
--......;;" T~H=E---=-...;H=I ~=--..=;;;Al-~-''' __ C
FEBRUARY 1985 ISSUE

LANGUAGES AND TOOLS SIG

Table of Contents

Editor's Notes 2

VAX Performance & Coverage Analyzer 3

VAX DEC/Shell 5

VAX Language Sensitive Editor 8

VAX TPU Tutorial Handout 13

VAX Ada (*) 47

VAX Ada (*) Technical Summary 51

Languages and Tools SIG Wishlist 103

* Ada is a trademark of the U.S. Department of Defense

Editor's Notes
As you may be aware, the Anaheim symposium was a momentous

one for the Languages and Tools SIG. This issue of "The Heap"
consists of articles and handouts relating to the many new pro
ducts which DEC announced in our area of interest. Sessions at
Anaheim were jammed, and the presenters frequently ran out of
their handouts. I'm trying to publish as many of them as I can
get, but if there is a particular handout you didn't get and I
haven't provided the information you need in this issue, please
let me know and I'll try to get it out in a future issue.

In addition to the articles on DEC products, this issue of
"The Heap" contains the LTSIG's latest wishlist. Please take the
time to read it carefully, and respond according to the direc
tions. The more responses we get, the greater the weight the
survey will have with DEC. Also, I hope to present the results
of this wishlist at the New Orleans Symposium, so it is important
that you return your responses quickly, if I am to have time to
tabulate the results and put together a presentation.

On other matters, I have been underwhelmed by the response
to my request for suggestions for a new name for the newsletter.
If you folks are willing to live with it we'll just put up with
the connotations of "The Heap". I'm not proud. Otherwise, send
me your suggestions for a new name. Remember, I'll send an LTSIG
Mushroom to whoever submits the winning name. Speaking of the
Mushroom, in the interest of giving credit where credit is due,
Brian Tillman informs me that Derek Hatley of Lear Siegler is the
original designer of the Mushroom. The SIG is grateful to Derek
and Lear Siegler for permission to use the design. Also, I am
still working on putting together an issue relating to public
domain software in which the SIG has an interest. I can't write
the articles myself, however. Let me know if you ~an help out in
this area.

Finally, please don't get used to these huge newsletters.
Even if DECUS doesn't crack down on me about printing expenses,
I'm soon going to run out of articles. The US in DECUS stands
for User's Society, and I would prefer to get the articles for
the newsletter from users. If you have some experience with a
new language, or have had problems with a so ft ware tool, or what
ever, that experience may be useful to others. Articles don't
have to be elaborate. If you think you might have something to
contribute, please let me know, and we can discuss any bothersome
logistics. My work phone is (215) 674-7154, and my address is:

Alan L. Folsom, Jr.
Dept 431
Fischer & Porter Co.
E. County Line Road.
Warminster, Pa. 18974

2

VAX Performance & Coverage Analyzer

VAX Performance and Coverage Analyzer Version 1.0

With a keyword for industry in the 80's being "productivity",
computer programmers need not only languages and operating systems,
but tools to make their systems more productive. The VAX
Performance and Coverage Analyzer is a new productivity tool
running on VMS and MicroVMS which will help applications
programmers write code which will execute more efficiently.

What Is It?

The VAX Performance and Coverage Analyzer has two functions.
First, it can pinpoint execution bottlenecks and other performance
problems in application programs. Secondly, it provides test
coverage analysis by measuring what parts of a user program are
executed or not executed by a given set of test data. This product
is not a tool for the analysis of operating system performance or
for use as an aid in hardware resource planning.

How Does it Work?

The VAX Performance and Coverage Analyzer consists of two parts:
the Collector which gathers the performance or test coverage data
on the running u·ser program and the Analyzer which later processes
and displays the collected data. The Collector gathers the
performance data and writes that information to a data file. Once
the data has been collected into a data file, the Analyzer can be
run using that data file as input. The Analyzer is a separate
program which reads that data file produced by the Collector and
presents the results as performance histograms or tabular displays.

Both the Collector and the Analyzer are fully symboblic and use the
DEBUG Symbol Table (DST) information in the user program to access
the symbolic names of program locations. Applications written in
any of the VMS languages which produce DST information can be
analyzed using the VAX Performance and Coverage Analyzer. These
languages include:

VAX Ada
VAX Basic
VAX Bliss
VAX C
VAX Cobol

VAX Fortran
VAX Macro
VAX Pascal
VAX PL/I
VAX RPG II

3

What Kinds of Performance Data Can be Gathered?

The VAX Performance and Coverage Analyzer can gather and report the
following types of performance data:

o PC samples - The PC (Program Counter) of the user program can be
randomly sampled to determine what parts of the user program take
the most time during program execution.

o Execution counts - Execution counters can be set on specified
program locations or on classes of locations, such as the beginning
of every routine or on every line of a given routine.

o Test Coverage - The Collector can determine which code paths of a
program are executed for a specific set of test data and which are
not.

o Event markers - When collecting performance data,
wish to mark significant events in the execution of
permit later filtering of the data. For example, an
entering a routine in an application program.

the .user may
the program to
event may be

o Page fault data - Information can be collected each time a page
fault occurs.

o System service counts - The Collector can determine the number of
times a user program calls each system service for analysis of
event-driven or real-time applications.

o Input/Output statistics - Data on a program's input and output
characteristics can be collected.

When is This Product Available?

The VAX Performance and Coverage Analyzer was announced at Fall
U.S. DECUS in Anaheim, CA. It will be ready for first shipments
to customers in the Spring of 1985.

For more information on this product, contact:

Susan Azibert
Product Manager
Digital Equipment Corp. (ZK02-3/Q08)
110 Spitbrook Rd.
Nashua, NH 03062

4

VAX DEC/Shell

VAX DEC/Shell Version 1.0

The DEC/Shell is a command language that provides an interface to
the VMS and MicroVMS operating systems, similar to the interface on
a UNIX (1) V7 system.

There are two major components of the DEC/Shell: the
interpreter and the Shell script language. When
common UNIX utilities, these components provide
development environment familiar to users experienced
V7 system.

command line
combined with

a program
with the UNIX

NOTE: The DEC/Shell is not a UNIX system running on a VAX. The
DEC/Shell is a command line interpreter and programming language
based on the UNIX V7 Bourne Shell.

The DEC/Shell includes the following features:

o environment variables

o pipes

o user-definable search paths for command execution

o UNIX file name syntax

o input and output redirection to and from files

o commands and utilities similar to those found on a UNIX system
~

o string substitution

o structured constructs (such as while, if-then-else, case,
and for)

o modification of a command's environment

o a Shell run-time library

In addition, the DEC/Shell provides access to DCL commands and VMS
programs. This capability allows users familiar with the UNIX V7
system to take advantage of the VMS and MicroVMS operating systems
while working in a familiar programming environment.

1 UNIX is a trademark of AT &T Bell Laboratories

5

The DEC/Shell Environment

The DEC/Shell environment is very similar to the environment
UNIX V7 system. Input/output redirection, search paths,
environment variables, and other Bourne Shell features all
to the user as they do on a UNIX V7 system.

on a
pipes,
appear

You can expand the DEC/Shell environment to take advantage
and MicroVMS features. Symbols and logical names can be
to or defined in the DEC/Shell. DCL commands and
procedures can be executed from the DEC/Shell.

of VMS
exported

command

Invoking the DEC/Shell

You can invoke the DEC/Shell from DCL level, or you can make the
Shell your default command interpreter when you log in.

To invoke the DEC/Shell from DCL, you use the SPAWN command with
the /CLI qualifier as follows:

$ SPAWN/CLI=SHELL

This command creates a subprocess with the DEC/Shell instead of DCL
as the command interpreter. In this subprocess, you can perform
many of the tasks you would do on a UNIX V7 system.

To make the Shell your default command interpreter when you log in,
you can do one of two things:

1. Type /CLI=SHELL/NOCOMMAND after your username when you log
in to the system:

Usernarne: BUNTHORNE/CLI=SHELL/NOCOMMAND
Password:

This action will override any other default command interpreter
that the system manager has specified for your account. The
/NOCOMMAND qualifier prevents the Shell from trying to execute
your DCL login command procedure (LOGIN.COM). Errors may
result if the DEC/Shell tries to execute a DCL command
procedure.

2. Ask your system manager to make the DEC/Shell the default
command interpreter for your account.

Once you have invoked the DEC/Shell, you can perform many of the
tasks that you would normally perform on a UNIX system. DEC/Shell
command syntax is, for the most part, the same as that for the
Bourne Shell used on the UNIX V7 system.

6

The DEC/Shell as a Programming Language

While the DEC/Shell can be used primarily as a command interpreter,
it is also a powerful programming language. Many of the control
structures used in the DEC/Shell are similar to those used in the C
language. Given the DEC/Shell script language, control-flow
constructs, and utilities, you may find that the DEC/Shell is an
adequate programming language for many of your needs.

DEC/Shell Utilities and Commands

The following is the list of commands and utilities provided by the
DEC/Shell:

awk join sh
base name kill sleep
cat lex sort
cd login tail
chmod logout tar
chown ls tee
date m4 test
de mer times
dcl mkdir touch
diff mv tr
diff3 od trap
echo pr true
ed ps tty
eval pwd umask
exec read uniq
export readonly units
ex pr rm wait
false rmdir WC
find sed who
grep set yacc

Availability

The DEC/Shell begins shipment to customers in January 1985.

For more information on this product, contact:

Susan Azibert
Product Manager
Digital Equipment Corp. (ZK02-3/Q08)
110 Spitbrook Rd.
Nashua, NH 03062

7

VAX Language-Sensitive Editor
ANNOUNCING THE VAX LANGUAGE-SENSITIVE EDITOR Version 1.0

SUMMARY

The VAX Language-Sensitive Editor is a multi-language, multi-window,
screen-oriented editor specifically designed to increase the
productivity of programmers in the development and maintenance
phases of the software development cycle.

The Editor is "language-sensitive" in that it provides you with
knowledge of the syntax of the following VAX languages:

VAX Ada (r)
VAX BLISS-32
VAX C

VAX COBOL
VAX FORTRAN

This knowledge enables both
develop programs faster
language-specific construct
correction facilities.

VAX PASCAL
VAX PL/I

new and experienced programmers
and more accurately through

completion, and error detection

to
VAX
and

The VAX Lanquage-Sensitive Editor works in concert with these VAX
languages and the VAX Multi-language Symbolic Debugger to provide
you with a highly interactive, on-line program development
environment that facilitates the EDIT-COMPILE-DEBUG portion of the
program development cycle.

You can customize the environment by tailoring and expanding upon
the features and structures provided by the Editor. In addition,
you may extend the editing capabilities provided by the Editor by
calling user-written functions written in VAX TPU (Text Processing
Utility - reference VAX TPU Section of this article).

"LANGUAGE-SENSITIVE" FEATURES

For each of the above stated VAX languages, the VAX
Language-Sensitive Editor provides a set of formatted syntactic
models that fit together to form syntactically correct programs.
Within the models are strings that indicate places that require the
insertion of additional information.

The VAX Language-Sensitive Editor uses these syntactic model
definitions to complete partially entered language constructs -
automatically inserting required words and punctuation, and
indicating syntactic options, which are listed in a menu format.

VAX LANGUAGE-SENSITIVE EDITOR COMMANDS

You control the editing environment with an extensive set of
commands. Most often-used commands can be easily bound to keys to

8

enable quick and efficient programming. All commands are available
through "command mode".

COMMAND FEATURES include:

*

*
*

*

*

*
*

*

*

*

*

*

Commands for language construct completion

Screen manipulation commands

Commands to invoke the appropriate VAX language compiler

Command for compile-time error review

Commands for compile-time error correction

Commands for tailoring and saving the editing environment

Commands for calling and executing VAX TPU procedures(refer
VAX TPU section of this article)

SPAWN command for suspending the editing session
subprocess running the DCL command interpreter

to spawn

to

a

GOTO command to position the cursor at the indicated
(options include FILE, BUFFER, SCREEN, PAGE, etc.)

option

SEARCH command for locating specified characters or strings

SUBSTITUTE command for replacing the text of one string with
another

SHOW command to display characteristics and settings of several
options (including BUFFER, COMMAND, KEY, LANGUAGE, ALIAS)

VAX LANGUAGE INTERFACES

The VAX Language-Sensitive Editor interfaces to VAX languages to
provide you with an on-line, interactive program development
environment. That is, you can create and edit programs, compile,
and review and correct compile-time errors -- all within a single
session.

FEATURES:

* Use of language-specific syntactic models to facilitate source
code entry and minimize the occurence of syntax errors

9

* COMPILE command to perform compilations without leaving the
Editor, and, optionally, to review compilation errors upon
compile completion. You may specify DCL qualifiers such as
/DEBUG and /LIBRARY when invoking the compiler from the VAX
Language-sensitive Editor. The compilation may be performed in
a BATCH job.

* REVIEW mode to review compilation errors upon compile
completion. The VAX Language-Sensitive Editor displays the
compile errors in one window, with the corresponding source code
displayed in a second window. For easy error correction, there
is an EXAMINE ERROR command to position the cursor at the point
in the source code where the compiler detected the error.

VAX MULTI-LANGUAGE SYMBOLIC DEBUGGER INTERFACE

The VAX Language-Sensitive Editor
Multi-language Symbolic Debugger
source code corrections as they
session.

can be invoked from the VAX
offering you the ability to make
are found during a debugging

FEATURES include:

*

*

*

Notification if the file invoked by the editor is a different
version than that displayed in the VAX Symbolic Debugger

Ability to specify the file and line number from which to start
the editing session with the default being the current source
displayed in the VAX Symbolic Debugger

Choice of terminating activity directly from the editing session
or returing to the debugging session

USER INTERFACE

The LANGUAGE-SENSITIVE EDITOR offers an easy to use, flexible user
interface designed to meet varying user needs and preferences.

FEATURES include:

* Default EDT-like keypad layout

* Multiple windows, multiple buffers

* Choice of editing mode: OVERSTRIKE or INSERT

10

*

*

*

Ability to bind any command (User-defined or those
the VAX Language-Sensitive Editor) to a key.

supplied

On-line HELP facility for the VAX Language-Sensitive Editor

VAX language-specific on-line HELP

by

USER-TAILORABLE FEATURES

With the VAX Language-Sensitive Editor, you can customize the
editing environment to meet your indiviual needs. These
user-defined environments can be saved for future editing sessions.

USER-TAILORABLE FEATURES include the ability to:

*

*

*

*

*

Define a language name to represent a new set of user-defined
syntactic models

Define (or redefine) Syntactic Models,
those provided by the Editor

COMMANDS to complement

Define ALIASes that are names that represent pieces of text

Define (or redefine) keybindings

Bind any command (including user-defined commands or combination
of corp:mands) to a key

VAX TPU (TEXT PROCESSING UTILITY)

For more unique editing requirements, the VAX Language-Sensitive
Editor provides commands to call procedures written in VAX TPU (VAX
Text Processing Utility) which is available as part of the VAX
Language-Sensitive Editor. VAX TPU has an easy to use high-level
procedural language which allows you to write functions not provided
by the VAX Language-Sensitive Editor to further customize the
editing environment. The VAX TPU language provides for looping and
conditionals to allow you to perform more powerful editing tasks.

VAX TPU LANGUAGE STATEMENTS include:

* The assignment statement

* Procedural statements (PROCEDURE - ENDPROCEDURE)

11

* Looping statements (LOOP - ENDLOOP)

* Conditional statements (IF - THEN - ELSE - ENDIF)

* Case statements (CASE - ENDCASE)

* Error statements (ONERROR - ENDONERROR)

AVAILABILITY

The VAX Language-Sensitive Editor availability will begin in the
Spring of 1985 for the full line of VAX and MicroVAX systems running
the VMS Version 4.x or the MicroVMS Version 4.x operating system.

The Editor will run on any VTlxx, VT2xx, or ANSI terminal.

For more information, contact:

Celeste LaRock
Digital Equipment Corporation
110 Spit Brook Rd. (ZK02-3/Q08)
Nashua, N.H. 03062
Telephone: (603) 881-2336

(R) Ada is a registered trademark of the U.S. Government (AJPO)

VMS, MicroVMS, VAX, and MicroVAX are trademarks of Digital Equipment
Corporation.

12

VAX TPU

TEXT PROCESSING UTILITY

TUTORIAL

ADVANCED

TOPICS

13

THE TPU ENGINE

o HAS A COMPLETELY 'SOFT' HUMAN INTERFACE

- NO DEFAULT KEY DEFINITIONS

o IS MORE THAN JUST AN EDITOR

- PROVIDES EDITING CAPABILITIES SUCH AS
TEXT INSERTION/DELETION

- PROVIDES SCREEN MANAGEMENT OF BUFFERED TEXT

o TWO DIGITAL SUPPLIED INTERFACES AVAILABLE

- EVE INTERFACE. designed by HUMAN FACTORS ENGINEERS

- EDT KEYPAD EMULATOR INTERFACE

14

TPU BUFFERS

o WORKSPACE IN WHICH FILES ARE EDITED

o CAN BE CREATED WITH OR WITHOUT AN ASSOCIATED FILE

o SPECIAL BUFFERS:

- MESSAGE BUFFER
* TPU MESSAGES
* BROADCAST MESSAGES

- SHOW BUFFER

o CAN BE MAPPED TO MULTIPLE WINDOWS. WHERE EACH WINDOW
CAN DISPLAY A DIFFERENT VIEW OF THE BUFFER

o MODIFIABLE BUFFER ATTRIBUTES

- TEXT FOR END OF BUFFER LABEL

- DIRECTION (FORWARD OR REVERSE)

- INSERT OR OVERSTRIKE EDITING

- MARGINS FOR FIJ .. L BUILT-IN (LEFT AND RIGHT)

- READ ONLY (NO WRITE). PERMANENT. OR SYSTEM

- TAB STOPS

- OUTPUT FILE NAME

15

TPU WINDOWS

o WINDOWS ARE AREAS OF THE SCREEN IN WHICH A
BUFFER'S TEXT APPEARS

buffer a := CREATE BUFFER ('A', 'user$disk:[]test.doc'); - -
window a : = CREATE WINDOW (12, 10. ON); - -
MAP (window a, buffer a); - -

o MODIFIABLE WINDOW A ?TRIBUTES

- MULTIPLE VIDEO ATTRIBUTES IF YOUR TERMINAL
SUPPORTS THEM

- BLANK PADDING TO GIVE A 'BOXED' APPEARANCE

- SCROLLING REGION BOUNDARIES AND AMOUNT

- STATUS LINE TEXT. VIDEO AND WHETHER OR NOT
IT IS PRESENT

- TEXT DISPLAY (BLANK_TABS. GRAPHIC_TABS OR NO_TRANSLATE)

o SPECIAL WINDOWS

- INFO WINDOW

* DISPLAYS ··sHOW' OR HELP INFORMATION

- WINDOW(S) TO WHICH MESSAGE BUFFER IS MAPPED

*DISPLAYS TPU MESSAGES AND BROADCAST MESSAGES

16

TPU and THE SCREEN

o THE TPU ENGINE CAN BE USED FROM MANY TYPES
OF INPUT DEVICES

o TPU SUPPORTS SCREEN-ORIENTED EDITING ON ANSI
STANDARD CRT·s ONLY

o INVISIBLE EDITING IS POSSIBLE

- POSITION (window a) NOT EQUAL TO POSITION (buffer a)

o SCREEN UPDATES DO NOT OCCUR AFTER EVERY BUILT-IN

- FORCE UPDATING USING:

UPDATE (window a)

o MODIFIABLE SCREEN ATTRIBUTES

- TURN SCREEN UPDATING ON OR OFF

- TURN AUTO REPEAT ON OR OFF (USED TO
SLOW DOWN CURSOR. MINIMIZE FL YWHEELING)

- DISPLAY A WORKING (TIMER) MESSAGE

- RING BELL WHEN MESSAGES ARE DISPLAYED

17

TPU and THE SCREEN

o PROMPT AREA IS A DEFINABLE REGION WHICH IS
USED BY SEVERAL BUILT-INS TO DISPLAY PROMPTS

(Example: READ_LINE)

- A SINGLE VIDEO ATTRIBUTE CAN BE APPLIED

- CAN OCCUPY MULTIPLE SCREEN LINES

- CAN BE DEFINED TO OVERLAP A WINDOW OR EXIST
AS A COMPLETELY SEPARATE SCREEN AREA

- CAN BE EMULATED USING A BUFFER AND WINDOW

* ADVANTAGES:

- CAN SAVE A LOG OF THE COMMANDS

- ALLOWS FOR EDITING OF PREVIOUS
COMMANDS AND REPLAY

* DISADVANTAGES:

- SLIGHTLY SLOWER. ESPECIALLY WHEN
USING VIDEO ATTRIBUTES

18

MARKERS

o REPRESENT A CHARACTER POSITION IN A BUFFER

o MOVE WITH THE ASSOCIATED CHARACTER

o CAN HAVE AN ASSOCIATED VIDEO ATTRIBUTE

o IF THE MARKER CHARACTER IS DELETED THEN
THE MARKER BECOMES ASSOCIATED WITH THE
NEXT CLOSEST CHARACTER

o MOST COMMON USES ARE AS BOOKMARKS OR
TEMPORARY PLACEHOLDERS

* markl : = MARK (NONE)

* POSITION (mark I)

* IF MARK (NONE) < > BEGINNING OF (CURRENT BUFFER) - -

19

RANGES

o REPRESENT THE TEXT BETWEEN AND INCLUDING TWO
MARKERS

o ERASING A RANGE ERASES THE CHARACTERS OF A RANGE
BUT DOES NOT REMOVE THE RANGE STRUCTURE

o CAN OVERLAP AND HAVE VIDEO ATTRIBUTES

o EXIST INDEPENDENTLY OF CURSOR MOTION

o MULTIPLE RANGES CAN BE ACTIVE AT ANY GIVEN TIME

20

SELECT RANGES

o SPECIAL RANGES WHICH :

- BEGIN WITH A SELECT MARK WITH AN ASSOCIATED
VIDEO ATTRIBUTE

- INCLUDE OR EXCLUDE CHARACTERS BASED ON CURSOR
POSITIONING

- END BY CREATING A SELECT RANGE

- CAN OVERLAP OTHER RANGES

o ONLY ONE SELECT RANGE ACTIVE AT ANY GIVEN TIME

21

N
N

! lhlS IS a test Of rect~Iar mt and paste

ctl..llllll

11111111
22m2n

™

CILID2

11111111

"'""' ™

CILlllNIJ

11111111
2Vm22

™
! This is a test of redangular cut and paste

CILlllNl1 8LUIN2 CCl..111113

11111111 11111111

''''"" 22222n2

™ ™
! This is a test of reetan;ilar eut and paste

C1U11111 I
11111111
2nm22

™

CILlllNIJ

11111111

''""22 ™

PATTERNS

o A DATA TYPE WHICH USES THE I.&,@ OPERATORS TO
CREATE A SIMPLE OR COMPLICATED TEXT 'STRUCTURE'
USED AS AN ARGUMENT TO THE SEARCH BUILT-IN

o PATTERNS ARE RETURNED BY THE FOLLOWING BUILT-INS:

- ANY - REMAIN
- ARB - SCAN
- LINE BEGIN - SCANL
- LINE END - SPAN
- NOTANY - SPANL

o PATTERNS ARE ALSO RETURNED BY ASSIGNMENT STATEMENTS
WHICH USE THE I.&,@ OPERATORS

Example
patl : = 'abc' & ('d' I 'e')

23

PATTERNS

o SEARCH IS THE ONLY BUILT-IN THAT ACCEPTS A PATTERN
ARGUMENT

- CAN BE MATCHED IN EITHER THE FORWARD OR REVERSE
DIRECTION

o THREE TYPES OF SEARCH

- ANCHOR
*ANCHORS THE SEARCH AT THE CURRENT

CHARACTER POSITION

ra'l'b'l'c') & 'd' looks for 'ad', 'bd', 'cd'

- SEEK SEARCH (DEFAULT)
* Looks for first possibility from current position

to end of buffer. then looks for second
possibility. and so on

* First match in string 'cd bd ad' is 'ad'

- INCREMENT AL SEARCH
* Looks for all possibilities at current position

then moves to next character and looks for all
possibilities. and so on

* First match in string 'cd bd ad' is 'cd'

24

PATTERN MATCHING EXAMPLE

o EDT WORD MOTION PATTERN

edt$v forward word : = - -

Don't move off current character position

(ANCHOR &

If on eol. then match that

((LINE_END) I

Leading spaces, on a word delimiter

((SPAN(' ')) & (ANY (edt$v word) I "))) I

No leading spaces
On a word delimiter, move one past it

(ANY (edt$v word))

No leading spaces
On a real word, go one beyond it

(SCAN (edt$v word))

! No leading spaces
On last real word of line. match rest of line

REMAIN) &

! After matching. skip over trailing spaces if any
! except if match occurred at the eol.

In this case, don't skip over blanks

(LINE_BEGIN I SPAN(' ') I ");

search_range : = SEARCH (edt$v_forward_word, FORWARD);

25

SUBPROCESSING

o CREATE A TPU PROCESS AND SEND COMMANDS TO IT

- Example

pl : = CREATE_PROCESS (process_buffer. '·$ show quota');
MAP (process_window, process_buffer);
SEND ('$ show que sys$batch/all'. pl);
pl : = 0;
UNMAP (process_window);

- USEFUL FOR

* READING MAIL FROM WITHIN THE EDITOR

*GETTING THE STATUS OF BATCH JOBS WITHOUT
LEAVING THE EDITOR

*SAVING A LOG OF YOUR DCL SESSION IN A BUFFER
WHICH ALLOWS FOR SELECTION AND REPLAY OF
PREVIOUS COMMANDS OR GROUPS OF COMMANDS

26

SUBPROCESSING

o CREATE A VMS PROCESS WITH SPAWN AND ATTACH

- SPAWN SUSPENDS THE TPU PROCESS. CREATES A NEW
VMS SUBPROCESS AND ATT-ACHES YOU TO THE NEW PROCESS

- DCL ATTACH OR LOGOUT RETURNS YOU TO THE SUSPENDED
TPU PROCESS

- ATTACH ('process_name') SUSPENDS THE CURRENT TPU
PROCESS AND SWITCHES CONTEXT TO THE PREVIOUSLY
CREATED PROCESS THAT YOU SPECIFY

- DCL SPAWN RETURNS YOU TO THE SUSPENDED TPU PROCESS

- USEFUL FOR

* USING DCL FROM OUTSIDE OF THE EDITOR WHILE
RETAINING THE CONTEXT OF THE EDITING SESSION

- WHEN CONTROL IS RETURNED

* SCREEN REFRESHED
* CURSOR POSITIONED TO PREVIOUSLY VISIBLE LOCATION

27

VARIABLES AND IDENTIFIERS

o GLOBAL AND LOCAL VARIABLES

- THERE IS NO EXPLICIT GLOBAL DECLARATION

- IF NOT DECLARED LOCAL. THEN BY DEFAULT THEY
BECOME GLOBAL

o THERE IS NO DECLARATION STATEMENT FOR DECLARING THE
'TYPE' OF THE VARIABLE

o VARIABLES ON THE LHS OF AN ASSIGNMENT STATEMENT ASSUME
A DATA TYPE BASED ON THE DATA TYPE OF THE RHS EXPRESSION

o MIXING OF DATA TYPES RESULTS IN AN ERROR MESSAGE
(NO IMPLICIT TYPE CONVERSION)

o EXAMPLES

- ! VALID: new_offset has the data type integer

new offset : = CURRENT OFFSET + 20 - -
- ! INVALID: cannot mix strings with integers

bad variable : = 'hello' + 10:

28

TPU PROCEDURES

o APPROXIMATELY 100 BUILT-IN PRIMITIVES

o TPU'S DEFAULT COMMAND LINE INTERFACE IS PROCEDURAL

- NO ABBREVIATIONS

- MUST INCLUDE ALL PUNCTUATION
(INCLUDING PARENTHESES AND COMMAS)

o PROCEDURES COMBINE TPU LANGUAGE STATEMENTS
WITH CALLS TO BUILT-INS

PROCEDURE display_ batch_ stats
dc:l_buffer : = CREATE_BUFFER ('DCL BUFFER');
dc:l_window : = CREATE_WINDOW (l, 5. OFF):
SET (VIDEO. dc:l_window. REVERSE):
SET (PAD. dc:l window. ON);
dc:l_proc:ess : = CREATE_PROCESS (dc:l_buffer.

'Sshow que sysSbatch/all');
MAP (dcl window, dc:l buffer); - -
DEFINE_KEY ('UNMAP (dcl_window)', Fll);
END PROCEDURE

29

WRITING TPU PROCEDURES

PROCEDURE identifier [(PARAMETER-LIST)]

[LOCAL-VARIABLE-LIST]

[ON_ERROR-STATEMENT]

REPETITIVE-STATEMENTS: ----------------- +
CONDITIONAL-STATEMENTS: I Any Combination
CASE-STATEMENTS: I Any Order
MISCELLANEOUS-STATEMENTS: --------- +

END PROCEDURE

30

ONERROR STATEMENTS

ON ERROR

STATEMENT-I:

STATEMENT-n:

ENDONERROR

o ON ERROR STATEMENTS GAIN CONTROL WHENEVER ANY
BUILT-IN USED WITHIN THE PROCEDURE RETURNS A
WARNING OR ERROR STATUS

o IF THE STATUS IS WARNING, THEN YOU CAN USE THE
ON ERROR TO SUPPRESS THE DISPLAY OF A WARNING
MESSAGE OR TO SUBSTITUTE YOUR OWN MESSAGE

o IF THE STATUS IS AN ERROR. AN ERROR MESSAGE IS
DISPLAYED. BUT YOU CAN USE THE ON ERROR TO DO
ADDITIONAL PROCESSING

o COMMON STATEMENTS WHICH ARE USED TO CHANGE THE
FLOW OF CONTROL ARE:

RETURN
ABORT

o AFTER THE ON ERROR STATEMENT HAS FINISHED PROCESSING.
EXECUTION CONTINUES FROM THE POINT IN THE CODE
FOLLOWING THE STATEMENT WHICH CAUSED IT TO BE EXECUTED
(unless RETURN or ABORT is used)

31

WRITING TPU PROCEDURES

o IDENTATION (FORMATTING, SPACING) IS FREE STYLE

o SEMICOLONS SEPARATE STATEMENTS

o COMMENT STATEMENTS (which begin with !) CAN
APPEAR ANYWHERE

- WHEN ! IS SEEN, THE REST OF THE LINE IS IGNORED

o TO RETURN A RESULT

- RETURN value

- procedure_ name : = value

32

REPETITIVE STATEMENTS

LOOP
EXITIF boolean-expression;
STATEMENT-I;

ST ATEMENT-n:
ENDLOOP:

- THE EXITIF STATEMENT CAN APPEAR ANYWHERE INSIDE
THE LOOP

- THE ON ERROR STATEMENT CAN SOMETIMES BE USED TO
EXIT FROM A LOOP PROVIDED THAT BUILT-INS WHICH
RETURN EITHER WARNING OR ERROR STATUS ARE CALLED
FROM INSIDE THE LOOP (Example: SEARCH)

33

CONDITIONAL STATEMENTS

IF boolean-expression
THEN

STATEMENT-I;

STATEMENT-n;
[ELSE

STATEMENT-I;

STATEMENT-n;]
END IF;

- TRUE IS INTEGER ZERO (0) (NO RESERVED WORD TRUE)

- FALSE IS INTEGER ONE (1) (NO RESERVED WORD FALSE)

34

EXAMPLE

PROCEDURE global_search_replace (str_or_pat, str2)

' . ! This procedure performs a search through the current
! buffer and replaces a string or pattern by a string

LOCAL src _range, replacement_ count;

! Return to caller if string not found
ON ERROR

msg_text : = FAO ('Completed !UL replacement! o/oS',
replacement_ count):

MESSAGE (msg_text);
I RETURN:
I_ ENDON_ERROR

replacement_ count : = 0:

! J.oop until eob found or string not found
LOOP

I
I

.src_range : = SEARCH (str_or_pat. forward);
! Search returns a range if found

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

! Make sure it's not in a comment (call another routine
! to avoid triggering the error handler)
IF is a comment < > l
THEN

! replace str l with str2
ERASE (src_range);
POSITION (END_OF (src_range)):
COPY TEXT (str2);

! Remove first string
! Move to right place

I replacement_ count : =
! Replace with second string

replacement_ count + 1:
I_ ENDIF:

I
l_ENDLOOP:
END PROCEDURE ! global_ search_ replace

35

CASE STATEMENTS

CASE case-selector FROM case-lower TO case-upper

· [case-constant-I]: STATEMENT-I; ... STATEMENT-n;
[case-constant-2]: STATEMENT-I:... STATEMENT-n;

[case-constant-n]: STATEMENT-I; ... STATEMENT-n;

[INRANGE]: STATEMENT-I; ... STATEMENT-n;
[OUTRANGE]: STATEMENT-I: ... STATEMENT-n:

ENDCASE;

EXAMPLE:

menu item : = INT (READ LINE (
'Enter Menu Selection (1-5): '));

CASE menu item FROM 1 TO S

[l] : EXECUTE (proc _read_ mail):
[2] : SHOW (WINDOWS);
[3] : UNMAP (INFO WINDOW);

POSITION (BEGINNING OF (CURRENT BUFFER));
[4] : EXECUTE (proc_show_batch);
[S] : proc_help

[OUTRANGE] : MESSAGE ('Invalid menu selection');

ENDCASE;

36

TPU KEY DEFINITIONS

o KEY DEFINITIONS ALLOW YOU TO CUSTOMIZE
THE KEYPAD INTERFACE

o COMBINE KEY MANIPULATION BUILT-INS TO DO·
USEFUL THINGS SUCH AS EMULATION OF THE EDT
REPEAT COUNT

o KEY DEFINITION AND MANIPULATION COMMANDS

- DEFINE_KEY (executable_code. key-name. 'comment')

- LOOKUP_KEY (key-name. PROGRAM or COMMENT)

- READ KEY

- UNDEFINE_KEY (key-name)

- KEY_NAME (key-name. [SHIFT_KEY])

- LAST KEY

(See Handouts for examples)

37

WHAT IS A SECTION FILE

File mysection. tpu

I! Comments
!PROCEDURE my_proc_l
I
I ------------------ > As many as needed
I
I END PROCEDURE
I
!PROCEDURE my_key_definitions
IDEFINE.;;KEY ('proc_rectangular_cut', Fl4);

I
I
I
IENDPROCEDURE

I
!PROCEDURE TPU$INIT_PROCEDURE

I
I ! Initialize global variables
I ! Set up buffers and windows
I ! Look at the TPU command line to set up journaling,
I ! NO WRITE buffers. and so on.

I
I
I
IENDPROCEDURE
I
I
I
I! Include desired stand-alone executable statements
IMY_KEY_DEFINITIONS; ! Define the keys
!SET (TIMER, ON, ' ... Working .. .');

I
!SAVE ('sys$login:mysection.gbl');
I
IQUIT;

'~~~~~~~~~~~~~~~~
38

WHAT IS A SECTION FILE

o ALL PROCEDURES MUST BE DEFINED BEFORE ANY
EXECUTABLE STATEMENTS WHICH STAND ALONE

o THE SECTION IS CREATED BY USING THE SAVE BUILT-IN

- STORES COMPILED PROCEDURES. KEY DEFINITIONS.
AND SYMBOL TABLE

- MAKES START-UP SIGNIFICANTLY FASTER WHEN COMPARED
TO USING A COMMAND FILE

* USING THE EDT EMULATOR INITIALIZATION FILE
- AS A COMMAND FILE · = > approximately 50 seconds
- AS A SECTION FILE = > approximately 4 seconds

39

D I F F .E R E N C E S B E T W E E N E V E
AND THE EDT EMULATOR

-t---~
I
I

EDT
EMULATOR

EVE
INTERFACE

'~~~~~~~~~~~~~~~~~~~~~~~-
!GOAL
I
I
I
I

I MIGRATION PATH FROM
I EDT: USER EXPECTED TO
I DO OWN CUSTOMIZING

I
I

I MEASUREABLY
I EASY TO LEARN
I AND FAST TO USE
I + USE ADVANCED
I EDITING FEATURES

'~~~~~~~~~~~~~~~~~-
!KEYPAD

I
I EDT KEYPAD

I
I LK201 EDITING
I PLUS Fl0-Fl4

!~~~~~~~~~~~~~~~~~~~~~~~-
COMMAND LINE! PARSER FOR 6 CMOS I 74 COMMANDS;

ADVANCED
FEATURES

COMMAND
PROCESSING

I USING CTRL-Z ''*':
I PF1/KP7->TPU Command:
I ENTER TPU COMMANDS
I USING TPU SYNTAX
I DIRECTLY (with
I parens. underscores)

I ALLOWS ACCESS TO
I TPU LANGUAGE WITH
I THE TPU COMMAND

I
I
I

I ACCESS TO THEM USING I PREPROGRAMMED
I THE TPU COMMAND LINE I WITH SOME BOUND
I PROMPT OR BY USER I TO KEYS AND
I WRITTEN PROCEDURES I OTHERS ACCESSIBLE
I I USING AN ENGLISH
I I LIKE LINE MODE

I USES TPU PROMPT_AREA

I
I
I
I

I USES A BUFFER
I AND A WINDOW TO
I SAVE AN EDIT
I HISTORY: ALLOWS
I COMMAND RECALL

-+--~

40

THE EVE INTERFACE TO TPU

o GOALS:

• MEASURABLY EASY TO USE AND EASY TO LEARN

- ITERATIVE DESIGN PROCESS. STARTING WITH EXISTING
DATA ON TEXT EDITOR USAGE

o FEATURES:

- USES MULTIPLE FILES AND BUFFERS

- DEFINES TWO WINDOWS (ONE MAIN WINDOW IS THE DEFAULT)

·TEXT-ORIENTED FUNCTIONS SUCH AS AUTOMATIC WORD WRAPPING.
SETTING MARGINS. FILLING A PARAGRAPH. AND CENTERING A LINE

- DEFINES A KEY FOR INSERT /OVERSTRIKE TOGGLE

• USES FREE CURSOR MOTION

- HAS THE ABILITY TO SET AND GO TO NAMED MARKERS IN
MULTIPLE BUFFERS

- EXPLOITS VT200 KEYBOARD. BUT ALSO USABLE ON VTIOO

- PROVIDES FOR COMMAND-LINE EDITING AND ABBREVIATIONS
USING A FANCY PARSING PROCEDURE

- PROVIDES ACCESS TO TPU AND DCL THROUGH SPECIALLY
DEFINED COMMANDS

- ALLOWS EASY ACCESS TO TPU'S LEARN SEQUENCE CAPABILITIES

41

EXTENDING THE EVE INTERFACE

o START WITH AM EMPTY BUf"FER.

o ENTER PROCEDURES AND EXECUTABLE STATEMENTS INTO THIS
IUFFER (START THE PROCEDURE. ENDPROCEDURE STATEMENTS
IN. COLUMN 1).

o IF YOU WANT TO USE EVE'S COMMAND LINE TO ACCESS YOUR
USER-WRITTEN PROCEDURES. PREFIX THEM WITH EVE .

o PRESS 'Do'. Command: EXTEND TPU *

o IF ERROR MESSAGES ARE DISPLAYED. USE 'Do'.
Command: BUFFER MESSAGES
TO MAKE THE MESSAGES APPEAR IN THE TOP WINDOW.

o PRESS 'Do', Command: BUFFER MAIN. TO RETURN TO YOUR
PREVIOUS EDITING CONTEXT AND CORRECT YOUR ERRORS.

o IF ERRORS ARE PRESENT. THE TPU COMMAND INTERPRETER WILL
GIVE THE LINE NUMBER OF THE STATEMENTS IN ERROR.
PRESS 'Do'. Command: LINE n. TO MOVE THE CURSOR TO
THE UNES TO IE CORRECTED.

o ONCE THE PROCEDURES ARE ERROR FREE YOU CAN TEST THEM
BY ENTERING THE PROCEDURE NAMES USING 'Do'
(omit EVE_ and other underscores from the procedure name).

o YOU CAM ALSO COMPILE ONE PROCEDURE AT A TIME FROM THE
BUffER BY ENTERING: EXTEND TPU complete_proc:edure_name.
AT THE COMMAND LDtE PROMPT.

o THERE ARE ADDmONAL CONVENTIONS THAT MUST IE FOLLOWED
WHEN PASSING ARGUMENTS TO EVE PROCEDURES

42

PROGRAMMING WlTH THE EDT INTERFACE

o CLEAll THE MAIM IUf FER

o ENTER PROCEDURES AND EXECUTABLE STATEMENTS

o AF TEil THE ·Tpu Command:' PROMPT. USE THE FOLLOWING TPU
STATEMENTS:

- SET (IHFORMA TIONALS. ON)

- COMPD.E (MAIN_BUF FER)

- POSmON (MESSAGE_WINDOW)

- POSITION (MAIN _WINDOW)

- procedure_ name ! For each procedure you want to test

- EXECUTE (MAIN BUFFER)

- WRITE_FILE (MAIN_BUF f ER. 'We_name')

43

WAYS TO ACCESS TPU

o AT DCL LEVEL

$ EDIT/TPU

$ EDIT /TPU/SECTION = EVESECINI file-name.ext

$ EDIT /TPU /NOSECTION /COMMAND= myini. tpu

$ EDIT /TPU/NOSECTION/COMMAND = BATCHINI. TPU/NODISPLA Y

$ EVE : = = EDIT /TPU /SECTION= EVESECINI. TPU
$ EVE file-name.ext

o FROM AN APPLICATION OR PROGRAMMING LANGUAGE

- THROUGH THE CALLABLE INTERFACE

44

THE /RODISPLAY QUALIFIER

o ALLOWS YOU TO USE TPU IN BATCH MODE (SPECIAL
INITIALIZATION FILES ARE RECOMMENDEDt

o ALLOWS YOU TO PROGRAM A PSUEDO.;LINE-MODE EDITING INTERFACE
FOR 'UNSUPPORTED' DEVICES SUCH AS THE LA36

- USES LIBSPUT OUTPUT FOR READ LINE AND MESSAGE BUILT-INS - -

o CAN IE USED IM A BATCH COMMAND FILE OR ENTERED IMTERACTIVELY

(see Handouts for an examplet

45

!

EXAMPLE

Extract tram a line mode editor tor TPU

Invoked from DCL via: '!'PU/NODISPLAY/NOSECTION/COM=linemode.tpu file-spec

Set up the aain editing buffer using the input file from the command line

input file:• GET INFO (COMMAND LINE, 'file name');
main Euffer :•CREATE BUFFER (•MAIN•, input-file);
POSITION (BEGINNING_OF (main_buffer)); -
!
LOOP ! Continuously loop until QUIT

cad :•READ LINE ('*');

IF cmd = ''
THEN

cmd char :• 'N';
ELSE -

cmd char :• SUBSTR (cmd, 1, l);
CHANGE CASE (cmd_char, UPPER);

ENDIF; -

CASE cmd char FROM 'I' TO 'T' Only accepting I,L,N,Q,T

!Top of buffer command
['T']:

POSITION (BEGINNING OF (CURRENT BUFFER));
MESSAGE (CURRENT LINE); -

!Next line command -
['N']:

MOVE HORIZONTAL (-CURRENT OFFSET);
MOVE-VERTICAL (l); -
MESSAGE (CURRENT LINE);

!Insert text command -
['I']:

SPLIT LINE;
COPY TEXT (SUBSTR (cmd, 2, 999));
MESSAGE (CURRENT LINE);

!List from here to end of file command
['L']:

!QUIT

BNDCASE;

BMDLOOP;

['Q']:

ml : • MARK (NONE);
LOOP
MESSAGE (CURRENT LINE);
MOVE VERTICAL (lT;
EXITlF MARK (NONE) •END OF (CURRENT_BUFFER);
ENDLOOP;
POSITION (al);

QUIT;

[IMRANGE,Ot.rl'RANGE]:
MESSAGE ('Unrec09nized command - enter I,L,N,Q or T');

46

Introduction to VAX ADA

VAX Ada (r)

In the April/May 1985 timeframe, Digital will begin shipping its
newest language product for the entire VAX family -- VAX Ada.

WHAT IS ADA?

Ada is a modern higher order programming language which was
designed as the result of a competition sponsored by the
Department of Defense. The purpose of the competion was to design
a language which would let the DoD reduce software costs by
increasing software maintainability, evolvability, reliability,
and portability. Ada is suitable for a variety of applications,
including systems programming, computational programming, general
programming, and especially real-time programming. Besides
providing powerful programming language features, Ada is able to
reduce software lifecycle costs by providing for modularization
and separate compilation using packages, scope rules, and a
compilation data base. Ada allows both bottom-up and top-down
software development. Ada enhances software reliability through
strong typing. The DoD was particularly interested in a suitable
language for embedded real-time applications, for example, weapons
systems. Ada provides language features for multi-tasking such as
tasks, rendezvous, priorities, and entry calls.

Ada was ap~rove~ as an ANSI standard in February 1983. The
standard is rigorous; no subsets or extensions are allowed.
Processor dependent features are permitted only in a very limited
controlled context. Conformance to the standard is enforced by a
large set of validation tests. The name Ada is a registered
trademark of DoD and cannot be used without their permission.

VAX Ada fully conforms to the ANSI-83 Ada standard. As the newest
member of the VAX/VMS and MicroVMS family of languages, the
product also offers full integration with the Common Language
Development Environment. The combination of the language features
of VAX Ada and its integration with VAX/VMS and MicroVMS systems
create a total environment for programmer productivity and reduced
software lifecycle costs. And, as with other VAX languages,
applications can be moved from the smallest MicroVAX system to the
largest VAX system or cluster.

(r) Ada is a registered Trademark of the U.S.
(Ada Joint Program Office)

47

Government

MAJOR FEATURES OF THE ADA PROGRAMMING LANGUAGE

Although the initial interest in Ada results from the strong push
which DoD is giving it in the mission critical area, the features
of the language assure its acceptance in a much larger market:

o Strong typing -- Type checking is performed at compile time,
detecting errors associated with data types and reducing
program development time.

o Data abstraction -- Ada provides various levels of abstraction
through data typing and the "package" mechanism.

0 Concurrent processing Parallel
directly using constructs that
itself.

activities are supported
are part of the language

o Separate compilation Ada's separate (rather than
independent) compilation feature lets a programmer divide a
large program into compilation units that may be compiled at
different times.

o Generic definitions -- A generic unit is a template of an
algorithm. Specific instances of a generic unit can be
defined at compilation time by supplying actual type,
subprogram and/or object parameters to create a subprogram or
package tailored to those parameters.

o Exception handling Ada includes predefined exception
conditions and also allows the user to define exceptions.

o Machine Dependent Facilities -- A package called SYSTEM is
provided which contains a collection of system defined
constants to represent machine dependent information.
Further, Ada provides the ability to refer to low-level
machine-dependent features in high-level terms, using
"representation specifications."

FEATURES OF VAX Ada

In addition to all standard Ada language features, Digital's VAX
Ada provides a rich and robust programming support environment:

48

VAX Ada Features

+--+
FEATURE ! DESCRIPTION !

+--+
Government Validated !VAX Ada has successfully passed
Compiler !the latest set (Vl.4) of over

!2000 tests which compose the
!official government-mandated Ada
!Validation test suite; the test
suite is a rigorous test of a
product's conformance to the
ANSI-MIL-STD-1815A-1983 for the
Ada programming language.

+------------------------------- --------------------------------+
Program Library Manager Support is provided for teams of

programmers through an Ada
program library manager.
In addition to providing the
required support for Ada
dependent language features, the
library manager provides many
useful features for managing Ada
programming projects. This
facility, for example, allows
shared use of a program library
by multiple programmers, the
ability to share compiled Ada
code either by reference or
copy, the use of individual
libraries as sublibraries of
team libraries, and the
automatic recompilation of
obsolete units.

+--+
!VMS integration !VAX Ada is integrated into the

VAX/VMS common language
environment. All utilities and
system services are available to
programs written in Ada. VAX Ada
programs can also handle VMS
asynchronous system traps (ASTs)
and be linked with shared images
and use shared global
sections. VAX Ada supports VAX
Record Management Services (RMS)
including sequential, relative,
and indexed file organizations
and associated access methods.

+-------------------------------!--------------------------------+

49

VAX Ada Features (con't)
+--+

FEATURE DESCRIPTION
+-------------------------------!--------------------------------+
Full Symbolic Debug Support !High level, fully symbolic

!debugging capability through
!the VMS debugger is provided
!for the Ada programmer. This
!capability includes support for
!multitasking, packages, and
!mixed Ada and non-Ada code.

+-------------------------------!--------------------------------+
Multilanguage Capability VAX Ada conforms to the VAX

Calling Standard, which
provides the ability to call
and be called by code
written in other languages. VAX
Ada is also able to handle
exceptions from non-Ada code,
generate exceptions to be
handled by non-Ada code, and
share data with non-Ada code
through global variables and
psects (common blocks).

+------------------------------- --------------------------------+
Optional Ada Language Features .VAX Ada supports almost all the

optional language features
defined in the ANSI Ada Language
Reference Manual: predefined
PRAGMAs and attributes,
unchecked conversion and
unchecked deallocation, and
representation specifications.
Representation

.specifications allow programs to
!refer to low-level, machine
!dependent features in high-level
!terms. These specifications
!tell the compiler how an entity
!is to be implemented, or
!'mapped' to the underlying
•machine.

+------------------------------- --------------------------------+
!Comprehensive Diagnostics Diagnostic messages, including
! automatic syntax error !

correction, are geared to help !
the new Ada user.

+------------------------------- --------------------------------!

50

VAX ADA Technical Summary

tm r
VAX Ada

Technical Summary
(Preliminary)

*

Digital Equipment Corporation
November 1984

PREFACE

This document provides technical information about Digital Equipment
corporation's implementation of Ada for VAX/VMS. Information is
organized according to the "Ada-Europe Guidelines for Ada compiler
specification and selection". Questions from the guidelines are not
restated; rather, topics are discussed in a manner that makes it
unnecessary to refer to the original questions. The presentation is
intentionally terse to present the most information possible in the
least space. Supplementary information is also provided as
appropriate. An appendix shows listings from two small compilations
to help answer many of the questions related to compilation listings
and error messages.

The "Ada-Europe Guidelines for Ada compiler specification and
selection" was developed in 1982 by J. c. D. Nissen, B. A. Wichmann
and other members of Ada-Europe, with partial support fr~m the
commission of the European Communities. It provides a detailed
checklist of questions about an Ada implementation designed to assist
users in evaluating Ada implementations and to assist vendors in
describing Ada implementations.

The "Ada-Europe Guidelines" is available from the National Physical
Laboratory as NPL Report DITC 10/82, ISSN 0262-5369. It was also
reprinted in Ada Letters, Vol. III, No. 1 (July, August 1983), pp.
37-50. (Ada Letters is a bimonthly publication of the ACM Special
Interest Group on Ada.)

ta VAX is a trademark of Digital Equipment Corporation.
r Ada is a registered trademark of the U.S. Government, Ada Joint

Program Office.
* The information presented applies to the field test version of VAX

Ada Version 1. The information in this document is subject to
change without notice and should not be construed as a commitment
by Digital Equipment Corporation.

51

VAX Ada Technical Summary (Preliminary)
15 November 1984

1
2
3
3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9
3.10
3.11

4
4.1
4.1. l
4.1.2
4.2
4.3
4.4
4.4.l
4.4.2
4.4.3
4.5
4.6
4.7
4.7.l
4.7.2
4.7.3
5
5.1
5.2
6
6.1
6.1.l
6.1.2
6 .1. 3
6.1. 4
6.1.5
6.1.6
6.1. 7
6.1. 8
6.1. 9
6.2

CONTENTS

INTRODUCTION • • • • • • • • •
HOST AND TARGET ENVIRONMENTS • • • • • • • • •
LANGUAGE-RELATED ISSUES • • •

Chapter 2: Lexical Elements ••
Chapter 3: Declarations And Types

.
Chapter 4: Names And Expressions ••••••
Chapter 9: Tasks •••••••••
Chapter 10: Program Structure And Compilation
Issues • • • • • • • • • • • • • •
Chapter 11: Exceptions ••••••
Chapter 13: Representation Clauses And

. . .
Implementation Dependent Features
Chapter 14: Input-Output ••••••••
Annex A: Predefined Language Attributes

. .

. . . .

Annex C: Predefined Language Environment • • • •
Appendix F: Implementation Dependent
Characteristics ••••••••••••••

USER INTERFACE AND DEBUGGING FACILITIES
Compiler Invocation And Listing Management •

Invoking The Compiler • • • • • •
Format And Content Of User Listings

Compilation Options • • ••••••
Other Features • • • • • • • •
Errors And Warnings •••

Compiler Messages
Error Messages •••
warning Messages • •

Other Software Supplied ••••
Compilation (Program) Library Management ••
Debugging Facilities • • ••••

General Facilities ••••••••••••
Tasking Facilities ••••••••
VAX Ada Specific DEBUG Commands

PERFORMANCE AND CAPACITY • • • • • • • • •
Host Performance And Capacity •••••
Target Code Performance ••

COMPILER AND RUN-TIME INTERFACING • • • •
Compiler Issues • • • •••••••

Design Criteria •••••••••
Compiler Phase And Pass Structure • • • •
Compiler Module Structure • • • •
Intermediate Program Representations •
Final Program Representation •••
Compiler Interfaces To Other Tools . .
Compiler Construction Tools • • • • • • • • •
Target-Dependent Information •••••
Installation • • • • • • • • •

Run-Time System Issues • • • • •

52

• 1
• 1
• 2
• 2
• 3
• 4
• 4

• 5
• 5

• 6
• 9
10
10

11
11
12
12
13
13
16
17
17
17
18
18
19
21
22
23
24
29
29
30
33
33
33
33
34
34
34
34
35
35
35
35

VAX Ada Technical Summary (Preliminary)

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
7
8
9

APPENDIX A

15 November 1984

Storage Management • • • • • • • • •
Subprogam Call Parameter Handling ••••••
Data Representation • • • • • • •
Implementation Of Tasking ••••••••
Exception Handling System • • • • • • • •
Input-Output Interfaces ••••••••
Generics •••••••
Documentation • • • •

RETARGETING AND REHOSTING
CONTRACTUAL MATTERS
VALIDATION • • • • • • • •

SAMPLE LISTINGS

53

.

35
35
36
37
37
38
38
39
39
40
41

VAX Ada Technical Summary (Preliminary)
INTRODUCTION

l INTRODUCTION

15 November 1984

VAX Ada is a full, production-quality implementation of Ada that is
well-integrated in the VAX/VMS environment, where the VAX/VMS
operating system serves as both host and target. The main components
of VAX Ada are:

0 Ada Compiler

0 Ada Program Library Manager (ACS)

0 Ada Run-Time Library

0 Ada Library of Predefined Units

0 Symbolic Debugger Support

0 Comprehensi""ve Documentation

Each of these components is described in detail in the following
sections.

2 HOST AND TARGET ENVIRONMENTS

The host hardware includes the VAX 8600, VAX-11/785, VAX-11/780,
VAX-11/782, VAX-11/750, VAX-11/730,* VAX-11/725, MicroVAX I and future
members of the VAX family. The host operating system is VAX/VMS,
version 4.0 or later, and MicroVMS, Version 1.0 or later (for the
MicroVAX. I). (KicroVMS is a repackaged variant of VAX/VMS intended
for systems with limited disk space. It is not a subset and provides
the full power and functionality of VAX/VMS.)

Target configurations are the same as the host configurations.
Programs can be moved from any host to any target (when different) in
source, object or executable image format, using any common media (for
example, disk, magtape) or communication medium (for example, ~sing
DECnet). Complete Ada program libaries can also be moved in the same
manner.

The VAX "Ada Programming Support Environment" (APSE) consists of the
VAX common language environment and the Ada program library management
utility (ACS). The VAX/VMS common language environment includes a
variety of existing and planned languages and tools which all work
together. Tools and utilities provided with VAX/VMS include the VAX
Symbolic Debu~ger (DEBUG), Record Management Services (RMS), the
common Run-Time Library (RTL), the VAX/VMS file system, and the
DIGITAL Command Language (DCL).

* VAX Ada is not supported on the VAX-11/730 with the tailored dual
RL02 system.

54

VAX Ada Technical Summary (Preliminary)
HOST AND TARGET ENVIRONMENTS 15 November 1984

The ACS is part of the VAX Ada product and provides support for Ada
program library requirements, as well as various project-oriented
utility operations.

Optionally available tools and utilities include a source code
management system (CMS), a module management system (MMS), a language
sensitive editor (LSE, expected availability spring 1985), a test
manager (DTM, available fall 1984), a performance and test coverage
analyzer (PCA, expected availability spring 1985), and various VAX
Information Architecture (VIA) products.

3 LANGUAGE-RELATED ISSUES

The Ada Standard (ANSI/MIL-STD-1815A-1983) explicitly allows
variations among Ada processors in a number of dimensions. This
section describes the language supported by VAX Ada and is organized
according the applicable chapters of the LRM.*

3.l Chapter 2: Lexical Elements

The VAX/VMS character set is an 8-bit superset of ISO standard 646,
known as the DEC Multinational Character Set. The extended characters
cannot, of course, be used in an Ada source program; similarly, the
extended characters cannot be read or written as values of the Ada
predefined type CHARACTER. However, the full character set can be
used under the guise of an integer type.

The maximum number of characters in a source line is 120.
limits the length of identifiers to 120 characters.

This also

Input-output in executing Ada programs is limited only by the length
of records supported by the VAX/VMS operating system: 32,767 bytes.

VAX Ada supports the language-defined pragmas CONTROLLED, ELABORATE,
INLINE, INTERFACE, LIST, MEMORY SIZE, OPTIMIZE, PACK, PAGE, PRIORITY,
and STORAGE UNIT. INLINE and- INTERFACE are subject to certain
restrictions-(as discussed later).

The predefined pragmas SHARED and SUPPRESS are not supported. The VAX
Ada pragma VOLATILE is similar to pragma SHARED but does not guarantee
synchronization and can be used with objects of any type. The VAX Ada
pragma SUPPRESS_ALL provides the ability to suppress all checking, but
VAX Ada does not support selective disabling of checking by means of
pragma SUPPRESS.

* LRM refers to the Ada Standard: "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD-lSlSA-1983.

55

VAX Ada Technical, Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

VAX Ada also provides the following implementation-defined pragmas
(their definitions are given in the VALRM* sections shown):

AST ENTRY
EXPORT EXCEPTION
EXPORT-FUNCTION
EXPORT OBJECT
EXPORT-PROCEDURE
IMPORT EXCEPTION
IMPORT FUNCTION
IMPORT OBJECT
IMPORT PROCEDURE
IMPORT-VALUED PROCEDURE

(9.12a)
(13.9a.3.2)
(13.9a.l.3)
(13.9a.2.2)
(13.9a.l.3)
(13.9a.3.l)
(13.9a.l.l)
(13.9a.2.l)
(13.9a.l.l)
(13.9a.l.l)
(3.5.7a)
(13.9a.2.3)
(11. 7)
(13.2a)
(9.Sa)

- -LONG FLOAT
PSECT OBJECT
SUPPRESS ALL
TASK STORAGE
TIME SLICE
TITLE
VOLATILE

(8)
(9.11)

Each of these is briefly described in later sections.

3.2 Chapter 3: Declarations And Types

The maximum number of elements in an enumeration type is 65,535.

There are three predefined integer types: INTEGER, SHORT INTEGER and
SHORT_SHORT_INTEGER. Their first and last values are: -

Type

INTEGER
SHORT INTEGER
SBORT:SHORT_INTEGER

T'FlRST

-(2**31)
-(2**15)
-(2**7)

T'LAST

(2**31)-1
(2**15)-1

(2**7)-1

Type LONG_INTEGER is not supported in VAX Ada.

There are three predefined floating point types in package STANDARD:
FLOAT, LONG FLOAT and LONG LONG FLOAT. In addition, there are four
predefined floating point types in-package SYSTEM: F FLOAT, D FLOAT,
G FLOAT and H FLOAT. All are implemented using one of the four VAX
hardware floating point representations: F_floating (32 bits),
D_floating (64 bits), G_floating (64 bits) and H_floating (128 bits).
Type LONG FLOAT uses the G floating representation by default, but
this can be changed to D_fioating using pragma LONG_FLOAT.

* VALRM refers to DIGITAL's "VAX Ada Language Reference Manual",
which includes both the full text of the LRM and VAX Ada specific
supplements.

56

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

Type T'DIGITS Representation

FLOAT
LONG FLOAT

using D floating
using G=floating (default)

LONG LONG FLOAT
F FLOAT (in SYSTEM)
D-FLOAT (in SYSTEM)
G-FLOAT (in SYSTEM)
H-FLOAT (in SYSTEM)

6

9
15
33

6
9

15
33

F_floating
D or G_floating

H_floating
F_floating
D_floating
G_floating
H_floating

Type SHORT_FLOAT is not supported for VAX Ada.

In addition to type DURATION, there are 63 anonymous predefined fixed
point types. All fixed point types are implemented as 32-bit scaled
binary values.

The compiler does not flag uninitialized variables, nor does it reject
a program that depends on them.

3.3 Chapter 4: Names And Expressions

Static expressions of type universal integer have no limit on
implemented range. Similarly, - static expressions of

the
type

range.
general

universal real have no limit on the implemented accuracy or
Evaluation of such expressions during compilation uses a
universal arithmetic package.

Nonstatic expresions of type universal integer are evaluated during
execution using 32-bit signed binary representation, and hence have a
range limited to -2147483648 •• 2147483647. Nonstatic expressions of
type universal_real are evaluated during execution using the
H_floating representation, and hence are limited to an accuracy of
approximately 33 digits and a range of approximately
-5.9*(10**4931) •• 5.9*(10**4931).

3.4 Chapter 9: Tas~s

The properties of type DURATION are as follows:

DURATION'DELTA
DURATION'SKALL

DURATION' FIRST
DURATION'LAST

l.OOOOOe-04
2.0**(-14)

-131072.0000
131071.9999

57

(10 milliseconds)
(approximately 61
microseconds)

(approximately
36.4 hours)

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

Subtype PRIORITY has the following range:

PRIORITY'FIRST
PRIORITY'LAST

0
15

A task for which no pragma PRIORITY is specified has a default
priority of 7.

VAX Ada does not support pragma SHARED. It does support the
implementation-defined pragma VOLATILE, which guarantees that a
variable will be in memory, but does not force synchronization.
Pragma VOLATILE can be used with variables of any type, including
composite variables.

3.5 Chapter 10: Program Structure And Compilation Issues

A VAX Ada ~iogram 1s initiated using the DCL RUN command.

Any library subprogram can be a main subprogram provided that it has
no parameters, and, in the case of a function, returns a value of a
discrete type.

Information can be communicated to an Ada program using command line
parameters (using the system command line interface callback
facilities), logical names, global sections, mailboxes and, of course,
file and/or interactive input-output facilities. (Note: these are
all general VAX/VMS capabilities and are in no way specific to VAX
Ada.)

VAX Ada programs can be linked with and can call routines
other VAX languages; conversely, Ada subprograms can be
programs written in other VAX languages. The main program
written in the Ada language.

written in
called from
need not be

Tasks initiated in library packages follow the same rules for task
termination as other tasks. In particular, they are not terminated
simply because the main program terminates. Terminate alternatives in
selective wait statements in library tasks are recommended.

3.6 Chapter 11: Exceptions

NUMERIC ERROR is raised for integer or floating point
integer or floating point divide-by-zero; it is
floating point underflow (the value zero results).

overflow, and
not raised for

PROGRAM ERROR is raised as required in the LRM; it is also raised in a
few instances that are not required. PROGRAM ERROR is not raised for
incorrect order dependences.

58

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES

STORAGE_ERROR is raised as required in the LRM.

15 November 1984

VAX Ada provides (in package SYSTEM) the exception NON ADA ERROR,
which allows an Ada exception handler to handle VAX conditions-raised
in imported code. Ada exceptions can also be handled by routines
written in other languages. The continuation option of the VAX
Condition Handling Facility (CHF) is not available to Ada subprograms,
nor is it available for an exception that is reraised by an Ada
subprogram.

3.7 Chapter 13: Representation Clauses And Implementation Dependent
Features

Generally, VAX Ada supports all implementation-dependent facilities of
Chapter 13 that have a useful interpretation in the VAX/VMS
environment.

Pragma PACK is supported.

For a size specification for a discrete type, the given size must not
exceed 32 bits; the given size becomes the default allocation for all
objects and components of that type. For all other types, the given
size must equal the size that would apply in the absence of a size
specification.

For a collection size specification, the given size becomes the
initial and maximum size of the collection. In the absence of a
collection size specification, or for a size specification of zero, no
storage is initially allocated for a collection, and the collection is
extended as needed (until all virtual memory for the process is
exhausted). If the value is less than zero, CONSTRAINT ERROR is
raised. -

For a task activation specification, the given size becomes the
initial and maximum size for the task activation (the task stack
size). In the absenca of a specification, or for a specification of
zero, a default size is used. In either case, the task stack size is
fixed at activation and is not extendable. If the value is less than
zero, CONSTRAINT_ERROR is raised.

For the specification of small for a fixed point type, the given value
must be a power of 2.0 (2.0**N, where -31 <• N <• 31) that is less
than or equal to the delta of the type.

Enumeration representation clauses are supported.

Record representation clauses are supported. The value in an
alignment clause must be a power of 2 (2**N, where 0 <• N <• 9). For
stack objects, the alignment must not exceed 4 (longword alignment).
For statically and collection-allocated (heap-allocated) objects,
alignments up to 512 are supported.

59

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

VAX Ada distinguishes types that are bit-alignable and byte-alignable.
Components of bit-alignable types can be allocated beginning at
arbitrary bit offsets in component clauses, while components of
byte-alignable types must be allocated at byte (addressable storage)
boundaries. Generally, discrete types, arrays of discrete types and
record types whose size is 32 bits or less are bit-alignable, while
other types are not. (The exact rules are a little more complicated;
see the "VAX Ada Programmer's Run-Time Reference Manual" for full
det~ils.)

VAX Ada generates no implementation-dependent components or names for
record types.

VAX Ada does not support address specifications. (The
implementation-defined attribute AST_ENTRY and pragma AST_ENTRY can be
used to map a VAX/VMS asynchronous system trap (AST) to an entry
call.)

VAX Ada provides various additional declarations in the predefined
package SYSTEM to facilitate system programming in the VAX/VMS
environment. These include the basic system-dependent named numbers,
whose values are given as follows:

MIN INT
AAX I~
MAX-DIGITS
AAX AANTISSA
FINE DELTA
TICK

-(2**31)
(2**31)-1

33
31
2.0**(-30)

10.0**(-2)

Type ADDRESS is a private type for which conventional "unsigned"
addition, subtraction and relational operations are provided. Generic
subprograms FETCH_FROM_ADDRESS and ASSIGN_TO_ADDRESS provide the
ability to read from or write to memory at an arbitrary address
according to the instantiated type.

Other constituents of package SYSTEM are detailed in the VALRM.

The representation attributes ADDRESS, SIZE, POSITION, FIRST BIT,
LAST_BIT and STORAGE SIZE are supported. The implementation-defined
attribute BIT yields the bit offset within a storage unit of the first
bit allocated to an object (a value from 0 to 7).

60

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES

The values of the representation attributes
are summarized as follows:

Floating Point
Attribute F D

MACHINE RADIX 2 2
MACHINE MANTISSA 24 56
MACHINE EMAX 127 127
MACHINE EMIN -127 -127
MACHINE_ROUNDS TRUE TRUE
MACHINE_OVERFLOWS TRUE TRUE

15 November 1984

for floating point types

Representation
G H

2 2
53 113

1023 16383
-1023 -16383

TRUE TRUE
TRUE TRUE

For each hardware floating point type, there are representable numbers
that are not safe numbers, and there is a small set of numbers that
are outside the range of safe numbers, as indicated in the shaded
region of the following diagram. For F, o, G and H_floating
respectively, the number of decimal digits in the safe numbers is 6,
9, 15 and 33, and the safe maximum exponents are 127 1 127, 1023 and
16383.

SAFE EMAX

Hardware
Exponent

Hardware mantissa
+---------------+------+

S I 1//////1
A +---------------+------+
F I I I
E I I I

+---------------+ NOT I
N I I SAFE I
U I MODEL NUMBERS I BUT I
M I I IN I
B +---------------+ RANGEi
E I
R I
s +---------------+------+

Machine code insertions are not supported.

Pragma INTERFACE is supported and may be used with routines of any
language that adheres to the VAX Procedure Calling Standard. (The
language name given in this pragma is ignored.)

When pragma INTERFACE applies to more than one subprogram, it must be
supplemented by implementation-defined IMPORT FUNCTION,
IMPORT_PROCEDURE and/or IMPORT_VALUED_PROCEDURE pragmas to- identify
the distinct foreign routines corresponding to each internal
subprogram declaration. These pragmas may also be used to specify the
the parameter passing mechanism to be used (by value, by reference or
by descriptor) when the mechanisms required by the external routine
differ from the default mechanisms that would be used by VAX Ada.
Pragma IMPORT VALUED PROCEDURE allows "functions" in the environment
that also update their parameters to be declared and called as
procedures within Ada {functions in Ada are not allowed to have

61

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES

'in out' or 'out' parameters).

15 November 1984

The implementation-defined pragma IMPORT_OBJECT allows an externally
declared variable to be associated with an Ada variable. Conversely,
pragma EXPORT_OBJECT allows an Ada variable to be accessed in external
routines. Finally, pragma PSECT OBJECT allows an Ada variable to be
associated with an external program section ("psect"), and thus made
to correspond to a VAX FORTRAN common block or a PL/I external
variable. These pragmas are generally restricted to use with
variables declared in library packages (which are statically
allocated).

The implementation-defined pragma IMPORT_EXCEPTION allows a specific
VAX condition value (used for implementing exceptions in VAX/VMS) to
be associated with an Ada exception. Conversely, p~agma
EXPORT EXCEPTION allows an Ada exception to be exported as a VAX
condition value.

For all of the import and export pragmas described above, additional
rules and restrictions apply. See the VALRM for full details.

Unchecked deallocation is supported. (Pragma IMPORT PROCEDURE cannot
be used to substitute a user-defined procedure.) -

Unchecked conversion is supported, subject to the following: The
actual subtype corresponding to the formal type TARGET must not be an
unconstrained array type or an unconstrained type with discriminants.
Further, when the target type is a type with discriminants, the value
resulting from a call of the conversion function resulting from an
instantiation of UNCHECKED CONVERSION is checked to assure that the
discriminants satisfy the co;straints of the actual subtype. For an
unchecked conversion, when the size of the source value is not the
same as the target subtype, the value is truncated (high-order bits
are ignored) or zero-filled (high-order bits).

3.8 Chapter 14: Input-Output

The language-defined packages SEQUENTIAL_IO, DIRECT_IO, TEXT IO and
IO_EXCEPTIONS are supported. In addition, VAX Ada provides packages
RELATIVE_IO, INDEXED IO, SEQUENTIAL MIXED IO, DIRECT MIXED IO,
RELATIVE MIXED_IO, INDEXED_MIXED_IO and AUX_IO=EXCEPTIONS.

RELATIVE IO is similar to DIRECT IO, but adds the ability to detect
"empty" -records (as in COBOL): INDEXED_IO is also similar and adds
the ability to locate records by a key value. Like SEQUENTIAL IO and
DIRECT IO, both are instantiated with a type to create a pac~age for
external files whose elements are all of that same type.

62

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

SEQUENTIAL_MIXED_IO, DIRECT MIXED IO, RELATIVE MIXED 10 and
INDEXED MIXED IO are analogous to their "non-mixed" counterparts, but
allow each external file record to contain multiple values of various
types. These packages allow convenient interchange of data using
files created or used by other VAX languages, such as FORTRAN, COBOL,
PL/I and so on.

AUX 10 EXCEPTIONS defines add~tional exceptions needed by the relative
and indexed input-output packages, namely: LOCK_ERROR,
EXISTENCE_ERROR and KEY_ERROR.

All input-output packages are implemented using VAX/VMS
Management Services (RMS), which provides read sharing
sequential and direct packages, and read/write sharing with
record locking for the relative and indexed packages.

Record
for the

automatic

All OPEN and CREATE routines in the input-output packages support FORM
parameters using the DIGITAL File Definition Language (FOL). Thi 3

allows full access to and use of all RMS facilities, including
additional file sharing capabilites, allocation control, choice of
representation options, and so on.

All input/output packages are integrated with the multitasking kern~l
so that operations on an internal file are indivisible (atomic) in tte
presence of concurrent calls from multiple tasks.

3.9 Annex A: Predefined Language Attributes

The values for implementation-defined values are detailed in the
appropriate chapters of the VALRM and summarized in Appendix F. The
complete list of VAX Ada implementation-defined attributes is:

AST ENTRY
BIT
DICTIONARY_MAP
IMAGE MAP
NULL PARAMETER
TYPE:CLASS
VALUE MAP

3.10 Annex C: Predefined Language Environment

Packages MACHINE CODE and LOW LEVEL IO are not provided.

63

VAX Ada Technical Summary (Preliminary)
LANGUAGE-RELATED ISSUES 15 November 1984

3.11 Appendix F: Implementation Dependent Characteristics

Implementation limits are summarized as follows:

Limit

32

120

120

245

246

255

1023

32757

65535

65535

65535

65535

2**31-1

Description

Maximum number of formal parameters in a subprogram or
entry declaration that are of an unconstrained record
type

Maximum identifier length (number of characters)

Maximum number of characters in a source line

Maximum number of discriminants in a record type

Maximum number of formal parameters in an entry or
subprogram declaration

Maximum number of dimensions in an array type

Maximum number of library units in the transitive
closure of the with clauses of a compilation unit

Maximum number of objects declared with PSECT_OBJECT
pragmas

Maximum number of enumeration
enumeration type definition

literals in

Maximum number of characters in a value of
predefined type STRING

Maximum number of lines in a single source file

Maximum number of frames that an
propogate

exception

Maximum number of bits in any object or value

an

the

can

4 USER INTERFACE AND DEBUGGING FACILITIES

VAX Ada source files are compiled in the context of a program library.
A program library is created with the ACS:

$ ACS CREATE LIBRARY [M_ydir . .Lib)

where $ is the VAX/VMS operating system prompt. This command creates
a new VAX/VMS subdirectory named [Mydir.Lib) and initializes it for
use as an Ada program library. By default, units from the predefined
library, such as TEXT IO, are automatically entered in the new
library. Any number of program libraries are allowed.

64

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES

The "current• program library is established with

$ ACS SET LIBRARY [Mydir.Lib)

15 November 1984

Switching among program libraries can take place as often as desired.

The compiler is invoked with the ADA command, together with the name
of the file to be compiled and any qualifiers needed to obtain desired
compilation options:

$ ADA/LIST/MACHINE_CODE MYPROG

This command compiles the file MYPROG.ADA in the context of the
current compilation library, and produces a listing that includes the
generated machine code. If there are no errors, then the program
library is updated with the results of the compilation, including the
generated object module. If there are errors, then the program
library is not updated. Debug symbol table (DST) information is
included in the object module by default.

If MYPROG contains a main subprogram, say a procedure named MYMAIN,
then that program may be linked for execution with:

$ ACS LINK MYMAIN

Any missing or obsolete units needed by MYMAIN are automatically
detected and cause the link operation to be aborted.

The resulting executable image file may then be executed with:

$ RUN MYMAIN

If debugging is desired, it can be specified as part of the ACS LINK
command:

$ ACS LINK/DEBUG MYMAIN

The RUN MYMAIN command then starts the program under control of DEBUG.

The sections that follow give details pertinent to the commands and
facilities illustrated here.

4.1 Compiler Invocation And Listing Management

4.1.1 Invoking The Compiler - The compiler may be invoked with the
ADA command or with the ACS COMPILE or ACS RECOMPILE commands. There
are no differences in interactive or batch use.

65

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

4.1.2 Format And Content Of user Listings - The listings given in
Appendix A illustrate most aspects of the compilation listings
produced by VAX Ada. A brief summary of those aspects follows.

The header lines of each listing page identify the name of the unit
being compiled, the date and time of the compilation, the compiler
version, the full name of the source file being compiled and the date
and time that the file was created or last modified.

When there is more than one input file, a separate listing file is
produced for each.

Messages are embedded in the listing at the point where they apply. A
total of each class of messages (errors, warnings and informationals)
is given at the end of the listing.

When the /MACHINE CODE option is specified, the generated machine code
is included in the listing. The code appears followinq each complete
subprogram or body. The machine code is correlated with the
originating source line as illustrated in the listing for ACKERMANN in
Appendix A.

No type map and data map display is available in the listing. Neither
is a cross-reference option available, either for a single unit er
across units.

The final page of the listing displays various compiler statistics.
CPU time, elapsed time, page faults and input-output counts are
provided for 25 phases (or subphases) of compilation. Total
information is also provided including CPU time, elapsed time,
lines/minute compilation rate (based on CPU time) and space (virtual
pages) used. There are no fixed-size tables in the compiler.

4.2 Compilation Options

The options available for an Ada compilation are summarized in the
following, where "(D)" indicates the default choice. Note that these
options can be used with the ADA compilation command as well as with
the ACS COMPILE and RECOMPILE commands.

/COPY SOURCE (D)
/NOCOPY_SOURCE

Controls whether a copied source file (.ADC) is created in the
program library. The RECOMPILE command requires that a copied
source file exist for any unit that is to be recompiled.

66

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES

/DEBUG[•(Option[, •••])] (D)
/NODE BUG

15 November 1984

controls whether the compiler creates a symbol table for VAX
DEBUG. You can request the following:

ALL

NONE

[NO]SYMBOLS

Provides both SYMBOLS and TRACEBACK

Provides neither SYMBOLS nor TRACEBACK;
equivalent to /NODEBUG

Controls whether debug symbol records
are included in the object file

[NOJTRACEBACK controls whether traceback information
is included in the object file

By default, both debug symbol records and traceback information
are included in the object file.

/DIAGNOSTICS[•file-spec)
/NODIAGNOSTICS (D)

Controls whether a diagnostics file is created for a language
sensitive editor.

/ERROR_LIMIT[•n]
/NOERROR_LIMIT

Controls whether execution of the Ada compiler is terminated upon
the occurrence of the n-th E-level error within a single
compilation unit. The default is /ERROR_LIMIT•30.

/LIBRARY•directory-spec

Specifies the program library that is to
compilation. By default, the library used is
last specified in an ACS SET LIBRARY command.
ADA$LIB defines the current program library.

/LIST[•file-spec]
/NOLIST (D)

Controls whether a listing file is produced.

/MACHINE_CODE
/NOMACHINE_CODE (D)

be used for the
the program library

The logical name

Controls whether the listing produced by the compiler includes
the machine language code generated by the compiler.

67

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

/MESSAGES[•(category:destination[, ••• J)J

Controls which categories of informational (I-level) and warning
(W-level) messages are displayed and where those messages are
displayed. You can specify any of the following category
keywords:

WARNINGS Warning (W-level) diagnostics

WEAK WARNINGS Informational (I-level) diagnostics
that indicate questionable usages

SUPPLEMENTAL Additional information about a
previous error

COMPILATION_NOTES Notes on how the VAX Ada compiler
translated the source program

STATUS End-of-compilation statistics and
updates to the program library

The destination code for a category can be ALL, NONE, or
combinations of T (terminal), L (listing), or D (diagnostics
file). If a destination code is not given for a category, the
default is ALL. If you specify only some of the category
keywords with the /MESSAGES qualifier, the default values for
other categories are used. The default is:

/MESSAGES•(WARN:ALL,WEAK:ALL,SUPP:ALL,STATUS:L,COMP:NONE)

/NOTE SOURCE (D)
/NONOTE_SOURCE

controls whether the file specification of the current source
file is noted in the program library. The COMPILE command uses
that information to locate revised source files.

/OPTIMIZE[•option] (D)
/NOOPTIMIZE

Controls whether
compiled code,
criterion is the
code.

full optimization is applied in producing the
and controls whether the primary optimization
speed of compiled code or the size of compiled

You can specify one of the following options:

TIME

SPACE

/OPTIMIZE•TIME

Provides full optimization with automatic
inline expansion for small subprograms

Provides full optimization without
automatic inline expansion

overrides any
68

occurrences of pragma

VAX Ada Technical Summary (Preliminary)
OSER INTERFACE ANO DEBUGGING FACILITIES 15 November 1984

OPTIMIZE(SPACE) in the source code, without having to edit the
source code. Similarly, /OPTIMIZE•SPACE overrides any
occurrences of pra9ma OPTIMIZE(TIME). /NOOPTIMIZE suppresses all
optimizations and suppresses all inline expansion, including
those specified by pragma INLINE; it also overrides any
occurrences of pragma OPTIMIZE in the source code. The default
is /OPTIMIZE•TIME.

/SHOW[•option]
/NOSHOW (D)

Controls optional sections of the listing file. You can specify
one of the following options:

ALL

NONE

[NO)PORTABILITY

/SUPPRESS_ALL
/NOSOPPRES?_ALL (0)

Provides all optional sections

Provides no optional sections

Controls whether a portability
summary is included in the listing

Controls whether run-time error checking is suppressed.
/SUPPRESS ALL is equivalent to including pragma SUPPRESS ALL in
every compilation unit. /NOSUPPRESS_ALL overrides- any
occurrences of pragma SUPPRESS ALL in the source code, without
having to edit the source code.

/SYNTAX_ONLY
/NOSYNTAX_ONLY (0)

Controls whether the source file is to be syntax~checked only,
rather than being fully compiled.

No· options are provided to control the width of a listing. The
listing file assumes an available width of 132 characters. Terminal
messages assume an available width of 80 characters.

The compiler /OPTIMIZE•NONE qualifier is available to suppress code
optimization. While VAX DEBUG is designed to be used with optimized
code, there may occasionally be situations where ease of debugging is
aided by use of this option.

4.3 Other Features

The source file for each unit is fully identified in the object
program; this information is used by both ACS and VAX DEBUG.

69

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING ·FACILITIES 15 November 1984

4.4 Errors And warnings

No object code is produced for units containing errors. Object code
is produced if the messages are warnings or informational.

4.4.l compiler Messages - There are four levels of messages: Fatal
Errors, Errors (both classes suppress object file generation),
warnings and Informationals. Informational messages are further
subdivided into Weak Warnings, Supplemental, Status and Compilation
Notes.

Certain errors can produce multiple lines of informational text to aid
in program correction. For example, the error message "Inconsistency
detected during overload resolution" is followed by supplemental
messages that provide information about how the overloading resolution
was attempted. Terminal output of such supplemental messages is
limited to six lines, provided a listing is also being p~oduced (which
will contain the full message); otherwise the full message is
displayed. Error messages frequently provide information on what was
"found", what was "expected" and give suggested corrections.

Warning messages and each
selectively enabled or
and/or diagnostics file.

class of
disabled

informational messages can be
to each of the listing, terminal

All messages are in English. Messages take the general
VAX/VMS error messages with further informational text. The
design generally provides for the ability to provide messages
natural languages, but this is not available in Version 1.

form of
compiler
in other

Terminal messages are available in the batch log file when the
compiler is used from batch. Interactively, terminal error messages
can also be directed to a file for later reference by redirecting the
logical output file SYS$ERROR. More usefully, the /DIAGNOSTICS option
can be used to create a specially formatted file that allow~ the
optional language sensitive editor to simultaneously display errors
and allow editing of the source file using "split screen" techniques.

The compiler attempts to pinpoint errors as accurately in the source
code as possible. A dot and numeral (•••••• 1) technique is used to
show the correspondence of error messages to points in the source
code.

4.4.2 Error Messages - Error messages provide a great deal of
supplemental information; for example, how the compiler attempted to
resolve·overloading, what syntactic token the compiler expected at a
particular point and what it actually found, etc.

70

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

The compiler uses an error-correcting parser. Attempts are made to
diagnose as many errors as possible while minimizing cascading errors.
There is no "restart at a position" ability in the compiler.

4.4.3 Warning Messages - An informational diagnostic is produced for

an exception that is sure to be raised
unreachable source code
an object that is declared but not used (in which case no
storage is allocated)

These diagnostics are produced only if the /MESSAGES-COMPILATION NOTES
option is given with the compilation command (not by default).

No diagnosis is provided for:

use of an unusually expensive construct
a real expression whose accuracy is inherently low
erroneous usages
use of an unassigned (uninitialized) variable
an endless loop

A warning message is produced if a pragma is ignored and compilation
proceeds.

No warning is given or needed for code that is moved or combined with
other code; the debugger will correctly correlate source lines with
generated code at run-time, even if code has been shifted.

4.5 Other Software Supplied

No facility for cross-referencing of identifiers and names is
provided, nor is a facility provided to display the fully qualified
name, except as part of error messages for overloading resolution
errors.

No pretty printing or reformatting facility is provided. However, use
of the optional language sensitive editor makes it easy to generate
source in a consistent format.

71

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

4.6 Compilation (Program) Library Management

Management and utility functions for program libraries are provided by
the ACS. The ACS program library management commands are summarized
as follows:

CHECK

COPY FOREIGN

COPY UNIT

CREATE LIBRARY

CREATE SUBLIBRARY

DELETE LIBRARY

DELETE SUBLIBRARY

DELETE UNIT

ENTER FOREIGN

ENTER UNIT

EXPORT

MERGE

REENTER

Forms the closure of one or more compiled units
and checks the completeness and currency of tne
units in the closure.*

Copies a foreign (non-Ada) object file into a
program library as a library body.

Copies a compiled unit from one program library to
another.

Creates a VAX Ada program library.

Creates a VAX Ada program sublibrary, to allow you
to isolate the development of selected units.

Deletes a program library and its contents.

Deletes a program sublibrary and its contents.

Deletes one or more compiled units from a program
library.

Enters a reference (pointer) from a given program
library to an external file as a foreign (non-Ada)
library body.

Enters a reference (pointer) from a given program
library to a unit that has been compiled into
another program library. The "entered" units can
be used in the given program library as if they
were actually in it.

Creates an object file that contains the object
code for one or more units.

Merges, into the parent library, new ve~sions of
one or more units from the sublibrary where they
were modified. MERGE replaces the older obsolete
version(s) in the parent library.

Enters current
compiled after
UNIT.

references to units that were
they were last entered with ENTER

* In simple terms, "closure" is the complete set of units that a
given unit depends on, plus any units needed for its execution.

72

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

SET LIBRARY

SET PRAGMA

SHOW LIBRARY

SHOW PROGRAM

SHOW UNIT

Defines a program
program library
library for compiler
general.

Redefines specified
characteristics
MEMORY SIZE.

library to be the current
that is, the target program

output and ACS commands in

values of
SYSTEM_NAME,

the library
LONG_FLOAT,

Displays the name and characteristics of one or
more program libraries.

Displays key information about one or more units
in a program library.

Displays information, such as name and date and
time of last compilation, about one or more units
in a program library.

ACS and DCL commands for compiling, linking, and execution are
summarized as follows:

($) ADA

($) RUN

COMPILE

LINK

RECOMPILE

SET SOURCE

DCL Commands

Invokes the VAX Ada compiler and compiles the
specified Ada source file(s).

Executes the specified executable image file.

ACS Commands

Forms the closure of one or more compiled units;
checks the completeness and currency of the units
in the closure; identifies units that have revised
source files; compiles units that have revised
source files and units that are obsolete or will
be made obsolete.

Forms the closure of an entire compiled program,
checks the completeness and currency of the units
in the closure, and links the set of units.

Forms the closure of one or more compiled units,
checks the completeness and currency of the units
in the closure, and recompiles any obsolete units
in the appropriate order to make them current.

Defines a source file search list for the COMPILE
command.

73

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

SHOW SOURCE Displays the source file search list used by the
COMPILE command.

Additional miscellaneous ACS commands are provided as follows:

ATTACH

EXIT

HELP

SPAWN

Switches control of the terminal from the current
process running ACS to another process in the job.

Exits from ACS. CTRL/Z can also be used.

Invokes the ACS HELP facility
information about ACS comaands.

to obtain

Creates a subprocess of the current process and
suspends execution of the current process.

The ACS CHECK command identifies all units that a particular unit
depends on that are either not iri the library or are nat cu%rent. The
check can apply to a single unit, an explicit list of units
(considered together) or all units of a program library.

The ACS RtCOMPILE command provides the ability to recompile a unit and
everything that it depends on that has become obsolete. It does not
provide the ability to recompile automatically everything that depends
on a particular unit; however, a similar effect can be achieved by
using the ACS RECOMPILE command with the main subprogram and
requesting a command file (/COMMAND option) for recompiling the main
unit and any units it depends on and then editing out any unwanted
compilations.

The ACS SHOW PROGRAM command displays structural dependences for a
particular unit or set of units.

There is no facility for management control of low-level features, but
the compiler can generate a cross-reference of potentially nonportable
features (/SBOW•PORTABILITY option).

A set of flags indicating the presence of each kind of potentially
nonportable feature is, however, always maintained for every unit,
whether or not such information was requested in a listing. This
information is optionally displayed by the ACS SHOW PROGRAM command.

4.7 Debugging Facilities

The VAX Symbolic Debugger (DEBUG) provides extensive facilities to aid
the debugging of programs in VAX/VMS multilanguage programs.

74

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

4.7.l General Facilities - The general facilities that apply to all
supported languages allow users to:

o Stop execution (set breakpoints) at selected locations,
specified either by routine name or by source module and line
number, or when exceptions occur.

0 Single step in increments of single hardware
source lines. Stepping can selectively
routines or treat the execution of a routine
instruction.

instructions or
pass into called
call as a single

o Watch the value of specified variables and interrupt
execution when the value of a variable is changed.

o Trace execution (similar to breakpoints) at selected
locations, reporting the location reached and continuing.

o Examine the contents of variables, displaying their contents
according to their type.

o Evaluate expressions, including those that involve program
variables.

o Deposit new values in variables.

o Display the current sequence of routine calls, 91v1ng the
module and line numbers of each call in the source program.

o Display the source corresponding to any part of the program.

o Perform debug command procedures at breakpoints, tracepoints
and watchpoints.

o Call procedures that are part of the program (functions
cannot be called as part of expression evaluation, but can be
called as a procedure and the result displayed).

DEBUG automatically establishes the language of discourse as the
language in which the main program is written. Thereafter ~e
language can be changed as appropriate to the parts of the pr lm
where debugging is in progress. The language setting adjus· ~e
DEBUG syntax and interpretation of expressions as appropriate to that
language.

DEBUG support for Ada language expressions differs in various respects
from "pure" Ada; it does, however, provide extensive capabilities for
interpreting Ada expressions in a useful manner.

75

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

Very briefly, DEBUG supports the following aspects of Ada expressions:

Syntax of identifiers, except that user operator names must
be given as, for example, \NAME '+'
Reserved words
Numeric, character and string literals
Indexed component, slice, selected component and attribute
nQtations
Evaluation of (only) the following attributes: CONSTRAINED,
FIRST and FIRST(n), LAST and LAST(n), LENGTH and LENGTH(n),
POS, PRED, SIZE, SUCC and VAL
Evaluation of operators, except that relational operators are
supported only for scalar and string types, and concatenation
operators are supported only for string and character types
Qualified expressions, but only for the disambiguation of
enumeration literals
Use clauses

The debugger does not support:

Overloading resolution (ambiguities are reported and special
means are available to indicate how to interprete ambiguous
names)
Aggregates
Operations on entire array or records
Short circuit control forms: 'and then', 'or else'
Membership tests: 'in', 'not in'
Type conversions
Allocators

4.7.2 Tasking Facilities - Debugging of programs involving Ada tasks
requires additional facilities beyond those applicable to most
languages. In addition to the general facilities described above, the
facilities available in VAX Ada for task debugging allow users to:

o Display the state of given tasks or all tasks in a program.
The possible states are:

created
running
ready
suspended
terminated

o Display more detailed substates of the main state:

abnormal

76

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES

waiting at an accept statement

15 November 1984

activating (elaborating its declarative part)
activating tasks (waiting for dependent tasks to finish
activating)
completed: either abnormally, due to an exception or
normally
delay
dependents: waiting for dep~ndent tasks to terminate,
either normally or due to an exception
entry call
I/O or AST
not yet activated
select: with or without delay or terminate alternatives
terminated: either abnormally, due to an exception or
normally
timed entry call

o Place a task •on hold" so that it is not scheduled for
execution

o Establish a given task to be the active task

o Change the priority of a task

o Display tasking run-time .statistics: number of entry calls,
tasks activated, accept and select operations, and so on

o Stop execution (set breakpoints) for various tasking events:

an exception is about to be handled: in any handler or
just an 'others' choice
an exception is about to propagate from a rendezvous
an exception is waiting for dependents to terminate
a task is about to terminate: due to an exception, abort
or normally
a task is about to execute: for the first time or any
time
a task is preempted by a higher priority task
a task becomes activated
a task becomes suspended

4.7.3 VAX Ada Specific DEBUG Commands - A number of DEBUG commands
have been implemented specifically to support the debugging of VAX Ada
programs. These supplement the capabilities previously available.
Some of the more important commands are summarized as follows.

77

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

CANCEL MODULE /(NO]RELATED

Enables automatic module cancelling and thereby cancels all those
modules that are related to this one. /NORELATED specifies that
only the module or modules specified in this command are to be
cancelled.

SET BREAK /EVENT • event name

Specifies that execution should be suspended whenever certain Ada
tasking events occur. The event_names that can be specified are:

HANDLED

HANDLED OTHERS

RENDEZVOUS EXCEPTION

DEPENDENTS EXCEPTION

TERMINATED

EXCEPTION TERMINATED

ABORT TERMINATED

RUN

PREEMPTED

ACTIVATED

SUSPENDED

READY

Triggers when an exception is about to
be handled in some Ada exception
handler, including an 'others' clause.

Triggers when an exception is about to
be handled in an 'others' Ada.
exception handler

Triggers when an exception is about to
propogate out of a rendezvous.

Triggers when an exception causes a task
to wait for dependent tasks. in some
frame

Triggers when a task
whether normally, by
exception.

is terminating,
abort or by an

Triggers when a task is terminating due
to an exception.

Triggers when a task is terminating due
to an abort.

Triggers when a task is about to run.

Triggers when a task is being preempted
from the RUN state.

Triggers when a task is going to run for
the first time.

Triggers when a task is about to be
suspended.

Triggers when a task becomes ready to
run.

78

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES

SET MODE (NO)DYNAMIC

15 November 1984

DYNAMIC enables dynamic module setting and NODYNAMIC disables it.
Dynamic module setting means that whenever you are at the DBG
prompt, if your PC is in a module that is not set, then DEBUG
will set the module for you. For example, if you step into a
function in a module that is not set, DEBUG will set the module
and issue an informational that it has done so. In the case of
language Ada, additional related modules may be set as well.

SET MODULE /[NO)RELATED

/RELATED enables automatic module setting and
those modules that are related to this one.
no effect for those languages that do not
module setting. /NORELATED disables setting
The default is /RELATED.

SET TASK taskname

thereby sets all
This qualifier has
require automatic

of related modules.

Modifies certain characteristics of tasks in your program. Using
this command, you can change a task's priority, put a task on
hold, switch to a different active task, or make a task visible
to the debugger.

A taskname parameter may be a pathname which designates a task
declared in your program, for example, MY MAIN\PROG\MONITOR. A
taskname parameter may also be a task .id. A task id is a unique
number that is associated with a task at the time the task is
created. A task id is of the form \TASK n. You can see what
task ids were assigned to currently existing tasks by typing SHOW
TASK/ALL.

If you omit all taskname parameters, you can specify the /ALL
qualifier to select all tasks. If you omit both taskname
parameters and the /ALL qualifier, the "visible task" is assumed.
The visible task is typically the task that caused execution to
enter the debugger (see also SET TASK/VISIBLE and SET
TASK/ACTIVE).

The task properties that can be set are:

/ACTIVE

Causes the task specified by the taskname parameter to
become the "active task". The named task must be in either
the READY or the RUN state. The active task is that task
which will execute instructions when the debugger is left
(as when you type GO, STEP or CALL). It is marked with a
'*' in the SHOW TASK display.

The SET TASK/ACTIVE command allows you to force a "task
switch" to the named task without leaving the debugger.

79

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES 15 November 1984

/ALL

/HOLD

In addition to making the named task become the active task,
this command also makes it become the visible task, which is
the task assumed by debugging commands when you do not
specify a task.

Specifies that all the tasks in your program are to be
modified as specified by the other qualifiers given. When
/ALL is specified, taskname parameters are not permitted.

Specifies that the selected tasks are to be placed on hold.
Tasks which are on hold will not be allowed to run until the
hold has been removed.

/NOHOLD

Specifies that the selected tasks ~re to be removed from
hold status.

/PRIORITY • n

Specifies that the selected tasks are to have their priority
changed to n.

/RESTORE

Specifies that the selected tasks are to have their natural
priorities restored. This allows you to undo the effect ci
SET TASK/PRIORITY, without the need to remember the task's
natural priority.

/VISIBLE

causes the task specified by the taskname paramete% to
become the "visible task". The visible task is the task
assumed by debugging commands when you do not (or cannot)
specify a task. For example, the debugger command EXAMINE
%RO displays register 0 of the visible task.

The task whose execution entered the debugger is called the
active task. Each time the debugger is entered, the visible
task and the active task are one and the same. Using this
qualifier, you can make the visible task be a task other
than the active task.

80

VAX Ada Technical summary (Preliminary)
USER INTERFACE ANO DEBUGGING FACILITIES 15 November 1984

SHOW MODULE /[NO]RELATED

This qualifier tells DEBUG to output information about those
modules that are related to each module that is normally
displayed. It lists the relationship of each of these
subordinate modules to the main module along with the normal
information you get with each module. This qualifier outputs
rather uninteresting results for those languages that do not have
automatic module setting. The default is /NORELATED.

SHOW TASK taskname

Displays information about tasks in your program. Using this
command, you can obtain a list of tasks in existence and their
current state. The form SHOW TASK/STATISTICS provides summary
information on all tasks.

The options available with this command are:

/ALL

Specifies that all the tasks in your program are to be
considered for display. When /ALL is specified, taskname
parameters are not permitted.

/CALLS [• n]

/FULL

/HOLD

For each task selected by other qualifiers, causes
information to be displayed for the last n procedure calls.

causes detailed information to be displayed.

Specifies that only those tasks which have been placed on
hold are to be considered for display (see SET TASK/HOLD).
If you omit the taskname parameters, this qualifier selects
all tasks that are on hold (that is, an /ALL qualifier is
implied).

/NOHOLD

Specifies that only those tasks which have not been placed
on hold are to be considered for display csee SET
TASK/HOLD). If you omit the taskname parameters, this
qualifier selects all tasks that are not on hold (that is, a
/ALL qualifier is implied).

81

VAX Ada Technical Summary (Preliminary)
USER INTERFACE AND DEBUGGING FACILITIES

/PRIORITY • n

15 November 1984

Specifies that only those tasks having the specified
priority are to be considered for display. A list of
priorities given in parentheses is also permitted, for
example, SHOW TASK/PRIORITY - (J, 4). If you omit the
taskname parameters, this qualifier selects all tasks that
have the given priorities (that is, a /ALL qualifier is
implied).

/STATE • s

Specifies that only
to be considered
parentheses is also
• (READY, RUN).

those tasks in the specified state are
for display. A list of states given in
permitted, for example, SHOW TASK/STATE

The debugger recognizes the following task states:

READY, RUNNING, SUSPENDED and TERMINATED

/STATISTICS

Displays summary statistics about the execution of all tasks
in your program. If /STATISTICS is specified, the only
other qualifier permitted is /FULL.

5 PERFORMANCE AND CAPACITY

5.1 Host Performance And Capacity

There is no simple way to indicate the VAX Ada compilation rate
because there are no accepted standards for this measure. Package
specifications, which typically involve little or no code generation,
tend to compile very quickly rates exceeding 5000 lines per
CPU-minute on a VAX-11/780 have been observed. On the other hand,
extensive use of generics and/or inline expansion can greatly slow the
compilation rate -- rates below 100 lines per CPU-minute have been
observed (in contrived programs, the rate can be made arbitrarily
iow).

In programs that are representative of normal medium- to large-scale
project development, measurements indicate that a compilation rate of
800 to 1000 lines per CPU-minute on a VAX-11/780 is representative for
the field test version of VAX Ada. The compiler tends to perform
better on larger compilation units than on small ones. One field test
site is reporting compilation rates in excess of 1000 lines per
CPU-minute for a large application of over 200,000 source lines.

82

VAX Ada Technical Summary (Preliminary)
PERFORMANCE AND CAPACITY 15 November 1984

There is a relatively small and fixed overhead associated with
locating and opening the program library file for each unit named in a
with clause (independent of the size of that library unit); moreover,
for each library unit, it is also necessary to transitively locate and
open the program library file for each unit named in its with clauses.
The mere occurrence of a unit in a with clause, of itself, has only
this small initial overhead. Thereafter, additional incremental cost
is incurred whenever needed information is first loaded from that
unit.

For subunits, there is
information about each
library unit, after which
any other unit.

an overhead for locating and loading
ancestor unit up to and including the parent
compilation proceeds at a rate comparable to

The VAX Ada compiler can run on a system with 1 megabyte of physical
memory, but more memory is preferable: at least 4 megabytes for a
VAX-11/780, at least 1-3/4 megabytes for a MicroVAX. A working set of
3/4 megabytes (1500 pages) or more is recommended to run the compiler.

If the host system does not have sufficient physical memory, the
compiler will page excessively, and the compilation speed will be
slowed considerably. But all VAX processors, down to and including
the MicroVAX, can be configured with sufficient memory so that there
is no practical limit on the size of program unit that can be
compiled.

There are no specific restrictions on the numbers of items of various
kinds in a unit (identifiers, strings, nesting and so on). All
implementation limits are given in Section 3.11.

When a unit is recompiled, no use is made of the previous compilation
to increase compiling speed. Similarly, if a package specification is
changed by adding a declaration, the compilation of that package makes
the units that use the package obsolete.

However, the "implicit recompilation" of package SYSTEM that occurs
for one of the pragmas SYSTEM NAME, MEMORY SIZE or STORAGE SIZE, and
similarly, of package STANDARD for pragma LONG FLOAT, is handled in a
special way. A unit becomes obsolete as a result of compiling these
pragmas only if it actually depends on the values (type representation
in the case of LONG FLOAT) changed by these pragmas. This applies
also to the ACS SET PRAGMA command that provides the same capability.

5.2 Target Code Performance

Generally, VAX Ada compiled code is comparable in code quality and
performance with other DIGITAL-supplied language products. A wide
variety of standard optimization techniques are used throughout the
compiler. The code generator used in VAX Ada is also used in
DIGITAL's PL/I and C language products.

83

VAX Ada Technical Summary (Preliminary)
PERFORMANCE AND CAPACITY 15 November 1984

Most redundant constraint checks are eliminated. For example, in the
following:

I: INTEGER range -2 •• 2;
J: INTEGER range 0 10;

type AT is access T;
V: AT;

I :• 22 mod 3; (1) no checks needed
I :• J; (2) check on top limit only
v :• new T (• • •) ;
if V.L • ... then (3) no null access check

(4) current variant is correct

Contraint checks are eliminated at (1), (2) and (4). (Note: th~
field test compiler generally does not eliminate null access checks.)

Subprograms which are declared in a package
with the package. Note, however, that in a
as VAX/VMS, virtual address space that
relatively little cost.

but not used are loaded
virtual memory system such
is never accessed has

Static (sub)expressions are always evaluated by the compiler, even
when when the LRM does not require it. Moreover, additional
compile-time constant expressions are also evaluated by the compiler,
even though they are not "static" expressions as defined in the LRM.
Examples of such expressions are concatenation and some of the
attributes, such as IMAGE.

Dead code is eliminated from if and case statements.

In statements such as

A(I) :• A(I) + l;

the address of A(I) is evaluated just once. Also, a special increment
instruction is generated; however, the result of the addition may be
assigned to a temporary if a constraint check must be performed before
updating A(I).

With matrix computations such as

for I in 1 .• N loop
for Jin 1 .. M loop

A(I,J)
end loop;

end loop;

the address calculation for A(I,J) tends to be calculated each time
using special VAX hardware addressing for this purpose (context
indexing). Depending on various details, strength reduction may
alternately be used.

84

VAX Ada Technical Summary (Preliminary)
PERFORMANCE ANO CAPACITY 15 November 1984

When array index expressions are static, index bounds checking is
performed during compilation.

Pragma INLINE is supported in most cases. Routines that contain
nested routine declarations, exception declarations, generic
declarations and/or instantiations, dependent tasks, access type
declarations, or directly recursive calls are considered not to be
inlinable; that is, they will not be expanded inline at the place of
any calls to such routines. The result of instantiating a generic
subprogram is also inlinable under the same conditions.

The compiler will expand local routines inline without pragma INLINE
being specified where heuristics indicate that the size of the
expanded call will be approximately the same as the call it replaces
(or only a little larger). This can be suppressed with pragma
OPTIMIZE(SPACE) or the equivalent /OPTIMIZE(SPACE) compiler option.

A subprogram that is called only once is not automatically expanded
inline.

In a rendezvous, the rendezvous code is executed by the
never by the calling task. (Experience using
Habermann-Nassi optimization indicates that equivalent
achieved with less complexity.)

owning task,
the so-called

benefits can be

Tasks that are acting as monitors are not recognized as such, and do
not result in special code generation.

Tasks are normally rescheduled only when the currently executing task
is unable to proceed, or when a higher priority task becomes eligible
for execution. Note that predefined input-output packages are
implemented using asynchronous techniques so that other tasks can
execute while one is waiting for input-output to complete.

Pragma TIME_SLICE may be used in a main subprogram to obtain
timesharing-like scheduling on a round-robin basis for tasks with the
same priority.

The VAX Ada run-time library is shareable, meaning that a single copy
of it is used by all executing Ada programs on a particular system (it
is also used by the Ada compiler). The shareable image is
approximately 10,000 bytes. Because it is shareable, all of it is
always available.

85

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING

6 COMPILER AND RUN-TIME INTERFACING

6.1 Compiler Issues

15 November 1984

6.1.1 Design Criteria - The design of the compiler is oriented toward
medium- to large-scale software development. No particular
application domain is envisioned consistent with VAX/VMS host and
target applicability.

6.1.2 Compiler Phase And Pass Structure - The compiler can be
considered to consist of the following phases:

o Parser

The parser is LALR(l) and uses an inhouse parser generator.
(The parser generator is written in PASCAL and produces BLISS
source control tables for use by the parser driver, which is
written in BLISS.)

o Static Semantics

The static semantics phase performs declaration processing,
name visibility and scope management, overloading resolution,
generic and inline processing and all legality checking.
(Generic and inline expansion does not actually occur during
static semantics, however. Expansion is performed "on
demand" as needed by backend processing.)

o Dynamic Semantics

The dynamic semantics phase performs size and shape
determination for types and objects, inserts needed
constraint and other checks (when not statically known to be
satisfied), and performs literal and aggregate pooling.
Subprogram, package and task bodies are converted to a linear
n-tuple representation (innermost first) that is passed to
the backend.

o Backend

The backend is a fairly classical code generator that
performs flow analysis, code generation, register allocation,
peephole optimization, jump/branch resolution and object
module output. The body portion of the abstract syntax tree
is discarded after code has been generated. (This code
generator is also used in other DIGITAL language products,
notably PL/I and C.)

86

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

o Program Library Output

At the completion of code generation, the remaining abstract
syntax tree consists of just those parts of the program that
are potentially needed in the compilation of other units.
This ia written to the program library.

6.1.3 Compiler Module Structure - A number of the compiler components
are common to or used with other DIGITAL-supplied language products.
However, no provision is made for customers to take advantage of these
components as independent entities.

6.1.4 Intermediate Program Representations - The intetmediate
representations used by the compiler are an abstract syntax tree and a
code generator intermediate language. The abstract syntax tree
representation is similar to DIANA in many respects because it evolved
from the same formal semantics abstract syntax tree representation
that was one of the major influences in the design of DIANA. However,
there is no intention to establish or maintain any kind of
compatibility with DIANA.

The
VAX
Ada
any

compiler is written in several languages, namely:
MACRO and Ada. The only part of the compiler that

is the universal arithmetic package. No attempt was
particular language constructs.

BLISS, PL/I,
is written in
made to avoid

BLISS, PL/I and VAX MACRO are all fully supported and sold by DIGITAL.

6.1.S Final Program Representation - The format of the final object
program is a standard VAX/VMS object file.

For an ACS LINK command, the ACS identifies the units that are needed
and checks that they are all current. It then constructs an
initialization object module that causes the elaboration of library
units in an appropriate order. Finally, it creates a linker command
(options) file and invokes the VAX linker. The link can be performed
by a subprocess (with or without waiting for completion), or it can be
optionally be submitted as a batch job.

6.1.6 Compiler Interfaces To Other Tools - The compiler generates a
DEBUG symbol table (OST) as part of the object module for use with VAX
DEBUG to allow full symbolic debugging. The same symbol table
information is used by the Performance and Coverage Analyzer (PCA) for
symbolic dynamic execution analysis.

87

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

The compiler also generates a diagnostic files for use with the
Language Sensitive Editor (LSE)~

The interfaces and formats used are generally not documented or
supported for customer use.

6.1.7 Compiler Construction Tools - All compiler construction tools
are proprietary to DIGITAL.

6.1.8 Target-Dependent Information - The compiler is not designed
with the intent of retargeting by customers.

6.1.9 .Installation - The VAX Ada product is suppli~d on typical
VAX/VMS large layered product distribution media, including magtape
and certain disks.

The VAX Ada product is installed using the normal automated VMS
software installation procedures (VMSINSTAL). The process is easily
performed by customers, and typically takes around 15 minutes on a
VAX-11/780.

The "VAX Ada Installation Guide and Release Notes" provides all
procedures and information necessary for customer installation.

6.2 Run-Time System Issues

6.2.l Storage Management - A subheap is allocated for each
collection. Fixed-size blocks with bit map allocation techniques are
used for access types whose denoted type is fixed-size, and variable
length blocks with first fit allocation techniques are used for access
types whose denoted type is not fixed-sized.

collections are deallocated when leaving the scope of the parent
access type. UNCHECKED DEALLOCATION is supported. Automatic garbage
collection within a subheap is not provided.

6.2.2 Subprogam Call Parameter Handling - Scalar parameters are
passed by reference with the copy-in/copy-back semantics of Ada
implemented by prolog/epilog code in the called subprogram. Arrays
and records are passed by reference except in circumstances where a
byte-aligned copy is required (for example, for bit-aligned components
of arrays and records). A copy may also be required on the calling
side to provide the constraint check in the copy-back of 'in out' or
'out' parameters.

88

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

The allocation rules of VAX Ada are such that an array or record
component can only be bit-aligned (not byte-aligned) when its size is
static and less than 32 bits; thus, copying of array or record values
for the purposes of parameter passing is never an expensive operation.

Function values with a size of 32 bits or less are returned in general
register RO, and those with a size of between 33 and 64 bits are
returned in registers RO and Rl. For other cases involving fixed-size
function results, the caller allocates storage for the function value
and passes the address or a descriptor to the function as an
additional parameter. If the caller cannot allocate the storage, it
is heap allocated by the function and freed by the caller.

Complete details are given in the "VAX Ada Programmer's Run-Time
Reference Manual".

6.2.3 Data Representation - Signed and unsigned bytes (8 bits)·, words
(16 bits), and longwords (32 bits) are used for integer and
enumeration types. These can optionally be packed and can be
bit-aligned within records and arrays. F (32 bits), D (64 bits), G
(64 bits) and H floating (128 bits) representations are used for- real
types. Signed- longwords (32 bits) with an implicit binary scale
factor are used for fixed point types.

Subtype descriptors do not exist as such, although temporaries may be
used to hold the values of nonstatic constraints.

Storage allocation for array types is simply the number of components
times the allocation of each component. Components can be packed and
bit-aligned in some cases. A separate array (subtype) descriptor is
allocated for parameter passing when necessary.

Storage allocation for records is the sum of the individual component
allocations, which are byte-aligned by default. Components can be
packed and bit-aligned in some cases.

For a constrained object of a record type with discriminants, the
allocation is that required for the given variant (only). For an
unconstrained object of a type with discriminants with defaults, the
maximum size of each variant is used. Each object is contiguous, and
heap allocation is never used (even for dynamically sized components).

Stora9e allocation for an access type is a (32-bit) longword pointer
which contains the address of the designated object; in the case where
the designated type is an unconstrained array type, the pointer
contains the address of a descriptor which, in turn, includes a
pointer to the array object together with index bounds.

89

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

6.2.4 Implementation Of Tasking - Stack storage for the main program
is allocated as for a normal VAX/VMS program ("Pl space" in VAX
terminology), and is automatically extendable. Storage for tasks is
allocated in two parts: a task control block and a task stack. Both
parts are heap allocated from the VAX/VMS process virtual address
space ("PO space" in VAX terminology).

When a task is created, a task control block and
fixed-size stack are allocated. The stack is
task terminates, and the task control block
execution leaves the scope of its master.

a user-specifiable
deallocated when the

is deallocated when

An Ada run-time kernel is used to implement multitasking within a
single VAX/VMS process. The method of passing data parameters in a
rendezvous is the same as for subprogram parameters. No copying of
parameters or argument lists is performed by the run-time kernal.

The accuracy of the real-time clock and the delay statement is
approximately l/lOOth of a second.

External interrupts cannot be associated with task entries. However,
VAX/VMS asynchronous system traps (ASTs) can be associated with entry
calls.

An AST is an interrupt-like call initiated by the VAX/VMS operating
system in response to certain conditions or events detected by the
operating system (or hardware;, such as completion of an input-output
request. The identification of the "routine" to handle the AST is
completely dynamic and is specified as one of the parameters to each
system service call that provides this capability. Thus, the static
association of an interrupt with an entry is not applicable to
VAX/VMS.

Pragma AST ENTRY must be used to identify an entry that will
potentially-be used to handle an AST. (This does not preclude its use
in a normal entry call.) Attribute AST_ENTRY is then used to identify
the "routine" to handle the AST as part of a system service call.
Each evaluation of the AST ENTRY attribute dynamically constructs a
special code segment to transform the AST into an entry call, and
returns the address of that segment to be passed to VAX/VMS. When the
AST occurs, control passes to the special code segment in an
interrupt-like fashion, which then queues a call to the intended entry
and dismisses the AST. Handling of the AST by the task then occurs as
for an ordinary entry call. In particular, the handling does not
occur at AST-level (interrupt level).

6.2.S Exception Handling System -
implemented using the condition
VAX/VMS. Details are given in the
Reference Manual".

90

Exception handling in Ada is
handling mechanism provided by

"VAX Ada Progammer's Run-Time

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

Provision of an Ada exception handler typically costs one instruction
per call if no exceptions occur. When exceptions occur, there are
increasing amounts of overhead as options in the following list are
exercised: provision of an exception part, the number of handlers in
that part, and use of •raise;".

Exceptions that are propagated out of a rendezvous are somewhat
costlier than normal exceptions. A "copy" of the exception and its
related parameters is created (which may entail some loss of
information regarding non-Ada exceptions propagated from the VAX/VMS
environment). This "copy" is propagated to the caller.

Distinct host exceptions are defined for each predefined exception in
the Ada langauge and VAX Ada implementation. A single host exception
serves for all user-defined exceptions with a parameter that
identifies the texe of the user exception name. Certain distinct host
exceptions (for example, integer overflow) are automatically mapped to
the predefined Ada exceptions (for example, NUMERIC_ERROR).

6.2.6 Input-Output Interfaces - TEXT IO is fully supported.
other VAX/VMS facilities are also available.

Many

Packages are provided for a wide range of input-output options,
including relative file input-output, indexed file input-output, and
so on (see Section 3.8).

Execution of input-output for access types (including types that have
subcomponents of an access type) is erroneous.

6.2.7 Generics - Generic instantiation is
macro-like expansion mechanism. Sharing
instantiations is not provided in Version 1.

implemented
of code among

using a
multiple

(Note: the design of VAX Ada does, however, anticipate support for
generic code sharing. Many of the necessary mechanisms are already
implemented and latent in the current version. Support for generic
code sharing is ·a high priority after Version 1.)

In the absence of code sharing, the requirements for an instantiation
are generally those required by the semantics of Ada, and costs over
and above an equivalent nongeneric subprogram or package are quite
minimal. For an 'in' formal object, a constant is created for each
instantiation and initialized from the appropriate expression. For an
'in out' formal object, temporaries may be needed as for the
equivalent renaming.

91

VAX Ada Technical Summary (Preliminary)
COMPILER AND RUN-TIME INTERFACING 15 November 1984

An instantiation is processed in a macro-like fashion with the
consequence that the code for the resulting subprogram or package is
compiled and optimized in the presence of full compile-time
information on the actual parameters.

6.2.8 Documentation - The documentation provided
includes the following:

•vAX Ada Language Reference Manual"

with VAX Ada

Includes the full text of the Ada
specific supplements inserted
(Insertions are marked by change
version of the manual.)

LRM together with VAX Ada
where most appropriate.

bars in the field test

•oeveloping Ada Programs on VAX/VMS"

Describes use of the VAX Ada compiler, ACS and DEBUG to
compile, link, run and debug VAX Ada programs.

•vAX Ada Programmer's Run-Time Reference Manual"

Gives system-related information, such as VAX Ada storage
allocation and object representations, and explains how to
use operating system components external to the language (for
example, VAX/VMS system services), how to use operating
system-related Ada features (such as multitasking ·and
input-output), and how to use code written in other VAX
languages in an Ada program.

"The VAX Ada Language Summary"

Summarizes the Ada language syntax as well as ACS and
debugger commands.

Note: not available during field test.

•vAX Ada Installation Guide and Release Notes"

Gives step-by-step instructions for installing the VAX Ada
product, including information and recommendations on
resource requirements.. The release notes give errata,
last-minute corrections, changes from earlier versions and
other similar information.

Extensive online HELP is also provided.

7 RETARGETING ANO REHOSTING

The VAX Ada product is not designed nor is it intended for retargeting

92

VAX Ada Technical Summary (Preliminary)
RETARGETING ANO REHOSTING 15 November 1984

or rehosting by customers. The questions raised under this section by
the "Ada-Europe Guidelines" are, therefore, not applicable.

8 CONTRACTUAL MATTERS

The following is a very brief summary of DIGITAL's standard terms and
conditions for software, including some particulars for VAX Ada. For
full details, contact a DIGITAL sales representative.

Several types of license are available for use of VAX Ada. For the
VAX 8600, VAX-11/785, VAX-11/782, VAX-11/780 and VAX-11/750 processors
there are single-use, cluster-use, and educational licenses. For the
VAX-11/730 and VAX-11/725, there are single-use and educational
licenses. For the MicroVAX I, there is a single-use license. Media,
documentation and support services are sold separately from the
license.

A separate license is required for each CPU on which the compiler
runs. The VAX Ada license permits the run-time library to be moved to
other systems. At its initial release, the Ada run-time library will
be shipped with the compiler. However, the run-time library will be
bundled with the base operating system in a future release of the
operating system so that an application developed in Ada can be moved
from one CPU to another. In general, there are no restrictions on use
and/or distribution of software produced by the compiler.

In the United States, a full single-use license is $24,900.
MicroVAX I and educational licenses are $4980 (educational licencee
~ay be purchased only by two- or four-year degree grantinq
institutions). Cluster licenses are $14,940 per CPU (a full
single-use license must be purchased for one member of a cluster).
These prices are for the license only. Software media and
documentation are an additional $2040 to $3600, depending on the
media. Separate prices apply in other countries.

Standard support services are available which include periodic c~dates
containing bug fixes. Supported customers can submit problem r~;orts.
Telephone support is also available. Support services are gen:rally
sold on an annual, renewable basis.

A variety of support services are available, as for other DIGITAL
language products, including telephone support, maintenance updates,
software problem report service, onsite services, and customized
consulting services. Updates, when not covered by a support
arrangement, are generally available to licensed customers for a
charge to cover the cost of media and handling.

There are no plans to release detailed internal information on the
compiler, ACS or Ada run-time library.

93

VAX Ada Technical Summary (Preliminary)
VALIDATION

9 VALIDATION

15 November 1984

VAX Ada was successfully validated as of September 17, 1984 using
version 1.4 of the Ada Compiler Validation Capability (ACVC).

The validation was conducted by the Federal Compiler Testing Center
under the superv1s1on of the Ada Validation Office (AVO). All
applicable ACVC tests were run on the VAX-11/785. ~11 applicabl=
executable tests were run on the VAX-11/780, VAX-11/750, VAX-ll/73G
and MicroVAX I.

94

APPENDIX A

SAMPLE LISTINGS

The following pages show two listings that illustrate various aspects
of the listings available from the VAX Ada compiler.

The first, from the compilation of a function that computes
Ackermann's function, shows the format used for generated code.

The second, from the compilation of a procedure containing a variety
of errors, shows the kinds of error reporting provided.

95

c.o m

Ackenw•nn
01

15-Nov-1984 08156157
31-0ct-1984 10:28134

1 -- Ackermann functton as ••tracted from the LA Ad• Fair '84 test
2 -- Ttme_Ackermann to ti lustrata the VA>C Ada comp'l latton ltattng format
3
4
5
8
7
8
9

10
11
12
13

Ltne 00004

functton Ackermann (M, N: N•tural) return Natur11I ts
begin

If M • 0 then
return N + I I

elstf N " 0 then
return Ackermann (M - '. I):

else
return Ackermann (M - I. Ackermann (M, N -I]) I

end tf1
end Ackerm•nn1

0000 ACKERMANN1

VAX Ad• Tl .0-2
ADAD$:(VATS.AD.PROJ)ACKERMANN.ADA1I

cote 0000 .an•try ACKERMANN,~m<dv,tv,r2,r3,r4>
SE 20 C2 0002 subl2 1'32,sp

52 04 BC DO 0005 movl e4(ap),r2
53 08 ec DO 0009 movl •8(ap),r3

F4 AD 00000004 EF 9E 0000 mov11b $CONSTANT+4,-12(fp)
60 00000000• EF 7E 0015 mov;1q ADASHANDLER,(fp)

Ltne 00006
52 05 OOIC tat I r2
06 12 ODIE bnaq sym. I

54 53 01 Cl 0020 addl3 1'1,r3,r4
59 11 0024 brb ACKERMANNSRTN_LBLIO

0026 sym.I:

53 05 0026 tat I r3
10 12 0028 bneq sym.2

Ltne 00009
EO AO 52 01 C3 002A subl3 l'l,r2,-32(fp)

01 18 002F bgeq veg. I
00 0031 halt

0032 veg. I 1
00000000 EF OF 0032 pusli•I $CONSTANT

EO AD OF 0038 puslial -32(fp)
00000000• EF 02 FB 0038 cal ls 1'2,ACKERMANN

54 50 DO 0042 1novl r0,r4
38 II 0045 brb ACKERMANNSRTN_LBLIO

0047 sym.2:

Line 00011
E4 AO 52 01 C3 0047 subl3 l'l,r2,-28(fp)

EC AO 52 DO 004C movl r2,-20(fp)
FD AO 53 01 C3 0050 subl3 l'l,r3,-16(fp)

01 18 0055 bge41 vcg.2
00 0057 hal•t

0058 vcg.21
FD AO OF 0058 pushal -16(fp)
EC AO OF 0058 pushal -20(fp)

(I)

Ackermann
01

Ltne 00013

00000000•
E8

00000000•

EF
AD
E4

E8
E4
EF
54

02 FB
50 DO
AD D5
01 18

00

AD OF
AD OF
02 FB
50 DO

15-Nov-1984 08156:57
31-0ct-1984 10:26:34

005E cal Is 112,ACKERMANN
0065 movl r0,-24(fp)
0069 tstl -28(fp)
006C bgeq vcg.3
006E halt
006F vcg.3:
006F pushal -24(fp)
0072 pushal -28(fp)
0075 cal Is 112,ACKERMANN
007C movl r0,r4

007F ACKERMANN$RTN_LBL10:

PSECT MAP

Psect Hw• <;1~ ..
U OUtlOlJOIH
1 oourioo 1 o

Der: Size
131

16

50 54 DO 007F
04 0002

Name
Ac:kermann.SCODE
Ackermann.SCONSTANT

%1, Function Oolly ACKERMANN added to library
Rt!plac:t!~ ulllt!r vt!rsto11 complle<J 13-Nov-1984 07:14

movl r4,r0
ret

VAX Ada Tl.0-2
ADADS:(VATS.AD.PROJ]ACKERMANN.ADA:I (t)

c.o
CX)

Ackermann
01 Ade Compt1etton Statistics

COMMAND QUALIFIERS

ADA/LIS/MACH ACKERMANN

QUALIFIERS USED
/COPY SOURCEIOEBUG•ALLIERROR LIMIT=301LIST/MACHINE CODE.
INOOJAGNOSTICSILIBRARY=AOASLIB

15-Nov-1984 08156:57
31-0ct-1984 10:26:34

VAX Ade Tl .0-2
ADADS:(VATS.AD.PROJ)ACKERMANN.ADA;1

IMESSAGES=(COMPILATlON NOTES=NONE,STATUS=L,SUPPLEMENTAL.=DLT,WEAK WARNINGS=DLT,WARNINGS=DLT)
INOTE_SOURCEIOPTIMIZE=TlMEINOSHOW/NOSUPPRESS_ALL/NOSYNl'AX_ONLV -

COMPILER INTERNAL TIMING

Phase

Inttteltzetton
Parser
Stettc semanttcs
IL generation

Segment tree
Annotate tree
Flow analysis
Llneartze tree

Code generetton
Opt lmizer
Oat• el locatton
Generate coda ltat
Register allocation
Peephole aµtlmlzatton
Branch/jump resolutton
Write object module
DST generatton

Llsttng generation
Compilation ltbrary
Compl ler totals

COMPILATION STATISTICS

Week warnings:
Warnings:
Errors:

0
0
0

Virtual pages used:
Vtrtuel pages free:
Peek working set:
CPU Time:
Elapsed Time:

5418
58582

2000
00:02.21
00: 11.34

Compllatton Complete

CPU Elapsed Page 1:10
seconds seconds faults count

0.48 2.54 158 23
0. 18 0.74 32 1
0.21 I. 33 32 0
0.40 2.08 143 8
0. 16 1. It 72 8
0.01 0.22 3 0
0.07 o. 14 2 0
o. 14 0.58 60 0
0.41 1. 26 105 0
o. t7 0.45 44 0
0.01 0.00 1 0
0.09 0.47 18 0
0.01 0.01 0 0
0.04 0. 10 2 0
0.01 0.01 0 0
0.07 0. 19 33 0
0.01 o." 4 0
0. 10 0.47 13 6
0.40 2.75 62 37
2.21 11. 34 552 75

(448 Lines/Minute+ 0.48 seconds tntt,)

(t)

SAMPLE ERRORS
01 -

SAMPLE_ERRORS.ada

15-Nov-1984 08157112
15-Nov-1984 08:55:53

1
2
3
4
5
8

A atmpla program contatntng a sampling of errors to show the error
raporttng fac111ttas of the VAX Ada complier

7 with NO SUCH UNIT1 use NO SUCH UNIT;
•••••••••.••• 1.:- •.•• :- ..•••....• 2 - -
•E (1) Untt NO SUCH UNIT not found 1n library
•E: (2) No_sucH:UNIT-ts not declared

8 wtth SYSTEM; use SYSTEM;
9 procedure SAMPLE_ERRORS ts

10
11 08J1 1 NO SUCH TYPE 1• 1;

, , •••• , •••••••••••• I."'." •••• "'." •••••••• 2

VAX Ada Tl .0-2
AOADS:[VATS.AD.PROJ]SAMPLE_6RRORS.AOA;3 (1)

•E, (I) NO SUCH TYPE ts not declared
•I, (2) Type checking not completed -- the type required from context ts unknown due to a prtor error

12 08J2 : STRING(l .. 4) :="a";
13 OBJ3 : STRING := "abed";

.................... 1
•E, (I) Array type STRING In predefined STANDARD Is not constratnad

14
15 type E ts (El, E2, EJ);
16 OBJE : E;

"• • • •.•••••I
•I, (1) The representation of type declaration Eat line 15 ts forced here

17 for E use (-1, 5, 18):
................ 1
•E, (1) The representation of type declaration Eat ltna 15 has already bean forced at line 18

18
19 type T ts range o .. 255;

• • I
•1, (I) Parent type chosen for T ts predeftned SHORT_INTEGER (signed word)

20 subtype ST Is T range 0.0 .. 10.;
•••••••••••••.•••.•••••••••••••••• 1 •••••• 2 •. 3
•E, (3) Mtaatng dtglt -- tnserted ·o· after "."
•E. (I) Result lype of ekpresslon ts Inconsistent with Its contakt which requires {type for T) at line 19 •1. (1) For literal 0.0 the result type ts any real (discarded)
•E, (2) Result type of expression Is tnconststent with Its context which requires (type for T) at line 19
•1, (2) For 11teral 10.0 the result type ts any real (discarded)

21
22 08J4, 08J5 1 array(l .. 2) := (others•> '•');

•••••••••.••••••••••••••••••••••••••• 1 ••••••••••••••••• 2
•E. (I) Found "1=• when expecting "of"
"E, (2) Found ";" when expecting "of"
•I, (2) Declaration Ignored due to syntactic errors

23

0
0

SAMPLE ERRORS
01 -

24 functton F (X : E :• E'FIRST) return E;
•••••••••••• 1

15-Nov-1984 08:57:12
15-Nov-1984 08:55:53

VAX Ada T1.0-2
AOAOS:(VATS.AD.PROJ)SAMPLE_ERRORS.ADA;3 (1)

•E, (1) Functton spectftcatton F has netther a correspondtng1 body nor an tmporttng pragma

25
26
27
28
29

function F (V : INTEGER 1= 0) return E Is
begtn

return E'VAL(V);
end;

30 pragma PACK(T)1
• • • • • • • • • • • • • • • . • • . • • • • . I
•W, (1) Subtype Tat ltne 19 ts not an array or record type -- pragma PACK tgnored

31 pragma UNKNOWN_PRAGMA(T, T+1, OPTION => MAGIC_NUMBER-2)';
•••••••••••• 1
~w. (1) Pragma UNKNOWN_PRAGMA Is not known to thts lmplemenl~atton - pragma tgnored

32
33 begin

• • .. I
~I. (1) Functton speclftcatlon Fat ltne 24 has no correspondtng body

34
35 OBJ I : = -1

• • • • • • • • .. • . • I
~E. (1) Inserted ":" at end of ltne

36 OBJ2 :• 'a';
• • • • • • • • • . • ... • .. I
~E. (1) lnconststency detected durtng overloadtng resolution
~I. (1) For OBJ2 the meaning Is vartable OBJ2 at line 12 of type STRING In predefined STANDARD

For literal •a• the meaning Is enumeral •a• In predefined STANDARD of type CHARACTER In predefined STANDARD

37 OBJ4 • 08J5;
••••••.••••• 1 ••.• 2. 3
~E. (2) Replaced "=" with ":="
~E. (1) OBJ4 Is not declared
~E. (3) 08J5 Is not declared

38
39 cas~ 08JE Is

• • ... • • . • • • . I
~E. (1) Some values In the range of enumeration type Eat line 15 are missing
~I , (I) E3

40 when El =>null;
.. • • . • • • . • • • • • . • I
~I. (1) Choice El overlaps choice El E2 at l lne 42

41 whan E2 => E := 1;
, •••••••••••••.. l ••.•••.••.•••• 2
~E. (2) Type declaration E at line 15 Is not a ktnd of entity that has a value
~I. (1) Choice E2 overlaps choice El .• E2 at line 42

0

SAMPLE ERRORS
01 -

42 when El .. E2 =>null;
................ 1

15-Nov-1984 08:57:12
15-Nov-1984 08:55153

~E, (1) El from choice El E2 overlaps another choice for E1 at line 40
~E, (I) E2 from choice E1 •. E2 overlaps another choice for E2 at line 41

43 end case;
44
45 OBJE := E'SUCC(F);

. • • . • • • .. • • . • • • . • l

VAX Ada Tl .0-2
ADAOS:(VATS.AO.PROJ)SAMPLE_ERRORS.AOA13 (1)

~E. (1) Ambiguous expression. The required type ts Eat line 15 but more than one possible meaning has thta type
~I. (1) For F the meanings considered are:

46
47 end1

Call of Fat line 24 with all default parameters returning Eat line 15
Call of Fat line 25 with all default parameters returning Eat line 15
Function specification Fat line 24 with result type Eat line 15 (discarded)
Function body Fat line 25 with result type Eat line 15 (discarded)

~E. Error(s) compiling procedure body SAMPLE_ERRORS In file ADADS:(VATS,AO.PROJ)SAMPLE_ERRORS.AOA;3

PORTABILITY SUMMARY

enumeration representation clause

unknown pragma(s)
l 7
31

~

0
N

SAMPLE ERRORS
01 - Ada Comp11atlon StatlstlLs

COMMAND QUALIFIERS

ADA/LIS/SHOW=ALL/MESS=COMP:L SAMPLE_ERRORS

QUALi FIERS USED

15-Nov-1984 08:57:12
15-Nov-1984 08:55:53

/COPY SOURCE/OEBUG=ALL/ERROR LIM1T=30/LIST/NOMACHINlo CODE
/NODIAGNOSTICS/LIBRARV=ADASLIB

VAX Ada T1 .0-2
ADADS:(VATS.AD.PROJ)SAMPLE_ERRORS.ADA;3 (1)

/MESSAGES=(COMPILATION NOTES=L,STATUS=L.SUPPLEMENTAl-=DLT,WEAK WARNINGS=DLT,WARNINGS=DLT)
/NOTE_SOURCE/OPTlMlZE=TlME/SHOW=PORTABILlTV/NOSUPPRloSS_ALL/NOSVNTAX_ONLV

COMPILER INTERNAL TIMING

Phase

lnHlal lzat Ion
Parser
Static semantics
LI st Ing g.,,,,,,.., t I on
Campi ldl 1011 I lt.11"a1·y
Comp I I er tot a l s

COMPILATION STATISTICS

Weak war11ln9s:
Warnings:
Errors:

Virtual pages used:
Virtual pages free:
Peak WO 1·k Ing St:I t :
CPU Time:
Elapsed Time:
Campi lat Ion C()11tplete

D
2

22

5400
58600

2000
00:02.40
00:08.03

CPU Elapsed Page 1/0
seconds seconds faults count

0.49 2.06 162 15
0.59 2.BO 109 9
1 .05 2.57 166 13
0. I I o. 19 4 1
0.07 0.22 5 3
2.40 8 .0.3 467 41

(1468 Llnes/M1nute + 0.49 seconds tn1t.)

L TSIG Wishlist

The following pages contain the latest LTSIG Wishlist. The
wishlist is divided into two separate sections, the first con
taining seventy-one items for DEC to address, the second contain
ing twenty-nine items for the SIG to address.

For each wishlist their is a maximum number of votes which
can be cast per ballot. For the DEC directed list, you may cast
forty votes, with no individual item getting more than five. for
example, you may cast one vote for each of forty items, five
votes for each of eight, or you may weight your ballot as desired
within the range. The procedure for the SIG directed wishlist is
the same, but since there are fewer items, the total vote count
may not exceed twenty-five.

Following the wishlist items is a response sheet. Please
indicate your votes on that sheet, by writing in the number of
votes per item in the space following the item number. Do not
write in yes/no answers, or cast all your votes for one item,-or
otherwise make life difficult for the people collating the
responses. We are pressed for time with this vote, and will dis
gard illegal ballots rather than bend them to try to fit the sys
tem. If there are several interested people at your installa
tion, however, please feel free to copy the answer sheet, and
submit several ballots.

We hope to present the results of this wishlist at the next
symposium, in New Orleans. This is a tight schedule, so it's im
portant that you return your answer sheets as soon as possible.
Please send them directly to me, at:

Alan L. Folsom, Jr.
Dept. 431
Fischer & Porter Co.
E. County Line Road
Warminster, Pa. 18974

The more responses we get, the more weight the wishlist will have
with DEC, so please take the time to read the items carefully,
and return the answer sheet.

103

DEC DIRECTED WISHLIST ITEMS

1 DEC should retarget their Ada Compiler to the Motorola
68000.

2 DEC should retarget their Ada Compiler to the Intel 8086
family.

3 DEC should retarget their Ada Compiler to the PDP-11 family.

4 DEC should retarget their Ada Compiler to the 1750A.

5 DEC should retarget their Ada Compiler to other micros.

6 DEC should provide an intermediate language for their Ada
compiler (e.g. Diana) so individual companies can produce a
backend to target to other computers.

7 DEC should host their Ada Compiler on Ultrix.

8 DEC should use their existing tools to implement an Ada Pro
gramming Support Environment (APSE) a la DOD-STD-1467(AR).

9 DEC should market an Ada workstation.

10 DEC should market a general programmer's workstation.

11 DEC should provide versions of RSX-targeted cross compilers
that will run under native mode of the VAX, as opposed to
the current compatibility mode.

12 DEC should provide a Modula-2 compiler for the VAX.

13 DEC should provide a Modula-2 compiler for the PDP-11's.

14 DEC should provide a "Lint" like tool for VAX C.

15 DEC should provide a more complete implementation of the 'C'
run time library and closer compatibility of functions such
as vfork() to the UNIX implementation.

16 DEC should provide support for 'C' for LSI-11 based systems.

17 DEC should make all VAX manual available on line, and pro
vide a structured way to access them.

18 DEC should provide software tool support for requirements
analysis.

19 DEC should provide software tool support for software
design.

20 DEC should provide an automated test generator.

21 DEC should provide an automated Documentation
Manager.

104

Control

22 Dec should provide Documentation generation tools.

23 DEC should provide Documentation production tools.

24 DEC should provide a sophisticated text formatter, with
things such as multiple fonts, proportional spacing,
math/Greek, and macros, (e.g. Scribe, troff, TeX).

25 DEC should provide a Configuration Control Manager.

26 DEC should provide a Project Control Manager.

27 DEC should provide a problem report database tool that is
integrated with DEC/CMS and the DEC/Test Manager.

28 DEC should provide a data-dictionary manager to support
Structured Analysis (a la Tom Demarco).

29 DEC should provide a static analysis tool.

30 DEC should provide a global Data Flow analysis tool.

31 DEC should provide a dynamic memory usage monitor.

32 DEC should provide an automated package for graphic support
for structured analysis and design. such a tool might allow
the designer to specify the relaionships between design ele
ments and experiment with alternative designs.

33 DEC should provide a tool to generate the dependancies file
for MMS.

34 DEC should provide a Cross Reference Analysis Tool.

35 Compilers and Assemblers should show the names of all files
referenced in the summary portion of the listing. This
would make it easier to derive dependencies for MMS etc from
existing code.

36 DEC should provide an automated MMS.

37 All DEC languages and (where appropriate) should be fully
integrated with COD.

38 DEC should provide a language with pattern matching capabil
ities, like the languages Snobol and Icon.

39 DEC should market the SCAN language.

40 DEC should document the debugger symbol tables so they can
be used for other tools.

41 DEC should be more active in providing software tools and
support for ULTRIX; and should promote ULTRIX more heavily.

105

42 DEC should provide a better Fortran on ULTRIX.

43 DEC should provide a better c on ULTRIX.

44 DEC should provide commercial languages fur ULTRIX.

45 DEC should provide more VNX tools.

46 DEC should provide more emulation of the UNIX Environment on
VMS.

47 DEC should integrate DTM v2.0 with FMS, so FMS applications
can be tested for typos, etc.

48 DEC should provide a way in CMS to remove the last genera
tion.

49 DEC should provide a mechanism to back off a software update
to layered products.

50 DEC should market an Integrated CMS/MMS/TestManager type
package. DEC should port graphics tools such as the GKS
standard directly into the RTL or the terminal drivers.

51 DEC should support GKS to level 2.

52 DEC should increase the number of supported devices for
GKS/ob. Alternatively, DEC could provide user driven tools
for creating additional device support.

53 DEC should privode window management utilities that use
GKS/ob.

54 DEC should provide low cost graphics workstations, or better
resolution graphics terminals, and support them with GKS.

55 DEC should provide Graphics oriented MAIL on the VAX.

56 Fortran F/T data collection capability should be provided to
users for their own use, possibly as an option at installa
tion time.

57 DEC should provide a
SQRT, ALOG, and other
control.

convenient mechanism for accessing
Fortran Library functions from DEBUG

58 DEC should add the complete Block DO and Block CASE con
structs to VAX-Fortran.

59 DEC should add the ability to place a .!DENT in Fortran.

60 DEC should provide tools such as PCA, LSE, and the various
languages for the Real-time users of the PDP-11/RSX systems.

61 DEC should provide an option in the Linker to force a return
to the first library in library list for each symbol being

106

searched for.

62 All VAX compilers should support a /Check=Argument Count
qualifier which would generate code at the entry poTnt of
routines to validate the number of arguments passed to the
routine.

63 DEC should provide an efficient and easy to use high level
language with data management capability integrated.

64 DEC should
pess the
tomated to
reports.

provide a PDL which could be used to rapidly ex
logic of a program module, and which could be au
check syntax and completeness as well as produce

65 DEC should provide the ability to turn language keywords
off, so that existing languages can be used as PDL's.

66 DEC should provide on-line CAI courses for all new software
tools.

67 DEC product brochures should contain more technical informa
tion about actual capabilities and requirements for a
language/tool.

68 DEC should make videotapes explaining the technical aspects
of its new products, available for rental/purchase at low
cost.

69 DEC should provide product brochures that describe the bene-
fits of new software products, in terms of
productivity/money savings, aimed at upper management.

70 DEC should provide a description of all tools in on-line
help, even if they are not licensed on the system, so people
know what's available and what the general capabilities for
each tool are.

71 DEC should provide formal seminars on the use of its new
languages and tools through Educational Services.

107

SIG DIRECTED WISHLIST ITEMS

1 The SIG newsletter should be published more frequently.

2 The SIG should give "How To" tutorials on new Tools.

3 The SIG should provide more sessions on Software Require
ments and Design issues.

4 The SIG should give more sessions on how to manage software
projects.

5 The SIG should give more sessions on how DEC develops
software internally.

6 The Sig should provide mor·e sessions on software testing
techniques.

7 The SIG should sponsor more user presentations on the ex
periences with or evaluations of various software develop
ment tools.

8 The SIG should give Pre Symposium Seminars on Ada.

9 The SIG should give Pre Symposium Seminars on CMS/MMS.

10 The SIG should give Pre Symposium Seminars on DEC/Test
Manager.

11 The SIG should give Pre Symposium Seminars on So ft ware
Methodologies.

12 The SIG should give Pre Symposium Seminars on Software Pro-
ject Management.

13 The SIG should give Pre Symposium Seminars on Software
Development Tools.

14 The SIG should give Pre Symposium Seminars on Text For-
matters.

15 The SIG should give Pre Symposium Seminars on Software Test-
ing Techniques.

16 The SIG should give Pre Symposium Seminars on Pascal.

17 The SIG should give Pre Symposium Seminars on "C".

18 The SIG should give Pre Symposium Seminars on Modula-II.

19 The SIG should give Pre Symposium Seminars on Art ifical In-
telligence.

20 The SIG should give Pre Symposium Seminars concerning the
selection and evaluation of programming languages for pro
jects.

108

21 The SIG should establish a Configuration Control Working
Group.

22 The SIG should survey database products evaluating their
suitability to support a software development environment.

23 The SIG should provide DECUS "C" in RT readable format.

24 The SIG should research and publish the availability of
Praxis.

25 The SIG should sponsor the conversion of the Software Tools
from Ratfor to "C", perhaps by using a Fortran to C conver
sion utility.

26 The SIG should provide information about Program Design
Languages, particularly the IEEE standard.

27 The SIG should publish a Contact List for SIG officers and
Special Interest Area coordinators.

28 The SIG should sponsor a panel at the next symposium compar
ing Pascal, "C", Ada, and so forth.

29 The SIG should sponsor sessions concerning the selection and
evaulation of programming languages for projects.

109

A I
• I
• • I
I
I

• J

DEC DIRECTED WISHLIST ITEMS

In this section, each ballot may contain a total of forty votes,
with no more than five votes per item. i.e., eight items may
each receive-?ive-VO'tes;-forty items may each receive one vote,
etc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71

-·--------·----~----------------------------·

Ji
1

SIG DIRECTED WISHLIST ITEMS

In this section, each ballot may contain a total of twenty-five
votes, with no more than five votes per item. i.e., five items
may each receive five votes-;-""'tWenty-five items may each receive
one vote, etc.

1
2
3
4
5
6

7
8
9
10
11
12

13
14
15
16
17
18

111

19
20
21
22
23
24

25
26
27
28
29

The Following ere tredemert.s of C>;gitel Equipment Corporetion:

DEC PDT
DECnet P/OS
DECm•te Profeuion1I
DECsyatem-10 R•inbow
DECSYSTEM-20 RSTS
DECUS RSX
DECwriter RT
DIBOL UNIBUS
Digitll logo VAX
Edu System VMS
IAS VT
MASS BUS Woril Procnaor
POP

UNIX is 1 t~ of Bell labo,.toriea.

Copyright •oECUS end Digiql Equipment Corporation 1985
All Rights R ... rved

II ii~ 1f181elf1rtic._ aubmined to the editol' ol this n-i.ner - with the allthorl' pennilaion to publish in .. , DECUS publication. The 1nicle11re
the ,..._.lblity al the author& end. ttle!Wfora, DECUS. Digitel Equipment Corpontiorl. and the editor wume no 1'91P0"1ibility ol lilbility for 1nicl11 or infor·
nwtion llDONrinQ in the doc~ The v-.. herein •JIPl'WMCf - U- ol the llUlhorl end do not nec_,tly ,...,_.!he v~ of DECUS or Dogial Equip-

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS
•DECUS PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION THAT IS
PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNMENT SECRECY LAWS,
CONTROLLED BY NON-DISCLOSURE AGREEMENTS WITH THE U.S.
GOVERNMENT OR THIRD PARTIES, OR GOVERNED BY THE U.S.
DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN ARMS
REGULATIONS {ITAR).•

r~~~~;~~;~~~~----------,

I Please notify us immediately to guarantee con-
1 tinuing receipt of DECUS literature. Allow up to

I six weeks for change to take effect.

I
I

Change of Address
Delegate Replacement

DECUS Membership No.: --------

Name: ---------------

Company: ------------~
Address: --------------

State/Country:-----------

Zip/Postal Code: ----------

Phone No.~· -------------

Mail to: DECUS - Attn: Subscription Service
249 Northboro Road. (BP02)
Marlboro, MA 01752 USA

~
)(

3
°'
:>

"' ;;;

~

~----------------------~

s: ~ S! c 0(0] l>CDC)~ m
~ z =i c n
mOJ>CI> ~
Q :0 r- (/) UJ

:a -I m c o :I: P m
• IDC(I)
s: o - n
J> :a ,, :a

0 s: -o :a m .,,
-"oz~
~ J> -I 0 Ncnz

• 0 (I)
"iii S: m ,, ,, :a
oc<
N -In-
- m :a m

(I)
0
n
m
~

r
~ ~ c 3

~ :;· ~- -a ~ ~
~cn-J>"tl"
~mz 0-o::n ~ ~ ~

Ill -S:: _.. IC CD
)> CO CD

