OPEN call leaves the file
in an undefined state, the OPEN must be followed by a RESET or
REWRITE call.

o The FIND and UPDATE predeclared procedures provide the
capabilities offered by the SEEK procedure in other
implementations. Calls to SEEK can be replaced by calls to FIND;
the SEEK-PUT sequence can be replaced by the FIND-UPDATE sequence.

o Octal output and negative field widths are not allowed with WRITE
or WRITELN statements.

o Boolean operators (AND, OR and NOT) cannot be used with integer
operands.

30

o Octal, binary and hexadecimal constant syntax may be different
from other implementations.

o The number and types of predeclared routines may be different from
other implementations. Consult Appendix C of the PDP-11 PASCAL
Language Reference Manual for a list of the predeclared procedures
and functions provided by PDP-11 PASCAL.

o ~The MOD operator returns the modulus of the two operands· the REM
operator returns the remainder of the division of the two
-operands. In some implementations, occurrences of MOD may need to
be replaced by REM to achieve the same functionality.

0 A new TIME function returns the time as
The optional OTS module FTIME
representation of the time.

an 11-character string.
returns a floating-point

o Declaring procedures and functions with the [EXTERNAL] attribute
and/or the EXTERNAL directive causes the routine name to be passed
to the Task Builder as a global symbol, even if the procedure or
function is not otherwise referenced within the compilation unit.

o It is allowable to declare a routine EXTERNAL in a compilation
unit and then include the body of the routine in the same
compilation unit with the following restrictions. The EXTERNAL
declaration must appear first with a complete parameter list and
function result type, if applicable. The subsequent GLOBAL
declaration must include the [GLOBAL] attribute in the routine
heading and if the parameter list or function result type are
included on the [GLOBAL] declaration, they will be ignored and a
warning level compile-time error will be given. Usually, this
warning level error will not prevent the correct operation of the
program.

o Only positional parameters are allowed in calls to predeclared and
user declared routines.

o REAL variables are handled with single precision only;
precision reals are not supported.

double

o Function result types must be simple types; structured types such
as arrays and records cannot be used as function results.

o The SEQll directive is used to generate a FORTRAN-like calling
sequence; other implementations may use a different directive for
this purpose.

31

Following is a list of sessions, in no particular order,
sponsored by the LTSIG for the Anaheim symposium:

SCIENTIFIC APPLICATION & APPLICATIONS DATABASE FOR THE PUBLIC
DOMAIN. Mike Peterson, Digital Equipment Corp.

SOFTWARE TOOLS TUTORIAL & UPDATE. Dave Martin, Hughes Aircraft
Company.

A COMPARISON OF SEVERAL POPULAR TEXT EDITORS.
Hughes Aircraft Company.

Dave Martin,

GENERIC FMS SCREEN PROCESSOR. Kirk Harmon, Varian Associates.

THE USES OF TOOLS TO MIGRATE AND CONTROL CODE FROM VMS TO UNIX
Daniel Detterman, Mass. Computer Assoc.

LANGUAGES & TOOLS ROADMAP.
Siegler/Instrument Division.

Katherine Hornbach, Lear

INFORMAL LIBRARY CONTROL SYSTEM. Robert DeWolf, Hughes Aircraft
Company.

ADVANCED OBJECT LIBRARY CONTROL TECHNIQUES.
Hughes Aircraft Company.

Robert DeWolf,

SORT/MERGE V3.0 PDP-11 System Software Group, Digital Equipment
Corporation.

CALLING PDP-11 SORT/MERGE V3.0 FROM HIGH LEVEL LANGUAGES. PDP-11
Languages Group, Digital Equipment Corporation.

PRACTICAL BENEFITS OF A STANDARD DEVELOPMENT ENVIRONMENT ON DEC
OPERATING SYSTEMS. Collins Hemingway, Oregon Software.

DEBUGGING FORTRAN-77 APPLICATIONS USING FORTRAN-77 DEBUG. For
tran Development Group, Digital Equipment Corporation.

CAPABILITIES OF DEC/TEST MANAGER REGRESSION TEST TOOL FOR
SOFTWARE DEVELOPMENT AND MAINTENANCE. Software Tools Group, Digi
tal Equipment Corporation.

VAX PASCAL FUTURES. Joel Clinkenbeard, Digital Equipment Cor
poration.

VAX PASCAL OPTIMIZATIONS. Joel Clinkenbeard, Digital Equipment
Corporation.

VAX DEBUGGER V4.0. Bert Beander, Digital Equipment Corporation.

ANALYZING PROGRAM PERFORMANCE IN THE VMS ENVIRONMENT. Bert
Beander, Digital Equipment Corporation.

32

VAX ADA(R) TECHNICAL SESSION. Charles Mitchell, Digital Equip
ment Corporation.

LANGUAGE SENSITIVE EDITORS. Glenn Lupton, Digital Equipment Cor
poration.

VAX C AND THE VMS PROGRAMMING ENVIRONMENT. Chip Nylander, Digi
tal Equipment Corporation.

OVERVIEW OF DIGITAL'S ADA(R) LANGUAGES IMPLEMENTATION FOR
VAX/YMS. Charlie Mitchell, Digital Equipment Corporation.

UNIX EMULATION USING THE VAX C RUN TIME LIBRARY. Chip Nylander,
Digital Equipment Corporation.

PROGRAM EDITING IN THE VMS ENVIRONMENT.
Equipment Corporation.

Glenn Lupton, Digital

VAX PL/1 OVERVIEW. Chip Nylander, Digital Equipment Corporation.

A NEW EMPIRICAL ANALYSIS OF FORTRAN PROGRAMS. Joel Clinkenbeard,
Digital Equipment Corporation.

FORTRAN IN THE VAX PROGRAMMING ENVIRONMENT.
Digital Equipment Corporation.

Joel Clinkenbeard,

DEC/CMS, DEC/MMS, DEC/TEST MANAGER -- A TUTORIAL ON VMS TOOLS.
Software Tools Group, Digital Equipment Corporation.

WHAT'S NEW WITH DEC/CMS? CAPABILITES AND FEATURES.
Tools Group, Digital Equipment Corporation.

Software

HOW TO GET THE MOST OUT OF DEC/MMS. Software Tools Group, Digi
tal Equipment Corporation.

VAX TPU TUTORIAL. Steve Long, Digital Equipment Corporation.

ANNOUNCING THE NEW VMS TEXT EDITOR - TPU.
Equipment Corporation.

Steve Long, Digital

A STANDARD FOR SOFTWARE VERIFICATION PLANS. Jay Wiley, Bechtel
Power Corporation.

A STATIC ANALYZER FOR SETS OF FORTRAN MODULES.
Science Applications, Inc.

Gerald Berns,

HUGHES AIRCRAFTS' SOFTWARE ENGINEERING ENVIRONMENT. Joe Bryant,
Hughes Aircraft Company/Ground Systems Group.

A LANGUAGE FOR PROCESSING TEXT ON VMS.
Tools, Digital Equipment Corporation.

Corporate Languages &

REAL WORLD USE OF SOFTWARE DEVELOPMENT TOOLS.
bach, Lear Siegler/Instrument Division.

33

Katherine Horn-

PROMOTING THE ACQUISITION AND USE OF SOFTWARE DEVELOPMENT TOOLS.
Katherine Hornbach, Lear Siegler/Instrument Division.

LANGUAGES AND TOOLS QUESTION AND ANSWER.
Lear Siegler/Instrument Division.

Katherine Hornbach,

PASCAL PROGRAM DEVELOPMENT REQUIRING ACCESS TO RSX11M EXECUTIVE
DIRECTIVES. Bruce R. Ingersoll, GTE Communications Systems.

A DOD ADA STATUS REPORT. Peter Beck, U.S. Army Armament Research
& Development Center.

ADA LANGUAGE SYSTEM DEMONSTRATION. Rich Thall, Softech.

MANAGING ADA IN A LARGE SYSTEM DEVELOPMENT. Mike Ryer, Intere
trics.

ADA Q&A PANEL. Peter Beck, U.S. Army Armament & Research
Development Center.

AN ARTIFICIAL INTELLIGENCE PROJECT CASE STUDY -- THE FIRST SIX
MONTHS. Don Rosenthal, Space Telescope Science Institute.

TEX: TYPESETTING FOR ALMOST EVERYBODY. Samuel Whidden, American
Mathematical Society.

WRITING EFFICIENT AND EASY-TO-READ CODE IN VAX C.
Jet Propulsion Laboratory.

Russ Brill,

MULTI-LINGUAL APPLICATIONS DEVELOPMENT. Bob L. Besner, Depart
ment of National Defense.

MULTI-LINGUAL COMMERCIAL APPLICATIONS WITH VAX-11 COBOL. Mark
Gillis, Digital Equipment Corporation.

MACHINE PROCESS DEFINITION SYSTEM. David W. Cohn, General Elec
tric Co.

THE USE OF DEC/CMS & DEC/MMS IN CONFIGURATION MANAGEMENT. Earl
S. Cory, Eaton Corporation, Information Systems Division.

USING DCL AS A SOFTWARE DEVELOPMENT TOOL. Earl S. Cory, Eaton
Corporation, Information Systems Division.

CONVERSION AND COMPARISON OF STANDARD FORTRAN, DEC FORTRAN'S AND
VAX-11 FORTRAN. Earl S. Cory, Eaton Corporation, Information
Systems Division.

34

r

r
Ade Certitioetion end Yelidetlon:

First Steps to A Production Ade Srste•

loneld F. Brender
Di1itel lquip•ent Corporetion

June 198'

Ade 1• • re1i1tered trede•erk or the U.S. Gowern•ent, Ad• Joint
Pro1r•• Ottioe

Pe1e 3

Yhr Adn?

The DoD sou1ht -

A l•n1u•1• 1ulted tor pro1r•••ln1 DoD ••bedded srste••· wlth
partlouler oonoern tor:

Pro1r•• rellebllltr end ••lntenenoe

Pro1r•••ln1 •• a hu••n eotlwltr

lttlolenor

.... 2

A Super Brief Historr or Ade

o lerlr 70'• - DoD spendin1 billions on 1ottwere, u1in1
hundred• or len1ue1e1 end dieleot1

o 1975 - A Hilh-Order Len1ue1e Vorkln1 Group (IOLVG)
Hhbllshed

o 1977 - DoD e1tebll1hed thet • 11n1le len1u•1e to •••l•fr
DoD requlr•••nta wel tee1ible, but no e•l1tl•1 lan1u11e
sufficed

o 1979 - The •1reen• l•n1ue1e de1l1ned bJ Jee• lehbleh
beoe•e Ad•

o 1983 - AISl/MIL-STD-1815A-1983 epproud

Pe1e '

VhJ Ada?

The DoD 1ot -

A powerful 1•ner•l purpo1e l•n1u•1• lnoorporatln1 •oder•
pro1r•••ln1 preotloe1 with lnte1reted teollltl•• tor:

Stron1 tJPln1

D•t• eb1traotlon

Concurrent prooeaaln1 (•ultl-ta1kln1>

Seperate (not independent) oo•plletion

l•oeptlon hendlln1

Generlo deflnltlon1

Meohln• dependent reollltle1

h1e 5

orrtolallJ Ad•

o Ad• St•nd•rd - AISI/MIL-STD-1815A-1983

o Ad• Tr•d••mrk

o Ad• Y•ltd•tton

o Ad• lo•rd

o ISO TC9T/SC5/WG1'

Pege 7

Certt rtc•tton? hlld•tton?

Certtrto•tton -

T•ll• th4 test Jourselr •t ho•• tn prl••t• end send • note
cl•i•tn• JOU P•••

Y•lld•tton -

AYO oo••• to JOUr hou•• ind 1t••• JOU the test to see tr JOU
redlJ PIH

Page 6

Ad• Certiric•tion •nd Y•lid•tion

o Ad•intstered bJ the Ad• Y•lid•tion orrtce, AJPO

o Required to qu•llrJ tor DoD contr•ots

o Checks conror••nce vlth the Ad• stend•rd

,.,. 8

Cer. t1rte1tlon

A letter sent bJ 1n l•ple•enter to th• AYO th•t descrlb••=

o All host •nd/or t•r1et conrlgur•tlons to b• ••lld•t•d

o All i•ple•ent1tion spectrtc p1r•••t1rs Cr•n1• or
integers, eccurecJ or flo•ttn1 point, •nd the like)

o All i•ple•entetion dependent cherecteristios •ccordinl
to the criteri1 in Appendiz F or the Ad• St•nd•rd

Page 9

Certl floatlon

Also, a stata•ant that:

o The l•pla•entatlon pass•• all applicable tests

o lo deliberate estenslonl to the Ada Standard ••lst In
the l•ple•entatlon

And •1r••••nt to:

o Publlo release or all tnror••tlon concerning the results
or ••lldatlon testln1

o Co•plJ with the Ada Tred•••rk Pollop or the AJPO

Page 11

Cartl rlcatlon

Flnall1, assure the •••liabllltp durln1 aotual •alldatlon or:

o Co•plate hard copJ llstln1s or all tests

o Aoceas to co•putln1 racllltles on a 2'-hour basis

o Machine readable output to be kept bJ the AYO (Ir at all
possible)

Pase 10

Certl rlcatlon

Further, a description or and justlflcatlon for:

o AnJ •odlrlcatlons required to pass anJ test

o Anp tests clal•ed to be Incorrect

o Anp tests dee•ed not applloabl•

o Co•pller options •••liable and used

,.,. 12

Certlflcatlon Acceptance

The letter or Certification ls accepted when:

o The AYO ls satisfied that all required lnfor•atlon ls
pro•ided

o Anp disputed tests ha•• been re•lewed bp • •rest
Reaction Tea•• or Ada esperts

The AYO withdraws enp disputed test that ls resol••d
In favor or the l•ple•enter

The i•ple•enter a1rees to conror• to enp disputed
test resolved in fa•or of the AYO

Actual validation is then scheduled

Pa11e 13

Yalldatton

o AYO personnel co•• on-site and super•tse runntn11 or the
tests

o Ir 100 percent or the eppltoabl• tests ere passed then
the i•ple•entor reo•l•es a

Certtrtoate or Yelldatton

o I oerttrtcete ot ••lldatton ts 1ood ror one rear

Pa11e 15

ltnds or Yaltdatton Tests

a• laeouteble, no internal checktn1

•o~-eaeouteble, deliberate errors that •ust be detected
durlal ooepllatlon

laeout•ble, 1elr-oheoktn1 vlth auto•atlo reportln1

Capaoltf te1t1 (do not lnrluence 1ucce11 or Yalldatlon)

laeoutable, deter•lne certain options, oheck non-bindtn1
lnterpretatton1

L• •on-eaeoutable, deltberete errors vhioh •ust be detected
no later than ltnktn1

•.ADA

•. DEP

•.TST

The Ida Val tdatton Suite - "Th• Test•

o I set or about 1800 tests

o Checks that correct pro1r••s vork

o Checks that incorrect pro1r••s are dta1nosed

o lu1•ented, re•tsed and updated on a sta-•onth orcle

o Version 1.11 as or AprU 19811

o Publtclr a•allable

Page 16

linds or Validation Tests

Nor•al tests

l•ple•entatton dependent tests

For options like LONG_INTEGEI, SHOIT_FLOAT data trpes

Para•etertzed tests

Must adapt ror l•pl•••ntatton dependent para•eters, such
as •a•i•u• dt1tts or r1oattn1 point precision

Pege 17 Page 18

Dl1trlbutlon or Te1t1 (Unlt1) Di1tribution or Te1t1 (Unlt1)

•.ADA • .DEP •. TST Te1t1 Chepter

·--- -----------I
11 I 57 1 Introduction

I 92 2 Le1 icel Ele•ent1
I 291 3 Decleretions end Trpe1

•• I 755 9 21 363 - ll•••S and Eapre1slons
I 233 5 Sta te•ents
I 105 6 Subpro1ra•1

c• I 9111 3'0 10 77 7 Packa1e1
I 10 8 Yisibilltr lule•
I 179 9 Tasks

DI I 111 219 10 Pro1r•• Structure
I 26 11 EacepUon1
I 21' 12 Generics

1• I 6 1 3 lepresentetlon Cl 1use1
I 222 " In put-Out put
I

L• I '6 111

-~--~~--~

Dl1lt1l St1tu1 on T Jun• 198'

Per cent or the ••lldetlon te1t1 p1111d:

Dl 1puted te1tl:

lon-1pplloable te1t1:

Letter or oert1r101tlon 1ub•ltt1d:

Yelldetlon 1ah1dul1d:

???

???

,., • 19

??? I

??? 1911'

Pa1• 20

Sl1n1r101nce or ¥1lld1tlon

letn1 ••lidated •earis that the l•ple•entetlon

o I1 able to pa11 a r1a1an1blJ de•1ndln1 set or t11t1

o Qu1llrie1 ror consideration where •a Yalideted oo•Piler•
ls • selection criteria

llo More, llo Less

Languages and Tools •Mushroom"

Keeping in spirit with the Languages and Tools SIG's
emphasis on software development methods, as well as
languages and tools, the SIG had designed and manufactured a
special template for sale in the DECUS store at Cincinnati
and later Symposia. The template contains all the symbols
necessary for the drawi.ng of data flow diagrams and
structure charts, which are the graphical outputs from the
Structured Analysis/Structured Design methodology. It even
includes the French curves necessary for drawing the data
flows and hence its unusual, mushroom-like outline.

Those of you who have tried to do SA/SD by hand before wi II
realize that it takes at least three commercially-available
templates to provide all the symbols needed. The L l T
template provides them all ... you can see its outline below.

D
/100UL€

7Eltrl'f.ZIVATO"t I
CJ 0 .._______.

SA sro~£

40

The LT SIG Standards Activities

My name is Jay w. Wiley and I am the Standards Coordinator for the
LT SIG. I can be reached at:

Bechtel Power Corporation
12400 E. Imperial Highway
Norwalk, CA 90650
213-807-4016

The standards activities that are of interest to the SIG are the
national standards associated with the programming languages that
are represented by the SIG and software engineering standards.
The language specific standards activities are normally handled by
the SIG language coordinator. Software engineering standards typi
cally fall into two categories. These categories are Department of
Defense (DOD) and non-DOD. The DOD standards are of primary
interest to military contractor? and will not be addressed by the
SIG. The most active non-DOD group is the Software Engineering
Standards Subcommittee (SESS) of the IEEE Computer Society. I
am an active member of Working Group Pl012, a Standard for Software
Verification Plans, and will present a paper on the activities of
this Working Group during the Fall Symposium. Included in this
newsletter is a copy of the current SESS status report. This
report includes the names and addresses of the Chairmen of all
of the various Working Groups. Anyone can participate in these
working groups. You do not need to be a member of IEEE.

The SIG will have information on the proposed FORTRAN 8X standard
available at the Fall Symposium. If you are planning on attending
the Symposium, be sure to stop in at the LT SIG suite.

41

STATUS REPORT, 1 May 1994

Software Engineerin9 Standards Subcommittee

Technical Committee on Software Engineering

IEEE Computer Society

42

1. 0
2.0
2. 1
2.2
3.0
3. 1

3.2

3.3

3.4

3. 5

4.0
4. 1

4.2

4. :3
4.4

4. 5
4.b
4. 7
4.8
4.9
5.0
5. 1

5. 2

5. 3
5. 4
5. 5
5. 6
6.0
7.0

8.0
8. 1
8. 2
8.3
8. 3. 1
8. 3. 2
8. 3. 3

SESS Status Report. 1 Ma'I 1984

TABLE OF CONTENTS

PURPOSE
SUMMARY OF THIS YEAR'S ACTIVITY TO DATE

Comp 1 eted Events .
New St•rts .

APPROVED STANDARDS.
ANSI/IEEE 729-1983. IEEE Standard Ql ossat·-. Of
Software Engineering lerminolog.. . . .
ANSI/IEEE 730-1981, IEEE Standard For Software
Oualit .. Assurance Plans.
IEEE Std 828-1983, IEEE Standard For Software
Configuration ManagPment Plans.
ANSI/IEEE 8;?9-1983, IEEE S·tandard For Software
Test Documentation
IEEE Std 830-1983. IFEE Guide For Softwure
Re,uirements Specifications

APPROVED PROJECTS
P730-1, A Standard For Software Gu al i t11 A!.suranc e
Plans.
P982, A Standard For Software Reliabilit'I
Measurement
P983. A Guide For Software Gualit .. A~surance.
P990. A Guide For The Use Of Ada* As A Program

1
1
1
1
2

3

3

4

4

4
'5

6

7
8

Design Language 8
P1002, Software Engineering Standards Taxonomy 9
P1008 A Standard For Software Unit Testing . 11
P1012 A Standard For Software Verification flla11s 12
P1016 A Guide For Software Design Descriptions 13
P1028, A Standard For Software Reviews And Audits 13

TENTATIVE PROJECTS. 14
A Guide For Software Configuration ManagPment
Plans 15
A Standard Classification Of Software Errors,
Faults, And Failures.
A Standard For Software Productivity Metrics
A Guide For Third Part~ Software Ac~uisition
A Standard For Software Guality Metrics
A Standard For User Documentation

SOFTWARE ENGINEERING STANDARDS SEMINARS
SOFTWARE ENGINEERING STANDARDS APPLICATION
WORKSHOPS
OTHER ITEMS

Organizational R•presentation
Organizational Points Of Contact
Other Standards Activities Of Interest

ISO/TC-97
P610, Computer Dictionar~
ANS 10.4 G~ideline For Software VeriFic~tion
And Validation .

43

16
17
17
18
18
19

20
20
20
22
23
23
23

24

8. 3.4
8. 4
8.4. 1
8.4.2
8. 5

SESS Status RepoTt, 1 Ma~ 1984

ASTM E 730 .
SESS Administration

SESS Ouide ..
Long-Range Planning

Miscellaneous

24
24
25
25
25

* Ada is a registered trademark of the United States Government
Department of Defense (A~PO>.

44

SESS Status Report. 1 !"lay 1984

1.0 PURPOSE

The purpose of this memo is to provide the status of efforts on:

1. Approv•d standards.

2. Approved proJects.

3. Tentative proJects.

4. Software Engineering Seminars

5. Other items.

2.0 SUMMARY OF THIS YEAR'S ACTIVITY TO DATE

Significant events occuring to date in 1984 to date are summarized as
f 011 ows:

2. 1 Completed Events

1.

2.

The IEEE Standards Board published IEEE Std
Guide to Software Requirements Specifications,

The 1985 SESS Budget Tequest was provided to
Chairperson. and to 1.Pittman. CSC Chairperson,
by S. Gloss-Soler

830-1984, IEEE
on 10 Feb 1984.

.J. Nusa, TCSE
on 28 Feb 1985

3. The Charter and Organization of the SESS was ~omposed by
A.Frank Ackerman. reviewed and revised b14 a group chaired by
Shirley Gloss-Soler, and submitted to a ballot of the SESS
Executive Board on 20 March 1984.

4. The Software Engineering Techniques proJect has been cancelled

2. 2 New Starts

1. The following new proJects were initiated on 28 F~b 1984

45

SESS Status Report. 1 Ma~ 1984

a. A Standard for Software Oualit~ Metrics

b. A Standard far User Documentation

c. A Quide for Third Part~ Software Acquisition

2. The ProJect Authorization Request for A Standard for Software
Reviews and Audits was approved b~ the IEEE Standards Office
at the 22 March 1984 Standards Board meeting. This was
subJect ta a change in the name of the proJect to "Guide" or
"Recommended Practice". That directed change is currentl~

under appeal to the Standards Board

3.0 APPROVED STANDARDS.

<Copies of these Standards ma~ be purchased using the order form
at the end of this report. >

These are summarized in Table 1.

Table 1
Approved Software Engineering Stand•rds

ANSI/IEEE Std 730-1981. IEEE Standard for Software Gualit~
Assurance Plans

ANSI/IEEE Std 729-1983, IEEE Standard Glossar~ of Software
En9ineerin9 Terminolog~

ANSI/IEEE Std 829-1983. IEEE Standard for Software Test
Documentation

IEEE Std 828-1983. IEEE Standard for Software Configuration
Management Plans

IEEE Std 830-1984. IEEE Guide to Software Requirements
Specifications

46

SESS Status Report. 1 Ma'I 1984

3. 1 ANSI/IEEE 729-1983.
Engineering Terminolog~

1. Chairperson is:

S. Gloss-Soler
<315) 456-1240
1607 Craig St
Rome, NY 13440

IEEE StandaT'd Glossar'I Of Software

3. Further action on the International area is being held in
ab•'lance pending completion of the efforts on the
establishment of ISO/TC-97/SC-22. <See 8.3. 1>

3.2 ANSI/IEEE 730-1981. IEEE StandaT'd For Software Qualit~ Assurance
Plans.

1. Chairperson is:

Fletcher J. Buckle~

(609) 778-3606
RCA. Mail Stop 101-229
Moorestown. NJ 08057

2. Status is as follows; the Standard was

a. Approved b'I ANSI on 21 ~Ul'I 1982.

b. Submitted to the SecretaT'iat. ISO/TC-176 b'I the Chairman.
USTAQ on 17 March 1933.

c. Submitted to the Chief, US De 1 egate, ISO/TC-97 on 24 Feb
1983.

3. ProJected milestones AT'e as follows:

a. Approved b~ ISO/TC-176 at their next meeting: March 1984.

b. Approved b~ ISO/TC-97: March 1984.

47

SESS Status Report, 1 Ma~ 1984

3. 3 IEEE Std 828-1983,
Management Plans.

IEEE Standard For Software Configuration

1. Chairperson is:

Rick Fl"edrick
(214) 995-2690
Texas Instruments, M. S. a
PO Box 5012
~allas. Texas 75067

2. The standard was approved b~ the IEEE Standards Board on 24
.June 1983.

3. The results of the meeting with NPEC were approved b~ the IEEE
Standards Board on 1 Feb 1984.

4.

3.4 ANSI/IEEE 829-1983, IEEE Standard For Software Test Documentation

1. Chairperson is:

David Gelperin
<612) 542-8620
2425 Zealand Ave. N.
Golden Valle11. Minn. 55427

2. This standard was approved b~ ANSI on 19 August 1983.

3. Further action on the International area is being
abe~ance pending completion of the efforts
establishment of ISO/TC-97 /SC-22. <See 8. 3. 1 >

held in
on the

3. 5 IEEE Std 830-1983,
Specifications

IEEE For Software Req,uirements

1. Chairperson is:

Al Davis
(602) 582-7069
GTE Network S~stems

48

SESS Status Report, 1 Ma~ 1984

2500 West Utopia Road
Phoenix. Ai 85027

2. The Quide was approved b~ th• IEEE Standards Board on 22 Sept
1983, and published on 5 Feb 19984.

a. Jul~ 1984

4.0 APPROVED PROJECTS

These are shown in Table 2.

Table 2
Approved Software Engineering St~ndards ProJects

A Standard for Software Oualit~ Assurance Plans <Revision> <P730-l>

A Standard for Software Reliabilit~ Measurement (P982)

A Guide for Software Oualit~ Assurance <P983>

A Guide for the Use of Ada• as a PDL <P990>

Software Engineering Standards laxonom~ <P1002>

A Standard for Software Unit Testing <Pl008>

A Standard for Software Verification Plans (P1012)

A Guide for Software Design Descriptions <P1016>

A Standard for Software Reviews and Audits <P1028)

*Ada is a registered trademark of the US Government, AJPO.

49

SESS Status Report. 1 Mav 1984

4. 1 P730-1. A Standard For Software Qualitv Assuranc• Plans.

1. Chairperson is:

Fl•tcher J. Bucklev
(609) 778-3606
RCA. Mail Stop 101-229
Moorestown. NJ 08057

2. Co-Chairperson is:

RobeT't FelkeT'
(215) 770-6675
Penn PoweT' and Light
2 NoT'th 9th St
Allentown. Penn 18101

3. CuT'T'ent status is as follows

a. The balloting has been completed. All members of the
balloting gT'oup and coordination groups hav• been notified
of the T'esults and offered an opportiunitv to change their
ballot.

b. Results of the balloting effort are as Follows:

<1> Number of ballots sent. 181

<2> Number of ballots returned: 1 S4 < 85. 1 7. >

'3> Affirmatives: 144 <73. SX of return~)

(4) Number of unresolved Negative Votes:
r·eturns >

1 <0.67. of

<5> Number of Abstentions: 9 <5.9~ oF return~)

4. The revised standard was provided to the IEEE Standards Board
on 15 March 1984 foT' approval at theiT' Jun• 1984 meeting.

50

.Jim Dobbins
<703> 367-391~
MS 105-9013
IBM FSD
9500 Qodwin Driv•
Manassas. Va 22110

2. Co-chairp•rsons are:

J.

a. Ted Workman
011 44 344 77319, ext 3647
Hewlett-Packard Limited
Nine Mile Rid•
Wokingham, Berks
England RG 11 3LL

b. Ra11 Leber
(215> 962-4118
General Electric Co.
PO Box 8555, Room M2216, Bldg 100
Phil•delphia, Pa 19101

The last meeting was held on 2-4 April 1984: Orlando, Fla.

4. The schedule For forthcoming meetings is as follows:

a. October 1984, Siln Francisco. Calif.

5. Status is as follows:

A initial Final draft has been produced.

6. ProJected milestone is as follows:

Draft standard balloted: .Jan 1985

51

SESS Status Report. 1 Ma~ 1984

4. 3 p993, A Guide For Software Oualit¥ Assurance.

1. Chairperson is:

G. Tice
(503) 629-1310
Tektronix
PO Box 392
Wilsonville, Oregon 97070

2. Co-chairperson is:

3.

A. I<. Ac le er man
(201) 981-7946
Bell Laboratories.
B Corporate Place
Piscatawa11. N.J 08854

The last meeting was held at Dallas Texas: 8-10 Ma11 1984.

4. The schedule of forthcoming meetings is as follows:

a. Portland, Oregon: 28-30 Aug 1984

5. Status is as follows:

a. A ProJect Authorization Re~uest was approved b~ the IEEE
Standards Board at their December 1982 meeting with the
addition of coordinction with ISO/TC 97.

b. The first complete draft was produced and distributed for
comment on 2 Aug 1983.

o. ProJected milestone is as follows:

Draft standard balloted: Sept 1984

4. 4 P990, A Guide For The Use Of Ada* As A Program Desi~n Language

* Ada is a registered trademark of the United States Government Dept of
Defense (A.JPO>.

52

SESS Status Report. 1 Mav 1984

Bob Blas•witz
(609) 778-39~~
RCA, MS 101-210
Moorestown. NJ 080~7

Mark S. Gerhardt
(401) 847-8000
Ravtheon
PO Box 360
Portsmouth. RI 02871

3. The last meeting was held on 24-26 April 1984, Atlanta. Qa

4. The schedule of forthcoming meetings is as follows:

a. TBD

5. Status is as follows:

a. The US Government Dept of Defense Ada ~oint Program Office
CA~PO> provided permission to this organization to use
their trademarked term "Ada", in connection with this
proJect. bv telegr~m on 11 March 1983.

b. A ProJect Authorization Req,uest was approved b11 the IEEE
Standards Board at their 17 March 1983 meeting.

c. The scope and outline have been completed.

6. ProJected milestones are as follows:

a. First complete draft: Dec 1983.

b. Draft standard balloted: Sept 1984.

4. 5 P1002, Software Engineering Standards Taxonomv

l. Chairperson is:

Leonard Tripp

53

SESS Status Report, 1 Ma'I 1984

<206) 575-5390
Doeing Computer Services
MS 9C-24, PO Box 24346
Seattle, Washington, 98124

2. Co-Chairpersons are:

3.

a. Ralph Wachter
(301) 953-7100. Ext 733b
.Johns Hopkins APL
11100 .Johns Hopkins Road
Laurel. Mar11land 20707

b. Perr11 Nuhn
<203> 375-0200 ext 266
ITT Programming Technolog11 Center
1000 Orono~ue Lane
Stratford, Conn Ob443

The last meeting was held on 23-25 April 1984:
Missouri.

St. Louis.

4. The schedule of forthcomin~ meetings is as follows:

a. June/Jul-.: Wash in g t tin, DC.

5. St.atus is as follows:

The ProJect Authorization Re~uest was approved by the IEEE
Standards Board on 24 June 1983.

b. Four items have been released for comment to interc~t~d

parties:

<1> A ProJect Plan. dated 28 March 1983

<2> A StatemP.nt of Re~uirements. dated 28 March 1983

(3) A bulletin re~uesting involvement in clarifying some
fundamental issues in defining a Software Engineerin~
Standards Taxonom11.

<4> A bulletin re~uesting support in building a Tuxonomy
Reference Librar11.

54

SESS Status Report. 1 Mav 1984

a. First complete draft: Sept 1984.

b. Draft standard balloted: Apri 1 1985.

4.6 PlOOB A Standard For Software Unit Testing

1. Chairperson is:

David Qelperin
(612> 541-1431
Software Oualit~ Engineering
2425 Zealand Ave. N.
Golden Vall•v• Minn 55427

2. Co-chairper•ons are:

a. Hugh Spillane
(617> 299-3801
RCA, A/S, Mail Stop lB-2
PO Box 588
Burlington. Mass 01803

b. Pat Wilburn
(509) 376-4711
Westinghouse - Hanford Co.
MIS W/D-109
PO Box 1970
Richland, Washington 99~52

3. The last meeting was 8-11 Mav 1984, Toronto, Canada

4. Schedule of forthcom1n9 meetings is as follows:

a. 7-10 Aug 1984, Seattle, Washington.

b. 13-16 Nov 1984, Atlanta, QA.

5. The ProJect Authorization Re~uest was approved b~ the IEEE
Standards Board on 2~ ~une 1983 The Scope and outline have
been completed.

55

bi::.33 ;.,1. 1• ·~ Ppunrt, 1 Ma11 1984

6. ProJected milestones are as follows:

a. First complete draft: Ma" 1984.

b. Draft standard balloted: .June 1985.

4. 7 Pl012 A Standard For Software Verification Plans

l. Chairperson is:

Roger FuJii
<213> 831-0611 Ext 2420
Logicon, Inc.
255 West Fifth St.
San Pedro, Calif 90731

2. Co-Chairperson is:

3.

Douglas McMann
<213) 535-4917
TRW Defense and Space Systems Group
Mail Stop M-1/1406
1 Space Parle
Redondo Beach, Calif 90278

The last meeting was on 28 Feb -1 March 1984,
Calif

4 Schedule of forthcoming meetings is as follows:

a. 19-21 .June 1984, New Orleans

b. 11-13 Sept 1984 Seattle

San Francisco,

5. The ProJect Authorization Re~uest was approv~d by IEEE
Standards Board on 22 Sept 1983. subJect to coordination with
ISO/TC97.

6. Contact has been established with the ANS 10.4 committee which
is working on a similiar topic for the American Nuclear
Society <see below>.

56

SESS Status Report. 1 Mav 1984

H. .Jae k B.,·nard
(303) 538-3976
Mail Stp 1D30
ATI• Inf. S~s. Labs
11900 North P•cos St.
Denver. Colorado. 80234

2. Co-chairperson is:

.Jim Darling
<303) 673-7617
Storag• Technolog~ Corp
Mail Stop 93
2270 South 88th St.
Louisville. Co. 80028

3. The last meeting was held on 27-29 March 1984: Orlando. Fla.

4. Schedule of forthcoming m•etings is as follows:

a. .Jul v 1984, Las Vegas, Nevada

b. Septemb•r 1984. Toronto

5. The ProJect Authorization Re~uest was approved b~ the IEEE
Standards Board. on 22 Sept 1983 subJect to coordination with
ISO/TC97. The Standards Board recommended that the title be
changed from "Guide" to "Recommended Practice".

6. The second draft is sch•duled to be distributed in October
1984

4.9 P1028, A Standard For Software Revi•ws And Audits

1. Chairperson is:

Charles P. Hollocker
(312) 979-5823
ATI
901 Rolling Drive
Li s 1 e, 11 60532

57

SESS Status Report. 1 Ma~ 1984

2. Co-Chairperson is:

Tim Kasse
(602) 438-3572
Mororola Micros~stems
2900 South Diablo Wa~
Tempe. Arizona 85062

3. The last tn.eting was 28-29 Feb, 1 March 1994. San Francisco.
Calif.

4. Further meetings are proJected as follows:

a. 5-8 June. Chicago.

b. 18-21 Sept 1984. Arlington. Va

5. Current status is that The ProJect Authorization Re~uest has
been approved b~ the IEEE Standards Office at the 22 March
1984 Standards Board meeting. This was subJect to a change in
the name of the proJect to "Guide" or "Recommended Practice".
That directed change is currentl~ under appeal to the
Standards Board

j_ 0 TENTATIVE PROJECTS.

These are shown in Table 3.

58

SESS Status Report. 1 Ma~ 1984

T•ble 3
lent•tive So,tware Engineering Standards ProJects

A Stendard Classi,icetion for Software Errors,
Faults and F•ilures

A Standard for Software Productivit~ Metrics

A Standard far User Documentation

A Guide for Third Partv Software Ac,uisition

5. 1 A Guide For Software Configuration Management Plans

1. Chairperson is:

Richard Van Tilburg
(714) 732-2307
Hughes Aircraft Corpor~tion
Bldg blB, MS B209
PO Box 3310
Fullerton. Calif 92634

2. Co-Chairperson is:

David Schwartz
(602) 869-3827
Intel Corp, MS: DZ 2-274
2402 West Beardslev Road
Phoenix, AZ 05027

3. Current status is that a ProJect Authorization Re,uest was
provided to the Secretar~ of the IEEE Standards Doard on 18
March 1984 b~ the Chairperson. CSC. It is proJected that this
will be •PProved at the June meeting of the Standards Board.

4. The last meeting was held at 30-31 Jan 1984, Santa Barbara.
Calif

59

SESS Status Report, 1 Ma11 1984

5. Further meetings are proJected •s follows:

a. 16-19 Ma11 1984, Phoenix, Az

b. Sept 1984, Washington, DC

c. ~an 1985, Austin, Texas

5.2 A Standard Cl•ssification Of Software Errors,
Fai 1 ures.

1. Chai rp er son is:

Diclc Evans
<213> 536-3805
TRW, Mail Stop R4/2182
One Space Parle
Redondo Beach. California 90728

2. Co-Chairperson is:

3.

David Simkins
(607) 751-5346
IBM, FSD
M.C. 889 B P75
Owego. New York 13827

The last meeting was held on 7-8 Feb 1984,
Calif.

4. Further meetings are proJected as follows:

a. 23-25 Ma11. Toranto. Canada

b. 25-27 Sept 1984, Bethesda, Md.

d. April 1985 TBO

r~aults. And

Redondo Beach.

5 Current status is that a ProJect Authorization Request was
provided to the Secretar11 oF the IEEE Standards Board on 18
March 1984 b11 the Chairperson, CSC. It is proJected that this
will be approved at the ~une meeting of the Standards Board.

60

SESS Status Report. 1 Ma~ 1984

5.3 A Standard For Software Productivit~ Metrics

Eleanor Antreassian
C201> 981-6479
Dell Labs
Room 3B121
b Corporate Place
Piscatawa~. New Jerse~ 08354

2. Co-Chairperson is:

Robe"rt Sulgrove
C513) 445-1064
NCR Corp.. WHG-5E
1700 South Patte"rson Blvd
Da~ton. Ohio 45479

3. The last meeting was held on 18-20 Jan 1984, Melbo"rne. Fla.

4. Fu'rthe'r meetings are proJected as follows:

a. 2-4 Ma~. Oregon.

b. Sept. Nashua, NH

5. Current status is that a ProJect Autho"rization R~~uest was
sent to the Chairperson oP the Compute.,. Standards Committee 1
April 1984. It is proJected that this will be approved at the
June meeting of the Standards Board.

5.4 A Guide For Third Party SoFtware Ac~uisition

1. Chairperson is:

Phi 1 ip C. Marriott
(513> 445-2198
NCR Corporation
Wo"rld H~s 4
Da~ton. Ohio 45479

2. Co-Chairperson is:

Flo Ha'rteloo

61

SESS Status Report, 1 Ma~ 1984

(602) 438-3068
Motorola Micros~stems
Mail Stop DW 212
2900 South Diablo Wa~
Tempe, Ariz 85282

3. The lirst meeting was held, 28 Feb 1984, San r-ranrisco, Calif.

5. 5 A Standard For Software Gualit~ Metrics

1. Chairperson is:

Dr. Norman F. Schneidewind
(408) 646-2719/3211
Professor. Dept RSA/CS
Code 54SS
Naval Postgraduate School
Montere~. Calif 93940

2. The first meeting was held. 28 Feb 1984, San Francisco, Calif.

5.6 A Standard For User Documentation

1. Chairperson is:

Christopher Cooke
(301) 338-5652
Martin Marietta Aerospace
Mail Station 98
103 Cheasapeake Park Plaza
Baltimore, Md 21220

2. The first meeting was held ~8 Feb 1984 at the Cathedral Hotel,
San Francisco, Calif.

3. The next meeting is scheduled for 11-12 ~un~ 1984, Naperville.
Illinios.

62

SESS Status Report. 1 Mav 1984

6.0 SOFTWARE ENQINEERINQ STANDARDS SEMINARS

Table 4 shows th• schedule o, So,tware Engineering Seminars sponsored
bv this subcommittee Jointlv with the IEEE Standards Board.

1able 4
ProJected Schedule of Software Engineering SeminaT·s

Seminar Title Date

Software Oualitv Assurance 23-25 Maw 1984

Software Test

Software Configuration
Management

4-6 Jul11 1984

10-12 Sept 1984

14-16 Nov 1984

13-14 Sept 1984

22-23 Oct 1984

26-27 Nov 1984

9-10 Oct 1984

24-25 Oct 1984

28-29 Nov 1984

Spring 198:5

Place

San Francisco. Calif.

Londor .. England

Washington. DC

San Francisco

Washington, DC

Texas

San Die90, CA

Atlantic Cit-.. NJ

Texas.

Scm Di ego, CA

For details on these seminar~.

following:
contact should be made with the

S. Havranek
212 705-7907
Seminar Marketing Manager
IEEE Standards Board
345 East 47th St
New York. New York 10017

63

SESS Status Report. 1 May 1984

7.0 SOFTWARE ENGINEERING STANDARDS APPLICATION WORKSHOPS

The Third
schtoduled
Calif.

Software Engineering Standards Application Workshop is
for 2-4 Oct 1984 at the Sherton-Palace Hotel. San Francisco.

Chairperson is:

Leonard Tripp
(20b) 575-5390
Boeing Computer Services
MS 9C-70. PO Box 24346
Seattle, Washington. 98124

8.0 OTHER IlEMS

8. 1 Organi z at i ona l RePTesentat j on

The following are the corrent representatives to this subiommittee fro~
standaTd5-making organizations:

1. American Institute of Aeronautics and Astronautics CAIAA>
Software Systems Technical Committee:

Robert R. .Jones
(714>732-3849
Hughes Aircraft Corp.
PO Box 3310, MS 618/b218
Fullerton, Calif 92b34

2. ANS/NPEC Joint Working Gr~up

a. N. C. Farr
CB12> 289-3000 ext 1495
Public Service Indiana
PO Box 190
New Washington, IN 47162

b. Jim Thomas Calternat•>
(704) 373-4612
422 South· Church St.
Charlotte. NC 282~~

3. American Nuclear Societ~

Dr Qerald W. Main
Hanford Engineering Development Lab

64

SESS Status Report. 1 Ma11 1984

Westinghouse Hanford Co.
PO Box 1970
Richland. WA 99352

4. ANSI X , IEC/TC-83, ISO/TC-97

E. Lohse
240 Radnor - Chester Road
Radnor, PA 19087

:5. ANSI Z1:

.John Milandin
(313) 994-7778
Bechtel Power Corp.
777 East Eisenhower Pkw~
Ann Arbor, Mich 48106

6. ASGC:

Art Ferlan
(603) 884-6711
Digital E~uipment Corp.
M/S M~ 1-2/G15
Continental Blvd
Merrimack. NH 03054

7. ASTM

Peter E. Schilling, Chairman
ASTM Comm E-31 <CS>
(412> 337-2724
Alum. Co. of America
Alcoa Technical Center
Alcoa Center. PA 15069

8. DPMA:

William E. Perr11
<305> 876-4292
Gualit11 Assurance Institute
9222 Ba11 Point Drive
Orlando, Fla 32811

9. EDP Auditors Association:

Stanle11 R. Jarocki
Banke1·s Trust Co.
Four Alban11 St~eet
New York. NY 10015

65

SESS Status Report. 1 Ma~ 1994

10. EIA:

H. Ronald Berlack
(603> 885-5170
Sand•r5 Associates
MIS NCA1-4222
95 Canal St
Nashua, NH 03061

11. IEEE Reliabilit~ Societ~

Dr. T. L. Regulinski
(602> 932-7321
Good~ear Aerospace
PO Bax 295
Gaod~ear, Ariz 85338

12. National Securit~ Industrial Association <NSIA>

Perr~ Nuhn
<203> 375-0200 ext 266
ITT Programming Technolo~~ Center
1000 Orno~ue Lane
Stratford. Conn 06443

B.2 Organizational Points Of Contact

The following are organizational points of contact:

1. ADAPSO

Lauren Erling
(703) 522-5055
Suite 300
1300 North 17th St
Arlington. Va 22209

2. ANS X3 Kl

Michael Landes, Chairperson
<703> 521-5280, ext 271
ANS X-3 ~1. Program Documentation
Computer Science Corp.
400 Arm~-Nav~ Drive
Arlington, Va 22202

66

SESS Statua Report, 1 Mav 1984

3. W. F. Michell
01-629-9000
British Standards Institution
2 Park St.
London W1A2DS, England

4. Dept of D•fense

William P. LaPlant
C202> 69'5-0499
AF/ACDT, Rm 5C1084
The Pentagon
Washington, DC 20330

The activities listed below are not a
Subcommittee. Thev are of direct
identified herein.

part of
i nteT·est,

the effort
however, and

of this
so are

8. 3. 1 ISO/TC-97 - The following information is extracted from the
minutes of the IEEE Standards Board of 24 June 1983.

Secretarv's Report: "At a meeting of the X3 Committee held in
Washington on June 2 and 3, the Committee , acting as the Technical
Advisorv Group to TC-97, asked IEEE to assume responsibilit~ as
Secretariat to act as the Technical Advisorv Group for a new Activitv
within TC-97 on software engineering "

Report of Standards Board actions: 11 7. Author·ized IEEE to assume the
Secretariat of a new ISO sub-committee <tentativelv identified as ISO
TC97/SC22> on Software Engineering. 11

8.3.2 P610, Computer Dictionarv

1. Chairperson is:

Jane Radiltz
<619> 455-1330
Logicon. Inc
PO Box 801'58
San Diego, Calif 92138

67

SESS Status Report. 1 Ma~ 1984

2. This effort is sponsored b~ the IEEE Computer Societv Computer
Standards Committee.

3. The last meeting was 4-5 Nov 1983, at Rossl~n. Va.

4. Next meeting is scheduled for 4-'5 Feb 1984, Was.hington, DC.

S. 3. 3 ANS 10.4 Quideline For Software Verification And Validation -

1. Contact is:

Dr. Odelli Ozer
Electric Power Research Institute
3412 Hillview Ave
PO Box 10412
Palo Alto, Calif 94303

2. This effort is sponsored bv the American Nuclear Societv CANS>
Cammi ttee 10. 4.

3. As of 1 June 1963, thev were in the sixth draft of their
guideline.

8. 3. 4 ASTM E 730 - The ASTM G-31 Committee is currentlv initiating a
revision of ASTM Standard E 730, Guide for runctional Design of
Computerized Svstems.

1. Chairperson of the effort is:

Hearn Duttrill
(301) 7'57-1854
1616 Meeting House Lane
Annapolis, Md 21401

2. Comments are requested b~ 2 Dec 1983.

8.4 SESS Administration

68

SESS Status ReJ101·t, 1 Ma11 1984

8.4. 1 SESS Ouide - The SESS Guide to Standards Development was
approved b11 ballot of the SESS Executive Board on Jul~ 19B3.

8.4.2 Long-Range Planning - A Five-Year Plan for S~SS Activities is in
draft •tage. Interested peTsonnel should contact:

Thomas M. Kurihara
, 2('::» l 75'5-1771
2058 Carrhill Ro~J
Vienna. Virginia 22180

8. 5 Miscellaneous

.a.. The next SESS ExecL•tive Doard meeting is stheduled fo1· Fall
CompCon, Arlington. Va. during the week of 19 Sept 1984.

Fletcher J. Buckle~
Chairperc;.on
~oftware Engineering Standards Subcommittee
TC on Software Engineering
IEEE Computer Societ~

69

r~~~~;~~;~~~~----------,

Please notify us immediately to guarantee con

tinuing receipt of DECUS literature. Allow up to

six weeks for change to take effect.

Change of Address

Delegate Replacement

DECUS Membership No.: -------

Name: --------------

Company: ------------~

Address: --------------

State/Country: ------------
Zip/Postal Code: __________ _

Phone No.~· -------------

Mail to: DECUS - Attn: Subscription Service

249 Northboro Road, (BP02)

Marlboro, MA 01752 USA

(I) "O - · - ~ "' :::r)>
fi~E~a.~91::::

:< ~ C ~ ~ m ; ·

c~g.~9::=3 =· o· => :r ~~ iii' ~
<:s~!!!uc:r=
~~~~ ~ !!.~ 
~· 0 0 ~ ;; · Di 
. 3- O ::iO" 

c: s; ~ 

~----------------------~ 

s:: I\) 0 0 

~[O] 
~-m 

)> CD C> 
::Jl - (") 
r- z -I c 
c::JOl>CI> 
O::JJ'CI> 
:ll -Im C 
0 J: 0 c::J 
• c::J c (I) 

s::o-n 
)> ::Jl ""O ::Jl 

0 s:: -
o :ll m -o ... z -I 
"""0 -I -(JI)>(")~ 
I\) 0 0 

.:... s:: (I) 
c::J m 
""O ""O ::Jl 
oc< 
I\) -I n 
- m :ll m 

(I) 

0 
(") 

m 

~ 

r 
~ ~ c 

a33 (nCJJ 
...... :;· - · ,, . c 
~ ~ - > "tl ~ 
c..>~ z5g JJ 

- ~ - Ill 
~...... ~ ;-
)> Cl> (!) 

j 




