
COMPARISON OF IBM AND Digital
STORAGE ARCHITECT'URES
(including Vail)
29-March-1990

TR-9021, Storage Performance Engineering - MLDS/CXO

Abstract:

This report provides information on historical IBM storage achievements and compares the
current architectures between IBM and Digital.

Revision/Update Information:
IBM 3390
VAX9000
RA70
RA92
Aspen

Robert Bauman & Dennis Haugh-Authors

~BmBDmD TM CONFIDENTIAL

Digital Equipment Corporation

ii

Preface

This document provides a description and identifies the differences in the IBM and Digital
I/O subsyste'ms from an architectural perspective. Since architectures provide a framework,
the limitations of each can be validly discussed. However, actual implementations must be
analyzed for valid comparison. The details within this report attempt to isolate the effects of
the architecture upon the implementation.

The target audience includes Digital internal personnel only. The level of detail is intended
for marketing as well as engineering.

ACKNOWLEDGMENTS

Special thanks is given to Tom Kinlaw and Bernie Goldstein for their assistance in the KDM70
model. Don Matthews provided the illustrations and information for the Vail model. Kathy
Woodard and Bernie Goldstein editted numerous flaws in grammar and spelling.

INTENDED AUDIENCE

The audience is: Digital product engineering - primarily SIMG, HPS, MSB, VMS, and UL
TRIX; Digital product management and marketing; and sales support personnel. This docu
ment is for internal Digital use only; it is not intended for customers or third party product
vendors.

All rights reserved.

~DmDDmD ™ CONFIDENTIAL v

CONTENTS

Preface. Y

1 EXECUTIVE SUMMARY '. 1
1.1 Scope. 1
1.2 Summary . 1

Chapter 1 IBM 110 ARCHITECTURE - SYSTEM 360 TO SYSTEM 370/ESA

1.1 Introduction

1.2 A Short History of IBM's I/O Architecture
1.2.1 Storage Organizations and Early Channel Architecture

1.2.1.1 1954 - Drum Memories
1.2.1.2 1956 - Disk Storage :
1.2.1.3 1957 Data Synchronizers

1.2.2 System 360 .. .
1.2.2.1 Channel Developments
1.2.2.2 RPS, Request Queueing & Other Channel Exploitations
1.2.2.3 I/O Interface Improvements .. .
1.2.2.4 Channel Programming
1.2.2.SCount Key-Data .. .

1.2.3 System 370 .. .
1.2.3.1 Access Methods
1.2.3.2 I/O Interface
1.2.3.3 Channel Structure
1.2.3.4 Input/Output "

1.3 System 370/XA
1.3.1 System 370/XA - I/O Architecture
1.3.2 What 3701XA did for IBM's I/O Architecture :
1.3.3 Input/Output
1.3.4 Monitoring .. .
1.3.5 24 & 31 Bit Channel Commands

1-1

1-1

1-2
1-2
1-2
1-3
1-3'
1-4
1-4
1-6
1-7
1-7
1-8
1-9
1-9

1-10
1-11
1-12

1-14
1-14
1-14
1-16
1-17
1-17

1.3.6 Dynamic Reconnection 1-18
1.3.7 System 370/XA - Developments in Channel Path Selection 1-19
1.3.8 Application Affects. .. 1-20
1:3.9 More On Interruption Processing. .. 1-21

1.4 ESA/370 - Architecture for Modern Times. .. 1-21

1.5 Disk Storage ' '. .. 1-22

iii

· Chapter 2 DIGITAL 110 ARCHITECTURE 2-1

2.1 Introduction .. 2-1

2.2 VAX Computer Systems . 2-1

2.3 DSA concepts. 2-3
2.3.1 System Communications Architecture. 2-4

2.3.1.1 Computer Interconnect. 2-4
2.3.1.2 Ethernet. 2-5
2.3.1.3 Digital Storage Systems Interconnect. 2-6

2.3.2 Standard Device Interfaces. 2-8
2.3.3 Device Data Formats. 2-9

2.4 DSA Implementations '. 2-9
2.4.1 DSA controllers .. 2-9

2.4.1.1 Board Level Controllers. .. 2-10
2.4.1.2 HSC '. .. 2-11

2.4.2 DSA Devices .. 2-14

2.5 VAIL Concepts .. 2-15
2.5.1 Storage Element Architecture. .. 2-15

2.6 Cache Implementations ... 2-17

Chapter 3 IBM VERSUS DIGITAL 110 ARCHITECTURES. 3-1

iv

3.1 Introduction .. 3-1

3.2 Physical I/O Functional Comparison. 3-1
3.2.1 Dimensions. 3-2
3.2.2 Analysis ... 3-2

3.3 Anatomy of an 1/0 ... 3-6
3.3.1 Host Initiation. '. 3-7
3.3.2 Seek .. :................... 3-8
3.3.3 Rotational Positioning and Data Transfer 3-8

3.3.3.1 Non-realtime Transfer .. 3-8
3.3.3.2 RPS Miss Quantification 3-8

3.3.3.2.1 IBM model. 3-9
3.3.3.2.2 Digital models . 3-9

3.3.3.2.2.1 HSC . 3-9
3.3.3.2.2.2 KDM70. 3-12
3.3.3.2.2~3 Vail. .. 3-13

3.3.3.3 Cumulative Delays ... 3-14
3.3.3.3.1 HSC. .. 3-14
3.3.3.3.2 KDM70. .. 3-16
3.3.3.3.3 Vail .. 3-17

3.3.4 Post Processing. 3-18

3.4 Characteristic Workload Differences .. 3-19

3.4.1 Request Rate versus Data Rate. .. 3-19
3.4.1.1 Bandwidth ... 3-20

3.4.2 Disk Data Format. .. 3-20
3.4.3 Caching ' ~ .. 3-20
3.4.4 Expanded Storage .. 3-20

3.5 Caching. .. 3-21
3.5.1 Principles .. 3-21

3.5.1.1 Read Policies. .. 3-21
3.5.1.2 Write Policies .. 3-21
3.5.1.3 Replacement .. 3-22

3.5.2 IBM 3-22
3.5.2.1 Controller Cache. .. 3-22

3.5.3 Digital ,..................... 3-23
3.5.3.1 Host Software Cache. ,.................... .. 3-23
3.5.3.2 HSC cache .. 3-23
3.5.3.3 Vail Cache 3-23

3.6 Conclusions .. 3-23
3.6.1 Digital I/O Competitive Weaknesses , 3-24

Appendix A RPS QUANTIFiCATION.................... A-I

Appendix B CUMULATIVE DELAY QUANTIFiCATION.... B-1

Appendix C SYSTEM TOPOLOGY C-1

C.1 Monolithic Processing .. C-1

C.2 Coupling .. C-1
C.2.1 Tight Coupling C-1

C.2.I.1 Attached Multiprocessing. .. C-2
C.2.I.2 Symmetric Multiprocessing C-2

C.2.2 Loose Coupling. .. C-3

BIBLIOGRAPHY

GLOSSARY Glossary-1

EXAMPLES
3-1 DLSE Four 3380 Strings ~ . 3-9
3-2 HSC RPS miss. .. 3-10
3-3 HSC RPS with RA70 .. 3-11
3-4 HSC RPS with RA92 .. 3-11
3-5 KDM70 RPS '. .. 3-13
3-6 SEBB Contention. .. 3-14
3-7 HSC Cumulative Delay .. 3-15
3-8 KDM70 Cumulative Delay. .. 3-16

v

3-9 Vail Cumulativ~ Delay. .. 3-17

FIGURES
1-1 System/360 Channel Architecture 1-4
1-2 Count, Key and Data Areas . 1-8
1-3 System/370 Channel Architecture 1-11
1-4 370-XA Channel Architecture. .. 1-15'
1-5 370 Channel Command Word Format. .. 1-18
2-1 VAX Overview. 2-2
2-2 ISO model. 2-3
2-3 DSA Overview. 2-4
2-4 SCA with Ethernet. 2-5
2-5 DSSI Topology ... 2-7
2-6 SCA with DSSI '. 2-8
2-7 KDM70 Overview 2-11
2-8 HSC Without Disk/Tape Requestors 2-13
2-9 HSC generic Krequestor '.' 2-14
2-10 Storage Element Overview. .. 2-16
2-11 Storage Element. .. 2-17
2-12 HSC cache read hit .. 2-19
2-13 Vail Cache Flow. .. 2-20
3-1 DLSE vs. HSC. 3-3
3-2 DLSE Controller .. 3-4
3-3 Logical internal HSC flow . 3-5
3-4 DLSE vs. Vail 3-6
A-1 RPS Miss. .. A-1
B-1 Total Path Delays. .. B-1
C-1 Tight Coupling. .. C-2
C-2 Loose Coupling .. C-3

TABLES
2-1 DSA controllers and statistics .. 2-10
2-2 HSC Naming Conventions .. 2-12
2-3 DSA disk devices ... 2-15
2-4 DSA tape devices ... 2-15

vi

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1 EXECUTIVE SUMMARY

1.1 Scope

The purpose of this document is to educate the reader in the development of IBM's I/O
architecture and to develop the ability to intelligently compare Digital to IBM I/O subsystem
configurations and performance. The first two chapters of this report introduce the respective
I/O architectures of each vendor. Chapter 1 describes the evolution of the IBM I/O architecture
from the initial 5/360 subsystem to the current 370/XA architecture. Chapter 2 introduces the
various current designs of the Digital Storage Architecture (DSA).

In Chapter 3, the IBM and Digital I/O subsystems are compared at an architectural level.
Device specifics are eliminated as much as possible. The delays quantified do not include
seek time, rotational latency, or the queueing times produced directly by device characteristfcs.
What remains are the delays inherent in the implementations of each architecture.

The comparative analysis is based on a set of 32 devices for the following reasons:

• IBM's DLSE groups strings such that 32 actuators are common to a set of four paths.

• Digital HSC70 can support up to 32 devices;

• Digital KDM70 can support up to 8 devices, hence 4 KDM70s are required.

• Digital VAIL model is based upon eight storage elements, each with four ASPEN actua
tors.

Appendix A details the effects of J'lRPS miss" under both architectures. RPS miss is the
additional delay induced when no path to memory is available at the time the desired data
is ready to transfer. Although this delay accounts for virtually all of the delays encountered
in IBM's architecture, it provides only a portion of the delays in Digital implementations.
Appendix B provides an assessment of the aggregrate delay for the Digital architecture. This
topic is introduced in Chapter 3.

1.2 Summary

The current Digital and IBM I/O architectures are built upon opposite premises. Digital has
built its DSA I/O architecture as a special case of communications. IBM views communications
to be a special case of I/O. In practice, both have evolved to offload the host CPU of the I/O
function by use of microprocessing within the I/O subsystem. Another significant disparity
between the two architectures is that IBM's primary storage performance measurement is the
largest amount of data delivered in the least amount of time (throughput to response time
ratio). Digital's concentration, to date, has been focused on designing subsystems which are
capable of delivering the maximum number of I/~ requests per second.

In the Digital I/O architecture, a single CI has become too limited. Mixing a CI subsystem
with other interconnects, such as XMI in the case of KDM70, allows a more J'lopen-ended"
architecture capable of competing with IBM in the single system space. The introduction of
multiple host CI ports (V AX9000) is another solution. A single CI now appears topologically
similar to an IBM channel. VMS software will address the routing to and from the multiple
CI ports. IBM is still ahead in that the DLSE J'lchannelsubsystem" offloads routing overhead
from the host.

momoomo 1M CONFIDENTIAL 1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

The lack of caching in the Digital I/O subsystem is a serious implementation deficiency; how
ever, it is not an architectural problem. The performance of a cache can be projected by
reducing the request rate for a workload to the percentage of cache misses and adding the
appropriate cache overhead for hits. Host-based software cache reduces the CI utilization
and improves the head-on competitive position significantly. With IBM's introduction of
"fast write" neither VAXc1uster Cache (VCC) nor the HSC cache are sufficient-especially for
workloads with a high percentage of writes (like transaction processing). The pending SDI
extension to effect "fast write" should prevent the same competitive disavantage experienced
from the long absence of caching. The VAIL strategy has the added performance advantage
of having a nonvolatile RAM, instead of utilizing an adhoc technique with rotating media like
the SDI extensions.

IBM's expanded storage is a serious hint at IBM's future directions. Although current 3090
implementations are limited to 2 Gigabytes, the Enterprise Systems Architecture (ESA) limit
is 16 Terabytes. Synchronous access to expanded storage affords the opportunity to greatly
reduce overall access time delays to rotating media. Single stream performance can be greatly
enhanced by a significant reduction in paging times. The use of VAX host memory with VMS
global sections currently provides a competitive answer, but the architectural capacity of
expanded storage could allow for loading of entire databases as well as executable images.

2 ~DmDDmD TM CONFIDENTIAL

CHAPTER 1

IBM 1/0 ARCHITECTURE - SYSTEM 360 TO SYSTEM 370/ESA

1.1 Introduction

This chapter describes IBM's I/O architecture which is defined as the features and functions
of a system as seen by a programmer. This architecture will be shown to be evolutionary in
nature. Looking back in time this evolution could be seen as a series of new developments for
circumventing the limitations of previous generations. More accurately, it is the development
of a method for performing I/O to processor external devices. This method has evolved in
response to the demands placed on it by customers with growing businesses who required
an architecture which could keep pace.

This chapter does not describe specific wire signals or component command streams necessary
to perform I/Os. Control program (operating system) dependencies are omitted since these
are outside the scope of the underlying I/O architecture. See the detailed reference materials
listed in appendix (POpl through POpS) for discussions on these topics. What will be covered
is the historical foundation and the current 370 developments in IBM's I/O architecture.

For the last approximately 30 years IBM has continued to improve it's I/O architecture by
gradually externalizing I/O management. Two versions of the architecture are implemented
in the operating systems and hardware platforms marketed by IBM: System/370 and 370-XA.
The fundamental structure of these architectures were initially conceived in the 1950s & 1960s
and one of the objectives of this section is to explain those early developments, as well as,
the 'why' of how those methods affect todays architecture. Current implementations of these
architectures are:

• 937x

• AS400

• 438x

• 3090

Operating systems for these systems are:

• SAA

• VM
• DOS/VSE

• MVS
Both the AS400 and 9370 use emulator, or translator, boards to perform conversions from
their internal I/O instructions to those required by the external storage devices sold with the
systems. Both are basically 370 machines but the AS400 takes the layering a step further by
separating applications from the underlying hardware and control program. This is accom
plished by translating the generated applications into processor executable instructions at the

digital CONFIDENTIAL 1-1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

time of task initiation. This departure, from the typical dependency of operating systems
and applications on the underlying processor architecture, allows IBM to incorporate new
technology into the system package without impacting the users. In fact, IBM could place a
3090 into the core of the AS400, and the customer would be required to change nothing.

IBM's I/O architecture is general enough to handle terminal, tape, disk and forms I/O. In the
case of disk, these devices are connected to and rely upon disk controllers, a physical and
functional part of the Head-of-String. Disk controllers are attached to one or more Storage
Control Units which direct the flow of data through storage paths. Storage Control Units are
connected to channels, by way of transmission cables, which are connected to the processor.
Controllers are function dependent w~ich means that disk controllers manage disk drives,
communications controllers manage their respective devices, etc. The components composing
connecting I/O devices to the processor are defined in the following table:

Device Function

IBM Channel A card-on-board processor which accepts and executes Channel Programs build by ap
plications or a component of the control program running in the CPU. Channel Programs
reside in central storage. The result of a Channel Program processing is a Order for the
control units.

Tag One of two separate transmission cables which connects the channel to the control unit.
Maintains channel synch signalling with the CPU.

Bus The other transmission cable; connects the channel to the control unit and carries inter
leaved byte or interleaved block data.

Storage Control Unit Receives and executes orders from channels such as 'Seek Sector 00125 on device
0125'.

Head-of-String Contains the Read and Write control logic for attached disk storage devices.

1.2 A Short History of IBM's 1/0 Architecture

1.2.1 Storage Organizations and Early Channel Architecture

Storage is and always has been a component, or subordinate of the memory system that serves
the processor. Central, Expanded, Disk and other storage medias functions by inexpensively
storing information which will be used to keep the processor busy. The expense is relative
to how long the information will be stored and how quickly it Will be needed once requested
by the processor. When data is requested it is requested using some addressing scheme
designed to expedite the retrieval of information. When accessing main memory a read or
write instruction is directed to a specific location within the central storage complex. Accesses
to disk involve an address which corresponds to a record, sector, track or cylinder assigned
for data recording.

1.2.1.1 1954· Drum Memories

Prior to the introduction of magnetic cores, magnetic drums were used as central storage.
These drums are analogous to disk but had one head per track and rotated at about four
times the speed of todays disks (Haml). The IBM 650, introduced in 1954, used a magnetic
drum for it's main memory. After the introduction of core memories these drums were
delegated to the role of secondary storage device.

1-2 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.2.1.2 1956· Disk Storage

IBMs first disk system, the 350 introduced in 1956, organized the stored data in much the same
way as it was in memory. The data was stored in fixed length words of 100 characters. Each
of these words had an unalterable address associated with it which was stored just prior to
the data area. When an area of the storage media was needed for data transfer the hardware
performed repeated read and compare operations (Search operations) until the address was
found. The processor remained disconnected during this search because the disk control unit
served as the search initiator/controller. Once the address was found the data was either
read or written sequentially with the controller acting as speed matching buffer by collecting
the characters into a block for transfer across the channel. Speed matching buffers are used
when there is a disparity between the device transfer speed and the system it's attached to.

1.2.1.3 1957· Data Synchronizers

In 1957 I/O channels were introduced with the IBM 709 processor and permitted the concur
rent execution of I/O and CPU operations (IBM1). The channels, termed data synchronizers,
acted as I/O processors with specialized I/O instruction and allowed up to six I/O devices to
access the processors memory buffers. Memory access was independent of the program run
ning in the CPU and permitted each channel to store and retrieve data directly. Instructions,
executed by the CPU, coordinated functions to eliminate conflicts between the processor and
channels. For each data synchronizer attached to the 709, a proportionate number of I/O
devices could operate. The reason for this is that the path between the synchronizer and the
storage device was busy throughout the entire operation, including seek, rotational delay and
transfer.

The 709 was also the platform on which IBM's first I/O supervisory program was introduced.
This I/O Control System (IOCS) eliminated the need to re-design the synchronization and
control procedures when new applications were developed. In other words, previously these
procedures were written into the applications using instructions built into the CPUs archi
tecture. I/O completion was tested for by repeatedly executing loops of code which tested
the data synchronizers state. With the 7090 processor (1958) ffiM impl~mented I/O interrupts
which caused the CPU to branch to an instruction sequence designed to process the interrupt.
Interrupts occurred at the completion of an I/O or as the result of some unexpected condition
in the storage subsystem. The importance of this development is that it eliminated the 'loops
of code' which further promoted the asynchronous execution of I/Os.

Another complexity in these early systems was with the organization of data on disk devices.
The disk themselves were organized into a series of fixed length sectors each with a unique
address. The programmer wishing to save data on a disk drive was required to hard code
the physical address of the record locations in the form of cylinder/track/record. There was
no volume index or volume table of contents to protect one programmers data from being
over-written by another.

digital CONFIDENTIAL 1-3

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.2.2 System 360

The introduction of System/360 in 1964 embodied a corporate strategy that specified that
architectures and implementations would be separate. This architecture provided a general
purpose structure to support varied processing demands and to work with current and future
I/O equipment. System/360 standardized the aspects of I/O attachment and control by intro
ducing a common interface, a comprehensive interruption system, storage protection, and
uniform program control. The common interface prescribed the procedure and specification
for attaching I/O devices and was published in an I/O architecture principles of operation
(POpS). The following logical diagram depicts the typical System/360 organization:

Figure 1-1: System/360 Channel Architecture

S·:{STE111/3 6 0 CHANNELS

C S
E T
101 0
T R CPU
R A
A G
L E

/1 0 ~

~I 1 ~-D--()-{.-J~

~+-(;r() I 2

This System/360 standard was the foundation for future platform and device implementa
tions. These implementations would introduce new disk storage control units, microcode
controls, disk storage devices, device allocation and storage management software. A chan
nel subsystem, originating with the 709s data synchronizer, was designed into the system to
promote concurrence with I/O and CPU operations. I/O interrupts were also taken from the
709s architecture. The System/360 I/O architecture would allow up to 256 channels, each with
up to 256 devices attached.

1.2.2.1 Channel Developments

System/360s specification stated a reliance on DASD for storing operating system, job control
routines, and data. Customer acceptance of this media as a reliable and expedient retrieval
mechanism was greatly underestimated. Users soon exceeded the capabilities of the subsys
tem architecture to meet the throughput and response time demands. One of the limitation
of System/360 channels is that they were dedicated during the execution of I/O operations.
In the original implementation of the architecture to perform a read, or write, three separate
operations were required: seek, search, and data transfer. During the search operation, the
channel, interface, and control unit were held open while the search argument was repeatedly

1-4 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

passed from the channel to control unit. While performing the read/write, the System/360
could not connect through the channel to control unit path.

Another problem in early implementations of the architecture was a relative inefficiency with
the Input/Output Supervisor (105). 105 was run in the central processor and initiated and
terminated lIO operations. The 105 disabled interruptions while handling specific functions
which impaired lIO. For multiplexer channels, a queue of interruptions built up as lIOs
reached completion. Selector channels, which were data streaming single path pipelines,
were held open and incapable of performing new operations while waiting for 105 to handle
an outstanding interruption which would make the channel available again.

The following ideas were suggested to resolving the lIO problem:

• To use a large record buffer in the control unit that would hold data transferred from the
device until the channel became available and then move the data to the host across a
selector channel. This would result in a reduction of RPS miss accumulation and provide
earlier drive availability.

• To use an lIO Processor with its own instruction set in which 105 would run and have a
direct link with main storage, were the programs, data, and channel control information
would reside. The functions performed by this lOP would include record blocking/de
blocking, error recovery, and address translation. An lOP would also relocate the inter
rupt lock-out problem.

• To use a block multiplexer channel, which would offer high data rates and block inter-
leaving along with new functionallity for the storage controllers.

The block multiplexer channel was chosen for its performance under the scrutiny of simula
tors and its cost of development and implementation. New functionallity for control units
introduced sector addressing, which allowed the control unit to monitor DASD for a selected
sector before beginning the search for the requested record. This replaced the current ad
dressing method of cylinder and track and allowed the control unit to disconnect from the
channel while waiting for the appropriate sector to become available. Reconnect then took
place and the requested record was transferred to/from the channel.

The block multiplexer channel proposal required a new channel design and a new control unit.
The proposed channel would posses a high data rate, and allowed a degree of multiplexing.
Logical disconnection of the device from the channel would be permitted between blocks and
occurs only if a significant delay is anticipated before another operation can be executed by
the device.

The IBM 2880 Block Multiplexer Channel was architected to transfer data at 3.0 Megabytes
per second (limited by signal and interface circuitry) while interleaving blocks of data from
multiple subchannels. Subchannels are subordinate entities to the channel which act like an
independently operating processor that can sustain its own channel program. Subchannels
are virtual components of channels and analogously fills the role of an address space in a vir
tual processor. Each attached I/O device would be activated and managed by a corresponding
sub channel.

The System/360 Models 85 and 195 were the first to incorporate the 2880 block multiplexer
channel as a common method of attaching and programming all I/O devices. The channel was
particularly suited for rotation position sensing devices. The block multiplexer channel was
used with rotation position sensing, it permitted a subchannel to be assigned and a channel
program to be established for each access arm, with each program monopolizing the channel

digital CONFIDENTIAL 1-5

Comparison of IBM and Digital Storage Architectures· 29-March-1990

for the duration of data transfer. Channel facili~ies were released during arm movement
. and during the rotation delay associated with locating the designated record. This channel
introduced a third type of channel. Each type would permit different levels of concurrence
among channel programs. The following table lists the various types of System/360 channels:

Channel

Selector

Byte Multiplexer

Block Multiplexer

Description

1 Subchannel that permits one high-speed transfer of streaming blocks

256 Subchannels for low-speed transfers of interleaved blocks

256 subchannels for high-speed transfers of interleaved blocks

1.2.2.2 RPS, Request Queueing & Other Channel Exploitations

RPS storage was exploited with System/360. RPS storage had to be divided into sectors. The
number of sectors per track had to be fixed for each device but could vary among models.
During an operation, the l-byte sector number was sent to the DASD by a new command
called SET SECTOR. When it received the sector number, the control unit logically discon
nected from the channel until the desired angular position was reached or was about to be
reached. Reconnection was then attempted. Monitoring was performed by the disk device
with the control unit c6mmunicating the disks status with the requesting channel. During
disconnection the channel was free to initiate request of attached devices and the control unit
was available to accept request from the channel, hence multiplexing. The sector number
could be obtained in two ways: When the records on the track are of a fixed length and for
mat, the sector can be derived from the track capacity and the sectors per track. Alternatively,
when a record is read, written, or searched, its sector can be derived by a READ SECTOR
command.

During SEEK operations similar events took place. After the device was instructed to position
the read/write heads the control unit would disconnect from the channel. The I/O channel
was then free act upon work for other devices and the control unit became available to handle
work for other attached disks.

The request queueing facility of the IBM 2305 used the block multiplexer channel and the rota
tional position sensing concept by allowing up to eight operations to simultaneously process
for a single device. The device was assigned eight device addresses to which operations could
be arbitrarily directed. The control unit for the 2305 effectively sorted these operations so that
they were handled in the order their respective sectors became ready.

IBM also introduced the dynamic channel selection facility on the System/360 Model 67. The
Model 67 was a two processor CPU complex which required that specific channels be dedi
cated to specific CPUs or that the channels could float. Operating in an extended problem
state this system could access all channels and accept I/O interruptions on either of the two
system processors. Sounding remarkably like components of the 370-XA architectural speci
fication these facilities were not promoted in System/370.

1-6 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.2.2.3 110 Interface Improvements

The I/O interface also required improvements to support the demands of the block multi
plexer channel. The I/O interface connects a channel and an I/O control unit and it provides
physical and .electrical specifications. The original System/360 110 interface specification was
adequate for data rates up to about 1Mbyte/sec for a 100-foot cable. For 20-foot cables the
IBM 2301 Drum Storage, with a rate of 1.2 M Bytes per second could be accommodated. Fully
interlocked signalling allowed one channel cable connection to sustain data transfer over a
range of rates, with both channels and devices controlling the timing of each byte transferred.
It did, however, require an electrical signal to be propagated between the channel and the
control unit four times for each byte transferred.

Block multiplexer channels, in order to meet the required through-put, required 2 bytes more
data transfer capacity and a tightening of the electrical specification for signalling. These
improvements were introduced in June, 1970 with the first implementation of the System/370
in the models 155 and 165.

1.2.2.4 Channel Programming

Early 110 devices were accessed and controlled by the CPU (BUC1). The CPU instruction set
contained specific operation codes for operating and controlling the device. The System/360
and System/370 architectures took these instructions out of the CPU and gave them to smaller
special purpose processors - channels. Channels have their own set of instructions, known as
channel commands, which are stored in central storage and are fetched, decoded and executed
by the channel in: association with the target I/O device. The CPU starts the I/O operation
by issuing an instruction which gives the first address of the first channel command. Since
the specialized I/O commands had been moved off the CPU then only one instruction was
required for all I/O operations. The op code of the instruction specifies that the channel
should asynchronously Start 110 (SID).

This method of I/O control is known as channel programming and involves the set-up of a
sequence of commands for a channel to execute. The Start 110 (SID) CPU instruction initiated
the channel to find the list of channel commands (CCWs) to execute. These commands direct
the channel to the result required by the application; such as read a record. Three key fields .
are involved:

• Channel Address Word (CAW)

• Channel Status Word (CSW)

• Channel Command Word (CCW)

System/360 removed the I/O subroutine address from the instruction and placed it into a
fixed memory location termed the Channel Address Word. This word had to be loaded with
the correct subroutine address prior to the execution of the Start 110 operation. What this
accomplished was that it allowed 110 devices, their instructions, and the channels controlling
the devices to change without affecting the CPUs architecture. The CSW was used to contain
channel status information. Execution of an 510 led to an "initial interrupt" where the CSW
was queried to ensure the channel was accessible. The CSW also was used to contain the
completion status for an 110 operation. The CCW provided both the commands-like read
and write-and the data pointers for the channel to process. Execution was sequential from
the initial CCW pointed to by the CAW unless a Transfer In Channel (TIC) command was
encountered to effect a branch.

digital CONFIDENTIAL 1-7

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.2.2.5 Count-Key-Data

Another introduction with System/360 was the disk allocation methodology known as Count
Key-Data. CKD organization was introduced with IBM first microcode based storage control
unit the 2841. The 2841 control unit provided device dependent interpretation of channel
commands and would adapt to the disk record format specified in the 360 architecture. CKD
is the method employed by IBM to implement Store Addressing Information (MA Tl) which
permits record level granularity when accessing data.

For example, a physical track can hold as much as 56KBytes of data, but most application
records are significantly smaller. In order to directly access these smaller records some greater
degree of granularity is required. To implement the finer addressing at the disk level requires
that the algorithm be incorporated into both the I/O architecture and the systems access
methods. Store Addressing Information is simply a defined address stored on the disk in
predefined areas designated by gaps that contain special codes. Logic circuitry into the con
trollers sense the gap codes and repeated compares can be done until the specified record is
located. Since the Store Addressing Information can be in any of the various gaps, between
physical sectors, the track can be logically divided into fixed or variable length records each of
which contains addressing information in it's header. A significant difference between CKD
formatting and FBA is that the former permits the physical record length to be determined by
the application allocating the space for storage.

With CKD formatting each record contains a count, key and data areas. The count area holds·
the physical cylinder, head and track relative record number along with the length of both key
and data areas. The optional key area can contain a record index and is used by the control
unit to automatically locate the record during SEARCH operations. The data area contains
a record limited in size by the data capacity of the track. The following illustration outlines
CKD formatting:

Figure 1-2: Count, Key and Data Areas

FLAG CYLIJrmER HEm) ltECOBD KEY DATA CHECK GAP KEY AREA GAP DAI'A AREA

JruMB JlUMB JlUMB LENGTH LENGTH 0-256 BYrES 0-47476 BYrES

ID

COlDll' AltEA

1-8 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures· 29-March-1990

1.2.3 System 370

From the standpoint of I/O, if one thing could be said about the System!370 permutation
of the architecture it would be that it was an extension. System/370 added to and improved
upon the initial conception of what the I/O design should contain. In 1962, IBM knew that the
interruption mechanism and the I/O control formats did not have the required extensibility
needed for an evolving architecture. However, costs and performance consequences pre
vented them from improving the System/360 platform. With the improvements in hardware
technology during the late 60s, these facilities became feasible. System/370 was an evolution
ary extension of the System/360 architecture for a new set of models and for new releases of
programming systems. The objectives of the architecture were:

• Eliminate bottlenecks

• Improve efficiency

• Attach to and operate System/360 I/O devices

The architecture would accomplish this by incorporating the following extensions to Sys
tem/360s foundation:

• Block Multiplexing

• Command retry

• High-Speed data transfer

Bottlenecks existed in the data request facilities and in the ability of the I/O subsystem to
deliver that data expediently. These problems would be addressed by incorporating additional
data access methods in the system design. Channels and I/O interfaces posed difficulties;
processor speeds were outpacing the ability of the storage to deliver data. New controllers
were needed to fully exploit the benefits of microcode-controlled storage directors and the
inherit efficiency of Count-Key-Data. In essence the new architecture would bring the complex
components back into balance with each other while protecting existing customers investments
in subsystems hardware.

1.2.3.1 Access Methods

Even though this is a departure from the prescription of outlining architectural developments
the subject of access methods is important because they eliminate dependency on the design
specification. System/360 introduced a series of facilities which allowed users to eliminate
the hardcoding of stored data addresses (cylinder, track and relative record) from their access
routines. System/370s involvement in this was to standardize by incorporating them into
the architecture and to remove the requirement that programmers understand the physical
geometry of the storage devices. This information is still used, the programmer is simply
insulated from it. The access methods introduced with System/360 were (CLA1):

Acronym

BDAM

BPAM

SAM

ISAM

Definition

Basic Direct Access Method

Basic Partitioned Access Method

Sequential Access Method

Indexed Sequential Access Method

digital CONFIDENTIAL 1-9

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Both the Basic Partitioned and Indexed Sequential Access Methods were new while the others
were improvements on hard coded access routines already available. BP AM was designed to
eliminate the CKD allocation inefficiencies of small record length datasets; multiple files of 80
byte records could be organized under a single file structure. ISAM was designed to utilize the
Index area of the CKD. Both BP AM and ISAM handled the translation of the logical record
identifier to a physical address (Cylinder, Track, Record) on disk.

These access methods replaced macro functions in IBMs initial 110 supervisor (105). The lOS
had disk management functions which were basically an extension of those used for tape
(SAM). It did provide for the management of buffers and the blocking of logical records to
physical tracks., BDAM allowed for direct access but required that the application provide
the physical address of the record(s) by transformation of the logical record identifier to the
physical device address before calling 10CS (BUC2).

1.2.3.2 110 Interface

The original System/360 110 interface specification was adequate for data rates up to about 1
Mbyte/Sec. In special cases for disk devices and for very short cable lengths, a rate up to 1.25
Mbytes/Sec could be supported. Storage technologies employing higher recording densities
and buffered devices required higher rates. This required an electrical signal to be propagated
between the channel and the control unit four times for each byte transferred. 360 changed
the width of the interface and the interface signalling to assist in the expansion of these data
rates. Fully interlocked signalling on the 110 interface allowed one channel cable connection
to transfer data at a range of rates; both the channel and device controlled the timing of each
byte transfer (AD01).

The 2880 Block Multiplexer Channel introduced with the System/360 Models 85 and 195
implemented these signalling improvements. The System/370 110 interface introduced two
additional tag wires (3601) to provide the same level of transfer interlocks with only two
propagation times per byte transferred. Depending on the control unit this facility allowed for
the migration of System/360 110 devices to System 370 processors. Control units implemented
to operate with the System/360 interface can be attached to System/370 channels. On some
System/370 channels and control units the bus cable width could be extended optionally to two
bytes, doubling the data transfer capacity. As a result of these two additions, the System/370
110 interface could sustain a data transfer rate of over 1.5 Mbytes/Sec in the l-byte version
and over 3Mbyte/Sec in the 2-byte version, over a 100-foot cable (D TB 1) . Longer cables had
to sacrifice transfer speed.

The cable modification added two wires to the tag interface to provide the same level of
transfer interlocks at the expense of only two propagation times per byte transferred. The
facility used depends on the control unit, so that control units implemented to operate with
the System/360 interface can be attached to System/370 channels. The basic bus interface is
1 byte wide comprising 8 data bits and 1 parity bit. On some System/370 models, the bus
width can be extended optionally to 2 bytes, thus doubling its data transfer capacity.

The data streaming mode, introduced with the IBM 3380 Disk Storage, further eliminated
the interlocks between the request and response signals during data transfer. Data, with the
appropriate tag signals, were sent in the form of fixed length pulses. (3601). Thus, the data
rate no longer depended on cable. The IBM 3380 specifications provided a transfer rate of
3M bytes per second over 400 feet with the 1 byte interface.

1-10 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.2.3.3 Channel Structure

In System/370, a single physical path usually exists between a channel and the attached
control units. The IBM 2870 channel is an exception with five paths to attached control units.
The physical path is referred to (and still is in 370-XA) as the System/360 and System/370
I/O interface. In System/370, communication between the channel and I/O device occurs by
using a subchannel, the physical path, and the control unit. Communication between another
channel and the I/O device requires a different sub channel, physical path, and control unit (or
the same control unit when a two-channel switch is used). The need for separately identifying
the physical path is unnecessary; therefore the term channel also implies the physical path.
A channel is distinguishable from another channel by three characteristics: a unique address,
a separate set of sub channels for attaching up to 256 I/O devices, and a connected CPU.

In System/370, the channel-to-CPU interface is uniprocessor oriented. Channels are provided
in sets attached to a CPU. A System/370 channel can be addressed only by the CPU to
which it is connected. Also, a System/370 channel can interrupt only that CPU to which it
is connected. In a System/370 multi-processor (MP) system, each CPU has its own set of
channels. Thus, the operating system in an MP system must ensure that the correct CPU
performs I/O operations with I/O devices that are not attached to channels on each CPU.
When a program initiates an I/O operation, the path over which the operation is to. take
place is specified as part of the START I/O or START I/O FAST RELEASE instruction.· The
I/O operation either is initiated on that path or is not initiated. If the operation is not initiated,
the program is notified, and the program may initiate the operation on a different path to the
device, if one is available. The following diagram illustrates the layout of 370 I/O:

Figure 1-3: System/370 Channel Architecture

SYSTEM/370 CHANNELS

C S
E T
N 0
T R
R A
A G
L E

CPU

CPU
1----'----.---.---.--

~---.I

The channel-to-I/O device interface is single path oriented in another way. Once a chain of I/O
operations is initiated with a device, all data, status, and commands for the chain of operations
must use the physical channel path over which the first command was initiated (IBM1). In
particular, if a device disconnects from the channel path during a chain of commands, as
when block multiplexing occurs, the device must reconnect to the same path to continue

digital CONFIDENTIAL 1-11

Comparison of IBM and Digital Storage Architectures - 29-March-1990

executing that chain of commands. If the path to which the device must reconnect is in use
when the device is ready to reconnect, the device must wait until the path is free before it can
reconnect to continue execution.

1 .2.3.4 Input/Output

System/370 architecture adds several facilities and functions to input/output (I/O) operations
to improve channel utilization, to make control operations more efficient and flexible, and to
increase the maximum data rate on the I/O (channel-to-control-unit) interface. This section
discusses some of the more important additions.

The System/360 architecture provided for two channel types: a selector channel, and a byte
multiplexer channel. The development of the block multiplexer channel for the System/360
Model 85 and 195 and its subsequent standardization in the System/370 architecture added
both a high data rate and multiple-device capabilities.

The block multiplexer channel is similar to the byte multiplexer channel in it has a number of
subchannels, each associated with an I/O device or a group of I/O devices. The subchannel
is the logical entity that controls an I/O operation and contains the addresses, count, and
control bits associated with the operation. The channel provides the data paths and controls
for communicating with the CPU, main storage, and I/O control units and for associating the
proper subchannel with each communications sequence. The difference between the block
and byte multiplexer channels is in the level of multiplexing. The byte multiplexer channel
can interleave the transfer of individual bytes for different subchannels. However, the block
multiplexer channel, designed for high data rates, is limited to interleaving complete blocks
of data.

The block multiplexing capability is advantageous when used with rotational position sens
ing on rotating storage devices, such as disks and drums. The device disconnects from the
channel during rotational delay, thereby releasing the channel. When the addressed sector is
approached on the track, reconnection is attempted for the transfer of data. If the connection
cannot be established when the sector is reached, another attempt is made after a delay of
one rotation time. Rotation position sensing is available, for example, on the IBM 2305 fixed
head file server (3602). The control unit for this file can appear to have 16 devices, each
associated with its own sub channel which can sustain an 110 operation.

Without the block multiplexing capability, 110 facilities required separate START 110 instruc
tions to specify the position of the arm on the disk and the subsequent reading and writing.
On the block multiplexer channel, these commands are chained. Thus, the CPU is not inter
rupted when positioning is complete and the number of instructions is reduced.

Because the block multiplexer channel transfers blocks of data during CPU operation, a new
interruption, the channel available interruption, was required to indicate when the channel
was free to process a new request. The block multiplexer channel generates this signal when
the busy condition no longer exists. The signal is sent to the originating CPU.

A HALT DEVICE instruction also is introduced largely because of the block multiplexer chan
nel. It is similar to the previously available HALT 110 except that, when the channel is busy,
only the operation on the addressed subchannel is affected. HALT 110 terminated the current
burst operation on the channel and ignored the device address.

1-12 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

The new CLEAR I/O instruction permits freeing the sub channel associated with the addressed
device while I/O operations take place at the device. This function is useful for situations
involving machine error or reconfiguration of I/O devices and control units.

Finally, an extension is provided to reduce the CPU time to start an I/O operation. When
START I/O (510) is issued, the channel signals the device to check if the device can execute
the command. This involves a number of signal sequences and the associated propagation
delays and logic delays in the channel and the control unit (POpS). According to the I/O
interface specification the portion of the total delay introduced by the circuitry in the control
unit can be as high as 32 microseconds. Additional delays may be introduced by the channel.
On a CPU that can perform a few million average instructions per second, the delay from
communications with the device can equal a hundred or more instruction executions.

The new instruction START I/O FAST RELEASE (SIOF) (POp2) allows the acceptance to be
signalled and the CPU to be released as soon as the channel has fetched the channel address
word from main storage. The channel subsequently initiates the operation at the device and
verifies the command information. Exceptions are signalled by interruptions. Normally such
exceptions are infrequent and overall little time is spent processing the interruptions. Some
channels, available with early 370 processors and on current 9370 processors, implement the
early release on SIOF and instead execute 51 OF as SIO. Such implementations are compatible
and permit the same program to run with either channel developments.

Most System/370 channels provide the command-retry facility, whereby the channel, in re
sponse to a signal from the device, re-executes a channel command. This re-execution is
usually invoked when the device or control unit detects a malfunction.

digital CONFIDENTIAL 1-13

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.3 System 370/XA

1.3.1 System 370/XA - I/O Architecture

The first IBM.processor product to implement the 370/XA architecture was the 3081. The 3081
Processor increased the I/O channel capability with two central processors. Each processor
accessed channels and central storage by a single system controller. This direct path to central
storage permitted dynamic reconnection and eliminated the need for channels to reconnect
to the CPU to which they were attached. The system controller moved data between the
channel subsystem and central storage, and into the 32K-byte buffer associated with each
central processor (RNGl).

The 3081 supported up to 24 channels, which were either byte multiplexer or block multiplexer
type. A maximum of four byte multiplexer channels could be configured within the 3081
processor complex, each having an aggregate data rate of up to 500K bytes per second with
a burst size of 32 bytes. All block multiplexers had data streaming capability that permitted
data rates up to 3M bytes per second per channel. Channels were assigned in two channel
sets, one for each central processor, with a maximum of 16 channels per set.

Channels were controlled by the external data controller, an integrated I/O processor within
the 3081 processor unit. The external data controller consists of two types of microcode
controlled elements.

• The channel processor element (CPE) is a special processor which controls I/O instructions
and interrupts. It supports a queued interface with the central processor for START I/O
FAST RELEASE operations and for I/O interrupts, and handled command/data chaining
and all external data controller recovery operations. The channel processor element is
driven by vertical microcode having a 2-byte microword and an addressing capability of
32K microwords. A 2K-microword write-able static array contains the most frequently
used microwords. A second 256-microword array contains 4 blocks of 64 microwords
each. The array is dynamically loaded on demand from a hardware system area located
in a portion of central storage. The processor has a 2-byte data path structure and is
packaged in one thermal conductor module (TCM) (RNGl).

• The data server element (DSE) handles the control sequencing and data buffering for
eight channels. It is packaged on a single TCM, and a maximum of three Data Server
Elements can be attached to the CPE. The Data Server Element contains 256 bytes of
data buffering per channel. It supports 2-byte transfers with the interface adapters and
64-byte transfers with central storage. The DSE is controlled by horizontal microcode
having a 54-bit microword in a 750-microword array. The eight channels are controlled
by DSE microcode that is time-shared on an equal round-robin basis. Outboard of the
DSE, packaged in a card-an-board technology, each channel has an interface adapter
element which drives the I/O interface and contains eight bytes of data buffering.

1.3.2 What 370lXA did for IBM's I/O Architecture

370-XA replaced the System/370 I/O functions with a structure that moved I/O management
out of the CPU with a completely queued interface between the CPU and the channel sub
system. The 370-XA architecture increased the performance of the large scale systems and
structured the I/O architecture to take full advantage of the 3081 and subsequent tightly cou
pled multi-processors.

1-14 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

The 370-XA channel subsystem allows CPUs the same access capability for all devices attached
to the system. The subsystem' became a separate component of the processor complex. I/O
devices were attached to the Subsystem, rather than to the CPU, as in System/370. This
removed the limitation of CPU's initiating I/O functions and accepting interrupts, only to
those devices to which they were physically connected. The new architecture allowed any
I/O function to be initiated with any I/O device, regardless of the CPU executing the I/O
instruction or the physical attachment of the I/O device to the channel subsystem. The channel
subsystem was not identified by an address, and permitted attachment of enough I/O devices
to correspond with 256 System/370 channels. However, all of the I/O devices attached to
the channel subsystem were represented by a single set of subchannels. These characteristics
present the appearance of a collection of channels, or what is termed a "channel subsystem. "
The following illustration shows the 370-XA structure:

Figure 1-4: 370-XA Channel Architecture

C S
E T

~R
RA e ~

370 - iffi CHANNEL SUB SYSTE1t1

1----,---.-.-.-.-.-.-.

1----'-_.-.-._.-.-

t.SUB CHANNEL S

The separation of the channels from direct CPU control allowed the following prominent
features:

• The channel subsystem architecture allowed devices, like the 3380-AA4, to dynamically
reconnect to a free path.

• In 370-XA all lIO busy conditions were handled by the channel subsystem rather than by
the CPU program, as in System/370.

• In 370-XA, alternate path are scheduled by the channel subsystem rather than by the CPU
program.

• In System/370, channels must be handled by type; that is, there are differences in program
action depending on whether a device is attached to a selector channel or a multiplexer
channel. In 370-XA, the type of channel path used is not apparent to the CPU program.

• In 370-XA, eight different physical paths can be used when communications takes place
between a single sub channel and an II 0 device.

digital CONFIDENTIAL 1-15

Comparison of IBM and Digital Storage Architectures· 29-March-1990

• In 370-XA, any CPU in the system enabled for 1/0 interruption can accept an interruption
from any subchannel.

1.3.3 Input/Output

Communication between the control program and the channel subsystem regarding an I/O
device depends upon the use of a subchannel number. The channel subsystem and the
I/O device communicate by using a device address. The subchannel number identifies the
target sub channel during the execution of I/O instructions and during the handling of I/O
interruptions. The device number is assigned during installation of the I/O device and bears
'no relationship to the physical attachment of that I/O device. Compatibility of addressing
between the channel subsystem and the I/O device has been maintained from System/370
to 370-XA since the device number is still used in 370-XA for administrative or operator
communication purposes. Separating device number and device address allowed customers
complete freedom when assigning device numbers. '

In 370/XA, each I/O device is assigned to a different subchannel. Architecturally the device
number has no relationship to the device address used in the communication path between the
channel subsystem and the I/O device or the channel path to which the I/O device is physically
attached. Consequently, physical addressing changes can be made between the channel
subsystem and the attached I/O device, without impacting the control program. Sub channel
numbers must be assigned in contiguous ascending order, starting with zero. This presents
a problem in multiple system installations with shared DASD because it removes what might
otherwise be a convenient system unique identifier.

The channel subsystem, during initiation of an I/O function, tests the availability of channel
paths to the associated I/O device. The testing result reports one or more available channel
paths. One of these paths is selected during initiation of an I/O function. If a busy condition
occurs, an alternate path, from the set, is chosen. If another busy condition occurs, another
path is selected if one is available. This function is performed without the involvement of the
control program.

I/O interruption requests from individual I/O devices can be assigned to anyone of eight
maskable interruption subclasses. In effect this created interruption subclasses assigned to
I/O devices. Masking of these subclasses is provided by use .of a control register in each
CPU. Subclass assignments are made to each subchannel during the execution of MODIFY
SUBCHANNEL. Under System 370, a similar feature was designeq into the channel sub
system. However, all of the attached I/O devices (to 256) were likewise being masked. In
370-XA, assignment of subclasses to' sub channels provides greater flexibility in controlling
I/O interruptions from I/O devices. For example, a software-controlled priority-interruption
methodology can be employed where only the lowest priority programs are executed with all
subclasses enabled, and successively higher-priority programs are executed with fewer sub
classes enabled. As a result, low-priority programs can be interrupted by all I/O devices, but
high-priority programs can be interrupted by only a few devices (POp3).

1-16 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.3.4 Monitoring

The monitoring of the channel subsystem provides I/O resource usage data in the form of
measured information maintained in central storage. This information is available to the Re
source Management Facility (RMF), which assists in managing the performance of the system.
The RMF also performed this function in System/370; however, most of the information was
obtained through sampling techniques that examined the delays or busy conditions encoun
tered by the control program while attempting to initiate I/O operations. A monitoring facility
in 370-XA was added because of the changes to the internal interfaces of the control program
and because the I/O queue management and busy-handling functions were moved into the
channel subsystem. The monitoring facility provides measured elapsed time parameters in
main storage that described the extent of I/O resource usage, delay time, and I/O contentions
encountered during execution of I/O operations. The data is accumulated on a subchannel
basis and made available as each operation completes.

The instruction SET CHANNEL MONITOR places the channel subsystem in the monitor
ing mode and identifies the starting loc; non, in main storage, where the measured data is
accumulated. Control bits provided by the control program and placed in the subchannel
during execution of the MODIFY SUB CHANNEL command selectively enable or disable a
subchannel for monitoring.

1.3.5 24 & 31 Bit Channel Commands

A 31-bit data address in a new CCW format allows for the direct use of 31-bit addresses in
channel programs. In System/370, 31-bit addressing of I/O data can only be accomplished by
use of the Indirect Data Address Word (lDAW), and all CCWs and IDAWs must reside in the
first 16M bytes of storage. In 370-XA, two modes of operation are provided: a compatible 24-
bit addressing mode for executing old CCWs (Format-O CCW) and a 31-bit address mode for
executing the new format CCWs (Format-1 CCW). When Format-1 CCWs are specified, the
CCWs and IDAWs may reside anywhere in storage. The mode is controlled by a bit passed
to the channel subsystem during the execution of the START SUB CHANNEL instruction. In
370-XA, depending upon the setting of the control bit, direct addressing in either the 24-bit
or 31-bit mode applies for the entire channel program being executed. Mixed CCW formats
within a channel program are not allowed. The two CCW formats are illustrated as follows:

digital CONFIDENTIAL 1-17

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 1-5: 370 Channel Command Word Format

o

C O!·U!AND
CODE

FLAGS

32

DATA ADDRE S S

8

COUNT

39 48

C O~U1ftND FL" G S 0
CODE ft Com-IT

o 8 15

DATA ADDEESS

32 33

FOPJ!AT-O CCW

63

FOPJ.1AT-l CCW

63

The indirect-data-address word (IDAW) was extended to 31-bits when 26-bit real addressing
was introduced in the system/processor architecture prior to XA. At the time this was the only
way the channel could access data beyond the 16-Mbyte limit. The 31-bit format IDAW is
now also used in 370-XA for application compatibility. 370-XA also introduced a new channel
command word format called Format-l, with a 31-bit data address field. The address formats
used in I/O operations are subject to and subordinate to the addressing mode specified in the
address space PsW.

The 370-XA channel subsystem architecture executes CCWs that were defined for system/370,
as well as the new Format-l CCWs. Regardless of the format of the CCWs, the same channel
and control unit operations can be executed. The portions of the architecture dealing with the
initiation of I/O operations and with the I/O interruption mechanism were changed extensively
from those implemented in System/370.

1 .3.6 Dynamic Reconnection

The dynamic reconnection facility allows an I/O device to reconnect to any available path to
continue execution of a chain of commands in a channel program. The instruction MODIFY
SUB CHANNEL (MsCH) describes to the subchannel, by means of mask bytes, the set of
available channel' paths. This facility is controlled by a mode setting (multipath mode) in
each subchannel. The MsCH instruction is also used to enable and disable the dynamic
reconnection ability. The control program 105 reports the set of available channel paths for
which reconnection is permitted to the I/O device. This capability, together with the channel

1-18 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures· 29-March-1990

path management capability, allows the chann~l subsystem and I/O devices to chose the first
. available path to initiate or resume execution of a 'chain of I/O operations.

1.3.7 System 370/XA - Developments in Channel Path Selection

In System/370, I/O operations are initiated by the START I/O instruction, which identifies
the channel and the device address on the specified channel. START I/O causes the channel
to fetch the channel-address-word (CAW) from a fixed location in real storage. The CAW
contains the subchannel key and designates the location in storage from which the channel
subsequently fetches the first CCW. If the specified channel is busy at the time START I/O is
executed, the operation is not initiated and the program is notified. If the specified channel
is available, the CPU is delayed while the channel attempts to initiate the operation at the
device. The length of time required is determined by the I/O device and, in some cases,
may be more than 100 microseconds. While attempting to initiate the operation at the I/O
device, the channel may receive a control-unit-busy indication, in which case the operation is
not initiated and the program is notified. If other available channels in the configuration are
connected to the device, the program can repeat the procedure, specifying a different channel
in the instruction. In this instance, multiple control-unit-busy indications are possible, with a
resulting CPU delay.

The START I/O FAST RELEASE function was introduced with System/370 to reduce CPU
delay in initiating the operation at the device. This function allows the CPU to execute the next
instruction as soon as the channel is available. Thus, processing continues while the channel,
in parallel with the CPU, attempts to initiate the operation at the device. On encountering
a control-unit-busy condition, the channel notifies the program with an I/O interruption so
that operation initiation can be attempted on an alternate path. In some configurations, the
additional processing to handle the interruptions reporting control-unit-busy more than offset
the gain from the START I/O FAST RELEASE function. As a result, the function was modified
to cause the CPU to wait until the control unit was engaged before the CPU could execute the
next instruction. Since the time required to determine a control-unit-busy condition is less
than the time to initiate an I/O operation, the START I/O FAST RELEASE function remains
faster than the original START I/O function.

START I/O FAST queueing was introduced for System/370 as a result of the control-unit
busy problem. With this function, the channel would return (send back) an I/O request to
the program only if the desired subchannel was busy executing an operation. If any other
busy condition was encountered, the channel waited for the busy condition to clear and then
initiated the operation. This approach offered performance improvement in some cases.
However, an I/O request could be queued in one channel because of a busy condition while
other channels with paths to the desired device are idle.

In 370-XA, operations are initiated by the START SUB CHANNEL instruction which, unlike
START I/O or START I/O FAST RELEASE, does not specify the channel path. Since there
is only one sub channel for each device in the system regardless of the number of paths that
exists, the program specifies the subchannel corresponding to the desired I/O device. The
program loads a register with the subchannel number. START SUB CHANNEL also specifies
the address of the Operation Request Block (ORB) which contains the address of the first CCW
to be executed. Except for a busy subchannel, the I/O request is accepted for execution. Unlike
START 110 FAST queueing, in System/370, the 110 operation is not queued for a specific
channel path. Rather the channel subsystem selects an available path, from those assigned
to the subchannel, and attempts to initiate the operation. If busy conditions are encountered

digital CONFIDENTIAL 1-19

Comparison of IBM and Digital Storage Architectures - 29-March-1990

on all paths, the I/O request remains queued in the subchannel until the operation is initiated
on one of the channel paths.

1.3.8 Application Affects

In 370-XA, the functions performed by the channel subsystem while it is executing a chan
nel program (addressing storage, counting data bytes, command and data chaining, etc.)
are compatible with those performed in System/370. However, additional functions can be
invoked by the program or device to modify certain aspects of channel program execution.

As mentioned earlier, CCWs may be either Format-O (24 bit addressing) or Format-l (31-bit
addressing). Even if the new Format-l CCWs are specified the same chains of commands used
under the System/370 architecture are possible. This allows the 370-XA addressing scheme to
be used even though the attached storage devices do not support the entire suite of 370-XA
Channel Commands.

Address limit checking, if used by the program, can also affect the execution of channel
programs. Address limit checking is a storage protection mechanism for I/O that separates
program controlled real storage into two segments. A boundary address is passed to the
sub channel in order to control where retrieved data can be placed. It is available in both
System/370 and 370-XA with different possible results. When used under 370-XA, the channel
subsystem compares the data address with the boundary address. If an address limit violation
occurs, a program check is indicated even though the CCWs may appear valid according to
System/370 rules. For System/370 applications this posed a potential complication. This
required that error analysis be interrogated and if necessary made aware of this new checking
feature (POp3).

The dynamic reconnection facility of the 370-XA channel subsystem architecture also affects
program execution. Under System/370 when a channel program is initiated with a device,
the path used to initiate the operation must be used to execute the entire channel program.
This caused users to attach few devices to a channel and thereby ensure the channel path
for a time-dependent reconnection. Rotational devices experience a long delay time (one
revolution) if a channel path is not available when needed. The dynamic reconnection facility
allows a device that disconnects from a channel path during an operation to use any path to
the system in reconnecting. In multiple path to control unit configurations a higher activity
on each interface was made possible and an interface to the system had a higher probability
of being available.

I/O interruptions allow the channel to inform the program of the status of I/O operations, as
well as external events at devices. An I/O device transfers a channel end to the subchannel
when an operation with the channel is ended and a device end when the operation is com
pleted at the device. 370-XA systems reduce I/O interruptions. In System/370, the first status
indication is accepted by the sub channel and then presented to the program by means of an
I/O interruption. In this case, the I/O interruption is completed in only a few microseconds
since it is not necessary to c:ontact the device. However, the second status indication, if it is
presented as a separate sequence, is held pending at the device, and the channel must select
the device to retrieve the status as part of the I/O interruption procedure. In some cases
these I/O interruptions may take an excess of 100 microseconds because of device delay. In
370-XA, both statuses are accepted by the subchannel, thus reducing the time required for
I/ 0 interruption.

1-20 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

1.3.9 More On Interruption Processing

The I/O interruption is initiated in 370-XA when an interruption is pending in a subchannel
and the interruption subclass is allowed in any processor in the configuration. The channel
subsystem interrupts an enabled processor and stores the interruption code, leaving the sub
channel in the status pending state. The interruption code provides the sub channel number
to the program receiving the interruption and allows that program to gain control of the
appropriate control blocks prior to clearing the status with the TEST SUB CHANNEL instruc
tion. In a multi-processor configuration, this process prevents one processor from initiating
an operation with a device when a second processor may be handling status from the device.

Another new aspect of interruption processing in 370-XA is the TEST PENDING INTERRUP
TION instruction. In Systemf370, after one 110 interruption is handled, it is customary to
enable the CPU for 110 interruptions again to see if any other interruptions are pending. If so,
the interruption procedure is repeated, with all the programming overhead associated with
the required state switching. In 370-XA, the program can determine if another interruption
is pending by means of the TEST PENDING INTERRUPTION instruction. If there is another
interrupt pending, the program can clear the interruption request and determine which sub
channel caused it. It is then possible to clear the status information from the sub channel
by issuing the TEST SUBCHANNEL instruction, using the subchannel number provided by
TEST PENDING INTERRUPTION. This procedure can be repeated until all pending inter
ruptions are cleared, without the intervening saving of machine state descriptions. Since I/O
interruption conditions are available to all CPUs in a multiprocessing system, the program
has the option of allowing all CPUs to handle I/O interruptions or specifying that a single
CPU process all interruptions.

1.4 ESA/370 - Architecture for Modern Times

When IBM started delivering computer systems to customers an 110 subsystem capable of
delivering 1.2 MBytes/Sec was considered more than adequate. This limitation soon became
a bottleneck for customers whose growing appetite for data rapidly outpaced the ability of
the manufacturer to deliver it. Change to meet that demand was mandatory and came in the
form of elimination of artificial constraint and improvements in the efficiency of the architec
ture. Subsequent improvements in devices enhanced the 110 d~sign's ability to deliver data.
ESA/370 is this type of evolution. Specifically it is not a correction of the previous generation;
it is an addition designed to promote faster delivery of data. This section discusses how this
is done and what the features of the design are.

The central issue here is an old one. The time it takes to obtain access to a block of data plus
the time required to transfer that data to main memory is what determines the performance of
the data retrieval system. In other words, the rate (access per second) at which a data retrieval
system can deliver data is a key determinate in how well the overall system performs. It affects
the system by causing more than necessary visits to the data, causing the processor to wait for
the required data and incurring the associative overhead to the response time of a transaction.

Traditional database applications use multiple files or databases and depending on the. com
plexity of the transaction several to many visits will be made to those files. Relational database
products have exacerbated this I/O profile by simplifying unplanned inquiries and introduc
ing data browsing. Add to that the increasing use of on-line reporting, image processing and
the rest of the boutique means for storing information. So as transaction complexity grows
so does the amount of data accessed by those transactions (Amdahls Law) This presents a

digital CONFIDENTIAL 1-21

Comparison of IBM and Digital Storage Architectures - 29-March-1990

significant problem to installations committed to delivering an agreed to terminal response
time.

Certainly the storage technology industry can't help here, at least not in the near term. Ex
panded storage, therefore, gets incorporated into the architecture. Not the I/O specific archi
tecture but the architecture of the system. On a 3090 processor the scale of time is measured
in billionths. The amount of time to retrieve information from disk vs Expanded Storage is
hundreds of millions or hundreds of thousands times longer, respectively. Expanded storage
is used not like an electronic disk but like an extension of central memory. There are no I/O's
(initiation, locate, transfer or interrupt) to Expanded Storage. What Expanded Storage will
do is assume a more critical role so that it functions both as a fast paging device and a data
storage device.

1 .5 Disk Storage

The following table of storage devices includes those which are perceived as the most signifi
cant in current IBM systems:

Avg
Device Capacity(MBytes) Cylinder(KBytes) RPM Seek

9332-200 200.3 149.504 3119 19.5

9332-400 400.6 147.456 3119 19.5

9335-801 521.5 265.68 3623 18

3380-K 1890 712.1 3600 16

3390-1 946 849.9 4210 9.5

~O'2 1890 849.9 4210 12.5

1-22 digital CONFIDENTIAL

CHAPTER 2

DIGITAL I/O ARCHITECTURE

2.1 Introduction

This chapter discusses the current Digital I/O architecture. Just as the IBM/370 is the foun
dation for IBM's image, the VAX is the foundation for Digital's image. Unlike classic main
frames, the VAX has no I/O processor in the architecttF . There is no concept of channel
programming. Evolving from the minicomputer, VAX sy~.;.: :':ffiS support I/O using classic com
munications layering.

2.2 VAX Computer Systems

V AXes have been built with numerous backplane buses-SBI, CMI, BI, NMI, and XMI. Orig
inally the devices available to connect to these systems were built to connect to the PDPll
UNIBUS. Adapters were built to convert between the backplane signal and UNIBUS signals.
MASSBUS was developed as an improved interface to mass storage but was still supported
via adapters. With the advent of VAXclusters, global (remote) storage required decoupling
mass storage from the local system. This led to the definition of the Digital Storage Architec
ture (DSA) as a distributed I/O architecture. The typical implementation of this architecture
is the HSC server.

The VAX architecture contains no special instructions for I/O initiation. Memory-mapped
command and status registers are used that can be manipulated with regular memory refer
ence instructions. These registers communicate with a device adapter and are protected by
privileged memory management. Conceptually, the adapter registers are an extension of pri
mary memory in the physical address space. Refer to Figure 2-1. The design of the adapters
may use the page tables set up by system software.

digital CONFIDENTIAL 2-1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-1: VAX Overview

Backplane Bus

VAX overview

The register transfer level of the VAX is a Complex Instruction Set Computer (CISC) with a
fairly orthogonal instruction set. There are 16 General Purpose Registers (GPR); however,
the last four are used for stack control and program counter. There is also a Processor Long
Word (PSL) that holds the current state of the processor.

All processors that accommodate multiple interrupts must have a technique to resolve the
order of processing in the event that more than one interrupt (type) occurs at a given point
in time. The prioritization in the VAX architecture is done via Interrupt Priority Levels (IPL),
where a higher level can preempt a lower level. Processing at a given 'level also blocks all
lower-level processing. IPLs are used for both unsolicited and solic~ted (exceptions) interrupts.

A peculiarity of the VAX is the interaction of the ASTL VL register and the REI (return from
interrupt) instructions. After the PSL is popped into a temporary register, the ASTL VL register
is checked for a potential AST (asynchronous service trap) delivery. If there is a pending AST
that can be delivered, an IPL 2 interrupt is triggered, pushing the PSL back on the stack
and transferring control to the AST delivery mechanism. Even though an REI instruction
cannot raise the priority level, a high priority level (such as used by an ISR) can trigger
execution at a level that is between its IPL and the IPL at the time of the interrupt. Thus,
hardware efficiently supports I/O completion (as well as other asynchronous events) at a
higher processor priority than 1/ normal" processing. Such a system is classically referred to
as being /1 interrupt driven".

2-2 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

2.3 DSA concepts

The underlying principle of DSA is that I/O is a special case of communication. To explain the
concept, consider the ISO Open System Interconnect (051) architecture. Figure 2-2 depicts
the model. Interfaces vertically connect the individual layers on each side. The interfaces are
essentially subroutine calls where the upper layer calls the next lower layer and lower levels
may raise attention to work for upper levels. Protocols are the horizontal flow between each
side's mirrored layer. Typically only the lowest level protocol actually involves hardware in
terfacing. Protocols define data packet format, the synthesis/decomposition, and subsequent
processing. To simplify the distinction t>etween interface and protocol, protocols define the
communications between peer layers while interfaces are between adjoining layers.

Figure 2-2: ISO model

I \
Application I \ Application f:-----------' '\ /

\ I

/ \

P resentati on
I \

P resentati on 1:-----------
[\\ ;'

I \
Session Control ?----------~ Session Control

\ I

\ /

/ \

• ransport Contra II----------~ ransport Contro ~, t'

\ I

/ \

Network ~---------.:: \ I Network
\ /

I \
Datalink ?----------~ \ I

Datalink
\ /

Physical Layer () Physical Layer

In classic communications architectures there are two types of transports-those built upon
datagram services and those built upon virtual circuits. Datagram services force the higher
level protocols to be resilient in ensuring message receipt from end-to-end. Virtual circuit
transports exhibit flow control and guarantee delivery of messages (in order) to the higher
layers.

Flow control is a generic term for ensuring that neither side of a communications link exhausts
the resources (usually memory) at the other end. There are numerous flow control techniques,
but the most common is referred to as "windowing'! (see [NETW76]). With windowing each
node keeps track of the 'I credits" it has issued and the credits it has received for a given link
(connection). As long as the node at the other end grants at least one credit, that node may
send flow-controlled traffic. It also has the responsibility of extending credits to the other end
when applicable.

digital CONFIDENTIAL 2-3

Comparison of IBM and Digital Storage Architectures - 29-March-1990

The general form of DSA actually incorporates two communications architectures as shown in
. Figure 2-3. Three node types are described by this conceptualization-hosts, controllers, and

devices. Controllers appear abstractly as translators between SeA and (in this case) SDIISTI
(also referred to as SxI).

Communications datalinks normally fall into either the store-and-forward (point-to-point) or
broadcast. Store-and-forward networks" route" messages from one node to another. Each
intervening node receiving the message determines which node to forward the message to next
to achieve a path to the final destination. In a broadcast topology a message is transmitted
on a common wire to every node. Each node then filters messages so that messages for
other nodes are ignored. Referring to Figure 2-2, the network layer is necessary for store
and-forward datalinks, but not for broadcast topologies.

2.3.1 System Communications Architecture

The basic System Communications Architecture (SCA) is four-level architecture for the CI.
When the Ethernet is used, this architecture is expanded to seven layers. Both form broadcast
topologies.

Figure 2-3: DSA Overview

-------- .. - .. - .. - .. - - - - - - - ..
I I

I I

I HOST I I CONTROLLER :
I I
I

I I
I I

SYSAP I I SYSAP I I

f--!----'-
I I I : Device
I

I I I I
I I

scs I I
I

scs
I"r--r

I I

LevelZ
I

LevelZ i"""II
I I I

I I I I
I I I I

I I I I

PPD I I PPD· I
,

f--!----L- Levell -L-L Levell
I I I I

I I I I
I I I I

I I I I
I I I

,
PI I I PI I I

r---r-- Level 0 -.--- Level 0
I I I I
I I I I

I I
I I

I I
I I I I --------,

2.3.1.1 Computer Interconnect

The top level of the architecture is the System Application (SYSAP) layer. The protocol is
the Mass Storage Communications Protocol (MSCP). It is a master/slave protocol where the
host sends command packets (like read and write) and the controller sends response packets

2-4 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

(with status). The software component in the host is the class driver. The controller software
is an MSCP server.

The second layer is SCS. It basically provides the connection service for the SYSAP layer.
Connections ·exist between class drivers and MSCP servers and provide flow control via credit
management for sequenced messages.

The next layer, PPD, is implemented by port drivers in the host. The controller software
is implementation dependent. This layer provides Uvirtual circuits" (VC) to the SCS layer.
These virtual circuits are similar to classic virtual circuits. A VC is required for some kinds
of datagrams, as well :1:~ }Il sequenced messages. Sequenced messages are currently flow
controlled by a single Sb:i' .. :,:::nce bit for both send and receive.

The physical layer provides the electronics and data encoding for the upper layers. The CI has
two paths, each with a send and a receive cable. The encoding is synchronous Manchester
encoding with data and clock on the same cable.

2.3~ 1.2 Ethernet

Figure 2-4: SeA with Ethernet

SYSAP SYSAP

SCS SCS

I~

PO PO

PPC PPC

Trwport Trwport

Channel Control Chmnel Control

DX DX

D&l1nk D~tal1nk

J PL PL ~[

SCA/NI is a nine-layer architectural extension of SCA that allows the Ethernet to be used as
a datalink for Local Area V AXclusters (LA VCs) . Basically, the PPD layer is replaced by five
layers to support the additional abstractions of rails and channels for LA VCs. The PI layer
is replaced by the standard Ethernet datalink and physical layers. In this architecture, the
distinction among host, controller, and device is absent. In the LA VC environment there are
special nodes such as boot nodes" but the notion of controller does not exist.

digital CONFIDENTIAL 2-5

Comparison of IBM and Digital Storage Architectures - 29-March-1990

The following layers are substituted for the PPD layer in SCAICI:

1. PCI

2. PPC

3. Transport

4. Channel control

5. Datagram Exchange

The top layer replacing PPD, the PCI layer, defines the interface between the port (device)
and the port driver. The next layer (PPC) provides the virtual circuit services to PCI. The
transport layer is next and actually provides the guarantee delivery service for the virtual
circuits of the PPC layer. Channel control is responsible for the network topology, providing
the channel abstraction. The final PPD layer replacement is the Datagram Exchange (DX)
layer. It provides the datagram services upon which rails, channels, and virtual circuits are
built.

The standard Ethernet datalink is responsible for basic arbitration (in the absence of collisions),
nodes address filtering, and collision recovery. The physical layer defines the Manchester en
coding and collision detection mechanisms, as well as the tranceiver and cable characteristics.

2.3.1.3 Digital Storage Systems Interconnect

DSSI is a broadcast datalink that supports a maximum of eight nodes. The nodes may be
(theoretically) any mix of hosts and storage nodes. The bus is an 8 bit parallel path capable
of approximately half of the bandwidth of a single CI path.

In implementation, the storage nodes have the controller embedded in the device to form
an Integrated Storage Element (IS E). This ensures linear performance increases up to the
capacity of the DSSI itself.

2-6 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-5: DSSI Topology

DSSI

o 0 0

Eight nodes max: (including hosts)

The protocols for SCA/DSSI show that the top three-layers are virtually identical to SCA/CI.
The addition of a DSSI datalink appears to be more of refinement over SCA/C1 in that the
CI version lumps the a datalink in with PPD. The DSSI architects have chosen to make the
distinction with a separate layer.

digital CONFIDENTIAL 2-7

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-6: SeA with DSSI

._----_ ... _---- ... -

HOST

SYSAP

SCS

Port/Drlver

DSSI daIalJnJc

DSSI

I

I I

I I

I I

r---I_,-
I I

I I

I I -,--
I I

I I

I I

I I

I I

Integrated Storage
Element

SYSAP

SCS

Port/Drlver

r-'--- DSSI daIalJnJc
I I

I I
I I

~-;--- DSSI

I I

I I

I - ... - ... - ... - ... - ... - - ... - ... - ... - ... - ... - ... - ...

2.3.2 Standard Device Interlaces

In keeping with the communications model, standard device interfaces have been defined.
These interfaces are II realtime" in that the flow of data is synchronized with the actual physical
transfer to the moving media (disk or tape). The Standard Disk Interface (SDI) and Standard
Tape Interface (STI) are both three-layer models. Refer to Figure 2-3.

The top level (level 2) commands provide a master/slave proto<;:ol that allows a controller to
handle drive diagnosis, status, topology, and initiate seeks.

Level 1 of SxI is a symmetric protocol that details the meanings of the control frames of
levelO. The protocol is asymmetric for other than framing purposes-the controller initiates
read/write activity, and the device responds. Levell commands provide group and track
selection. Formatting, reads, and writes are also initiated via these commands.

The bottom level is the electrical signal level. The raw clock rate ranges between 5MHz and
22.SMHz, depending upon the device. The interface is symmetric. Four physical wires are
present with two for controller and device states. The other two wires are shared for data
movement and level 2 traffic. Exchanges across the data movement lines are 32 bits comprised
of a 16-bit SYNC character and a 16-bit control frame.

2-8 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

2.3.3 Device Data Formats

DSA tape devices adhere to the ANSI standards for tape devices.

Digital Standard Disk Format (DSDF) is a Fixed Block Architecture (FBA). The physical disk
sectors are divided into two U spaces": LBN and RBN. The SDI version of DSDP adds XBN
space to define the entire disk and reserves DBN space for diagnostics. The controller provides
the mapping services for each of these spaces. The MSCP protocol predominantly allows for
addressing LBN space. RBN space can be addressed to accommodate host-based bad block
replacement. XBN space basically defines a mapping for the entire formatted disk.

LBNs are the disk sectors that are reserved for system and user data areas. LBN space maps
the major portion of the disk.

RBNs are replacement blocks. With the SDI implementation, RBNs map to two different
regions:

1. Primary revectors lion track" .

2. Secondary revectors to dedicated cylinders.

The first region is a collection of sectors on-track with the LBNs. They are reserved to avoid
seeks for the revectoring operation. Accessing a revectored block on-track involves reading
the sector header. The second region is a separate band of cylinders reserved for revectors that
occur after the on-track RBNs have been filled. A control table (RCT) is duplicated according to
drive geometry to control allocation of the second region. Allocation of a secondary revector
involves updating every copy of the RCT, as well as indicating the revector in the original LBN
sector header. Accessing a secondary revectored block involves reading the RCT to determine
the RBN location.

The last sector mapping space is for diagnostic use. DBN space is reserved to allow an area
of the disk where diagnostics can freely write as well as read.

2.4 DSA Implementations

The large system implementation of SCA is built upon the CI datalink. The current host
adapters for this datalink are derived from the CI780 (or CI750), depending on the host
backplane bus. These adapters are only capable of single active path operation. The XCD
(XMI to CI) adapter is a new design to support simultaneous dual path operations.

DSSI provides the datalink for medium and low-end systems. DSSI is a proprietary bus
similar to the SCSI interconnect. The PPD and PI layers are different from those of SCAICI,
but the SYSAP (MSCP) and SCS layers are the same. Topologically, DSSI is very much like
the CI. One major distinction is that the controller for DSSI devices is integrated with the
HDA. .

2.4.1 DSA controllers

DSA controllers can be connected either locally to the backplane bus or globally via a datalink
such as DSSI or CI. The following table outlines the current DSA controllers.

digital CONFIDENTIAL 2-9

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Table 2-1: eSA controllers and statistics

Host Con- Device Max
Controller nect Connect Devices Req/sec Data Rate(MSytes/sec)

UDA Unibus SDI 200 200 .75

KDA50 Q-Sus SDI 4 200 1.2

KDS50 SI-Sus SDI 4 200 1.7

KDM70 XMI-Sus Sxlt 8 700 5.4

HSC70 CI Sxlt 32 1150 4.2

KFQSA; Q-Sus DSSI 7 190 1.5

EDA640; CPU card DSSI 7 360 1.5

tEither SOl for disk or STI for tape

:j:These are adapters rather than controllers

2.4. 1 . 1 Board Level Controllers

All of the SxI controllers listed in the previous table are board-level controllers except the
HSC70 server. Most of these controllers have a similar architecture that incorporates a 2901
bit slice processor as its basis. The port driver for these adapters employ a "ring buffer"
interface with the controller microcode.

The KDM70 is radically different from the other board-level controllers in that the center
of processing is a cV AX (labeled P .mscp in Figure 2-7). It decomposes incoming MSCP
requests into "work blocks" for the SxI state machines and sends the end packets back upon
completion.

The eight backend ports are divided into two four-port blocks. The two SxI state machines
"float" between the ports. The KDM70 is connected directly to the XMI backplane. The
XMI is capable of a peak 100 megabyte/second burst but is limited to 66MBytes/sec in this
application. The internal KDM70 bus is 32 bits wide with a 200-nanosecond cycle time for
a 16MBytes/sec bandwidth. The throughput is further constrained by a total of two state
machines for SxI transfers. Each SxI path can produce a maximum of 2. 7MBytes/ sec with an
ESE with enhanced protocol.

2-10 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-7: KDM70 Overview

P.mscp

memory

4 SxIports

2.4.1.2 HSC

X1vlI

~
::I
~
-;;

I-------f E 1--------1

2
.s

Shared

memory

4 SxIports

The HSC family of controllers is the one example of a global storage controller that is shared
among VAXcluster nodes. It implements the SCA/CI architecture completely.

Before launching into a description of the HSC server internals a discussion of the naming
convention is in order. The following table describe the HSC components as named based
upon PMS notation derived by Bell and Newell in 1971 (see [ARCH71]):

digital CONFIDENTIAL 2-11

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Table 2-2: HSC Naming Conventions

Letter Meaning

P Processor

K Controller

M Memory

Function

To execute 'programs from RAM

To execute programs from PROM

To store instructions and data

In the HSC server, the difference between P's and K's is that P'S execute programs from RAM
while K's execute microcode from PROM. The convention uses a dot to delimit between the
major component and the specific type of that component. For example, K.ci refers to the
CI controller.

There are three types of K's:

1. K.ci for connecting to the CI.

2. K.sdi for interfacing with disks.

3. K.sti for interfacing with tapes.

There are three major memories:

1. Control Memory

2. Data Memory

3. Program Memory

Two buses provide the building blocks for the HSC server. The control bus allows access
to "control memory" which is shared among all K's and the P.io for communication and
synchronization. The data bus is a 13.3MBytes/sec bus that transfers read and write data in
and out of " data memory". Data memory buffers between the realtime SxI interface and
transfers across the CI. There is a third private bus between the P .io and its program memory.

The center of the P.io is a PDPll processor chip. The other active elements in the HSC server
(called "requestors") are K.ci, K.sdi, and K.sti. The HSC hardware is pictured in Figure 2-8
only the K.ci controller.

2-12 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-8: HSC Without Disk/Tape Requestors

K.ci P.io

Control Bus

Private

Memory

Data Bus

Data Control

Memory Memory

Each of the K's use 2901 bit slices as pictured in Figure 2-9. The upper processor's primary
role is accepting requests from the P.io software, while the lower processor's purpose is
to move data memory across the data bus. The upper processor cannot interface with the
data bus, nor can the lower processor interface with the control bus. The upper and lower
processors communicate through the shared II scratch pad" memory that is onboard.

The K.d is somewhat anomalous in that its primary mission is to interface with the CI. Its
lower processor moves data to and from data memory, but an additional buffer (PLIIPILA)
exists between the standard K design and the actual CI interface. K.d's upper processor
serves as the primary data memory allocator for the entire HSC software subsystem. It frees
buffers when an MSCP end packet is sent to the host without involving the P.io software.

digital CONFIDENTIAL 2-13

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 2-9: HSC generic Krequestor

2.4.2 DSA Devices

Control Bus

Generic K
Upper

Processor

Scratchpad
:Memory

Lower
Processor

Data Bus

Control

Memory

Data

l'v1emory

DSA devices can be divided into two categories according to the interconnect. The midrange
and low end systems devices connect via DSSr while the large system connect by either SDr
(for disk) or STI (for tape). DSSr devices use the "RF" prefix. Disk devices that connect to
SDr use the "RA" prefix. STI tape drives are named with the "TA" prefix.

The following tables describe the characteristics of current DSA devices.

2-14 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Table 2-3: DSA disk devices

Cylinder
Capacity Size

Device (MBytes) (KBytes) RPM track to track (ms)

RA60 176 76 3600 7.5

RA70 281 181 4000 5.5

RA80 116 434 3600 7.5

RA81 435 357 3600 7.5

RA82 596 427 3600 5.5

RA90 1161 449 3600 4.0

RA92 1436 475 3405 3.0

RF30 150 111 3600 4.0

RF71 400 296 3600 4.0

ESE20 120 1024 N/A 1.4

Table 2-4: DSA tape devices

max
Device max ips bpi transfer rate

TA78 125 6250 763KB/s

TA81 75 6250 458KB/s

TA90 78 38000 2.4MBytes/sec

2.5 VAIL Concepts

Vail does not affect the SCA (CI) architecture, but it does redefine protocols. The two major
changes are elimination of SxI and extending CI to include the concept of "base nodes" and
II sub nodes" . SxI is eliminated by introducing a II storage element" architecture that takes
advantage of current technology.

In addition, to the storage element architecture, a cabinet architecture is defined to facilitate
packaging issues. In essence one can view the cabinet architecture as defining the base node.

2.5.1 Storage Element Architecture

A storage element is similar internally to an HSC server in that there is a CI port, a processor
to handle MSCP interpretation, II controllers" to actually perform the data movements, and
a shared memory. The internal bus structure is entirely different from that of an HSC server,
and the devices reside inside the cabinet.

digital CONFIDENTIAL 2-15

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 2-10: Storage Element Overview

PMS

CQ
CQ
"-'I
Vl

Mc:c~ CMM

Consumer Prtxlum

-!-
HIS Mc:c~ HDAs

Butter
Memay

The CI port for a Vail storage element is fed from the CID, but the port should be able to
connect directly to the CI. These custom chips are being designed for the CI port - PCI, SHIP
and TRAINS.

The MSCP interpreter processor complex is built upon a cV AX. The software is being evolved
from the KDM70 software. Although the device services software is predominantly new, the
executive is a port to the new environment with the Storage Element Buffer Bus (SEBB) and
new custom chips ..

2-16 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-11: Storage Element

CIDI-A

CIDI-B

Policy lvlachine Subsystem
(PMS)

Policy processor Bus Breaker
(PBB)

Cabinet Utility Bus
(CUB)

Serial
Port

CCM I SRM:

I Interface
(SPI) Servo

I----------t~ subsystem
~----~----~

Host Interface
subsystem

MOCHA

LOIllPOP

1----+-= R I W

CCM

subsystem

I
I
I~------=

I
I· SRM:

The K.si's in the HSC server are replaced by the MOCHA/LOLLIPOP chips, which move
data between buffer memory and the read/write subsystem. LOLLIPOP performs the ECC
function as data passes through the MOCHA. The MOCHA may actually interface to either
an HDA or a Cache Memory Module (CMM). The amount of memory on a CMM depends
on the actual Vail device.

2.6 Cache Implementations

The only cache product offering today is the data cache function within ULTRIX. VMS systems
today have four file system caches that expedite directory operations only. A full discussion
of caching appears in the Digital/IBM comparison section of this report.

digital CONFIDENTIAL 2-17

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Over the last three years, a multilevel cache strategy has been evolving. Three levels can be
viewed as host, controller, and device. Earlier performance studies showed that the most
performance benefit seems to be from a combination host (software-based) writethrough
cache and a write-behind cache as close to the device as possible. Currently SDI requires
static dual-porting with failover. This requirement makes a reliable write-behind cache in a
controller difficult to develop because any disconnect between the controller and drive would
lead to potential lost/corrupted data. The problem is being addressed by reserving one of
the surfac,es on the disk for copying "dirty data" (essentially without rotational latency).
The technique requires SDI to be extended so that the device logs "dirty blocks" until the
target write is completed (by the controller). In this way, the dirty blocks can be copied from
the reserved surface to the actual target block in the event of failover. This "fast write"
(probabalistically) incurs the overhead of a head switch time over that of a nonvolatile write
behind cache.

The HSC cache will be a 32-MByte cache. It will be provided a second port to data memory
rather than using data bus cycles. Private memory is used by the P.io to control the index
structures for the cache. The cache will be a writethrough. "Fast write" is being imple
mented independently of cache; however, cache will be required for configurations where
data memory is insufficient (e.g., HSCs that also support tapes).

When a cache hit is detected by the P.io software, it builds a command list for the state
machine in a reserved portion of data memory (labeled state machine comm region). Refer
to arrow 1 on Figure 2-12. The state machine then moves the data from the cache memory
to data memory. The P.io polls for completion of the data move. It then sends the request
to move the data out the CI port onto K.ci.

Cache allocation involves similar steps, where the P.io builds a command list for the state
machine to move from data memory to cache memory. Other details depend upon whether
the allocation is due to a read, readahead, or write.

2-18 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 2-12: HSC cache read hit

Control Bus

?
a me

Prtvate
rommregkm

--------_ ...
Memory

Data Control

K.ci P.io Memory Memory
32MB

Data Bus

VMS is in the process of implementing a host-based software cache that can be declared to
any size. The only performance concern with host cache is the potential lock manager traffic
requirements for synchronizing to prevent 1/ stale data". To date, the stale data problem has
not been quantified. There is a desire to do an II unreliable write-behind" cache within the
host. Such a cache would benefit temporary work files. The actual implementation would
involve an immediate completion to the application program, followed by discarding the
actual completion posting. .

One big advantage of the Vail storage element architecture is the ease with which a write
behind cache can be implemented. The design merely involves adding a Cache Memory
Module (via MOCHA) and the appropriate Cache Manager software in the policy processor.

digital CONFIDENTIAL 2-19

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 2-13: Vail Cache Flow

P1vlS

~

ffi
U) ---Mocha HDAs

;/V I
I

A
I

ACK J
~ I I

HIS Mocha C1vl1v[

~liv=V
Buffer

}.tlemory

The preferred method of caching is to first look into buffer memory then to search the CMM
for a cache read. Write data is first copied into buffer memory (Figure 2-13, arrow 1). For
cached writes data is copied from buffer memory into CMM memory (Figure 2-13, arrow 2).
CMM memory is nonvolatile and ECC protected. At that point an acknowledgment is sent
back to the host, thus effecting a "write-behind" cache. The data is retained in the buffer
memory until actually transferred onto media (arrow 3), at which time it becomes expendable.
Figure 2-13 demonstrates a 3-step method. Just as the HSC "fast write" will require cache
memory under certain configurations, it is possible for Vail storage elements to encounter
workloads where retaining data in buffer memory may be infeasible. In those cicumstances
a 4-step method becomes necessary. In the 4-step method the buffer memory is released as
soon as the acknowledgement is sent back to the host (after the data is resident in CMM
memory). Then when the target write is performed, the data is copied from CMM memory
back into buffer memory (step 3) before it is finally moved onto the media (step 4).

2-20 digital CONFIDENTIAL

CHAPTER 3

IBM VERSUS DIGITAL 1/0 ARCHITECTURES

3.1 Introduction

The current Digital and IBM I/O architectures are built upon opposite premises. Digital has
built its DSA I/O architecture as a special case of communications. IBM views communications
to be a special case of I/O. In practise, both have evolved to offload the host CPU of the I/O
function by use of microprocessing within the I/O subsystem.

The two companies have designed their respective I/O subsystems for different environments.
IBM has used an open-ended I/O architecture capable of supporting an indeterminantIy pow
erful system. Digital has designed an I/O subsystem to satisfy requests from multiple systems
of bounded I/O appetite. IBM's environment has grown out of an architectural philosophy
which focuses on many servers that reduce, if not eliminate, queuing. Referring to Ap
pendix C, IBM has evolved the I/O subsystem from the monolithic processor; Digital has
built its I/O subsystem for loose coupling.

Both IBM and Digital have numerous product offerings that implement the overall I/O ar
chitecture. This section compares IBM's DLSE to Digital's SCAICI. These two architectural
implementations represent the top of the line for each. The KDM70 controller is quantified
because of its use with the VAX 9000.

In the quantifications that follow, every effort has been made to isolate the comparison based
upon architecture rather than details of implementation. To that end, device characteristics,
such as seek, rotational latency, transfer times, and queueing times have not been quanti
fied. However, since systems are actually implementations of an architecture, the current
products of each vendor have been used as necessary to determine the delays inherent in the
architectures themselves.

Performance is dictated by workload as well as by the system configuration. In point of fact
architectural evolution results in modifications to enhance performance by taking advantage
of certain characteristics of the workloads processed. The proliferation of caching imple
mentations is an example. Likewise, there are certain architectural peculiarities that affect
the characteristics of the workloads themselves. The differences between IBM and Digital
workload characteristics are qualified - with a modest amount of quantification.

3.2 Physical 1/0 Functional Comparison

This section attempts to compare components of the two vendors on a functional scale.

digital CONFIDENTIAL 3-1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

3.2.1 Dimensions

IBM's DLSE subsystem is built upon the channel subsystems architecture. Each processor,
within each model series, has a limited number of channels which it can support. The 3090J
series is cur'rently limited to a maximum of 128 channels. Each channel can of support up to
256 subchannels. These channels can be linked in groups of four to up to 64 controllers, each
with up to four device strings. Each string can have up to 32 devices or addressable storage
"actuators" apiece. This equates to supporting up to 4096 storage addresses per channel of
which 256 can simultaneously be active through the sub channel virtual processors.

A DSA system (perhaps V AXc1uster) built upon the CI can have up to 32 nodes. With a single
host there can be up to 31 HSCs. HSC90s will support up to 48 devices each. This allows for
1488 devices on a CI. A Vail configuration would allow for 31 base nodes (Arapaho cabinets)
with up to 64 Aspens or 48 Cedars, equaling 1984 or 1488 devices, respectively. A V AX9000
with up to 16 CIXCDs can have a very large storage subsystem-over 23,000 devices!

Comparing subsystem bandwidth, each IBM channel is capable of either 3MByte/ sec or
4.5MByte/sec. Since the architecture allows for up to 256 channels, an aggregate of over
1 gigabyte/second is possible. A single CI can of supporting 12MByte/sec with both paths.
Each host is further restricted by the bandwidth of its single CI adapter. Current adapters are
capable of between 1.5MByte/sec and 2.5MBbyte/sec and are constrained to using one path
at a time. On the other hand a VAX9000 with 16 CIXCD ports (each capable of 6MByte/sec)
can consume 96MBytes per second. Notice that the number of CI ports per host is not an
architecture limitation, but a system design limitation.

Digital does not queue requests in the host; IBM does once the virtual sub channel is busy.
Looking at the controller level, an HSC70 server can process 1150 requests/second. This
is realistically bound to approximately 400. Scaling for an HSC90 produces almost 1400
request/second potential and 480 realizable. An IBM 3990 can process 300 requests/second.
This leads to a Digital subsystem capable of 14,880 requests/seconds and an IBM subsystem
capable of 19,200 requests/second-ignoring caching or solid-state devices.

3.2.2 Analysis

Figure 3-1 demonstrates the physical similarities between IBM's DLSE architecture and Digi
tal's DSA implementation with HSC servers. The dotted box around the A-boxes and the first
disk indicates that an A-box contains a device. The dotted box around HSC central and the
K.sdi's depicts the physical boundary of an HSC controller. The" dotted lines to the bottom
set of disks indicates (statically) unused paths to the devices through an alternate HSC.

3-2 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 3;...1: DLSE vs. HSC

IIBMI
,------- _. - - _. _.

,
r-,
I r-
II :

Channel L g
~ __ ---Jr- r: -!J. -: ct: '

1 I r ti-· ... _ :

L,' Controller I I I I

Channel ! ii L~fiT :
; r ______ i L~t-~~------.:.--------------,
: i L---

f
~ , 0 i

1 I, f ct:, I
~--- L-_·_-_-_-_·_-_· _________________ ~~~~~~~ ______________ I

•••

I DEC I r--:~:------r~s~~l 0000

Host
CIAdapter

Central

K.sdi

r=== ===============1
'-------' I I

I HSC ~~~-~-~----
I
I Central K.sdi
I I
: I . L __________________ I

The first complication to be addressed is between IBM's channel subsystem and Digital's CI.
From a physical perspective, the a adapter and an IBM channel can be viewed as roughly
equivalent. However, IBM has an advantage since they support multiple channels as opposed
to a single CI path. The dotted box around channel, controller, A-box, and devices demon
strates the single-threaded View that this would impose. The analogy fails immediately upon
recognizing that the CI allows for multiple controllers. A more meaningful comparison is to
consider the host CI port and the CI itself to be equivalent to the IBM channel subsystem.
The only flaw in this analogy is that currently multiple CI adapters and multiple CI media are
not supported.

digital CONFIDENTIAL 3-3

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Comparing an IBM controller with "HSC central" is more direct. Figure 3-2 shows the
. internal paths through a DLSE controller. Any storage path can be utilized by any connected

string at a given instant in time. The supported parallelism is four transfers.

Figure 3-2: DLSE Controller

Storage
Storage

Pa1

Director
Storalfe

Pa1

~
~

§
..:::::
<.-

.s

Storage
StoraJre

Pa1

Director
Storalfe

Pat

DLSE Controller

Figure 3-3 shows a very abstract picture of data flow control through the HSC controller. The
CI port is guaranteed approximately 6MByte/sec of the databus bandwidth by the internal
design. The remaining bandwidth is apportioned among the K.sdi's by logical allocation. In
general three parallel disk transfers are supported (up to 5 for slower devices). Unlike IBM
which must have a separate tape controller, a single HSC controller can support both tapes
and disks.

3-4 . digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure 3-3: Logical internal HSC flow

-

HSC Central

L ______ l'-

10,.8 cal B/W shar~
\f -----1-'

A set of four OSA devices connected to a K.sdi and an IBM string comprised of A and B
boxes are essentially identical. Even though they are connected differently, the A-box and
K.sdi are single filters through which four devices transfer data. An IBM device can have a
transfer rate up to 4.5MBytefsec while SOl constrains a device to roughly 2.2MBytefsec (once
protocol overhead is subtracted).

The Vail architectural changes are demonstrated in Figure 3-4. Replacing SOl with SEBB
allows for a transfer rate of up to 50MBytefsec but is realistically constrained to approximately
30MBytefsec. The constraining factor to throughput ends up being the CI at approximately
12MBytefsec with both paths.

digital CONFIDENTIAL 3-5

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 3-4: DLSE vs. Vail

IIBMI
,..-------------

·1 Channel ~
I

L,' Controller
Channel !

r:-!J.-J rt1-,
II II
II II
II I L----,· - - - - - .
I' , II 1-_, ~ ,

II 0
II I ~
II I

+-----,- __ J L __ _

•••

IDECI

Host
CI Adapter

3.3 Anatomy of an 1/0

r-----------------------l

Vail
Storage
Element

L ______________________ _

For the purposes of the following discussion, an I/O channel is an abstract path between
a host system and a device. From a system perspective, a channel is a resource. As CPU
speeds have increased the management of channel resources has become more critical to
performance.

A read or write operation to a disk can be broken down into the following phases:

• Host initiation

• Seek
• Rotational positioning

• Data transfer

3-6 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

• Post Processing

, A static channel must be dedicated for a particular I/O operation from host initiation until
the postprocessing. This is in essence an IBM selector channel. Multiplexer channels allow
the channel to be allocated only during initiation, RPS reconnect and data transfer, and
postprocessing; however, the same channel is required for all phases. Allowing each phase
of the I/O to utilize any channel defines the concept of "floating channels". IBM's DLSE
essentially implements floating channels from the channel subsystem out to the device. The
advantage of floating channels is the reduction in path contention since any phase of an I/O
can complete as long as any channel is available.

Digital's CI can be viewed as a pair of floating channels, since packets for a given I/O can
be sent across either path. From the perspective of a device back to the host, the SDI only
allows "static dual porting" where only one path to the device is possible at a time. Vail will
have no second port at the SEBB, but dual porting may be supported by a second CI adapter.

With a head-on comparison, Digital's Clout performs a 'single IBM channel. It takes three
IBM channels to match the throughput potential. In DLSE implementations, 4 channels are
connected to the individual storage devices. A V AX9000 with 16 CI ports has an I/O subsystem
roughly equivalent to an IBM system with 48 channels.

3.3.1 Host Initiation

In the IBM/360 the SIO (START I/O) instruction was expensive. It required an initial interrupt
as well as channel allocation. SIOF eliminated the initial interrupt, but there was still the
potential for a subsequent interrupt upon channel allocation failure. By extensive use of
microprocessing, the current IBM channel subsystem has eliminated SIOF failure interrupts
with the new START SUB CHANNEL (SSCH) command.

The VAX queueing instructions are used to queue requests into II physical" adapter mem
ory. The overhead involved in these queueing operations is on the same scale as the SSCH
command.

The real difference between IBM and Digital host initiation is logical software. Although IBM
does not have a larger point-to-point channel scheme, the microprocessing in the channel
subsystem has offloaded the host operating system from having to dynamically select paths.
The physical path selections are handled inside the channel subsystem. The question then
becomes one of weighing the relative expense between building an IBM channel program
versus the expense of building an MSCP packet and passing it through the port driver. This
basic service time favours IBM; however, queuing time is another consideration.

With the Digital architecture, request queuing takes place at the adapter rather than inside
the VAX. The constraint today is the bandwidth of the adapters. The IBM architecture causes
request queueing to occur in the host whenever a subchannel is unavailable. With today's
channel subsystem, this does not occur unless all possible paths to a device are already
busy. Theoretically IBM's architecture is more finite because the subchannels are restricted
by configuration. Queueing at a Digital adapter is tied more to adapter bandwidth than
to a request depth. The increased bandwidth of the CIXCD should significantly reduce the
queueing at the host adapter, but one can expect the bottleneck to move to either the CI wire
itself or into the controllers (either for their CI ports or availability of buffer memory).

digital CONFIDENTIAL 3-7

Comparison of IBM and Digital Storage Architectures - 29-March-1990

3.3.2 Seek

Seek times are overlapped for both architectures. Seek profile comparisons of various work
loads between the two vendors are of interest at the device level rather than as an architectural
concern.

3.3.3 Rotational Positioning and Data Transfer

As with seek, rotational latency is of interest at the device level; however, the delay induced
by a lost revolution is an architectural concern. RPS miss is the loss of a device revolution
when a path to memory is not available.

3.3.3.1 Non-realtime Transfer

The realtime path for IBM is closer to the host than Digital's. Once the data is copied into
some buffer memory, RPS miss is replaced with communications latency and other queueing
delays. RPS miss in the Digital architecture is not as comprehensive as RPS miss in the IBM
architecture. The Digital I/O subsystem has more queueing delay points since the buffering
is further from the host. It can be argued that IBM RPS miss is equivalent to HSC RPS miss
plus the queueing delays at K.ci, the CI path, and the host adapter. Vail would have the same
delays; however, the CI path will become a bottleneck to the overall workload (with multiple
storage elements) before the Vail CI adapter will.

The IBM channel subsystem has the communications delay associated with each link in the
chain, plus the channel subsystem overhead and the storage director overhead. However,
other than cache implementations (covered later) there is no buffering of data anywhere in
the channel.

Digital's communications overhead is more complex than IBM's. The HSC server overhead
includes the cost of the MSCP to SDI interpretation, SDI overhead, and the transfer from
data memory to the CI. Queueing delays to the SDI interface and delays at the CI adapters
at both the host and HSC server should be added with RPS miss for a valid comparison with
IBM RPS miss. Vail eliminates the MSCP to SDI translation; however, the potential latency
between data memory and the CI port still exists. Although each Vail CI port is expected to
be capable of 6 to 12 MByte/sec, the CI path becomes a potential bottleneck with multiple
storage element configurations. .

3.3.3.2 RPS Miss Quantification

In the past, RPS miss was a very significant contributor to queueing time in the IBM I/O
subsystem. Each of the steps to multiplexer channels, to DLS, and to DLSE have been
primarily to reduce RPS miss. Appendix A displays the RPS miss quantifications for equivalent
32-actuator DLSE, HSC, KDM70, and Vail configurations. Uniform loading across actuators
is assumed. RPS miss for HSC is predominantly attributable to multiple drives sharing a single
K.sdi. KDM70 will only incur RPS miss when devices outnumber the two state machines.

The delay associated with RPS miss is determined by first finding the probability of an RPS
miss. Then the probability is used to calculate the expected number of misses (as a fraction)
per successful I/O. The RPS miss overhead is the product of expected misses and the time for
one rotation of the device.

3-8 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

3.3.3.2.1 IBM model

A DLSE four-channel set behaves like an M/M/4:j: [KLEI]. An Erlang-K distribution is used to
calculate the probability of all paths being busy when a reconnect is attempted.

Example 3-1: DlSE Four 3380 Strings
Given:

1. 23.5 rOs/second optimal for a 3380K AT 35msec Resp
time

2. 4096 blocksize
3. 3.0MB/S channel speed
4. 32 3380K actuators behind a 3990-M2 storage controller
5. Utilization of a single path using M/M/4:

Path Busy per SIO - (Path Util by Device / 4)
SingleUtil(SU) = --

(1 - (Path Util by Device / 4)
6. Probability that a device reconnecting will find all

four storage directors busy due to other devices
by Erlang-4:

32 * SU"4
P(4Busy) - --

(3 + (9 * SU) + (12 * SU"2) + (8 * SU"3)
7. RPS miss due to paths busy:

16.6msec * P(4Busy)
RPS = -------------------

1 - P(4Busy)
implies:
1. 781 lOs per second; 195.25 per path
2. Each path is 58.6% busy
3. Each device contributes 7.3% to path busy
4. Path service time is 3.0msec including channel to HOS

therefore,
P(4Busy) Probability of four directors busy = 25.9%
RPS miss = .0166 * .259 / 1 - .259 = 5.8 msec

3.3.3.2.2 Digital models

Each Digital product exhibits different RPS miss behaviour because buffering is done within
the II controller", and each controller has a different topology.

3.3.3.2.2.1 HSC

Quantifying RPS miss for Digital HSC-based systems requires two separate analysis points.

1. K.sdi

2. the data bus

RPS miss is only relevant between data memory and the device. The Example 3-2 calculates
the delays for a fully loaded HSC controller with RA90s. The assumption that all devices are
evenly loaded (to 44ms response) is done to provide a worst-case analysis. As demonstrated
the data bus is a non-issue, contributing less than 2 microseconds to aggregate delay. The
contention for K.sdi ports is significant, accounting for almost 5 milliseconds of delay.

:I: Kendall's notation

digital CONFIDENTIAL 3-9

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Example 3-2: HSC RPS miss

Fully Configured K.sdi

Given:
1. 38 requests/second max for RA90 for typical workload
2. 8 sectors/request for typical workload
3. 2.1MB/s sor max throughput
4. 4 RA90s on a K.sdi
5. RPS miss due to path delay

sum(other device utilization)
P(RPS miss) = -----------------------------
1 - utilization by this device

implies:
1. 304 sectors/second per RA90
2. 4300 sectors/second per K.sdi
3. each RA90 uses 7% of sor

therefore,
P(RPS miss) = .21/.93 = 22.6%
#misses/rO = .226/.784 = .288

aggregate delay:
.288 * 16.666 ••• = 4.80 msee

NOTE: 8-port
P(RPS miss) = .49/.93 = 53%
#misses/rO = .53/.47 = 1.13
===> K.sdi will not support 38 req/sec/device

Oata Bus Contention

Given:
1. 38 requests/second max for RA90 for typical workload
2. 8 sectors/request for typical workload
3. 4 RA90s on a K.sdi
4. 8 K.sdi's each with 4 RA90s
5. 3 concurrent transfers supported by data bus
6. P(RPS miSS) = P(4 concurrent transfers)

implies:
1. 1216 sectors/second per K.sdi
2. 13516 sectors/second on data bus (6.6MB/S)
3. each K.sdi uses 9% of data bus

therefore,
P(RPS miss) = SUM[(.09)Ai] for i in [4,8]
#misses/rO = .007/.993 = .00007

aggregate delay:
.00007 * 16.666 ••• = 1.1 usee

NOTE: 8-port K.sdi:
each K.sdi (can) use 18% of data bus
P(RPS miss) < (.18)A4+ •• +(.18)A8 = .1%
#misses/IO < .001
==> delay < 17.5usec

Total RPS delay

.007%

RPS delay = K.sdi contention + databus contention
= 4.8ms + 1.lus = 4.8ms

The following examples analyze an RA70 and an RA92. These examples demonstrate the
effect of device rotational speed upon the actual impact of RPS miss. Notice that the expected
number of misses is dependent upon workload rather than device.

3-10 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Example 3-3: HSC RPS with RA70

Fully Configured K.sdi

Given:
1. 38 requests/second max for RA70 for typical workload
2. 8 sectors/request for typical workload
3. 2.1MB/s SDr max throughput
4. 4 RA70s on a K.sdi
5. RPS miss due to path delay

sum(other device utilization)
P(RPS miss) = -----------------------------
1 - utilization by this device

implies:
1. 304 sectors/second per RA70
2. 4300 sectors/second per K.sdi
3. each RA70 uses 7% of SDr

therefore,
P(RPS miss) = .21/.93 = 22.6%
#misses/rO = .226/.784 = .288

aggregate delay:
.288 * 15.0 = 4.32 msec

Example 3-4: HSC RPS with RA92

Fully Configured K.sdi

Given:
1. 38 requests/second max for RA92 for typical workload
2. 8 sectors/request for typical workload
3. 2.1MB/S SDl max throughput
4. 4 RA92s on a K.sdi
5. RPS miss due to path delay

sum(other device utilization)
P(RPS miss) = ------~~---------------------
1 - utilization by this device

implies:
1. 304 sectors/second per RA92
2. 4300 sectors/second per K.sdi
3. each RA92 uses 7% of SDl

therefore,
P(RPS miss) = .21/.93 = 22.6%
#misses/lO = .226/.784 = .288

aggregate delay:
.288 * 17.62 ••• = 5.07 msec

K.sdi saturation can be analyzed by using the single server model in the Appendix A for RPS
miss by setting the expected number of misses per I/O to 1. It is interesting to observe the
effect of increasing from 4 ports to 8 ports on a K.sdi.

digitai CONFIDENTIAL 3-11

Comparison of IBM and Digital Storage Architectures - 29-March-1990

given: u = K.sdi utilization per device
x = probability of a miss
m = expected # misses per successful I/O

m = x/(I-x) = 1
==> x.= I-x ==> x = .5,

for 4-port K.sdi
==> 3u/(1-u) = .5
==> 3.5u = .5
==> u = 14.3% (307.5KB/S per device or 1230KB/S)

for 8-port K.sdi
==> 7u/(1-u) = .5
==> 7.5u = .5
==> u = 6.66% (143KB/s per device or 1144KB/S)
NOTE: saturates under 36 req/s with 4KB requests

To keep things in perspective, an HSC70 controller supporting 32 RA90s at 38 requests/second
would contribute approximately 4.8 milliseconds of RPS queueing delay at 1216 requests/second,
or 4.75MByte/sec. The HSC70 controller can currently only process 1150 request/second and
4.2MByte/sec. The P.io limits the request handling and K.d limits the data rate. 48 RA90s
on an HSC90 at 38 requests/ second per drive would be 1824 requests/ second and over 7
MBytes/sec overall. An HSC90 P.io is projected to decompose about 1400 requests/second
while the new K.d should support under 5 MBytes-the bottlenecks remain the same ..

3.3.3.2.2.2 KDM70

The internal bus does not contribute to RPS miss because its speed is greater than twice
the speed of SDI, and there are only two state machines to perform transfers. The KDM70
behaves like an M/M/2:t: queueing system [KLEI]. The probability of both state machines
being busy when a device is ready to reconnect follows an Erlang-K distribution, where K
equals 2. It analogous to IBM's DLS subsystems. To support 32 devices, 4 KDM70s are
necessary. In Example 3-5 the XMI has been ignored because each KDM70 can produce at
most 5.4MBytes/sec. Therefore, 4 KDM70s can support 21.6MBytes/sec on a 66MByte/sec
XMI bus.

:j: Kendall's notation

3-12 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Example 3-5: KDM70 RPS
given:
1. 30 requests/second per RA90
2. 8 sectors/second
3. 2.1MByte/s SDr max rate
4. 8 RA90s
5. 2 state machines
6. 16MByte/sec internal bus

implies:
1. 240 sectors/second per RA90
2. 4300 sectors/second per state machine
3. each r/o uses .186% of a state machine
4. each RA90 uses 5.58% of a state machine
5. each state machine is 22.3% utilized

6. Residual SM Busy is 22.3% - 2.76% -= 19.5%

therefore,
Residual utilization of a single state machine per device

Residual SM Busy - (SM Util by Device / 2)
SingleUtil(SU) = --

(1 - (SM util by Device / 2)

= (.195-.028)/.972 = .172

Probability that a device reconnecting will find all
both state machines busy due to other devices
by Erlang-2:

2 * SU"'2
P(2Busy) = --------- = 2*(.172)"'2/1.172 = .050

1 + SU

aggregate delay:
16.6msec * P(2Busy)

1 - P(2Busy)

3.3.3.2.2.3 Vail

16.6*.050/.950 • 877msec

Because of the bandwidth of the SEBB, the initial Vail offerings will significantly reduce RPS
miss. With the SEBB being 50MByte/sec and the CI being around 12MByte/sec, "there is ap
proximately a 25MByte/sec pad for RPS prevention over the CI bottleneck point. At one re
quest per revolution, four Cedars will provide a load (BKB per request) of 1920 sectors/second,
or 3% of the SEBB. Because the MOCHA chips actually have 2 sectors worth of buffering the
single path model has to modified slightly. The SEBB is a synchronous bus that provides for
bursts of up to B bytes. The overhead of 3 or 4 cycles per burst (depending upon write or read
to/from buffer memory) diminishes the usable bandwidth of the SEBB to about 30MByte/sec;
however, the MOCHA buffering implies that 32 consecutive arbitration rejections must occur
before the pipeline can fill and an actual RPS can occur. Assuming independent arbitration
attempts leads to taking .03 to a power of 32, leading to a negligible probability.

digital CONFIDENTIAL 3-13

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Example 3-6: SESS Contention

SEBB Contention

Given:
1. 38 requests/second per CEDAR/ASPEN
2. 8 sectors/request for typical workload
3. 30MB/s SEBB max throughput
4. 4 CEDAR/ASPEN on SEBB
5. P(RPS miss) on SEBB with MOCHA buffering

. sum(other device utilization)
p(arbitration reject) = -----------------------------

1 - utilization by this device

P(RPS miss) = P(arbitration reject)**32

implies:
1. 304 sectors/second per CEDAR/ASPEN
2. 61440 sectors/second on SEBB
3. each CEDAR/ASPEN uses .49% of SEBB

therefore,
P(RPS miss)

#misses/IO

(.010/.995)**32 = (.010)**32 - 0 for CEDAR
(.015/.995)**32 = (.016)**32 - 0 for ASPEN
0/.995 = 0 for both CEDAR/ASPEN

aggregate delay:
o * 16.666... O. usee for CEDAR
o * 11.111 ••• = o. usee for ASPEN

3.3.3.3 Cumulative Delays

A comparison of RPS miss is inadequate to compare the throughput potential between IBM
DLSE and the Digital I/O subsystems. Digital subsystems have additional queueing delays.
The cumulative delays for all subsystems are plotted in Appendix B.

3.3.3.3.1 HSC

The RPS miss asymptote for an HSC controller is around 4000 requests per second. An
HSC70 P.io cannot process more than 1150 requests per second, nor can the K.ci transfer
more than 4.2 Megabytes per second. For the sake of simplicity the delays for both are
modelled as M/M/1 queueing systems in Example 3-7.

M/M/1 queueing model queueing time formula:

W q = ,\ I (1-£(1-£ -).))

where
W q = queueing time
,\ = arrival rate
1-£ = service rate

3-14. digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Example 3-7: HSC Cumulative Delay

K.SO! miss

Given:
1. 30 requests/second max for RA90 for typical workload
2. 8 sectors/request for typical workload
3. 2.1MB/S SO! max throughput
4. 4 RA90s on a K.sdi
5. P(RPS miss) sum(other device utilization)

1 - utilization by this device

implies:
1. 240 sectors/second per RA90
2. 4300 sectors/second per K.sdi
3. each RA90 uses 5.6% of SO!

therefore,
P(RPS miss) = .168/.944
#misses/!O = .178/.822

aggregate delay:

17.8%
.216

.216 * 16.666 •.. = 3.60 msee

OATABUS miss:
Given:
1. 30 requests/second max for RA90 for typical workload
2. 8 sectors/request for typical workload
3. 4 RA90s on a K.sdi
4. 8 K.sdi's each with 4 RA90s
5. 3 concurrent transfers supported by data bus
6. P(RPS miss) = P(4 concurrent transfers)

implies:
1. 960 sectors/second per K~sdi
2. 13516 sectors/second on data bus (6.6MB/S)
3. each K.sdi uses 7.1% of data bus

therefore,
P(RPS miss) = SUM[(.071)~i] for i in [4,8]
#misses/IO = .000025/.999975 = .000025

aggregate delay:
.000025 * 16.666 ••• = .42 usee

TOTAL miss:

3.6msec

P.io Queueing Oelay

1. A 960 reql sec
2. p. 1150 req/sec

.0025%

W q = A 1 (p.(p.- A» = 960/(1150(1150-960» = .0044sec

K.ci Queueing Delay

1. A = 7680 sectors/sec
2. p. = 8602 sectors/sec

W q = A 1 (p.(p.- A» = 7680/(8602(8602-7680» = .00097sec

digital CONFIDENTIAL 3-15

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Total Delay = RPS miss + p.io queueing + K.ci queueing
= 3.6 + 4.4 +.97 = 8.91 msec delay

Consider that an HSC90 P.io will handle about 1400 requests/second and the K.ci will support
about 5 MBytes/ second, the P.io queueing becomes 1.56msec; and K. ci queueing reduces
to 293usec. Since the RPS miss remains the same (for the given configuration), the total
cumulative delay would reduce to 4.85msec.

3.3.3.3.2 KDM70

Both the XMI interconnect and the internal KDM70 bus are fast enough that no queueing
delays can occur for either bus. However, queueing delays do occur at the processor. A
M/M/1 t is used for simplicity. Again, there is no additional delay at the XMI bus with 4
KDM70s.

Example 3-8: KDM70 Cumulative Delay
given:
1. 30 requests/second per RA90
2. 8 sectors/second
3. 2.1MByte/s SDl max rate
4. 8 RA90s
5. 2 state machines
6. 16MByte/sec internal bus

implies:
1. 240 sectors/second per RA90
2. 4300 sectors/second per state machine
3. each I/O uses .186% of a state machine
4. each RA90 uses 5.58% of a state machine
5. each state machine is 22.3% utilized
6. Residual SM Busy is 22.3% - 2.76% -= 19.5%

therefore,
Residual utilization of a single state machine per device

Residual SM Busy - (SM Util by Device / 2)
SingleUtil(SU) = --

(1 - (SM Util by Device / 2)

= (.195-.028)/.972 = .172

Probability that a device reconnecting will find all
both state machines busy due to other devices
by Erlang-2:

2 * SUA2
P(2Busy) - --------- = 2*(.172)A2/1.172 = .050

1 + SU

aggregate delay:
16.6msec * P(2Busy)

1 - P(2Busy)

P.mscp Queueing Delay

1. A = 240 req/sec
2. J1. = 700 req/sec

16.6*.050/.950

Example 3-8 Cont'd on next page

t Kendall's notation

3-16 digital CONFIDENTIAL

• 811msec

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Example 3-8 (Cont.): KDM70 Cumulative D~lay
. W q =). 1 (f.L(f.L-).» = .240/(700(700':240» = .75msec

Total Delay = RPS miss + p.mscp queueing
= .877 + .75 = 1.63 msec delay

A KDM70 solution significantly reduces cumulative delay over an HSC solution. The XMI
bus is much faster than the CI interconnect. RPS miss is reduced by the II floating channels"
of having state machines. Four KDM70s have less queueing delay at the processor than a
single HSC .p .io.

3.3.3.3.3 Vail

Example 3-9 shows the delays associated with 8 storage elements with 4 Cedar HDAs each.
The CI delay can either be in the adapter or in the CI paths. For Example 3-9 the load is light
enough that the queueing occurs in the adapter. Workloads with a high enough data rate will
experience queueing in the CI paths.

Example 3-9: .Vail Cumulative Delay

SEBB Contention

Given:
1. 38 requests/second per CEDAR/ASPEN
2. 8 sectors/request for typical workload
3. 30MB/S SEBB max throughput
4. 4 CEDAR/ASPEN on SEBB
5. P(RPS miss) on SEBB with MOCHA buffering

sum(other device utilization)
P(arbitration reject) = -----------------------------

1 - utilization by this device

P(RPS miss) = P(arbitration reject)**32

implies:
1. 304 sectors/second per CEDAR/ASPEN
2. 61440 sectors/second on SEBB
3. each CEDAR/ASPEN uses .49% of SEBB

therefore,
P(RPS miss) = (.010/.995)**32 = (.010)**32 - 0 for CEDAR

= (.015/.995)**32 = (.016)**32 - 0 for ASPEN
#misses/IO = 0/.995 = 0 for both CEDAR/ASPEN

aggregate delay:
o * 16.666 ••• = O. usee for CEDAR
o * 11.111 ••• = O. usee for ASPEN

CI Adapter Delay

1.). = 1216 sectorslsec
2. f.L = 24576 sectors/sec (12MB/sec)

W q =). / (f.L(f.L- A» = 1216/(24576(24576-1216) = 2.1usec

Example 3-9 Cont'd on next page

digital CONFIDENTIAL 3-17

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Example 3-9 (Cont.): Vail Cumulative Delay

CI Path Delay

1. A = 1216 sectors/sec
2. J.l' = 2448 sectors/sec (1.5MB/sec)

W q = A 1 (J.l(J.l- A» = 12161(2448(2448-1216) = 403usec

p.mscp Queueing Delay

1. A = 152 req/sec
2. J.l = 700 reqlsec

W q = A 1 (J.l(J.l- A» = 152/(700(700-152)) = .40msec

Total Delay = RPS miss + CI adapter queueing + p.mscp queueing
= O. + .0021 + .4 = .402 msec delay for CEDAR
= O. + .0021 + .4 = .402 msec delay for ASPEN

Overall, Vail appears to reduce RPS miss by the speed of the SEBB. It also improves MSCP
interpretation queueing times by increasing the number of processors for a given number of
HDA over the HSC server. Although the Vail CI adapter is to be capable of approximately
12MByte/sec, the number of storage elements on the CI becomes a divisor of the overall CI
bandwidth. This means that a configuration with eight storage elements will reduce the usable
bandwidth for a single storage element to approximately 1.5MByte/sec, assuming balanced
loading. The CI now becomes the potential bottleneck. Multiple CIs allows configuration
flexibility to alleviate this bottleneck by spreading storage elements across base nodes. There
are packaging issues to consider ..

3.3.4 Post Processing

One of the weaknesses in the IBM I/O architecture has been the processing of simultaneous
interrupts from multiple devices. The IBM/370 architecture only defines a single cell for an I/O
termination interrupt. Interrupts are serialized until appropriate addressabillity is established
in the interrupt handler to save current context. This can require multiple intermediate context
saves before a subsequent interrupt can occur. .

The multiple stacks of the VAX architecture greatly simplify the handling of simultaneous
interrupts. The use of IPLs for serializing segments of interrupt processing facilitates interrupt
handling (via forking) and reduces overhead. IPLs use firmware to effect system' I processes"
as opposed to using software simulation like IBM must.

Although the VAX provides an advantage in the handling of simultaneous interrupts, VMS
SMP has a disadvantage in post processing as opposed to MVS. MVS uses II prefixing"
to allow post processing to occur on any processor. The only limitations are the actual
physical connections imposed by the configuration. In VMS SMP post processing is forced
to processor affinity to a II control processor" -based upon the adapter port. The II control
processor" can become a bottleneck to an I/ 0 intensive workload.

3-18 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

3.4 Characteristic Workload Differences

Configuration and workload essentially dictate the performance of a computer system. Sys
tem architecture not only defines potential configurations, but it also leads to certain char
acteristics of the workloads that systems built upon the architecture will process. More pre
cisely, the initial implementations of an architecture dictate characteristics such as request
sizes. Smaller request sizes presented to the I/O subsystem implies an increase in access time
delay (latency) for an equivalent amount of data. There are three components of current IBM
systems that generally reduce request rate to provide the data needed to satisfy a CPU's "I/O
appetite" :

1. Disk Data Format

2. Caching

3. Expanded Storage

In referring to the graphs in the appendices, it is important to remember that IBM workloads
will typically present significantly fewer I/O requests per second to the I/O subsystem than a
Digital workload will present to the Digital subsystem. The result is that IBM can satisfy the
I/O appetite of a faster CPU with less inherent delay.

3.4.1 Request Rate versus Data Rate

Data rate is the amount of data that is made available to the CPU (via the I/O subsystem)
for processing. Amdahl's law states that the required data rate is (roughly) proportional the
power of the CPU. There is no equivalent law that ties CPU power to request rate. CPU
utility implies processing of raw data, not I/O requests. Providing a given amount of data via
more (smaller) I/O requests has the following effects:

• Increase in aggregate access time delays to random storage devices

• Increase in context switching in CPU

Increasing aggregate access time delays leads to poorer single threaded performance. It also
diminishes path utilization. Although diminished path utilization decreases path delays, the
aggregate access time delays are more significant - until path saturation is reached. Access
time delays are typically on the order of 20ms (12ms seek and Bms rotational latency). As
can be seen from Appendix B, path delays are less than half of this figure until near path
saturation.

A workload with more, smaller I/O requests inherently cause more context switching because
more 110 termination i~terrupts occur. There are actually three reductions in CPU utility
caused by increased overhead for I/O processing:

1. I/O initiation service call handling

2. Context switching overhead

3. I/O posting overhead

digital CONFIDENTIAL 3-19

Comparison of IBM and Digital Storage Architectures· 29-March-1990

3.4.1.1 Bandwidth

Transmission of smaller amounts of data can decrease the usable bandwidth of a path. The
IBM channel is less prone to this effect than Digital's CI because the IBM channel interface
is point-to-point. Digital's CI can experience a significant reduction in bandwidth due to the
increase in arbitration time slots to transmit an equivalent amount of data. For example,
a 3Kbyte transfer between a host with a CI780 and an HSC with a 512byte K.ci requires 6
data packets to be transferred. The same transfer between a V AX9000 with an XCD and an
HSC with a 4Kbyte K.ci can be done with one data packet. The former requires 5 additional
"handshake" packets as well as arbitration for 5 additional data packets. Therefore, the
decrease in usable bandwidth by smaller transfers is 10 arbitration times and the transmission
time for 5 "handshake" packets.

3.4.2 Disk Data Format

The count-key-data format of IBM devices has historically forced users to be aware of the
effects of block sizes upon performance as well as capacity utilization .. With the current 3380
devices, typical block sizes are on the order of 22Kbytes. 3390 will increase this to more
like 25Kbytes per block. Ignoring arguments about user-friendliness, the consequence of this
awareness is that sequential access streams for an IBM workload will be on the order of
22Kbytes per request. This does not mean that the average MVS installation uses 22-25Kbyte
blocksizes, both database and VSAM organizations are optimally blocked at 4Kbytes. Digital
workloads have been measured to typically have request sizes averaging between 4Kbytes
and 8Kbytes. This means that Digital workloads may exhibit nearly three times the. request
rate of an IBM workload in order to provide the same amount of data to the CPU.

3.4.3 Caching

Caching further reduces the request rate seen by the I/O subsystem. In general, any cache
hit eliminates a physical I/O request. However, pre-fetching data in larger chunks than origi
nally requested can also reduce request rates to the external subsystem for sequential access
streams.

3.4.4 Expanded Storage

IBM's expanded storage introduces a whole new level in their storage hierarchy, between
main memory and controller caches. Main memory is accessed synchronously (at a hardware
level) by the CPU. Controller cache memory is accessed asynchronously by the I/O (software)
subsystem. Expanded storage is accessed synchronously by the software subsystem. That is,
filling main memory from expanded storage occurs in less time than a context switch, so the
operating system does not remove the currently executing process while the data movement
transpires. The results are improved single-threaded performance and a reduction in context
switches.

Digital can use VAX. main memory to compete with expanded storage - for now . VAX memory
and 3090 implementations of expanded storage are both limited to 2gigabytes. Global sections
actually allow better performance than expanded storage, but expanded storage implementa
tions can grow to 16Terabytes. Entire databases may be loaded into expanded storage in the
future (by HSM, for example). Overall performance may be dramatically reduced by virtually
eliminating access delays imposed by rotating media.

3-20 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures· 29-March-1990

3.5 Caching

Caching is a technique that gives the appearance ofa large, fast memory from the combination
of a small, fast memory and a slower, large memory. Data migrates to and from the small,
fast memory to take advantage of frequent access. For storage caches, the slower memory is
typically a rotating device such as a disk, while the cache memory is RAM. Finding data in
the cache that coincides with a request is referred as a cache hit.

There are two perspectives when analyzing the effects of caching on the I/O subsystem. From
the device perspective caching tends to lower the request rate, thereby decreasing the overall
response time of the devices by reducing queueing time. From the system perspective the
request rate throughput increases because the service time from cache is significantly less than
that of the devices.

Although caching impacts performance, the impact is not architectural. The effect of imple
menting a cache can be approximated by reducing the request rate of a given workload to
that of cache misses only.

3.5.1 Principles

The basic premise under which cache works is that data has a locality of reference, just
as instruction locality of reference works for CPU caches. Locality may be either spatial or
temporal. Spatial locality assumes that there is high probability that related records are located
nearby. Temporal locality is the premise that a record will be used again in the near future.

Caches are classified by the handling of writes. Caches that send completion notices before
writing the data to the physical media usually out perform those that only capitalize upon the
presence of read data.

3.5.1.1 Read Policies

Readahead refers to reading more data than requested based upon spatial locality. Replace
ment is not directly affected by this policy.

Prefetch is the reading of anticipated data for sequential and random access patterns. The
immediately requested data is not loaded into the cache once the data is sent because the cache
assumes that the data will not be read again. Sequential algorithms dictate that following
blocks will be needed and are staged into the cache; random algorithms specify that the next
likely block required will be either the preceding or following data. With sequential access
prefetched blocks are released once requested since the record will not be needed again;
random access maintains the data in the cache under a least recently used purge algorithm.

3.5.1.2 Write Policies

A cache can handle writes in a numbered of ways. The simplest action for a cache is to ignore
the write other than to invalidate an entry for the block if it is present. This is referred to as
"writethrough" cache without write allocation. The writethrough cache could be extended to
include write allocation, but the cache update must occur after the write to physical media.

The next alternative write policy is " write-behind" or II fast write". Response time is improved
for writes by considering the cache itself to be the destination for the data and returning an
I/O completion. The write to the physical media is performed according to some subsequent
scheduling algorithm that attempts not to impede read requests but optimize write ordering.
Making the cache nonvolatile is imperative.

digital CONFIDENTIAL 3-21

Comparison of IBM and Digital Storage Architectures - 29-March-1990

"Writeback" caching goes one step beyond write-behind caching by trying to completely elim
inate some write requests. The theory behind this cache policy is that data once written may
again be written soon, thus avoiding the first write to physical media as unnecessary. How
ever, when a reallocation of a block has not been written to physical media, the subsequent
operation must wait for the" dirty" write to complete.

3.5.1.3 Replacement

The first choice of any cache placement should be to utilize blocks that are considered free.
Sequential access recognition and write invalidation provide means by which a free list of
blocks might be retained.

The main replacement strategies are sequential and least recently used (LRU). They both apply
to read replacements. The sequential strategy relies on identification of a sequential access
stream to purge blocks for reuse as they are read from the cache. LRU works under the
assumption of temporal locality . Blocks are taken from an LRU list only when necessary for
a new allocation.

Writes affect replacement by either invalidation or allocation. Write invalidation occurs for
a write hit when cache is not filled by write data. Such a strategy only makes sense for
a writethrough cache. Write allocation can be applied to writethrough, write-behind, or
writeback cache. When write allocation with writethrough caching is used, a source of free
blocks is eliminated, but the tradeoff is the probability of use of written data in the future by
reads.

3.5.2 IBM

A host software cache was not as feasible as controller cache for IBM because of the ar
chitectural limit on host central memory. ESA's implementation of expanded storage is in
essence a host cache allocated through supervisor services. The current implementation of
central storage on an IBM 3090-6005 tops out at 512 megabytes with an additional 2 giga
bytes attachable through expanded storage. The 3090 limit on central storage is 2 gigabytes;
for expanded storage it is 16 terabytes. The limitation of expanded storage is physical, not
architectural. Expanded storage looks like any other storage device; however, the path be
tween expanded storage and central storage is so fast that the data movement is faster than
the path for the operating system software to perform a conteXt switch' to another process.
As a consequence, 110 to/from expanded storage is performed synchronously, without any
CPU rescheduling being performed. From a physical perspective, 1/0 with expanded storage
differs from disk 110 in that expanded storage is contained within the processor complex as
opposed to a disk which is disjoint from the processor.

3.5.2.1 Controller Cache

IBM offered cache in the past with the 3880-M13/M23 storage controllers; the current cache
product is the 3990-M3. Cache sizes for this controller are 32, 64, 128 or 256 megabytes.
This cache controller is segmented in 16Kbyte areas and supports up to eight concurrent
operations. The 3990-M3 uses the LRU algorithm for management of cache segments.

3-22 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

3.5.3 Digital

Today Digital does not have a cache product offering on the market. For the last 2 years,
engineering has been evolving a multilevel caching strategy.

Qualitatively, caching is more effective when it is closer to where its data will be used. Thus,
keeping the cache in the host prim,ary memory has the least latency. The tradeoff is system
memory and CPU cycles. With the high architectural limit on primary memory for the VAX,
a host memory cache is feasible. It is unclear whether CPU cycles that are used to perform
the cache move would not sit idle waiting for an actual I/O operation.

3.5.3.1 Host Software Cache

Host caching of shared data across systems must update all participating systems within a
V AXcluster .. The update notifications add latency to the operation and consume CI band
width. As yet the effects of the update notifications have not been quantified against real
workloads.

3.5.3.2 HSC cache

The HSC 32MByte cache will be Digital's first implementation of controller-based cache. Initial
implementation will be a writethrough cache. "Fast write" is being implemented indepen
dently of the cache. It will require two physical writes to the device. The first write will go
to a reserved surface and written at the first possible sector. A log will be kept in a RAM on
the device. The host end notification is then sent, followed by scheduling of the actual target
write (complete with seek and rotational delay). The data is retained on the special surface
for recovery in case of fail over. Once the target write is complete the log entry is cleared.
The cost of this technique is'one full surface of capacity and (normally) the latency of a head
switch for the "fast write".

3.5.3.3 Vail Cache

Figure 2-13 shows the design of the Vail cache. The cache is composed of two separate
memories: the buffer memory and the CMM. All data flows in and out of buffer memory,
between the MOCHAs and the CI port. Only write data flows into CMM memory; however,
subsequent reads to blocks already in the CMM are satisfied from the CMM memory. Since
only one path between the HDAs and the cache memories exist, writeback or write-behind
cache is fairly straight forward. Just as criticality of data memory in the HSC can dictate the
need for cache memory to support "fast write", intensity of Vail buffer memory can dictate
a 114_step method" of write caching. The 4-step method frees buffer memory while queueing
or a seek transpires. The additional movement to refill the data from CMM memory may be
well worthwhile.

3.6 Conclusions

The introduction of multiple CI support significantly improves Digital's competitive position
for both capacity and number of devices.

Although DLSE greatly reduces RPS miss overhead, HSC-based V AXclusters suffer less RPS
delay than DLSE for workloads over 600 requests/second. Since typical workloads for each
subsystem are less than 400 requestl second, DLSE in fact incurs less RPS delay than HSC
based subsystems. The weakness in the HSC controller is the single path through the K.sdi.
The bandwidth of the Vail SEBB virtually eliminates RPS.

digital CONFIDENTIAL 3-23

Comparison of IBM and Digital Storage Architectures· 29-March-1990

I,

When cumulative delays are considered, the HSC server has about the same asymptote as
. DLSE. DLSE has less delay in the region exhibited by most workloads. The bandwidth of the

SEBB allows Vail to perform very similarly to DLSE below 400 requests/second and outper
form it above that point. The increased CI port bandwidth and additional MSCP interpreter
processors enable Vail to surpass DLSE's asymptote.

The VAX architecture has an advantage over the IBM systems' ability to process simultaneous
I/O termination interrupts. However, each processor's actual overhead must be considered,
as well as the software handling in making valid comparisons.

IBM's I/O architecture has addressed the routing problems of multiple point-to-point paths
from a single system. They have offered a shared controller to implement a loose coupling
solution. Digital has addressed loose coupling by V AXclusters, which implement global lock
management and a communications architecture. We have not yet addressed the problem
imposed by a monolithic (or tightly coupled) system that produces a demand that exceeds the
capacity of a single channel.

The multilevel cache strategy of VCC and HSC cache will finally fill a gap. Although the HSC
"fast write" incurs a head switch time over the ideal nonvolatile RAM implementation, it
answers a competitive need.

Host memory for Global Sections can compete with Expanded Storage to a degree; however,
using VAX memory cannot compare with the size of a 16 terabyte expanded storage for
reducing page fault waits. IBM can load images or data into expanded storage and service
page faults (from expanded storage) faster than the required processing to perform a context
switch to another process.

A limitation with VMS SMP has come to light. It appears that processor affinity exists for the
VMS fork dispatcher. The net effect is that all I/O completion processing occurs on a single
CPU within a tightly-coupled system, making VMS a hybrid SMP with a II control processor" .
It would be unreasonable to expect a truly pure SMP. There are points where pure SMP can
actually degrade performance over a compromise AP system, but this is NOT such a case. An
I/O intensive workload can easily create a bottleneck in the II control processor" with three
or more CPUs. IBM's MVS uses "prefixing" to avoid the problem. We have a competitive
exposure.

3.6.1 Digita/1I0 Competitive Weaknesses

Although Digital has some advantages in the I/O subsystem, as V AX9000 and future systems
deemphasize V AXclusters, there are both short term and long term weaknesses as compared
to IBM's I/O subsystem. The short term weaknesses have mostly been addressed:

1. The lack of caching products.

2. Limitations in the single host CI port as opposed to multiple IBM channels for I/O exten-
sibility.

3. Processor affinity of the VMS fork dispatcher.

The numerous caching products in development will address the first issue. The introduction
of the V AX9000 has addressed the second issue. The third issue is a VMS issue.

There are some long term weaknesses that are not currently being addressed:

1. The requirement for higher requests rates for same amount of data transfer.

3-24 digital CONFIDENTIAL

Comparison of IBM and Digital Storage Architectures - 29-March-1990

2. No long term answer to expanded storage.

The introduction of caching products should bring the the request rates down toward that of
IBM's subsystems; however, higJ.1er request rates are inherent in Digital workloads because of
smaller request sizes. The introduction of expanded storage has further reduced the requests
rates to the IBM subsystem. Although utilizing VAX main memory (via global sections) effects
a similar reduction in I/O requests, the 16 terabyte limit of expanded storage offers solutions
not available through the use of global sections.

digital CONFIDENTIAL 3-25

APPENDIX A

RPS QUANTIFICATION

The following graphs demonstrate the architectural delays for the key products of IBM and
Digital.

Figure A-1: RPS Miss

IBM/DEC STORAGE PERFORMANCE
Low-End Calculated RPS Miss (360ORPM)

~ 2.00Tr=~~~===!;-----;-----;-----;-----7:-,~/--~~---;
(0 BIBI VAIL ~'

~ HSC /'1
Q) 1-••• ---1 KDM70 ,/' :
Q 1. 50 IBM DLSE --~------------+-----------~------------~~:---------~------- ----~------------

t I I /1 I I
I I I ... ' I I I

~ ::: ,,/: : :
'0 ;; ,;,,/' ; i ;
= 1. 00 ------------ -----------+-----------+-::.7<.-::':--+-----------+---------- -:------------+------------o ,V", I I

I ,'1 I' I U : /' : :: :
Q) i /'/ i i: i
,,, .J' I I I

III O. 50 --·--··-·····:---·-::;:;~-i···----···---i·--·-·······-i.--.. ---. --··-··-····i··-····-····
:,,/': :: :

..A I I I
" I I I ,

" I I I I
,'1 I I I

,,": : ~t.:...+-= ·T-= .. -::t.:
O~----¥---~~~--+-----~----+=~==~~~~~~

o 100 200 300 400 500 600 700 800

Request Per Second

Figure A-1 Cont'd on next page

RPS Quantification A-1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure A-1 (Cont.): RPS Miss

IBM/DEC STORAGE PERFORMANCE
High-End Calculated RPS Miss (3600RPM)

~ 1.00~~======~-;-----.----~~----;-----;------;--~,-,
ro E lEI VAIL !
,., HSC f : :::: i
OJ 0.80 KDM70 --+----------- :------------+-----------+------------~------------~-- ---r-----
Q . IBM DLSE : : : : : : / , , , , , 'I

~ o. 60 ············,···········T········· L _ _ +. ~
] 0.40 ···········-1-···········r········· ·r···········r···········r············!········· ···r············
~ 0.20 ···········T··········t···· ····t·······f········-7

..... ···T··········r··········
~ O~--~~~~~~----~--~----~--~~~

o 500 1000 1500 2000 2500 3000 3500 4000

Request Per Second

Figure A-1 Cont'd on next page

A-2 RPS Quantification

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure A-1 (Cont.): RPS Miss

~

'C
C 1. 00
o
u
Q)

IIJ 0.50

IBM/DEC STORAGE PERFORMANCE
Low-End Calculated RPS Miss

100 200 300 400 500 600

Request Per Second

Figure A-1 Cont'd on next page

700 BOO

RPS Quantification A-3

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure A-1 (Cent.): RPS Miss

IBM/DEC STORAGE PERFORMANCE
High-End Calculated RPS Miss

A 1. 00 . ,
(0 5!E! VAIL 11
~ RA70 ii
Q) 0.80 RA90 --------+-----------+-----------+------------j------------+-----------+--- .:~L __ _
Q RA92:::::: .1/

1 ~ i 1 ~ 1 ,/ I

~ O. 60 ------- -----~------------~------------~------------~------------+------------~------------:/ ~--------

~ iii iii ... <
~ o. 40 ············1············r···········r···········r···········r············r··;;' . ··r············
~ 0.20 ············,············r·········t·········t········ ... ~ . ····r·········r·········
0: o

o 500 1000 1500 2000 2500 3000 3500 4000

Request Per Second

Figure A-1 Cent'd on next page

A-4 RPS Quantification

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure A-1 (Cont.): RPS Miss

IBM/DEC STORAGE PERFORMANCE
low-End Calculated RPS Miss

~ 2.00Tr=~~~~==~----~----~------~--~~----~~--~
~ V ,., ,,':
~: Il
Q 1. 50 .-- ---- ----- ~-- .. -.. ------- ~-- ... ---------~---. ------ -... ~------------ .. ~-- -------.-~---- -.... , .. :---~-- --- --- .. _--

I I I I I I'"

: : : : : : ,.' :
~ l l l l . l / l
'0 :::: : ... :
,. l l l l . . .r l
100 1. 00 : : : : ····:··········.~.:·:·············f············

o iii i i .,/ i 1 u ::::: ': :
~ ' . .
rtJ O. 50 : ·········i··· : ··i······~7·:r····· ······i·············i·············
rtJ
0.

"
i 1 ;.·············t······· i i !

O+-~~~~~~~---+----~------r-----+-----;-----~

o 100 200 300 400 500 600 700 BOO

Request Per Second

Figure A-1 Cont'd on next page

RPS Quantification A-5

Comparison of IBM and Digital Storage Architectures - 29-March-1990

Figure A-1 (Cent.): RPS Miss

IBM/DEC STORAGE PERFORMANCE
High-End Calculated RPS Miss

~ 1.00~~~======~-.-----:--------~---------;---------;-------;---------,
(0
r-l
~ O. 80 '-L...----------------~T--------------I···(·· ·····J··········i············t············(········+··
~ '0 0.60 ,.
ill

o
U
~
II)

0.40

0.20

i in! iii --_ ... -- -... -~- -- --- -- ~-.......... -_ -r-:-"'''''''''' -- -_ -:--- _ --- ... --~ -_ ... -- -~ --- -- -~ -- --

~ 1 ill ~ 1 i
: : i: : : : :
: : J: : : : :

... -- -_ ... --_ --:- --_ -- --- ... ~ ... _... ... --_ ... -~ --:- -_ ... --- -- -:--- -- -_ ---: .. -- -_ ... ----- --:- -- ... -- -:- -_
; ~ l ~ 1 l 1 1
: : /: : : : :
• I t I I I I I ... ____ ... ______ .! ______ ____ ~ __ ... _i __! ... __ _ __ ..! __ ... __ ... _______ :. _____ ... __ ... ___ ~ ___ .. ____ _~ ___ ... __ ___ ...
I , I I I I I

: : ,,': : : : :
; .J(~~ iii i i

O~~~~~~--r------r----~------+------r----~~--~
o 500 1000 1500 2000 2500 3000 3500 4000

Request Per Second

A-6 RPS Quantification

APPENDIX B

CUMULATIVE DELAY QUANTIFICATION

The following graphs display the overall architectural delays due to RPS miss and additional
queueing.

Figure B-1: Total Path Delays

IBM/DEC STORAGE PERFORMANCE
Low-End Cumulative Path Delay (3600RPM)

~ 4.00~~~~==~~----.;-~r-~. ----------~----------_.
~ • • 5. VAl L ,; i I .r
~ 3.50 HSC ---!--------7~-------- -------1-------------------------+-------------------- -l(--
Q) • ••••••• I KDM70 i;' i i ./
Q 3.00 - IBM DLSE --+----/~----·-·-- --------+------------------------+·---·-----------t!-------

i / i i /' I

~ 2 50 -- ---- --- -------- ---. ----~-../------ ---. - -- ---. ---- -:- -. ----- -- --- ------ --- --. -~ ----. ----v!: ---- .. /..---
'0 . :; i i .r'" ,/

I: : : ,r ~"
~ 2. 00 -- ------- ---- ---- ------1- -:- -. --. ----- -- ------- ---- -:-- --- -- ------ ------ -----. -:- -~'~ --- -----I- -- -- -- -- ----

O / : : .f.... ~~
/ i i r·r i ~ ~~

U 1. 50 -- .---------------.1-------;-----.-- --. ------------.-;----- ------------:r"----.-;...,,~.---------------------
Q) //: : ~.r.r·r ",,"":

/: : .,..,-' .. -" : V) 1. 00 -- ----------7' ------------i---- .------ -- .-----------:-:;;r'-;.-.. if1'Jl-----------i---------------·----------
// : r,-",.. :

~_. I •••• r .. s -~ :
~ O. 50 -.. --. --~·---·-·----·~;;'liv'ii'iiT·a. .. ------·-T----·-·-·---------·----·T·---·---------.--.-------
a: 0 -_... i : :

o 500 1000 1500 2000

Request Per Second

Figure B-1 Cont'd on next page

Cumulative Delay Quantification 8-1

Comparison of IBM and Digital Storage Architectures· 29-March-1990

Figure 8-1 (Cont.): Total Path Delays

IBM/DEC STORAGE PERFORMANCE
High-End Cumulative Path Delay (3600RPM)

~ 1.60Tr=~~~==~--------;,7,---r----;---------~------~~
(0 EIEI VAIL :! , , .
~ 1.40 HSC ------------------ti------ ------------~--------------------:---------------:-----
Q) KDM70 11 1 1 !
Q 1. 20 IBM DLSE ------------------f:.----- ------------+------------------+-------------,!-----r

1'-------;,--' 1 : : !!

~ 1. 00
'C
= 0.80 o
U
Q)

I/i

0.60

0.40

Vl 0.20

: f : : I.'
------- -- ---- -- -- -- -1----- ------------ --1: --------- ----- -----r -: ---------- ----- -- -r ------------t-- ~i--

: ,I: : : i I,.'
........... -- ---- -- ---- .. t- .. --- --- -- --- --_ .. -r -t.. --- -:- .. _ ~ .. --- .. -_ .. --- ... -- ---~- -_ ---- --~;- .. -_

1 / : 1 i l' ____________________ ~ ______________ L _ __ • ____________________ ~ ____________________ ~ _______ -,1- _______ _
1 i ; ~ ,~~I

.. -- ---- -- -_ --_ i- ... --- _..... ...- ... -- t --- .. --- -_ .. -- t _ .. ---- .. _ .. -_ .. -- -;v."':.0~--- -_ -----: .: : ~"II'
I : : .. ~ ... ;;:.,."':

0.
0:

-- -_ .. ---r-""'" -- --:-;~:r.-.;.:. .. ~;.- ---- -r- -_ .. ----- --- .. -_
o~~~~~~~'~~=·Jl------Li -----J

o 500 1000 1500 2000 2500

Request Per Second

B-2 Cumulative Delay Quantification

APPENDIX C

SYSTEM TOPOLOGY

The two companies have designed their respective I/O subsystems for different environments.
IBM has used an open-ended I/O architecture capable of supporting an indeterminantly pow
erful system. Digital has designed an I/O subsystem to satisfy requests from multiple systems
of bounded I/O appetite. IBM's environment has grown out of an architectural philosophy
which focuses on many servers that reduce, if not eliminate, queuing.

C.1 Monolithic Processing

Monolithic processing refers to a system with a single CPU, memory, and I/O subsystem.
This is the type of system from which IBM has derived its current architecture.

C.2 Coupling

Processor coupling refers to memory sharing. Tight coupling means that multiple processors
share primary memory. Loose coupling implies that the processors share secondary storage.
In the abstract, loose coupling is different from a network because a network is a collection
of systems that share the communications medium rather than any real storage medium.

C.2.1 Tight Coupling

The term tight coupling refers to the sharing of main memory by multiple CPUs.

System Topology C-1

Comparison of IBM and Digital Storage Architectures - 29-March-1990

C.2.2 Loose Coupling

Loose coupling is the sharing of secondary storage among a number of systems. An interlock
technique similar to the shared memory variables used by symmetric multiprocessing must be
used to avoid data corruption and deadlock. There are two basic topologies to effect loose
coupling. The sharing systems must obey the necessary rules of utilizing interlocks to prevent
deadlocks and data corruption.

The simpler topology employs a single external point among the participating systems that
performs the primitive interlock functions upon request. IBM shared DASD is example of
this topology where a shared controller is used. Software protection against deadlock is
incomplete and requires operations management of applications.

Figure C-2: Loose Coupling

cpu cpu

Sys1 m 1 Sys1 m 2

Primary Memory Primary Memory

Secondary Storage

V AXclusters represent the other form of loose coupling where there is adequate software
support to prevent deadlocks and data corruption. V AXclusters employ a II partitioned" .
approach; each system in the V AXcluster performs the primitive interlock functions. The
V AXcluster software relies on the the VMS Lock Manager to provide the primitive interlock
functions. The Lock Manager itself is more robust than most designs in that it is a general
resource function as opposed to a file system-specific function.

System Topology C-3

· Bibliography

Digital SOURCES

[ARCH71] Bell, Newell, Computer Structures: Readings and Examples, McGraw-Hill, 1971

[CIS1] Thompson, Buzynki, Huthcinson, Computer Interconned Specification, Digital internal
document

[DSDF] Parenti, Rubinson, SDI Implementation of the Digital Standard Disk Format, Digital in
ternal document

[DSSI] Wrenn, Zayas, Digital Storage Systems Interconnect (DSSI) Overview, Digital internal
document

[MSCP] Gardner, Mass Storage Control Protocol, Digital internal document

[NETW76] A.S. Tanenbaum, Computer Networks, Prentice Hall, 1976

[SCACI] Strecker, Systems Communications Architecture, Digital internal document

[SCANI] Eldridge, Systems Communications Architecture NI Port Spec, Digital internal document

[SDI] Digital Standard Disk Interface (SDI) Specification, Digital internal document

IBM SOURCES

[3601] IBM Systeml360 Componenet Summary: 3830 Storage Control and 3380 Disk Storage, GA26-
1592, Internation Business Machines Corporation, Data Processing Division, White Plains,
NY.

[3602] IBM ·Systeml360 Componenet Summary: 2835 Storage Control and 2305 Fixed Head Storage
Module, GA26-3599, International Business Machines Corporation, Data Processing Division,
White Plains, NY. ..

Comparison of IBM and Digital Storage Architectures - 29-March-1990

[360C] J. S. Liptay, "Structural Aspects of the System/360 Model 85; Part II-The Cache," IBM
Systems Journal 7, 15-21 (1968).

[3880] IBM 3880 Storage Control Models I, 2, 3, and 4, GA26-1661, IBM Corporation, General
Products Division, Tucson, Az., 1987.

[3990] IBM 3990 Storage Control Planning, Installation, and Storage Administration Guide, GA32-
0100, IBM Corporation, General Products Division, Tucson, Az., 1987.

[AD01] A. Padegs, "The Structure of System/360; Part IV-Channel Design Considerations,"
IBM System Journal 3, 165-180, 1964.

[CJC1] C. J. Conti, D. H. Gibson and S. H. Pitkowshy, "Structural Aspects of the System/360
Model 85; Part I-General Organization," IBM Systems Journal 7, 2-14 (1968).

[DTB1] D. T. Brown, R. L. Eibsen and C. A. Thorn, "Channel and Direct Access Device
Architecture," IBM System Journal II, 186-199 (1972).

[GMA1] G. M. Amdahl, G. A. Blaauw and F. P. Brooks, "Architecture of the IBM Sys
tem/360," IBM Journal of Research and Development 8, 87-101 (1964).

[HAM1] F. E. Hamilton and E. C. Kubie, "The IBM Magnetic Drum Calculator Type 650,"
Journal of the ACM, I, 13-20 (1954).

[IBM1] C. J. Bashe, W. Buchholz, G. V. Hawkins, J. J. Ingram and N. Rochester, "The
Architecture of IBM's Early Computers," IBM Journal of Research and Development 25, 363-375,
1981]

[KLEI] L. Kleinrock, Queueing Systems. Volume I: Theory, Wiley, 1975. Queueing Systems. Volume
II: Computer Applications, Wiley, 1975.

[POp1] IBM Systeml360 Principles of Operation,GA22-6821, Internation Business Machines Cor
poration, Data Processing Division, White Plains, NY.

[POp2] IBM Systeml370 Principles of Operation, GA22-7000, IBM Corporation, Poughkeepsie,
NY., 1987.

6

Comparison of IBM and Digital Storage Architectures - 29-March-1990

[POp3] IBM 370-XA Principles of Operation, SA22-708S, IBM Corporation, Poughkeepsie, NY.

[POp4] IBM Enterprise Systems Architecture/370 Principles of Operation, SA22-7200, IBM Corpo
ration, Poughkeepsie, NY.

[POpS] IBM System/360 and System/370 I/O Interface: Channel to Control Unit, Original Equipment
Manufacturer's Information, GA22-6974, IBM Corporation, Poughkeepsie, NY.

[RNG1] R. N. Gustafson and F. J. Sparacio, "IBM 3081 Processor Unit: Design Consideration
and Design Process," IBM Journal of Research and Development 26, 12-21 (1982).

[Will] M. V. Wilkes, "The Best Way to Design an Automatic Calculating Machine" ,Manchester
University Computer Inaugural Conference, Manchester, England, 19S1, p.16.

[WYS1] W. Y. Stevens, "The Structure of System/360; Part II-System Implementations," IBM
Systems Journal 3, 136-142. (1964).

7

GLOSSARY

Adapter: A device that converts from one bus to another. A distinction between an an adapter and
lIO processor is that an adapter is restricted to addressing "registers" in a dedicated area within
main memory; lIO programs for an I/O processor may exist anywhere in primary memory.

AMS: A set of utilities for accessing data; Access Method Services

AP: Attached multiProcessing - multiple processors sharing main memory where certain processors
are limited in capabilities

AST: Asynchronous Service Trap - a processor dispatch technique that allows a process to handle an
asynchronous event with a separate context from the main execution thread

ASTLVL: Asynchronous Service Trap LeVel- an internal VAX register that works in conjunction with
the REI instruction microcode to scan for deliverable ASTs based upon processor mode

BDAM: Basic Direct Access Method - a component of AMS

BPAM: Basic Partitioned Access Method - a component of AMS

BSAM: Basic Sequential Access Method - a component of AMS

Central Storage: The main memory and extended storage interface control connected to an IBM 3090
processor

Channel: A device which communicates directly with lIO devices and manages the flow of information
between lIO devices' and main storage

CKD: Count, Key, Data - IBM formatting method used on 3330, 3350, and 3380 disk drives for record
location .

Control Unit: Controls the timing of data transfer; adapts the characteristics of lIO devices to a
standard form; accepts control signals from the channel and provides indications concerning the
status of lIO devices

CRC: Cyclic redundancy check bytes

DASD: Direct Access Storage Device, i.e. a disk drive

Datagram: A communications package that requires the upper layers to ensure delivery and flow
control

DSA: Digital Storage Architecture - Digital's current lIO architecture

ECC: Error correction code

ESDS: Data organization scheme under VSAM - Entry Sequenced dataset

Glossary-1

FBA: Fixed Block architecture - specifically IBM's implementation, for this paper, such as the 3370

Interface: The communication between two different levels in a hierarchy

I/O Processor: A programmable processor that handles I/O "programs" in a similar way to a CPU. A
distinction between an I/O processor and an adapter is that the I/O programs may exist anywhere
in primary memory; an adapter is restricted to addressing "registers" in a dedicated area within
main memory.

lOS: A component of IBM's operating systems, the I/O Supervisor

IPL: Interrupt Priority Level - hardware enforced processor priority that establishes a full ordering

ISO: International Standards Organization

ISR: Interrupt Service Routine - the first software to execute upon processor interruption. It saves
current CPU context and sets up subsequent interrupt handling.

KSDS: VSAM data organization Key sequenced dataset

Main Memory: The main memory used by the central processor

MASSBUS: Mass Storage Bus - did not replace UNIBUS for general peripherals

MSCP: Mass Storage Communications Protocol- the master/slave protocol between host and controller
in the Digital I/O architecture.

Mutex: Mutual exclusion variable - a means to control synchronization for data access to prevent
corruption

OSI: Open Systems Interconnect

PMS: A sketch oriented technique to represent a system's high level components

Primary Memory: The main memory used by the central processor

PSL: Processor Status Longword - VAX register that contains the processor mode and privilege status
informatio"n

Protocol: The communication between peer layers. In communications this defines the data formats
and their interpretation.

QSAM: Queued Sequential Access Method

Queue Length: The average number of customers/transactions at the service center both waiting and
receiving service

RAM: Random Access Memory - solid state chips, usually MOS

REI: Return from Exception or Interrupt - A VAX instruction that returns control to the appropriate
stack and IPL after processing either an exception or an interrupt

Residence Time: The average time spent at the service center, by a customer/transaction, both queu
ing and receiving service

RPS: Rotational position sensing

SCA: System Communications Architecture - Digital's host to storage subsystem architecture

Glossary-2

Service Demand: The average service requirement (a quantity) of a customer/transaction

SIOF: Start I/O Fast Release - Instruction in the 370 set which initiates an I/O and does not wait for
an acknowledgment, i.e. asynchronous I/O

SIO Rate/Sec: Number of Start I/O's issued to a device over the duration of a single second

SMP: Symmetric MultiProcessing - multiple processors sharing main memory where all processor are
equal i~ capability

Sub-Channel: Channel facilities required for sustaining a single I/O operation

Sxl: Generically used to stand for either Digital's SDI for disk or STI for tape

Throughput: The rate at which transactions pass thru the service center

UNIBUS: PDP11 positional priority bus for peripheral connections

Utilization: Portion of time the server is busy

VC: Virtual Circuit - a communications abstractions that provides guaranteed delivery and flow control
to higher layers (Digital uses a slightly different meaning)

VCC: VAXcluster Cache - host-based software writethrough cache in VMS

VMS: Virtual Memory System - the main operating system for VAX

VOLSER: Acronym for VOLume SERial number - a user defined label of reference for magnetic storage
media

VSAM: Virtual Storage Access Method

VTOC: Volume table of contents a reserved file containing information about datasets allocated on. a
specific disk

Workload Intensity: Rate at which customers (serviceable interactions) arrive at a service center (i.e.
a disk)

Glossary-3

