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ABSTRACT

The HS series of StorageWorks array controllers is a new family 
of Digital products that includes models for both open systems 
and systems that use Digital's proprietary buses. The HS-series 
controllers combine performance, availability, and reliability in 
total storage subsystem solutions that use industry-standard 
storage devices. The architecture and design of StorageWorks 
array controllers represents a balance between the market 
requirements and the available technology. The engineering 
trade-offs led to an innovative design that incorporates product 
features such as a dual-active controller configurations, 
write-back caching, Parity RAID technology, and SCSI-2 device 
handling.

INTRODUCTION

The HS series of StorageWorks array controllers, a new addition 
to Digital's storage subsystem family, supports an open systems 
environment by allowing the attachment of industry-standard Small 
Computer Systems Interface (SCSI-2) devices to the controller.[1] 
Moreover, these controller products yield high availability and 
high performance. This paper describes the architecture and the 
design of the HSJ30, HSJ40, HSD30, and HSZ40 StorageWorks array 
controllers. These controllers interface to host computers by 
means of existing Digital interconnects, i.e., the Computer 
Interconnect (CI) and the Digital Storage System Interconnect 
(DSSI), as well as a SCSI-2 host interconnect to VAX, Alpha, and 
most other computers in the industry. The paper documents the 
design and development trade-offs and describes the resulting 
controllers and their features.

StorageWorks array controllers represent a significant change 
from Digital's original Hierarchical Storage Controller (HSC) 
subsystem, the HSC50 controller, which was designed in the late 
1970s, and also from other Digital controllers such as the HSC60, 
HSC70, HSC90, and KDM70 controllers. The StorageWorks controllers 
discussed in this paper were designed to meet the following 
product goals:

    1.  Open systems capability.  The goals for open systems 
        capability were to use industry-standard storage devices 
        attached to the controllers and to use an 
        industry-standard host interconnect for one controller 
        model. Using industry-standard devices would provide 
        investment protection for customers because they would 



        not have to change devices when a new controller was 
        introduced or when they changed controller modules to use 
        a different host interconnect. Industry-standard devices 
        would also reduce overall subsystem cost because of the 
        competitive nature of the storage device industry. The 
        long-term use of both Digital and non-Digital devices was 
        desired to provide a wide variety of device choices for 
        customers. The use of an industry-standard host 
        interconnect would allow StorageWorks controllers to be 
        used with Digital and non-Digital host computers, further 
        expanding the open systems capability. The SCSI-2 
        interconnect was chosen as the device interface and the 
        host interface over other industry-standard interconnects 
        for cost and strategic reasons.

    2.  High availability.  The goals for high availability 
        included both controller fault tolerance and storage 
        (disk configuration) fault tolerance. 

        Controller fault tolerance was achieved by developing a 
        dual-redundant controller configuration in combination 
        with new StorageWorks enclosures that provide redundant 
        power supplies and cooling fans. The goal of the 
        dual-redundant configuration was to have the surviving 
        controller automatically assume control of the failed 
        controller's devices and provide I/O service to them. As 
        a side benefit, such a configuration would provide load 
        balancing of controller resources across shared device 
        ports.

        The storage fault-tolerance goal was to develop firmware 
        support for controller-based redundant array of 
        inexpensive disks (RAID).[2] The initial Parity RAID 
        implementation incorporated the best attributes of RAID 
        levels 3 and 5. The design provided the basis for later 
        implementations of other forms of RAID technology, 
        notably mirroring. Parity RAID supports the goal of 
        storage fault tolerance by providing for continued I/O 
        service from an array of several disks in the event that 
        one disk fails. StorageWorks packaging that provides 
        redundant power supplies and cooling should be combined 
        with the Parity RAID technology to extend storage fault 
        tolerance.

    3.  High performance.  The goals for high performance were to 
        specify controller throughput (the number of I/O 
        operations per unit of time), latency (responsiveness), 
        and data transfer rate (controller bandwidth) for each of 
        the three controller platforms: CI, DSSI, and SCSI. The 
        throughput was specified in the maximum number of read 
        and write requests executed per second. The controllers 
        had to speed up the response time for host I/O operations 
        and thus deliver data with lower command latency than the 
        HSC controllers. StorageWorks controllers had to achieve 



        the highest possible data transfer rate and were to do so 
        on a common platform. 
    
        The platform-specific controller throughput goals were as 
        follows. The initial goal for the CI-to-SCSI controller 
        was 1,100 read requests per second; the long-term goal 
        was 1,500 to 1,700 read requests per second. The initial 
        goal for the DSSI-to-SCSI controller was 800 read 
        requests per second; the long-term goal was 1,300 read 
        requests per second. The initial goal for the 
        SCSI-to-SCSI controller was 1,400 read requests per 
        second; the long-term goal was 2,000 read requests per 
        second. The controller throughput for write operations 
        was slightly lower.

        To reduce latency, the controller hardware and firmware 
        implemented controller I/O request caching. Designers 
        initially decided to include 16 to 32 megabytes (MB) of 
        cache memory on a separate optional cache module. Read 
        caching was the beginning goal for the project; however, 
        write-back caching was added during product development 
        as a result of RAID technology investigations. 

        Another approach to reduce latency was to develop 
        controller-based disk striping, i.e., implement the RAID 
        level 0 technology.[2] Specific goals were to achieve 
        parallel access to all RAID level 0 array members for 
        read and write operations and to streamline firmware to 
        increase RAID level 0 performance.

        The Parity RAID performance goal was to overcome the 
        well-known weaknesses of RAID level 3 (i.e., poor 
        transaction throughput) and RAID level 5 (poor 
        small-write performance) and to approach RAID level 0 
        striped array performance for both small and large read 
        and write requests.[2] A combination of hardware-assisted 
        parity computations and write-back caching helped achieve 
        this goal. Parity calculations in hardware reduced 
        firmware overhead to complete RAID level 5 write 
        operations. Write-back caching minimized the effects of 
        the RAID level 5 small-write penalty.[3] To meet the 
        needs of customers who require high data transfer rates 
        with RAID, RAID level 3-style algorithms must be added 
        for the Parity RAID design. 

        A common controller processing core had to be architected 
        and designed to meet the performance needs of all the 
        planned StorageWorks controllers (based on host interface 
        capabilities). The platform had to execute the same base 
        firmware, coupling new host interface firmware to the 
        specific platforms. A common platform was believed to 
        ease product development and to maximize reuse of 
        firmware for the same "look and feel" in all products.



OPEN SYSTEMS CAPABILITY

For StorageWorks controllers to enter the open systems market, 
product designers had to consider the following aspects of open 
systems in the controller definition: the use of 
industry-standard device interconnects and industry-standard 
devices attached to the controller, and the use of 
industry-standard and Digital host interconnects.

SCSI-2 Device Interconnect

The SCSI-2 interconnect was chosen for the device interconnect 
because of its wide acceptance in the computer industry. During 
the controller definition phase, the StorageWorks packaging group 
was concurrently designing and building storage device enclosures 
called shelves that would house up to seven 3.5-inch devices or 
two 5.25-inch devices. These shelves, connected to the 
controller, would allow a wide variety of SCSI-2 devices to be 
incorporated and would do so at a low cost because of the 
widespread use of SCSI-2 as a device interconnect.

StorageWorks controllers were designed to support the following 
types of SCSI-2 devices: 

    o   Disk -- rotating spindle disk drives and solid-state 
        disks

    o   Tape -- individual tape drives, tape loaders, and 
        jukeboxes that contain robotic access to multiple drives 
        from a media library

    o   CD-ROM 

    o   Optical -- individual disks and jukeboxes that contain 
        robotic access to multiple drives from a media library
            
            
StorageWorks Controllers in System Environments
                              
The desire to produce a controller with an open system host 
interconnect was coupled with a commitment to protect the 
investments of existing Digital customers who currently use CI 
and DSSI host interconnects. The strategy was to produce CI, 
DSSI, and SCSI variants of the StorageWorks array controller, all 
based on a common platform. As in the selection of the device 
interconnect, the SCSI-2 host interconnect variant was chosen 
because of its widespread use and low cost.

The controllers for the CI, DSSI, and SCSI interconnects were 
named the HSJ30/HSJ40, the HSD30, and the HSZ40, respectively. 
The designations of "30" and "40" represent a code for the number 
of device ports attached to the controller. The HSJ30 and HSD30 



controllers have three device ports each, whereas the HSJ40 and 
HSZ40 have six device ports each. The number of device ports 
selected for each controller type was based on (1) the overall 
capability of the host port interconnect to support the aggregate 
capability of a number of device ports and (2) the desire to 
amortize controller cost against as many attached devices as 
possible.

StorageWorks controller configurations depend on the controller 
host interface. Marked differences exist in the configurations 
supported by CI-based OpenVMS VAXcluster configurations, 
DSSI-based OpenVMS VAXcluster configurations, and SCSI-based 
configurations in OpenVMS, DEC OSF/1, and other industry system 
environments. The basic differences are the number of hosts 
connected and whether or not other storage devices can be on the 
same host interconnect as the controller and the other hosts.

The CI configuration supports up to 32 nodes per bus. Each node 
may be either a storage controller (i.e., an HSJ30, an HSJ40, or 
an HSC device) or a host computer (i.e., a VAX or an Alpha 
system). 

The DSSI configuration supports up to 8 nodes per bus. Each node 
may be either a storage controller (i.e., an HSD30 or an HSD05), 
a storage element (e.g., an RF73 device), or a VAX or an Alpha 
host computer. 

The SCSI configuration supports up to 8 targets per bus. The 
HSZ40 controller, with its standard SCSI-2 host interface, may be 
connected to Digital Alpha computers (i.e., DEC 3000 and DEC 
7000/10000 computers running the DEC OSF/1 operating system), Sun 
Microsystems computers, Hewlett-Packard computers, and IBM 
computers. Digital qualifies the HSZ40 controller for operation 
with additional vendors' systems according to market demand.

     
HIGH AVAILABILITY

To meet the goals of controller and storage fault tolerance, the 
designers of StorageWorks controllers developed a number of 
scenarios from which the controller can be fault tolerant with 
respect to failures in controller or attached storage components. 
The first aspect of fault tolerance considered is that of 
controller fault tolerance; the second is configuration fault 
tolerance.
     

Controller Fault Tolerance

Designers achieved controller fault tolerance by investigating 
the common faults that the controller could tolerate without 
requiring extreme design measures and incurring high costs. The 
results of this investigation drove the design of what became the 
dual-redundant HS-series controller configuration. This 



configuration incorporates several patented hardware and firmware 
features (patent pending). 

The following faults can exist within a StorageWorks controller 
and the attached StorageWorks packaging and do not make host data 
unavailable:

    o   Controller failure.  In a dual-redundant configuration, 
        if one controller fails, all attached storage devices 
        continue to be served. This is called failover. Failover 
        occurs because the controllers in a dual-redundant 
        configuration share SCSI-2 device ports and therefore 
        access to all attached storage devices. If failover is to 
        be achieved, the surviving controller should not require 
        access to the failed controller. 
    
    o   Partial memory failure.  If portions of the controller 
        buffer and cache memories fail, the controller continues 
        normal operation. Hardware error correction in controller 
        memory, coupled with advanced diagnostic firmware, allows 
        the controller to survive dynamic and static memory 
        failures. In fact, the controller will continue to 
        operate even if a cache module fails. 

    o   Power supply or fan failure.  StorageWorks packaging 
        supports dual power supplies and dual fans. HS-series 
        controllers can therefore be configured to survive a 
        failure of either of these components.

    o   SCSI-2 device port failure.  A failure in a single SCSI-2 
        device port does not cause a controller to fail. The 
        controller continues to operate on the remaining device 
        ports. 

The controller must be able to sense the failures just listed in 
order to notify the host of a fault-tolerant failure and then to 
continue to operate normally until the fault is repaired. The 
designers deemed this feature vital to reducing the time during 
which a controller configuration must operate with a failure 
present. 

Another requirement of fault-tolerant systems is the ability to 
"hot swap" or "hot plug" components, i.e., to replace components 
while the system is still operating and thus to not cause the 
system to shut down during repairs. The designers made the 
controller and its associated cache module hot swappable. That 
is, one controller in the dual configuration can be replaced 
without shutting down the second controller, and the second 
controller continues to service the requests of the attached 
hosts. This feature, coupled with the hot-swap capability of 
StorageWorks devices, creates highly available systems.
     

Dual-redundant Controller Configuration.  Like all StorageWorks 



components, HS-series controllers are packaged in StorageWorks 
shelves. The StorageWorks controller shelf contains a backplane 
that accommodates one or two controllers and their associated 
cache modules, as well as SCSI-2 device port connectors. The 
packaging is common to all system environments. HS-series 
controllers mounted in a single shelf may be combined in pairs to 
form a dual-redundant controller configuration (shown in Figure 
1) in which both controllers can access the same set of devices. 

[Figure 1 (StorageWorks Controllers: System Block Diagram) is not 
available in ASCII format.]

Figure 2 shows two HS-series controllers installed in a 
StorageWorks controller shelf in a dual-redundant configuration. 
Figure 3 shows two dual-redundant controller configurations 
mounted in a StorageWorks cabinet with several device shelves. 
The controllers connect to storage devices with cables that 
emerge from the controller shelf and attach to the device 
shelves. 

[Figure 2 (StorageWorks Controller Shelf) is a photograph and is 
not available.]

[Figure 3 (StorageWorks Cabinet) is a photograph and is not 
available.]

The designers had to decide how the dual-redundant controller 
configuration could achieve high availability through fault 
tolerance. To meet the high-availability goals, the team 
addressed the concept of controller failover early in the design 
process. One fault-tolerant option considered was to run with a 
"hot-standby" controller that would become operational only if 
the main controller were to fail. A second option was to design a 
dual-active controller configuration in which two controllers 
would operate simultaneously. They would share and concurrently 
use device port buses (not devices), thus balancing the I/O load 
from host computers. 

Both options allow for direct failover of devices without manual 
intervention. The hot-standby controller option requires either 
automatic configuration of the attached devices when the 
hot-standby controller becomes operational or nonvolatile (i.e., 
impervious to power loss) shared memory to hold the configuration 
information. The dual-active controller option requires that each 
controller have detailed knowledge about the other controller and 
the device state; it does not require that the controllers share 
a memory. The designers chose the second option because it 
provided load balancing and therefore potentially greater 
performance. However, they faced the challenge of designing a 
backplane and an interface between the controllers that would 
achieve the dual-active configuration but would not require a 
shared memory. The result of the design effort was the 
StorageWorks controller shelf.
     



StorageWorks Controller Shelf.  The StorageWorks controller shelf 
is an architected enclosure that allows a pair of StorageWorks 
controllers and their respective cache memory modules to be 
placed into the dual-redundant configuration, as shown in Figure 
4. A cache module is attached to each controller for performance 
purposes. The controller shelf contains a backplane that includes 
intercontroller communication, control lines between the 
controllers, and shared SCSI-2 device ports. Since the two 
controllers share SCSI-2 device ports, the design enables 
continued device availability if one controller fails. 

[Figure 4 (StorageWorks Controller Backplane: Controllers in a 
Dual-redundant Configuration) is not available in ASCII format.]

The backplane contains a direct communication path between the 
two controllers by means of a serial communication universal 
asynchronous receiver/transmitter (UART) on each controller. The 
controllers use this communication link to inform one another 
about

    o   Controller initialization status.  In a dual-redundant 
        configuration, a controller that is initializing or 
        reinitializing sends information about the process to the 
        other controller. 

    o  "Keep alive" communication. Controllers send keep alive 
        messages to each other at timed intervals. The cessation 
        of communication by one controller causes a failover to 
        occur once the surviving controller has disabled the 
        other controller.

    o   Configuration information.  StorageWorks controllers in a 
        dual-redundant configuration have the same configuration 
        information at all times. When configuration information 
        is entered into one controller, that controller sends the 
        new information to the other controller. Each controller 
        stores this information in a controller-resident 
        nonvolatile memory. If one controller fails, the 
        surviving controller continues to serve the failed 
        controller's devices to host computers, thus obviating 
        shared memory access. The controller resolves any 
        discrepancies by using the newest information. 

    o   Synchronized operations between controllers.  Specific 
        firmware components within a controller can communicate 
        with the other controller to synchronize special events 
        between the hardware on both controllers.  Some examples 
        of these special events are SCSI bus resets, cache state 
        changes, and diagnostic tests.

The other signals on the backplane pertain to the current state 
of the configuration within the controller shelf and to specific 
control lines that determine the operation of the dual-redundant 



controller configuration. The backplane state and control signals 
include

    o   Status about the presence of a controller's cache module. 
        Each controller can sense the presence or absence of its 
        cache to set up for cache diagnostics and cache 
        operations.

    o   Status about the presence of a second controller, which 
        indicates a dual-redundant configuration. Each controller 
        can sense the presence or absence of the other controller 
        in a dual-redundant configuration. This assists in 
        controller setup of dual-controller operation as well as 
        general controller initialization of the dual-redundant 
        configuration.

    o   Status about the presence of the second controller's 
        cache. Each controller can sense the presence or absence 
        of the other controller's cache for dual-controller setup 
        purposes.

    o   The "KILL" signal.  In a dual-redundant configuration, 
        each controller has the capability to use the KILL 
        control signal to cause a hardware reset of the other 
        controller. However, once one controller asserts the KILL 
        signal, the other controller loses the capability. The 
        KILL signal ensures that a failed or failing controller 
        will not create the possibility of data corruption to or 
        from attached storage devices.
  
        The KILL signal denotes that failover to the surviving 
        controller should occur. A controller asserts the KILL 
        signal when the other controller sends a message that it 
        is failing or when normally scheduled keep alive 
        communication from the other controller ceases. The KILL 
        signal is also used when both controllers decide to reset 
        one another, e.g., when the communication path has 
        failed. 

        The designers had to ensure that only one controller 
        could succeed in the KILL operation, i.e., that no window 
        existed where both controllers could use the KILL signal. 
        After firmware on a controller asserts the KILL signal to 
        its dual-redundant partner, the KILL recognition 
        circuitry within the controller that asserted the signal 
        is disabled. The probability of true simultaneous KILL 
        signal assertion was estimated at 10**-20, based on 
        hardware timing and the possibility of synchronous 
        dual-controller operation.

    o   The cache LOCK signals. The cache LOCK signals control 
        access to the cache modules. The dual-controller 
        architecture had to prevent one controller from gaining 
        access to a cache module that was being used by the other 



        controller and had to allow the surviving controller to 
        access the failed controller's cache. The access control 
        had to be implemented in either firmware or hardware.

        A firmware solution would involve a software locking 
        mechanism that the controllers would recognize and 
        cooperatively use to limit cache module access to the 
        associated controller. This method had an inherent 
        problem: firmware alone may not prevent inadvertent cache 
        access by a failing controller. The designers therefore 
        had to implement a hardware lock mechanism to prevent 
        such inadvertent access.

        The hardware lock mechanism was implemented with control 
        signals from each controller. The signals are utilized by 
        hardware to prevent inadvertent access and by firmware to 
        limit cache module access to the associated controller. 
        From each controller, the designers implemented two LOCK 
        signals that extend individually to each cache module and 
        are visible to both controllers. The cache LOCK signals 
        are illustrated in Figure 4.

        The LOCK signals allow a controller to achieve exclusive 
        access to a specific cache module to ensure data 
        integrity. LOCK signals from a controller that has been 
        "killed" by its dual-redundant partner are reset so that 
        the partner may fail over any unwritten cache data in the 
        write-back cache.

Failover.  Controller failover is a feature of the dual-redundant 
configuration for StorageWorks controllers. Failover of a  
controller's devices and cache to the other controller occurs 
when

    o   A controller fails to send the keep alive message. This 
        situation can occur because of a controller failure in 
        the dual UART (DUART) or in any other non-fault-tolerant 
        portion of the controller module. In this scenario, the 
        surviving controller uses the KILL signal to disable the 
        other controller, communicates to the failed controller's 
        devices, and then serves the failed controller's devices 
        to hosts.
        
        The failover of a controller's cache occurs only if 
        write-back caching was in use before the controller 
        failure was detected. In this case, the surviving 
        controller uses the failed controller's cache to write 
        any previously unwritten data to the failed controller's 
        disks before serving these disks to hosts. When the 
        surviving controller has written the data to disks (i.e., 
        flushed the data), it releases the cache to await the 
        failed controller's return to the dual-redundant 
        configuration through reinitialization or replacement.



    o   A customer desires to change the load balance of one or 
        more devices attached to one controller to the other 
        controller. This specialized use of failover provides a 
        load-balancing feature that the designers considered 
        valuable in a dual-active controller configuration. Load 
        balancing is static in the controller, i.e., devices are 
        allocated to one controller or to the other, not shared 
        dynamically. To change allocation, the system manager 
        must change the preferred path of device access. This is 
        accomplished by accessing either the maintenance port of 
        the controller or the configuration firmware through the 
        host interface (e.g., the diagnostics and utilities 
        protocol for CI and DSSI systems).

    o   The cache module battery is low or has failed. This 
        special case of failover is used in conjunction with 
        Parity RAID operations for the reasons described in the 
        Parity RAID technology portion of the following section. 
        The main issue is to continue to provide as much data 
        protection as possible for Parity RAID disk 
        configurations when the battery on the write-back cache 
        is low or bad.

    o   The controller is unable to communicate with the devices 
        to which it is currently allocated for host operations. 
        This situation can occur if a device port on a controller 
        fails.
            

Storage Fault Tolerance

Storage fault tolerance is achieved by ensuring that power or 
environmental factors do not cause devices to be unavailable for 
host access and by using firmware to prevent a device failure 
from affecting host accessibility.

Environmental Factors.  StorageWorks enclosures provide for 
optional redundant power supplies and cooling fans to prevent 
power or fan failures from making devices unavailable. The SCSI-2 
cables that connect device shelves to the controller shelf carry 
extra signals to alert the controller to power supply or fan 
failures so that these conditions may be reported to host 
computers. The enclosures must contain light-emitting diodes 
(LEDs) to allow a controller to identify failed devices.
In addition, a cache module can fail, and the controller will 
continue to operate.

RAID Technology.  To prevent a device failure from affecting host 
access to data, the designers introduced a combined firmware and 
hardware implementation of RAID technology.[2] The designers had 
to decide which RAID level to choose and what type of hardware 



(if any) was required for the implementation.

The designers considered RAID levels 1 through 5 as options for 
solving the problem of disk failures that affect data 
availability. RAID level 1 (disk mirroring, which is depicted in 
Figure 5a) was rejected because of its higher cost, i.e., the 
cost of parts to implement the mirroring.[2] Each disk to be 
protected implies an inherent cost of one additional housed, 
powered, and attached disk. RAID level 1 was also discounted 
because software-based solutions were available for many of the 
hosts for which the HS-series controllers were initially 
targeted.

[Figure 5 (Mapping for RAID Levels 1 through 5) is not available 
in ASCII format.]

RAID levels 2 through 4, illustrated in Figures 5b through 5d, 
were rejected because they do not provide good performance over 
the entire range of I/O workloads for which the controllers were 
targeted.[4] In general, these RAID levels provide high, 
single-stream data transfer rates but relatively poor transaction 
processing performance. 

RAID level 5 in its pure form was rejected because of its poor 
write performance, especially for small write operations.[2] The 
designers ultimately chose RAID level 5 data mapping (i.e., data 
striping with interleaved parity, as illustrated in Figure 5e) 
coupled with dynamic update algorithms and write-back caching to 
overcome the small-write penalty. This implementation is called 
Parity RAID.

An HS-series Parity RAID array appears to hosts as an economical, 
fault-tolerant virtual disk unit. A Parity RAID virtual disk unit 
with a storage capacity equivalent to that of n disks requires 
n + 1 physical disks to implement. Data and parity are 
distributed (striped) across all disk members in the array, 
primarily to equalize the overhead associated with processing 
concurrent small write requests.[2]

If a disk in a Parity RAID array fails, its data can be recovered 
by reading the corresponding blocks on the surviving disk members 
and performing a parity comparison (using exclusive-OR [XOR] 
operations on data from other members). Figure 6 illustrates this 
regeneration of data.[4] 

[Figure 6 (Regenerating Data in a Parity RAID Array with a Failed 
Member Disk) in not available in ASCII format.]

HS-series controller developers overcame a number of challenges. 
Foremost among them was the elimination of the RAID level 5 write 
hole. Parity RAID with its RAID level 5 striping is susceptible 
to the RAID level 5 write hole. A write hole is data corruption 
that occurs when all the following events take place.



    o   A controller failure occurs with a host's write request 
        outstanding.

    o   Either the updated data or the updated parity for the 
        host's write request has been written to disk but not 
        both.

    o   A failure of a different disk occurs after the controller 
        failure has been repaired.

   To eliminate this write hole, designers had to develop a 
method of preserving information about ongoing RAID write 
operations across power failures such that it could be conveyed 
between partner controllers in a dual-redundant configuration.

Designers decided to use nonvolatile caching of RAID write 
operations in progress.[5] Three alternatives were considered:

    1.  An uninterruptible power supply (UPS) for the controller, 
        cache, and all attached disk devices. This choice was 
        deemed to be a costly and unwieldy solution because of 
        the range of possible requirements. The indeterminate 
        amount of data in the cache to be written and the power 
        consumption of a wide variety of devices would 
        necessitate a very large backup power source to ensure 
        enough time for all cached write data to be written to 
        attached devices.

    2.  A battery in the controller and device enclosures (i.e., 
        shelves) to allow enough time for the writing of cached 
        data in the event of a power failure. StorageWorks device 
        enclosures can accommodate either redundant power 
        supplies or one power supply and one backup battery for 
        configurations that do not require redundancy. There is 
        no provision for both redundant power supplies and a 
        battery. This conflict between fault-tolerant 
        StorageWorks shelf configurations with dual power 
        supplies and the desire to add a battery for write-back 
        caching was unacceptable to the designers because of the 
        loss of power redundancy to gain write-back cache 
        integrity. 

    3.  A controller-based nonvolatile cache. The options for 
        controller-based nonvolatile caching included (a) a 
        battery-protected cache for write data, (b) an additional 
        nonvolatile random-access memory (NVRAM) on the 
        controller to journal RAID writes, and (c) a 
        battery-protected cache for both read and write data. 

        With a battery-protected write cache, data must be copied 
        if it is to be cached for subsequent read requests. 
        Designers deemed the potential performance penalty 
        unacceptable. 



        Using controller NVRAM as a RAID write journal not only 
        closes the RAID level 5 write hole but also provides a 
        small write cache for data. This approach also requires 
        data copying and creates an NVRAM access problem for the 
        surviving controller to the failed controller NVRAM to 
        resolve any outstanding RAID write requests. 

        The third controller-based nonvolatile cache option, to 
        battery-backup the entire cache, solved the copy issue of 
        option 3a and the failover issue of option 3b.

The designers chose option 3c, the battery-protected read/write 
cache module. A totally nonvolatile cache had the advantage of 
not requiring write-cache flushing, i.e., copying data between 
the write cache and the read cache after the write data has been 
written to devices. Segregated cache approaches (part 
nonvolatile, part volatile) would have required either copying or 
discarding data after write-cache flushing. Such approaches would 
have resulted in a loss of part of the value of using the caching 
algorithm by allowing only read caching of read data already 
read. Another benefit of a nonvolatile read/write cache is 
failover of the cache module in the event of a controller 
failure. This further reduces the risk associated with a RAID 
level 5 write hole because unwritten write operations to Parity 
RAID arrays can be completed by the surviving controller after 
failover.

To achieve a total nonvolatile cache, the designers opted for the 
battery solution, using two 3-by-5-by-0.125-inch lead-acid 
batteries that supply up to 100 hours of battery backup for a 
32-MB cache module. The batteries eliminated the need for a 
special (and costly) nonvolatile memory write cache and allowed 
data hold-up after power failure. The designers chose lead-acid 
batteries over NiCAD batteries because of their steady power 
retention and output over time. This option protects against most 
major power outages (of five minutes to five days) and all minor 
power outages (of less than five minutes). Most power outages 
(according to studies within Digital) last less than five minutes 
and are handled in the same manner as major outages, that is, by 
flushing write data immediately after power has been restored to 
the controller configuration. Battery status is provided to 
firmware, which uses this information to make policy decisions 
about RAID arrays and other virtual disk units with write-back 
caching enabled. 

For an HS-series controller to support Parity RAID, its cache 
module must have batteries installed. The batteries make the 
cache nonvolatile and enable the algorithms that close the RAID 
level 5 write hole and permit the use of the write-back cache as 
a performance assist, both vital for proper Parity RAID 
operation. If the controller firmware detects a low- or 
bad-battery condition, write-back caching is disabled. The 
controller that detects the condition tries to fail over Parity 
RAID units to the other controller in the dual-redundant 



configuration to keep the units available to hosts. If the other 
controller cache module has a low- or bad-battery condition, the 
Parity RAID unit is made unavailable to hosts to protect against 
data loss or data corruption should a power failure occur. When 
the batteries are no longer low, Parity RAID units are again made 
available to hosts. Any Parity RAID units that had been failed 
over to the other controller would fail back, i.e., return, to 
the controller that originally controlled them. The module 
hardware and firmware support read caching regardless of the 
presence of a battery.

After solving the RAID level 5 write-hole problem, the designers 
decided to automate the Parity RAID recovery process wherever 
possible. This goal was adopted so that customers would not have 
to understand the technology details in order to use the 
technology in the event of a failure. StorageWorks controller 
firmware developers, therefore, chose to add automatic Parity 
RAID management features rather than require manual intervention 
after failures. Controller-based automatic array management is 
superior to manual techniques because the controller has the best 
visibility into array problems and can best manage any situation 
given proper guidelines for operation. 

An important feature of Parity RAID is the ability to 
automatically bring a predesignated disk into service to restore 
data protection as quickly as possible when a failure occurs. 
Other controllers in the industry mandate configurations with a 
hot-standby disk, i.e., a spare disk, dedicated to each Parity 
RAID unit. A hot-standby disk is powered and ready for firmware 
use if an active member disk of its Parity RAID unit fails. This 
concept is potentially wasteful since the probability that 
multiple Parity RAID units will have simultaneous single-member  
disk failures is low. The designers therefore had the options of 
making spare disks available on a per-Parity RAID unit basis or 
having a pool of spares, i.e., a spare set, that any configured 
Parity RAID unit could access. The designers chose the pool of 
spares option because it was simpler to implement and less costly 
for the customer, and it offered the opportunity to add selection 
criteria for spare set usage and thus maximize either performance 
or capacity efficiency.

To allow more flexibility in choosing spare set members, 
designers made two spare selection options available: best fit 
and best performance. The best fit option allows for disk devices 
of different sizes to compose the pool of spares. When a spare 
disk is needed after a member of a Parity RAID unit fails, the 
device with the best fit, that is, whose size most closely 
matches that of the failed disk (typically of the same size but 
possibly of greater capacity), is chosen. The best performance 
option can reduce the need for physical reconfiguration after a 
spare is utilized if a spare attached to the same device port as 
the failed array member can be allocated. The best performance 
option maintains operational parallelism by spreading array 
members across the controller device ports after a failure and 



subsequent spare utilization.

These features allow automatic sparing of failed devices in 
Parity RAID units and automatic reconstruction after a spare 
device has been added to the Parity RAID unit.[6] Furthermore, 
any drive of at least the size of the smallest member of a Parity 
RAID unit is a candidate spare, which reduces the need for like 
devices to be used as spares. (Typically, however, spare set 
members are like members.)

A Parity RAID unit with a failed member will become unavailable 
and lose data if a second failure occurs. The HS-series automatic 
sparing feature reduces the window of possible data loss to the 
time it takes to reconstruct one Parity RAID unit. Mean time 
between data loss (MTBDL) is a combination of the mean time to 
repair (MTTR) and the failure rate of a second device in a Parity 
RAID unit. The automatic sparing feature reduces the MTTR and 
thus increases the MTBDL. Data loss can occur only in the highly 
unlikely event that a failure occurs in another RAID set member 
before the reconstruction completes on the chosen spare. During 
Parity RAID reconstruction, the controller immediately makes the 
host read or write request to the reconstructing member redundant 
by updating parity and data on the spare after the host read or 
write operation. Parity RAID firmware quickly reconstructs the 
rest of the Parity RAID unit as a background task in the 
controller. If the member that is being reconstructed happens to 
fail and other spare set members remain, reconstruction on a new 
spare begins immediately, further reducing the probability of 
data loss.

Parity RAID member disk failure declaration is key to the 
efficient use of spares and to preventing unwarranted use of 
spares. If a write command to a RAID set member fails, RAID 
firmware assumes that the SCSI-2 disk drive has exhausted all 
internal methods to recover from the error. SCSI-2 disk drives 
automatically perform bad block replacement on write operations 
as long as there is space available within the disk drive 
revector area (the area where spare data blocks can be mapped to 
a failed block). The designers chose this method over more 
complex retry algorithms that might encounter intermittent 
failure scenarios. Empirical information related to previous 
storage devices showed that localized write failures are rare and 
that this strategy was sound for the majority of disk access 
failures.

When read failures occur, data is regenerated from the remaining 
array members, and a forced bad block replacement is performed. 
Metadata on the disk is used to perform this function atomically, 
that is, to perform the bad block replacement even if a power 
failure occurs during the replacement.[7] If the disk cannot 
replace the block, then the Parity RAID member disk is failed out 
and an attempt is made to choose a suitable spare from the spare 
set. If no spare is available, the Parity RAID unit operates in 
reduced mode, regenerating data from the failed member when 



requested by the hosts.[4]

Parity RAID firmware uses the metadata to detect a loss of data 
due to catastrophic cache failure, inappropriate device removal, 
or cache replacement without prior flush of write data. The 
designers considered it important that the controller firmware be 
able to detect these data loss conditions and report them to the 
host computers.
     
The failure scenarios just described occur infrequently, and the 
StorageWorks Parity RAID firmware is able to recover after such 
failures. During a typical normal operation, the main challenge 
for Parity RAID firmware is to achieve a high level of 
performance during write operations and a high level of 
controller performance in general. 

HIGH PERFORMANCE 

As discussed earlier, the performance goals for the StorageWorks 
controllers were in the areas of throughput and latency. 
Bandwidth goals were based on the architecture and technology of 
the controller platform. The designers met the performance goals 
by producing a controller that had a low command overhead and 
that processed requests with a high degree of parallelism. The 
firmware design achieves low overhead by means of the algorithms 
running on the controller, coupled with RAID and caching 
technology. The hardware design that allows for low command 
overhead and high data transfer rates (bandwidth) is discussed in 
the section Common Hardware Platform.

Command Processing

The StorageWorks designers maximized the number of requests the 
controller can process per second by reducing the command 
processing latency within the controller firmware. The firmware 
utilizes controller-based caching and also streamlined command 
processing that allows multiple outstanding commands to be 
present in the controller. 

To meet the varying needs of customer applications, the 
controller supports both Parity RAID and RAID level 0. The 
designers decided to include RAID level 0 as a controller feature 
because of its inherent parallelism, even though RAID level 0 is 
not fault tolerant without external redundancy.  

StorageWorks controllers service all device types, but the 
designers felt that disk device performance was the key metric 
for determining how well a controller supports RAID technology. 
The controller firmware was designed to efficiently control 
individual devices (commonly referred to as "just a bunch of 
devices" [JBOD]) and Parity RAID, prioritizing requests to each 
of the SCSI-2 device ports on the controller. StorageWorks 



controllers comply with SCSI-2 protocols and perform advanced 
SCSI-2 functions, such as tagged queuing to all attached SCSI-2 
storage devices for greater performance.[1]

Discussions of the RAID level 0 technology and of how the 
designers used Parity RAID technology to overcome some of the 
performance bottlenecks follow. 
    

Striping -- RAID Level 0

Digital has used RAID level 0 technology, that is, striping, in 
systems for at least five years, in its host computers using 
software as well as in its controllers. Striping allows a set of 
disks to be treated as one virtual unit. Device data blocks are 
interleaved in strips, i.e., contiguous sets of blocks, across 
all disks, which provides high-speed parallel data access. Figure 
7 illustrates the mapping for a RAID level 0 array.[4] Since a 
striped disk unit inherently lacks fault tolerance (i.e., if one 
device in the set fails, data is lost), controller-based striping 
is typically used in conjunction with host-based mirroring or in 
cases where data can be easily reproduced. Stripe sets achieve 
high performance because of the potential for parallelism by 
means of the device and data organization. The key difference 
between RAID level 0 and RAID levels 3 and higher is that 
striping results in the interdependence of data written to 
different devices. 
     
[Figure 7 (Mapping for a RAID Level 0 Array) is not available in 
ASCII format.]

     
Controller Caching

Caching with StorageWorks controllers was originally read caching 
only. When the designers decided to use a nonvolatile cache to 
eliminate the RAID level 5 write hole, write-back caching on the 
controller became a viable option.

Controller Read Caching.  Read caching was intended to reduce 
latency in the controller by minimizing the need to access 
devices continuously for repeated host read requests to the same 
locations on attached devices. Read caching must also address the 
issue of how to handle write data for later use. The design could 
have incorporated on-board controller memory to hold write data. 
However, this would require copying the write data to the read 
cache after the write data had been written to the devices and 
would result in inefficient use of the read cache. Therefore, the 
designers decided to have the read cache serve as a write-through 
cache as well. Read caching would be disabled/enabled per logical 
unit presented to the host instead of having global read caching, 
where a logical unit is one or more devices configured as one 
virtual device. Thus, customers can specify for which virtual 



devices they want caching enabled. 

The read and write-through caching firmware receives requests 
from other parts of the controller firmware (e.g., a host port, a 
device port, and the Parity RAID firmware) and proceeds as 
follows. 
        
For reads requests, the caching firmware provides

    1.  The data pointers to the cached request, i.e., the cache 
        hit 

    2.  The data pointers for part of the request, i.e., a 
        partial cache hit, which means that the remaining data 
        must be retrieved from the device or devices being 
        requested 

    3.  A status response of cache miss, which means that storage 
        management must retrieve the data from the device or 
        devices being requested

For write requests, the caching firmware offers the cache manager 
data from the request. The cache manager places the previous data 
pointers into the read cache tables after the data is written 
through the cache to the devices. Firmware tells the device port 
hardware where to find write data, and the port hardware 
transfers the data.

Read caching in the first version of the controller firmware 
allowed the controller to achieve the initial throughput goals 
across the three controller platforms. The current software 
version, version 2.0, was shipped in October 1994 and exhibits 
even greater throughput performance. Table 1 shows the I/O 
performance for the three StorageWorks controller platforms with 
read caching enabled.

Table 1  StorageWorks Controller I/O Performance with Read Caching 

     
                Read Requests   Write Requests 
Controller      per Second      per Second
-----------     -------------   --------------
HSJ30/HSJ40     1,550           1,050
HSD30           1,000             800
HSZ40           2,250           1,500

Write-back Caching -- Performance Aspects.  As noted earlier, 
when the cache module contains batteries, the memory is 
nonvolatile for up to 100 hours. The StorageWorks controller can 
use the nonvolatile cache to increase controller performance by 
reducing latency for write request Parity RAID performance to a 
level similar to that of RAID level 0 (simple disk striping). The 



controller can also utilize the write-back cache to reduce the 
latency of JBOD and RAID level 0 disk configurations. As with 
read caching, write-back caching is disabled/enabled per logical 
unit.

The write-back caching firmware controls the usage of both a 
surviving controller's cache module and a failed controller's 
cache module. When it receives a write request, the controller 
places the data in the cache, marks the request as complete, and 
writes the data based on internal controller firmware policies 
(write-back caching). To provide greater performance during 
Parity RAID operations than simple write-back caching could 
provide, the write-back cache firmware is also tied to the Parity 
RAID firmware.

In addition to dealing with the continual problem of controller 
latency on write commands, designers had to overcome the RAID 
level 5 small-write penalty with parity updates to RAID set 
members. Write-back caching was chosen over RAID level 3 hardware 
assists as a Parity RAID strategy because RAID level 3 does not 
provide a wide range of benefits for all customer workloads. 
Write-back caching provides latency reductions for RAID and 
non-RAID configurations. Write-back caching also increases 
write-request throughput. For example, the published performance 
numbers for write throughput with write-back caching enabled in 
version 2.0 firmware appear in Table 2.

Table 2  StorageWorks Controller Write Request Throughput with 
Write-back Caching 

                   Write Requests 
Controller         per Second
-----------        --------------
HSJ30/HSJ40        1,350
HSD30                900
HSZ40              1,850

The use of write-back caching resulted in a 20 to 30 percent 
increase in write throughput for all platforms as compared to 
write-through caching. Before discussing the effect of write-back 
caching on latency for individual devices and for Parity RAID 
arrays, the paper describes how the write-back cache firmware was 
designed and tied directly to Parity RAID firmware. 

The features chosen for write-back caching were extensively 
benchmarked against data integrity issues. The addition of 
settable timers allows customers to flush write data destined for 
devices that are idle for a specific length of time. To reduce 
the number of read/modify/writes required to update parity on 
small write operations, designers tied flush algorithms to RAID. 
Flush algorithms for write-back caching are vital to customer 
data integrity and to latency reduction. The flush algorithms 



actually allow Parity RAID to simulate RAID level 3 operations 
because of the nonvolatile write-back cache.

As mentioned earlier, Parity RAID configurations suffer a penalty 
on small write operations that includes a series of read and 
write operations and XOR operations on blocks of data to update 
RAID parity. The write-back cache firmware was designed with 
specific attributes to enhance Parity RAID write operations in 
general, and not just to enhance small write operations. The 
designers intentionally chose to overcome both the small-write 
penalty and the inherent lack of high bandwidth that Parity RAID 
delivers.

The nonvolatile write-back cache module afforded the firmware 
designers more choices for Parity RAID write request processing 
and data flush algorithms. The designers pursued techniques to 
speed up all write operations by performing write aggregations 
(i.e., combining data from multiple write requests and read cache 
data) in three dimensions:

    1.  Contiguous aggregation, in which the firmware looks for 
        consecutive block requests and ties them together into 
        one device request, thus eliminating separate device 
        requests.
    
    2.  Vertical aggregation, in which the firmware can detect 
        two write operations to the same block, thus eliminating 
        one write operation.

    3.  Horizontal aggregation (for Parity RAID operations only). 
        This type of aggregation occurs when all data blocks 
        within a Parity RAID strip are present in the write-back 
        cache. In such cases, the firmware can write to all RAID 
        set members at once, in combination with the FX chip 
        (discussed later in this section) on-the-fly hardware XOR 
        operations during the RAID set member writes. The 
        original request can cause horizontal aggregation to take 
        place if all blocks within a strip are part of the first 
        write request. The firmware can also perform horizontal 
        aggregation after processing several write requests. In 
        this way, the parity write operation directly follows the 
        data write operations. Horizontal write aggregation 
        potentially cuts physical device access in half when 
        compared to normal RAID write operations that require 
        data members to be read.[2,8] The result is pseudo-RAID 
        level 3 operation, because the write-back cache is 
        combined with the horizontal aggregation cache policy. 

The performance gain for individual disks and for Parity RAID 
arrays from using write-back caching is dramatic, resulting in 
higher write throughput and low latency. The write-back cache 
actually smoothes out differences in performance that are typical 
of workloads that have different read/write ratios, whether or 
not Parity RAID is utilized. 



Figure 8 shows the relative latency for a controller with and 
without write-back caching enabled. The configurations tested 
comprised individual devices and Parity RAID units (in a 
five-plus-one configuration). The performance measurements were 
taken from a version 2.0 HSJ40 array controller. 

[Figure 8 (HSJ40 Array Latency Comparisons) is not available in 
ASCII format.]

Workload 1 has a read/write ratio of 70/30, i.e., 70 percent of 
the requests were read requests and 30 percent were write 
requests. Workload 2 has a read/write ratio of 84/16. Workload 3 
has a ratio of 20/80. In all workloads, the latency for 
individual devices and for Parity RAID units is lower when 
write-back caching is enabled than when only read caching is 
enabled. In fact, when write operations dominate the I/O mix, 
latency for Parity RAID units is the same as for the workloads in 
which read operations are predominant!

RAID/Compare Hardware

StorageWorks controllers contain a hardware Parity RAID and data 
compare accelerator called FX, a gate array that performs 
on-the-fly XOR operations on data buffers. Parity RAID and data 
compare firmware use this gate array to accelerate Parity RAID 
parity calculations and host data compare requests. The FX chip 
is programmed to (1) observe the bus, (2) "snoop" the bus for 
specific addresses, (3) perform the XOR operation to compare the 
associated data on-the-fly with data in a private memory called 
XBUF memory, and (4) write the data back into the XBUF memory.

XOR operations can take place as data is moving from buffer or 
cache memory to device ports or vice versa. The FX can also 
perform direct memory access (DMA) operations to move the 
contents of buffer or cache memory to or from XBUF memory. 

The designers determined that hardware acceleration of XOR 
operations for Parity RAID firmware would speed up RAID parity 
calculations and thus further improve Parity RAID latency and 
throughput. The firmware also supports FX compare operations, 
which eliminates the need for SCSI-2 devices that have 
implemented compare commands and for speeding up compare requests 
from hosts.

Common Hardware Platform

To produce a high-performance controller in all three performance 
dimensions -- latency, throughput, and data transfer rate -- the 
designers of StorageWorks controllers faced the challenge of 
creating a new controller architecture and using new technology. 
In addition, they had to do so at a reasonable cost.



 
Although each has its own specific host interface hardware, the 
CI, DSSI, and SCSI controller variants share a common hardware 
core. Commonality was desired to control the development costs 
and schedules for such large engineering projects. To deliver 
high performance and commonality, the designers investigated 
several controller architecture alternatives. The first 
architecture considered was similar to Digital's HSC50-95 
controller, incorporating similar bus structures, processing 
elements, and memories, but newer technology. Figure 9 shows the 
HSC architecture.[9]

[Figure 9 (Block Diagram of the HSC Architecture) is not 
available in ASCII format.]

The HSC architecture is a true multiprocessor system. It 
contains a private memory for its policy processor, which manages 
the work that is coming from the host port interface and queues 
this work to the device interface modules. Data then flows 
between the host port and device modules to and from hosts. The 
modules have two interfaces (buses) for access to command 
processing and data movement. These buses are called the control 
memory interface and the data memory interface. The policy 
processor queues work to the host port and device modules through 
the control memory interface, and then the modules process the 
data over the data memory interface. 

Using this architecture would have been too expensive. The 
controller cost had to be competitive with other products in the 
industry, most of which currently cost considerably less than the 
HSC controller. The HSC bus architecture required three different 
memory interfaces, which would require three different, 
potentially large memories. The designers had to pursue other 
options that met the cost goals but did not significantly reduce 
performance. They considered single internal bus architectures, 
but during simulation, these options were unable to meet either 
the initial or the long-term cost goals.

Figure 10 shows the controller architecture option that became 
the common hardware base for StorageWorks controllers. This 
architecture contains three buses and two memories. A third small 
memory is used for Parity RAID and data compare operations but 
does not drastically increase controller cost. The architectural 
design allows the policy processor to access one memory while a 
device or host port processor accesses the other memory. 

[Figure 10 (HSx40 Controller Architecture) is not available in 
ASCII format.]

The architecture achieves a lower overall cost than the HSC 
architecture yet achieves similar performance. The new 
architecture, with fewer memories, does not significantly reduce 
the performance, while the newer technology chosen to implement 
the controller enhances performance. The bus bandwidth of the new 



controller is much higher than that of the HSC controller. 
Consequently, a more cost-effective solution that uses a 
less-costly architecture can attain similar to better 
performance.

The extreme integration of hardware to the very large-scale 
integration (VLSI) level allowed for a much smaller enclosure 
than that of the HSC controller, even with a dual-redundant 
controller configuration (see Figure 3). A StorageWorks 
dual-controller configuration measures 56.5 by 20.9 by 43.2 
centimeters (22 by 8 by 17 inches), which is approximately 
one-tenth the size of the HSC controller.

Common Controller Platform.  The common controller platform 
consists of the controller without the associated host port. The 
common core of hardware consists of the policy processor 
hardware, the SCSI-2 device port hardware, and the cache module. 
The controller-specific host port interface hardware includes 
either the CI, the DSSI, or the SCSI interface.

Policy Processor Hardware.  The StorageWorks controller policy 
processor is Intel's 25-MHz i960CA microprocessor, which contains 
an internal instruction cache and is augmented by a secondary 
cache external to the processor. The secondary cache relieves the 
potential bottleneck created by shared memory between the policy 
processor and host/device port processors.

The designers had to make trade-offs in two areas: the memory 
speed/cost and the number of buses. After simulation, the 
external instruction and data cache showed a significant 
performance improvement, given the chosen shared-memory 
architecture. The cache covers the first 2 MB of buffer memory, 
where policy processor instructions and local processor data 
structures reside and where most of the performance gain for the 
policy processor would be achieved.

The policy processor uses the IBUS exclusively to fetch 
instructions and to access the program storage card, the NVRAM, 
the DUART, and the timers.

Program Storage.  StorageWorks firmware is contained on a 
removable program card for quick code upgrades and to eliminate 
the need for a boot read-only memory (ROM) on the controller. The 
program card is a PCMCIA, 2-MB flash electrically erasable, 
programmable, read-only memory (EEPROM) card that contains the 
firmware image. Designers chose the PCMCIA card to facilitate 
code updates in the field, where host-based downline loading of 
firmware was not supported. Although the PCMCIA card cost more 
than EEPROM chips attached to the module, the designers felt that 
the benefits of such a design outweighed the additional cost.



On each initialization, the controller reads the firmware image 
on the program card and copies the image to the shared memory. 
The firmware executes from the shared buffer memory.

Dual UART (DUART).  The DUART is used for two reasons: 
        
    1.  Maintenance terminal connection.  The maintenance 
        terminal is a means of entering controller system 
        management commands (with the command line interpreter, 
        which is the user interface for controller configuration 
        management) and is also a status and error reporting 
        interface. Designers made extensive use of this interface 
        for debugging controller hardware and firmware. Use of 
        the maintenance terminal connection is optional. The 
        interface remains on the controller so that users can 
        direct controller management and status reporting, if 
        desired. 

    2.  Failover communication between two controllers in a 
        dual-redundant configuration. The communication path is 
        used to share configuration and status information 
        between the controllers.          

Shared Buffer and Cache Memory.  The dynamic random-access memory 
(DRAM) buffer (or shared memory) has at its heart the dynamic RAM 
and arbitration (DRAB) chip. This chip supports the buffer and 
cache memory accesses from the policy processor and from the host 
and device ports. The data transfer rate supported by the shared 
memory is approximately 35 megabytes per second (MB/s).

The DRAB chip contains error-correcting code (ECC) hardware to 
correct single-bit memory, to detect multibit errors, and to 
check and generate bus parity. This feature allows the controller 
to survive partial memory failures, which was a fault-tolerant 
goal for the controller.

The decision to use DRAM chips in the memory design rather than 
static random-access memory (SRAM) chips led to the use of ECC. 
DRAMs were chosen because of their cost and power savings over 
equivalent SRAM. However, because the designers expected large 
amounts of DRAM (as much as 40 MB) to be present on a controller 
and its associated cache module, the statistical error 
probabilities were high enough to warrant the use of ECC on the 
memory. The combination of DRAM and ECC was less costly than an 
equivalent amount of more reliable SRAM. The use of parity on the 
buses is a standard feature in all StorageWorks controllers. The 
bus parity feature provides further error detection capability 
outside the bounds of the memory because it covers the path from 
memory to or from external host or device interfaces. 

The DRAB chip also controls access to the cache module in 
conjunction with slave DRAB chips on the cache module associated 



with the controller. These DRAB chips provide refresh signals for 
the DRAM buffer or cache memory that they control; whereas, the 
master DRAB on the controller module provides arbitration for 
cache accesses that originate from the various sources on the 
controller module. Slave DRAB chips can also be accessed by the 
dual-redundant partner controller, depending on the two 
controller LOCK signal states.

The controller firmware uses 8 MB of shared buffer memory to 
execute the program image, to hold the firmware data structures, 
and to read and write-through cache data (if no cache module is 
present). The i960CA policy processor and the host and device 
data processing elements on the NBUS can all access buffer 
memory.

Cache Memory.  Each cache memory module contains one slave DRAB 
chip and 16 or 32 MB of DRAM, and also two ports into the module 
(one from each controller) for use in failover. Each cache module 
optionally contains batteries to supply power to the DRAM chips 
in the event of power failure for write-back caching and Parity 
RAID use. The cache modules are interchangeable between 
controller types.

Parity RAID XOR and Compare Hardware.  The Parity RAID XOR and 
compare hardware consists of the FX gate array and 256 kilobytes 
(KB) of fast SRAM. The FX allows concurrent access by SCSI-2 
device port hardware and the policy processor. The FX compares 
the XOR of a data buffer (512 bytes of data) that is entering or 
exiting an attached device with the XOR buffers in the fast SRAM. 
The policy processor uses the FX to perform compare operations at 
the request of a host and perform DMA operations to move data to 
and from memories. This hardware is common across all the 
controller platforms for Parity RAID and compare firmware.
     

SCSI-2 Device Port Hardware.  The device ports (three or six, 
depending on the controller model) are controlled by Symbios 
Logic (the former NCR Microelectronic Products Division of AT&T 
Global Information Solutions Company) 53C710 SCSI-2 processor 
chips. The SCSI-2 processor chips reside on the NBUS and access 
the shared-memory cache for data structure and data buffer 
access. These processors receive their work from data structures 
in buffer memory and perform commands on their specific SCSI-2 
bus for read or write operations.

The Symbios Logic chip provided the most processing power, when 
compared to the other chips available when the controllers were 
designed. The designers felt that direct control of SCSI-2 
interfaces by the policy processor or a separate processor was 
too costly in terms of processor utilization and capital expense. 
The Symbios Logic chips do require some policy processor 
utilization, but the designers considered this acceptable because 



high-performance architectural features in the policy processor 
hardware compensated for the extra processor utilization.

The SCSI-2 device port supports the SCSI fast, single-ended, 
8-bit interface.[1] The data transfer rate supported by this 
interface is 10 MB/s.

Host Port Hardware.  The host port hardware is either a CI, a 
DSSI, or a SCSI interface implemented with gate arrays or Symbios 
Logic 53C720 SCSI-2 processors. The host port hardware, the only 
noncommon hardware on a StorageWorks controller, requires a 
separate platform to support each host interface.

The CI interface is made up of a gate array and CI interface 
hardware that performs DMA write or read operations from shared 
memory or cache memory over the NBUS. The maximum data transfer 
rate supported by the CI hardware is approximately 8 MB/s.

The DSSI interface utilizes a Symbios Logic 53C720 chip coupled 
with a gate array and DSSI drivers to receive and transmit data 
to or from the DSSI bus. The DSSI interface is 8 bits wide, and 
the maximum data transfer rate supported by the DSSI hardware is 
4.5 MB/s. 

The SCSI interface also uses a Symbios Logic 53C720 chip coupled 
with differential drivers to provide a SCSI-2, fast-wide (i.e., 
16-bit) differential interface to hosts. The maximum data 
transfer rate supported by the SCSI-2 interface is 20 MB/s for 
fast-wide operations.

Table 3 shows the current (version 2.0) maximum measured (at the 
host) data transfer rate performance numbers for StorageWorks 
controllers.

Table 3   SCSI-2 Host Interface Performance

                 Read Data Transfer Rate    Write Data Transfer Rate 
Controller       (Megabytes per Second)     (Megabytes per Second)
------------     -----------------------    ------------------------
HSJ30/HSJ40*      6.7                       4.4
HSD30             3.2                       2.8
HSZ40**          14                         8.0

 * In a multihost environment
** Measured for the HSZ40-B controller

SUMMARY

The StorageWorks HS-series array controllers were designed to 
meet the storage subsystem needs of both Digital and non-Digital 
systems, thereby entering the world of open systems. The 



architecture for the HSJ30, HSJ40, HSD30, and HSZ40 controllers 
has achieved the initial project goals and provides 
        
    1.  Open systems capability.  A SCSI-2 device interface 
        allows many types of disk, tape, and optical devices to 
        be attached to the HSJ30, HSJ40, and HSD30 controllers. 
        The HSZ40 controller, which is currently a disk-only 
        controller, provides a SCSI-2 host interface that allows 
        the controller to be attached to Digital and non-Digital 
        computers.
       
    2.  High availability. Controller fault tolerance and RAID 
        firmware yielded a highly available StorageWorks storage 
        subsystem.
    
        The dual-redundant controller configuration allows each 
        of a pair of active controllers to operate independently 
        with host systems, while sharing device ports, 
        configuration information, and status. This design allows 
        both controllers to achieve maximum performance. The 
        dual-redundant configuration also provides fault 
        tolerance if one controller fails, because the surviving 
        controller serves the failed controller's devices to the 
        host computers. The dual-controller configuration, 
        combined with StorageWorks controller packaging, results 
        in a highly available controller configuration with 
        built-in fault tolerance, error recovery, and battery 
        backup features.

        Parity RAID firmware, combined with StorageWorks device 
        packaging, allows for highly available disk 
        configurations that are less costly than mirrored 
        configurations. Furthermore, Parity RAID firmware 
        performs automatic Parity RAID management and error 
        recovery functions in the event of a failure and utilizes 
        spare device pools in conjunction with user-defined 
        Parity RAID configuration management policies. The 
        StorageWorks Parity RAID implementation exceeds the 
        requirements of the RAID Advisory Board for RAID 
        availability features.

    3.  High performance. The HSJ30/HSJ40, HSD30, and HSZ40 
        controllers achieved the respective initial performance 
        goals of 1,100, 800, and 1,400 I/Os per second. The 
        controllers met the low request latency goals by 
        streamlining firmware where possible and by introducing 
        write-back caching. Write-back caching firmware 
        dramatically reduces latency on all write requests, and 
        write-back cache hardware provides battery backup for 
        data integrity across power failures. Furthermore, the 
        write-back cache overcomes the RAID level 5 small-write 
        penalty and high data transfer rate inefficiencies and 
        thus provides high performance with Parity RAID disk 
        configurations. StorageWorks Parity RAID firmware 



        implements many of the RAID Advisory Board optional 
        performance features to produce a high-performance RAID 
        solution.

        A common controller processing core was successfully 
        developed for the HSJ30/HSJ40, HSD30, and HSZ40 
        controllers. More than 85 percent of the firmware is 
        common to all three controller platforms, which allows 
        for ease of maintenance and for the same look and feel 
        for customers. The architecture and the technology used 
        resulted in a core controller design that supports a high 
        data transfer rate for all StorageWorks controller 
        platforms.

These achievements represent the large engineering investment 
that Digital has made to move into the open systems market with 
new technology for its storage solutions. These controller 
platforms are the basis for future controller architectures and 
platforms that utilize the knowledge and experience acquired 
during the development of the StorageWorks HS-series array 
controllers.

ACKNOWLEDGMENTS 

The StorageWorks array controller project was the cooperative 
effort of a large number of engineers who sacrificed considerable 
personal time to achieve the project goals. The following people 
and groups contributed to the success of the product: Bob 
Blackledge, Diana Shen, Don Anders, Richard Woerner, Ellen Lary, 
Jim Pherson, Richard Brame, Jim Jackson, Ron McLean, Bob Ellis, 
Clark Lubbers, Susan Elkington, Wayne Umland, Bruce Sardeson, 
Randy Marks, Randy Roberson, Diane Edmonds, Roger Oakey, Rod 
Lilak, Randy Fuller, Joe Keith, Mary Ruden, Mike Richard, Tom 
Lawlor, Jim Pulsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse 
Yandell, Jim Zahrobsky, Mike Walker, Tom Fava, Jerry Vanderwaall, 
Dave Mozey, Brian Schow, Mark Lyon, Bob Pemberton,  Mike Leavitt, 
Brenda Lieber, Mark Lewis, Reuben Martinez, John Panneton, Jerry 
Lucas, Richie Lary, Dave Clark, Brad Morgan, Ken Bates, Paul 
Massiglia, Tom Adams, Jill Gramlich, Leslie Rivera, Dave Dyer, 
Joe Krantz, Kelly Tappan, Charlie Zullo, Keith Woestehoff, Rachel 
Zhou, Kathy Meinzer, and Laura Hagar. Thanks to the CAD team, the 
StorageWorks packaging and manufacturing team, the software 
verification team, and the problem management team. A final 
thanks to our OpenVMS and DEC OSF/1 operating system partners and 
to the corporate test groups, all of whom worked with our 
engineering team to ensure interoperability between the operating 
systems and the controllers.

REFERENCES AND NOTES

1.  Information Systems -- Small Computer Systems Interface-2 
    (SCSI-2), ANSI X1.131-1994 (New York: American National 



    Standards Institute, 1994).

2.  D. Patterson, G. Gibson, and R. Katz, "A Case for Redundant 
    Arrays of Inexpensive Disks (RAID)," Report No. UCB/CSD 
    87/391 (Berkeley: University of California, December 1987). 

3.  The RAID level 5 small-write penalty results when a small 
    write operation does not write all the blocks associated with 
    a parity block. This situation requires disk reads to 
    recalculate parity that must then be written back to the RAID 
    level 5 unit to achieve data redundancy.

4.  P. Massiglia, ed., The RAIDbook: A Source Book for Disk Array 
    Technology, 4th ed. (St. Peter, Minnesota: The RAID Advisory 
    Board, September 1994). 

5.  P. Biswas, K. Ramakrishnan, D. Towsley, and C. Krishna, 
    "Performance Analysis of Distributed File Systems with 
    Non-Volatile Caches," ACM Sigmetrics (1993). 

6.  Parity RAID unit reconstruction of data and parity from a 
    failed array member means regenerating the data 
    block-by-block from the remaining array members (see Figure 
    6) and writing the regenerated data onto a spare disk. 
    Reconstruction restores data redundancy in a Parity RAID 
    unit.

7.  Metadata is information written in a reserved area of a disk. 
    The information, which takes up approximately 0.01 percent of 
    the total disk capacity, describes the disk's configuration 
    and state with respect to its use in a Parity RAID unit.

8.  P. Biswas and K. Ramakrishnan, "Trace Driven Analysis of 
    Write Caching Policies for Disks," ACM Sigmetrics (1993). 

9.  R. Lary and R. Bean, "The Hierarchical Storage Controller, A 
    Tightly Coupled Multiprocessor as Storage Server," Digital 
    Technical Journal, vol. 1, no. 8 (February 1989): 8-24. 

BIOGRAPHY

Stephen J. Sicola   Consulting engineer Stephen Sicola is a 
member of the the Array Controller Group in the Storage Business 
Unit. He is working on the next generation of controllers and was 
the technical leader for the current StorageWorks controller 
product set. In earlier work, Steve developed software and 
hardware for such products as the HSC, KDM70, and advanced 
development controller projects. Steve joined Digital in 1979 
after receiving a B.S.E.E. from Stanford University. He received 
an M.S.C.E. from the National Technological University in 1992.

TRADEMARKS



The following are trademarks of Digital Equipment Corporation: CI, 
DEC, DEC OSF/1, Digital, HSC, HSC50, HSC60, HSC70, HSC90, HSJ, HSZ, 
KDM, OpenVMS, StorageWorks, VAX, and VAXcluster.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

i960 is a trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines.

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

=============================================================================
Copyright 1995 Digital Equipment Corporation.  Forwarding and copying of this 
article is permitted for personal and educational purposes without fee 
provided that Digital Equipment Corporation's copyright is retained with the 
article and that the content is not modified. This article is not to be 
distributed for commercial advantage. Abstracting with credit of Digital 
Equipment Corporation's authorship is permitted.  All rights reserved.
=============================================================================


