
The Architecture and Design of HS-series StorageWorks Array Controllers

by Stephen J. Sicola

ABSTRACT

The HS series of StorageWorks array controllers is a new family
of Digital products that includes models for both open systems
and systems that use Digital's proprietary buses. The HS-series
controllers combine performance, availability, and reliability in
total storage subsystem solutions that use industry-standard
storage devices. The architecture and design of StorageWorks
array controllers represents a balance between the market
requirements and the available technology. The engineering
trade-offs led to an innovative design that incorporates product
features such as a dual-active controller configurations,
write-back caching, Parity RAID technology, and SCSI-2 device
handling.

INTRODUCTION

The HS series of StorageWorks array controllers, a new addition
to Digital's storage subsystem family, supports an open systems
environment by allowing the attachment of industry-standard Small
Computer Systems Interface (SCSI-2) devices to the controller.[1]
Moreover, these controller products yield high availability and
high performance. This paper describes the architecture and the
design of the HSJ30, HSJ40, HSD30, and HSZ40 StorageWorks array
controllers. These controllers interface to host computers by
means of existing Digital interconnects, i.e., the Computer
Interconnect (CI) and the Digital Storage System Interconnect
(DSSI), as well as a SCSI-2 host interconnect to VAX, Alpha, and
most other computers in the industry. The paper documents the
design and development trade-offs and describes the resulting
controllers and their features.

StorageWorks array controllers represent a significant change
from Digital's original Hierarchical Storage Controller (HSC)
subsystem, the HSC50 controller, which was designed in the late
1970s, and also from other Digital controllers such as the HSC60,
HSC70, HSC90, and KDM70 controllers. The StorageWorks controllers
discussed in this paper were designed to meet the following
product goals:

 1. Open systems capability. The goals for open systems
 capability were to use industry-standard storage devices
 attached to the controllers and to use an
 industry-standard host interconnect for one controller
 model. Using industry-standard devices would provide
 investment protection for customers because they would

 not have to change devices when a new controller was
 introduced or when they changed controller modules to use
 a different host interconnect. Industry-standard devices
 would also reduce overall subsystem cost because of the
 competitive nature of the storage device industry. The
 long-term use of both Digital and non-Digital devices was
 desired to provide a wide variety of device choices for
 customers. The use of an industry-standard host
 interconnect would allow StorageWorks controllers to be
 used with Digital and non-Digital host computers, further
 expanding the open systems capability. The SCSI-2
 interconnect was chosen as the device interface and the
 host interface over other industry-standard interconnects
 for cost and strategic reasons.

 2. High availability. The goals for high availability
 included both controller fault tolerance and storage
 (disk configuration) fault tolerance.

 Controller fault tolerance was achieved by developing a
 dual-redundant controller configuration in combination
 with new StorageWorks enclosures that provide redundant
 power supplies and cooling fans. The goal of the
 dual-redundant configuration was to have the surviving
 controller automatically assume control of the failed
 controller's devices and provide I/O service to them. As
 a side benefit, such a configuration would provide load
 balancing of controller resources across shared device
 ports.

 The storage fault-tolerance goal was to develop firmware
 support for controller-based redundant array of
 inexpensive disks (RAID).[2] The initial Parity RAID
 implementation incorporated the best attributes of RAID
 levels 3 and 5. The design provided the basis for later
 implementations of other forms of RAID technology,
 notably mirroring. Parity RAID supports the goal of
 storage fault tolerance by providing for continued I/O
 service from an array of several disks in the event that
 one disk fails. StorageWorks packaging that provides
 redundant power supplies and cooling should be combined
 with the Parity RAID technology to extend storage fault
 tolerance.

 3. High performance. The goals for high performance were to
 specify controller throughput (the number of I/O
 operations per unit of time), latency (responsiveness),
 and data transfer rate (controller bandwidth) for each of
 the three controller platforms: CI, DSSI, and SCSI. The
 throughput was specified in the maximum number of read
 and write requests executed per second. The controllers
 had to speed up the response time for host I/O operations
 and thus deliver data with lower command latency than the
 HSC controllers. StorageWorks controllers had to achieve

 the highest possible data transfer rate and were to do so
 on a common platform.

 The platform-specific controller throughput goals were as
 follows. The initial goal for the CI-to-SCSI controller
 was 1,100 read requests per second; the long-term goal
 was 1,500 to 1,700 read requests per second. The initial
 goal for the DSSI-to-SCSI controller was 800 read
 requests per second; the long-term goal was 1,300 read
 requests per second. The initial goal for the
 SCSI-to-SCSI controller was 1,400 read requests per
 second; the long-term goal was 2,000 read requests per
 second. The controller throughput for write operations
 was slightly lower.

 To reduce latency, the controller hardware and firmware
 implemented controller I/O request caching. Designers
 initially decided to include 16 to 32 megabytes (MB) of
 cache memory on a separate optional cache module. Read
 caching was the beginning goal for the project; however,
 write-back caching was added during product development
 as a result of RAID technology investigations.

 Another approach to reduce latency was to develop
 controller-based disk striping, i.e., implement the RAID
 level 0 technology.[2] Specific goals were to achieve
 parallel access to all RAID level 0 array members for
 read and write operations and to streamline firmware to
 increase RAID level 0 performance.

 The Parity RAID performance goal was to overcome the
 well-known weaknesses of RAID level 3 (i.e., poor
 transaction throughput) and RAID level 5 (poor
 small-write performance) and to approach RAID level 0
 striped array performance for both small and large read
 and write requests.[2] A combination of hardware-assisted
 parity computations and write-back caching helped achieve
 this goal. Parity calculations in hardware reduced
 firmware overhead to complete RAID level 5 write
 operations. Write-back caching minimized the effects of
 the RAID level 5 small-write penalty.[3] To meet the
 needs of customers who require high data transfer rates
 with RAID, RAID level 3-style algorithms must be added
 for the Parity RAID design.

 A common controller processing core had to be architected
 and designed to meet the performance needs of all the
 planned StorageWorks controllers (based on host interface
 capabilities). The platform had to execute the same base
 firmware, coupling new host interface firmware to the
 specific platforms. A common platform was believed to
 ease product development and to maximize reuse of
 firmware for the same "look and feel" in all products.

OPEN SYSTEMS CAPABILITY

For StorageWorks controllers to enter the open systems market,
product designers had to consider the following aspects of open
systems in the controller definition: the use of
industry-standard device interconnects and industry-standard
devices attached to the controller, and the use of
industry-standard and Digital host interconnects.

SCSI-2 Device Interconnect

The SCSI-2 interconnect was chosen for the device interconnect
because of its wide acceptance in the computer industry. During
the controller definition phase, the StorageWorks packaging group
was concurrently designing and building storage device enclosures
called shelves that would house up to seven 3.5-inch devices or
two 5.25-inch devices. These shelves, connected to the
controller, would allow a wide variety of SCSI-2 devices to be
incorporated and would do so at a low cost because of the
widespread use of SCSI-2 as a device interconnect.

StorageWorks controllers were designed to support the following
types of SCSI-2 devices:

 o Disk -- rotating spindle disk drives and solid-state
 disks

 o Tape -- individual tape drives, tape loaders, and
 jukeboxes that contain robotic access to multiple drives
 from a media library

 o CD-ROM

 o Optical -- individual disks and jukeboxes that contain
 robotic access to multiple drives from a media library

StorageWorks Controllers in System Environments

The desire to produce a controller with an open system host
interconnect was coupled with a commitment to protect the
investments of existing Digital customers who currently use CI
and DSSI host interconnects. The strategy was to produce CI,
DSSI, and SCSI variants of the StorageWorks array controller, all
based on a common platform. As in the selection of the device
interconnect, the SCSI-2 host interconnect variant was chosen
because of its widespread use and low cost.

The controllers for the CI, DSSI, and SCSI interconnects were
named the HSJ30/HSJ40, the HSD30, and the HSZ40, respectively.
The designations of "30" and "40" represent a code for the number
of device ports attached to the controller. The HSJ30 and HSD30

controllers have three device ports each, whereas the HSJ40 and
HSZ40 have six device ports each. The number of device ports
selected for each controller type was based on (1) the overall
capability of the host port interconnect to support the aggregate
capability of a number of device ports and (2) the desire to
amortize controller cost against as many attached devices as
possible.

StorageWorks controller configurations depend on the controller
host interface. Marked differences exist in the configurations
supported by CI-based OpenVMS VAXcluster configurations,
DSSI-based OpenVMS VAXcluster configurations, and SCSI-based
configurations in OpenVMS, DEC OSF/1, and other industry system
environments. The basic differences are the number of hosts
connected and whether or not other storage devices can be on the
same host interconnect as the controller and the other hosts.

The CI configuration supports up to 32 nodes per bus. Each node
may be either a storage controller (i.e., an HSJ30, an HSJ40, or
an HSC device) or a host computer (i.e., a VAX or an Alpha
system).

The DSSI configuration supports up to 8 nodes per bus. Each node
may be either a storage controller (i.e., an HSD30 or an HSD05),
a storage element (e.g., an RF73 device), or a VAX or an Alpha
host computer.

The SCSI configuration supports up to 8 targets per bus. The
HSZ40 controller, with its standard SCSI-2 host interface, may be
connected to Digital Alpha computers (i.e., DEC 3000 and DEC
7000/10000 computers running the DEC OSF/1 operating system), Sun
Microsystems computers, Hewlett-Packard computers, and IBM
computers. Digital qualifies the HSZ40 controller for operation
with additional vendors' systems according to market demand.

HIGH AVAILABILITY

To meet the goals of controller and storage fault tolerance, the
designers of StorageWorks controllers developed a number of
scenarios from which the controller can be fault tolerant with
respect to failures in controller or attached storage components.
The first aspect of fault tolerance considered is that of
controller fault tolerance; the second is configuration fault
tolerance.

Controller Fault Tolerance

Designers achieved controller fault tolerance by investigating
the common faults that the controller could tolerate without
requiring extreme design measures and incurring high costs. The
results of this investigation drove the design of what became the
dual-redundant HS-series controller configuration. This

configuration incorporates several patented hardware and firmware
features (patent pending).

The following faults can exist within a StorageWorks controller
and the attached StorageWorks packaging and do not make host data
unavailable:

 o Controller failure. In a dual-redundant configuration,
 if one controller fails, all attached storage devices
 continue to be served. This is called failover. Failover
 occurs because the controllers in a dual-redundant
 configuration share SCSI-2 device ports and therefore
 access to all attached storage devices. If failover is to
 be achieved, the surviving controller should not require
 access to the failed controller.

 o Partial memory failure. If portions of the controller
 buffer and cache memories fail, the controller continues
 normal operation. Hardware error correction in controller
 memory, coupled with advanced diagnostic firmware, allows
 the controller to survive dynamic and static memory
 failures. In fact, the controller will continue to
 operate even if a cache module fails.

 o Power supply or fan failure. StorageWorks packaging
 supports dual power supplies and dual fans. HS-series
 controllers can therefore be configured to survive a
 failure of either of these components.

 o SCSI-2 device port failure. A failure in a single SCSI-2
 device port does not cause a controller to fail. The
 controller continues to operate on the remaining device
 ports.

The controller must be able to sense the failures just listed in
order to notify the host of a fault-tolerant failure and then to
continue to operate normally until the fault is repaired. The
designers deemed this feature vital to reducing the time during
which a controller configuration must operate with a failure
present.

Another requirement of fault-tolerant systems is the ability to
"hot swap" or "hot plug" components, i.e., to replace components
while the system is still operating and thus to not cause the
system to shut down during repairs. The designers made the
controller and its associated cache module hot swappable. That
is, one controller in the dual configuration can be replaced
without shutting down the second controller, and the second
controller continues to service the requests of the attached
hosts. This feature, coupled with the hot-swap capability of
StorageWorks devices, creates highly available systems.

Dual-redundant Controller Configuration. Like all StorageWorks

components, HS-series controllers are packaged in StorageWorks
shelves. The StorageWorks controller shelf contains a backplane
that accommodates one or two controllers and their associated
cache modules, as well as SCSI-2 device port connectors. The
packaging is common to all system environments. HS-series
controllers mounted in a single shelf may be combined in pairs to
form a dual-redundant controller configuration (shown in Figure
1) in which both controllers can access the same set of devices.

[Figure 1 (StorageWorks Controllers: System Block Diagram) is not
available in ASCII format.]

Figure 2 shows two HS-series controllers installed in a
StorageWorks controller shelf in a dual-redundant configuration.
Figure 3 shows two dual-redundant controller configurations
mounted in a StorageWorks cabinet with several device shelves.
The controllers connect to storage devices with cables that
emerge from the controller shelf and attach to the device
shelves.

[Figure 2 (StorageWorks Controller Shelf) is a photograph and is
not available.]

[Figure 3 (StorageWorks Cabinet) is a photograph and is not
available.]

The designers had to decide how the dual-redundant controller
configuration could achieve high availability through fault
tolerance. To meet the high-availability goals, the team
addressed the concept of controller failover early in the design
process. One fault-tolerant option considered was to run with a
"hot-standby" controller that would become operational only if
the main controller were to fail. A second option was to design a
dual-active controller configuration in which two controllers
would operate simultaneously. They would share and concurrently
use device port buses (not devices), thus balancing the I/O load
from host computers.

Both options allow for direct failover of devices without manual
intervention. The hot-standby controller option requires either
automatic configuration of the attached devices when the
hot-standby controller becomes operational or nonvolatile (i.e.,
impervious to power loss) shared memory to hold the configuration
information. The dual-active controller option requires that each
controller have detailed knowledge about the other controller and
the device state; it does not require that the controllers share
a memory. The designers chose the second option because it
provided load balancing and therefore potentially greater
performance. However, they faced the challenge of designing a
backplane and an interface between the controllers that would
achieve the dual-active configuration but would not require a
shared memory. The result of the design effort was the
StorageWorks controller shelf.

StorageWorks Controller Shelf. The StorageWorks controller shelf
is an architected enclosure that allows a pair of StorageWorks
controllers and their respective cache memory modules to be
placed into the dual-redundant configuration, as shown in Figure
4. A cache module is attached to each controller for performance
purposes. The controller shelf contains a backplane that includes
intercontroller communication, control lines between the
controllers, and shared SCSI-2 device ports. Since the two
controllers share SCSI-2 device ports, the design enables
continued device availability if one controller fails.

[Figure 4 (StorageWorks Controller Backplane: Controllers in a
Dual-redundant Configuration) is not available in ASCII format.]

The backplane contains a direct communication path between the
two controllers by means of a serial communication universal
asynchronous receiver/transmitter (UART) on each controller. The
controllers use this communication link to inform one another
about

 o Controller initialization status. In a dual-redundant
 configuration, a controller that is initializing or
 reinitializing sends information about the process to the
 other controller.

 o "Keep alive" communication. Controllers send keep alive
 messages to each other at timed intervals. The cessation
 of communication by one controller causes a failover to
 occur once the surviving controller has disabled the
 other controller.

 o Configuration information. StorageWorks controllers in a
 dual-redundant configuration have the same configuration
 information at all times. When configuration information
 is entered into one controller, that controller sends the
 new information to the other controller. Each controller
 stores this information in a controller-resident
 nonvolatile memory. If one controller fails, the
 surviving controller continues to serve the failed
 controller's devices to host computers, thus obviating
 shared memory access. The controller resolves any
 discrepancies by using the newest information.

 o Synchronized operations between controllers. Specific
 firmware components within a controller can communicate
 with the other controller to synchronize special events
 between the hardware on both controllers. Some examples
 of these special events are SCSI bus resets, cache state
 changes, and diagnostic tests.

The other signals on the backplane pertain to the current state
of the configuration within the controller shelf and to specific
control lines that determine the operation of the dual-redundant

controller configuration. The backplane state and control signals
include

 o Status about the presence of a controller's cache module.
 Each controller can sense the presence or absence of its
 cache to set up for cache diagnostics and cache
 operations.

 o Status about the presence of a second controller, which
 indicates a dual-redundant configuration. Each controller
 can sense the presence or absence of the other controller
 in a dual-redundant configuration. This assists in
 controller setup of dual-controller operation as well as
 general controller initialization of the dual-redundant
 configuration.

 o Status about the presence of the second controller's
 cache. Each controller can sense the presence or absence
 of the other controller's cache for dual-controller setup
 purposes.

 o The "KILL" signal. In a dual-redundant configuration,
 each controller has the capability to use the KILL
 control signal to cause a hardware reset of the other
 controller. However, once one controller asserts the KILL
 signal, the other controller loses the capability. The
 KILL signal ensures that a failed or failing controller
 will not create the possibility of data corruption to or
 from attached storage devices.

 The KILL signal denotes that failover to the surviving
 controller should occur. A controller asserts the KILL
 signal when the other controller sends a message that it
 is failing or when normally scheduled keep alive
 communication from the other controller ceases. The KILL
 signal is also used when both controllers decide to reset
 one another, e.g., when the communication path has
 failed.

 The designers had to ensure that only one controller
 could succeed in the KILL operation, i.e., that no window
 existed where both controllers could use the KILL signal.
 After firmware on a controller asserts the KILL signal to
 its dual-redundant partner, the KILL recognition
 circuitry within the controller that asserted the signal
 is disabled. The probability of true simultaneous KILL
 signal assertion was estimated at 10**-20, based on
 hardware timing and the possibility of synchronous
 dual-controller operation.

 o The cache LOCK signals. The cache LOCK signals control
 access to the cache modules. The dual-controller
 architecture had to prevent one controller from gaining
 access to a cache module that was being used by the other

 controller and had to allow the surviving controller to
 access the failed controller's cache. The access control
 had to be implemented in either firmware or hardware.

 A firmware solution would involve a software locking
 mechanism that the controllers would recognize and
 cooperatively use to limit cache module access to the
 associated controller. This method had an inherent
 problem: firmware alone may not prevent inadvertent cache
 access by a failing controller. The designers therefore
 had to implement a hardware lock mechanism to prevent
 such inadvertent access.

 The hardware lock mechanism was implemented with control
 signals from each controller. The signals are utilized by
 hardware to prevent inadvertent access and by firmware to
 limit cache module access to the associated controller.
 From each controller, the designers implemented two LOCK
 signals that extend individually to each cache module and
 are visible to both controllers. The cache LOCK signals
 are illustrated in Figure 4.

 The LOCK signals allow a controller to achieve exclusive
 access to a specific cache module to ensure data
 integrity. LOCK signals from a controller that has been
 "killed" by its dual-redundant partner are reset so that
 the partner may fail over any unwritten cache data in the
 write-back cache.

Failover. Controller failover is a feature of the dual-redundant
configuration for StorageWorks controllers. Failover of a
controller's devices and cache to the other controller occurs
when

 o A controller fails to send the keep alive message. This
 situation can occur because of a controller failure in
 the dual UART (DUART) or in any other non-fault-tolerant
 portion of the controller module. In this scenario, the
 surviving controller uses the KILL signal to disable the
 other controller, communicates to the failed controller's
 devices, and then serves the failed controller's devices
 to hosts.

 The failover of a controller's cache occurs only if
 write-back caching was in use before the controller
 failure was detected. In this case, the surviving
 controller uses the failed controller's cache to write
 any previously unwritten data to the failed controller's
 disks before serving these disks to hosts. When the
 surviving controller has written the data to disks (i.e.,
 flushed the data), it releases the cache to await the
 failed controller's return to the dual-redundant
 configuration through reinitialization or replacement.

 o A customer desires to change the load balance of one or
 more devices attached to one controller to the other
 controller. This specialized use of failover provides a
 load-balancing feature that the designers considered
 valuable in a dual-active controller configuration. Load
 balancing is static in the controller, i.e., devices are
 allocated to one controller or to the other, not shared
 dynamically. To change allocation, the system manager
 must change the preferred path of device access. This is
 accomplished by accessing either the maintenance port of
 the controller or the configuration firmware through the
 host interface (e.g., the diagnostics and utilities
 protocol for CI and DSSI systems).

 o The cache module battery is low or has failed. This
 special case of failover is used in conjunction with
 Parity RAID operations for the reasons described in the
 Parity RAID technology portion of the following section.
 The main issue is to continue to provide as much data
 protection as possible for Parity RAID disk
 configurations when the battery on the write-back cache
 is low or bad.

 o The controller is unable to communicate with the devices
 to which it is currently allocated for host operations.
 This situation can occur if a device port on a controller
 fails.

Storage Fault Tolerance

Storage fault tolerance is achieved by ensuring that power or
environmental factors do not cause devices to be unavailable for
host access and by using firmware to prevent a device failure
from affecting host accessibility.

Environmental Factors. StorageWorks enclosures provide for
optional redundant power supplies and cooling fans to prevent
power or fan failures from making devices unavailable. The SCSI-2
cables that connect device shelves to the controller shelf carry
extra signals to alert the controller to power supply or fan
failures so that these conditions may be reported to host
computers. The enclosures must contain light-emitting diodes
(LEDs) to allow a controller to identify failed devices.
In addition, a cache module can fail, and the controller will
continue to operate.

RAID Technology. To prevent a device failure from affecting host
access to data, the designers introduced a combined firmware and
hardware implementation of RAID technology.[2] The designers had
to decide which RAID level to choose and what type of hardware

(if any) was required for the implementation.

The designers considered RAID levels 1 through 5 as options for
solving the problem of disk failures that affect data
availability. RAID level 1 (disk mirroring, which is depicted in
Figure 5a) was rejected because of its higher cost, i.e., the
cost of parts to implement the mirroring.[2] Each disk to be
protected implies an inherent cost of one additional housed,
powered, and attached disk. RAID level 1 was also discounted
because software-based solutions were available for many of the
hosts for which the HS-series controllers were initially
targeted.

[Figure 5 (Mapping for RAID Levels 1 through 5) is not available
in ASCII format.]

RAID levels 2 through 4, illustrated in Figures 5b through 5d,
were rejected because they do not provide good performance over
the entire range of I/O workloads for which the controllers were
targeted.[4] In general, these RAID levels provide high,
single-stream data transfer rates but relatively poor transaction
processing performance.

RAID level 5 in its pure form was rejected because of its poor
write performance, especially for small write operations.[2] The
designers ultimately chose RAID level 5 data mapping (i.e., data
striping with interleaved parity, as illustrated in Figure 5e)
coupled with dynamic update algorithms and write-back caching to
overcome the small-write penalty. This implementation is called
Parity RAID.

An HS-series Parity RAID array appears to hosts as an economical,
fault-tolerant virtual disk unit. A Parity RAID virtual disk unit
with a storage capacity equivalent to that of n disks requires
n + 1 physical disks to implement. Data and parity are
distributed (striped) across all disk members in the array,
primarily to equalize the overhead associated with processing
concurrent small write requests.[2]

If a disk in a Parity RAID array fails, its data can be recovered
by reading the corresponding blocks on the surviving disk members
and performing a parity comparison (using exclusive-OR [XOR]
operations on data from other members). Figure 6 illustrates this
regeneration of data.[4]

[Figure 6 (Regenerating Data in a Parity RAID Array with a Failed
Member Disk) in not available in ASCII format.]

HS-series controller developers overcame a number of challenges.
Foremost among them was the elimination of the RAID level 5 write
hole. Parity RAID with its RAID level 5 striping is susceptible
to the RAID level 5 write hole. A write hole is data corruption
that occurs when all the following events take place.

 o A controller failure occurs with a host's write request
 outstanding.

 o Either the updated data or the updated parity for the
 host's write request has been written to disk but not
 both.

 o A failure of a different disk occurs after the controller
 failure has been repaired.

 To eliminate this write hole, designers had to develop a
method of preserving information about ongoing RAID write
operations across power failures such that it could be conveyed
between partner controllers in a dual-redundant configuration.

Designers decided to use nonvolatile caching of RAID write
operations in progress.[5] Three alternatives were considered:

 1. An uninterruptible power supply (UPS) for the controller,
 cache, and all attached disk devices. This choice was
 deemed to be a costly and unwieldy solution because of
 the range of possible requirements. The indeterminate
 amount of data in the cache to be written and the power
 consumption of a wide variety of devices would
 necessitate a very large backup power source to ensure
 enough time for all cached write data to be written to
 attached devices.

 2. A battery in the controller and device enclosures (i.e.,
 shelves) to allow enough time for the writing of cached
 data in the event of a power failure. StorageWorks device
 enclosures can accommodate either redundant power
 supplies or one power supply and one backup battery for
 configurations that do not require redundancy. There is
 no provision for both redundant power supplies and a
 battery. This conflict between fault-tolerant
 StorageWorks shelf configurations with dual power
 supplies and the desire to add a battery for write-back
 caching was unacceptable to the designers because of the
 loss of power redundancy to gain write-back cache
 integrity.

 3. A controller-based nonvolatile cache. The options for
 controller-based nonvolatile caching included (a) a
 battery-protected cache for write data, (b) an additional
 nonvolatile random-access memory (NVRAM) on the
 controller to journal RAID writes, and (c) a
 battery-protected cache for both read and write data.

 With a battery-protected write cache, data must be copied
 if it is to be cached for subsequent read requests.
 Designers deemed the potential performance penalty
 unacceptable.

 Using controller NVRAM as a RAID write journal not only
 closes the RAID level 5 write hole but also provides a
 small write cache for data. This approach also requires
 data copying and creates an NVRAM access problem for the
 surviving controller to the failed controller NVRAM to
 resolve any outstanding RAID write requests.

 The third controller-based nonvolatile cache option, to
 battery-backup the entire cache, solved the copy issue of
 option 3a and the failover issue of option 3b.

The designers chose option 3c, the battery-protected read/write
cache module. A totally nonvolatile cache had the advantage of
not requiring write-cache flushing, i.e., copying data between
the write cache and the read cache after the write data has been
written to devices. Segregated cache approaches (part
nonvolatile, part volatile) would have required either copying or
discarding data after write-cache flushing. Such approaches would
have resulted in a loss of part of the value of using the caching
algorithm by allowing only read caching of read data already
read. Another benefit of a nonvolatile read/write cache is
failover of the cache module in the event of a controller
failure. This further reduces the risk associated with a RAID
level 5 write hole because unwritten write operations to Parity
RAID arrays can be completed by the surviving controller after
failover.

To achieve a total nonvolatile cache, the designers opted for the
battery solution, using two 3-by-5-by-0.125-inch lead-acid
batteries that supply up to 100 hours of battery backup for a
32-MB cache module. The batteries eliminated the need for a
special (and costly) nonvolatile memory write cache and allowed
data hold-up after power failure. The designers chose lead-acid
batteries over NiCAD batteries because of their steady power
retention and output over time. This option protects against most
major power outages (of five minutes to five days) and all minor
power outages (of less than five minutes). Most power outages
(according to studies within Digital) last less than five minutes
and are handled in the same manner as major outages, that is, by
flushing write data immediately after power has been restored to
the controller configuration. Battery status is provided to
firmware, which uses this information to make policy decisions
about RAID arrays and other virtual disk units with write-back
caching enabled.

For an HS-series controller to support Parity RAID, its cache
module must have batteries installed. The batteries make the
cache nonvolatile and enable the algorithms that close the RAID
level 5 write hole and permit the use of the write-back cache as
a performance assist, both vital for proper Parity RAID
operation. If the controller firmware detects a low- or
bad-battery condition, write-back caching is disabled. The
controller that detects the condition tries to fail over Parity
RAID units to the other controller in the dual-redundant

configuration to keep the units available to hosts. If the other
controller cache module has a low- or bad-battery condition, the
Parity RAID unit is made unavailable to hosts to protect against
data loss or data corruption should a power failure occur. When
the batteries are no longer low, Parity RAID units are again made
available to hosts. Any Parity RAID units that had been failed
over to the other controller would fail back, i.e., return, to
the controller that originally controlled them. The module
hardware and firmware support read caching regardless of the
presence of a battery.

After solving the RAID level 5 write-hole problem, the designers
decided to automate the Parity RAID recovery process wherever
possible. This goal was adopted so that customers would not have
to understand the technology details in order to use the
technology in the event of a failure. StorageWorks controller
firmware developers, therefore, chose to add automatic Parity
RAID management features rather than require manual intervention
after failures. Controller-based automatic array management is
superior to manual techniques because the controller has the best
visibility into array problems and can best manage any situation
given proper guidelines for operation.

An important feature of Parity RAID is the ability to
automatically bring a predesignated disk into service to restore
data protection as quickly as possible when a failure occurs.
Other controllers in the industry mandate configurations with a
hot-standby disk, i.e., a spare disk, dedicated to each Parity
RAID unit. A hot-standby disk is powered and ready for firmware
use if an active member disk of its Parity RAID unit fails. This
concept is potentially wasteful since the probability that
multiple Parity RAID units will have simultaneous single-member
disk failures is low. The designers therefore had the options of
making spare disks available on a per-Parity RAID unit basis or
having a pool of spares, i.e., a spare set, that any configured
Parity RAID unit could access. The designers chose the pool of
spares option because it was simpler to implement and less costly
for the customer, and it offered the opportunity to add selection
criteria for spare set usage and thus maximize either performance
or capacity efficiency.

To allow more flexibility in choosing spare set members,
designers made two spare selection options available: best fit
and best performance. The best fit option allows for disk devices
of different sizes to compose the pool of spares. When a spare
disk is needed after a member of a Parity RAID unit fails, the
device with the best fit, that is, whose size most closely
matches that of the failed disk (typically of the same size but
possibly of greater capacity), is chosen. The best performance
option can reduce the need for physical reconfiguration after a
spare is utilized if a spare attached to the same device port as
the failed array member can be allocated. The best performance
option maintains operational parallelism by spreading array
members across the controller device ports after a failure and

subsequent spare utilization.

These features allow automatic sparing of failed devices in
Parity RAID units and automatic reconstruction after a spare
device has been added to the Parity RAID unit.[6] Furthermore,
any drive of at least the size of the smallest member of a Parity
RAID unit is a candidate spare, which reduces the need for like
devices to be used as spares. (Typically, however, spare set
members are like members.)

A Parity RAID unit with a failed member will become unavailable
and lose data if a second failure occurs. The HS-series automatic
sparing feature reduces the window of possible data loss to the
time it takes to reconstruct one Parity RAID unit. Mean time
between data loss (MTBDL) is a combination of the mean time to
repair (MTTR) and the failure rate of a second device in a Parity
RAID unit. The automatic sparing feature reduces the MTTR and
thus increases the MTBDL. Data loss can occur only in the highly
unlikely event that a failure occurs in another RAID set member
before the reconstruction completes on the chosen spare. During
Parity RAID reconstruction, the controller immediately makes the
host read or write request to the reconstructing member redundant
by updating parity and data on the spare after the host read or
write operation. Parity RAID firmware quickly reconstructs the
rest of the Parity RAID unit as a background task in the
controller. If the member that is being reconstructed happens to
fail and other spare set members remain, reconstruction on a new
spare begins immediately, further reducing the probability of
data loss.

Parity RAID member disk failure declaration is key to the
efficient use of spares and to preventing unwarranted use of
spares. If a write command to a RAID set member fails, RAID
firmware assumes that the SCSI-2 disk drive has exhausted all
internal methods to recover from the error. SCSI-2 disk drives
automatically perform bad block replacement on write operations
as long as there is space available within the disk drive
revector area (the area where spare data blocks can be mapped to
a failed block). The designers chose this method over more
complex retry algorithms that might encounter intermittent
failure scenarios. Empirical information related to previous
storage devices showed that localized write failures are rare and
that this strategy was sound for the majority of disk access
failures.

When read failures occur, data is regenerated from the remaining
array members, and a forced bad block replacement is performed.
Metadata on the disk is used to perform this function atomically,
that is, to perform the bad block replacement even if a power
failure occurs during the replacement.[7] If the disk cannot
replace the block, then the Parity RAID member disk is failed out
and an attempt is made to choose a suitable spare from the spare
set. If no spare is available, the Parity RAID unit operates in
reduced mode, regenerating data from the failed member when

requested by the hosts.[4]

Parity RAID firmware uses the metadata to detect a loss of data
due to catastrophic cache failure, inappropriate device removal,
or cache replacement without prior flush of write data. The
designers considered it important that the controller firmware be
able to detect these data loss conditions and report them to the
host computers.

The failure scenarios just described occur infrequently, and the
StorageWorks Parity RAID firmware is able to recover after such
failures. During a typical normal operation, the main challenge
for Parity RAID firmware is to achieve a high level of
performance during write operations and a high level of
controller performance in general.

HIGH PERFORMANCE

As discussed earlier, the performance goals for the StorageWorks
controllers were in the areas of throughput and latency.
Bandwidth goals were based on the architecture and technology of
the controller platform. The designers met the performance goals
by producing a controller that had a low command overhead and
that processed requests with a high degree of parallelism. The
firmware design achieves low overhead by means of the algorithms
running on the controller, coupled with RAID and caching
technology. The hardware design that allows for low command
overhead and high data transfer rates (bandwidth) is discussed in
the section Common Hardware Platform.

Command Processing

The StorageWorks designers maximized the number of requests the
controller can process per second by reducing the command
processing latency within the controller firmware. The firmware
utilizes controller-based caching and also streamlined command
processing that allows multiple outstanding commands to be
present in the controller.

To meet the varying needs of customer applications, the
controller supports both Parity RAID and RAID level 0. The
designers decided to include RAID level 0 as a controller feature
because of its inherent parallelism, even though RAID level 0 is
not fault tolerant without external redundancy.

StorageWorks controllers service all device types, but the
designers felt that disk device performance was the key metric
for determining how well a controller supports RAID technology.
The controller firmware was designed to efficiently control
individual devices (commonly referred to as "just a bunch of
devices" [JBOD]) and Parity RAID, prioritizing requests to each
of the SCSI-2 device ports on the controller. StorageWorks

controllers comply with SCSI-2 protocols and perform advanced
SCSI-2 functions, such as tagged queuing to all attached SCSI-2
storage devices for greater performance.[1]

Discussions of the RAID level 0 technology and of how the
designers used Parity RAID technology to overcome some of the
performance bottlenecks follow.

Striping -- RAID Level 0

Digital has used RAID level 0 technology, that is, striping, in
systems for at least five years, in its host computers using
software as well as in its controllers. Striping allows a set of
disks to be treated as one virtual unit. Device data blocks are
interleaved in strips, i.e., contiguous sets of blocks, across
all disks, which provides high-speed parallel data access. Figure
7 illustrates the mapping for a RAID level 0 array.[4] Since a
striped disk unit inherently lacks fault tolerance (i.e., if one
device in the set fails, data is lost), controller-based striping
is typically used in conjunction with host-based mirroring or in
cases where data can be easily reproduced. Stripe sets achieve
high performance because of the potential for parallelism by
means of the device and data organization. The key difference
between RAID level 0 and RAID levels 3 and higher is that
striping results in the interdependence of data written to
different devices.

[Figure 7 (Mapping for a RAID Level 0 Array) is not available in
ASCII format.]

Controller Caching

Caching with StorageWorks controllers was originally read caching
only. When the designers decided to use a nonvolatile cache to
eliminate the RAID level 5 write hole, write-back caching on the
controller became a viable option.

Controller Read Caching. Read caching was intended to reduce
latency in the controller by minimizing the need to access
devices continuously for repeated host read requests to the same
locations on attached devices. Read caching must also address the
issue of how to handle write data for later use. The design could
have incorporated on-board controller memory to hold write data.
However, this would require copying the write data to the read
cache after the write data had been written to the devices and
would result in inefficient use of the read cache. Therefore, the
designers decided to have the read cache serve as a write-through
cache as well. Read caching would be disabled/enabled per logical
unit presented to the host instead of having global read caching,
where a logical unit is one or more devices configured as one
virtual device. Thus, customers can specify for which virtual

devices they want caching enabled.

The read and write-through caching firmware receives requests
from other parts of the controller firmware (e.g., a host port, a
device port, and the Parity RAID firmware) and proceeds as
follows.

For reads requests, the caching firmware provides

 1. The data pointers to the cached request, i.e., the cache
 hit

 2. The data pointers for part of the request, i.e., a
 partial cache hit, which means that the remaining data
 must be retrieved from the device or devices being
 requested

 3. A status response of cache miss, which means that storage
 management must retrieve the data from the device or
 devices being requested

For write requests, the caching firmware offers the cache manager
data from the request. The cache manager places the previous data
pointers into the read cache tables after the data is written
through the cache to the devices. Firmware tells the device port
hardware where to find write data, and the port hardware
transfers the data.

Read caching in the first version of the controller firmware
allowed the controller to achieve the initial throughput goals
across the three controller platforms. The current software
version, version 2.0, was shipped in October 1994 and exhibits
even greater throughput performance. Table 1 shows the I/O
performance for the three StorageWorks controller platforms with
read caching enabled.

Table 1 StorageWorks Controller I/O Performance with Read Caching

 Read Requests Write Requests
Controller per Second per Second
----------- ------------- --------------
HSJ30/HSJ40 1,550 1,050
HSD30 1,000 800
HSZ40 2,250 1,500

Write-back Caching -- Performance Aspects. As noted earlier,
when the cache module contains batteries, the memory is
nonvolatile for up to 100 hours. The StorageWorks controller can
use the nonvolatile cache to increase controller performance by
reducing latency for write request Parity RAID performance to a
level similar to that of RAID level 0 (simple disk striping). The

controller can also utilize the write-back cache to reduce the
latency of JBOD and RAID level 0 disk configurations. As with
read caching, write-back caching is disabled/enabled per logical
unit.

The write-back caching firmware controls the usage of both a
surviving controller's cache module and a failed controller's
cache module. When it receives a write request, the controller
places the data in the cache, marks the request as complete, and
writes the data based on internal controller firmware policies
(write-back caching). To provide greater performance during
Parity RAID operations than simple write-back caching could
provide, the write-back cache firmware is also tied to the Parity
RAID firmware.

In addition to dealing with the continual problem of controller
latency on write commands, designers had to overcome the RAID
level 5 small-write penalty with parity updates to RAID set
members. Write-back caching was chosen over RAID level 3 hardware
assists as a Parity RAID strategy because RAID level 3 does not
provide a wide range of benefits for all customer workloads.
Write-back caching provides latency reductions for RAID and
non-RAID configurations. Write-back caching also increases
write-request throughput. For example, the published performance
numbers for write throughput with write-back caching enabled in
version 2.0 firmware appear in Table 2.

Table 2 StorageWorks Controller Write Request Throughput with
Write-back Caching

 Write Requests
Controller per Second
----------- --------------
HSJ30/HSJ40 1,350
HSD30 900
HSZ40 1,850

The use of write-back caching resulted in a 20 to 30 percent
increase in write throughput for all platforms as compared to
write-through caching. Before discussing the effect of write-back
caching on latency for individual devices and for Parity RAID
arrays, the paper describes how the write-back cache firmware was
designed and tied directly to Parity RAID firmware.

The features chosen for write-back caching were extensively
benchmarked against data integrity issues. The addition of
settable timers allows customers to flush write data destined for
devices that are idle for a specific length of time. To reduce
the number of read/modify/writes required to update parity on
small write operations, designers tied flush algorithms to RAID.
Flush algorithms for write-back caching are vital to customer
data integrity and to latency reduction. The flush algorithms

actually allow Parity RAID to simulate RAID level 3 operations
because of the nonvolatile write-back cache.

As mentioned earlier, Parity RAID configurations suffer a penalty
on small write operations that includes a series of read and
write operations and XOR operations on blocks of data to update
RAID parity. The write-back cache firmware was designed with
specific attributes to enhance Parity RAID write operations in
general, and not just to enhance small write operations. The
designers intentionally chose to overcome both the small-write
penalty and the inherent lack of high bandwidth that Parity RAID
delivers.

The nonvolatile write-back cache module afforded the firmware
designers more choices for Parity RAID write request processing
and data flush algorithms. The designers pursued techniques to
speed up all write operations by performing write aggregations
(i.e., combining data from multiple write requests and read cache
data) in three dimensions:

 1. Contiguous aggregation, in which the firmware looks for
 consecutive block requests and ties them together into
 one device request, thus eliminating separate device
 requests.

 2. Vertical aggregation, in which the firmware can detect
 two write operations to the same block, thus eliminating
 one write operation.

 3. Horizontal aggregation (for Parity RAID operations only).
 This type of aggregation occurs when all data blocks
 within a Parity RAID strip are present in the write-back
 cache. In such cases, the firmware can write to all RAID
 set members at once, in combination with the FX chip
 (discussed later in this section) on-the-fly hardware XOR
 operations during the RAID set member writes. The
 original request can cause horizontal aggregation to take
 place if all blocks within a strip are part of the first
 write request. The firmware can also perform horizontal
 aggregation after processing several write requests. In
 this way, the parity write operation directly follows the
 data write operations. Horizontal write aggregation
 potentially cuts physical device access in half when
 compared to normal RAID write operations that require
 data members to be read.[2,8] The result is pseudo-RAID
 level 3 operation, because the write-back cache is
 combined with the horizontal aggregation cache policy.

The performance gain for individual disks and for Parity RAID
arrays from using write-back caching is dramatic, resulting in
higher write throughput and low latency. The write-back cache
actually smoothes out differences in performance that are typical
of workloads that have different read/write ratios, whether or
not Parity RAID is utilized.

Figure 8 shows the relative latency for a controller with and
without write-back caching enabled. The configurations tested
comprised individual devices and Parity RAID units (in a
five-plus-one configuration). The performance measurements were
taken from a version 2.0 HSJ40 array controller.

[Figure 8 (HSJ40 Array Latency Comparisons) is not available in
ASCII format.]

Workload 1 has a read/write ratio of 70/30, i.e., 70 percent of
the requests were read requests and 30 percent were write
requests. Workload 2 has a read/write ratio of 84/16. Workload 3
has a ratio of 20/80. In all workloads, the latency for
individual devices and for Parity RAID units is lower when
write-back caching is enabled than when only read caching is
enabled. In fact, when write operations dominate the I/O mix,
latency for Parity RAID units is the same as for the workloads in
which read operations are predominant!

RAID/Compare Hardware

StorageWorks controllers contain a hardware Parity RAID and data
compare accelerator called FX, a gate array that performs
on-the-fly XOR operations on data buffers. Parity RAID and data
compare firmware use this gate array to accelerate Parity RAID
parity calculations and host data compare requests. The FX chip
is programmed to (1) observe the bus, (2) "snoop" the bus for
specific addresses, (3) perform the XOR operation to compare the
associated data on-the-fly with data in a private memory called
XBUF memory, and (4) write the data back into the XBUF memory.

XOR operations can take place as data is moving from buffer or
cache memory to device ports or vice versa. The FX can also
perform direct memory access (DMA) operations to move the
contents of buffer or cache memory to or from XBUF memory.

The designers determined that hardware acceleration of XOR
operations for Parity RAID firmware would speed up RAID parity
calculations and thus further improve Parity RAID latency and
throughput. The firmware also supports FX compare operations,
which eliminates the need for SCSI-2 devices that have
implemented compare commands and for speeding up compare requests
from hosts.

Common Hardware Platform

To produce a high-performance controller in all three performance
dimensions -- latency, throughput, and data transfer rate -- the
designers of StorageWorks controllers faced the challenge of
creating a new controller architecture and using new technology.
In addition, they had to do so at a reasonable cost.

Although each has its own specific host interface hardware, the
CI, DSSI, and SCSI controller variants share a common hardware
core. Commonality was desired to control the development costs
and schedules for such large engineering projects. To deliver
high performance and commonality, the designers investigated
several controller architecture alternatives. The first
architecture considered was similar to Digital's HSC50-95
controller, incorporating similar bus structures, processing
elements, and memories, but newer technology. Figure 9 shows the
HSC architecture.[9]

[Figure 9 (Block Diagram of the HSC Architecture) is not
available in ASCII format.]

The HSC architecture is a true multiprocessor system. It
contains a private memory for its policy processor, which manages
the work that is coming from the host port interface and queues
this work to the device interface modules. Data then flows
between the host port and device modules to and from hosts. The
modules have two interfaces (buses) for access to command
processing and data movement. These buses are called the control
memory interface and the data memory interface. The policy
processor queues work to the host port and device modules through
the control memory interface, and then the modules process the
data over the data memory interface.

Using this architecture would have been too expensive. The
controller cost had to be competitive with other products in the
industry, most of which currently cost considerably less than the
HSC controller. The HSC bus architecture required three different
memory interfaces, which would require three different,
potentially large memories. The designers had to pursue other
options that met the cost goals but did not significantly reduce
performance. They considered single internal bus architectures,
but during simulation, these options were unable to meet either
the initial or the long-term cost goals.

Figure 10 shows the controller architecture option that became
the common hardware base for StorageWorks controllers. This
architecture contains three buses and two memories. A third small
memory is used for Parity RAID and data compare operations but
does not drastically increase controller cost. The architectural
design allows the policy processor to access one memory while a
device or host port processor accesses the other memory.

[Figure 10 (HSx40 Controller Architecture) is not available in
ASCII format.]

The architecture achieves a lower overall cost than the HSC
architecture yet achieves similar performance. The new
architecture, with fewer memories, does not significantly reduce
the performance, while the newer technology chosen to implement
the controller enhances performance. The bus bandwidth of the new

controller is much higher than that of the HSC controller.
Consequently, a more cost-effective solution that uses a
less-costly architecture can attain similar to better
performance.

The extreme integration of hardware to the very large-scale
integration (VLSI) level allowed for a much smaller enclosure
than that of the HSC controller, even with a dual-redundant
controller configuration (see Figure 3). A StorageWorks
dual-controller configuration measures 56.5 by 20.9 by 43.2
centimeters (22 by 8 by 17 inches), which is approximately
one-tenth the size of the HSC controller.

Common Controller Platform. The common controller platform
consists of the controller without the associated host port. The
common core of hardware consists of the policy processor
hardware, the SCSI-2 device port hardware, and the cache module.
The controller-specific host port interface hardware includes
either the CI, the DSSI, or the SCSI interface.

Policy Processor Hardware. The StorageWorks controller policy
processor is Intel's 25-MHz i960CA microprocessor, which contains
an internal instruction cache and is augmented by a secondary
cache external to the processor. The secondary cache relieves the
potential bottleneck created by shared memory between the policy
processor and host/device port processors.

The designers had to make trade-offs in two areas: the memory
speed/cost and the number of buses. After simulation, the
external instruction and data cache showed a significant
performance improvement, given the chosen shared-memory
architecture. The cache covers the first 2 MB of buffer memory,
where policy processor instructions and local processor data
structures reside and where most of the performance gain for the
policy processor would be achieved.

The policy processor uses the IBUS exclusively to fetch
instructions and to access the program storage card, the NVRAM,
the DUART, and the timers.

Program Storage. StorageWorks firmware is contained on a
removable program card for quick code upgrades and to eliminate
the need for a boot read-only memory (ROM) on the controller. The
program card is a PCMCIA, 2-MB flash electrically erasable,
programmable, read-only memory (EEPROM) card that contains the
firmware image. Designers chose the PCMCIA card to facilitate
code updates in the field, where host-based downline loading of
firmware was not supported. Although the PCMCIA card cost more
than EEPROM chips attached to the module, the designers felt that
the benefits of such a design outweighed the additional cost.

On each initialization, the controller reads the firmware image
on the program card and copies the image to the shared memory.
The firmware executes from the shared buffer memory.

Dual UART (DUART). The DUART is used for two reasons:

 1. Maintenance terminal connection. The maintenance
 terminal is a means of entering controller system
 management commands (with the command line interpreter,
 which is the user interface for controller configuration
 management) and is also a status and error reporting
 interface. Designers made extensive use of this interface
 for debugging controller hardware and firmware. Use of
 the maintenance terminal connection is optional. The
 interface remains on the controller so that users can
 direct controller management and status reporting, if
 desired.

 2. Failover communication between two controllers in a
 dual-redundant configuration. The communication path is
 used to share configuration and status information
 between the controllers.

Shared Buffer and Cache Memory. The dynamic random-access memory
(DRAM) buffer (or shared memory) has at its heart the dynamic RAM
and arbitration (DRAB) chip. This chip supports the buffer and
cache memory accesses from the policy processor and from the host
and device ports. The data transfer rate supported by the shared
memory is approximately 35 megabytes per second (MB/s).

The DRAB chip contains error-correcting code (ECC) hardware to
correct single-bit memory, to detect multibit errors, and to
check and generate bus parity. This feature allows the controller
to survive partial memory failures, which was a fault-tolerant
goal for the controller.

The decision to use DRAM chips in the memory design rather than
static random-access memory (SRAM) chips led to the use of ECC.
DRAMs were chosen because of their cost and power savings over
equivalent SRAM. However, because the designers expected large
amounts of DRAM (as much as 40 MB) to be present on a controller
and its associated cache module, the statistical error
probabilities were high enough to warrant the use of ECC on the
memory. The combination of DRAM and ECC was less costly than an
equivalent amount of more reliable SRAM. The use of parity on the
buses is a standard feature in all StorageWorks controllers. The
bus parity feature provides further error detection capability
outside the bounds of the memory because it covers the path from
memory to or from external host or device interfaces.

The DRAB chip also controls access to the cache module in
conjunction with slave DRAB chips on the cache module associated

with the controller. These DRAB chips provide refresh signals for
the DRAM buffer or cache memory that they control; whereas, the
master DRAB on the controller module provides arbitration for
cache accesses that originate from the various sources on the
controller module. Slave DRAB chips can also be accessed by the
dual-redundant partner controller, depending on the two
controller LOCK signal states.

The controller firmware uses 8 MB of shared buffer memory to
execute the program image, to hold the firmware data structures,
and to read and write-through cache data (if no cache module is
present). The i960CA policy processor and the host and device
data processing elements on the NBUS can all access buffer
memory.

Cache Memory. Each cache memory module contains one slave DRAB
chip and 16 or 32 MB of DRAM, and also two ports into the module
(one from each controller) for use in failover. Each cache module
optionally contains batteries to supply power to the DRAM chips
in the event of power failure for write-back caching and Parity
RAID use. The cache modules are interchangeable between
controller types.

Parity RAID XOR and Compare Hardware. The Parity RAID XOR and
compare hardware consists of the FX gate array and 256 kilobytes
(KB) of fast SRAM. The FX allows concurrent access by SCSI-2
device port hardware and the policy processor. The FX compares
the XOR of a data buffer (512 bytes of data) that is entering or
exiting an attached device with the XOR buffers in the fast SRAM.
The policy processor uses the FX to perform compare operations at
the request of a host and perform DMA operations to move data to
and from memories. This hardware is common across all the
controller platforms for Parity RAID and compare firmware.

SCSI-2 Device Port Hardware. The device ports (three or six,
depending on the controller model) are controlled by Symbios
Logic (the former NCR Microelectronic Products Division of AT&T
Global Information Solutions Company) 53C710 SCSI-2 processor
chips. The SCSI-2 processor chips reside on the NBUS and access
the shared-memory cache for data structure and data buffer
access. These processors receive their work from data structures
in buffer memory and perform commands on their specific SCSI-2
bus for read or write operations.

The Symbios Logic chip provided the most processing power, when
compared to the other chips available when the controllers were
designed. The designers felt that direct control of SCSI-2
interfaces by the policy processor or a separate processor was
too costly in terms of processor utilization and capital expense.
The Symbios Logic chips do require some policy processor
utilization, but the designers considered this acceptable because

high-performance architectural features in the policy processor
hardware compensated for the extra processor utilization.

The SCSI-2 device port supports the SCSI fast, single-ended,
8-bit interface.[1] The data transfer rate supported by this
interface is 10 MB/s.

Host Port Hardware. The host port hardware is either a CI, a
DSSI, or a SCSI interface implemented with gate arrays or Symbios
Logic 53C720 SCSI-2 processors. The host port hardware, the only
noncommon hardware on a StorageWorks controller, requires a
separate platform to support each host interface.

The CI interface is made up of a gate array and CI interface
hardware that performs DMA write or read operations from shared
memory or cache memory over the NBUS. The maximum data transfer
rate supported by the CI hardware is approximately 8 MB/s.

The DSSI interface utilizes a Symbios Logic 53C720 chip coupled
with a gate array and DSSI drivers to receive and transmit data
to or from the DSSI bus. The DSSI interface is 8 bits wide, and
the maximum data transfer rate supported by the DSSI hardware is
4.5 MB/s.

The SCSI interface also uses a Symbios Logic 53C720 chip coupled
with differential drivers to provide a SCSI-2, fast-wide (i.e.,
16-bit) differential interface to hosts. The maximum data
transfer rate supported by the SCSI-2 interface is 20 MB/s for
fast-wide operations.

Table 3 shows the current (version 2.0) maximum measured (at the
host) data transfer rate performance numbers for StorageWorks
controllers.

Table 3 SCSI-2 Host Interface Performance

 Read Data Transfer Rate Write Data Transfer Rate
Controller (Megabytes per Second) (Megabytes per Second)
------------ ----------------------- ------------------------
HSJ30/HSJ40* 6.7 4.4
HSD30 3.2 2.8
HSZ40** 14 8.0

 * In a multihost environment
** Measured for the HSZ40-B controller

SUMMARY

The StorageWorks HS-series array controllers were designed to
meet the storage subsystem needs of both Digital and non-Digital
systems, thereby entering the world of open systems. The

architecture for the HSJ30, HSJ40, HSD30, and HSZ40 controllers
has achieved the initial project goals and provides

 1. Open systems capability. A SCSI-2 device interface
 allows many types of disk, tape, and optical devices to
 be attached to the HSJ30, HSJ40, and HSD30 controllers.
 The HSZ40 controller, which is currently a disk-only
 controller, provides a SCSI-2 host interface that allows
 the controller to be attached to Digital and non-Digital
 computers.

 2. High availability. Controller fault tolerance and RAID
 firmware yielded a highly available StorageWorks storage
 subsystem.

 The dual-redundant controller configuration allows each
 of a pair of active controllers to operate independently
 with host systems, while sharing device ports,
 configuration information, and status. This design allows
 both controllers to achieve maximum performance. The
 dual-redundant configuration also provides fault
 tolerance if one controller fails, because the surviving
 controller serves the failed controller's devices to the
 host computers. The dual-controller configuration,
 combined with StorageWorks controller packaging, results
 in a highly available controller configuration with
 built-in fault tolerance, error recovery, and battery
 backup features.

 Parity RAID firmware, combined with StorageWorks device
 packaging, allows for highly available disk
 configurations that are less costly than mirrored
 configurations. Furthermore, Parity RAID firmware
 performs automatic Parity RAID management and error
 recovery functions in the event of a failure and utilizes
 spare device pools in conjunction with user-defined
 Parity RAID configuration management policies. The
 StorageWorks Parity RAID implementation exceeds the
 requirements of the RAID Advisory Board for RAID
 availability features.

 3. High performance. The HSJ30/HSJ40, HSD30, and HSZ40
 controllers achieved the respective initial performance
 goals of 1,100, 800, and 1,400 I/Os per second. The
 controllers met the low request latency goals by
 streamlining firmware where possible and by introducing
 write-back caching. Write-back caching firmware
 dramatically reduces latency on all write requests, and
 write-back cache hardware provides battery backup for
 data integrity across power failures. Furthermore, the
 write-back cache overcomes the RAID level 5 small-write
 penalty and high data transfer rate inefficiencies and
 thus provides high performance with Parity RAID disk
 configurations. StorageWorks Parity RAID firmware

 implements many of the RAID Advisory Board optional
 performance features to produce a high-performance RAID
 solution.

 A common controller processing core was successfully
 developed for the HSJ30/HSJ40, HSD30, and HSZ40
 controllers. More than 85 percent of the firmware is
 common to all three controller platforms, which allows
 for ease of maintenance and for the same look and feel
 for customers. The architecture and the technology used
 resulted in a core controller design that supports a high
 data transfer rate for all StorageWorks controller
 platforms.

These achievements represent the large engineering investment
that Digital has made to move into the open systems market with
new technology for its storage solutions. These controller
platforms are the basis for future controller architectures and
platforms that utilize the knowledge and experience acquired
during the development of the StorageWorks HS-series array
controllers.

ACKNOWLEDGMENTS

The StorageWorks array controller project was the cooperative
effort of a large number of engineers who sacrificed considerable
personal time to achieve the project goals. The following people
and groups contributed to the success of the product: Bob
Blackledge, Diana Shen, Don Anders, Richard Woerner, Ellen Lary,
Jim Pherson, Richard Brame, Jim Jackson, Ron McLean, Bob Ellis,
Clark Lubbers, Susan Elkington, Wayne Umland, Bruce Sardeson,
Randy Marks, Randy Roberson, Diane Edmonds, Roger Oakey, Rod
Lilak, Randy Fuller, Joe Keith, Mary Ruden, Mike Richard, Tom
Lawlor, Jim Pulsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse
Yandell, Jim Zahrobsky, Mike Walker, Tom Fava, Jerry Vanderwaall,
Dave Mozey, Brian Schow, Mark Lyon, Bob Pemberton, Mike Leavitt,
Brenda Lieber, Mark Lewis, Reuben Martinez, John Panneton, Jerry
Lucas, Richie Lary, Dave Clark, Brad Morgan, Ken Bates, Paul
Massiglia, Tom Adams, Jill Gramlich, Leslie Rivera, Dave Dyer,
Joe Krantz, Kelly Tappan, Charlie Zullo, Keith Woestehoff, Rachel
Zhou, Kathy Meinzer, and Laura Hagar. Thanks to the CAD team, the
StorageWorks packaging and manufacturing team, the software
verification team, and the problem management team. A final
thanks to our OpenVMS and DEC OSF/1 operating system partners and
to the corporate test groups, all of whom worked with our
engineering team to ensure interoperability between the operating
systems and the controllers.

REFERENCES AND NOTES

1. Information Systems -- Small Computer Systems Interface-2
 (SCSI-2), ANSI X1.131-1994 (New York: American National

 Standards Institute, 1994).

2. D. Patterson, G. Gibson, and R. Katz, "A Case for Redundant
 Arrays of Inexpensive Disks (RAID)," Report No. UCB/CSD
 87/391 (Berkeley: University of California, December 1987).

3. The RAID level 5 small-write penalty results when a small
 write operation does not write all the blocks associated with
 a parity block. This situation requires disk reads to
 recalculate parity that must then be written back to the RAID
 level 5 unit to achieve data redundancy.

4. P. Massiglia, ed., The RAIDbook: A Source Book for Disk Array
 Technology, 4th ed. (St. Peter, Minnesota: The RAID Advisory
 Board, September 1994).

5. P. Biswas, K. Ramakrishnan, D. Towsley, and C. Krishna,
 "Performance Analysis of Distributed File Systems with
 Non-Volatile Caches," ACM Sigmetrics (1993).

6. Parity RAID unit reconstruction of data and parity from a
 failed array member means regenerating the data
 block-by-block from the remaining array members (see Figure
 6) and writing the regenerated data onto a spare disk.
 Reconstruction restores data redundancy in a Parity RAID
 unit.

7. Metadata is information written in a reserved area of a disk.
 The information, which takes up approximately 0.01 percent of
 the total disk capacity, describes the disk's configuration
 and state with respect to its use in a Parity RAID unit.

8. P. Biswas and K. Ramakrishnan, "Trace Driven Analysis of
 Write Caching Policies for Disks," ACM Sigmetrics (1993).

9. R. Lary and R. Bean, "The Hierarchical Storage Controller, A
 Tightly Coupled Multiprocessor as Storage Server," Digital
 Technical Journal, vol. 1, no. 8 (February 1989): 8-24.

BIOGRAPHY

Stephen J. Sicola Consulting engineer Stephen Sicola is a
member of the the Array Controller Group in the Storage Business
Unit. He is working on the next generation of controllers and was
the technical leader for the current StorageWorks controller
product set. In earlier work, Steve developed software and
hardware for such products as the HSC, KDM70, and advanced
development controller projects. Steve joined Digital in 1979
after receiving a B.S.E.E. from Stanford University. He received
an M.S.C.E. from the National Technological University in 1992.

TRADEMARKS

The following are trademarks of Digital Equipment Corporation: CI,
DEC, DEC OSF/1, Digital, HSC, HSC50, HSC60, HSC70, HSC90, HSJ, HSZ,
KDM, OpenVMS, StorageWorks, VAX, and VAXcluster.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

i960 is a trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines.

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

